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 The attempt to understand and improve methods, and to do so via theorizing 
them, is at the center of an intelligently evolving cognition. 

  — Clifford Hooker (1987, 291) 

 Above all, if a raised standard of education in methods is to be achieved, it is 
necessary to engender, beyond any knowledge of particular skills and formulae 
as such, a  perspective  as to what methods are most appropriate to various areas 
and occasions. 

  — Raymond Cattell (1966, 5) 
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 Preface 

 Although modern science is made up of many parts, scientific method is 
its centerpiece. The centrality of method to science stems from the fact 
that it provides scientists with the primary form of guidance in their quest 
to obtain knowledge about the world. As fallible inquirers, scientists face 
immense challenges in their efforts to learn about the complexities of 
nature. In good part, these challenges are met through the use of methods, 
which provide scientists with the cognitive assistance that they need to 
undertake successful inquiry. 

 However, despite its undoubted importance, scientific method receives 
less considered attention than it deserves, from both scientists and educa-
tors. Of course, scientists take method seriously, but I believe that they 
do not take it seriously enough. Scientists themselves, including psycholo-
gists, learn about research methods and how to use them to conduct their 
research. However, the nature of this learning, and of the instruction they 
receive about how to employ these methods, is better described as a mix 
of training and indoctrination than as a genuine education designed to 
provide a critical, in-depth understand ing of the methods. Although 
professional science educators sometimes promote the importance of the 
epistemological foundations of scientific method, the influence of this 
source of learning on the regular teaching of research methods is minimal. 
Psychology, which provides extensively in its curriculum for teaching 
research methods, uses textbooks that make little or no effort to inform 
students in depth about the nature of scientific method. Nor does its 
curriculum foster a critical appreciation of the various research methods 
that its textbooks deal with. Consequently both psychological scientists 
and psychology students tend to have a limited understanding of scien-
tific method, which in turn contributes to a misuse of research methods 
and a suboptimal level of scientific literacy. 
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 I think that the missing key in this educational failure is scientific 
methodology. Methodology is the domain officially charged with foster-
ing the evolution and understanding of scientific methods, and it is our 
official repository of knowledge about those methods. Scientific meth-
odology is not the exclusive domain of any particular discipline. Rather, 
it is a central part of cognitive theory, which is itself regarded as an 
inter disciplinary endeavor. It spans the domains of statistics, the philoso-
phy of science, the sociology of science, the various disciplines of cogni-
tive science, and more; but it is reducible to none of them. As a practical 
endeavor, methodology is concerned with the mutual adjustment of 
means and ends. It judges whether methods are sufficiently effective for 
reaching certain goals. But methodology is also critically aim oriented 
and considers what goals the research enterprise should pursue. Clearly 
no single discipline can realistically aspire to cover all the tasks of 
methodology. 

 The methodological literature in psychology is dominated by the field 
of statistics. Quantitative methods receive the large majority of attention 
in both research methods textbooks and research practice. Qualitative 
research methods are regarded as a poor cousin and remain on the 
margins of methodology, although there are signs that they are gaining 
some acceptance. As important as statistical methods are to science, 
they cannot be all that there is to scientific method. Consequently the 
clarion call for statisticians to be the purveyors of scientific method 
(e.g., Marquardt, 1987) is inappropriate. The guiding assumption of 
this book is that treating scientific method with the seriousness it 
deserves requires taking scientific methodology seriously. I do this by 
giving special consideration to behavioral science methodology, the phi-
losophy of science, and statistical theory. Thus the book is interdisciplin-
ary in nature. 

 The philosophy of science figures more prominently in this book 
than is usual for methodology texts. The reason for this emphasis is 
that contemporary philosophy of science contains an array of important 
methodological insights that are impossible to ignore when coming to 
grips with scientific method. In recent years, philosophy of science 
has increasingly sought to understand science as it is practiced, and 
although it has much work to do in this regard, it now has important 
things to say about how science is, and should be, conducted. As part 
of this concern with scientific practice, philosophers of science have 
given increased attention to research methods in science. A positive 
development in this regard has been the focus on the methodology of 
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experimentation over the last thirty years, although the methodology of 
theory construction remains the dominant focus in the philosophy of 
science. 

 Of late, philosophers of science have also shown a willingness to deal 
with methodological issues in sciences other than physics. Biology has 
been the major beneficiary, although psychology has received some philo-
sophical attention. There is, then, a developing literature in contempo-
rary philosophy of science that can aid both our understanding and our 
use of research methods and strategies in psychology (e.g., Trout, 1998). 
At the same time, a small number of theoretically oriented behavioral 
and social science methodologists have produced work on the conceptual 
foundations of research methods that helps illuminate those methods. 
Thus the work of both professional philosophers of science and theoreti-
cal scientists should be included in a philosophical examination of behav-
ioral research methods. 

 Three major philosophies of science are of particular relevance to 
psychology: empiricism, social constructionism, and scientific realism 
(Greenwood, 1992; Manicas  &  Secord, 1983). Nineteenth-century 
British empiricism had a major influence on the development of British 
statistics in the first half of the twentieth century (Mulaik, 1985). The 
statistical methods developed in that intellectual milieu remain an impor-
tant part of psychology ’ s statistical research practice. For example, Karl 
Pearson ’ s product moment correlation coefficient was taken by its 
founder to be the quantitative expression of a causal relation viewed in 
empiricist terms. Similarly, Ronald Fisher ’ s endorsement of inductive 
method as the proper view of scientific method stemmed from a com-
mitment to the empiricism of his day. Even in today ’ s postpositivist 
philosophical climate, authors of research methods textbooks sometimes 
portray quantitative research as essentially positivist in its empiricist 
commitments (see Yu, 2006). The traditional empiricist outlook is much 
too limiting because it restricts its attention to what can be observed, 
and regards theories merely as instruments that organize claims about 
observables. 

 For their part, qualitative methodologists tend to bolster their pre-
ferred conception of qualitative research by comparing it with an unflat-
tering positivist picture of quantitative research. At the same time, they 
frequently adopt a philosophy of social constructionism that is expressed 
in an implausibly strong form. This form is opposed to the traditional 
notions of truth, objectivity, and reason and maintains that our under-
standing of the world is determined by social negotiation. Such a view 
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of social constructionism tends to be employed by those who are opposed 
or indifferent to quantitative methods. It is a view at odds with the 
philosophical outlook adopted in this book. 

 In what follows, I adopt a scientific realist perspective on research 
methods. Although the subject of considerable debate, and opposed by 
many antirealist positions, scientific realism is the dominant philosophy 
of science today. In addition, a commonsense version of realism seems 
to be the tacit philosophy of most working scientists. With its increas-
ingly heavy emphasis on the nature of scientific practice, the philosophy 
of scientific realism is becoming a philosophy  for  science, not just a 
philosophy  of  science. Scientific realism is, in fact, a family of positions, 
and in chapter 1, I sketch a view of realism that I think is appropriate 
for psychology. Scientific realism boasts a rich conception of methodol-
ogy, which can be of considerable help in understanding and guiding 
behavioral science research. It is a methodology that is at once natural-
istic, problem focused, and aim oriented. It also promotes both generative 
and consequentialist reasoning, and the importance of justifying knowl-
edge claims on both reliabilist and coherentist grounds. The influence of 
this conception of methodology occurs throughout the book. 

 In this book, I take psychology ’ s commitment to scientific method very 
seriously. I do this principally by constructing a broad theory of scientific 
method, which is genuinely informed by insights in contemporary scien-
tific methodology and speaks to the conduct of psychological research. 
This account of method I call the  abductive theory of method  (hereafter 
 ATOM ) in recognition of the importance it assigns to explanatory rea-
soning. In contrast to the popular hypothetico-deductive method, ATOM 
portrays research as a bottom-up process comprising two broad phases. 
The first phase involves the detection of phenomena, such as empirical 
generalizations. The second phase involves the construction of explana-
tory theories to explain claims about the phenomena. The book draws 
from the  “ new experimentalism ”  (Ackerman, 1989) in philosophy of 
science to help illuminate the process of phenomena detection. It also 
examines in detail different abductive methods of theory construction, 
drawing, where appropriate, from the varied philosophical literature on 
abductive reasoning: the widely used method of exploratory factor analy-
sis is presented as an abductive method of theory generation; the strategy 
of analogical modeling is presented as an abductive approach to theory 
development; and the neglected method of inference to the best explana-
tion, particularly the theory of explanatory coherence, is presented as an 
appropriate method of theory appraisal. 
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 An important feature of ATOM is that it functions as a broad frame-
work theory within which a variety of more specific research methods 
can be located and employed. A coherent treatment of those methods 
is enhanced by placing them within the framework of ATOM. In turn, 
the specific methods help give ATOM a good deal of its operational 
detail. A number of the specific methods I refer to are well known to 
behavioral scientists, but some are not. Psychology has tended to empha-
size data analytic methods at the expense of methods of theory construc-
tion. However, ATOM assigns equal importance to the two classes of 
method. 

 A subsidiary focus of this book is a concern with science education 
in relation to behavioral research methods. It follows John Dewey ’ s 
(1910) lead and suggests that we adopt an inquiry-oriented conception 
of education that accords an important place to scientific method. The 
narrow nature of, and uncritical approach to, the teaching and use of 
research methods in psychology are highlighted in some of the chapters. 
The need to teach for a more critical understanding of research methods 
is a natural consequence of acknowledging the importance of the domain 
of research methodology. In light of the requirements of a genuine liberal 
education, I make constructive proposals for reforming the methods cur-
riculum. The nature of ATOM and its methodological foundations shape 
many of these curriculum proposals. 

 Chapter 1 introduces the topic of scientific method by providing some 
background material to better appreciate the more focused discussion of 
method in the ensuing chapters. I begin by briefly considering the idea 
of scientific method and different criticisms that have been leveled against 
it. Next I outline and provisionally assess four prominent theories of 
scientific method. I then move to a consideration of the nature of scien-
tific methodology before providing a selective overview of the key ele-
ments of the philosophy of scientific realism. Finally, I present a brief 
overview of ATOM to provide a conceptual framework for locating and 
better understanding the various methods and strategies examined in the 
book. 

 Chapter 2 draws from the new experimentalism in the philosophy of 
science so as to reconstruct the important process of phenomena detec-
tion as it applies to psychology. In doing so, I propose a four-stage model 
of data analysis. The model begins with the initial examination of data, 
proceeds in turn through exploratory and confirmatory data analytic 
phases, and finishes with the stage of constructive replication. The three-
fold distinction between data, phenomena, and explanatory theory is 
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drawn, and its implications for understanding the nature of psychological 
science are spelled out. 

 Chapter 3 considers the abductive nature of theory generation by 
examining the logic and purpose of the method of exploratory factor 
analysis. I argue that the common factors that result from using this 
method are not fictions but latent variables, which are best understood 
as genuine theoretical entities. I support this realist interpretation of 
factors by showing that exploratory factor analysis is an abductive gen-
erator of elementary theories that exploits an important heuristic of 
scientific methodology known as the  principle of the common cause . 

 Science uses many different approaches to modeling. In chapter 4, I 
selectively examine one important approach to scientific modeling, ana-
logical modeling. The strategy of analogical modeling is adopted by 
ATOM as its chief means of theory development. Accordingly, I spell out 
here the structure of analogical models and the use of analogical abduc-
tive reasoning both to expand and to evaluate the plausibility of models. 

 Chapter 5 recommends the use of inference to the best explanation 
for evaluating the worth of theories in psychology. I suggest that it is a 
more appropriate account of theory appraisal than both the popular 
hypothetico-deductive method and the widely heralded Bayesian 
approach. I discuss a number of different explications of inference to the 
best explanation, in particular the theory of explanatory coherence, 
which is the most detailed extant explication of inference to the best 
explanation. 

 The concluding chapter rounds out the extended characterization of 
ATOM. First I outline an account of the nature of research problems, 
and then I discuss the nature and limits of ATOM. This is followed by 
applications of ATOM to grounded theory method and to clinical rea-
soning. Toward the end of the chapter, I offer some thoughts about the 
importance of methodology for understanding research methods. The 
book concludes with some brief remarks about the future prospects for 
ATOM. 

 The methodology of the behavioral sciences is a subject of relative 
neglect in professional philosophy of science. Thus my hope is that this 
book will be welcomed by those in the philosophical community who 
want to learn about an important set of methodological practices in one 
of the interesting special sciences. Conversely, I would like to think that 
the book contains material that will enable psychological researchers to 
deepen their conceptual appreciation of a variety of research methods 
and associated methodological matters and thereby contribute to the 
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conduct of sound psychological research. Although the book ’ s primary 
focus is on psychology, I believe its contents are relevant to the behavioral 
sciences more generally. 

 Finally, I draw the reader ’ s attention to two matters. First, it is some-
times important to distinguish between scientific method as a theoretical 
understanding of an inquiry procedure and scientific method as a mate-
rial practice. Given the book ’ s primary concern with ATOM, it mostly 
focuses on a theoretical understanding of method. Second, I have endeav-
ored to keep abbreviations to a minimum. However, for convenience, I 
abbreviate the  abductive theory of method  as  ATOM  throughout the 
book. I also use abbreviations for  exploratory factor analysis  and  infer-
ence to the best explanation  in their respective chapters.  
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 1   Method, Methodology, and Realism 

 Epistemology without contact with science becomes an empty scheme. Science 
without epistemology is — insofar as it is thinkable at all — primitive and muddled. 

  — Albert Einstein (1949, 683 – 684) 

 1.1   Introduction 

 Modern science is a complex human endeavor comprising many parts. 
It articulates aims that it seeks to realize; it employs methods to facilitate 
its investigations; it produces facts and theories in its quest to obtain an 
understanding of the world; and it is shaped by the institutions within 
which it is embedded. Although all these dimensions are essential to a 
full-bodied characterization of science, method is arguably its most 
important feature. This is because everything we know in science is 
acquired in good part through the application of its methods, whether 
it be our knowledge of substantive matters, values, or the methods them-
selves. Method really matters to science. 

 Although method is vitally important to the conduct of science, dis-
cussion of the topic is not particularly fashionable. There are a number 
of possible reasons for this. One is that some people think there is no 
such thing as scientific method, or at most that there is very little to 
scientific method; others think it cannot be given an illuminating char-
acterization; and still others think it is a complex investigative skill that 
is tacitly acquired by scientists in the course of learning their craft. 
Attitudes such as these have some currency because scientists themselves 
learn very little about scientific methodology in their formal science 
education. Instead they tend to acquire an operational facility with a 
small number of  “ tried and proven ”  methods that have been judged to 
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work well in their own specialties. The result is that a number of mis-
taken ideas about method have gained a foothold in our common think-
ing about science. 

 A further reason for the devaluing of methodological knowledge is 
that it is often walled off within specific disciplines and so loses its inter-
disciplinary integrity. This devaluation seems to be exacerbated by a 
territoriality, where specialists in particular subjects, principally the phi-
losophy of science and statistics, sometimes proclaim or assume guard-
ianship of scientific method itself. This is not as it should be, because 
methodology properly understood and practiced is a strongly interdisci-
plinary undertaking. Important though the insights of philosophers of 
science and statisticians about scientific method are, to confine one ’ s 
appreciation of the topic to what they say about it is to ignore important 
insights about method offered by other disciplines. 

 Given the complexity of scientific method implied in this chapter ’ s 
epigraph, it is appropriate to present some relevant background material 
to assist us in articulating and understanding some of that complexity. 
As noted in the preface, I do this by considering a variety of ideas about 
method, methodology, and realist philosophy of science. An overview of 
ATOM sets the scene for its extended treatment in the following 
chapters. 

 1.2   Criticisms of the Idea of Scientific Method 

 Influenced by the founders of modern scientific method, Rene Descartes 
and Francis Bacon, seventeenth-century methodologists understood sci-
entific method as a universally applicable logical procedure that was at 
once mechanical, rule based, ahistorical, content neutral, and  a priori 
 ( Nickles, 2009 ). As such, it was simultaneously thought to be a method 
of discovery and justification that, upon its correct application, guaran-
teed the production of knowledge of both the surface features and deep 
structures of nature. 

 Not surprisingly, this fanciful conception of scientific method has been 
subjected to strong and prolonged attack by scientists, philosophers of 
science, and science studies specialists. Modern methodologists have 
strongly challenged the features of scientific method mentioned by 
 Nickles (2009) , and more, leaving us with diminished, and still disputed, 
conceptions of scientific method. Larry  Laudan (1981)  tells a suggestive 
story of how in the late eighteenth century and the early nineteenth 
century, both scientists and methodologists largely gave up on the 
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Baconian conception of inductive method in favor of the method of 
hypothesis, or the hypothetico-deductive method. Laudan gives two 
reasons for this general shift: the realizations that a fail-safe method that 
produced infallible knowledge could not be had, and that inductive 
method is unable to postulate hidden causes about material things.  1   

 The idea that there is a scientific method characteristic of all scientific 
inquiry has been attractive to many scientists, and some methodologists 
still speak in favor of some or other version of  the  scientific method. 
Because of the historical importance of the inductive and hypothetico-
deductive conceptions of inquiry, and their alleged powers to produce 
knowledge, it is not surprising that this idea has seemed plausible. 

 One prominent modern candidate for the title of  the  scientific method 
is Karl  Popper ’ s (1959)  falsificationist construal of the hypothetico-
deductive method, understood as a general strategy of conjecture and 
refutation. Presented as an all-purpose account of method, it promises 
to unify method within and across the natural and social sciences. Pop-
per ’ s method has the additional attraction of providing the demarcation 
criterion of falsifiability for distinguishing scientific practice from pseu-
doscientific, as well as nonscientific, practice. Despite its endorsement by 
a number of prominent scientists (some Nobel prize winners among 
them), Popper ’ s account of method is less influential in science than is 
commonly believed. This is especially true of psychology ( Uchino, 
Thoman,  &  Byerly, 2010 ).  2   Moreover, philosophers of science have 
largely rejected Popper ’ s falsificationist theory of science and its depic-
tion of scientific method (e.g.,  Nola  &  Sankey, 2007 ). This rejection 
includes the view that a single criterion, such as falsifiability, cannot 
effectively demarcate science from nonscience. 

 Despite the idea ’ s popularity, there has been a growing realization that 
the existence of one true account of scientific method is untenable. The 
majority view today is that there can be no fixed, universal account of 
scientific method appropriate at all times for all sciences. A quick inspec-
tion of different disciplines such as physics, biology, and economics 
reveals a diverse array of methodological practices. This holds for psy-
chology as well, although a good deal of its research practice has a 
disquieting sameness about it. The coexistence of the four major theories 
of scientific method to be canvassed shortly, and the broad spectrum of 
methodological concerns shown by ATOM, attest to the existence of 
numerous different scientific methods. In short, the claim that science 
employs various accounts of scientific method should be accepted 
immediately. 
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 An arresting criticism of scientific method was put forward by Popper, 
who was fond of declaring that scientific method does not exist. By this 
he meant that  “ (1) There is no method of discovering a scientific theory. 
(2) There is no method of ascertaining the truth of a scientific hypothesis, 
i.e., no method of verification. (3) There is no method of ascertaining 
whether a hypothesis is  ‘ probable, ’  or  ‘ probably true ’  ”  ( Popper, 1983 , 6). 
However, these claims are really part of Popper ’ s reasons for rejecting an 
inductive conception of scientific method and adopting a falsificationist 
construal of the hypothetico-deductive method in its place. The claims 
do not address other accounts of scientific method. Thus the three asser-
tions that Popper thinks speak against the idea of scientific method 
would likely be accepted by many who adopted alternative conceptions 
of scientific method. For example, advocates of a modern inductive con-
ception of scientific method do not regard it as a strong discovery 
method; most scientists take scientific method to be concerned with the 
justification of knowledge claims, and not with directly ascertaining their 
truth; and although Bayesian methodologists reject the third claim, most 
scientists do not assign probabilities to hypotheses and theories. In short, 
Popper was not really against the idea of scientific method, only one 
limited conception of scientific method. 

 In a book provocatively titled  Against Method  (1975), Paul Feyera-
bend presented a different criticism of scientific method. He railed against 
the idea that there is or can be one fixed method for all time, arguing 
that no methodological rules exist that have not been broken at some 
time or other in the interests of genuine scientific progress. Thus, for 
Feyerabend, the only rule that does not inhibit progress is the meta-rule 
 “ Anything goes. ”  His argument has been endorsed by a number of com-
mentators who want to de-emphasize the importance of scientific method. 
However, Feyerabend ’ s criticism speaks against the fixity of method-
ological rules only. Nothing in his writing counsels against the flexible 
use of a variety of different methodological rules that are revisable in the 
light of experience and reason. 

 The criticisms of scientific method just considered are easily turned, 
largely because they present scientific method in an unflattering light. 
None of them consider conceptions of scientific method that are informed 
by the contemporary literature on scientific methodology. Much of this 
literature accepts the tenability — indeed, the importance — of the idea of 
scientific method, although it is replete with criticisms of the various 
major accounts of scientific method. 

 A number of prominent scientists have also commented on scientific 
method in ways that devalue its very idea. Two well-known criticisms 



Method, Methodology, and Realism  5

are those of the Nobel laureates Percy Bridgman and Richard Feynman. 
Bridgman, the father of the philosophy of operationism, forthrightly 
asserted that  “ the scientific method, as far as it is a method, is nothing 
more than doing one ’ s damnedest with one ’ s mind, no holds barred ”  
( Bridgman, 1955 , 535). This comment is cryptic in the extreme and does 
not differentiate scientific method from other types of method or from 
nonmethodic endeavors. Feynman also cryptically declares that scientific 
method  “ is based on the principle that observation is the judge of whether 
something is so or not.  . . .  Observation is the ultimate and final judge 
of the truth of an idea ”  ( Feynman, 1998 , 15). Feynman ’ s comment, 
however, exaggerates the importance of observation in science and says 
nothing about the procedural dimension of scientific method. Although 
Bridgman and Feynman say different things about scientific method, 
neither of them characterizes it in an informative manner or acknowl-
edges the sizable body of literature on scientific method that has accu-
mulated since the time of Galileo (see, e.g.,  Gower, 1997 ). Although their 
pronouncements are often invoked by those who want to deflate the idea 
of scientific method, their remarks can hardly be taken as an informed 
guide to the topic. Despite their brevity, my remarks should suggest that 
these sorts of criticisms of the idea of scientific method carry little weight. 
Further, I think that the existence of major theories of scientific method 
attests to the notion that there is a great deal to the idea of scientific 
method. 

 1.3   Four Theories of Scientific Method 

 Modern scientific methodology has given considerable attention to a 
variety of different theories of scientific method. I now briefly review 
four of the most prominent theories: the inductive method, the hypo-
thetico-deductive method, Bayesian hypothesis testing, and inference to 
the best explanation. Each has been endorsed by different methodologists 
as the best account of scientific method for scientists to adopt. However, 
I believe that none of them deserves a dominant position in the research-
er ’ s methodological armory. Rather, they should be thought of as local 
domain-specific methods.  3   

 1.3.1   Inductive Method 

 The idea that scientific method involves inductive reasoning goes back 
at least to Aristotle and was given heavy emphasis, though in different 
ways, by Francis Bacon and John Stuart Mill. Inductive reasoning takes 
various forms. For example, it is found in the fashioning of statistical 
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generalizations, in a form of reasoning by analogy, in the Bayesian assign-
ment of probabilities to hypotheses, in the strategy of successively elimi-
nating implausible hypotheses, and in the reasoning involved in moving 
from confirmed predictions to hypotheses in the standard formulation 
of the hypothetico-deductive method. 

 Historically speaking, the most popular inductive approach to scien-
tific method is a simple form of inductivism (e.g.,  Chalmers, 2013 ). 
According to this account of method, science begins by securing observed 
facts, which are collected in a theory-free manner. These facts provide a 
firm base from which the scientist reasons  “ upward ”  to hypotheses, laws, 
or theories. The reasoning involved takes the form of enumerative induc-
tion and proceeds in accordance with some governing principle of induc-
tive reasoning. As its name suggests, enumerative induction is a form of 
argument in which the premises count a number of observed cases from 
which a conclusion is drawn, typically in the form of an empirical gen-
eralization. However, enumerative induction can also take the form of a 
prediction about something in the future or a retrodiction about some-
thing in the past. The governing principle for an enumerative induction 
to a generalization can be stated informally as follows:  “ If a proportion 
of A ’ s have been observed under appropriate conditions to possess prop-
erty B, then infer the same proportion of all A ’ s to have property B. ”  This 
inductive principle can be taken to underwrite the establishment of sta-
tistical generalizations. 

 The simple account of inductive method has been criticized in various 
ways, although the criticisms are mostly directed at extreme versions of 
the method — versions claiming that observed facts can be known infal-
libly, that observations are made in an entirely theory-free manner, and 
that empirical generalizations can be secured through the use of a strongly 
justified principle of induction. However, this simple view of inductive 
method can be amended and defended in a moderate form as follows: 
observed facts can be established reliably, if fallibly; theory can be, 
because it has to be, used to guide observations; theoretical terms can be 
used to report observational statements without threatening the reliabil-
ity of those statements; and principles of induction can be given an 
adequate justification on pragmatic grounds. 

 In psychology, the radical behaviorism of B. F.  Skinner (1956 ,  1984 ) 
is a prominent example of a research tradition that uses an attractive 
nonstatistical inductive conception of scientific method. The major goals 
of radical behaviorist research are first to detect empirical generalizations 
about learning and then to systematize those empirical generalizations 
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by assembling them into nonexplanatory theories. Murray Sidman ’ s 
 Tactics of Scientific Research  (1960) is an instructive radical behaviorist 
account of the inductive methodology of this process. The Bayesian 
approach to hypothesis testing, which is slowly gaining some acceptance 
in psychology, can also be regarded as a sophisticated variant of inductive 
method. 

 1.3.2   Hypothetico-Deductive Method 

 Undoubtedly the most popular account of scientific method is the hypo-
thetico-deductive method, which has been the method of choice in the 
natural sciences for more than 150 years ( Laudan, 1981 ). This method 
has come to assume hegemonic status in the behavioral sciences, which 
have often placed a heavy emphasis on testing hypotheses in terms of 
their predictive success. In psychology, the pervasive use of traditional 
statistical significance test procedures is routinely embedded in a hypo-
thetico-deductive structure. 

 The hypothetico-deductive method is characteristically described in 
one of two ways. According to the more popular account, the scientist 
takes a hypothesis or a theory and tests it indirectly by deriving from it 
one or more observational predictions, which are amenable to direct 
empirical testing. If the predictions are borne out by the data, then that 
result is taken as a confirming instance of the theory in question. If the 
predictions fail to square with the data, then that fact counts as a dis-
confirming instance of the theory. The other account comes from Karl 
 Popper (1959) . As noted earlier, he construes the hypothetico-deductive 
method in falsificationist terms. According to this rendition, hypotheses 
are viewed as bold conjectures, which the scientist submits to strong 
criticism with a view to overthrowing or refuting them. Hypotheses that 
successfully withstand such criticism are said to be corroborated, which 
is a noninductive notion of support. 

 Although the hypothetico-deductive method is used by many scientists 
and has been endorsed by prominent philosophers of science, it has 
received considerable criticism. Leaving aside Popper ’ s less influential 
view, the major criticism of the hypothetico-deductive method is that it 
is confirmationally lax. This laxity arises from the fact that any positive 
confirming instance of a hypothesis obtained through its use can confirm 
any hypothesis that is conjoined with the test hypothesis, irrespective of 
the plausibility of that conjunct. Another criticism of the hypothetico-
deductive method is that it standardly submits a single hypothesis to 
critical evaluation without regard for its performance in relation to 
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possible competing hypotheses. Yet a further criticism of the method is 
that it mistakenly maintains that hypotheses and theories arise through 
free use of the imagination, and not by some rational, methodological, 
or logical means.  4   

 Criticisms such as these have led some methodologists to recommend 
that the hypothetico-deductive method should be abandoned (e.g., 
 Glymour, 1980 ;  Rozeboom, 1997 ). Although this recommendation might 
be reasonable when applied to the method as it is standardly conceived, 
it is possible to correct its deficiencies and use the method to good effect 
in hypothesis testing research (e.g.,  Sprenger, 2011 ). For example, one 
might overcome the confirmational defects of the orthodox hypothetico-
deductive method by employing a Bayesian approach to confirmation 
within a hypothetico-deductive framework. Further, with or without a 
commitment to the Bayesian approach, one could use the hypothetico-
deductive method to deliberately test two or more competing hypotheses 
in relation to the evidence, rather than a single hypothesis in relation to 
the evidence. Further still, in testing two or more hypotheses, one might 
supplement the appeal to empirical adequacy by invoking criteria to do 
with explanatory goodness. This last correction might be considered to 
transform standard hypothetico-deductive method into a form of the 
method of inference to the best explanation, an idea that I will take up 
in chapter 5. Finally, typical formulations of the hypothetico-deductive 
method depict the empirical evidence as data, not phenomena. The con-
trast between data and phenomena will be laid out in the next chapter. 
Suffice it to say that specifying the evidence condition in terms of phe-
nomena, rather than weaker data patterns, would provide the method 
with stronger empirical tests. 

 1.3.3   Bayesian Method 

 Although the Bayesian approach to evaluating scientific hypotheses and 
theories is looked on more favorably in philosophy of science than the 
hypothetico-deductive alternative, it remains a minority practice in psy-
chology and the other behavioral sciences. However, it should be said 
that some methodologists in the behavioral sciences are now applying 
Bayesian ideas to a variety of methodological topics and problems. 

 With the Bayesian approach, probabilities are considered central to 
scientific hypothesis and theory choice (e.g.,  Howson  &  Urbach, 2006 ). 
In science, Bayesian hypothesis testing is a statistical affair, a practice 
that has been augmented by the allied philosophy of science known as 
 Bayesianism  (e.g.,  Earman, 1992 ). In using probability theory to 
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characterize theory evaluation, Bayesians recommend the assignment of 
posterior probabilities to scientific hypotheses and theories in the light 
of relevant evidence. Bayesian hypothesis choice involves selecting from 
competing hypotheses the one with the highest posterior probability, 
given the evidence. The vehicle through which this process is conducted 
is Bayes ’ s theorem. This theorem can be written in its simplest form as 
Pr (H/D) = Pr (H)  ×  Pr (D/H)  ÷  Pr (D). The theorem says that the pos-
terior probability of the hypothesis is obtained by multiplying the prior 
probability of the hypothesis by the probability of the data, given the 
hypothesis (the likelihood), and dividing the product by the prior prob-
ability of the data. 

 Although Bayes ’ s theorem is not controversial as a mathematical 
theorem, it is controversial as a guide to scientific inference. With respect 
to theory appraisal, one frequently mentioned problem for Bayesians is 
that the probabilistic information required for their calculations on many 
scientific hypotheses and theories cannot be obtained. It is difficult to 
know how one would obtain credible estimates of the prior probabilities 
of the various hypotheses and evidence statements that made up Charles 
Darwin ’ s evolutionary theory, for instance, or a modern formulation of 
psychodynamic theory. Not only are the required probabilistic estimates 
for such theories hard to come by, they do not seem to be particularly 
relevant when appraising such explanatory theories. 

 The problem for Bayesianism presented by scientific theory evaluation 
is that scientists naturally appeal to qualitative theoretical criteria rather 
than probabilities. I note in the next section that scientific theories are 
often evaluated by employing explanatory reasoning rather than proba-
bilistic reasoning. 

 1.3.4   Inference to the Best Explanation 

 Inference to the best explanation is founded on the belief that a good 
deal of what we know about the world is based on considerations of 
explanatory worth. This form of inference occurs informally in everyday 
life and professional affairs, and more systematically in science. Because 
a primary function of many theories in science is to explain, inference to 
the best explanation evaluates theories in terms of their explanatory 
merits. Theories that offer good explanations are deemed more likely to 
be correct than those that offer poor explanations. 

 Inference to the best explanation is quite different from the three 
preceding accounts of scientific method. Unlike inductive method, which 
generalizes in a descriptive manner, inference to the best explanation 
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embodies a theoretical form of inference about explanations of facts that 
appeal to entities or processes that are different from those facts. In 
contrast to the hypothetico-deductive method, inference to the best 
explanation takes the relation between theory and evidence to be one of 
explanation, not logical entailment; and in contrast to the Bayesian 
approach, it takes theory evaluation to be a qualitative exercise that 
focuses explicitly on explanatory criteria, not a quantitative undertaking 
in which one assigns probabilities to theories. 

 A major attraction of inference to the best explanation is that it 
explicitly assesses explanatory theories in terms of the important scien-
tific goal of explanatory power. However, a major challenge for propo-
nents of inference to the best explanation has been to furnish an 
informative account of the criteria that should be used to determine 
explanatory power. The cognitive scientist Paul  Thagard (1978)  pre-
sented a historically informed, systematic account of three major criteria 
that have successfully been used in assessing the worth of scientific 
explanations: explanatory breadth, simplicity, and analogy. These criteria 
were subsequently incorporated into a fully fledged method of inference 
to the best explanation known as the  theory of explanatory coherence  
( Thagard, 1992 ). The theory figures prominently in chapter 5, which 
canvasses the prospects of using inference to the best explanation as a 
worthwhile approach to appraising psychological theories. 

 Although a focus on theories that embrace unobserved theoretical 
entities is not an essential feature of inference to the best explanation, 
scientists are justified in believing in such entities because their existence 
is proposed by scientific theories that provide the best available explana-
tion of a wide range of phenomena. For example, the existence of elec-
trons and viruses was widely accepted because of the explanatory 
goodness of theories that posited them. It seems that psychologists have 
also sometimes tacitly accepted the existence of human abilities and 
personality traits essentially for the same reason. 

 Advocates of inference to the best explanation do not hold that a 
theory covering a wide range of empirical phenomena gives a better 
explanation than its rival because it is true. However, many of the pro-
ponents of inference to the best explanation do seem to accept the idea 
that a theory is more likely to be true because it provides a better expla-
nation of the relevant phenomena than its rival does. In fact, some go so 
far as to claim that inference to the best explanation provides a reason-
able guide to the truth, or at least the approximate truth, of theories. 
The extent to which methods are truth conducive is a challenging topic, 
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and there is no settled opinion about how method and truth relate in 
this regard. I have something to say about this relationship in chapter 5, 
though I make no attempt to solve the problem. 

 The four theories just considered are commonly regarded by philoso-
phers of science as the major theories of scientific method. Although each 
of the theories has sometimes been proposed as the principal claimant 
for the title of  the  scientific method, they are all better thought of as 
restrictive accounts of method that can be used to meet specific research 
goals, not broad accounts of method that capture what is essential for 
all scientific inquiry. Each of these methods covers only a part of the 
methodological activity of science. To take any one of them as  the  
account of scientific method would be to unduly restrict the scope of 
scientific inquiry. Indeed, this would still be the case even if all four 
methods were somehow combined into one supermethod. In subsequent 
chapters, I will be at pains to suggest that inductive method is appropri-
ate for phenomena detection, but not for theory construction. Similarly, 
I will insist that we should not regard inference to the best explanation 
as an all-purpose form of inference but instead think of it as a method 
particularly suited for evaluating the worth of competing explanatory 
theories. For its part, the hypothetico-deductive approach, appropriately 
modified, can productively be used to test for the empirical adequacy of 
local hypotheses, whereas the Bayesian approach can be used to assign 
probabilities to hypotheses for which we have the appropriate probabi-
listic information. As we will see, ATOM assigns no role to either hypo-
thetico-deductive or Bayesian accounts of method. 

 1.4   The Nature of Methodology 

 The evolution and understanding of scientific methods are to be found 
in the domain of scientific methodology, a fact that makes this interdis-
ciplinary sphere of learning one of major practical and educational 
importance. Yet we have few extended accounts of the nature of scientific 
methodology. Larry  Laudan ’ s (1996)  normative naturalism is prominent 
in the philosophy of science, and more than forty years ago, Abraham 
 Kaplan (1964)  and Adriaan  de Groot (1969)  wrote book-length treat-
ments of methodology for the behavioral sciences. Martin  Hammersley 
(2011)  recently provided a broad-ranging discussion of methodology for 
social scientists. None of these earlier works have had a palpable influ-
ence on psychologists ’  thinking about scientific method. In what follows, 
I sketch the broad contours of a modern conception of scientific realist 
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methodology that is in broad agreement with Tom  Nickles ’ s (1987a , 
 1987b ) insightful treatment of the topic. My formulation of ATOM is 
underwritten by this conception of methodology, along with a host of 
more specific methodological ideas. 

 1.4.1   The Tasks of Methodology 

 It is important to distinguish at the outset between method and method-
ology. The term  method  derives from a combination of the Greek words 
 meta , meaning  following , and  hodos , meaning  the way , to give  following 
the way , suggesting the idea of order. Applied to science, method suggests 
the efficient, systematic ordering of inquiry. Scientific method, then, 
describes a sequence of actions that constitute a strategy to achieve one 
or more research goals that have to do with the construction and use of 
knowledge. Researchers sometimes use the term  methodology  as a 
learned synonym for  method  (and  technique ). However, the term is 
properly understood as denoting the general study of methods and is the 
domain that forms the basis for a genuine understanding of those 
methods. To repeat, methods themselves are purportedly useful means 
for helping us realize chosen ends, whereas methodology contains the 
resources for an informed understanding of our methods. 

 In its study of methods, methodology is at once descriptive, critical, 
and advisory ( Nickles, 1987a ;  Reichenbach, 1938 ). It discharges these 
major tasks by describing relevant methods and explaining how they 
help researchers achieve their goals; it critically evaluates methods against 
their rivals; and it recommends what methods we should adopt to pursue 
our chosen goals. Thus a good methodology will offer researchers an 
informed description of methods, a judicious evaluation of them in rela-
tion to their rivals, and instructive advice on how to choose and use those 
methods. Methodology is important because the three major tasks it 
addresses are essential to the conduct of high-quality research. 

 Being a practical endeavor, methodology is concerned with the mutual 
adjustment of means and ends. As such, it judges whether methods are 
sufficiently effective for reaching chosen goals. But methodology is also 
critically aim-oriented and considers what research goals the research 
process should pursue. How, for example, are we to understand the 
related goals of truth, understanding, and control? If truth is taken as a 
major goal of science (as I believe it must be), and if truth is construed 
as correspondence with reality (as I think it should be) (see  Haig  &  
Borsboom, 2012 ), then philosophical semantics becomes a part of meth-
odology. If understanding has an important psychological dimension, as 
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it undoubtedly does, then psychology becomes a part of methodology. 
And if the exercise of control over science is regulated to an appreciable 
extent by institutions, then policy science enters into methodology. From 
a genuine concern with questions such as these, it follows that methodol-
ogy must constantly attend to possibilities of fashioning and deploying 
methods in the face of varied and changing goal demands. In doing so, 
it becomes the management science of research ( Simon, 1969 ;  Nickles, 
1997 ). 

 In reconciling the means and ends of inquiry in these ways, it is evident 
that methodology should not be identified with single disciplines such as 
applied statistics or philosophy of science, though these and other 
branches of learning are well positioned to make valuable contributions 
to methodology. Rather, as stated in the preface, methodology is a central 
part of the broad domain of cognitive theory and is therefore best under-
stood as an interdisciplinary field. 

 1.4.2   Problem-Oriented Methodology 

 Although talk of research problems abounds in behavioral science 
inquiry, it largely serves a rhetorical purpose rather than doing useful 
methodological work. Behavioral scientists seldom attend to the nature 
of problems and their place in the research enterprise. The methodologi-
cal treatment of research problems that does exist typically amounts to 
the recommendation that we cast our research hypotheses in the form 
of questions. However, such a suggestion has limited value, for it involves 
no attempt to understand problems by developing and using an informa-
tive theory of questions.  5   Demands that researchers formulate their 
research questions are frequently just requests for an operationalization 
of research hypotheses by empirically specifying the relevant independent 
and dependent variables (e.g.,  Johnston  &  Pennypacker, 2009 ). Relat-
edly, solutions to the original  “ problems ”  often involve answering the 
questions by conducting experimental tests of the research hypotheses. 
It is true that John  Dewey ’ s (1938)  problem-solving account of inquiry 
has occasionally been taken as an appropriate model for behavioral 
science research (e.g.,  Kerlinger  &  Lee, 2000 ), but unfortunately Dewey ’ s 
psychological construal of problems does not readily translate into a 
useful counterpart at the methodological level. 

 In good part, the neglect of research problems as a methodological 
idea has occurred because we have subscribed to theories of scientific 
method that do not systematically provide for the use of problems think-
ing. According to the standard account of inductive method outlined 
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earlier, research begins with the scientist gathering and reporting observa-
tions in a theory-free manner. However, as  Hempel (1966)  noted, inquiry 
could never get under way in such a fashion. The first stage of gathering 
all the facts could never be completed, because they are enormous in 
number and variety. Collecting facts would be possible only if our 
methods could select those facts that are relevant to our purpose. 
However, Hempel maintained that one could not determine relevance by 
incorporating problems into a simple inductive model of inquiry. He 
believed that the idea of a problem is too vague to be an effective device 
for the selection of relevant facts, and nothing less than a hypothesis or 
theory is required to initiate and direct inquiry. Therefore Hempel rejected 
simple inductivism and opted for a hypothetico-deductive perspective on 
scientific method in which inquiry is viewed as a relation between a 
theory and its consequences. This line of thinking is consistent with the 
standard portrayal of the hypothetico-deductive method, which makes 
no serious appeal to problems. 

 However, a few philosophers of science have focused on the methodol-
ogy of scientific problems and their importance for the conduct of 
science. Although endorsing a variant of the hypothetico-deductive 
method,  Popper (1972)  insisted that science  is  a problem-solving enter-
prise. However, he faltered with his account of problems by locating most 
of its resources in the theoretical background rather than in the immedi-
ate space of inquiry. In his well-known book  Progress and Its Problems  
(1977), Larry Laudan presented a general theory of science as a thor-
oughgoing problem-solving endeavor. However, it is a conception of 
science that leaves no room for the idea that science also pursues truth. 
Finally,  Nickles (1981)  developed an instructive theory of problems as a 
general approach to scientific methodology. I believe that this theory, 
which views problems as sets of constraints on their own solutions, is 
the most methodologically resourceful account of problems available 
today. I use it in completing my articulation of ATOM at the beginning 
of chapter 6. 

 1.4.3   Generative and Consequentialist Methodology 

 I now identify and briefly discuss two important methodological ideas 
that have received limited attention in the literature. These ideas are 
presented in two contrasts: (a) generative and consequentialist methodol-
ogy, and (b) reliabilist and coherentist justification. 

 Modern scientific methodology promotes two different research strat-
egies that can lead to justified knowledge claims. These are known as 
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 consequentialist  and  generative  strategies ( Nickles, 1987b ). Consequen-
tialist strategies justify knowledge claims by focusing on their conse-
quences. By contrast, generative strategies justify knowledge claims in 
terms of the processes that produce them. Although consequentialist 
strategies are used and promoted more widely than generative strategies 
in contemporary science, an adequate conception of research methodol-
ogy requires both. Consequentialist reasoning receives a heavy emphasis 
in scientific research through use of the hypothetico-deductive method. 
Consequentialist methods reason from the knowledge claims in question 
to their testable consequences. As such, they confer a retrospective justi-
fication on the theories they seek to confirm. 

 In contrast to consequentialist strategies, generative strategies reason 
from warranted premises to an acceptance of the knowledge claims in 
question. The method of exploratory factor analysis, which is the focus 
of chapter 3, is a good example of a method of generative justification. 
It affords researchers generative justifications by helping them reason 
forward from statements about established correlational data patterns 
to the rudimentary explanatory theories that the method generates. 
Judgments of initial plausibility constitute the generative justifications 
provided by methods like exploratory factor analysis. Generative justifi-
cations are forward looking because they are concerned with heuristic 
appraisals of the prospective worth of theories. ATOM ’ s account of 
theory generation is explicitly underwritten by a generative conception 
of methodology. 

 1.4.4   Reliabilist and Coherentist Justification 

 In addition to embracing both generative and consequentialist reasoning 
strategies, an adequate methodology will use two different theories of 
justification known as  reliabilism  and  coherentism . Reliabilism asserts 
that a belief is justified to the extent that it is acquired by reliable pro-
cesses or methods (e.g.,  Goldman, 1986 ). For example, belief in the 
accuracy of temperature readings by the appropriate use of a calibrated 
thermometer is justified by the reliable process of its production. By 
contrast with reliabilism, coherentism maintains that a belief is justified 
in virtue of its coherence with other accepted beliefs. One prominent 
version of coherentism, explanationism, asserts that coherence is deter-
mined by explanatory relations and that all justification aims at maxi-
mizing the explanatory coherence of belief systems ( Lycan, 1988 ). 

 However, the claim that all justification is concerned with explanatory 
coherence is too extreme, as the existence of reliabilist justification makes 
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clear. Although reliabilist and coherentist approaches to justification are 
distinct, they are complementary. The complementarity will be spelled 
out in my presentation of ATOM. This theory of method deems reliabilist 
justification appropriate for the discovery of empirical generalizations, 
whereas a particular form of coherentist justification is best employed in 
the appraisal of explanatory theories. 

 1.4.5   Methodology with a Knowing Subject 

 Underwriting the conception of methodology I am sketching here is the 
anti-Popperian view that epistemology must take  “ the knowing subject ”  
seriously. Applied to methodology more specifically, this attitude leads 
to a rejection of the fanciful idea that the researcher is a  “ computation-
ally omnipotent algorithmizer ”  in favor of a more realistic conception 
that accords with our actual epistemic makeup. Herbert  Simon ’ s (1977)  
view of the researcher as a  “ satisficer ”  is an influential part of this more 
realistic conception of ourselves as knowers. According to this view, 
our rationality is bounded by temporal, computational, memorial, and 
other constraints and thus proceeds in good part by using heuristic 
procedures. 

