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Preface 

This book was written to myself at about the time I began graduate studies 
in anthropology-the sort of thing a Samuel Beckett character might do. It 
is about the conduct of research. In a very real sense the purpose is partially 
to compensate for the inadequacies of my professors. Perhaps this is what 
education is about. The effort has not been an unqualified success, but it has 
been extremely gratifying. 

I was trained in anthropology. After completing the Ph.D. I went to Stanford 
on a post-doctoral fellowship. At the time, this was a novelty and the depart­
ment was not prepared for such a thing. To stay occupied I began attending 
lectures, seminars, and discussion groups in mathematics and statistics. This 
was about the luckiest choice I ever made. The excitement was easily as intense 
as that which I experienced upon encountering anthropology. On one oc­
casion I innocently and independently proved a theorem that had first been 
done 2000 years earlier. It is currently used as an exercise in high school 
mathematics so it is neither difficult nor arcane. Learning all this did not 
tarnish my sense of discovery. (On reflection I am puzzled by my failure to 
have seen all this "beauty" when I was exposed to it as an undergraduate. The 
unparalleled excellence of the Stanford program was undoubtedly responsible 
for my belated conversion.) 

Because it is the body ofliterature with which I am most familiar, examples 
have been drawn primarily from anthropology. The problems ofthis discipline 
are assuredly not unique to it. They are, on the contrary, common throughout 
the life and social sciences. The realization that there is no theory in anthro­
pology may come as a surprise. There are, after all, several tons of books in 
most university libraries purporting to be anthropological theory. But the 
authors do not produce anything that is recognizable by other scientists as a 
theory (Alexander, 1981). Often abstruse language is called theoretical. There 
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is never a dynamic system of equations expressing relationships among entities 
at a more basic level of reality. Occasionally one encounters the assertion that 
anthropology is not a science but an art. Leaving aside the undeniable fact 
that there is art in all science, notice that the name of the discipline means 
"science of man." This requires the development of theory with deductive 
power such that hypotheses may be produced rigorously. Then the hypotheses 
must be exposed to the most severe risk of rejection. 

It seems reasonable to me that there should be little or no interest among 
students for techniques of testing the truth of gratuitous statements with no 
apparent origin. On the other hand, it also seems reasonable that the converse 
is true-the truth of statements generated by a theory should be of vital 
interest. If this is the case, then the only salvation for anthropology, the science, 
is in powerful rigorous theory. 

Learning is often described in terms of directions: the process is either 
top-down, or bottom-up. The latter is illustrated by Robert Pirsig's Zen and 
the Art of Motorcycle Maintenance. The basic argument is that quantum 
mechanics theorists are produced from the ranks of motorcycle mechanics. 
The former is illustrated by Victor Weisskopf using quantum mechanics to 
explain why mountains and waves are as big as they are. I doubt that either 
approach can exist without the other. It is quite artificial even to characterize 
the process in an either/or manner. Individuals, philosophical traditions, 
academic departments, ... seem to have stable preferences, however. The 
dominant bias in anthropology in the 20th century has been for the empirical, 
bottom-up, approach. The expectation of this attitude is that truth will eventu­
ally emerge from data. Except in the trivial case of "what is, is true," this never 
works. 

The bias here is a preference for a top-down approach. So at the outset I 
shall present the basic structure of science and place the conduct of anthro­
pology within that larger tradition. The focus of attention then shifts to the 
problem of devising conditional statements such that there is a relatively 
rigorous connection between antecedent and consequent. And then finally we 
face the problem of determining whether the consequent, or its negation, 
occurred in a set of observations. 

There is a great deal of repetition here. I make no apology for it. It is a 
pedagogic technique of great force and antiquity. Whether there is too much 
or too little is an empirical problem answerable only by the reader. 

The formal requirements for reading and using this book are high school 
algebra and a calculator that will return natural logarithms. I have indicated 
the places where I expect the reader to accept a statement because its proof 
needs a higher level of mathematics. In the matter of less tangible requirements, 
there is an attribute called "mathematical maturity" which anyone can acquire 
in a fashion analogous to biological maturity. These two differ in that the 
former requires an act of will whereas the latter needs only survival. Otherwise 
exposure time is the critical factor. 

It is useful to have or acquire some mathematical maturity. I hope that this 
book may contribute to the process for you. This truly is an overview, 
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however. As such, greater demands are made on the student than is the case 
for a treatment which burrows deeper and deeper. 

With two exceptions, all the computing here was done with a hand-held 
calculator or on a small microcomputer. The exceptions are Sections 5.4.1.1.4. 
and 5.4.2. As the techniques discussed there use iteration, I would still be 
working at it using a calculator. Admittedly, more complex problems certainly 
require more computational muscle, but I want you to realize that the essential 
ingredient in all successful and important research is the human mind. I tend 
to be suspicious of the attitude which sends students to the computer from 
the beginning. Typically one can, and so does, obtain highly complex results 
just because they are available. All too frequently there is no comprehension. 
One of the consequences of doing the work on a calculator is that the 
frequency of blundering errors increases. All the calculations have been 
checked repeatedly, and several classes of entering graduate students have 
verified each result. There are, undoubtedly, some errors produced by the 
accumulation of rounding error. These are rare, however. I trust that the 
quality control procedure used has made the other kinds of errors equally 
rare. Needless to say, I shall be grateful for your making me aware of those 
which have slipped through. 

There is no set of problems for this edition, a deficiency which I shall rectify 
in the future. There are a number of completely worked examples (especially 
in Chapter 5), however. While these are no substitute for problems, they can 
assist in the process of acquiring concepts. You are urged to work through 
the examples, that is, to participate actively. There really is no alternative 
to participation. If you do it, the minimum result will be some enhanced 
"numeracy." If you do not do it, you should set things aside and return later. 

While this is self-contained within the set bounds, I encourage you to pursue 
items in the Bibliography selectively. This book pretends to be neither com­
prehensive nor the ultimate authority on anything. There are, rather, two 
goals: (1) to sketch in the process of doing believable research, and (2) to 
provide enough detail for a few topics that you may use the recipes directly. 

It is ironic that anthropology is becoming increasingly "provincial." An­
thropologists are the only ones to accept what anthropologists say. Most of 
the life sciences share a similar problem. The main emphasis of the book will 
be on statistical tests of hypotheses, that is, deciding whether an experiment 
has or has not supported a hypothesis. But this is the very tag end of the entire 
research effort and so in the beginning, in the early parts, I shall consider the 
entire research framework in order to orient and motivate the statistical effort. 

Anthropology and Science 

A basic assumption here is that anthropology must be done scientifically. For 
now, this means, simply, that anthropologists must pay attention to the 
structure of argument, measurement, design and execution of research, and 
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rules of evidence used by the larger scientific community. Science and revela­
tion are the only sources of believable information. As there is no logic of 
revelation, the believability of revealed truth cannot be determined rationally. 
Revelation cannot be discussed, only accepted or rejected. At the most general 
level, science has two basic goals: (1) to discover the truth, and (2) to com­
municate it. Both are essential. Neither one alone is sufficient to the scientific 
enterprise. This entire work is concerned with the communication aspect of 
science. That is, the basic problem is how do you, when you know the truth, 
convince me? It is a requirement for participation in the scientific community 
that communication be part of the activity, and that this communication 
always be directed to some idealized, perfect, audience. 

In order to satisfy this audience that the truth has been presented, there 
are certain reasonably well-defined procedural rules for the communication. 
These rules make this aspect rather simple by comparison to discovery. There 
is no recipe for the discovery of truth, but once it is in hand the communication 
is rather straightforward. That part of the literature which makes no effort to 
play by the rules of the game is nothing more than entertainment. Entertain­
ment has neither inherent value nor logical structure-the Greek dramatists 
to the contrary notwithstanding. When science is abandoned, then rules of 
evidence which apply to scientific enquiry are abandoned and the believability 
of statements is entirely an emotional matter. Whether or not such statements 
have information content is purely incidental. Entertainment may, or may 
not, have value but it should be labelled as such in order that the required 
willing suspension of disbelief be in effect. 

What This Book Is Not About 

There is nothing in here about data collection. Recognizing that many 
beginning students need guidance, reference is made to Slater's (1978) 
recommendations to ethologists. It is assumed that in all contexts the in­
vestigator knows the appropriate techniques for obtaining the necessary 
data. 

Also, it is not about classical experimental design. There is no expectation 
that the data are obtained in a laboratory environment where all relevant 
conditions are under tight experimenter control. 

Nor is it about deterministic theory, that is, the assumption is explicitly 
made that theories of interest in anthropology are statistical, involving sta­
tistical causation, and that deterministic models of anthropological phe­
nomena are necessarily inadequate. That statement is highly arbitrary. And 
in truth, I hope that it is wrong-life would be much simpler-but there is 
no way to resolve this issue at the moment. I am of the opinion that the 
current popularity of statistics in anthropology is due to ignorance of true 
dynamics. 
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Some Aspects of the Structure of Anthropology 

Anthropology is one of the sciences that expects the entire research activity, 
from theory through experiment, to be done by either one person or a small 
team. The result is expensive. In the larger scientific context, of course, very 
few dollars are spent on anthropology. When the return is not informative 
-according to generally accepted rules of evidence-then any price is too 
much. 

The result of expecting every anthropologist to produce a new "theoretical" 
development is a seeming unending stream of banality and/or scholasticism. 
Only a handful have ever had both the creative vision and technical skills to 
develop powerful theory. It is worth noting that none of these could have 
designed, executed, and analyzed the critical experiments. 

This work is prompted by about 10 years of attempting to teach statistical 
methods in research. All too often students find anthropology by a kind of 
intellectual random walk. Subjects that include any mathematics tend to 
be rejected summarily. Eventually and inevitably, faculty come to resemble 
their students. Since students are highly adaptive-all that I have seen 
qualify as Primates (I think)-their general intransigence is the failure of 
the discipline (their instructors) to convince them of the relevance of the 
techniques. This is not a conscious conspiracy. The problem is much deeper. 
It resides in the professional reward structure. Individuals are often recog­
nized proportionally to the weight of their contribution. "Why should I," 
the student legitimately asks, "bother learning this stuff when all I really need 
is 37 pounds of printed English?" This is the first question to be addressed 
later. 

Journalism 

The only thing that differentiates anthropology (or any science) from journal­
ism is the quality of the theories. Few of us are blessed with the requisite gifts 
for producing these things. (A very effective way around this difficulty is to 
take a mathematician to lunch today.) The absence of powerful theory results 
in journalism. The common use of statistics under these circumstances has 
conditioned the displacement reaction of rejecting statistics. That is, when the 
house falls down, blame the hammer, not the carpenter. 

The activity called llUlllerical description is rather insidious because it is 
adorned with the mantle of techp~cal respectability while being nothing more 
than description; it "embellishes gossip" (James, 1890) and foists the result off 
on the next generation of students as somehow more important than verbal 
description, a specious conclusion. 
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Two Cultures 

c.P. Snow's concept of two cultures-arts and sciences-unable to com­
municate seems particularly appropriate for anthropology except that the 
partitions of anthropology are at least two-dimensional. At the risk of creating 
straw-men, one may easily recognize two subcultures within the discipline: (1) 
a literary group, and (2) a numerical group. The former is routinely concerned 
with "big" questions, torturous reasoning, baroque writing, and is mathemati­
cally and numerically illiterate. The latter directs attention almost exclusively 
to "things" (if you can't count it, it doesn't count) and procedures, and is 
illiterate mathematically and in the traditional linguistic sense. The main 
difference between anthropology and physics in this regard is that the two 
groups of physicists acknowledge their interdependence. In anthropology we 
are still involved in attempting to eliminate the other group. 

Vancouver, B.c. Braxton M. Alfred 
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CHAPTER 1 

Introduction 

This introductory chapter will outline, and summarize the sequel. Only the 
most rudimentary kind of measurement technique is assumed, that is, counted 
data ar~ exclusively the subject of analysis. The reasons for this are legion but 
two important ones are: (1) All the necessary logic and decision concepts can 
be developed without diverting attention to matters that are of secondary 
importance in the research activity, and (2) historically, and in the present, 
this is by far the most common level of measurement in anthropology. Physical 
anthropologists count genes, cultural anthropologists count kinship systems, 
archaeologists count tool types, linguists count phonemes, etc. It is required 
only to know whether an observation is: a sickled or normal red cell, Hawaiian 
or other kinship, Folsom or other point, vowel or not, etc. A primitive level of 
measurement is adequate to support powerful and sensitive decision making. 

Formal Argument in Anthropology 

Considerable attention will be given to formally structured arguments. One 
justification for this is, as Whitehead said, that a formalism is useful because 
it gives you one less thing to worry about. Also throughout this discussion we 
will be concerned only with statements, which, by definition, are either true 
offalse. It is important to realize that a statement may be either. We make no 
prior judgment on its truth or falsity. All that is required is that one be able 
to determine whether a particular statement is, in fact, true or false. A state­
ment whose truth is unknown but can be determined is called a contingent 
statement. 

The purpose of formal structure in science is to provide a good justification 
for believing that a statement is either true or false. Many anthropologists 
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(and others) are committed to the proposition that statements are justified by 
the weight of evidence. In the absence of comprehensive meta-theory, enabling 
critical experiments, this condition will persist. Weight of evidence is adequate 
support for a decision only when it cannot be deferred, as in jurisprudence. 
(The phrase, unfortunately, lends itself to a literal interpretation.) 

A major part of the justification of scientific statements resides in the 
structure of the argument. An argument is a set of statements which is divided 
into two parts-the premises and the intended conclusion. There may be any 
number of statements in the argument but typically there will be several 
premises and a single conclusion. 

In the next chapter the structure of argument will be considered formally. 
The first two statements in the argument are the conditionals 

if [THEORY] then [HYPOTHESIS] 
if [HYPOTHESIS] then [OBSERVATION]. 

Note carefully that a hypothesis is a consequence of a theory. It is not-to 
quote an anthropologist -a guess. The capricious formulation of "hypoth­
eses" is responsible for much of the shoddy work that one encounters in the 
literature. Notice also that a hypothesis is logically justified when exhibited 
as the necessary conclusion of a formal argument. This produces deductive 
validity. An argument is said to be deductively valid when the truth of the 
premises makes it impossible that the conclusion is false. Deductive validity, 
however, is insufficient for the justification of scientific hypotheses. A deduc­
tive conclusion merely re-states part of the information given in the premises. 
Scientific reasoning cannot be adequately represented by deductive argument 
because scientific conclusions contain more information than any premises 
one might use to justify them. Arguments of this sort are called inductive. An 
argument is said to be a good inductive argument when the truth of its 
premises guarantee a high probability for the truth of its conclusion. 

The Place of Statistics in Research 

The theory being investigated completely determines the importance, or 
worth, of any statistic. If the theory is important then the techniques allowing 
one to decide whether to accept or reject are important. Often, but not always, 
the techniques are statistical. If the theory is silly or trivial then nothing can 
salvage it-not mountains of data processed by high powered computers 
using the most sophisticated statistical methods. 

There are three basic uses of statistics in the research environment-de­
scription, hypothesis testing, and estimation. There is a logical sequence to 
these: (1) "what is out there?", (2) "why is it the way it is?", and then (3) "what 
are the (numerical) values of the model parameters?" Research activity is con­
sidered to begin with the "why?" question. This is the phase which involves 
examining the implications of the theory developed to explain the observation 
obtained by asking the "what?" question. When a particular theory has sur-
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vived the rigors of repeated attempts to falsify it, activity and interest shift to 
the problem of determining the values of the parameters. 

For example, it has been observed (description) that the frequency of the 
sickle-cell trait in the U.S. is low among the young and high among the old 
(sic). The reason for this (theory) is that differential fertility favoring the nor­
mal hemoglobin phenotype is driving this evolutionary phenomenon. If this 
should be supported then we may be interested in the magnitude (estimation) 
of the fertility differential. Frequently researchers attempt to combine the test 
of a hypothesis and the estimation of parameters. But, as we shall see later, 
these two activities are fundamentally different-the goals, and hence the 
requirements are not the same. So it is not, in general, possible to do both 
things with the same project. 

I wish also to emphasize the point that numerical results are not in any 
sense substitutable for careful thought. Numbers do not produce value. The 
widespread availability of muscular number-crunching computers has had the 
untoward effect of yielding power to the sorcerer's apprentice. Statistics and 
computers must support the research activity, not motivate it. If the theory is 
elegant and important, it may be adequately tested by a single observation. 
If it is clumsy, crude, and trivial you will not live long enough to collect and 
process the data to transform it. 

What Is to Come? 

In the next chapter, the propositional analysis of four common argument 
structures is presented. The goal of such an analysis is to determine the validity 
of an argument. The mechanism used is the truth table. Because invalid 
arguments produce false conclusions under some conditions, only valid argu­
ments are acceptable in science. If the terms of the conditional are as above­
HYPOTHESIS and OBSERVATION-then HYPOTHESIS only may be 
the antecedent. (A commonly encountered variation is to insert OBSERVA­
TION as the antecedent. This will be considered later.) The result of the 
analysis produces the well known-Aristotle did it first-if non-intuitive 
conclusion that the only valid argument available to science is one called 
"Deny the Consequent." This condition produces the apparently bizarre 
requirement that if the predicted OBSERVATION is false then so is the 
HYPOTHESIS. Chapter 2 concludes with some logical pathologies in order 
to establish that valid arguments may produced absurd conclusions. So 
validity is necessary to, but not sufficient for, good science. 

Chapter 3 addresses the matters of inductive argument, the scientific pro­
gram, and the conditions necessary for a good test of a HYPOTHESIS. A 
deductive argument preserves truth-the conclusion is necessarily true-but 
cannot produce novelty. Without the ability to make novel assertions, there 
would be no science. An inductive argument facilitates novelty, but the conclu­
sion can be only probabalistically true at best. Inductive argument is, tpere­
fore, an essential ingredient of science, the truth of conclusions is always only 
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probable. The scientific program, then is a set of statements, which includes 
an inductive argument, leading to a conclusion which declares that the theory 
is probably true. The two conditions of a good test must be satisfied before the 
argument is constructed. These relate to the connection between HYPOTH­
ESIS and OBSERVATION. The conditions are 

(1) if [HYPOTHESIS] then [OBSERVATION], and 
(2) if [not HYPOTHESIS] then [not OBSERVATION]. 

Condition 1 will be satisfied if OBSERVATION is a deductive consequence 
of HYPOTHESIS. Satisfying condition 2 is the most difficult step in the entire 
enterprise. It is a rare event. 

In Chapter 4 the problem of deducing OBSERVATION from HYPOTH­
ESIS is considered. Some basic principles of probability theory are pre­
sented initially and then the matter offormalizing the theory is discussed from 
the perspective of several kinds of well known models. This is the subject of 
a very large body of literature in mathematics. The brief survey there is 
intended to motivate intuition. Two kinds of stochastic models are presented 
-the Poisson and Markov. Also there is a model of structure in a series of 
events. The application is to choreography in social behavior. And finally, due 
to the breadth of applications (especially in evolutionary theory) there is an 
introductory description of some small games. 

Chapter 5 is the primary goal of this effort. The scientific process culminates 
ultimately in the test of a hypothesis. In this chapter are presented techniques 
for testing a variety of hypotheses with frequency, categorical, data only. The 
variety which is accessible depends on the complexity of the structure of the 
observations. For example, observations of age and sex are more complex 
than observations of sex alone. While it is easily possible today to fit models, 
evaluate hypotheses, to very complex data, this chapter terminates with a 
discussion of a four dimensional structure. The reason for this arbitrary limit 
is that the results must be interpreted. When a hypothesis is very precise then 
complexity is not a serious matter. The model specified by the hypothesis is 
tested for for goodness offit to data and is either rejected or not. It is frequently 
the case in the life and social sciences that data are also used in an exploratory 
manner. (OBSERVATION is inserted as the antecedent in the conditional 
statement.) This process may result in observing a good fit for an unantic­
ipated model. If this is to be communicated to other scientists it must be fully 
interpreted. Interpreting a complex model for which there is no prior hypoth­
esis may well be impossible. 

In the summary, each of these topics is considered to be a step in a process. 
It is quite artificial to exhibit the sequence as if it were linear proceeding from 
rigorous logic, to model of the hypothesis, and finally to the experimental test 
of the hypothesis. The human mind does not operate this way and so it is 
doubtful if any project has ever followed this trajectory. These are, however, 
the ad hoc minimal components of believable research. 



CHAPTER 2 

Some Elementary Principles of 
Deductive Argument 

The burden of communication in the arts is shared between artist and audi­
ence. This allows the artist, regardless of his effort, to be "misunderstood." In 
science the burden is totally on the initiator, the scientist. Clarity of logic is, 
therefore, an essential ingredient. Formalism is a useful, and in most cases of 
interest, necessary, part of the process. 

Statements, Arguments 

The statement is the building block. A statement is a declarative sentence 
which is either true or false. It cannot be both true and false; nor can it be 
neither true nor false. It must be exactly one or the other. 

Scientific arguments are conditional arguments. A conditional argument 
includes some conditional statements. A conditional statement is character­
ized by an if [.] then [.] structure. The statement following the if is called 
the antecedent and that which follows the then is called the consequent. 

Conventions 

We shall adopt the following notational conventions: [P] will symbolize the 
antecedent and [Q] the consequent. The standard tool for determining the 
truth of an argument or compound statement of any kind is the truth table. In 
the early parts of this chapter we shall consider some of the basic principles 
of propositional logic and truth tables. 

Since all statements are either TRUE or FALSE, each has a property called 
the truth value. (Upper case will be used to refer to the truth value ofa specific 
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statement.) Compound statements are conjunctions of simple statements. The 
truth value of any compound statement is determined entirely by the truth 
values of its components. There is a very small number of ways of connecting 
statements. In fact, in this section we will consider only four. They are called 
conjunction, disjunction, negation, and conditional. In common language, 
conjunction is indicated by the word and; disjunction is indicated by or; and 
negation by not; conditional is indicated by if [ . ] then [.]. 

A further convention involves the construction of the truth tables them­
selves. The leftmost columns will always be dedicated to the truth values of the 
simple statements. Note that the number oflines in a truth table is completely 
determined by the number of simple statements which are involved. Each line 
is a different combination of the truth values of the simple statements. If there 
is but a single statement, there are two lines in the truth table because the 
statement can be only true or false. If there are two simple statements, each 
of which may be either true or false, then there will be four lines in the truth 
table. Extending this we note that if there are three simple statements, each 
of which may be true or false, there will be eight lines in the truth table. In 
general, when there are n simple statements, there will be 2n lines in the truth 
table. 

2.1. Common Connectives for Statements 

2.1.1. Conjunction and Disjunction 

The truth values of conjunctions and disjunctions for two simple state­
ments under all possible values of the simple statements are presented in 
Table 2.1. A bit of reflection will convince you that these values for the 
connectives, that is for the compound statements, are intuitively quite plau­
sible. For example, conjunction is true only if both of the simple statements 
are true. It is not the case that the conjunction can be true when either or both 
of the simple statements are false. And note that just the reverse is true for 
disjunction. That is, when either or both of its simple statements are true the 
disjunction itself is true, but when both of the simple statements are false, the 

Table 2.1. Truth Values of Conjunction and 
Disjunction 

Simple statements Conjunction Disjunction 
P Q PandQ PorQ 

T T T T 
T F F T 
F T F T 
F F F F 
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disjunction is also false. No truth table will be presented for the connective 
negation because it seems straightforward: if [P] is TRUE, [not P] must be 
FALSE. And conversely if [P] is FALSE, then [not P] is TRUE. That is to 
say, negation simply reverses the truth value. 

2.1.2. The Conditional 

Science depends very heavily on the use of conditional statements of the form 
if [P] then [Q]. The truth table for the conditional is presented in Table 2.2. 
Consider the left-most three columns of this table. The first two lines are 
sensible: when the premise [P] is TRUE, then if the conclusion is TRUE, the 
conditional statement is TRUE, and when the premise is TRUE and the 
conclusion FALSE, the conditional statement is also FALSE. 

False Premises 

The last two lines defeat common sense and intuition abandons us entirely. 
For example, what are we to make of a statement which has a false premise 
and a true conclusion? What should we have for the truth value of the 
conditional? The value TRUE has been assigned to this particular construc­
tion as it has to the last line of the truth table. That is, when the premise is 
false and the conclusion is also false then the conditional statement if[P] then 
[Q] is true. No further motivation can be given to elaborate the truth values 
which have been assigned to the last two lines of this particular truth table. 
However, you should be aware that these values are not arbitrary and logi­
cians are able to show that, if any other values are assigned to these lines of 
the table, then some totally unacceptable kinds of statements result. Fortu­
nately the last two lines of this table need not deter us as they do not enter 
science. Science is only concerned with arguments which have true premises. 

