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Abstract. Structural image registration is often achieved through dif-
feomorphic transformations. The formalism associated with the diffeo-
morphic framework allows one to define curved distances which are often
more appropriate for morphological comparisons of anatomy. However,
the correspondence problem as well as the metric distances across the
database depend upon the chosen reference anatomy, requiring average
transformations to be estimated. The goal of this paper is to develop
an algorithm which, given a database of images, estimates an average
shape based on the geodesic distances of curved, time-dependent trans-
formations. Specifically, this paper will develop direct, efficient, symmet-
ric methods for generating average anatomical shapes from diffeomorphic
registration algorithms. The need for these types of averages is illustrated
with synthetic examples and the novel algorithm is compared to the usual
approach of averaging linear transformations. Furthermore, the same al-
gorithm will be used for shape interpolation that is independent of the
multi-scale framework used.

1 Introduction

An atlas may be used as an instance of anatomy upon which teaching or surgical
planning is based [1], a reference frame for understanding the normal variation
of anatomy [2], a coordinate system for functional localization studies [3], and
as a probabilistic space into which functional or structural features are mapped
[4]. Least biased examples are desirable for teaching, as well as for creating
coordinate systems that are near the centroid of a population distribution. Per-
formance of algorithms based on manipulating canonical information, such as
active shape, should also improve when using an average model.

Computerized atlases based on MRI images may capture either average shape
[], average intensity or both [5] within a single image. Deviations from the
mean shape or intensity may be stored separately by statistical models such
as principal components [4]. Average intensities are found by first computing
transformations from a given anatomical instance to a population dataset. These
transformations give intensity correspondence, allowing subsequent averaging.
Average shapes are gained by estimating the average of these transformations,
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which take a given member of population to the remainder of the data. This
average transformation must then be inverted to gain the average shape [3].

One difficulty with this approach is that the process of averaging transforma-
tions may destroy the physical and optimal properties of the individual trans-
formations. For example, the average of large deformation elastic displacement
fields, each of which satisfy the minimization of a well-defined variational energy,
may no longer be an optimizing elastic displacement field. Another example is
given by time-parameterized mappings. The flows defining these transformations
at each time satisfy the fluid equations, allowing the maps to be interpreted as
members of the diffeomorphism group [6]. This invites group theoretical popu-
lation studies where one bases structural comparisons on the geodesic distances
of the group. Thus, it is important to be able to compute atlases which are
least-biased within this theoretical framework, as in the small deformation case.
This work provides a general algorithm for allowing shape averaging that en-
ables properties of the physical model used in the registration to persist in the
average shape transformation. The distances given by the diffeomorphism group
are used to illustrate the techniques.

2 Population Shape Averaging

Consider a set of anatomical images defined on bounded domain {2, each of
which contains identical topology initially at positions {x;}. Shape normaliza-
tion requires a reparameterization of this population dataset, P = {x;}, into a
common coordinate space. Each coordinate X then identifies the same anatomi-
cal position in each example. Formally, this requires a mapping set {g,: X — x;}
that gives,

1 —
g, X1 =X,

g, ' xn =X (1)

Each mapping gives the coordinate transformation between the canonical
configuration X and x;, such that g, = Id + u, where Id is the identity. This
gives g,(X) = X + u(X) = x;. I g, is time-parameterized in interval [0, 1], its
value is taken at g,(1), the final state.

The individual mappings, g;, may be found by using non-rigid image reg-
istration algorithms [4), Bl [7]. In general, these methods return a displacement
field, u, that models the motion of a continuum deforming under external forces.
Solutions of this kind minimize a balance of regularization and similarity terms.
The displacement field is found in either the Lagrangian reference frame, where
the reference configuration x is fixed, or in the Eulerian frame, where the con-
figuration is a function of time, x(¢). The distinction here is that the Eulerian
frame tracks the flow in time, giving the displacement as the time-integration of

a velocity field, % = v(t), where the material derivative is used. Given a value
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for u, the solution will transform the moving image J(x;) to the fixed domain
I(%) such that J (%) = JAd 4+ u; ') (x;) = Jog; ' ox.

2.1 Shape Average from Mean Deformation: Linear Averaging

Here, we assume a registration algorithm has provided a correspondence field.
Given the ability to gain this solution, average shapes are found by choosing an
arbitrary instance as the reference configuration, x, = X;, and then computing
{g,} with respect to this configuration. The resulting average displacement field
from xo to {x;} is,
N
fxo) = (V)71 w,. (2)
i=1

This mean deformation minimizes the energy,

N
1
ﬁ(xo) = arglIlnmi Z |ui _ u|2 (3)
i=1

Note that, as the total displacement fields are used, all scales of information
are treated equally. The average configuration is then computed as & = g~ 'x,,
where an inversion of the mean deformation field is required. Averaging of vector
fields does not necessarily preserve the large deformation continuum model, nor
does it satisfy the correct optimization model, as illustrated in figure[dl.