 William  Wimsatt (1986)  helpfully characterizes heuristic procedures 
as having at least the following four properties. First, the proper employ-
ment of heuristics does not ensure that a solution will be found, much 
less that a solution will be the correct one. Second, heuristics are cost-
effective procedures in that they make considerably fewer demands on 
time, effort, and computational complexity than their algorithmic coun-
terparts. Third, the errors that result from using heuristic procedures are 
biased in systematic ways, so that we can often predict the conditions 
under which they will fail, and make appropriate adjustments. Fourth, 
applying heuristics to a problem may produce a transformation of the 
problem into one of related and more useful form.  6   The notion of heu-
ristic procedures is central to the liberalized conception of methodology 
being glossed here and encourages us to treat the domain of pragmatic 
reasoning as a crucially important part of the research endeavor. 

 I should point out that this overview of the nature of methodology is 
incomplete in a number of respects: it ignores the social dimension of 
research, including institutional and economic considerations, and it does 
not dwell on the fact that research is often a nonlinear, bootstrapping, 
multipass enterprise (see, e.g.,  Nickles, 1987a ). Despite these omissions, 
I do express a running concern in this book with the institutional matter 
of the need to reform psychology ’ s research methods curriculum. 
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 I now consider the philosophy of scientific realism, which, despite 
vigorous debate, may fairly be taken as the majority position in the 
philosophy of science.  7   Most scientists seem to be scientific realists of 
one sort or another, though they subscribe to the philosophy in tacit 
fashion. The conception of methodology just sketched should be accepted 
as part of the realist philosophy that I now outline. Indeed, given the 
centrality of method to science, and a commitment to a method-centered 
conception of epistemology, methodological realism is a core commit-
ment of the philosophy of scientific realism. 

 1.5   Scientific Realism 

 1.5.1   Varieties of Realism 

 Scientific realism (hereafter simply  realism ), like many  “ isms, ”  comes in 
a variety of forms. Among the many contemporary versions of realism, 
we find Cliff Hooker ’ s naturalistic realism, Mario Bunge ’ s hylorealism, 
Roy Bhaskar ’ s critical realism, Ilkka Niiniluoto ’ s quite different form 
of critical realism, Richard Boyd ’ s abductive realism, Ian Hacking ’ s 
entity realism, John Worrall ’ s structural realism, Ron Giere ’ s perspectival 
realism, J. D. Trout ’ s measured realism, and Anjan Chakravartty ’ s semi-
realism, to mention just some of the prominent available alternatives. 
Realism, then, cannot be given a straightforward characterization, and 
it will always be possible to take issue with one or other of its formula-
tions. For example, the tension between formulating realist theses in 
global terms and local terms runs through the realist literature. Although 
global accounts of realism have dominated historically, realists are 
starting to see local realism as an attractive way to formulate their 
philosophy. 

 In this book, I adopt a realist perspective on science. Although the 
link between realism and method is not direct, what I have to say about 
method is better understood against a backdrop of realism than, say, 
antirealist options such as empiricism and strong forms of social con-
structivism. To repeat, although the subject of considerable debate, and 
opposed by many antirealists, realism is the dominant philosophy of 
science today. This fact, combined with an increasing willingness to focus 
on the nature of scientific practice, makes realism an appropriate phi-
losophy for science. 

 Most versions of realism display a commitment to at least two doc-
trines. First, there is a real world of which we are part, and second, both 
the observable and unobservable features of that world can be known 
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by the appropriate use of scientific methods. Some versions of realism 
incorporate additional theses (e.g., the claims that truth is the primary 
aim of science, and that successive theories more closely approximate the 
truth), and some also nominate optional doctrines that may, but need 
not, be used by realists (e.g., the claim that causal relations are relations 
of natural necessity; see, e.g.,  Hooker, 1987 ). Others who opt for an 
 “ industrial-strength ”  version of realism for the physical sciences (e.g., 
 Boyd, 1984 ) are more cautious about its successful reach in the behav-
ioral sciences. For example,  Trout (1998)  subscribes to a more modest 
brand of realism in psychology, owing to his skepticism about the disci-
pline ’ s ability to produce deeply informative theories like those in the 
physical sciences. 

 1.5.2   Naturalistic Realism 

 One particularly important feature of the realism that I subscribe to is 
its thoroughgoing commitment to naturalism. For this reason, it might 
be called  naturalistic realism . A perspicacious form of this philosophy is 
offered by  Hooker (1987) . According to this brand of realism, scientific 
reasoning, including theorizing, is a natural phenomenon that takes its 
place in the world along with other natural phenomena. Further, philoso-
phy and science make up a mutually interacting and interconnected 
whole. As a philosophical theory about science, naturalistic realism has 
no privileged status and may be revised in the light of scientific knowl-
edge. Similarly, the naturalistic realist foresees that philosophical conclu-
sions, tempered by scientific knowledge, may force changes in science 
itself. 

 According to one influential view of naturalism, philosophy and 
science are interdependent. This interdependence takes the form of 
mutual containment ( Quine, 1969 ), though the containment is different 
for each. Philosophy is contained by science, being located within science 
as an abstract critical endeavor that is informed by science. Science is 
contained by philosophy because philosophy, among other things, pro-
vides a normative framework for the guidance of science. 

 Naturalistic realism maintains that philosophy of science is the part 
of science concerned with the in-depth critical examination of science 
with respect to its aims, methods, theories, and institutions. Philosophy 
of science naturalized is, in a sense, science applied to itself. It employs 
the methods of science to study science. It is, where appropriate, con-
strained by the findings of science. And it is itself a general theory 
of science. As such, naturalized philosophy of science is at once 
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descriptive, explanatory, advisory, integrative, and reflective of science. 
Being positioned within science, naturalistic philosophy is well placed to 
study science, learn from science, and help instruct science. 

 Not all naturalists are scientific realists, and not all scientific realists 
are naturalists, thus raising the question: why is it advantageous to 
combine scientific realism and naturalism in a single philosophy? One 
reason is that naturalism is the best methodology we have available to 
us. It gives us our best methods from which to choose and encourages 
us to constrain our theorizing in light of reliable scientific knowledge. 
Another reason is that naturalism ’ s principled commitments to both anti-
anthropocentrism and fallibilism enable us to offer a tenable defense of 
realism, one that is true to our makeup as cognizers. Finally, by embrac-
ing naturalism, realism becomes an integrated whole that affords us the 
best current explanatory theory of the cognitive dynamics of science 
( Hooker, 1987 ). 

 1.5.3   Local Realism 

 As noted earlier, most formulations of realism are global in nature (e.g., 
 Boyd, 1989 ;  Kitcher, 1993 ;  Psillos, 1999 ). They are presented as over-
arching general philosophies of science that are intended to apply to all 
sciences at all times. Largely focusing on the achievement of physics, 
these formulations of realism are intended to apply to mature science 
that is in a state of advanced theoretical development. An important 
consequence of this focus is that global realism has limited value as a 
philosophy for the behavioral and social sciences, which have generally 
been less successful in their theoretical achievements. 

 The prominent theoretical psychologist Paul  Meehl (1993)  correctly 
argued that the philosophy of science can genuinely help to improve the 
quality of scientific thinking in psychology. However, he suggested that 
the received view in philosophy of science, which he takes to be a modi-
fied form of logical empiricism, is the appropriate philosophy for psy-
chology. I think that this suggestion is mistaken on two counts. First, 
despite its achievements, logical empiricism is largely an outdated phi-
losophy of science, even in an amended form. Second, as a global phi-
losophy of science fashioned in an image of physics, it speaks poorly to 
the concerns of psychological science and therefore has limited value as 
a philosophy for psychology. A worthwhile realism must be realistic 
about the sciences to which it speaks. 

 To take advantage of the understanding of science that realism is 
capable of providing, the behavioral sciences need local, fine-grained 
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formulations of realism that are appropriate to their particular natures 
and achievements (e.g.,  Kincaid, 2000 ). One sensible way to proceed 
would be to replace the core theses of global realism with revised theses 
along the lines suggested by Uskali  M ä ki (2005) . What follows is a brief 
treatment of five core realist theses, three of which are influenced by 
M ä ki ’ s formulations. 
     
  Possible Existence    By focusing on the mature sciences, standard for-
mulations of realism insist that the entities postulated by successful 
theories in the mature sciences do in fact exist, and that they are pretty 
much like the theories say they are. Thus our best theories in physics 
entitle us to believe that entities such as atoms, electrons, and quarks 
are part of the world ’ s furniture, and they have the properties described 
by the relevant best theories. However, this formulation ignores two 
important facts of epistemic life: all sciences exhibit uneven rates of 
theoretical progress, and different degrees of epistemic confidence should 
attach to the different phases of the development and appraisal of sci-
entific hypotheses and theories. For example, when a scientist postulates 
a new entity, it is often appropriate to think that it  might  exist, not 
that it  does  exist. Considerable progress is required before one can 
express confidence in a new entity ’ s existence. Commitment to a thor-
oughgoing fallibilism, combined with a self-critical approach to scientific 
practice, suggests that this is the appropriate epistemic attitude to adopt 
( M ä ki, 2005 ). It follows that we should be wary of strongly tying our 
ontological commitments to the latest and  “ best ”  theory ( Burian  &  
Trout, 1995 ). Many entities once thought to exist turned out not to 
exist. Other entities were shown to exist, but to be wrongly described 
in earlier attempts to understand them. Still others are characterized by 
competing theories, resulting in a high degree of uncertainty about them. 
Ontological progress in science is mostly piecemeal and characteristi-
cally occurs in fits and starts. To be a realist, it is enough that we hold 
to the view that an entity might exist, and that we give ourselves every 
chance of showing that it does exist. This will often require concerted 
work spanning several generations. 

 These comments about possible existence clearly apply to psychology, 
though it will sometimes be more difficult to gauge ontological progress 
there than in the natural sciences, given the special challenges psychology 
can face in accessing its hidden causal mechanisms. For example, we 
cannot say with full assurance that the credentials of the Spearman-
Jensen theory of intelligence entitle us to think that general intelligence 
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(g) exists for sure. The reason for this is that both this theory and many 
others in psychology are not sufficiently well developed and justified to 
warrant drawing such a conclusion. Although Spearman and Jensen ’ s 
theory is a respectable theory, it competes with similarly credentialed 
theories of intelligence, none of which is widely accepted as the best 
theory. 
     
  Mind Dependence    Standard realism also subscribes to the ontological 
thesis that scientific entities exist apart from our mental representations 
of them. Although this commitment is appropriate for the physical sci-
ences, whose subject matters exist whether or not they are investigated, 
it is inappropriate for the large tracts of nonneuroscientific behavioral 
and social science, for there is an important sense in which mental and 
social objects such as beliefs, desires, attitudes, marriage, money, and 
universities are not mind independent. Rather, they are mind dependent 
in that they are partly constituted by our conceptions or representations 
of them. Money is a familiar example of an ontologically subjective 
entity. Something is money only because we regard it as money ( Searle, 
1995 ). If humans did not exist in a modern economy, then there would 
be no such thing as money. More generally, if there were no minds, there 
would be no mental and social entities. 

 There is no good reason why a realist philosophy should insist on 
mind independence. In fact, as  M ä ki (2005)  has noted, a realist philoso-
phy adequate to the social and behavioral sciences can provide for mind 
dependence by thinking of mental and social objects as  science  or  inquiry 
 independent. Theories of mental and social objects typically do not have 
the power to create those objects. This is sufficient to satisfy the demand 
that mental and social objects be studied objectively. 
     
  Possible Truth    The foregoing remarks about existence apply in analo-
gous fashion to truth. Orthodox realism says that our best theories in 
the mature sciences are literally true, or approximately true, and the 
appropriate use of reliable methods enables us to say that this is the case. 
However, rather than take our best theories to be true, or approximately 
so, a realism that is sensitive to the growth of scientific knowledge should 
accept the view that our theories might well be true in the future, if not 
right now. This will certainly be the case when our theories are first 
conceived. Therefore it is more realistic to nominate our theories as 
 candidates  for truth. Consistent with this, truth should be understood as 
an orienting ideal, which we approximate by fashioning and justifying 
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our theories. Because we cannot expect immediate truth in science, truth 
should be understood as a distal goal, not a proximal goal. 

 A suitable notion of correspondence truth comports well with realism, 
for there will be facts of the matter that make our truth-nominated theo-
ries true or false, though we might not have strong grounds for determin-
ing their truth value. What matters is that our theories be given a decent 
opportunity to be judged true. As it is for existence, so it is for truth: 
considerable resources of time, money, and other types of institutional 
support are needed for inquiry to be undertaken successfully. 
     
  Observables and Unobservables    Standard formulations of realism 
explicitly embrace unobserved theoretical entities. Specifically, it is 
claimed that such entities exist, and science ’ s best theories successfully 
refer to such entities. However,  M ä ki (2005)  thinks that the social sci-
ences, including folk psychology, mostly study observed or manifest 
entities, which he calls  commonsensibles . Commonsensibles are the 
familiar objects that we deal with on a daily basis, such as money, stock 
markets, beliefs and attitudes, and social institutions. For Maki, these 
sorts of entities are part of our familiar observed ontology. They are not 
newly postulated theoretical entities that we add to our ontology by 
hypothesizing their existence. Rather, our folk understanding of them is 
refined and validated through social and behavioral science inquiry. 

 I agree with M ä ki that some of our commonsensibles are observables. 
However, I think that many of them have the status of unobserved theo-
retical entities. The folk psychological entities such as beliefs and desires, 
for example, are dispositions, inferred on the basis of their presumed 
effects under specified stimulus conditions. In a realist interpretation, 
these are appropriately thought of as theoretical entities (e.g.,  Rozeboom, 
1973 ,  1984 ). However, it is important to adopt an attitude of letting the 
ontological chips fall where they may. Whether entities and processes are 
observable or unobservable will make a difference for how we investigate 
them, but it will make no difference to whether we should adopt a realist 
attitude toward them. 
     
  Aims    Some formulations of scientific realism depict science as an aim-
oriented endeavor. In this regard, it is commonly said that the fundamen-
tal aim of science is to discover the truth about the world. This core 
thesis of realism is sometimes spelled out by making a number of related 
claims. For example,  Sankey (2008)  insists that scientific progress must 
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be thought of as an advance toward truth, where truth is understood as 
valuable truth, and valuable truth is understood as explanatory truth. 
He also maintains that the claim  “ science involves the pursuit of truth ”  
is an epistemological claim because science is a knowledge-seeking 
enterprise. 

 However, science is a complex and varied endeavor and for this reason 
is better thought of as pursuing multiple aims. In addition to pursuing 
truth, science is also concerned with achieving understanding through 
the establishment of facts and theories, as well as the attainment of 
control — broadly understood to include, for example, the experimental 
regulation of inquiry, and the application of knowledge to bring about 
desirable social outcomes. As we have seen earlier, science can also fruit-
fully be regarded as a problem-solving endeavor, as Popper, Laudan, and 
Nickles have emphasized in different ways. 

 These brief and selective remarks about realism might seem like an 
unnecessary excursion. However, I want to signal that the methodologi-
cal matters I deal with when articulating ATOM in the following chapters 
are best understood against a backdrop of realist philosophy of science. 
Further, I will have occasion to explicitly note links between realist phi-
losophy and behavioral science methodology as I proceed. Although my 
primary purpose is to articulate and promote a broad understanding of 
psychological inquiry, I intend my remarks about realism and methodol-
ogy to allow for the possibility of fashioning a local realist philosophy 
that is appropriate for psychology. 

 Now that I have assembled a number of background ideas to do with 
method, methodology, and realism, it remains for me to provide a sketch 
of ATOM that will form the principal focus of the book. This account 
of method is broad in scope, and the overview will give the reader an 
overarching structure by which to understand better the different research 
methods discussed the following chapters. 

 1.6   An Overview of the Abductive Theory of Method 

 According to ATOM, scientific inquiry proceeds as follows. Guided by 
evolving research problems that comprise packages of empirical, theo-
retical, and methodological constraints, scientists analyze sets of data to 
detect robust empirical regularities, or phenomena. Once detected, these 
phenomena are explained by abductively inferring the existence of under-
lying causes that are thought to give rise to them. Here abductive 



24  Chapter 1

inference involves reasoning from claims about phenomena, understood 
as presumed effects, to their theoretical explanation in terms of underly-
ing causes. Upon positive judgments of the initial plausibility of these 
explanatory theories, researchers attempt to elaborate on the nature of 
the causal mechanisms in question.  8   They do so by constructing plausible 
models of those mechanisms by analogy to relevant ideas in domains 
that are well understood. When the theories are well developed, they are 
assessed against their rivals with respect to their explanatory goodness. 
This assessment involves making judgments of the best of competing 
explanations. 

 An important feature of ATOM is its ability to serve as a framework 
within which a variety of more specific research methods can be located, 
conjoined, and used. Operating in this way, these otherwise separate, 
specific research methods can be viewed as submethods of the overarch-
ing abductive method. In turn, the submethods provide ATOM with the 
operational bite that helps it make scientific inquiry possible. Compre-
hensive methods are often constituted by a number of submethods and 
strategies that are ordered according to an overarching structure ( Ross, 
1981 ). By incorporating a good number of submethods within its fold, 
ATOM is therefore intensely compositional. And although the structure 
of the theory is stable, its specific composites can vary markedly, depend-
ing on their suitability to the investigation at hand. 

 In characterizing ATOM in the following chapters, I show in some 
detail how it deploys a number of specific research methods within its 
compass.   Table 1.1  contains a variety of research methods and strategies 
that can be placed within the structure of ATOM. I discuss a number 
of these in the exposition of the method that follows, but most of them 
are not required for its characterization.  9   The majority of methods 
selected for consideration in the book have been chosen primarily to 
facilitate the exposition of the processes of phenomena detection and 
theory construction without attempting to give an essential characteriza-
tion of these processes. Some of the details of ATOM would have to 
be modified as a function of the nature of the methods chosen to operate 
within it.   

 Both inductive and abductive forms of reasoning play major roles in 
ATOM. However, because of the prominence of abductive reasoning in 
the theory construction phases of the method, I refer to it as an  abductive 
theory . The exposition of the theory begins with an account of phenom-
ena detection and then considers the process of constructing explanatory 
theories. 
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 1.6.1   Phenomena Detection 

 ATOM places great importance on the task of detecting empirical phe-
nomena, and it views the completion of this task as a prerequisite for 
subsequent theory construction. In understanding the process of phe-
nomena detection, phenomena must be distinguished from data ( Wood-
ward, 1989 ). Phenomena are relatively stable, recurrent, general features 
of the world that researchers seek to explain. The Flynn effect of inter-
generational gains in IQ ( Flynn, 2009 ) is a prominent example of a 
phenomenon in psychology. Although phenomena commonly take the 
form of empirical regularities, it is more useful to characterize them in 
terms of their role in relation to observation and prediction. Phenomena 
give scientific explanations their point. They also, on account of their 
generality and stability, become the appropriate focus of scientific expla-
nation. Data, by contrast, are ephemeral and pliable. 

 The methodological importance of data lies in the fact that they serve 
as evidence for the phenomena under investigation. In extracting phe-
nomena from data, scientists often engage in data exploration and reduc-
tion using graphical and statistical methods. Generally speaking, these 
data analytic methods help directly in the detection of phenomena, but 
not in the explanation of explanatory theories. 

 To establish that data are reliable evidence for the existence of phe-
nomena, scientists use a variety of strategies. They include controlling 
for confounding factors, carrying out replications, calibrating instru-
ments, and engaging in data analytic strategies of both statistical and 
nonstatistical kinds. 

 In the next chapter, I outline a statistically oriented, multistage account 
of data analysis to further characterize the phenomena detection phase 
of ATOM. The model proceeds through the four stages of initial data 
analysis, exploratory data analysis, close replication, and constructive 
replication. These four phases are concerned respectively with data 
quality, pattern suggestion, pattern confirmation, and generalization. The 
overall process of phenomena detection is one of enumerative induction 
in which one learns empirically, on a case-by-case basis, the conditions 
of applicability of the empirical generalizations that represent the 
phenomena. 

 1.6.2   Theory Construction 

 According to ATOM, phenomena serve the important function of 
prompting the search for their understanding in the form of relevant 
explanatory theories. For ATOM, theory construction comprises three 
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methodological phases: theory generation, theory development, and 
theory appraisal. The first two phases are temporal in nature; theory 
appraisal begins with theory generation, continues with theory develop-
ment, and is undertaken in concerted fashion in the so-called phase of 
 theory appraisal . ATOM characterizes each phase of theory construction 
as abductive in nature, though the character of abductive inference is 
different in each phase. 

 Abductive reasoning is a form of inference that takes us from descrip-
tions of data patterns, or phenomena, to one or more plausible explana-
tions of those phenomena (e.g.,  Josephson  &  Josephson, 1994 ). A brief 
characterization of abductive inference can be given as follows: some 
phenomena are detected that are surprising because they do not follow 
from any accepted hypothesis or theory; we notice that the phenomena 
would follow as a matter of course from the truth of a new hypothesis 
or theory (in conjunction with accepted auxiliary claims); we conclude 
that the new hypothesis or theory has initial plausibility and therefore 
deserves to be seriously entertained and further investigated. 

 In chapter 3, I discuss exploratory factor analysis as an example of 
a method in psychology that facilitates the abductive generation of 
theories about latent factors ( Haig, 2005b ). With this method, theories 
are generated through a process of existential abduction in which the 
existence, but not the natures, of the causal mechanisms is hypothesized. 
The claim for the existence of general intelligence is psychology ’ s best-
known example of a hypothesis about latent factors arrived at by such 
means. 

 ATOM is also a method for theories-in-the-making. It encourages 
researchers to regard their theories as developing entities. Because we 
often do not have knowledge of the nature of the causal mechanisms we 
abductively probe, such nascent theories stand in clear need of develop-
ment. ATOM urges us to construct models of those mechanisms by 
imagining something analogous to mechanisms whose nature we do 
know. In this regard, ATOM adopts the strategy of analogical modeling 
to help develop explanatory theories ( Abrantes, 1999 ). Because analogi-
cal modeling increases the content of explanatory theories, I refer to the 
reasoning it embodies as  analogical abduction . With analogical model-
ing, one builds an analogical model of the unknown subject or causal 
mechanism based on the known nature and behavior of the source from 
which the model is drawn ( Harr é , 1976 ). The computational model of 
the mind, based on an analogy with the computer, is a clear example of 
a model that has been developed by using this strategy. 
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 ATOM takes the systematic evaluation of mature theories to be an 
abductive undertaking known as  inference to the best explanation , 
whereby a theory is accepted when it is judged to provide a better expla-
nation of the evidence than its rivals. ATOM takes inference to the best 
explanation to be centrally concerned with establishing explanatory 
coherence ( Thagard, 1992 ). The theory of explanatory coherence main-
tains that the propositions of a theory hold together because of their 
explanatory relations. Relations of explanatory coherence are established 
through the operation of seven principles: symmetry, explanation, 
analogy, data priority, contradiction, competition, and acceptability. The 
explanatory coherence of a theory is determined by means of three cri-
teria: explanatory breadth, simplicity, and analogy. Each criterion is 
embedded in one or more of the principles. Explanatory breadth, which 
is the most important criterion for judging the best explanation, captures 
the idea that a theory is more explanatorily coherent than its rivals if it 
explains a greater range of facts or phenomena than its rivals. The notion 
of simplicity deemed most appropriate for theory choice is captured by 
the idea that preference should be given to theories that make fewer 
special assumptions than their rivals. Finally, explanations are judged 
more coherent if they are supported by analogy to theories that scientists 
already find credible. Darwin ’ s theory of evolution by natural selection 
has been shown, through use of the theory of explanatory coherence, 
to be a more explanatorily coherent theory than its creationist alterna-
tive ( Thagard, 1992 ). The theory of explanatory coherence offers the 
researcher an integrated account of the criteria deemed important for the 
appraisal of explanatory theories. The theory of explanatory coherence 
is implemented through a computer program that enables the researcher 
to make systematic decisions about the best of competing explanatory 
theories. 

 ATOM aspires to be a coherent theory that brings together a number 
of different research methods and strategies that are normally considered 
separately. Although ATOM is a broad theory of scientific method, it is 
not a fully comprehensive account. Rather, it is a singular account of 
scientific method that is appropriate for the detection of empirical phe-
nomena and the subsequent construction of explanatory theories. 

 As stated in the preface, I present ATOM chapter by chapter as 
follows: Chapter 2 provides a wide-ranging account of phenomena detec-
tion. Chapter 3 discusses the abductive nature of theory generation by 
focusing on the method of exploratory factor analysis. Chapter 4 consid-
ers the process of theory development as it is carried out via the strategy 
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of analogical modeling. In chapter 5, inference to the best explanation, 
in the form of the theory of explanatory coherence, is presented and 
recommended as a fruitful approach to theory appraisal. In the last 
chapter, the exposition of ATOM is completed by presenting a theory of 
research problems. 

 1.7   Conclusion 

 Despite its centrality to science, scientific method is given less respectful 
attention in psychology than it deserves. The discipline ’ s modal research 
practice, its uncritical science education, and the narrow interests of its 
professional methodologists contribute collectively to an attitude of dis-
interest in the topic. 

 In this chapter, I reaffirmed the importance of method in science. Not 
only is scientific method a centerpiece of science, but it is also unscathed 
by the superficial criticisms offered by commentators who do not bother 
to evaluate the extant theories of scientific method. I briefly considered 
four major theories of scientific method and concluded that each is 
appropriately thought of not as the best global account of scientific 
method but as a local method with domain specific application; there is 
no such thing as  the  scientific method. 

 I then sketched a heterodox account of the philosophy of scientific 
realism as a foundational backdrop to the book ’ s ongoing concern with 
scientific method. I suggested that this brand of realism is apt for behav-
ioral science disciplines such as psychology, whose theoretical achieve-
ments are more modest than those of the physical sciences. The main 
features of a realist conception of scientific methodology were given 
particular attention. This liberalized view of methodology underwrites 
much of the material presented in the book. 

 Finally, I presented a preview of ATOM to provide an orienting struc-
ture for its more extended treatment in the book. By providing explicitly 
for both inductive and abductive reasoning within its fold, the abductive 
theory of method supports the idea that there are several  “ logics ”  to 
scientific discovery. 

 





 2   Detecting Psychological Phenomena 

  Phenomena!  Now there ’ s a word to conjure with. It is what our theories try to 
explain, and what we use to justify those theories. It is what instrumentalists try 
to save, and what realists try to get beyond. It is what Ian Hacking thinks we cre-
ate in the laboratory (in contrast to nature) and what Kant took to be partly the 
work of the mind (in contrast to noumena). 

  — James Brown (1994, 117) 

 2.1   Introduction 

 Since the 1950s, much psychological research has employed a top-down 
research strategy in which a minimalist account of the hypothetico-
deductive method, in tandem with null hypothesis testing, is used to test 
hypotheses and theories ( Rorer, 1991 ;  Rozeboom, 1997 ). This practice 
has several weaknesses, one of which is a narrow view of data analysis 
in which the core information yield is a binary accept – reject statistical 
decision about the hypotheses and theories under test. As a consequence 
of this focus on top-down hypothesis and theory testing, psychology has 
failed to sufficiently recognize an important complementary, bottom-up 
research strategy that pursues data-to-theory research ( Haig, 2013 ). This 
bottom-up strategy is captured by ATOM and has two primary aspects: 
the detection of phenomena, mostly in the form of empirical generaliza-
tions, and the subsequent explanation of those phenomena through the 
abductive construction of theory. 

 This chapter focuses on the important process of detecting empirical 
phenomena with reference to psychology. Although psychologists look 
to detect phenomena, they do so without a full appreciation of its meth-
odological nature — a problem that is sometimes partially obscured by 
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reconstructing phenomena detection in a hypothesis-testing guise. I draw 
here from contemporary philosophy of science to provide a method-
ologically informative account of phenomena detection. First, I present 
the important threefold distinction between data, phenomena, and 
explanatory theory that was introduced by Bogen and Woodward more 
than twenty years ago ( Bogen  &  Woodward, 1988 ). However, my 
primary concern is to distinguish between data and phenomena, and I 
mention explanatory theory only insofar as it helps to elucidate the 
nature of the data-phenomena relation.  1   I then discuss a number of 
methodological strategies that are used to identify empirical phenomena. 
I propose, as one of these strategies, a multistage model of data analysis, 
which goes well beyond psychology ’ s tendency to focus on traditional 
confirmatory data analysis. In the second part of the chapter, I consider 
aspects of the nature of science that are prompted by reflecting on the 
distinctions between data, phenomena, and explanatory theory. These 
include whether scientific facts are discovered or made, the distinction 
between empirical and theoretical progress in science, and the type of 
knowledge justification appropriate to phenomena detection. Taken 
together, these considerations press for significant changes in the way 
we think about and practice psychological research. Before concluding 
the chapter, I consider some of these changes and make several recom-
mendations that would help psychology correct a number of its current 
research deficiencies. 

 2.2   The Nature of Phenomena 

 As James Brown ’ s epigraph at the beginning of the chapter makes clear, 
we have always understood the nature and role of phenomena in science 
in various ways. Historically, scientists insisted on  “ saving the phenom-
ena ”  in the instrumentalist sense of rendering an adequate description of 
the phenomena studied. In contrast to this narrow empiricist view, most 
scientists today are realists in their outlook, first because they are con-
cerned to discover and properly describe phenomena, but also because 
they endeavor to construct explanatory theories to understand the under-
lying causal factors that are thought to produce them. 

 Scientists and philosophers frequently speak as though science is prin-
cipally concerned with establishing direct relationships between observa-
tion and theory. Empirical evidence indicates that psychologists speak, 
and sometimes think, in this way (Clark  &  Paivio, 1989). Similarly, 
philosophers of science of quite different persuasions often say that 
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scientific theories are evaluated in respect of statements about relevant 
data ( Bogen  &  Woodward, 1988 ). Despite what they say, scientists fre-
quently behave in accord with the view that theories relate directly to 
claims about phenomena, and claims about phenomena relate directly to 
claims about data. That is, talk of a direct relationship between data and 
theory tends to be at variance with empirical research practice, which 
often works with a threefold distinction between data, phenomena, and 
explanatory theory. 

 Science assigns major importance to the task of detecting empirical 
phenomena, and it often views the completion of this task as a require-
ment for subsequent meaningful theory construction. The next section 
discusses the nature of phenom ena detection in science, with some refer-
ence to psychology. I begin by considering the basic distinction between 
data and phenomena. 

 2.2.1   The Distinction between Data and Phenomena 

 In a series of articles, Bogen and Woodward ( Bogen, 2010 ,  2011 ;  Bogen 
 &  Woodward, 1988 ,  1992 ;  Woodward, 1989 ,  2000 ,  2010 ,  2011 ) argued 
in considerable detail that it is phenomena, not data, that scientific theo-
ries typically seek to predict and explain. In turn, it is the proper role of 
data to provide the observational evidence for phenomena, not theories.  2   
Unlike data, phenomena are relatively stable, recurrent, general features 
of the world that we seek to explain.  Hacking (1991)  succinctly charac-
terized the most popular class of phenomena as  “ noteworthy discernible 
regularities, ”  which are often described in lawlike generalizations. The 
more striking regularities are often called  effects , and they are sometimes 
named after the person considered to be their principal discoverer (e.g., 
the Compton effect in physics, the Baldwin effect in biology, the Flynn 
effect in psychology).  3   The so-called  phenomenal laws  of physics are 
paradigm cases of claims about phenomena. By contrast, the  fundamen-
tal laws  of physics explain the phenomenal laws. For example, the elec-
tron theory of Lorentz is a fundamental law that explains Airy ’ s 
phenomenological law of Faraday ’ s electro-optical effect ( Cartwright, 
1983 ). Examples of the innumerable phenomena claims in psychology 
include the matching law (the law of effect), the Flynn effect of intergen-
erational gains in IQ scores, and recency effects in human memory. 

 Although phenomena commonly take the form of empirical regulari-
ties, they make up a varied ontological bag that includes objects, states, 
processes, events, and other features that are hard to classify. For example, 
in psychology, the detected phenomena are often effects, which are 
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empirical generalizations, but they also include the capacities of organ-
isms as objects of explanation (e.g., the capacity to learn a language or 
to the capacity empathize with people).  4   

 Because of this variety, it is generally more appropriate to characterize 
phenomena in terms of their  role  in relation to explanation and predic-
tion, rather than in terms of their natures ( Bogen  &  Woodward, 1988 ). 
For example, the relevant empirical generalizations in cognitive psychol-
ogy might be the objects of explanations in evolutionary psychology that 
appeal to mechanisms of adaptation. Those mechanisms might in turn 
serve as phenomena to be explained by appealing to the mechanisms of 
natural selection in evolutionary biology. 

 As just indicated, phenomena, not data, are often taken as the proper 
objects of scientific explanation.  5   The two features of phenomena that 
make this appropriate are their stability and their generality. Typically, 
phenomena have to endure across a time interval long enough to allow 
theorists to construct explanatory theories about those phenomena, say, 
from three to thirty years.  6   In addition, science requires its  explananda  
(the objects of explanation) to have a degree of generality that makes 
their explanation both tractable and economically viable. It would be 
ludicrous for science to try to explain individual data points one by one, 
and even impractical to explain local data patterns one at a time. Simi-
larly, it would be practically unworkable for science to focus its major 
attention on highly local events that have little or no generality.  7   For 
good reason, psychology, as a basic science, is interested in why people 
generally behave the way they do, not why a particular person behaves 
in a particular way ( D ’ Andrade, 1986 ). 

 To understand the process of phenomena detection, we must distin-
guish phenomena from data. Unlike phenomena, data are idiosyncratic 
to particular investigative contexts. Because data result from the interac-
tion of a large number of causal factors, they are not as stable and general 
as phenomena, which are produced by a relatively small number of 
causal factors.  8   Data, then, are ephemeral and pliable, whereas phenom-
ena are robust and stubborn. Phenomena have a stability and repeat-
ability that are demonstrated through the use of different procedures, 
which often engage different kinds of data. Data are recordings or reports 
that are perceptually accessible; they are observable and open to public 
inspection. Despite the popular view to the contrary, phenomena are not, 
in general, observable; they are abstractions wrought from the relevant 
data, often as a result of a reductive process of data analysis. Indeed, 
as  Cartwright (1983)  remarked in her discussion of phenomenal and 
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theoretical laws in physics,  “ The distinction between theoretical and 
phenomenological has nothing to do with what is observable and what 
is unobservable. Instead, the terms separate laws which are fundamental 
and explanatory from those that merely describe ”  (2). An important 
related point is that although data serve as evidence for phenomena, their 
perceptual qualities in this regard are of secondary importance. As  Bogen 
and Woodward (1992)  put it,  “ The epistemic significance of perception 
has to do with its reliability, not with its distinctively phenomenal or 
subjective experiential character.  . . .  Nonperceptual techniques of mea-
surement and detection are just as epistemically valuable as perceptual 
techniques as long as they are reliable ”  (611). Methodologically speak-
ing, what matters in science, then, is not the phenomenal or experiential 
qualities of perception but whether perception is a reliable process. For 
this reason, obtaining measurements using physical recording devices is 
just as important as using human perceptual techniques in detecting 
phenomena. 

 Data themselves are of scientific interest and importance only because 
they serve as evidence for the phenomena under investigation. Examples 
of data that serve as evidence for the psychological effects mentioned 
earlier are rates of operant responding (evidence for the matching law), 
IQ score gains (evidence for the Flynn effect), and error rates in psycho-
logical experiments (evidence for recency effects in short-term memory). 
Later I present a well-known example of the data-phenomena distinction 
that illustrates a number of the points just made. 

 Bogen and Woodward ( Bogen  &  Woodward, 1988 ;  Woodward, 1989 ) 
note that one can further distinguish between data and phenomena by 
appreciating the different kinds of error that are appropriate to each. 
Data-related errors arise from inaccuracies in their perception, and 
recording inaccuracies in their transcription. They also include deliberate 
efforts to manufacture data, as in the case of fraud. Errors of this kind 
are often simple in nature but can have far-reaching consequences because 
they threaten to undermine the adequacy of data as appropriate sources 
of evidence for claims about phenomena. Errors to do with phenomena 
detection are more complex and varied, reflecting, as they do, the com-
plexity and variety of phenomena detection procedures. For example, in 
psychology they might include inappropriately using analysis of covari-
ance to control statistically for nuisance variables, suboptimally using 
meta-analysis as a basis for claiming that an empirical generalization 
exists, and mistakenly believing in the robustness of a phenomenon claim 
by misusing  Campbell and Fiske ’ s (1959)  multitrait-multimethod matrix. 
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As scientists scrutinize cases such as these, their overriding concern is to 
fathom whether they have detected genuine phenomena rather than 
pseudophenomena. 

  Bogen and Woodward (1988)  helpfully illustrate the importance of 
distinguishing between data and phenomena by critically discussing an 
example of the melting point of lead.  9   The relevant fact, or phenomenon, 
here is that lead melts at 327.46 degrees Centigrade. How is knowledge 
of this obtained? Obviously, scientists do not determine the melting point 
of lead by liquefying one lead sample and observing a single thermometer 
reading of the melting temperature. Instead they carry out a series of 
relevant measurements using a reliable measuring instrument, such as a 
properly calibrated thermometer. Assuming the sources of systematic 
error have been eliminated or controlled for (e.g., the lead sample has 
been expunged of all relevant impurities, and the thermometer measure-
ment is taken in the appropriate way), the scatter of recorded observa-
tions from the repeated measuring operations will be taken to include 
the true value of the melting point of lead. Furthermore, the determina-
tion of that true value will depend on a number of additional assump-
tions about the existence and independence of small and contingent 
unknown errors, the nature of the distribution of measurement, and the 
appropriateness of the sample estimate of the true value with its associ-
ated standard error. 

 As  Bogen and Woodward (1988)  remark, the lead example points up 
two important differences between data and phenomena. The first is that 
data are observed, either by human perception or with the aid of instru-
ments, but the phenomenon of the true melting point of lead is not 
observed. Rather, the phenomenon statement about the true melting 
point of lead is inferred from claims about the observed data on the basis 
of classical sampling theory and its associated assumptions. The second 
point is that even the best theory of the molecular structure of lead could 
not explain why the array of data points occurred, because it depends 
not just on the melting point of lead but also on factors such as the purity 
of the lead, the working of the thermometer, background knowledge 
about measurement theoretic assumptions (in this case, true score theory), 
and how the readings should be taken. For these reasons, it is the phe-
nomenon, not the set of data, that gets explained by the relevant theory 
of molecular structure. 

 The Flynn effect, mentioned earlier, provides a good example in psy-
chology of an empirical phenomenon and as such helps one appreciate 
the difference between data and phenomena. Named after its principal 
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discoverer, James Flynn, this effect is the striking fact that IQ scores have 
increased steadily across generations throughout the world. More pre-
cisely, Flynn documented the fact that, on average, IQ gains of about 
three points per decade occurred in some twenty nations from regions 
such as Europe, Asia, North America, and Australasia. IQ scores, obtained 
by using measuring instruments such as the Wechsler Scales and the 
Raven ’ s Progressive Matrices, are data. These data provide empirical 
evidence for the Flynn effect. This effect is the stable generalization about 
the IQ score gains, which is abstracted from the data in light of relevant 
methodological criteria and represented statistically in terms of means 
and standard deviations for individual nations. Initially the Flynn effect 
was a baffling phenomenon for which we now have a variety of theoreti-
cal explanations, a fact made possible by the difference between, and 
relative autonomy of, claims about phenomena and explanatory theory. 

 In the various sciences, it is common to talk about the activity of 
extracting a signal from a sea of noise.  Woodward (1989)  observed that 
this model of signal and noise often usefully describes the challenge 
facing scientists when they seek to discover phenomena.  10   In detecting 
phenomena, we extract a signal (the phenomenon) from a sea of noise 
(the data). The data embody a great deal of noise because they result 
from a host of unknown causal factors, many of them local and idiosyn-
cratic. For this reason, when extracting phenomena from the data, we 
often engage in data exploration and reduction by using graphical and 
statistical methods to manage the sea of noise. We enlist a variety of 
procedures to extract phenomena from the noise that masks them. 
Getting these procedures to work properly is essentially a problem of 
tuning. 

 I turn now to the process of phenomena detection. In doing so, I 
present a number of different procedures that scientists use to detect 
phenomena. 

 2.3   Procedures for Phenomena Detection 

 In establishing that data are reliable evidence for the existence of phe-
nomena, scientists employ a variety of methodological strategies ( Frank-
lin, 1990 ;  Woodward, 1989 ). Some, but not all, of these strategies are 
regularly used in psychology. They include controlling for confounding 
factors (both experimentally and nonexperimentally), empirically inves-
tigating equipment (including the calibration of instruments), engaging 
in data analytic strategies of both statistical and nonstatistical kinds, and 
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undertaking the constructive replication of study results. Whereas these 
procedures are variously used in phenomena detection, they are not, in 
general, used to construct explanatory theories.  11   The later discussion of 
the importance of reliability assessments in phenomena detection helps 
indicate why this is so. 

 2.3.1   Controlling for Extraneous Factors 

 One basic requirement of sound experimental design involves the control 
of extraneous factors, which might otherwise confound the results by 
producing data mistakenly thought to be produced by the relevant phe-
nomenon. Such control can be achieved by physically isolating the rel-
evant potential confounds. In physics and chemistry, experimenters have 
been extraordinarily successful in controlling for extraneous influences. 
The same is true of experimental psychology. In one class of experiment, 
the Skinner box is used as an experimental chamber that isolates a 
number of influences extraneous to the investigation of operant condi-
tioning phenomena by incorporating features such as light tightness, 
sound attenuation, and automated functions that prevent the subject 
from coming into direct contact with the experimenter. Alternatively, 
randomization procedures can be used in experimental contexts on the 
assumption that the influence of nuisance variables will be distributed 
uniformly over the various treatments in the long run. 

 Extraneous influences can also be controlled for in a statistical manner 
in research contexts where neither physical control nor randomization 
is possible or appropriate. Consider, for example, the common strategy 
of checking for what statisticians call  nonspuriousness , where a variable, 
X, is established as a direct cause of another variable, Y. Such a relation-
ship is judged nonspurious when we have grounds for thinking that no 
third variable, Z, confounds the X-Y relationship. In this regard, we often 
use partial correlation procedures to establish that the third variable, Z, 
is not a common cause of X and Y or a cause intervening between X 
and Y.  12   

 2.3.2   Triangulation 

 As already mentioned, one of the distinctive features of claims about 
phenomena is their robustness. Robustness is a methodological notion 
that has long been considered important in the various sciences ( Levins, 
1968 ;  Wimsatt, 1981 ). Robustness carries the idea that there have to be 
multiple means for establishing the nature and existence of phenomena, 
an idea that is based on the strong conviction that we are entitled to 
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infer the existence of a phenomenon that stands up under a variety of 
different tests. As  Wimsatt (1994)  remarked:  “ Robustness has the right 
kind of properties as a criterion for the real, and has features which 
naturally generate plausible results. Furthermore, it works reliably as a 
criterion in the face of real world complexities ”  (11). 

 The notion of robustness is essentially the same idea as triangulation, 
which is more familiar to psychologists.  Campbell and Fiske ’ s (1959)  
classic multitrait-multimethod matrix is an important triangulation pro-
cedure for investigating the robustness of psychological constructs. With 
this procedure, validation involves obtaining convergent results through 
the use of independent measuring procedures, and the notion of discrimi-
nant validity serves to check that the invariance across tests, methods, 
and traits is not a result of their insensitivity to the variables under study. 
In experimental psychology, the idea of robustness is more commonly 
called  converging operations , in accordance with  Garner, Hake, and 
Eriksen ’ s (1956)  pioneering work. 

 2.3.3   Calibration 

 Another strategy that provides a justification for the confidence in 
experimental results is calibration. Calibration is the metrological 
process of determining the evidential reliability of an instrument by 
comparing it with a trustworthy standard. More particularly, it involves 
using a substitute signal to standardize a measuring instrument ( Frank-
lin, 1997 ), an operation that is achieved by a variety of complex pro-
cedures. This complexity is well exemplified by  Chang ’ s (2004)  extensive 
study of the history of thermometry, which lies behind the routine use 
of mercury and other thermometers to measure temperature. Calibration 
is important in science because instruments must be calibrated before 
they can be used in a dependable manner. Although routinely carried 
out in the physical sciences and widely used in experimental psychology, 
calibration has received little systematic attention in other areas of 
psychology. 

 Also, because instruments tend to go out of calibration, they may need 
to be recalibrated. Of course, even when properly calibrated instruments 
are used in measurement, some random error is to be expected. To test 
whether measured values obtained from an instrument represent chance 
fluctuations or signal a loss of calibration, we can use a test of statistical 
significance ( Baird, 1992 ). The normal curve is widely used as a model 
of chance fluctuations or errors of measurement. In this context, errors 
can be thought to result from numerous small, independent disturbances, 
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such as slight variations in the mechanical or electrical components of 
the measuring instrument. 

 It is a truism that progress in science depends in part on the quality 
of its measurements. In psychology, we have a clear need to take calibra-
tion more seriously. In discussing the importance of calibrating psycho-
logical measures,  Sechrest, McKnight, and McKnight (1996)  were surely 
right to conclude that  “ knowledge, understanding, and progress in the 
science of psychology would be furthered greatly by concerted efforts to 
calibrate psychological measures in a variety of ways that are now avail-
able and that are sadly neglected ”  (1071). 