Functional Equivalents 

Perhaps a bit of interpretive solace can be derived from a consideration of the 
last two columns of Table 2.2 where some functional equivalents of the 
conditional statements are presented. For example, the statement (not (P and 

Table 2.2. Truth Values of the Conditional 

P Q ifP then Q not (P and not Q) not P or Q 

T T T T T 
T F F F F 
F T T T T 
F F T T T 
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not Q)) produces exactly the same truth table as the conditional statement. 
Also the statement (not P or Q) results in an identical truth table. As functional 
equivalents, these constructions may be substituted for the conditional wher­
ever it is useful. 

2.2. Argument 

Valid Argument 

Here we consider the validity of some common argument structures. A sci­
entific argument always has three parts or constituent components: (1) a 
conditional statement, (2) an intermediate conclusion, and (3) an ultimate 
conclusion. 

(1) if [P] then [Q] 
(2) [intermediate conclusion] 
(3) [ultimate conclusion]. 

In a formal argument of this sort the conditional statement and the inter­
mediate conclusion are the premises of the argument. For our purposes the 
intermediate conclusion is that which is subject to observation, and the 
ultimate conclusion is the intended result of the argument. 

Definition. An argument is valid when the conjunction of all constituent 
components is true. 

Note that this definition means that: (1) both components of the conditional 
must be true, (2) the intermediate conclusion must be true, and (3) the ultimate 
conclusion must be true. Then the argument is valid. 

2.2.1. Affirm the Antecedent 

Consider as a first structure of argument 

if [P] then [Q] 
[P] 
thus [Q]. 

This is read as if [P] then [Q], [P] is TRUE, therefore [Q] must be TRUE. 
In Table 2.3. the truth table for this argument structure is presented. Note 
from the heading of this table that the argument is sufficiently common that 
it has a name. It's called Affirming the Antecedent. Consider the third and 
fourth columns-if [P] then [Q] and [P]. Form the conjunction for each line 
of this truth table and produce column 5, (if [P] then [Q]) and [P], of the 
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Table 2.3. Truth Table for "Affirm the Antecedent" 

Simple Intermediate Intended 
statement Conditional conclusion (ifP then Q) result Ultimate 

P Q ifP then Q (P) andP (Q) conclusion 

T T T T T T T 
T F F T F F F 
F T T F F T F 
F F T F F F F 

Table 2.4. Truth Table for "Deny the Consequent" 

Simple Intermediate Intended 
statement Conditional conclusion (ifP then Q) result Ultimate 

P Q ifP then Q (not Q) and not Q (not P) conclusion 

T T T F F F F 
T F F T F F F 
F T T F F T F 
F F T T T T T 

table. The premises are jointly true only in the first row of this column. Now 
form the conjunction of the joint premises and the intended result producing 
column 7, the ultimate conclusion. In all cases involving true premises (row 
1), the ultimate conclusion is true. An argument is valid if the conclusion is 
true when the premises are. This argument is valid. 

2.2.2. Deny the Consequent 

Let us turn now to a second common argument structure which also has 
acquired a name due to frequent usage. It's called Denying the Consequent, 
and its structure is presented as 

if [P] then [Q] 
not [Q] 
thus [not P]. 

The truth table for this argument is presented in Table 2.4. Looking at this 
table and forming the conjunction of if [P] then [Q], and not [Q], for each 
row, we observe that the only time the premises are jointly true is in line 4. 
That is, the conditional is TRUE, and the intermediate conclusion not [Q] is 
also TRUE. It may seem exceedingly strange to produce a valid argument 
when both of the simple statements involved in the conditional statement are 
themselves false. This structure is basic to all science, however, and conse­
quently we will have much more to say about it later. 
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Table 2.5. Truth Table for "Deny the Antecedent" 

Simple Intermediate Intended 
statement Conditional conclusion (ifP then Q) result Ultimate 

P Q ifP then Q (not P) and not P (not Q) conclusion 

T T T F F F F 
T F F F F T F 
F T T T T F F 
F F T T T T T 

2.2.3. Deny the Antecedent 

A third argument structure is called Deny the Antecedent. Its structure is 
presented as 

if [PJ then [QJ 
not [PJ 
thus [not QJ 

and its truth table in Table 2.5. 
Only lines 3 and 4 are of concern in the determination of the validity of the 

argument. The conjunction of premises is true in both cases. Consider line 3. 
Notice that the truth value of the conditional is TRUE, as is that of the 
intermediate conclusion, not [PJ. The conjunction of the conditional and the 
intermediate conclusion then, yields the value true. However, refer back to the 
truth value of the simple statement [QJ. In line 3, [QJ has a truth value of 
TRUE so not [QJ is FALSE. Therefore, this particular argument is invalid, 
and it is invalid specifically because we have an instance wherein both of the 
premises of the argument, that is, the conditional statement and the inter­
mediate conclusion are TRUE, but the conclusion of the argument is FALSE. 

2.2.4. Affirm the Consequent 

And finally let's consider the argument structure called Affirm the Consequent. 
The structure is presented as 

if [PJ then [QJ 
[QJ 
thus [PJ 

and the truth table is presented in Table 2.6. 
Consider line 3. There both the conditional statement and the intermediate 

conclusion, [Q], are TR UE. Their conjunction, then, is TRUE. However, refer 
back to the truth value of the simple statement, [P], and observe that it (line 
3) is FALSE. This argument structure, therefore, is invalid and specifically 
again because we have an instance wherein the premises of the argument are 
both TRUE and the conclusion FALSE. Even though invalid, this argument 
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Table 2.6. Truth Table for "Affirm the Consequent" 

Simple Intermediate Intended 
statement Conditional conclusion (ifP then Q) result Ultimate 

P Q ifP then Q (Q) andQ (P) conclusion 

T T T T T T T 
T F F F F T F 
F T T T T F F 
F F T F F F F 

has a strong appeal to intuition. After all, if a theory predicts something which 
is then observed to be true, surely the theory is supported somehow. In fact 
Polya (1954) enshrines this as a principle: 

The verification of a consequence renders a conjecture more credible. 

But, while credibility may be enough to sustain an interest in the theory, 
it is not a valid structure and, so, has the potential of producing erroneous 
statements. Consider the following: 

"Sire," he said to him, "I beg that you will excuse my asking you a question-" 
"I order you to ask me a question," the king hastened to assure him. 
"Sire-over what do you rule?" 
"Over everything," said the king, with magnificent simplicity. 
"Over everything?" 
The king made a gesture, which took in his planet, the other planets, and all 

the stars .... 
"And the stars obey you?" 
"Certainly they do," the kind said. "They obey instantly. I do not permit 

insubordination .... " 
"If I ordered a general to fly from one flower to another like a butterfly ... 

which one of us would be in the wrong?" the king demanded. "The general, or 
myself?" 

"You," said the little prince firmly. 
"Exactly. One must require from each one the duty which each one can 

perform," the king went on. "Accepted authority rests first of all on reason. If 
you ordered your people to go and throw themselves into the sea, they would 
rise up in revolution. I have the right to require obedience because my orders 
are reasonable." 

Define 

Antoine de Saint-Exupery 
The Little Prince 

[P]: "I am king of the universe." 
[Q]: "The stars and planets obey me." 

Then the king's argument is 

if [P] then [Q] 
[Q] 
thus [P]. 
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2.2.5. Decomposition of Arguments 

Consider the statement (not ([P] and not [Q])). Let us determine the truth 
table for the statement. 

(3) (1) (2) (1) 
[P] [Q] not ([P] and not [Q]) 

T T T T F F 
T F F T T T 
F T T F F F 
F F T F F T 

In order to process the statement it was necessary to perform operations 
sequentially-the sequence of the operation is indicated above each column. 
First rewrite the statement to the right such that each variable and operator 
heads a new column. Since the operations, [P] and not [Q], are performed 
immediately, these truth values are entered and these columns are first in 
sequence. It is important to evaluate statements within parentheses before 
attempting higher level relationships. So the next step is to enter the truth 
table for the conjunction of [P] and not [Q] under the and within the 
parentheses. This column is the second, (2), step. The truth table in this column 
gives the value of the entire parenthesized statement so that all that remains 
to do is negate it and enter this as (3). This column is the truth table for the 
entire statement. As a point of interest, you should compare this result with 
column 4 of Table 2.2. 

The order of processing is determined by the inner parentheses. Note that 
if they are removed the statement becomes (not [P] and not [Q]) which is 
quite a different statement. 

Now reconsider the argument, affirm the consequent 

First premise: not [P] or [Q] 
Second premise: [Q] 
Intended result: not [P]. 

We may write this as 

(((not [P] or [Q]) and [Q]) and not [P]) 

and create the truth table 

(1) (2) (1) (3) (1) (4) 
[PJ [QJ «(not [PJ or [QJ) and [QJ) and 

T T F T T T T F 
T F F F F F F F 
F T T T T T T T 
F F T T F F F F 

(1) 
not [PJ) 

F 
F 
T 
T 
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Note that the argument is not valid because there is an instance of all prem­
ises being true but the intended result, (4), is false (line 1). More importantly, 
note how the argument was structured with parentheses so that its truth table 
could be evaluated. Also note how the parentheses determine the processing 
sequence. 

2.2.6. Paradox 

Lest you be tempted to think that all problems are, in principle, logical, here 
you will see only a small set ofthe "pathologies," otherwise known as paradox. 
Consider the argument 

Premise: [P] 
Intended result: if [Q] then [P]. 

Form the expression 

([P] and (if [Q] then [P])) 

and evaluate its truth table in Table 2.7. Notice that the conjunction of the 
single premise and the intended result is true when the premise is true so the 
argument is valid. As both [P] and [Q] are completely general with no con­
straints except that they be statements, this result demonstrates (proves) that 
a true statement is validly implied by any statement whether true or false. 

Next we analyze 

Premise: not [P] 
Intended result: if [P] then [Q]. 

Form the expression 

(not [P] and (if [P] then [Q]» 

from which the truth table is constructed in Table 2.8. Since the conjunction 
of the single premise and the intended result is true when the premise is, the 
argument is valid. So we may conclude that any statement is validly implied 
by a false statement (see lines 3 and 4, column (2». 

Table 2.7. True Propositions Are 
Implied by Any Proposition 

(1 ) (2) (1) 
P Q (P and (ifQ then P)) 

T T T T T 
T F T T T 
F T F F F 
F F F F T 
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Table 2.8. False Propositions Imply 
Anything 

(1) (2) (1) 
P Q (not P and (ifP then Q)) 

T T F F T 
T F F F F 
F T T T T 
F F T T T 

Table 2.9. Anything Is Implied by a 
Contradiction 

(1) (2) (1) (3) (1) 
P Q ((P and not P) and Q) 

T T T F F F T 
T F T F F F F 
F T F F T F T 
F F F F T F F 

Next we consider 

Premise: [P] and not [P] 
Intended result: [QJ. 

Create the expression 

(([P] and not [P]) and [Q]) 

and produce the truth table in Table 2.9. This example illustrates an important 
fact about validity and provides a sufficient reason for our restricting attention 
to arguments with true premises. This is an instance of our being unable to 
assert that the argument is invalid since there is no case of the premises being 
true and the conclusion false. We may, therefore, conclude that anything is 
implied by a contradiction. 

Next we consider 

Premise: [Q] 
Intended result: [P] or not [PJ. 

Form the expression 

([Q] and ([P] or not [PJ)) 

and the truth table in Table 2.10. 
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Table 2.10. A Tautology May Be Validly 
Inferred from Any Proposition 

(1) (3) (1) (2) (1) 
P Q (Q and (P or not P)) 

T T T T T T F 
T F F F T T F 
F T T T F T T 
F F F F F T T 

Notice that when the premise is true so is the conclusion and we conclude 
that the argument is valid. From that we may infer that a tautology is validly 
implied by any proposition. 

These examples, while curious, and I trust, disturbing, are not true para­
doxes. Usually the conditions of logical paradox are: (1) self-reference, (2) 
contradiction, and (3) vicious circle (Hughes, 1975). For example: 

1. This sentence is false. 
2. Socrates: What Plato is about to say is false. 

Plato: Socrates has just spoken truly. 
3. Hempel's Paradox of the crow seems to go to the heart of the scientific 

method. It is cast as follows: 

A scientist wishes to investigate the hypothesis "All crows are black." He begins 
examining crows and the more black ones he finds, the more probable, he thinks, 
the hypothesis. Hempel proved that a purple cow would be a confirming instance 
of the hypothesis that all crows are black. Let: 

[P]: crow 
[Q]: black. 

By hypothesis if [P] then [Q]. This statement can be shown to be equivalent to 
'if not black then not crow' that is if not [Q] then not [P]. So a confirming 
observation for the second statement is a confirming observation of the first. 
Any non-black observation which is non-crow is confirmation of all crows are 
black! Clearly a purple cow is non-black and non-crow so it confirms the 
hypothesis. 

2.2.7. Summary of Deductive Propositional Logic 

Up to this point we have been considering deductive logic exclusively and it 
is time to recognize that this is not adequate for the development of a science. 
Later when considering induction we will have occasion to develop this more 
completely. 
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Table 2.11. Truth Table Summary of Argument Types 

Conjunction of premises 

Simple Affirm Deny Deny Affirm 
statement Conditional antecedent consequent antecedent consequent 

P Q ifP then Q (P) (not Q) (not P) (Q) 

T T T T F F T 
T F F F F F F 
F T T F F T T 
F F T F T T F 

In Table 2.11. is presented the conjunction of premises for each of the 
argument types described in this chapter. 

Since the intended result is not specified, validity is not determined. 



CHAPTER 3 

The Logic of Scientific Argument 

Science and deductive logic are not equivalent. In this chapter the logical basis 
of science is presented. A general feature of all deductively valid arguments is 
that the conclusion contains no more information than that which is given in 
the premises. The conclusion simply restates the information in the premises. 
Giere (1984), on whom this disucssion depends heavily, defines a good induc­
tive argument as 

Definition. An argument is a good inductive argument if and only if the truth 
of its premises guarantee an appropriately high probability for the truth of its 
conclusion. 

The main difference between good inductive and good deductive argument 
resides in the truth value of the conclusion. A deductively valid argument is 
necessarily true. A valid inductive argument is probably true. The distinguish­
ing feature of an inductive argument is that the conclusion c()ntains informa­
tion which is not present in the premises, so, by definition, the conclusion 
cannot ever be deductively true. Furthermore, inductive arguments do not 
preserve truth; that is, it is possible for a good inductive argument to have a 
false conclusion even though all of its premises are true. 

Theory and Hypothesis 

It is probably also clear by now that the premises in an inductive argument 
are related to scientific theory in some way. It is useful at this point to dis­
tinguish a theory from a theoretical hypothesis. 

Two statements given in the introduction are repeated here for reference. 
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1. if [THEORY] then [HYPOTHESIS]. 
2. if [HYPOTHESIS] then tOBSERVATIONj. 

THEORY is a definition of a natural system, and HYPOTHESIS is a deduc­
tive consequence of the definition. Note that theories have the form of a 
definition and, so, say nothing about the world. An implied, but unstated, 
assertion allowing the second statement is that a specific real system is of the 
type that is defined by THEO R Y. This is the creative, insightful, step in science. 
There is no logic to support it. It is done by convention and expert prior 
knowledge of the real system. This is where the connection between the 
abstract, symbolic, HYPOTHESIS and the physical system is made. The 
strength of the second statement above comes entirely from the justification 
of this connection. Strong justification makes the second statement strong, 
and conversely. In the following discussion it will be assumed that this justifi­
cation is strong. Ordinarily this will mean that the components, language, and 
forces of THEORY are those "customarily" used to describe the real system. 
Since it is not necessary that good theories give precise definitions of their key 
concepts, HYPOTHESIS in the first statement, the theoretical hypothesis, is 
justified by showing that it is the conclusion of an argument in which some 
other statements are premises. The transformation of the theoretical hypoth­
esis into a research hypothesis, HYPOTHESIS in the second statement, is 
justified by the assertion that THEORY is a model of a real system. 

The structural statements above are modified as 

1. if [THEORY] then [theoretical HYPOTHESIS] 
la. [THEORY is a model of the real system] 
2. if [research HYPOTHESIS] then [PREDICTION] 

where PREDICTION is an OBSERVATION that should be made if THE­
ORY is an accurate model. PREDICTION is an expected OBSERVATION. 

Now consider the basic program of science. 

3.1. The Program of Science 

In this section is a version of the model of science. It is based on the argument 
structure of Section 2.2.2., deny the consequent. Recall that this is the only 
valid structure which allows the prediction to fill the role oflogical consequent. 
Also expectably the model accommodates the definition of a good inductive 
argument. 

1. Initiating premise: 
if [THEORY] then [theoretical HYPOTHESIS] 

2. Transforming premise: 
[THEORY is a model of the real system] 

3. First premise: 
if [not research HYPOTHESIS] then [probably not PREDICTION] 
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4. Second premise: 
[PREDICTION is probably TRUE] 

5. Intermediate conclusion: 
thus [research HYPOTHESIS is probably TRUE] 

6. Ultimate conclusion: 
thus [THEORY is probably TRUE] 

Components of the Program 

19 

Before stating the model symbolically consider the components. Line 1, the 
initiating premise, is included as a reminder that HYPOTHESIS has a specific 
origin in the theory and does not exist independently. Lines, 3, 4, and 5 
constitute a denial of the consequent argument. Notice that the antecedent is 
itself the negated hypothesis. In line 4 PREDICTION is observed, and line 5 
is the valid conclusion-the negation of the antecedent. Line 6 follows only 
because ofline 2. 

Notice that the only inductive step in this scientific program is in line 4 of 
the program. 

The initiating premise (line 1) in the argument is responsible for the vast 
majority of the scientific literature. It is necessary initially that one be able 
to show that a particular prediction (theoretical HYPOTHESIS) is a neces­
sary consequence of THEORY. Additionally one must show that without the 
theory, the hypothesis does not result. 

Line 2 establishes the connection of the theory to the realm of observation. 
Since it is difficult, if not impossible, as well as intellectually unsatisfying, to 
observe that a prediction did not occur, line 3 asserts the negation of the 
qualified line 1: if research HYPOTHESIS is not TRUE then PREDICtION 
will probably not be observed. 

Now turn your attention to the second premise (line 4) in the argument, 
that is, the prediction has turned out to be (probably) true. This is the equiv­
alent of denying the consequent in line 3 and so the basic structure of the 
argument is valid. It should be pointed out in passing that this second prem­
ise is the primary subject of most of this work, that is, the mechanisms and 
procedures by which one decides whether or not a particular prediction has 
in fact turned out to be (probably) true. 

Recall that the prediction was not stated initially in absolute or precise 
terms. It was, on the contrary, stated (line 3) in terms of if the hypothesis is 
true then very probably the prediction is true. The determination of whether 
or not the prediction has been observed in the world is frequently non-trivial, 
and it constitutes the subject matter of that body of mathematics known as 
statistics. Note, however, that statistics alone is insufficient to determine 
whether the prediction has been observed. One also needs to design an 
experiment and/or other observational techniques, make measurements, and 
process the data. 
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The intermediate conclusion is stated in terms of the negation of the ante­
cedent in the conditional statement (line 3). This follows because the pre­
diction was observed to be true and as the consequent in the first premise it 
was stated in the negative. 

Symbolic Rendering of the Program 

This scientific program produces the result that when the prediction is true, 
then only by coincidence can the hypotliesis be false. Notice that in recogniz­
ing the possibility that the hypothesis can be false under these conditions is 
in the nature of an inductive argument. This is an unlikely event when this 
program is satisfied. The program is typically shortened as 

if not [H] then probably not [P] 
[P] 
thus [H]. 

A Common Invalid Argument 

This shortened form facilitates the perception of an invalid argument which 
is pervasive throughout much of the social and life sciences. Consider the 
argument 

if [H] then [P] 
[P] ['affirm the consequenf] 
thus [H]. 

This argument is: if [antecedent] then [consequent], the [consequent] is 
TRUE, thus [antecedent is TRUE]. This is an affirmation of the consequent 
and has been known to be an invalid argument structure for at least 2000 
years. Even though invalid, the argument does seem to add "credibility" 
to the hypothesis (Polya, op cit). This, however, is outside of the scientific 
program. 

3.2. Elements of a Good Test 

Notice first of all that the reason for the test is to obtain the best possible 
judgment of the truth value of the theoretical hypothesis, not the accuracy of 
the prediction. This point establishes that we are not concerned with knowing 
how much of something is true, but only with whether the hypothesis is true. 
This has important implications for the design of the experiment. Secondly, 
note that the prediction depends upon the hypothesis through a deductive 
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argument. The prediction is deduced from premises that include the hypoth­
esis and could not be deduced from the remaining premises if the hypothesis 
were not present. In the event that HYPOTHESIS is TR VE but the prediction 
fails, it is the case that the prediction does not follow deductively from the 
hypothesis. 

A condition not listed below is that the prediction must be verifiable. It 
must be possible to determine, when the experiment is completed, whether the 
prediction occurred or not. Some events are easier than others to verify. For 
example, a returning comet is easily observed. It is considerably more difficult 
to determine whether the mating of heterozygotes produces offspring pheno­
types in the ratio of 3 : 1 dominants to recessives. And it seems to be nearly 
impossible to determine whether fraternal polyandry increases male fitness 
(Beall and Goldstein, 1981). At the risk of stating the obvious, if a hypothesis 
does not generate a verifiable prediction then it is useless. 

In this section I shall present two conditions for a good test of a hypothesis 
and show that these take the sting out of Hempel's paradox. It should be 
understood that these conditions must be satisfied before the structure of the 
scientific program is relevant. 

A good test of a research hypothesis must establish (1) that the prediction 
follows from the hypothesis, and (2) that if the hypothesis is not true, the 
prediction does not follow. 

3.2.1. The First Condition 

The conditional to be evaluated is 

if [research HYPOTHESIS] then [PREDICTION] 

or symbolically 

if [H] then [P]. (3.1) 

This is the first condition for a good test of the hypothesis. Recall that the 
conditional structure means that the consequent follows from the antecedent 
deductively. The strongest possible vehicle for this step is mathematics. Rig­
orous formal argument is rare in anthropology; typically recourse is had to 
verbal reasoning. This allows and seems to encourage misunderstanding both 
within and without the community of the discipline. 

In testing, it is essential to realize that it is the hypothesis which is tested 
and not the prediction. Consequently the first condition for a good test is that 
the prediction follow in a deductive fashion from the hypothesis. This condi­
tion establishes that the hypothesis is necessary. In the event that the hypoth­
esis is true and the prediction fails, the prediction is not a logical conse­
quence of the hypothesis. One of the very common failings of anthropological 
research resides here. When the hypothesis is sufficiently vague that there may 
be some dispute about what it implies then it is unlikely that the prediction 
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will follow deductively from the hypothesis. This matter needs considerable 
attention on the part of the investigator and failure to satisfy this condition 
will produce an inadequate test of the hypothesis. 

3.2.2. The Second Condition 

The second condition for a good test of a hypothesis is 

if not [H] then probably not [P]. (3.2) 

This may be read as: if the hypothesis is not true then very likely the prediction 
is not true. This may seem a very strange condition until you realize the pre­
diction is the only point of contact with the world. Note that the hypothesis 
cannot be justified by observing the prediction, for this results in the invalid 
argument structure affirming the consequent. Condition (3.2), then, provides 
the way out of this problem. It requires that the investigator be able to dem­
onstrate that the prediction is extremely unlikely to occur if the hypothesis 
is not true. Then the second premise in the argument structure is [P]. If [P] 
is observed, that is the negation of not [P], then one validly infers the truth 
of the hypothesis. Failure to satisfy condition (3.2) of a good test of an 
hypothesis is a common logical violation perpetrated in the life and social 
sciences. Satisfying this condition establishes that the hypothesis is sufficient. 
A major segment of the research activity in the "soft" sciences is dedicated to 
condition (3.1). That is, the prediction is observed and from this it is then con­
cluded that the hypothesis is true. You will recall that this is an invalid argu­
ment. The exclusive use of condition (3.1) is also responsible for the produc­
tion of scientific politics. If, for example, there are two hypotheses, say, [Hi] 
and [H2 ], both of which deductively support a single prediction [P] then how 
does one choose between them? Commonly the resort is to political activity 
with attendant appeals to authority and weight of evidence. (Politics also 
result from inadequate deduction of the prediction [P].) 

Clearly the prediction makes a statement about the world. A statement, 
recall, can be reliably determined to be either true or false. A prediction which 
cannot be checked using independent experimental or other means of obser­
vation is useless for the purpose of justifying an hypothesis. The hypothesis 
will be justified by the inductive scientific program. Recall that because this 
is an inductive argument it is possible that all the premises are true and the 
conclusion is false. Alternatively it is possible that the hypothesis is nowhere 
near being true and the prediction could come true by coincidence. This is a 
source of uncertainty which is due to induction. The other main source of 
uncertainty is due to the fact that the conclusion says the hypothesis is only 
approximately true. It is therefore possible that one could decide incorrectly 
about the truth of the hypothesis. (In Chapter 5 we shall have a great deal to 
say about this particular source of uncertainty.) 
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3.2.3. Failure to Satisfy Condition 2 

3.2.3.1. HEMPEL'S PARADOX 

The claim in Section 2.2.6 that any non-crow and non-black thing confirms 
that all crows are black is paradoxical only within the confines of deductive 
logic. Leaving aside the matter that crow is not a theoretical hypothesis, we 
may still see that neither of the two conditions is, or could be, satisfied. 
Specifically it cannot be shown that if [crow] then [black], nor especially can 
it be shown that if not [crow] then not [black]. So this paradox is simply a 
non-issue for science. 