3 Curved Case: The Diffeomorphism Group and Its
Distances

3.1 Definitions and Group Properties

The set of one to one and onto differentiable maps with differentiable inverse
gives the diffeomorphism group, G. Elements of the group may be composed
with each other and distances between them measured by (in the case of image
registration),

D(I,J):infg{/ lo@)l|edt | Jogt(0) = JAJog~l(1) =1}  (4)
ve 0

The differential Sobolev norm on v is determined by the associated linear (e.g.
Cauchy-Navier) operator L. This is a true distance in that it is positive, sym-
metric and satisfies the triangle inequality [8]. The incremental integration of the
velocity field is what gives this property (consider that the flow along the velocity
field is, in the infinitesimial limit, piece-wise linear with equivalent norm forward
and backward in time). In contrast, deformation-based norms taken from con-
tinuum mechanics are also positive and equal zero at the identity, but may not
be symmetric.
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Fig. 1. The “C” and “C patch” images (first and second in the top row) are reg-
istered with the large deformation diffeomorphic method in the top row, giving
transformation g(¢). The result of linearly averaging the vector field u at g(1)
with Id is shown in the bottom row left and left middle. The averaging given by
geodesic distances, at bottom row right, is more natural. Deformed grid images
are also shown for the geodesic average. The jacobian of the C to C patch map
is strictly positive with minimum value 0.14.

3.2 The Diffeomorphic Registration Algorithm

The optimization problem for the registration is to compute the mapping, g,
such that,

1
o =g [ el g ) ®)

is minimized where the brightness constancy assumption is used as the driving
force [9]. Additionally, the maps are fixed to the identity at the boundary of the
domain, df2.

The Euler-Lagrange (E-L) equations for this problem were recently derived
[R]. Rather than using the local E-L equations, we solve the variational problem
in the integral form by using the Galerkin finite element (FE) method [I0]. This
method finds an optimal finite dimensional estimate to the infinite-dimensional
solution. Using this method we compute the instantaneously optimal velocity
field as,

v(,t) =555 { willIg™ = Jl| +wevllf (6)
which gives the optimal gradient in the space of diffeomorphic flows. The optimal
estimate to the time-integrated map is approximated by using finite differences.
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This requires parameterization of g by arc length, the unique and natural choice
for (even infinite-dimensional) curves.

The time dependent integral for g is estimated with finite differences in time
via the trapezoidal rule. Because the optimization process is not locally smooth
in time, we measure the arc length at a step-size, h, that is larger than that of
the optimization step-size ||dv||, with ¢ a small scalar. This is illustrated for a
one dimensional map in figure 2] (the ratio is typically near 0.1). The incremental
velocities are accumulated via gradient descent such that v*(t) ~ Id+ Zijol 0v;.
The total map g(t) is then integrated to g(t+h) using v*(t) when ||v*(¢)|| reaches
the desired constant value, h. If the arc length oversteps h, a local line search
on dv,, corrects the size of ||v*||. The trapezoidal rule then gives the optimal in
time approximation to the length as,

| Il 35 0ot + G- DR+ lote+ im)le). (0

This gives a more robust estimate of the geodesic distance and is also beneficial
for the shape averaging application (we have found the distances estimated by
the greedy method in [7] are too noisy).

To summarize, the following steps are needed in the algorithm for computing
geodesics:

1. Solve for the instantaneous regularized velocity field using the FE method.
2. Use the FE solution for gradient descent, accumulating év until the arc

length reaches h.
3. Integrate v to augment g in time and to compute a robust estimate of the

geodesic distance.

Note the advantage that the velocity field is only needed at two time points,
although an optimal in time solution is computed. Regridding is also performed,
as in [7].

Optimal Approximation to Map g in Time
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Fig. 2. The computation of the optimal g in time is performed using the trape-
zoidal rule, requiring constant arc length parameterization.
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4 The Variational Problem for Diffeomorphic Averaging

We recover the average-shape image from an image dataset by solving an inverse
problem involving the geodesic distances between the images and a boundary
value constraint on the transformed image appearances. Find {g;} such that,
. -1 -1 7
Vj Ijogj :Ijgj = I (8)
E({g;}) is minimal.