 2.3.4   A Model of Data Analysis 

 Given the importance of the detailed examination of data in the process 
of phenomena detection, it is natural that statistical analyses of data 
figure prominently in that exercise. Researchers in psychology often 
analyze rich data sets, and they are increasingly being called on to analyze 
massive sets of data. Thus data reduction often becomes the core feature 
of data analysis. With this in mind, I briefly outline the broad contours 
of a statistically oriented, multistage account of data analysis, which 
provides another way to characterize the process of phenomena detec-
tion. The exposition draws from  Haig (2005a) . The model comprises the 
four sequenced stages of initial data analysis, exploratory data analysis, 
close replication, and constructive replication. However, it should be 
noted that although psychology makes heavy use of statistical methods 
in data analysis, qualitative data analytic methods can also be used in 
phenomena detection ( Strauss, 1987 ). 

  Initial Data Analysis    The initial examination of data ( Chatfield, 
1985 ) is the first informal scrutiny and description of data undertaken 
before exploratory data analysis proper begins.  13   It involves screening 
the data for quality. Initial data analysis variously involves checking the 
accuracy of data entries, identifying and dealing with missing and outly-
ing data, and examining the data for their fit to the assumptions of the 
data analytic methods used. Data screening thus enables one to assess 
the suitability of the data for the type of analyses intended. 

 This important, time-consuming, preparatory phase of data analysis 
has not received the amount of explicit attention that it deserves in psy-
chological research practice and education. However, the American Psy-
chological Association ’ s Task Force on Statistical Inference (Wilkinson 
 &  the Task Force on Statistical Inference, 1999) recommended changes 
to current practices in data analysis that are broadly in keeping with the 
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goals of initial data analysis. It is now a straightforward matter to use a 
computer to produce the graphical displays and descriptive tabulations 
that are used in the initial examination of data. Fidell and Tabachnick 
(2003) provided a useful overview of the importance of the work required 
to identify and correct problems in data. 

 It should be clear, even from these brief remarks, that the initial exami-
nation of data is necessary for successful data analysis in science because 
data that lack integrity can easily result in the subsequent misuse of data 
analytic methods and drawing erroneous conclusions. 

  Exploratory Data Analysis    The last thirty years have witnessed the 
strong development of an empirical, data-oriented approach to statistics. 
One important part of this movement is exploratory data analysis, which 
contrasts with the more familiar traditional statistical methods and their 
characteristic emphasis on the confirmation of knowledge claims. Like 
initial data analysis, this newer movement places a heavy emphasis on 
the close examination of data. However, its basic purpose is to identify 
provisional patterns in the data. 

 Exploratory data analysis uses multiple forms of description and 
display and often involves quantitative detective work designed to reveal 
the structure or patterns in the data under scrutiny ( Behrens  &  Yu, 2003 ; 
 Tukey, 1977 ).  14   The exploratory data analyst is encouraged to undertake 
an unfettered investigation of the data and perform multiple analyses 
using a variety of intuitively appealing and easily used techniques. 

 The compendium of methods for data exploration is designed to 
facilitate both the discovery and communication of information about 
data. These methods are concerned with the effective organization of 
data, the construction of graphical displays, and the examination of 
distributional assumptions and functional dependencies. The stem-and-
leaf display and the box-and-whisker plot are two well-known explor-
atory methods. 

 Two attractive features of exploratory methods are their robustness 
to changes in underlying distributions and their resistance to outliers in 
data sets. Exploratory methods with these two features are particularly 
suited to data analysis in psychology, where researchers are often con-
fronted with  ad hoc  data sets on manifest variables that have been 
acquired in convenient ways. 

  Close Replication    Successfully conducted exploratory analyses 
will suggest potentially interesting data patterns. However, it will 
normally be necessary to check on the stability of the emergent data 
patterns by using appropriate confirmatory data analysis procedures. 
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Computer-intensive resampling methods such as the bootstrap, the jack-
knife, and cross-validation ( Efron  &  Tibshirani, 1993 ) make up an 
important set of confirmatory procedures that are often well suited to 
this role. By exploiting the modern computer ’ s massive computational 
power, methods such as these free researchers from the assumptions of 
orthodox statistical theory (such as the belief that the data are normally 
distributed) and permit them to gauge the reliability of chosen statistics 
by making thousands, even millions, of calculations on many data points. 
Researchers use resampling methods to establish the consistency or reli-
ability of sample results. They are particularly suited to ascertaining the 
validity of the data patterns initially suggested by the use of exploratory 
methods. In doing this, they provide us with the kind of validating strat-
egy that is needed to achieve close replications. 

  Constructive Replication    In establishing the existence of phenom-
ena, it is often necessary for science to undertake both close and construc-
tive replications. The statistical resampling methods just mentioned are 
concerned with the consistency of sample results that help researchers 
achieve close replications. By contrast, constructive replications are 
undertaken to check the validity of the results obtained by close replica-
tion. This is achieved by doing two things. First, a concerted effort is 
made to faithfully reproduce the conditions of the original study, often 
by an independent investigator or research group. This is sometimes 
called  direct replication . Strictly speaking, this is a form of constructive 
replication because although it attempts to literally replicate the first 
study, it involves a change in geographic time, location, and researchers. 
Second, research is undertaken to demonstrate the extent to which results 
hold across different methods, treatments, and occasions. This form of 
constructive replication, in which researchers vary the salient study con-
ditions, is a triangulation strategy designed to ascertain the generaliz-
ability of the results identified by direct replication ( Lindsay  &  Ehrenberg, 
1993 ). Both forms of constructive replication are time-honored strategies 
for justifying claims about phenomena. 

 The four-stage model of data analysis just outlined assists in phenom-
ena detection by attending in turn to the different but related tasks of 
data quality, pattern suggestion, pattern confirmation, and generaliza-
tion. In effect, the outcome of this sequenced process is a form of enu-
merative induction in which one learns empirically, on a case-by-case 
basis, the conditions of applicability of the empirical generalizations that 
represent the phenomena. 
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 2.3.5   Meta-analysis 

 It is important to appreciate that this model of data analysis is clearly 
not the only statistical means by which we can detect phenomena. In 
addition to the several strategies mentioned earlier, meta-analysis is a 
prominent example of a distinctive use of statistical methods by behav-
ioral scientists to aid in phenomena detection. As is well known, meta-
analysis is widely used to conduct quantitative literature reviews. It is an 
approach to data analysis that involves quantitative analysis of the data 
analyses of primary empirical studies. By calculating effect sizes across 
primary studies in a common domain, meta-analysis helps us detect 
general positive effects ( Schmidt, 1992 ). By using statistical methods to 
ascertain the existence of robust empirical regularities, meta-analysis can 
usefully be viewed as a statistical approach to constructive replication. 
Although meta-analysis is thought by some to do explanatory work, and 
is used widely in evaluation research, it is in the descriptive-cum-gener-
alizing role just mentioned that it performs its most important work in 
science today. Contrary to the claims made by some of its critics in psy-
chology (e.g.,  Sohn, 1996 ), meta-analysis can be regarded as a legitimate 
and important means of detecting empirical phenomena in the behavioral 
sciences ( Gage, 1996 ). I briefly refer to the achievements of meta-analysis 
when considering the matter of scientific progress in psychology later in 
this chapter. 

 2.4   Reasoning from Data to Phenomena 

 Given that data serve as evidence for phenomena, the question naturally 
arises: how do scientists reason from claims about data to claims about 
phenomena? The first thing to note is that the inference involved is 
ampliative, or content increasing; it is not nonampliative or deductive. 
That is, the claims about the existence or the nature of the phenomena 
go beyond all information contained in assertions about the relevant 
data. Second, the ampliative inference cannot be hypothetico-deductive 
in nature, for the hypothetico-deductive method itself says nothing about 
how a hypothesis (the phenomenon claim) is formulated. Third, the infer-
ence from data claims to phenomena claims is in some sense inductive. 
In the description of the second strategy of constructive replication 
provided earlier, I noted that the reasoning process is a type of enumer-
ative induction in which the generalization (the conclusion of the induc-
tive reasoning process) is established on a serial basis as successive 
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replications are undertaken to establish the scope of the generalization. 
Finally, being inductive in the sense just noted, the inferences from claims 
about data to claims about phenomena are not essentially abductive or 
explanatory in nature. As it is understood here, inductive inference is 
descriptive inference in that it reaches conclusions about  “ more of the 
same kind. ”  By contrast, abductive inference is an explanatory mode of 
inference that scientists use when they reason from phenomena claims 
to theory claims that purport to explain why the phenomena occur. 

 This brief characterization of the inductive reasoning involved in 
moving from data claims to phenomena claims proceeds more by con-
trast than by direct analysis. Therefore it leaves a great deal unsaid about 
the details of the reasoning involved. In this regard, it is important to 
appreciate that illuminating accounts of inductive reasoning, as they are 
employed in actual cases of scientific research, will have to be cast as 
 material  inductions, not as formal inductions.  Norton (2003)  has char-
acterized material induction as local rather than global reasoning in 
which contingent matters of fact pertinent to the domain in question are 
included in the formulation. For example, a material inductive charac-
terization of the discovery of the melting point of lead would have to 
include reference to relevant contingent facts such as those mentioned in 
the earlier discussion of this phenomenon. By contrast, Bayesian accounts 
of inductive inference, which center on the probability calculus, are 
essentially formal and universal and make little or no reference to the 
welter of case-dependent detail required of good material inductions. 
Such formal accounts of induction are incapable of properly illuminating 
data-to-phenomena inferences. 

 Even a worked-out account of the material conditions involved in the 
inductive character of reasoning from data to phenomena will leave a 
great deal unsaid. In fact, a blow-by-blow account of the process of 
phenomena detection would have to focus on the procedures that are 
used in the chosen approach. For example, a reflective researcher who 
used the four-stage model of data analysis presented in this chapter 
would make innumerable judgment calls at each stage that were based 
on all kinds of specific considerations. They would involve posing and 
answering questions such as  “ Should I use log10 transformations to 
normalize my seriously skewed dependent variables? ”   “ Will a back-to-
back stem-and-leaf display give me sufficient comparative descriptive 
information about the two data sets? ”   “ Can I use the jackknife as an 
adequate replacement for the more flexible bootstrap procedure? ”   “ Is 
this new method sufficiently independent of the original method to 
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enable me to move beyond the published generalization without fear of 
pseudo-robustness? ”  Clearly the relevance of these sorts of questions, 
and the appropriateness of the answers to them, will depend on detailed 
local knowledge of both methodological and substantive sorts. 

 2.5   Phenomena Detection and the Nature of Psychological Science 

 Accepting the distinction between data, phenomena, and explanatory 
theory has important consequences for our understanding of science, 
including psychology. Here I briefly comment on the matters of whether 
scientific facts are discovered or made, the division between theoretical 
and empirical research, and the different types of knowledge justification 
appropriate for phenomena claims and explanatory theory. 

 2.5.1   Are Phenomena Discovered or Constructed? 

 As noted at the outset, the account of phenomena detection adopted in 
this chapter is consistent with a commitment to a realist outlook on 
science. Among other things, this outlook commits one to the view that 
phenomena are ontological existents of various kinds, including empiri-
cal regularities. They occur in nature and are the sorts of things that can 
be discovered through scientific research, and about which we can have 
genuine knowledge. Many of these phenomena in the physical and bio-
logical sciences, and areas of psychology such as psychophysics and 
neuropsychology, are part of the world ’ s furniture that exists indepen-
dently of human interests, theoretical commitments, and sociocultural 
factors. Other phenomena to be found in areas such as social and eco-
nomic psychology do not exist independently of these social factors. A 
question to be addressed here, then, is whether these social factors allow 
one to retain a realist outlook on phenomena that are influenced by them. 

 A number of sociologists of science adopt a strong social construction-
ist outlook on science and tend to deny that phenomena are real in the 
realist sense just noted.  Latour and Woolgar ’ s (1979)  well-known ethno-
graphic study of life in a scientific laboratory is a good case in point. 
The authors of this study pressed their viewpoint by noting that the word 
 fact  comes from the Latin noun  factum , which derives from the past 
participle of  facere , meaning  “ to do or make. ”  For them, facts or phe-
nomena are made, not discovered. So they do exist. However, their reality 
 “ is the consequence of scientific work rather than its cause. ”  Latour and 
Woolgar went further by claiming that  “ phenomena are thoroughly 
constituted by the material setting of the laboratory. ”  They are not real 
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regularities in nature waiting to be discovered; rather, they are made 
by us. 

 However, Latour and Woolgar ’ s empirical attempt to document the 
social construction of scientific facts was confined to an examination of 
laboratory inscriptions such as photographs, graphs, and written papers. 
They showed little interest in scientists ’  own understanding of their labo-
ratory behavior, and for that reason their research was poor ethnography. 
Moreover, Latour and Woolgar failed to consider the process by which 
claims about scientific facts are socially constructed. That is, they failed 
to document the transition from transitory data claims to stable phenom-
ena claims, and they chose to ignore the testing, modification, acceptance, 
and sedimentation of claims about such phenomena ( Weinert, 1992 ). As 
a result, Latour and Woolgar mistook the data from a particular experi-
ment for phenomena, which are stable and repeatable events. 

  Latour and Woolgar ’ s (1979)  strong social constructionist claim that 
scientific facts are solely manufactured is implausible. However,  Hacking 
(1983)  adopted a more moderate and subtle social constructionist view 
of phenomena. Although a realist of sorts, Hacking maintained that 
phenomena are typically created, not discovered. He believed that few 
phenomena exist in nature waiting to be discovered. Mostly there is  “ just 
complexity ”  in nature, and we mostly isolate phenomena by devising 
appropriate experimental arrangements that will produce them in a reli-
able manner. 

 In reply to Hacking ’ s contention that most phenomena are created by 
experiments,  Bogen and Woodward (1988)  acknowledged that this is the 
case for some phenomena, such as those in physics created in very high-
energy particle accelerators, but they maintained that this is not true for 
phenomena in general. They believe that Hacking ascribes to phenomena 
features that more appropriately characterize data. 

 Most empirical studies in psychology are not strictly experimental, 
and those that are do not create new phenomena in the manner of those 
forged by very high-energy particle accelerators. Think, for example, of 
the Flynn effect, which was detected nonexperimentally, and the law of 
effect, which was discovered and refined experimentally but operates in 
nonexperimental contexts. However, as just noted, some categories in 
psychology (e.g.,  “ undergraduate student, ”   “ family, ”  and  “ money ” ) are 
socially constructed; they are social kinds rather than natural kinds 
( Hacking, 1999 ;  Searle, 1995 ). However, the members of such socially 
constructed categories do exist and are therefore amenable to objective 
study. As discussed in chapter 1, the areas of psychology that study social 
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kinds require a shift from realist orthodoxy with its commitment to the 
view that the objects of study are mind independent. We need to accept 
the fact that some subject matters are mind dependent (and partly rep-
resentation dependent), in the sense that they would not exist without 
human minds. But given their social existence, they are inquiry indepen-
dent and can therefore be studied objectively in a realist manner ( M ä ki, 
2005 ). 

 Although a strong social constructionist perspective on detecting phe-
nomena is unconvincing, the naive realist view that such facts are simply 
looked for and discovered is also unconvincing. This chapter adopts a 
moderate, flexible, realist position about scientific phenomena that 
acknowledges the role of social processes in the production of some 
phenomena while insisting that claims about phenomena are also signifi-
cantly constrained by the world itself. Nor should it be thought that 
scientific phenomena exist only in the sense that they are created experi-
mentally in the laboratory. Scientific phenomena exist in the world, typi-
cally masked by noise. We exhibit them in more or less pure form by 
forging them through both experimental and nonexperimental interven-
tion. In speaking of phenomena detection in realist terms, I have in mind 
neither the observation nor the literal discovery nor the construction of 
inquiry-dependent facts. 

 2.5.2   Two Kinds of Scientific Progress 

 Psychologists have offered a number of different broad characterizations 
of their discipline ’ s scientific progress. For example, they have appealed 
to  Popper ’ s (1959)  notion of falsifiability in urging stronger tests of its 
theories (more honored in the breach than the observance), they have 
also followed Kuhn (2012) in judging its multiparadigmatic nature as a 
sign of disciplinary immaturity, and they have used  Lakatos ’ s (1970)  
methodology to evaluate the progressiveness of its research programs. 
However, with these portraits of scientific progress, they have focused 
more on the worth of psychology ’ s theories and less on the nature of its 
empirical advances and the strength of its empirical claims. 

 Recognition of the fundamental importance of the distinction between 
phenomena claims and explanatory theories suggests the need to clearly 
differentiate between empirical progress and theoretical progress in 
science ( Kaiser, 1996 ). The related aims of detecting empirical phenom-
ena and constructing explanatory theories provide science with the two 
most fundamental goals in respect of which these different senses of 
scientific progress can be measured. That is, a discipline ’ s empirical 
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progress can be measured in terms of its success in detecting robust 
empirical phenomena, whereas its theoretical progress can be understood 
in terms of the goodness of its explanatory theories. 

 The question to be asked here is: has psychology made good progress 
in its quest to detect empirical phenomena? Some psychologists doubt 
that this is so. For example,  Gergen (1973)  maintained that the behav-
ioral sciences deal with facts that are often nonrepeatable, and at best 
they produce generalizations that hold for a limited time only because 
they are invalidated by cultural and historical factors. Furthermore, he 
distrusted meta-analysis as a basis for claiming that empirical generaliza-
tions exist ( Gergen, 1994 ). Relatedly,  Cronbach (1975)  believed that the 
interactive complexity of psychology ’ s subject matter ensures that its 
generalizations have a short half-life. Furthermore,  Lykken (1991)  argued 
that psychology has made poor empirical and theoretical progress and, 
with respect to the empirical, contended that many of its findings fail to 
replicate. 

 In the face of negative assessments such as these,  Gage (1996)  coun-
tered that the results of meta-analysis include an array of stable and 
robust first-order and interaction effects that support the conclusion that 
the behavioral sciences have detected numerous empirical phenomena 
worthy of theoretical explanation. Furthermore,  Hedges (1987)  provided 
an example of one type of study that is needed to make informed judg-
ments about empirical progress in psychology. He showed that a com-
parison of the empirical consistency of the results of replicated exemplary 
experiments in physics and psychology, which use the same numerical 
methods, reveals a similar degree of empirical cumulation. This is a piece 
of knowledge about empirical progress in psychology that challenges 
popular opinion. 

 Clearly we need more empirical work to further our knowledge of 
just how effective psychology has been in detecting empirical phenom-
ena. Regarding the process of phenomena detection, the following catalog 
of questions deserves to be considered in future studies: What forms do 
the phenomena take (e.g., are they characterized as empirical generaliza-
tions or as capacities)? What is the means by which the phenomena have 
been detected (e.g., by constructive replication through use of experi-
ments, or by the use of well-conducted meta-analytic studies)? Have the 
phenomena been detected by reliable means (e.g., are the measuring 
instruments properly calibrated, and do they retain their calibration)? To 
what extent are the phenomena generalizable, and does the scope of the 
generalizations change over time? What is the strength of the evidential 
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support for the phenomena claims, and are they qualitative or quantita-
tive in nature? 

 Good science strives to make both empirical and theoretical progress. 
Given that these are different types of progress and that psychology is a 
discipline of many parts, we should be sensitive to the likelihood that it 
has made uneven rates of progress of both sorts in its different areas. 
Overall, I think that psychology has done better at phenomena detection 
than theory construction. However, to substantiate this claim would 
require many detailed assessments of the quality of psychology ’ s efforts 
and achievements with respect to these two fundamentally different 
processes. 

 2.5.3   Phenomena Detection and Reliabilism 

 Modern scientific methodology distinguishes between two important and 
different theories for justifying knowledge claims: reliabilism and coher-
entism. Reliabilism maintains that a belief is justified to the extent that 
it is acquired by reliable processes or methods ( Goldman, 1986 ). The 
examples are numerous and varied. They include the use of calibrated 
thermometers to measure temperature, as in the case of determining the 
melting point of lead discussed earlier. Furthermore, under appropriate 
conditions, beliefs produced by perception, verbal reports of mental 
processes, and even sound argumentation can all be justified by the reli-
able processes of their production. The crucial point to make here is that 
reliability judgments are the appropriate type of justification for claims 
about empirical phenomena. As noted earlier, statistical resampling 
methods, such as the bootstrap, and the two strategies of constructive 
replication, provide different sorts of consistency tests that researchers 
can use to establish phenomenon claims by showing that data provide 
reliable evidence for the existence of phenomena. The use of consistency 
tests to validate knowledge claims on reliabilist grounds is widespread 
in science. It should be understood that this use of reliability as a mode 
of justification differs from the normal psychometric practice in which 
reliability and validity are presented as contrasts. 

 By contrast with reliabilism, coherentism asserts that a belief is justi-
fied in virtue of its coherence with other beliefs. One prominent version 
of coherentism, explanationism, maintains that coherence is determined 
by explanatory relations, and all justification aims at maximizing the 
explanatory coherence of belief systems ( Lycan, 1988 ). However, the 
claim that all justification is concerned with explanatory coherence is 
too extreme, as the prominence of reliabilist justification in science makes 
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clear. Rather, the role for explanatory coherence is to provide a justifica-
tion for the acceptance of explanatory theories. For example,  Thagard ’ s 
(1992)  theory of explanatory coherence articulates a method that enables 
researchers to decide whether one theory is superior to its rivals on the 
basis of criteria to do with explanatory breadth, simplicity, and analogy. 
To repeat, phenomena detection and explanatory theory construction are 
two fundamentally different research processes for which different 
approaches to knowledge justification are appropriate. 

 However, note that although reliabilism and explanationism are dif-
ferent and are often presented as rivals, they do not have to be seen as 
competing theories of justification. One can adopt a broadly coherentist 
perspective on justification that accommodates both reliabilism and 
explanationism and allows for their coexistence, complementarity, and 
interaction. This can be achieved by encouraging researchers first to seek 
and accept knowledge claims about empirical phenomena based solely 
on reliabilist grounds and then proceed to construct theories that will 
explain coherently those claims about phenomena. This is exactly what 
Flynn did, by first systematically documenting the effect that bears his 
name, and then endeavoring, with Dickens, to explain the effect by pro-
posing their theory of environmental richness ( Dickens  &  Flynn, 2001 ; 
see also  Flynn, 2009 ). 

 One might add that the acceptability of the claims about phenomena 
will increase when they coherently enter into the explanatory relations 
that contain them. Alternatively, the explanatory breadth, and therefore 
the explanatory coherence, of a theory will decrease as a consequence of 
rejecting a claim about a relevant phenomenon that was initially accepted 
on insufficient reliabilist grounds. 

 I now turn to consider a number of important implications for psy-
chological research that are occasioned by the account of phenomena 
detection that has been presented. These implications issue some clear 
recommendations that speak against current orthodoxy and are designed 
to improve the quality of research in the discipline. 

 2.6   Implications for Psychological Research 

 2.6.1   Adopting Bottom-Up Reasoning in Science 

 The hypothetico-deductive method continues to be the method of choice 
in the natural sciences and, as repeatedly stated, is also prominent in 
psychology. Partly for this reason, most scientists view scientific inference 
as a top-down affair in which the thrust of reasoning is from hypotheses 
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and theories to their empirical test predictions. Unfortunately, hypo-
thetico-deductive testing in psychology is often constrained by null 
hypothesis significance testing, and in combination, their empirical pre-
dictions are often much weaker than predictions about new empirical 
phenomena. Given that the hypothetico-deductive method allows the 
deduction of claims about empirical phenomena, psychology ’ s standard 
hypothesis and theory testing practice would be improved if it strove for 
hypothetico-deductive tests of the existence of new phenomena. 

 In stark contrast to the hypothetico-deductive method, the character 
of reasoning from data to phenomena is clearly bottom-up, culminating 
as it often does in inductive inference to empirical generalizations. Given 
that science often looks to detect empirical phenomena before construct-
ing explanatory theories, and the detection of new phenomena often 
gives theory construction its point, the methodology of bottom-up rea-
soning in science certainly deserves a prominent place alongside the more 
familiar top-down sequence. Moreover, the bottom-up character of sci-
entific inference extends abductively from claims about phenomena to 
theories that plausibly explain those empirical claims. ATOM is a broad 
bottom-up theory of scientific method that endorses the inductive 
discovery of phenomena followed by the abductive construction of 
explanatory theory. Although some areas of psychology, such as human 
experimental psychology, engage in bottom-up research, this practice is 
far from universal. It is presumably for this reason that, in a recent issue 
of  Perspectives on Psychological Science  that looked at future directions 
psychology should take, the social and personality psychologists David 
 Funder (2009)  and Paul  Rozin (2009)  recommended the adoption of a 
bottom-up approach to psychological research. Their vision of a better 
psychology assigned central importance to descriptive, data-oriented 
research in which the discovery of important and interesting phenomena 
preceded the construction of explanatory theory. 

 2.6.2   In Praise of Inductive Method 

 Down through time, many students of science, including Peirce and 
Popper, have cast doubt on the importance of inductive reasoning in 
science, though they have often had simple views of induction in their 
sights. However, as noted earlier, phenomena detection that leads to 
empirical generalizations is, perforce, inductive in nature. I also noted 
that when inductive reasoning is used in the scientific context of phe-
nomena detection, it takes on a material character, which makes it an 
empirical, not a logical, matter. 
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 This empirical conception of inductive reasoning in science enables 
psychologists to endorse the inductivism of radical behaviorist methodol-
ogy while eschewing its instrumentalist prescriptions for theorizing in 
favor of a realist outlook on explanatory theory. Because the establish-
ment of empirical claims and the construction of theories (both empiricist 
and realist) are different sorts of undertakings, scientists should be able 
to decouple them with little difficulty. The inductive part of radical 
behaviorism is an account of phenomena detection that can also be found 
in the biological sciences, which Skinner endorsed as a model for psy-
chological science ( Sidman, 1960 ;  Skinner, 1984 ). As such, it deserves a 
wider adoption in psychology than it currently receives. 

 2.6.3   The Threefold Importance of Replication 

 From time to time, psychologists rightly stress the importance of replica-
tion in science (e.g.,  Sidman, 1960 ;  Thompson, 1994 ) and lament its lack 
of emphasis in their discipline. That phenomena detection accords rep-
lication pride of place among its research procedures is perhaps the 
strongest justification of the importance of replication in science. 

 This chapter has stressed the need to distinguish between and use both 
close and constructive replication. To repeat, these are different but 
related validating strategies. Close replication features as a  “ just check-
ing ”  strategy to establish that data patterns are real. Constructive replica-
tion comes in two forms: direct replication, which endeavors to faithfully 
reproduce the original study in its entirety; and the more familiar form, 
which is a triangulation strategy designed to reveal the extent to which 
the results identified by successful close replication can be generalized. 
In the pursuit of phenomena, science must regularly practice all three 
forms of replication. 

 It follows that psychological science would benefit considerably from 
greater attempts to capitalize on the variety of replication strategies that 
are available (e.g.,  Muller, Otto,  &  Benignus, 1983 ;  Lykken, 1991 ). In 
particular, it needs to place greater emphasis on direct replication, which 
is a form of research that is undervalued and difficult to publish in psy-
chology. Another replication strategy with genuine payoff involves car-
rying out a true pilot study followed by a full replication. A true pilot 
study is itself a genuine research study in the small ( Meehl, 1990 ). It is 
conducted not to see whether something works, or to gather a particular 
piece of information, but to gauge whether one can ascertain the exis-
tence of an appreciable effect. However, for this to happen, the pilot 
study must have the basic features of the main study, and they must be 
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implemented with a high degree of rigor, or else it will not be usefully 
predictive of the main study outcomes. Save for some possible minor 
improvements suggested by the limitations of the pilot study, the main 
study will function in effect as a direct replication of the pilot precursor, 
thus providing further evidence that the effect holds for the study condi-
tions in question. 

 Finally, in recognition of the need to use statistical methods that are 
in keeping with the practice of describing predictable phenomena, 
researchers in psychology should seek the generalizability of relation-
ships rather than their statistical significance ( Ehrenberg  &  Bound, 1993 ; 
Hubbard  &  Lindsay, 2013). Hence the need to use observational and 
experimental studies with multiple sets of data, observed under quite 
different sets of conditions. The appropriate task here is not to determine 
which model best fits a single set of data but to ascertain whether the 
model holds across different data sets. To repeat, seeking reproducible 
results through different forms of replication requires data analytic strat-
egies that are designed to detect significant sameness rather than signifi-
cant difference. The regular use of these strategies would help put 
statistical significance testing in its rightful place. 

 2.6.4   Guarding against Pseudophenomena 

 Given that a good deal of work in science is concerned with separating 
artifacts from real effects, it is important to distinguish between pseudo-
phenomena and genuine phenomena. Claims about phenomena that are 
not true can be harmful to science. It is not just that their status as 
knowledge claims is misleading but, more importantly, that constructing 
theories to explain them lacks proper motivation and is largely a waste 
of research time and money. 

 A number of well-known empirical claims in psychology have mas-
queraded as justified claims about phenomena for a time because they 
were not subjected to sufficient peer scrutiny. For example, John Wat-
son ’ s famous Little Albert experiment, allegedly demonstrating the phe-
nomenon of the conditioned reflex, was really based on unconfirmed 
pilot data and accepted uncritically into psychology ’ s book of knowledge 
( Samelson, 1980 ). The so-called Hawthorne effect (the idea that the 
behavior during the course of an experiment can be altered by a subject ’ s 
awareness of participating in the experiment) has been enshrined in many 
textbooks, although the Hawthorne studies yielded little support for this 
alleged empirical generalization ( Jones, 1992 ). And Richard Hernstein ’ s 
claim that the high heritability of intelligence was  “ psychology ’ s best 
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proved, socially significant empirical finding ”  was based on Burt ’ s twin 
study data that were subsequently shown to have no scientific merit 
( Tucker, 1994 ). 

 Ongoing claims about the existence of parapsychological or psi 
phenomena, such as telekinesis and telepathy, present in bold relief the 
challenge of safeguarding against pseudophenomena. Critics of parapsy-
chological experiments claim that reported psi effects result from either 
defects in experimental design, such as the use of inappropriate random-
ization procedures, or flaws in the use of statistical methods (e.g.,  Diaco-
nis, 1978 ;  Hyman, 1985 ). These critics also point out that when good 
experimental designs are used, parapsychologists cannot consistently 
replicate their results. Whereas a majority of academic psychologists 
today do not accept the existence of psi phenomena, a small minority of 
researchers continue to argue for their existence. Using customary  p  
values as his source of evidence,  Bem (2011)  recently claimed to have 
demonstrated the existence of precognition whereby future events retro-
actively influence peoples ’  responses. Wagenmakers, Wetzels, Borsboom, 
and van der Maas (2011) reanalyzed Bem ’ s data and concluded that their 
more stringent Bayesian analysis showed no evidence in favor of precog-
nition. Given that psychologists often carry out empirical tests in the 
quasi-exploratory manner of Bem ’ s study, Wagenmakers et al. concluded 
that psychologists in general should perform more conservative confir-
matory tests of controversial claims. Their methodological recommenda-
tion is in keeping with the view adopted in this chapter that falsely 
claiming that phenomena exist has the potential to do serious harm to 
science. Some years ago,  Bem and Honorton (1994)  provided an example 
of this potential harm by claiming, on insufficient grounds ( Milton  &  
Wiseman, 1999 ), that psi exists, and then proceeded to idly speculate 
about the mechanism that might plausibly produce such an alleged 
phenomenon. 

 2.6.5   The Need to Reform Data Analytic Practice 

 The account of phenomena detection presented in this chapter lends 
weight to recommendations that have been made to change our data 
analytic practices in psychology (e.g.,  Kline, 2013 ; Wilkinson  &  the 
Task Force on Statistical Inference, 1999). Taking phenomena detection 
seriously requires researchers to be bullish, not bearish, about data 
analysis ( Bogen  &  Woodward, 1988 ). For its part, psychology needs to 
be more bullish about data analysis. Although it has yet to properly 
embrace  Tukey ’ s (1980)  two-stage model of exploratory data analysis 
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followed by confirmatory data analysis, psychology should work explic-
itly with something like the four-stage model of data analysis outlined 
earlier. 

 This model underscores the need to give greater attention to a number 
of different types of method than is currently the case in psychological 
research. First, as noted earlier, the initial examination of data, which is 
undertaken to screen data for its quality, must be adopted on a more 
systematic basis than occurs at present ( Fidell  &  Tabachnick, 2003 ; 
Wilkinson  &  the Task Force on Statistical Inference, 1999). Data must 
be worthy of reception as a source of potential evidence for phenomena 
claims. Emphasizing the concerted use of initial data analyses to check 
the quality of data should not prevent psychological researchers from 
appreciating that attending seriously to the performance characteristics 
of the instruments they use in data acquisition is an important additional 
means of exercising control over their quality. The sporadic attention 
given to calibration procedures in psychology is symptomatic of its need 
to give more systematic attention to the quality of its data gathering 
instruments. 

 Second, we must give exploratory data analysis a regular place in 
research and curriculum endeavors. More than fifty years have passed 
since  Tukey (1969)  made a compelling case to psychologists for the need 
to undertake exploratory data analysis as an essential part of modern 
data analytic practice. Psychology is slowly acknowledging the need to 
embrace data analysis in the exploratory mode for the purpose of pattern 
suggestion, but as a casual inspection of standard instructional textbooks 
makes clear, it still has some way to go. 

 Third, there is a related need to recognize that computer-intensive 
resampling methods, such as the bootstrap family, constitute an impor-
tant set of statistical procedures that are well suited to the role of pattern 
confirmation. The American Psychological Association ’ s Task Force on 
Statistical Inference (Wilkinson  &  the Task Force on Statistical Inference, 
1999) was charged with looking at the newer computer-intensive statisti-
cal methods, but unfortunately it said nothing about computer-intensive 
resampling methods. More recently, however, a small group of method-
ologists and practicing researchers in psychology have begun to promote 
such methods (e.g.,  Kline, 2013 ;  Sherman  &  Funder, 2009 ;  Yu, 2008 ). 
One might hope that, with the increasing availability of suitable soft-
ware, these statistical resampling methods might soon become a com-
panion resource for exploratory data analytic methods in the psychological 
researcher ’ s toolbox. 
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 Finally, it is worth noting that the perspective on phenomena detection 
presented here militates against the continued heavy use of null hypoth-
esis significance testing as psychology ’ s mainstay in data analysis. As 
noted earlier in the discussion of replication, phenomena detection essen-
tially involves the pursuit of significance sameness, not significant differ-
ence. More specifically, the widespread tandem use of exploratory data 
analytic and computer-intensive resampling methods would have the 
desirable effect of helping put classical significance testing in its proper 
place: performing the minor task of assessing sampling uncertainty. Seen 
in this light, the current expression of concern by some  “  p -minded ”  
methodologists about overly liberal data analytic practices would become 
a minor worry. 

 2.6.6   A Division of Cognitive Labor 

 I have repeatedly emphasized in this chapter that phenomena detection 
is a very different enterprise from the construction of explanatory theory. 
Mindful of this difference, the physics community operates with a clear 
institutionalized division between experimental and theoretical research. 
The products of both forms of research are recognized as major achieve-
ments in their own right, and each type of research is undertaken by 
different sorts of people with different research skills. It is rare in physics 
to find people who can do both types of work well. Instead, specialized 
empirical and theoretical physicists characteristically work together in 
research teams. 

 By contrast, in psychology it is not unusual for empirical and theoreti-
cal work to be done by the same person or by groups of people with the 
same basic research training. Given the fundamental difference between 
the processes of phenomena detection and theory construction, and 
granting the complexity of studying the mind, the brain, and human 
behavior, it is pertinent to ask whether psychology might make better 
progress as a science by encouraging its researchers to adopt this division 
of cognitive labor. This is not to suggest that all psychologists should do 
so, or that psychology should institutionalize a division between empiri-
cal and theoretical research as strong as the one in physics. However, 
given that from a science policy perspective we do not really know in 
advance how best to proceed, it makes good sense to adopt a mixed 
strategy, with some researchers doing empirical work, others doing theo-
retical work, and a small minority with the requisite strengths doing 
both. I might add that although some evidence indicates that psychology 
is at last beginning to acknowledge the importance of theoretical research 
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as legitimate work in its own right ( Kukla, 2001 ;  Slife  &  Williams, 1997 ; 
 Wachtel, 1980 ), theory construction in psychology is a research task that 
receives little formal recognition and encouragement. The virtual neglect 
of theory construction in the guidelines of the  Publication Manual  
( American Psychological Association, 2010 ) is a prominent case in point. 

 2.7   Conclusion 

 Methodologists, teachers, and researchers in psychology have seldom 
offered a full and accurate account of what good empirical research is 
all about. This is true of the important practice of phenomena detection, 
although most psychological researchers seem to spend a good deal of 
their time engaged in activities that are directly relevant to the detection 
of empirical regularities. However, it should be acknowledged that the 
process of phenomena detection is not always easy to understand. Evi-
dence suggests that university students have difficulty distinguishing 
between phenomena claims and explanations ( Norris, Phillips,  &  Korpan, 
2003 ). Also, sophisticated scientists and philosophers can disagree on 
whether a piece of research explains data or phenomena (see, e.g., the 
recent exchange between  Burnston, Sheredos,  &  Bechtel, 2011 , and 
 Kievit, Romeijn, Waldorp, Wicherts, Scholte,  &  Borsboom, 2011 ). Fur-
thermore, it is not difficult to find examples of psychological writing in 
which the authors unwittingly conflate claims about phenomena and 
explanatory theories. Moreover, some psychologists deliberately run the 
two together. For example,  Stam (2006)  suggested that  “ the distinction 
between theory and fact is a rather dubious and unhelpful one ”  (30), 
and  Schmidt (1993)  opined that it is appropriate to take all research 
processes, including the formation of stable empirical relationships, to 
count as explanation. In my view, pronouncements such as these conflate 
the two fundamentally different core endeavors of basic psychological 
science and so misconstrue its nature. Robust empirical generalizations 
have a life of their own, and the regularities they describe are distinct 
from the causal factors that produce them. For this reason, they will 
often become the appropriate objects of scientific explanation, whereas 
theories about causal factors are the vehicles that provide the sought-
after explanations. 

 The successful detection of a phenomenon is an important achieve-
ment in its own right, and a significant indicator of empirical progress 
in science. Bogen and Woodward ’ s account of the scientific process of 
phenomena detection, and its attendant conception of the nature of 
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science, is a systematic reconstruction of this part of science that is 
seldom presented as a whole in methodological writings. Although it is 
an outlook on empirical inquiry that psychologists have ignored, it pro-
vides an important means by which they can improve their understand-
ing of this process. I hope that the perspective on phenomena detection 
presented in this chapter will help psychologists implement their bottom-
up research strategies in a more informed and rigorous manner. 

 This concludes my exposition of phenomena detection, which is the 
first phase of ATOM. The following three chapters are concerned with 
the second phase of ATOM, theory construction. This phase comprises 
theory generation, theory development, and theory appraisal. The next 
chapter is concerned with theory generation. It focuses on the method 
of exploratory factor analysis and presents it as an abductive method for 
generating elementary plausible theories. 



 3   Theory Generation: Exploratory Factor 

Analysis 

 Exploratory factor analysis is an abductive method for formulating hypotheses 
using the common cause principle, but also to be used along with confirmatory 
factor analysis, which tests hypotheses. 

  — Stanley Mulaik (2010, 433) 

 3.1   Introduction 

 Exploratory factor analysis is a multivariate statistical method designed 
to facilitate the postulation of latent variables that are thought to under-
lie and give rise to patterns of correlations in new domains of observed 
or manifest variables. Intellectual abilities, personality traits, and social 
attitudes are well-known classes of latent variables that are the products 
of factor analytic research. Exploratory factor analysis (EFA) is often 
contrasted with confirmatory factor analysis, which is concerned with 
the testing of factor analytic hypotheses and models. 

 The first sixty years of the hundred-year history of factor analysis 
were largely devoted to developing exploratory factor analytic methods. 
However, despite the advanced statistical state and frequent use of EFA 
within psychology and other behavioral sciences, debate about its basic 
nature and worth continues. Most factor analytic methodologists take 
EFA to be a method for hypothesizing latent variables to explain patterns 
of correlations. Some, however, understand it as a method of data reduc-
tion that provides an economical description of correlational data.  1,2   
Further, with the advent of confirmatory factor analysis and full struc-
tural equation modeling, the prominence of EFA in multivariate research 
has declined. Today methodologists and researchers often recommend 
and employ confirmatory factor analysis as the method of choice in 
factor analytic studies. 
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 In this chapter, I examine the methodological foundations of EFA and 
argue for the view that it is properly construed as a method for generat-
ing rudimentary explanatory theories.  3   In the first half of the chapter, I 
contend that EFA is an abductive method of theory generation that 
exploits an important precept of scientific inference known as the  prin-
ciple of the common cause . It is surprising that this characterization of 
the inferential nature of EFA does not figure explicitly in the factor ana-
lytic literature, because it coheres well with the generally accepted view 
of EFA as a latent variable method. Since abduction and the principle of 
the common cause are seldom mentioned in the factor analytic literature, 
I describe each before showing how they are employed in EFA. In the 
second half of the chapter, I refer again to ATOM, which I outlined in 
chapter 1. I then discuss a number of methodological features of EFA in 
the light of that method. In particular, I argue that, despite a widespread 
belief to the contrary, factorial theories do have genuine explanatory 
merit; the methodological challenge of factor indeterminacy can be sat-
isfactorily met by both EFA and confirmatory factor analysis; and EFA 
as a useful method of theory generation can profitably be employed in 
tandem with confirmatory factor analysis and other methods of theory 
evaluation. The epigraph by Stanley  Mulaik (2010)  at the beginning of 
the chapter is part of his summary statement of my position on factor 
analysis ( Haig, 2005b ). 

 3.2   The Inferential Nature of Exploratory Factor Analysis 

 3.2.1   The Nature of Abductive Inference 

 It is commonly thought that inductive and deductive reasoning are the 
only major types of inference employed in scientific research. It is well 
known that conclusions of valid deductive arguments preserve the infor-
mation or knowledge contained in their premises, but they do not add 
new information or knowledge. By contrast, inductive arguments are 
ampliative in that they add new information or knowledge to existing 
information and knowledge. However, inductive arguments, though 
ampliative, are  descriptive  in character because they reach conclusions 
about the same types of manifest attributes mentioned in their premises. 
Importantly, though, science also adds to its store of knowledge by rea-
soning from factual premises to  explanatory  conclusions. This type of 
inference, which is widely ignored in scientific methodology, is known 
as  abduction . 
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 The basic idea of abductive inference can be traced back to Aristotle, 
but its modern formulation comes from the pioneering work of the 
American philosopher and scientist Charles Sanders  Peirce (1931 – 1958) . 
Peirce ’ s writings on abduction are underdeveloped and open to interpre-
tation, but they are richly suggestive. They were largely ignored in the 
first half of the twentieth century, but more recent developments in the 
fields of philosophy of science, artificial intelligence, and cognitive science 
more generally (e.g.,  Josephson  &  Josephson, 1994 ;  Magnani, 2001 ; 
 Thagard, 1988 ,  1992 ) have built on Peirce ’ s ideas to significantly advance 
our understanding of abductive reasoning. 

 Abduction is a form of reasoning involved in generating and evaluat-
ing explanatory hypotheses and theories. For Peirce,  “ Abduction consists 
in studying facts and devising a theory to explain them ”  (1931 – 1958, 
Vol. 5, 90). It is  “ the first starting of an hypothesis and the entertaining 
of it, whether as a simple interrogation or with any degree of confidence ”  
(1931 – 1958, Vol. 6, 358). 

 Peirce maintained that abduction had a definite logical form that 
he came to represent in the following general schema (1931 – 1958, 
Vol. 5, 117): 
 The surprising fact, C, is observed. 
 But if A were true, C would be a matter of course. 
 Hence, there is reason to suspect that A is true. 

 Although Peirce ’ s schematic depiction of abductive inference is sug-
gestive, it needs to be amplified and modified in various ways to qualify 
as an instructive account of explanatory inference in science. First, as 
emphasized in the previous chapter, the facts to be explained in science 
are not normally particular events but empirical generalizations or phe-
nomena, and, strictly speaking, they are not typically observed. Rather, 
the data themselves are observed and serve as evidence for the phenom-
ena. In turn, phenomena, not data, serve as evidence for the abduced 
theories. 

 Second, confirmation theory in the philosophy of science makes clear 
that the facts or phenomena follow as a matter of course, not just from 
the proposed theory but from that theory in conjunction with accepted 
relevant auxiliary claims taken from background knowledge. 

 Third, we should not take the antecedent of the conditional assertion 
in Peirce ’ s schema to imply that abductive inferences produce truths as 
a matter of course. Although science aims to give us true, or approxi-
mately true, theories of the world, the supposition that the proposed 
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theory is true is not a requirement for the derivation of the relevant facts. 
All that is required is that the theory be plausible enough to be provision-
ally accepted. It is important to distinguish between  truth , understood 
as a guiding ideal for science (a goal that we strive for but never fully 
reach), and the  acceptance  of theories, which is based on evaluative 
criteria such as predictive success, simplicity, and explanatory breadth. 
As proxies for truth, justificatory criteria such as these indicate truth but 
do not constitute it. 

 Fourth, note that the conclusion of Peirce ’ s argument schema does not 
assert that the hypothesis itself is true, only that there are grounds for 
thinking that the proposed hypothesis might be true. This is a weaker 
claim that allows one to think of a sound abductive argument as deliver-
ing a judgment that the hypothesis is initially plausible and worthy of 
further pursuit. As we shall see, assessments of initial plausibility consti-
tute a form of generative justification that involves reasoning from war-
ranted premises to an acceptance of the knowledge claims in question. 