3.2.3.2. SMOKING AND LUNG CANCER 

One of the most extensively studied phenomena in the modern world is 

if [smoke cigarettes] then [probably lung cancer], 

that is, smoking cigarettes increases the probability of lung cancer. Subject to 
accepted statistical criteria, this result has been repeatedly established. The 
scientific problems with this research are 

(1) Most smokers do not get lung cancer, that is, it is questionable whether 
condition 1 has been met. 

(2) Many victims of lung cancer never smoked or lived with someone who 
did; that is, condition 2 assuredly is not met. 

(3) The argument structure is invalid-"affirm the consequent." 

So unquestionably and without hesitation we may dismiss this as a scientific 
result. 

3.2.3.3. EVOLUTIONARY THEORY 

The inability of evolutionists to satisfy condition 2 

if not [evolution] then not [man] 

allows "Creation Science." 

3.3. Examples 

In the examples which follow, it was necessary to consider fields other than 
anthropology in order to present a complete sample. One need not focus on 
errors in deductive logic-blunders-required to produce the consequent 
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from the antecedent in order to fill several volumes with examples of bad 
science. (Here it is worth recalling that the name of our discipline asserts that 
it is a science.) There are numerous examples of fallacious arguments as well. 
The reason for this wasteland is the incomprehensible poverty of theory in 
the discipline. There is no case of an anthropological theory which will support 
the process of producing a theoretical hypothesis. Without a hypothesis, there 
can be no verifiable prediction. Consequently it must be accepted that anthro­
pology-at least-has not satisfied its obligation to its supporters to produce 
a science. This means that the consumers of anthropology-students and 
public-are not being provided with believable statements, and, so, must 
accept or reject statements on other than rational criteria. I suspect that in 
the absence of reason, one resorts to a variety of emotional crutches-such 
as the "weight" of evidence, or attributes of the proponent of the latest 
"theory." 

By no means is anthropology unique in this regard. We are daily bom­
barded with solemn, authoritative, and contradictory, advice about nearly 
every aspect of modern living. The punch line for this process is "now you 
decide." This trivializes the matter-it becomes the equivalent of choosing a 
laundry detergent. It is also the case that myriad decisions must be made which 
cannot await scientific support. 

3.3.1. Halley's Comet 

Edmund Halley began applying Newtonian mechanics to the orbits of comets 
in 1695. His argument assumed that the sun was one focus of these elliptical 
orbits and that the bodies constituted a Newtonian system. With these con­
cepts, he estimated that a comet he had observed in 1682 had a period of 75 
years. In his search of the literature he found reports of observations of comets 
every 75 years back to 1305. In 1705 he predicted that the next appearance 
would be in December 1758. Halley died in 1743. The reappearance of the 
comet on Christmas Day, 1758 resulted in the general acceptance of the 
Newtonian tradition. 

Initially Halley satisfied condition 1, that is, by assuming a Newtonian 
system he "predicted" past appearances of the comet. He established 

if [Newton] then [comet has a 75 year orbit]. 

Then he addressed condition 2 by predicting the return of the comet in a 
specific 30-day period 53 years in advance. Probability theory was very 
primitive in the early 18th century, but we can see that, if the comet were 
returning randomly, the probability of a return within a specified 30-day 
period is about 0.002. Even in 1705 it was recognized that the predicted event 
was highly improbable unless the real system was behaving as a Newtonian 
system, that is 

if not [Newton] then [highly improbable that the comet 
returns in December 1758]. 
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There was nothing, other than Newtonian mechanics, which could predict the 
time of arrival of comets. Since the predicted event occurred the following 
argument structure applies: 

if not [Newton] then [probably not prediction] 
[prediction] 
thus [Newton]. 

Note that verification was straightforward-either the comet appeared or 
it did not. 

3.3.2. Mendelian Genetics 

The experiments of Gregor Mendel constitute one of the turning points of 
biological science even though the report is highly questionable. Since all 
subsequent work has tended to support most of his results, it is not unreason­
able to accept at least one of his "laws," e.g. the law of segregation. Two other 
"laws" -independent assortment and dominance-are demonstrably false in 
general. 

At the time of Mendel's work, the accepted theory of inheritance was called 
"blending." This holds that offspring are a mixture, a blending, of the traits 
of both parents. (No one bothered about the fact that sex clearly is not 
blended.) This has a great deal of intuitive appeal since children do tend to 
resemble their parents. So Mendel's results were contrary to what "everyone 
knew" to be the case. 

He investigated several different traits of garden peas, but in order to pre­
sent the logic we need consider only one. Suppose a population of (sexually 
reproducing) organisms, some of which have the trait (TRAIT) and others do 
not (trait). Mendel created two different populations, both of which produced 
only one kind of offspring. Then he crossbred the two populations, producing 
a population of all TRAIT type. Next he interbred these plants and for every 
trait plant, three TRAIT plants were produced. The experiment and its results 
are 

parental: 

first filial: 

second filial: 

TRAIT x trait 

I 
TRAIT xb 

I 
TRAIT 

3 

I 
I 

trait 
1 

It is worth noting that Darwin was conducting a similar series of experiments 
at about the same time but he could not make sense of the second filial 
generation. 

The parts of Mendel's report which are questionable are the counts of the 
second filial generation-the results are insufficiently variable. The direction 
of the "fudging" indicates that Mendel was committed to the 3 : 1 ratio of 
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TRAIT to trait before the experiment was begun. The reason Darwin was 
stumped was that he had no theory of heredity prior to his experiments. 
Mendel did. If one has no expectation, as Darwin did not, then a value of 
3 TRAIT: 1 trait is no more or less meaningful than any other value. Mendel, 
on the other hand, had a very precise theory of heredity which specified that 
the only meaningful second filial generation result is 3 TRAIT: 1 trait. 

Mendel's theory was: each parent (randomly) contributes exactly one of two 
possible "particles" to their offspring. It can be easily shown that, under the 
conditions of the experiment, the only allowable result is 3 TRAIT: 1 trait. 
Condition 1 is, then, 

if [Mendel] then [3 : 1 in second filial] 

and the structure of the argument is 

if not [Mendel] then [not 3 : 1 in second filial] 
[3 : 1 in second filial] 
thus [Mendel]. 

Darwin's failure to obtain these results, at a time when he desperately 
needed to understand heredity, is a very poignant commentary on the price 
of "letting the data speak for themselves." 

3.3.3. The Genetic Structure of Populations 

In 1950 Muller defined what came to be called the classical model ofpopula­
tion structure. Basically this model assumes that there is a "normal" gene for 
each genetic locus for each ecological niche. Among othet things, this model 
predicts that most individuals in a given population are homozygous, they 
have two copies of the same "normal" gene at each genetic locus. Stable 
polymorphisms-more than one gene present in the population-should be 
rare. Genetic variation is a transient, if necessary evil. 

By 1966 a technique called electrophoresis made possible the study of pro­
tein polymorphsim and monomorphism. This allowed Lewontin and Hubby 
to estimate the relative amount of polymorphism. The amount was found to 
be much greater than was predicted by the classical model. 

Condition 1 is expressed as 

if [classical] then [homozygous]. 

If a gene enhances the biological fitness of an organism, evolutionary theory 
predicts that it will increase until the entire population is homozygous. This 
prediction is obtained mathematically so we may accept that condition 1 is 
satisfied. The work of Lewontin and Hubby produces the following argument 
structure 

if [classical] then [homozygous] 
not [homozygous] 
thus [not classical]. 
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The classical hypothesis seems to have been rejected. The failure to satisfy 
condition 2, however, leaves the entire field of research in a most unsatisfac­
tory state. The classical hypothesis does not uniquely produce homozygosity 
apparently. 

Notice that the rejection of the classical hypothesis means that the research 
process must start from the beginning-a new hypothesis must be deduced, 
it must generate a prediction about the relative frequency of polymorphism, 
and then condition 2 must be satisfied. If sufficient effort had been devoted to 
condition 2, the rejection of the classical hypothesis would have been unneces­
sary.1t would have been revealed to be inadequate. This would have produced 
a re-examination of the theory that produced the hypothesis. 

3.3.4. Blood Pressure Change 

A very common fallacy in anthropology is to suppose that because a hypoth­
esis explains some event the occurrence of that event provides grounds for 
believing that the hypothesis is correct. You will note that this is simply the 
invalid argument structure called affirming the consequent and it is displayed 
below in the new notational structure: 

if [H] then [P] 
[P] 
thus [H]. 

Examples of this particular fallacy are legion so only a single example will be 
given here. 

In 1950 Hans Selye reported that perceptual stimuli of various kinds are 
capable of activating the release of certain hormones which are implicated in 
what he called the "General Adaptive Syndrome" of stress. This description 
of the reaction to stress on the part of the organism will be called a "Selye 
system." A great deal of research effort was directed subsequently to environ­
mental stressors related to the clinical condition called hypertension. Alfred 
(1970) proposed that a change of cultural environment would activate the 
Selye system. He argued that if the Selye system is activated then both sys­
tolic and diastolic blood pressures should increase, though not necessarily 
enough to produce hypertension. Observations of blood pressure were taken 
on Navajo migrants in Denver, Colorado, and pre-migratory blood pressure 
readings were obtained from the health clinic on the Navajo reservation. The 
results were as expected. Both systolic and diastolic blood pressures increased 
between the two observational times. It was then concluded that migration 
was an activator of the Selyse system. The structure of the argument is 

if [migration activates the Selye system] then 
[blood pressure will rise] 

[blood pressure rose] 
thus [migration activates the Selye system]. 
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This is an example of the invalid argument "affirm the consequent." This 
argument structure is not deductively valid and it is not a good inductive 
argument. In order that this particular piece of work could be salvaged, it 
would be necessary to develop the argument that if migration does not activate 
the Selye system then systolic blood pressure would not rise. In short, it would 
be necessary to show that the rise in systolic blood pressure would be an 
improbable event if migration had not activated the Selye system. Implicitly 
recognising the weakness of the basic argument, Alfred went on to comment 
on a variety of things, for example, no obvious changes in dietary behavior, 
water chemistry, altitude, or temperature. It was noted that sleeping patterns 
were probably quite different on the Reservation as compared to the urban 
pattern. This made it impossible to show that the observation was improbable 
if the hypothesis were not true. Notice that this particular project paid at­
tention to a wide range of possible problems with regard to the conduct of 
research. Specifically, a great deal of time and effort was put into controls on 
the observations and to the techniques for determining whether or not the 
prediction had been observed. But none of that is sufficient to salvage the 
argument. Attention should have been given initially to condition (2) of a good 
test. 

Also note that since Selye's pioneering work a huge literature has accumu­
lated which generally supports the Selye system and the array of activators 
has been increased vastly. That is to say, the weight of evidence supporting 
the Selye system is great. However to my knowledge there has been no attempt 
to satisfy condition (2). Consequently one can not accept that the theory, the 
Selye system, has in fact been established. 

3.3.5. Criminal Behavior Is a Mendelian System 

Consider now an example which is logically more solid but is certain to be 
more controversial. The expectation that behavior, human or otherwise, has 
been subjected to evolutionary forces is in itself no longer controversial. The 
specific statement, however, that behavior is at least partially guided by genet­
ics is highly contentious even though it is consistent with the expectations 
from evolutionary theory. The study of behavior genetics is a very active field 
today in the western world. The basic goal is to show that relatives behave 
more similarly to each other, independently of environment, than do non­
relatives. When it can be shown that this statement is (probably) the case then 
it is considered that a relatively strong argument has been presented for some 
kind of genetic involvement in the production of the behavior. Recently 
Mednick, Gabrielli, and Hutchings (1984) have considered the criminal be­
havior of adoptees in relation to the criminal behavior of both the biological 
as well as the adoptive parents. The components of this particular research 
effort are 
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if not [criminal behavior is not partially determined by a 
Mendelian system] then not [adoptive children will be 
more like their biological parents than their adoptive 
parents with regard to criminal behavior] 

[adoptive children are more similar to their biological 
parents than they are to the adoptive parents] 

thus [criminal behavior is partially determined by a 
Mendelian system]. 

29 

It is important that you realise that behavior geneticists are not inherently 
dumb. That is, no one believes that evolution could have been acting so as to 
produce 20th century western criminality. They do, however, have the explicit 
expectation that evolution has been operating in a selective manner on some 
component of the genetics of Homo sapiens which by some unknown bio­
chemical pathway leads to criminal behavior. 

Also note that this particular test is an example of "deny the consequent." 
It is consequently a logically valid argument. Furthermore it is of great scien­
tific as well as social importance. Notice that this project satisfied condition 2. 

Most of the controversy surrounding modern work in behavior genetics 
centers on possible abuses of results of the work rather than the truth of the 
statements. It is certainly undeniable that results such as these can produce 
some very unacceptable social policy. The safeguards against abuse reside in 
the legal system, however. The possibility of abuse cannot be used to constrain 
inquiry. 

3.3.6. Innate Principles of Geometry 

Let's consider another example of a logically valid argument. Psychologists 
recently had the opportunity to evaluate the spatial orientation of a child who 
was blinded very shortly after birth (Landau, Gleitman, and Spelke, 1981). 
The child, Kelli, a two and one half year old girl, was asked to "go to" one of 
four different locations after having been familiarized with the experimental 
room. The components of this particular work are 

if not [Kelli accesses innate principles of geometry] 
then [she will move about the room randomly] 

not [Kelli moved randomly] 
thus [Kelli is accessing innate principles of geometry]. 

The problem with this particular project is in the model of Kelli's behavior if 
she is not accessing these innate principles of geometry. The experimenters 
considered her, whatever her current location, to be at the centre of a circle. 
The circle was then arbitrarily sectored into nine arcs each subtending an 
angle of forty degrees radiating outward from Kelli. It was then argued that 
if Kelli is in fact choosing at random from among possible directions to move, 
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the probability that she will choose the direction of the target is about one­
ninth. This argument is unconvincing as, for example, momentum and/or 
current orientation would tend to impose a rather distinct bias on some of 
the directions. That is to say, one tends to have a preference for the direction 
in which one is moving or facing. 

It will be noted that this particular example is one of "deny the consequent" 
and so is logically valid. In spite of its logical validity however we would be 
very hesitant to assert that the basic theory of innate Cartesian geometry has 
been established, or even strongly supported. The difficulty is that the predic­
tion is not a logical consequence of the hypothesis, so neither condition 1 nor 
2 has been satisfied. 

3.3.7. Suicide as a Degenerative Disease 

Few things have attracted the attention of romantic poets more than suicide. 
The basic assumption by them as well as subsequent social theorists, notably 
Durkheim, is that suicide is in some way a response to experience of the world. 
That is, life is considered to be abrasive and continually wears down the will 
to live. Ultimately one comes to a point at which the final restraint is eroded. 
This final event, whenever it can be observed, is often considered the precipi­
tating event. If this is the case, then an appropriate model for the frequency 
of suicide is the standard epidemiological model of degenerative diseases. The 
distinctive feature of such diseases is that they are strongly dependent on age. 
That is to say, the frequency of the condition increases with age. Then if suicide 
is appropriately modelled this way we should expect to observe that the 
frequency of the event increases with age. 

Recently we completed some work here on suicide. Specifically we studied 
the suicide behavior of American psychiatrists as reported in the obituaries 
published by the Journal of the American Medical Association. Several special­
ties were considered, but here I shall describe the results for psychiatrists only 
because of the notoriously high suicide rate in the profession. Also it was 
assumed that families of psychiatrists would be somewhat less inhibited than 
families of other medical practitioners in reporting a death as suicide as 
opposed to reporting it as an accident so there should be less error in the data. 
Note, however, that our concern was not to determine the rate of suicide. The 
goal was simply to determine whether the rate increases with age. 

The components of this particular research effort are 

if [suicide is a degenerative disease] then [suicide rate 
will increase with exposure] (years of practice) 

not [suicide rate increases with exposure] 
thus not [suicide is a degenerative disease]. 

You will note that this is an example of "deny the consequent." It is therefore 
a logically valid argument structure. Inspection of the results indicate that the 
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frequency of suicide actually decreases with exposure. This suggests quite a 
different model. It appears that the high rate in the early years of practice may 
be the result of the recruitment of suicide prone individuals into psychiatry. 
Note that "suicide-prone" may be interpreted as "partially genetically deter­
mined." Then at any given age the population includes survivors of normal 
mortality and the survivors of suicide. The frequency of suicides will decrease 
over time relative to normal deaths when: (1) the suicide rate is less than the 
normal mortality rate, and (2) the ratio of suicide rate to normal rate is 
approximately constant. These matters will be considered in detail later. 

3.3.8. Kin Selection Theory and Mother's Brother 

The fundamental assumption of kin selection theory is that the frequency of 
altruistic behavior is directly proportional to the coefficient of kinship. It is 
expected that siblings, for example, will be mutually altruistic about twice as 
often as cousins. Alexander (1979) has extended this argument to account for 
the common ethnographic observation of men being more altruistic to their 
sister's offspring than they are to the offspring of their wives. This phenomenon 
is to be expected when the confidence of paternity is less than or equal to 1/3. 

The logic is as follows. Assume that the extramarital sexual activity is a 
constant such that all men are only 0 < p < 1 confident that they are the father 
of their wife's offspring. In Figure 3.1, according to Alexander, the importance 
of mother's brother emerges when fCE < fCF where f is the coefficient of kin­
ship. If C were the father of E then fCE = 1/2. But his uncertainty makes this 
value fCE = p/2. His relationship to F is fFc = fCD/2. The relatedness of C and 

Overall coefficient of kinship 

Probability of paternity = p 

fCE = p/2 
fCE = fCD/2 = (I + p)/8 
fCE<fcF when p< 1/3. 

Figure 3.1 
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Dis 1/4 from their mother, B, and p/4 from their mother's husband. Since the 
two lineages contribute additively fCD = 1/4 + p/4 = (1 + p)/4. Then fCF = 
(1 + p)/8. Now the event of interest is expected to occur when 

p/2 ~ (1 + p)/8 

or 

p ~ 1/3. 

Kurland (1979) and Gaulin and Schleglel (1980) have attempted cross 
cultural tests of this hypothesis. The latter used inheritance of property, real 
and movable, residence pattern, descent system, and succession to headman 
office. The results are as predicted. The crude level of measurement adds 
strength to the outcome. The argument is 

if [kin selection theory and confidence of paternity 
threshold] then [reduced investment in wife's offspring] 

[reduced investment in wife's offspring] 
thus [kin selection theory] 

which, however interesting, is invalid. 

3.3.9. Fraternal Polyandry in Tibet 

Polyandrous mating is rare among animals and especially so for humans. 
Murdock (1949) reports a frequency of less than 1% in the World Ethno­
graphic Sample. When a rare structure is stable, i.e. not a transient event, it 
has great theoretical interest. Also the explanation of curiosities may overturn, 
or at least extend, current theory. Beall and Goldstein (1981) have issued 
a challenge to kin selection theory from the perspective of observations 
on fraternal polyandry in Tibet. 

Polyandry appears to reduce the fitness of all of the males in the marriage 
and so would be expected only under conditions of resource deprivation. That 
is, when resources are so scarce that a given male experiences a fitness gain by 
joining his brother in a marriage over his expectation for his own monoga­
mous marriage. Beall and Goldstein report (1) that polyandry is most common 
among the more affluent, (2) the average number of children ever born, and 
the number surviving, to monogamous females is greater than for polyandrous 
females. The authors conclude that "Tibetan fraternal polyandry does not 
appear to enhance the fitness of the individuals who practice it and in fact 
seems to entail substantial reproductive sacrifice" (ibid, 11). 

The effort is flawed. Relatively minor is a typographical error in the equa­
tion for the probability of allele transfer-the" +" should be "-". More 
importantly is that, under the assumption of equal access by n brothers to a 
single female, the probability that a specific allele is transferred from a specific 
male is incorrect. 
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The fatal problem, however, is that the data refer to female reproductive 
success only. It seems clear that females do better in monogamous marriages 
than in polyandrous ones. If females were directing institutional formation, 
polyandry would have disappeared. 

At several points the authors refer to tension developing within the house­
hold and brothers "fissioning" to form monogamous households. Studies of 
non-human primates indicate that a hierarchical structure will emerge within 
any multi-male unit. It is extremely unlikely that all brothers have equal access 
to the wife. If, as is more (not most) likely, younger brothers gain access 
proportional to their household rank, then it still seems that the top ranking 
male does surrender some reproductive potential. In doing this, however, it 
is by no means clear that his inclusive fitness is reduced as a relative (brother) 
is the beneficiary. In fact, from the perspective of a given brother, the produc­
tion of four offspring by his siblings is equivalent to one of his own no matter 
which female is used. From the perspective of a younger brother, sexually but 
not culturally mature, any access to a female is a tremendous advantage. 
"Fission normally occurs when younger brothers first reach their early 20s, 
i.e. the normal marriage age ... " (ibid). (The authors reject, without defence, 
and contrary to previous observations, the notion that polyandry is a tempo­
raryarrangement.) 

The argument is 

if [kin selection theory and Tibetan polyandry] then [male 
fitness enhanced] 

[female fitness is not enhanced] 
thus not [kin selection theory] 

which is a non-sequitur. 

3.4. Causation, Mill's Methods 

In this section I wish to address the problem of causation. This is inherently 
a problem in inductive logic. John Stuart Mill was the first to systematize 
induction. As we will see shortly his techniques for recognizing causation are 
still very contemporary. 

Correlation is a symmetrical relationship between two variables. For exam­
ple consider two variables, say A and B, each of which has two possible values. 
The values of A are 'A' and 'not A'; the values of Bare 'B' and 'not B'. 'B' is 
said to be correlated with A if they co-vary. A logical consequence of correla­
tion is that the percentage of 'B' among 'A' is not equal to the percentage of 
'B' among 'not A'. Symmetry implies that if 'B' is correlated with 'A' then 'A' 
is correlated with 'B'. The converse is also true-that is, when 'A' is correlated 
with 'B' the percent of 'A' among 'B' is not equal to the percent of 'A' among 
'not B'. A very rough and ready kind of measure of the strength of the cor-
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relation is given by the difference in the percentages. (Notice that we will 
have ample opportunity in the sequel to formalize and extend these considera­
tions.) The hazards of imputing causation to correlation are well known and 
there is a wealth of humorous and not so humorous examples. In cases where 
no embracing general theory exists, then there is no prior reason for assuming 
that either variable is a causal factor. 

The observation that two variables tend to vary together mayor may not 
be interesting but it certainly is not the end of the exercise. It is essential for 
the development of a mature science that causal factors be recognized and 
sequences developed. The main difference between causation and correlation 
is that the latter is symmetrical and the former is nonsymmetrical. That is, if 
'A' causes 'B' then it is not the case that 'B' causes 'A'. 

Mill presented three basic techniques for recognizing causation. These are 
called the method of agreement, the method of difference, and the method of 
concomitant variation. 

The methods of agreement and disagreement are so commonly used to­
gether that it is natural to discuss them jointly. In the search for the cause of 
an event one typically looks at those cases where the event has been observed 
to occur as well as those cases where the event has been observed not to occur. 
The method of agreement is concerned with the first group, that is, those cases 
where the event is observed to have occured. Finding a common antecedent 
circumstance then is good evidence for its being a causal factor and particu­
larly so when a general and embracing theory exists. This situation is 

Antecedent 
Case circumstance Event 

A,B + 
2 A,C + 
3 A,D + 

etc. A, ... + 

In every case the event is observed to have occurred and in every case of an 
occurence of the event the antecedent circumstance 'A' is similarly observed. 
'A' is then a good candidate for a causal factor. 

The method of differences requires simultaneous inspection of those cases 
in which the event is observed to have occured as well as those cases in which 
the event is observed not to have occurred. This situation is 

Case 

1 
2 

Antecedent 
circumstance 

A,B 
B,C 

Event 

+ 
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In this display the event occurs when 'A' is an antecedent circumstance and 
does not occur when 'A' is not an antecedent circumstance. 

The methods of agreement and difference are generalized in the method 
of concomitant variation. This method is taken by Giere as a definition of 
causation. Assume a population of possible observations which is randomly 
divided into two groups. Further assume that the cause is applied to all the 
members of one of the subsets and is not applied to any of the members of 
the second. If, then, the relative frequency of the event is different between 
these two subsets of the population good evidence has been obtained that the 
suspected cause of the event is in fact a causal factor. 

Patrick Suppes develops the analysis of causation in the following manner. 

