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The attempt to understand and improve methods, and to do so via theorizing
them, is at the center of an intelligently evolving cognition.

—Clifford Hooker (1987, 291)

Above all, if a raised standard of education in methods is to be achieved, it is
necessary to engender, beyond any knowledge of particular skills and formulae
as such, a perspective as to what methods are most appropriate to various areas
and occasions.

—Raymond Cattell (1966, 5)
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Preface

Although modern science is made up of many parts, scientific method is
its centerpiece. The centrality of method to science stems from the fact
that it provides scientists with the primary form of guidance in their quest
to obtain knowledge about the world. As fallible inquirers, scientists face
immense challenges in their efforts to learn about the complexities of
nature. In good part, these challenges are met through the use of methods,
which provide scientists with the cognitive assistance that they need to
undertake successful inquiry.

However, despite its undoubted importance, scientific method receives
less considered attention than it deserves, from both scientists and educa-
tors. Of course, scientists take method seriously, but I believe that they
do not take it seriously enough. Scientists themselves, including psycholo-
gists, learn about research methods and how to use them to conduct their
research. However, the nature of this learning, and of the instruction they
receive about how to employ these methods, is better described as a mix
of training and indoctrination than as a genuine education designed to
provide a critical, in-depth understanding of the methods. Although
professional science educators sometimes promote the importance of the
epistemological foundations of scientific method, the influence of this
source of learning on the regular teaching of research methods is minimal.
Psychology, which provides extensively in its curriculum for teaching
research methods, uses textbooks that make little or no effort to inform
students in depth about the nature of scientific method. Nor does its
curriculum foster a critical appreciation of the various research methods
that its textbooks deal with. Consequently both psychological scientists
and psychology students tend to have a limited understanding of scien-
tific method, which in turn contributes to a misuse of research methods
and a suboptimal level of scientific literacy.
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I think that the missing key in this educational failure is scientific
methodology. Methodology is the domain officially charged with foster-
ing the evolution and understanding of scientific methods, and it is our
official repository of knowledge about those methods. Scientific meth-
odology is not the exclusive domain of any particular discipline. Rather,
it is a central part of cognitive theory, which is itself regarded as an
interdisciplinary endeavor. It spans the domains of statistics, the philoso-
phy of science, the sociology of science, the various disciplines of cogni-
tive science, and more; but it is reducible to none of them. As a practical
endeavor, methodology is concerned with the mutual adjustment of
means and ends. It judges whether methods are sufficiently effective for
reaching certain goals. But methodology is also critically aim oriented
and considers what goals the research enterprise should pursue. Clearly
no single discipline can realistically aspire to cover all the tasks of
methodology.

The methodological literature in psychology is dominated by the field
of statistics. Quantitative methods receive the large majority of attention
in both research methods textbooks and research practice. Qualitative
research methods are regarded as a poor cousin and remain on the
margins of methodology, although there are signs that they are gaining
some acceptance. As important as statistical methods are to science,
they cannot be all that there is to scientific method. Consequently the
clarion call for statisticians to be the purveyors of scientific method
(e.g., Marquardt, 1987) is inappropriate. The guiding assumption of
this book is that treating scientific method with the seriousness it
deserves requires taking scientific methodology seriously. I do this by
giving special consideration to behavioral science methodology, the phi-
losophy of science, and statistical theory. Thus the book is interdisciplin-
ary in nature.

The philosophy of science figures more prominently in this book
than is usual for methodology texts. The reason for this emphasis is
that contemporary philosophy of science contains an array of important
methodological insights that are impossible to ignore when coming to
grips with scientific method. In recent years, philosophy of science
has increasingly sought to understand science as it is practiced, and
although it has much work to do in this regard, it now has important
things to say about how science is, and should be, conducted. As part
of this concern with scientific practice, philosophers of science have
given increased attention to research methods in science. A positive
development in this regard has been the focus on the methodology of
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experimentation over the last thirty years, although the methodology of
theory construction remains the dominant focus in the philosophy of
science.

Of late, philosophers of science have also shown a willingness to deal
with methodological issues in sciences other than physics. Biology has
been the major beneficiary, although psychology has received some philo-
sophical attention. There is, then, a developing literature in contempo-
rary philosophy of science that can aid both our understanding and our
use of research methods and strategies in psychology (e.g., Trout, 1998).
At the same time, a small number of theoretically oriented behavioral
and social science methodologists have produced work on the conceptual
foundations of research methods that helps illuminate those methods.
Thus the work of both professional philosophers of science and theoreti-
cal scientists should be included in a philosophical examination of behav-
ioral research methods.

Three major philosophies of science are of particular relevance to
psychology: empiricism, social constructionism, and scientific realism
(Greenwood, 1992; Manicas & Secord, 1983). Nineteenth-century
British empiricism had a major influence on the development of British
statistics in the first half of the twentieth century (Mulaik, 1985). The
statistical methods developed in that intellectual milieu remain an impor-
tant part of psychology’s statistical research practice. For example, Karl
Pearson’s product moment correlation coefficient was taken by its
founder to be the quantitative expression of a causal relation viewed in
empiricist terms. Similarly, Ronald Fisher’s endorsement of inductive
method as the proper view of scientific method stemmed from a com-
mitment to the empiricism of his day. Even in today’s postpositivist
philosophical climate, authors of research methods textbooks sometimes
portray quantitative research as essentially positivist in its empiricist
commitments (see Yu, 2006). The traditional empiricist outlook is much
too limiting because it restricts its attention to what can be observed,
and regards theories merely as instruments that organize claims about
observables.

For their part, qualitative methodologists tend to bolster their pre-
ferred conception of qualitative research by comparing it with an unflat-
tering positivist picture of quantitative research. At the same time, they
frequently adopt a philosophy of social constructionism that is expressed
in an implausibly strong form. This form is opposed to the traditional
notions of truth, objectivity, and reason and maintains that our under-
standing of the world is determined by social negotiation. Such a view
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of social constructionism tends to be employed by those who are opposed
or indifferent to quantitative methods. It is a view at odds with the
philosophical outlook adopted in this book.

In what follows, I adopt a scientific realist perspective on research
methods. Although the subject of considerable debate, and opposed by
many antirealist positions, scientific realism is the dominant philosophy
of science today. In addition, a commonsense version of realism seems
to be the tacit philosophy of most working scientists. With its increas-
ingly heavy emphasis on the nature of scientific practice, the philosophy
of scientific realism is becoming a philosophy for science, not just a
philosophy of science. Scientific realism is, in fact, a family of positions,
and in chapter 1, I sketch a view of realism that I think is appropriate
for psychology. Scientific realism boasts a rich conception of methodol-
ogy, which can be of considerable help in understanding and guiding
behavioral science research. It is a methodology that is at once natural-
istic, problem focused, and aim oriented. It also promotes both generative
and consequentialist reasoning, and the importance of justifying knowl-
edge claims on both reliabilist and coherentist grounds. The influence of
this conception of methodology occurs throughout the book.

In this book, I take psychology’s commitment to scientific method very
seriously. I do this principally by constructing a broad theory of scientific
method, which is genuinely informed by insights in contemporary scien-
tific methodology and speaks to the conduct of psychological research.
This account of method I call the abductive theory of method (hereafter
ATOM) in recognition of the importance it assigns to explanatory rea-
soning. In contrast to the popular hypothetico-deductive method, ATOM
portrays research as a bottom-up process comprising two broad phases.
The first phase involves the detection of phenomena, such as empirical
generalizations. The second phase involves the construction of explana-
tory theories to explain claims about the phenomena. The book draws
from the “new experimentalism” (Ackerman, 1989) in philosophy of
science to help illuminate the process of phenomena detection. It also
examines in detail different abductive methods of theory construction,
drawing, where appropriate, from the varied philosophical literature on
abductive reasoning: the widely used method of exploratory factor analy-
sis is presented as an abductive method of theory generation; the strategy
of analogical modeling is presented as an abductive approach to theory
development; and the neglected method of inference to the best explana-
tion, particularly the theory of explanatory coherence, is presented as an
appropriate method of theory appraisal.
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An important feature of ATOM is that it functions as a broad frame-
work theory within which a variety of more specific research methods
can be located and employed. A coherent treatment of those methods
is enhanced by placing them within the framework of ATOM. In turn,
the specific methods help give ATOM a good deal of its operational
detail. A number of the specific methods I refer to are well known to
behavioral scientists, but some are not. Psychology has tended to empha-
size data analytic methods at the expense of methods of theory construc-
tion. However, ATOM assigns equal importance to the two classes of
method.

A subsidiary focus of this book is a concern with science education
in relation to behavioral research methods. It follows John Dewey’s
(1910) lead and suggests that we adopt an inquiry-oriented conception
of education that accords an important place to scientific method. The
narrow nature of, and uncritical approach to, the teaching and use of
research methods in psychology are highlighted in some of the chapters.
The need to teach for a more critical understanding of research methods
is a natural consequence of acknowledging the importance of the domain
of research methodology. In light of the requirements of a genuine liberal
education, I make constructive proposals for reforming the methods cur-
riculum. The nature of ATOM and its methodological foundations shape
many of these curriculum proposals.

Chapter 1 introduces the topic of scientific method by providing some
background material to better appreciate the more focused discussion of
method in the ensuing chapters. I begin by briefly considering the idea
of scientific method and different criticisms that have been leveled against
it. Next I outline and provisionally assess four prominent theories of
scientific method. I then move to a consideration of the nature of scien-
tific methodology before providing a selective overview of the key ele-
ments of the philosophy of scientific realism. Finally, I present a brief
overview of ATOM to provide a conceptual framework for locating and
better understanding the various methods and strategies examined in the
book.

Chapter 2 draws from the new experimentalism in the philosophy of
science so as to reconstruct the important process of phenomena detec-
tion as it applies to psychology. In doing so, I propose a four-stage model
of data analysis. The model begins with the initial examination of data,
proceeds in turn through exploratory and confirmatory data analytic
phases, and finishes with the stage of constructive replication. The three-
fold distinction between data, phenomena, and explanatory theory is
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drawn, and its implications for understanding the nature of psychological
science are spelled out.

Chapter 3 considers the abductive nature of theory generation by
examining the logic and purpose of the method of exploratory factor
analysis. I argue that the common factors that result from using this
method are not fictions but latent variables, which are best understood
as genuine theoretical entities. I support this realist interpretation of
factors by showing that exploratory factor analysis is an abductive gen-
erator of elementary theories that exploits an important heuristic of
scientific methodology known as the principle of the common cause.

Science uses many different approaches to modeling. In chapter 4, I
selectively examine one important approach to scientific modeling, ana-
logical modeling. The strategy of analogical modeling is adopted by
ATOM as its chief means of theory development. Accordingly, I spell out
here the structure of analogical models and the use of analogical abduc-
tive reasoning both to expand and to evaluate the plausibility of models.

Chapter 5 recommends the use of inference to the best explanation
for evaluating the worth of theories in psychology. I suggest that it is a
more appropriate account of theory appraisal than both the popular
hypothetico-deductive method and the widely heralded Bayesian
approach. I discuss a number of different explications of inference to the
best explanation, in particular the theory of explanatory coherence,
which is the most detailed extant explication of inference to the best
explanation.

The concluding chapter rounds out the extended characterization of
ATOM. First I outline an account of the nature of research problems,
and then I discuss the nature and limits of ATOM. This is followed by
applications of ATOM to grounded theory method and to clinical rea-
soning. Toward the end of the chapter, I offer some thoughts about the
importance of methodology for understanding research methods. The
book concludes with some brief remarks about the future prospects for
ATOM.

The methodology of the behavioral sciences is a subject of relative
neglect in professional philosophy of science. Thus my hope is that this
book will be welcomed by those in the philosophical community who
want to learn about an important set of methodological practices in one
of the interesting special sciences. Conversely, I would like to think that
the book contains material that will enable psychological researchers to
deepen their conceptual appreciation of a variety of research methods
and associated methodological matters and thereby contribute to the
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conduct of sound psychological research. Although the book’s primary
focus is on psychology, I believe its contents are relevant to the behavioral
sciences more generally.

Finally, I draw the reader’s attention to two matters. First, it is some-
times important to distinguish between scientific method as a theoretical
understanding of an inquiry procedure and scientific method as a mate-
rial practice. Given the book’s primary concern with ATOM, it mostly
focuses on a theoretical understanding of method. Second, T have endeav-
ored to keep abbreviations to a minimum. However, for convenience, I
abbreviate the abductive theory of method as ATOM throughout the
book. I also use abbreviations for exploratory factor analysis and infer-
ence to the best explanation in their respective chapters.
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1 Method, Methodology, and Realism

Epistemology without contact with science becomes an empty scheme. Science
without epistemology is—insofar as it is thinkable at all—primitive and muddled.

—Albert Einstein (1949, 683-684)
1.1 Introduction

Modern science is a complex human endeavor comprising many parts.
It articulates aims that it seeks to realize; it employs methods to facilitate
its investigations; it produces facts and theories in its quest to obtain an
understanding of the world; and it is shaped by the institutions within
which it is embedded. Although all these dimensions are essential to a
full-bodied characterization of science, method is arguably its most
important feature. This is because everything we know in science is
acquired in good part through the application of its methods, whether
it be our knowledge of substantive matters, values, or the methods them-
selves. Method really matters to science.

Although method is vitally important to the conduct of science, dis-
cussion of the topic is not particularly fashionable. There are a number
of possible reasons for this. One is that some people think there is no
such thing as scientific method, or at most that there is very little to
scientific method; others think it cannot be given an illuminating char-
acterization; and still others think it is a complex investigative skill that
is tacitly acquired by scientists in the course of learning their craft.
Attitudes such as these have some currency because scientists themselves
learn very little about scientific methodology in their formal science
education. Instead they tend to acquire an operational facility with a
small number of “tried and proven” methods that have been judged to
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work well in their own specialties. The result is that a number of mis-
taken ideas about method have gained a foothold in our common think-
ing about science.

A further reason for the devaluing of methodological knowledge is
that it is often walled off within specific disciplines and so loses its inter-
disciplinary integrity. This devaluation seems to be exacerbated by a
territoriality, where specialists in particular subjects, principally the phi-
losophy of science and statistics, sometimes proclaim or assume guard-
ianship of scientific method itself. This is not as it should be, because
methodology properly understood and practiced is a strongly interdisci-
plinary undertaking. Important though the insights of philosophers of
science and statisticians about scientific method are, to confine one’s
appreciation of the topic to what they say about it is to ignore important
insights about method offered by other disciplines.

Given the complexity of scientific method implied in this chapter’s
epigraph, it is appropriate to present some relevant background material
to assist us in articulating and understanding some of that complexity.
As noted in the preface, I do this by considering a variety of ideas about
method, methodology, and realist philosophy of science. An overview of
ATOM sets the scene for its extended treatment in the following
chapters.

1.2 Criticisms of the Idea of Scientific Method

Influenced by the founders of modern scientific method, Rene Descartes
and Francis Bacon, seventeenth-century methodologists understood sci-
entific method as a universally applicable logical procedure that was at
once mechanical, rule based, ahistorical, content neutral, and a priori
(Nickles, 2009). As such, it was simultaneously thought to be a method
of discovery and justification that, upon its correct application, guaran-
teed the production of knowledge of both the surface features and deep
structures of nature.

Not surprisingly, this fanciful conception of scientific method has been
subjected to strong and prolonged attack by scientists, philosophers of
science, and science studies specialists. Modern methodologists have
strongly challenged the features of scientific method mentioned by
Nickles (2009), and more, leaving us with diminished, and still disputed,
conceptions of scientific method. Larry Laudan (1981) tells a suggestive
story of how in the late eighteenth century and the early nineteenth
century, both scientists and methodologists largely gave up on the
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Baconian conception of inductive method in favor of the method of
hypothesis, or the hypothetico-deductive method. Laudan gives two
reasons for this general shift: the realizations that a fail-safe method that
produced infallible knowledge could not be had, and that inductive
method is unable to postulate hidden causes about material things.!

The idea that there is a scientific method characteristic of all scientific
inquiry has been attractive to many scientists, and some methodologists
still speak in favor of some or other version of zhe scientific method.
Because of the historical importance of the inductive and hypothetico-
deductive conceptions of inquiry, and their alleged powers to produce
knowledge, it is not surprising that this idea has seemed plausible.

One prominent modern candidate for the title of the scientific method
is Karl Popper’s (1959) falsificationist construal of the hypothetico-
deductive method, understood as a general strategy of conjecture and
refutation. Presented as an all-purpose account of method, it promises
to unify method within and across the natural and social sciences. Pop-
per’s method has the additional attraction of providing the demarcation
criterion of falsifiability for distinguishing scientific practice from pseu-
doscientific, as well as nonscientific, practice. Despite its endorsement by
a number of prominent scientists (some Nobel prize winners among
them), Popper’s account of method is less influential in science than is
commonly believed. This is especially true of psychology (Uchino,
Thoman, & Byerly, 2010).> Moreover, philosophers of science have
largely rejected Popper’s falsificationist theory of science and its depic-
tion of scientific method (e.g., Nola & Sankey, 2007). This rejection
includes the view that a single criterion, such as falsifiability, cannot
effectively demarcate science from nonscience.

Despite the idea’s popularity, there has been a growing realization that
the existence of one true account of scientific method is untenable. The
majority view today is that there can be no fixed, universal account of
scientific method appropriate at all times for all sciences. A quick inspec-
tion of different disciplines such as physics, biology, and economics
reveals a diverse array of methodological practices. This holds for psy-
chology as well, although a good deal of its research practice has a
disquieting sameness about it. The coexistence of the four major theories
of scientific method to be canvassed shortly, and the broad spectrum of
methodological concerns shown by ATOM, attest to the existence of
numerous different scientific methods. In short, the claim that science
employs various accounts of scientific method should be accepted
immediately.
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An arresting criticism of scientific method was put forward by Popper,
who was fond of declaring that scientific method does not exist. By this
he meant that “(1) There is no method of discovering a scientific theory.
(2) There is no method of ascertaining the truth of a scientific hypothesis,
i.e., no method of verification. (3) There is no method of ascertaining
whether a hypothesis is ‘probable,” or ‘probably true’” (Popper, 1983, 6).
However, these claims are really part of Popper’s reasons for rejecting an
inductive conception of scientific method and adopting a falsificationist
construal of the hypothetico-deductive method in its place. The claims
do not address other accounts of scientific method. Thus the three asser-
tions that Popper thinks speak against the idea of scientific method
would likely be accepted by many who adopted alternative conceptions
of scientific method. For example, advocates of a modern inductive con-
ception of scientific method do not regard it as a strong discovery
method; most scientists take scientific method to be concerned with the
justification of knowledge claims, and not with directly ascertaining their
truth; and although Bayesian methodologists reject the third claim, most
scientists do not assign probabilities to hypotheses and theories. In short,
Popper was not really against the idea of scientific method, only one
limited conception of scientific method.

In a book provocatively titled Against Method (1975), Paul Feyera-
bend presented a different criticism of scientific method. He railed against
the idea that there is or can be one fixed method for all time, arguing
that no methodological rules exist that have not been broken at some
time or other in the interests of genuine scientific progress. Thus, for
Feyerabend, the only rule that does not inhibit progress is the meta-rule
“Anything goes.” His argument has been endorsed by a number of com-
mentators who want to de-emphasize the importance of scientific method.
However, Feyerabend’s criticism speaks against the fixity of method-
ological rules only. Nothing in his writing counsels against the flexible
use of a variety of different methodological rules that are revisable in the
light of experience and reason.

The criticisms of scientific method just considered are easily turned,
largely because they present scientific method in an unflattering light.
None of them consider conceptions of scientific method that are informed
by the contemporary literature on scientific methodology. Much of this
literature accepts the tenability—indeed, the importance—of the idea of
scientific method, although it is replete with criticisms of the various
major accounts of scientific method.

A number of prominent scientists have also commented on scientific
method in ways that devalue its very idea. Two well-known criticisms
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are those of the Nobel laureates Percy Bridgman and Richard Feynman.
Bridgman, the father of the philosophy of operationism, forthrightly
asserted that “the scientific method, as far as it is a method, is nothing
more than doing one’s damnedest with one’s mind, no holds barred”
(Bridgman, 1955, 535). This comment is cryptic in the extreme and does
not differentiate scientific method from other types of method or from
nonmethodic endeavors. Feynman also cryptically declares that scientific
method “is based on the principle that observation is the judge of whether
something is so or not. . . . Observation is the ultimate and final judge
of the truth of an idea” (Feynman, 1998, 15). Feynman’s comment,
however, exaggerates the importance of observation in science and says
nothing about the procedural dimension of scientific method. Although
Bridgman and Feynman say different things about scientific method,
neither of them characterizes it in an informative manner or acknowl-
edges the sizable body of literature on scientific method that has accu-
mulated since the time of Galileo (see, e.g., Gower, 1997). Although their
pronouncements are often invoked by those who want to deflate the idea
of scientific method, their remarks can hardly be taken as an informed
guide to the topic. Despite their brevity, my remarks should suggest that
these sorts of criticisms of the idea of scientific method carry little weight.
Further, I think that the existence of major theories of scientific method
attests to the notion that there is a great deal to the idea of scientific
method.

1.3 Four Theories of Scientific Method

Modern scientific methodology has given considerable attention to a
variety of different theories of scientific method. I now briefly review
four of the most prominent theories: the inductive method, the hypo-
thetico-deductive method, Bayesian hypothesis testing, and inference to
the best explanation. Each has been endorsed by different methodologists
as the best account of scientific method for scientists to adopt. However,
I believe that none of them deserves a dominant position in the research-
er’s methodological armory. Rather, they should be thought of as local
domain-specific methods.3

1.3.1 Inductive Method

The idea that scientific method involves inductive reasoning goes back
at least to Aristotle and was given heavy emphasis, though in different
ways, by Francis Bacon and John Stuart Mill. Inductive reasoning takes
various forms. For example, it is found in the fashioning of statistical
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generalizations, in a form of reasoning by analogy, in the Bayesian assign-
ment of probabilities to hypotheses, in the strategy of successively elimi-
nating implausible hypotheses, and in the reasoning involved in moving
from confirmed predictions to hypotheses in the standard formulation
of the hypothetico-deductive method.

Historically speaking, the most popular inductive approach to scien-
tific method is a simple form of inductivism (e.g., Chalmers, 2013).
According to this account of method, science begins by securing observed
facts, which are collected in a theory-free manner. These facts provide a
firm base from which the scientist reasons “upward” to hypotheses, laws,
or theories. The reasoning involved takes the form of enumerative induc-
tion and proceeds in accordance with some governing principle of induc-
tive reasoning. As its name suggests, enumerative induction is a form of
argument in which the premises count a number of observed cases from
which a conclusion is drawn, typically in the form of an empirical gen-
eralization. However, enumerative induction can also take the form of a
prediction about something in the future or a retrodiction about some-
thing in the past. The governing principle for an enumerative induction
to a generalization can be stated informally as follows: “If a proportion
of A’s have been observed under appropriate conditions to possess prop-
erty B, then infer the same proportion of all A’s to have property B.” This
inductive principle can be taken to underwrite the establishment of sta-
tistical generalizations.

The simple account of inductive method has been criticized in various
ways, although the criticisms are mostly directed at extreme versions of
the method—versions claiming that observed facts can be known infal-
libly, that observations are made in an entirely theory-free manner, and
that empirical generalizations can be secured through the use of a strongly
justified principle of induction. However, this simple view of inductive
method can be amended and defended in a moderate form as follows:
observed facts can be established reliably, if fallibly; theory can be,
because it has to be, used to guide observations; theoretical terms can be
used to report observational statements without threatening the reliabil-
ity of those statements; and principles of induction can be given an
adequate justification on pragmatic grounds.

In psychology, the radical behaviorism of B. F. Skinner (1956, 1984)
is a prominent example of a research tradition that uses an attractive
nonstatistical inductive conception of scientific method. The major goals
of radical behaviorist research are first to detect empirical generalizations
about learning and then to systematize those empirical generalizations
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by assembling them into nonexplanatory theories. Murray Sidman’s
Tactics of Scientific Research (1960) is an instructive radical behaviorist
account of the inductive methodology of this process. The Bayesian
approach to hypothesis testing, which is slowly gaining some acceptance
in psychology, can also be regarded as a sophisticated variant of inductive
method.

1.3.2 Hypothetico-Deductive Method

Undoubtedly the most popular account of scientific method is the hypo-
thetico-deductive method, which has been the method of choice in the
natural sciences for more than 150 years (Laudan, 1981). This method
has come to assume hegemonic status in the behavioral sciences, which
have often placed a heavy emphasis on testing hypotheses in terms of
their predictive success. In psychology, the pervasive use of traditional
statistical significance test procedures is routinely embedded in a hypo-
thetico-deductive structure.

The hypothetico-deductive method is characteristically described in
one of two ways. According to the more popular account, the scientist
takes a hypothesis or a theory and tests it indirectly by deriving from it
one or more observational predictions, which are amenable to direct
empirical testing. If the predictions are borne out by the data, then that
result is taken as a confirming instance of the theory in question. If the
predictions fail to square with the data, then that fact counts as a dis-
confirming instance of the theory. The other account comes from Karl
Popper (1959). As noted earlier, he construes the hypothetico-deductive
method in falsificationist terms. According to this rendition, hypotheses
are viewed as bold conjectures, which the scientist submits to strong
criticism with a view to overthrowing or refuting them. Hypotheses that
successfully withstand such criticism are said to be corroborated, which
is a noninductive notion of support.

Although the hypothetico-deductive method is used by many scientists
and has been endorsed by prominent philosophers of science, it has
received considerable criticism. Leaving aside Popper’s less influential
view, the major criticism of the hypothetico-deductive method is that it
is confirmationally lax. This laxity arises from the fact that any positive
confirming instance of a hypothesis obtained through its use can confirm
any hypothesis that is conjoined with the test hypothesis, irrespective of
the plausibility of that conjunct. Another criticism of the hypothetico-
deductive method is that it standardly submits a single hypothesis to
critical evaluation without regard for its performance in relation to
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possible competing hypotheses. Yet a further criticism of the method is
that it mistakenly maintains that hypotheses and theories arise through
free use of the imagination, and not by some rational, methodological,
or logical means.*

Criticisms such as these have led some methodologists to recommend
that the hypothetico-deductive method should be abandoned (e.g.,
Glymour, 1980; Rozeboom, 1997). Although this recommendation might
be reasonable when applied to the method as it is standardly conceived,
it is possible to correct its deficiencies and use the method to good effect
in hypothesis testing research (e.g., Sprenger, 2011). For example, one
might overcome the confirmational defects of the orthodox hypothetico-
deductive method by employing a Bayesian approach to confirmation
within a hypothetico-deductive framework. Further, with or without a
commitment to the Bayesian approach, one could use the hypothetico-
deductive method to deliberately test two or more competing hypotheses
in relation to the evidence, rather than a single hypothesis in relation to
the evidence. Further still, in testing two or more hypotheses, one might
supplement the appeal to empirical adequacy by invoking criteria to do
with explanatory goodness. This last correction might be considered to
transform standard hypothetico-deductive method into a form of the
method of inference to the best explanation, an idea that I will take up
in chapter 5. Finally, typical formulations of the hypothetico-deductive
method depict the empirical evidence as data, not phenomena. The con-
trast between data and phenomena will be laid out in the next chapter.
Suffice it to say that specifying the evidence condition in terms of phe-
nomena, rather than weaker data patterns, would provide the method
with stronger empirical tests.

1.3.3 Bayesian Method
Although the Bayesian approach to evaluating scientific hypotheses and
theories is looked on more favorably in philosophy of science than the
hypothetico-deductive alternative, it remains a minority practice in psy-
chology and the other behavioral sciences. However, it should be said
that some methodologists in the behavioral sciences are now applying
Bayesian ideas to a variety of methodological topics and problems.
With the Bayesian approach, probabilities are considered central to
scientific hypothesis and theory choice (e.g., Howson & Urbach, 2006).
In science, Bayesian hypothesis testing is a statistical affair, a practice
that has been augmented by the allied philosophy of science known as
Bayesianism (e.g., Earman, 1992). In using probability theory to
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characterize theory evaluation, Bayesians recommend the assignment of
posterior probabilities to scientific hypotheses and theories in the light
of relevant evidence. Bayesian hypothesis choice involves selecting from
competing hypotheses the one with the highest posterior probability,
given the evidence. The vehicle through which this process is conducted
is Bayes’s theorem. This theorem can be written in its simplest form as
Pr (H/D) = Pr (H) x Pr (D/H) + Pr (D). The theorem says that the pos-
terior probability of the hypothesis is obtained by multiplying the prior
probability of the hypothesis by the probability of the data, given the
hypothesis (the likelihood), and dividing the product by the prior prob-
ability of the data.

Although Bayes’s theorem is not controversial as a mathematical
theorem, it is controversial as a guide to scientific inference. With respect
to theory appraisal, one frequently mentioned problem for Bayesians is
that the probabilistic information required for their calculations on many
scientific hypotheses and theories cannot be obtained. It is difficult to
know how one would obtain credible estimates of the prior probabilities
of the various hypotheses and evidence statements that made up Charles
Darwin’s evolutionary theory, for instance, or a modern formulation of
psychodynamic theory. Not only are the required probabilistic estimates
for such theories hard to come by, they do not seem to be particularly
relevant when appraising such explanatory theories.

The problem for Bayesianism presented by scientific theory evaluation
is that scientists naturally appeal to qualitative theoretical criteria rather
than probabilities. I note in the next section that scientific theories are
often evaluated by employing explanatory reasoning rather than proba-
bilistic reasoning.

1.3.4 Inference to the Best Explanation
Inference to the best explanation is founded on the belief that a good
deal of what we know about the world is based on considerations of
explanatory worth. This form of inference occurs informally in everyday
life and professional affairs, and more systematically in science. Because
a primary function of many theories in science is to explain, inference to
the best explanation evaluates theories in terms of their explanatory
merits. Theories that offer good explanations are deemed more likely to
be correct than those that offer poor explanations.

Inference to the best explanation is quite different from the three
preceding accounts of scientific method. Unlike inductive method, which
generalizes in a descriptive manner, inference to the best explanation
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embodies a theoretical form of inference about explanations of facts that
appeal to entities or processes that are different from those facts. In
contrast to the hypothetico-deductive method, inference to the best
explanation takes the relation between theory and evidence to be one of
explanation, not logical entailment; and in contrast to the Bayesian
approach, it takes theory evaluation to be a qualitative exercise that
focuses explicitly on explanatory criteria, not a quantitative undertaking
in which one assigns probabilities to theories.

A major attraction of inference to the best explanation is that it
explicitly assesses explanatory theories in terms of the important scien-
tific goal of explanatory power. However, a major challenge for propo-
nents of inference to the best explanation has been to furnish an
informative account of the criteria that should be used to determine
explanatory power. The cognitive scientist Paul Thagard (1978) pre-
sented a historically informed, systematic account of three major criteria
that have successfully been used in assessing the worth of scientific
explanations: explanatory breadth, simplicity, and analogy. These criteria
were subsequently incorporated into a fully fledged method of inference
to the best explanation known as the theory of explanatory coberence
(Thagard, 1992). The theory figures prominently in chapter 5, which
canvasses the prospects of using inference to the best explanation as a
worthwhile approach to appraising psychological theories.

Although a focus on theories that embrace unobserved theoretical
entities is not an essential feature of inference to the best explanation,
scientists are justified in believing in such entities because their existence
is proposed by scientific theories that provide the best available explana-
tion of a wide range of phenomena. For example, the existence of elec-
trons and viruses was widely accepted because of the explanatory
goodness of theories that posited them. It seems that psychologists have
also sometimes tacitly accepted the existence of human abilities and
personality traits essentially for the same reason.

Advocates of inference to the best explanation do not hold that a
theory covering a wide range of empirical phenomena gives a better
explanation than its rival because it is true. However, many of the pro-
ponents of inference to the best explanation do seem to accept the idea
that a theory is more likely to be true because it provides a better expla-
nation of the relevant phenomena than its rival does. In fact, some go so
far as to claim that inference to the best explanation provides a reason-
able guide to the truth, or at least the approximate truth, of theories.
The extent to which methods are truth conducive is a challenging topic,
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and there is no settled opinion about how method and truth relate in
this regard. T have something to say about this relationship in chapter 3,
though I make no attempt to solve the problem.

The four theories just considered are commonly regarded by philoso-
phers of science as the major theories of scientific method. Although each
of the theories has sometimes been proposed as the principal claimant
for the title of the scientific method, they are all better thought of as
restrictive accounts of method that can be used to meet specific research
goals, not broad accounts of method that capture what is essential for
all scientific inquiry. Each of these methods covers only a part of the
methodological activity of science. To take any one of them as the
account of scientific method would be to unduly restrict the scope of
scientific inquiry. Indeed, this would still be the case even if all four
methods were somehow combined into one supermethod. In subsequent
chapters, I will be at pains to suggest that inductive method is appropri-
ate for phenomena detection, but not for theory construction. Similarly,
I will insist that we should not regard inference to the best explanation
as an all-purpose form of inference but instead think of it as a method
particularly suited for evaluating the worth of competing explanatory
theories. For its part, the hypothetico-deductive approach, appropriately
modified, can productively be used to test for the empirical adequacy of
local hypotheses, whereas the Bayesian approach can be used to assign
probabilities to hypotheses for which we have the appropriate probabi-
listic information. As we will see, ATOM assigns no role to either hypo-
thetico-deductive or Bayesian accounts of method.

1.4 The Nature of Methodology

The evolution and understanding of scientific methods are to be found
in the domain of scientific methodology, a fact that makes this interdis-
ciplinary sphere of learning one of major practical and educational
importance. Yet we have few extended accounts of the nature of scientific
methodology. Larry Laudan’s (1996) normative naturalism is prominent
in the philosophy of science, and more than forty years ago, Abraham
Kaplan (1964) and Adriaan de Groot (1969) wrote book-length treat-
ments of methodology for the behavioral sciences. Martin Hammersley
(2011) recently provided a broad-ranging discussion of methodology for
social scientists. None of these earlier works have had a palpable influ-
ence on psychologists’ thinking about scientific method. In what follows,
I sketch the broad contours of a modern conception of scientific realist
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methodology that is in broad agreement with Tom Nickles’s (1987a,
1987b) insightful treatment of the topic. My formulation of ATOM is
underwritten by this conception of methodology, along with a host of
more specific methodological ideas.

1.4.1 The Tasks of Methodology

It is important to distinguish at the outset between method and method-
ology. The term method derives from a combination of the Greek words
meta, meaning following, and hodos, meaning the way, to give following
the way, suggesting the idea of order. Applied to science, method suggests
the efficient, systematic ordering of inquiry. Scientific method, then,
describes a sequence of actions that constitute a strategy to achieve one
or more research goals that have to do with the construction and use of
knowledge. Researchers sometimes use the term methodology as a
learned synonym for method (and technique). However, the term is
properly understood as denoting the general study of methods and is the
domain that forms the basis for a genuine understanding of those
methods. To repeat, methods themselves are purportedly useful means
for helping us realize chosen ends, whereas methodology contains the
resources for an informed understanding of our methods.

In its study of methods, methodology is at once descriptive, critical,
and advisory (Nickles, 1987a; Reichenbach, 1938). It discharges these
major tasks by describing relevant methods and explaining how they
help researchers achieve their goals; it critically evaluates methods against
their rivals; and it recommends what methods we should adopt to pursue
our chosen goals. Thus a good methodology will offer researchers an
informed description of methods, a judicious evaluation of them in rela-
tion to their rivals, and instructive advice on how to choose and use those
methods. Methodology is important because the three major tasks it
addresses are essential to the conduct of high-quality research.

Being a practical endeavor, methodology is concerned with the mutual
adjustment of means and ends. As such, it judges whether methods are
sufficiently effective for reaching chosen goals. But methodology is also
critically aim-oriented and considers what research goals the research
process should pursue. How, for example, are we to understand the
related goals of truth, understanding, and control? If truth is taken as a
major goal of science (as I believe it must be), and if truth is construed
as correspondence with reality (as I think it should be) (see Haig &
Borsboom, 2012), then philosophical semantics becomes a part of meth-
odology. If understanding has an important psychological dimension, as
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it undoubtedly does, then psychology becomes a part of methodology.
And if the exercise of control over science is regulated to an appreciable
extent by institutions, then policy science enters into methodology. From
a genuine concern with questions such as these, it follows that methodol-
ogy must constantly attend to possibilities of fashioning and deploying
methods in the face of varied and changing goal demands. In doing so,
it becomes the management science of research (Simon, 1969; Nickles,
1997).

In reconciling the means and ends of inquiry in these ways, it is evident
that methodology should not be identified with single disciplines such as
applied statistics or philosophy of science, though these and other
branches of learning are well positioned to make valuable contributions
to methodology. Rather, as stated in the preface, methodology is a central
part of the broad domain of cognitive theory and is therefore best under-
stood as an interdisciplinary field.

1.4.2 Problem-Oriented Methodology

Although talk of research problems abounds in behavioral science
inquiry, it largely serves a rhetorical purpose rather than doing useful
methodological work. Behavioral scientists seldom attend to the nature
of problems and their place in the research enterprise. The methodologi-
cal treatment of research problems that does exist typically amounts to
the recommendation that we cast our research hypotheses in the form
of questions. However, such a suggestion has limited value, for it involves
no attempt to understand problems by developing and using an informa-
tive theory of questions.” Demands that researchers formulate their
research questions are frequently just requests for an operationalization
of research hypotheses by empirically specifying the relevant independent
and dependent variables (e.g., Johnston & Pennypacker, 2009). Relat-
edly, solutions to the original “problems” often involve answering the
questions by conducting experimental tests of the research hypotheses.
It is true that John Dewey’s (1938) problem-solving account of inquiry
has occasionally been taken as an appropriate model for behavioral
science research (e.g., Kerlinger & Lee, 2000), but unfortunately Dewey’s
psychological construal of problems does not readily translate into a
useful counterpart at the methodological level.

In good part, the neglect of research problems as a methodological
idea has occurred because we have subscribed to theories of scientific
method that do not systematically provide for the use of problems think-
ing. According to the standard account of inductive method outlined



14 Chapter 1

earlier, research begins with the scientist gathering and reporting observa-
tions in a theory-free manner. However, as Hempel (1966) noted, inquiry
could never get under way in such a fashion. The first stage of gathering
all the facts could never be completed, because they are enormous in
number and variety. Collecting facts would be possible only if our
methods could select those facts that are relevant to our purpose.
However, Hempel maintained that one could not determine relevance by
incorporating problems into a simple inductive model of inquiry. He
believed that the idea of a problem is too vague to be an effective device
for the selection of relevant facts, and nothing less than a hypothesis or
theory is required to initiate and direct inquiry. Therefore Hempel rejected
simple inductivism and opted for a hypothetico-deductive perspective on
scientific method in which inquiry is viewed as a relation between a
theory and its consequences. This line of thinking is consistent with the
standard portrayal of the hypothetico-deductive method, which makes
no serious appeal to problems.

However, a few philosophers of science have focused on the methodol-
ogy of scientific problems and their importance for the conduct of
science. Although endorsing a variant of the hypothetico-deductive
method, Popper (1972) insisted that science is a problem-solving enter-
prise. However, he faltered with his account of problems by locating most
of its resources in the theoretical background rather than in the immedi-
ate space of inquiry. In his well-known book Progress and Its Problems
(1977), Larry Laudan presented a general theory of science as a thor-
oughgoing problem-solving endeavor. However, it is a conception of
science that leaves no room for the idea that science also pursues truth.
Finally, Nickles (1981) developed an instructive theory of problems as a
general approach to scientific methodology. I believe that this theory,
which views problems as sets of constraints on their own solutions, is
the most methodologically resourceful account of problems available
today. I use it in completing my articulation of ATOM at the beginning
of chapter 6.

1.4.3 Generative and Consequentialist Methodology
I now identify and briefly discuss two important methodological ideas
that have received limited attention in the literature. These ideas are
presented in two contrasts: (a) generative and consequentialist methodol-
ogy, and (b) reliabilist and coherentist justification.

Modern scientific methodology promotes two different research strat-
egies that can lead to justified knowledge claims. These are known as
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consequentialist and generative strategies (Nickles, 1987b). Consequen-
tialist strategies justify knowledge claims by focusing on their conse-
quences. By contrast, generative strategies justify knowledge claims in
terms of the processes that produce them. Although consequentialist
strategies are used and promoted more widely than generative strategies
in contemporary science, an adequate conception of research methodol-
ogy requires both. Consequentialist reasoning receives a heavy emphasis
in scientific research through use of the hypothetico-deductive method.
Consequentialist methods reason from the knowledge claims in question
to their testable consequences. As such, they confer a retrospective justi-
fication on the theories they seek to confirm.

In contrast to consequentialist strategies, generative strategies reason
from warranted premises to an acceptance of the knowledge claims in
question. The method of exploratory factor analysis, which is the focus
of chapter 3, is a good example of a method of generative justification.
It affords researchers generative justifications by helping them reason
forward from statements about established correlational data patterns
to the rudimentary explanatory theories that the method generates.
Judgments of initial plausibility constitute the generative justifications
provided by methods like exploratory factor analysis. Generative justifi-
cations are forward looking because they are concerned with heuristic
appraisals of the prospective worth of theories. ATOM’s account of
theory generation is explicitly underwritten by a generative conception
of methodology.

1.4.4 Reliabilist and Coherentist Justification
In addition to embracing both generative and consequentialist reasoning
strategies, an adequate methodology will use two different theories of
justification known as reliabilism and coberentism. Reliabilism asserts
that a belief is justified to the extent that it is acquired by reliable pro-
cesses or methods (e.g., Goldman, 1986). For example, belief in the
accuracy of temperature readings by the appropriate use of a calibrated
thermometer is justified by the reliable process of its production. By
contrast with reliabilism, coherentism maintains that a belief is justified
in virtue of its coherence with other accepted beliefs. One prominent
version of coherentism, explanationism, asserts that coherence is deter-
mined by explanatory relations and that all justification aims at maxi-
mizing the explanatory coherence of belief systems (Lycan, 1988).
However, the claim that all justification is concerned with explanatory
coherence is too extreme, as the existence of reliabilist justification makes
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clear. Although reliabilist and coherentist approaches to justification are
distinct, they are complementary. The complementarity will be spelled
out in my presentation of ATOM. This theory of method deems reliabilist
justification appropriate for the discovery of empirical generalizations,
whereas a particular form of coherentist justification is best employed in
the appraisal of explanatory theories.

1.4.5 Methodology with a Knowing Subject

Underwriting the conception of methodology I am sketching here is the
anti-Popperian view that epistemology must take “the knowing subject”
seriously. Applied to methodology more specifically, this attitude leads
to a rejection of the fanciful idea that the researcher is a “computation-
ally omnipotent algorithmizer” in favor of a more realistic conception
that accords with our actual epistemic makeup. Herbert Simon’s (1977)
view of the researcher as a “satisficer” is an influential part of this more
realistic conception of ourselves as knowers. According to this view,
our rationality is bounded by temporal, computational, memorial, and
other constraints and thus proceeds in good part by using heuristic
procedures.