 Fifth, Peirce ’ s schematic depiction of abductive inference focuses on 
its logical form only. As such, it has limited value in understanding the 
theory construction process unless it is conjoined with a set of regulative 
constraints that enable us to view abduction as an inference, not just to 
any explanation but to plausible explanations. Constraints that regulate 
the abductive generation of scientific theories will comprise a host of 
heuristics, rules, and principles that govern what counts as good explana-
tions. In the next section, I argue that the principle of the common cause 
is a key principle (more accurately, a heuristic) that regulates abductive 
reasoning within EFA. 

 Peirce ’ s understanding of abduction was somewhat protean in nature, 
although for him it tended to take its place at the inception of scientific 
hypotheses and often involved making inferences from puzzling facts to 
hypotheses that might well explain them. However, recent work on 
abduction reveals that explanatory hypotheses can be abductively 
obtained in a number of different ways. In focusing on the generation of 
hypotheses,  Thagard (1988)  helpfully distinguishes between different 
types of abduction. One of these, existential abduction, hypothesizes the 
existence of previously unknown objects or properties. Another, analogi-
cal abduction, employs successful past cases of hypothesis generation to 
form new hypotheses similar to relevant existing ones. In the next section, 
I suggest that existential abduction is the type of abduction involved in 
the factor analytic production of explanatory hypotheses, although ana-
logical abduction too is sometimes employed in this regard. 



Theory Generation  63

 It should be clear from this series of remarks about abduction that 
Peirce ’ s schematic depiction of the logical form of abduction needs to be 
changed to something like the following: 

 The surprising empirical phenomenon, P, is detected. 

 But if hypothesis H were approximately true, and the relevant auxiliary 
knowledge, A, were invoked, then P would follow as a matter of course. 

 Hence there are grounds for judging H to be initially plausible and 
worthy of further pursuit. 

 This recasting of Peirce ’ s characterization of an abductive argument 
accommodates the fact that in science, hypotheses are typically produced 
to explain empirical phenomena. Moreover, it acknowledges the role of 
background knowledge in the derivation of hypotheses, assigns a regula-
tive role to truth, and signals the importance of initial plausibility assess-
ments in generating and developing new knowledge. 

 3.2.2   Exploratory Factor Analysis and Abduction 

 I turn now to consider my initial claim that EFA is fundamentally an 
abductive method of theory generation. I begin by briefly acknowledging 
two earlier efforts to characterize EFA as an abductive method and then 
elaborate on the claim that EFA largely trades in existential abductions. 
In part, this exercise will involve indicating that the modified Peircean 
schema for abductive inference applies to EFA. 

 Sixty years ago, Raymond  Hartley (1954)  drew a distinction between 
descriptive and inferential factor analysis and defended the then unpopu-
lar view that inferential factor analysis could justifiably be used to 
hypothesize unobserved causal factors. Hartley argued his case by analogy 
to the logic involved in the study of unobserved physiological entities, 
but he realized that one could make a compelling case for the inferential-
ist reading of factor analysis only by appealing to an appropriate theory 
of inference. Hartley expressed surprise at the time that factor analysis 
stood without appeal to any theory of inference. It is remarkable, then, 
that expositions of EFA sixty years later still do not refer explicitly to a 
theory of inference to characterize the reasoning involved in moving from 
descriptions of manifest variables to statements about latent variables. 

 Although the mainstream psychometric literature does not attempt to 
characterize EFA as an abductive method, both William Stephenson and 
William Rozeboom began to address this matter over forty years ago. 
 Stephenson ’ s (1961)  insightful scientific creed contains a brief attempt 
to explicitly characterize EFA as an abductive method, and Rozeboom ’ s 
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work (1961, 1972) provides more detailed evidence supporting the view 
that EFA is an abductive method. Rozeboom spoke of  ontological induc-
tions  that extend our referential reach beyond covariational information 
to hypotheses about latent factors, which are new ontological postula-
tions. He also described EFA as an  explanatory inductive  method because 
it helps generate conceptions of latent factors that explain why the 
covariational regularities of interest obtain. Here Rozeboom used the 
term  induction  in a broad sense, where it has the same general meaning 
as  abduction . 

 As noted earlier, existential abduction often hypothesizes the exis-
tence of entities previously unknown to us. The innumerable examples 
of existential abduction in science include the initial postulation of enti-
ties such as atoms, phlogiston, genes, viruses, tectonic plates, planets, 
Spearman ’ s  g , habit strength, and extraversion.  4   We now know that 
some of these entities exist, that some of them do not exist, and we are 
unsure about the existence of others. In cases like these, the initial 
abductive inferences are made to claims primarily about the  existence  
of theoretical entities to explain empirical facts or phenomena. Thus, 
in the first instance, the hypotheses given to us through the use of EFA 
do little more than postulate the existence of the latent variables in 
question. They say little about their nature and function, and it remains 
for further research to elaborate on the first rudimentary conception of 
these variables. 

 The factor analytic use of existential abduction to infer the existence 
of the theoretical entity  g  can be coarsely reconstructed in accord with 
the earlier modified Peircean schema for abductive inference along the 
following lines: 

 The surprising empirical phenomenon known as the  positive manifold  is 
identified.  5   

 If  g  exists, and it is validly and reliably measured by a Wechsler intelli-
gence scale (or some other objective test), then the positive manifold 
would follow as a matter of course. 

 Hence there are grounds for judging the hypothesis of  g  to be initially 
plausible and worthy of further pursuit. 

 I remarked earlier that our conceptions of the latent factors of EFA 
come to us through existential abductions. In fact, the factor analytic 
generation of hypotheses is sometimes a mixture of existential and ana-
logical abduction where we simultaneously posit the existence of a latent 
variable and offer the beginnings of a characterization of that entity by 
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brief analogy to something that we understand quite well. Recall that 
analogical abduction appeals to known instances of successful abductive 
hypothesis formation to generate new hypotheses like them. To accom-
modate the presence of analogical abduction, the abductive argument 
schema just given would need an additional premise that indicates there 
is reason to believe that a hypothesis of the appropriate kind would 
explain the positive manifold. When Charles Spearman first posited 
general intelligence to explain correlated performance indicators, he 
thought of it as mental energy, likening it to physical energy — a process 
well understood by the physics of the time. His initial inference to claims 
about  g , then, was a blend of existential and analogical abduction. 

 This example serves to illustrate the point that methodologists should 
take the method of EFA proper to include the factor analyst ’ s substantive 
interpretation of the statistical factors. In this regard, it is important to 
realize that the exploratory factor analyst has to resort to his or her own 
abductive powers when reasoning from correlational data patterns to 
underlying common causes. This point can be brought out by noting that 
the modified Peircean schema for abduction, and its application to the 
factor analytic generation of Spearman ’ s hypothesis of  g , are concerned 
with the form of the arguments involved, not with the actual generation 
of the explanatory hypotheses. In each case, the explanatory hypothesis 
is  given  in the second premise of the argument. An account of the genesis 
of the explanatory hypothesis must therefore be furnished by some other 
means. I think it is plausible to suggest that reasoning to explanatory 
hypotheses trades on our evolved cognitive ability to abductively gener-
ate such hypotheses. Peirce himself maintained that the human ability to 
engage readily in abductive reasoning was founded on a guessing instinct 
that has its origins in evolution. More suggestively,  Carruthers (2002)  
claimed that our ability to engage in explanatory inference is almost 
certainly largely innate, and he speculated that it may be an adaptation 
selected for because of its crucial role in the fitness-enhancing activities 
of our ancestors such as hunting and tracking. Whatever its origin, an 
informative methodological characterization of the abductive nature of 
factor analytic inference must appeal to the scientist ’ s own psychological 
resources, as well as those of logic. To recall a tenet of the realist meth-
odology outlined in chapter 1, it must be a methodological characteriza-
tion that includes the knowing subject.  6   

 Before leaving consideration of the general abductive nature of EFA, 
let us briefly note that a number of special features of EFA play an 
important role in facilitating the abductive generation of hypotheses. For 
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instance (as we will see in chapter 5), simplicity, or parsimony, is an 
important desideratum in fashioning scientific explanations, and  Thur-
stone ’ s (1947)  criteria for simple structure combine in an explicit formu-
lation of parsimony in EFA. Stated in the distinctive language of factor 
analysis, Thurstone ’ s insight was to appreciate that rotation to the 
oblique simple structure solution provided an objective basis for accept-
able terminal factor solutions that included reference to latent as well as 
manifest variables. 

 3.2.3   The Principle of the Common Cause 

 Having suggested that abduction, specifically existential abduction, 
largely characterizes the type of inference employed in the factor analytic 
generation of theories about latent variables, I now want to draw atten-
tion to a methodological principle that drives and shapes the nature of 
the existential abductive inference involved in EFA. It is well known that 
EFA is a common factor analytic model in which the latent factors it 
postulates are referred to as  common  factors. Not surprisingly, these 
factors are often understood, and sometimes referred to, as common 
 causes . Yet seldom have factor analytic methodologists attempted to 
formulate a principle or maxim of inference that guides the reasoning to 
common causes. There is, however, an important principle of scientific 
inference, known in philosophy of science as the  principle of the common 
cause , that we can apply to good effect here. In what follows, I discuss 
the principle of the common cause before spelling out its central role in 
EFA. 

 In  The Direction of Time , Hans  Reichenbach (1956)  maintained that, 
in both scientific and everyday reasoning, we often explain a coincidence 
by postulating a common cause. In recognition of this fact, he explicitly 
formulated a maxim that he called the  principle of the common cause . 
Reichenbach stated the principle cryptically, and informally, thus:  “ If an 
improbable coincidence has occurred, there must exist a common cause ”  
(157). For Reichenbach, this principle enjoins us to postulate a single 
common cause whenever there are events, or classes of events, that are 
statistically significantly correlated. To take one of Reichenbach ’ s origi-
nal examples, if two lights in a room go out suddenly, the principle of 
the common cause says we should look for an interruption in their 
common power supply, such as a blown fuse. 

 Although  Reichenbach ’ s  formulation of the principle will not do as it 
stands, the principle can be formulated as an important precept of human 
reasoning that governs a good deal of inference in science. The principle 
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of the common cause has received some consideration in the philo-
sophical literature and sometimes appears to be tacitly employed in 
behavioral research, but it has been widely ignored in general scientific 
methodology. 

 In explicitly introducing the principle of the common cause,  Reichen-
bach  was concerned to capture the idea that if two events, A and B, are 
correlated, then one might be the cause of the other. Alternatively, they 
might have a common cause, C, where this cause always occurs before 
the correlated events. Reichenbach was the first to make this idea precise, 
and he did so by formulating it as a statistical problem. He suggested 
that when for simultaneous events A and B, Pr(A  &  B)  >  Pr(A)  ×  Pr(B), 
there exists an earlier common cause, C, of A and B, such that Pr(A/C) 
 >  Pr(A/~C), Pr(B/C)  >  Pr(B/~C), Pr(A  &  B/C) = Pr(A/C)  ×  Pr(B/C) and 
Pr(A  &  B/~C) = Pr(A/~C)  ×  Pr(B/~C) ( Reichenbach, 1956 , 158 – 159). The 
common cause C is said to  “ screen off ”  the correlation between A and 
B, when A and B are uncorrelated, conditional on C. A common cause 
screens off each effect from the other by rendering its correlated effects 
(conditionally) probabilistically independent of each other. For example, 
given the occurrence of a flash of lightning in the sky, a correlation 
between two people apparently observing that flash is not just a coinci-
dence, but is due to the flash of lightning being a common cause. Further, 
the probability of one person seeing the flash of lightning, given that it 
does occur, is not affected by whether or not the other person observes 
the lightning flash. Reichenbach ’ s principle of the common cause can 
thus be formulated succinctly as follows:  “ Simultaneous correlated events 
have a prior common cause that screens off the correlation. ”  

 Although  Reichenbach ’ s  initial characterization of the principle of the 
common cause has some intuitive appeal and precision, more recent 
philosophical work ( Arntzenius, 1993 ;  Salmon, 1984 ;  Sober, 1988 ) has 
suggested that the principle needs to be amended in a number of ways. 
First, not every improbable coincidence or significant correlation has to 
be explained through a common cause. For this reason, the principle is 
sometimes taken to say,  “ If an improbable coincidence has occurred, and 
there is no direct causal connection between the coincident variables, 
then one should infer a common cause. ”  However, this amendment does 
not go far enough, for there are a number of other possible alternative 
causal interpretations of correlations. For example, two correlated vari-
ables might be mediated by an intervening cause in a developmental 
sequence, or they might be the result of separate direct causes, and so 
on. Responsible inference to a common cause must rule out alternative 
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causal interpretations like these. We may therefore further amend 
Reichenbach ’ s formulation of the principle to the following:  “ Whenever 
two events are improbably, or significantly, correlated, we should infer 
a common cause, unless we have good reason not to. ”  Clearly the prin-
ciple should not be taken as a hard-and-fast rule, for in many cases, 
proper inferences about correlated events will not be of the common 
causal kind. The qualifier  “ unless we have a good reason not to ”  should 
be understood as an injunction to consider causal interpretations of the 
correlated events other than the common causal kind. Also, occasions 
will arise when it is incorrect to draw any sort of causal conclusion. Some 
correlations are accidental correlations that are not brought about by 
causes. 

 The existence of different attempts to improve on  Reichenbach ’ s 
(1956)  initial formulation of the principle of the common cause leads to 
the idea that more than one acceptable version of the principle might 
exist. We might expect this to be the case not just because Reichenbach ’ s 
formulation of the principle needs improving but also because of the 
important point that different subject matters in different domains might 
well require different formulations of the principle. For example, Reichen-
bach, a philosopher of physics, took the principle to apply to correlated 
events that are spatially separated. However, behavioral and social sci-
entists regularly infer common causes for events that are not spatially 
separated. This is clearly the case in psychology, where the correlated 
variables can be performance measures on tests of intelligence and per-
sonality. Further,  Sober (1988)  has argued that in evolutionary theory, 
phylogenetic inference to common ancestry involves postulating a 
common cause, but this will be legitimate only if certain assumptions 
about the process of evolution are true. Thus, in formulating a principle 
of the common cause in a way that can be used effectively in a given 
domain, relevant contingent knowledge about that domain will shape 
the formulation of the principle and moderate its use. As noted in my 
earlier characterization of abduction, the production of scientific knowl-
edge is a three-termed relation between evidence, theory, and background 
knowledge. Routine use of a fixed, general formulation of the principle 
of the common cause that reasons from correlational data alone is 
unlikely to lead consistently to appropriate conclusions. 

 Two related features of the principle of the common cause should also 
be acknowledged: as  Salmon (1984)  has observed, the principle is some-
times used as a principle of explanation (we appeal to common causes 
to  explain  their correlated effects), and it is sometimes used as a principle 
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of inference (we use the principle to  reason  to common causes from their 
correlated effects). The principle of the common cause is a form of abduc-
tive inference where one reasons from correlated events to common 
causes thought to explain those correlations. Thus we can go further than 
Salmon and claim that the principle of the common cause simultaneously 
combines these explanatory and inferential features to yield explanatory 
inferences. 

 The suggestion that there might be different versions of the principle 
of the common cause prompts mention of a closely related principle that 
 Spirtes, Glymour, and Scheines (2000)  call the  Markov condition . This 
principle has recently been employed in Bayesian network modeling of 
causal relations. Roughly stated, the Markov condition says that, condi-
tional on its direct causes, a variable is probabilistically independent of 
everything except its effects. The Markov condition is in effect a general-
ized screening-off condition from which one can derive a version of the 
principle of the common cause as a special case. As a generalized screen-
ing-off condition, the Markov condition applies to both common and 
intervening causes. By contrast, the principle of the common cause only 
screens off common causes from their correlated effects. Because of this 
restriction, the principle of the common cause can be taken as the appro-
priate screening-off requirement for EFA. 

 I turn now to the application of the principle of the common cause 
to EFA. 

 3.2.4   Exploratory Factor Analysis and the Principle of the Common 

Cause 

  The Need for the Principle of the Common Cause    It is sometimes said 
that the central idea in factor analysis is that the relations between a 
large number of observed variables are the direct result of a smaller 
number of latent variables.  McArdle (1996)  maintains that this is a theo-
retical principle that empirical researchers employ to identify a set of 
underlying factors. However, while true of EFA, this principle does not 
constrain factor analysts to infer the  common  latent factors that are the 
appropriate outcome of using common factor analysis. For this to 
happen, the principle has to be linked to the principle of the common 
cause or recast in more specific methodological terms in accordance with 
that principle. Not only does the principle of the common cause enjoin 
one to infer common causes, but it also assumes that that those inferences 
will be to relatively few common causes.  Reichenbach ’ s (1956)  original 
formulation of the principle, which allows inference to just one common 
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cause, is obviously too restrictive for use in multiple factor analysis. 
However, amending the principle to allow for more than one common 
cause, combined with the restraint imposed by following Ockham ’ s razor 
(do not multiply entities beyond necessity), will enable one to infer mul-
tiple common causes without excess. 

 Although EFA is used to infer common causes, expositions of common 
factor analysis that explicitly acknowledge the importance of the prin-
ciple of the common cause are difficult to find.  Kim and Mueller ’ s (1978)  
basic exposition of factor analysis is a noteworthy exception. In discuss-
ing the conceptual foundations of factor analysis, these authors evince 
the need to rely on what they call the  postulate of factorial causation . 
They characterize the postulate of factorial causation as  “ the assumption 
that the observed variables are linear combinations of underlying factors, 
and that the covariation between observed variables is solely due to their 
common sharing of one or more of the common factors ”  (78). The 
authors make clear that the common factors mentioned in the assump-
tion are to be regarded as underlying causal variables. Taken as a meth-
odological injunction, this postulate functions as a variant of the principle 
of the common cause. Without appeal to this principle, factor analysts 
could not identify the underlying factor pattern from the observed cova-
riance structure. 

 Two features of the principle of the common cause that make it suit-
able for EFA are that it can be applied in situations where we do not 
know how  likely  it is that the correlated effects are due to a common 
cause (this feature is consistent with the views of  Reichenbach [1956] , 
 Salmon [1984] , and  Sober [1988]  on common causal reasoning), and 
also in situations where we are essentially ignorant of the  nature  of the 
common cause. The abductive inference to common causes is a basic 
explanatory move that is nonprobabilistic and qualitative in nature. It is 
judgments about the soundness of the abductive inferences, not the 
assignment of probabilities, that confer initial plausibility on the factorial 
hypotheses spawned by EFA. 

 It is important to appreciate that the principle of the common cause 
does not function in isolation from other methodological constraints. 
Embedded in EFA, the principle helps to limit existential abductive infer-
ence to situations where we reason back from  correlated  effects to one 
or more  common  causes. Although covariation is an important basic 
datum in science, not all effects are expressed as correlations, and, as 
noted earlier, not all causes are of the common causal variety. It follows 
from this that researchers should not always look for common causal 
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interpretations of multivariate data, for there are numerous alternative 
latent variable models. The simplex model of latent variables is a case in 
point (e.g.,  Mulaik  &  Millsap, 2000 ). Further, the frequency of proper 
use of EFA should be much less than the frequency of proper use of the 
principle of the common cause, because the principle can be employed 
by non-factor-analytic means, as will be indicated later. 

 In this first half of the chapter, I have argued that an appeal to abduc-
tive inference, linked to the principle of the common cause, leads natu-
rally to the view that EFA is an abductive method of theory generation 
that enables researchers to theorize the existence of latent variables. 
Although this method uses the statistical ideas of multiple regression and 
partial correlation, it does so to facilitate inferences to the latent vari-
ables. In the view presented here, EFA is glossed as a set of multivariate 
procedures that help us reason in an existentially abductive manner from 
robust correlational data patterns to plausible explanatory prototheories 
via the principle of the common cause. 

 3.3   Common Factor Analysis and Scientific Method 

 In the chapter ’ s second half, I propose to speak about the place of 
common factor analysis in scientific inquiry broadly understood. To this 
end, I briefly discuss the restrictions of two well-known theories of sci-
entific method, before adopting ATOM. This broader theory will serve 
to provide a useful methodological framework within which one can 
locate, further explicate, and evaluate the nature and role of EFA in 
scientific research. In this regard, my primary concern will be to argue 
that EFA helps researchers generate theories with genuine explanatory 
merit; that factor indeterminacy is a methodological challenge for both 
EFA and confirmatory factor analysis but is a challenge that can never-
theless be satisfactorily met; and that, as a valuable method of theory 
generation, EFA can be employed profitably in tandem with its confirma-
tory namesake and other theory evaluation methods. 

 3.3.1   Exploratory Factor Analysis and Scientific Method 

 Much of the history of the development of general theories of scientific 
method has discussed the relative merits of inductive and hypothetico-
deductive theories ( Laudan, 1981 ).  Mulaik (1987)  locates EFA histori-
cally within eighteenth- and nineteenth-century empiricist philosophy of 
science and its restrictive inductivist conception of scientific inquiry. The 
inductive view of scientific method was said to obtain knowledge from 
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experience by establishing generalizations based on theory-free observa-
tions. The scientific ideal of that time held inductive method to be an 
organon for the discovery of secure knowledge that is devoid of explana-
tory hypotheses. Today, of course, it is a methodological truism to claim 
that such a method cannot exist, and Mulaik is clearly right to point out 
that we cannot expect EFA to deliver such knowledge. However, even a 
modern view of inductive method, understood as a fallible generator of 
empirical generalizations, cannot properly accommodate EFA as a latent 
variable method. As noted at the beginning of the chapter, generalizing 
inductive inference is descriptive inference, in the sense that it licenses 
inferences to more of the manifest attributes that are sampled; it does 
not have the conceptual resources to reach latent source variables that 
are understood as causal entities. For this to be possible, an explanatory 
form of ampliative inference is needed, as my earlier remarks on abduc-
tion and its relevance to EFA have sought to make clear. 

 As already noted, the hypothetico-deductive account of scientific 
method has assumed hegemonic status in twentieth-century psychology. 
As such, it continues to sustain the popular view that scientific research 
is essentially a matter of testing hypotheses and theories, as well as the 
corollary that there are no scientific methods for formulating hypotheses 
and theories ( Hempel, 1966 ). Although confirmatory factor analysis 
finds a natural home within the confines of hypothetico-deductive 
method (more of which later), EFA stands outside that method, offering 
an abductive logic of theory generation that the hypothetico-deductive 
method implies is possible. 

 As sketched in its pr é cis in chapter 1, ATOM attempts to bring 
together an array of ideas on important aspects of the research process, 
many of which fall outside the province of the standard inductive and 
hypothetico-deductive accounts of scientific method. Of particular rele-
vance to this chapter is that theory generation is depicted as an abductive 
process, a fact that enables the abductive theory of method to incorporate 
EFA within its fold. When this happens, EFA functions as a submethod 
of ATOM and serves to provide a detailed methodological account of 
how theories about common causes can be abductively generated from 
correlational evidence. ATOM is also able to subsume the inductive 
account of method. With its emphasis on generalization, the inductive 
method can be seen at work in the process of phenomena detection. 

 Before turning to EFA again, let us note three points about the relation 
between EFA and ATOM. First, the justification for adopting ATOM 
is confined to the fact that it facilitates the examination of EFA in a 
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suitably broad methodological perspective. Second, the justification for 
the abductive depiction of EFA, given in the chapter ’ s first half, has been 
developed independently of the acceptance of ATOM and as such can be 
used outside its ambit. Third, the abductive employment of EFA within 
the theory generation phase of ATOM begs no important question about 
the abductive nature of that phase. Rather, it lends credibility to ATOM ’ s 
outlook on theory generation by offering just one specific account of 
that process. 

 3.4   Exploratory Factor Analysis, Phenomena Detection, and 

Explanatory Theories 

 3.4.1   Exploratory Factor Analysis and Phenomena Detection 

 As just noted, ATOM contends that scientific research often involves the 
initial detection of empirical phenomena, followed by the construction 
of explanatory theories to understand those phenomena. Here I want to 
emphasize an important feature of EFA by suggesting that, strictly speak-
ing, it contributes to phenomena detection as well as theory construction. 
As such, it is a  “ mixed method, ”  having both data analytic and theory 
generation roles.  7   

 Otherwise distinct accounts of scientific inquiry tend to share the 
view that scientific theories explain and predict facts about observed 
data. However, as noted earlier in the discussion of Peirce ’ s (1931 – 1958) 
original characterization of abductive inference, this widely held view 
fails both to distinguish between data and phenomena and, in conse-
quence, to appreciate that typically it is phenomena, not data, that our 
theories are constructed to explain and predict. Recall that phenomena, 
unlike data, are relatively stable, recurrent features of the world that 
we seek to explain, and it is their generality and stability that make 
them, not data, the appropriate objects of explanation. In extracting 
phenomena from the data, we often use statistical methods. EFA is a 
case in point. Its name notwithstanding, EFA is not a particularly explor-
atory method, but it is nevertheless used to seek replicable data patterns, 
which are a standard requirement for making claims about phenomena. 
We can see this in the methodological requirement, stated initially by 
 Thurstone (1947)  and endorsed by  Cattell (1978) , that the obtained 
factor pattern should be repetitive, or invariant, across different data 
sets in distinct populations. Both of these pioneers of factor analysis 
realized that an interpretation of extracted and rotated factor patterns 
made little scientific sense if they were specific to a particular covariance 
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matrix and did not, or were unlikely to, generalize to other covariance 
matrices. 

 3.4.2   Exploratory Factor Analysis and Explanatory Theories 

 One challenge to the interpretation of EFA as an abductive method of 
theory generation is the claim that the theories it produces have little 
explanatory worth. In countering this criticism, I suggest that factorial 
theories spawned by EFA are essentially dispositional in nature, and 
dispositional theories do have genuine, though limited, explanatory 
import ( Rozeboom, 1984 ;  Sober, 1982 ). Recall that existential abduction 
postulates the existence of new entities without being able to characterize 
their nature. Thus, in exploiting this form of abduction, EFA provides us 
with an essentially dispositional characterization of the latent entities it 
postulates. 

 Dispositional theories provide oblique characterizations of the proper-
ties we attribute to things by way of their pre sumed effects under speci-
fied conditions (e.g.,  Mumford, 1998 ;  Tuomela, 1978 ). For example, the 
brittleness of glass is a dispositional property causally responsible for the 
breaking of glass objects when they are struck with sufficient force. Our 
indirect characterization of this latent property, brittleness, is in terms of 
the relevant striking and breaking events. Similarly, Spearman ’ s original 
theory of  g  was essentially dispositional in nature, for  g  was characterized 
obliquely in terms of children ’ s school performance under the appropri-
ate test conditions. 

 As I have just noted, dispositional theories have often been regarded 
as explanatorily suspect. Perhaps the best-known, and most frequently 
cited, example of this is Moli è re ’ s scoff at explaining the soporific effects 
of opium by appeal to its dormitive power. However, as  Rozeboom 
(1973)  maintains,  “ the  virtus dormitiva  of opium  is  why people who 
partake of this particular substance become drowsy. Of course, that by 
itself leaves a great deal unknown about this power ’ s nature, but learning 
of its existence and how to diagnose its presence/absence in particular 
cases is a necessary preliminary to pursuit of that knowledge ”  (67). 

 Similarly, with EFA, the existential abductions to latent factors pos-
tulate the existence of these factors without being able to say much, if 
anything, about their actual nature. It is the job of EFA to help us bring 
our factorial hypotheses and theories into existence, not to develop them 
and specify their nature. According to ATOM, the latter task is under-
taken through the use of analogical modeling strategies. To expect EFA 
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to develop theories, as well as generate them, is to fail to understand its 
proper role as a generator of dispositional theories. 

 An answer to the question of whether dispositional theories possess 
genuine explanatory worth requires us to focus on whether such theories 
have explanatory power. Two aspects of explanatory power that are 
relevant here are explanatory depth and explanatory breadth. For facto-
rial theories, explanatory depth is naturally understood as existential 
depth. Existential depth is accorded those explanatory theories in science 
that are deep-structural in nature. Theories of this sort postulate theoreti-
cal entities that are different in kind, and hidden, from the empirical 
regularities they are invoked to explain. In postulating theoretical enti-
ties, deep-structural theories extend our referential reach to new entities 
and thereby increase the potential scope of our knowledge. The factorial 
theories afforded us by EFA have existential depth because the typical 
products of factor analytic abductions are new claims about hidden 
causal entities that are thought to exist distinct from their manifest 
effects. Existential depth deserves to be considered as an explanatory 
virtue of EFA ’ s postulational theories. 

 The other feature of explanatory power, explanatory breadth, is a 
long-standing criterion of a theory ’ s worth. Sometimes explanatory 
breadth is understood as  consilience , which is often portrayed as the idea 
that a theory explains more of the evidence (a greater number of facts) 
than its competitors. The rudimentary theories of EFA do not have con-
silience in this sense, for they typically do not explain a range of facts. 
Nor are they immediately placed in competition with rival theories. 
However, factorial theories of this kind are consilient in the sense that 
they explain the  concurrences  embodied in the relevant patterns of cor-
relations. By appealing to common causes, these factorial theories unify 
their concurrences and thereby provide us with the beginnings of an 
understanding of why they concur. 

 The two criteria that make up explanatory power are not the only 
dimensions of theory appraisal that we should consider when submitting 
a factorial theory to preliminary evaluation. The fertility of a theory is 
also an important evaluative consideration. In general terms, this dimen-
sion focuses on the extent to which a theory stimulates further positive 
research. It should be noted here that although our initial dispositional 
descriptions of latent factors are low in informational content, they do 
not, or need not, act as a heuristic block to further inquiry, as some com-
mentators on factor analysis suggest.  Lykken (1971) , for example, judges 
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latent variable explanations from factor analysis to be  “ stillborn, ”  
whereas  Skinner (1953)  declares that they give us false assurances about 
the state of our knowledge. However, given that EFA trades in existential 
abductions, the dispositional ascription of latent factors should serve a 
positive heuristic function. Considered as a preliminary to what we hope 
will eventually be full-blooded explanations, dispositional ascriptions 
serve to define the scope of, and mark a point of departure for, appropri-
ate research programs. Viewed in this developmental light, dispositional 
explanations promote inquiry rather than block it. 

 3.4.3   Exploratory Factor Analysis and the Specter of 

Underdetermination 

 The methodological literature on factor analysis has given considerable 
attention to the indeterminacy of factors in the common factor model. 
Factor indeterminacy arises because the common factors are not uniquely 
determined by their related manifest variables. As a consequence, a 
number of different common factors can be produced to fit the same 
pattern of correlations in the manifest variables. 

 Although typically ignored by factor analytic researchers, factor inde-
terminacy is an epistemic fact of life that continues to challenge factor 
analytic methodologists. Some methodologists regard factor indetermi-
nacy as a serious problem for common factor analysis and recommend 
using alternative methods such as principal components analysis because 
they are considered to be determinate in nature. Others have countered 
variously that component analysis models are not causal models (and 
therefore are not proper alternatives to common factor models), that they 
do not typically remain invariant under the addition of new variables, 
and that the indeterminacy of factor scores is seldom a problem in inter-
preting common factor analytic results because factor scores do not have 
to be computed. 

 One constructive perspective on the issue of factor indeterminacy has 
been offered by Mulaik and McDonald ( McDonald  &  Mulaik, 1979 ; 
 Mulaik, 1987 ;  Mulaik  &  McDonald, 1978 ). Their position is that the 
indeterminacy involved in interpreting the common factors in EFA is just 
a special case of the general indeterminacy of theory by empirical evi-
dence widely encountered in science, and it should therefore not be seen 
as a debilitating feature that forces us to give up on common factor 
analysis. Essentially, I agree with this outlook on the factor indeterminacy 
issue and will discuss it in this light. I argue that EFA helps us produce 
theories that are underdetermined by the relevant evidence, and the 
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methodological challenge that this presents can be met in an acceptable 
way. I conduct my discussion against the backdrop of the sketch of 
ATOM provided in chapter 1. 

 Indeterminacy is pervasive in science. It occurs in semantic, metaphysi-
cal, and epistemological forms ( McMullin, 1995 ). Factor indeterminacy 
is essentially epistemological in nature. The basic idea of epistemological, 
or more precisely methodological, indeterminacy is that the truth or 
falsity (better, acceptance or rejection) of a hypothesis or theory is not 
determined by the relevant evidence ( Duhem, 1954 ). In effect, method-
ological indeterminacy arises from our inability to justify accepting one 
theory among alternatives on the basis of empirical evidence alone. This 
problem is sometimes referred to as the  underdetermination of theory by  
 data , and sometimes as the  underdetermination of theory by   evidence . 
However, because theories are often underdetermined by evidential state-
ments about phenomena, rather than data, and because evidence in 
theory appraisal will often be superempirical as well as empirical in 
nature, I will refer to the indeterminacy here as the underdetermination 
of theory by  empirical evidence  (UTEE). 

 To construe factor indeterminacy as a variant of UTEE is to regard it 
as a serious problem, for UTEE is a strong form of underdetermination 
that needs to be reckoned with in science. Indeed, as an unavoidable fact 
of scientific life, UTEE presents a major challenge for scientific 
methodology. 

 Concerning scientific method, UTEE occurs in a number of places. 
The two that are relevant to common factor analysis are (a) ATOM ’ s 
context of theory generation, where EFA can be employed as an abduc-
tive generator of rudimentary explanatory theories; and (b) the context 
of theory evaluation, where confirmatory factor analysis can be used to 
test factorial theories in an essentially hypothetico-deductive manner. 
Here I discuss factor indeterminacy as UTEE for EFA. I briefly address 
the issue of factor indeterminacy as it affects confirmatory factor analysis 
in the penultimate section of this chapter. 

  Mulaik (1987)  sees UTEE in EFA as involving inductive generaliza-
tions that go beyond the data. I believe that the  inductive  UTEE should 
be seen as applying specifically to the task of establishing factorial invari-
ance where one seeks constructive or external replication of factor 
patterns. However, for EFA we also need to acknowledge and deal with 
the  abductive  UTEE involved in the generation of explanatory factorial 
theories. The sound abductive generation of hypotheses is essentially 
educated guesswork. Thus, drawing from background knowledge and 
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constrained by correlational empirical evidence, the use of EFA can at 
best only be expected to yield a plurality of factorial hypotheses or theo-
ries that are thought to be in competition. This contrasts strongly with 
the unrealistic expectation held by many earlier users of EFA that the 
method would deliver them strongly justified claims about the one best 
factorial hypothesis or theory. 

 How, then, can EFA deal with the specter of UTEE in the context of 
theory generation? The answer, I think, is that EFA narrows down the 
space of a potential infinity of candidate theories to a manageable subset 
by facilitating judgments of initial plausibility. It seems clear enough that 
scientists often make judgments about the initial plausibility of the 
explanatory hypotheses and theories that they generate. It is less clear 
just what this evaluative criterion amounts to (see  Whitt, 1992 ). With 
ATOM, judgments of the initial plausibility of theories are judgments 
about the soundness of the abductive arguments employed in generating 
those theories. I suspect that those who employ EFA as an abductive 
method of theory generation often make compressed judgments of initial 
plausibility. Consistent with the view of research problems adopted by 
ATOM, initial plausibility may be viewed as a constraint-satisfaction 
problem. Multiple constraints from background knowledge (e.g., the 
coherence of the proposed theory with relevant and reliable background 
knowledge), methodology (centrally, the employment of EFA on appro-
priate methodological grounds; see  Fabrigar, Wegener, MacCallum,  &  
Strahan, 1999 ), and explanatory demands (e.g., the ability of factorial 
theories to explain the relevant facts in an appropriate manner) combine 
to provide a composite judgment of a theory ’ s initial plausibility. 

 By conferring judgments of initial plausibility on the theories it spawns, 
EFA deems them worthy of further pursuit, whereupon it remains for 
the factorial theories to be further developed and evaluated, perhaps 
through the use of confirmatory factor analysis. I should emphasize here 
that using EFA to facilitate judgments about the initial plausibility of 
hypotheses will still leave the domains being investigated in a state of 
considerable theoretical underdetermination. I will also stress that the 
resulting plurality of competing theories is entirely to be expected and 
should not be thought of as an undesirable consequence of employing 
EFA. To the contrary, it is essential for the growth of scientific knowledge 
that we promote theoretical pluralism. The reason for this rests with our 
makeup as cognizers: we begin in ignorance, so to speak, and have at 
our disposal limited sensory equipment. However, we are able to develop 
a rich imagination and considerable powers of criticism. 
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 These four features operate such that the only means available to us 
for advancing knowledge is to construct and evaluate theories through 
their constant critical interplay. In this way, the strategy of theoretical 
pluralism is forced on us ( Hooker, 1987 ). Thus it is through the simul-
taneous pursuit of multiple theories with the intent of eventually adju-
dicating between a reduced subset of them that one arrives at judgments 
of best theory. 

 I have suggested that factor indeterminacy is a special case of the 
pervasive problem of UTEE. I have also argued that if we adopt realistic 
expectations about what EFA can deliver as a method of theory genera-
tion, and also grant that the method contributes to the needed strategy 
of theoretical pluralism, then we may reasonably conclude that EFA 
satisfactorily meets this particular challenge of indeterminacy. 

 3.5   Exploratory Factor Analysis and Confirmatory Factor Analysis 

 Now that I have argued that EFA is a method that facilitates the abduc-
tive generation of rudimentary explanatory theories, it remains to con-
sider what implications this view of EFA has for the conduct of EFA 
research, including its relation to the more frequently used confirmatory 
factor analysis (CFA). 

 The abductive view of EFA does highlight and stress the importance 
of some features of its best use, and I will mention four of these. First, 
it should now be clear that an abductive interpretation of EFA reinforces 
the view that it is best regarded as a latent variable method, thus distanc-
ing it from the data reduction method of principal components analysis. 
From this, it obviously follows that EFA should always be used in prefer-
ence to principal components analysis when the underlying common 
causal structure of a domain is being investigated. 

 Second, strictly speaking, the abductive interpretation of EFA also 
acknowledges the twin roles of the method of searching for inductive 
generalizations, and their explanations. As ATOM emphasizes, these 
research goals are different, but they are both important. To repeat, it is 
because the detection of phenomena requires the researcher to reason 
inductively to empirical regularities that the abductive use of EFA insists 
on initially securing the invariance of factors across different populations. 
And it is because the inductive regularities require explanation that one 
then abductively postulates factorial hypotheses about common causes. 

 Third, as noted earlier, the abductive view of EFA emphasizes the 
importance of background knowledge in EFA research. In this regard, 
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the initial variable selection process, so rightly emphasized by  Thurstone 
(1947)  and  Cattell (1978) , is sufficiently important that it should be 
considered as part of the first step in carrying out an EFA study. For 
instance, in selecting the variables for his factor analytic studies of per-
sonality, Cattell was at pains to formulate and follow principles of rep-
resentative sampling from a broad formulation of the domain in question. 
Further, the importance of background knowledge in making abductive 
inferences to underlying factors should not be overlooked. In this regard, 
the modified Peircean depiction of abductive inference presented earlier 
explicitly acknowledged some of the manifold ways in which such infer-
ence depends on background knowledge. It is an important truism that 
the factorial hypotheses generated through abductive inference are not 
created  ex nihilo  but come from the extant theoretical framework and 
knowledge of the factor analytic researcher. For most of our EFA theoriz-
ing, this source is a mix of our common sense and scientific psychological 
knowledge. 

 Finally, and relatedly, it should be made clear that acknowledging the 
importance of background knowledge in abductive EFA does not provide 
good grounds for adopting a general strategy where one discards EFA, 
formulates theories  a priori , and uses factor analysis only in its confirma-
tory mode. This holds even though when using EFA one anticipates 
possible common factors to select sufficient indicator variables to allow 
one to overdetermine those factors. EFA has a legitimate place in factor 
analytic research because it helpfully contributes to theory generation in 
at least three ways: it contributes to detection of the empirical phenom-
ena that motivate the need for generating factorial hypotheses; it serves 
to winnow out a lot of theoretically possible hypotheses at the hypothesis 
generation stage of inquiry; and it helps to present factorial hypotheses 
in a form suitable for subsequent testing by CFA. 

 This last remark, which supports the idea that abductive EFA plays a 
useful role in factor analytic research, raises the question of how EFA 
relates to CFA. In contrast to popular versions of the classical inductivist 
view of science that inductive method can generate secure knowledge 
claims, using EFA as an abductive method of theory generation can only 
furnish researchers with a weak logic of discovery that gives them edu-
cated guesses about underlying causal factors. For this reason, research-
ers who use EFA to generate theories need to supplement their generative 
assessments of the initial plausibility of those theories with additional 
consequentialist justification in the form of CFA testing or some alterna-
tive approach to theory appraisal. 
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 In stressing the need for the additional evaluation of theories that are 
obtained through EFA, I am not implying that researchers should always 
or even standardly employ classical EFA and follow it with CFA. CFA is 
just one of a number of options with which researchers might provide a 
justification of factorial hypotheses. As an alternative, one might, for 
example, adopt Rozeboom ’ s nonclassical form of EFA as a method to 
generate a number of models that are equivalent with respect to their 
simple structure by using his versatile Hyball program (Rozeboom, 1991a, 
1991b) before going on to adjudicate between these models by employing 
CFA. Another legitimate strategy might involve formulating a causal 
model using EFA and following it with a procedure like the one defended 
by  Mulaik and Millsap (2000) , which undertakes a nested sequence of 
steps designed to test various aspects of a structural equation model. 

 A further possibility, which I do not think has been explored in the 
factor analytic literature, would be to follow up on the preliminary 
acceptance of rudimentary theories spawned by EFA by developing a 
number of factorial theories through whatever modeling procedures 
seem appropriate, and then submitting those theories to a non-factor-
analytic form of theory appraisal. For example, it would be quite possible 
for competing research programs to develop theories given to them 
through EFA and then submit those theories to comparative appraisal in 
respect of their explanatory coherence.  Thagard ’ s (1992)  theory of 
explanatory coherence, which I consider in chapter 5, is an integrated 
multicriterial method of theory appraisal that accepts as better those 
explanatory theories that have greater explanatory breadth, are simpler 
than their rivals, and are analogous to theories that have themselves been 
successful. This strategy of using EFA to abductively generate explana-
tory theories, and then employing the theory of explanatory coherence 
in subsequent appraisals of these explanatory theories, is abductive both 
fore and aft. As such, it fits nicely within the framework of ATOM. 

 Finally, I should say that there are a number of methods for abduc-
tively generating hypotheses and theories in psychology, EFA being but 
one. Grounded theory method ( Strauss, 1987 ), for example, can generate 
theories that explain the qualitative data patterns from which they are 
derived (see chapter 6). Also, Howard  Gardner ’ s (1983)  theory of mul-
tiple intelligences was generated using a  “ subjective, ”  nonstatistical factor 
analysis. Furthermore, it is plausible to suggest that structural equation 
modelers sometimes abductively generate theories by non-factor-analytic 
means before submitting them to CFA scrutiny. As with factor analytic 
abduction, this could only be done by exploiting our naturally given 
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cognitive abilities to abductively generate explanatory hypotheses and 
theories. 

 In this chapter, I have been concerned to argue that EFA has a legiti-
mate and important role as a method of theory generation, and EFA and 
CFA should be viewed as complementary, not competing, methods of 
common factor analysis. However, a number of factor analytic method-
ologists have expressed views that discourage such an outlook. For 
example,  Gorsuch (1983) , in his well-known book on factor analysis, 
expresses a view about the relative importance of exploratory and con-
firmatory factor analysis that seems to be quite widely held today:  “ The 
space and time given to [EFA] is a function of the complexity of resolving 
its problems, not of its theoretical importance. On the contrary, confir-
matory factor analysis is the more theoretically important — and should 
be the much more widely used — of the two major factor analytic 
approaches ”  (134). 

 Although  Gorsuch (1983)  makes his claim in emphatic terms, he 
provides no justification for it. There are, I think, at least two reasons 
that can be given for his conclusion. However, I do not think they add 
up to a convincing justification. First, there is a widespread belief that 
the essence of scientific research is to be found in the prevailing hypo-
thetico-deductive conception of scientific method with its emphasis on 
theory testing for predictive success. However, this belief is difficult to 
defend, given that there are many other important phases of scientific 
inquiry that together demand most of the researcher ’ s methodological 
time. As ATOM makes clear, these additional phases embrace the detec-
tion of empirical phenomena, and the generation, development, and full 
comparative appraisal of theories. Viewed in this light, theory testing is 
just one, albeit important, part of scientific method. Given that science 
is as much concerned with theory generation as it is with theory testing, 
and acknowledging that EFA is a useful abductive method of theory 
generation, EFA deserves to be regarded as one important method in the 
theory constructor ’ s tool kit. 

 Moreover, both hypothetico-deductive orthodoxy and a good deal of 
CFA practice today need confirmational rehabilitation. Both suffer from 
the tendency to take theory evaluation as a noncomparative undertaking 
in which theories are assessed with respect to the empirical evidence, but 
not in relation to alternative theories. I suggested earlier that the hypo-
thetico-deductive method can be repaired in this respect. Additionally, 
some CFA methodologists (e.g.,  Kaplan, 2000 ) have sensibly expressed 
the need to compare theories or models when assessing them with respect 
to their goodness-of-fit to the empirical evidence. It is here that the 
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problem of UTEE arises for CFA, because associated goodness-of-fit 
indices sometimes fail to adjudicate between two or more competing 
factor analytic models. In these cases, CFA has to broaden its announced 
goal of testing for empirical adequacy through goodness-of-fit tests. This 
can be achieved in part by obtaining fit statistics weighted by parsimony 
indices, and more fully by invoking a number of additional superempirical 
criteria of theory goodness to supplement goodness-of-fit judgments. 