(1) When the probability of the event 'A' given that the event 'B' has already 
occurred is greater than the probability of the event 'A' independently of 
the event 'B', then 'B' is said to be a prima facia cause of 'A'. 

(2) When the probability of the event 'A' given that the events 'B' and 'C' have 
both occurred is equal to the probability of the event 'A' given that the 
event 'C' has occurred, then 'B' is said to be a spurious cause of 'A'. 

A cause is said to be genuine when (1) it is a prima facia cause, and (2) it is not 
spurious. This latter condition is the devilish one. You should recognize this 
as the problem of establishing that the prediction, in this case the event 'A', is 
extremely unlikely if the hypothesis, the event 'B', is not true. Clearly one can 
never be certain that a factor, 'C', will not be discovered tomorrow or next 
week or the next decade which establishes that 'B' is simply a spurious causal 
agent in the production of the event 'A'. 

3.5. Description, Pre-Science, Science 

The conditions of a good test of an hypothesis produce a natural hierarchy 
of research. 

1. Description-no hypothesis presented. 
2. Condition 1 satisfied-pre-science. 
3. Condition 2 satisfied-true science. 

Description 

All self-conscious disciplines probably advance along this hierarchy. At least 
it seems reasonable that they should. At the outset, before academic depart­
ments exist, people describe the world, they answer the question what is out 
there? 
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Condition 1 Satisfied 

When sufficient information has accumulated, speculation about connections, 
between observations begins. This is the stage of explanation. The duration 
of this stage is probably dependent on the development of other "related" 
sciences. (The question of relatedness does not have an obvious answer. There 
is no way to predict the source of the next "breakthrough.") At some point in 
this exploratory stage, criteria for explanation become accepted and estab­
lished. Anthropology is just entering the stage of establishing these criteria. 

Condition 2 Satisfied 

When the second stage is completed to the point that several, equally rigorous, 
distinctly different theories exist for explaining some event, the focus shifts to 
stage 3, showing that the event is uniquely explained by one of them. Each 
time this is done, conditions are ripe for a critical test, executing an experiment 
that exposes the theory to the most severe risk of falsification. When this 
process begins, the discipline is inexorably launched on the path of progress. 

3.6. Summary 

In this chapter we have presented some of the basic logical requirements of 
good research. This is a course about evaluating theoretical claims, that is to 
say, hypotheses. It is essential that one understand the distinction in the 
relationship between the theory and the evaulation of the theory, for this 
dynamic defines the scientific enterprise. 

A concept which has not been addressed directly here but should receive 
some attention is that of reduction. It may be possible to develop a rigorous 
logic of science without the concept of reduction but the statements that result 
typically sound quite silly and contrived and are not easily tested. So we will 
adopt a weakly reductionistic approach to theory construction here. For us 
this simply means that causal factors, that is to say the hypothesis, are 
expressed in terms of units or forces which are in some sense "more funda­
mental" than the prediction. The prediction must make a statement about the 
world. The theoretical hypothesis then must be a description of the mechanism 
which produces the observed result. 

Consider for example the hierarchical structure of phenomena which ranges 
from subatomic particles, atoms, molecules, cells, cell communities, organ­
isms, .... It makes very little sense and is certainly quite uninteresting to 
attempt to explain the phenomena at one level in terms of other phenomena 
at the same level. One does not explain culture in cultural terms. The explana­
tion of culture must be presented in terms of hominid evolution, especially of 
the brain. An attempt to explain patterns of property descent in terms of 
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subsistence technology must then embrace the assumption that technology is 
in some sense more basic than the intergenerational transfer of wealth. 

The production of statements about unobserved but observable phenom­
ena necessarily means that they will sound somewhat "mystical" unless one 
is intimate with the logic. For example, in the 1930s Enrico Fermi included 
in an equation a term which was required by the assumption of basic sym­
metry in nature. Now in a real sense Fermi had no "right" to assume such 
symmetry. Today, this term has acquired a name-neutrino-and its very 
existence has only recently been confirmed. (Further, and incidentally, it is 
still not known if the particle has a rest mass.) Similarly, and again in the 
1930s, Dirac predicted the existence, because it was logically required, of 
magnetic monopoles. This particle may have been observed once in 1981 and 
not since. The point of these examples is that the "outrageous" predictions 
produced by powerful theory do not lead to the collapse of civilization. 

Now note that a testable theoretical hypothesis requires the prior existence 
of a theory. Without the theory there is no hypothesis. The hypothesis, when 
properly stated in dynamic terms, leads to a statement, a prediction, which 
can be tested by observing events in the world. Notice that the problem is not 
to establish the accuracy of the prediction but rather to determine the truth 
value of the theoretical hypothesis. 

In much of this course we shall be concerned with statistical techniques 
which allow a decision about the truth value of a hypothesis to be made. An 
absolutely essential point which you must grasp is that the value of the 
statistic, in the sense of its worth or importance, resides entirely in the value 
(or worth, importance) of the theoretical hypothesis. 

Theory without evaluation is totally fanciful, science fiction. It may be 
absolutely true but unless and until it produces procedures or observational 
techniques, and defines an experiment that exposes it to falsification, it cannot 
be seriously entertained as a theory. On the other hand, counting or observing 
without theory (empiricism) is a waste of resources. Note that theory and data 
are separate concepts but that neither can stand alone. That is, data are mean­
ingful only in the context of theory, and theory is meaningful only in asso­
ciation with data. Often when a systemic structure such as this is specified 
there is a temptation to think of both (or all) parts as different manifestations 
of the same thing. This is not true, however. We shall maintain the distinction 
between theory and data while recognizing that both are essential to the 
scientific activity. 

The standard technique of generating observations to be used in the statis­
tical evaluation of a hypothesis is experimentation. In this milieu the factors 
of interest are known and are under direct control of the experimenter. It is 
rare, if it has ever happened, to be able to evaluate an anthropological 
hypothesis experimentally. So one assumes that "nature" is the experimenter 
and then by observing the "experimental" outcomes one attempts to infer 
what the factors are that are being varied. This activity is called sampling. In 
neither case are the causal factors known in advance except by hypothesis. 
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It is important that you realize that science is enquiry into the nature of the 
world. You may have heard that intuition (or some such) is equally valid. It 
is not because it is never tested directly. There are any number of apocryphal 
stories about individuals having seen the truth; and in the English-speaking 
world there is a distinct suspicion of rationality coupled with a strong pref­
erence for empiricism. Neither reason nor data is sufficient in and of itself. 
Both are required. "Theories" that are based on data only-a very common 
occurrence within anthropology-are ad hoc, they are tautologous (Section 
3.3.2). Further, they are inherently weak because they are local either in time 
or space or both. A theory must make claim to universal validity or be trivial. 
The theory must also be stated in such a way as to allow in principle, refutation 
and it must also be repeatedly exposed to falsification. 

Science gives no guarantee that the truth will ever be found. It does assume 
an objective real world that exists independently of our perceptions. With 
regard to ultimate truth and reality Einstein observed that "you can never 
open up the watch." That is, there is no way to determine what is true and 
what is false in any ultimate sense. At every decision point, then, we must 
always be prepared to be wrong. Only continuing experience can provide 
confidence in any given decision. 



CHAPTER 4 

Generating Predictions 

4.1. Introduction and Orientation 

Recall the first premise of condition 1 for a good test of a hypothesis: 

if [H] then [P]. 

In this chapter we shall be concerned with the relationship between the 
theoretical hypothesis and the prediction. Specifically, when the theoretical 
hypothesis is stated mathematically then the power of centuries of true prog­
ress is available to the anthropologist for obtaining the prediction. Also 
recall the controversial assertion which was made earlier that in anthropology 
only stochastic theories are viable. In this section then we are concerned with 
modelling anthropological theories in the terms of probability theory. Later 
we shall have other recourse to probability theory for apparently different 
purposes but for now the goal is to model the theory. 

Probability theory is a branch of mathematics (Feller, 1950) so it is con­
cerned solely with relations among undefined things. To illustrate this concept 
Feller refers to the game of chess and notes that it is impossible to define the 
game other than by stating a set of rules. In this context it is meaningless to 
talk about the definition, or the true nature, of a pawn. Likewise geometry 
has no interest in what points or straight lines really are. Probability theory 
has been successfully applied to fields as diverse as physics and sociology, that 
is, from the sacred to the profane depending on your bias. For example, the 
behavior of particles immersed in a liquid is properly described by a proba­
balistic model called a random walk and named Brownian motion. Com­
munications engineers can successfully predict the load on a telephone line 
at a given time of day. Ecologists can predict the composition of animal 
communities. Physical anthropologists can predict the genetic structure of 
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populations. Sociologists can predict voting behavior. Psychologists can pre­
dict the waiting time to learning a particular behavior. 

The reason that probability theory has been so successful in so many diverse 
fields is precisely because it is mathematical, i.e. its primary concepts are un­
defined. An undefined concept will be called a primitive. One such is a 
"random event." A random event is an empirical phenomenon characterised 
by the property that its repeated observation under a given set of circum­
stances does not always lead to the same observed outcome. Different out­
comes result in such a way that there is a thing called statistical regularity. 
Probability theory then is the study of mathematical models of random events. 

Anthropologists frequently find themselves in a position of dealing with 
variables which are so poorly defined that different observers ofthe same event 
can obtain different results. This should be a source of embarrassment. Things 
such as "a culture," a "descent pattern," etc. are often "discussed" with much 
more heat than light. Until this basic problem of making observations is 
settled the discipline will languish. However, here we need not concern our­
selves with those difficulties. We have no substantive interest-neither theo­
retical nor empirical-so we can accept that the observations reported in the 
World Ethnographic Sample are, in truth, observations of the world. 

Much of what follows will have the appearance of anthropology. Some of 
it actually is the real stuff. But while the topics and terms may be familiar 
and the results may seem interesting, important, trivial, or wrong, the sole 
purpose is to illustrate some elementary mathematical structures that inevitably 
will be increasingly useful as the field matures. 

4.2. Background 

4.2.1. The Sample Description Space 

The sample description space of a random phenomenon is one ofthe primitive 
concepts in probability theory. One cannot give rules for the construction of 
a sample description space. Intuitively, however, the sample description space 
of a random phenomenom is the set of all possible outcomes of an experiment. 
(I will use the term experiment for the process of making an observation on 
a sample description space.) For the experiment "observe the sex of a birth" 
the sample description space is male or female. If the experiment is "observe 
the ABO blood group type of an individual" the sample description space 
consists of A, B, 0, or AB. If the experiment is "observe a descent pattern in 
the World Ethnographic Sample" the sample description space is patrilineal, 
bilateral, matrilineal, or duolineal. 

You will note that the number of possible outcomes of experiments on each 
of the sample description spaces described above is very small. Such spaces 
constitute the primary concepts of much of anthropology. The concept is not 



4.2. Background 41 

restricted to small spaces, however, nor is it even necessary that they be fi­
nite. For example the experiment "observe an integer" can result in any of a 
countably infinite number of possible outcomes. Nor is observability part of 
the concept of sample description space. For example the experiment "count 
the number of angels dancing on the head of a pin" is conceptually quite 
sound, but only prior theory can specify whether the sample description space 
is finite or infinite. 

Dealing with such small sample description spaces means that we are able 
to write down, using paper and pencil, all possible outcomes of an experiment. 
Obviously this would not be the case for a sample description space infinite 
in size. 

The concept derives its primary importance from the fact that it provides 
a means of defining an event. Whenever an experiment is made on a sample 
description space, an event results. For the experiment "observe the sex of 
a birth" either the event male or the event female will be observed. For the 
experiment "observe a family form" from the World Ethnographic Sample 
one of the following events may be observed: (1) independent families, (2) 
minimal extended families, (3) small extended families, and (4) extended families. 
Notice that with the logical relations of disjunction and conjunction it is 
possible to define compound events on the sample description space. For 
example we might choose to define a new event, small families, as the disjunc­
tion of independent families, minimal extended families, and small extended 
families. Then we would have two events on the sample description space: 
small families and extended families. The event small families would be observed 
whenever at least one of the three defining family forms was observed. When 
an event cannot be decomposed it is called a simple event; when an event is 
composed of some relationship between several simple events it is called a 
compound event. So now we have the definition of an event as a subset of the 
sample description space. We can define for any event another event called 
its complement. The complement of an event is everything in the sample 
description space which is not the event. For example the complement of the 
event small families is the event extended families. We might also define on 
the sample description space for family form another compound event and 
call it multi-generational. This event would be composed of: (1) minimal 
extended families, (2) small extended families, and (3) extended families. If we 
now form the disjunction of the two compound events small families and 
multi-generational families we observe that the result is the sample description 
space. Suppose that we form the intersection, conjunction, of these two com­
pound events. That is, we ask for the event which is defined as small families 
and multi-generational families. Notice that the conjunction of these two 
compound events results in an event which is composed of the two simple 
events, minimal extended families and small extended families. 

Let us formalize these considerations a bit. We continue to use the sample 
description space family form in the World Ethnographic Sample. Symbolize 
the sample description space with S. Furthermore, assign the following labels 
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to the simple events of the sample description space: 

Symbol 

A 
B 
C 
D 

Simple event 

Independent families 
Minimal extended families 
Small extended families 
Extended families 

The compound event small families now is seen to be defined as 

E = [A or B or C] 

and the compound event multi-generational families is defined as 

F = [B or C or D]. 

Now note that the event defined by the disjunction of the two compound 
events E and F, [E or F], equals [A or B or C or D], that is, the sample 
description space. And the compound event defined by the intersection of E 
and F, [E and F], equals [B or C]. Note that each of the simple events of the 
sample description space is mutually exclusive. This means that all the inter­
sections are empty. For example if we form the intersection of independent 
families and minimal extended families, that is, [A and B], we note that 
there are no events in the intersection. Alternatively we could attempt to form 
the intersection of the compound event E with the simple event D and again 
note that the intersection is empty. This constitutes a definition of mutual 
exclusiveness. 

Now suppose that some numbers are associated with the simple events of 
the sample space. We impose the following conditions on these numbers: 

(1) each number is positive and less than or equal to 1, 
(2) the sum of all of the numbers is identically equal to 1. 

When formalized these conditions are (they are called axioms) as follows: 

1. P(G)?: 0 for every event G 
2. P(S) = 1 for the sample space. 

In these axioms reference is made to a general sample space, not the specific 
one of family form. The event G should be considered any event; that is, it is 
not essential that G be a simple event. As innocent as these two axioms may 
appear you should be aware that they constitute the basis of probability 
theory. Probability theory is an investigation of the consequences of these 
axioms. 

It is quite natural to assign probabilities to events in the sample space. 
Suppose, for example, the sample space given below: 
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S = {a, b, c, d} 

and further suppose that we have defined on this sample space an event A 
which is composed of the simple events a, b, c, then the probability of A: 

P(A) = P(a) + P(b) + P(c). 

Notice that if each of the simple events has the same weight, that is, 1/4, then 
P(A) = 3/4. 

There are several important things to notice about this particular definition. 
First of all it should be emphasized that one can only speak of the probability 
of an event when that event is defined as a subset of a specific sample description 
space. Also, while it is quite common to weight all the simple events in the 
sample description space equally this is by no means part of the definition. 

A probability space will be defined as a sample description space on which 
a probability function has been specified. For the example above, the proba­
bility function assigned equal weights to all simple events in the sample 
description space. This definition of a probability space means that the proba­
bilities may now be combined in a fashion which is strictly analogous to the 
rules for the construction of compound events from simple events. Specifically, 
assume the sample description space given above, that is the simple events 
{ a, b, c, d} on which the events A = {a, b, c} and B = {c, d} have been defined. 
Further assume that the probability function defined on the sample space is 
that of equal weights. Then 

Sample description space 

4.2.2. Sampling 

S = {a, b,c,d} 
A = {a, b,c} 
B = {c,d} 
not A = {d} 
A or B = {a, b, c. d} 
A and B = {c} 

Probability space 

P(S) = 1.0 
P(A) = 3/4 
P(B) = 2/4 
P(not A) = 1/4 
peA or B) = 4/4 
P(A and B) = 1/4 

A conceptual device which is used by all probability theorists is the urn model. 
The main function of this particular model, which is nothing more than an 
urn with marbles in it, is to illuminate topics in sampling. This is effected by 
conceptually withdrawing marbles from the urn. We may assume that sampling 
may be done either with or without replacement with the obvious interpreta­
tions. If the sampling is assumed to be done without replacement, then the 
largest sample which can be drawn is equal to the number of marbles initially 
in the urn. On the other hand if after every draw the marble is replaced in the 
urn, then samples of any size may be obtained. 
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Suppose just for illustration we have an urn with three marbles in it: white 
(W), red (R), and black (B). We shall draw samples of size 2 from this urn. The 
possible outcomes of these two sampling strategies for this particular com­
position of the urn are 

Without replacement 
(WB), (BW), (WR), (RW), (BR), (RB) 

With replacement 
(WW), (RR), (BB), (WB), (BW), (WR), (RW), (BR), (RB). 

Note that the difference between these two sampling strategies is that in 
sampling with replacement it is possible to get a sample of size 2 both of which 
are the same color. And the number of possible samples differs only by the 
number of different colored balls. 

Lest you assume that this particular device, the urn model, is in some sense 
trivial you should be aware that Feller (1950) cites applications in fields as 
diverse as cosmic ray experiments, dice, coupon-collecting, aces in a bridge 
game, genetics, chemistry, irradiation and biology, and of course physics. Also 
you should not assume that a description of the sample description space or 
the probability space is a simple or straightforward matter. This will be 
discussed more fully below. 

N ow in order to motivate the analysis of the possible outcomes of sampling, 
let us assume that we shall be drawing samples of size n from an urn containing 
N distinguishable balls. The number of ways in which one can draw a sample 
of n balls without replacement from an urn containing N distinguishable balls 
is N(N - 1) ... (N - n + 1). The number of possible samples available when 
sampling is done with replacement is N n. Both these results are very easily 
demonstrated. Consider first the sampling regime without replacement. Then 
there are N possibilities for the first draw, (N - 1) possibilities for the second 
draw, and (N - (n - 1» = N - n + 1 choices for the nth ball. When sampling 
with replacement the result is particularly simple: there are N possibilities on 
every sampling draw, so when a sample of size n is being drawn there are N n 

possibilities. 
Terms involving products of the sort N(N - 1) ... (N - n + 1) are suffi­

ciently common that it is useful to have notation for them. Following Parzen 
(1960) we shall use the notation (N)n' Thus we define for positive integers N 
and n, when n is less than or equal to N: 

(N)n = N(N - 1) ... (N - n + 1). 

We shall also have need of notation for the product of the first N integers. 
Following the general convention in probability theory, and elsewhere, we 
define the notation for the factorial, N! as 

N! = 1·2· ... ·(N - 1)·N. 

Now we can write (N)n in terms of factorial notation completely as 

(N)n = N!j(N - n)! 
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This definition holds for values of n from 0 up to and including N, which 
implies that O! = 1. 

An important application of these results is that of finding the number of 
subsets of a given sample description space. You will note that numbers of 
the form (N)n are the number of ordered samples of size n that may be drawn 
without replacement. Using the example above, if we distinguish a sample 
(WB) from the sample (BW) then we are concerned with ordered samples, and 
terms of the sort (N)n apply. Usually however we are not concerned with 
ordered samples. Typically we are interested in samples with a specified 
number of, say, white marbles. Notice that this takes no account of the order 
in which they are obtained. Intuitively you might expect that the number of 
ordered samples will be greater than the number of unordered samples, that 
is, samples where order is irrelevant. And since we know how many ordered 
samples are present for a given sample size and total number of elements in 
the population, then knowing the number of ways that a particular sample 
composition can be ordered allows us to reduce that number to the number 
of samples where order is irrelevant. A moment's reflection should convince 
you that the number of distinct arrangements of n elements is exactly equal 
to nL This may be seen as follows: Consider that we have three marbles, say 
one red (R), one white (W), and one black (B). How many ways can these three 
balls be sequenced? That is, if we record the first draw, the second draw, and 
the third draw, how many possible orderings of the colors is possible? You 
should see this as an example of sampling without replacement. This means 
that on the first draw there are three possibilities for the first color, on the 
second draw then there are two possibilities, and for the final draw there is 
only one possibility. Clearly for samples of size n this number of possible 
arrangements of the sample elements is exactly equal to n! Now forming the 
expression 

X k = (N)k/k! 

we see that the number X k is less than the number (N)k by exactly the factor 
kL The numerator is the number of possible ordered samples of size k from 
the total number of N sample elements. And k! is the number of possible 
arrangements available for k elements. 

4.2.3. The Binomial Coefficient 

We have just obtained a most important number called the binomial coeffi­
cient. The definition of this number in more common notational form is 

(Nh N! 
B(N, k) = k! = k!(N _ k)! (4.1) 

This number appears repeatedly in what we shall be doing and so you should 
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commit the definition to memory. Notice that it is simply the number of pos­
sible (unordered) subsets of size k that may be formed from the members of 
a set of size N. 

A brief word about the notation used for the left-hand side of equation 4.1. 
Note the B indicates a particular function, a way of combining or relating 
some numbers. The components within the parentheses are the numbers to 
be related. These are called arguments. The function is defined by equation 
4.1. It must always have exactly two arguments or it is undefined. When 
appropriate arguments are supplied, the operator, B, blinks once, coughs 
twice, whirrs thrice and delivers a number. 

Let's consider a small example. We wish to form a committee of size three 
from a set of four available individuals. We identify the available individuals 
as {A, B, C, D}. Also note that when forming a committee we have no interest 
at all in the order in which sample elements are drawn. That is, as far as we 
are concerned the committee [ABC] is exactly the same as [CBA]. So, for this 
kind of problem, order is irrelevant. Now how many committees of size three 
can be formed? (In the binomial coefficient the rightmost argument, k, is called 
the "grab factor." This number clearly must always be less than or equal to 
the number on the left, N.) The set of distinguishable committees is 

{[ABC], [ABD], [ACD], [BCD]}. 

Notice that there are only four. Let us express this as 

B(4, 3) = (4h/3! = (4' 3· 2)/(3' 2) = 4. 

Now consider one ofthe possible committees, for example, the first, [ABC]. 
Notice that if we pay attention to order then there are six ways that this com­
mittee composition could have resulted. For example we could have drawn 
A first, B second, C third, or we could have drawn C first, B second, and A 
third, etc. You should convince yourself that there are six ways in which this 
committee could have resulted. This is true for each of the four committees 
listed above. Paying attention to order, there are 4 x 6 = 24 possible com­
mittees that could have been selected. But with regard to committees we 
consider that order of selection is irrelevant, so we reduce the 24 possibles by 
the number of ways of ordering each of the distinguishable committees. 

You should think of this operation as that of partitioning the sample 
description space into two parts: one part which is committee, and a second 
part which is non-committee. Resorting once more to general notation, parti­
tion the sample description space, S, into a part with k members (which is 
committee), and the second part (N - k) which is non-committee. It is very 
useful to be able to extend this concept into a partition of the sample descrip­
tion space into say r different groups. Let r be a positive integer and let kl' 
k2' ... , kr be positive integers such that kl + k2 + ... + kr = N. We shall now 
obtain a partition of the sample description space into r sub-samples such that 
the first has kl elements, the second k2 elements, ... , and the last has kr 
elements. Clearly r must be less than or equal to N. When r is equal to N, then 
each element of the sample description space is a sample. 
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Let's step this through. First we draw from the sample description space 
the elements of the first sample, that is, the first kl elements. The number of 
ways that we can obtain these kl elements is B(N,kl)' There now remain 
(N - k 1 ) elements in the sample description space available from which we 
will select the k2 elements in the second partition. These elements may be 
obtained in B((N - k1 ), k2 ) ways. Continuing in this fashion, the number of 
ways of obtaining the rth partition is B((N - kl - k2 - ... - kr- 1 ), kr). The 
usefulness of the algebraic identity presented in definition (4.1) should now be 
readily apparent. Successive applications of this identity results in 

B(N; kl' k2,· .. , kr) 

= B(N,kd*B(N - k 1 ,k2)*"'*B(N - kl - k2 -kr-l,kr) 

N! 

k1 !k2! .. ·kr!· 

(4.2) 

You may satisfy yourself of the truth of this identity by noting that, for each 
pair ofterms on the right ofthe equals sign, in the denominator of the leftmost 
of the pair is the term which is in the numerator of the rightmost of each pair. 
Terms of this sort will occupy much of our attention through this course. This 
is called a multinomial coefficient. 

4.2.3.1. A SIMPLE COMBINATORIAL PROBLEM-THE "HYPERGEOMETRIC" 

When the simple events of a sample description space are equally likely, a 
wide variety of problems may be solved using combinatorial methods. Con­
sider the following problem: an urn contains six distinguishable (numbered) 
marbles, four of which are white and two are red. The white marbles are 
numbered 1 to 4, and the red ones are numbered 5 and 6. We shall draw 
samples of size two from this urn both with and without replacement. Let us 
find the following probabilities: (1) both marbles are white, (2) both are the 
same color, and (3) at least one is white. Define the event A to be both are 
white, the event B to be both are red, and the event C at least one of the 
marbles is white. So now the problem can be stated as finding (1) the proba­
bility of the event A, (2) the probability of the event A or B, and (3) the proba­
bility of the event C. Note that C = not B, so that P(q = 1 - PCB). Also note 
that the events A and B are mutually exclusive so that peA or B) = peA) + PCB). 