William Wimsatt (1986) helpfully characterizes heuristic procedures
as having at least the following four properties. First, the proper employ-
ment of heuristics does not ensure that a solution will be found, much
less that a solution will be the correct one. Second, heuristics are cost-
effective procedures in that they make considerably fewer demands on
time, effort, and computational complexity than their algorithmic coun-
terparts. Third, the errors that result from using heuristic procedures are
biased in systematic ways, so that we can often predict the conditions
under which they will fail, and make appropriate adjustments. Fourth,
applying heuristics to a problem may produce a transformation of the
problem into one of related and more useful form.® The notion of heu-
ristic procedures is central to the liberalized conception of methodology
being glossed here and encourages us to treat the domain of pragmatic
reasoning as a crucially important part of the research endeavor.

I should point out that this overview of the nature of methodology is
incomplete in a number of respects: it ignores the social dimension of
research, including institutional and economic considerations, and it does
not dwell on the fact that research is often a nonlinear, bootstrapping,
multipass enterprise (see, e.g., Nickles, 1987a). Despite these omissions,
I do express a running concern in this book with the institutional matter
of the need to reform psychology’s research methods curriculum.
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I now consider the philosophy of scientific realism, which, despite
vigorous debate, may fairly be taken as the majority position in the
philosophy of science.” Most scientists seem to be scientific realists of
one sort or another, though they subscribe to the philosophy in tacit
fashion. The conception of methodology just sketched should be accepted
as part of the realist philosophy that I now outline. Indeed, given the
centrality of method to science, and a commitment to a method-centered
conception of epistemology, methodological realism is a core commit-
ment of the philosophy of scientific realism.

1.5 Scientific Realism

1.5.1 Varieties of Realism

Scientific realism (hereafter simply realism), like many “isms,” comes in
a variety of forms. Among the many contemporary versions of realism,
we find Cliff Hooker’s naturalistic realism, Mario Bunge’s hylorealism,
Roy Bhaskar’s critical realism, Ilkka Niiniluoto’s quite different form
of critical realism, Richard Boyd’s abductive realism, Ian Hacking’s
entity realism, John Worrall’s structural realism, Ron Giere’s perspectival
realism, J. D. Trout’s measured realism, and Anjan Chakravartty’s semi-
realism, to mention just some of the prominent available alternatives.
Realism, then, cannot be given a straightforward characterization, and
it will always be possible to take issue with one or other of its formula-
tions. For example, the tension between formulating realist theses in
global terms and local terms runs through the realist literature. Although
global accounts of realism have dominated historically, realists are
starting to see local realism as an attractive way to formulate their
philosophy.

In this book, I adopt a realist perspective on science. Although the
link between realism and method is not direct, what I have to say about
method is better understood against a backdrop of realism than, say,
antirealist options such as empiricism and strong forms of social con-
structivism. To repeat, although the subject of considerable debate, and
opposed by many antirealists, realism is the dominant philosophy of
science today. This fact, combined with an increasing willingness to focus
on the nature of scientific practice, makes realism an appropriate phi-
losophy for science.

Most versions of realism display a commitment to at least two doc-
trines. First, there is a real world of which we are part, and second, both
the observable and unobservable features of that world can be known
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by the appropriate use of scientific methods. Some versions of realism
incorporate additional theses (e.g., the claims that truth is the primary
aim of science, and that successive theories more closely approximate the
truth), and some also nominate optional doctrines that may, but need
not, be used by realists (e.g., the claim that causal relations are relations
of natural necessity; see, e.g., Hooker, 1987). Others who opt for an
“industrial-strength” version of realism for the physical sciences (e.g.,
Boyd, 1984) are more cautious about its successful reach in the behav-
ioral sciences. For example, Trout (1998) subscribes to a more modest
brand of realism in psychology, owing to his skepticism about the disci-
pline’s ability to produce deeply informative theories like those in the
physical sciences.

1.5.2 Naturalistic Realism

One particularly important feature of the realism that I subscribe to is
its thoroughgoing commitment to naturalism. For this reason, it might
be called naturalistic realism. A perspicacious form of this philosophy is
offered by Hooker (1987). According to this brand of realism, scientific
reasoning, including theorizing, is a natural phenomenon that takes its
place in the world along with other natural phenomena. Further, philoso-
phy and science make up a mutually interacting and interconnected
whole. As a philosophical theory about science, naturalistic realism has
no privileged status and may be revised in the light of scientific knowl-
edge. Similarly, the naturalistic realist foresees that philosophical conclu-
sions, tempered by scientific knowledge, may force changes in science
itself.

According to one influential view of naturalism, philosophy and
science are interdependent. This interdependence takes the form of
mutual containment (Quine, 1969), though the containment is different
for each. Philosophy is contained by science, being located within science
as an abstract critical endeavor that is informed by science. Science is
contained by philosophy because philosophy, among other things, pro-
vides a normative framework for the guidance of science.

Naturalistic realism maintains that philosophy of science is the part
of science concerned with the in-depth critical examination of science
with respect to its aims, methods, theories, and institutions. Philosophy
of science naturalized is, in a sense, science applied to itself. It employs
the methods of science to study science. It is, where appropriate, con-
strained by the findings of science. And it is itself a general theory
of science. As such, naturalized philosophy of science is at once
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descriptive, explanatory, advisory, integrative, and reflective of science.
Being positioned within science, naturalistic philosophy is well placed to
study science, learn from science, and help instruct science.

Not all naturalists are scientific realists, and not all scientific realists
are naturalists, thus raising the question: why is it advantageous to
combine scientific realism and naturalism in a single philosophy? One
reason is that naturalism is the best methodology we have available to
us. It gives us our best methods from which to choose and encourages
us to constrain our theorizing in light of reliable scientific knowledge.
Another reason is that naturalism’s principled commitments to both anti-
anthropocentrism and fallibilism enable us to offer a tenable defense of
realism, one that is true to our makeup as cognizers. Finally, by embrac-
ing naturalism, realism becomes an integrated whole that affords us the
best current explanatory theory of the cognitive dynamics of science
(Hooker, 1987).

1.5.3 Local Realism

As noted earlier, most formulations of realism are global in nature (e.g.,
Boyd, 1989; Kitcher, 1993; Psillos, 1999). They are presented as over-
arching general philosophies of science that are intended to apply to all
sciences at all times. Largely focusing on the achievement of physics,
these formulations of realism are intended to apply to mature science
that is in a state of advanced theoretical development. An important
consequence of this focus is that global realism has limited value as a
philosophy for the behavioral and social sciences, which have generally
been less successful in their theoretical achievements.

The prominent theoretical psychologist Paul Meehl (1993) correctly
argued that the philosophy of science can genuinely help to improve the
quality of scientific thinking in psychology. However, he suggested that
the received view in philosophy of science, which he takes to be a modi-
fied form of logical empiricism, is the appropriate philosophy for psy-
chology. T think that this suggestion is mistaken on two counts. First,
despite its achievements, logical empiricism is largely an outdated phi-
losophy of science, even in an amended form. Second, as a global phi-
losophy of science fashioned in an image of physics, it speaks poorly to
the concerns of psychological science and therefore has limited value as
a philosophy for psychology. A worthwhile realism must be realistic
about the sciences to which it speaks.

To take advantage of the understanding of science that realism is
capable of providing, the behavioral sciences need local, fine-grained
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formulations of realism that are appropriate to their particular natures
and achievements (e.g., Kincaid, 2000). One sensible way to proceed
would be to replace the core theses of global realism with revised theses
along the lines suggested by Uskali Miki (2005). What follows is a brief
treatment of five core realist theses, three of which are influenced by
Maki’s formulations.

Possible Existence By focusing on the mature sciences, standard for-
mulations of realism insist that the entities postulated by successful
theories in the mature sciences do in fact exist, and that they are pretty
much like the theories say they are. Thus our best theories in physics
entitle us to believe that entities such as atoms, electrons, and quarks
are part of the world’s furniture, and they have the properties described
by the relevant best theories. However, this formulation ignores two
important facts of epistemic life: all sciences exhibit uneven rates of
theoretical progress, and different degrees of epistemic confidence should
attach to the different phases of the development and appraisal of sci-
entific hypotheses and theories. For example, when a scientist postulates
a new entity, it is often appropriate to think that it might exist, not
that it does exist. Considerable progress is required before one can
express confidence in a new entity’s existence. Commitment to a thor-
oughgoing fallibilism, combined with a self-critical approach to scientific
practice, suggests that this is the appropriate epistemic attitude to adopt
(Miki, 2005). It follows that we should be wary of strongly tying our
ontological commitments to the latest and “best” theory (Burian &
Trout, 1995). Many entities once thought to exist turned out not to
exist. Other entities were shown to exist, but to be wrongly described
in earlier attempts to understand them. Still others are characterized by
competing theories, resulting in a high degree of uncertainty about them.
Ontological progress in science is mostly piecemeal and characteristi-
cally occurs in fits and starts. To be a realist, it is enough that we hold
to the view that an entity might exist, and that we give ourselves every
chance of showing that it does exist. This will often require concerted
work spanning several generations.

These comments about possible existence clearly apply to psychology,
though it will sometimes be more difficult to gauge ontological progress
there than in the natural sciences, given the special challenges psychology
can face in accessing its hidden causal mechanisms. For example, we
cannot say with full assurance that the credentials of the Spearman-
Jensen theory of intelligence entitle us to think that general intelligence
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(g) exists for sure. The reason for this is that both this theory and many
others in psychology are not sufficiently well developed and justified to
warrant drawing such a conclusion. Although Spearman and Jensen’s
theory is a respectable theory, it competes with similarly credentialed
theories of intelligence, none of which is widely accepted as the best
theory.

Mind Dependence Standard realism also subscribes to the ontological
thesis that scientific entities exist apart from our mental representations
of them. Although this commitment is appropriate for the physical sci-
ences, whose subject matters exist whether or not they are investigated,
it is inappropriate for the large tracts of nonneuroscientific behavioral
and social science, for there is an important sense in which mental and
social objects such as beliefs, desires, attitudes, marriage, money, and
universities are not mind independent. Rather, they are mind dependent
in that they are partly constituted by our conceptions or representations
of them. Money is a familiar example of an ontologically subjective
entity. Something is money only because we regard it as money (Searle,
1995). If humans did not exist in a modern economy, then there would
be no such thing as money. More generally, if there were no minds, there
would be no mental and social entities.

There is no good reason why a realist philosophy should insist on
mind independence. In fact, as Maki (2005) has noted, a realist philoso-
phy adequate to the social and behavioral sciences can provide for mind
dependence by thinking of mental and social objects as science or inquiry
independent. Theories of mental and social objects typically do not have
the power to create those objects. This is sufficient to satisfy the demand
that mental and social objects be studied objectively.

Possible Truth The foregoing remarks about existence apply in analo-
gous fashion to truth. Orthodox realism says that our best theories in
the mature sciences are literally true, or approximately true, and the
appropriate use of reliable methods enables us to say that this is the case.
However, rather than take our best theories to be true, or approximately
s0, a realism that is sensitive to the growth of scientific knowledge should
accept the view that our theories might well be true in the future, if not
right now. This will certainly be the case when our theories are first
conceived. Therefore it is more realistic to nominate our theories as
candidates for truth. Consistent with this, truth should be understood as
an orienting ideal, which we approximate by fashioning and justifying
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our theories. Because we cannot expect immediate truth in science, truth
should be understood as a distal goal, not a proximal goal.

A suitable notion of correspondence truth comports well with realism,
for there will be facts of the matter that make our truth-nominated theo-
ries true or false, though we might not have strong grounds for determin-
ing their truth value. What matters is that our theories be given a decent
opportunity to be judged true. As it is for existence, so it is for truth:
considerable resources of time, money, and other types of institutional
support are needed for inquiry to be undertaken successfully.

Observables and Unobservables Standard formulations of realism
explicitly embrace unobserved theoretical entities. Specifically, it is
claimed that such entities exist, and science’s best theories successfully
refer to such entities. However, Miki (2005) thinks that the social sci-
ences, including folk psychology, mostly study observed or manifest
entities, which he calls commonsensibles. Commonsensibles are the
familiar objects that we deal with on a daily basis, such as money, stock
markets, beliefs and attitudes, and social institutions. For Maki, these
sorts of entities are part of our familiar observed ontology. They are not
newly postulated theoretical entities that we add to our ontology by
hypothesizing their existence. Rather, our folk understanding of them is
refined and validated through social and behavioral science inquiry.

I agree with Miki that some of our commonsensibles are observables.
However, I think that many of them have the status of unobserved theo-
retical entities. The folk psychological entities such as beliefs and desires,
for example, are dispositions, inferred on the basis of their presumed
effects under specified stimulus conditions. In a realist interpretation,
these are appropriately thought of as theoretical entities (e.g., Rozeboom,
1973, 1984). However, it is important to adopt an attitude of letting the
ontological chips fall where they may. Whether entities and processes are
observable or unobservable will make a difference for how we investigate
them, but it will make no difference to whether we should adopt a realist
attitude toward them.

Aims Some formulations of scientific realism depict science as an aim-
oriented endeavor. In this regard, it is commonly said that the fundamen-
tal aim of science is to discover the truth about the world. This core
thesis of realism is sometimes spelled out by making a number of related
claims. For example, Sankey (2008) insists that scientific progress must
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be thought of as an advance toward truth, where truth is understood as
valuable truth, and valuable truth is understood as explanatory truth.
He also maintains that the claim “science involves the pursuit of truth”
is an epistemological claim because science is a knowledge-seeking
enterprise.

However, science is a complex and varied endeavor and for this reason
is better thought of as pursuing multiple aims. In addition to pursuing
truth, science is also concerned with achieving understanding through
the establishment of facts and theories, as well as the attainment of
control—broadly understood to include, for example, the experimental
regulation of inquiry, and the application of knowledge to bring about
desirable social outcomes. As we have seen earlier, science can also fruit-
fully be regarded as a problem-solving endeavor, as Popper, Laudan, and
Nickles have emphasized in different ways.

These brief and selective remarks about realism might seem like an
unnecessary excursion. However, I want to signal that the methodologi-
cal matters I deal with when articulating ATOM in the following chapters
are best understood against a backdrop of realist philosophy of science.
Further, I will have occasion to explicitly note links between realist phi-
losophy and behavioral science methodology as I proceed. Although my
primary purpose is to articulate and promote a broad understanding of
psychological inquiry, I intend my remarks about realism and methodol-
ogy to allow for the possibility of fashioning a local realist philosophy
that is appropriate for psychology.

Now that I have assembled a number of background ideas to do with
method, methodology, and realism, it remains for me to provide a sketch
of ATOM that will form the principal focus of the book. This account
of method is broad in scope, and the overview will give the reader an
overarching structure by which to understand better the different research
methods discussed the following chapters.

1.6 An Overview of the Abductive Theory of Method

According to ATOM, scientific inquiry proceeds as follows. Guided by
evolving research problems that comprise packages of empirical, theo-
retical, and methodological constraints, scientists analyze sets of data to
detect robust empirical regularities, or phenomena. Once detected, these
phenomena are explained by abductively inferring the existence of under-
lying causes that are thought to give rise to them. Here abductive
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inference involves reasoning from claims about phenomena, understood
as presumed effects, to their theoretical explanation in terms of underly-
ing causes. Upon positive judgments of the initial plausibility of these
explanatory theories, researchers attempt to elaborate on the nature of
the causal mechanisms in question.® They do so by constructing plausible
models of those mechanisms by analogy to relevant ideas in domains
that are well understood. When the theories are well developed, they are
assessed against their rivals with respect to their explanatory goodness.
This assessment involves making judgments of the best of competing
explanations.

An important feature of ATOM is its ability to serve as a framework
within which a variety of more specific research methods can be located,
conjoined, and used. Operating in this way, these otherwise separate,
specific research methods can be viewed as submethods of the overarch-
ing abductive method. In turn, the submethods provide ATOM with the
operational bite that helps it make scientific inquiry possible. Compre-
hensive methods are often constituted by a number of submethods and
strategies that are ordered according to an overarching structure (Ross,
1981). By incorporating a good number of submethods within its fold,
ATOM is therefore intensely compositional. And although the structure
of the theory is stable, its specific composites can vary markedly, depend-
ing on their suitability to the investigation at hand.

In characterizing ATOM in the following chapters, I show in some
detail how it deploys a number of specific research methods within its
compass. Table 1.1 contains a variety of research methods and strategies
that can be placed within the structure of ATOM. I discuss a number
of these in the exposition of the method that follows, but most of them
are not required for its characterization.” The majority of methods
selected for consideration in the book have been chosen primarily to
facilitate the exposition of the processes of phenomena detection and
theory construction without attempting to give an essential characteriza-
tion of these processes. Some of the details of ATOM would have to
be modified as a function of the nature of the methods chosen to operate
within it.

Both inductive and abductive forms of reasoning play major roles in
ATOM. However, because of the prominence of abductive reasoning in
the theory construction phases of the method, I refer to it as an abductive
theory. The exposition of the theory begins with an account of phenom-
ena detection and then considers the process of constructing explanatory
theories.
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1.6.1 Phenomena Detection

ATOM places great importance on the task of detecting empirical phe-
nomena, and it views the completion of this task as a prerequisite for
subsequent theory construction. In understanding the process of phe-
nomena detection, phenomena must be distinguished from data (Wood-
ward, 1989). Phenomena are relatively stable, recurrent, general features
of the world that researchers seek to explain. The Flynn effect of inter-
generational gains in IQ (Flynn, 2009) is a prominent example of a
phenomenon in psychology. Although phenomena commonly take the
form of empirical regularities, it is more useful to characterize them in
terms of their role in relation to observation and prediction. Phenomena
give scientific explanations their point. They also, on account of their
generality and stability, become the appropriate focus of scientific expla-
nation. Data, by contrast, are ephemeral and pliable.

The methodological importance of data lies in the fact that they serve
as evidence for the phenomena under investigation. In extracting phe-
nomena from data, scientists often engage in data exploration and reduc-
tion using graphical and statistical methods. Generally speaking, these
data analytic methods help directly in the detection of phenomena, but
not in the explanation of explanatory theories.

To establish that data are reliable evidence for the existence of phe-
nomena, scientists use a variety of strategies. They include controlling
for confounding factors, carrying out replications, calibrating instru-
ments, and engaging in data analytic strategies of both statistical and
nonstatistical kinds.

In the next chapter, I outline a statistically oriented, multistage account
of data analysis to further characterize the phenomena detection phase
of ATOM. The model proceeds through the four stages of initial data
analysis, exploratory data analysis, close replication, and constructive
replication. These four phases are concerned respectively with data
quality, pattern suggestion, pattern confirmation, and generalization. The
overall process of phenomena detection is one of enumerative induction
in which one learns empirically, on a case-by-case basis, the conditions
of applicability of the empirical generalizations that represent the
phenomena.

1.6.2 Theory Construction

According to ATOM, phenomena serve the important function of
prompting the search for their understanding in the form of relevant
explanatory theories. For ATOM, theory construction comprises three
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methodological phases: theory generation, theory development, and
theory appraisal. The first two phases are temporal in nature; theory
appraisal begins with theory generation, continues with theory develop-
ment, and is undertaken in concerted fashion in the so-called phase of
theory appraisal. ATOM characterizes each phase of theory construction
as abductive in nature, though the character of abductive inference is
different in each phase.

Abductive reasoning is a form of inference that takes us from descrip-
tions of data patterns, or phenomena, to one or more plausible explana-
tions of those phenomena (e.g., Josephson & Josephson, 1994). A brief
characterization of abductive inference can be given as follows: some
phenomena are detected that are surprising because they do not follow
from any accepted hypothesis or theory; we notice that the phenomena
would follow as a matter of course from the truth of a new hypothesis
or theory (in conjunction with accepted auxiliary claims); we conclude
that the new hypothesis or theory has initial plausibility and therefore
deserves to be seriously entertained and further investigated.

In chapter 3, I discuss exploratory factor analysis as an example of
a method in psychology that facilitates the abductive generation of
theories about latent factors (Haig, 2005b). With this method, theories
are generated through a process of existential abduction in which the
existence, but not the natures, of the causal mechanisms is hypothesized.
The claim for the existence of general intelligence is psychology’s best-
known example of a hypothesis about latent factors arrived at by such
means.

ATOM is also a method for theories-in-the-making. It encourages
researchers to regard their theories as developing entities. Because we
often do not have knowledge of the nature of the causal mechanisms we
abductively probe, such nascent theories stand in clear need of develop-
ment. ATOM urges us to construct models of those mechanisms by
imagining something analogous to mechanisms whose nature we do
know. In this regard, ATOM adopts the strategy of analogical modeling
to help develop explanatory theories (Abrantes, 1999). Because analogi-
cal modeling increases the content of explanatory theories, I refer to the
reasoning it embodies as analogical abduction. With analogical model-
ing, one builds an analogical model of the unknown subject or causal
mechanism based on the known nature and behavior of the source from
which the model is drawn (Harré, 1976). The computational model of
the mind, based on an analogy with the computer, is a clear example of
a model that has been developed by using this strategy.
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ATOM takes the systematic evaluation of mature theories to be an
abductive undertaking known as inference to the best explanation,
whereby a theory is accepted when it is judged to provide a better expla-
nation of the evidence than its rivals. ATOM takes inference to the best
explanation to be centrally concerned with establishing explanatory
coherence (Thagard, 1992). The theory of explanatory coherence main-
tains that the propositions of a theory hold together because of their
explanatory relations. Relations of explanatory coherence are established
through the operation of seven principles: symmetry, explanation,
analogy, data priority, contradiction, competition, and acceptability. The
explanatory coherence of a theory is determined by means of three cri-
teria: explanatory breadth, simplicity, and analogy. Each criterion is
embedded in one or more of the principles. Explanatory breadth, which
is the most important criterion for judging the best explanation, captures
the idea that a theory is more explanatorily coherent than its rivals if it
explains a greater range of facts or phenomena than its rivals. The notion
of simplicity deemed most appropriate for theory choice is captured by
the idea that preference should be given to theories that make fewer
special assumptions than their rivals. Finally, explanations are judged
more coherent if they are supported by analogy to theories that scientists
already find credible. Darwin’s theory of evolution by natural selection
has been shown, through use of the theory of explanatory coherence,
to be a more explanatorily coherent theory than its creationist alterna-
tive (Thagard, 1992). The theory of explanatory coherence offers the
researcher an integrated account of the criteria deemed important for the
appraisal of explanatory theories. The theory of explanatory coherence
is implemented through a computer program that enables the researcher
to make systematic decisions about the best of competing explanatory
theories.

ATOM aspires to be a coherent theory that brings together a number
of different research methods and strategies that are normally considered
separately. Although ATOM is a broad theory of scientific method, it is
not a fully comprehensive account. Rather, it is a singular account of
scientific method that is appropriate for the detection of empirical phe-
nomena and the subsequent construction of explanatory theories.

As stated in the preface, I present ATOM chapter by chapter as
follows: Chapter 2 provides a wide-ranging account of phenomena detec-
tion. Chapter 3 discusses the abductive nature of theory generation by
focusing on the method of exploratory factor analysis. Chapter 4 consid-
ers the process of theory development as it is carried out via the strategy
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of analogical modeling. In chapter 5, inference to the best explanation,
in the form of the theory of explanatory coherence, is presented and
recommended as a fruitful approach to theory appraisal. In the last
chapter, the exposition of ATOM is completed by presenting a theory of
research problems.

1.7 Conclusion

Despite its centrality to science, scientific method is given less respectful
attention in psychology than it deserves. The discipline’s modal research
practice, its uncritical science education, and the narrow interests of its
professional methodologists contribute collectively to an attitude of dis-
interest in the topic.

In this chapter, I reaffirmed the importance of method in science. Not
only is scientific method a centerpiece of science, but it is also unscathed
by the superficial criticisms offered by commentators who do not bother
to evaluate the extant theories of scientific method. I briefly considered
four major theories of scientific method and concluded that each is
appropriately thought of not as the best global account of scientific
method but as a local method with domain specific application; there is
no such thing as the scientific method.

I then sketched a heterodox account of the philosophy of scientific
realism as a foundational backdrop to the book’ ongoing concern with
scientific method. I suggested that this brand of realism is apt for behav-
ioral science disciplines such as psychology, whose theoretical achieve-
ments are more modest than those of the physical sciences. The main
features of a realist conception of scientific methodology were given
particular attention. This liberalized view of methodology underwrites
much of the material presented in the book.

Finally, I presented a preview of ATOM to provide an orienting struc-
ture for its more extended treatment in the book. By providing explicitly
for both inductive and abductive reasoning within its fold, the abductive
theory of method supports the idea that there are several “logics” to
scientific discovery.






2 Detecting Psychological Phenomena

Phenomena! Now there’s a word to conjure with. It is what our theories try to
explain, and what we use to justify those theories. It is what instrumentalists try
to save, and what realists try to get beyond. It is what Ian Hacking thinks we cre-
ate in the laboratory (in contrast to nature) and what Kant took to be partly the
work of the mind (in contrast to noumena).

—James Brown (1994, 117)
2.1 Introduction

Since the 1950s, much psychological research has employed a top-down
research strategy in which a minimalist account of the hypothetico-
deductive method, in tandem with null hypothesis testing, is used to test
hypotheses and theories (Rorer, 1991; Rozeboom, 1997). This practice
has several weaknesses, one of which is a narrow view of data analysis
in which the core information yield is a binary accept-reject statistical
decision about the hypotheses and theories under test. As a consequence
of this focus on top-down hypothesis and theory testing, psychology has
failed to sufficiently recognize an important complementary, bottom-up
research strategy that pursues data-to-theory research (Haig, 2013). This
bottom-up strategy is captured by ATOM and has two primary aspects:
the detection of phenomena, mostly in the form of empirical generaliza-
tions, and the subsequent explanation of those phenomena through the
abductive construction of theory.

This chapter focuses on the important process of detecting empirical
phenomena with reference to psychology. Although psychologists look
to detect phenomena, they do so without a full appreciation of its meth-
odological nature—a problem that is sometimes partially obscured by
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reconstructing phenomena detection in a hypothesis-testing guise. I draw
here from contemporary philosophy of science to provide a method-
ologically informative account of phenomena detection. First, I present
the important threefold distinction between data, phenomena, and
explanatory theory that was introduced by Bogen and Woodward more
than twenty years ago (Bogen & Woodward, 1988). However, my
primary concern is to distinguish between data and phenomena, and I
mention explanatory theory only insofar as it helps to elucidate the
nature of the data-phenomena relation.! I then discuss a number of
methodological strategies that are used to identify empirical phenomena.
I propose, as one of these strategies, a multistage model of data analysis,
which goes well beyond psychology’s tendency to focus on traditional
confirmatory data analysis. In the second part of the chapter, I consider
aspects of the nature of science that are prompted by reflecting on the
distinctions between data, phenomena, and explanatory theory. These
include whether scientific facts are discovered or made, the distinction
between empirical and theoretical progress in science, and the type of
knowledge justification appropriate to phenomena detection. Taken
together, these considerations press for significant changes in the way
we think about and practice psychological research. Before concluding
the chapter, I consider some of these changes and make several recom-
mendations that would help psychology correct a number of its current
research deficiencies.

2.2 The Nature of Phenomena

As James Brown’s epigraph at the beginning of the chapter makes clear,
we have always understood the nature and role of phenomena in science
in various ways. Historically, scientists insisted on “saving the phenom-
ena” in the instrumentalist sense of rendering an adequate description of
the phenomena studied. In contrast to this narrow empiricist view, most
scientists today are realists in their outlook, first because they are con-
cerned to discover and properly describe phenomena, but also because
they endeavor to construct explanatory theories to understand the under-
lying causal factors that are thought to produce them.

Scientists and philosophers frequently speak as though science is prin-
cipally concerned with establishing direct relationships between observa-
tion and theory. Empirical evidence indicates that psychologists speak,
and sometimes think, in this way (Clark & Paivio, 1989). Similarly,
philosophers of science of quite different persuasions often say that
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scientific theories are evaluated in respect of statements about relevant
data (Bogen & Woodward, 1988). Despite what they say, scientists fre-
quently behave in accord with the view that theories relate directly to
claims about phenomena, and claims about phenomena relate directly to
claims about data. That is, talk of a direct relationship between data and
theory tends to be at variance with empirical research practice, which
often works with a threefold distinction between data, phenomena, and
explanatory theory.

Science assigns major importance to the task of detecting empirical
phenomena, and it often views the completion of this task as a require-
ment for subsequent meaningful theory construction. The next section
discusses the nature of phenomena detection in science, with some refer-
ence to psychology. I begin by considering the basic distinction between
data and phenomena.

2.2.1 The Distinction between Data and Phenomena
In a series of articles, Bogen and Woodward (Bogen, 2010, 2011; Bogen
& Woodward, 1988, 1992; Woodward, 1989, 2000, 2010, 2011) argued
in considerable detail that it is phenomena, not data, that scientific theo-
ries typically seek to predict and explain. In turn, it is the proper role of
data to provide the observational evidence for phenomena, not theories.?
Unlike data, phenomena are relatively stable, recurrent, general features
of the world that we seek to explain. Hacking (1991) succinctly charac-
terized the most popular class of phenomena as “noteworthy discernible
regularities,” which are often described in lawlike generalizations. The
more striking regularities are often called effects, and they are sometimes
named after the person considered to be their principal discoverer (e.g.,
the Compton effect in physics, the Baldwin effect in biology, the Flynn
effect in psychology).> The so-called phenomenal laws of physics are
paradigm cases of claims about phenomena. By contrast, the fundamen-
tal laws of physics explain the phenomenal laws. For example, the elec-
tron theory of Lorentz is a fundamental law that explains Airy’s
phenomenological law of Faraday’s electro-optical effect (Cartwright,
1983). Examples of the innumerable phenomena claims in psychology
include the matching law (the law of effect), the Flynn effect of intergen-
erational gains in IQ scores, and recency effects in human memory.
Although phenomena commonly take the form of empirical regulari-
ties, they make up a varied ontological bag that includes objects, states,
processes, events, and other features that are hard to classify. For example,
in psychology, the detected phenomena are often effects, which are
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empirical generalizations, but they also include the capacities of organ-
isms as objects of explanation (e.g., the capacity to learn a language or
to the capacity empathize with people).*

Because of this variety, it is generally more appropriate to characterize
phenomena in terms of their role in relation to explanation and predic-
tion, rather than in terms of their natures (Bogen & Woodward, 1988).
For example, the relevant empirical generalizations in cognitive psychol-
ogy might be the objects of explanations in evolutionary psychology that
appeal to mechanisms of adaptation. Those mechanisms might in turn
serve as phenomena to be explained by appealing to the mechanisms of
natural selection in evolutionary biology.

As just indicated, phenomena, not data, are often taken as the proper
objects of scientific explanation.® The two features of phenomena that
make this appropriate are their stability and their generality. Typically,
phenomena have to endure across a time interval long enough to allow
theorists to construct explanatory theories about those phenomena, say,
from three to thirty years.® In addition, science requires its explananda
(the objects of explanation) to have a degree of generality that makes
their explanation both tractable and economically viable. It would be
ludicrous for science to try to explain individual data points one by one,
and even impractical to explain local data patterns one at a time. Simi-
larly, it would be practically unworkable for science to focus its major
attention on highly local events that have little or no generality.” For
good reason, psychology, as a basic science, is interested in why people
generally behave the way they do, not why a particular person behaves
in a particular way (D’Andrade, 1986).

To understand the process of phenomena detection, we must distin-
guish phenomena from data. Unlike phenomena, data are idiosyncratic
to particular investigative contexts. Because data result from the interac-
tion of a large number of causal factors, they are not as stable and general
as phenomena, which are produced by a relatively small number of
causal factors.® Data, then, are ephemeral and pliable, whereas phenom-
ena are robust and stubborn. Phenomena have a stability and repeat-
ability that are demonstrated through the use of different procedures,
which often engage different kinds of data. Data are recordings or reports
that are perceptually accessible; they are observable and open to public
inspection. Despite the popular view to the contrary, phenomena are not,
in general, observable; they are abstractions wrought from the relevant
data, often as a result of a reductive process of data analysis. Indeed,
as Cartwright (1983) remarked in her discussion of phenomenal and
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theoretical laws in physics, “The distinction between theoretical and
phenomenological has nothing to do with what is observable and what
is unobservable. Instead, the terms separate laws which are fundamental
and explanatory from those that merely describe” (2). An important
related point is that although data serve as evidence for phenomena, their
perceptual qualities in this regard are of secondary importance. As Bogen
and Woodward (1992) put it, “The epistemic significance of perception
has to do with its reliability, not with its distinctively phenomenal or
subjective experiential character. . . . Nonperceptual techniques of mea-
surement and detection are just as epistemically valuable as perceptual
techniques as long as they are reliable” (611). Methodologically speak-
ing, what matters in science, then, is not the phenomenal or experiential
qualities of perception but whether perception is a reliable process. For
this reason, obtaining measurements using physical recording devices is
just as important as using human perceptual techniques in detecting
phenomena.

Data themselves are of scientific interest and importance only because
they serve as evidence for the phenomena under investigation. Examples
of data that serve as evidence for the psychological effects mentioned
earlier are rates of operant responding (evidence for the matching law),
IQ score gains (evidence for the Flynn effect), and error rates in psycho-
logical experiments (evidence for recency effects in short-term memory).
Later I present a well-known example of the data-phenomena distinction
that illustrates a number of the points just made.

Bogen and Woodward (Bogen & Woodward, 1988; Woodward, 1989)
note that one can further distinguish between data and phenomena by
appreciating the different kinds of error that are appropriate to each.
Data-related errors arise from inaccuracies in their perception, and
recording inaccuracies in their transcription. They also include deliberate
efforts to manufacture data, as in the case of fraud. Errors of this kind
are often simple in nature but can have far-reaching consequences because
they threaten to undermine the adequacy of data as appropriate sources
of evidence for claims about phenomena. Errors to do with phenomena
detection are more complex and varied, reflecting, as they do, the com-
plexity and variety of phenomena detection procedures. For example, in
psychology they might include inappropriately using analysis of covari-
ance to control statistically for nuisance variables, suboptimally using
meta-analysis as a basis for claiming that an empirical generalization
exists, and mistakenly believing in the robustness of a phenomenon claim
by misusing Campbell and Fiske’s (1959) multitrait-multimethod matrix.



36 Chapter 2

As scientists scrutinize cases such as these, their overriding concern is to
fathom whether they have detected genuine phenomena rather than
pseudophenomena.

Bogen and Woodward (1988) helpfully illustrate the importance of
distinguishing between data and phenomena by critically discussing an
example of the melting point of lead.” The relevant fact, or phenomenon,
here is that lead melts at 327.46 degrees Centigrade. How is knowledge
of this obtained? Obviously, scientists do not determine the melting point
of lead by liquefying one lead sample and observing a single thermometer
reading of the melting temperature. Instead they carry out a series of
relevant measurements using a reliable measuring instrument, such as a
properly calibrated thermometer. Assuming the sources of systematic
error have been eliminated or controlled for (e.g., the lead sample has
been expunged of all relevant impurities, and the thermometer measure-
ment is taken in the appropriate way), the scatter of recorded observa-
tions from the repeated measuring operations will be taken to include
the true value of the melting point of lead. Furthermore, the determina-
tion of that true value will depend on a number of additional assump-
tions about the existence and independence of small and contingent
unknown errors, the nature of the distribution of measurement, and the
appropriateness of the sample estimate of the true value with its associ-
ated standard error.

As Bogen and Woodward (1988) remark, the lead example points up
two important differences between data and phenomena. The first is that
data are observed, either by human perception or with the aid of instru-
ments, but the phenomenon of the true melting point of lead is not
observed. Rather, the phenomenon statement about the true melting
point of lead is inferred from claims about the observed data on the basis
of classical sampling theory and its associated assumptions. The second
point is that even the best theory of the molecular structure of lead could
not explain why the array of data points occurred, because it depends
not just on the melting point of lead but also on factors such as the purity
of the lead, the working of the thermometer, background knowledge
about measurement theoretic assumptions (in this case, true score theory),
and how the readings should be taken. For these reasons, it is the phe-
nomenon, not the set of data, that gets explained by the relevant theory
of molecular structure.

The Flynn effect, mentioned earlier, provides a good example in psy-
chology of an empirical phenomenon and as such helps one appreciate
the difference between data and phenomena. Named after its principal
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discoverer, James Flynn, this effect is the striking fact that IQ scores have
increased steadily across generations throughout the world. More pre-
cisely, Flynn documented the fact that, on average, IQ gains of about
three points per decade occurred in some twenty nations from regions
such as Europe, Asia, North America, and Australasia. IQ scores, obtained
by using measuring instruments such as the Wechsler Scales and the
Raven’s Progressive Matrices, are data. These data provide empirical
evidence for the Flynn effect. This effect is the stable generalization about
the IQ score gains, which is abstracted from the data in light of relevant
methodological criteria and represented statistically in terms of means
and standard deviations for individual nations. Initially the Flynn effect
was a baffling phenomenon for which we now have a variety of theoreti-
cal explanations, a fact made possible by the difference between, and
relative autonomy of, claims about phenomena and explanatory theory.

In the various sciences, it is common to talk about the activity of
extracting a signal from a sea of noise. Woodward (1989) observed that
this model of signal and noise often usefully describes the challenge
facing scientists when they seek to discover phenomena.!® In detecting
phenomena, we extract a signal (the phenomenon) from a sea of noise
(the data). The data embody a great deal of noise because they result
from a host of unknown causal factors, many of them local and idiosyn-
cratic. For this reason, when extracting phenomena from the data, we
often engage in data exploration and reduction by using graphical and
statistical methods to manage the sea of noise. We enlist a variety of
procedures to extract phenomena from the noise that masks them.
Getting these procedures to work properly is essentially a problem of
tuning.

I turn now to the process of phenomena detection. In doing so, I
present a number of different procedures that scientists use to detect
phenomena.

2.3 Procedures for Phenomena Detection

In establishing that data are reliable evidence for the existence of phe-
nomena, scientists employ a variety of methodological strategies (Frank-
lin, 1990; Woodward, 1989). Some, but not all, of these strategies are
regularly used in psychology. They include controlling for confounding
factors (both experimentally and nonexperimentally), empirically inves-
tigating equipment (including the calibration of instruments), engaging
in data analytic strategies of both statistical and nonstatistical kinds, and
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undertaking the constructive replication of study results. Whereas these
procedures are variously used in phenomena detection, they are not, in
general, used to construct explanatory theories.!! The later discussion of
the importance of reliability assessments in phenomena detection helps
indicate why this is so.

2.3.1 Controlling for Extraneous Factors

One basic requirement of sound experimental design involves the control
of extraneous factors, which might otherwise confound the results by
producing data mistakenly thought to be produced by the relevant phe-
nomenon. Such control can be achieved by physically isolating the rel-
evant potential confounds. In physics and chemistry, experimenters have
been extraordinarily successful in controlling for extraneous influences.
The same is true of experimental psychology. In one class of experiment,
the Skinner box is used as an experimental chamber that isolates a
number of influences extraneous to the investigation of operant condi-
tioning phenomena by incorporating features such as light tightness,
sound attenuation, and automated functions that prevent the subject
from coming into direct contact with the experimenter. Alternatively,
randomization procedures can be used in experimental contexts on the
assumption that the influence of nuisance variables will be distributed
uniformly over the various treatments in the long run.

Extraneous influences can also be controlled for in a statistical manner
in research contexts where neither physical control nor randomization
is possible or appropriate. Consider, for example, the common strategy
of checking for what statisticians call nonspuriousness, where a variable,
X, is established as a direct cause of another variable, Y. Such a relation-
ship is judged nonspurious when we have grounds for thinking that no
third variable, Z, confounds the X-Y relationship. In this regard, we often
use partial correlation procedures to establish that the third variable, Z,
is not a common cause of X and Y or a cause intervening between X
and Y.1?

2.3.2 Triangulation

As already mentioned, one of the distinctive features of claims about
phenomena is their robustness. Robustness is a methodological notion
that has long been considered important in the various sciences (Levins,
1968; Wimsatt, 1981). Robustness carries the idea that there have to be
multiple means for establishing the nature and existence of phenomena,
an idea that is based on the strong conviction that we are entitled to
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infer the existence of a phenomenon that stands up under a variety of
different tests. As Wimsatt (1994) remarked: “Robustness has the right
kind of properties as a criterion for the real, and has features which
naturally generate plausible results. Furthermore, it works reliably as a
criterion in the face of real world complexities” (11).

The notion of robustness is essentially the same idea as triangulation,
which is more familiar to psychologists. Campbell and Fiske’s (1959)
classic multitrait-multimethod matrix is an important triangulation pro-
cedure for investigating the robustness of psychological constructs. With
this procedure, validation involves obtaining convergent results through
the use of independent measuring procedures, and the notion of discrimi-
nant validity serves to check that the invariance across tests, methods,
and traits is not a result of their insensitivity to the variables under study.
In experimental psychology, the idea of robustness is more commonly
called converging operations, in accordance with Garner, Hake, and
Eriksen’s (1956) pioneering work.

2.3.3 Calibration

Another strategy that provides a justification for the confidence in
experimental results is calibration. Calibration is the metrological
process of determining the evidential reliability of an instrument by
comparing it with a trustworthy standard. More particularly, it involves
using a substitute signal to standardize a measuring instrument (Frank-
lin, 1997), an operation that is achieved by a variety of complex pro-
cedures. This complexity is well exemplified by Chang’s (2004) extensive
study of the history of thermometry, which lies behind the routine use
of mercury and other thermometers to measure temperature. Calibration
is important in science because instruments must be calibrated before
they can be used in a dependable manner. Although routinely carried
out in the physical sciences and widely used in experimental psychology,
calibration has received little systematic attention in other areas of
psychology.

Also, because instruments tend to go out of calibration, they may need
to be recalibrated. Of course, even when properly calibrated instruments
are used in measurement, some random error is to be expected. To test
whether measured values obtained from an instrument represent chance
fluctuations or signal a loss of calibration, we can use a test of statistical
significance (Baird, 1992). The normal curve is widely used as a model
of chance fluctuations or errors of measurement. In this context, errors
can be thought to result from numerous small, independent disturbances,
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such as slight variations in the mechanical or electrical components of
the measuring instrument.

It is a truism that progress in science depends in part on the quality
of its measurements. In psychology, we have a clear need to take calibra-
tion more seriously. In discussing the importance of calibrating psycho-
logical measures, Sechrest, McKnight, and McKnight (1996) were surely
right to conclude that “knowledge, understanding, and progress in the
science of psychology would be furthered greatly by concerted efforts to
calibrate psychological measures in a variety of ways that are now avail-
able and that are sadly neglected” (1071).