 I should emphasize that using goodness-of-fit is a minimum criterion 
of empirical adequacy ( Rodgers  &  Rowe, 2002 ) and alone provides 
insufficient grounds for assessing the credibility of competing theories. 
The goodness-of-fit empirical adequacy of theories can be strengthened 
by also ascertaining their predictive worth. Hypothetico-deductive testing 
is often assumed, or recommended, in this regard, but this confirmational 
strategy faces a number of difficulties well known to philosophers of 
sci ence. Of particular relevance here is that standard hypothetico-deduc-
tive confirmation founders on the problem of UTEE. This shortcoming 
brings us back to the recommendation advanced earlier that criteria of 
empirical adequacy need to be supplemented by the so-called superem-
pirical or complementary virtues of explanatory power, fertility, and 
simplicity ( McMullin, 1983 ). Virtues such as these reduce the gap between 
theory and empirical evidence, but they do not close it. This is because 
scientists do not strongly agree on the criteria that should be employed 
in theory evaluation. Moreover, even when scientists do agree on the 
evaluative criteria to be used, they will sometimes differ in the relative 
weight they assign to them. Nevertheless, if we use a composite of empiri-
cal and theoretical criteria, the problem of UTEE becomes manageable, 
though theory evaluation will seldom be a determinate exercise. To meet 
the challenge of UTEE, CFA, along with EFA, needs to supplement its 
judgments of empirical adequacy by appealing to the theoretical virtues. 

 A second reason for downplaying the importance of EFA is the sup-
position that although EFA has a role in generating knowledge claims, 
it does not have a role in evaluating them. Rather, full evaluative respon-
sibility is assigned to CFA embedded within a hypothetico-deductive 
framework. However, as claimed earlier, the use of EFA as an abductive 
method of theory generation enables us to judge the initial plausibility 
of the hypotheses it spawns. Positive judgments of initial plausibility are 
stamps of epistemic approval that signal that factorial hypotheses have 
sufficient merit to warrant further investigation. Researchers assess initial 
plausibility to gauge whether hypotheses are worth pursuing, but such 
assessments do not provide sufficient warrant for treating hypotheses 
as credentialed knowledge claims. Those who recommend that the 
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hypotheses thrown up by EFA should be tested subsequently with con-
firmatory factor analysis are right to stress the need for their subsequent 
justification. However, it is important to appreciate that EFA provides a 
provisional generative justification for the hypotheses it produces. 

 3.6   Summary and Conclusion 

 In examining the methodological foundations of EFA, I have said many 
things about the nature of this method. It will therefore be useful to bring 
together the main points in the form of an extended summary and a brief 
conclusion. 

 In summary: 

 1.   The main goal of EFA is to generate rudimentary explanatory theories 
to explain robust covariational data patterns. As a preliminary to this 
goal, EFA functions as a data analytic method that contributes to the 
detection of empirical regularities. 

 2.   The inferential move from manifest to latent variables in EFA is 
abductive in nature. The particular form of abductive inference typically 
involved is existential abduction. Existential abductions postulate the 
existence of objects or attributes, but they do not specify their natures. 

 3.   EFA ’ s use of abductive reasoning is facilitated by its employment of 
the principle of the common cause, which restricts factor analytic infer-
ences to correlated effects and their common causes. This principle lies 
at the inferential heart of EFA. 

 4.   EFA has a modest, albeit important, role in theory generation. It is a 
serviceable generator of elementary plausible theory about the common 
causes of correlated variables. 

 5.   The abductive logic of EFA enables the method to confer a generative 
justification on the theories it produces. This form of justification involves 
judgments that the theories are the result of sound abductive reasoning 
and have sufficient initial plausibility to warrant further investigation. 

 6.   Theories generated by EFA have the status of dispositional theories. 
The latent variables postulated by such theories can be genuine existents, 
though these theories say little, if anything, about their nature. 

 7.   Despite their elementary nature, dispositional theories afforded by 
EFA do have genuine, although modest, explanatory power. This power 
resides in both their existential or explanatory depth and their consilience 
or explanatory breadth. 
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 8.   EFA is able to satisfactorily confront the problem of factor indeter-
minacy in theory generation by screening candidate factorial theories for 
their initial plausibility in an environment where theoretical pluralism is 
to be expected. 

 9.   To satisfactorily meet the problem of factor indeterminacy, CFA 
research should embrace superempirical criteria in addition to both the 
goodness-of-fit and predictive criteria of empirical adequacy. 

 10.   Because EFA and CFA tend to serve different methodological func-
tions in multivariate research — theory generation for the one, theory 
testing for the other — they are best viewed as complementary rather than 
competing methods. It will sometimes be advantageous to employ the 
two common factor analytic methods in tandem. 

 11.   Nevertheless, theories about common causes can be generated 
abductively without appeal to EFA, whereas theories generated by EFA 
may be tested by using methods other than CFA. 

 12.   ATOM provides a useful framework within which to locate EFA. 
There EFA can function as a method of theory generation in domains 
with a common causal structure. 

 13.   CFA can contribute to the goal of empirical adequacy in the subse-
quent hypothetico-deductive appraisal of common causal theories. 

 Although EFA has frequently been employed in psychological research, 
the extant methodological literature on factor analysis insufficiently 
acknowledges the explanatory and ontological import of the method ’ s 
inferential nature. Arguably, abduction is science ’ s chief form of creative 
reasoning, and the principle of the common cause is a maxim of scientific 
inference with important application in research. By bringing these two 
related elements into its fold, EFA is ensured an important, albeit cir-
cumscribed, role in constructing explanatory theories in psychology and 
other sciences. In this role, EFA can serve as a valuable precursor to CFA. 
I believe that factor analytic research would benefit considerably by 
returning to its methodological origins and embracing EFA as an impor-
tant method for generating structural models about common causes. 

 As noted in the outline of ATOM provided in chapter 1, the rudimen-
tary theories given to us by existential abduction by methods such as 
EFA need concerted development. In ATOM, this is undertaken by 
employing a strategy of analogical modeling. This strategy is the main 
focus of the next chapter. 





 4   Theory Development: Analogical 

Modeling 

 The process by which the nature [of the causal mechanism] is first ascribed in 
developing an explanation is psychologically an exercise of the imagination and 
philosophically an analogy.  . . .  The creative task is to present a plausible analogue 
of the mechanism which is really producing the phenomenon. 

  — Rom Harr é  (1976, 21) 

 4.1   Introduction 

 This chapter focuses primarily on the development of scientific theories. 
In particular, I aim to show that ATOM develops its theories by adopting 
a strategy of analogical modeling. However, before considering this strat-
egy, I will provide a brief and selective overview of the nature and place 
of models in science. This overview should form a useful backdrop to 
the subsequent discussion of analogical modeling. 

 For the last hundred or so years, the role of models in science has 
been controversial. One view, held by prominent students of science 
before the twenty-first century, was that models were dispensable heu-
ristic aids to formulating and understanding scientific theories — perhaps 
even props for poor thinkers. For example, the French physicist and 
philosopher Pierre  Duhem (1954)  was strongly skeptical of the value of 
building mechanical models to understand physical processes, and he 
famously derided the English scientists of his time for engaging in this 
practice. 

 According to the two major early twentieth-century philosophies of 
science, logical positivism and logical empiricism ( Feigl, 1956 ), models 
played no important role in the conduct of scientific research. In the 
1950s and 1960s, critics of logical empiricism pointed out that its view 
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of models did not provide for the role that models play in the develop-
ment of theories. Although not much influenced by logical empiricism 
and its critics, psychology itself has historically given limited explicit 
attention to models, although it has given increased attention to math-
ematical and statistical modeling in the last few decades ( Rodgers, 2010 ). 

 This negative view of the cognitive value of models in science contrasts 
with the view held by many methodologists today that models are an 
essential part of the development of theories and are important elsewhere 
in science as well. Contemporary studies of scientific practice make clear 
that models play a genuine and indispensable cognitive role in science. 
Many scientists and philosophers subscribe to the view that reasoning 
in science is to a large extent model-based reasoning. Ronald  Giere 
(1999) , for example, goes so far as to say that science  “ is models almost 
all the way up and models almost all the way down ”  (56). Although a 
number of different sorts of model play important roles in scientific 
research, I think that Giere overstates the influence of models in science. 
For good reason, science draws on many disparate investigative strategies 
that have little or nothing to do with models. For example, some of the 
strategies for detecting empirical phenomena dealt with in chapter 2 do 
not use models. 

 Psychology ’ s commitment to the hypothetico-deductive method, and 
to a lesser extent the inductive method, has helped discourage psycholo-
gists from using models for the purpose of theory development. The 
orthodox account of the hypothetico-deductive method assumes that 
hypotheses and theories emerge fully formed and ready for immediate 
testing.  1   For its part, traditional inductive method focuses first on the 
discovery of empirical generalizations, and then on fashioning theories 
that are organized summaries of their constituent empirical generaliza-
tions. Such an instrumentalist conception of theories discourages the 
development of deep explanations, and with it a need for modeling latent 
causes. This is the perspective on theory and method adopted by radical 
behaviorists. 

 In contrast to these two theories of scientific method, ATOM provides 
explicitly for the development of explanatory theories. The theories it 
generates through existential abduction are only dispositional in nature 
and require considerable elaboration before they are systematically eval-
uated against rival theories with respect to their explanatory goodness. 
As noted in chapter 1, ATOM recommends that this be done by building 
analogical models of the causes posited by existential abduction to obtain 
knowledge of the mechanisms that comprise those causes. 
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 4.2   Types of Models 

 Given that just about anything can be a model of something for someone, 
we have an enormous diversity of models in science. This diversity 
includes, but is not limited to, scale models, data models, phenomenologi-
cal models, theoretical models, analog models, iconic models, and math-
ematical models. Science uses these different types of model for different 
purposes. For example, so-called  iconic models  are constructed to provide 
a good resemblance to the object or property being modeled, whereas 
mathematical models offer an abstract symbolic representation of the 
object or property of interest. 

 Max  Wartofsky (1979)  has referred to the many senses of the word 
 model  that stem from this bewildering variety as the  “ model muddle. ”  
Philosophers such as Max  Black (1962) , Peter  Achinstein (1968) , and 
Rom  Harr é  (1970)  have provided different taxonomies that impose some 
order on the variety of available model types. However, it seems unlikely 
that the diversity of models in science will be captured by a unified tax-
onomy. Moreover, given that different types of models serve different 
research ends, we should refrain from thinking that one approach to 
modeling is inherently superior to another. 

 I confine my initial discussion to four types of models that are used 
in science: scale models, theoretical models, mathematical models, and 
data models. The fifth type of model (the analogical model, in which an 
unfamiliar domain is modeled by analogy to a familiar source) is dis-
cussed at length in the second half of the chapter. 

 4.2.1   Scale Models 

 Some models are physical structures that can represent or potentially 
represent things in the world. Physically constructed scale models are a 
good example. Scale models belong to a class of iconic models because 
they literally depict the features of interest in the original. As their name 
suggests, scale models involve a change of scale. They are always models 
of something, and they typically scale down selected properties of the 
objects they represent. Thus a model airplane stands as a miniaturized 
representation of a real airplane. However, a scale model can also be a 
magnified representation of an object, such as a small insect. 

 Although scale models are constructed to provide a good resemblance 
to the object or property being modeled, they represent only selected 
relevant features of the object. Thus a model airplane will almost always 
represent the fuselage and wings of the real airplane being modeled, but 
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it will seldom represent the interior of the aircraft. Scale models are 
usually built to represent the properties of interest in the original object 
in an accessible and manipulable form. By scaling and idealizing a source 
that is complex in its natural form, scientists can study processes in a 
manageable way. A scale model of an aircraft prototype, for example, 
may be built to test its basic aerodynamic features in a wind tunnel. 

 However, not all iconic models are scale models, as James Watson and 
Francis Crick ’ s physical model of the helical structure of the DNA mol-
ecule demonstrates. By idealizing and scaling data to some manageable 
form, graphs too can be considered scale models of the processes and 
distributions that they represent. 

 4.2.2   Theoretical Models 

 The important class of models known as theoretical models abounds in 
science. Unlike scale models, theoretical models are constructed and 
described by the scientist ’ s imagination in that they are not constructed 
as physical objects. Further, unlike mathematical and analogical models, 
the properties of theoretical models are often better known than the 
subject matter that is being modeled. This is clearly the case when sci-
entists attempt to model unknown theoretical entities. For example, the 
properties of latent variable models, such as the common factor model 
referred to in chapter 3, are better known to the investigator than the 
latent attributes represented by those models. 

 A theoretical model of an object, real or imagined, comprises a set of 
hypotheses about that object. The Watson-Crick model of the DNA 
molecule and Markov models of human and animal learning are two 
examples of the innumerable theoretical models to be found in science. 
Theoretical models typically describe an object by ascribing to it an inner 
mechanism or structure. This mechanism is frequently invoked to explain 
the behavior of the object. Theoretical models are acknowledged for their 
simplifying approximation to the object being modeled, and they are 
often small-scale theories with a limited scope of application. However, 
they can often be combined with other theoretical models to provide a 
more comprehensive understanding of the object of study. For example, 
the Rutherford-Bohr model of the atom is a modification of the earlier 
Rutherford model from the perspective of quantum physics. 

 4.2.3   Mathematical Models 

 In the behavioral sciences, models are sometimes expressed in terms 
of mathematical equations. For example, factor analysis is commonly 



Theory Development  91

understood as a mathematical model of the relations between manifest 
and latent variables, where each manifest variable is regarded as a linear 
function of a common set of latent variables along with a latent variable 
that is unique to the manifest variable. It is important to emphasize that 
a statistical model and its interpretation are distinct entities. The basic 
equation for linear factor analysis, for example, is to be distinguished 
from the various substantive factorial theories that its use has helped 
bring about.  2   Sometimes in the physical sciences, a theory formulated in 
mathematical terms at the outset cannot subsequently be interpreted as 
a substantive and comprehensible source model. Many physicists have 
understood the so-called Copenhagen formulation of quantum mechan-
ics to be this sort of model because its content comprises mathematical 
probabilities that do not describe an objective reality. 

 Mathematical models offer an abstract symbolic representation of 
their domains of interest. These models are often regarded as formalized 
theories in which the system modeled is projected onto the abstract 
domain of sets and functions, which can be manipulated in terms of 
numerical reasoning, typically with the help of a computer. 

 In psychology, the large majority of theories are constructed in a 
qualitative manner, and most of them remain so thereafter. To a limited 
extent, psychologists strive to formalize these theories in mathematical 
terms to provide them with a more rigorous formulation. For example, 
a number of theories in psychology characterize relationships between 
psychological constructs in terms of multiplicative functions. 

 4.3   Data, Models, and Theories 

 4.3.1   Data Models 

 In the early 1960s, Patrick Suppes suggested that science employs a 
hierarchy of models that range from experimental experience to theory 
( Suppes, 1962 ). He claimed that theoretical models, which are high on 
the hierarchy, are not compared directly with empirical data, which are 
low on the hierarchy. Rather, they are compared with models of the data, 
which are higher than data on the hierarchy. This insight anticipated a 
central idea of chapter 2, that phenomena, not data, should be taken to 
be the proper objects of typical scientific explanations. 

 The process of phenomena detection arises because scientific data on 
their own are intractable. Data are often rich, complex, and messy, and 
because of these characteristics, they cannot be explained. Their intrac-
tability is overcome by reducing them to simpler and more manageable 
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forms. In this way, scientists rework data into models of data. As shown 
in chapter 2, statistical methods play a prominent role in this regard, 
facilitating operations having to do with assessing the quality of the data, 
the patterns they contain, and the generalizations to which they give rise. 
Because of their tractability, models of the data can be explained and 
used as evidence for or against theoretical models. For this reason, they 
are of considerable importance to science. 

 It is fair to say that in both their science education and research prac-
tices, psychological researchers have been more concerned with data 
models than other kinds of models in science. 

 4.3.2   Models and Theories 

 The relationship between models and theories is difficult to draw, par-
ticularly given that they can both be conceptualized in various ways. 
Some methodologists have suggested that theories are intended as true 
descriptions of the real world, whereas models need not be about the 
world and therefore need not be true. Others have drawn the distinction 
by claiming that theories are more abstract and general than models. For 
example, evolutionary psychological theory can be taken as a prototype 
of the more specific models it engenders, such as those of differential 
parental investment and the evolution of brain size. Relatedly,  Giere 
(1988)  has argued that a scientific theory is best understood as compris-
ing a family of models, along with a number of theoretical hypotheses 
that link the models with things in the world. 

 Yet another characterization of models takes them to be largely inde-
pendent of theories. In arguing that models are  “ autonomous agents ”  
that mediate between theories and phenomena, Margaret Morrison and 
Mary Morgan (1999) contend that they are not fully derived from either 
theory or data. Instead models are technologies that allow one to connect 
abstract theories with empirical phenomena. Some have suggested that 
the idea of models as mediators does not apply to the behavioral and 
biological sciences because these sciences exhibit no appreciable gap 
between fundamental theory and phenomena in which models can 
mediate. However, this is an empirical claim, and the extent to which it 
holds is yet to be determined. 

 The position I adopt in this book is that modeling in science is 
basically a strategy of indirectly representing the world. Models are 
a type of theory that indirectly represents the world, whereas many 
other types of theory represent the world more directly (see  Weisberg, 
2007 ). To understand the world, the modeler first constructs a model as 
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a hypothetical system. He or she then endeavors to determine the resem-
blance relations between the hypothetical system and the part of the 
world he or she is trying to understand. This general description of 
model-based science as a two-phase process employs the strategy of 
analogical modeling, to be discussed shortly. 

 4.4   The Functions of Models 

 4.4.1   Representation 

 Today most scientists and philosophers of science take a model to be a 
representational device that represents the target system that it models. 
A model can usefully be seen to represent its target in two ways (e.g., 
 M ä ki, 2011 ): first, in terms of its resemblance to the target in certain 
respects; and second, as a representative of a target system in the sense 
that it is a surrogate system that stands for, and is examined in place of, 
its target. When we evaluate the worth of a model, we need to consider 
both of these aspects of representation together. It is in good part as a 
consequence of being able to represent the world that models can be 
employed for a variety of purposes, including systematization, explana-
tion, prediction, control, calculation, and derivation. 

 However, unlike model-free or  “ plain ”  scientific theories, models are 
generally not thought to be the sort of representational devices that can 
be true or false. Instead it is suggested that we think of models as having 
a kind of similarity relationship with the object that is being modeled, 
where the similarity can take different forms. With analogical models, 
for example, the similarity relationship is one of analogy, a relationship 
to be described shortly. In addition, it is sometimes said that models 
themselves are not linguistic entities and therefore cannot be the bearers 
of truth (e.g.,  Giere, 1988 ). Against this claim, many truth theorists 
maintain that language is not the only type of truth bearer, and as a 
consequence, models as nonlinguistic entities can also perform this role. 
It is also said that because models idealize and abstract away from reality, 
they do not tell the whole story and so must be false. However, models 
can be true in two senses ( M ä ki, 2011 ): they can be approximately true, 
depending on their degree of similarity to the target; and they can be 
partially true in virtue of one or more of their parts being true. 

 Regarding the falsity of models, note that science often adopts a 
deliberate strategy of adopting false models as a means by which we can 
obtain truer models. William  Wimsatt (2007)  has argued that this is done 
by localizing errors in models to identify and modify their problematic 
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parts. One might add that scientists can also localize truths in models to 
help identify and correct errors in other parts of the models. 

 4.4.2   Abstraction and Idealization 

 Scientists often study systems that are highly complex. This complexity, 
combined with limited knowledge about the domains under study, as 
well as scientists ’  cognitive limitations, regularly forces them to adopt 
simplifying strategies to make their research problems tractable. Model-
ing is one way of simplifying the depiction of complex domains. The 
simplification is usually achieved through two related processes: abstrac-
tion and idealization. Abstraction involves deliberately eliminating prop-
erties of the target that are not considered essential to understanding the 
target. This can be achieved in various ways. For example, one can ignore 
the properties, though they continue to exist, by eliminating them in 
controlled experiments or by setting the values of unwanted variables to 
zero in simulations. 

 By contrast, idealization involves transforming a property in a system 
into a related property that possesses desirable features introduced by 
the modeler. Taking a spheroid object to be spherical, representing a 
curvilinear relation in linear form, and assuming that a human agent is 
perfectly rational are all examples of idealization in model building. 
Although no strong consensus exists in the philosophy of science about 
how the processes of abstraction and idealization should be understood, 
and although the terms  abstraction  and  idealization  are sometimes used 
interchangeably, they clearly refer to different processes. Each can take 
place without the other, and in particular cases, idealization can in fact 
involve complexification rather than simplification, for example, when 
one extends a model to another domain.  Jones (2005)  provides a helpful 
systematic treatment of the two processes in which idealizations are 
construed as deliberate misrepresentations and abstractions as mere 
omissions. Models, then, are almost always simplified representations of 
their objects of study in virtue of often having one or both of these 
features. 

 In broad terms, the foregoing remarks about models should be seen 
as consistent with the realist view of science sketched in chapter 1. Scale 
models have an obvious realist ring to them, because they are clearly 
direct representations of things that exist in the world. As noted in 
chapter 3, the latent variables of mathematical models (such as factor 
analysis) are best understood as genuine theoretical existents. Theoretical 
models are surrogate systems that refer to theoretical entities. Data 
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models provide tractable empirical evidence for or against theories and 
theoretical models. And models that are understood as representational 
devices will have truth values; they realistically aspire to present approxi-
mate and partial truths understood as truth nominations in the sense 
presented in chapter 1. This is the case for analogical models in ATOM. 

 4.5   Modeling in ATOM 

 Theorizing about hidden causal entities, properties, and processes is 
undoubtedly the most frequent type of theorizing in science. We saw in 
chapter 3 that the nascent theories bequeathed to us by using the method 
of exploratory factor analysis refer to the existence of hidden causes. 
Conclusions about such causes are obtained by using an existential 
abductive reasoning process. However, existential abduction is unable to 
provide us with an informative characterization of the nature of those 
causes. Instead, theories given to us by existential abduction have the 
status of dispositional theories that provide us with oblique characteriza-
tions of the causes in terms of their presumed effects under specified 
conditions. To recall the example from chapter 3, the latent property 
of the brittleness of glass is described in terms of the relevant events of 
striking and breaking. Of course, this says nothing about the nature 
of brittleness, but diagnosing its presence in particular cases is often an 
important first step in obtaining that knowledge. 

 Sometimes psychologists are prepared to accept a dispositional con-
strual of the hidden causes that interest them and concentrate their 
efforts on figuring out how those causes relate to one another and to 
more empirical matters of fact. For example, structural equation model-
ing, now a popular research practice in psychology, focuses on providing 
knowledge of variables assembled in causal networks. As such, it does 
not so much encourage the development of detailed knowledge of the 
nature of the latent variables it deals with as specify the range and order 
of causal relations into which such variables enter. 

 Although it is acknowledged that science needs to employ a variety 
of different modeling strategies, ATOM adopts the strategy of using 
analogical models to help develop its explanatory theories. Often psy-
chologists want to move beyond the rudimentary nature of the disposi-
tional characterization of causes and elaborate on their nature. ATOM ’ s 
strategy of analogical modeling enables them to do so because it provides 
more detailed knowledge of causes by enumerating the components and 
operations of their mechanisms. 
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 Recently, philosophers of science have given considerable attention to 
the role played by explanations in the life sciences that appeal to causal 
mechanisms (e.g., Bechtel  &  Abrahamsen, 2005;  Machamer, Darden,  &  
Craver, 2000 ). Mechanistic explanations, which explain empirical phe-
nomena in terms of the operation of causal mechanisms, are fashioned 
in psychology with varying degrees of success. They vary from specula-
tive conjectures, through plausible models that are consistent with known 
constraints, to quite good descriptions of how mechanisms work in 
reality. I think that analogical modeling is best suited to giving psycholo-
gists plausible models of mechanisms. To forestall a possible objection, 
I should point out that mechanistic explanations do not have to be 
cashed out in mechanical terms. 

   Table 4.1  depicts analogical modeling in relation to other parts of 
ATOM. It shows the objects of investigation of ATOM; the methodologi-
cal phases of ATOM, with their associated reasoning processes; and 
the different types of knowledge claim that ATOM helps produce. The 
content of the table can be assembled in the form of an anticipatory 
summary as follows. The causes that produce the phenomena are 

  Table 4.1 

 The place of analogical modeling in the abductive theory of method  

 Objects of nature  Phases of ATOM  Products of ATOM 

 Phenomena 
 (produced by) 

  ↓  

 Phenomena detection 
 (via enumerative 
induction) 

 Phenomena claims 
 (explained by) 

  ↓  

 Causal entities 
 (represented by) 

 Theory generation 
 (via existential abduction) 

 Rudimentary 
explanatory theories 
 (developed by) 

  ↓    ↓  

 Analogical models of 
causal mechanisms 
 (leading to) 

 Theory development 
 (via analogical abduction) 

 Analogical models 
 (resulting in) 
  

  ↓    ↓  

 Developed analogical 
models 

 Theory appraisal 
 (via inference to the best 
explanation) 

 Developed 
explanatory theories 
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diagnosed by way of existential abduction from claims about the phe-
nomena. The mechanisms of the causes are specified by building analogi-
cal models. As intimated in chapter 1, these are suggested by the 
antecedently known sources of the models. The specification is achieved 
by reasoning by analogy from the sources to their targets. Because the 
source models are human artifacts, they are classified as objects of 
nature. They are subject to investigation as surrogate systems that rep-
resent the causal mechanisms in nature. Analogical modeling in ATOM 
is a strategy that increases the content of theories that are explanatory 
in nature. Being explanatory in nature, the analogical reasoning takes 
the form of analogical abduction. Judgments of the initial plausibility of 
the causal entities in the phase of theory generation are strengthened by 
further judgments of plausibility of the analogical models. When the 
model theories are well developed, they are appraised further by a process 
of inference to the best explanation.   

 4.6   Analogical Modeling 

 The use of analogies to explain events in science is somewhat controver-
sial. For example, the logical empiricist Carl  Hempel (1965)  maintained 
that although analogical models may have heuristic value in suggesting 
explanations, they do no epistemic work in furnishing genuine explana-
tions and can therefore be dispensed with. However, given the weight of 
many historical case studies, this view has fallen into disfavor. 

 The idea that analogical models are important in the development of 
scientific theories can be traced back to the physicist and philosopher of 
science N. R.  Campbell (1920) , who insisted that analogies are not mere 
aids but an essential part of theories. Since that time, a number of phi-
losophers of science have endorsed the value of analogical modeling in 
scientific theory construction (e.g.,  Abrantes, 1999 ;  Harr é , 1988 ;  Hesse, 
1966 ). The epigraph from Harr é  at the beginning of this chapter clearly 
emphasizes the importance of creatively developing explanatory theories 
through analogical reasoning about the nature of the causal mechanisms 
to which they refer. 

 Despite Campbell ’ s claim for the ubiquity of models in theories, sci-
entific explanations do not always use analogies. However, their role in 
theory development within ATOM is of central importance. The need 
for analogical modeling within ATOM stems from two features of its 
characterization of theory generation. First, as with exploratory factor 
analysis, the abductive generation of theories initially takes the form of 
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existential abduction, through which the existence of theoretical entities 
is postulated. Therefore an appropriate research strategy is required to 
learn about the nature of these hidden entities. Analogical modeling is 
an appropriate strategy for doing the required elaborative work. Second, 
recall that the postulation of theoretical entities through existential 
abduction confers an assessment of initial plausibility on those postula-
tions. For claims about those latent entities to have the status of genuine 
knowledge, further evaluative work has to be done. The construction of 
appropriate analogical models serves to assess the plausibility of the 
expanded understanding they afford, as well as to expand our under-
standing of those entities. 

 For ATOM, increasing the knowledge of the nature of its theories ’  
causal mechanisms by analogical modeling is achieved by using the 
pragmatic strategy of conceiving of these unknown mechanisms in terms 
of what is already familiar and well understood. Well-known examples 
of models that have resulted from using this strategy are the model of 
chromosomal inheritance, based on an analogy with a string of beads; 
the model of natural selection, based on an analogy with artificial selec-
tion; and computational models of the mind, based on analogies with 
the computer. 

 Although I have used the term  model , nothing is a model as such. 
A model is a relational complex. Thus, to understand the nature of ana-
logical modeling, it is necessary to distinguish between a model, the 
source of the model, and the subject of the model ( Harr é , 1976 ;  Hesse, 
1966 ). A model is modeled on a source, and it is a model of, or for, a 
subject. From the known nature and behavior of the source, one builds 
an analogical model of the unknown subject or causal mechanism. In the 
biological example just mentioned, Darwin fashioned his model of the 
subject of natural selection by reasoning by analogy from the source of 
the known nature and behavior of the process of artificial selection. Used 
in this way, analogical models play an important creative role in theory 
development. 

 However, this creative role requires the source from which the model 
is drawn to be different from the subject that is modeled. For example, 
the modern computer is a well-known source for modeling human cogni-
tion, but the two are different. Because the brain is made of protoplasm, 
and the computer is made of silicon, our cognitive apparatus is not gen-
erally thought to be a real computer. Models in which the source and 
the subject differ are sometimes called  paramorphs . This is a requirement 
for the analogical modeling of real and imagined processes, which is a 
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focus of ATOM. By contrast, models in which the source and the 
subject are the same are sometimes called  homeomorphs  ( Harr é , 1970 ). 
For example, a toy airplane can be a homeomorphic model of a real 
aircraft. 

 The paramorph can be an iconic representation of real or imagined 
things. Iconic representation combines elements of visualizable and prop-
ositional information in a picture-statement complex that can ultimately 
be expressed in sentences. The idea of the field of potential in physics is 
a good example. It can be represented graphically to show how the ideas 
of field and potential are combined. At the same time, the graphical 
information, and information not contained in the graph, can be repre-
sented in sentential form. 

 Iconic paramorphs feature centrally in the creative process of develop-
ing theories through analogical modeling. These models are constructed 
as representations of reality, real or imagined. In ATOM, they stand in 
for the hypothesized causal mechanisms. Although they are representa-
tions, iconic models are themselves things, structures, or processes that 
correspond in some way to things, structures, or processes that are the 
subjects of modeling. They are therefore the sorts of things that sentences 
can be about ( Harr é , 1976 ). Here we are reminded that scientific theories 
that are models represent the world less directly than theories that are 
not models.  3   

 In addition to developing nascent theories, the strategy of analogical 
modeling also serves to assess their plausibility. In evaluating the aptness 
of an analogical model, one must assess the analogy between its source 
and subject, and for this one needs to consider the analogy ’ s structure. 
The structure of an analogy comprises a positive analogy in which the 
source and subject are alike in some respects, a negative analogy in which 
the source and subject are unlike in some respects, and a neutral analogy 
in which the source and subject are alike and unlike in ways that are as 
yet unknown. The neutral analogy is irrelevant for purposes of analogical 
modeling. Because we are essentially ignorant of the nature of the hypo-
thetical mechanism of the subject apart from our knowledge of the 
source of the model, we are unable to specify any neutral analogy 
between the model and the mechanism being modeled. Thus, in consider-
ing the plausibility of an analogical model, one considers the balance of 
the positive and negative analogies ( Hesse, 1966 ). This is where the rel-
evance of the source for the model is spelled out. As we will see shortly, 
the analogical reasoning that scientists employ is informal and based on 
plausibility arguments. 
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 In the next section, I discuss Darwin ’ s use of analogical modeling in 
developing his theory of natural selection. In section 4.8, I present the 
dramaturgical model of human social interaction as an example of ana-
logical modeling in psychology.  

 4.7   Analogical Abduction 

 Reasoning by analogy is an important form of inference, but it is difficult 
to characterize precisely. Historically, philosophers have often recon-
structed analogical arguments as enumerative or simple inductions of a 
special form (e.g.,  Copi  &  Cohen, 1990 ;  Hesse, 1966 ). Because analogi-
cal reasoning results in new knowledge claims, it is ampliative, a feature 
it shares with inductive reasoning. However, unlike arguments based on 
inductive inference, arguments based on analogy can produce knowledge 
claims about new kinds of things. Briefly, we may say that an analogy is 
an argument based on assumed or known parallels or similarities between 
two or more objects, properties, or events. What is known about one 
class of entities (the source) is employed to learn more about the other 
class of entities (the subject). A good analogical argument provides an 
understanding of the less familiar in terms of the more familiar by dis-
cerning that the two are alike in relevant respects, but not in other 
respects. As already mentioned, for example, psychological research fre-
quently reasons by analogy from the known functioning of computers 
to the less well-known character of human cognitive processes. 

 Analogical reasoning is important in science and obviously lies at the 
inferential heart of analogical modeling. I emphasized in chapter 3 that 
abduction is a form of scientific reasoning in its own right. As intimated 
in chapter 1, because the theories fashioned by ATOM are explanatory 
theories, the use of analogical modeling to develop those theories will 
necessarily involve combining analogical and abductive forms of reason-
ing to produce a creative form of reasoning known as  analogical abduc-
tion . Science often seeks to improve the quality of an explanatory theory 
by appealing to a similar type of explanation that is known and accepted 
by the scientific community. It is in this way that we can employ analogi-
cal reasoning of an abductive kind. 

 Note, however, that, unlike existential abduction, analogical abduc-
tion does not produce a hypothesis about an entirely new entity, property, 
or process. It is only concerned with the partly new, because it is driven 
by analogy to concepts that are well understood in the source model. 
The importance of analogical abduction as a form of creative reasoning 
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in ATOM stems from the fact that it is the means by which knowledge 
about a theory ’ s causal mechanisms is developed. 

 The basic structure of the reasoning involved in analogical abduction 
can be stated in the form of a general argument schema as follows: 

 Hypothesis H* about property Q was correct in situation S1. 

 Situation S1 is like situation S2 in relevant respects. 

 Therefore an analogue of H* might be appropriate in situa tion S2. 

 To take a prominent example, Darwin ’ s theory of natural selection made 
essential use of analogical abduction. The general argument for analogi-
cal abduction just given can be rewritten in simplified form for Darwin ’ s 
case as follows: 

 The hypothesis of evolution by artificial selection was correct in cases of 
selective domestic breeding. 

 Cases of selective domestic breeding are like cases of the natural evolu-
tion of species with respect to the selection process. 

 Therefore, by analogy with the hypothesis of artificial selection, the 
hypothesis of natural selection might be appropriate in situations where 
variants are not deliberately selected for. 

 In formulating his theory of natural selection, Darwin took advantage 
of the two most important features of analogical abduction: its ability 
to create, and its ability to justify. In reasoning by analogy, using known 
facts about artificial selection, Darwin was able to hypothesize the paral-
lel mechanism of natural selection that explained diversity among natural 
species. At the same time, he was able to appeal to the epistemic worth 
of his carefully crafted analogy and proclaim the initial plausibility of 
his hypothesis of natural selection. Numerous creative scientists have 
been able to exploit the resources of analogical abduction in this manner. 

 Three things should be said about the structure of analogical reason-
ing as it is outlined in the argument schema. The first premise of the 
argument claims factual status for the relevant part of the source model. 
However, this is not always easy to ascertain and requires close knowl-
edge of the source model. In Darwin ’ s case, nineteenth-century breeding 
practices were rather controversial, and Darwin had to work hard to 
forge his analogy ( Theunissen, 2012 ). For example, he had to downplay 
the importance of the two breeding techniques of crossing of varieties 
and inbreeding that many breeders thought were essential to obtain new 
varieties. The second premise of the argument asserts that relevant 
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similarities that enable the transfer of explanations from source to subject 
have been identified. But this transfer clearly requires some knowledge 
of the subject of the model and need not be completely unidirectional. 
For example, evidence suggests that Darwin ’ s developing knowledge of 
natural selection in nature helped him better understand his knowledge 
of artificial selection of domestic varieties ( Herbert, 1971 ). The conclu-
sion stated in the argument ’ s third premise is appropriately tempered. To 
say that the analogy  “ might be appropriate ”  is in keeping with the plau-
sibility assessments that the process of analogical modeling gives us. Just 
as good existential abductions confer a warrant of initial plausibility on 
the hypotheses they produce, so sound analogical arguments provide the 
grounds for judging the hypotheses about the mechanisms in question 
to be initially plausible. It is clear from Darwin ’ s writings that he took 
the analogy between artificial and natural selection to lend some cre-
dence to his theory of natural selection. However, as we will see in the 
next chapter, Darwin sought further assessments of his theory by employ-
ing inference to the best explanation. 

 4.8   The Dramaturgical Model 

 An instructive example of an analogical model in psychology is Rom 
Harr é  ’ s role-rule model of microsocial interaction, which he developed 
by explicitly using his own methodology of analogical modeling. As with 
the Darwin example of analogical modeling just discussed, Harr é  used 
the strategy of analogical modeling both to create and to justify his model 
of microsocial interaction. With the role-rule model, Erving  Goffman ’ s 
(1959)  dramaturgical perspective on human action provides the source 
model for understanding the underlying causal mechanisms involved in 
the production of ceremonial, argumentative, and other forms of social 
interaction ( Harr é , 1979 ;  Harr é   &  Secord, 1972 ). 

 The role-rule model can also be presented in accordance with the 
simple argument schema used in the previous sec tion to display the basic 
structure of its analogical abductive reasoning: 

 The theory of dramaturgy provides a correct account of behavior on the 
theatrical stage. 

 Behavior on the theatrical stage is like a good deal of human behavior 
in social life. 

 Therefore, by analogy with the theory of dramaturgy, much human social 
behavior might be understood and monitored as acting on life ’ s stage. 



Theory Development  103

 Of course, this schema is a bare-bones characterization of the analogi-
cal abductive reasoning used in constructing the dramaturgical model. 
Neither the nature of the analogical reasoning employed nor its justifica-
tion is properly captured by its schematic representation. As with the 
inductive reasoning employed in detecting phenomena, a fine-grained 
depiction of the analogical reasoning involved in constructing the dra-
maturgical model must be material in nature. That is to say, the relevant 
limits of the similarity relation between the source and subject of the 
model are decided with reference to contingent matters of fact that are 
specific to the case. 

 The basic idea of the dramaturgical perspective is that we observe and 
hear a simulacrum of life on the stage, and our knowledge of how this 
is produced provides us with a guide to the creation of real life. Goff-
man ’ s dramaturgical perspective provides a detailed analytical account 
of the roles and rules that human agents follow on life ’ s stage combined 
with a  “ watchful consciousness ”  of the actor, producer, audience, and 
critic. 

 As a source model, the dramaturgical model has both positive and 
negative analogies, for clear similarities and differences exist between 
the subject domain of real life and the source domain of dramatically 
staged acts. Regarding similarities, Goffman noted that to be understood 
as the person he or she is portraying, the actor has to act in a manner 
that parallels what the audience would expect of that kind of person. 
Clearly there are differences between stage drama and real life. The 
differences involve sequences of acts and actions that are at once selec-
tive, simplified, and heightened. For example, in comparison with real 
life, only a limited number of life sequences are followed on the stage, 
time is compressed, and resolutions are effectively reached ( Harr é , 
1979 ). The reduction in the number of life sequences and the compres-
sion of time are abstractive processes. The use of successful resolutions 
is an idealized move. In these ways, the modeling strategies of abstrac-
tion and idealization are employed to simplify the complex domain of 
microsocial interaction. 

 Despite these sorts of differences, there are sufficient likenesses to 
make the dramaturgical model well worth exploring. Harr é  has exploited 
the dramaturgical model to provide a role-rule perspective on social 
psychological performance that uses a reticulated analytical scheme to 
further our understanding of microsocial accounts of social interaction 
in everyday life. As such, it stands as an important and explicit example 
of analogical modeling in psychology. 



104  Chapter 4

 4.9   Conclusion 

 The strategy of analogical modeling is sometimes used in the behavioral 
sciences to develop theories. This is not surprising, given that many of 
the hypothesized causes in these sciences are theoretical entities whose 
natures can be grasped only indirectly using such a modeling strategy. 

 The methodology of analogical modeling is well developed and pro-
vides a useful source of guidance for scientists intent on expanding their 
knowledge of latent causal mechanisms. Rom Harr é  ’ s various works on 
analogy and modeling in science constitute a useful source in this regard. 
Methodological work that focuses specifically on analogical abduction 
is less well developed, although it contains broad guidelines for the aspir-
ing analogical modeler. Paul  Bartha ’ s (2010)  wide-ranging book  By Paral-
lel Reasoning  is a detailed, instructive examination of how to construct 
and evaluate analogical arguments.  4   

 There is little evidence to suggest that the behavioral sciences explicitly 
incorporate a strategy of analogical modeling into their methodological 
deliberations and science education practices. The limited methodologi-
cal attention given to modeling in psychology is largely confined to 
statistical modeling, broadly construed (e.g.,  Jaccard, 2013 ;  MacCallum, 
2003 ;  Rodgers, 2010 ). However, given the importance of analogical 
modeling as a strategy for the expansion of explanatory theories, meth-
odologists in the behavioral sciences should promote it as vigorously as 
they have promoted structural equation modeling. 

 Thus far, I have suggested that, for ATOM, the epistemic worth of 
hypotheses and theories generated by existential abduction is evaluated 
in terms of their initial plausibility, and these assessments are subse-
quently augmented by judgments of the appropriateness of the analogies 
that function as source models for their development. However, with 
ATOM, well-developed theories are appraised further with respect to a 
number of additional criteria that are used when making judgments 
about the best of competing explanatory theories. This is the focus of 
the next chapter, where we will see that the criterion of analogy, in com-
bination with additional criteria, figures in the further assessment of the 
plausibility of analogical models. 

 



 5   Theory Appraisal: Inference to the Best 

Explanation 

 If the fact that a theory provides the best available explanation for some impor-
tant phenomenon is not a justification for believing that the theory is at least 
approximately true, then it is hard to see how intellectual inquiry could proceed. 

  — Richard Boyd (1984, 67) 

 5.1   Introduction 

 Contemporary scientific methodology boasts a number of general 
approaches for evaluating scientific theories. Prominent among these are 
the hypothetico-deductive method, which evaluates theories in terms of 
predictive success; Bayesian accounts of confirmation, which assign 
probabilities to hypotheses using Bayes ’ s theorem; and inference to the 
best explanation, which accepts theories when they are judged to provide 
better explanations of the evidence than their rivals do. These are three 
of the four major theories of scientific method canvassed in chapter 1. 
Because of its focus on procuring descriptive generalizations, the simple 
inductive account of scientific method does not seriously address the 
matter of theory appraisal. 

 It has been stated repeatedly that the hypothetico-deductive method 
is by far the most widely used approach to theory appraisal in psychol-
ogy (see, e.g.,  Rorer, 1991 ;  Rozeboom, 1997 ). Despite some urgings (e.g., 
 Edwards, Lindman,  &  Savage, 1963 ;  Lee  &  Wagenmakers, 2005 ;  Dienes, 
2011 ), psychologists have been reluctant to use Bayesian statistical 
methods to test their research hypotheses and theories. They have mostly 
preferred to use classical statistical significance testing within a hypo-
thetico-deductive framework. Unfortunately, inference to the best expla-
nation has received almost no attention by psychological researchers. 
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 Many scientists in the natural and biological sciences have placed 
stock in the explanatory standing of theories, with Darwin and 
Einstein prominent among them ( Janssen, 2002 ). In a well-known passage 
in the final chapter of  On the Origins of Species , Darwin declares 
his confidence in justifying theories by appeal to explanatory 
considerations: 

 It can hardly be supposed that a false theory would explain, in so satisfactory 
a manner as does the theory of natural selection, the several large classes of 
facts above specified [e.g., the geographical distribution of species, the sterility 
of hybrid species]. It has recently been objected that this is an unsafe method 
of arguing. But it is a method used in judging common events of life, and has 
often been used by the greatest natural philosophers. The undulatory theory of 
light has thus been arrived at; and the belief of the revolution of the earth on its 
own axis was until lately supported by hardly any direct evidence. ( Darwin, 
1958 , 452) 

 It is clear that Darwin set great store by the fact that his theory 
of natural selection provided a much better explanation of the classes 
of facts such as those just mentioned than did the rival creationist 
theory. 

 In addition, methodologists have been concerned for some time to 
articulate ways in which we can understand the explanatory worth of 
theories (e.g.,  Lipton, 2004 ;  Josephson  &  Josephson, 1994 ;  Thagard, 
1989 ,  1992 ). However, although inference to the best explanation (IBE) 
is used in some sciences and extensively discussed in the philosophy of 
science, it is seldom heard of in psychology. This is an omission that I 
believe needs to be put right. 

 The primary purpose of this chapter is to bring the important idea of 
IBE to the attention of psychologists while emphasiz ing that the literature 
on the topic contains methodological resources that can help researchers 
evaluate the explanatory worth of their theories ( Haig, 2009 ). I begin by 
introducing the general idea of explanatory inference. Then I consider a 
number of different approaches to characterizing IBE; prominent among 
these is the theory of explanatory coherence , which is the approach to 
theory appraisal adopted by ATOM. Thereafter I discuss the strengths 
and limitations of IBE, together with its relationship to other major 
approaches to theory appraisal and its place in the broader domain of 
scientific inference. The chapter ’ s penultimate section considers IBE in 
relationship to psychology, and in the conclusion, I recommend that 
psychologists use IBE as an appropriate means of evaluating the worth 
of their explanatory theories. 
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 5.2   Inference to the Best Explanation 

 In accordance with its name, IBE is based on the idea that much of what 
we know about the world, in both science and everyday life, is based on 
considerations of explanatory worth. Scientists often accept theories 
about the hidden causes of empirical phenomena because they believe 
them to be the best explanations of those phenomena. This was the 
reasoning Darwin used in judging his theory of natural selection to be 
superior to the rival creationist explanation of his time ( Thagard, 1978 ). 
In contrast to the hypothetico-deductive method, IBE takes the relation 
between theory and evidence to be one of explanation, not logical entail-
ment. This means that for IBE the ideas of explanation and evidence 
come together, and explanatory reasoning becomes the basis for evaluat-
ing theories. Also, in contrast with the Bayesian approach to theory 
evaluation, advocates of IBE generally take theory evaluation to be a 
predominantly qualitative exercise that focuses explicitly on explanatory 
criteria, not a statistical undertaking in which one assigns probabilities 
to theories. Given that a primary function of most theories in science is 
to explain empirical facts, it stands to reason that the explanatory good-
ness of explanatory theories should count in their favor. Conversely, 
explanatory failings should detract from their credibility. The major 
point of IBE is that the theory judged to be the best explanation of the 
facts is taken to be the theory most likely to be correct. There is, then, 
a twofold justification for using IBE when evaluating explanatory theo-
ries: it explicitly assesses such theories in terms of the important goal of 
explanatory power, and it focuses on science ’ s goal of maximizing truth. 
The basis for this second justification is briefly considered later in the 
chapter. 