First we find the total nunmber of points in the sample description space. 
(The notation N(') will be used for the number of simple events in a particu­
lar event. You must be careful to distinguish this notation, where N (-) is a 
function, from N with or without subscripts, where the reference is to a specific 
number of things.) The number of events in each of the sample description 
spaces specified by sampling either with (R) or without (r) replacement is given 
as 

With replacement: NR(S) = 6·6 = 36 

Without replacement: Nr(S) = 6·5 = 30. 
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And for reference we present below the simple event compositions of the two 
events A and B for sampling without replacement 

A = {(I, 2), (1,3), (1, 4), (2,1), (2,3), (2, 4), (3,1), 

(3,2), (3,4), (4,1), (4, 2), (4, 3)} 

B = {(5, 6), (6, 5)}. 

You should convince yourself that when sampling with replacement, A would 
be as described above with the addition of {(I, 1),(2,2), ... ,(4,4)}, and the 
simple events of B would include {(5, 5), (6, 6)}. 

Now let us determine the number of possible outcomes in the sample 
description space which satisfy the definitions of the two events. For small 
sample description spaces and small sample sizes, as in this example, it is 
feasible to list the possible outcomes satisfying the definition as above. We 
note there that for sampling without replacement, A is observed when any 
one of twelve pairs of simple events occurs. This is the point at which it is 
useful to see the application of the expressions given for sampling with and 
without replacement. The number of possible sample points in each of these 
sampling regimes is presented as 

With replacement 

NR(A) = 4·4 = 16 
NR(B) = 2·2 = 4 

Without 
replacement 

Nr(A) = 4·3 = 12 
Nr(B) = 2· 1 = 2 

Now it is possible to obtain the probabilities of each of the events as the 
ratio of the possible number of samples satisfying the definition of the event 
to the total number of points in the sample description space. Recall that 
sampling with replacement has a total of 36 (equally weighted) points in the 
sample description space, and sampling without replacement a total of 30 
(equally weighted) points in the sample description space. In order to obtain 
the probability of A we form the expression PR(A) = NR(A)/NR(S). And for B 
we have PR(B) = NR(S). The probabilities for each of the events are 

Sampling 
with replacement 

Sampling 
without replacement 

PR(A) = 16/36 = 0.444 Pr(A) = 12/30 = 0.4 
PR(B) = 4/36 = 0.111 Pr(B) = 2/30 = 0.066 

PR(A or B) = PR(A) + PR(B) = 0.555 
Pr(A or B) = Pr(A) + Pr(B) = 0.466 
PR(C) = 1 - PR(B) = 0.889 
PR(C) = 1 - Pr(B) = 0.934 

~----------~~~--.------------
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You should note that the description of the sample description space which 
we have given in terms of marbles which are identifiable by color and num­
ber is not unique. For example, we could consider that the balls are distin­
guishable by color alone. In that case we get a sample description space, 
S = {(W, W), (W, R), (R, W), (R, R)}. In this case, assuming that all descriptions 
in S are equally likely then P(A) = 1/4, as does P(B). Notice that the results 
obtained with this sample description space are radically different from those 
obtained earlier. You should be aware that the choice between these two 
sample description spaces and possibly others can only be made by (anthro­
pological) theory. Both descriptions are equally valid mathematically. There 
is no prior reason to prefer one description over the other. Also note that 
the matter of choice of sample description spaces cannot be resolved by 
a simple appeal to "one works and the other doesn't." This is a meta­
mathematical matter. In all of the rest of this course we shall assume that 
the first description of the sample description space is the proper one, that is, 
all marbles are distinguishable. 

Let us consider that an urn contains N marbles of which Nw are white 
and Nr are red. Again we shall draw samples of size two with and without 
replacement. We ask for the following probabilities: (1) the first marble drawn 
will be white, (2) the second will be white, and (3) both will be white. Let us 
denote the event that the first marble drawn is white by A, that the second is 
white by B, and the event that both are white by the conjunction of A and B, 
that is, A and B. We further assume that the marbles in the urn are numbered 
from 1 to N with the white balls bearing the numbers 1 to Nw , and the red 
balls bearing numbers (Nw + 1) to N. 

When sampling with replacement the number of possible samples which 
can be obtained from this space is NR(S) = N 2 . And when sampling without 
replacement the number of points is Nr(S) = N(N - 1). 

Consider first sampling with replacement. The number of sample outcomes 
which satisfy the definition of the event A is (Nw)(N) (because color on the 
second draw is irrelevant) and the number of possible outcomes satisfying 
the event Bare (N)(Nw ). Since the two events referred to outcomes on the 
separate draws, the number of events in the conjunction of A and B is given 
by N(A and B) = (Nw)(Nw). Now we may write the probabilities for these 
events as 

P(A) = P(B) = Nw/N 

P(A and B) = (Nw /N)2. 

Now consider the case of sampling without replacement. We note that now 
N(A) = Nw(N - 1) since there are Nw possibilities for the first component in 
A and (N - 1) possibilities for the second. Now we find the number of possible 
outcomes in the event B. Notice that it makes a difference ifthe first ball drawn 
was white or not. Assume that a white ball was obtained on the first draw. 
This could have occurred in Nw ways. Then for the second draw there are 
(Nw - 1) possibilities. If the first marble drawn was red, which could have 
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occurred in (N - Nw ) ways, then the number of ways of getting a white on the 
second draw is Nw • Since these two possible outcomes, white on the first draw 
and red on the first draw, cannot occur simultaneously, we form the number 
of possible sample outcomes in the event B by the disjunction, [(white on first 
and white on second) or (red on first and white on second)]. This is given by 
the expression P(B) = Nw(Nw - 1) + (N - Nw)Nw = Nw(N - 1). Now we find 
the number of possible outcomes satisfying the event which is given by the 
conjunction, [A and B], of the two events which have been defined. The 
number of ways of getting a white marble on the first draw, thereby satisfying 
the condition for event A, is Nw • And then, given that a white was obtained 
on the first draw, the number of ways of obtaining a white on the second, 
and thereby satisfying event B, is (Nw - 1). So the number of ways of simul­
taneously observing A and B is simply N(A and B) = Nw(Nw - 1). 

It is now a straightforward matter to obtain the probabilities ofthese events 
by forming the ratio of the number of ways of observing the event to the 
number of points in the sample description space. 

4.2.3.2. AN ESP EXPERIMENT 

Frequently we need to know how to tell a prediction from a guess. In the 
research related to the presence of extrasensory perception the following 
experiment is occasionally performed. Eight cards, four red and four black, 
are shuffied. The experimenter then looks at each successively. In another 
room, the subject attempts to guess whether the card the experimenter is 
looking at is red or black. The subject knows that the deck is evenly divided 
between red and black, and so will choose each color four times. Assume 
that the subject tesponded correctly on six of eight trials. We would like to 
know the probability of this outcome under the assumption that he has no 
extrasensory perception. We attend only those responses by the subject in 
which he made the response red. Then assuming that the cards are distin­
guishable and numbered from one to eight the subject's red responses can 
be written as the four card numbers (trials) which the subject said red. The 
number of points in the sample description space is given by N(S) = B(8,4) = 

70. In order that there be exactly six correct responses in the experiment, 
there must have been exactly three correct red responses. (Do you see why?) 
The subject responds red four times and black four times over the course of 
the experiment. If he achieves six correct from the eight trials, he must have 
made exactly one red error. Then the total number of ways of satisfying the 
condition of three correct red responses among four is given by the product 
B(4, 3)' B(4, 1). Notice that this is simply the number of ways of obtaining 
exactly three correct and one ihcorrect response out of the four. We may now 
find the probability of the event [six correct responses among eight] as the 
ratio of the number of ways of observing the event A to the number of points 
in the sample description space. This is presented as 
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peA) = B(4, 3)B(4, 1)/B(8, 4) 
= 16/70 
= 0.23. 
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You will note that the probability of exactly six correct responses from 
among eight is very close to 1/4th which could be achieved by guessing alone. 
Consequently you would probably requite more than six successes out of eight 
before being tempted to argue very forcibly for the existence of extrasensory 
perception. 

Pierre Simon de Laplace (1749-1827) developed an entire theory of prob­
ability On this kind of analysis (Kac, 1964). In the form presented here it is 
called the hypergeometric distribution. 

4.2.3.3. COMBINATORIAL MONKEYS 

A primatologist has been on location long enough to recognize 4 animals 
confidently. During one day's observation he sees 1 of the 4 in a group of 5 
animals. He wishes to know how many animals are in the area. Being a clever 
devil, he is willing to settle for a probability distribution. Specifically, he asks 
for the probability that there are N = {8, 10, 15,20, 25} resident monkeys 
given that he observed K = 5 animals of which k = 1 were familiar to him. 

SOLUTION. He begins by reasoning that the 5 animals could have been sampled 
from the N in B(N,5) ways. Further, the observation of 1 of the 4 familiar 
animals could have been obtained in B(4, 1) and the remainder in B(N - 4,4) 
ways. He then writes 

peN) = _B_(N_-_4,_4_)B_(4_, _1) 
B(N,5) 

and proceeds to evaluate it for the values of interest. 

N peN) 
8 «4!/4!0!)(4!/1!3!»)!(8!/5!3!) = 0.0714 

10 «(6!/4!2!)(4!/1!3!))/(10!/5!5!) = 0.2381 
15 ((11!/4! 7!)(4!/l! 3!))/(15!/5! 10!) = 0.4396 
20 ((16!/4! 12!)(4!/1! 3!))/(20!/5! 15!) = 0.4696 
25 ((2l!/4! 17!)(4!/l! 3!))/(25!/5! 20!) = 0.4506 

Reviewing his results, he decides to accept, tentatively, the most probable 
value, i.e. N = 20. 

4.2.4. Conditional Probability and Independence 

Earlier when we were attempting to determine the probability of a red marble 
drawn on the second of two draws from an urn with red and white marbles 
the statement was made that "given that the first draw resulted in .... " In that 
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circumstance we were attempting to determine the probability of one event 
after some prior event had already occurred. This is a conditional probability. 
Very frequently the knowledge that one event has occurred will modify our 
expectation for some subsequent event. This is obviously true when the early 
event is a causal factor producing an effect. The definition of conditional 
probability, however, depends in no way on the presence of a causal inter­
pretation even though the concepts of independent and dependent events 
are defined in terms of conditional probability. These two concepts are of 
fundamental importance in allowing statistical decisions to be made. 

Assume that two events, A and B, have been defined on a sample description 
space. Also assume that neither event is empty, that is, there are some sample 
points in both events. The event B is said to be statistically independent of the 
event A ifthe conditional probability ofB given A is equal to the unconditional 
probability of B. Symbolically and for notation we introduce the following: 

P(BIA) = P(B). 

The vertical bar in die expression above is the notation that will be used for 
conditioning. This expression is a definition of independence. The event B is 
independent of the event A because its conditional probability is equal to its 
unconditional probability. 

The definition of a conditional probability is 

P(A and B) 
P(BIA) = P(A) . (4.3) 

In words this may be read as the probability of the event B given that the 
event A has occurred is equal to the probability of the conjunction of the two 
events expressed as a ratio to the probability of the conditioning event. Using 
this definition we may express the probability of the conjunction as 

P(A and B) = P(BIA)' P(A). 

When the two events are independent, then the conditional probability in 
the expression above may be replaced by P(B). This means that we have 
arrived at an expression for the probability of the conjunction of two events 
when they are independent: 

P(A and B) = P(B)' P(A). 

In anticipation of what is to come, I should indicate to you that a major 
concern will be for the determination of independence and dependence be­
tween variables. Whenever the expression above is true the two events are 
independent. And whenever this expression is false the two events are said 
to be dependent, though the term nonindependent would be better (Parzen, 
1960). 

There is a common temptation to confuse independence with mutual ex­
clusiveness. Consider for illustration the following example. An urn contains 
six marbles, four are white. Draw a sample of size two from the urn. Let A 
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denote the event that exactly one is white and let B denote the event that both 
are white. Notice that the events are mutually exclusive, that is, there are no 
sample points which are simultaneously in both events A and B. We consider 
only the case of sampling with replacement because this is notationally most 
convenient. (You should convince yourself that the same result is obtained 
when sampling without replacement.) The sample space for this experiment 
is presented as 

Sample: 
Probability: 

(WW) 
(2/W 

(WR) 
(2/3)(1/3) 

(R W) 
(1/3)(2/3) 

(RR) 
(1/3f 

Notice that the unconditional probability of a white ball being drawn is 
4/6 = 2/3. The probability of the event A is just equal to the probability of 
getting a white on the first draw and a red on the second (2/3)(1/3) = (2/9) 
or getting a white on the second and a red on the first (2/9). This probability 
is (4/9) since the two events are mutually exclusive. And the probability of 
the event B is simply equal to getting a white marble on both draws, (2/3)2. 
This is equal to (4/9) also. Since the two events are mutually exclusive, the 
probability of their conjunction must be identically equal to zero. You will 
note then that since neither of the events has probability zero it is impossible 
that the product of the probabilities can be equal to zero. It is therefore the 
case that events which are mutually exclusive are dependent (non-independent). 

These concepts of independence and conditional probability can be extended 
to any number of events. Suppose, for illustration, a sample space with three 
events defined on it, {A, B, q. The probability of C given that A and B have 
both occurred is defined as 

P(ClA and B) = peA and Band C)/P(A and B). 

Notice that this definition holds only if peA and B) does not equal zero. 
The events A, B, C are said to be independent if 

(1) peA and B) = P(A)· PCB) 

peA and C) = P(A)· P(C) 

PCB and C) = P(B)· P(C) 

(2) peA and Band C) = P(A)' P(B)' P(C). 

In order that three events be simultaneously independent it is necessary that 
they be pairwise independent as given in the first three equalities above, and 
that they be jointly independent as given in the last of the equalities above. 
Now, assuming that the probabilities of the events A and Band C, A and B, 
A and C, Band C, are all non-zero, independence implies that 

P(AIB and C) = P(AIB) = P(AIc) = peA) 

P(BIA and C) = P(BIA) = P(BIc) = PCB) 

P(ClA and B) = P(ClA) = P(ClB) = P(C). 
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Notice that pairwise independence does not imply joint independence. 
The following example will illustrate this. Consider the sample description 
space S = {I,2,3,4}. Define the events A = {I,2}, B = {I,3}, and C = {I,4}. 
When all points in this sample description space are equally likely then 
P(C) = P(CiA) = P(CiB) = 1/2. But notice that P(CiA and B) = 1. Since the 
conditional probability of C given (A and B) is not equal to the product of 
the probabilities of the simple events involved, the events are not jointly 
independent even though they are pairwise independent. 

4.2.5. Distributions 

A distribution is a functional rule that specifies the probability of each event 
in the sample description space. A functional rule may be defined in three ways: 

1. An equation 
2. A table 
3. A graph 

For many reasons, not the least of which is ease of manipulation, an equation 
is the preferred means of specifying a distribution. A table may be produced 
from an equation, and within computational limits, is a satisfactory repre­
sentation. Typically an equation is not uniquely specified by a table, however, 
so analytic problems may be created in using this device. A graph adds two 
more sources of error-production (i.e. drawing) and interpretation (reading). 
There is no substitute for a picture when the purpose is to communicate 
qualitative features of a distribution, e.g. shape, dispersion, and location. But 
a picture cannot substitute for a table or an equation when the probability of 
an event is required. There is no substitute for a table in an environment 
without formidable computational support. But a table cannot substitute for 
an equation when the precision required exceeds that of the table, or when 
the probability of an event which does not appear in the table is required. 

The notation of Section 4.2.3. can be used to motivate an important ex­
tension. Consider an urn that contains N distinguishable marbles, w of which 
are white and r are red. Let us determine the probability of exactly k white 
balls in a sample of size n obtained without replacement. Several features of 
the experiment are implied so far: 

1. N=w+r 
2. n::;; N 
3.0::;; k::;; w 

A combinatorial structure can be used to obtain the desired probability: 

P(k) = B(w, k)B(r, (n - k))/B(N, n). 

Now we note that another condition obtains 

4. (n - k) ::;; r. 

(4.4) 
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Note that the denominator of equation 4.4 is the number of ways of obtaining 
a sample of size n from among N; the left-hand term in the numerator is 
the number of ways of drawing k white marbles from the w in the urn; and 
the right-hand term in the numerator is the number of ways of getting the 
remainder of the sample. Inserting the definitions into 4.3 results in 

P(k) = (w!/k!(w - k)!' r!/(n - k)!(r - n - k)!)/(N!/n!(N - n)!). 

Since r = N - w, the right-hand term in the numerator may be written as 

(N - w)!/(n - k)!(N - w - n + k)!. 

Now the right-hand side of the equation may be rearranged as 

n! w! (N - w)! 

k) k!(N - k)! (w - k)! (N - w - n - k)! 
P( = -----------­

N! 

(N - n)! 

= B(n,k) (W)k .(r)n-k. 
(N)n (N)n 

Feller (1950) shows that, as n gets large ("in the limit") 

(w)k/(N)n = pk 

and 

where p is the probability of a white marble. Then, for large n 

P(k) = B(n, k)pk(l - pt-k • 

(4.5) 

(4.6) 

When experiments are performed in such a way that the outcome of any 
one experiment does not influence the outcome of any other experiment the 
observations are independent. This assumption will be always satisfied when 
sampling randomly with replacement. For the purpose of illustration consider 
an urn which contains three marbles labelled a, b, c. An experiment consists 
of sampling the urn three times with replacement. The sample space for this 
experiment is presented as 

(aaa), (aab), (aac), (aba), (abb), (abc), (aca), (acb), (acc) 

(baa), (bab), (bac), (bba), (bbb), (bbc), (bca), (bcb), (bcc) 

(caa), (cab), (cac), (cba), (cbb), (cbc), (cca), (ccb), (ccc). 

Notice that there are 33 = 27 points in this sample description space. Also 
notice that while this particular illustration so far has assumed that each of 
the marbles is equally likely to be sampled, this is by no means essential. We 
could have, for example, that the probability of obtaining a marble with the 
label "a" on it is equal to Pa, and the probability of obtaining a ball with "b" 
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on it is Pb' and similarly for a ball with a "c" on it, Pc. Then the probability 
of the first sample point, that is, (aaa) is simply equal to P:. Likewise the 
probability of the sample point (bca) is equal to Pb' Pc' Pa. Then the prob­
ability of any sample point in the sample description space is given as the 
product of the probabilities of the components. 

Now let us define a function on this sample description space, fa (X), whose 
value is equal to the number of times a marble with an "a" label on it is 
sampled. The range of values for fa(x) is (0 ... 3) that is, we may obtain a sample 
point with no "a" in it or a sample point which is all "a" or any number in 
between. Denote the value of fa(x) as r. And define similar functions for the 
number ofb's, (denote its value by the letter s), and a function for the number 
of c's (value denoted by t). (Convince yourself that r + s + t = 3.) Consider 
a special case, say r = 1, s = 2, and t = O. We can obtain the probability of 
an event r = 1 and s = 2 and t = 0 by Pa(1)· Pb(2)' Pc(O). Now locate all points 
in the sample description space which have exactly one "a" and exactly two 
"b." You will note that there are three such points: (abb), (bab), and (bba). 
Each of these points has the same probability and, since they are independent, 
the probability of this event is just 3 times the probability of one of the 
occurrences. Then the probability of their conjunction is simply three times 
the probability of that kind of a point. 

Now assume that the urn is to be sampled n times. Then from results 
obtained earlier we see that there are 

( n) n! 
rst =r!s!t! 

possible points satisfying the requirement that N(a) = r, N(b) = s, and N(c) = t. 
(Note that this is just equation 4.2.) We may obtain the probability of anyone 
of these points as 

The conjunction of these conditions is given by the product of the probability 
of anyone of the points times the number of ways the point may be realized. 
(You should note that r + s + t = n.) Clearly also the number of different 
types of marbles in the urn may be generalized to any number. Notice that 
there are four possible values for the function, (0, 1,2,3). The basic problem is 
the following: assume that we were to repeat this sampling of marbles from 
this urn drawing three and then observing the value of fa(x) a large number 
of times. We ask then for the average, or expected value, of the function. 
Consider the outcome 3a. When this is the result fa(x) = 3, and since there is 
only one such outcome in the sample description space we assign the proba­
bility 1/27 to this result. Now consider the outcome 2a. Notice that this result 
can be obtained in six different ways: {(aab), (aac), (aba), (aca), (baa), (caa)}. 
And we assign the probability of 6/27 to this possible function value. Now 
consider the outcome 1a. This can occur in twelve different ways, and so we 
assign the probability 12/27 to it. And finally the functional value Oa is 
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observed in 8/27ths of the time. These considerations are arrayed as 

f.(x) p.(x) 

3 1/27 
2 6/27 
1 12/27 
o 8/27 

If we weight each possible value of the function by the probability of observing 
it we obtain the expectation 

E(f.(x)) = (1/27)·3 + (6/27)·2 + (12/27)·1 + (8/27)0 = 1. 

(The notation E is used for expected value.) Not surprisingly, it is expected 
that the average number of "a" that will be obtained in any sample of size 3 
from the urn which has three marbles in it is equal to 1. This should be 
consistent with your intuition since we are drawing three balls from an urn 
where exactly one-third of them carry the "a" label. The generalized notation 
for this quantity is 

i=n 

E(x) = I xiP(xJ (4.7) 
i=l 

The notation "capital sigma" (I) is used as a summation sign and in this 
particular case we indicate that the summation is to occur over all possible 
values of x. Then the things that are being summed are the products of the 
values of the function times the probability of that particular value. 

Suppose that g and h are two functions defined on the sample description 
space. Then 

E(g· h) = E(g)· E(h), g and h independent 

E(g + h) = E(g) + E(h) (4.8) 

E(cg) = cE(g), c a constant. 

It would not be very smart to entertain the possibility that simply because 
the expected number of "a" in our sampling procedure is 1, exactly one will 
be observed in every sample. It would be useful to be able to describe quan­
titatively the expected scatter of the observed number in the sample around 
this expected value if the experiment is repeated a large number of times. 
This is typically measured by a quantity called the variance of the function. 
The definition of variance is 

Var(f) = E(f - E(f))2 (4.9) 

where f is some function defined on the sample description space. In words, 
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this quantity is simply the expected value of the square of the deviations of 
the value of the function from its expected value. 

Let us find the variance of the number of "a" in the sample of size 3 which 
we are dealing with. We already know that the expected value of this function 
is 1. And we have obtained the probabilities of each of the possible outcomes 
for the function f. These quantities produce 

Var(f) = (1/27)(3 - 1)2 + (6/27)(2 - W + (12/27)(1 - 1)2 

+ (8/27)(0 - 1)2 = 18/27. 

(This quantity will be interpreted shortly.) 
Let there be two independent functions, g and h, defined on the sample 

description space. The variance of the sum of these functions is the sum of 
the variances 

Var(g + h) = Var(g) + Var(h) (4.10) 

Var(c) = 0 } 

Var(cf) = c2 Var(f) c a constant 

Var(f + c) = Var(f). 

(4.11) 

With a bit of manipulation, it can be shown that 

Var(f) = E(f2) - (E(f))2 (4.12) 

which is easier to produce with a calculator. 
In much statistical work it is common to express an effect in terms of its 

observed deviation from the average effect. Let us consider this briefly. Define 
the standardized function by 

f* = (f - E(f))/JVar(f). (4.13) 

Notice that here the standardized function is expressed as the deviation of 
the function from its expected value, in the numerator, divided by the square 
root of the variance of the function. This denominator will become sensible 
shortly. For the moment let us investigate the properties of the function f*: 

E(f*) = (E(f) - E(f))/b = 0 

Var(f*) = (l/b 2 ) Var(f) = 1 
(4.14) 

where b2 = Var(f). Note that this standardized function has some very nice 
properties. Specifically it has an expected value identically equal to zero and 
a variance identically equal to one. This facilitates the comparison of devia­
tions from different sources. 

The main use of the variance is in the determination of whether an observa­
tion is close to, or distant from, its expected value. When an observation is 
distant from its expected value, then under some conditions we may claim 
that an effect has been observed. 
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4.2.5.1. BINOMIAL DISTRIBUTION 

A binomial variable is one which has two values. Often these are called 
"success" and "failure" but they may as well be "yes/no", "heads/tails", "0/1", 
or any other convenient label. Some examples are presented below. Equation 
4.6 defines the binomial distribution. When the number of trials (n) and the 
probability of a success (p) are specified, the probability of exactly k successes 
may be calculated, or looked up in a table. 

EXAMPLES. 