2.3.4 A Model of Data Analysis

Given the importance of the detailed examination of data in the process
of phenomena detection, it is natural that statistical analyses of data
figure prominently in that exercise. Researchers in psychology often
analyze rich data sets, and they are increasingly being called on to analyze
massive sets of data. Thus data reduction often becomes the core feature
of data analysis. With this in mind, I briefly outline the broad contours
of a statistically oriented, multistage account of data analysis, which
provides another way to characterize the process of phenomena detec-
tion. The exposition draws from Haig (2005a). The model comprises the
four sequenced stages of initial data analysis, exploratory data analysis,
close replication, and constructive replication. However, it should be
noted that although psychology makes heavy use of statistical methods
in data analysis, qualitative data analytic methods can also be used in
phenomena detection (Strauss, 1987).

Initial Data Analysis The initial examination of data (Chatfield,
1985) is the first informal scrutiny and description of data undertaken
before exploratory data analysis proper begins.'? It involves screening
the data for quality. Initial data analysis variously involves checking the
accuracy of data entries, identifying and dealing with missing and outly-
ing data, and examining the data for their fit to the assumptions of the
data analytic methods used. Data screening thus enables one to assess
the suitability of the data for the type of analyses intended.

This important, time-consuming, preparatory phase of data analysis
has not received the amount of explicit attention that it deserves in psy-
chological research practice and education. However, the American Psy-
chological Association’s Task Force on Statistical Inference (Wilkinson
& the Task Force on Statistical Inference, 1999) recommended changes
to current practices in data analysis that are broadly in keeping with the
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goals of initial data analysis. It is now a straightforward matter to use a
computer to produce the graphical displays and descriptive tabulations
that are used in the initial examination of data. Fidell and Tabachnick
(2003) provided a useful overview of the importance of the work required
to identify and correct problems in data.

It should be clear, even from these brief remarks, that the initial exami-
nation of data is necessary for successful data analysis in science because
data that lack integrity can easily result in the subsequent misuse of data
analytic methods and drawing erroneous conclusions.

Exploratory Data Analysis The last thirty years have witnessed the
strong development of an empirical, data-oriented approach to statistics.
One important part of this movement is exploratory data analysis, which
contrasts with the more familiar traditional statistical methods and their
characteristic emphasis on the confirmation of knowledge claims. Like
initial data analysis, this newer movement places a heavy emphasis on
the close examination of data. However, its basic purpose is to identify
provisional patterns in the data.

Exploratory data analysis uses multiple forms of description and
display and often involves quantitative detective work designed to reveal
the structure or patterns in the data under scrutiny (Behrens & Yu, 2003;
Tukey, 1977)."* The exploratory data analyst is encouraged to undertake
an unfettered investigation of the data and perform multiple analyses
using a variety of intuitively appealing and easily used techniques.

The compendium of methods for data exploration is designed to
facilitate both the discovery and communication of information about
data. These methods are concerned with the effective organization of
data, the construction of graphical displays, and the examination of
distributional assumptions and functional dependencies. The stem-and-
leaf display and the box-and-whisker plot are two well-known explor-
atory methods.

Two attractive features of exploratory methods are their robustness
to changes in underlying distributions and their resistance to outliers in
data sets. Exploratory methods with these two features are particularly
suited to data analysis in psychology, where researchers are often con-
fronted with ad hoc data sets on manifest variables that have been
acquired in convenient ways.

Close Replication Successfully conducted exploratory analyses
will suggest potentially interesting data patterns. However, it will
normally be necessary to check on the stability of the emergent data
patterns by using appropriate confirmatory data analysis procedures.
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Computer-intensive resampling methods such as the bootstrap, the jack-
knife, and cross-validation (Efron & Tibshirani, 1993) make up an
important set of confirmatory procedures that are often well suited to
this role. By exploiting the modern computer’s massive computational
power, methods such as these free researchers from the assumptions of
orthodox statistical theory (such as the belief that the data are normally
distributed) and permit them to gauge the reliability of chosen statistics
by making thousands, even millions, of calculations on many data points.
Researchers use resampling methods to establish the consistency or reli-
ability of sample results. They are particularly suited to ascertaining the
validity of the data patterns initially suggested by the use of exploratory
methods. In doing this, they provide us with the kind of validating strat-
egy that is needed to achieve close replications.

Constructive Replication In establishing the existence of phenom-
ena, it is often necessary for science to undertake both close and construc-
tive replications. The statistical resampling methods just mentioned are
concerned with the consistency of sample results that help researchers
achieve close replications. By contrast, constructive replications are
undertaken to check the validity of the results obtained by close replica-
tion. This is achieved by doing two things. First, a concerted effort is
made to faithfully reproduce the conditions of the original study, often
by an independent investigator or research group. This is sometimes
called direct replication. Strictly speaking, this is a form of constructive
replication because although it attempts to literally replicate the first
study, it involves a change in geographic time, location, and researchers.
Second, research is undertaken to demonstrate the extent to which results
hold across different methods, treatments, and occasions. This form of
constructive replication, in which researchers vary the salient study con-
ditions, is a triangulation strategy designed to ascertain the generaliz-
ability of the results identified by direct replication (Lindsay & Ehrenberg,
1993). Both forms of constructive replication are time-honored strategies
for justifying claims about phenomena.

The four-stage model of data analysis just outlined assists in phenom-
ena detection by attending in turn to the different but related tasks of
data quality, pattern suggestion, pattern confirmation, and generaliza-
tion. In effect, the outcome of this sequenced process is a form of enu-
merative induction in which one learns empirically, on a case-by-case
basis, the conditions of applicability of the empirical generalizations that
represent the phenomena.
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2.3.5 Meta-analysis

It is important to appreciate that this model of data analysis is clearly
not the only statistical means by which we can detect phenomena. In
addition to the several strategies mentioned earlier, meta-analysis is a
prominent example of a distinctive use of statistical methods by behav-
ioral scientists to aid in phenomena detection. As is well known, meta-
analysis is widely used to conduct quantitative literature reviews. It is an
approach to data analysis that involves quantitative analysis of the data
analyses of primary empirical studies. By calculating effect sizes across
primary studies in a common domain, meta-analysis helps us detect
general positive effects (Schmidt, 1992). By using statistical methods to
ascertain the existence of robust empirical regularities, meta-analysis can
usefully be viewed as a statistical approach to constructive replication.
Although meta-analysis is thought by some to do explanatory work, and
is used widely in evaluation research, it is in the descriptive-cum-gener-
alizing role just mentioned that it performs its most important work in
science today. Contrary to the claims made by some of its critics in psy-
chology (e.g., Sohn, 1996), meta-analysis can be regarded as a legitimate
and important means of detecting empirical phenomena in the behavioral
sciences (Gage, 1996). I briefly refer to the achievements of meta-analysis
when considering the matter of scientific progress in psychology later in
this chapter.

2.4 Reasoning from Data to Phenomena

Given that data serve as evidence for phenomena, the question naturally
arises: how do scientists reason from claims about data to claims about
phenomena? The first thing to note is that the inference involved is
ampliative, or content increasing; it is not nonampliative or deductive.
That is, the claims about the existence or the nature of the phenomena
go beyond all information contained in assertions about the relevant
data. Second, the ampliative inference cannot be hypothetico-deductive
in nature, for the hypothetico-deductive method itself says nothing about
how a hypothesis (the phenomenon claim) is formulated. Third, the infer-
ence from data claims to phenomena claims is in some sense inductive.
In the description of the second strategy of constructive replication
provided earlier, I noted that the reasoning process is a type of enumer-
ative induction in which the generalization (the conclusion of the induc-
tive reasoning process) is established on a serial basis as successive
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replications are undertaken to establish the scope of the generalization.
Finally, being inductive in the sense just noted, the inferences from claims
about data to claims about phenomena are not essentially abductive or
explanatory in nature. As it is understood here, inductive inference is
descriptive inference in that it reaches conclusions about “more of the
same kind.” By contrast, abductive inference is an explanatory mode of
inference that scientists use when they reason from phenomena claims
to theory claims that purport to explain why the phenomena occur.

This brief characterization of the inductive reasoning involved in
moving from data claims to phenomena claims proceeds more by con-
trast than by direct analysis. Therefore it leaves a great deal unsaid about
the details of the reasoning involved. In this regard, it is important to
appreciate that illuminating accounts of inductive reasoning, as they are
employed in actual cases of scientific research, will have to be cast as
material inductions, not as formal inductions. Norton (2003) has char-
acterized material induction as local rather than global reasoning in
which contingent matters of fact pertinent to the domain in question are
included in the formulation. For example, a material inductive charac-
terization of the discovery of the melting point of lead would have to
include reference to relevant contingent facts such as those mentioned in
the earlier discussion of this phenomenon. By contrast, Bayesian accounts
of inductive inference, which center on the probability calculus, are
essentially formal and universal and make little or no reference to the
welter of case-dependent detail required of good material inductions.
Such formal accounts of induction are incapable of properly illuminating
data-to-phenomena inferences.

Even a worked-out account of the material conditions involved in the
inductive character of reasoning from data to phenomena will leave a
great deal unsaid. In fact, a blow-by-blow account of the process of
phenomena detection would have to focus on the procedures that are
used in the chosen approach. For example, a reflective researcher who
used the four-stage model of data analysis presented in this chapter
would make innumerable judgment calls at each stage that were based
on all kinds of specific considerations. They would involve posing and
answering questions such as “Should I use log10 transformations to
normalize my seriously skewed dependent variables?” “Will a back-to-
back stem-and-leaf display give me sufficient comparative descriptive
information about the two data sets?” “Can I use the jackknife as an
adequate replacement for the more flexible bootstrap procedure?” “Is
this new method sufficiently independent of the original method to
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enable me to move beyond the published generalization without fear of
pseudo-robustness?” Clearly the relevance of these sorts of questions,
and the appropriateness of the answers to them, will depend on detailed
local knowledge of both methodological and substantive sorts.

2.5 Phenomena Detection and the Nature of Psychological Science

Accepting the distinction between data, phenomena, and explanatory
theory has important consequences for our understanding of science,
including psychology. Here I briefly comment on the matters of whether
scientific facts are discovered or made, the division between theoretical
and empirical research, and the different types of knowledge justification
appropriate for phenomena claims and explanatory theory.

2.5.1 Are Phenomena Discovered or Constructed?
As noted at the outset, the account of phenomena detection adopted in
this chapter is consistent with a commitment to a realist outlook on
science. Among other things, this outlook commits one to the view that
phenomena are ontological existents of various kinds, including empiri-
cal regularities. They occur in nature and are the sorts of things that can
be discovered through scientific research, and about which we can have
genuine knowledge. Many of these phenomena in the physical and bio-
logical sciences, and areas of psychology such as psychophysics and
neuropsychology, are part of the world’s furniture that exists indepen-
dently of human interests, theoretical commitments, and sociocultural
factors. Other phenomena to be found in areas such as social and eco-
nomic psychology do not exist independently of these social factors. A
question to be addressed here, then, is whether these social factors allow
one to retain a realist outlook on phenomena that are influenced by them.
A number of sociologists of science adopt a strong social construction-
ist outlook on science and tend to deny that phenomena are real in the
realist sense just noted. Latour and Woolgar’s (1979) well-known ethno-
graphic study of life in a scientific laboratory is a good case in point.
The authors of this study pressed their viewpoint by noting that the word
fact comes from the Latin noun factum, which derives from the past
participle of facere, meaning “to do or make.” For them, facts or phe-
nomena are made, not discovered. So they do exist. However, their reality
“is the consequence of scientific work rather than its cause.” Latour and
Woolgar went further by claiming that “phenomena are thoroughly
constituted by the material setting of the laboratory.” They are not real
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regularities in nature waiting to be discovered; rather, they are made
by us.

However, Latour and Woolgar’s empirical attempt to document the
social construction of scientific facts was confined to an examination of
laboratory inscriptions such as photographs, graphs, and written papers.
They showed little interest in scientists’ own understanding of their labo-
ratory behavior, and for that reason their research was poor ethnography.
Moreover, Latour and Woolgar failed to consider the process by which
claims about scientific facts are socially constructed. That is, they failed
to document the transition from transitory data claims to stable phenom-
ena claims, and they chose to ignore the testing, modification, acceptance,
and sedimentation of claims about such phenomena (Weinert, 1992). As
a result, Latour and Woolgar mistook the data from a particular experi-
ment for phenomena, which are stable and repeatable events.

Latour and Woolgar’s (1979) strong social constructionist claim that
scientific facts are solely manufactured is implausible. However, Hacking
(1983) adopted a more moderate and subtle social constructionist view
of phenomena. Although a realist of sorts, Hacking maintained that
phenomena are typically created, not discovered. He believed that few
phenomena exist in nature waiting to be discovered. Mostly there is “just
complexity” in nature, and we mostly isolate phenomena by devising
appropriate experimental arrangements that will produce them in a reli-
able manner.

In reply to Hacking’s contention that most phenomena are created by
experiments, Bogen and Woodward (1988) acknowledged that this is the
case for some phenomena, such as those in physics created in very high-
energy particle accelerators, but they maintained that this is not true for
phenomena in general. They believe that Hacking ascribes to phenomena
features that more appropriately characterize data.

Most empirical studies in psychology are not strictly experimental,
and those that are do not create new phenomena in the manner of those
forged by very high-energy particle accelerators. Think, for example, of
the Flynn effect, which was detected nonexperimentally, and the law of
effect, which was discovered and refined experimentally but operates in
nonexperimental contexts. However, as just noted, some categories in
psychology (e.g., “undergraduate student,” “family,” and “money”) are
socially constructed; they are social kinds rather than natural kinds
(Hacking, 1999; Searle, 1995). However, the members of such socially
constructed categories do exist and are therefore amenable to objective
study. As discussed in chapter 1, the areas of psychology that study social
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kinds require a shift from realist orthodoxy with its commitment to the
view that the objects of study are mind independent. We need to accept
the fact that some subject matters are mind dependent (and partly rep-
resentation dependent), in the sense that they would not exist without
human minds. But given their social existence, they are inquiry indepen-
dent and can therefore be studied objectively in a realist manner (Maki,
2005).

Although a strong social constructionist perspective on detecting phe-
nomena is unconvincing, the naive realist view that such facts are simply
looked for and discovered is also unconvincing. This chapter adopts a
moderate, flexible, realist position about scientific phenomena that
acknowledges the role of social processes in the production of some
phenomena while insisting that claims about phenomena are also signifi-
cantly constrained by the world itself. Nor should it be thought that
scientific phenomena exist only in the sense that they are created experi-
mentally in the laboratory. Scientific phenomena exist in the world, typi-
cally masked by noise. We exhibit them in more or less pure form by
forging them through both experimental and nonexperimental interven-
tion. In speaking of phenomena detection in realist terms, I have in mind
neither the observation nor the literal discovery nor the construction of
inquiry-dependent facts.

2.5.2 Two Kinds of Scientific Progress
Psychologists have offered a number of different broad characterizations
of their discipline’s scientific progress. For example, they have appealed
to Popper’s (1959) notion of falsifiability in urging stronger tests of its
theories (more honored in the breach than the observance), they have
also followed Kuhn (2012) in judging its multiparadigmatic nature as a
sign of disciplinary immaturity, and they have used Lakatos’s (1970)
methodology to evaluate the progressiveness of its research programs.
However, with these portraits of scientific progress, they have focused
more on the worth of psychology’s theories and less on the nature of its
empirical advances and the strength of its empirical claims.
Recognition of the fundamental importance of the distinction between
phenomena claims and explanatory theories suggests the need to clearly
differentiate between empirical progress and theoretical progress in
science (Kaiser, 1996). The related aims of detecting empirical phenom-
ena and constructing explanatory theories provide science with the two
most fundamental goals in respect of which these different senses of
scientific progress can be measured. That is, a discipline’s empirical
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progress can be measured in terms of its success in detecting robust
empirical phenomena, whereas its theoretical progress can be understood
in terms of the goodness of its explanatory theories.

The question to be asked here is: has psychology made good progress
in its quest to detect empirical phenomena? Some psychologists doubt
that this is so. For example, Gergen (1973) maintained that the behav-
ioral sciences deal with facts that are often nonrepeatable, and at best
they produce generalizations that hold for a limited time only because
they are invalidated by cultural and historical factors. Furthermore, he
distrusted meta-analysis as a basis for claiming that empirical generaliza-
tions exist (Gergen, 1994). Relatedly, Cronbach (1975) believed that the
interactive complexity of psychology’s subject matter ensures that its
generalizations have a short half-life. Furthermore, Lykken (1991) argued
that psychology has made poor empirical and theoretical progress and,
with respect to the empirical, contended that many of its findings fail to
replicate.

In the face of negative assessments such as these, Gage (1996) coun-
tered that the results of meta-analysis include an array of stable and
robust first-order and interaction effects that support the conclusion that
the behavioral sciences have detected numerous empirical phenomena
worthy of theoretical explanation. Furthermore, Hedges (1987) provided
an example of one type of study that is needed to make informed judg-
ments about empirical progress in psychology. He showed that a com-
parison of the empirical consistency of the results of replicated exemplary
experiments in physics and psychology, which use the same numerical
methods, reveals a similar degree of empirical cumulation. This is a piece
of knowledge about empirical progress in psychology that challenges
popular opinion.

Clearly we need more empirical work to further our knowledge of
just how effective psychology has been in detecting empirical phenom-
ena. Regarding the process of phenomena detection, the following catalog
of questions deserves to be considered in future studies: What forms do
the phenomena take (e.g., are they characterized as empirical generaliza-
tions or as capacities)? What is the means by which the phenomena have
been detected (e.g., by constructive replication through use of experi-
ments, or by the use of well-conducted meta-analytic studies)? Have the
phenomena been detected by reliable means (e.g., are the measuring
instruments properly calibrated, and do they retain their calibration)? To
what extent are the phenomena generalizable, and does the scope of the
generalizations change over time? What is the strength of the evidential
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support for the phenomena claims, and are they qualitative or quantita-
tive in nature?

Good science strives to make both empirical and theoretical progress.
Given that these are different types of progress and that psychology is a
discipline of many parts, we should be sensitive to the likelihood that it
has made uneven rates of progress of both sorts in its different areas.
Overall, I think that psychology has done better at phenomena detection
than theory construction. However, to substantiate this claim would
require many detailed assessments of the quality of psychology’s efforts
and achievements with respect to these two fundamentally different
processes.

2.5.3 Phenomena Detection and Reliabilism

Modern scientific methodology distinguishes between two important and
different theories for justifying knowledge claims: reliabilism and coher-
entism. Reliabilism maintains that a belief is justified to the extent that
it is acquired by reliable processes or methods (Goldman, 1986). The
examples are numerous and varied. They include the use of calibrated
thermometers to measure temperature, as in the case of determining the
melting point of lead discussed earlier. Furthermore, under appropriate
conditions, beliefs produced by perception, verbal reports of mental
processes, and even sound argumentation can all be justified by the reli-
able processes of their production. The crucial point to make here is that
reliability judgments are the appropriate type of justification for claims
about empirical phenomena. As noted earlier, statistical resampling
methods, such as the bootstrap, and the two strategies of constructive
replication, provide different sorts of consistency tests that researchers
can use to establish phenomenon claims by showing that data provide
reliable evidence for the existence of phenomena. The use of consistency
tests to validate knowledge claims on reliabilist grounds is widespread
in science. It should be understood that this use of reliability as a mode
of justification differs from the normal psychometric practice in which
reliability and validity are presented as contrasts.

By contrast with reliabilism, coherentism asserts that a belief is justi-
fied in virtue of its coherence with other beliefs. One prominent version
of coherentism, explanationism, maintains that coherence is determined
by explanatory relations, and all justification aims at maximizing the
explanatory coherence of belief systems (Lycan, 1988). However, the
claim that all justification is concerned with explanatory coherence is
too extreme, as the prominence of reliabilist justification in science makes
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clear. Rather, the role for explanatory coherence is to provide a justifica-
tion for the acceptance of explanatory theories. For example, Thagard’s
(1992) theory of explanatory coherence articulates a method that enables
researchers to decide whether one theory is superior to its rivals on the
basis of criteria to do with explanatory breadth, simplicity, and analogy.
To repeat, phenomena detection and explanatory theory construction are
two fundamentally different research processes for which different
approaches to knowledge justification are appropriate.

However, note that although reliabilism and explanationism are dif-
ferent and are often presented as rivals, they do not have to be seen as
competing theories of justification. One can adopt a broadly coherentist
perspective on justification that accommodates both reliabilism and
explanationism and allows for their coexistence, complementarity, and
interaction. This can be achieved by encouraging researchers first to seek
and accept knowledge claims about empirical phenomena based solely
on reliabilist grounds and then proceed to construct theories that will
explain coherently those claims about phenomena. This is exactly what
Flynn did, by first systematically documenting the effect that bears his
name, and then endeavoring, with Dickens, to explain the effect by pro-
posing their theory of environmental richness (Dickens & Flynn, 2001;
see also Flynn, 2009).

One might add that the acceptability of the claims about phenomena
will increase when they coherently enter into the explanatory relations
that contain them. Alternatively, the explanatory breadth, and therefore
the explanatory coherence, of a theory will decrease as a consequence of
rejecting a claim about a relevant phenomenon that was initially accepted
on insufficient reliabilist grounds.

I now turn to consider a number of important implications for psy-
chological research that are occasioned by the account of phenomena
detection that has been presented. These implications issue some clear
recommendations that speak against current orthodoxy and are designed
to improve the quality of research in the discipline.

2.6 Implications for Psychological Research

2.6.1 Adopting Bottom-Up Reasoning in Science

The hypothetico-deductive method continues to be the method of choice
in the natural sciences and, as repeatedly stated, is also prominent in
psychology. Partly for this reason, most scientists view scientific inference
as a top-down affair in which the thrust of reasoning is from hypotheses



Detecting Psychological Phenomena 51

and theories to their empirical test predictions. Unfortunately, hypo-
thetico-deductive testing in psychology is often constrained by null
hypothesis significance testing, and in combination, their empirical pre-
dictions are often much weaker than predictions about new empirical
phenomena. Given that the hypothetico-deductive method allows the
deduction of claims about empirical phenomena, psychology’s standard
hypothesis and theory testing practice would be improved if it strove for
hypothetico-deductive tests of the existence of new phenomena.

In stark contrast to the hypothetico-deductive method, the character
of reasoning from data to phenomena is clearly bottom-up, culminating
as it often does in inductive inference to empirical generalizations. Given
that science often looks to detect empirical phenomena before construct-
ing explanatory theories, and the detection of new phenomena often
gives theory construction its point, the methodology of bottom-up rea-
soning in science certainly deserves a prominent place alongside the more
familiar top-down sequence. Moreover, the bottom-up character of sci-
entific inference extends abductively from claims about phenomena to
theories that plausibly explain those empirical claims. ATOM is a broad
bottom-up theory of scientific method that endorses the inductive
discovery of phenomena followed by the abductive construction of
explanatory theory. Although some areas of psychology, such as human
experimental psychology, engage in bottom-up research, this practice is
far from universal. It is presumably for this reason that, in a recent issue
of Perspectives on Psychological Science that looked at future directions
psychology should take, the social and personality psychologists David
Funder (2009) and Paul Rozin (2009) recommended the adoption of a
bottom-up approach to psychological research. Their vision of a better
psychology assigned central importance to descriptive, data-oriented
research in which the discovery of important and interesting phenomena
preceded the construction of explanatory theory.

2.6.2 In Praise of Inductive Method

Down through time, many students of science, including Peirce and
Popper, have cast doubt on the importance of inductive reasoning in
science, though they have often had simple views of induction in their
sights. However, as noted earlier, phenomena detection that leads to
empirical generalizations is, perforce, inductive in nature. I also noted
that when inductive reasoning is used in the scientific context of phe-
nomena detection, it takes on a material character, which makes it an
empirical, not a logical, matter.
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This empirical conception of inductive reasoning in science enables
psychologists to endorse the inductivism of radical behaviorist methodol-
ogy while eschewing its instrumentalist prescriptions for theorizing in
favor of a realist outlook on explanatory theory. Because the establish-
ment of empirical claims and the construction of theories (both empiricist
and realist) are different sorts of undertakings, scientists should be able
to decouple them with little difficulty. The inductive part of radical
behaviorism is an account of phenomena detection that can also be found
in the biological sciences, which Skinner endorsed as a model for psy-
chological science (Sidman, 1960; Skinner, 1984). As such, it deserves a
wider adoption in psychology than it currently receives.

2.6.3 The Threefold Importance of Replication

From time to time, psychologists rightly stress the importance of replica-
tion in science (e.g., Sidman, 1960; Thompson, 1994) and lament its lack
of emphasis in their discipline. That phenomena detection accords rep-
lication pride of place among its research procedures is perhaps the
strongest justification of the importance of replication in science.

This chapter has stressed the need to distinguish between and use both
close and constructive replication. To repeat, these are different but
related validating strategies. Close replication features as a “just check-
ing” strategy to establish that data patterns are real. Constructive replica-
tion comes in two forms: direct replication, which endeavors to faithfully
reproduce the original study in its entirety; and the more familiar form,
which is a triangulation strategy designed to reveal the extent to which
the results identified by successful close replication can be generalized.
In the pursuit of phenomena, science must regularly practice all three
forms of replication.

It follows that psychological science would benefit considerably from
greater attempts to capitalize on the variety of replication strategies that
are available (e.g., Muller, Otto, & Benignus, 1983; Lykken, 1991). In
particular, it needs to place greater emphasis on direct replication, which
is a form of research that is undervalued and difficult to publish in psy-
chology. Another replication strategy with genuine payoff involves car-
rying out a true pilot study followed by a full replication. A true pilot
study is itself a genuine research study in the small (Meehl, 1990). It is
conducted not to see whether something works, or to gather a particular
piece of information, but to gauge whether one can ascertain the exis-
tence of an appreciable effect. However, for this to happen, the pilot
study must have the basic features of the main study, and they must be
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implemented with a high degree of rigor, or else it will not be usefully
predictive of the main study outcomes. Save for some possible minor
improvements suggested by the limitations of the pilot study, the main
study will function in effect as a direct replication of the pilot precursor,
thus providing further evidence that the effect holds for the study condi-
tions in question.

Finally, in recognition of the need to use statistical methods that are
in keeping with the practice of describing predictable phenomena,
researchers in psychology should seek the generalizability of relation-
ships rather than their statistical significance (Ehrenberg & Bound, 1993;
Hubbard & Lindsay, 2013). Hence the need to use observational and
experimental studies with multiple sets of data, observed under quite
different sets of conditions. The appropriate task here is not to determine
which model best fits a single set of data but to ascertain whether the
model holds across different data sets. To repeat, seeking reproducible
results through different forms of replication requires data analytic strat-
egies that are designed to detect significant sameness rather than signifi-
cant difference. The regular use of these strategies would help put
statistical significance testing in its rightful place.

2.6.4 Guarding against Pseudophenomena

Given that a good deal of work in science is concerned with separating
artifacts from real effects, it is important to distinguish between pseudo-
phenomena and genuine phenomena. Claims about phenomena that are
not true can be harmful to science. It is not just that their status as
knowledge claims is misleading but, more importantly, that constructing
theories to explain them lacks proper motivation and is largely a waste
of research time and money.

A number of well-known empirical claims in psychology have mas-
queraded as justified claims about phenomena for a time because they
were not subjected to sufficient peer scrutiny. For example, John Wat-
son’s famous Little Albert experiment, allegedly demonstrating the phe-
nomenon of the conditioned reflex, was really based on unconfirmed
pilot data and accepted uncritically into psychology’s book of knowledge
(Samelson, 1980). The so-called Hawthorne effect (the idea that the
behavior during the course of an experiment can be altered by a subject’s
awareness of participating in the experiment) has been enshrined in many
textbooks, although the Hawthorne studies yielded little support for this
alleged empirical generalization (Jones, 1992). And Richard Hernstein’s
claim that the high heritability of intelligence was “psychology’s best
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proved, socially significant empirical finding” was based on Burt’s twin
study data that were subsequently shown to have no scientific merit
(Tucker, 1994).

Ongoing claims about the existence of parapsychological or psi
phenomena, such as telekinesis and telepathy, present in bold relief the
challenge of safeguarding against pseudophenomena. Critics of parapsy-
chological experiments claim that reported psi effects result from either
defects in experimental design, such as the use of inappropriate random-
ization procedures, or flaws in the use of statistical methods (e.g., Diaco-
nis, 1978; Hyman, 1985). These critics also point out that when good
experimental designs are used, parapsychologists cannot consistently
replicate their results. Whereas a majority of academic psychologists
today do not accept the existence of psi phenomena, a small minority of
researchers continue to argue for their existence. Using customary p
values as his source of evidence, Bem (2011) recently claimed to have
demonstrated the existence of precognition whereby future events retro-
actively influence peoples’ responses. Wagenmakers, Wetzels, Borsboom,
and van der Maas (2011) reanalyzed Bem’s data and concluded that their
more stringent Bayesian analysis showed no evidence in favor of precog-
nition. Given that psychologists often carry out empirical tests in the
quasi-exploratory manner of Bem’s study, Wagenmakers et al. concluded
that psychologists in general should perform more conservative confir-
matory tests of controversial claims. Their methodological recommenda-
tion is in keeping with the view adopted in this chapter that falsely
claiming that phenomena exist has the potential to do serious harm to
science. Some years ago, Bem and Honorton (1994) provided an example
of this potential harm by claiming, on insufficient grounds (Milton &
Wiseman, 1999), that psi exists, and then proceeded to idly speculate
about the mechanism that might plausibly produce such an alleged
phenomenon.

2.6.5 The Need to Reform Data Analytic Practice

The account of phenomena detection presented in this chapter lends
weight to recommendations that have been made to change our data
analytic practices in psychology (e.g., Kline, 2013; Wilkinson & the
Task Force on Statistical Inference, 1999). Taking phenomena detection
seriously requires researchers to be bullish, not bearish, about data
analysis (Bogen & Woodward, 1988). For its part, psychology needs to
be more bullish about data analysis. Although it has yet to properly
embrace Tukey’s (1980) two-stage model of exploratory data analysis
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followed by confirmatory data analysis, psychology should work explic-
itly with something like the four-stage model of data analysis outlined
earlier.

This model underscores the need to give greater attention to a number
of different types of method than is currently the case in psychological
research. First, as noted earlier, the initial examination of data, which is
undertaken to screen data for its quality, must be adopted on a more
systematic basis than occurs at present (Fidell & Tabachnick, 2003;
Wilkinson & the Task Force on Statistical Inference, 1999). Data must
be worthy of reception as a source of potential evidence for phenomena
claims. Emphasizing the concerted use of initial data analyses to check
the quality of data should not prevent psychological researchers from
appreciating that attending seriously to the performance characteristics
of the instruments they use in data acquisition is an important additional
means of exercising control over their quality. The sporadic attention
given to calibration procedures in psychology is symptomatic of its need
to give more systematic attention to the quality of its data gathering
instruments.

Second, we must give exploratory data analysis a regular place in
research and curriculum endeavors. More than fifty years have passed
since Tukey (1969) made a compelling case to psychologists for the need
to undertake exploratory data analysis as an essential part of modern
data analytic practice. Psychology is slowly acknowledging the need to
embrace data analysis in the exploratory mode for the purpose of pattern
suggestion, but as a casual inspection of standard instructional textbooks
makes clear, it still has some way to go.

Third, there is a related need to recognize that computer-intensive
resampling methods, such as the bootstrap family, constitute an impor-
tant set of statistical procedures that are well suited to the role of pattern
confirmation. The American Psychological Association’ Task Force on
Statistical Inference (Wilkinson & the Task Force on Statistical Inference,
1999) was charged with looking at the newer computer-intensive statisti-
cal methods, but unfortunately it said nothing about computer-intensive
resampling methods. More recently, however, a small group of method-
ologists and practicing researchers in psychology have begun to promote
such methods (e.g., Kline, 2013; Sherman & Funder, 2009; Yu, 2008).
One might hope that, with the increasing availability of suitable soft-
ware, these statistical resampling methods might soon become a com-
panion resource for exploratory data analytic methods in the psychological
researcher’s toolbox.
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Finally, it is worth noting that the perspective on phenomena detection
presented here militates against the continued heavy use of null hypoth-
esis significance testing as psychology’s mainstay in data analysis. As
noted earlier in the discussion of replication, phenomena detection essen-
tially involves the pursuit of significance sameness, not significant differ-
ence. More specifically, the widespread tandem use of exploratory data
analytic and computer-intensive resampling methods would have the
desirable effect of helping put classical significance testing in its proper
place: performing the minor task of assessing sampling uncertainty. Seen
in this light, the current expression of concern by some “p-minded”
methodologists about overly liberal data analytic practices would become
a minor worry.

2.6.6 A Division of Cognitive Labor

I have repeatedly emphasized in this chapter that phenomena detection
is a very different enterprise from the construction of explanatory theory.
Mindful of this difference, the physics community operates with a clear
institutionalized division between experimental and theoretical research.
The products of both forms of research are recognized as major achieve-
ments in their own right, and each type of research is undertaken by
different sorts of people with different research skills. It is rare in physics
to find people who can do both types of work well. Instead, specialized
empirical and theoretical physicists characteristically work together in
research teams.

By contrast, in psychology it is not unusual for empirical and theoreti-
cal work to be done by the same person or by groups of people with the
same basic research training. Given the fundamental difference between
the processes of phenomena detection and theory construction, and
granting the complexity of studying the mind, the brain, and human
behavior, it is pertinent to ask whether psychology might make better
progress as a science by encouraging its researchers to adopt this division
of cognitive labor. This is not to suggest that all psychologists should do
so, or that psychology should institutionalize a division between empiri-
cal and theoretical research as strong as the one in physics. However,
given that from a science policy perspective we do not really know in
advance how best to proceed, it makes good sense to adopt a mixed
strategy, with some researchers doing empirical work, others doing theo-
retical work, and a small minority with the requisite strengths doing
both. I might add that although some evidence indicates that psychology
is at last beginning to acknowledge the importance of theoretical research
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as legitimate work in its own right (Kukla, 2001; Slife & Williams, 1997;
Wachtel, 1980), theory construction in psychology is a research task that
receives little formal recognition and encouragement. The virtual neglect
of theory construction in the guidelines of the Publication Manual
(American Psychological Association, 2010) is a prominent case in point.

2.7 Conclusion

Methodologists, teachers, and researchers in psychology have seldom
offered a full and accurate account of what good empirical research is
all about. This is true of the important practice of phenomena detection,
although most psychological researchers seem to spend a good deal of
their time engaged in activities that are directly relevant to the detection
of empirical regularities. However, it should be acknowledged that the
process of phenomena detection is not always easy to understand. Evi-
dence suggests that university students have difficulty distinguishing
between phenomena claims and explanations (Norris, Phillips, & Korpan,
2003). Also, sophisticated scientists and philosophers can disagree on
whether a piece of research explains data or phenomena (see, e.g., the
recent exchange between Burnston, Sheredos, & Bechtel, 2011, and
Kievit, Romeijn, Waldorp, Wicherts, Scholte, & Borsboom, 2011). Fur-
thermore, it is not difficult to find examples of psychological writing in
which the authors unwittingly conflate claims about phenomena and
explanatory theories. Moreover, some psychologists deliberately run the
two together. For example, Stam (2006) suggested that “the distinction
between theory and fact is a rather dubious and unhelpful one” (30),
and Schmidt (1993) opined that it is appropriate to take all research
processes, including the formation of stable empirical relationships, to
count as explanation. In my view, pronouncements such as these conflate
the two fundamentally different core endeavors of basic psychological
science and so misconstrue its nature. Robust empirical generalizations
have a life of their own, and the regularities they describe are distinct
from the causal factors that produce them. For this reason, they will
often become the appropriate objects of scientific explanation, whereas
theories about causal factors are the vehicles that provide the sought-
after explanations.

The successful detection of a phenomenon is an important achieve-
ment in its own right, and a significant indicator of empirical progress
in science. Bogen and Woodward’s account of the scientific process of
phenomena detection, and its attendant conception of the nature of
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science, is a systematic reconstruction of this part of science that is
seldom presented as a whole in methodological writings. Although it is
an outlook on empirical inquiry that psychologists have ignored, it pro-
vides an important means by which they can improve their understand-
ing of this process. I hope that the perspective on phenomena detection
presented in this chapter will help psychologists implement their bottom-
up research strategies in a more informed and rigorous manner.

This concludes my exposition of phenomena detection, which is the
first phase of ATOM. The following three chapters are concerned with
the second phase of ATOM, theory construction. This phase comprises
theory generation, theory development, and theory appraisal. The next
chapter is concerned with theory generation. It focuses on the method
of exploratory factor analysis and presents it as an abductive method for
generating elementary plausible theories.



3 Theory Generation: Exploratory Factor
Analysis

Exploratory factor analysis is an abductive method for formulating hypotheses
using the common cause principle, but also to be used along with confirmatory
factor analysis, which tests hypotheses.

—Stanley Mulaik (2010, 433)
3.1 Introduction

Exploratory factor analysis is a multivariate statistical method designed
to facilitate the postulation of latent variables that are thought to under-
lie and give rise to patterns of correlations in new domains of observed
or manifest variables. Intellectual abilities, personality traits, and social
attitudes are well-known classes of latent variables that are the products
of factor analytic research. Exploratory factor analysis (EFA) is often
contrasted with confirmatory factor analysis, which is concerned with
the testing of factor analytic hypotheses and models.

The first sixty years of the hundred-year history of factor analysis
were largely devoted to developing exploratory factor analytic methods.
However, despite the advanced statistical state and frequent use of EFA
within psychology and other behavioral sciences, debate about its basic
nature and worth continues. Most factor analytic methodologists take
EFA to be a method for hypothesizing latent variables to explain patterns
of correlations. Some, however, understand it as a method of data reduc-
tion that provides an economical description of correlational data.!?
Further, with the advent of confirmatory factor analysis and full struc-
tural equation modeling, the prominence of EFA in multivariate research
has declined. Today methodologists and researchers often recommend
and employ confirmatory factor analysis as the method of choice in
factor analytic studies.
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In this chapter, I examine the methodological foundations of EFA and
argue for the view that it is properly construed as a method for generat-
ing rudimentary explanatory theories.> In the first half of the chapter, I
contend that EFA is an abductive method of theory generation that
exploits an important precept of scientific inference known as the prin-
ciple of the common cause. It is surprising that this characterization of
the inferential nature of EFA does not figure explicitly in the factor ana-
lytic literature, because it coheres well with the generally accepted view
of EFA as a latent variable method. Since abduction and the principle of
the common cause are seldom mentioned in the factor analytic literature,
I describe each before showing how they are employed in EFA. In the
second half of the chapter, I refer again to ATOM, which I outlined in
chapter 1. I then discuss a number of methodological features of EFA in
the light of that method. In particular, T argue that, despite a widespread
belief to the contrary, factorial theories do have genuine explanatory
merit; the methodological challenge of factor indeterminacy can be sat-
isfactorily met by both EFA and confirmatory factor analysis; and EFA
as a useful method of theory generation can profitably be employed in
tandem with confirmatory factor analysis and other methods of theory
evaluation. The epigraph by Stanley Mulaik (2010) at the beginning of
the chapter is part of his summary statement of my position on factor
analysis (Haig, 2005b).

3.2 The Inferential Nature of Exploratory Factor Analysis

3.2.1 The Nature of Abductive Inference

It is commonly thought that inductive and deductive reasoning are the
only major types of inference employed in scientific research. It is well
known that conclusions of valid deductive arguments preserve the infor-
mation or knowledge contained in their premises, but they do not add
new information or knowledge. By contrast, inductive arguments are
ampliative in that they add new information or knowledge to existing
information and knowledge. However, inductive arguments, though
ampliative, are descriptive in character because they reach conclusions
about the same types of manifest attributes mentioned in their premises.
Importantly, though, science also adds to its store of knowledge by rea-
soning from factual premises to explanatory conclusions. This type of
inference, which is widely ignored in scientific methodology, is known
as abduction.
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The basic idea of abductive inference can be traced back to Aristotle,
but its modern formulation comes from the pioneering work of the
American philosopher and scientist Charles Sanders Peirce (1931-1958).
Peirce’s writings on abduction are underdeveloped and open to interpre-
tation, but they are richly suggestive. They were largely ignored in the
first half of the twentieth century, but more recent developments in the
fields of philosophy of science, artificial intelligence, and cognitive science
more generally (e.g., Josephson & Josephson, 1994; Magnani, 2001;
Thagard, 1988, 1992) have built on Peirce’s ideas to significantly advance
our understanding of abductive reasoning.

Abduction is a form of reasoning involved in generating and evaluat-
ing explanatory hypotheses and theories. For Peirce, “Abduction consists
in studying facts and devising a theory to explain them” (1931-1958,
Vol. 5, 90). It is “the first starting of an hypothesis and the entertaining
of it, whether as a simple interrogation or with any degree of confidence”
(1931-1958, Vol. 6, 358).

Peirce maintained that abduction had a definite logical form that
he came to represent in the following general schema (1931-1958,
Vol. 5, 117):

The surprising fact, C, is observed.
But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true.

Although Peirce’s schematic depiction of abductive inference is sug-
gestive, it needs to be amplified and modified in various ways to qualify
as an instructive account of explanatory inference in science. First, as
emphasized in the previous chapter, the facts to be explained in science
are not normally particular events but empirical generalizations or phe-
nomena, and, strictly speaking, they are not typically observed. Rather,
the data themselves are observed and serve as evidence for the phenom-
ena. In turn, phenomena, not data, serve as evidence for the abduced
theories.

Second, confirmation theory in the philosophy of science makes clear
that the facts or phenomena follow as a matter of course, not just from
the proposed theory but from that theory in conjunction with accepted
relevant auxiliary claims taken from background knowledge.

Third, we should not take the antecedent of the conditional assertion
in Peirce’s schema to imply that abductive inferences produce truths as
a matter of course. Although science aims to give us true, or approxi-
mately true, theories of the world, the supposition that the proposed
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theory is true is not a requirement for the derivation of the relevant facts.
All that is required is that the theory be plausible enough to be provision-
ally accepted. It is important to distinguish between truth, understood
as a guiding ideal for science (a goal that we strive for but never fully
reach), and the acceptance of theories, which is based on evaluative
criteria such as predictive success, simplicity, and explanatory breadth.
As proxies for truth, justificatory criteria such as these indicate truth but
do not constitute it.

Fourth, note that the conclusion of Peirce’s argument schema does not
assert that the hypothesis itself is true, only that there are grounds for
thinking that the proposed hypothesis might be true. This is a weaker
claim that allows one to think of a sound abductive argument as deliver-
ing a judgment that the hypothesis is initially plausible and worthy of
further pursuit. As we shall see, assessments of initial plausibility consti-
tute a form of generative justification that involves reasoning from war-
ranted premises to an acceptance of the knowledge claims in question.