 Methodologists have used a number of different terms for explanatory 
reasoning. Many have followed Charles Peirce (1931 – 1958) in calling it 
 abduction . Others have adopted Gilbert  Harman ’ s (1965)  term  inference 
to the best explanation , and still others speak of  explanatory induction  
( Rozeboom, 1997 ). However, the tendency in the literature to think of 
IBE as the generic form of explanatory reasoning can mislead, for it 
glosses over the fact that there are different forms of explanatory rea-
soning — or, as one might say, different forms of abduction. The termino-
logical preferences I adopt here acknowledge genuine differences in 
methodological context. In this chapter, I distinguish between the abduc-
tive generation of new theories and the abductive appraisal of existing 
theories. This is similar to  Capaldi and Proctor ’ s (2008)  distinction 
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between  novel hypothesis abduction  and  competing theories abduction . 
In each case, it is the latter that is more appropriately described as IBE. 
With Peirce, I take abduction to involve reasoning from claims about 
puzzling facts to theories that might explain them. As such, abduction is 
a process of hypothesis or theory generation that can, at the same time, 
involve an evaluation of the initial plausibility of the hypotheses and 
theories proposed. In chapter 3, I argued that exploratory factor analysis 
is an abductive method that helps researchers generate plausible explana-
tory hypotheses in domains where it is reasonable to suppose that 
common causes are at work. Abduction in this sense is to be contrasted 
with IBE, which involves a comparative assessment of rival theories —
 theories that might have been given to us by the generative process of 
abduction, as with exploratory factor analysis, and perhaps developed 
by a modeling process of analogical abduction, which was the subject of 
chapter 4. Thus the expression  inference to the best explanation  should 
not be taken to imply that one arrives at the best explanation by reason-
ing to it. Rather, IBE is a mode of inference by which one judges the best 
of existing competing explanatory hypotheses and theories that have 
been generated by other abductive means. This chapter focuses on IBE 
in the latter sense. 

 Although scientists often make judgments of IBE, they disagree about 
how to characterize that process. Accordingly, the characterization of IBE 
provided in this chapter highlights four major attempts to render this 
form of inference intelligible. The first of these, often used by philoso-
phers, portrays IBE as a schematic argument. The second, by Peter  Lipton 
(2004) , claims that IBE leads to judgments of  “ explanatory loveliness. ”  
The third account is Paul  Thagard ’ s (1992) , which depicts IBE as a 
method of determining the explanatory coherence of theories. A fourth 
characterization presents a variant of the currently popular method of 
structural equation modeling as a form of IBE. 

 5.2.1   Inference to the Best Explanation as a Schematic Argument 

 It is commonly thought that with IBE one infers the likely truth of a 
hypothesis on the grounds that it better explains a set of data than do 
competing hypotheses. This characterization of IBE is sometimes pre-
sented in the form of a general argument schema like the following (e.g., 
 Josephson  &  Josephson, 1994 ;  Lycan, 1988 ): 

 D is a collection of data. 

 Hypothesis H explains D. 
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 No other hypothesis can explain D as well as H does. 

 Therefore H is probably true. 

 This schematic portrayal of IBE provides some sense of the structure 
of an IBE argument, but generally speaking, IBE in science does not 
conform to this schema. Therefore the schema must be amended in light 
of the following remarks. 

 First, as emphasized in the discussion of phenomena detection in 
chapter 2, and as clarified in the abductive depiction of exploratory 
factor analysis provided in chapter 3, the facts to be explained in science 
are generally not collections of data but empirical phenomena. Phenom-
ena often take the form of empirical generalizations, and they are not, 
strictly speaking, observed. Rather, data serve as evidence for phenom-
ena, and phenomena are taken as the usual objects of scientific explana-
tion ( Woodward, 1989 ). 

 Second, the argument schema refers to hypotheses rather than theo-
ries. However, in science, theories are often taken to be the minimum 
units of theory appraisal. Theories are ramified structures, often compris-
ing several explanatory hypotheses and other factors such as empirical 
generalizations and models (in the previous chapter, we saw that ATOM 
is concerned with developing model theories). Typically, IBE is used in 
science to evaluate theories rather than hypotheses. 

 Third, the conclusion of the argument schema speaks of the probable 
truth of the hypothesis. However, although truth is a cardinal aim of 
science, and although hypotheses are more or less true, the conclusion 
of the argument does not require talk of truth, let alone probable truth. 
It is sufficient that the conclusion speaks of the acceptance of the hypoth-
esis in preference to its rivals. 

 On the basis of these brief remarks about the nature of science, the 
schematic depiction of the form of an IBE argument just given should 
be changed to something like the following: 

 P1, P2,  …  are surprising empirical phenomena. 

 Theory T explains P1, P2,  …    . 

 No other theory can explain P1, P2,  …  as well as T does. 

 Therefore T is accepted as the best explanation. 

 Note that this schematic depiction of IBE focuses on its form only. 
However, a more informative characterization of IBE requires one to 
supplement the schema to capture the complexity of the patterns of 
reasoning involved. This is especially so when we seek a method of IBE 
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that can help us judge theory goodness. Importantly, a satisfactory 
account of IBE must be able to say what it means for one explanation 
to be better than its rivals. We will see that the second and third accounts 
of IBE meet this requirement by providing a set of criteria that form the 
basis of the judgments made in IBE. I should also point out here that the 
notion of an explanation itself remains unclear. However, for the purpose 
of this chapter, we can assume that a scientific explanation often involves 
appealing to causes that  produce  their effects, irrespective of how that 
appeal might be spelled out in detail. Later, I briefly comment on the 
idea of explanation in dealing with a criticism of Thagard ’ s account of 
inference to the best explanation. 

 5.2.2   Inference to the Best Explanation as the Loveliest Explanation 

 The philosopher of science Peter Lipton has undertaken the most promi-
nent and wide-ranging examination of IBE. In his book  Inference to the 
Best Explanation  (2004), Lipton articulated and defended IBE as a dis-
tinctive kind of inference, which is used in both science and everyday 
life. With science in mind, Lipton examined and endorsed the related 
ideas that we often accept a theory on the grounds that it provides a 
better explanation of the evidence than its rivals do, and the explanatory 
success of a scientific theory is a good reason to believe or accept that 
theory as true. Lipton took pains to distinguish between the descriptive 
task of understanding IBE as it is practiced in science and the normative 
task of showing how IBE provides a justification for the conclusions 
reached. His primary concern was the descriptive merits of IBE. 

 Lipton pointed out that the phrase  best explanation  is ambiguous 
between what he called the most  likely explanation  and the most  lovely 
explanation . Some methodologists take IBE to provide us with the likeli-
est or most probable explanation. However, Lipton maintained that this 
approach is not particularly informative because the primary task of IBE 
is to say what leads to a judgment that one theory is likelier than another. 
Lipton claimed that it is more informative to regard the best explanation 
as the loveliest explanation and to use that information to gauge the 
likeliness of a theory ’ s truth. However, for Lipton, the idea that IBE is 
the loveliest explanation can stand on its own without analyzing it in 
terms of probability. Nevertheless he maintained that if IBE is a good 
model of our inferential practices, then loveliness and likeliness will tend 
to be coextensive. 

 For Lipton, the loveliest explanation comprises the various commonly 
accepted explanatory virtues, and it is these virtues that provide the guide 
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to inference about causes in science. Lipton listed these virtues as unifica-
tory power, precision, and elaboration of explanatory mechanisms. 
Although he acknowledged that there is a literature on these and other 
explanatory virtues, he did not articulate his virtues in detail. However, 
he stressed the importance of doing so in a more fully developed account 
of IBE. Because of this lack of detail, the sense in which explanatory 
loveliness determines explanatory likeliness is some what unclear. 

 Lipton depicted IBE as a two-stage process. In the first stage, a set of 
potential explanations is generated. In the second stage, an inference is 
made to the best potential explanation, which is accepted as the actual 
explanation. Each of these stages involves filtering out a reduced set of 
explanations on the basis of plausibility considerations. At the first stage, 
judgments of initial plausibility are made on the basis of background 
knowledge to identify the potential explanations from all possible expla-
nations. At the second stage, the criteria that comprise the loveliest 
explanation are used to determine the best of the potential explanations. 
By including a first stage of hypothesis generation in his model of IBE, 
Lipton took IBE to be a broader notion than the one I adopt in this 
chapter, which is confined to his second stage. From the perspective of 
this chapter, Lipton ’ s first stage can be understood as a necessary precur-
sor to IBE proper. 

 Although Lipton ’ s two-step filtering process undoubtedly points to 
important features of scientific research, his abstract characterization of 
the process of IBE constitutes a general strategy rather than a detailed 
method. Nevertheless Lipton maintained that IBE shares some similari-
ties with, but goes beyond, Mill ’ s methods of induction, in terms of both 
applicability and scope. He also maintained that it is different from, and 
superior to, the hypothetico-deductive method, because it avoids various 
counterexamples or paradoxes of confirmation to which that method 
gives rise. 

 Although Lipton maintained that an analysis of IBE can be given 
without a satisfactory theory of explanation, he adopted a causal model 
of explanation as an explicit part of his account of IBE. At the same time, 
Lipton stressed the importance of the notion of contrastive explanation. 
A contrastive explanation does not attempt to answer the question  “ Why 
this event? ”  It attempts to answer the question  “ Why this event rather 
than that event? ”  That is, it seeks causes to explain not an event by itself 
but an event together with the absence of another relevant similar event. 
As an illustration of the contrastive model of explanation, Lipton took 
Ignaz Semmelweis ’ s (1983) much-discussed investigation of childbed 
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fever. Semmelweis sought to explain why the incidence of childbed fever 
was higher in one obstetric clinic than another. By creating a range of 
contrasts that controlled for relevant differences (e.g., the regular washing 
of hands with a solution of chlorinated lime contrasted with not doing 
so), he was able to conclude that the women in some wards were infected 
by the examining medical students, who carried an unknown material 
on their unwashed hands. Lipton construed this example as a successful 
case of IBE, where IBE is construed as inference to the best contrastive 
explanation.  1   

 A further aspect of Lipton ’ s treatment of IBE should be mentioned 
here. This is his recent suggestion ( Lipton, 2004 ) that IBE is broadly 
compatible with the Bayesian approach to theory evaluation and that 
IBE might in fact help determine the prior probabilities and likelihoods 
that are used in Bayes ’ s theorem. I consider the compatibility of these 
two approaches later in the chapter. 

 In addition to his positive account of IBE outlined here, Lipton 
defended IBE against a number of criticisms. I consider the two most 
prominent of these criticisms in section 5.3. 

 5.2.3   Inference to the Best Explanation as Explanatory Coherence 

 Gilbert  Harman (1965)  provided the first modern reference to IBE. 
However, Harman gave no informative account of IBE itself. He chose 
merely to mention simplicity, plausibility, explanatory breadth, and 
non – ad hocery as the sort of criteria that figure in judgments of best 
explanation. As noted earlier, Lipton acknowledged the importance of 
criteria like these, but he did not provide a detailed account of them. As 
a result, critics of both Harman and Lipton complained that without an 
informative account of the criteria that would be used in IBE, the idea 
was little more than a slogan. 

 Recognizing this deficiency, Paul Thagard developed a method of IBE 
that helps researchers reliably appraise competing theories. His method 
is known as the  theory of explanatory coherence  (TEC) ( Thagard, 1989 , 
 1992 ). The theory comprises an account of explanatory coherence in 
terms of a number of principles, a computer program for implementing 
the principles, and various simulation studies that demonstrate the the-
ory ’ s promise as a method of IBE. In this section, I provide an overview 
and a brief evaluation of the method. 

 According to TEC, IBE is centrally concerned with establishing 
relations of explanatory coherence. To infer that a theory is the best 
explanation is to judge it as more explanatorily coherent than its rivals. 
TEC is not a general theory of coherence that subsumes different forms 
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of coherence, such as the logical coherence of deductively valid argu-
ments, and the probabilistic coherence of Bayes ’ s theorem. Rather, it is 
a theory of  explanatory  coherence, where the propositions hold together 
because of their explanatory relations. 

 Relations of explanatory coherence are established through the oper-
ation of seven principles. These are symmetry, explanation, analogy, 
data priority, contradiction, competition, and acceptability. A theory ’ s 
explanatory coherence is determined in terms of three criteria: explana-
tory breadth, simplicity, and analogy ( Thagard, 1978 ). The criterion of 
explanatory breadth, which Thagard believes is the most important for 
choosing the best explanation, captures the idea that a theory is more 
explanatorily powerful than its rivals if it explains a greater range of 
facts — the idea strongly endorsed by Darwin in the quotation presented 
earlier in the chapter. The notion of simplicity that Thagard deems 
most appropriate for theory choice is captured by the idea that we 
should prefer theories that make fewer special or ad hoc assumptions. 
Finally, explanations are judged more coherent if they are supported 
by analogy to theories that scientists already find credible. Within TEC, 
each of these three criteria is embedded in one or more of the seven 
principles. Thagard formulated these principles in both formal and 
informal terms. They are stated here informally in his words ( Thagard, 
2000 , 43). The accompanying comment on the principles closely follows 
 Thagard ’ s (1992)  discussion of a more formal statement of those 
principles. 

 1.   Symmetry 

 Explanatory coherence is a symmetric relation, unlike, say, conditional 
probability. That is, two propositions  p  and  q  cohere with each other 
equally. 

 The principle of symmetry maintains that both coherence and incoher-
ence are symmetric relations, unlike the nonsymmetric relations of entail-
ment and conditional probability. The sense of coherence conforms to 
the ordinary sense of coherence as  “ holding together. ”  

 2.   Explanation 

 (a) A hypothesis coheres with what it explains, which can either be evi-
dence or another hypothesis. (b) Hypotheses that together explain some 
other proposition cohere with each other. (c) The more hypotheses it 
takes to explain something, the lower the degree of coherence. 

 Because the principle of explanation establishes most of the coherence 
relations, it is the most important principle in determining explanatory 
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coherence. Principle 2a, with principle 7, acceptance, subsumes the cri-
terion of explanatory breadth, which is central in determining the best 
explanation. Principle 2c accommodates the notion of simplicity, which 
is also an important criterion in theory choice. 

 3.   Analogy 

 Similar hypotheses that explain similar pieces of evidence cohere. 

 The principle of analogy is the same as the criterion of analogy in  Tha-
gard ’ s (1978)  initial account of IBE. It states that if similar propositions 
explain similar pieces of evidence, then they cohere with each other. The 
analogy must be explanatory. 

 4.   Data priority 

 Propositions that describe the results of observations have a degree of 
acceptability on their own. 

 The principle of data priority maintains that claims about observations 
can stand on their own more successfully than explanatory hypotheses. 
Of course, they can be doubted, but the reliability of their production 
will often be sufficient grounds for their initial acceptance. 

 Despite its name, it is clear that Thagard intends the principle of data 
priority to include statements about empirical generalizations that are 
based on observations. Thus the principle covers the generalizations that 
are robust enough to be considered claims about empirical phenomena, 
in the sense discussed in chapter 2. Because of their robustness, the evi-
dential respectability of such claims will be high, apart from their rela-
tionship to explanatory theories. 

 5.   Contradiction 

 Contradictory propositions are incoherent with each other. 

 This principle straightforwardly includes syntactic contradictions involv-
ing logical inconsistency and semantic contradictions involving inconsis-
tency of meaning. The principle covers the negative relations that hold 
between contradictory propositions that actively resist cohering and are 
said to incohere. 

 6.   Competition 

 If  p  and  q  both explain a proposition, and if  p  and  q  are not explanatorily 
connected, then  p  and  q  are incoherent with each other ( p  and  q  are 
explanatorily connected if one explains the other or if together they 
explain something). 
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 This principle claims that theories that explain the same evidence should 
normally be treated as competitors. In such cases, theories are regarded 
as competing if they are not explanatorily related. Noncontradictory 
theories may compete with each other. 

 7.   Acceptance 

 The acceptability of a proposition in a system of propositions depends 
on its coherence with them. 

 This last principle asserts that propositions are accepted or rejected on 
the basis of their degree of coherence with other propositions. The overall 
coherence of a system of propositions, or a theory, is obtained by con-
sidering the pairwise coherence relations through use of principles 1 
through 6. 

 The principles of TEC combine in a computer program called ECHO 
(Explanatory Coherence by Harmany Optimization) to provide judg-
ments of the explanatory coherence of compet ing theories.  2   In ECHO, 
propositions about both evidence and hypotheses are represented by 
units that have excitatory and inhibitory links to each other, and node 
activation represents the nodes ’  degree of coherence with all propositions 
in the network. The system updates itself based on parallel constraint 
satisfaction. The best explanation consists of the nodes with the highest 
activation values once the system has settled down. 

 TEC has a number of virtues that make it a promising theory of IBE. 
It focuses on criteria and principles that manifestly have to do with 
explanation; the criteria of explanatory breadth, simplicity, and analogy 
are explanatory criteria, whereas the principle of explanation is the most 
important of the seven principles. Further, as its principle of competition 
makes clear, TEC takes theory evaluation to be a comparative matter in 
which a theory is evaluated with reference to one or more competing 
theories. Furthermore, it is instantiated by, and can be implemented in, 
the purpose-designed computer program ECHO; it is a considerable 
achievement of TEC that it enables the researcher to compute explana-
tory coherence. Finally, it accounts for a number of important episodes 
of theory assessment in the history of science, such as the superiority of 
Darwin ’ s theory of evolution over the creationist theory, and the superi-
ority of Lavoisier ’ s theory of oxygen over the phlogiston theory. Simula-
tion studies by Thagard and his colleagues on case histories such as these 
provide empirical evidence that TEC is on the right track with its distinc-
tive conception of IBE. It is largely for these reasons that I have chosen 
TEC as the method of IBE for ATOM. 
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 Despite these positive features, TEC is a controversial account of IBE. 
Two publications by  Thagard (1989 ,  1992 ) contain a number of criti-
cisms of the method, with replies by the author. Some of these criticisms 
apply to IBE more generally, and I consider three of them in the next 
two sections. However, before doing so, I want to briefly consider the 
fact that TEC ’ s key principle of explanation speaks of hypotheses explain-
ing other propositions without indicating what the term  explanation  
means. Some commentators have seen this as a deficiency (e.g.,  Achin-
stein, 1989 ;  Glymour, 1992 ). Thagard was aware of this omission at the 
outset but maintained that TEC is an effective method of IBE, although 
it operates with a primitive notion of explanation. More recently,  Thagard 
and Litt (2008)  claimed that explanation is a complex process that resists 
character ization in a single account. It can involve features such as deduc-
tive arguments, statistical relations, schema applications, analogical com-
parisons, and linguistic acts, all of which are subordinate to its 
fundamental causal character. Thus, for them, the focal challenge in 
characterizing the explanatory relationship between hypotheses and the 
propositions they explain is to describe the causal relationship between 
them. Thagard and Litt developed a neurocomputational model of the 
cognitive processes that underlie scientific explanations. Their model is 
much more neurologically complex than the simple model of ECHO. 
Both Thagard ’ s multifaceted characterization of explanation and the new 
neurocomputational model should therefore be viewed as complemen-
tary to, not a part of, TEC and its accompanying methodology. 

 Toward the end of the chapter, I will suggest that TEC provides psy-
chologists with a valuable method for engaging in the comparative 
appraisal of explanatory theories. 

 5.2.4   Inference to the Best Explanation as Structural Equation 

Modeling 

 The guess-and-test strategy of the standard hypothetico-deductive 
method takes predictive accuracy as the sole criterion of theory goodness. 
However, a close examination of research practice in psychology and the 
behavioral sciences reveals that the hypothetico-deductive method is 
sometimes combined with the use of supplementary evaluative criteria 
such as simplicity, scope, and fruitfulness. When this happens, and 
one or more of the criteria have to do with explanation, we can reason-
ably regard the combined approach as a version of IBE, rather than 
just an augmented account of the hypothetico-deductive method. 
As noted earlier, this is because the central characteristic of the 
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hypothetico-deductive method is a relationship of logical entailment 
between theory and evidence, whereas with IBE the relationship is one 
of explanation. The hybrid version of IBE being considered here will 
allow the researcher to say that a good explanatory theory will rate well 
on the explanatory criteria and at the same time boast a measure of 
predictive success. Most methodologists and scientists will agree that an 
explanatory theory that also makes accurate predictions will be a better 
theory for doing so. 

 Structural equation modeling, now widely used in psychology and 
related sciences, is a family of multivariate statistical methods that often 
involves testing models in hypothetico-deductive fashion. Its standard 
formulation is a combination of insights from multiple regression, path 
analysis, and confirmatory factor analysis, which enables structural 
equation modeling simultaneously to test relationships among a multi-
tude of manifest and latent variables. It specifies and tests models of 
linear structural relations, which are often given a causal interpretation. 
One or more goodness-of-fit measures provide the means by which one 
confirms or disconfirms the model in question. Structural equation mod-
eling in this sense is hypothetico-deductive because it is centrally con-
cerned with the predictive testing of models one at a time without regard 
for competing plausible models. 

 However, some uses of structural equation modeling combine a com-
mitment to predictive hypothetico-deductive testing with an appeal to 
one or more explanatory criteria. This latter practice involves the explicit 
comparison of models or theories in which an assessment of their good-
ness-of-fit to the empirical evidence is combined with the weighting of 
the fit statistics in terms of parsimony indices (e.g.,  Kaplan, 2000 ). Here 
goodness-of-fit provides information about the empirical adequacy of 
the model, whereas parsimony functions as a criterion relating to the 
explanatory value of the model. Both are used in judgments of model 
goodness. 

  Markus, Hawes, and Thasites (2008)  recently suggested that in struc-
tural equation modeling, model fit can be combined with model parsi-
mony, understood as explanatory power, to provide an operationalized 
account of IBE. They discussed the prospects of using structural equation 
modeling in this way to evaluate the comparative merits of two- and 
three-factor models of psychopathy. In their chosen example, Markus 
and his coauthors reported a study by  Cooke and Michie (2001) , which 
employed confirmatory factor analysis (a limiting case of structural equa-
tion modeling) to conclude that the commonly accepted two-factor 
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structural model of psychopathy (comprising negative interpersonal and 
affective features, and social dominance) fitted poorly to the data. In its 
stead, Cooke and Michie proposed a better-fitting three-factor model 
(compris ing arrogant and deceitful interpersonal style, deficient affective 
experience, and impulsive and irresponsible behavioral style). Markus et 
al. concluded that this is an example of IBE, where the factors of the two 
models are taken to be latent explanatory variables. They suggested that 
one can partially operationalize bestness in terms of the popular root 
mean square error of approximation index, an index that measures the 
degree of ill fit per degree of freedom in the model. Here poorness-of-fit 
and degrees of freedom are taken to represent strength of empirical test 
and extent of parsimony, respectively, which together can be taken as a 
gauge of explanatory power. The three-factor model of psychopathy is 
thus accepted on the grounds that it is a better explanation of the data 
than the rival two-factor model. 

 Structural equation modeling recommends itself to psychol ogists, not 
just as a hypothetico-deductive practice but also as a variant of IBE. 
Employed as a method of IBE, it brings with it an ability to provide a 
better justification than orthodox hypothetico-deductive method of the 
hypotheses, models, and theories it evaluates. 

 5.3   Two Criticisms of Inference to the Best Explanation 

 Something of the controversial nature of IBE was seen earlier when I 
addressed specific criticisms that have been leveled against Thagard ’ s 
TEC. I now consider the two most prominent general criticisms that have 
been leveled against IBE. Another criticism, which appeals to the alleged 
superiority of the Bayesian approach to theory appraisal, will be dealt 
with shortly. 

 5.3.1   The Bad Lot Argument 

 A major criticism of IBE was raised by Bas  van Fraassen (1989) , who 
maintained that the approach cannot provide a satisfactory basis for 
believing in a theory. In a nutshell, van Fraassen argued that the best of 
competing explanatory hypotheses might be  “ the best of a bad lot, ”  all 
of which are false. He reasoned that because IBE can select the best 
hypothesis only from the set of currently available hypotheses, we have 
no reason to believe that the truth is to be found there rather than in 
hypotheses that no one has proposed. Therefore he maintained that IBE 
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provides us with no rational grounds for believing that the hypothesis 
that is judged best is true. 

 Proponents of IBE have met van Fraassen ’ s objection head-on. They 
have argued that scientists appeal to background knowledge to select the 
best of competing theories, and because this knowledge is approximately 
true, their selection of the best theory is generally well grounded.  Lipton 
(2004)  argued along these lines. He asserted that our rankings of the best 
of competing theories are fairly reliable, a point with which van Fraassen 
agreed. Furthermore, Lipton maintained that for accepted background 
theories to be used in the successful ranking of theories, they must be 
approximately true. From this, Lipton concluded that our best-ranked 
theories must be at least approximately true, and consequently van Fraas-
sen ’ s argument is unsound. 

 Another way of dealing with van Fraassen ’ s bad lot argument is to 
put the question of truth aside and focus on the methodological strategies 
involved in carrying out IBE. Often in science, a theory will count as a 
viable candidate for selection as the best explanatory theory only when 
it has already been subjected to one or more plausibility assessments. 
Recall that, in Lipton ’ s general two-stage model of IBE, the first stage 
involves reduc ing the set of all possible explanations to the set of plau-
sible explanations, and the second stage determines the best of the actual 
explanations. In both stages, judgments are based on plausibility consid-
erations. ATOM adopts a similar but more detailed strategy. According 
to this account of method, theory construction involves two rounds of 
plausibility assessment before one can make judgments of IBE. First, a 
theory that is generated to explain one or more empirical phenomena 
will be judged with respect to its initial plausibility. This first determina-
tion of its worth appeals to the soundness of the explanatory argument 
used in its introduction. As previously noted, psychological theories 
generated by exploratory factor analysis are evaluated in this way. 
Second, theories judged to have sufficient initial plausibility then receive 
a further assessment of their plausibility in terms of the aptness of the 
models that form the basis of their extension. To recall an earlier example, 
Darwin ’ s theory of evolution by natural selection gained credibility by 
analogy to the well-known processes of artificial selection. According to 
ATOM, IBE can be seen as a third round of plausibility assessment rather 
than just the first or second effort to evaluate a theory. Although we 
should acknowledge that the best of competing theories might be a poor 
theory, an explanatory theory with a record of successive appraisals like 
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the one just mentioned, which is judged to be better than its rivals, is 
likely to be the best of a respectable lot, not a bad lot. 

 Although one can defend IBE against the bad lot argument by separat-
ing IBE from truth, it remains to be shown how IBE can legitimately be 
used to evaluate theories with respect to their explanatory goodness in 
a way that avoids judgments of truth per se while at the same time 
regarding science as a truth-seeking endeavor. It is important to realize 
that the assumption that one can secure the truth of theories by making 
judgments of IBE conflates the different notions of truth and justification. 
It has already been said that truth, understood as correspondence with 
reality, functions as a guiding ideal for science ( Hooker, 1987 ;  Haig  &  
Borsboom, 2012 ). As such, it is a highly valued but unattained goal that 
helps us make sense of science as an attempt to represent and intervene 
in the world. How ever, as an ideal, truth (or more precisely, approximate 
truth) is accessible only indirectly by way of the various criteria we use 
to evaluate and accept theories. Historically, scientists have regarded 
predictive accuracy, internal consistency, and explanatory power as 
important criteria of theory acceptance. As justificatory criteria, they can 
indicate truth, but they do not constitute truth. 

 For TEC, the criteria of explanatory breadth, simplicity, and analogy 
are epistemic criteria used in evaluating competing explanatory theories. 
However, the question arises whether evaluating competing theories in 
terms of these criteria entitles us to think that the best theories are closer 
to the truth than their rivals.  Thagard (2007)  claimed that this will be 
so, provided that two conditions are met. First, an increase in explana-
tory breadth by explanation of more empirical phenomena has to occur; 
second, an increase in explanatory depth by the successful investigation 
of causal mechanisms in greater detail must be achieved. 

 From this it follows that accepting a theory on the basis of a judgment 
of explanatory coherence alone does not mean that it is likely to be true 
or is closer to the truth than its rivals. All that Thagard ’ s argument 
entitles us to say is that TEC contributes to the long-term goal of maxi-
mizing true propositions and minimizing false ones. Subsequent evalua-
tions of a theory in relation to its rivals will also contribute to that goal, 
and it is the track record of these assessments over time that will ulti-
mately decide a theory ’ s fate. 

 5.3.2   The Subjectivity of Inference to the Best Explanation 

 The second major criticism of IBE states that the evaluative criteria that 
make up explanatory goodness are relative to a scientist ’ s judgments 
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about what constitutes a good explanation and are therefore too subjec-
tive to properly determine the warrant that it confers on the best of 
competing theories. 

  Lipton (2004)  made a two-pronged reply to this objection, one having 
to do with inference, the other having to do with explanation. With the 
first prong, Lipton granted that reliable inference is relative to variation 
in evidence and background beliefs from person to person, but main-
tained that audience relativity alone will not prevent IBE from being a 
reliable form of inference. He appealed to  Kuhn ’ s (1977)  work on theory 
appraisal by noting that rational disagreements sometimes stem from 
nonevidential factors such as a theory ’ s fruitfulness and that this can 
serve the useful function of allowing the scientific community to hedge 
its bets. With the second prong, Lipton suggested that his criteria of 
explanatory loveliness (unificatory power, precision, and the elaboration 
of causal mechanisms) are also subject to interest relativity. He reasoned 
that by adopting his contrastive account of explanation, where the same 
event can be explained with respect to different contrasts, his model 
allows a substantial measure of relativity of interest in a way that is 
not damagingly subjective. To give a psychological example using Lip-
ton ’ s turn of phrase, Jennifer ’ s early negative childhood experiences will 
explain why she has relationship difficulties for someone who is inter-
ested in understanding why she, rather than Peter, who does not have 
relationship difficulties, has relationship difficulties, but not for someone 
who wants to know why Jennifer developed relationship difficulties 
when other people with negative childhood experiences did not. Lipton 
saw his account of contrastive explanation illuminating interest relativ-
ity in two ways: different people are interested in explaining different 
phenomena, and these differences in interests demand explanations that 
invoke different but compatible elements of a causal story. Lipton con-
cluded that the present argument from subjectivity does not impugn 
IBE. 

 In short, the arguments against IBE from the bad lot and from sub-
jectivity do not undermine the viability of the approach. 

 5.4   Inference to the Best Explanation and Other Methods of Theory 

Appraisal 

 As noted at the beginning of the chapter, IBE, the hypothetico-deductive 
method, and Bayesianism are generally regarded as the major alternative 
approaches to theory appraisal. I now consider IBE in relation to the 
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other two approaches. These contrasts should serve to characterize 
further the nature of IBE and help judge its merits. 

 5.4.1   Inference to the Best Explanation and the Hypothetico-

Deductive Method 

 It has repeatedly been stated that the hypothetico-deductive method has 
long been the method of choice for evaluating scientific theories ( Laudan, 
1981 ), and it continues to have a dominant place in psychology. The 
hypothetico-deductive method is usually characterized in an austere 
manner: the researcher takes an existing hypothesis or theory and tests 
it indirectly by deriving from it one or more observational predictions 
that are themselves directly tested. Predictions borne out by the data are 
taken to confirm the theory to some degree; those that do not square 
with the data count as disconfirming instances of the theory. Normally 
the theory is not compared with a rival theory or theories with respect 
to the data, only with the data. 

 The hypothetico-deductive method, in something like this form, has 
been strongly criticized by methodologists on a number of counts. As 
remarked earlier, one major criticism of the method is that it is confir-
mationally lax. This laxity arises from the fact that any positive confirm-
ing instance of a hypothesis submitted to empirical test can confirm any 
hypothesis that is conjoined with the test hypothesis, irrespective of the 
plausibility of the conjunct. This occurs because the method distributes 
confirmation across all claims involved in the derivation of the predic-
tion; it does not have the resources to bestow confirmation on the central 
test hypothesis alone. Thus the successful hypothetico-deductive test of 
a prediction bestows confirmation on, among other claims, the auxiliary 
hypotheses about the relevant measuring instruments regardless of their 
reliability and validity. In this way, the use of psychometric tests of doubt-
ful validity receives undeserved confirmation in psychology. 

 Another major criticism of the hypothetico-deductive method is that 
it founders on the problem of the underdetermination of theory by 
empirical evidence. That is, the method is incapable of showing that a 
theory should be accepted on the basis of empirical evidence alone or 
that one theory is better than another with respect to the empirical 
evidence. 

 The seriousness of these criticisms has prompted calls to abandon the 
hypothetico-deductive method in favor of either IBE or the Bayesian 
approach to hypothesis and theory evaluation. However, these criticisms 
tell only against simplistic versions of the method, for it is possible to 
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amend the method in ways that allow it to do useful theory testing. 
Regarding the problem of confirmational laxity,  Giere (1983)  recast the 
method in a way that enables it to test individual hypotheses. Alterna-
tively, one might insert a Bayesian view of confirmation into a hypo-
thetico-deductive framework ( Rosenkrantz, 1977 ). However, whereas 
many would see this second alternative as providing the hypothetico-
deductive method with a superior account of confirmation, using the 
method in this augmented form would only be appropriate where it made 
good sense to assign probabilities to hypotheses and theories. 

 The problem for the hypothetico-deductive method of the underde-
termination of theories by empirical evidence might be resolved by 
adopting a strategy that combines the method with the use of evaluative 
criteria in addition to predictive accuracy. I briefly consider this possibil-
ity in section 5.6.1, where I discuss IBE in relation to psychology. For 
now, it suffices to note that, by invoking explanatory criteria, IBE has 
the resources to reduce the gap between empirical evidence and theory 
and make determinate judgments of explanatory goodness. 

 5.4.2   Prediction and Theory Evaluation 

 Although prediction is obviously an essential feature of the hypothetico-
deductive method, and although it retains a place in Bayesian theory 
evaluation and most versions of IBE, it is not a part of TEC. This sug-
gests that predictive success might play different roles in different 
approaches to theory evaluation. 

 Examination of a number of case histories in the history of science 
reveals that, for scientists, the successful prediction of new facts does not 
necessarily provide better evidence for a theory than do theoretical cri-
teria. For example,  Brush (1989)  showed that the commonly held view 
that Einstein ’ s successful prediction of the gravitational bending of light 
provided strong confirmation of his general theory of relativity was 
shared by neither Einstein nor the majority of scientists of his time. Ein-
stein (and other physicists) maintained that the coherence and simplicity 
of the theory were more important criteria for its acceptance than the 
relevant predictive tests. 

  Brush (1989)  also pointed out that it is a common practice in science, 
particularly in physics, to take predictive success to cover both the deduc-
tion of previously known facts and the successful prediction of new facts, 
suggesting that the novelty of a prediction is not necessarily an important 
factor in gauging the evidential worth of a theory. With respect to the 
general theory of relativity, the successful deduction of Mercury ’ s known 
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orbit was widely considered to be just about as good a source of evidence 
as the novel prediction of light bending. Brush concluded that the primary 
value of a successful novel prediction, when compared with the deduc-
tion of a known fact, is to provide favorable publicity for a theory. Such 
was the additional value of the light-bending forecast for general relativ-
ity theory. 

 In addition, the successful prediction of a new empirical phenomenon 
can sometimes be taken as weaker evidence for a theory, just because of 
its novelty. Often a scientific fact can plausibly be explained by more 
than one theory. Thus the discovery of a new fact is likely to result in 
efforts to construct plausible alternatives to the explanation offered by 
the theory that sponsored the relevant novel prediction. In the case of 
general relativity theory, ten years of unsuccessful efforts to provide a 
better explanation of the phenomenon of light bending passed before 
Einstein ’ s supporters could convincingly assert that their theory provided 
the best explanation ( Brush, 1989 ). 

 In short, it seems that although prediction has a deservedly important 
role in theory evaluation, it has been less dominant, and its use more 
varied, than is commonly supposed. That TEC has sufficient resources 
to produce reliable decisions about the best of competing explanatory 
theories without recourse to predictions should be considered neither 
surprising nor untoward. Although TEC ignores predictive success as 
a criterion of theory appraisal, we should appreciate that it nevertheless 
satisfies the essential demand for empirical adequacy by appealing to 
explanatory breadth instead. A theory that satisfies this criterion of 
empirical adequacy is adequate to the relevant empirical phenomena 
by being able to explain them.  3   In the nineteenth century, the ability 
of a theory to explain the relevant phenomena was taken as an impor-
tant measure of empirical adequacy. TEC usefully brings this neglected 
criterion of empirical adequacy into the methodological foreground 
again. 

 5.4.3   Inference to the Best Explanation and Bayesianism 

 Although the Bayesian approach to theory appraisal is looked on more 
favorably in philosophy of science than is the hypothetico-deductive 
alternative, it remains a minority practice in psy chology.  4   Bayesian theory 
evaluation is widely viewed as an alternative to IBE in the philosophical 
literature. However, some methodologists have recently looked at ways 
to bring the two approaches together. In what follows, I briefly character-
ize the Bayesian outlook on theory appraisal and then consider different 
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ways in which it might relate to IBE. Although work on this topic is at 
a formative stage, reasonable grounds exist for regarding IBE as a suf-
ficient approach to appraising explanatory theories without recourse to 
Bayesian ideas. 

 I noted in chapter 1 that Bayesians consider probabilities to be central 
to scientific hypothesis and theory choice. Bayesians claim that an appro-
priate understanding of theory choice is best provided by probability 
theory, augmented by the allied Bayesian philosophy of science known 
as  Bayesianism .  5   In using probability theory to characterize theory evalu-
ation, Bayesians recommend assigning posterior probabilities to sci entific 
hypotheses and theories in light of relevant evidence. Bayesian hypothesis 
choice involves selecting from competing hypotheses the one that, given 
the evidence, has the highest posterior probability. The vehicle through 
which this process is conducted is Bayes ’ s theorem, which can be stated 
in a variety of forms. Given that the Bayesian position is being contrasted 
with IBE here, I present Bayes ’ s theorem for the case of two hypotheses. 
Bayes ’ s theorem is written for each hypothesis in turn. For the first 
hypothesis,   

 Pr (H1)  ×  Pr (D/H1) 
 ______________________________________ . 

 
Pr (H1/D) =

   Pr (H2)  ×  Pr (D/H2) + Pr (H1)  ×  Pr (D/H1) 

 This says that the posterior probability of the first hypothesis is obtained 
by multiplying its prior probability by the probability of the data, given 
that hypothesis (the likelihood), and dividing the product by the value 
that results from adding the prior probability of the second hypothesis, 
multiplied by the likelihood for that hypothesis, to the prior probability 
of the first hypothesis, multiplied by its likelihood. Bayes ’ s theorem for 
the second hypothesis is written in a similar way. 

 Although Bayes ’ s theorem is not controversial as a mathematical 
theorem, it is controversial as a guide to scientific inference. With respect 
to theory appraisal, one frequently mentioned problem for Bayesians is 
that the probabilistic information needed for their calculations on many 
scientific hypotheses and theories cannot be obtained. As noted in chapter 
1, it is difficult to know how one would obtain credible estimates of the 
prior probabilities of the various hypotheses and evidence statements that 
made up, say, Freud ’ s psychodynamic theory or Darwin ’ s evolutionary 
theory. Not only are the necessary probabilistic estimates for such theories 
hard to come by, but they do not seem to be particularly relevant in 
appraising such explanatory theories. For example, what would it mean, 
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and how would it be possible, to speak in evolutionary psychology of 
the probability of an adapted psychological trait being responsible for 
young children being able to solve theory-of-mind problems? 

 The problem for Bayesianism presented by explanatory theories such 
as those just mentioned is that scientists naturally appeal to qualitative 
theoretical criteria rather than probabilities when evaluating those theo-
ries. For example, with TEC, the three criteria of explanatory worth 
identified in  Thagard ’ s (1978)  case histories are qualitative, even when 
they are given a precise formulation in terms of the relevant principles 
and the computer program ECHO. To reiterate, scientific theories for 
which IBE is an appropriate assessment strategy typically explain empiri-
cal phenomena, and in these cases, explanatory reasoning rather than 
probabilistic reasoning is appropriate for their assessment.  6   

 Although IBE has typically been regarded as a competitor to Bayesian 
theory evaluation (e.g.,  van Fraassen, 1989 ),  Lipton (2004)  argued that 
the two approaches are broadly compatible, and in fact their proponents 
 “ should be friends. ”  In broad terms, he suggested that judgments of the 
loveliest explanation, which are provided by the evaluative criteria of 
IBE, contribute to assessments of the likeliest explanation, which are 
provided by the probabilities of the Bayesian approach. Specifically, 
Lipton maintained that the explanatory considerations invoked in IBE 
guide the determination of the prior probabilities (and the likelihoods) 
that are inserted in Bayes ’ s theorem. However, although appeal to explan-
atory matters might well be one way in which Bayesians can determine 
their prior probabilities, Lipton did not suggest how this might be done. 
Furthermore, those who hold IBE to be a normative approach to scien-
tific theory evaluation, with its own distinctive character, will worry that 
Lipton relegates it to a descriptive role within a Bayesian normative 
framework (e.g.,  Psillos, 2004 ). 

 Another way of showing the compatibility of IBE and Bayesianism is 
to translate the evaluative criteria used within IBE into probabilistic 
terms.  McGrew (2003)  did this by taking the important theoretical virtue 
of consilience, or explanatory breadth, and showing that its Bayesian 
form leads to higher posterior probabilities of the hypotheses being 
evaluated. Nevertheless, McGrew acknowledged that if one translates 
consilience into its  “ flattened ”  probabilistic form, it no longer remains a 
genuine explanatory virtue: not only is there no guarantee that consil-
ience will be concerned with an explanation of the evidence, but there is 
no way that probabilistic translations of the explanatory virtues can refer 
to the causal connections that are often appealed to in scientific 
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explanations. Furthermore,  Weisberg (2009)  recently argued that the 
explanatory loss incurred in such translations will occur for any distinc-
tively explanatory virtue that is given such probabilistic treatment. 

 One of the reasons that Bayesians have criticized IBE is that its advo-
cates have not been able to spell out its explanatory criteria in a genuinely 
informative way. However, as seen earlier in the chapter, Thagard ’ s TEC 
shows that this is not the case: TEC is a detailed theory of IBE in which 
the explanatory criteria are described, incorporated in the appropriate 
principles of explanatory coherence, and implemented as part of an 
integrated method in the computer program ECHO. Although formal, 
TEC is clearly qualitative, not probabilistic. Therefore it can stand as a 
method of theory appraisal apart from Bayesianism. 

 Nevertheless,  Thagard (2000)  translated ECHO in terms of  Pearl ’ s 
(1988)  probabilistic approach to networks, which suggests that the two 
approaches can be reconciled. However, the probabilistic version of 
ECHO comes at some computational and conceptual cost, and unsur-
prisingly, some of the relevant probabilities are hard to come by. In the 
absence of further relevant comparative work in this domain,  Thagard 
(2000)  conjectured that the psychological and technological applicability 
of explanationist and probabilistic methods will vary depending on the 
domain of application. He maintained that scientific reasoning is a 
domain in which explanationism is clearly appropriate, whereas proba-
bilistic reasoning has application in fields such as medicine. Thus although 
TEC can be clothed in probabilistic dress, it is best used on its own terms 
for appraising scientific theories. 

 5.5   The Proper Scope of Inference to the Best Explanation 

 In this section, I want to briefly challenge two prominent ideas about the 
proper scope of IBE: first, the belief that IBE is the main account of 
scientific method; and second, the belief that IBE underlies all forms of 
ampliative inference, that is, inference involving arguments in which the 
conclusions contain information that goes beyond the information con-
tained in their premises. 

 5.5.1   Inference to the Best Explanation as  the  Scientific Method 

 Some methodologists judge IBE to be the premier account of scientific 
method. For example,  Psillos (2002)  compared IBE with what he saw as 
its two major alternatives — inductive method (understood as enumera-
tive induction) and the standard hypothetico-deductive account of 
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method — and concluded that IBE provides the best description of scien-
tific method. Psillos reasoned that inductive method can satisfactorily 
justify claims about empirical generalizations but is explanatorily 
vacuous, whereas the hypothetico-deductive method deals with explana-
tory hypotheses but offers a poor method for doing so. He concluded 
that of the three methods, IBE is the only one that is both highly amplia-
tive (i.e., highly content-increasing in the conclusions it draws) and able 
to provide a decent justification of the explanatory claims it evaluates. 

 Although IBE is undoubtedly an important scientific method, I believe 
that it is a mistake to regard it as a rival to the inductive and hypothetico-
deductive accounts of method. As discussed in chapter l, all three methods 
have at various times been proposed as the main account of scientific 
method. However, I think that it is more realistic to view them as restric-
tive, domain-specific methods designed to meet particular research goals. 
Inductive method in the form of enumerative induction, understood as 
induction by generalization, is used in detecting empirical phenomena, 
whereas the hypothetico-deductive method tests hypotheses and theories 
for their predictive accuracy. By contrast, IBE is used to evaluate explana-
tory theories in terms of both their explanatory power and their predic-
tive success. ATOM explicitly acknowledges the differences in the nature 
of, and research goals for, the three accounts of scientific method just 
discussed. 