1. The records of a particular hospital indicate that 50% of the births there 
are males. The last 5 births were female. What is the probability of this 
happening if there has been no change in the sex ratio at birth? 

SOLUTION. 

Probability of male, p = 1/2 

Probability of female, q = 1/2 

Probability of 5 females = B(5,0)(1/2)°(1/2)5 

= 1·1·1/32 

= 0.03. 

This result would qualify as an unusual event given its low probability. We 
may ask, however, about the probability of all possible outcomes, 

Number Number 
of males (k) of females B(5,k) (pk)(qS-k) Probability 

0 5 1 .03 0.03 
1 4 5 .03 0.16 
2 3 10 .03 0.31 
3 2 10 .03 0.31 
4 1 5 .03 0.16 
5 0 1 .03 0.03 

1.00 

Notice that the distribution is symmetrical. The probability of an outcome 
increases as the number of males increases from 0 to 2, and then decreases. 
This is an artifact of equal probability for male and female births. 

Suppose that the probability of a male birth is 2/3 which makes the prob­
ability of a female birth 1/3. Now what does the distribution look like? 
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Number Number 
of males (k) of females 
(p = 2/3) (q = 1/3) B(5, k) (pk)(qS-k) Probability 

0 5 0.004 0.004 
4 5 0.008 0.040 

2 3 10 0.016 0.160 
3 2 10 0.033 0.330 
4 1 5 0.066 0.330 
5 0 0.132 0.132 

0.996 

Now note that the probability of 5 females in the last 5 births is much less 
probable, and that the distribution is no longer symmetrical. 

In their paper on Tibetan fraternal polyandry, Beale and Goldstein (1981) 
are concerned with the probability of a specific gene being transmitted of 
offspring if there are n male siblings sharing a single female equally. Assume 
that all are full siblings. The probability that a given brother has the gene is 
1/2. Then the probability that exactly k of the brothers have the gene is given 
by B(n, k)(1/2t. The probability that the gene is transmitted by exactly 1 is 
just 1/2 the probability that k brothers have it under the condition that all 
have equal sexual access. 

2. An area of Ethiopia is populated by 2 different species of baboons. A 
primatologist observes 10 baboons in an area thought to be characterized 
by 25% species X and 75% species Y. Determine the probability of all 
possible species sample compositions. 

SOLUTION. 

Probability of species X, 

Probability of species Y, 

p = 1/4 

q = 3/4 

Probability of k species X = B(lO, k)(I/4t(3/4)10-k. 

Number of cases of 
species X Probability 

0 0.0563 
1 0.1877 
2 0.2816 
3 0.2503 
4 0.1460 
5 0.0584 
6 0.0162 
7 0.0031 
8 0.0004 
9 0.0 

10 0.0 
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If he observed 6 or more members of species X, he might be tempted to decide 
that there has been some change in local populations. 

3. In the region of Ethiopia described in example 2, the primatologist is 
searching for the center of population for species X. He has decided on 
the following strategy: along an east-west route, he will obtain a sample of 
10 animals every 5 kilometers. If he obtains 2 or fewer animals of species Y 
he will assume that the population center of species X has been located. 
Find the probability of his deciding that the center has been located. 

SOLUTION. Note that in this problem the true value of p is unknown at each 
sampling site. The conditional probability of observing 2 or fewer members 
of species Y given various frequencies of species X is required. 

(1) Probability of 2 or fewer members of species Y, P(y ~ 2) is given by 

P(Y ~ 2) = P(Y = 0) + P(Y = 1) + P(Y = 2) 

i=2 
= L B(lO, i)pl0-i(1 _ p)i. 

i=O 

(2) P(X) P(Y ~ 2) 

0.10 0.0 
0.25 0.0035 
0.50 0.1719 
0.75 0.9965 
0.90 1.0 

Note that when P(X) ~ 0.75, it is highly probable that he will decide that the 
center of population has been located. 

4. The primatologist has decided to incorporate a technique called "focal 
animal sampling" which requires that a specific baboon be observed for a 
specified amount of time, usually one hour. At the moment he seeks Amber. 
There are 10 animals in the area. How many must be checked before finding 
Amber? 

SOLUTION. As stated the question cannot be answered. We can, however, 
answer a closely related one-what is the probability that the next animal 
to be observed is Amber? Notice that this is equivalent to sampling with 
replacement, an urn containing 9 white balls and 1 red ball. Sampling with 
replacement corresponds to the period during which the primatologist cannot 
yet identify all individuals. When all are identifiable, he samples without 
replacement. The problem is to determine the probability that the red ball is 
drawn on the kth draw. This is equivalent to exactly k - 1 failures before 
the final success. 
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Number of draws required 
to get the red ball Probability of k draws 

1 1/10 =0.1 
2 (9/10)(1/10) =0.09 
3 (9 /1O)2( 1/10) =0.081 
4 (9/1W(1/1O) =0.0729 
5 (9/10)4(1/10) =0.0656 
6 (9/1W(1/10) =0.0591 
7 (9/10)6(1/10) =0.0531 
8 (9/1W(1/1O) =0.0478 
9 (9/10)8(1/10) =0.0431 

10 (9/10)9(1/10) =0.0387 

You should note that this could go on for a large number of draws~it is 
possible, sampling with replacement, that Amber will not be located within 
the lifetime of the primatologist. 

5. Hausfater (1975) determined that the length of the menstrual cycle for 
female baboons was 32.5 days. The duration of the estrus period ofthe cycle 
is 7 days. These observations produce the estimated "probability of estrus" 
p = 7/32.5 = 0.21. Since the intensity of aggression in a troop depends on 
the number of estrus females present, it is useful to be able to predict the 
number. If the troop is observed for N days, what is the probability of 
exactly k = 0, 1,2, ... estrus females on any given day? 

SOLUTION. If the problem is restated in terms of an urn model, its solution is 
straightforward. An urn contains n white balls. A trial consists of withdrawing 
each ball (sample without replacement), rolling a 5 sided die (the probability 
of any face is 1/5), and if a 1 is obtained replace the white ball with a red one. 
After all n have been removed, count the number of red balls, replace the red 
with white balls, return all n to the urn, and repeat the process. We have 

P(k) = B(n, k)(pk)(qn-k). 

Assume that n = 10, p = 1/5 and for k = 0, 1, 2, 3 determine P(k) 

k P(k) 

o 1· (1/5)°(4/5)10 = 0.11 
10· (1/5)1(4/5)9 = 0.27 

2 45· (1/W(4/5)8 = 0.30 
3 120·(1/W(4/W = 0.20 

Hausfater found that this model predicted the number of estrus females rather 
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well. Be that as it may, you should be aware that there is very poor conceptual 
agreement between the model and the known dynamics ofthe system. So while 
it is possible to use the model to predict an empirical observation, under­
standing the process which produced the events has not been advanced. We 
shall return to this problem later. 

6. Altmann and Altmann (1970) attempt to "account for the distribution of 
[baboon] group sizes within a population, and to account for the fact that 
mean group size varies greatly from one region to another" (204). Initially 
they used the BIDE model which predicts group size from the rates of birth 
(B), immigration (I), death (D), and emigration (E). It is argued that death 
and emigration rates-loss-depend on group size, as does birth rate; 
but immigration does not in any obvious way. (Later we shall consider a 
challenge to this last assumption.) [N.B. There seems to be a typographical 
error in the manuscript so the following discussion is intended to develop 
the spirit of their argument.] 

SOLUTION. Let p be the probability that the group increases by 1 member-this 
is the sum of the birth and immigration rates; and let q be the probability that 
the group does not increase-let this be the probability of no increase plus 
the probability of a decrease by death or emigration. Then for a group cur­
rently of size n, the probability that at the next time period it is of size n + k is 

Pen + k) = B(n + k, k)pkqn. 

Altmann and Altmann concluded that this model does not fit the observations 
of baboon group size. 

Expected Values for the Binomial Distribution 

Notice that, where Sn is the number oftimes a "success" is registered in n trials, 

E(Sn) = np 

Var(Sn) = np(l - p), 
(4.15) 

the expected value and variance of a binomial random variable. We shall have 
need of these properties later when testing hypotheses statistically. 

Also it is useful to have a bit more notation. For the binomial probability 
distribution, use the definition 

(4.16) 

4.2.5.2. POISSON DISTRIBUTION (SIMEON D. POISSON, 1781-1840) 

When a sample of observations on a binomial variable is observed, the number 
of successes is a random variable. That is, for a given number of observations, 
n, and a given probability of a success on each observation, p, the number of 
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successes which occur may be any number from 0 to n. The expected number 
of successes is m = np. The expression 4.4 can now be written as 

P(k) = B(n, k)(mln)k(1 - (mln»"~k. 

It can be shown (Parzen, 1960; Ross, 1972) that, as n gets large and p small 

(1 - (mln)t ~ e~m 

where e ~ 2.7183, the base of the natural logarithms. Since k is small relative 
to n 

B(n,k) ~ 1 

and 

(mln)k ~ o. 
With these limiting values, 

(4.17) 

with m > 0, and k = 0, 1, .... This is the Poisson distribution. It should be 
evident that an important application is as an approximation to the binomial­
when n is large, the evaluation of B(n, k) is difficult. 

Olkin, GIeser, and Derman (1980) provide an interesting illustration of the 
approximation. For n = 10 and p = 0.1, m = np = 1 then 

k o 2 3 4 5 6 ~7 

Binomial 0.349 0.387 0.194 0.057 0.011 0.002 0.000 0.000 
Poisson 0.368 0.368 0.184 0.061 0.D15 0.003 0.001 0.000 

Note that even with n small the approximation is quite good. Letting n get 
large and p small (so that m = 1) with n = 100, p = 0.01 results in 

k 

Binomial 
Poisson 

o 
0.366 
0.368 

0.370 
0.368 

2 

0.185 
0.184 

3 

0.061 
0.061 

4 

0.015 
0.D15 

5 

0.003 
0.003 

6 

0.001 
0.001 

~7 

0.000 
0.000 

You might expect (correctly) that with n = 1000, p = 0.001 the approxi­
mation is even better. "In general the Poisson distribution with parameter m 
provides a good approximation to the binomial with parameters nand p = min 
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in cases when n is large and p is small, and when m = np is of moderate size 
(say m ::;; 20)" (ibid, 191) .... the number of flaws in capacitors, ... the number 
of defects per linear unit of wire and of rope, ... the number of beetle larvae, 
... the number of fish caught in a day, ... the number of photons reaching the 
retina, ... bacteria counts, ... the numper of defective teeth [in humans] per 
individual, ... the number of victims suffering from various specific diseases, 
... the number oflabor strikes, ... the number of words misread in a text, ... the 
frequency of earthquakes, ... wrQpg telephone connections, ... radioactive 
emissions (ibid, 187). Clearly approxi~ating the binomial is an important and 
quite useful application of the Poisson distribution. The range of applications 
is, however, much more extensive. 

EXAMPLES. 

1. The population density in a restricted area is m per unit area. At a university, 
for example, the density might be m = 1/2 per square meter. What is the 
probability that 2 sampled units are (I) both empty, (2) at least 1 is occupied? 

SOLUTION. The probability that both sampled square meters are empty is 

P(k = O} = e-2(1/2)(2(1/2))0 
O! 

= l/e 

= 0.34. 

The probability that at least 1 is occupied is 

P(k ;;:: I} = 1 - P(k = O} 

= 0.63. 

2. A book of 473 pages contains 257 misprints, typographical errors. What is 
the probability that 10 randomly selected pages contain no errors? 

SOLUTION. There are 257/473 = 0.53 errors per page. 
The Poisson parameter, the expected number of errors in 10 pages, is 

m = (257/473) * 10 = 5.3. 

The probability of 0 errors in 10 pages is 

(5.3}0 
P(k = O) = e- 5 . 3 __ 

O! 

= 0.005. 

3. It should be noted that the Poisson parameter m must be estimated from 
observations. Parzen (1960) presents the following observations on vacancies 
in the U.S. Supreme Court. 
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Number of vacancies (k) 
Number of years 

with k vacancies (Nk ) 

o 

2 
3 

>3 

59 
27 
9 
1 
o 

Define t = k * Nk = 0·59 + 1 ·27 + 2·9 + 3· 1 = 48. Note that N = L Nk = 
96. Then the parameter is estimated by 

m = 4 * (t/N) = 2.0 

vacancies per presidential term. 
The probability that a president will make no appointments in a 4 year 

term to the Supreme Court is 

P(k = 0) = e-4 (2° /O!) = 0.14. 

We may also ask whether these observations actually do follow the Poisson 
Law. In order to answer, a statistical test of the goodness of fit between the 
predicted and observed years with k vacancies is required. The details of 
the test will be presented later but an impression may be gained from the 
results below. 

Number of Probability Predicted years Observed years out 
vacancies of k with k vacancies of96 with 

(k) vacancies over 96 years k vacancies 

0 0.61 58.22 59 
1 0.30 29.12 27 
2 0.08 7.28 9 
3 0.01 1.21 1 

>3 0.01 0.17 0 

Note that there is very good agreement between predicted and observed. 

4. In the Mahale Mountains west of Lake Tanganyika, Kawanaka (1982) 
observed 15 cases of attempted, suspected or successful predation by chim­
panzees over 15 months. Should we arrive at the site to assist in the research, 
we may wonder about (1) the probability that we observe an episode 
tomorrow, (2) if an episode occurred earlier today, what is the probability 
of an episode tomorrow?, and (3) how long we should expect to wait before 
seeing 3 episodes? 

SOLUTION. 

(1) Convert the observations to a daily rate. There are about 453 days in 15 
months so we set 
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p = 15/453 = 0.0331 

per day. Assuming, questionably, that the episodes are independent-par­
ticipation in or observation of an episode does not change the probability 
of predation for any of the animals involved-allows us to estimate the 
Poisson parameter as 

m = np = 1 *p = p 

since we are concerned only with a single day. Then the probability of no 
episode tomorrow is 

P(O) = e-O.Q3 = 0.97 

and probability of at least 1 episode is 

P(k 2: 1) = 1 - P(O) = 0.0326. 

(2) Given that an episode occurred earlier today, the probability of one to­
morrow is 0.0326 because the events are independent. 

(3) The expected waiting time to the occurrence of one episode is (1/0.0326) = 
30.2 days. Since the episodes are occurring randomly, the expected waiting 
time before 3 are observed is 3 * 30.2 = 90.6 days. 

5. In the Mt. Assirik area ofParc National des Niokola-Koba of south-eastern 
Senegal, Tutin et al. (1983) estimated the chimpanzee population to be 
25-30 animals with a density of 0.09/km2. Over 44 months of observation 
between 1976 and 1979 there were 367 sightings of chimpanzees. This 
represents about 4000 observation hours and 284 contact hours. The esti­
mated probability of a contact 

p = 284/4000 = 0.0710 

per hour. If the waiting time between contacts is a Poisson distributed 
random variable, then for any given 1000 hours of observation the following 
should obtain: 

Number of contacts, 
k 

o 

2 
3 
4 

Expected number of hours 
with k contacts 

931.9 
66.1 

2.3 
0.1 
0.0 

This has implications for staffing requirements. 
If the animals are randomly distributed through the area-estimated to 
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be about 42 km2-then 

Number of animals, 
k 

o 
1 
2 
3 

Expected number of square 
kilometers with k animals 

38.4 
3.5 
0.2 
0.0 

6. It may be suspected that the group size of social animals is a Poisson 
random variable. That is, animals are observed to be in the vicinity of each 
other but it is a purely random phenomenon. This implies that sociability 
is a chimera, an artifact of the random movement of animals. 

In the study cited in example 5 the following observations were obtained: 

k Group size Observed frequency Expected frequency 

1 6-10 54 82.59 
2 11-15 23 21.50 
3 16-20 9 3.73 
4 >20 3 0.49 

The expected values were obtained by using the parameter 

m = I kjOJI q = 0.5206, 

where 0 is the observed frequency. Similar observations by MacDonald 
(1982) on Proboscis (Nasalis larvatus) in Brunei produced 

k Group size Observed frequency Expected frequency 

0 1-5 12 5.82 
1 6-10 13 11.64 
2 11-15 6 11.64 
3 16-20 3 7.76 
4 21-25 2 3.88 
5 26-30 3 1.55 
6 31-35 1 0.52 
7 36-40 2 0.15 
8 >40 1 0.05 
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The parameter value is 2.00. As it turns out, neither of these sets is a Poisson 
random variable by the statistical criterion. But more importantly, even had 
the observations fit the model, there is no theory about social groups which 
satisfies the requirements of the Poisson distribution. 

7. The hospital in Penticton, B.C., receives about 1.5 cases of snakebite each 
year. As of the end of July 1985 (a record year for heat in B.c.), it had treated 
5 cases. Find the probability of this event if the parameter is 1.5. 

SOLUTION. 

Number of bites 

o 
1 
2 
3 
4 
5 
6 

Probability 

0.2232 
0.3347 
0.2510 
0.1255 
0.0471 
0.0141 
0.0035 

As the event of 5 cases in a season is quite unlikely-14 times in a thousand 
years-the hospital staff is justified in being alarmed. Note that should another 
case be reported before fall, there would undoubtedly arise rumors that the 
authorities were covering up a snake invasion to protect the tourist industry. 

Expected Values for the Poisson Distribution 

It probably comes as no surprize that the mean of a Poisson random variable 
is the parameter. One of the more interesting facts about this distribution is 
that the variance is also the parameter. That is 

E(k) = m 

Var(k) = m 

where m is the parameter of the distribution. 

4.3. Processes 

(4.18) 

A process is, for our purposes, a distribution in time. That is, if there is a 
mechanism pumping out O's and l's (failures and successes), it is a binomial 
process. (This is properly called a Bernoulli process.) A mechanism which 
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produces O's and 1 's such that the waiting time between 1 's is exponentially 
distributed, the process is Poisson. A mechanism which produces events in 
such a way that the probability distribution depends on the last event, the 
process is called Markovian. 

Anthropology, as a self-conscious discipline, began as a concern for process, 
for evolution-cultural and biological. The goal was to explain variability 
through time. Notice that the description ofthe variability was not the objective; 
it was rather to understand the mechanism driving the process. So the study 
of process, evolution, is the intellectual foundation of anthropology. 

There is a very large number of classifications of the models developed by 
mathematicians and probabalists. In this section are presented only two 
model structures-those that seem to me to have the broadest applicability. 
The purpose is to make available a few of the concepts from this very rich 
field. In order to keep the mathematics simple, some assumptions are required. 

(1) Time is considered to be discrete, not continuous. This results in periods-
which may be a second or a million years depending on the requirements 
of the theory. If, for example, the period is 1 hour, then all events in the 
interval (0800 to 0900J are all considered to be simultaneous. (The notation 
(x to yJ means that the period begins after x and ends precisely at y. The 
interval is "open" on the left and "closed" on the right.) 

(2) The process is "stationary." To fix the concept, consider the current 
controversy in evolutionary theory. One group argues that the process 
has occurred at a steady rate, i.e. it is stationary. Another group argues 
that there have been periods, e.g. the Eocene about 35 million years ago, 
during which the rate of change has been much more rapid than during 
other times, i.e. the process is non-stationary. I mention this pointedly lest 
you should decide that these assumptions are so restrictive as to make the 
models useless. Some very powerful theory has been modelled within these 
constraints. 

In this section only stochastic-probabalistic-models are presented. Later 
other kinds of models shall receive brief attention. 

A counting process models the number of events which have occurred up 
to time t. 

You will note that N(t), the number of events up to and including time t, 
does not decrease-it is monotonic-for a counting process. The conditions 
which must be satisfied are 

(1) N(O) = 0 
(2) N(t) is an integer 
(3) If s < t then N(s) :::; N(t) 
(4) If s < t then N(t) - N(s) is the number of events that have occurred in the 

interval (s, t]. 

Examples of counting processes are 
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1. The number of mutations which occur in a given lineage. 
2. The number of Folsom points recovered. 
3. The number of matings between ego and mother's brother's offspring 

(cross-cousins). 
4. The number of suicides. 
5. The number of immigrants. 

Non-counting processes are 

1. The number of mutations if "forward" and "backward" mutations are con­
sidered. 

2. The number of Folsom points available for study if some are placed in 
private collections. 

3. Total current population including births and deaths. 
4. Net migration, i.e. immigrants and emigrants. 

The process is said to have independent increments if the numbers of events 
in different, non-overlapping, time intervals are independent. If, for example, 
there are two intervals defined by the points in minutes 12, 17, 22, then the 
number of events in (17,22] must be independent of the number of events in 
(12,17]. With regard to the examples of counting processes above: (1) all 
available evidence indicates the randomness, independence, of mutations 
under constant levels of radiation; (2) the number of Folsom points recovered 
depends heavily on the amount of time trained hunters spend looking for 
them; (3) if mating is random then the number of matings between cross­
cousins should depend only on the number of such potential mates; (4) suicide 
seems to have periods of greater and less popularity; and (5) immigration 
probably depends on perceived opportunity at the destination. In examples 
(2) through (5) it is possible to specify a set of conditions such that the incre­
ments of the process are independent. For example, for a constant number of 
searching hours in New Mexico, the process characterizing Folsom point 
recoveries may have independent increments. Immigration may have inde­
pendent increments for constant perceived opportunity. 

It is now possible to be a bit more precise about the concept of stationarity. 
A process has stationary increments if the number of events occuring in an 
interval depends only on the length of the interval. Let 8 < t and x a constant; 
then a process is stationary when the number of events in the interval (8, t] 
has the same distribution as the number of events in (8 + x, t + x]. 

4.3.1. The Poisson Process 

The Poisson process is a counting process. It is defined as: The counting 
process N(t) for t ;;::: 0 is a Poisson process with rate m > 0, if 

(1) N(O) = O. 
(2) The process has independent increments. 
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(3) The number of events in any interval of length t is a Poisson random 
variable with parameter mt. That is, for 0 :s; s :s; t and n = 0, 1, ... 

P(N(t + s) - N(s) = n) 

= e-mt(mttln! 

Note that condition (3) guarantees stationarity and that 

E(N(t)) = mt, 

(4.19) 

the expected number of events in an interval depends only on the length of 
the interval, which indicates why m is called the rate of the process. 

You should note that the theory being modelled should allow the deter­
mination of whether the process is expected to be Poisson. 

Assume that the process is Poisson with rate (parameter) m. This means 
that for the time unit of the process, it is expected that, on the average, m 
events occur each unit of time. Suppose, to fix the concept, the events are 
episodes of predation by chimpanzees as in example 4 of Section 4.2.5.1. There 
it was estimated that these events occur at the rate of 0.0331 per day. At this 
rate, then, it is expected that there will be, on the average, 1/0.0331 = 30.2 
days between episodes. This is the mean, expected, waiting time. Clearly the 
mean waiting time and rate of occurrence are just the reciprocal of each other. 
(If a car is travelling at 50 mph, then the waiting time to travel 1 mile is 
1/50 = 0.02 hours or 1.2 minutes.) For the Poisson process the expected 
waiting time, the mean time, between events is 11m. For a sequence of events 
observed to occur at (t 1 ,t2 , .•• ) the time between events is 

For the Poisson process 

T1 = t1 - 0 

T2 = t2 - t1 

11m = lin L Tn· 
n 

A quantity frequently of interest is the waiting time to the kth event. Notice 
that this simply kim. A moment's reflection will convince you of this-if the 
mean waiting time to one event is 11m, then the mean waiting time to the kth 
event is k(l/m). For example, if immigrants are arriving at a location according 
to a Poisson process with m = 0.5 per day, how long should we expect to wait 
before the 8th immigrant arrives? Note that the expected waiting time between 
events is 1/0.5 = 2 days; then it is expected to be 8(1/0.5) = 16 days before the 
8th arrival. 

EXAMPLE. Clark and Mangel (1984a,b) incorporate a Poisson model for the 
food search-encounter component of their analysis of foraging and flocking 
strategies. The focus of their effort is birds, but the results have clear sub-
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stantive implications for both contemporary non-human Primates and the 
early stages of hominid evolution. This model will, therefore, receive attention 
here and in later sections. 

Consider some resource-for example food, or females-which affects the 
fitness of an individual. For now, assume that the resource items have a 
constant, non-renewable value, V, to the fitness of the individual. (Clark and 
Mangel's analysis is in terms of the weight of the item which may be translated 
as proportional to fitness.) If the resource is "patchily" distributed and the 
searching animal has imperfect information, he may locate resource items 
according to a Poisson process with rate m. Once a resource item is located, 
its consumption or utilization requires some time, t. Let the unit of time be i, 
then the probability of locating a resource item within the time interval 
(t, t + i] is mi and the expected time to encounter an item is l/m. Then the 
expected long-run contribution to individual fitness is 

V 
fm = 1/ = m V/mt + 1. 

t + m 
(4.20) 

This equation asserts that: (1) the fitness of an individual who searches at rate 
m, fm' is equal to (2) the value of a single item, V, divided by the sum of (3) the 
consumption time, t, and (4) the searching time, l/m. 