Fifth, Peirce’s schematic depiction of abductive inference focuses on
its logical form only. As such, it has limited value in understanding the
theory construction process unless it is conjoined with a set of regulative
constraints that enable us to view abduction as an inference, not just to
any explanation but to plausible explanations. Constraints that regulate
the abductive generation of scientific theories will comprise a host of
heuristics, rules, and principles that govern what counts as good explana-
tions. In the next section, I argue that the principle of the common cause
is a key principle (more accurately, a heuristic) that regulates abductive
reasoning within EFA.

Peirce’s understanding of abduction was somewhat protean in nature,
although for him it tended to take its place at the inception of scientific
hypotheses and often involved making inferences from puzzling facts to
hypotheses that might well explain them. However, recent work on
abduction reveals that explanatory hypotheses can be abductively
obtained in a number of different ways. In focusing on the generation of
hypotheses, Thagard (1988) helpfully distinguishes between different
types of abduction. One of these, existential abduction, hypothesizes the
existence of previously unknown objects or properties. Another, analogi-
cal abduction, employs successful past cases of hypothesis generation to
form new hypotheses similar to relevant existing ones. In the next section,
I suggest that existential abduction is the type of abduction involved in
the factor analytic production of explanatory hypotheses, although ana-
logical abduction too is sometimes employed in this regard.
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It should be clear from this series of remarks about abduction that
Peirce’s schematic depiction of the logical form of abduction needs to be
changed to something like the following:

The surprising empirical phenomenon, P, is detected.

But if hypothesis H were approximately true, and the relevant auxiliary
knowledge, A, were invoked, then P would follow as a matter of course.

Hence there are grounds for judging H to be initially plausible and
worthy of further pursuit.

This recasting of Peirce’s characterization of an abductive argument
accommodates the fact that in science, hypotheses are typically produced
to explain empirical phenomena. Moreover, it acknowledges the role of
background knowledge in the derivation of hypotheses, assigns a regula-
tive role to truth, and signals the importance of initial plausibility assess-
ments in generating and developing new knowledge.

3.2.2 Exploratory Factor Analysis and Abduction

I turn now to consider my initial claim that EFA is fundamentally an
abductive method of theory generation. I begin by briefly acknowledging
two earlier efforts to characterize EFA as an abductive method and then
elaborate on the claim that EFA largely trades in existential abductions.
In part, this exercise will involve indicating that the modified Peircean
schema for abductive inference applies to EFA.

Sixty years ago, Raymond Hartley (1954) drew a distinction between
descriptive and inferential factor analysis and defended the then unpopu-
lar view that inferential factor analysis could justifiably be used to
hypothesize unobserved causal factors. Hartley argued his case by analogy
to the logic involved in the study of unobserved physiological entities,
but he realized that one could make a compelling case for the inferential-
ist reading of factor analysis only by appealing to an appropriate theory
of inference. Hartley expressed surprise at the time that factor analysis
stood without appeal to any theory of inference. It is remarkable, then,
that expositions of EFA sixty years later still do not refer explicitly to a
theory of inference to characterize the reasoning involved in moving from
descriptions of manifest variables to statements about latent variables.

Although the mainstream psychometric literature does not attempt to
characterize EFA as an abductive method, both William Stephenson and
William Rozeboom began to address this matter over forty years ago.
Stephenson’s (1961) insightful scientific creed contains a brief attempt
to explicitly characterize EFA as an abductive method, and Rozeboom’s
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work (1961, 1972) provides more detailed evidence supporting the view
that EFA is an abductive method. Rozeboom spoke of ontological induc-
tions that extend our referential reach beyond covariational information
to hypotheses about latent factors, which are new ontological postula-
tions. He also described EFA as an explanatory inductive method because
it helps generate conceptions of latent factors that explain why the
covariational regularities of interest obtain. Here Rozeboom used the
term induction in a broad sense, where it has the same general meaning
as abduction.

As noted earlier, existential abduction often hypothesizes the exis-
tence of entities previously unknown to us. The innumerable examples
of existential abduction in science include the initial postulation of enti-
ties such as atoms, phlogiston, genes, viruses, tectonic plates, planets,
Spearman’s g, habit strength, and extraversion.* We now know that
some of these entities exist, that some of them do not exist, and we are
unsure about the existence of others. In cases like these, the initial
abductive inferences are made to claims primarily about the existence
of theoretical entities to explain empirical facts or phenomena. Thus,
in the first instance, the hypotheses given to us through the use of EFA
do little more than postulate the existence of the latent variables in
question. They say little about their nature and function, and it remains
for further research to elaborate on the first rudimentary conception of
these variables.

The factor analytic use of existential abduction to infer the existence
of the theoretical entity g can be coarsely reconstructed in accord with
the earlier modified Peircean schema for abductive inference along the
following lines:

The surprising empirical phenomenon known as the positive manifold is
identified.’

If g exists, and it is validly and reliably measured by a Wechsler intelli-
gence scale (or some other objective test), then the positive manifold
would follow as a matter of course.

Hence there are grounds for judging the hypothesis of g to be initially
plausible and worthy of further pursuit.

I remarked earlier that our conceptions of the latent factors of EFA
come to us through existential abductions. In fact, the factor analytic
generation of hypotheses is sometimes a mixture of existential and ana-
logical abduction where we simultaneously posit the existence of a latent
variable and offer the beginnings of a characterization of that entity by
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brief analogy to something that we understand quite well. Recall that
analogical abduction appeals to known instances of successful abductive
hypothesis formation to generate new hypotheses like them. To accom-
modate the presence of analogical abduction, the abductive argument
schema just given would need an additional premise that indicates there
is reason to believe that a hypothesis of the appropriate kind would
explain the positive manifold. When Charles Spearman first posited
general intelligence to explain correlated performance indicators, he
thought of it as mental energy, likening it to physical energy—a process
well understood by the physics of the time. His initial inference to claims
about g, then, was a blend of existential and analogical abduction.

This example serves to illustrate the point that methodologists should
take the method of EFA proper to include the factor analyst’s substantive
interpretation of the statistical factors. In this regard, it is important to
realize that the exploratory factor analyst has to resort to his or her own
abductive powers when reasoning from correlational data patterns to
underlying common causes. This point can be brought out by noting that
the modified Peircean schema for abduction, and its application to the
factor analytic generation of Spearman’s hypothesis of g, are concerned
with the form of the arguments involved, not with the actual generation
of the explanatory hypotheses. In each case, the explanatory hypothesis
is given in the second premise of the argument. An account of the genesis
of the explanatory hypothesis must therefore be furnished by some other
means. I think it is plausible to suggest that reasoning to explanatory
hypotheses trades on our evolved cognitive ability to abductively gener-
ate such hypotheses. Peirce himself maintained that the human ability to
engage readily in abductive reasoning was founded on a guessing instinct
that has its origins in evolution. More suggestively, Carruthers (2002)
claimed that our ability to engage in explanatory inference is almost
certainly largely innate, and he speculated that it may be an adaptation
selected for because of its crucial role in the fitness-enhancing activities
of our ancestors such as hunting and tracking. Whatever its origin, an
informative methodological characterization of the abductive nature of
factor analytic inference must appeal to the scientist’s own psychological
resources, as well as those of logic. To recall a tenet of the realist meth-
odology outlined in chapter 1, it must be a methodological characteriza-
tion that includes the knowing subject.®

Before leaving consideration of the general abductive nature of EFA,
let us briefly note that a number of special features of EFA play an
important role in facilitating the abductive generation of hypotheses. For



66 Chapter 3

instance (as we will see in chapter 5), simplicity, or parsimony, is an
important desideratum in fashioning scientific explanations, and Thur-
stone’s (1947) criteria for simple structure combine in an explicit formu-
lation of parsimony in EFA. Stated in the distinctive language of factor
analysis, Thurstone’s insight was to appreciate that rotation to the
oblique simple structure solution provided an objective basis for accept-
able terminal factor solutions that included reference to latent as well as
manifest variables.

3.2.3 The Principle of the Common Cause

Having suggested that abduction, specifically existential abduction,
largely characterizes the type of inference employed in the factor analytic
generation of theories about latent variables, I now want to draw atten-
tion to a methodological principle that drives and shapes the nature of
the existential abductive inference involved in EFA. It is well known that
EFA is a common factor analytic model in which the latent factors it
postulates are referred to as common factors. Not surprisingly, these
factors are often understood, and sometimes referred to, as common
causes. Yet seldom have factor analytic methodologists attempted to
formulate a principle or maxim of inference that guides the reasoning to
common causes. There is, however, an important principle of scientific
inference, known in philosophy of science as the principle of the common
cause, that we can apply to good effect here. In what follows, I discuss
the principle of the common cause before spelling out its central role in
EFA.

In The Direction of Time, Hans Reichenbach (1956) maintained that,
in both scientific and everyday reasoning, we often explain a coincidence
by postulating a common cause. In recognition of this fact, he explicitly
formulated a maxim that he called the principle of the common cause.
Reichenbach stated the principle cryptically, and informally, thus: “If an
improbable coincidence has occurred, there must exist a common cause”
(157). For Reichenbach, this principle enjoins us to postulate a single
common cause whenever there are events, or classes of events, that are
statistically significantly correlated. To take one of Reichenbach’s origi-
nal examples, if two lights in a room go out suddenly, the principle of
the common cause says we should look for an interruption in their
common power supply, such as a blown fuse.

Although Reichenbach’s formulation of the principle will not do as it
stands, the principle can be formulated as an important precept of human
reasoning that governs a good deal of inference in science. The principle
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of the common cause has received some consideration in the philo-
sophical literature and sometimes appears to be tacitly employed in
behavioral research, but it has been widely ignored in general scientific
methodology.

In explicitly introducing the principle of the common cause, Reichen-
bach was concerned to capture the idea that if two events, A and B, are
correlated, then one might be the cause of the other. Alternatively, they
might have a common cause, C, where this cause always occurs before
the correlated events. Reichenbach was the first to make this idea precise,
and he did so by formulating it as a statistical problem. He suggested
that when for simultaneous events A and B, Pr(A & B) > Pr(A) x Pr(B),
there exists an earlier common cause, C, of A and B, such that Pr(A/C)
> Pr(A/~C), Pr(B/C) > Pr(B/~C), Pr(A & B/C) = Pr(A/C) x Pr(B/C) and
Pr(A & B/~C) = Pr(A/~C) x Pr(B/~C) (Reichenbach, 1956, 158-159). The
common cause C is said to “screen off” the correlation between A and
B, when A and B are uncorrelated, conditional on C. A common cause
screens off each effect from the other by rendering its correlated effects
(conditionally) probabilistically independent of each other. For example,
given the occurrence of a flash of lightning in the sky, a correlation
between two people apparently observing that flash is not just a coinci-
dence, but is due to the flash of lightning being a common cause. Further,
the probability of one person seeing the flash of lightning, given that it
does occur, is not affected by whether or not the other person observes
the lightning flash. Reichenbach’s principle of the common cause can
thus be formulated succinctly as follows: “Simultaneous correlated events
have a prior common cause that screens off the correlation.”

Although Reichenbach’s initial characterization of the principle of the
common cause has some intuitive appeal and precision, more recent
philosophical work (Arntzenius, 1993; Salmon, 1984; Sober, 1988) has
suggested that the principle needs to be amended in a number of ways.
First, not every improbable coincidence or significant correlation has to
be explained through a common cause. For this reason, the principle is
sometimes taken to say, “If an improbable coincidence has occurred, and
there is no direct causal connection between the coincident variables,
then one should infer a common cause.” However, this amendment does
not go far enough, for there are a number of other possible alternative
causal interpretations of correlations. For example, two correlated vari-
ables might be mediated by an intervening cause in a developmental
sequence, or they might be the result of separate direct causes, and so
on. Responsible inference to a common cause must rule out alternative
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causal interpretations like these. We may therefore further amend
Reichenbach’s formulation of the principle to the following: “Whenever
two events are improbably, or significantly, correlated, we should infer
a common cause, unless we have good reason not to.” Clearly the prin-
ciple should not be taken as a hard-and-fast rule, for in many cases,
proper inferences about correlated events will not be of the common
causal kind. The qualifier “unless we have a good reason not to” should
be understood as an injunction to consider causal interpretations of the
correlated events other than the common causal kind. Also, occasions
will arise when it is incorrect to draw any sort of causal conclusion. Some
correlations are accidental correlations that are not brought about by
causes.

The existence of different attempts to improve on Reichenbach’s
(1956) initial formulation of the principle of the common cause leads to
the idea that more than one acceptable version of the principle might
exist. We might expect this to be the case not just because Reichenbach’s
formulation of the principle needs improving but also because of the
important point that different subject matters in different domains might
well require different formulations of the principle. For example, Reichen-
bach, a philosopher of physics, took the principle to apply to correlated
events that are spatially separated. However, behavioral and social sci-
entists regularly infer common causes for events that are not spatially
separated. This is clearly the case in psychology, where the correlated
variables can be performance measures on tests of intelligence and per-
sonality. Further, Sober (1988) has argued that in evolutionary theory,
phylogenetic inference to common ancestry involves postulating a
common cause, but this will be legitimate only if certain assumptions
about the process of evolution are true. Thus, in formulating a principle
of the common cause in a way that can be used effectively in a given
domain, relevant contingent knowledge about that domain will shape
the formulation of the principle and moderate its use. As noted in my
earlier characterization of abduction, the production of scientific knowl-
edge is a three-termed relation between evidence, theory, and background
knowledge. Routine use of a fixed, general formulation of the principle
of the common cause that reasons from correlational data alone is
unlikely to lead consistently to appropriate conclusions.

Two related features of the principle of the common cause should also
be acknowledged: as Salmon (1984) has observed, the principle is some-
times used as a principle of explanation (we appeal to common causes
to explain their correlated effects), and it is sometimes used as a principle



Theory Generation 69

of inference (we use the principle to reason to common causes from their
correlated effects). The principle of the common cause is a form of abduc-
tive inference where one reasons from correlated events to common
causes thought to explain those correlations. Thus we can go further than
Salmon and claim that the principle of the common cause simultaneously
combines these explanatory and inferential features to yield explanatory
inferences.

The suggestion that there might be different versions of the principle
of the common cause prompts mention of a closely related principle that
Spirtes, Glymour, and Scheines (2000) call the Markov condition. This
principle has recently been employed in Bayesian network modeling of
causal relations. Roughly stated, the Markov condition says that, condi-
tional on its direct causes, a variable is probabilistically independent of
everything except its effects. The Markov condition is in effect a general-
ized screening-off condition from which one can derive a version of the
principle of the common cause as a special case. As a generalized screen-
ing-off condition, the Markov condition applies to both common and
intervening causes. By contrast, the principle of the common cause only
screens off common causes from their correlated effects. Because of this
restriction, the principle of the common cause can be taken as the appro-
priate screening-off requirement for EFA.

I turn now to the application of the principle of the common cause
to EFA.

3.2.4 Exploratory Factor Analysis and the Principle of the Common
Cause

The Need for the Principle of the Common Cause It is sometimes said
that the central idea in factor analysis is that the relations between a
large number of observed variables are the direct result of a smaller
number of latent variables. McArdle (1996) maintains that this is a theo-
retical principle that empirical researchers employ to identify a set of
underlying factors. However, while true of EFA, this principle does not
constrain factor analysts to infer the common latent factors that are the
appropriate outcome of using common factor analysis. For this to
happen, the principle has to be linked to the principle of the common
cause or recast in more specific methodological terms in accordance with
that principle. Not only does the principle of the common cause enjoin
one to infer common causes, but it also assumes that that those inferences
will be to relatively few common causes. Reichenbach’s (1956) original
formulation of the principle, which allows inference to just one common
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cause, is obviously too restrictive for use in multiple factor analysis.
However, amending the principle to allow for more than one common
cause, combined with the restraint imposed by following Ockham’s razor
(do not multiply entities beyond necessity), will enable one to infer mul-
tiple common causes without excess.

Although EFA is used to infer common causes, expositions of common
factor analysis that explicitly acknowledge the importance of the prin-
ciple of the common cause are difficult to find. Kim and Mueller’s (1978)
basic exposition of factor analysis is a noteworthy exception. In discuss-
ing the conceptual foundations of factor analysis, these authors evince
the need to rely on what they call the postulate of factorial causation.
They characterize the postulate of factorial causation as “the assumption
that the observed variables are linear combinations of underlying factors,
and that the covariation between observed variables is solely due to their
common sharing of one or more of the common factors” (78). The
authors make clear that the common factors mentioned in the assump-
tion are to be regarded as underlying causal variables. Taken as a meth-
odological injunction, this postulate functions as a variant of the principle
of the common cause. Without appeal to this principle, factor analysts
could not identify the underlying factor pattern from the observed cova-
riance structure.

Two features of the principle of the common cause that make it suit-
able for EFA are that it can be applied in situations where we do not
know how likely it is that the correlated effects are due to a common
cause (this feature is consistent with the views of Reichenbach [1956],
Salmon [1984], and Sober [1988] on common causal reasoning), and
also in situations where we are essentially ignorant of the nature of the
common cause. The abductive inference to common causes is a basic
explanatory move that is nonprobabilistic and qualitative in nature. It is
judgments about the soundness of the abductive inferences, not the
assignment of probabilities, that confer initial plausibility on the factorial
hypotheses spawned by EFA.

It is important to appreciate that the principle of the common cause
does not function in isolation from other methodological constraints.
Embedded in EFA, the principle helps to limit existential abductive infer-
ence to situations where we reason back from correlated effects to one
or more common causes. Although covariation is an important basic
datum in science, not all effects are expressed as correlations, and, as
noted earlier, not all causes are of the common causal variety. It follows
from this that researchers should not always look for common causal
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interpretations of multivariate data, for there are numerous alternative
latent variable models. The simplex model of latent variables is a case in
point (e.g., Mulaik & Millsap, 2000). Further, the frequency of proper
use of EFA should be much less than the frequency of proper use of the
principle of the common cause, because the principle can be employed
by non-factor-analytic means, as will be indicated later.

In this first half of the chapter, I have argued that an appeal to abduc-
tive inference, linked to the principle of the common cause, leads natu-
rally to the view that EFA is an abductive method of theory generation
that enables researchers to theorize the existence of latent variables.
Although this method uses the statistical ideas of multiple regression and
partial correlation, it does so to facilitate inferences to the latent vari-
ables. In the view presented here, EFA is glossed as a set of multivariate
procedures that help us reason in an existentially abductive manner from
robust correlational data patterns to plausible explanatory prototheories
via the principle of the common cause.

3.3 Common Factor Analysis and Scientific Method

In the chapter’s second half, T propose to speak about the place of
common factor analysis in scientific inquiry broadly understood. To this
end, I briefly discuss the restrictions of two well-known theories of sci-
entific method, before adopting ATOM. This broader theory will serve
to provide a useful methodological framework within which one can
locate, further explicate, and evaluate the nature and role of EFA in
scientific research. In this regard, my primary concern will be to argue
that EFA helps researchers generate theories with genuine explanatory
merit; that factor indeterminacy is a methodological challenge for both
EFA and confirmatory factor analysis but is a challenge that can never-
theless be satisfactorily met; and that, as a valuable method of theory
generation, EFA can be employed profitably in tandem with its confirma-
tory namesake and other theory evaluation methods.

3.3.1 Exploratory Factor Analysis and Scientific Method

Much of the history of the development of general theories of scientific
method has discussed the relative merits of inductive and hypothetico-
deductive theories (Laudan, 1981). Mulaik (1987) locates EFA histori-
cally within eighteenth- and nineteenth-century empiricist philosophy of
science and its restrictive inductivist conception of scientific inquiry. The
inductive view of scientific method was said to obtain knowledge from
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experience by establishing generalizations based on theory-free observa-
tions. The scientific ideal of that time held inductive method to be an
organon for the discovery of secure knowledge that is devoid of explana-
tory hypotheses. Today, of course, it is a methodological truism to claim
that such a method cannot exist, and Mulaik is clearly right to point out
that we cannot expect EFA to deliver such knowledge. However, even a
modern view of inductive method, understood as a fallible generator of
empirical generalizations, cannot properly accommodate EFA as a latent
variable method. As noted at the beginning of the chapter, generalizing
inductive inference is descriptive inference, in the sense that it licenses
inferences to more of the manifest attributes that are sampled; it does
not have the conceptual resources to reach latent source variables that
are understood as causal entities. For this to be possible, an explanatory
form of ampliative inference is needed, as my earlier remarks on abduc-
tion and its relevance to EFA have sought to make clear.

As already noted, the hypothetico-deductive account of scientific
method has assumed hegemonic status in twentieth-century psychology.
As such, it continues to sustain the popular view that scientific research
is essentially a matter of testing hypotheses and theories, as well as the
corollary that there are no scientific methods for formulating hypotheses
and theories (Hempel, 1966). Although confirmatory factor analysis
finds a natural home within the confines of hypothetico-deductive
method (more of which later), EFA stands outside that method, offering
an abductive logic of theory generation that the hypothetico-deductive
method implies is possible.

As sketched in its précis in chapter 1, ATOM attempts to bring
together an array of ideas on important aspects of the research process,
many of which fall outside the province of the standard inductive and
hypothetico-deductive accounts of scientific method. Of particular rele-
vance to this chapter is that theory generation is depicted as an abductive
process, a fact that enables the abductive theory of method to incorporate
EFA within its fold. When this happens, EFA functions as a submethod
of ATOM and serves to provide a detailed methodological account of
how theories about common causes can be abductively generated from
correlational evidence. ATOM is also able to subsume the inductive
account of method. With its emphasis on generalization, the inductive
method can be seen at work in the process of phenomena detection.

Before turning to EFA again, let us note three points about the relation
between EFA and ATOM. First, the justification for adopting ATOM
is confined to the fact that it facilitates the examination of EFA in a
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suitably broad methodological perspective. Second, the justification for
the abductive depiction of EFA, given in the chapter’s first half, has been
developed independently of the acceptance of ATOM and as such can be
used outside its ambit. Third, the abductive employment of EFA within
the theory generation phase of ATOM begs no important question about
the abductive nature of that phase. Rather, it lends credibility to ATOM’s
outlook on theory generation by offering just one specific account of
that process.

3.4 Exploratory Factor Analysis, Phenomena Detection, and
Explanatory Theories

3.4.1 Exploratory Factor Analysis and Phenomena Detection

As just noted, ATOM contends that scientific research often involves the
initial detection of empirical phenomena, followed by the construction
of explanatory theories to understand those phenomena. Here I want to
emphasize an important feature of EFA by suggesting that, strictly speak-
ing, it contributes to phenomena detection as well as theory construction.
As such, it is a “mixed method,” having both data analytic and theory
generation roles.”

Otherwise distinct accounts of scientific inquiry tend to share the
view that scientific theories explain and predict facts about observed
data. However, as noted earlier in the discussion of Peirce’s (1931-1958)
original characterization of abductive inference, this widely held view
fails both to distinguish between data and phenomena and, in conse-
quence, to appreciate that typically it is phenomena, not data, that our
theories are constructed to explain and predict. Recall that phenomena,
unlike data, are relatively stable, recurrent features of the world that
we seek to explain, and it is their generality and stability that make
them, not data, the appropriate objects of explanation. In extracting
phenomena from the data, we often use statistical methods. EFA is a
case in point. Its name notwithstanding, EFA is not a particularly explor-
atory method, but it is nevertheless used to seek replicable data patterns,
which are a standard requirement for making claims about phenomena.
We can see this in the methodological requirement, stated initially by
Thurstone (1947) and endorsed by Cattell (1978), that the obtained
factor pattern should be repetitive, or invariant, across different data
sets in distinct populations. Both of these pioneers of factor analysis
realized that an interpretation of extracted and rotated factor patterns
made little scientific sense if they were specific to a particular covariance
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matrix and did not, or were unlikely to, generalize to other covariance
matrices.

3.4.2 Exploratory Factor Analysis and Explanatory Theories

One challenge to the interpretation of EFA as an abductive method of
theory generation is the claim that the theories it produces have little
explanatory worth. In countering this criticism, I suggest that factorial
theories spawned by EFA are essentially dispositional in nature, and
dispositional theories do have genuine, though limited, explanatory
import (Rozeboom, 1984; Sober, 1982). Recall that existential abduction
postulates the existence of new entities without being able to characterize
their nature. Thus, in exploiting this form of abduction, EFA provides us
with an essentially dispositional characterization of the latent entities it
postulates.

Dispositional theories provide oblique characterizations of the proper-
ties we attribute to things by way of their presumed effects under speci-
fied conditions (e.g., Mumford, 1998; Tuomela, 1978). For example, the
brittleness of glass is a dispositional property causally responsible for the
breaking of glass objects when they are struck with sufficient force. Our
indirect characterization of this latent property, brittleness, is in terms of
the relevant striking and breaking events. Similarly, Spearman’s original
theory of g was essentially dispositional in nature, for g was characterized
obliquely in terms of children’s school performance under the appropri-
ate test conditions.

As I have just noted, dispositional theories have often been regarded
as explanatorily suspect. Perhaps the best-known, and most frequently
cited, example of this is Moliere’s scoff at explaining the soporific effects
of opium by appeal to its dormitive power. However, as Rozeboom
(1973) maintains, “the virtus dormitiva of opium is why people who
partake of this particular substance become drowsy. Of course, that by
itself leaves a great deal unknown about this power’s nature, but learning
of its existence and how to diagnose its presence/absence in particular
cases is a necessary preliminary to pursuit of that knowledge” (67).

Similarly, with EFA, the existential abductions to latent factors pos-
tulate the existence of these factors without being able to say much, if
anything, about their actual nature. It is the job of EFA to help us bring
our factorial hypotheses and theories into existence, not to develop them
and specify their nature. According to ATOM, the latter task is under-
taken through the use of analogical modeling strategies. To expect EFA
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to develop theories, as well as generate them, is to fail to understand its
proper role as a generator of dispositional theories.

An answer to the question of whether dispositional theories possess
genuine explanatory worth requires us to focus on whether such theories
have explanatory power. Two aspects of explanatory power that are
relevant here are explanatory depth and explanatory breadth. For facto-
rial theories, explanatory depth is naturally understood as existential
depth. Existential depth is accorded those explanatory theories in science
that are deep-structural in nature. Theories of this sort postulate theoreti-
cal entities that are different in kind, and hidden, from the empirical
regularities they are invoked to explain. In postulating theoretical enti-
ties, deep-structural theories extend our referential reach to new entities
and thereby increase the potential scope of our knowledge. The factorial
theories afforded us by EFA have existential depth because the typical
products of factor analytic abductions are new claims about hidden
causal entities that are thought to exist distinct from their manifest
effects. Existential depth deserves to be considered as an explanatory
virtue of EFA’s postulational theories.

The other feature of explanatory power, explanatory breadth, is a
long-standing criterion of a theory’s worth. Sometimes explanatory
breadth is understood as consilience, which is often portrayed as the idea
that a theory explains more of the evidence (a greater number of facts)
than its competitors. The rudimentary theories of EFA do not have con-
silience in this sense, for they typically do not explain a range of facts.
Nor are they immediately placed in competition with rival theories.
However, factorial theories of this kind are consilient in the sense that
they explain the concurrences embodied in the relevant patterns of cor-
relations. By appealing to common causes, these factorial theories unify
their concurrences and thereby provide us with the beginnings of an
understanding of why they concur.

The two criteria that make up explanatory power are not the only
dimensions of theory appraisal that we should consider when submitting
a factorial theory to preliminary evaluation. The fertility of a theory is
also an important evaluative consideration. In general terms, this dimen-
sion focuses on the extent to which a theory stimulates further positive
research. It should be noted here that although our initial dispositional
descriptions of latent factors are low in informational content, they do
not, or need not, act as a heuristic block to further inquiry, as some com-
mentators on factor analysis suggest. Lykken (1971), for example, judges
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latent variable explanations from factor analysis to be “stillborn,”
whereas Skinner (1953) declares that they give us false assurances about
the state of our knowledge. However, given that EFA trades in existential
abductions, the dispositional ascription of latent factors should serve a
positive heuristic function. Considered as a preliminary to what we hope
will eventually be full-blooded explanations, dispositional ascriptions
serve to define the scope of, and mark a point of departure for, appropri-
ate research programs. Viewed in this developmental light, dispositional
explanations promote inquiry rather than block it.

3.4.3 Exploratory Factor Analysis and the Specter of
Underdetermination

The methodological literature on factor analysis has given considerable
attention to the indeterminacy of factors in the common factor model.
Factor indeterminacy arises because the common factors are not uniquely
determined by their related manifest variables. As a consequence, a
number of different common factors can be produced to fit the same
pattern of correlations in the manifest variables.

Although typically ignored by factor analytic researchers, factor inde-
terminacy is an epistemic fact of life that continues to challenge factor
analytic methodologists. Some methodologists regard factor indetermi-
nacy as a serious problem for common factor analysis and recommend
using alternative methods such as principal components analysis because
they are considered to be determinate in nature. Others have countered
variously that component analysis models are not causal models (and
therefore are not proper alternatives to common factor models), that they
do not typically remain invariant under the addition of new variables,
and that the indeterminacy of factor scores is seldom a problem in inter-
preting common factor analytic results because factor scores do not have
to be computed.

One constructive perspective on the issue of factor indeterminacy has
been offered by Mulaik and McDonald (McDonald & Mulaik, 1979;
Mulaik, 1987; Mulaik & McDonald, 1978). Their position is that the
indeterminacy involved in interpreting the common factors in EFA is just
a special case of the general indeterminacy of theory by empirical evi-
dence widely encountered in science, and it should therefore not be seen
as a debilitating feature that forces us to give up on common factor
analysis. Essentially, I agree with this outlook on the factor indeterminacy
issue and will discuss it in this light. I argue that EFA helps us produce
theories that are underdetermined by the relevant evidence, and the
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methodological challenge that this presents can be met in an acceptable
way. I conduct my discussion against the backdrop of the sketch of
ATOM provided in chapter 1.

Indeterminacy is pervasive in science. It occurs in semantic, metaphysi-
cal, and epistemological forms (McMullin, 1995). Factor indeterminacy
is essentially epistemological in nature. The basic idea of epistemological,
or more precisely methodological, indeterminacy is that the truth or
falsity (better, acceptance or rejection) of a hypothesis or theory is not
determined by the relevant evidence (Duhem, 1954). In effect, method-
ological indeterminacy arises from our inability to justify accepting one
theory among alternatives on the basis of empirical evidence alone. This
problem is sometimes referred to as the underdetermination of theory by
data, and sometimes as the underdetermination of theory by evidence.
However, because theories are often underdetermined by evidential state-
ments about phenomena, rather than data, and because evidence in
theory appraisal will often be superempirical as well as empirical in
nature, I will refer to the indeterminacy here as the underdetermination
of theory by empirical evidence (UTEE).

To construe factor indeterminacy as a variant of UTEE is to regard it
as a serious problem, for UTEE is a strong form of underdetermination
that needs to be reckoned with in science. Indeed, as an unavoidable fact
of scientific life, UTEE presents a major challenge for scientific
methodology.

Concerning scientific method, UTEE occurs in a number of places.
The two that are relevant to common factor analysis are (a) ATOM’s
context of theory generation, where EFA can be employed as an abduc-
tive generator of rudimentary explanatory theories; and (b) the context
of theory evaluation, where confirmatory factor analysis can be used to
test factorial theories in an essentially hypothetico-deductive manner.
Here I discuss factor indeterminacy as UTEE for EFA. I briefly address
the issue of factor indeterminacy as it affects confirmatory factor analysis
in the penultimate section of this chapter.

Mulaik (1987) sees UTEE in EFA as involving inductive generaliza-
tions that go beyond the data. I believe that the inductive UTEE should
be seen as applying specifically to the task of establishing factorial invari-
ance where one seeks constructive or external replication of factor
patterns. However, for EFA we also need to acknowledge and deal with
the abductive UTEE involved in the generation of explanatory factorial
theories. The sound abductive generation of hypotheses is essentially
educated guesswork. Thus, drawing from background knowledge and
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constrained by correlational empirical evidence, the use of EFA can at
best only be expected to yield a plurality of factorial hypotheses or theo-
ries that are thought to be in competition. This contrasts strongly with
the unrealistic expectation held by many earlier users of EFA that the
method would deliver them strongly justified claims about the one best
factorial hypothesis or theory.

How, then, can EFA deal with the specter of UTEE in the context of
theory generation? The answer, I think, is that EFA narrows down the
space of a potential infinity of candidate theories to a manageable subset
by facilitating judgments of initial plausibility. It seems clear enough that
scientists often make judgments about the initial plausibility of the
explanatory hypotheses and theories that they generate. It is less clear
just what this evaluative criterion amounts to (see Whitt, 1992). With
ATOM, judgments of the initial plausibility of theories are judgments
about the soundness of the abductive arguments employed in generating
those theories. I suspect that those who employ EFA as an abductive
method of theory generation often make compressed judgments of initial
plausibility. Consistent with the view of research problems adopted by
ATOM, initial plausibility may be viewed as a constraint-satisfaction
problem. Multiple constraints from background knowledge (e.g., the
coherence of the proposed theory with relevant and reliable background
knowledge), methodology (centrally, the employment of EFA on appro-
priate methodological grounds; see Fabrigar, Wegener, MacCallum, &
Strahan, 1999), and explanatory demands (e.g., the ability of factorial
theories to explain the relevant facts in an appropriate manner) combine
to provide a composite judgment of a theory’s initial plausibility.

By conferring judgments of initial plausibility on the theories it spawns,
EFA deems them worthy of further pursuit, whereupon it remains for
the factorial theories to be further developed and evaluated, perhaps
through the use of confirmatory factor analysis. I should emphasize here
that using EFA to facilitate judgments about the initial plausibility of
hypotheses will still leave the domains being investigated in a state of
considerable theoretical underdetermination. I will also stress that the
resulting plurality of competing theories is entirely to be expected and
should not be thought of as an undesirable consequence of employing
EFA. To the contrary, it is essential for the growth of scientific knowledge
that we promote theoretical pluralism. The reason for this rests with our
makeup as cognizers: we begin in ignorance, so to speak, and have at
our disposal limited sensory equipment. However, we are able to develop
a rich imagination and considerable powers of criticism.
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These four features operate such that the only means available to us
for advancing knowledge is to construct and evaluate theories through
their constant critical interplay. In this way, the strategy of theoretical
pluralism is forced on us (Hooker, 1987). Thus it is through the simul-
taneous pursuit of multiple theories with the intent of eventually adju-
dicating between a reduced subset of them that one arrives at judgments
of best theory.

I have suggested that factor indeterminacy is a special case of the
pervasive problem of UTEE. I have also argued that if we adopt realistic
expectations about what EFA can deliver as a method of theory genera-
tion, and also grant that the method contributes to the needed strategy
of theoretical pluralism, then we may reasonably conclude that EFA
satisfactorily meets this particular challenge of indeterminacy.

3.5 Exploratory Factor Analysis and Confirmatory Factor Analysis

Now that I have argued that EFA is a method that facilitates the abduc-
tive generation of rudimentary explanatory theories, it remains to con-
sider what implications this view of EFA has for the conduct of EFA
research, including its relation to the more frequently used confirmatory
factor analysis (CFA).

The abductive view of EFA does highlight and stress the importance
of some features of its best use, and I will mention four of these. First,
it should now be clear that an abductive interpretation of EFA reinforces
the view that it is best regarded as a latent variable method, thus distanc-
ing it from the data reduction method of principal components analysis.
From this, it obviously follows that EFA should always be used in prefer-
ence to principal components analysis when the underlying common
causal structure of a domain is being investigated.

Second, strictly speaking, the abductive interpretation of EFA also
acknowledges the twin roles of the method of searching for inductive
generalizations, and their explanations. As ATOM emphasizes, these
research goals are different, but they are both important. To repeat, it is
because the detection of phenomena requires the researcher to reason
inductively to empirical regularities that the abductive use of EFA insists
on initially securing the invariance of factors across different populations.
And it is because the inductive regularities require explanation that one
then abductively postulates factorial hypotheses about common causes.

Third, as noted earlier, the abductive view of EFA emphasizes the
importance of background knowledge in EFA research. In this regard,
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the initial variable selection process, so rightly emphasized by Thurstone
(1947) and Cattell (1978), is sufficiently important that it should be
considered as part of the first step in carrying out an EFA study. For
instance, in selecting the variables for his factor analytic studies of per-
sonality, Cattell was at pains to formulate and follow principles of rep-
resentative sampling from a broad formulation of the domain in question.
Further, the importance of background knowledge in making abductive
inferences to underlying factors should not be overlooked. In this regard,
the modified Peircean depiction of abductive inference presented earlier
explicitly acknowledged some of the manifold ways in which such infer-
ence depends on background knowledge. It is an important truism that
the factorial hypotheses generated through abductive inference are not
created ex nibilo but come from the extant theoretical framework and
knowledge of the factor analytic researcher. For most of our EFA theoriz-
ing, this source is a mix of our common sense and scientific psychological
knowledge.

Finally, and relatedly, it should be made clear that acknowledging the
importance of background knowledge in abductive EFA does not provide
good grounds for adopting a general strategy where one discards EFA,
formulates theories a priori, and uses factor analysis only in its confirma-
tory mode. This holds even though when using EFA one anticipates
possible common factors to select sufficient indicator variables to allow
one to overdetermine those factors. EFA has a legitimate place in factor
analytic research because it helpfully contributes to theory generation in
at least three ways: it contributes to detection of the empirical phenom-
ena that motivate the need for generating factorial hypotheses; it serves
to winnow out a lot of theoretically possible hypotheses at the hypothesis
generation stage of inquiry; and it helps to present factorial hypotheses
in a form suitable for subsequent testing by CFA.

This last remark, which supports the idea that abductive EFA plays a
useful role in factor analytic research, raises the question of how EFA
relates to CFA. In contrast to popular versions of the classical inductivist
view of science that inductive method can generate secure knowledge
claims, using EFA as an abductive method of theory generation can only
furnish researchers with a weak logic of discovery that gives them edu-
cated guesses about underlying causal factors. For this reason, research-
ers who use EFA to generate theories need to supplement their generative
assessments of the initial plausibility of those theories with additional
consequentialist justification in the form of CFA testing or some alterna-
tive approach to theory appraisal.
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In stressing the need for the additional evaluation of theories that are
obtained through EFA, T am not implying that researchers should always
or even standardly employ classical EFA and follow it with CFA. CFA is
just one of a number of options with which researchers might provide a
justification of factorial hypotheses. As an alternative, one might, for
example, adopt Rozeboom’s nonclassical form of EFA as a method to
generate a number of models that are equivalent with respect to their
simple structure by using his versatile Hyball program (Rozeboom, 1991a,
1991b) before going on to adjudicate between these models by employing
CFA. Another legitimate strategy might involve formulating a causal
model using EFA and following it with a procedure like the one defended
by Mulaik and Millsap (2000), which undertakes a nested sequence of
steps designed to test various aspects of a structural equation model.

A further possibility, which I do not think has been explored in the
factor analytic literature, would be to follow up on the preliminary
acceptance of rudimentary theories spawned by EFA by developing a
number of factorial theories through whatever modeling procedures
seem appropriate, and then submitting those theories to a non-factor-
analytic form of theory appraisal. For example, it would be quite possible
for competing research programs to develop theories given to them
through EFA and then submit those theories to comparative appraisal in
respect of their explanatory coherence. Thagard’s (1992) theory of
explanatory coherence, which I consider in chapter 5, is an integrated
multicriterial method of theory appraisal that accepts as better those
explanatory theories that have greater explanatory breadth, are simpler
than their rivals, and are analogous to theories that have themselves been
successful. This strategy of using EFA to abductively generate explana-
tory theories, and then employing the theory of explanatory coherence
in subsequent appraisals of these explanatory theories, is abductive both
fore and aft. As such, it fits nicely within the framework of ATOM.

Finally, I should say that there are a number of methods for abduc-
tively generating hypotheses and theories in psychology, EFA being but
one. Grounded theory method (Strauss, 1987), for example, can generate
theories that explain the qualitative data patterns from which they are
derived (see chapter 6). Also, Howard Gardner’s (1983) theory of mul-
tiple intelligences was generated using a “subjective,” nonstatistical factor
analysis. Furthermore, it is plausible to suggest that structural equation
modelers sometimes abductively generate theories by non-factor-analytic
means before submitting them to CFA scrutiny. As with factor analytic
abduction, this could only be done by exploiting our naturally given
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cognitive abilities to abductively generate explanatory hypotheses and
theories.

In this chapter, I have been concerned to argue that EFA has a legiti-
mate and important role as a method of theory generation, and EFA and
CFA should be viewed as complementary, not competing, methods of
common factor analysis. However, a number of factor analytic method-
ologists have expressed views that discourage such an outlook. For
example, Gorsuch (1983), in his well-known book on factor analysis,
expresses a view about the relative importance of exploratory and con-
firmatory factor analysis that seems to be quite widely held today: “The
space and time given to [EFA] is a function of the complexity of resolving
its problems, not of its theoretical importance. On the contrary, confir-
matory factor analysis is the more theoretically important—and should
be the much more widely used—of the two major factor analytic
approaches” (134).

Although Gorsuch (1983) makes his claim in emphatic terms, he
provides no justification for it. There are, I think, at least two reasons
that can be given for his conclusion. However, I do not think they add
up to a convincing justification. First, there is a widespread belief that
the essence of scientific research is to be found in the prevailing hypo-
thetico-deductive conception of scientific method with its emphasis on
theory testing for predictive success. However, this belief is difficult to
defend, given that there are many other important phases of scientific
inquiry that together demand most of the researcher’s methodological
time. As ATOM makes clear, these additional phases embrace the detec-
tion of empirical phenomena, and the generation, development, and full
comparative appraisal of theories. Viewed in this light, theory testing is
just one, albeit important, part of scientific method. Given that science
is as much concerned with theory generation as it is with theory testing,
and acknowledging that EFA is a useful abductive method of theory
generation, EFA deserves to be regarded as one important method in the
theory constructor’s tool Kkit.

Moreover, both hypothetico-deductive orthodoxy and a good deal of
CFA practice today need confirmational rehabilitation. Both suffer from
the tendency to take theory evaluation as a noncomparative undertaking
in which theories are assessed with respect to the empirical evidence, but
not in relation to alternative theories. I suggested earlier that the hypo-
thetico-deductive method can be repaired in this respect. Additionally,
some CFA methodologists (e.g., Kaplan, 2000) have sensibly expressed
the need to compare theories or models when assessing them with respect
to their goodness-of-fit to the empirical evidence. It is here that the
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problem of UTEE arises for CFA, because associated goodness-of-fit
indices sometimes fail to adjudicate between two or more competing
factor analytic models. In these cases, CFA has to broaden its announced
goal of testing for empirical adequacy through goodness-of-fit tests. This
can be achieved in part by obtaining fit statistics weighted by parsimony
indices, and more fully by invoking a number of additional superempirical
criteria of theory goodness to supplement goodness-of-fit judgments.