 5.5.2   Inference to the Best Explanation and Inductive Inference 

 A different way of overstating the importance of IBE is to regard it as 
the superordinate form of ampliative inference.  Harman (1965)  intro-
duced the idea of IBE to modern philosophy in an effort to show that it 
underlies all forms of inductive inference. He insisted that enumerative 
induction is really a special case of IBE.  Lipton (2004)  also argued for 
this conclusion. 

 The problem with this perspective on inference is that enumerative 
induction does not lead to an explanatory conclusion in any interesting 
sense of the term, and for this reason, it is fundamentally unlike IBE. 
Although inductive arguments are ampliative in character, they are 
descriptive in nature because they reach conclusions about the same types 
of manifest attributes that are mentioned in the arguments ’  premises. The 
widespread practice in psychology of drawing statistical conclusions 
about populations based on sample characteristics is a case in point. By 
contrast, IBE is explanatory inference where criteria of explanatory 
goodness figure centrally in the form of reasoning involved. In TEC, for 
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example, the complex nature of the explanatory reasoning involved is 
embedded in the principles, the criteria, and the computer program and 
can be spelled out only with reference to them. IBE and inductive infer-
ence, then, are different forms of ampliative inference. In science, IBE is 
invoked in the explanatory endeavor of theory evaluation. Inductive 
inference is exemplified in the descriptive tasks of generalizing from 
statistical samples and establishing claims about empirical phenomena. 

 5.6   Implications for Psychology 

 In this penultimate section of the chapter, I consider IBE specifically in 
relation to psychology. I make some general suggestions about how 
psychologists might engage with IBE, and recommend ways in which 
psychology might incorporate IBE into its methods curriculum. 

 5.6.1   Inference to the Best Explanation in Psychology 

 Although the standard characterization of the hypothetico-deductive 
method takes predictive accuracy as the sole criterion of theory goodness, 
it is plausible to suggest that, in research practice, the hypothetico-
deductive method is often combined with the use of supplementary 
evaluative criteria, such as simplicity, scope, and fruitfulness. This prob-
ably explains, at least in part, why the method continues to be widely 
used in psychology and other sciences. As noted before, it is important 
to appreciate that, to the extent that these complementary criteria are 
concerned with explanation, we can appropriately regard the combined 
approach as a version of IBE rather than an augmented account of the 
hypothetico-deductive method. 

 Although psychological researchers do not often discuss the explana-
tory virtues of their theories, a number of instructive accounts of the 
virtues of scientific theories in the philosophi cal literature could help 
them do so. Perhaps the best-known account is that of Thomas  Kuhn 
(1977) , who identified and discussed accuracy, consistency, scope, sim-
plicity, and fruitfulness as five important criteria that are standardly used 
to adjudicate in theory choice. Another useful account of the theoretical 
virtues is that of Willard Quine ( Quine  &  Ullian, 1978 ), who provided 
a lucid discussion of the notions of conservatism, modesty, simplicity, 
generality, and refutability. In an important discussion of the place of 
values in science,  McMullin (1983)  furnished a different list of virtues: 
predictive accuracy, internal coherence, external coherence, unifying 
power, and fertility. To these three accounts of the theoretical virtues, we 
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can add  Thagard ’ s (1978)  multicriterial account of IBE, discussed earlier 
in the chapter. If psychologists made a deliberate effort to appraise their 
explanatory theories by drawing from a number of the criteria just listed, 
they would be practicing IBE in one of two senses. To the extent that 
they used several of these nonexplanatory criteria for the purposes of 
comparative theory appraisal, they would be able to make inferences to 
the best explanatory theory, even if those criteria were not directly con-
cerned with explanation. To the extent that they used criteria that have 
to do directly with explanation, they would be engaging in explanatory 
inference as a basis for deciding between the competing theories. Both 
approaches are superior to the hypothetico-deductive method as it is 
traditionally understood and practiced in psychology. 

 This chapter has given a fair degree of attention to Thagard ’ s TEC. 
Although TEC is the most codified explicit account of IBE available 
today, further development of aspects of the approach would make it a 
genuinely useful method for psychological researchers. These would 
include developing contemporary case studies of its use in psychology, 
making a user-friendly version of the computer program ECHO com-
mercially available for the ready implementation of TEC, and augment-
ing the method of TEC by explicitly linking it to a suitable theory of 
explanation. 

 5.6.2   Inference to the Best Explanation in the Methods Curriculum 

 For IBE to be regularly practiced in psychology, the research methods 
curriculum will have to broaden its perspective on theory appraisal (see 
 Capaldi  &  Proctor, 2008 ). As noted earlier, psychologists should be 
encouraged to practice IBE in their evaluation of explanatory theories, 
either by combining an acceptable version of the hypothetico-deductive 
method with the use of complementary evaluative criteria, as just noted, 
or by employing TEC.  Thagard (1992)  is the definitive source for a 
detailed explication of TEC. An introduction to using the computer 
program ECHO to compute explanatory coherence can be found at 
Thagard ’ s Computational Epistemology Laboratory website (  http://
cogsci.uwaterloo.ca/JavaECHO/jecho.html  ). The site provides simple 
examples that show how ECHO deals with the criteria of explanatory 
breadth, simplicity, and analogy. Substantive examples of scientific theory 
choice can also be run. In addition, textbooks should present a view of 
IBE as an important approach to theory appraisal for psychology that is 
part of good scientific practice.  Proctor and Capaldi ’ s (2006)  textbook 
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on psychological research methodology,  Why Science Matters , breaks 
new ground in this regard. 

 Although explicit discussions of IBE are rare in psychology, a few 
methodological articles in the psychological literature will help research-
ers begin to understand different aspects of IBE.  Erwin (1992)  argued 
that debates about the philosophy of scientific realism are relevant to the 
evaluation of behavior theories and outcome hypotheses, and IBE figures 
centrally in these debates.  Eflin and Kite (1996)  demonstrated empirically 
that instruction and practice in IBE improve the reasoning of psychology 
students in evaluating competing psychological theories.  Rozeboom 
(1997)  compared the hypothetico-deductive, Bayesian, and abductive 
approaches to theory appraisal and argued that researchers in psychol-
ogy should use his approach to IBE, known as  explanatory induction . In 
 Haig (2005a)  I proposed ATOM as a broad theory of scientific method 
in which theory evaluation involves using IBE in the form of TEC (this 
book covers essentially the same ground). More recently,  Capaldi and 
Proctor (2008)  argued, against some popular relativist trends in psychol-
ogy, for the comparative appraisal of psychological theories through an 
approach to IBE they call  competing-theories abduction . In their paper, 
Capaldi and Proctor provide an example in experimental psychology of 
the use of IBE to evaluate two formal theories of attention — similarity 
choice theory and signal detection theory — with respect to the relevant 
facts. They suggest that considerations of IBE establish the fact that no 
other theories of attention come close to explaining the range of empiri-
cal phenomena explained by these two theories. As noted earlier,  Markus 
et al. (2008)  argued for an understanding of structural equation modeling 
in terms of IBE. Finally,  Durrant and Haig (2001)  argued that more 
rigorous evolutionary theories of human psychological phenomena could 
be achieved by using IBE as a strategy for evaluating adaptationist expla-
nations. Although much work remains to be done to further develop the 
methods of IBE, these resources should offer both the researcher and 
the methodologist a sense of the nature of IBE and its relevance to 
psychology. 

 5.7   Conclusion 

 Psychologists, for the most part, evaluate their hypotheses and theories 
in accord with the dictates of the orthodox account of hypothetico-
deductive method. This has resulted in two unfortunate practices: testing 
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psychological theories in isolation without reference to alternative com-
peting theories, and evaluating those theories in terms of their predictive 
adequacy without regard for relevant explanatory criteria. IBE is a good 
approach to theory appraisal because it corrects for these malpractices. 
True to its name, IBE characterizes theory appraisal as an inherently 
comparative practice, in which two or more theories are evaluated with 
respect to each other on multiple criteria of explanatory goodness. 

 The literature on IBE is now sufficiently well developed to offer 
genuine help to psychologists in explicitly evaluating theories in domains 
comprising two or more reasonably well-developed competing explana-
tory theories. I have argued in this chapter that the major criticisms of 
IBE have not cast doubt on its worth as an approach to theory appraisal. 
I have pre sented four different perspectives on IBE. Taken together with 
other contributions to the literature, they constitute a valuable method-
ological resource. By acknowledging the importance of explanatory theo-
ries in science, one can justifiably use IBE to appraise theories with 
respect to their explanatory goodness. Psychology is replete with compet-
ing theories that might usefully be evaluated with respect to their explan-
atory worth. With the advent of the methodology of IBE, psychologists 
can position themselves to make these judgments in a more systematic 
way than did scientists before them, such as Darwin and Einstein. 

 However, one should not underestimate the challenges involved in 
employing IBE. Apart from TEC, and some versions of structural equa-
tion modeling, no inferential algorithms are available to help researchers 
engage in IBE. Researchers who want to employ IBE will have to adopt 
more of a do-it-yourself attitude than they do in their customary use of 
the hypothetico-deductive method and classical statistical significance 
testing. Courses and workshops that focus on IBE simply do not exist at 
present. Researchers will have to learn from the existing primary litera-
ture for themselves what the (somewhat different) approaches to IBE 
involve. Nevertheless this prospect should appeal to psychologists who 
want to learn about the comparative explanatory worth of their theories 
and use those judgments as grounds for accepting or rejecting them. 



 6   Conclusion 

 Scientific method, taken as a logical, epistemic, and cognitive process, is certainly 
at least as complex as, say, the theory of evolution. We do neither of these phe-
nomena justice by failing to appreciate how puzzling they can be. 

  — James Blachowicz (2009, 306) 

 6.1   Introduction 

 In this concluding chapter, I round out my characterization of ATOM. I 
begin by outlining a promising theory of the nature of research problems 
and show how it is deployed in ATOM. I then offer some supplementary 
remarks about the nature of ATOM. This is followed by two applications 
of ATOM, after which I consider a number of criticisms and misunder-
standings of the theory that have surfaced to date. Toward the end of 
the chapter, I discuss scientific method in relation to science education 
and conclude with some cautions and caveats about ATOM. 

 6.2   A Coda on Scientific Problems 

 The overview of ATOM presented in chapter 1 signaled the theory ’ s 
serious commitment to the notion of a research problem. This emphasis 
on the importance of research problems for inquiry contrasts with the 
orthodox inductive and hypothetico-deductive accounts of method, 
neither of which speaks of problem solving as an essential part of its 
characterization.  1   

 In an effort to depict scientific inquiry as a problem-oriented endeavor, 
ATOM deploys the  constraint-inclusion  view of research problems ( Haig, 
1987 ;  Nickles, 1981 ). The idea of a problem as a set of constraints has 
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been taken from the problem-solving literature in cognitive psychology 
( Reitman, 1964 ;  Simon, 1977 ) and adapted for a methodological role. 

 Briefly, the constraint-inclusion theory depicts a research problem as 
comprising all the constraints on the solution to that problem, along 
with the demand that the solution be found. With the constraint-inclu-
sion theory, the constraints do not lie outside the problem but are 
constitutive of the problem itself; they actually serve to characterize the 
problem and give it structure. The explicit demand that the solution be 
found is prompted by a consideration of the goals of the research 
program, the pursuit of which is intended to fill the outstanding gaps 
in the problem ’ s structure. The goals themselves are part of the problem. 
Problems can only be solved by achieving research goals, and a change 
in goals will typically eliminate or at least alter those problems ( Nickles, 
1988 ). 

 The constraints that make up research problems are of various sorts. 
Importantly, many of them are heuristics, but some are rules, and a 
limited number have the status of principles. These constraints differ in 
their nature: some are metaphysical, others are methodological, and 
many are drawn from relevant substantive scientific knowledge. Prob-
lems and their constraints also vary in their specificity. Some are rather 
general and have widespread application (e.g.,  “ Generate a theory that 
explains the relevant facts ” ). Others are context specific (e.g.,  “ Employ 
common factor analysis to generate a common causal explanation of the 
correlated effects ” ). Still others are more specific (e.g.,  “ Use both the 
scree test and parallel analysis when determining the number of factors 
in an exploratory factor analytic study ” ). 

 Note that all relevant constraints are included in a problem ’ s formula-
tion. This is because each constraint contributes to a characterization of 
the problem by helping to rule out some solutions as inadmissible. 
However, at any one time, only a manageable subset of the problem ’ s 
constraints will be relevant to the specific research task at hand. Also, 
by including all the constraints in the problem ’ s articulation, the problem 
enables the researcher to direct inquiry effectively by pointing the way 
to its own solution. The constraint-inclusion account of problems enables 
the researcher to understand readily the force of the adage that stating 
the problem is half the solution. 

 The constraint-inclusion account stresses that in good scientific 
research, problems typically evolve from an ill-structured state and even-
tually attain a degree of well-formedness, such that their solution becomes 
possible. From the constraint-inclusion perspective, a problem will be ill 
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structured to the extent that it lacks the constraints required for its solu-
tion. Because the most important research problems will be decidedly ill 
structured, we can say of scientific inquiry that its basic purpose is to 
better structure our research problems by building in the various required 
constraints as our research proceeds. It is by virtue of such progressive 
enrichment that problems can continue to direct inquiry. 

 Turning now to ATOM, I should emphasize that its problems dimen-
sion is not a temporal phase to be dealt with by the researcher before 
moving on to other phases, such as observing and hypothesizing. Instead 
the researcher deals with scientific problems all the time. Problems are 
generated, selected for consideration, developed, and modified in the 
course of inquiry. This common error in talking about research problems 
as a temporal phase is noted in the discussion of grounded theory method 
in the next section. 

 Across the various research phases of ATOM, there are numerous 
problems of varying degrees of specificity to articulate and solve. For 
example, the successful detection of an empirical phenomenon produces 
an important new general constraint on the subsequent explanatory 
efforts devised to understand that phenomenon. Until the relevant phe-
nomenon, or phenomena, are detected, one will not really know what 
the explanatory problem is. At a more specific level, myriad constraints 
regulate the process of phenomena detection. For example, if one assumed 
that the appropriate strategy of phenomena detection was a sequence of 
data analytic activities in the manner of the multistage model of data 
analysis outlined in chapter 2, then a host of constraints arising from 
consideration of the various data analytic methods employed would be 
part of the evolving research problem. These would include constraints 
such as using an appropriate maximum likelihood technique when data 
are randomly missing in the stage of initial data analysis; using back-to-
back stem-and-leaf displays for close exploratory comparison of similar 
batches of data; employing a bootstrap resampling technique in the stage 
of close replication; and adopting an appropriate triangulation strategy 
as a basis for accepting the validity of a generalization wrought from 
constructive replication. 

 Of course, constraints abound in theory construction as well. For 
example, constraints that regulate the abductive generation of new theo-
ries include methodological guides (e.g.,  “ Researchers should give prefer-
ence to theories that are simpler and have greater explanatory breadth ” ), 
aim-oriented guides (e.g.,  “ Theories must be of an explanatory kind that 
appeals to latent causal mechanisms ” ), and metaphysical principles (e.g., 
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 “ Social psychological theories must adopt a rule-governed conception of 
human behavior ” ). 

 An orthodox empiricist reconstruction of scientific problems as con-
straints would normally take them to comprise those constraints that 
regulate the testing of theories for their empirical adequacy, where empir-
ical adequacy has to do with predictive success. In this view, scientific 
problems would be regarded as essentially empirical in nature. However, 
with the underdetermination of theories by empirical evidence occurring 
in all of ATOM ’ s phases of theory construction, the realist researcher 
will naturally appeal to conceptual as well as empirical constraints. For 
example, a plausible nascent theory will have to satisfy one or more 
empirical constraints in the form of claims about phenomena, but it will 
also have to satisfy a set of conceptual constraints about its explanatory 
promise. The appeal to conceptual criteria is also a natural way to deal 
with underdetermination in the context of theory appraisal. For example, 
the theory of explanatory coherence promoted in chapter 5 takes explan-
atory breadth as its criterion of empirical adequacy, but it also appeals 
to the criteria of simplicity and analogy to make effective judgments 
about the best of competing theories. 

 The importance of research problems, viewed as sets of constraints, 
resides in the fact that they function as the  “ range riders ”  of inquiry and 
thereby provide ATOM with the operational force to guide research. As 
just noted, the constraints themselves comprise relevant substantive 
knowledge as well as heuristics, rules, and principles. Thus the con-
straint-inclusion account of problems serves as a much-needed vehicle 
for bringing relevant background knowledge to bear on the various 
search tasks subsumed by ATOM. In turn, ATOM structures the meth-
odological space within which the various constraints can operate. Given 
that ATOM is considerably broader in scope than either the inductive or 
the hypothetico-deductive accounts of scientific method, it canvasses a 
greater array of research problems than those methods do. 

 It is worth noting here that though I frequently talk of problem solving 
as a general aim of research, it is the  formulation  of problems that is the 
overriding concern of ATOM. The real challenge for researchers who 
adopt ATOM is to formulate ill-structured problems and better structure 
them so that they are capable of solution. With regard to science educa-
tion, this focus on problem formulation is a desirable alternative to the 
prevalent practice of having students routinely obtain known solutions 
to well-structured problems as a way of learning disciplinary content. It 
also serves as a natural correction to the currently popular belief that 
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teaching problem-solving skills is a panacea for overcoming uncritical 
thinking. By standardly presenting students with well-structured prob-
lems, science educators, in effect, formulate the problems for them and 
thereby provide them with ready solutions to the problems. However, 
articulating problems is a crucial part of the inquiry process, and it pro-
vides learners with highly appropriate opportunities to exercise their 
creative and critical intelligence. 

 6.3   Two Fundamental Commitments of ATOM 

 I now return briefly to two important methodological contrasts that were 
introduced in chapter 1 and discussed in chapter 2, because they are part 
of the deep structure of ATOM. These contrasts are generative and con-
sequentialist methodology, and reliabilist and coherentist justification. I 
have suggested that consequentialist strategies justify knowledge claims 
by focusing on their consequences. By contrast, generative strategies 
justify knowledge claims in terms of the processes that produce them. 
Although consequentialist strategies are used and promoted more widely 
than generative strategies in contemporary science, both types of strategy 
are required in an adequate conception of research methodology. Two 
important features of ATOM are that the methodology promotes both 
generative and consequentialist research strategies for the detection of 
phenomena, and it promotes generative research strategies in the con-
struction of explanatory theories. 

 Consequentialist reasoning receives a heavy emphasis in psychological 
research through the use of hypothetico-deductive method, often in 
tandem with null hypothesis significance testing. Consequentialist 
methods reason from the knowledge claims in question to their testable 
consequences. As such, they confer a retrospective justification on the 
theories they seek to confirm. In contrast to consequentialist methods, 
generative methods reason from warranted premises to an acceptance of 
the knowledge claims in question. Exploratory factor analysis is a good 
example of a method of generative justification. It affords researchers 
generative justifications by helping them reason from established 
correlational data patterns to the rudimentary explanatory theories that 
the method generates. As noted earlier, judgments of initial plausibility 
constitute the generative justifications afforded by exploratory factor 
analysis. Generative justifications are forward looking because they 
are concerned with heuristic appraisals of the prospective worth of 
theories. 
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 In addition to embracing both generative and consequentialist meth-
odologies, ATOM uses two distinct theories of justification. One of these, 
reliabilism, asserts that a belief is justified to the extent that it is acquired 
by reliable processes or methods. ATOM makes heavy use of reliability 
judgments because they furnish the appropriate type of justification for 
claims about empirical phenomena.  2   For example, as noted in chapter 2, 
statistical resampling methods and the strategy of constructive replica-
tion, are different sorts of consistency tests through which researchers 
seek to establish claims that data provide reliable evidence for the exis-
tence of empirical phenomena. 

 By contrast with reliabilism, coherentism maintains that a belief is 
justified in virtue of its coherence with other accepted beliefs. ATOM 
also uses coherentist justification (albeit of a special kind), where its 
approach to theory appraisal is governed by considerations of explana-
tory coherence. 

 I should emphasize that although reliabilism and explanationism are 
different and are often presented as competitors, one can view them as 
complementary theories of justification. ATOM adopts a broadly coher-
entist perspective on justification that endorses both reliabilism and 
explanationism and provides for their interaction. ATOM enjoins 
researchers first to justify claims about phenomena in terms of reliability 
considerations, and then to fashion explanatorily coherent theories that 
will account for the phenomena. Thus, when using the theory of explana-
tory coherence, one is concerned with delivering judgments of explana-
tory coherence, but the theory ’ s principle of data priority presupposes 
that the relevant empirical generalizations have been justified on reliabi-
list grounds. 

 Further, the acceptability of claims about phenomena will be enhanced 
when they coherently enter into the explanatory relations that contain 
them. Alternatively, the explanatory coherence (specifically the explana-
tory breadth) of a theory will be reduced as a consequence of rejecting 
a claim about a relevant phenomenon that was initially accepted on 
insufficient reliabilist grounds. 

 6.4   Phenomena Detection and Theory Construction Again 

 The preceding exposition of ATOM prompts the following remarks about 
the tandem processes of phenomena detection and theory construction. 

 Successfully detecting a phenomenon is a major achievement in its 
own right and is a significant indicator of empirical progress in science. 
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In fact, the importance of phenomena detection in science is underscored 
by the fact that more Nobel Prizes are awarded for the discovery of 
phenomena than for the construction of explanatory theories. From the 
perspective of ATOM, theoretical progress is to be understood in terms 
of the goodness of explanatory theories as determined by the theory of 
explanatory coherence. Research methodology in psychology has placed 
a heavier professional emphasis on describing empirical regularities than 
on constructing explanatory theories, though the philosophy of science, 
until recently, has focused on a theory-centered view of science. However, 
I know of no good argument that supports the conclusion that one of 
these endeavors is more important than the other. Accordingly, ATOM 
takes phenomena detection and theory construction to be of equal worth. 

 The characterization of phenomena given in chapter 2 helps correct 
a widely held misunderstanding of science: taking the standard twofold 
distinction between observation and theory to be of fundamental meth-
odological importance prevents one from being able to conceptualize 
properly the process of phenomena detection. This holds whether or not 
one subscribes to a hard-and-fast observation-theory distinction, or 
whether one accepts a relative observation-theory distinction and the 
ambiguous idea of theory ladenness that goes with it. To correctly under-
stand the process of phenomena detection, one needs to replace the 
observation-theory distinction with the threefold distinction between 
data, phenomena, and theory. 

 ATOM ’ s account of theory construction is at variance with the way 
many behavioral scientists understand theory construction in science. 
Most behavioral scientists use or at least endorse a view of theory con-
struction that is strongly shaped by the guess-and-test strategy of the 
hypothetico-deductive method. In contrast with this prevailing concep-
tion of scientific method, ATOM asserts that theory generation can be a 
logical or rational affair, where the logic takes the form of abductive 
reasoning. It insists that theory development is an important part of 
theory construction — an undertaking that is stifled by a hypothetico-
deductive insistence on immediate testing. And it maintains that empiri-
cal adequacy, understood as predictive success, is not by itself an adequate 
measure of theory goodness, there being a need to use additional virtues 
that focus on explanatory worth. 

 ATOM ’ s three phases of theory construction have varying degrees of 
application in the behavioral sciences. Codified methods that generate 
theories through existential abduction are rare. The use of exploratory 
factor analysis to postulate common causes is a striking exception, 
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although as remarked in chapter 3, the explicit use of this method as an 
abductive generator of elementary plausible theory is rarely acknowl-
edged. As I suggest in the next section, grounded theory method (e.g., 
 Strauss, 1987 ), which is increasingly used in behavioral research, can be 
understood as an abductive method that helps generate theories to 
explain the qualitative data patterns from which they are derived. 
However, grounded theory does not confine itself to existential abduc-
tion, and it imposes weaker constraints on the abductive reasoning 
permitted by the researcher than does exploratory factor analysis. The 
earlier suggestion that, as human beings, we have an evolved cognitive 
ability to abductively generate hypotheses leads to the plausible sugges-
tion that scientists frequently reason to explanatory hypotheses without 
using codified methods to do so. Two prominent examples in the 
behavioral sciences are  Noam Chomsky ’ s (1972)  publicly acknowledged 
abductive inference to his innateness hypothesis about universal grammar, 
and Howard Gardner ’ s ( Walters  &  Gardner, 1986 ) self-described use 
of  “ subjective factor analysis ”  to postulate his multiple intelligences. 
Also, it is likely that behavioral scientists use some of the many heuristics 
for creative hypothesis generation listed by  William McGuire (1997)  to 
facilitate their abductive reasoning to hypotheses. 

 Researchers in psychology and other behavioral sciences often hypoth-
esize latent causes to explain behavioral phenomena. The challenge of 
learning about the mechanisms of these hidden causes is sometimes met 
by employing a strategy of analogical modeling. Unfortunately, the 
behavioral sciences seldom deal with such a strategy in their methodol-
ogy and science education practices. Given the importance of such a 
strategy for the expansion of explanatory theories, methodologists in the 
behavioral sciences need to promote analogical modeling as vigorously 
as they have promoted structural equation modeling. Structural equation 
modeling provides knowledge of causal networks. As such, it does not 
so much encourage the development of detailed knowledge of the nature 
of the latent variables as it specifies the range and order of causal rela-
tions into which such variables enter. By contrast, analogical modeling 
seeks to provide more detailed knowledge of the causal mechanisms by 
enumerating their components and activities. These forms of modeling 
are different but complementary. 

 Inference to the best explanation is an important approach to theory 
appraisal that has not explicitly been tried in the behavioral sciences. 
Instead, hypothetico-deductive testing for the predictive success of 
hypotheses and theories holds sway. The theory of explanatory coherence, 
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which is a well-codified method of inference to the best explanation, can 
be used in domains where two or more reasonably well-developed theo-
ries provide explanations of relevant phenomena. By acknowledging the 
centrality of explanation in science, one can use this method to appraise 
theories with respect to their explanatory goodness. I hope that behav-
ioral science education will soon add the theory of explanatory coherence 
to its concern with cutting-edge research methods. 

 6.5   Two Applications of ATOM 

 In describing ATOM in the preceding chapters, I have presented it as a 
framework theory for assembling an array of more specific research 
methods into a coherent whole. I now provide an overview of two further 
applications of ATOM: first as a means of reconstructing grounded 
theory method, and second as the basis for creating an integrated model 
of clinical reasoning and case formulation. To the extent that these appli-
cations are judged successful, they will add to the heuristic worth of 
ATOM. 

 6.5.1   A Reconstruction of Grounded Theory Method 

 The most popular perspective on how to conduct qualitative research in 
the behavioral and social sciences is known as  grounded theory method-
ology . It was introduced in the 1960s by the American sociologists 
Barney Glaser and Anselm Strauss and has been developed considerably 
by them and others since that time (e.g.,  Glaser  &  Strauss, 1967 ;  Glaser, 
1978 ; Strauss, 1987;  Strauss  &  Corbin, 1998 ). Grounded theory is 
employed today by researchers in a variety of disciplines, including soci-
ology, nursing studies, education, and management science. It has a 
growing influence in psychology, where it is still very much a minority 
practice. 

 The grounded theory perspective comprises a distinctive methodology, 
a particular view of scientific method, and a set of procedures for analyz-
ing data and constructing theories. The methodology provides a justifica-
tion for undertaking qualita tive research as a legitimate — indeed, 
rigorous — form of inquiry. The original grounded theory conception of 
scientific method depicts research as a process of inductively generating 
theories from closely analyzed data. The specific procedures used in 
grounded theory make up an array of coding and sampling procedures 
for data analysis and a set of interpretive procedures that assist in the 
construction of theory. Grounded theory emerges from, and is grounded 
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in, the data. In using these data analytic and interpretive procedures, 
grounded theorists are expected to meet the established canons of doing 
good scientific research, such as reproducibility, generalizability, and 
consistency. 

 Grounded theory has been presented from a number of philosophical 
positions.  3   Glaser adopts a general empiricist outlook on inquiry, one 
leavened by pragmatism, not positivism, as Glaser ’ s critics sometimes 
mistakenly suppose. Strauss, by contrast, came to prefer a social con-
structionist position. In contrast with the originators of grounded theory 
methodology, I offered a reconstruction of grounded theory methodology 
from a scientific realist standpoint ( Haig, 1996) . Specifically, I formulated 
this account of grounded theory as a version of ATOM. Accordingly, we 
can best regard grounded theory as a broad theory of scientific method 
concerned with detecting and explaining social and behavioral phenom-
ena. To this end, grounded theory is reconstructed as a problem-oriented 
endeavor in which theories are abductively generated from robust data 
patterns, elaborated through the construction of plausible models, and 
justified in terms of their explanatory coherence. 

 Glaser and Strauss clearly recognize the importance of understanding 
method as a problem-solving endeavor. However, although they offer 
some thoughtful remarks about research problems ( Schatzman  &  Strauss, 
1973 ), they do not give the matter systematic attention. The constraint-
inclusion theory of problems employed in ATOM can be adopted by 
grounded theorists to regulate inquiry. Moreover, this theory of problems 
helps correct two misconceptions of problems that are evident in writings 
on grounded theory: the beliefs that problems and method are separate 
parts of inquiry, and that methods come before problems in a fixed order. 

 By repeatedly suggesting that theories are grounded in the data, Glaser 
and Strauss fail to heed the threefold distinction between data, phenom-
ena, and theory. The idea that claims about phenomena, not data, are 
the appropriate objects of explanation is as relevant to grounded theory 
methodology as it is to scientific methodology generally. In addition, 
Glaser and Strauss ’ s general plea to grounded theorists to check their 
data can be strengthened by acknowledging the important idea of robust-
ness and the concomitant need to reliably establish phenomena in mul-
tiply determined ways before they begin to generate grounded theory. 

 In breaking from hypothetico-deductive orthodoxy, Glaser and Strauss 
argue that grounded theory emerges inductively from the data. However, 
the specific nature of the inductive relation that grounds emergent theo-
ries in their data is difficult to fathom. For Glaser and Strauss, grounded 
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theory emerges inductively from its data source in accordance with the 
method of constant comparison. As a method of discovery, the constant 
comparative method is an amalgam of systematic coding, data analysis, 
and theoretical sampling procedures. These procedures enable the 
researcher to make interpretive sense of much of the diverse patterning 
in the data by developing theoretical ideas at a higher level of abstraction 
than the initial data descriptions. However, the notion of constant com-
parison contributes little to figuring out whether the inductive inference 
in question is enumerative, eliminative, or of some other form. Whatever 
Glaser and Strauss ’ s view of the matter is, I think that the creative infer-
ence involved in generating grounded theory is better thought of as 
abductive in nature, whereas it is the reasoning from data to phenomena 
that involves inductive generalization.  4   

 Glaser and Strauss hold a developmental perspective on theory con-
struction. This is clear from their claim that  “ the strategy of comparative 
analysis for generating theory puts a high emphasis on theory as process; 
that is, theory as an ever-developing entity, not as a perfected product ”  
( Glaser  &  Strauss, 1967 , 32). In this regard, Glaser and Strauss advise 
the researcher to be constantly on the lookout for new perspectives that 
might help them develop their grounded theory, although they do not 
explore the point in detail. ATOM gives similar advice, but in a more 
constructive way: because we often do not have knowledge about the 
causal mechanisms that we abductively probe, we are urged to construct 
models of those mechanisms by imagining something analogous to 
mechanisms whose nature we do know. More specifically, theory elabo-
ration in science is frequently a matter of constructing iconic paramorph 
models through analogical reasoning. There is much to be said for 
incorporating this perspective on theory development into grounded 
theory method. 

 Although Glaser and Strauss do not articulate a precise account of 
the nature and place of theory testing in social science, they do clarify 
that theory appraisal involves more than testing for empirical adequacy. 
Clarity, consistency, parsimony, density, scope, integration, fit to data, 
explanatory power, predictiveness, heuristic worth, and application are 
all mentioned as pertinent evaluative criteria. However, Glaser and 
Strauss do not expound on these criteria, let alone work them into a 
coherent view of theory appraisal. As with ATOM, inference to the best 
explanation (specifically, the theory of explanatory coherence) offers the 
grounded theorist an integrated account of two of the evaluative criteria 
that Glaser and Strauss deem important for theory appraisal. 



144  Chapter 6

 ATOM provides a framework for inquiry that takes advantage of 
realist methodological work on research problems, generative methodol-
ogy, and coherence justification. These are methodological notions that 
should be congenial to grounded theorists. Viewed from the perspective 
of ATOM, we should say that explanatory theory is grounded in phe-
nomena, not data. Moreover, we can reasonably regard ATOM itself as 
a grounded theory of sorts, one that accommodates both quantitative 
and qualitative outlooks on research.  5   

 6.5.2   Clinical Reasoning and Case Formulation 

 The scientist-practitioner model of clinical psychology is the most widely 
used model of professional practice in the Western world today. The 
model is most commonly satisfied by applying the evidence-based find-
ings of psychological research to clinical practice. However, an important 
additional way in which the scientist-practitioner model can be realized 
is to conduct systematic inquiries into clients ’  problems in a manner that 
is guided by scientific method. With this approach, clinicians describe 
and formulate their clients ’  problems by focusing on their onset, develop-
ment, and maintenance. To this end, they attempt to systematically collect 
data that enable them to identify clients ’  difficulties and their causes. The 
result of this process is a conceptual representation of each client ’ s 
various complaints, their causes, and their interrelationships, which clini-
cians use as a basis to plan and execute treatment in a systematic and 
effective manner. 

 Clinical reasoning and case formulation lie at the heart of the work 
of scientifically oriented clinical psychologists, and from the 1970s 
onward, researchers have made concerted attempts to understand the 
nature of clinical reasoning (e.g.,  Borleffs, Custers, van Gijn,  &  ten Cate, 
2003 ;  Elstein, Shulman,  &  Sprafka, 1978 ;  Schmidt, Norman,  &  Boshui-
zen, 1990 ) and to apply models of decision making to clinical reasoning 
(e.g.,  Galanter  &  Patel, 2005 ;  Ward, Vertue,  &  Haig, 1999 ). 

 The standard view sees clinical reasoning as the set of decision-
making or problem-solving processes employed in describing health 
problems. The goal of this enterprise is diagnosis, which, in turn, directs 
treatment. By contrast, a case formulation is the narrative that integrates 
the description and explanation of health problems. The primary goal 
of case formulation is to identify causal mechanisms that guide treat-
ment decisions. Clinical psychologists not only describe their clients ’  
functioning but also typically try to understand the causes of their 
clients ’  behaviors ( Butler, 1998 ;  Garb, 2005 ). Thus their work involves 
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clinical reasoning (a descriptive process traditionally understood to lead 
to diagnosis) and case formulation (an explanatory process leading to 
understanding the causes of the diagnosis and the integration of both 
in narrative form). 

  Vertue and Haig (2008 ; see also  Ward, Vertue,  &  Haig, 1999 ) argued 
that the extant literatures on clinical reasoning and case formulation 
are fragmented and do not provide a broad, coherent perspective that 
clinical psychologists can use across different theoretical orientations. 
We further contended that the hypothetico-deductive and Bayesian 
methodologies cannot provide an adequate framework for clinical rea-
soning. The hypothetico-deductive method is a weak method of problem 
solving because, among other things, it operates without regard for 
relevant background knowledge (Patel, Arocha,  &  Zhang, 2005). A 
major problem with the Bayesian alternative is that clinicians do not 
typically have access to the probabilistic information required for the 
effective use of Bayes ’ s theorem. Partly in response to these problems, 
we argued that ATOM provides a suitably broad framework that inte-
grates clinical reasoning and case formulation and can be used by clini-
cians of varying theoretical orientations (Vertue  &  Haig, 2008). We 
maintained that ATOM provides a systematic, coherent, and natural 
way in which clinical psychologists can reason in diagnosing and for-
mulating a client ’ s psychological difficulties. We showed that, with 
appropriate supplementation, the method provides a plan of inquiry 
that can guide the clinician in the reasoning processes involved in devel-
oping accurate descriptions of problems, constructing explanations for 
those problems, and establishing coherent models of the causal mecha-
nisms involved. 

 From the vantage point of ATOM, the clinical reasoning process is 
centrally concerned with both the detection of empirical phenomena and 
their subsequent explanation. However, given that ATOM is a theory of 
method developed for basic psychological research, it is necessary to add 
two methodological phases to its standard depiction to complete its suit-
ability for clinical applications. First, ATOM addresses neither the process 
of data collection nor the process of case formulation. Although ATOM 
does not deal directly with the methodology of data collection, this is 
clearly a critical aspect of both scientific research and clinical practice. 
Second, just as writing up scientific research is an integral part of that 
research, so writing the case formulation is an integral part of clinical 
work. However, these two processes can straightforwardly be grafted 
onto ATOM to produce a comprehensive model of clinical reasoning and 
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case formulation, with data collection as a precursor to ATOM, and the 
narrative of the case formulation as a successor to ATOM. 

 In the proposed six-stage model of clinical reasoning and case formu-
lation, the clinician begins with data collection and then proceeds through 
the four primary phases of ATOM before concluding with a written case 
formulation. In the beginning, potentially relevant data are gathered 
using a number of data generation strategies. In turn, the clinician con-
ducts a generic interview to establish a base set of information about a 
client ’ s functioning across a number of domains; elicits further data that 
are guided by the nature of the client ’ s referral question; and identifies 
salient cues or flags that prompt the clinician to probe for possible phe-
nomena associated with the presenting problems. All the while, various 
steps are taken to ensure that the data are reliably obtained. Regarding 
data analysis, ATOM ’ s multistage model is systematically worked though 
in as thorough a manner as possible. Thus systematic attention is given 
in turn to data quality, pattern suggestion, pattern confirmation, and 
generalization. For example, to ensure the extent to which the phenom-
enon claims generalize, constructive replication is sought with respect to 
different life settings (e.g., home, work, and recreation) and across time 
(e.g., during childhood, adolescence, early adulthood, the past six months, 
or the past two weeks). Here the degree to which different, independent 
sources of information converge on the same conclusion constitutes an 
important validation strategy. The clinician draws this information from 
his or her professional database of symptom knowledge and matches the 
client ’ s current data patterns to that knowledge. 

 Having identified the empirical phenomena relevant to the client, the 
next phase involves abductively inferring the psychological causes 
believed to produce those phenomena. Here it is useful to think of the 
causes as constituting the psychological makeup of the person, or their 
psychological strength and vulnerability factors. These causes also have 
contributing causal conditions, which may be distal, such as heritability, 
organicity, and learning history, as well as proximal factors, such as stress 
from a parent ’ s remarriage, or a child starting school. An adequate expla-
nation of the client ’ s difficulties will also need to refer to maintaining 
factors, including environmental factors. 

 When a number of plausible explanatory hypotheses have been abduc-
tively generated, the next task is to ensure that they are developed to an 
acceptable degree. Sometimes the research literature or previously for-
mulated cases will present explanatory hypotheses that are at an accept-
able level of theoretical development. At other times, the clinician will 
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take responsibility for developing the content of the initial hypotheses 
about the presence of the causal factors. For the clinician, the major task 
in developing a causal model is to establish the relationships between 
these causes in the model. 

 Once the various relationships are depicted in the causal model, the 
clinician considers the most coherent way of conceptualizing the client ’ s 
situation. The developed causal model is evaluated according to its ability 
to account for the interrelationships between the psychological causes 
and their phenomena in an explanatorily coherent manner. This is a 
particularly crucial part of the clinical reasoning process, and it is fre-
quently underemphasized. Within ATOM, the multicriterial perspective 
on theory appraisal suggested by the theory of explanatory coherence 
provides an instructive guide. Thus the criteria of explanatory breadth, 
simplicity, and analogy receive explicit consideration in evaluating the 
causal model. 

 Finally, the clinician uses information from the preceding phases to 
write a narrative that constitutes the case formulation. A case formula-
tion is the culmination of the clinical reasoning process and is a compre-
hensive and integrated conceptualization of a case, encompassing the 
phenomenology, etiology, maintaining factors, prognosis, and treatment 
recommendations. The formulation is a set of descriptive and explana-
tory hypotheses that attempts to explain why a client developed these 
problems at a particular time, what maintains them, and what should be 
done about them ( Ward, Vertue,  &  Haig, 1999 ). The case formulation 
should demonstrate an accurate and insightful understanding of a unique 
individual, with vulnerabilities and strengths, and explain how he or she 
comes to be in the current predicament. The essential task in case for-
mulation is to highlight and make explicit links or connections between 
different components of the case. 

 By and large, my concluding remarks in the previous section about the 
benefits of ATOM for restructuring grounded theory method apply to the 
suggested rethinking of clinical reasoning and case formulation. However, 
the bottom-up thrust of ATOM-based inquiry will be a challenging frame-
work for the many clinicians who are used to thinking in accordance with 
the top-down nature of hypothetico-deductive reasoning.  

 6.6   ATOM Defended and Clarified 

 I turn now to a defense and clarification of ATOM. First I defend ATOM 
against the charge that its view of theory construction is too flexible. 
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Then I consider some misunderstandings of ATOM that result from 
fudging the threefold distinction between data, phenomena, and theory. 

 6.6.1   Is ATOM Too Permissive? 

 Jan Willem  Romeijn (2008)  has undertaken a philosophical evaluation 
of ATOM as it appeared in  Haig (2005a ,  2005b ). Although he judges 
ATOM ’ s broad framework to be on the right track, he nevertheless thinks 
that the method is too permissive. Restricting his attention to the theory 
construction phases of ATOM, Romeijn judges its three components of 
theory generation, theory development, and theory appraisal to suffer 
from a problem of underdetermination by empirical evidence. In this 
regard, he claims that generating theories by exploratory factor analysis 
leaves us with a superabundance of hypotheses. Further, he claims that 
the strategy of analogical modeling is underspecified and imposes too 
few constraints on the process of whittling down this overabundance. 
Finally, he contends that the evaluation of explanatory theories in terms 
of their explanatory coherence suffers from two well-known objections 
that have been raised against inference to the best explanation. Moreover, 
Romeijn does not think that my combination of these three components 
of theory construction overcomes the problem of underdetermination. 
Because of this, he concludes that ATOM has insufficient normative 
force, and he briefly suggests ways in which this problem might be 
overcome. 

 In this section, I examine Romeijn ’ s contention that ATOM ’ s account 
of theory construction suffers from the problem of the underdetermina-
tion of theories by empirical evidence. Roughly speaking, the basic idea 
of the underdetermination at issue here is that the relevant empirical 
evidence does not determine the acceptance or rejection of a scientific 
hypothesis or theory. That is, we do not have the ability to justify accept-
ing one hypothesis or theory from a set of alternatives on the basis of 
empirical evidence alone. Many philosophers regard such underdetermi-
nation to be a serious methodological problem for science. This attitude 
contrasts with the prevailing view in science, which is that there is no 
such problem, or if there is a problem, then science has the ability to 
solve it. My view of this matter is that good scientific practice is often 
able to exploit appropriate resources that enable scientists to deal with 
the underdetermination of theories by evidence. Undue philosophical 
concern about it results, in part, from a tendency of philosophers to 
underestimate the resources that scientists have at their disposal in deter-
mining theory choice (see, e.g.,  Kitcher, 1993 ). Following Romeijn ’ s order 
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of treatment, I focus in turn on the issue of underdetermination as it 
affects the method of exploratory factor analysis, the strategy of analogi-
cal modeling, and the theory of explanatory coherence. I will endeavor 
to show that in each case, sufficient methodological resources are avail-
able for scientists to use these methods to good effect. Toward the end 
of the section, I offer a number of remarks about the normative force of 
ATOM. 
     
  In Defense of Exploratory Factor Analysis    ATOM characterizes the 
process of theory generation as existential abduction. As its name sug-
gests, this form of explanatory reasoning postulates the existence, but 
not the nature, of new objects or properties. Cases abound in science 
where hypotheses about new entities have been introduced in this way. 
Although ATOM is a framework theory in which no one research method 
provides a general route to new theories, I chose to explicate the nature 
of theory generation by focusing on psychology ’ s method of exploratory 
factor analysis — a method that I take to be a rather stylized way of 
producing existential abductions ( Haig, 2005b ). 

 Romeijn worries that exploratory factor analysis suffers from various 
problems of underdetermination and thus leaves us with an unacceptably 
large number of latent common factor models. My view is that, despite 
these underdeterminations, exploratory factor analysis is able to bequeath 
us a manageable number of plausible factorial hypotheses, which, in 
ATOM, are subjected to further scrutiny through analogical modeling 
and judgments of inference to the best explanation. However, Romeijn 
thinks these additional epistemic appraisals are insufficiently constrain-
ing, and recommends replacing exploratory factor analysis with a strat-
egy of experimental intervention, which he thinks will resolve the problem 
of underdetermination at this point in the research process. 

 In chapter 3, I suggested that the alleged problem of factor indeter-
minacy is a special case of the general problem of the underdetermination 
of theory by evidence ( Haig, 2005b ; see also  Mulaik, 1987 ). I argued 
further that if we have appropriate expectations about what exploratory 
factor analysis can do as a method of theory generation, then we are 
entitled to think that exploratory factor analysis is not undermined by 
this particular indeterminacy problem. 

 However, an important question still remains, a question that may be 
more important than Romeijn ’ s worry about the indeterminacies of 
exploratory factor analysis: is the method effective enough in unearthing 
the common causes it hypothesizes to exist behind the correlated 
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manifest variables? An answer to this question lies at the heart of my 
defense of the method. I maintain that if exploratory factor analysis 
proves to be a useful method of generating hypotheses about common 
causes, then Romeijn ’ s concerns about the various sorts of underdeter-
mination to be found in exploratory factor analysis cannot be too unset-
tling for the method. 