The existence of geodesic paths on the diffeomorphism manifold as well as
the symmetry of the distances given by those paths are important facts for this
algorithm. Furthermore, these paths, as mentioned above, are also parameterized
with constant arc length.

The simplest non-trivial case of this inverse problem is given by a single pair
of images. First, consider the naive algorithm for minimization.

1. Register images I and J while measuring the distance, D(I, J)(t), between

them.

2. Repeat the registration stopping at 1, where D(I, J)(t1) = iD(I,J)(t =1).
This numerical minimization can be achieved successfully and was used to gen-
erate the results of figure[ll. However, considering that, in practice, the optimiza-
tion process continues in a coarse to fine fashion, one observes that coarse scale
corrections will occur first in time. This is an undesirable bias that makes the
averages appear visually incorrect when features exist at multiple scales, such as
in anatomical images, as in figure Bl This caveat also makes the naive approach
highly asymmetric.

The solution used is to solve the variational problem given in ] explicitly.
The variational problem for averaging pairs of images is then,

1
91,95 = "0l(t) walt) {/O losl[7 +llv2ll 2+ (g™ =1 dt }+[| Jgo =" 1| dt }.

Rearranging terms using the equality constraints given in the original prob-
lem gives,

1
g}, g5 = “rEmin wwmin ¢ / ol + [vall2 + 1191~ — Jga~*] dt 3. (9)

Solving this problem, via alternating minimization with respect to g, and all
h; constant, provides average deformations that are optimized symmetrically
using information at all scales. The geodesic averaging constraint E(g1) = F(g2)
is upheld by construction and the configurations I gfl and Jg5 1 are both in
average position. Note also that the transformation from I to J is given by
91_1 0 g,. We will denote the output of this algorithm as A(-,) where the input
is a pair of images. Intuitively, the algorithm lets the images I and J “meet” at
the mean configuration. A similar idea was introduced recently in [I1]], in which
intensity averaging was incorporated.
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Fig.3. The top row shows, in the center, the geodesic shape average of the
image on the left and the image on the far right. For comparison, the bottom
row shows, in the center, the naive geodesic shape average, which is biased
towards coarse-scale corrections. Note that the outline of the naive average is
similar to the image on the right, but the ventricles are similar to the image on
the left. The geodesic average improves upon this bias.

4.1 Recursive Algorithm for Diffeomorphic Averaging and
Diffeomorphic Shape Interpolation

The constraints given above allow one to recursively compute either the min-
imal energy configuration over a dataset or, alternatively, the full-scale time-
dependent shape interpolation between a pair of images. The latter application
is a practical way to resolve the fact that measuring physical energies within a
multiple-scale optimization process introduces a significant bias in the resulting
computed intermediate mappings. That is, deformations near the zero time-point
will accomodate coarse scale differences, while transformation adjustments oc-
curring later in time will be at a fine scale.

The full-scale minimization of (8) is achieved as a recursive least squares
estimation problem. That is, given A, B, C, D, averages may be computed as,

A(A,B,C,D) = A(A(A, B), A(C, D)), (10)

where A is the averaging function. The symmetric diffeomorphic approach used
here avoids exclusive dependence on the (possibly individual specific) topology
of a specific template anatomy I;, as in deformation field averaging. Further-
more, the group theoretical framework and geodesics used by our algorithm and
those described in [6] will ensure the g, are in G after composition. An average
transport o.d.e. may also be used to minimize the energy, as in [12].
Pseudocode is given in algorithm [[1 One is guaranteed that the final mean
configuration is derived from the composition of diffeomorphic transformations,
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insuring that topology of the mean anatomy is preserved and that the mean
transformation exists in the shape space provided by the continuum model. This
may be proven inductively by using the fact that if g,h € G then f =goh €
G, that is, the composition of a geodesic diffeomorphic (g.d.) transformation
with another g.d. transformation is within G and g.d. Note also that the set
of transformations {g;} may be recovered after the end of the algorithm. For
simplicity, we assume here that the size of the database is dyadic, though this
is not a necessary condition. An illustration of a non-dyadic case is shown in
figure [4l

This final step
adjusts for the
fact thatit is an
odd combination.
The arclength size
is doubled for one
of the two maps as
illustrated by the
arrow length.

The final geodesically
averaged configuration
is at the lowest level.

Fig. 4. The progress of the recursive averaging algorithm is shown above. Note
the adjustment made for the uneven number of averages performed.