I should emphasize that using goodness-of-fit is a minimum criterion
of empirical adequacy (Rodgers & Rowe, 2002) and alone provides
insufficient grounds for assessing the credibility of competing theories.
The goodness-of-fit empirical adequacy of theories can be strengthened
by also ascertaining their predictive worth. Hypothetico-deductive testing
is often assumed, or recommended, in this regard, but this confirmational
strategy faces a number of difficulties well known to philosophers of
science. Of particular relevance here is that standard hypothetico-deduc-
tive confirmation founders on the problem of UTEE. This shortcoming
brings us back to the recommendation advanced earlier that criteria of
empirical adequacy need to be supplemented by the so-called superem-
pirical or complementary virtues of explanatory power, fertility, and
simplicity (McMullin, 1983). Virtues such as these reduce the gap between
theory and empirical evidence, but they do not close it. This is because
scientists do not strongly agree on the criteria that should be employed
in theory evaluation. Moreover, even when scientists do agree on the
evaluative criteria to be used, they will sometimes differ in the relative
weight they assign to them. Nevertheless, if we use a composite of empiri-
cal and theoretical criteria, the problem of UTEE becomes manageable,
though theory evaluation will seldom be a determinate exercise. To meet
the challenge of UTEE, CFA, along with EFA, needs to supplement its
judgments of empirical adequacy by appealing to the theoretical virtues.

A second reason for downplaying the importance of EFA is the sup-
position that although EFA has a role in generating knowledge claims,
it does not have a role in evaluating them. Rather, full evaluative respon-
sibility is assigned to CFA embedded within a hypothetico-deductive
framework. However, as claimed earlier, the use of EFA as an abductive
method of theory generation enables us to judge the initial plausibility
of the hypotheses it spawns. Positive judgments of initial plausibility are
stamps of epistemic approval that signal that factorial hypotheses have
sufficient merit to warrant further investigation. Researchers assess initial
plausibility to gauge whether hypotheses are worth pursuing, but such
assessments do not provide sufficient warrant for treating hypotheses
as credentialed knowledge claims. Those who recommend that the
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hypotheses thrown up by EFA should be tested subsequently with con-
firmatory factor analysis are right to stress the need for their subsequent
justification. However, it is important to appreciate that EFA provides a
provisional generative justification for the hypotheses it produces.

3.6 Summary and Conclusion

In examining the methodological foundations of EFA, I have said many
things about the nature of this method. It will therefore be useful to bring
together the main points in the form of an extended summary and a brief
conclusion.

In summary:

1. The main goal of EFA is to generate rudimentary explanatory theories
to explain robust covariational data patterns. As a preliminary to this
goal, EFA functions as a data analytic method that contributes to the
detection of empirical regularities.

2. The inferential move from manifest to latent variables in EFA is
abductive in nature. The particular form of abductive inference typically
involved is existential abduction. Existential abductions postulate the
existence of objects or attributes, but they do not specify their natures.

3. EFA’s use of abductive reasoning is facilitated by its employment of
the principle of the common cause, which restricts factor analytic infer-
ences to correlated effects and their common causes. This principle lies
at the inferential heart of EFA.

4. EFA has a modest, albeit important, role in theory generation. It is a
serviceable generator of elementary plausible theory about the common
causes of correlated variables.

5. The abductive logic of EFA enables the method to confer a generative
justification on the theories it produces. This form of justification involves
judgments that the theories are the result of sound abductive reasoning
and have sufficient initial plausibility to warrant further investigation.

6. Theories generated by EFA have the status of dispositional theories.
The latent variables postulated by such theories can be genuine existents,
though these theories say little, if anything, about their nature.

7. Despite their elementary nature, dispositional theories afforded by
EFA do have genuine, although modest, explanatory power. This power
resides in both their existential or explanatory depth and their consilience
or explanatory breadth.
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8. EFA is able to satisfactorily confront the problem of factor indeter-
minacy in theory generation by screening candidate factorial theories for
their initial plausibility in an environment where theoretical pluralism is
to be expected.

9. To satisfactorily meet the problem of factor indeterminacy, CFA
research should embrace superempirical criteria in addition to both the
goodness-of-fit and predictive criteria of empirical adequacy.

10. Because EFA and CFA tend to serve different methodological func-
tions in multivariate research—theory generation for the one, theory
testing for the other—they are best viewed as complementary rather than
competing methods. It will sometimes be advantageous to employ the
two common factor analytic methods in tandem.

11. Nevertheless, theories about common causes can be generated
abductively without appeal to EFA, whereas theories generated by EFA
may be tested by using methods other than CFA.

12. ATOM provides a useful framework within which to locate EFA.
There EFA can function as a method of theory generation in domains
with a common causal structure.

13. CFA can contribute to the goal of empirical adequacy in the subse-
quent hypothetico-deductive appraisal of common causal theories.

Although EFA has frequently been employed in psychological research,
the extant methodological literature on factor analysis insufficiently
acknowledges the explanatory and ontological import of the method’s
inferential nature. Arguably, abduction is science’s chief form of creative
reasoning, and the principle of the common cause is a maxim of scientific
inference with important application in research. By bringing these two
related elements into its fold, EFA is ensured an important, albeit cir-
cumscribed, role in constructing explanatory theories in psychology and
other sciences. In this role, EFA can serve as a valuable precursor to CFA.
I believe that factor analytic research would benefit considerably by
returning to its methodological origins and embracing EFA as an impor-
tant method for generating structural models about common causes.

As noted in the outline of ATOM provided in chapter 1, the rudimen-
tary theories given to us by existential abduction by methods such as
EFA need concerted development. In ATOM, this is undertaken by
employing a strategy of analogical modeling. This strategy is the main
focus of the next chapter.






4 Theory Development: Analogical
Modeling

The process by which the nature [of the causal mechanism] is first ascribed in
developing an explanation is psychologically an exercise of the imagination and
philosophically an analogy. . .. The creative task is to present a plausible analogue
of the mechanism which is really producing the phenomenon.

—Rom Harré (1976, 21)
4.1 Introduction

This chapter focuses primarily on the development of scientific theories.
In particular, I aim to show that ATOM develops its theories by adopting
a strategy of analogical modeling. However, before considering this strat-
egy, I will provide a brief and selective overview of the nature and place
of models in science. This overview should form a useful backdrop to
the subsequent discussion of analogical modeling.

For the last hundred or so years, the role of models in science has
been controversial. One view, held by prominent students of science
before the twenty-first century, was that models were dispensable heu-
ristic aids to formulating and understanding scientific theories—perhaps
even props for poor thinkers. For example, the French physicist and
philosopher Pierre Duhem (1954) was strongly skeptical of the value of
building mechanical models to understand physical processes, and he
famously derided the English scientists of his time for engaging in this
practice.

According to the two major early twentieth-century philosophies of
science, logical positivism and logical empiricism (Feigl, 1956), models
played no important role in the conduct of scientific research. In the
1950s and 1960s, critics of logical empiricism pointed out that its view
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of models did not provide for the role that models play in the develop-
ment of theories. Although not much influenced by logical empiricism
and its critics, psychology itself has historically given limited explicit
attention to models, although it has given increased attention to math-
ematical and statistical modeling in the last few decades (Rodgers, 2010).

This negative view of the cognitive value of models in science contrasts
with the view held by many methodologists today that models are an
essential part of the development of theories and are important elsewhere
in science as well. Contemporary studies of scientific practice make clear
that models play a genuine and indispensable cognitive role in science.
Many scientists and philosophers subscribe to the view that reasoning
in science is to a large extent model-based reasoning. Ronald Giere
(1999), for example, goes so far as to say that science “is models almost
all the way up and models almost all the way down” (56). Although a
number of different sorts of model play important roles in scientific
research, I think that Giere overstates the influence of models in science.
For good reason, science draws on many disparate investigative strategies
that have little or nothing to do with models. For example, some of the
strategies for detecting empirical phenomena dealt with in chapter 2 do
not use models.

Psychology’s commitment to the hypothetico-deductive method, and
to a lesser extent the inductive method, has helped discourage psycholo-
gists from using models for the purpose of theory development. The
orthodox account of the hypothetico-deductive method assumes that
hypotheses and theories emerge fully formed and ready for immediate
testing.! For its part, traditional inductive method focuses first on the
discovery of empirical generalizations, and then on fashioning theories
that are organized summaries of their constituent empirical generaliza-
tions. Such an instrumentalist conception of theories discourages the
development of deep explanations, and with it a need for modeling latent
causes. This is the perspective on theory and method adopted by radical
behaviorists.

In contrast to these two theories of scientific method, ATOM provides
explicitly for the development of explanatory theories. The theories it
generates through existential abduction are only dispositional in nature
and require considerable elaboration before they are systematically eval-
uated against rival theories with respect to their explanatory goodness.
As noted in chapter 1, ATOM recommends that this be done by building
analogical models of the causes posited by existential abduction to obtain
knowledge of the mechanisms that comprise those causes.
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4.2 Types of Models

Given that just about anything can be a model of something for someone,
we have an enormous diversity of models in science. This diversity
includes, but is not limited to, scale models, data models, phenomenologi-
cal models, theoretical models, analog models, iconic models, and math-
ematical models. Science uses these different types of model for different
purposes. For example, so-called iconic models are constructed to provide
a good resemblance to the object or property being modeled, whereas
mathematical models offer an abstract symbolic representation of the
object or property of interest.

Max Wartofsky (1979) has referred to the many senses of the word
model that stem from this bewildering variety as the “model muddle.”
Philosophers such as Max Black (1962), Peter Achinstein (1968), and
Rom Harré (1970) have provided different taxonomies that impose some
order on the variety of available model types. However, it seems unlikely
that the diversity of models in science will be captured by a unified tax-
onomy. Moreover, given that different types of models serve different
research ends, we should refrain from thinking that one approach to
modeling is inherently superior to another.

I confine my initial discussion to four types of models that are used
in science: scale models, theoretical models, mathematical models, and
data models. The fifth type of model (the analogical model, in which an
unfamiliar domain is modeled by analogy to a familiar source) is dis-
cussed at length in the second half of the chapter.

4.2.1 Scale Models

Some models are physical structures that can represent or potentially
represent things in the world. Physically constructed scale models are a
good example. Scale models belong to a class of iconic models because
they literally depict the features of interest in the original. As their name
suggests, scale models involve a change of scale. They are always models
of something, and they typically scale down selected properties of the
objects they represent. Thus a model airplane stands as a miniaturized
representation of a real airplane. However, a scale model can also be a
magnified representation of an object, such as a small insect.

Although scale models are constructed to provide a good resemblance
to the object or property being modeled, they represent only selected
relevant features of the object. Thus a model airplane will almost always
represent the fuselage and wings of the real airplane being modeled, but
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it will seldom represent the interior of the aircraft. Scale models are
usually built to represent the properties of interest in the original object
in an accessible and manipulable form. By scaling and idealizing a source
that is complex in its natural form, scientists can study processes in a
manageable way. A scale model of an aircraft prototype, for example,
may be built to test its basic aerodynamic features in a wind tunnel.

However, not all iconic models are scale models, as James Watson and
Francis Crick’s physical model of the helical structure of the DNA mol-
ecule demonstrates. By idealizing and scaling data to some manageable
form, graphs too can be considered scale models of the processes and
distributions that they represent.

4.2.2 Theoretical Models

The important class of models known as theoretical models abounds in
science. Unlike scale models, theoretical models are constructed and
described by the scientist’s imagination in that they are not constructed
as physical objects. Further, unlike mathematical and analogical models,
the properties of theoretical models are often better known than the
subject matter that is being modeled. This is clearly the case when sci-
entists attempt to model unknown theoretical entities. For example, the
properties of latent variable models, such as the common factor model
referred to in chapter 3, are better known to the investigator than the
latent attributes represented by those models.

A theoretical model of an object, real or imagined, comprises a set of
hypotheses about that object. The Watson-Crick model of the DNA
molecule and Markov models of human and animal learning are two
examples of the innumerable theoretical models to be found in science.
Theoretical models typically describe an object by ascribing to it an inner
mechanism or structure. This mechanism is frequently invoked to explain
the behavior of the object. Theoretical models are acknowledged for their
simplifying approximation to the object being modeled, and they are
often small-scale theories with a limited scope of application. However,
they can often be combined with other theoretical models to provide a
more comprehensive understanding of the object of study. For example,
the Rutherford-Bohr model of the atom is a modification of the earlier
Rutherford model from the perspective of quantum physics.

4.2.3 Mathematical Models
In the behavioral sciences, models are sometimes expressed in terms
of mathematical equations. For example, factor analysis is commonly
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understood as a mathematical model of the relations between manifest
and latent variables, where each manifest variable is regarded as a linear
function of a common set of latent variables along with a latent variable
that is unique to the manifest variable. It is important to emphasize that
a statistical model and its interpretation are distinct entities. The basic
equation for linear factor analysis, for example, is to be distinguished
from the various substantive factorial theories that its use has helped
bring about.? Sometimes in the physical sciences, a theory formulated in
mathematical terms at the outset cannot subsequently be interpreted as
a substantive and comprehensible source model. Many physicists have
understood the so-called Copenhagen formulation of quantum mechan-
ics to be this sort of model because its content comprises mathematical
probabilities that do not describe an objective reality.

Mathematical models offer an abstract symbolic representation of
their domains of interest. These models are often regarded as formalized
theories in which the system modeled is projected onto the abstract
domain of sets and functions, which can be manipulated in terms of
numerical reasoning, typically with the help of a computer.

In psychology, the large majority of theories are constructed in a
qualitative manner, and most of them remain so thereafter. To a limited
extent, psychologists strive to formalize these theories in mathematical
terms to provide them with a more rigorous formulation. For example,
a number of theories in psychology characterize relationships between
psychological constructs in terms of multiplicative functions.

4.3 Data, Models, and Theories

4.3.1 Data Models

In the early 1960s, Patrick Suppes suggested that science employs a
hierarchy of models that range from experimental experience to theory
(Suppes, 1962). He claimed that theoretical models, which are high on
the hierarchy, are not compared directly with empirical data, which are
low on the hierarchy. Rather, they are compared with models of the data,
which are higher than data on the hierarchy. This insight anticipated a
central idea of chapter 2, that phenomena, not data, should be taken to
be the proper objects of typical scientific explanations.

The process of phenomena detection arises because scientific data on
their own are intractable. Data are often rich, complex, and messy, and
because of these characteristics, they cannot be explained. Their intrac-
tability is overcome by reducing them to simpler and more manageable
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forms. In this way, scientists rework data into models of data. As shown
in chapter 2, statistical methods play a prominent role in this regard,
facilitating operations having to do with assessing the quality of the data,
the patterns they contain, and the generalizations to which they give rise.
Because of their tractability, models of the data can be explained and
used as evidence for or against theoretical models. For this reason, they
are of considerable importance to science.

It is fair to say that in both their science education and research prac-
tices, psychological researchers have been more concerned with data
models than other kinds of models in science.

4.3.2 Models and Theories

The relationship between models and theories is difficult to draw, par-
ticularly given that they can both be conceptualized in various ways.
Some methodologists have suggested that theories are intended as true
descriptions of the real world, whereas models need not be about the
world and therefore need not be true. Others have drawn the distinction
by claiming that theories are more abstract and general than models. For
example, evolutionary psychological theory can be taken as a prototype
of the more specific models it engenders, such as those of differential
parental investment and the evolution of brain size. Relatedly, Giere
(1988) has argued that a scientific theory is best understood as compris-
ing a family of models, along with a number of theoretical hypotheses
that link the models with things in the world.

Yet another characterization of models takes them to be largely inde-
pendent of theories. In arguing that models are “autonomous agents”
that mediate between theories and phenomena, Margaret Morrison and
Mary Morgan (1999) contend that they are not fully derived from either
theory or data. Instead models are technologies that allow one to connect
abstract theories with empirical phenomena. Some have suggested that
the idea of models as mediators does not apply to the behavioral and
biological sciences because these sciences exhibit no appreciable gap
between fundamental theory and phenomena in which models can
mediate. However, this is an empirical claim, and the extent to which it
holds is yet to be determined.

The position I adopt in this book is that modeling in science is
basically a strategy of indirectly representing the world. Models are
a type of theory that indirectly represents the world, whereas many
other types of theory represent the world more directly (see Weisberg,
2007). To understand the world, the modeler first constructs a model as
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a hypothetical system. He or she then endeavors to determine the resem-
blance relations between the hypothetical system and the part of the
world he or she is trying to understand. This general description of
model-based science as a two-phase process employs the strategy of
analogical modeling, to be discussed shortly.

4.4 The Functions of Models

4.4.1 Representation

Today most scientists and philosophers of science take a model to be a
representational device that represents the target system that it models.
A model can usefully be seen to represent its target in two ways (e.g.,
Maki, 2011): first, in terms of its resemblance to the target in certain
respects; and second, as a representative of a target system in the sense
that it is a surrogate system that stands for, and is examined in place of,
its target. When we evaluate the worth of a model, we need to consider
both of these aspects of representation together. It is in good part as a
consequence of being able to represent the world that models can be
employed for a variety of purposes, including systematization, explana-
tion, prediction, control, calculation, and derivation.

However, unlike model-free or “plain” scientific theories, models are
generally not thought to be the sort of representational devices that can
be true or false. Instead it is suggested that we think of models as having
a kind of similarity relationship with the object that is being modeled,
where the similarity can take different forms. With analogical models,
for example, the similarity relationship is one of analogy, a relationship
to be described shortly. In addition, it is sometimes said that models
themselves are not linguistic entities and therefore cannot be the bearers
of truth (e.g., Giere, 1988). Against this claim, many truth theorists
maintain that language is not the only type of truth bearer, and as a
consequence, models as nonlinguistic entities can also perform this role.
It is also said that because models idealize and abstract away from reality,
they do not tell the whole story and so must be false. However, models
can be true in two senses (Miki, 2011): they can be approximately true,
depending on their degree of similarity to the target; and they can be
partially true in virtue of one or more of their parts being true.

Regarding the falsity of models, note that science often adopts a
deliberate strategy of adopting false models as a means by which we can
obtain truer models. William Wimsatt (2007) has argued that this is done
by localizing errors in models to identify and modify their problematic
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parts. One might add that scientists can also localize truths in models to
help identify and correct errors in other parts of the models.

4.4.2 Abstraction and Idealization

Scientists often study systems that are highly complex. This complexity,
combined with limited knowledge about the domains under study, as
well as scientists’ cognitive limitations, regularly forces them to adopt
simplifying strategies to make their research problems tractable. Model-
ing is one way of simplifying the depiction of complex domains. The
simplification is usually achieved through two related processes: abstrac-
tion and idealization. Abstraction involves deliberately eliminating prop-
erties of the target that are not considered essential to understanding the
target. This can be achieved in various ways. For example, one can ignore
the properties, though they continue to exist, by eliminating them in
controlled experiments or by setting the values of unwanted variables to
zero in simulations.

By contrast, idealization involves transforming a property in a system
into a related property that possesses desirable features introduced by
the modeler. Taking a spheroid object to be spherical, representing a
curvilinear relation in linear form, and assuming that a human agent is
perfectly rational are all examples of idealization in model building.
Although no strong consensus exists in the philosophy of science about
how the processes of abstraction and idealization should be understood,
and although the terms abstraction and idealization are sometimes used
interchangeably, they clearly refer to different processes. Each can take
place without the other, and in particular cases, idealization can in fact
involve complexification rather than simplification, for example, when
one extends a model to another domain. Jones (2005) provides a helpful
systematic treatment of the two processes in which idealizations are
construed as deliberate misrepresentations and abstractions as mere
omissions. Models, then, are almost always simplified representations of
their objects of study in virtue of often having one or both of these
features.

In broad terms, the foregoing remarks about models should be seen
as consistent with the realist view of science sketched in chapter 1. Scale
models have an obvious realist ring to them, because they are clearly
direct representations of things that exist in the world. As noted in
chapter 3, the latent variables of mathematical models (such as factor
analysis) are best understood as genuine theoretical existents. Theoretical
models are surrogate systems that refer to theoretical entities. Data
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models provide tractable empirical evidence for or against theories and
theoretical models. And models that are understood as representational
devices will have truth values; they realistically aspire to present approxi-
mate and partial truths understood as truth nominations in the sense
presented in chapter 1. This is the case for analogical models in ATOM.

4.5 Modeling in ATOM

Theorizing about hidden causal entities, properties, and processes is
undoubtedly the most frequent type of theorizing in science. We saw in
chapter 3 that the nascent theories bequeathed to us by using the method
of exploratory factor analysis refer to the existence of hidden causes.
Conclusions about such causes are obtained by using an existential
abductive reasoning process. However, existential abduction is unable to
provide us with an informative characterization of the nature of those
causes. Instead, theories given to us by existential abduction have the
status of dispositional theories that provide us with oblique characteriza-
tions of the causes in terms of their presumed effects under specified
conditions. To recall the example from chapter 3, the latent property
of the brittleness of glass is described in terms of the relevant events of
striking and breaking. Of course, this says nothing about the nature
of brittleness, but diagnosing its presence in particular cases is often an
important first step in obtaining that knowledge.

Sometimes psychologists are prepared to accept a dispositional con-
strual of the hidden causes that interest them and concentrate their
efforts on figuring out how those causes relate to one another and to
more empirical matters of fact. For example, structural equation model-
ing, now a popular research practice in psychology, focuses on providing
knowledge of variables assembled in causal networks. As such, it does
not so much encourage the development of detailed knowledge of the
nature of the latent variables it deals with as specify the range and order
of causal relations into which such variables enter.

Although it is acknowledged that science needs to employ a variety
of different modeling strategies, ATOM adopts the strategy of using
analogical models to help develop its explanatory theories. Often psy-
chologists want to move beyond the rudimentary nature of the disposi-
tional characterization of causes and elaborate on their nature. ATOM’s
strategy of analogical modeling enables them to do so because it provides
more detailed knowledge of causes by enumerating the components and
operations of their mechanisms.
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Recently, philosophers of science have given considerable attention to
the role played by explanations in the life sciences that appeal to causal
mechanisms (e.g., Bechtel & Abrahamsen, 2005; Machamer, Darden, &
Craver, 2000). Mechanistic explanations, which explain empirical phe-
nomena in terms of the operation of causal mechanisms, are fashioned
in psychology with varying degrees of success. They vary from specula-
tive conjectures, through plausible models that are consistent with known
constraints, to quite good descriptions of how mechanisms work in
reality. I think that analogical modeling is best suited to giving psycholo-
gists plausible models of mechanisms. To forestall a possible objection,
I should point out that mechanistic explanations do not have to be
cashed out in mechanical terms.

Table 4.1 depicts analogical modeling in relation to other parts of
ATOM. It shows the objects of investigation of ATOM; the methodologi-
cal phases of ATOM, with their associated reasoning processes; and
the different types of knowledge claim that ATOM helps produce. The
content of the table can be assembled in the form of an anticipatory
summary as follows. The causes that produce the phenomena are

Table 4.1
The place of analogical modeling in the abductive theory of method

Phases of ATOM

Objects of nature Products of ATOM

Phenomena Phenomena detection Phenomena claims
(produced by) (via enumerative (explained by)

l induction) l
Causal entities Theory generation Rudimentary

(via existential abduction) explanatory theories

(developed by)
\2 \2

(represented by)

Analogical models of
causal mechanisms
(leading to)

| \:

Theory development
(via analogical abduction)

Analogical models
(resulting in)

Developed analogical
models

Theory appraisal
(via inference to the best
explanation)

Developed
explanatory theories
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diagnosed by way of existential abduction from claims about the phe-
nomena. The mechanisms of the causes are specified by building analogi-
cal models. As intimated in chapter 1, these are suggested by the
antecedently known sources of the models. The specification is achieved
by reasoning by analogy from the sources to their targets. Because the
source models are human artifacts, they are classified as objects of
nature. They are subject to investigation as surrogate systems that rep-
resent the causal mechanisms in nature. Analogical modeling in ATOM
is a strategy that increases the content of theories that are explanatory
in nature. Being explanatory in nature, the analogical reasoning takes
the form of analogical abduction. Judgments of the initial plausibility of
the causal entities in the phase of theory generation are strengthened by
further judgments of plausibility of the analogical models. When the
model theories are well developed, they are appraised further by a process
of inference to the best explanation.

4.6 Analogical Modeling

The use of analogies to explain events in science is somewhat controver-
sial. For example, the logical empiricist Carl Hempel (1965) maintained
that although analogical models may have heuristic value in suggesting
explanations, they do no epistemic work in furnishing genuine explana-
tions and can therefore be dispensed with. However, given the weight of
many historical case studies, this view has fallen into disfavor.

The idea that analogical models are important in the development of
scientific theories can be traced back to the physicist and philosopher of
science N. R. Campbell (1920), who insisted that analogies are not mere
aids but an essential part of theories. Since that time, a number of phi-
losophers of science have endorsed the value of analogical modeling in
scientific theory construction (e.g., Abrantes, 1999; Harré, 1988; Hesse,
1966). The epigraph from Harré at the beginning of this chapter clearly
emphasizes the importance of creatively developing explanatory theories
through analogical reasoning about the nature of the causal mechanisms
to which they refer.

Despite Campbell’s claim for the ubiquity of models in theories, sci-
entific explanations do not always use analogies. However, their role in
theory development within ATOM is of central importance. The need
for analogical modeling within ATOM stems from two features of its
characterization of theory generation. First, as with exploratory factor
analysis, the abductive generation of theories initially takes the form of
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existential abduction, through which the existence of theoretical entities
is postulated. Therefore an appropriate research strategy is required to
learn about the nature of these hidden entities. Analogical modeling is
an appropriate strategy for doing the required elaborative work. Second,
recall that the postulation of theoretical entities through existential
abduction confers an assessment of initial plausibility on those postula-
tions. For claims about those latent entities to have the status of genuine
knowledge, further evaluative work has to be done. The construction of
appropriate analogical models serves to assess the plausibility of the
expanded understanding they afford, as well as to expand our under-
standing of those entities.

For ATOM, increasing the knowledge of the nature of its theories’
causal mechanisms by analogical modeling is achieved by using the
pragmatic strategy of conceiving of these unknown mechanisms in terms
of what is already familiar and well understood. Well-known examples
of models that have resulted from using this strategy are the model of
chromosomal inheritance, based on an analogy with a string of beads;
the model of natural selection, based on an analogy with artificial selec-
tion; and computational models of the mind, based on analogies with
the computer.

Although T have used the term model, nothing is a model as such.
A model is a relational complex. Thus, to understand the nature of ana-
logical modeling, it is necessary to distinguish between a model, the
source of the model, and the subject of the model (Harré, 1976; Hesse,
1966). A model is modeled on a source, and it is a model of, or for, a
subject. From the known nature and behavior of the source, one builds
an analogical model of the unknown subject or causal mechanism. In the
biological example just mentioned, Darwin fashioned his model of the
subject of natural selection by reasoning by analogy from the source of
the known nature and behavior of the process of artificial selection. Used
in this way, analogical models play an important creative role in theory
development.

However, this creative role requires the source from which the model
is drawn to be different from the subject that is modeled. For example,
the modern computer is a well-known source for modeling human cogni-
tion, but the two are different. Because the brain is made of protoplasm,
and the computer is made of silicon, our cognitive apparatus is not gen-
erally thought to be a real computer. Models in which the source and
the subject differ are sometimes called paramorphs. This is a requirement
for the analogical modeling of real and imagined processes, which is a
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focus of ATOM. By contrast, models in which the source and the
subject are the same are sometimes called homeomorphs (Harré, 1970).
For example, a toy airplane can be a homeomorphic model of a real
aircraft.

The paramorph can be an iconic representation of real or imagined
things. Iconic representation combines elements of visualizable and prop-
ositional information in a picture-statement complex that can ultimately
be expressed in sentences. The idea of the field of potential in physics is
a good example. It can be represented graphically to show how the ideas
of field and potential are combined. At the same time, the graphical
information, and information not contained in the graph, can be repre-
sented in sentential form.

Iconic paramorphs feature centrally in the creative process of develop-
ing theories through analogical modeling. These models are constructed
as representations of reality, real or imagined. In ATOM, they stand in
for the hypothesized causal mechanisms. Although they are representa-
tions, iconic models are themselves things, structures, or processes that
correspond in some way to things, structures, or processes that are the
subjects of modeling. They are therefore the sorts of things that sentences
can be about (Harré, 1976). Here we are reminded that scientific theories
that are models represent the world less directly than theories that are
not models.?

In addition to developing nascent theories, the strategy of analogical
modeling also serves to assess their plausibility. In evaluating the aptness
of an analogical model, one must assess the analogy between its source
and subject, and for this one needs to consider the analogy’s structure.
The structure of an analogy comprises a positive analogy in which the
source and subject are alike in some respects, a negative analogy in which
the source and subject are unlike in some respects, and a neutral analogy
in which the source and subject are alike and unlike in ways that are as
yet unknown. The neutral analogy is irrelevant for purposes of analogical
modeling. Because we are essentially ignorant of the nature of the hypo-
thetical mechanism of the subject apart from our knowledge of the
source of the model, we are unable to specify any neutral analogy
between the model and the mechanism being modeled. Thus, in consider-
ing the plausibility of an analogical model, one considers the balance of
the positive and negative analogies (Hesse, 1966). This is where the rel-
evance of the source for the model is spelled out. As we will see shortly,
the analogical reasoning that scientists employ is informal and based on
plausibility arguments.
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In the next section, I discuss Darwin’s use of analogical modeling in
developing his theory of natural selection. In section 4.8, I present the
dramaturgical model of human social interaction as an example of ana-
logical modeling in psychology.

4.7 Analogical Abduction

Reasoning by analogy is an important form of inference, but it is difficult
to characterize precisely. Historically, philosophers have often recon-
structed analogical arguments as enumerative or simple inductions of a
special form (e.g., Copi & Cohen, 1990; Hesse, 1966). Because analogi-
cal reasoning results in new knowledge claims, it is ampliative, a feature
it shares with inductive reasoning. However, unlike arguments based on
inductive inference, arguments based on analogy can produce knowledge
claims about new kinds of things. Briefly, we may say that an analogy is
an argument based on assumed or known parallels or similarities between
two or more objects, properties, or events. What is known about one
class of entities (the source) is employed to learn more about the other
class of entities (the subject). A good analogical argument provides an
understanding of the less familiar in terms of the more familiar by dis-
cerning that the two are alike in relevant respects, but not in other
respects. As already mentioned, for example, psychological research fre-
quently reasons by analogy from the known functioning of computers
to the less well-known character of human cognitive processes.

Analogical reasoning is important in science and obviously lies at the
inferential heart of analogical modeling. T emphasized in chapter 3 that
abduction is a form of scientific reasoning in its own right. As intimated
in chapter 1, because the theories fashioned by ATOM are explanatory
theories, the use of analogical modeling to develop those theories will
necessarily involve combining analogical and abductive forms of reason-
ing to produce a creative form of reasoning known as analogical abduc-
tion. Science often seeks to improve the quality of an explanatory theory
by appealing to a similar type of explanation that is known and accepted
by the scientific community. It is in this way that we can employ analogi-
cal reasoning of an abductive kind.

Note, however, that, unlike existential abduction, analogical abduc-
tion does not produce a hypothesis about an entirely new entity, property,
or process. It is only concerned with the partly new, because it is driven
by analogy to concepts that are well understood in the source model.
The importance of analogical abduction as a form of creative reasoning
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in ATOM stems from the fact that it is the means by which knowledge
about a theory’s causal mechanisms is developed.

The basic structure of the reasoning involved in analogical abduction
can be stated in the form of a general argument schema as follows:

Hypothesis H* about property Q was correct in situation S1.
Situation S1 is like situation S2 in relevant respects.

Therefore an analogue of H* might be appropriate in situation S2.

To take a prominent example, Darwin’s theory of natural selection made
essential use of analogical abduction. The general argument for analogi-
cal abduction just given can be rewritten in simplified form for Darwin’s
case as follows:

The hypothesis of evolution by artificial selection was correct in cases of
selective domestic breeding.

Cases of selective domestic breeding are like cases of the natural evolu-
tion of species with respect to the selection process.

Therefore, by analogy with the hypothesis of artificial selection, the
hypothesis of natural selection might be appropriate in situations where
variants are not deliberately selected for.

In formulating his theory of natural selection, Darwin took advantage
of the two most important features of analogical abduction: its ability
to create, and its ability to justify. In reasoning by analogy, using known
facts about artificial selection, Darwin was able to hypothesize the paral-
lel mechanism of natural selection that explained diversity among natural
species. At the same time, he was able to appeal to the epistemic worth
of his carefully crafted analogy and proclaim the initial plausibility of
his hypothesis of natural selection. Numerous creative scientists have
been able to exploit the resources of analogical abduction in this manner.

Three things should be said about the structure of analogical reason-
ing as it is outlined in the argument schema. The first premise of the
argument claims factual status for the relevant part of the source model.
However, this is not always easy to ascertain and requires close knowl-
edge of the source model. In Darwin’s case, nineteenth-century breeding
practices were rather controversial, and Darwin had to work hard to
forge his analogy (Theunissen, 2012). For example, he had to downplay
the importance of the two breeding techniques of crossing of varieties
and inbreeding that many breeders thought were essential to obtain new
varieties. The second premise of the argument asserts that relevant
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similarities that enable the transfer of explanations from source to subject
have been identified. But this transfer clearly requires some knowledge
of the subject of the model and need not be completely unidirectional.
For example, evidence suggests that Darwin’s developing knowledge of
natural selection in nature helped him better understand his knowledge
of artificial selection of domestic varieties (Herbert, 1971). The conclu-
sion stated in the argument’s third premise is appropriately tempered. To
say that the analogy “might be appropriate” is in keeping with the plau-
sibility assessments that the process of analogical modeling gives us. Just
as good existential abductions confer a warrant of initial plausibility on
the hypotheses they produce, so sound analogical arguments provide the
grounds for judging the hypotheses about the mechanisms in question
to be initially plausible. It is clear from Darwin’s writings that he took
the analogy between artificial and natural selection to lend some cre-
dence to his theory of natural selection. However, as we will see in the
next chapter, Darwin sought further assessments of his theory by employ-
ing inference to the best explanation.

4.8 The Dramaturgical Model

An instructive example of an analogical model in psychology is Rom
Harré’s role-rule model of microsocial interaction, which he developed
by explicitly using his own methodology of analogical modeling. As with
the Darwin example of analogical modeling just discussed, Harré used
the strategy of analogical modeling both to create and to justify his model
of microsocial interaction. With the role-rule model, Erving Goffman’s
(1959) dramaturgical perspective on human action provides the source
model for understanding the underlying causal mechanisms involved in
the production of ceremonial, argumentative, and other forms of social
interaction (Harré, 1979; Harré & Secord, 1972).

The role-rule model can also be presented in accordance with the
simple argument schema used in the previous section to display the basic
structure of its analogical abductive reasoning;:

The theory of dramaturgy provides a correct account of behavior on the
theatrical stage.

Behavior on the theatrical stage is like a good deal of human behavior
in social life.

Therefore, by analogy with the theory of dramaturgy, much human social
behavior might be understood and monitored as acting on life’s stage.
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Of course, this schema is a bare-bones characterization of the analogi-
cal abductive reasoning used in constructing the dramaturgical model.
Neither the nature of the analogical reasoning employed nor its justifica-
tion is properly captured by its schematic representation. As with the
inductive reasoning employed in detecting phenomena, a fine-grained
depiction of the analogical reasoning involved in constructing the dra-
maturgical model must be material in nature. That is to say, the relevant
limits of the similarity relation between the source and subject of the
model are decided with reference to contingent matters of fact that are
specific to the case.

The basic idea of the dramaturgical perspective is that we observe and
hear a simulacrum of life on the stage, and our knowledge of how this
is produced provides us with a guide to the creation of real life. Goff-
man’s dramaturgical perspective provides a detailed analytical account
of the roles and rules that human agents follow on life’s stage combined
with a “watchful consciousness” of the actor, producer, audience, and
critic.

As a source model, the dramaturgical model has both positive and
negative analogies, for clear similarities and differences exist between
the subject domain of real life and the source domain of dramatically
staged acts. Regarding similarities, Goffman noted that to be understood
as the person he or she is portraying, the actor has to act in a manner
that parallels what the audience would expect of that kind of person.
Clearly there are differences between stage drama and real life. The
differences involve sequences of acts and actions that are at once selec-
tive, simplified, and heightened. For example, in comparison with real
life, only a limited number of life sequences are followed on the stage,
time is compressed, and resolutions are effectively reached (Harré,
1979). The reduction in the number of life sequences and the compres-
sion of time are abstractive processes. The use of successful resolutions
is an idealized move. In these ways, the modeling strategies of abstrac-
tion and idealization are employed to simplify the complex domain of
microsocial interaction.

Despite these sorts of differences, there are sufficient likenesses to
make the dramaturgical model well worth exploring. Harré has exploited
the dramaturgical model to provide a role-rule perspective on social
psychological performance that uses a reticulated analytical scheme to
further our understanding of microsocial accounts of social interaction
in everyday life. As such, it stands as an important and explicit example
of analogical modeling in psychology.
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4.9 Conclusion

The strategy of analogical modeling is sometimes used in the behavioral
sciences to develop theories. This is not surprising, given that many of
the hypothesized causes in these sciences are theoretical entities whose
natures can be grasped only indirectly using such a modeling strategy.

The methodology of analogical modeling is well developed and pro-
vides a useful source of guidance for scientists intent on expanding their
knowledge of latent causal mechanisms. Rom Harré’s various works on
analogy and modeling in science constitute a useful source in this regard.
Methodological work that focuses specifically on analogical abduction
is less well developed, although it contains broad guidelines for the aspir-
ing analogical modeler. Paul Bartha’s (2010) wide-ranging book By Paral-
lel Reasoning is a detailed, instructive examination of how to construct
and evaluate analogical arguments.*

There is little evidence to suggest that the behavioral sciences explicitly
incorporate a strategy of analogical modeling into their methodological
deliberations and science education practices. The limited methodologi-
cal attention given to modeling in psychology is largely confined to
statistical modeling, broadly construed (e.g., Jaccard, 2013; MacCallum,
2003; Rodgers, 2010). However, given the importance of analogical
modeling as a strategy for the expansion of explanatory theories, meth-
odologists in the behavioral sciences should promote it as vigorously as
they have promoted structural equation modeling.

Thus far, T have suggested that, for ATOM, the epistemic worth of
hypotheses and theories generated by existential abduction is evaluated
in terms of their initial plausibility, and these assessments are subse-
quently augmented by judgments of the appropriateness of the analogies
that function as source models for their development. However, with
ATOM, well-developed theories are appraised further with respect to a
number of additional criteria that are used when making judgments
about the best of competing explanatory theories. This is the focus of
the next chapter, where we will see that the criterion of analogy, in com-
bination with additional criteria, figures in the further assessment of the
plausibility of analogical models.



5 Theory Appraisal: Inference to the Best
Explanation

If the fact that a theory provides the best available explanation for some impor-
tant phenomenon is not a justification for believing that the theory is at least
approximately true, then it is hard to see how intellectual inquiry could proceed.

—Richard Boyd (1984, 67)
5.1 Introduction

Contemporary scientific methodology boasts a number of general
approaches for evaluating scientific theories. Prominent among these are
the hypothetico-deductive method, which evaluates theories in terms of
predictive success; Bayesian accounts of confirmation, which assign
probabilities to hypotheses using Bayes’s theorem; and inference to the
best explanation, which accepts theories when they are judged to provide
better explanations of the evidence than their rivals do. These are three
of the four major theories of scientific method canvassed in chapter 1.
Because of its focus on procuring descriptive generalizations, the simple
inductive account of scientific method does not seriously address the
matter of theory appraisal.

It has been stated repeatedly that the hypothetico-deductive method
is by far the most widely used approach to theory appraisal in psychol-
ogy (see, e.g., Rorer, 1991; Rozeboom, 1997). Despite some urgings (e.g.,
Edwards, Lindman, & Savage, 1963; Lee & Wagenmakers, 2005; Dienes,
2011), psychologists have been reluctant to use Bayesian statistical
methods to test their research hypotheses and theories. They have mostly
preferred to use classical statistical significance testing within a hypo-
thetico-deductive framework. Unfortunately, inference to the best expla-
nation has received almost no attention by psychological researchers.
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Many scientists in the natural and biological sciences have placed
stock in the explanatory standing of theories, with Darwin and
Einstein prominent among them (Janssen, 2002). In a well-known passage
in the final chapter of On the Origins of Species, Darwin declares
his confidence in justifying theories by appeal to explanatory
considerations:

It can hardly be supposed that a false theory would explain, in so satisfactory
a manner as does the theory of natural selection, the several large classes of
facts above specified [e.g., the geographical distribution of species, the sterility
of hybrid species]. It has recently been objected that this is an unsafe method
of arguing. But it is a method used in judging common events of life, and has
often been used by the greatest natural philosophers. The undulatory theory of
light has thus been arrived at; and the belief of the revolution of the earth on its
own axis was until lately supported by hardly any direct evidence. (Darwin,
1958, 452)

It is clear that Darwin set great store by the fact that his theory
of natural selection provided a much better explanation of the classes
of facts such as those just mentioned than did the rival creationist
theory.

In addition, methodologists have been concerned for some time to
articulate ways in which we can understand the explanatory worth of
theories (e.g., Lipton, 2004; Josephson & Josephson, 1994; Thagard,
1989, 1992). However, although inference to the best explanation (IBE)
is used in some sciences and extensively discussed in the philosophy of
science, it is seldom heard of in psychology. This is an omission that I
believe needs to be put right.

The primary purpose of this chapter is to bring the important idea of
IBE to the attention of psychologists while emphasizing that the literature
on the topic contains methodological resources that can help researchers
evaluate the explanatory worth of their theories (Haig, 2009). I begin by
introducing the general idea of explanatory inference. Then I consider a
number of different approaches to characterizing IBE; prominent among
these is the theory of explanatory coherence , which is the approach to
theory appraisal adopted by ATOM. Thereafter I discuss the strengths
and limitations of IBE, together with its relationship to other major
approaches to theory appraisal and its place in the broader domain of
scientific inference. The chapter’s penultimate section considers IBE in
relationship to psychology, and in the conclusion, I recommend that
psychologists use IBE as an appropriate means of evaluating the worth
of their explanatory theories.
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5.2 Inference to the Best Explanation

In accordance with its name, IBE is based on the idea that much of what
we know about the world, in both science and everyday life, is based on
considerations of explanatory worth. Scientists often accept theories
about the hidden causes of empirical phenomena because they believe
them to be the best explanations of those phenomena. This was the
reasoning Darwin used in judging his theory of natural selection to be
superior to the rival creationist explanation of his time (Thagard, 1978).
In contrast to the hypothetico-deductive method, IBE takes the relation
between theory and evidence to be one of explanation, not logical entail-
ment. This means that for IBE the ideas of explanation and evidence
come together, and explanatory reasoning becomes the basis for evaluat-
ing theories. Also, in contrast with the Bayesian approach to theory
evaluation, advocates of IBE generally take theory evaluation to be a
predominantly qualitative exercise that focuses explicitly on explanatory
criteria, not a statistical undertaking in which one assigns probabilities
to theories. Given that a primary function of most theories in science is
to explain empirical facts, it stands to reason that the explanatory good-
ness of explanatory theories should count in their favor. Conversely,
explanatory failings should detract from their credibility. The major
point of IBE is that the theory judged to be the best explanation of the
facts is taken to be the theory most likely to be correct. There is, then,
a twofold justification for using IBE when evaluating explanatory theo-
ries: it explicitly assesses such theories in terms of the important goal of
explanatory power, and it focuses on science’s goal of maximizing truth.
The basis for this second justification is briefly considered later in the
chapter.