 I have two ways of answering this question. One is to examine 
research programs of theory construction that make heavy use of explor-
atory factor analysis, and show that the method contributes to the theo-
retical progress of those programs. We might want to ask, for example, 
whether the Spearman-Jensen theory of general intelligence is a progres-
sive research program or whether the five-factor theory of personality is 
currently progressive. This approach would require detailed analyses of 
the relevant case histories, employing notions of theoretical progress that 
were or are appropriate to both science generally (a contested matter) 
and factor analysis more specifically. Space limitations at this point in 
the book preclude undertaking such a task, and I confine my attention 
briefly to the second strategy. This strategy involves ascertaining whether 
exploratory factor analysis succeeds at dimensional recovery as revealed 
through simulations on artificial data sets where the dimensions of the 
objects of study are known in advance. 

 The simulation studies that have been carried out to assess the reli-
ability of exploratory factor analysis in dimensional recovery give mixed 
results. Some studies support the utility of the method, whereas others 
show poor dimensional recovery. Consider  Armstrong ’ s (1967)  influen-
tial and widely cited study, which questions the utility of exploratory 
factor analysis as a method of theory generation. Armstrong analyzed a 
set of artificial data in a hypothetical scenario where the underlying 
factors were known, and he concluded from the analysis that exploratory 
factor analysis did a poor job of recovering the known factor structure. 
From this he recommended that the method should not be used to gener-
ate theories. Subsequently many authors have cited Armstrong ’ s article 
as grounds for using confirmatory factor analysis rather than its explor-
atory counterpart in factor analytic research. 

 However,  Preacher and MacCallum (2003)  have argued, correctly in 
my view, that  Armstrong ’ s (1967)  study represents a poor piece of factor 
analytic research that gives misleading results, and it provides no real 
basis for casting doubt on the worth of exploratory factor analysis as a 
method of theory generation. Preacher and MacCallum ’ s study first 
replicated Armstrong ’ s factor analysis on an analogous set of data and 
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obtained essentially the same results. They then conducted a further 
factor analysis of that data set, substituting correct factor analytic pro-
cedure for the faulty procedure used by Armstrong. Among other things, 
this involved using common factor analysis rather than principal com-
ponents analysis (principal components analysis is not really a method 
of factor analysis), determining the correct number of factors to retain 
by employing appropriate multiple methods (the scree test and parallel 
analysis), and using oblique direct quartimin rotation to simple structure 
rather than orthogonal varimax rotation. Based on the congruence 
between the obtained factor pattern and the known structure, Preacher 
and MacCallum concluded that the proper use of exploratory factor 
analysis does in fact identify the number and nature of latent variables 
responsible for the manifest variables. Their exemplary use of explor-
atory factor analysis and the well-conducted earlier simulations by factor 
analysts such as  Thurstone (1947)  and Cattell ( Cattell  &  Dickman, 
1962 ) provide good support for the view that exploratory factor analysis 
is quite effective at dimensional recovery. Admittedly, these simulations 
dealt with simple physical systems, but  Sokal, Rohlf, and Zang (1980)  
have shown that exploratory factor analysis can isolate and help identify 
meaningful biological factors that lie behind correlated physiology-of-
exercise variables. The findings from good simulation studies like these, 
combined with those of a variety of empirical studies on other aspects 
of the functioning of exploratory factor analysis (e.g.,  Fabrigar, Wegener, 
MacCallum,  &  Strahan, 1999 ), suggest that the method can be employed 
as a useful generator of elementary plausible theories about common 
causes. 
     
  The Strategy of Analogical Modeling    As we saw in chapter 4, models 
serve a variety of functions in scientific research. In ATOM, they play a 
major role in expanding the rudimentary theories given to us by existen-
tial abductive methods, such as exploratory factor analysis. As chapter 
4 also showed, this increase in the content of theories is sought through 
the strategy of analogical modeling, which researchers accomplish by 
building analogical models of the hypothesized causal mechanisms. The 
content of the undeveloped theory is expanded by analogy to a well-
understood source model, and at the same time, the credibility of the 
model is provisionally assessed through a process of analogical 
abduction. 

 Romeijn believes that this strategy of analogical modeling also suffers 
from a problem of the underdetermination of theories by empirical 
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evidence because it gives too little guidance in the process of theory 
development. His criticism is not that ATOM seeks to employ analogical 
modeling as a strategy of theory expansion, but that it does not specify 
the notion of analogy in enough detail to prevent our being left with a 
superabundance of models. 

 I agree that considerably more needs to be said about the strategy of 
analogical modeling than the short treatment I gave it in an article-length 
presentation of ATOM ( Haig, 2005a ). In the article, I provided a general 
argument schema that represents the basic structure of the reasoning 
involved in analogical abduction. Of course, this schema does not fully 
capture the detailed reasoning required for effective analogical modeling 
in science. In evaluating the aptness of an analogical model, its structure 
has to be assessed, and this is done with respect to the aptness of the 
analogy between the source and subject of the model. In considering the 
plausibility of the source model, one considers the balance of the positive 
and neutral analogies. In identifying these analogies and ascertaining 
their balance, one has to appeal to domain-specific information relevant 
to the case at hand. Admittedly, there is a dearth of examples of the 
analogical modeling of explanatory theories in the behavioral sciences. 
However, as I noted in chapter 4,  Harr é  (1976)  gives an informative 
account of analogical modeling in the social sciences, and  Harr é  and 
Secord (1972)  detail the construction of a role-rule model of microsocial 
interaction in social psychology that is a source of useful guidance for 
psychologists. 

 Although I think that the methodology of analogical modeling is 
moderately well developed, it clearly needs further work. For example, 
the work on analogical modeling in cognitive science needs to be inte-
grated with the relevant philosophical modeling in the philosophy of 
science (e.g.,  Abrantes, 1999 ). In addition, detailed case studies of suc-
cessful analogical modeling in the behavioral sciences should be under-
taken to identify exemplars and precepts of good modeling practice that 
we can use as a basis for further codifying the methodological strategy 
of analogical modeling. 

 My hope is that chapter 4 might partly allay Romeijn ’ s worry. I do 
believe that the strategy of analogical modeling, combined with the con-
straints provided by methods such as exploratory factor analysis and the 
theory of explanatory coherence, will result in a manageable pluralism 
of model-based theories. 
     
  Problems for Explanatory Coherence    With ATOM, theory appraisal 
is conducted by employing the theory of explanatory coherence to 
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determine judgments of inference to the best explanation. Although infer-
ence to the best explanation is clearly used in science to evaluate scientific 
theories, and despite determined efforts to explicate its nature, inference 
to the best explanation has received considerable criticism. Romeijn 
believes that the theory of explanatory coherence is vulnerable to the 
two major objections that have been leveled against inference to the best 
explanation more generally: these have been called  Hungerford ’ s objec-
tion  and  Voltaire ’ s objection  ( Lipton, 2004 ). Hungerford ’ s objection is 
that the evaluative criteria that constitute explanatory goodness are too 
subjective to determine properly the warrant of inference to the best 
explanation. Voltaire ’ s objection is that we have no good reason to 
suppose that sound judgments of the best explanation are likely to be 
true. Romeijn assumes for the sake of argument that  Thagard ’ s (1992)  
empirical justification of the theory of explanatory coherence takes care 
of Hungerford ’ s problem. However, I think the justifica tion works as a 
matter of fact. Not only are the criteria of explanatory coherence (explan-
atory breadth, analogy, and simplicity) derived from an examination of 
exemplary cases of theory appraisal in the history of science, but suc-
cessful simulations of the theory of explanatory coherence by Thagard 
and his colleagues show that these criteria are successfully incorporated 
into one or more of the principles of the theory. 

 However, for Romeijn, Voltaire ’ s problem remains. He reiterates the 
point that the method of exploratory factor analysis and the strategy of 
analogical modeling provide us with insufficient reason to think that they 
bequeath to the theory of explanatory coherence a set of theories that 
contain a true or truthful theory. 

 A number of philosophers have criticized proponents of inference to 
the best explanation for coupling it with truth and maintaining that an 
inference to the best explanatory theory entitles us to regard that theory 
as true (e.g.,  van Fraassen, 1989 ). Among other things, these critics have 
pointed out that the history of the various sciences reveals that many 
theories initially pronounced true on the grounds that they were judged 
the best of competing theories turned out to be manifestly false (e.g., 
magnetic ether in physics, phlogiston in chemistry, vital forces in physiol-
ogy, and Hullian theory in psychology). 

 My reply to this criticism is the same as the response I gave in 
chapter 5 to van Fraassen ’ s  “ bad lot ”  argument against inference to 
the best explanation. There I pointed out that inference to the best 
explanation can legitimately be used to evaluate theories with respect 
to their explanatory goodness in a way that avoids judgments of truth 
per se while at the same time regarding science as a truth-seeking 
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endeavor. The crucial point here is that the assumption that one can 
secure truth by using inference to the best explanation disregards the 
important distinction between truth and justification. Truth, understood 
as correspondence with reality, functions as an orienting ideal for 
science. As such, it is a highly valued, though unattained, goal that 
helps us make sense of science as an attempt to represent and intervene 
in the world ( Haig  &  Borsboom, 2012 ). However, as an ideal, truth 
(or, more precisely, approximate truth) is accessible only indirectly by 
way of the various criteria we use to evaluate and accept theories. 
Historically, scientists have regarded the criteria of predictive accuracy, 
internal consistency, and explanatory power as important in theory 
appraisal. As justificatory criteria, they can indicate truth, but they do 
not constitute truth. 

 A further point of relevance here is  Thagard ’ s (2007)  claim that 
accepting a theory based on explanatory coherence does not mean that 
it is likely to be true, only that such acceptance is conducive to the long-
term goal of maximizing true propositions and minimizing false ones. 
This line of reasoning is consistent with the endorsement of the idea of 
possible truth described in chapter 1: that it is realistic to nominate our 
theories as candidates for truth in the expectation that they will be true 
in the future, if not the present. 

 Contrary to Romeijn, I think that the three submethods and strategies 
employed in theory construction within ATOM can make worthwhile 
contributions to the development of scientific knowledge. Exploratory 
factor analysis has proved to be a moderately useful generator of explan-
atory hypotheses and theories. A number of sciences have successfully 
employed the strategy of analogical modeling, though its methodology 
is yet to be fully articulated and systematically used in developing psy-
chological theories. And although the theory of explanatory coherence 
has not been used as a method of theory appraisal in psychology, it 
reconstructs an informal approach that has been successfully used in the 
physical and biological sciences. 

 If I am right in assessing the effectiveness of these three different parts 
of ATOM ’ s account of theory construction, then their linking enhances 
the overall effectiveness of ATOM ’ s prescriptions for theory construc-
tion; the initial plausibility judgments of hypotheses in exploratory factor 
analysis are augmented by judgments of the appropriateness of analogies 
in model-based theories, before theories are further evaluated in terms 
of their explanatory coherence. If this extended theory evaluation process 
goes well, then its outcome should be well-credentialed theories. I there-
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fore conclude that the underdetermination of theories by empirical evi-
dence does not pose a major problem for ATOM. 
     
  A Note on Experiments    I have repeatedly emphasized that ATOM is 
to be understood primarily as a framework theory within which one can 
employ more specific methods. An important point to note here is that 
many of the methods adopted in the exposition of the framework are 
optional. For example, my description of phenomena detection in terms 
of statistical methods is not the only means by which one can detect 
phenomena. Moreover, although I chose exploratory factor analysis to 
describe the abductive nature of theory generation, the method is only 
appropriate when the abductive inferences are to common causes. 
Options like these give ATOM a degree of flexibility that researchers will 
want to exploit. 

 Romeijn accepts the general framework of ATOM but believes that 
the permissiveness permitted in its account of theory construction can 
be overcome by replacing my chosen submethods and strategies with a 
methodology of experimental practice. As Romeijn acknowledges, his 
suggestions in this regard are brief and speculative, and I find it hard to 
know what to make of them. I do know that the philosophical methodol-
ogy of experimentation has made significant gains in the last three 
decades, and I would not be surprised to learn in the future that ATOM 
can be given an alternative formulation through experiments. Of course, 
this alternative rendering of ATOM would not be suitable for the many 
nonexperimental practices in psychological research.  6   
     
  The Normative Status of ATOM    Before concluding this section, I want 
to make some comments about the normative status of ATOM. The first 
of these involves a possible misunderstanding of what ATOM is. My 
other comments are intended to give some indication of how I under-
stand ATOM ’ s normative dimension. 

 In the introduction to his article,  Romeijn (2008)  speaks as though 
ATOM is a scientific methodology. He lists a number of prominent 
twentieth-century methodologies (e.g., Popper ’ s falsificationism, Bayes-
ianism, and Laudan ’ s normative naturalism) and declares that they all 
determine a proper scientific method. However, mindful of the distinc-
tion between methodology (the study of method) and method (proce-
dures of inquiry), I regard ATOM as a theory of method, not as a 
methodology. To be sure, ATOM explicitly draws from the literature on 
methodology (e.g., the ideas of reliabilist and coherentist justification), 
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a point that I emphasized in chapter 1. It also presupposes a number of 
methodological commitments (e.g., a modified account of Laudan ’ s nor-
mative naturalism). Further, as a theory of method, ATOM can be 
regarded as a part of methodology in the sense that it is an object of 
methodological scrutiny. 

 My pedantic insistence on the distinction between methodology and 
method has a point, for by regarding ATOM as a methodology, Romeijn 
expects more from it than I think one can reasonably expect from an 
account of scientific method. For example, and significantly, Romeijn 
asserts that any scientific methodology should be able to give an account 
of how the major philosophical problem(s) of induction can be resolved. 
For him, a resolution requires a philosophical basis for, and justification 
of, scientific facts. However, being a theory of scientific method, ATOM 
should not be expected to provide a philosophical justification for induc-
tive inference. It is enough that it provides for the justification of scien-
tific facts (and theories) in research practice. 

 Twentieth-century philosophers often claimed that scientific method-
ologies were known a priori and could therefore be presented as radically 
normative. Popper ’ s falsificationist methodology is a prominent case in 
point. However, because ATOM presupposes a naturalistic conception 
of methodology, I do not think it can be so strongly normative. Because 
it is founded on a naturalistic conception of methodology, ATOM and 
its components should be tempered by appropriate evidential consider-
ations. For many of the specific research methods that one can employ 
in ATOM, a developing empirical literature speaks to their effectiveness, 
but we need more research of this sort. Moreover, psychological research-
ers need to be more deliberately naturalistic in their methodological 
behavior and refer to the relevant empirical literature when justifying the 
methods they use. 

 Another restriction on the normative force of ATOM is imposed by 
the conditional nature of the recommendations for research action that 
accompany it. In effect, such recommendations are subjunctive condi-
tionals that take the form  “ If you want to reach goal X, then use method 
or strategy Y. ”  The justification for pursuing goal X rests with the 
researcher. It is not to be found within ATOM as it is currently formu-
lated. The conditional nature of methodological recommendations is a 
feature of  Laudan ’ s (1996)  normative naturalism, a methodology that 
has been recommended to psychologists by  Proctor and Capaldi (2001a) . 

 In an important sense, the normative potential of ATOM resides in its 
adoption of a problem-oriented view of scientific inquiry. In my 
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exposition of ATOM, I stressed the point that it adopts an account of 
research problems that depicts them as sets of constraints on their solu-
tions, where the task is to take ill-structured problems and better formu-
late them so that they are capable of solution. Viewed as sets of constraints, 
research problems function as the guides of inquiry. In this way, the 
constraint-inclusion account of problems serves as a vehicle for bringing 
relevant background knowledge to bear on its various research tasks. In 
 Haig (1987)  I provide a more detailed account of research problems and 
their role in an abductive conception of inquiry. 

 6.6.2   Some Misunderstandings of ATOM 

 In a recent article, Mark  Orlitzky (2012)  recommends a package of 
reforms designed to help to overcome psychology ’ s heavy reliance on 
null hypothesis significance testing. One of these reforms involves placing 
a greater emphasis on abductive research methods. Although I agree with 
much of what Orlitzky has to say, I think his treatment of abductive 
methods contains some misunderstandings. Since he gives particular 
attention to ATOM, I want to correct these misunderstandings. 

 Somewhat surprisingly in my view,  Orlitzky (2012)  takes exploratory 
data analysis and computer-intensive resampling methods to be basically 
abductive in nature. However, as its name implies, exploratory data 
analysis is data analytic in character. As noted in chapter 2, it involves 
descriptive and frequently quantitative detective work designed to reveal 
structure or patterns in the data. For this reason, I do not think it can 
be considered an  explanatory  or  abductive  undertaking in any interesting 
sense of the terms. I made this same point against  Behrens and Yu (2003)  
in a footnote to chapter 2. Computer-intensive resampling methods are 
also data analytic in character. They are confirmatory procedures designed 
to check the reality of the patterns revealed by exploratory data analysis. 
In ATOM, these methods are used to achieve close replication, not to 
further explanatory research. As such, they are part of the process of 
detecting empirical phenomena. By contrast, abductive inference is 
reserved for constructing explanatory theories, which are introduced to 
explain empirical phenomena. 

  Orlitzky (2012)  also regards meta-analysis as abductive in nature. He 
demonstrates this by taking the argument schema for existential abduc-
tive inference that I laid out in my characterization of exploratory factor 
analysis in chapter 3 and instantiating it with a meta-analytic example. 
In the second premise of this schema, he inserts information of an 
explanatory kind that explains the empirical phenomenon described in 
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the first premise. However, I do not think that the explanatory informa-
tion is generated directly by the use of meta-analytic techniques; it is 
gained instead by abductively hypothesizing plausible causes, sometimes 
using something akin to informal factor analysis. Meta-analytic tech-
niques are most frequently used to identify empirical phenomena, whereas 
suggested explanations for phenomena are fashioned abductively, with 
or without the help of codified methods. 

 I conclude this short section by briefly considering a related claim 
that is sometimes made about the explanatory reach of meta-analysis 
when it is used in theory testing. When meta-analysis enters into the 
process of testing explanatory theories, it typically does so by contribut-
ing to an evaluation of the predictive success of those theories. However, 
this common strategy of theory evaluation is not directly concerned 
with their explanatory adequacy. This is not to deny that researchers 
can employ meta-analytic methods when testing theories, but meta-
analysis itself is not an explanatory approach to hypothesis testing. To 
employ meta-analysis to assist in the predictive testing of an explanatory 
theory does not thereby confer a direct explanatory role on meta-anal-
ysis itself. One does not assign genuine status simply on the basis of 
association. 

 6.7   Scientific Method and Education 

 In some of the preceding chapters, I have offered remarks about the 
proper place of various research methods in psychology ’ s research 
methods curriculum. In the penultimate section of this chapter, I want 
to offer some general thoughts about the importance of an education in 
research methods. 

 To begin by considering the nature of education itself, I believe we 
should follow John  Dewey ’ s (1910)  lead and embrace an inquiry-ori-
ented conception of education, which accords a central place to scientific 
method. Scientific method is important to education for at least three 
reasons: it provides us with a codified way of learning how to learn; it 
enables us to justify our knowledge claims, both about empirical phe-
nomena and about explanatory theory; and it is a central feature of 
science itself, which is an enterprise we seek to understand in education. 
If we accept an inquiry-centered view of education, it is a small step to 
think of education itself, and scientific research, as broadly the same type 
of endeavor, where both are essentially concerned with learning. In such 
a view, students are concerned with learning through inquiry, whereas 
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the major concern of teachers is to lead less experienced inquirers into 
new areas of learning. 

 A view of education with scientific method at its heart will clearly 
emphasize learning about research methods, and their accompanying 
research methodology, in the science curriculum. This clearly happens in 
psychology, but considerable evidence suggests that students and research-
ers do not acquire a deep understanding of these methods. A striking 
example of this is the low level of understanding among professional 
researchers in psychology of null hypothesis significance tests. Despite 
repeated exposure to these procedures in taught courses, and their fre-
quent use in psychological research, psychologists fail to properly under-
stand the logic of the method (e.g.,  Gigerenzer, Krauss,  &  Vitouch, 2004 ; 
 Hubbard, 2004 ). As we saw in chapter 3 and in section 6.6.1, explor-
atory factor analysis is another frequently used method in psychology 
that is not well understood, with respect to its abductive nature ( Haig, 
2005b ) and its procedural implementation ( Fabrigar et al., 1999 ). 

 As I have stated several times, we cannot have a proper understanding 
of research methods, both conceptually and procedurally, without a 
sound appreciation of their accompanying methodology. However, the 
majority of researchers in psychology are reluctant to think critically 
about the methodological foundations of the methods they use. Nor are 
students encouraged to do so in the research methods courses they take. 
As we saw in chapter 1, methodology is the interdisciplinary field that 
studies methods. Although it draws from the disciplines of statistics, 
philosophy of science, and cognitive science, the professional literature 
of these disciplines does not figure systematically in the content of 
research methods courses. For example, the philosophy of research 
methods is an aspect of research methodology that receives limited atten-
tion in behavioral science education. The majority of students and 
research practitioners in the behavioral sciences obtain the bulk of their 
knowledge about research methods from textbooks. However, a casual 
examination of these texts shows that they tend to pay little, if any, 
serious regard to the philosophy of science and its bearing on the research 
process.  7   As Thomas Kuhn ( 2012 ) pointed out more than fifty years ago, 
textbooks play a major role in dogmatically initiating students into the 
routine practices of normal science. Seriously attending to the philosophy 
of research methods would go a considerable way toward overcoming 
this uncritical practice ( Proctor  &  Capaldi, 2001b ). As contemporary 
philosophy of science increasingly focuses on the contextual use of 
research methods in the various sciences, let us hope that research 
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methodologists and behavioral scientists will avail themselves of the 
genuine methodological insights that it contains. 

 A methods curriculum genuinely concerned with education would 
profitably consider methods in the light of three primary characteristics 
of realist methodology outlined in chapter 1. First, greater prominence 
would be given to generative methodology in which reasoning well to 
hypotheses and theories would figure in the assessment of those knowl-
edge claims. I have already noted that sound abductive reasoning to 
factorial hypotheses using exploratory factor analysis, and the abductive 
generation of grounded theory, are concerned with generative justifica-
tion. Second, the coherentist justification of explanatory theories using 
methods of inference to the best explanation would feature much more 
prominently than it does at present. Third, in adopting methods that are 
apt for us as knowing subjects, heuristic procedures would receive much 
more explicit attention in the methods curriculum as serviceable guides 
to our thinking than is currently the case. 

 The Association for Psychological Science now takes conceptual and 
historical issues as one of psychology ’ s seven core areas, and it must be 
included in degree courses that are accredited by the society. Teaching 
methods through methodology is the appropriate way to employ this 
core area in research methods courses. The American Psychological Asso-
ciation and the Association of Psychological Science would do well to 
follow suit, for it is only by making full and proper use of methodology 
that we can achieve a genuine education in research methods. 

 6.8   Final Word 

 ATOM aspires to be a coherent theory of scientific method that brings 
together a number of different research methods and strategies that are 
normally considered separately in the behavioral sciences. The account 
of phenomena detection I have offered systematically reconstructs a set 
of practices that are common in science but seldom presented as a whole 
in methodological writings. That reconstruction is based on the impor-
tant distinctions between data, phenomena, and theory and the different 
functions they serve in scientific research. The abductive depiction of 
theory construction endeavors to make coordinated sense of the way in 
which science sometimes obtains knowledge about the causal mecha-
nisms that figure centrally in the understanding of the phenomena that 
they produce. With rare exceptions, the abductive generation of elemen-
tary plausible theory, the strategy of analogical modeling, and the method 
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of inference to the best explanation are all yet to receive proper consid-
eration in psychology and the other behavioral sciences. ATOM serves 
to combine these methodological resources in a broad theory of scientific 
method. 

 Although ATOM is a broad theory of scientific method, it should not 
be understood as a fully comprehensive account. ATOM is a singular 
account of method appropriate for detecting empirical phenomena and 
subsequently constructing explanatory theories, where those theories 
purportedly refer to hidden causes, and where their causes are initially 
given an indirect, dispositional characterization. However, in dealing 
with explanatory theories in which the causal mechanisms referred to 
are more directly accessible than theoretical entities, researchers do not 
have to use a strategy of analogical modeling to more informatively 
characterize their theories. The use of functional brain imaging tech-
niques to map neuronal activity in the brain is an obvious case in point. 
Further, although the evaluation of theories in terms of explanatory 
criteria deserves a heavy weighting in science, inference to the best expla-
nation will not always be an appropriate or a sufficient resource for 
evaluating theories. For example, although both scientific methodology 
and practice have probably overemphasized predictive success ( Brush, 
1995 ), it nevertheless remains an important criterion of a theory ’ s worth. 
It may therefore be sought in a modified hypothetico-deductive strategy 
that corrects for the confirmational inadequacies of its simple form. 

 For the sake of consistency, ATOM has to be judged in a way that 
comports with a naturalist attitude in methodology. In general terms, this 
comes down to the question of whether ATOM is a genuinely coherent 
theory of method, and that question is yet to be properly answered. 
Although it is a fairly comprehensive account of method, and although 
it captures a natural order of scientific inquiry, and seems to hold together, 
further development and appraisal is required before we can properly 
judge ATOM ’ s cohesiveness. My hope is that its current formulation 
stands as a positive contribution to behavioral research methodology, 
and that with further work, ATOM might be shown in a reflexive way 
to be an explanatorily coherent theory. 





 Notes 
  

 1   Method, Methodology, and Realism 

 1.   In a sympathetic appraisal of Laudan ’ s account of the transition from induc-
tive to hypothetico-deductive method, Ernan  McMullin (1984)  took issue with 
some of its detail and emphasis. McMullin agreed with Laudan ’ s central conten-
tion that since 1700 the philosophy of science had to face the fact that science 
increasingly appealed to theoretical entities. However, he maintained that the 
acceptance of the hypothetico-deductive method in the seventeenth century was 
prompted more by the  “ corpuscular philosophy ”  of thinkers such as Robert 
Boyle and John Locke than the successful use of the hypothetico-deductive 
method in science. 

 2.   Bert Uchino, Dustin Thoman, and Sari Byerly (2010) sampled over 230 
articles from the prominent  Journal of Personality and Social Psychology  from 
1982 through 2005 and found that the large majority of articles favored a testing 
strategy of confirmation. Considerably fewer favored a strategy of falsification, 
and even fewer favored a strategy of employing crucial tests of multiple hypoth-
eses or theories. These findings square with the author ’ s casual impressions and 
speak against the claim sometimes made that Popperian falsification is psychol-
ogy ’ s hypothetico-deductive method of choice. 

 3.   Of course, there are other prominent accounts of scientific method. Two of 
the best known are T. C. Chamberlin ’ s (1965) method of multiple working 
hypotheses and John  Platt ’ s (1964)  advocacy of strong inference. Although they 
promote important ideas (theoretical pluralism and strong tests, respectively) and 
receive regular endorsement by methodologists, they seem to have had a limited 
influence on scientific practice.  O ’ Donohue and Buchanan (2001)  provide a 
thoughtful critique, written for psychologists, of Platt ’ s theory of strong 
inference. 

 4.   Strictly speaking, the claim that there cannot be a logic for discovering hypoth-
eses is a corollary to the hypothetico-deductive method, not a part of it. Some 
descriptions of the method speak about the amethodological formulation of 
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hypotheses to explain the data. However, because hypothesis generation is not 
part of the method proper, I do not include it in my description and discussion 
of the method. 

 5.   Erotetic logic, the logic of questions, is the obvious source for a theory of 
questions, but in my view it is too formal to be readily applicable to most of our 
scientific problems or to help researchers directly. However, this is not to deny 
that models of interrogative inquiry may give us some useful insights about 
inquiry processes generally. 

 6.   More recently,  Wimsatt (2007)  extended his list of the important properties 
of heuristics. In addition to the four just mentioned, he noted that heuristics are 
purpose relative (they are useful for something) and are also derived with modi-
fication from other heuristics to better perform a new role. 

 7.   Preliminary results from a 2009 PhilPapers survey of over three thousand 
philosophers showed that 66 percent either accepted or leaned toward scientific 
realism, whereas 18 percent favored scientific antirealism. This is in keeping with 
results from the same survey on a number of more specific philosophical catego-
ries, which favored a naturalistic metaphilosophy, a nonskeptical realism about 
the external world, a correspondence view of truth, and a non-Humean concep-
tion of laws. 

 8.   The term  causal mechanism  is ambiguous. In ATOM, the generation of theo-
ries involves explanatory inference to claims about the existence of causal enti-
ties. It is not until the subsequent development of these theories that the 
mechanisms responsible for the production of their effects are identified and 
spelled out. Also, ATOM assumes that the productivity of causal mechanisms is 
distinct from the regularities that they explain ( Bogen, 2005 ; cf.  Woodward, 
2003 ). Importantly, this allows for the methodological use of generalizations that 
describe natural regularities to help identify the causal mechanisms that produce 
them. 

 9.   Note, however, that the strategy of analogical modeling is essential for theory 
development in ATOM, and the theory of explanatory coherence does heavy-duty 
work in the theory because it is the best-developed method of inference to the best 
explanation currently available. 

 2   Detecting Psychological Phenomena 

 1.   When contrasting explanatory theories with claims about phenomena, Bogen 
and Woodward focus on what they call  systematic theories . For them, systematic 
theories properly explain phenomena by showing in detail how the phenomena 
result from the causal factors appealed to in their explanation, and by unifying, 
and therefore systematizing, the phenomena claims. Psychology seems to have 
few well-developed theories of this sort. Although it constructs theories of various 
kinds, most of them are modest theories with low, but genuine, explanatory 
power. 

 2.   Bogen and Woodward ’ s work on phenomena detection has received consider-
able attention in the philosophical literature. It has been endorsed, modified, and 
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used by  Brown (1994) ,  Kaiser (1991) ,  Teller (2010) , and  Weber (2007) , among 
others. It has also been subjected to criticism, most notably by  Glymour (2000) , 
 McAllister (1997) , and  Schindler (2007) .  Woodward (2011)  recently clarified and 
amended the original formulation of the data-phenomena distinction and 
defended it against a range of criticisms. 

 3.   I think this practice masks the fact that a number of investigators often 
contribute to the detection of an empirical phenomenon and receive little or no 
recognition for it. The Flynn effect was so named by Herrnstein and Murray 
in  The Bell Curve  (1994). Rushton thinks it should be called the  Lynn-Flynn 
effect , after Richard Lynn, who found the upward trend in IQ scores in modern 
Japanese society. However, as Flynn himself noted, Tuddenham provided clear 
evidence of large IQ score gains in a comparison of U.S. soldiers in the two 
world wars, and Flynn stated that if asked, he would have named the effect 
after Tuddenham. However, it was Flynn who did most of the hard work in 
establishing the generality of the effect that bears his name. Unfortunately, the 
practice of giving insufficient intellectual credit to all the people who played 
an important role in empirical discoveries and theory construction is widespread 
in science. 

 4.    Cummins (2000)  contended that capacities are the primary  explananda  of 
psychology, whereas empirical regularities are  explananda  of secondary impor-
tance.  Shapiro (1994)  went further and claimed that cognitive psychologists take 
cognition, not behavior, to be the domain of their true  explananda . However, I 
think that regularity phenomena are pursued more frequently, and are generally 
accorded greater importance, by psychological researchers. Furthermore, not all 
phenomena have to be detected. As Cummins remarked, phenomena that take 
the form of capacities are often known to us. In cases such as these, the task 
is to not to discover the phenomena but to provide an informative specification 
of them. 

 5.   There are a few exceptions, most obviously when scientists look to explain 
why a study does not give the expected results, for example, when they suspect 
that the data are erroneous because they are produced by a faulty instrument. 

 6.   In this chapter, I give little attention to the problem of phenomena decay. 
However, I do point out that a host of meta-analytic findings supports the view 
that the behavioral sciences have produced a good number of durable generaliza-
tions. It seems that the Flynn effect has ended (and may be in decline) in a few 
advanced nations ( Teasdale  &  Owen, 2005 ). However, the effect has persisted 
for some decades and continues to do so in many countries. Therefore time 
enough has passed to construct plausible explanatory theories of this effect. 

 7.   Of course, that is not to say that single events, such as the extinction of the 
dinosaurs, are not the objects of serious scientific investigation. 

 8.   This will not always be the case in science. As Denny Borsboom pointed out 
to me, self-organizing complex systems produce phenomena that result from 
many causal influences. 

 9.   In presenting this example,  Bogen and Woodward (1988)  referred to Ernest 
 Nagel ’ s (1961)  discussion of the melting point of lead and indicated a number 
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of errors in his understanding that resulted from not clearly adhering to the 
data-phenomena distinction. 

 10.    Bogen (2010)  provides an example of phenomena detection where conclu-
sions drawn about brain function analyze pink noise, understood as din, without 
extracting a signal from it. It is noise, understood as interference, from which 
signals are extracted. 

 11.   With one exception, the strategies considered here are those discussed by 
 Woodward (1989) .  Franklin (1990)  provided an instructive discussion of an 
overlapping set of strategies for validating experimental results in physics. Some 
of his procedures also involve the appeal to explanatory theory. 

 12.   Strictly speaking, it is misleading to speak of common or intervening causes 
as  spurious  correlations. What we call  spurious correlations  are really genuine 
correlations, so their existence can hardly be denied by claiming that they are 
brought about by some underlying third variable ( Haig, 2003 ). 

 13.   For Chatfield, the initial analysis of data has much in common with Tukey ’ s 
approach to exploratory data analysis, but it is more inclusive. Because these two 
related data analytic endeavors serve different primary functions (data screening 
and pattern detection, respectively), I restrict initial data analysis to the prelimi-
nary scrutiny of data that occurs before exploratory data analysis (in Tukey ’ s 
sense) is undertaken. 

 14.    Behrens and Yu (2003)  suggested that the inferential foundations of explor-
atory data analysis lie in the notion of abduction. However, exploratory data 
analysis is a descriptive pattern detection process that is a precursor to the in-
ductive generalizations involved in phenomena detection. By contrast, abductive 
inference is employed in the generation of theories that are introduced to explain 
empirical phenomena. Behrens and Yu ’ s suggestion conflates description and ex-
planation in this regard. That said, one should appreciate that, when describing 
phenomena, some of the background knowledge presupposed will be the product 
of abductive reasoning. The true score theory presupposed in determining the 
melting point of lead, which was mentioned earlier, is a case in point. 

 3   Theory Generation: Exploratory Factor Analysis 

 1.   An important part of this controversy is the contested nature of the relation-
ship between the methods of exploratory factor analysis and principal compo-
nents analysis. It is not uncommon in the behavioral sciences to claim that 
exploratory factor analysis and principal components analysis are similar, con-
ceptually speaking, but different in their mode of calculation. I think that this 
view of the relation between the two methods is mistaken. It stems from ignoring 
the relevant interpretive dimension of factor analytic methodology and regarding 
exploratory factor analysis as a data reduction method on a par with principal 
components analysis. However, the interpretive part of factor analytic methodol-
ogy makes clear that exploratory factor analysis is a genuine latent variable 
method, whereas principal components analysis is a method of data reduction. 
Factor analysis and principal components analysis are, roughly speaking, com-
putationally similar, but conceptually different ( Bartholomew, 2004 ). 
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 2.   Two less-noticed, but still important, parts of the controversy about the meth-
odological status of exploratory factor analysis are the claims that standard 
factor analysis presupposes that genuine measurement of quantitative structure 
is possible, and the method ’ s conclusions apply to populations, not individuals. 
These claims deserve more consideration by factor analysts than they currently 
receive. A researcher who accepted the force of these claims could defensibly 
employ a nonmetric form of dynamic factor analysis. This would give the 
researcher a person-centered method that also avoided the problem of assuming 
the existence of quantitative structure. 

 3.   My principal reason for assigning a theory generation role to exploratory 
factor analysis is based on the related beliefs that factors are best regarded as 
latent common causes and that inference to such causes is abductive in nature 
( Haig, 2005b ). 

 4.   The term  entity  is used as a catchall ontological term to cover a miscellany 
of properties that include states, processes, and events. Although in the first 
instance existential abductions in exploratory factor analysis are about properties 
expressed as the values of variables, not all existential abductions need take this 
form. 

 5.   The  positive manifold  is a term that is sometimes used to refer to the striking 
and well-established fact that almost all different tests of ability correlate posi-
tively with one another to a significant degree. Despite its historical link to 
Spearman ’ s theory of general intelligence, the positive manifold can be taken as 
evidence for the existence of multiple-factor theories of intelligence. 

 6.   The phrase  “ the knowing subject ”  comes from Karl  Popper (1972) , who 
advocated an objective theory of scientific knowledge that did not refer to cogni-
tive agents and their mental states. Popper ’ s antipsychologism stands opposed to 
a plausible moderate psychologism in which psychology and cognitive science 
more generally play an important role in helping us understand how methods 
are apt for humans as inquirers. 

 7.   Most methods contribute either to claims about empirical phenomena or to 
claims about explanatory theory and are not mixed methods in this sense. Ex-
ploratory factor analysis is unusual in this regard. Second, it is the custom in 
contemporary methodology to regard mixed methods as a research strategy that 
combines both quantitative and qualitative research methods. However, I think it 
is important to understand that a given method will often have both quantitative 
and qualitative dimensions. Exploratory factor analysis is a good case in point. 
Although it is standardly viewed as a multivariate statistical method, and there-
fore quantitative in nature, its centerpiece, the principle of the common cause, can 
effectively be understood in qualitative terms. 

 4   Theory Development: Analogical Modeling 

 1.   Popper ’ s falsificationist variant of the hypothetico-deductive method also 
eschews models. Like the logical positivists, Popper took models to be heuristic 
devices that belonged in the context of discovery where, in his understanding of 
that context, heuristics could not play a genuine methodological role. 
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 2.   Actually, the distinction here is threefold: the mathematical equations of 
exploratory factor analysis make up a syntactical model; the model ’ s formal 
structure is given a methodological interpretation, for example, when the latent 
variables of the method are considered as markers for theoretical entities; and 
the methodologically interpreted latent variables are then given a semantic inter-
pretation in discipline-theoretic terms.  

 3.   My perspective on analogical modeling is influenced by Rom Harr é  ’ s work 
on the topic (e.g.,  Harr é , 1976 ,  1988 ,  2004 ); however, we differ on some points. 
Unlike Harr é , I explicitly construe analogical modeling as an abductive undertak-
ing because of its strong concern with explanation. I also distinguish between 
existential abduction and analogical abduction, where the former is used initially 
to generate hypotheses and theories, and the latter is used to further their devel-
opment. Harr é  assigns analogical models a role in the generation of hypotheses 
as well as in their development, a practice that I acknowledge does occur in 
science (in fact, I stated in chapter 3 that this happened to an extent in the early 
formulation of Spearman ’ s theory of general intelligence). Further, I agree with 
Harr é  that both critical description and the construction of explanatory theories 
are major dimensions of science. However, unlike Harr é , I rate critical description 
just as highly as theory construction, as my heavy emphasis on phenomena detec-
tion in ATOM attests. Oddly, the recent upsurge of interest in models by philoso-
phers of science gives little recognition to Harr é  ’ s work. 

 4.   My treatment of the scientific strategy of analogical modeling has an obvious 
methodological focus. However, the topic of analogical reasoning has attracted a 
great deal of attention in cognitive psychology in the last thirty years. The chief 
value of the resulting literature is that it has extended our understanding of analo-
gies from a concern with arguments to inference more broadly. Thus we now have 
a considerable amount of knowledge about how human agents reason when they 
employ analogies. A number of psychological theories recommend themselves 
for consideration, and the best of them importantly extend our epistemological 
knowledge of the knowing subject. For example, my treatment of the methodol-
ogy of analogical modeling is broadly consistent with, and would be enriched by, 
linking it to  Holyoak and Thagard ’ s (1995)  multiconstraint theory of analogy. 
Their theory portrays the creative problem-solving process of analogical reason-
ing as a mapping between a source and a subject via the multiple constraints of 
similarity, purpose, and structure. Relatedly, for them, the epistemic justification 
of analogical reasoning takes the form of analogical coherence, which has some 
similarities with explanatory coherence. This computational theory of analogi-
cal reasoning contributes positively to our understanding of the scientist as an 
analogical thinker. 

 5   Theory Appraisal: Inference to the Best Explanation 

 1.   Not everyone agrees that the Semmelweis case exemplifies inference to the 
best explanation. Carl  Hempel (1966)  took it as an illustration of the hypo-
thetico-deductive method. Others have likened it to Mill ’ s inductive method of 
difference. 
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 2.   The spelling of  Harmany  is deliberate. It is a tribute to Gilbert  Harman (1965) , 
who coined the term  inference to the best explanation  and introduced the cor-
responding idea to the modern philosophical literature. 

 3.   The philosophical literature on theory appraisal sometimes distinguishes 
between empirical and superempirical criteria. Predictive accuracy is the standard 
criterion of empirical adequacy, and explanatory power is often mentioned as an 
example of a superempirical virtue. However, within the theory of explanatory 
coherence, explanatory breadth is both an empirical and a superempirical crite-
rion; it is simultaneously a measure of empirical adequacy and explanatory 
power. 

 4.   Although the Bayesian approach seldom figures in the appraisal of psychologi-
cal theories, it does often form a template for judging the rationality of laypeople 
in solving hypothesis-testing problems. By contrast, the model for judging the 
rationality of hypothesis testing undertaken by psychological scientists is pro-
vided by the hypothetico-deductive method plus null hypothesis significance 
testing. This disparity needs a justification. 

 5.   In its strongest form (e.g.,  Howson  &  Urbach, 2006 ), Bayesianism uses prob-
ability theory in an attempt to illuminate scientific reasoning generally. In this 
chapter, I focus on the Bayesian approach as it applies to the appraisal of scien-
tific theories only. 

 6.   Of course, this does not prevent a defender of inference to the best explana-
tion from acknowledging that Bayesianism can be used in contexts such as legal 
reasoning and medical diagnosis, where the relevant probabilistic information is 
often available. 

 6   Conclusion 

 1.   A reasonable requirement of an adequate theory of inquiry is that it can solve 
the Meno paradox. Happily, the constraint-inclusion view of problems enables 
us both to formulate and to solve this age-old dilemma — a dilemma that some 
regard as the foundation problem of inquiry ( Nickles, 1981 ; see also  Simon, 
1977 ). This paradox, which is sometimes called the  learning paradox , questions 
the very possibility of inquiry. It claims that we cannot inquire either about what 
we know or about what we don ’ t know. That is, if we know, we have no need 
to inquire; and if we do not know, we cannot inquire. But inquiry is neither 
trivial nor impossible: we can solve the Meno paradox by knowing what counts 
as an acceptable answer, without having an acceptable answer available. The 
constraint-inclusion view of problems affords just this possibility. This is because 
our significant research problems will not be fully structured and therefore will 
not constitute complete descriptions of their solutions. Yet we articulate our 
problems in terms of their constituent constraints, and these constraints do serve 
to direct us toward their problem ’ s respective solutions. When we fill out the 
structure of our problems by progressively including relevant constraints, our 
problems better point the way to their own solutions. So by solving the Meno 
paradox, a constraint-inclusion account of problems indicates in a general way 
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how inquiry is possible. And by deploying this account of problems within 
ATOM, we are able to say how inquiry can proceed for a broad range and variety 
of cognitive pursuits. I note here that the Meno paradox has other solutions, 
some of which use ideas about abductive reasoning. 

 2.   The use of reliability as a mode of justification or validation differs from the 
normal psychometric practice in which reliability and validity are presented as 
contrasts. However, the use of consistency tests to validate knowledge claims on 
reliabilist grounds is widespread in science. 

 3.    Charmaz (2000)  has provided an explicitly constructivist depiction of 
grounded theory that breaks with the  “ objectivism ”  of Glaserian grounded 
theory. From a constructivist perspective, social reality is not revealed so much 
as socially constructed in the course of inquiry. Further,  Rennie (2000)  offers a 
hermeneutic interpretation of grounded theory method that he believes is able 
to provide an understanding of the meaning of text and reconcile the tensions 
that exist between realism and relativism in orthodox accounts of the method. 

 4.    Strauss (1987)  depicts the discovery of grounded theory, and theory construc-
tion in science more generally, as a sequence of induction, deduction, and verifi-
cation. However, given the pragmatist influence on the origins of grounded 
theory method, and given that Strauss mentions Peirce ’ s idea of abduction, it is 
surprising that he does not see its methodological relevance to the generation of 
grounded theory. 

 5.   Although grounded theory is almost universally regarded as a perspective on 
qualitative research, it can be applied to quantitative research. Both Glaser and 
Strauss acknowledged this possibility in their early writings on grounded theory 
method. A little-recognized fact is that the first piece of grounded theory research, 
carried out by  Glaser (1964)  in his examination of the professional careers of 
organizational scientists, was quantitative in nature. 

 6.   More recently,  Romeijn and Williamson (2013)  examined the role that inter-
ventions can play in resolving the problem of statistical underdetermination in 
exploratory factor analysis. I agree with the authors that this differs from my 
focus on abduction and theoretical underdetermination. However, I am skeptical 
of their claim that intervention data can replace the practice of using theoretical 
criteria to resolve the problem of theoretical underdetermination. 

 7.   Cameron Ellis and I recently did a content analysis of a representative sample 
of sixteen current undergraduate research methods textbooks in psychology. The 
first chapter in these books standardly addresses the topics of scientific method 
and the nature of science. However, none of them inform the reader about major 
theories of scientific method, such as those outlined in chapter 1, and the related 
methodological literature. These texts are the principal source for psychology stu-
dents ’  formal learning about scientific method, so it is disturbing that their treat-
ment of scientific method is so poor. 
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