To pique your interest for things to come, Clark and Mangel are able to 
show, among many other things that if animals search together, the expected 
group size is greater than the optimum. 

In the remainder of this section are presented some additional properties 
of the Poisson process. 

1. Joint Poisson processes 

Ross (1972) gives an example which will win you a beer nearly every time. 
Suppose customers arrive at a bank according to a Poisson process with rate 
m = 1 per hour. Half the customers are male, and males and females arrive 
independently of each other. You are told that 100 males showed up during 
a given 10 hour day. How many female customers arrive? Most people will 
say that 100 females should have arrived. But this response is based on 
specious reasoning. Since males and females arrive independently, and since 
the expected total is 10 for the day of whom 1/2 are female, the correct answer 
is 5. 

This illustrates an important property about compound Poisson processes: 

The joint distribution of independent Poisson processes is a Poisson process. 
If separate Poisson processes produce a Poisson process, then they are inde­
pendent. 

EXAMPLES. 

1. If immigrants to Vancouver arrive according to a Poisson process at the 
rate of 100 per week and if 5% are from Germany, what is the probability 
of no German immigrant between 1 and 15 October (2 weeks)? 
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SOLUTION. Note that m = 100 immigrants per week; p = 1/20, the probability 
of an immigrant of German origin; and t = 2 weeks. 

The Poisson parameter is 

mpt = (1/20)(100)2 = 10, 

then the probability of no arrivals from Germany during the 2 weeks is 

e-10 = 0.00005. 

You might be curious about this result if the rate were in terms of days instead 
of weeks. In this case m = 100/7 = 14.29 per day and the Poisson parameter is 

mpt = (1/20)(14.9) 14 = 10 

producing the same result. 

2. A family of Yukon Athapaskan speakers has a single hunter-AI. (The 
name has definitely lost something in translation.) During the fall, Al hunts, 
on the average, 3 days per week and never more than once per day. What 
is the probability that he does not hunt for 7 days? 

SOLUTION. 

(1) Binomial 

(2) Poisson 

P(no hunt for 7 days) = b(O; 7, 3/7) = 0.0199. 

mt = (3/7)7 = 3 

e- 3 = 0.0498. 

You should note the disparity between the binomial and the Poisson estimates. 

3. In the example 2, Al has a kill rate of 2 deer for every 10 days he hunts. 
What is the probability that he brings a deer back today? What is the 
expected waiting time to the next deer returned? 

SOLUTION. 

P(deer) = P(kill) * P(hunt) 

= (1/5) * (3/7) 

= 3/35 

= 0.0857. 

Waiting time to next deer 

t = 1/0.0857 = 11.6667 days. 

4. In example 3, what is the probability of at least one deer within the next 3 
days? 
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SOLUTION. 

peat least 1 deer) = 1 - P(no deer) 
P(no deer) = P(no hunt in 3 days) + P(hunt and no kill) 
P(no hunt in 3 days) = e-3(3f7) = 0.2765 
The P(hunt and no kill) with t = 3 is expressed as 
P(l hunt and no kill) + P(2 hunts and no kill) + P(3 hunts and no kill) 

= L P(k hunts and no kill) 
k 

= L e-(9f7) (9/7)k e-(3j5) 

k! 
= 0.1517(L:(9f7)k/k!) 
= 0.1517((9/7) + (9/7)2/2 + (9/7)3/6) 
= 0.1517(1.2857 + 0.8265 + 0.3542) 
= 0.3742. 

So P(no deer in 3 days) 
= 0.2765 + 0.3742 
= 0.6507 

and the peat least 1 deer in 3 days) 
= 1 - 0.6507 
= 0.3493. 
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You should notice that the probability of deer meat has two independent 
components-hunting and killing-each of which is modelled by a Poisson 
process. 

4.3.1.1. THE TRANSITION TO BIG GAME HUNTING 

In this section will be presented one of several extensions of the Clark and 
Mangel model. The resource item is food, the value is presumed to be in 
Kilocalories (Kcal), fitness is proportional to the value offood consumed, and 
individuals attempt to maximize their fitness. Food items-game animals­
are encountered randomly according to a Poisson process, but the population 
of game is large so that there is no appreciable resource depletion due to 
hunting. Each human is assumed to have a capacity of C Kcal per meal in the 
sense that he ceases eating when this value is consumed. The resource animal 
is assumed to be of constant size B = kC, i.e. each animal represents k meals. 
To fix the concepts, assume a meal is 1000 Kcal. A deer may dress out at about 
30 kg and each kilogram contains approximately 3800 Kcal. One deer = 
(3 * 3800 Kcal)/1000 = 114 meals. By contrast, a rabbit at 1 kg becomes only 
3.8 meals. 

Let t1 denote the time required to prepare and consume one meal, and, as 
usual, m is the Poisson kill rate. Each individual hunts alone but stays in 
communication with the other hunters. When anyone makes a kill, all n 
hunters converge and eat until they are either satiated or no food remains. 
Satiation will occur first if k > n; when n > k then none are satiated. 
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Define 

a = min(l, kin), 

that is, for any kill, if there are more meals than hunters then a = 1 whereas 
if there are more hunters than meals ~hen a = kin. 

For n hunters the total hunting rate is mn and the expected waiting time 
to the next kill is limn. Each hunter consumes aC of the kill, that is, all 
share equally in the kill and each eats until he is either satiated or the food is 
exhausted. The time spent eating is at 1 . The fitness of each of n hunters is 

af 
fm(n)=~~~ 

at 1 + limn 

C 

t1 + l/m(min(k, n»' 
(4.21) 

Any change in t 1 , feeding time will affect fitness-for example, competitive 
interference would increase t1 and decrease fitness. Similarly a decrease in the 
kill rate would impact adversely on fitness. These effects are modelled by the 
factor a. Notice that if n > k, more hunters than meals, the effect is to decrease 
feeding time-an individual will increase his rate of feeding in order to con­
sume as much as possible. 

Clark and Mangel define 

1. the optimal group size as that which maximizes individual fitness, and 
2. the equilibrium group size as that which maintains an average fitness which 

is not less than that of an individual hunting alone. 

Given that the more hunters the more quickly resources will be located, as 
long as the group size is less than or equal to the equilibrium, an individual 
increases his own fitness through group membership. However, when the 
group is greater than or equal to optimal size, the average fitness of the group 
is degraded by his joining. 

This model makes some predictions of great importance to anthropology. 
Assuming that self interest motivates individuals, the model predicts that the 
normal state is for groups to be larger than optimal! At equilibrium there is 
no advantage in joining a group, but up to this group size an individual will 
improve his lot by joining. It matters not at all to the individual deciding to 
join or not that the other members of the group will be less fit if he joins-so 
long as his fitness is enhanced he cannot but choose membership over isolation. 

Another consequence of the model is that for groups at equilibrium, all 
would do better if the group divided into two halves. But no individual has 
any incentive to break away so these fission events are expected to be rare. 

Note that, from equation 4.21, when food is abundant, i.e. m is large, 
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because 11m ~ 0, and group membership is disadvantageous because t1 is 
increased through competitive interference. So grouping is not expected. Con­
versely grouping is expected when m is small. Equation 4.21 was evaluated 
over a range of prey sizes (0.1 to 100 kg), feeding rates (0.01 to 0.5 per hr), and 
kill rates, m (0.006 to 0.1 per hr) for an average hunter size (10 to 50 kg), a 
range which includes the size of the early Australopithecines. At about 43 
Kcaljkg/day (Latham et ai., 1970) a 30 kg hunter needs about 1290 Kcaljday, 
or an average of about 54 Kcaljhr. A "meal" was arbitrarily defined as 1/3 the 
daily requirements. A profound consequence of this model is that 

(1) when the prey is small (0.1 kg) there is no optimal group size, i.e. individuals 
are better off alone 

(2) for 1 kg prey there are two (only) optimal groups, 3 and 4 with equilibrium 
at 6 and 14 respectively 

(3) for prey 10 kg or larger, a wide range of group sizes exist. 

From (1) above comes the distinctive Hamadryas baboon (Papio hamadryas) 
troop. The animal feeds almost exclusively on small seeds. When the resource 
is abundant, isolated individuals constitute the optimal group. When the re­
source is scarce, all individuals do better by joining a group no matter what 
its size. 

From (2) emerges something like the earliest hominid groups. For a moder­
ately abundant resource of 1 kg-about the size of some modern rabbits-and 
average hunters less than or equal to 30 kg the optimal group is 3 or 4 de­
pending on feeding rate. It is noteworthy that the most common equilibrium 
size is 6-that is, so long as the group contains 5 or fewer, an individual will 
prefer group membership to isolation. To put this result in context, however, 
the parametric "window" producing these groups is quite narrow, with the 
result that optimal groups are quite rare for small hunters and prey. One 
expects either isolated individuals or large hamadrayas type groups depending 
on the abundance of the resource. 

In Table 4.1 will be found some representative predicted group sizes for 
hunters of size 10 kg or greater and prey size 10 kg or greater. Interestingly, 
this distribution of sizes is independent of increases in hunter size even though 

Table 4.1. Representative Group Sizes by Kill Rate and Food Handling Time 

Encounter rate (m) 0.1 0.05 0.025 0.012 

Handling time (t 1) Opt. Equil. Opt. Equil. Opt. Equil. Opt. Equil. 

0.125 3 6 
0.063 4 14 6 30 
0.031 6 30 8 62 11 100 
0.01 10 98 14 100 20 100 28 100 
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the larger individuals have greater caloric needs. It is also independent of 
further increases in prey size. This means, for example, that the cause of the 
observed evolutionary increase in hunter size, above a threshold; is not the 
effect of the behavior modelled here. It should also be noted that all the groups 
allow for the satisfaction of the total caloric requirement of the individuals. 
Some conditions-e.g. kill rate 0.1 and handling time O.OI-provide a much 
larger caloric supply than is required by an individual. These conditions 
should be thought of as the origin of food sharing. For example, a 20 kg hunter 
needs an average of about 36 kcal/hr. A kill rate of 0.1 and handling time of 
0.01 will return about 143 Kcal/hr or about 4 times the requirement of the 
hunter. The surplus would be available for strategic distribution. 

I have referred to feeding time and kill rate. More appropriately these terms 
should be handling time and encounter rate. Handling time is the average 
amount oftime required for preparing and consuming one meal. For example, 
4 men kill an animal that dresses out at 10 kg. The dressing (skinning, gutting, 
etc.) requires 60 minutes, and cooking 60 minutes. The product produces 
about 37000 Kcal. A meal for a 10 kg individual is about 143 Kcal, so there 
are about 260 meals. The handling time per meal is then 260/120 = 2.2 
minutes or 0.04 hours. Also using the term encounter rate instead of kill rate 
allows for scavenging and gathering rather than hunting exclusively. 

In Table 4.1 you will note that both optimal and equilibrium group size 
increase as encounter rate decreases. Also both increase with decreasing 
handling time. It seems possible to exclude as unrealistic those conditions 
without a clear equilibrium size. The reason is that these are the maximum 
sizes that allow all group members to obtain at least as much of the resource 
as they could get acting in isolation. For the evolutionary stage under con­
sideration, anthropological evidence does not support the existence of groups 
larger than 100. Then we are left with a rather small range of both handling 
and encounter times which produce acceptable group sizes. 

4.3.2. Markov Chains 

In this section is presented an introduction to a kind of non-independent 
stochastic process. Recall that the events of a Poisson process occur inde­
pendently-the occurrence of one event has no influence on the occurrence 
of another. A Markov process-called a Markov chain when there is a finite 
number of kinds of events-is characterized by a one-step dependence. That 
is, the probability distribution for the occurrence of events depends on the last 
event to occur-and only on it. A Markov chain is said to have a one-step 
memory. The events of a Markov chain are called states and the occurrence 
of an event means the system is in that state. 

When events are not independent they are said to be dependent. In the 
development of an anthropological theory, or for that matter any theory, 
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typically a time dynamic is explicitly included. That is to say, the theory tells 
us the change to be expected in a particular system over a specified period of 
time. Since we are considering only stochastic theories, that is to say, proba­
balistic ones, there is no expectation of inevitability in the systemic change 
expected. The state of the system at one time determines the state of the system 
at a later or subsequent time only probabalistically. 

The essential concept of Markovian dependence is that the state of the 
system at any given time depends, in a stochastic way, only on the state of the 
system at the immediately previous time. Note that this explicitly excludes all 
earlier time periods. 

When the states of the system have been defined, the transition probabilities 
from state to state have been obtained, and the initial conditions of the system 
determined, the analytic structure is then called a Markov chain. The conse­
quences of this particular structure have been analyzed at great length and 
applied with considerable success to a wide variety of different fields. For 
example, in physics the model describing the molecular diffusion of gases is a 
Markov chain. Markov chains have been applied to genetics, learning theory, 
and social mobility (Kemeny and Snell, 1960). Also, the growth of populations, 
the growth of populations subject to mutation, the theory of epidemics, to 
name only a few, have been successfully treated by the theory of Markov 
chains (Barucha-Reid, 1960). 

No attempt will be made here to give even a summary analysis of a Markov 
chain. Suffice to note that a large number of statistical quantities of interest 
about the consequences of Markov chains are available. Given the wide suc­
cess in applying the basic concept in diverse fields, it seems reasonable to 
anticipate that anthropologists will likewise discover the power. Rather than 
sketch in the analysis of a Markov chain, I shall present some of the results 
by way of example. You should consult one of the excellent introductory texts 
such as Kememy and Snell (1960) for the details. 

The examples which will be discussed through this section are 
(1) Mate selection with population structure. The Purums are a small hill tribe 

along the Indo-Burma border. The tribe is structured into five exogamous 
sibs-Marrim, Makan, Kheyang, Thao, and Parpa (White, 1963). Members 
of a given sib do not select mates randomly from the other sibs, i.e. 
members of the Parpa sib select mates from the Marrim sib, but not from 
the others. Figure 4.1 reproduces White's description of the mating struc­
ture of the tribe. Notice that choice depends on sib membership. 

(2) Learning theory. A standard experiment in learning theory is the follow­
ing. In the arms of aT-maze (Figure 4.2) place different stimuli. Introduce 
an experimental animal-mouse, gerbil, monkey, human-into the stem, 
and observe its choice between the two competing stimuli (Atkinson et al., 
1965; Beauchamp et al., 1985). Over a series of trials using the same pair 
of stimuli an animal's choice during a specific trial depends on the choice 
it made on the previous trial. 
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Go to left 
stimulus 

Orient to 
the left 
stimulus 

Figure 4.1 

Start 

Figure 4.2 
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Go to right 
stimulus 

(3) Modified Kula ring. This version will use a system of four islands. Each 
island successively acts as host to a trading convention which is attened 
by trading partners from adjacent islands only. The conventions are held 
periodically at intervals of, say, one year. The object of each convention 
is to acquire ownership of a specific item, e.g. a necklace. The visitors bid 
for the item, and the current owner is not obliged to accept any offer. 
So the necklace may move to an adjacent island or remain in its current 
location. 
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Figure 4.3 

1 
2 

Figure 4.4 
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( 4) Mendelian genetics of sib mating. This example is from Kemeny et ai. (1959) 
. and is useful for analyzing the production of a population of homo zygotes. 

In this example each state is defined by the genotypes of a breeding pair. 
The locus under consideration has two alleles, A and a, on an autosomal 
chromosome. So the possible states are: AA/AA, AA/Aa, AA/aa, Aa/Aa, 
Aa/ aa, aa/ aa. 

Introductory Concepts 

The current state, or state of the system, refers to the last observed state. A 
Markov chain (finite number of states) may be visualized as a process which 
moves from state to state such that the probability of the next state depends 
only on the current state. Typically these probabilities are displayed in a 
transition matrix. Consider a system with 3 states: (Sl,S2,S3)' Then the 
transition matrix is 
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Sl [Pll 
S2 P21 

S3 hi 
which has the following properties 

(1) 0 ~ Pij ~ 1 
(2) Lj Pij = 1. 

4. Generating Predictions 

Note that the matrix has the same number of rows and columns, i.e. it is 
square. The rows represent the current state and the columns the next state. 
So Pij is the probability of a transition from state Si to state Sj. If a system is in 
state Si then clearly Lj Pij = 1. A matrix with this property is called stochastic. 
A Markov chain transition matrix is a square, stochastic matrix. 

The matrix entries Pii constitute the diagonal. If any of the Pii is equal to 1 
then when the system enters that state it is absorbed, i.e. there is no further 
change of state. The state i is called an absorbing state. If any of the Pu, i of. j 
is equal to 1 then when the system enters state i it always goes to state j on 
the next transition. Then state i is called a reflecting state. For example 

Absorbing Reflecting 

Sl Sz S3 Sl Sz S3 

S, [PU Pl2 P~'] S, [PU Pl2 pu] 
S2 0 1 S2 0 0 1 . 

S3 P31 P32 P33 S3 P31 P32 P33 

First consider the absorbing matrix and assume that the system is currently 
in Sl' With probability Pl2 the system goes to S2 and is absorbed. With prob­
ability Pl3 the system goes to S3 and then, with probability P32 goes into S2' 
With a reflecting state, with probability P12 the system changes from Sl to S2' 
Once in S2 the system always goes to S3 on the next transition. 

A special case of a Markov chain is called a random walk. Consider 

When in Sl or S3 the system always goes to S2' Once in S2 it goes to Sl 
with probability P21 and to S3 with probability P23' There are many useful 
variations of this basic structure. 

Bowers (Atkinson, 1965) used a random walk to describe the behavior of 
a rat in a T-maze learning experiment. "Cues in the T-maze can be classified 
into three sets: (1) those stimuli in the stem and vicinity of the choice point, 
denoted as the set So, (2) those stimuli likely to be sampled when the subject 
at the choice point orients to the right side of the maze, denoted as the set Sl' 
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and (3) those likely to be sampled when the subject at the choice point orients 
to the left side, called the set S2" (ibid, 155). When the choice is made between 
the experimental stimuli the experiment is terminated. Call these latter stimuli 
Land R. The experiment is diagrammed in Figure 4.2. 

Notice that this experiment always starts in state So and is absorbed in 
either state L or R. The transition matrix is 

L S2 So SI R 

L 1 0 0 0 0 

S2 P2 0 q2 0 0 

So 0 O2 0 0 1 0 

SI 0 0 ql 0 PI 
R 0 0 0 0 1 

This is a random walk because only transitions to adjacent states are allowed. 
Two of the behaviors studied with this kind of structure are "vicarious trial 

and error," which are represented by sequences such as (,,,SlSOSl"') or 
( ... Sl SOS2"')' and the number of transitions before being absorbed in either 
LorR. 

If the matrix of transition probabilities is denoted P and the row vector ITo 
contains the initial probability of being in each state, then (Kemeny and Snell, 
1960) 

(4.22) 

which asserts that the key to the study of the changes in the vector IT is in 
the study of the powers of the matrix of transition probabilities. 

In the remainder of this chapter some elementary matrix manipulation is 
required. All the necessary concepts are in Appendix A. Computation involving 
matrices is one of the greatest blessings computers can confer. Locating and 
learning one of many available, easy to use computer programs will be time 
well spent. 

4.3.2.1. ABSORBING MARKOV CHAINS 

If a Markov chain has at least one absorbing state and if it is possible to get 
to this state from all others (not necessarily in one step) it is an absorbing 
Markov chain. The transition matrices for the T-maze experiment and for the 
description of sib mating are examples of absorbing chains. When a process 
reaches an absorbing state it is said to be absorbed. It can be shown that 
the probability of absorption is 1.0, i.e. the process will terminate in finite time. 

Some of the quantities of interest for such processes are 

1. The probability that the process will terminate in a particular state. 
2. The waiting time, i.e. number of steps, to absorption. 
3. The number of steps the process is in a transient, i.e. non-absorbing, state. 
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All these quantities depend on the starting state. 
The matrix of transition probabilities is reconfigured to have the following 

canonical (standard) structure: 

where 

Notice that 

P = [~ ~J 

1 is the a by a set of absorbing states 

Q is the t by t set of transient states 

R is the t by a set of transient states 

o is the a by t set of 0 probabilities. 

I ~ [r ~ ~ J (a by a) 

which is called the identity matrix, and 

o ~ l! : : J (a by t). 

(4.23) 

All absorbing Markov chain transition matrices can be structured this way. 
It can be shown that 

P" = [I 0 ] 
* Q" 

(4.24) 

where * stands for the lower left hand (t by a) set which is not computed here. 
The entries of Q" give the probabilities of being in each of the transient states 
after n steps for each possible transient state. As n gets large, the entries of Q" 
get small, i.e. Q" --+ o. This is to be expected since it was asserted earlier that 
the probability of absorption is 1.0. 

The fundamental matrix is defined as 

(4.25) 

the inverse of the difference between the (t by t) identity matrix and the (t by t) 
matrix of transient state probabilities. The entries of N give the mean number 
oftimes the process is in each transient state for each possible transient starting 
state. 
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Consider the matrix of the T-maze experiment in canonical form 

L R Sz So Sl 
L 1 0 0 0 0 
R 0 1 0 0 0 

Sz pz 0 0 qz 0 

So 0 0 Oz 0 0 1 

Sl 0 P1 0 q1 0 

Notice that the matrix of transient probabilities Q is the (3 x 3) lower right 
sector. Then 

from which 

N = (I _ Q)-l 

-qz 

1 

Since this process always starts at the same point, So, the amount of time 
in the transient states is 

Orient to left Sz 
Start So 
Orient to right Sl 

Oz/l - 01q1 - Ozqz 
1/1 - 01q1 - Ozqz 
0 1/1 - 0 1 q1 - Ozqz· 

Now consider the second set of quantities mentioned at the beginning of 
this section, the number of steps in each transient state before absorption. Let 
c be a column vector of t 1 's. In this case t = 3. Then the number of steps 
before absorption is Nc. 

In the example under consideration, since So is always the starting state, 
the time before absorption is 

(1 + 0 1 + Oz)/(l - 01q1 - Ozqz)· 

And finally, the first set of quantities, the probability of absorption in a 
particular state is NR. (Recall that R is the lower left-hand sector of the 
canonical structure.) Then for the example 

Probability of absorption in the left arm 

Probability of absorption in the right arm 

Ozpz/(l - 0 1 q1 - Ozqz) 

01Pt/(1 - 01q1 - Ozqz) 

where once more we take advantage of the constant starting state. 
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This model is very successful in predicting choice behavior in both paired, 
and larger, sets of alternatives. Further, the ratio of pJpj-the ratio of prefer­
ence of state i to statej-is strongly correlated with self reports of "confidence 
in the decision" among humans. 

Now consider example 4, the genetics of sib mating. In canonical form the 
matrix of transition probabilities 

AA/AA aa/aa AA/Aa AA/aa Aa/Aa Aa/aa 

AA/AA 1 0 0 0 0 0 

aa/aa 0 1 0 0 0 0 

AA/Aa 1/4 0 1/2 0 1/4 0 
p= 

AA/aa 0 0 0 0 1 0 

A a/A a 1/16 1/16 1/4 1/8 1/4 1/4 

Aa/aa 0 1/4 0 0 1/4 1/2 

The interpretation of the transitions is somewhat novel since each state rep­
resents two animals. The first two rows are obvious, so attend the third. This 
is interpreted as follows: 

The mating of AA with Aa produces offspring in the proportions (1/2)AA, and 
(1/2)Aa, so for two offspring (the columns of the matrix) the proportions are 
1/4 = (1/2)2AA/AA, 1/2 = 2(1/2)2AA/Aa, 1/4 = (1/2)2Aa/Aa. Notice that the 
mating produces no aa offspring so the pairs involving this genotype necessarily 
have probability O. 

Also note that the mating AA/aa produces only Aa offspring. Interpretation 
of other entries proceeds similarly. 

Now we must find N, the fundamental matrix. First form the difference 

and then 

I-Q = 

o 
1 

-1/8 
o 

-1/4 
-1 

3/4 

-1/4 -Ll 1/2 

( ) -1 1.33 1.33 2.67 1.33 l2.67 0.17 1.33 0.67l 
N=I-Q = . 

1.33 0.33 2.67 1.33 

0.67 0.17 1.33 2.67 

If, for example, the initial breeding pair is AA/ Aa, then before absorption, a 
pair of offspring consisting of an AA and an Aa is expected to occur 2.67 times 
from the mating; likewise, a pair AA/aa is expected only 0.17 times. 

Now we check for the number of steps expected before absorption. Notice 
that absorption means that only homozygotes are being produced: 
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Nc = ~~~:: [::!~ l. 
Aa/Aa 5.67 

Aa/aa 4.83 

If the initial pair is AA/Aa or Aa/aa then, on the average only 4.83 matings 
are required before absorption, 5.67 are expected if the initial pair is Aa/ Aa, 
and 6.67 if the initial pair is AA/aa. 

And finally we check for the probability of being absorbed in each of the 
absorbing states: 

AA/AA 

AA/Aa [ 0.75 
AA/aa 0.50 

NR= 
Aa/Aa 0.50 

Aa/aa 0.25 

aa/aa 

0.
25l 0.50 

0.50 . 