Methodologists have used a number of different terms for explanatory
reasoning. Many have followed Charles Peirce (1931-1958) in calling it
abduction. Others have adopted Gilbert Harman’s (1965) term inference
to the best explanation, and still others speak of explanatory induction
(Rozeboom, 1997). However, the tendency in the literature to think of
IBE as the generic form of explanatory reasoning can mislead, for it
glosses over the fact that there are different forms of explanatory rea-
soning—or, as one might say, different forms of abduction. The termino-
logical preferences I adopt here acknowledge genuine differences in
methodological context. In this chapter, I distinguish between the abduc-
tive generation of new theories and the abductive appraisal of existing
theories. This is similar to Capaldi and Proctor’s (2008) distinction
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between novel hypothesis abduction and competing theories abduction.
In each case, it is the latter that is more appropriately described as IBE.
With Peirce, I take abduction to involve reasoning from claims about
puzzling facts to theories that might explain them. As such, abduction is
a process of hypothesis or theory generation that can, at the same time,
involve an evaluation of the initial plausibility of the hypotheses and
theories proposed. In chapter 3, I argued that exploratory factor analysis
is an abductive method that helps researchers generate plausible explana-
tory hypotheses in domains where it is reasonable to suppose that
common causes are at work. Abduction in this sense is to be contrasted
with IBE, which involves a comparative assessment of rival theories—
theories that might have been given to us by the generative process of
abduction, as with exploratory factor analysis, and perhaps developed
by a modeling process of analogical abduction, which was the subject of
chapter 4. Thus the expression inference to the best explanation should
not be taken to imply that one arrives at the best explanation by reason-
ing to it. Rather, IBE is a mode of inference by which one judges the best
of existing competing explanatory hypotheses and theories that have
been generated by other abductive means. This chapter focuses on IBE
in the latter sense.

Although scientists often make judgments of IBE, they disagree about
how to characterize that process. Accordingly, the characterization of IBE
provided in this chapter highlights four major attempts to render this
form of inference intelligible. The first of these, often used by philoso-
phers, portrays IBE as a schematic argument. The second, by Peter Lipton
(2004), claims that IBE leads to judgments of “explanatory loveliness.”
The third account is Paul Thagard’s (1992), which depicts IBE as a
method of determining the explanatory coherence of theories. A fourth
characterization presents a variant of the currently popular method of
structural equation modeling as a form of IBE.

5.2.1 Inference to the Best Explanation as a Schematic Argument

It is commonly thought that with IBE one infers the likely truth of a
hypothesis on the grounds that it better explains a set of data than do
competing hypotheses. This characterization of IBE is sometimes pre-
sented in the form of a general argument schema like the following (e.g.,
Josephson & Josephson, 1994; Lycan, 1988):

D is a collection of data.

Hypothesis H explains D.
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No other hypothesis can explain D as well as H does.
Therefore H is probably true.

This schematic portrayal of IBE provides some sense of the structure
of an IBE argument, but generally speaking, IBE in science does not
conform to this schema. Therefore the schema must be amended in light
of the following remarks.

First, as emphasized in the discussion of phenomena detection in
chapter 2, and as clarified in the abductive depiction of exploratory
factor analysis provided in chapter 3, the facts to be explained in science
are generally not collections of data but empirical phenomena. Phenom-
ena often take the form of empirical generalizations, and they are not,
strictly speaking, observed. Rather, data serve as evidence for phenom-
ena, and phenomena are taken as the usual objects of scientific explana-
tion (Woodward, 1989).

Second, the argument schema refers to hypotheses rather than theo-
ries. However, in science, theories are often taken to be the minimum
units of theory appraisal. Theories are ramified structures, often compris-
ing several explanatory hypotheses and other factors such as empirical
generalizations and models (in the previous chapter, we saw that ATOM
is concerned with developing model theories). Typically, IBE is used in
science to evaluate theories rather than hypotheses.

Third, the conclusion of the argument schema speaks of the probable
truth of the hypothesis. However, although truth is a cardinal aim of
science, and although hypotheses are more or less true, the conclusion
of the argument does not require talk of truth, let alone probable truth.
It is sufficient that the conclusion speaks of the acceptance of the hypoth-
esis in preference to its rivals.

On the basis of these brief remarks about the nature of science, the
schematic depiction of the form of an IBE argument just given should
be changed to something like the following:

P1, P2, ... are surprising empirical phenomena.
Theory T explains P1, P2, ... .
No other theory can explain P1, P2, ... as well as T does.
Therefore T is accepted as the best explanation.
Note that this schematic depiction of IBE focuses on its form only.
However, a more informative characterization of IBE requires one to

supplement the schema to capture the complexity of the patterns of
reasoning involved. This is especially so when we seek a method of IBE
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that can help us judge theory goodness. Importantly, a satisfactory
account of IBE must be able to say what it means for one explanation
to be better than its rivals. We will see that the second and third accounts
of IBE meet this requirement by providing a set of criteria that form the
basis of the judgments made in IBE. I should also point out here that the
notion of an explanation itself remains unclear. However, for the purpose
of this chapter, we can assume that a scientific explanation often involves
appealing to causes that produce their effects, irrespective of how that
appeal might be spelled out in detail. Later, I briefly comment on the
idea of explanation in dealing with a criticism of Thagard’s account of
inference to the best explanation.

5.2.2 Inference to the Best Explanation as the Loveliest Explanation
The philosopher of science Peter Lipton has undertaken the most promi-
nent and wide-ranging examination of IBE. In his book Inference to the
Best Explanation (2004), Lipton articulated and defended IBE as a dis-
tinctive kind of inference, which is used in both science and everyday
life. With science in mind, Lipton examined and endorsed the related
ideas that we often accept a theory on the grounds that it provides a
better explanation of the evidence than its rivals do, and the explanatory
success of a scientific theory is a good reason to believe or accept that
theory as true. Lipton took pains to distinguish between the descriptive
task of understanding IBE as it is practiced in science and the normative
task of showing how IBE provides a justification for the conclusions
reached. His primary concern was the descriptive merits of IBE.

Lipton pointed out that the phrase best explanation is ambiguous
between what he called the most likely explanation and the most lovely
explanation. Some methodologists take IBE to provide us with the likeli-
est or most probable explanation. However, Lipton maintained that this
approach is not particularly informative because the primary task of IBE
is to say what leads to a judgment that one theory is likelier than another.
Lipton claimed that it is more informative to regard the best explanation
as the loveliest explanation and to use that information to gauge the
likeliness of a theory’s truth. However, for Lipton, the idea that IBE is
the loveliest explanation can stand on its own without analyzing it in
terms of probability. Nevertheless he maintained that if IBE is a good
model of our inferential practices, then loveliness and likeliness will tend
to be coextensive.

For Lipton, the loveliest explanation comprises the various commonly
accepted explanatory virtues, and it is these virtues that provide the guide
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to inference about causes in science. Lipton listed these virtues as unifica-
tory power, precision, and elaboration of explanatory mechanisms.
Although he acknowledged that there is a literature on these and other
explanatory virtues, he did not articulate his virtues in detail. However,
he stressed the importance of doing so in a more fully developed account
of IBE. Because of this lack of detail, the sense in which explanatory
loveliness determines explanatory likeliness is somewhat unclear.

Lipton depicted IBE as a two-stage process. In the first stage, a set of
potential explanations is generated. In the second stage, an inference is
made to the best potential explanation, which is accepted as the actual
explanation. Each of these stages involves filtering out a reduced set of
explanations on the basis of plausibility considerations. At the first stage,
judgments of initial plausibility are made on the basis of background
knowledge to identify the potential explanations from all possible expla-
nations. At the second stage, the criteria that comprise the loveliest
explanation are used to determine the best of the potential explanations.
By including a first stage of hypothesis generation in his model of IBE,
Lipton took IBE to be a broader notion than the one I adopt in this
chapter, which is confined to his second stage. From the perspective of
this chapter, Lipton’s first stage can be understood as a necessary precur-
sor to IBE proper.

Although Lipton’s two-step filtering process undoubtedly points to
important features of scientific research, his abstract characterization of
the process of IBE constitutes a general strategy rather than a detailed
method. Nevertheless Lipton maintained that IBE shares some similari-
ties with, but goes beyond, Mill’s methods of induction, in terms of both
applicability and scope. He also maintained that it is different from, and
superior to, the hypothetico-deductive method, because it avoids various
counterexamples or paradoxes of confirmation to which that method
gives rise.

Although Lipton maintained that an analysis of IBE can be given
without a satisfactory theory of explanation, he adopted a causal model
of explanation as an explicit part of his account of IBE. At the same time,
Lipton stressed the importance of the notion of contrastive explanation.
A contrastive explanation does not attempt to answer the question “Why
this event?” It attempts to answer the question “Why this event rather
than that event?” That is, it seeks causes to explain not an event by itself
but an event together with the absence of another relevant similar event.
As an illustration of the contrastive model of explanation, Lipton took
Ignaz Semmelweis’s (1983) much-discussed investigation of childbed
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fever. Semmelweis sought to explain why the incidence of childbed fever
was higher in one obstetric clinic than another. By creating a range of
contrasts that controlled for relevant differences (e.g., the regular washing
of hands with a solution of chlorinated lime contrasted with not doing
s0), he was able to conclude that the women in some wards were infected
by the examining medical students, who carried an unknown material
on their unwashed hands. Lipton construed this example as a successful
case of IBE, where IBE is construed as inference to the best contrastive
explanation.!

A further aspect of Lipton’s treatment of IBE should be mentioned
here. This is his recent suggestion (Lipton, 2004) that IBE is broadly
compatible with the Bayesian approach to theory evaluation and that
IBE might in fact help determine the prior probabilities and likelihoods
that are used in Bayes’s theorem. I consider the compatibility of these
two approaches later in the chapter.

In addition to his positive account of IBE outlined here, Lipton
defended IBE against a number of criticisms. I consider the two most
prominent of these criticisms in section 5.3.

5.2.3 Inference to the Best Explanation as Explanatory Coherence
Gilbert Harman (1965) provided the first modern reference to IBE.
However, Harman gave no informative account of IBE itself. He chose
merely to mention simplicity, plausibility, explanatory breadth, and
non-ad hocery as the sort of criteria that figure in judgments of best
explanation. As noted earlier, Lipton acknowledged the importance of
criteria like these, but he did not provide a detailed account of them. As
a result, critics of both Harman and Lipton complained that without an
informative account of the criteria that would be used in IBE, the idea
was little more than a slogan.

Recognizing this deficiency, Paul Thagard developed a method of IBE
that helps researchers reliably appraise competing theories. His method
is known as the theory of explanatory coberence (TEC) (Thagard, 1989,
1992). The theory comprises an account of explanatory coherence in
terms of a number of principles, a computer program for implementing
the principles, and various simulation studies that demonstrate the the-
ory’s promise as a method of IBE. In this section, I provide an overview
and a brief evaluation of the method.

According to TEC, IBE is centrally concerned with establishing
relations of explanatory coherence. To infer that a theory is the best
explanation is to judge it as more explanatorily coherent than its rivals.
TEC is not a general theory of coherence that subsumes different forms
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of coherence, such as the logical coherence of deductively valid argu-
ments, and the probabilistic coherence of Bayes’s theorem. Rather, it is
a theory of explanatory coherence, where the propositions hold together
because of their explanatory relations.

Relations of explanatory coherence are established through the oper-
ation of seven principles. These are symmetry, explanation, analogy,
data priority, contradiction, competition, and acceptability. A theory’s
explanatory coherence is determined in terms of three criteria: explana-
tory breadth, simplicity, and analogy (Thagard, 1978). The criterion of
explanatory breadth, which Thagard believes is the most important for
choosing the best explanation, captures the idea that a theory is more
explanatorily powerful than its rivals if it explains a greater range of
facts—the idea strongly endorsed by Darwin in the quotation presented
earlier in the chapter. The notion of simplicity that Thagard deems
most appropriate for theory choice is captured by the idea that we
should prefer theories that make fewer special or ad hoc assumptions.
Finally, explanations are judged more coherent if they are supported
by analogy to theories that scientists already find credible. Within TEC,
each of these three criteria is embedded in one or more of the seven
principles. Thagard formulated these principles in both formal and
informal terms. They are stated here informally in his words (Thagard,
2000, 43). The accompanying comment on the principles closely follows
Thagard’s (1992) discussion of a more formal statement of those
principles.

1. Symmetry

Explanatory coherence is a symmetric relation, unlike, say, conditional
probability. That is, two propositions p and g cohere with each other
equally.

The principle of symmetry maintains that both coherence and incoher-
ence are symmetric relations, unlike the nonsymmetric relations of entail-
ment and conditional probability. The sense of coherence conforms to
the ordinary sense of coherence as “holding together.”

2. Explanation

(a) A hypothesis coheres with what it explains, which can either be evi-
dence or another hypothesis. (b) Hypotheses that together explain some
other proposition cohere with each other. (c) The more hypotheses it
takes to explain something, the lower the degree of coherence.

Because the principle of explanation establishes most of the coherence
relations, it is the most important principle in determining explanatory
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coherence. Principle 2a, with principle 7, acceptance, subsumes the cri-
terion of explanatory breadth, which is central in determining the best
explanation. Principle 2¢ accommodates the notion of simplicity, which
is also an important criterion in theory choice.

3. Analogy

Similar hypotheses that explain similar pieces of evidence cohere.

The principle of analogy is the same as the criterion of analogy in Tha-
gard’s (1978) initial account of IBE. It states that if similar propositions
explain similar pieces of evidence, then they cohere with each other. The
analogy must be explanatory.

4. Data priority

Propositions that describe the results of observations have a degree of
acceptability on their own.

The principle of data priority maintains that claims about observations
can stand on their own more successfully than explanatory hypotheses.
Of course, they can be doubted, but the reliability of their production
will often be sufficient grounds for their initial acceptance.

Despite its name, it is clear that Thagard intends the principle of data
priority to include statements about empirical generalizations that are
based on observations. Thus the principle covers the generalizations that
are robust enough to be considered claims about empirical phenomena,
in the sense discussed in chapter 2. Because of their robustness, the evi-
dential respectability of such claims will be high, apart from their rela-
tionship to explanatory theories.

5. Contradiction

Contradictory propositions are incoherent with each other.

This principle straightforwardly includes syntactic contradictions involv-
ing logical inconsistency and semantic contradictions involving inconsis-
tency of meaning. The principle covers the negative relations that hold
between contradictory propositions that actively resist cohering and are
said to incohere.

6. Competition

If p and g both explain a proposition, and if p and g are not explanatorily
connected, then p and g are incoherent with each other (p and g are
explanatorily connected if one explains the other or if together they
explain something).
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This principle claims that theories that explain the same evidence should
normally be treated as competitors. In such cases, theories are regarded
as competing if they are not explanatorily related. Noncontradictory
theories may compete with each other.

7. Acceptance

The acceptability of a proposition in a system of propositions depends
on its coherence with them.

This last principle asserts that propositions are accepted or rejected on
the basis of their degree of coherence with other propositions. The overall
coherence of a system of propositions, or a theory, is obtained by con-
sidering the pairwise coherence relations through use of principles 1
through 6.

The principles of TEC combine in a computer program called ECHO
(Explanatory Coherence by Harmany Optimization) to provide judg-
ments of the explanatory coherence of competing theories.? In ECHO,
propositions about both evidence and hypotheses are represented by
units that have excitatory and inhibitory links to each other, and node
activation represents the nodes’ degree of coherence with all propositions
in the network. The system updates itself based on parallel constraint
satisfaction. The best explanation consists of the nodes with the highest
activation values once the system has settled down.

TEC has a number of virtues that make it a promising theory of IBE.
It focuses on criteria and principles that manifestly have to do with
explanation; the criteria of explanatory breadth, simplicity, and analogy
are explanatory criteria, whereas the principle of explanation is the most
important of the seven principles. Further, as its principle of competition
makes clear, TEC takes theory evaluation to be a comparative matter in
which a theory is evaluated with reference to one or more competing
theories. Furthermore, it is instantiated by, and can be implemented in,
the purpose-designed computer program ECHO; it is a considerable
achievement of TEC that it enables the researcher to compute explana-
tory coherence. Finally, it accounts for a number of important episodes
of theory assessment in the history of science, such as the superiority of
Darwin’s theory of evolution over the creationist theory, and the superi-
ority of Lavoisier’s theory of oxygen over the phlogiston theory. Simula-
tion studies by Thagard and his colleagues on case histories such as these
provide empirical evidence that TEC is on the right track with its distinc-
tive conception of IBE. It is largely for these reasons that I have chosen
TEC as the method of IBE for ATOM.
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Despite these positive features, TEC is a controversial account of IBE.
Two publications by Thagard (1989, 1992) contain a number of criti-
cisms of the method, with replies by the author. Some of these criticisms
apply to IBE more generally, and I consider three of them in the next
two sections. However, before doing so, I want to briefly consider the
fact that TEC’s key principle of explanation speaks of hypotheses explain-
ing other propositions without indicating what the term explanation
means. Some commentators have seen this as a deficiency (e.g., Achin-
stein, 1989; Glymour, 1992). Thagard was aware of this omission at the
outset but maintained that TEC is an effective method of IBE, although
it operates with a primitive notion of explanation. More recently, Thagard
and Litt (2008) claimed that explanation is a complex process that resists
characterization in a single account. It can involve features such as deduc-
tive arguments, statistical relations, schema applications, analogical com-
parisons, and linguistic acts, all of which are subordinate to its
fundamental causal character. Thus, for them, the focal challenge in
characterizing the explanatory relationship between hypotheses and the
propositions they explain is to describe the causal relationship between
them. Thagard and Litt developed a neurocomputational model of the
cognitive processes that underlie scientific explanations. Their model is
much more neurologically complex than the simple model of ECHO.
Both Thagard’s multifaceted characterization of explanation and the new
neurocomputational model should therefore be viewed as complemen-
tary to, not a part of, TEC and its accompanying methodology.

Toward the end of the chapter, I will suggest that TEC provides psy-
chologists with a valuable method for engaging in the comparative
appraisal of explanatory theories.

5.2.4 Inference to the Best Explanation as Structural Equation
Modeling

The guess-and-test strategy of the standard hypothetico-deductive
method takes predictive accuracy as the sole criterion of theory goodness.
However, a close examination of research practice in psychology and the
behavioral sciences reveals that the hypothetico-deductive method is
sometimes combined with the use of supplementary evaluative criteria
such as simplicity, scope, and fruitfulness. When this happens, and
one or more of the criteria have to do with explanation, we can reason-
ably regard the combined approach as a version of IBE, rather than
just an augmented account of the hypothetico-deductive method.
As noted earlier, this is because the central characteristic of the



Theory Appraisal 117

hypothetico-deductive method is a relationship of logical entailment
between theory and evidence, whereas with IBE the relationship is one
of explanation. The hybrid version of IBE being considered here will
allow the researcher to say that a good explanatory theory will rate well
on the explanatory criteria and at the same time boast a measure of
predictive success. Most methodologists and scientists will agree that an
explanatory theory that also makes accurate predictions will be a better
theory for doing so.

Structural equation modeling, now widely used in psychology and
related sciences, is a family of multivariate statistical methods that often
involves testing models in hypothetico-deductive fashion. Its standard
formulation is a combination of insights from multiple regression, path
analysis, and confirmatory factor analysis, which enables structural
equation modeling simultaneously to test relationships among a multi-
tude of manifest and latent variables. It specifies and tests models of
linear structural relations, which are often given a causal interpretation.
One or more goodness-of-fit measures provide the means by which one
confirms or disconfirms the model in question. Structural equation mod-
eling in this sense is hypothetico-deductive because it is centrally con-
cerned with the predictive testing of models one at a time without regard
for competing plausible models.

However, some uses of structural equation modeling combine a com-
mitment to predictive hypothetico-deductive testing with an appeal to
one or more explanatory criteria. This latter practice involves the explicit
comparison of models or theories in which an assessment of their good-
ness-of-fit to the empirical evidence is combined with the weighting of
the fit statistics in terms of parsimony indices (e.g., Kaplan, 2000). Here
goodness-of-fit provides information about the empirical adequacy of
the model, whereas parsimony functions as a criterion relating to the
explanatory value of the model. Both are used in judgments of model
goodness.

Markus, Hawes, and Thasites (2008) recently suggested that in struc-
tural equation modeling, model fit can be combined with model parsi-
mony, understood as explanatory power, to provide an operationalized
account of IBE. They discussed the prospects of using structural equation
modeling in this way to evaluate the comparative merits of two- and
three-factor models of psychopathy. In their chosen example, Markus
and his coauthors reported a study by Cooke and Michie (2001), which
employed confirmatory factor analysis (a limiting case of structural equa-
tion modeling) to conclude that the commonly accepted two-factor
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structural model of psychopathy (comprising negative interpersonal and
affective features, and social dominance) fitted poorly to the data. In its
stead, Cooke and Michie proposed a better-fitting three-factor model
(comprising arrogant and deceitful interpersonal style, deficient affective
experience, and impulsive and irresponsible behavioral style). Markus et
al. concluded that this is an example of IBE, where the factors of the two
models are taken to be latent explanatory variables. They suggested that
one can partially operationalize bestness in terms of the popular root
mean square error of approximation index, an index that measures the
degree of ill fit per degree of freedom in the model. Here poorness-of-fit
and degrees of freedom are taken to represent strength of empirical test
and extent of parsimony, respectively, which together can be taken as a
gauge of explanatory power. The three-factor model of psychopathy is
thus accepted on the grounds that it is a better explanation of the data
than the rival two-factor model.

Structural equation modeling recommends itself to psychologists, not
just as a hypothetico-deductive practice but also as a variant of IBE.
Employed as a method of IBE, it brings with it an ability to provide a
better justification than orthodox hypothetico-deductive method of the
hypotheses, models, and theories it evaluates.

5.3 Two Criticisms of Inference to the Best Explanation

Something of the controversial nature of IBE was seen earlier when I
addressed specific criticisms that have been leveled against Thagard’s
TEC. I now consider the two most prominent general criticisms that have
been leveled against IBE. Another criticism, which appeals to the alleged
superiority of the Bayesian approach to theory appraisal, will be dealt
with shortly.

5.3.1 The Bad Lot Argument

A major criticism of IBE was raised by Bas van Fraassen (1989), who
maintained that the approach cannot provide a satisfactory basis for
believing in a theory. In a nutshell, van Fraassen argued that the best of
competing explanatory hypotheses might be “the best of a bad lot,” all
of which are false. He reasoned that because IBE can select the best
hypothesis only from the set of currently available hypotheses, we have
no reason to believe that the truth is to be found there rather than in
hypotheses that no one has proposed. Therefore he maintained that IBE
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provides us with no rational grounds for believing that the hypothesis
that is judged best is true.

Proponents of IBE have met van Fraassen’s objection head-on. They
have argued that scientists appeal to background knowledge to select the
best of competing theories, and because this knowledge is approximately
true, their selection of the best theory is generally well grounded. Lipton
(2004) argued along these lines. He asserted that our rankings of the best
of competing theories are fairly reliable, a point with which van Fraassen
agreed. Furthermore, Lipton maintained that for accepted background
theories to be used in the successful ranking of theories, they must be
approximately true. From this, Lipton concluded that our best-ranked
theories must be at least approximately true, and consequently van Fraas-
sen’s argument is unsound.

Another way of dealing with van Fraassen’s bad lot argument is to
put the question of truth aside and focus on the methodological strategies
involved in carrying out IBE. Often in science, a theory will count as a
viable candidate for selection as the best explanatory theory only when
it has already been subjected to one or more plausibility assessments.
Recall that, in Lipton’s general two-stage model of IBE, the first stage
involves reducing the set of all possible explanations to the set of plau-
sible explanations, and the second stage determines the best of the actual
explanations. In both stages, judgments are based on plausibility consid-
erations. ATOM adopts a similar but more detailed strategy. According
to this account of method, theory construction involves two rounds of
plausibility assessment before one can make judgments of IBE. First, a
theory that is generated to explain one or more empirical phenomena
will be judged with respect to its initial plausibility. This first determina-
tion of its worth appeals to the soundness of the explanatory argument
used in its introduction. As previously noted, psychological theories
generated by exploratory factor analysis are evaluated in this way.
Second, theories judged to have sufficient initial plausibility then receive
a further assessment of their plausibility in terms of the aptness of the
models that form the basis of their extension. To recall an earlier example,
Darwin’s theory of evolution by natural selection gained credibility by
analogy to the well-known processes of artificial selection. According to
ATOM, IBE can be seen as a third round of plausibility assessment rather
than just the first or second effort to evaluate a theory. Although we
should acknowledge that the best of competing theories might be a poor
theory, an explanatory theory with a record of successive appraisals like
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the one just mentioned, which is judged to be better than its rivals, is
likely to be the best of a respectable lot, not a bad lot.

Although one can defend IBE against the bad lot argument by separat-
ing IBE from truth, it remains to be shown how IBE can legitimately be
used to evaluate theories with respect to their explanatory goodness in
a way that avoids judgments of truth per se while at the same time
regarding science as a truth-seeking endeavor. It is important to realize
that the assumption that one can secure the truth of theories by making
judgments of IBE conflates the different notions of truth and justification.
It has already been said that truth, understood as correspondence with
reality, functions as a guiding ideal for science (Hooker, 1987; Haig &
Borsboom, 2012). As such, it is a highly valued but unattained goal that
helps us make sense of science as an attempt to represent and intervene
in the world. However, as an ideal, truth (or more precisely, approximate
truth) is accessible only indirectly by way of the various criteria we use
to evaluate and accept theories. Historically, scientists have regarded
predictive accuracy, internal consistency, and explanatory power as
important criteria of theory acceptance. As justificatory criteria, they can
indicate truth, but they do not constitute truth.

For TEC, the criteria of explanatory breadth, simplicity, and analogy
are epistemic criteria used in evaluating competing explanatory theories.
However, the question arises whether evaluating competing theories in
terms of these criteria entitles us to think that the best theories are closer
to the truth than their rivals. Thagard (2007) claimed that this will be
so, provided that two conditions are met. First, an increase in explana-
tory breadth by explanation of more empirical phenomena has to occur;
second, an increase in explanatory depth by the successful investigation
of causal mechanisms in greater detail must be achieved.

From this it follows that accepting a theory on the basis of a judgment
of explanatory coherence alone does not mean that it is likely to be true
or is closer to the truth than its rivals. All that Thagard’s argument
entitles us to say is that TEC contributes to the long-term goal of maxi-
mizing true propositions and minimizing false ones. Subsequent evalua-
tions of a theory in relation to its rivals will also contribute to that goal,
and it is the track record of these assessments over time that will ulti-
mately decide a theory’s fate.

5.3.2 The Subjectivity of Inference to the Best Explanation
The second major criticism of IBE states that the evaluative criteria that
make up explanatory goodness are relative to a scientist’s judgments
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about what constitutes a good explanation and are therefore too subjec-
tive to properly determine the warrant that it confers on the best of
competing theories.

Lipton (2004) made a two-pronged reply to this objection, one having
to do with inference, the other having to do with explanation. With the
first prong, Lipton granted that reliable inference is relative to variation
in evidence and background beliefs from person to person, but main-
tained that audience relativity alone will not prevent IBE from being a
reliable form of inference. He appealed to Kuhn’s (1977) work on theory
appraisal by noting that rational disagreements sometimes stem from
nonevidential factors such as a theory’s fruitfulness and that this can
serve the useful function of allowing the scientific community to hedge
its bets. With the second prong, Lipton suggested that his criteria of
explanatory loveliness (unificatory power, precision, and the elaboration
of causal mechanisms) are also subject to interest relativity. He reasoned
that by adopting his contrastive account of explanation, where the same
event can be explained with respect to different contrasts, his model
allows a substantial measure of relativity of interest in a way that is
not damagingly subjective. To give a psychological example using Lip-
ton’s turn of phrase, Jennifer’s early negative childhood experiences will
explain why she has relationship difficulties for someone who is inter-
ested in understanding why she, rather than Peter, who does not have
relationship difficulties, has relationship difficulties, but not for someone
who wants to know why Jennifer developed relationship difficulties
when other people with negative childhood experiences did not. Lipton
saw his account of contrastive explanation illuminating interest relativ-
ity in two ways: different people are interested in explaining different
phenomena, and these differences in interests demand explanations that
invoke different but compatible elements of a causal story. Lipton con-
cluded that the present argument from subjectivity does not impugn
IBE.

In short, the arguments against IBE from the bad lot and from sub-
jectivity do not undermine the viability of the approach.

5.4 Inference to the Best Explanation and Other Methods of Theory
Appraisal

As noted at the beginning of the chapter, IBE, the hypothetico-deductive
method, and Bayesianism are generally regarded as the major alternative
approaches to theory appraisal. I now consider IBE in relation to the
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other two approaches. These contrasts should serve to characterize
further the nature of IBE and help judge its merits.

5.4.1 Inference to the Best Explanation and the Hypothetico-
Deductive Method

It has repeatedly been stated that the hypothetico-deductive method has
long been the method of choice for evaluating scientific theories (Laudan,
1981), and it continues to have a dominant place in psychology. The
hypothetico-deductive method is usually characterized in an austere
manner: the researcher takes an existing hypothesis or theory and tests
it indirectly by deriving from it one or more observational predictions
that are themselves directly tested. Predictions borne out by the data are
taken to confirm the theory to some degree; those that do not square
with the data count as disconfirming instances of the theory. Normally
the theory is not compared with a rival theory or theories with respect
to the data, only with the data.

The hypothetico-deductive method, in something like this form, has
been strongly criticized by methodologists on a number of counts. As
remarked earlier, one major criticism of the method is that it is confir-
mationally lax. This laxity arises from the fact that any positive confirm-
ing instance of a hypothesis submitted to empirical test can confirm any
hypothesis that is conjoined with the test hypothesis, irrespective of the
plausibility of the conjunct. This occurs because the method distributes
confirmation across all claims involved in the derivation of the predic-
tion; it does not have the resources to bestow confirmation on the central
test hypothesis alone. Thus the successful hypothetico-deductive test of
a prediction bestows confirmation on, among other claims, the auxiliary
hypotheses about the relevant measuring instruments regardless of their
reliability and validity. In this way, the use of psychometric tests of doubt-
ful validity receives undeserved confirmation in psychology.

Another major criticism of the hypothetico-deductive method is that
it founders on the problem of the underdetermination of theory by
empirical evidence. That is, the method is incapable of showing that a
theory should be accepted on the basis of empirical evidence alone or
that one theory is better than another with respect to the empirical
evidence.

The seriousness of these criticisms has prompted calls to abandon the
hypothetico-deductive method in favor of either IBE or the Bayesian
approach to hypothesis and theory evaluation. However, these criticisms
tell only against simplistic versions of the method, for it is possible to
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amend the method in ways that allow it to do useful theory testing.
Regarding the problem of confirmational laxity, Giere (1983) recast the
method in a way that enables it to test individual hypotheses. Alterna-
tively, one might insert a Bayesian view of confirmation into a hypo-
thetico-deductive framework (Rosenkrantz, 1977). However, whereas
many would see this second alternative as providing the hypothetico-
deductive method with a superior account of confirmation, using the
method in this augmented form would only be appropriate where it made
good sense to assign probabilities to hypotheses and theories.

The problem for the hypothetico-deductive method of the underde-
termination of theories by empirical evidence might be resolved by
adopting a strategy that combines the method with the use of evaluative
criteria in addition to predictive accuracy. I briefly consider this possibil-
ity in section 5.6.1, where I discuss IBE in relation to psychology. For
now, it suffices to note that, by invoking explanatory criteria, IBE has
the resources to reduce the gap between empirical evidence and theory
and make determinate judgments of explanatory goodness.

5.4.2 Prediction and Theory Evaluation

Although prediction is obviously an essential feature of the hypothetico-
deductive method, and although it retains a place in Bayesian theory
evaluation and most versions of IBE, it is not a part of TEC. This sug-
gests that predictive success might play different roles in different
approaches to theory evaluation.

Examination of a number of case histories in the history of science
reveals that, for scientists, the successful prediction of new facts does not
necessarily provide better evidence for a theory than do theoretical cri-
teria. For example, Brush (1989) showed that the commonly held view
that Einstein’s successful prediction of the gravitational bending of light
provided strong confirmation of his general theory of relativity was
shared by neither Einstein nor the majority of scientists of his time. Ein-
stein (and other physicists) maintained that the coherence and simplicity
of the theory were more important criteria for its acceptance than the
relevant predictive tests.

Brush (1989) also pointed out that it is a common practice in science,
particularly in physics, to take predictive success to cover both the deduc-
tion of previously known facts and the successful prediction of new facts,
suggesting that the novelty of a prediction is not necessarily an important
factor in gauging the evidential worth of a theory. With respect to the
general theory of relativity, the successful deduction of Mercury’s known
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orbit was widely considered to be just about as good a source of evidence
as the novel prediction of light bending. Brush concluded that the primary
value of a successful novel prediction, when compared with the deduc-
tion of a known fact, is to provide favorable publicity for a theory. Such
was the additional value of the light-bending forecast for general relativ-
ity theory.

In addition, the successful prediction of a new empirical phenomenon
can sometimes be taken as weaker evidence for a theory, just because of
its novelty. Often a scientific fact can plausibly be explained by more
than one theory. Thus the discovery of a new fact is likely to result in
efforts to construct plausible alternatives to the explanation offered by
the theory that sponsored the relevant novel prediction. In the case of
general relativity theory, ten years of unsuccessful efforts to provide a
better explanation of the phenomenon of light bending passed before
Einstein’s supporters could convincingly assert that their theory provided
the best explanation (Brush, 1989).

In short, it seems that although prediction has a deservedly important
role in theory evaluation, it has been less dominant, and its use more
varied, than is commonly supposed. That TEC has sufficient resources
to produce reliable decisions about the best of competing explanatory
theories without recourse to predictions should be considered neither
surprising nor untoward. Although TEC ignores predictive success as
a criterion of theory appraisal, we should appreciate that it nevertheless
satisfies the essential demand for empirical adequacy by appealing to
explanatory breadth instead. A theory that satisfies this criterion of
empirical adequacy is adequate to the relevant empirical phenomena
by being able to explain them.’ In the nineteenth century, the ability
of a theory to explain the relevant phenomena was taken as an impor-
tant measure of empirical adequacy. TEC usefully brings this neglected
criterion of empirical adequacy into the methodological foreground
again.

5.4.3 Inference to the Best Explanation and Bayesianism

Although the Bayesian approach to theory appraisal is looked on more
favorably in philosophy of science than is the hypothetico-deductive
alternative, it remains a minority practice in psychology.* Bayesian theory
evaluation is widely viewed as an alternative to IBE in the philosophical
literature. However, some methodologists have recently looked at ways
to bring the two approaches together. In what follows, I briefly character-
ize the Bayesian outlook on theory appraisal and then consider different
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ways in which it might relate to IBE. Although work on this topic is at
a formative stage, reasonable grounds exist for regarding IBE as a suf-
ficient approach to appraising explanatory theories without recourse to
Bayesian ideas.

I noted in chapter 1 that Bayesians consider probabilities to be central
to scientific hypothesis and theory choice. Bayesians claim that an appro-
priate understanding of theory choice is best provided by probability
theory, augmented by the allied Bayesian philosophy of science known
as Bayesianism.’ In using probability theory to characterize theory evalu-
ation, Bayesians recommend assigning posterior probabilities to scientific
hypotheses and theories in light of relevant evidence. Bayesian hypothesis
choice involves selecting from competing hypotheses the one that, given
the evidence, has the highest posterior probability. The vehicle through
which this process is conducted is Bayes’s theorem, which can be stated
in a variety of forms. Given that the Bayesian position is being contrasted
with IBE here, I present Bayes’s theorem for the case of two hypotheses.
Bayes’s theorem is written for each hypothesis in turn. For the first
hypothesis,

Pr (H1) x Pr (D/H1)
Pr (H1/D) = .
Pr (H2) x Pr (D/H2) + Pr (H1) x Pr (D/H1)

This says that the posterior probability of the first hypothesis is obtained
by multiplying its prior probability by the probability of the data, given
that hypothesis (the likelihood), and dividing the product by the value
that results from adding the prior probability of the second hypothesis,
multiplied by the likelihood for that hypothesis, to the prior probability
of the first hypothesis, multiplied by its likelihood. Bayes’s theorem for
the second hypothesis is written in a similar way.

Although Bayes’s theorem is not controversial as a mathematical
theorem, it is controversial as a guide to scientific inference. With respect
to theory appraisal, one frequently mentioned problem for Bayesians is
that the probabilistic information needed for their calculations on many
scientific hypotheses and theories cannot be obtained. As noted in chapter
1, it is difficult to know how one would obtain credible estimates of the
prior probabilities of the various hypotheses and evidence statements that
made up, say, Freud’s psychodynamic theory or Darwin’s evolutionary
theory. Not only are the necessary probabilistic estimates for such theories
hard to come by, but they do not seem to be particularly relevant in
appraising such explanatory theories. For example, what would it mean,
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and how would it be possible, to speak in evolutionary psychology of
the probability of an adapted psychological trait being responsible for
young children being able to solve theory-of-mind problems?

The problem for Bayesianism presented by explanatory theories such
as those just mentioned is that scientists naturally appeal to qualitative
theoretical criteria rather than probabilities when evaluating those theo-
ries. For example, with TEC, the three criteria of explanatory worth
identified in Thagard’s (1978) case histories are qualitative, even when
they are given a precise formulation in terms of the relevant principles
and the computer program ECHO. To reiterate, scientific theories for
which IBE is an appropriate assessment strategy typically explain empiri-
cal phenomena, and in these cases, explanatory reasoning rather than
probabilistic reasoning is appropriate for their assessment.®

Although IBE has typically been regarded as a competitor to Bayesian
theory evaluation (e.g., van Fraassen, 1989), Lipton (2004) argued that
the two approaches are broadly compatible, and in fact their proponents
“should be friends.” In broad terms, he suggested that judgments of the
loveliest explanation, which are provided by the evaluative criteria of
IBE, contribute to assessments of the likeliest explanation, which are
provided by the probabilities of the Bayesian approach. Specifically,
Lipton maintained that the explanatory considerations invoked in IBE
guide the determination of the prior probabilities (and the likelihoods)
that are inserted in Bayes’s theorem. However, although appeal to explan-
atory matters might well be one way in which Bayesians can determine
their prior probabilities, Lipton did not suggest how this might be done.
Furthermore, those who hold IBE to be a normative approach to scien-
tific theory evaluation, with its own distinctive character, will worry that
Lipton relegates it to a descriptive role within a Bayesian normative
framework (e.g., Psillos, 2004).

Another way of showing the compatibility of IBE and Bayesianism is
to translate the evaluative criteria used within IBE into probabilistic
terms. McGrew (2003) did this by taking the important theoretical virtue
of consilience, or explanatory breadth, and showing that its Bayesian
form leads to higher posterior probabilities of the hypotheses being
evaluated. Nevertheless, McGrew acknowledged that if one translates
consilience into its “flattened” probabilistic form, it no longer remains a
genuine explanatory virtue: not only is there no guarantee that consil-
ience will be concerned with an explanation of the evidence, but there is
no way that probabilistic translations of the explanatory virtues can refer
to the causal connections that are often appealed to in scientific
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explanations. Furthermore, Weisberg (2009) recently argued that the
explanatory loss incurred in such translations will occur for any distinc-
tively explanatory virtue that is given such probabilistic treatment.

One of the reasons that Bayesians have criticized IBE is that its advo-
cates have not been able to spell out its explanatory criteria in a genuinely
informative way. However, as seen earlier in the chapter, Thagard’s TEC
shows that this is not the case: TEC is a detailed theory of IBE in which
the explanatory criteria are described, incorporated in the appropriate
principles of explanatory coherence, and implemented as part of an
integrated method in the computer program ECHO. Although formal,
TEC is clearly qualitative, not probabilistic. Therefore it can stand as a
method of theory appraisal apart from Bayesianism.

Nevertheless, Thagard (2000) translated ECHO in terms of Pearl’s
(1988) probabilistic approach to networks, which suggests that the two
approaches can be reconciled. However, the probabilistic version of
ECHO comes at some computational and conceptual cost, and unsur-
prisingly, some of the relevant probabilities are hard to come by. In the
absence of further relevant comparative work in this domain, Thagard
(2000) conjectured that the psychological and technological applicability
of explanationist and probabilistic methods will vary depending on the
domain of application. He maintained that scientific reasoning is a
domain in which explanationism is clearly appropriate, whereas proba-
bilistic reasoning has application in fields such as medicine. Thus although
TEC can be clothed in probabilistic dress, it is best used on its own terms
for appraising scientific theories.

5.5 The Proper Scope of Inference to the Best Explanation

In this section, I want to briefly challenge two prominent ideas about the
proper scope of IBE: first, the belief that IBE is the main account of
scientific method; and second, the belief that IBE underlies all forms of
ampliative inference, that is, inference involving arguments in which the
conclusions contain information that goes beyond the information con-
tained in their premises.

5.5.1 Inference to the Best Explanation as the Scientific Method

Some methodologists judge IBE to be the premier account of scientific
method. For example, Psillos (2002) compared IBE with what he saw as
its two major alternatives—inductive method (understood as enumera-
tive induction) and the standard hypothetico-deductive account of
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method—and concluded that IBE provides the best description of scien-
tific method. Psillos reasoned that inductive method can satisfactorily
justify claims about empirical generalizations but is explanatorily
vacuous, whereas the hypothetico-deductive method deals with explana-
tory hypotheses but offers a poor method for doing so. He concluded
that of the three methods, IBE is the only one that is both highly amplia-
tive (i.e., highly content-increasing in the conclusions it draws) and able
to provide a decent justification of the explanatory claims it evaluates.

Although IBE is undoubtedly an important scientific method, I believe
that it is a mistake to regard it as a rival to the inductive and hypothetico-
deductive accounts of method. As discussed in chapter |, all three methods
have at various times been proposed as the main account of scientific
method. However, I think that it is more realistic to view them as restric-
tive, domain-specific methods designed to meet particular research goals.
Inductive method in the form of enumerative induction, understood as
induction by generalization, is used in detecting empirical phenomena,
whereas the hypothetico-deductive method tests hypotheses and theories
for their predictive accuracy. By contrast, IBE is used to evaluate explana-
tory theories in terms of both their explanatory power and their predic-
tive success. ATOM explicitly acknowledges the differences in the nature
of, and research goals for, the three accounts of scientific method just
discussed.