A similar algorithm may be used for geodesic shape interpolation, an example
of which is shown in figure [l
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Algorithm 1 : Diffeomorphic Shape Averaging

Divide the database of images into unique pairs, P={P; =(I;, I;)|i # j}. Set i = 1.
Denote the cardinality of P as #P.
while i < §P do

P U (A(Pi), A(Piy1)).

i=1+2.
end while
I =A(Pyp).
Full-Scale Anatomical Shape Interpolation
Time 0
Anatomy 1 Anatomy 1,time 0.25  Anatomy 1,time 0.5
Anatomy 2 Anatomy 2, time 0.75 Anatomy 2, time 0.5
‘<¢
Time 1

Fig.5. Three time-points of scale consistent shape interpolation are gener-
ated from a pair of anatomical instances. The pair-wise symmetric registration
method was used to generate the results here and to insure that the interpolated
anatomy is consistent for all scales of information. The original images are at
top left and bottom left respectively. This anatomical pair is in correspondence
at time 0.5, which is the average of the anatomy at time 0 with the anatomy at
time 1. Note that here we have used the topology of the closest anatomy at all
points. It would also be natural to use an intensity average where the relative
weights are determined by the time values.
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5 Experiments

As was shown in figure[T] figure Bland figure 5] the symmetric geodesic averaging
algorithm is essential in some cases. We now investigate the effect of diffeomor-
phic averaging on normal anatomical images. A dataset of 6 normal female hu-
man cortices were manually segmented from volumetric MRI. The cortices were
initially aligned by similarity transformation to an arbitrarily chosen reference.
The current experiments are in two dimensions, although the implementation is
equally functional in three dimensions.

5.1 Comparison of Geodesic and Linear Averaging

Linear Average. The diffeomorphic fluid algorithm was used to register an
arbitrarily chosen reference topology to the dataset. The deformation fields pro-
vided by the non-rigid registration were then averaged in the Lagrangian ref-
erence frame, meaning vectors from the original to the final configuration were
used. The average transformation was inverted to find the average shape atlas.
The registration was repeated and the root mean square distance from the aver-
age shape atlas to the dataset was computed. A second reference image was also
chosen and the study was repeated. The overlap ratio between the pair of average
shape cortices is also computed. The results are summarized in figure f(c,d).
Geodesic Average. The same registration algorithm was used with the geodesic
averaging procedure of algorithm [[I The computational cost of this study is a
logarithmic factor larger than the linear averaging, but without the (not costly,
but potentially error prone) step of estimating the average transformation and
its inverse. Because the algorithm moves from dataset instance to dataset in-
stance, the order of the dataset was randomized and the study repeated. Results
for these studies are summarized in figure [(a,b). The similarity in appearance
between the curved and linear averages suggest that the transformations com-
puted are not highly curved, in contrast to those shown in figure[Il Finally, Table
1 shows a summary of metrics computed from the atlases to the dataset and also
between the two instances of the atlases.

|Algorithm[Overlap between 1 and 2[Intensity Squared Difference (SSD)]

Geodesic 0.989 0.478
Linear 0.990 0.503

Table 1. Summary of Algorithm Dependency on Dataset. The overlap and
sum of squared differences in intensity (SSD) are measured between the atlases
generated by the same method but with a different dataset ordering and/or
reference anatomy.

6 Conclusion

We have described an algorithm for geodesic shape averaging and interpolation,
argued its correctness and illustrated its results. Furthermore, a finite element
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(d)

Fig. 6. The geodesic and linear approach to shape averaging are compared. The
template anatomy for the first geodesic average example is the same as that of
the first linear example. The second examples also share the same topology. One
may note that, qualitatively, the geodesic results appear to be more plausible
shapes, as the anatomy is deformed more smoothly. (a) Geodesic shape average
one. (b) Geodesic shape average two. (¢) Linear shape average one. (d) Linear
shape average two.

method algorithm for estimating geodesic distances between images was given.
This algorithm is symmetric with respect to an image pair without the need
for explicit penalization of the difference between the forward and inverse trans-
formations. It also has the property that it divides the deformation needed for
correct registration evenly between each image, as is guaranteed by robust mea-
sures of the geodesic distance. Future work will investigate improvements to the
current geodesic estimation scheme as well as its properties as an image registra-
tion algorithm on its own. We also intend to investigate solving problem (8]) in
parallel. This method will combine an initial estimate to I with the symmetric
image registration algorithm given here. The solution will then be a piecewise
linear estimate to the average curved transformation which can be compared
with linear averaging and the recursive estimation in this work.
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