5.5.2 Inference to the Best Explanation and Inductive Inference

A different way of overstating the importance of IBE is to regard it as
the superordinate form of ampliative inference. Harman (1965) intro-
duced the idea of IBE to modern philosophy in an effort to show that it
underlies all forms of inductive inference. He insisted that enumerative
induction is really a special case of IBE. Lipton (2004) also argued for
this conclusion.

The problem with this perspective on inference is that enumerative
induction does not lead to an explanatory conclusion in any interesting
sense of the term, and for this reason, it is fundamentally unlike IBE.
Although inductive arguments are ampliative in character, they are
descriptive in nature because they reach conclusions about the same types
of manifest attributes that are mentioned in the arguments’ premises. The
widespread practice in psychology of drawing statistical conclusions
about populations based on sample characteristics is a case in point. By
contrast, IBE is explanatory inference where criteria of explanatory
goodness figure centrally in the form of reasoning involved. In TEC, for
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example, the complex nature of the explanatory reasoning involved is
embedded in the principles, the criteria, and the computer program and
can be spelled out only with reference to them. IBE and inductive infer-
ence, then, are different forms of ampliative inference. In science, IBE is
invoked in the explanatory endeavor of theory evaluation. Inductive
inference is exemplified in the descriptive tasks of generalizing from
statistical samples and establishing claims about empirical phenomena.

5.6 Implications for Psychology

In this penultimate section of the chapter, I consider IBE specifically in
relation to psychology. I make some general suggestions about how
psychologists might engage with IBE, and recommend ways in which
psychology might incorporate IBE into its methods curriculum.

5.6.1 Inference to the Best Explanation in Psychology

Although the standard characterization of the hypothetico-deductive
method takes predictive accuracy as the sole criterion of theory goodness,
it is plausible to suggest that, in research practice, the hypothetico-
deductive method is often combined with the use of supplementary
evaluative criteria, such as simplicity, scope, and fruitfulness. This prob-
ably explains, at least in part, why the method continues to be widely
used in psychology and other sciences. As noted before, it is important
to appreciate that, to the extent that these complementary criteria are
concerned with explanation, we can appropriately regard the combined
approach as a version of IBE rather than an augmented account of the
hypothetico-deductive method.

Although psychological researchers do not often discuss the explana-
tory virtues of their theories, a number of instructive accounts of the
virtues of scientific theories in the philosophical literature could help
them do so. Perhaps the best-known account is that of Thomas Kuhn
(1977), who identified and discussed accuracy, consistency, scope, sim-
plicity, and fruitfulness as five important criteria that are standardly used
to adjudicate in theory choice. Another useful account of the theoretical
virtues is that of Willard Quine (Quine & Ullian, 1978), who provided
a lucid discussion of the notions of conservatism, modesty, simplicity,
generality, and refutability. In an important discussion of the place of
values in science, McMullin (1983) furnished a different list of virtues:
predictive accuracy, internal coherence, external coherence, unifying
power, and fertility. To these three accounts of the theoretical virtues, we
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can add Thagard’s (1978) multicriterial account of IBE, discussed earlier
in the chapter. If psychologists made a deliberate effort to appraise their
explanatory theories by drawing from a number of the criteria just listed,
they would be practicing IBE in one of two senses. To the extent that
they used several of these nonexplanatory criteria for the purposes of
comparative theory appraisal, they would be able to make inferences to
the best explanatory theory, even if those criteria were not directly con-
cerned with explanation. To the extent that they used criteria that have
to do directly with explanation, they would be engaging in explanatory
inference as a basis for deciding between the competing theories. Both
approaches are superior to the hypothetico-deductive method as it is
traditionally understood and practiced in psychology.

This chapter has given a fair degree of attention to Thagard’s TEC.
Although TEC is the most codified explicit account of IBE available
today, further development of aspects of the approach would make it a
genuinely useful method for psychological researchers. These would
include developing contemporary case studies of its use in psychology,
making a user-friendly version of the computer program ECHO com-
mercially available for the ready implementation of TEC, and augment-
ing the method of TEC by explicitly linking it to a suitable theory of
explanation.

5.6.2 Inference to the Best Explanation in the Methods Curriculum

For IBE to be regularly practiced in psychology, the research methods
curriculum will have to broaden its perspective on theory appraisal (see
Capaldi & Proctor, 2008). As noted earlier, psychologists should be
encouraged to practice IBE in their evaluation of explanatory theories,
either by combining an acceptable version of the hypothetico-deductive
method with the use of complementary evaluative criteria, as just noted,
or by employing TEC. Thagard (1992) is the definitive source for a
detailed explication of TEC. An introduction to using the computer
program ECHO to compute explanatory coherence can be found at
Thagard’s Computational Epistemology Laboratory website (http:/
cogsci.uwaterloo.ca/JavaECHO/jecho.html). The site provides simple
examples that show how ECHO deals with the criteria of explanatory
breadth, simplicity, and analogy. Substantive examples of scientific theory
choice can also be run. In addition, textbooks should present a view of
IBE as an important approach to theory appraisal for psychology that is
part of good scientific practice. Proctor and Capaldi’s (2006) textbook
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on psychological research methodology, Why Science Matters, breaks
new ground in this regard.

Although explicit discussions of IBE are rare in psychology, a few
methodological articles in the psychological literature will help research-
ers begin to understand different aspects of IBE. Erwin (1992) argued
that debates about the philosophy of scientific realism are relevant to the
evaluation of behavior theories and outcome hypotheses, and IBE figures
centrally in these debates. Eflin and Kite (1996) demonstrated empirically
that instruction and practice in IBE improve the reasoning of psychology
students in evaluating competing psychological theories. Rozeboom
(1997) compared the hypothetico-deductive, Bayesian, and abductive
approaches to theory appraisal and argued that researchers in psychol-
ogy should use his approach to IBE, known as explanatory induction. In
Haig (2005a) I proposed ATOM as a broad theory of scientific method
in which theory evaluation involves using IBE in the form of TEC (this
book covers essentially the same ground). More recently, Capaldi and
Proctor (2008) argued, against some popular relativist trends in psychol-
ogy, for the comparative appraisal of psychological theories through an
approach to IBE they call competing-theories abduction. In their paper,
Capaldi and Proctor provide an example in experimental psychology of
the use of IBE to evaluate two formal theories of attention—similarity
choice theory and signal detection theory—with respect to the relevant
facts. They suggest that considerations of IBE establish the fact that no
other theories of attention come close to explaining the range of empiri-
cal phenomena explained by these two theories. As noted earlier, Markus
etal. (2008) argued for an understanding of structural equation modeling
in terms of IBE. Finally, Durrant and Haig (2001) argued that more
rigorous evolutionary theories of human psychological phenomena could
be achieved by using IBE as a strategy for evaluating adaptationist expla-
nations. Although much work remains to be done to further develop the
methods of IBE, these resources should offer both the researcher and
the methodologist a sense of the nature of IBE and its relevance to
psychology.

5.7 Conclusion
Psychologists, for the most part, evaluate their hypotheses and theories

in accord with the dictates of the orthodox account of hypothetico-
deductive method. This has resulted in two unfortunate practices: testing
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psychological theories in isolation without reference to alternative com-
peting theories, and evaluating those theories in terms of their predictive
adequacy without regard for relevant explanatory criteria. IBE is a good
approach to theory appraisal because it corrects for these malpractices.
True to its name, IBE characterizes theory appraisal as an inherently
comparative practice, in which two or more theories are evaluated with
respect to each other on multiple criteria of explanatory goodness.

The literature on IBE is now sufficiently well developed to offer
genuine help to psychologists in explicitly evaluating theories in domains
comprising two or more reasonably well-developed competing explana-
tory theories. I have argued in this chapter that the major criticisms of
IBE have not cast doubt on its worth as an approach to theory appraisal.
I have presented four different perspectives on IBE. Taken together with
other contributions to the literature, they constitute a valuable method-
ological resource. By acknowledging the importance of explanatory theo-
ries in science, one can justifiably use IBE to appraise theories with
respect to their explanatory goodness. Psychology is replete with compet-
ing theories that might usefully be evaluated with respect to their explan-
atory worth. With the advent of the methodology of IBE, psychologists
can position themselves to make these judgments in a more systematic
way than did scientists before them, such as Darwin and Einstein.

However, one should not underestimate the challenges involved in
employing IBE. Apart from TEC, and some versions of structural equa-
tion modeling, no inferential algorithms are available to help researchers
engage in IBE. Researchers who want to employ IBE will have to adopt
more of a do-it-yourself attitude than they do in their customary use of
the hypothetico-deductive method and classical statistical significance
testing. Courses and workshops that focus on IBE simply do not exist at
present. Researchers will have to learn from the existing primary litera-
ture for themselves what the (somewhat different) approaches to IBE
involve. Nevertheless this prospect should appeal to psychologists who
want to learn about the comparative explanatory worth of their theories
and use those judgments as grounds for accepting or rejecting them.



6 Conclusion

Scientific method, taken as a logical, epistemic, and cognitive process, is certainly
at least as complex as, say, the theory of evolution. We do neither of these phe-
nomena justice by failing to appreciate how puzzling they can be.

—James Blachowicz (2009, 306)
6.1 Introduction

In this concluding chapter, I round out my characterization of ATOM. I
begin by outlining a promising theory of the nature of research problems
and show how it is deployed in ATOM. I then offer some supplementary
remarks about the nature of ATOM. This is followed by two applications
of ATOM, after which I consider a number of criticisms and misunder-
standings of the theory that have surfaced to date. Toward the end of
the chapter, I discuss scientific method in relation to science education
and conclude with some cautions and caveats about ATOM.

6.2 A Coda on Scientific Problems

The overview of ATOM presented in chapter 1 signaled the theory’s
serious commitment to the notion of a research problem. This emphasis
on the importance of research problems for inquiry contrasts with the
orthodox inductive and hypothetico-deductive accounts of method,
neither of which speaks of problem solving as an essential part of its
characterization.!

In an effort to depict scientific inquiry as a problem-oriented endeavor,
ATOM deploys the constraint-inclusion view of research problems (Haig,
1987; Nickles, 1981). The idea of a problem as a set of constraints has
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been taken from the problem-solving literature in cognitive psychology
(Reitman, 1964; Simon, 1977) and adapted for a methodological role.

Briefly, the constraint-inclusion theory depicts a research problem as
comprising all the constraints on the solution to that problem, along
with the demand that the solution be found. With the constraint-inclu-
sion theory, the constraints do not lie outside the problem but are
constitutive of the problem itself; they actually serve to characterize the
problem and give it structure. The explicit demand that the solution be
found is prompted by a consideration of the goals of the research
program, the pursuit of which is intended to fill the outstanding gaps
in the problem’s structure. The goals themselves are part of the problem.
Problems can only be solved by achieving research goals, and a change
in goals will typically eliminate or at least alter those problems (Nickles,
1988).

The constraints that make up research problems are of various sorts.
Importantly, many of them are heuristics, but some are rules, and a
limited number have the status of principles. These constraints differ in
their nature: some are metaphysical, others are methodological, and
many are drawn from relevant substantive scientific knowledge. Prob-
lems and their constraints also vary in their specificity. Some are rather
general and have widespread application (e.g., “Generate a theory that
explains the relevant facts”). Others are context specific (e.g., “Employ
common factor analysis to generate a common causal explanation of the
correlated effects”). Still others are more specific (e.g., “Use both the
scree test and parallel analysis when determining the number of factors
in an exploratory factor analytic study”).

Note that all relevant constraints are included in a problem’s formula-
tion. This is because each constraint contributes to a characterization of
the problem by helping to rule out some solutions as inadmissible.
However, at any one time, only a manageable subset of the problem’s
constraints will be relevant to the specific research task at hand. Also,
by including all the constraints in the problem’s articulation, the problem
enables the researcher to direct inquiry effectively by pointing the way
to its own solution. The constraint-inclusion account of problems enables
the researcher to understand readily the force of the adage that stating
the problem is half the solution.

The constraint-inclusion account stresses that in good scientific
research, problems typically evolve from an ill-structured state and even-
tually attain a degree of well-formedness, such that their solution becomes
possible. From the constraint-inclusion perspective, a problem will be ill
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structured to the extent that it lacks the constraints required for its solu-
tion. Because the most important research problems will be decidedly ill
structured, we can say of scientific inquiry that its basic purpose is to
better structure our research problems by building in the various required
constraints as our research proceeds. It is by virtue of such progressive
enrichment that problems can continue to direct inquiry.

Turning now to ATOM, I should emphasize that its problems dimen-
sion is not a temporal phase to be dealt with by the researcher before
moving on to other phases, such as observing and hypothesizing. Instead
the researcher deals with scientific problems all the time. Problems are
generated, selected for consideration, developed, and modified in the
course of inquiry. This common error in talking about research problems
as a temporal phase is noted in the discussion of grounded theory method
in the next section.

Across the various research phases of ATOM, there are numerous
problems of varying degrees of specificity to articulate and solve. For
example, the successful detection of an empirical phenomenon produces
an important new general constraint on the subsequent explanatory
efforts devised to understand that phenomenon. Until the relevant phe-
nomenon, or phenomena, are detected, one will not really know what
the explanatory problem is. At a more specific level, myriad constraints
regulate the process of phenomena detection. For example, if one assumed
that the appropriate strategy of phenomena detection was a sequence of
data analytic activities in the manner of the multistage model of data
analysis outlined in chapter 2, then a host of constraints arising from
consideration of the various data analytic methods employed would be
part of the evolving research problem. These would include constraints
such as using an appropriate maximum likelihood technique when data
are randomly missing in the stage of initial data analysis; using back-to-
back stem-and-leaf displays for close exploratory comparison of similar
batches of data; employing a bootstrap resampling technique in the stage
of close replication; and adopting an appropriate triangulation strategy
as a basis for accepting the validity of a generalization wrought from
constructive replication.

Of course, constraints abound in theory construction as well. For
example, constraints that regulate the abductive generation of new theo-
ries include methodological guides (e.g., “Researchers should give prefer-
ence to theories that are simpler and have greater explanatory breadth”),
aim-oriented guides (e.g., “Theories must be of an explanatory kind that
appeals to latent causal mechanisms”), and metaphysical principles (e.g.,
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“Social psychological theories must adopt a rule-governed conception of
human behavior”).

An orthodox empiricist reconstruction of scientific problems as con-
straints would normally take them to comprise those constraints that
regulate the testing of theories for their empirical adequacy, where empir-
ical adequacy has to do with predictive success. In this view, scientific
problems would be regarded as essentially empirical in nature. However,
with the underdetermination of theories by empirical evidence occurring
in all of ATOM’s phases of theory construction, the realist researcher
will naturally appeal to conceptual as well as empirical constraints. For
example, a plausible nascent theory will have to satisfy one or more
empirical constraints in the form of claims about phenomena, but it will
also have to satisfy a set of conceptual constraints about its explanatory
promise. The appeal to conceptual criteria is also a natural way to deal
with underdetermination in the context of theory appraisal. For example,
the theory of explanatory coherence promoted in chapter 5 takes explan-
atory breadth as its criterion of empirical adequacy, but it also appeals
to the criteria of simplicity and analogy to make effective judgments
about the best of competing theories.

The importance of research problems, viewed as sets of constraints,
resides in the fact that they function as the “range riders” of inquiry and
thereby provide ATOM with the operational force to guide research. As
just noted, the constraints themselves comprise relevant substantive
knowledge as well as heuristics, rules, and principles. Thus the con-
straint-inclusion account of problems serves as a much-needed vehicle
for bringing relevant background knowledge to bear on the various
search tasks subsumed by ATOM. In turn, ATOM structures the meth-
odological space within which the various constraints can operate. Given
that ATOM is considerably broader in scope than either the inductive or
the hypothetico-deductive accounts of scientific method, it canvasses a
greater array of research problems than those methods do.

It is worth noting here that though I frequently talk of problem solving
as a general aim of research, it is the formulation of problems that is the
overriding concern of ATOM. The real challenge for researchers who
adopt ATOM is to formulate ill-structured problems and better structure
them so that they are capable of solution. With regard to science educa-
tion, this focus on problem formulation is a desirable alternative to the
prevalent practice of having students routinely obtain known solutions
to well-structured problems as a way of learning disciplinary content. It
also serves as a natural correction to the currently popular belief that
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teaching problem-solving skills is a panacea for overcoming uncritical
thinking. By standardly presenting students with well-structured prob-
lems, science educators, in effect, formulate the problems for them and
thereby provide them with ready solutions to the problems. However,
articulating problems is a crucial part of the inquiry process, and it pro-
vides learners with highly appropriate opportunities to exercise their
creative and critical intelligence.

6.3 Two Fundamental Commitments of ATOM

I now return briefly to two important methodological contrasts that were
introduced in chapter 1 and discussed in chapter 2, because they are part
of the deep structure of ATOM. These contrasts are generative and con-
sequentialist methodology, and reliabilist and coherentist justification. I
have suggested that consequentialist strategies justify knowledge claims
by focusing on their consequences. By contrast, generative strategies
justify knowledge claims in terms of the processes that produce them.
Although consequentialist strategies are used and promoted more widely
than generative strategies in contemporary science, both types of strategy
are required in an adequate conception of research methodology. Two
important features of ATOM are that the methodology promotes both
generative and consequentialist research strategies for the detection of
phenomena, and it promotes generative research strategies in the con-
struction of explanatory theories.

Consequentialist reasoning receives a heavy emphasis in psychological
research through the use of hypothetico-deductive method, often in
tandem with null hypothesis significance testing. Consequentialist
methods reason from the knowledge claims in question to their testable
consequences. As such, they confer a retrospective justification on the
theories they seek to confirm. In contrast to consequentialist methods,
generative methods reason from warranted premises to an acceptance of
the knowledge claims in question. Exploratory factor analysis is a good
example of a method of generative justification. It affords researchers
generative justifications by helping them reason from established
correlational data patterns to the rudimentary explanatory theories that
the method generates. As noted earlier, judgments of initial plausibility
constitute the generative justifications afforded by exploratory factor
analysis. Generative justifications are forward looking because they
are concerned with heuristic appraisals of the prospective worth of
theories.
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In addition to embracing both generative and consequentialist meth-
odologies, ATOM uses two distinct theories of justification. One of these,
reliabilism, asserts that a belief is justified to the extent that it is acquired
by reliable processes or methods. ATOM makes heavy use of reliability
judgments because they furnish the appropriate type of justification for
claims about empirical phenomena.? For example, as noted in chapter 2,
statistical resampling methods and the strategy of constructive replica-
tion, are different sorts of consistency tests through which researchers
seek to establish claims that data provide reliable evidence for the exis-
tence of empirical phenomena.

By contrast with reliabilism, coherentism maintains that a belief is
justified in virtue of its coherence with other accepted beliefs. ATOM
also uses coherentist justification (albeit of a special kind), where its
approach to theory appraisal is governed by considerations of explana-
tory coherence.

I should emphasize that although reliabilism and explanationism are
different and are often presented as competitors, one can view them as
complementary theories of justification. ATOM adopts a broadly coher-
entist perspective on justification that endorses both reliabilism and
explanationism and provides for their interaction. ATOM enjoins
researchers first to justify claims about phenomena in terms of reliability
considerations, and then to fashion explanatorily coherent theories that
will account for the phenomena. Thus, when using the theory of explana-
tory coherence, one is concerned with delivering judgments of explana-
tory coherence, but the theory’s principle of data priority presupposes
that the relevant empirical generalizations have been justified on reliabi-
list grounds.

Further, the acceptability of claims about phenomena will be enhanced
when they coherently enter into the explanatory relations that contain
them. Alternatively, the explanatory coherence (specifically the explana-
tory breadth) of a theory will be reduced as a consequence of rejecting
a claim about a relevant phenomenon that was initially accepted on
insufficient reliabilist grounds.

6.4 Phenomena Detection and Theory Construction Again

The preceding exposition of ATOM prompts the following remarks about
the tandem processes of phenomena detection and theory construction.

Successfully detecting a phenomenon is a major achievement in its
own right and is a significant indicator of empirical progress in science.
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In fact, the importance of phenomena detection in science is underscored
by the fact that more Nobel Prizes are awarded for the discovery of
phenomena than for the construction of explanatory theories. From the
perspective of ATOM, theoretical progress is to be understood in terms
of the goodness of explanatory theories as determined by the theory of
explanatory coherence. Research methodology in psychology has placed
a heavier professional emphasis on describing empirical regularities than
on constructing explanatory theories, though the philosophy of science,
until recently, has focused on a theory-centered view of science. However,
I know of no good argument that supports the conclusion that one of
these endeavors is more important than the other. Accordingly, ATOM
takes phenomena detection and theory construction to be of equal worth.

The characterization of phenomena given in chapter 2 helps correct
a widely held misunderstanding of science: taking the standard twofold
distinction between observation and theory to be of fundamental meth-
odological importance prevents one from being able to conceptualize
properly the process of phenomena detection. This holds whether or not
one subscribes to a hard-and-fast observation-theory distinction, or
whether one accepts a relative observation-theory distinction and the
ambiguous idea of theory ladenness that goes with it. To correctly under-
stand the process of phenomena detection, one needs to replace the
observation-theory distinction with the threefold distinction between
data, phenomena, and theory.

ATOM’s account of theory construction is at variance with the way
many behavioral scientists understand theory construction in science.
Most behavioral scientists use or at least endorse a view of theory con-
struction that is strongly shaped by the guess-and-test strategy of the
hypothetico-deductive method. In contrast with this prevailing concep-
tion of scientific method, ATOM asserts that theory generation can be a
logical or rational affair, where the logic takes the form of abductive
reasoning. It insists that theory development is an important part of
theory construction—an undertaking that is stifled by a hypothetico-
deductive insistence on immediate testing. And it maintains that empiri-
cal adequacy, understood as predictive success, is not by itself an adequate
measure of theory goodness, there being a need to use additional virtues
that focus on explanatory worth.

ATOM’s three phases of theory construction have varying degrees of
application in the behavioral sciences. Codified methods that generate
theories through existential abduction are rare. The use of exploratory
factor analysis to postulate common causes is a striking exception,
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although as remarked in chapter 3, the explicit use of this method as an
abductive generator of elementary plausible theory is rarely acknowl-
edged. As I suggest in the next section, grounded theory method (e.g.,
Strauss, 1987), which is increasingly used in behavioral research, can be
understood as an abductive method that helps generate theories to
explain the qualitative data patterns from which they are derived.
However, grounded theory does not confine itself to existential abduc-
tion, and it imposes weaker constraints on the abductive reasoning
permitted by the researcher than does exploratory factor analysis. The
earlier suggestion that, as human beings, we have an evolved cognitive
ability to abductively generate hypotheses leads to the plausible sugges-
tion that scientists frequently reason to explanatory hypotheses without
using codified methods to do so. Two prominent examples in the
behavioral sciences are Noam Chomsky’s (1972) publicly acknowledged
abductive inference to his innateness hypothesis about universal grammar,
and Howard Gardner’s (Walters & Gardner, 1986) self-described use
of “subjective factor analysis” to postulate his multiple intelligences.
Also, it is likely that behavioral scientists use some of the many heuristics
for creative hypothesis generation listed by William McGuire (1997) to
facilitate their abductive reasoning to hypotheses.

Researchers in psychology and other behavioral sciences often hypoth-
esize latent causes to explain behavioral phenomena. The challenge of
learning about the mechanisms of these hidden causes is sometimes met
by employing a strategy of analogical modeling. Unfortunately, the
behavioral sciences seldom deal with such a strategy in their methodol-
ogy and science education practices. Given the importance of such a
strategy for the expansion of explanatory theories, methodologists in the
behavioral sciences need to promote analogical modeling as vigorously
as they have promoted structural equation modeling. Structural equation
modeling provides knowledge of causal networks. As such, it does not
so much encourage the development of detailed knowledge of the nature
of the latent variables as it specifies the range and order of causal rela-
tions into which such variables enter. By contrast, analogical modeling
seeks to provide more detailed knowledge of the causal mechanisms by
enumerating their components and activities. These forms of modeling
are different but complementary.

Inference to the best explanation is an important approach to theory
appraisal that has not explicitly been tried in the behavioral sciences.
Instead, hypothetico-deductive testing for the predictive success of
hypotheses and theories holds sway. The theory of explanatory coherence,
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which is a well-codified method of inference to the best explanation, can
be used in domains where two or more reasonably well-developed theo-
ries provide explanations of relevant phenomena. By acknowledging the
centrality of explanation in science, one can use this method to appraise
theories with respect to their explanatory goodness. I hope that behav-
ioral science education will soon add the theory of explanatory coherence
to its concern with cutting-edge research methods.

6.5 Two Applications of ATOM

In describing ATOM in the preceding chapters, I have presented it as a
framework theory for assembling an array of more specific research
methods into a coherent whole. I now provide an overview of two further
applications of ATOM: first as a means of reconstructing grounded
theory method, and second as the basis for creating an integrated model
of clinical reasoning and case formulation. To the extent that these appli-
cations are judged successful, they will add to the heuristic worth of
ATOM.

6.5.1 A Reconstruction of Grounded Theory Method
The most popular perspective on how to conduct qualitative research in
the behavioral and social sciences is known as grounded theory method-
ology. It was introduced in the 1960s by the American sociologists
Barney Glaser and Anselm Strauss and has been developed considerably
by them and others since that time (e.g., Glaser & Strauss, 1967; Glaser,
1978; Strauss, 1987; Strauss & Corbin, 1998). Grounded theory is
employed today by researchers in a variety of disciplines, including soci-
ology, nursing studies, education, and management science. It has a
growing influence in psychology, where it is still very much a minority
practice.

The grounded theory perspective comprises a distinctive methodology,
a particular view of scientific method, and a set of procedures for analyz-
ing data and constructing theories. The methodology provides a justifica-
tion for undertaking qualitative research as a legitimate—indeed,
rigorous—form of inquiry. The original grounded theory conception of
scientific method depicts research as a process of inductively generating
theories from closely analyzed data. The specific procedures used in
grounded theory make up an array of coding and sampling procedures
for data analysis and a set of interpretive procedures that assist in the
construction of theory. Grounded theory emerges from, and is grounded
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in, the data. In using these data analytic and interpretive procedures,
grounded theorists are expected to meet the established canons of doing
good scientific research, such as reproducibility, generalizability, and
consistency.

Grounded theory has been presented from a number of philosophical
positions.? Glaser adopts a general empiricist outlook on inquiry, one
leavened by pragmatism, not positivism, as Glaser’s critics sometimes
mistakenly suppose. Strauss, by contrast, came to prefer a social con-
structionist position. In contrast with the originators of grounded theory
methodology, I offered a reconstruction of grounded theory methodology
from a scientific realist standpoint (Haig, 1996). Specifically, I formulated
this account of grounded theory as a version of ATOM. Accordingly, we
can best regard grounded theory as a broad theory of scientific method
concerned with detecting and explaining social and behavioral phenom-
ena. To this end, grounded theory is reconstructed as a problem-oriented
endeavor in which theories are abductively generated from robust data
patterns, elaborated through the construction of plausible models, and
justified in terms of their explanatory coherence.

Glaser and Strauss clearly recognize the importance of understanding
method as a problem-solving endeavor. However, although they offer
some thoughtful remarks about research problems (Schatzman & Strauss,
1973), they do not give the matter systematic attention. The constraint-
inclusion theory of problems employed in ATOM can be adopted by
grounded theorists to regulate inquiry. Moreover, this theory of problems
helps correct two misconceptions of problems that are evident in writings
on grounded theory: the beliefs that problems and method are separate
parts of inquiry, and that methods come before problems in a fixed order.

By repeatedly suggesting that theories are grounded in the data, Glaser
and Strauss fail to heed the threefold distinction between data, phenom-
ena, and theory. The idea that claims about phenomena, not data, are
the appropriate objects of explanation is as relevant to grounded theory
methodology as it is to scientific methodology generally. In addition,
Glaser and Strauss’s general plea to grounded theorists to check their
data can be strengthened by acknowledging the important idea of robust-
ness and the concomitant need to reliably establish phenomena in mul-
tiply determined ways before they begin to generate grounded theory.

In breaking from hypothetico-deductive orthodoxy, Glaser and Strauss
argue that grounded theory emerges inductively from the data. However,
the specific nature of the inductive relation that grounds emergent theo-
ries in their data is difficult to fathom. For Glaser and Strauss, grounded



Conclusion 143

theory emerges inductively from its data source in accordance with the
method of constant comparison. As a method of discovery, the constant
comparative method is an amalgam of systematic coding, data analysis,
and theoretical sampling procedures. These procedures enable the
researcher to make interpretive sense of much of the diverse patterning
in the data by developing theoretical ideas at a higher level of abstraction
than the initial data descriptions. However, the notion of constant com-
parison contributes little to figuring out whether the inductive inference
in question is enumerative, eliminative, or of some other form. Whatever
Glaser and Strauss’s view of the matter is, I think that the creative infer-
ence involved in generating grounded theory is better thought of as
abductive in nature, whereas it is the reasoning from data to phenomena
that involves inductive generalization.*

Glaser and Strauss hold a developmental perspective on theory con-
struction. This is clear from their claim that “the strategy of comparative
analysis for generating theory puts a high emphasis on theory as process;
that is, theory as an ever-developing entity, not as a perfected product”
(Glaser & Strauss, 1967, 32). In this regard, Glaser and Strauss advise
the researcher to be constantly on the lookout for new perspectives that
might help them develop their grounded theory, although they do not
explore the point in detail. ATOM gives similar advice, but in a more
constructive way: because we often do not have knowledge about the
causal mechanisms that we abductively probe, we are urged to construct
models of those mechanisms by imagining something analogous to
mechanisms whose nature we do know. More specifically, theory elabo-
ration in science is frequently a matter of constructing iconic paramorph
models through analogical reasoning. There is much to be said for
incorporating this perspective on theory development into grounded
theory method.

Although Glaser and Strauss do not articulate a precise account of
the nature and place of theory testing in social science, they do clarify
that theory appraisal involves more than testing for empirical adequacy.
Clarity, consistency, parsimony, density, scope, integration, fit to data,
explanatory power, predictiveness, heuristic worth, and application are
all mentioned as pertinent evaluative criteria. However, Glaser and
Strauss do not expound on these criteria, let alone work them into a
coherent view of theory appraisal. As with ATOM, inference to the best
explanation (specifically, the theory of explanatory coherence) offers the
grounded theorist an integrated account of two of the evaluative criteria
that Glaser and Strauss deem important for theory appraisal.
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ATOM provides a framework for inquiry that takes advantage of
realist methodological work on research problems, generative methodol-
ogy, and coherence justification. These are methodological notions that
should be congenial to grounded theorists. Viewed from the perspective
of ATOM, we should say that explanatory theory is grounded in phe-
nomena, not data. Moreover, we can reasonably regard ATOM itself as
a grounded theory of sorts, one that accommodates both quantitative
and qualitative outlooks on research.’

6.5.2 Clinical Reasoning and Case Formulation

The scientist-practitioner model of clinical psychology is the most widely
used model of professional practice in the Western world today. The
model is most commonly satisfied by applying the evidence-based find-
ings of psychological research to clinical practice. However, an important
additional way in which the scientist-practitioner model can be realized
is to conduct systematic inquiries into clients’ problems in a manner that
is guided by scientific method. With this approach, clinicians describe
and formulate their clients’ problems by focusing on their onset, develop-
ment, and maintenance. To this end, they attempt to systematically collect
data that enable them to identify clients’ difficulties and their causes. The
result of this process is a conceptual representation of each client’s
various complaints, their causes, and their interrelationships, which clini-
cians use as a basis to plan and execute treatment in a systematic and
effective manner.

Clinical reasoning and case formulation lie at the heart of the work
of scientifically oriented clinical psychologists, and from the 1970s
onward, researchers have made concerted attempts to understand the
nature of clinical reasoning (e.g., Borleffs, Custers, van Gijn, & ten Cate,
2003; Elstein, Shulman, & Sprafka, 1978; Schmidt, Norman, & Boshui-
zen, 1990) and to apply models of decision making to clinical reasoning
(e.g., Galanter & Patel, 2005; Ward, Vertue, & Haig, 1999).

The standard view sees clinical reasoning as the set of decision-
making or problem-solving processes employed in describing health
problems. The goal of this enterprise is diagnosis, which, in turn, directs
treatment. By contrast, a case formulation is the narrative that integrates
the description and explanation of health problems. The primary goal
of case formulation is to identify causal mechanisms that guide treat-
ment decisions. Clinical psychologists not only describe their clients’
functioning but also typically try to understand the causes of their
clients’ behaviors (Butler, 1998; Garb, 2005). Thus their work involves
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clinical reasoning (a descriptive process traditionally understood to lead
to diagnosis) and case formulation (an explanatory process leading to
understanding the causes of the diagnosis and the integration of both
in narrative form).

Vertue and Haig (2008; see also Ward, Vertue, & Haig, 1999) argued
that the extant literatures on clinical reasoning and case formulation
are fragmented and do not provide a broad, coherent perspective that
clinical psychologists can use across different theoretical orientations.
We further contended that the hypothetico-deductive and Bayesian
methodologies cannot provide an adequate framework for clinical rea-
soning. The hypothetico-deductive method is a weak method of problem
solving because, among other things, it operates without regard for
relevant background knowledge (Patel, Arocha, & Zhang, 2005). A
major problem with the Bayesian alternative is that clinicians do not
typically have access to the probabilistic information required for the
effective use of Bayes’s theorem. Partly in response to these problems,
we argued that ATOM provides a suitably broad framework that inte-
grates clinical reasoning and case formulation and can be used by clini-
cians of varying theoretical orientations (Vertue & Haig, 2008). We
maintained that ATOM provides a systematic, coherent, and natural
way in which clinical psychologists can reason in diagnosing and for-
mulating a client’s psychological difficulties. We showed that, with
appropriate supplementation, the method provides a plan of inquiry
that can guide the clinician in the reasoning processes involved in devel-
oping accurate descriptions of problems, constructing explanations for
those problems, and establishing coherent models of the causal mecha-
nisms involved.

From the vantage point of ATOM, the clinical reasoning process is
centrally concerned with both the detection of empirical phenomena and
their subsequent explanation. However, given that ATOM is a theory of
method developed for basic psychological research, it is necessary to add
two methodological phases to its standard depiction to complete its suit-
ability for clinical applications. First, ATOM addresses neither the process
of data collection nor the process of case formulation. Although ATOM
does not deal directly with the methodology of data collection, this is
clearly a critical aspect of both scientific research and clinical practice.
Second, just as writing up scientific research is an integral part of that
research, so writing the case formulation is an integral part of clinical
work. However, these two processes can straightforwardly be grafted
onto ATOM to produce a comprehensive model of clinical reasoning and
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case formulation, with data collection as a precursor to ATOM, and the
narrative of the case formulation as a successor to ATOM.

In the proposed six-stage model of clinical reasoning and case formu-
lation, the clinician begins with data collection and then proceeds through
the four primary phases of ATOM before concluding with a written case
formulation. In the beginning, potentially relevant data are gathered
using a number of data generation strategies. In turn, the clinician con-
ducts a generic interview to establish a base set of information about a
client’s functioning across a number of domains; elicits further data that
are guided by the nature of the client’s referral question; and identifies
salient cues or flags that prompt the clinician to probe for possible phe-
nomena associated with the presenting problems. All the while, various
steps are taken to ensure that the data are reliably obtained. Regarding
data analysis, ATOM’s multistage model is systematically worked though
in as thorough a manner as possible. Thus systematic attention is given
in turn to data quality, pattern suggestion, pattern confirmation, and
generalization. For example, to ensure the extent to which the phenom-
enon claims generalize, constructive replication is sought with respect to
different life settings (e.g., home, work, and recreation) and across time
(e.g., during childhood, adolescence, early adulthood, the past six months,
or the past two weeks). Here the degree to which different, independent
sources of information converge on the same conclusion constitutes an
important validation strategy. The clinician draws this information from
his or her professional database of symptom knowledge and matches the
client’s current data patterns to that knowledge.

Having identified the empirical phenomena relevant to the client, the
next phase involves abductively inferring the psychological causes
believed to produce those phenomena. Here it is useful to think of the
causes as constituting the psychological makeup of the person, or their
psychological strength and vulnerability factors. These causes also have
contributing causal conditions, which may be distal, such as heritability,
organicity, and learning history, as well as proximal factors, such as stress
from a parent’s remarriage, or a child starting school. An adequate expla-
nation of the client’s difficulties will also need to refer to maintaining
factors, including environmental factors.

When a number of plausible explanatory hypotheses have been abduc-
tively generated, the next task is to ensure that they are developed to an
acceptable degree. Sometimes the research literature or previously for-
mulated cases will present explanatory hypotheses that are at an accept-
able level of theoretical development. At other times, the clinician will
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take responsibility for developing the content of the initial hypotheses
about the presence of the causal factors. For the clinician, the major task
in developing a causal model is to establish the relationships between
these causes in the model.

Once the various relationships are depicted in the causal model, the
clinician considers the most coherent way of conceptualizing the client’s
situation. The developed causal model is evaluated according to its ability
to account for the interrelationships between the psychological causes
and their phenomena in an explanatorily coherent manner. This is a
particularly crucial part of the clinical reasoning process, and it is fre-
quently underemphasized. Within ATOM, the multicriterial perspective
on theory appraisal suggested by the theory of explanatory coherence
provides an instructive guide. Thus the criteria of explanatory breadth,
simplicity, and analogy receive explicit consideration in evaluating the
causal model.

Finally, the clinician uses information from the preceding phases to
write a narrative that constitutes the case formulation. A case formula-
tion is the culmination of the clinical reasoning process and is a compre-
hensive and integrated conceptualization of a case, encompassing the
phenomenology, etiology, maintaining factors, prognosis, and treatment
recommendations. The formulation is a set of descriptive and explana-
tory hypotheses that attempts to explain why a client developed these
problems at a particular time, what maintains them, and what should be
done about them (Ward, Vertue, & Haig, 1999). The case formulation
should demonstrate an accurate and insightful understanding of a unique
individual, with vulnerabilities and strengths, and explain how he or she
comes to be in the current predicament. The essential task in case for-
mulation is to highlight and make explicit links or connections between
different components of the case.

By and large, my concluding remarks in the previous section about the
benefits of ATOM for restructuring grounded theory method apply to the
suggested rethinking of clinical reasoning and case formulation. However,
the bottom-up thrust of ATOM-based inquiry will be a challenging frame-
work for the many clinicians who are used to thinking in accordance with
the top-down nature of hypothetico-deductive reasoning.

6.6 ATOM Defended and Clarified

I turn now to a defense and clarification of ATOM. First I defend ATOM
against the charge that its view of theory construction is too flexible.
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Then I consider some misunderstandings of ATOM that result from
fudging the threefold distinction between data, phenomena, and theory.

6.6.1 Is ATOM Too Permissive?

Jan Willem Romeijn (2008) has undertaken a philosophical evaluation
of ATOM as it appeared in Haig (2005a, 2005b). Although he judges
ATOM’s broad framework to be on the right track, he nevertheless thinks
that the method is too permissive. Restricting his attention to the theory
construction phases of ATOM, Romeijn judges its three components of
theory generation, theory development, and theory appraisal to suffer
from a problem of underdetermination by empirical evidence. In this
regard, he claims that generating theories by exploratory factor analysis
leaves us with a superabundance of hypotheses. Further, he claims that
the strategy of analogical modeling is underspecified and imposes too
few constraints on the process of whittling down this overabundance.
Finally, he contends that the evaluation of explanatory theories in terms
of their explanatory coherence suffers from two well-known objections
that have been raised against inference to the best explanation. Moreover,
Romeijn does not think that my combination of these three components
of theory construction overcomes the problem of underdetermination.
Because of this, he concludes that ATOM has insufficient normative
force, and he briefly suggests ways in which this problem might be
overcome.

In this section, I examine Romeijn’s contention that ATOM’s account
of theory construction suffers from the problem of the underdetermina-
tion of theories by empirical evidence. Roughly speaking, the basic idea
of the underdetermination at issue here is that the relevant empirical
evidence does not determine the acceptance or rejection of a scientific
hypothesis or theory. That is, we do not have the ability to justify accept-
ing one hypothesis or theory from a set of alternatives on the basis of
empirical evidence alone. Many philosophers regard such underdetermi-
nation to be a serious methodological problem for science. This attitude
contrasts with the prevailing view in science, which is that there is no
such problem, or if there is a problem, then science has the ability to
solve it. My view of this matter is that good scientific practice is often
able to exploit appropriate resources that enable scientists to deal with
the underdetermination of theories by evidence. Undue philosophical
concern about it results, in part, from a tendency of philosophers to
underestimate the resources that scientists have at their disposal in deter-
mining theory choice (see, e.g., Kitcher, 1993). Following Romeijn’s order
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of treatment, I focus in turn on the issue of underdetermination as it
affects the method of exploratory factor analysis, the strategy of analogi-
cal modeling, and the theory of explanatory coherence. I will endeavor
to show that in each case, sufficient methodological resources are avail-
able for scientists to use these methods to good effect. Toward the end

of the section, I offer a number of remarks about the normative force of
ATOM.

In Defense of Exploratory Factor Analysis ATOM characterizes the
process of theory generation as existential abduction. As its name sug-
gests, this form of explanatory reasoning postulates the existence, but
not the nature, of new objects or properties. Cases abound in science
where hypotheses about new entities have been introduced in this way.
Although ATOM is a framework theory in which no one research method
provides a general route to new theories, I chose to explicate the nature
of theory generation by focusing on psychology’s method of exploratory
factor analysis—a method that I take to be a rather stylized way of
producing existential abductions (Haig, 2005b).

Romeijn worries that exploratory factor analysis suffers from various
problems of underdetermination and thus leaves us with an unacceptably
large number of latent common factor models. My view is that, despite
these underdeterminations, exploratory factor analysis is able to bequeath
us a manageable number of plausible factorial hypotheses, which, in
ATOM, are subjected to further scrutiny through analogical modeling
and judgments of inference to the best explanation. However, Romeijn
thinks these additional epistemic appraisals are insufficiently constrain-
ing, and recommends replacing exploratory factor analysis with a strat-
egy of experimental intervention, which he thinks will resolve the problem
of underdetermination at this point in the research process.

In chapter 3, I suggested that the alleged problem of factor indeter-
minacy is a special case of the general problem of the underdetermination
of theory by evidence (Haig, 2005b; see also Mulaik, 1987). I argued
further that if we have appropriate expectations about what exploratory
factor analysis can do as a method of theory generation, then we are
entitled to think that exploratory factor analysis is not undermined by
this particular indeterminacy problem.

However, an important question still remains, a question that may be
more important than Romeijn’s worry about the indeterminacies of
exploratory factor analysis: is the method effective enough in unearthing
the common causes it hypothesizes to exist behind the correlated
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manifest variables? An answer to this question lies at the heart of my
defense of the method. I maintain that if exploratory factor analysis
proves to be a useful method of generating hypotheses about common
causes, then Romeijn’s concerns about the various sorts of underdeter-
mination to be found in exploratory factor analysis cannot be too unset-
tling for the method.

I have two ways of answering this question. One is to examine
research programs of theory construction that make heavy use of explor-
atory factor analysis, and show that the method contributes to the theo-
retical progress of those programs. We might want to ask, for example,
whether the Spearman-Jensen theory of general intelligence is a progres-
sive research program or whether the five-factor theory of personality is
currently progressive. This approach would require detailed analyses of
the relevant case histories, employing notions of theoretical progress that
were or are appropriate to both science generally (a contested matter)
and factor analysis more specifically. Space limitations at this point in
the book preclude undertaking such a task, and I confine my attention
briefly to the second strategy. This strategy involves ascertaining whether
exploratory factor analysis succeeds at dimensional recovery as revealed
through simulations on artificial data sets where the dimensions of the
objects of study are known in advance.

The simulation studies that have been carried out to assess the reli-
ability of exploratory factor analysis in dimensional recovery give mixed
results. Some studies support the utility of the method, whereas others
show poor dimensional recovery. Consider Armstrong’s (1967) influen-
tial and widely cited study, which questions the utility of exploratory
factor analysis as a method of theory generation. Armstrong analyzed a
set of artificial data in a hypothetical scenario where the underlying
factors were known, and he concluded from the analysis that exploratory
factor analysis did a poor job of recovering the known factor structure.
From this he recommended that the method should not be used to gener-
ate theories. Subsequently many authors have cited Armstrong’s article
as grounds for using confirmatory factor analysis rather than its explor-
atory counterpart in factor analytic research.

However, Preacher and MacCallum (2003) have argued, correctly in
my view, that Armstrong’s (1967) study represents a poor piece of factor
analytic research that gives misleading results, and it provides no real
basis for casting doubt on the worth of exploratory factor analysis as a
method of theory generation. Preacher and MacCallum’s study first
replicated Armstrong’s factor analysis on an analogous set of data and
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obtained essentially the same results. They then conducted a further
factor analysis of that data set, substituting correct factor analytic pro-
cedure for the faulty procedure used by Armstrong. Among other things,
this involved using common factor analysis rather than principal com-
ponents analysis (principal components analysis is not really a method
of factor analysis), determining the correct number of factors to retain
by employing appropriate multiple methods (the scree test and parallel
analysis), and using oblique direct quartimin rotation to simple structure
rather than orthogonal varimax rotation. Based on the congruence
between the obtained factor pattern and the known structure, Preacher
and MacCallum concluded that the proper use of exploratory factor
analysis does in fact identify the number and nature of latent variables
responsible for the manifest variables. Their exemplary use of explor-
atory factor analysis and the well-conducted earlier simulations by factor
analysts such as Thurstone (1947) and Cattell (Cattell & Dickman,
1962) provide good support for the view that exploratory factor analysis
is quite effective at dimensional recovery. Admittedly, these simulations
dealt with simple physical systems, but Sokal, Rohlf, and Zang (1980)
have shown that exploratory factor analysis can isolate and help identify
meaningful biological factors that lie behind correlated physiology-of-
exercise variables. The findings from good simulation studies like these,
combined with those of a variety of empirical studies on other aspects
of the functioning of exploratory factor analysis (e.g., Fabrigar, Wegener,
MacCallum, & Strahan, 1999), suggest that the method can be employed
as a useful generator of elementary plausible theories about common
causes.

The Strategy of Analogical Modeling As we saw in chapter 4, models
serve a variety of functions in scientific research. In ATOM, they play a
major role in expanding the rudimentary theories given to us by existen-
tial abductive methods, such as exploratory factor analysis. As chapter
4 also showed, this increase in the content of theories is sought through
the strategy of analogical modeling, which researchers accomplish by
building analogical models of the hypothesized causal mechanisms. The
content of the undeveloped theory is expanded by analogy to a well-
understood source model, and at the same time, the credibility of the
model is provisionally assessed through a process of analogical
abduction.

Romeijn believes that this strategy of analogical modeling also suffers
from a problem of the underdetermination of theories by empirical
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evidence because it gives too little guidance in the process of theory
development. His criticism is not that ATOM seeks to employ analogical
modeling as a strategy of theory expansion, but that it does not specify
the notion of analogy in enough detail to prevent our being left with a
superabundance of models.

I agree that considerably more needs to be said about the strategy of
analogical modeling than the short treatment I gave it in an article-length
presentation of ATOM (Haig, 2005a). In the article, I provided a general
argument schema that represents the basic structure of the reasoning
involved in analogical abduction. Of course, this schema does not fully
capture the detailed reasoning required for effective analogical modeling
in science. In evaluating the aptness of an analogical model, its structure
has to be assessed, and this is done with respect to the aptness of the
analogy between the source and subject of the model. In considering the
plausibility of the source model, one considers the balance of the positive
and neutral analogies. In identifying these analogies and ascertaining
their balance, one has to appeal to domain-specific information relevant
to the case at hand. Admittedly, there is a dearth of examples of the
analogical modeling of explanatory theories in the behavioral sciences.
However, as I noted in chapter 4, Harré (1976) gives an informative
account of analogical modeling in the social sciences, and Harré and
Secord (1972) detail the construction of a role-rule model of microsocial
interaction in social psychology that is a source of useful guidance for
psychologists.

Although T think that the methodology of analogical modeling is
moderately well developed, it clearly needs further work. For example,
the work on analogical modeling in cognitive science needs to be inte-
grated with the relevant philosophical modeling in the philosophy of
science (e.g., Abrantes, 1999). In addition, detailed case studies of suc-
cessful analogical modeling in the behavioral sciences should be under-
taken to identify exemplars and precepts of good modeling practice that
we can use as a basis for further codifying the methodological strategy
of analogical modeling.

My hope is that chapter 4 might partly allay Romeijn’s worry. I do
believe that the strategy of analogical modeling, combined with the con-
straints provided by methods such as exploratory factor analysis and the
theory of explanatory coherence, will result in a manageable pluralism
of model-based theories.

Problems for Explanatory Coberence With ATOM, theory appraisal
is conducted by employing the theory of explanatory coherence to
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determine judgments of inference to the best explanation. Although infer-
ence to the best explanation is clearly used in science to evaluate scientific
theories, and despite determined efforts to explicate its nature, inference
to the best explanation has received considerable criticism. Romeijn
believes that the theory of explanatory coherence is vulnerable to the
two major objections that have been leveled against inference to the best
explanation more generally: these have been called Hungerford’s objec-
tion and Voltaire’s objection (Lipton, 2004). Hungerford’s objection is
that the evaluative criteria that constitute explanatory goodness are too
subjective to determine properly the warrant of inference to the best
explanation. Voltaire’s objection is that we have no good reason to
suppose that sound judgments of the best explanation are likely to be
true. Romeijn assumes for the sake of argument that Thagard’s (1992)
empirical justification of the theory of explanatory coherence takes care
of Hungerford’s problem. However, I think the justification works as a
matter of fact. Not only are the criteria of explanatory coherence (explan-
atory breadth, analogy, and simplicity) derived from an examination of
exemplary cases of theory appraisal in the history of science, but suc-
cessful simulations of the theory of explanatory coherence by Thagard
and his colleagues show that these criteria are successfully incorporated
into one or more of the principles of the theory.

However, for Romeijn, Voltaire’s problem remains. He reiterates the
point that the method of exploratory factor analysis and the strategy of
analogical modeling provide us with insufficient reason to think that they
bequeath to the theory of explanatory coherence a set of theories that
contain a true or truthful theory.

A number of philosophers have criticized proponents of inference to
the best explanation for coupling it with truth and maintaining that an
inference to the best explanatory theory entitles us to regard that theory
as true (e.g., van Fraassen, 1989). Among other things, these critics have
pointed out that the history of the various sciences reveals that many
theories initially pronounced true on the grounds that they were judged
the best of competing theories turned out to be manifestly false (e.g.,
magnetic ether in physics, phlogiston in chemistry, vital forces in physiol-
ogy, and Hullian theory in psychology).

My reply to this criticism is the same as the response I gave in
chapter 5 to van Fraassen’s “bad lot” argument against inference to
the best explanation. There I pointed out that inference to the best
explanation can legitimately be used to evaluate theories with respect
to their explanatory goodness in a way that avoids judgments of truth
per se while at the same time regarding science as a truth-seeking
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endeavor. The crucial point here is that the assumption that one can
secure truth by using inference to the best explanation disregards the
important distinction between truth and justification. Truth, understood
as correspondence with reality, functions as an orienting ideal for
science. As such, it is a highly valued, though unattained, goal that
helps us make sense of science as an attempt to represent and intervene
in the world (Haig & Borsboom, 2012). However, as an ideal, truth
(or, more precisely, approximate truth) is accessible only indirectly by
way of the various criteria we use to evaluate and accept theories.
Historically, scientists have regarded the criteria of predictive accuracy,
internal consistency, and explanatory power as important in theory
appraisal. As justificatory criteria, they can indicate truth, but they do
not constitute truth.

A further point of relevance here is Thagard’s (2007) claim that
accepting a theory based on explanatory coherence does not mean that
it is likely to be true, only that such acceptance is conducive to the long-
term goal of maximizing true propositions and minimizing false ones.
This line of reasoning is consistent with the endorsement of the idea of
possible truth described in chapter 1: that it is realistic to nominate our
theories as candidates for truth in the expectation that they will be true
in the future, if not the present.

Contrary to Romeijn, I think that the three submethods and strategies
employed in theory construction within ATOM can make worthwhile
contributions to the development of scientific knowledge. Exploratory
factor analysis has proved to be a moderately useful generator of explan-
atory hypotheses and theories. A number of sciences have successfully
employed the strategy of analogical modeling, though its methodology
is yet to be fully articulated and systematically used in developing psy-
chological theories. And although the theory of explanatory coherence
has not been used as a method of theory appraisal in psychology, it
reconstructs an informal approach that has been successfully used in the
physical and biological sciences.

If T am right in assessing the effectiveness of these three different parts
of ATOM’s account of theory construction, then their linking enhances
the overall effectiveness of ATOM’s prescriptions for theory construc-
tion; the initial plausibility judgments of hypotheses in exploratory factor
analysis are augmented by judgments of the appropriateness of analogies
in model-based theories, before theories are further evaluated in terms
of their explanatory coherence. If this extended theory evaluation process
goes well, then its outcome should be well-credentialed theories. I there-
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fore conclude that the underdetermination of theories by empirical evi-
dence does not pose a major problem for ATOM.

A Note on Experiments 1 have repeatedly emphasized that ATOM is
to be understood primarily as a framework theory within which one can
employ more specific methods. An important point to note here is that
many of the methods adopted in the exposition of the framework are
optional. For example, my description of phenomena detection in terms
of statistical methods is not the only means by which one can detect
phenomena. Moreover, although I chose exploratory factor analysis to
describe the abductive nature of theory generation, the method is only
appropriate when the abductive inferences are to common causes.
Options like these give ATOM a degree of flexibility that researchers will
want to exploit.

Romeijn accepts the general framework of ATOM but believes that
the permissiveness permitted in its account of theory construction can
be overcome by replacing my chosen submethods and strategies with a
methodology of experimental practice. As Romeijn acknowledges, his
suggestions in this regard are brief and speculative, and I find it hard to
know what to make of them. I do know that the philosophical methodol-
ogy of experimentation has made significant gains in the last three
decades, and I would not be surprised to learn in the future that ATOM
can be given an alternative formulation through experiments. Of course,
this alternative rendering of ATOM would not be suitable for the many
nonexperimental practices in psychological research.®

The Normative Status of ATOM  Before concluding this section, I want
to make some comments about the normative status of ATOM. The first
of these involves a possible misunderstanding of what ATOM is. My
other comments are intended to give some indication of how I under-
stand ATOM’s normative dimension.

In the introduction to his article, Romeijn (2008) speaks as though
ATOM is a scientific methodology. He lists a number of prominent
twentieth-century methodologies (e.g., Popper’s falsificationism, Bayes-
ianism, and Laudan’s normative naturalism) and declares that they all
determine a proper scientific method. However, mindful of the distinc-
tion between methodology (the study of method) and method (proce-
dures of inquiry), I regard ATOM as a theory of method, not as a
methodology. To be sure, ATOM explicitly draws from the literature on
methodology (e.g., the ideas of reliabilist and coherentist justification),
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a point that I emphasized in chapter 1. It also presupposes a number of
methodological commitments (e.g., a modified account of Laudan’s nor-
mative naturalism). Further, as a theory of method, ATOM can be
regarded as a part of methodology in the sense that it is an object of
methodological scrutiny.

My pedantic insistence on the distinction between methodology and
method has a point, for by regarding ATOM as a methodology, Romeijn
expects more from it than I think one can reasonably expect from an
account of scientific method. For example, and significantly, Romeijn
asserts that any scientific methodology should be able to give an account
of how the major philosophical problem(s) of induction can be resolved.
For him, a resolution requires a philosophical basis for, and justification
of, scientific facts. However, being a theory of scientific method, ATOM
should not be expected to provide a philosophical justification for induc-
tive inference. It is enough that it provides for the justification of scien-
tific facts (and theories) in research practice.

Twentieth-century philosophers often claimed that scientific method-
ologies were known a priori and could therefore be presented as radically
normative. Popper’s falsificationist methodology is a prominent case in
point. However, because ATOM presupposes a naturalistic conception
of methodology, I do not think it can be so strongly normative. Because
it is founded on a naturalistic conception of methodology, ATOM and
its components should be tempered by appropriate evidential consider-
ations. For many of the specific research methods that one can employ
in ATOM, a developing empirical literature speaks to their effectiveness,
but we need more research of this sort. Moreover, psychological research-
ers need to be more deliberately naturalistic in their methodological
behavior and refer to the relevant empirical literature when justifying the
methods they use.

Another restriction on the normative force of ATOM is imposed by
the conditional nature of the recommendations for research action that
accompany it. In effect, such recommendations are subjunctive condi-
tionals that take the form “If you want to reach goal X, then use method
or strategy Y.” The justification for pursuing goal X rests with the
researcher. It is not to be found within ATOM as it is currently formu-
lated. The conditional nature of methodological recommendations is a
feature of Laudan’s (1996) normative naturalism, a methodology that
has been recommended to psychologists by Proctor and Capaldi (2001a).

In an important sense, the normative potential of ATOM resides in its
adoption of a problem-oriented view of scientific inquiry. In my
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exposition of ATOM, I stressed the point that it adopts an account of
research problems that depicts them as sets of constraints on their solu-
tions, where the task is to take ill-structured problems and better formu-
late them so that they are capable of solution. Viewed as sets of constraints,
research problems function as the guides of inquiry. In this way, the
constraint-inclusion account of problems serves as a vehicle for bringing
relevant background knowledge to bear on its various research tasks. In
Haig (1987) I provide a more detailed account of research problems and
their role in an abductive conception of inquiry.

6.6.2 Some Misunderstandings of ATOM

In a recent article, Mark Orlitzky (2012) recommends a package of
reforms designed to help to overcome psychology’s heavy reliance on
null hypothesis significance testing. One of these reforms involves placing
a greater emphasis on abductive research methods. Although I agree with
much of what Orlitzky has to say, I think his treatment of abductive
methods contains some misunderstandings. Since he gives particular
attention to ATOM, I want to correct these misunderstandings.

Somewhat surprisingly in my view, Orlitzky (2012) takes exploratory
data analysis and computer-intensive resampling methods to be basically
abductive in nature. However, as its name implies, exploratory data
analysis is data analytic in character. As noted in chapter 2, it involves
descriptive and frequently quantitative detective work designed to reveal
structure or patterns in the data. For this reason, I do not think it can
be considered an explanatory or abductive undertaking in any interesting
sense of the terms. I made this same point against Behrens and Yu (2003)
in a footnote to chapter 2. Computer-intensive resampling methods are
also data analytic in character. They are confirmatory procedures designed
to check the reality of the patterns revealed by exploratory data analysis.
In ATOM, these methods are used to achieve close replication, not to
further explanatory research. As such, they are part of the process of
detecting empirical phenomena. By contrast, abductive inference is
reserved for constructing explanatory theories, which are introduced to
explain empirical phenomena.

Orlitzky (2012) also regards meta-analysis as abductive in nature. He
demonstrates this by taking the argument schema for existential abduc-
tive inference that I laid out in my characterization of exploratory factor
analysis in chapter 3 and instantiating it with a meta-analytic example.
In the second premise of this schema, he inserts information of an
explanatory kind that explains the empirical phenomenon described in
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the first premise. However, I do not think that the explanatory informa-
tion is generated directly by the use of meta-analytic techniques; it is
gained instead by abductively hypothesizing plausible causes, sometimes
using something akin to informal factor analysis. Meta-analytic tech-
niques are most frequently used to identify empirical phenomena, whereas
suggested explanations for phenomena are fashioned abductively, with
or without the help of codified methods.

I conclude this short section by briefly considering a related claim
that is sometimes made about the explanatory reach of meta-analysis
when it is used in theory testing. When meta-analysis enters into the
process of testing explanatory theories, it typically does so by contribut-
ing to an evaluation of the predictive success of those theories. However,
this common strategy of theory evaluation is not directly concerned
with their explanatory adequacy. This is not to deny that researchers
can employ meta-analytic methods when testing theories, but meta-
analysis itself is not an explanatory approach to hypothesis testing. To
employ meta-analysis to assist in the predictive testing of an explanatory
theory does not thereby confer a direct explanatory role on meta-anal-
ysis itself. One does not assign genuine status simply on the basis of
association.

6.7 Scientific Method and Education

In some of the preceding chapters, I have offered remarks about the
proper place of various research methods in psychology’s research
methods curriculum. In the penultimate section of this chapter, I want
to offer some general thoughts about the importance of an education in
research methods.

To begin by considering the nature of education itself, I believe we
should follow John Dewey’s (1910) lead and embrace an inquiry-ori-
ented conception of education, which accords a central place to scientific
method. Scientific method is important to education for at least three
reasons: it provides us with a codified way of learning how to learn; it
enables us to justify our knowledge claims, both about empirical phe-
nomena and about explanatory theory; and it is a central feature of
science itself, which is an enterprise we seek to understand in education.
If we accept an inquiry-centered view of education, it is a small step to
think of education itself, and scientific research, as broadly the same type
of endeavor, where both are essentially concerned with learning. In such
a view, students are concerned with learning through inquiry, whereas
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the major concern of teachers is to lead less experienced inquirers into
new areas of learning.

A view of education with scientific method at its heart will clearly
emphasize learning about research methods, and their accompanying
research methodology, in the science curriculum. This clearly happens in
psychology, but considerable evidence suggests that students and research-
ers do not acquire a deep understanding of these methods. A striking
example of this is the low level of understanding among professional
researchers in psychology of null hypothesis significance tests. Despite
repeated exposure to these procedures in taught courses, and their fre-
quent use in psychological research, psychologists fail to properly under-
stand the logic of the method (e.g., Gigerenzer, Krauss, & Vitouch, 2004;
Hubbard, 2004). As we saw in chapter 3 and in section 6.6.1, explor-
atory factor analysis is another frequently used method in psychology
that is not well understood, with respect to its abductive nature (Haig,
2005b) and its procedural implementation (Fabrigar et al., 1999).

As I have stated several times, we cannot have a proper understanding
of research methods, both conceptually and procedurally, without a
sound appreciation of their accompanying methodology. However, the
majority of researchers in psychology are reluctant to think critically
about the methodological foundations of the methods they use. Nor are
students encouraged to do so in the research methods courses they take.
As we saw in chapter 1, methodology is the interdisciplinary field that
studies methods. Although it draws from the disciplines of statistics,
philosophy of science, and cognitive science, the professional literature
of these disciplines does not figure systematically in the content of
research methods courses. For example, the philosophy of research
methods is an aspect of research methodology that receives limited atten-
tion in behavioral science education. The majority of students and
research practitioners in the behavioral sciences obtain the bulk of their
knowledge about research methods from textbooks. However, a casual
examination of these texts shows that they tend to pay little, if any,
serious regard to the philosophy of science and its bearing on the research
process.” As Thomas Kuhn (2012) pointed out more than fifty years ago,
textbooks play a major role in dogmatically initiating students into the
routine practices of normal science. Seriously attending to the philosophy
of research methods would go a considerable way toward overcoming
this uncritical practice (Proctor & Capaldi, 2001b). As contemporary
philosophy of science increasingly focuses on the contextual use of
research methods in the various sciences, let us hope that research
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methodologists and behavioral scientists will avail themselves of the
genuine methodological insights that it contains.

A methods curriculum genuinely concerned with education would
profitably consider methods in the light of three primary characteristics
of realist methodology outlined in chapter 1. First, greater prominence
would be given to generative methodology in which reasoning well to
hypotheses and theories would figure in the assessment of those knowl-
edge claims. T have already noted that sound abductive reasoning to
factorial hypotheses using exploratory factor analysis, and the abductive
generation of grounded theory, are concerned with generative justifica-
tion. Second, the coherentist justification of explanatory theories using
methods of inference to the best explanation would feature much more
prominently than it does at present. Third, in adopting methods that are
apt for us as knowing subjects, heuristic procedures would receive much
more explicit attention in the methods curriculum as serviceable guides
to our thinking than is currently the case.

The Association for Psychological Science now takes conceptual and
historical issues as one of psychology’s seven core areas, and it must be
included in degree courses that are accredited by the society. Teaching
methods through methodology is the appropriate way to employ this
core area in research methods courses. The American Psychological Asso-
ciation and the Association of Psychological Science would do well to
follow suit, for it is only by making full and proper use of methodology
that we can achieve a genuine education in research methods.

6.8 Final Word

ATOM aspires to be a coherent theory of scientific method that brings
together a number of different research methods and strategies that are
normally considered separately in the behavioral sciences. The account
of phenomena detection I have offered systematically reconstructs a set
of practices that are common in science but seldom presented as a whole
in methodological writings. That reconstruction is based on the impor-
tant distinctions between data, phenomena, and theory and the different
functions they serve in scientific research. The abductive depiction of
theory construction endeavors to make coordinated sense of the way in
which science sometimes obtains knowledge about the causal mecha-
nisms that figure centrally in the understanding of the phenomena that
they produce. With rare exceptions, the abductive generation of elemen-
tary plausible theory, the strategy of analogical modeling, and the method
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of inference to the best explanation are all yet to receive proper consid-
eration in psychology and the other behavioral sciences. ATOM serves
to combine these methodological resources in a broad theory of scientific
method.

Although ATOM is a broad theory of scientific method, it should not
be understood as a fully comprehensive account. ATOM is a singular
account of method appropriate for detecting empirical phenomena and
subsequently constructing explanatory theories, where those theories
purportedly refer to hidden causes, and where their causes are initially
given an indirect, dispositional characterization. However, in dealing
with explanatory theories in which the causal mechanisms referred to
are more directly accessible than theoretical entities, researchers do not
have to use a strategy of analogical modeling to more informatively
characterize their theories. The use of functional brain imaging tech-
niques to map neuronal activity in the brain is an obvious case in point.
Further, although the evaluation of theories in terms of explanatory
criteria deserves a heavy weighting in science, inference to the best expla-
nation will not always be an appropriate or a sufficient resource for
evaluating theories. For example, although both scientific methodology
and practice have probably overemphasized predictive success (Brush,
19935), it nevertheless remains an important criterion of a theory’s worth.
It may therefore be sought in a modified hypothetico-deductive strategy
that corrects for the confirmational inadequacies of its simple form.

For the sake of consistency, ATOM has to be judged in a way that
comports with a naturalist attitude in methodology. In general terms, this
comes down to the question of whether ATOM is a genuinely coherent
theory of method, and that question is yet to be properly answered.
Although it is a fairly comprehensive account of method, and although
it captures a natural order of scientific inquiry, and seems to hold together,
further development and appraisal is required before we can properly
judge ATOM’s cohesiveness. My hope is that its current formulation
stands as a positive contribution to behavioral research methodology,
and that with further work, ATOM might be shown in a reflexive way
to be an explanatorily coherent theory.






Notes

1 Method, Methodology, and Realism

1. In a sympathetic appraisal of Laudan’s account of the transition from induc-
tive to hypothetico-deductive method, Ernan McMullin (1984) took issue with
some of its detail and emphasis. McMullin agreed with Laudan’s central conten-
tion that since 1700 the philosophy of science had to face the fact that science
increasingly appealed to theoretical entities. However, he maintained that the
acceptance of the hypothetico-deductive method in the seventeenth century was
prompted more by the “corpuscular philosophy” of thinkers such as Robert
Boyle and John Locke than the successful use of the hypothetico-deductive
method in science.

2. Bert Uchino, Dustin Thoman, and Sari Byerly (2010) sampled over 230
articles from the prominent Journal of Personality and Social Psychology from
1982 through 2005 and found that the large majority of articles favored a testing
strategy of confirmation. Considerably fewer favored a strategy of falsification,
and even fewer favored a strategy of employing crucial tests of multiple hypoth-
eses or theories. These findings square with the author’s casual impressions and
speak against the claim sometimes made that Popperian falsification is psychol-
ogy’s hypothetico-deductive method of choice.

3. Of course, there are other prominent accounts of scientific method. Two of
the best known are T. C. Chamberlin’s (1965) method of multiple working
hypotheses and John Platt’s (1964) advocacy of strong inference. Although they
promote important ideas (theoretical pluralism and strong tests, respectively) and
receive regular endorsement by methodologists, they seem to have had a limited
influence on scientific practice. O’Donohue and Buchanan (2001) provide a
thoughtful critique, written for psychologists, of Platt’s theory of strong
inference.

4. Strictly speaking, the claim that there cannot be a logic for discovering hypoth-
eses is a corollary to the hypothetico-deductive method, not a part of it. Some
descriptions of the method speak about the amethodological formulation of
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hypotheses to explain the data. However, because hypothesis generation is not
part of the method proper, I do not include it in my description and discussion
of the method.

5. Erotetic logic, the logic of questions, is the obvious source for a theory of
questions, but in my view it is too formal to be readily applicable to most of our
scientific problems or to help researchers directly. However, this is not to deny
that models of interrogative inquiry may give us some useful insights about
inquiry processes generally.

6. More recently, Wimsatt (2007) extended his list of the important properties
of heuristics. In addition to the four just mentioned, he noted that heuristics are
purpose relative (they are useful for something) and are also derived with modi-
fication from other heuristics to better perform a new role.

7. Preliminary results from a 2009 PhilPapers survey of over three thousand
philosophers showed that 66 percent either accepted or leaned toward scientific
realism, whereas 18 percent favored scientific antirealism. This is in keeping with
results from the same survey on a number of more specific philosophical catego-
ries, which favored a naturalistic metaphilosophy, a nonskeptical realism about
the external world, a correspondence view of truth, and a non-Humean concep-
tion of laws.

8. The term causal mechanism is ambiguous. In ATOM, the generation of theo-
ries involves explanatory inference to claims about the existence of causal enti-
ties. It is not until the subsequent development of these theories that the
mechanisms responsible for the production of their effects are identified and
spelled out. Also, ATOM assumes that the productivity of causal mechanisms is
distinct from the regularities that they explain (Bogen, 2005; cf. Woodward,
2003). Importantly, this allows for the methodological use of generalizations that
describe natural regularities to help identify the causal mechanisms that produce
them.

9. Note, however, that the strategy of analogical modeling is essential for theory
development in ATOM, and the theory of explanatory coherence does heavy-duty
work in the theory because it is the best-developed method of inference to the best
explanation currently available.

2 Detecting Psychological Phenomena

1. When contrasting explanatory theories with claims about phenomena, Bogen
and Woodward focus on what they call systematic theories. For them, systematic
theories properly explain phenomena by showing in detail how the phenomena
result from the causal factors appealed to in their explanation, and by unifying,
and therefore systematizing, the phenomena claims. Psychology seems to have
few well-developed theories of this sort. Although it constructs theories of various
kinds, most of them are modest theories with low, but genuine, explanatory
power.

2. Bogen and Woodward’s work on phenomena detection has received consider-
able attention in the philosophical literature. It has been endorsed, modified, and
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used by Brown (1994), Kaiser (1991), Teller (2010), and Weber (2007), among
others. It has also been subjected to criticism, most notably by Glymour (2000),
McAllister (1997), and Schindler (2007). Woodward (2011) recently clarified and
amended the original formulation of the data-phenomena distinction and
defended it against a range of criticisms.

3. I think this practice masks the fact that a number of investigators often
contribute to the detection of an empirical phenomenon and receive little or no
recognition for it. The Flynn effect was so named by Herrnstein and Murray
in The Bell Curve (1994). Rushton thinks it should be called the Lynn-Flynn
effect, after Richard Lynn, who found the upward trend in IQ scores in modern
Japanese society. However, as Flynn himself noted, Tuddenham provided clear
evidence of large IQ score gains in a comparison of U.S. soldiers in the two
world wars, and Flynn stated that if asked, he would have named the effect
after Tuddenham. However, it was Flynn who did most of the hard work in
establishing the generality of the effect that bears his name. Unfortunately, the
practice of giving insufficient intellectual credit to all the people who played
an important role in empirical discoveries and theory construction is widespread
in science.

4. Cummins (2000) contended that capacities are the primary explananda of
psychology, whereas empirical regularities are explananda of secondary impor-
tance. Shapiro (1994) went further and claimed that cognitive psychologists take
cognition, not behavior, to be the domain of their true explananda. However, I
think that regularity phenomena are pursued more frequently, and are generally
accorded greater importance, by psychological researchers. Furthermore, not all
phenomena have to be detected. As Cummins remarked, phenomena that take
the form of capacities are often known to us. In cases such as these, the task
is to not to discover the phenomena but to provide an informative specification
of them.

5. There are a few exceptions, most obviously when scientists look to explain
why a study does not give the expected results, for example, when they suspect
that the data are erroneous because they are produced by a faulty instrument.

6. In this chapter, I give little attention to the problem of phenomena decay.
However, I do point out that a host of meta-analytic findings supports the view
that the behavioral sciences have produced a good number of durable generaliza-
tions. It seems that the Flynn effect has ended (and may be in decline) in a few
advanced nations (Teasdale & Owen, 2005). However, the effect has persisted
for some decades and continues to do so in many countries. Therefore time
enough has passed to construct plausible explanatory theories of this effect.

7. Of course, that is not to say that single events, such as the extinction of the
dinosaurs, are not the objects of serious scientific investigation.

8. This will not always be the case in science. As Denny Borsboom pointed out
to me, self-organizing complex systems produce phenomena that result from
many causal influences.

9. In presenting this example, Bogen and Woodward (1988) referred to Ernest
Nagel’s (1961) discussion of the melting point of lead and indicated a number
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of errors in his understanding that resulted from not clearly adhering to the
data-phenomena distinction.

10. Bogen (2010) provides an example of phenomena detection where conclu-
sions drawn about brain function analyze pink noise, understood as din, without
extracting a signal from it. It is noise, understood as interference, from which
signals are extracted.

11. With one exception, the strategies considered here are those discussed by
Woodward (1989). Franklin (1990) provided an instructive discussion of an
overlapping set of strategies for validating experimental results in physics. Some
of his procedures also involve the appeal to explanatory theory.

12. Strictly speaking, it is misleading to speak of common or intervening causes
as spurious correlations. What we call spurious correlations are really genuine
correlations, so their existence can hardly be denied by claiming that they are
brought about by some underlying third variable (Haig, 2003).

13. For Chatfield, the initial analysis of data has much in common with Tukey’s
approach to exploratory data analysis, but it is more inclusive. Because these two
related data analytic endeavors serve different primary functions (data screening
and pattern detection, respectively), I restrict initial data analysis to the prelimi-
nary scrutiny of data that occurs before exploratory data analysis (in Tukey’s
sense) is undertaken.

14. Behrens and Yu (2003) suggested that the inferential foundations of explor-
atory data analysis lie in the notion of abduction. However, exploratory data
analysis is a descriptive pattern detection process that is a precursor to the in-
ductive generalizations involved in phenomena detection. By contrast, abductive
inference is employed in the generation of theories that are introduced to explain
empirical phenomena. Behrens and Yu’s suggestion conflates description and ex-
planation in this regard. That said, one should appreciate that, when describing
phenomena, some of the background knowledge presupposed will be the product
of abductive reasoning. The true score theory presupposed in determining the
melting point of lead, which was mentioned earlier, is a case in point.

3 Theory Generation: Exploratory Factor Analysis

1. An important part of this controversy is the contested nature of the relation-
ship between the methods of exploratory factor analysis and principal compo-
nents analysis. It is not uncommon in the behavioral sciences to claim that
exploratory factor analysis and principal components analysis are similar, con-
ceptually speaking, but different in their mode of calculation. I think that this
view of the relation between the two methods is mistaken. It stems from ignoring
the relevant interpretive dimension of factor analytic methodology and regarding
exploratory factor analysis as a data reduction method on a par with principal
components analysis. However, the interpretive part of factor analytic methodol-
ogy makes clear that exploratory factor analysis is a genuine latent variable
method, whereas principal components analysis is a method of data reduction.
Factor analysis and principal components analysis are, roughly speaking, com-
putationally similar, but conceptually different (Bartholomew, 2004).
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2. Two less-noticed, but still important, parts of the controversy about the meth-
odological status of exploratory factor analysis are the claims that standard
factor analysis presupposes that genuine measurement of quantitative structure
is possible, and the method’s conclusions apply to populations, not individuals.
These claims deserve more consideration by factor analysts than they currently
receive. A researcher who accepted the force of these claims could defensibly
employ a nonmetric form of dynamic factor analysis. This would give the
researcher a person-centered method that also avoided the problem of assuming
the existence of quantitative structure.

3. My principal reason for assigning a theory generation role to exploratory
factor analysis is based on the related beliefs that factors are best regarded as
latent common causes and that inference to such causes is abductive in nature
(Haig, 2005b).

4. The term entity is used as a catchall ontological term to cover a miscellany
of properties that include states, processes, and events. Although in the first
instance existential abductions in exploratory factor analysis are about properties
expressed as the values of variables, not all existential abductions need take this
form.

5. The positive manifold is a term that is sometimes used to refer to the striking
and well-established fact that almost all different tests of ability correlate posi-
tively with one another to a significant degree. Despite its historical link to
Spearman’s theory of general intelligence, the positive manifold can be taken as
evidence for the existence of multiple-factor theories of intelligence.

6. The phrase “the knowing subject” comes from Karl Popper (1972), who
advocated an objective theory of scientific knowledge that did not refer to cogni-
tive agents and their mental states. Popper’s antipsychologism stands opposed to
a plausible moderate psychologism in which psychology and cognitive science
more generally play an important role in helping us understand how methods
are apt for humans as inquirers.

7. Most methods contribute either to claims about empirical phenomena or to
claims about explanatory theory and are not mixed methods in this sense. Ex-
ploratory factor analysis is unusual in this regard. Second, it is the custom in
contemporary methodology to regard mixed methods as a research strategy that
combines both quantitative and qualitative research methods. However, I think it
is important to understand that a given method will often have both quantitative
and qualitative dimensions. Exploratory factor analysis is a good case in point.
Although it is standardly viewed as a multivariate statistical method, and there-
fore quantitative in nature, its centerpiece, the principle of the common cause, can
effectively be understood in qualitative terms.

4 Theory Development: Analogical Modeling

1. Popper’s falsificationist variant of the hypothetico-deductive method also
eschews models. Like the logical positivists, Popper took models to be heuristic
devices that belonged in the context of discovery where, in his understanding of
that context, heuristics could not play a genuine methodological role.
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2. Actually, the distinction here is threefold: the mathematical equations of
exploratory factor analysis make up a syntactical model; the model’s formal
structure is given a methodological interpretation, for example, when the latent
variables of the method are considered as markers for theoretical entities; and
the methodologically interpreted latent variables are then given a semantic inter-
pretation in discipline-theoretic terms.

3. My perspective on analogical modeling is influenced by Rom Harré’s work
on the topic (e.g., Harré, 1976, 1988, 2004); however, we differ on some points.
Unlike Harré, I explicitly construe analogical modeling as an abductive undertak-
ing because of its strong concern with explanation. I also distinguish between
existential abduction and analogical abduction, where the former is used initially
to generate hypotheses and theories, and the latter is used to further their devel-
opment. Harré assigns analogical models a role in the generation of hypotheses
as well as in their development, a practice that I acknowledge does occur in
science (in fact, I stated in chapter 3 that this happened to an extent in the early
formulation of Spearman’s theory of general intelligence). Further, I agree with
Harré that both critical description and the construction of explanatory theories
are major dimensions of science. However, unlike Harré, I rate critical description
just as highly as theory construction, as my heavy emphasis on phenomena detec-
tion in ATOM attests. Oddly, the recent upsurge of interest in models by philoso-
phers of science gives little recognition to Harré’s work.

4. My treatment of the scientific strategy of analogical modeling has an obvious
methodological focus. However, the topic of analogical reasoning has attracted a
great deal of attention in cognitive psychology in the last thirty years. The chief
value of the resulting literature is that it has extended our understanding of analo-
gies from a concern with arguments to inference more broadly. Thus we now have
a considerable amount of knowledge about how human agents reason when they
employ analogies. A number of psychological theories recommend themselves
for consideration, and the best of them importantly extend our epistemological
knowledge of the knowing subject. For example, my treatment of the methodol-
ogy of analogical modeling is broadly consistent with, and would be enriched by,
linking it to Holyoak and Thagard’s (1995) multiconstraint theory of analogy.
Their theory portrays the creative problem-solving process of analogical reason-
ing as a mapping between a source and a subject via the multiple constraints of
similarity, purpose, and structure. Relatedly, for them, the epistemic justification
of analogical reasoning takes the form of analogical coherence, which has some
similarities with explanatory coherence. This computational theory of analogi-
cal reasoning contributes positively to our understanding of the scientist as an
analogical thinker.

5 Theory Appraisal: Inference to the Best Explanation

1. Not everyone agrees that the Semmelweis case exemplifies inference to the
best explanation. Carl Hempel (1966) took it as an illustration of the hypo-
thetico-deductive method. Others have likened it to Mill’s inductive method of
difference.
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2. The spelling of Harmany is deliberate. It is a tribute to Gilbert Harman (1965),
who coined the term inference to the best explanation and introduced the cor-
responding idea to the modern philosophical literature.

3. The philosophical literature on theory appraisal sometimes distinguishes
between empirical and superempirical criteria. Predictive accuracy is the standard
criterion of empirical adequacy, and explanatory power is often mentioned as an
example of a superempirical virtue. However, within the theory of explanatory
coherence, explanatory breadth is both an empirical and a superempirical crite-
rion; it is simultaneously a measure of empirical adequacy and explanatory
power.

4. Although the Bayesian approach seldom figures in the appraisal of psychologi-
cal theories, it does often form a template for judging the rationality of laypeople
in solving hypothesis-testing problems. By contrast, the model for judging the
rationality of hypothesis testing undertaken by psychological scientists is pro-
vided by the hypothetico-deductive method plus null hypothesis significance
testing. This disparity needs a justification.

5. In its strongest form (e.g., Howson & Urbach, 2006), Bayesianism uses prob-
ability theory in an attempt to illuminate scientific reasoning generally. In this
chapter, I focus on the Bayesian approach as it applies to the appraisal of scien-
tific theories only.

6. Of course, this does not prevent a defender of inference to the best explana-
tion from acknowledging that Bayesianism can be used in contexts such as legal
reasoning and medical diagnosis, where the relevant probabilistic information is
often available.

6 Conclusion

1. A reasonable requirement of an adequate theory of inquiry is that it can solve
the Meno paradox. Happily, the constraint-inclusion view of problems enables
us both to formulate and to solve this age-old dilemma—a dilemma that some
regard as the foundation problem of inquiry (Nickles, 1981; see also Simon,
1977). This paradox, which is sometimes called the learning paradox, questions
the very possibility of inquiry. It claims that we cannot inquire either about what
we know or about what we don’t know. That is, if we know, we have no need
to inquire; and if we do not know, we cannot inquire. But inquiry is neither
trivial nor impossible: we can solve the Meno paradox by knowing what counts
as an acceptable answer, without having an acceptable answer available. The
constraint-inclusion view of problems affords just this possibility. This is because
our significant research problems will not be fully structured and therefore will
not constitute complete descriptions of their solutions. Yet we articulate our
problems in terms of their constituent constraints, and these constraints do serve
to direct us toward their problem’s respective solutions. When we fill out the
structure of our problems by progressively including relevant constraints, our
problems better point the way to their own solutions. So by solving the Meno
paradox, a constraint-inclusion account of problems indicates in a general way
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how inquiry is possible. And by deploying this account of problems within
ATOM, we are able to say how inquiry can proceed for a broad range and variety
of cognitive pursuits. I note here that the Meno paradox has other solutions,
some of which use ideas about abductive reasoning.

2. The use of reliability as a mode of justification or validation differs from the
normal psychometric practice in which reliability and validity are presented as
contrasts. However, the use of consistency tests to validate knowledge claims on
reliabilist grounds is widespread in science.

3. Charmaz (2000) has provided an explicitly constructivist depiction of
grounded theory that breaks with the “objectivism” of Glaserian grounded
theory. From a constructivist perspective, social reality is not revealed so much
as socially constructed in the course of inquiry. Further, Rennie (2000) offers a
hermeneutic interpretation of grounded theory method that he believes is able
to provide an understanding of the meaning of text and reconcile the tensions
that exist between realism and relativism in orthodox accounts of the method.

4. Strauss (1987) depicts the discovery of grounded theory, and theory construc-
tion in science more generally, as a sequence of induction, deduction, and verifi-
cation. However, given the pragmatist influence on the origins of grounded
theory method, and given that Strauss mentions Peirce’s idea of abduction, it is
surprising that he does not see its methodological relevance to the generation of
grounded theory.

5. Although grounded theory is almost universally regarded as a perspective on
qualitative research, it can be applied to quantitative research. Both Glaser and
Strauss acknowledged this possibility in their early writings on grounded theory
method. A little-recognized fact is that the first piece of grounded theory research,
carried out by Glaser (1964) in his examination of the professional careers of
organizational scientists, was quantitative in nature.

6. More recently, Romeijn and Williamson (2013) examined the role that inter-
ventions can play in resolving the problem of statistical underdetermination in
exploratory factor analysis. I agree with the authors that this differs from my
focus on abduction and theoretical underdetermination. However, I am skeptical
of their claim that intervention data can replace the practice of using theoretical
criteria to resolve the problem of theoretical underdetermination.

7. Cameron Ellis and I recently did a content analysis of a representative sample
of sixteen current undergraduate research methods textbooks in psychology. The
first chapter in these books standardly addresses the topics of scientific method
and the nature of science. However, none of them inform the reader about major
theories of scientific method, such as those outlined in chapter 1, and the related
methodological literature. These texts are the principal source for psychology stu-
dents’ formal learning about scientific method, so it is disturbing that their treat-
ment of scientific method is so poor.
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