0.75 

If the initial pair is AA/ Aa the probability that the ultimate state is the 
production of AA homozygotes is 0.75 and only 0.25 for the aa homozygotes. 
Notice that if the initial pair is AA/ aa or Aa/ Aa the system ultimately produces 
either AA or aa homozygotes with equal probability. 

4.3.2.2. NON-ABSORBING MARKOV CHAINS 

A state j is accessible from state i if it is possible to get from i to j in a finite 
number of steps. If i is an absorbing state, then it is not possible to get to any 
other state once i is entered. Without absorbing states, then it is possible to 
get to any state. 

Consider a transition matrix p(1). The superscript identifies the number of 
steps represented by the matrix. It is easy to show that 

p(2) = p(l). p(l) = p2. 

It can also be shown that the n-step transition matrix is 

p(D) = po. 

When p(l) has no absorbing states then there will be no zeros in p(n) for some 
value of n; thus it is possible to get from any state to any state eventually. 
When states are mutually accessible they are said to communicate. A most 
remarkable result is that as n gets large ("in the limit"), each row of the matrix 
becomes the same vector with all entries greater than O. Let Plj) be an entry 
in the n-step transition matrix-the probability that the system is in state j 
after n steps if it started in state i. Then 

n -400. 

The long-range predicted state does not depend on the starting state. 
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It is useful to be able to determine the entries of the n-step transition matrix. 
Consider the hypothetical transition matrix for the passage of a necklace 
through the modified Kula ring. The islands are identified as Ii: 

II 12 13 14 

II [0 3/8 0 5/8l 
12 4/8 0 4/8 0 p= . 
13 0 1/8 0 7/8 

14 3/8 3/8 2/8 0 

Recall that trading conventions are held annually and are hosted by the 
current owner. Conventions are attended only by trading partners from the 
adjacent islands. Note that the trading competitors are not equal, e.g. when 
Island 3 is the owner, the partner from Island 4 acquires it 7/8 of the time. We 
shall determine the probability distribution for the first few trading episodes: 

[

0 0.3750 0 0.6250l 
pI = 0.5000 0 0.5000 0 

o 0.1250 0 0.8750 

0.3750 0.3750 0.2500 0 

[

0.42 

2 0.0 
P = 

0.39 

0.19 

[
0.12 

p3 = 0.41 

0.16 

0.26 

p6 = 0.21 
0.25 

[

0.26 

0.24 

[

0.24 

10 0.24 P = 
0.24 

0.24 

0.23 0.34 

0.25 0.0 

0.33 0.28 

0.17 0.19 

0.20 0.12 

0.28 0.31 

0.18 0.16 

0.26 0.20 

0.25 0.21 

0.22 0.19 

0.24 0.20 

0.24 0.20 

0.24 0.20 

0.24 0.20 

0.24 0.20 

0.24 0.20 

0.0 l 0.75 

0.0 

0.45 

0.56] 
0.0 
0.49 

0.28 

0.
28l 0.38 

0.31 

0.32 

0.32l 0.32 
0.32 . 

0.32 

Notice that after 10 years, the location of the necklace is independent of its 
location in year 1. If you are searching for the necklace, the best place to start 
is Island 4, but the probability it is there is only about 1/3. Alternatively 
you could camp on an island and wait until the necklace arrives. You are 
guaranteed that it will return to any island. But, since you must apply for 
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a leave of absence from the world, you'd like to have some idea of how long 
you must wait. Suppose you would prefer to wait on Island 1. You reconfigure 
the original transition matrix to be 

[ 

1 0 

4/8 0 

o 1/8 

3/8 3/8 

o 0 1 4/8 0 
o 7/8' 

2/8 0 

Now you can use the machinery developed for absorbing chains. Specifically 
you ask for the waiting time to absorption, which is just Nc. Recall 

where 

so that 

and 

N = (I _ Q)-l 

Q = [~.125 
0.375 

[
1.41 

N = 0.82 

0.73 

0.5 

o 
0.250 

0.90 

1.80 

0.79 

Nc = 4.20 . [
3.10] 

3.21 

0.79] 
1.58 

1.69 

If the necklace is currently on Island 2, you should prepare to wait 3.1 years 
before it gets to Island 1. If it is on Island 3, you must prepare for 4.2 years, 
and 3.2 if it is on Island 4. 

As a second example, consider this modification of the marriage system 
among the sibs of the Purum. The observed relative frequencies of marriages 
structured by sib membership, taken from White (1963), is 

Marrim Makan Kheyang Thao Parpa 

Marrim 0 2/23 11/23 10/23 0 

Makan 7/23 0 16/23 0 0 

Kheyang 1/26 3/26 3/26 10/26 9/26 
Thao 0 2/5 1/5 0 2/5 
Parpa 7/7 0 0 0 0 

The rows report the frequencies of males marrying females belonging to the 
column sib. For example, there were 23 marriages by Marrim males. Of these, 
2 were with Makan females, 11 with Kheyang females, etc. In order to consider 



90 4. Generating Predictions 

this as a Markovian transition matrix, imagine that all offspring of a marriage 
belong to the mother's sib. This is equivalent to a row selecting a column and 
then being transformed into a member of the column. This works if it is as­
sumed that each marriage produces at least one son. 

Consider a male Marrim who marries a Makan female. Their son then 
marries a Kheyang female. Their son marries a Thao female. Their son mar­
ries a Parpa female. And their son marries a Marrim female. So we might be 
interested in the number of generations expected for the males of Marrim to 
be restored to Marrim. The analytic trick introduced in the last example will 
produce the desired result. 

First find 

fU 
1.12 0.43 

056J 
N = (I _ Q)-l = 0.43 1.61 0.62 0.81 

0.61 0.77 1.30 0.79 

0 0 0 1.00 

and 

r
3A2l 3.47 

Nc = 3.46 . 

1.00 

Since Marrim males do not marry Parpa females the last entry is not meaning­
ful. If a Marrim male initially marries a Makan female, in about 3.42 generations 
the lineage will again produce a Marrim son. 

4.3.3. Information and Markovian Dependence 

Applications of information theory continue to amplify and extend studies 
quite remote from the original purpose (Demetrius, 1974, 1975, 1976). An 
interesting way of characterizing Markovity was developed by Lila Gatlin 
(1972) in studying the structure of information in DNA. The technique seems 
particularly well suited to the study of behavioral programming. At least that 
is the context to be presented here. 

Behavioral programming refers to the relative rigidity of a behavioral 
sequence. Psychologists use the term scripting to refer to a rigidly sequenced 
series. One could equally say that the sequence is choreographed. Most 
primate, including human, behavior is not rigidly programmed at the level of 
the ethogram. For example, in the industrialized world being left-handed is 
a matter of indifference except for the nuisance of fitting into a right-handed 
world. There is no script for responding to left-handedness. "Lipsmacking" is 
a greeting among Beach troop baboons (Ransom, 1981). So are "tongue 
protrusion," "jaw-clapping," "ear-flattening," and "eyes narrowed" greetings. 
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There is no apparent preference in baboon etiquette for anyone of these and 
"usually" lipsmacking, tongue protrusion, and jaw-clapping are combined. 
Note that even the more generalized event, greeting, may not occur under 
conditions where it would be appropriate. That is, of the specific behaviors 
recognized as greetings, it may occur that none are used when two animals 
come into proximity. In some human rituals, for example a religious cere­
mony, the sequence of events is clearly defined and deviation from the script 
may be sufficient to olwiate its benefits. The rigidity of military discipline in 
a peace-time unit in garrison is frequently cited by Marines (at least) to justify 
their desire to get back to "the field." 

These are examples of a rather simple kind of programming designed by 
humans for human consumption. Nature is more subtle. 

Before considering sequences of behavior it is necessary first to define the 
state space. This is a troublesome matter. The difficulty is probably sufficient 
to account for the general poverty of behavioral analysis. You should be 
clear that the problems are not formal, or even theoretical. I'm not sure 
what they may be, but the lack of standardization of operations is certainly 
a contributing factor. 

We wish to consider only social behavior so for a group of n individuals, 
there are n actors and n - 1 recipients or targets. The actor is different from 
the target by definition. Let the behavior set contain k elements. An element 

. of the state space is specified by an actor, a behavior, and a target, so the 
state space containsj = nk(n - 1) elements. Clearly this space gets large very 
quickly and the size itself creates observational and other kinds of problems 
in the execution of research. Notice that each element, Si : i = 1, 2, ... , j, is 
a specific social event. The measure of the total potential randomness in this 
space is entropy. Maximum entropy occurs when all elements of the space are 
equally likely. For this space peS;) = Pi = 1jj for all i and the maximum 
entropy is defined to be 

Hb1) = log2(j) 
= -log2(p;). 

(4.26) 

(For the remainder ofthis section all logarithms will be to base 2. If you cannot 
obtain these directly, you might refer to the Appendix for the method of con­
verting from other bases to base 2.) 

When the elements are not equiprobable the entropy is given by 

(4.27) 

which is just the expected value OflOg2 (p;). This expression is due to Shannon. 
The reduction in entropy produced by deviation from equiprobability is 

Dl = Hb1) - ml)· (4.28) 

If the elements of S are occurring independently then 
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for all m. An extreme case of divergence from independence would be the 
sequence 

Sl Sl Sl ... S2 S2S2 ... SiSiSi'" SjSjSj. 

Here the P(SiIS;) are all high, the P(Si+lIS;) are low, and the P(Si+lIS;) = 0 for 
1 :?: 2. Another extreme case of divergence from independence is the sequence 

SlS2S3'" SjS1S2'" SjS1S2'" Sj. 

Here the P(Si+11 S;) = 1 and all others are O. You should note that in both 
these cases P(Sd = P(S2) = ... = P(S) = 1jj yet divergence from indepen­
dence is extreme. 

We need an expression which will quantify the amount of departure from 
independence for less than extreme cases. Any observed sequence of social 
behaviors is a finite linear ordering of sampled elements from S. Define a new 
state space containing pairs of behavioral events in a sequence. For example, 
if the sequence (S2S1S3) is observed, the elements of the new state space are 
(S2S1) and (SlS3)' The entropy of this state space is 

m2) = - L P(Si Sj)log2(P(Si Sj» 
i,j 

(4.29) 

where j = i + 1. H(2) is a maximum when the elements are pairwise independent, 
that is when 

(In the remainder of this discussion, the base of all logarithms is assumed to 
be 2 so the subscript will be dropped.) Entropy under this condition is 

H&2J = - L PiPj 10g(PiPj) 

= - L L PiPj log(p;) - L L PiP)Og(pJ 

Now noting that LPi = 1 this becomes 

H&2J = - L p;log(p;) - L pjlog(pj) 

and since Si and Sj are formally equivalent 

H&2) = 2ml). 
When the elements are not pair-wise independent then 

which results in entropy 

m2J = -I PiPijlog(PiPij) 

where Pij = P(SjIS;)' Then because LjPij = 1 

m2 ) = - L [pilog(p;) + Pijlog(Pi)] 

= ml) - L pijlog(pij). 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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The second term on the right of (4.33.) will be called mJ), or H-Markov. 
(Note that only one step transitions are involved. Clearly this could be 
extended.) Then 

HF) = ml) + mJ). 
The divergence from independence is 

D2 = H&2) - m2) 

= ml) - H},i). 

Shannon defined redundancy as 

R = 1 - H},i) jlog(j) 

and since 

then 

Rlog(j) = Dl + D2 • 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

The common understanding of redundancy is repetition. That which is defined 
above is a much more subtle and effective means of avoiding errors in 
communication. Redundancy measures the amount by which entropy has 
been reduced from its maximum; it measures the effect of all the ordering, 
constraints, rules, etc. that constitute the system (Gatlin, 1972). In order to 
investigate the structure of redundancy, define two indexes of relative con­
tribution to the reduction of entropy (ibid): 

RD 1 = Dd(Dl + D2) = Dd(R log(j)) 

RD2 = Dz/(D1 + D2) = D2/(R log(j)) 

(4.38a) 

(4.38b) 

Two qualitatively different strategies for increasing redundancy are, thus, 
available: (1) increase Dl relative to D2, i.e. change the relative frequency of 
the simple events; or (2) increase D2 relative to D1 , i.e. make some simple 
events conditional on some others. The vertebrates achieved a high level of 
redundancy in their DNA by holding Dl constant and increasing D2 (ibid). 

Increasing redundancy in information, whether behavioral or chemical, by 
increasing RD 2 is the means of optimizing the conflicting elements of variety 
versus reliability (ibid). Ritualization, for example, increases RD2. 

In order to illustrate these concepts, we observed the social behavior of a 
group of four deBraza monkeys (Cercopithecus neglectus) at the Stanley Park 
Zoo in Vancouver. The exercise was conducted for the purpose of determining 
the degree of structure, choreography, in "touching." As defined, touching is 
a directed action, that is an act is "B touches D." This excludes incidental 
contact. The decision was made to exclude the adult male. The early observa­
tions indicated that he was not part of the tactile dimension of social structure. 
This left three animals-two adult females, here identified as Band C, and 
a young juvenile, the offspring of B. 
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Using three animals and a single directed behavior produces a behavior 
set with 6 elements: (BC, BD, CB, CD, DB, DC). The notation BD means an 
observation of the event B touches D. The maximum entropy of this set is 

H&I) = log2(6) = 2.585. 

It is clearly the case that the behavioral events in this space are not equally 
probable. Specifically, over the observation period the following relative 
frequencies were obtained: 

Relative 
Event frequency 

BC 0.087 
BD 0.100 
CB 0.061 
CD 0.074 
DB 0.504 
DC 0.170 

It will be noticed that about half of the total social activity was the juvenile 
touching its mother, the event DB. It touched the other female only about 17% 
of the time. The least frequent event, CB, is the female C touching female B. 
Only slightly more frequently did C touch D, the juvenile. The entropy of 
the realized behavior state space, from equation 4.25 is 

ml ) = - L Pi log(p;) 

= - [(0.087) * ( - 3.523) 

+ (0.100) * ( - 3.322) 

+(0.061) * (-4.035) 

+(0.074) * (-3.756) 

+ (0.504) * ( - 0.989) 

+ (0.170) * ( - 2.556)] 

= 2.096 

which means that the reduction of entropy in this space due to deviations 
from equal probability is 

DI = 2.585 - 2.096 = 0.489. 

The state space of behavioral interaction is specified by the sequence of so­
cial acts. An interaction is described by BD, CB which means that B touches 
D and then C touches B. This produces a state space with 36 elements, 
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[(BC, BC), (BC, BD), (BC, CB), ... , (DC, DC)] with maximum entropy 

H&2) = 10g(36) = 5.170 = 2HP). 

The realized social interaction matrix is 

BC BD CB CD DB DC 

BC 0.03 0.00 0.00 0.00 0.01 0.03 

BD 0.00 0.01 0.00 0.02 0.06 0.00 

CB 0.01 0.00 0.02 0.00 0.02 0.00 

CD 0.00 0.01 0.01 0.02 0.01 0.02 

DB 0.02 0.06 0.01 0.01 0.36 0.04 

DC 0.01 0.00 0.02 0.03 0.04 0.07 

where the reciprocal sequences are italicized. You will note that simple, 
one step, reciprocity does not seem to characterize the interaction of these 
monkeys. The entropy of the realized interaction matrix is, from equation 4.29 

m2) = 3.802. 

The reduction in maximum entropy which is attributable to one step, Mar­
kovian, dependence in the behavior sequence is 

D2 = 5.170 - 3.802 = 1.368. 

The total reduction in entropy from both sources-deviation from equiprob­
able acts and Markovian dependence in the action sequence-is 

Dl + D2 = 1.859 

of which the percentage due to Markovity is about 74%. 

4.3.4. Games with Strategic Uncertainty 

To this point most attention has been given to processes with stochastic 
uncertainty. Here we shift focus a bit and attend processes which depend on 
interaction such that each player must select a behavior in consideration of 
others. 

The theory of games has been extensively and successfully applied to 
economic and military behavior in the modern industrial context. Most at­
tempts to apply the methods to topics of anthropological interest have not 
been particularly successful. Anthropologists have broadly rejected the theory 
because of this. But this is, again, blaming the tool for the inadequacy of 
the carpenter. The reason for the failures seems obvious-the things which 
motivate behavior in the short term are not universal, they are subject to 
"cultural" manipulation. People appear to behave irrationally because they 
do not attempt to maximize the things that economists or generals think they 
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should. In the long run, in the evolutionary context, the concept of human 
rationality is replaced by that of evolutionary stability (Maynard-Smith, 
1982). It then seems irrational to suggest that any organism does not attempt 
to maximize its fitness in some sense. Otherwise extinction is inevitable. 

You may have heard that game theory models "rational behavior." When 
the goal of the game is to maximize money it is the case that, for a given 
strategy set, a game theoretic analysis will usually assist in selecting optimal 
behavior. This goal is so pervasive in the culture of the western world that 
it seemed reasonable to extend the conceptual structure to other cultural 
environments-in effect asserting that the pursuit of money is a universal 
motivator. It is not. It is necessarily the case that all organisms attempt to 
increase, or at least maintain, their biological fitness. The interesting theo­
retical problem for anthropology is to develop the logic establishing the 
relationship of culture to fitness. This is one of three basic problems which 
evolutionary theory has not resolved. 

A primitive concept of game theory is the strategy. This should be con­
sidered a kind of behavior. The game itself is expressed as a payoff matrix 
which shows that amount won or lost by each player under all possible choices 
of strategy by each. We shall restrict attention to two player games, but this 
limitation is for convenience only. Another restriction adopted for similar 
reasons is that whatever one player wins, the other loses. In the parlance of 
game theory, these are two-person zero-sum games. 

The zero-sum condition means that the games of interest here are com­
petitive. Hurwicz (1968) illustrates the concept by considering Columbus' 
problem. The structure of the decision confronting him was as 

Distance to land 

Land near No land near 

Turn back 
Probable later Life saved 

Columbus' disappointment 
decision 

Keep going Prospect of glory Prospect of death 

Here Columbus is playing against nature. Suppose that he assigned payoffs 
in terms of "satisfaction units" 

Turn back 
Keep going 

Land near 

-50 
100 

No land near 

20 
-1000 
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Also he has decided that the probability that land is near is 3/4. His expected 
satisfaction is 

Turn back 
Keep going 

3/4( - 50) + 1/4(20) = - 32.5 
3/4(100) + 1/4( -1000) = -175.0. 

Clearly the potential lost satisfaction if he keeps going is much greater than 
if he turns back. It would have been rational, as well as prudent, to turn back. 
In fact, if this payoff matrix is close to reality then he would have required 
that the probability of land near be 9/10. But, he muses, perhaps the fear of 
death is too great and the value of the prize too small. Suppose the payoff 
matrix is 

Turn back 
Keep going 

Now his expected satisfaction is 

Land near 

-1000 
500 

No land near 

20 
-500 

Turn back 
Keep going 

3/4( -1000) + 1/4(20) = -745 
3/4(500) + 1/4( - 500) = 250 

and his rational choice is to continue. 
Daly and Wilson (1983) present data from a study of 19th century Mormon 

households which will serve as an example of a cooperative game. In Table 4.2 
the (approximate) results of several family structures are presented. 

Table 4.2. Polygyny and Fertility among Nineteenth­
Century Utah Mormons. (Adapted from Daly and 
Wilson, Fig. 11-2) 

Monogamous 

Male 
households 

payoff Polygynous 
(off- 2-wives 
spring) 

Polygynous 
3-wives 

Female payoff (offspring) 
Wife 

First 

7 
7 

9 
9 

7 
7 

Second 

4 
8 

6 
17 

6.5 
14 

Third 

6 
20 

N.B. Offspring of wife above, of husband below. 
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Clearly if the objective is maximizing offspring, the male strategy "get as 
many wives as possible" is best. The best female strategy is to be the "first wife 
in a 2-wife household." This is not a zero-sum game because the payoff to one 
partner is also a payoff to the other. This is a cooperative, not a competitive 
game. 

Luce and Raiffa (1952) describe the following game: 

During the World War II battle for New Guinea, the American commander, 
General Kenny, had intelligence that a Japanese supply convoy would arrive. 
The convoy had the choice of a northern route with poor visibility, or a south­
ern route which would be clear. Kenny had the choice of concentrating his re­
connaissance aircraft on one or the other of these routes. Kenny's staff estimated 
the number of days of bombing time for the different choices to be 

Kenny's search 
strategy 

North 
South 

Japanese strategy 

North 

2 

South 

2 
3 

Note that if Kenny chose the northern route, he could expect a minimum of 
2 bombing days for each possible choice by the Japanese commander. If 
Kenny chose the southern route, he could expect a minimum of 1 bombing 
day. So Kenny chose to concentrate his reconnaissance on the northern route. 
The Japanese commander would have reasoned similarly noting, that if he 
went north the maximum bombing days would be 2 whereas ifhe went south 
the most was 3. So the Japanese commander also chose the northern route. 
This became the Battle of the Bismark Sea and was a disastrous defeat for 
the Japanese. For the Japanese commander, north was the least bad of two 
costly choices. 

In this game there is an entry which is simultaneously the minimum of its 
row and the maximum of its column. The north-north entry is such an entry. 
This is called a saddle point for the game. When a saddle point exists, then 
the best choice for the row player is the row containing the point, and likewise 
the best choice for the column player is the column containing the point. 
The payoff at this point is the value of the game. (Notice that by convention, 
payoff matrices will contain payoffs to the row player. This is acceptable for 
a zero-sum competitive game structure.) The game is strictly determined and 
the strategies for both players do not change-the strategy for both is called 
a pure strategy. 

Now consider the following game. There are two strategies available to 
individuals in a population, Hawk and Dove. Hawks are always aggressive 
and Doves always passive. Evolution in the population occurs as a result of 
encounters between individuals according to the payoff matrix 
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Hawk 
Dove 
Maximum 

Hawk 

-1 
-2 
-1 

Dove 

2 
1 
2 

99 

Minimum 

-1 
-2 

Consider the row player first. If he plays Hawk the least he will receive (yield) 
is - 1, whereas playing Dove will return a minimum - 2. Clearly he will opt 
for - 1 rather than - 2. The column player receives a maximum of 2 playing 
Hawk and playing Dove he yields 2. (Note that the entries in the matrix are 
expressed in terms of the row player's winnings, so an entry of - 2 is a win 
for the column player and 2 is a loss.) He will play Hawk because this produces 
a win of 2 units for him whereas Dove results in his giving 2 to the row player. 
Since the row minimum and the column maximum coincide at Hawk-Hawk, 
this is the saddle point. 

Games with pure strategies do not enter the research literature. Once you 
can locate a saddle point-the maximum of the row minimums and the 
minimum of the column maximums-you have nearly everything of interest 
for strictly determined games. The games that have great theoretical interest 
in evolutionary studies are those requiring mixed strategies by the players. 
Consider the game with payoff matrix 

Maximum 2 5 

Minimum 

-1 

-3 

Both players should prefer S 1 but note that the entry S 1 S 1 is not a saddle 
point. It is not simultaneously the minimum of its row and the maximum of 
its column. Suppose the game is being played repeatedly and that the row 
player consistently selects S1 hoping to win 5. The column player counters by 
selecting S1 and receiving 1. If the row player should play S2 consistently then 
the column player will choose S2 and win 3. You might expect that some mix 
of S1 and S2 would be the best way for both players to play the game. Part 
of the time play S1' and play S2 for the remainder. This possibility raises some 
additional problems, however. Specifically, how often should you play S1? 
And on any given play how do you decide between S1 and S2? 

Suppose, to fix the concept, both the row and column players decide 
separately to play each available strategy equally frequently. In the case at 
hand, this means play S1 on 1/2 of the plays and S2 on the remainder. Now 
the problem is how do you choose a strategy for the next game? If the duration 
of the game is known in advance you might decide to play S1 on the first 1/2 
and S2 on the second 1/2. But your opponent would figure that out rather 
quickly. What you need is a device which will select S1 randomly 50% of the 
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time overall. Tossing a coin is an adequate approximation. If this is done, the 
row player expects to win 

(-1)(1/2) + (2)(1/2) = 1/2 

when the column player picks Sl and 

1/2(5) + 1/2( - 3) = 1 

when the column player picks Sz. The column player, using the same mix, 
expects 

1/2( -1) + 1/2(5) = 2, 

which is a loss to him, when the row player picks Sl' and 

1/2(2) + 1/2( - 3) = -1/2 

when the row player picks Sz. In the long run the row player expects to win 

1/2(1/2) + 1/2(1) = 3/4 

and the column player expects to lose 

1/2(2) + 1/2( -1/2) = 3/4. 

Now let us generalize these results a bit. Let the payoff matrix be 

and the row player's mix will be the row vector 

[rl rz] 

where rl + rz = 1.0. The expected return to the row player is 

(4.39) 

Now let the column player's mix be the column vector 

where c1 + C2 = 1.0. He expects to win 

(4.40) 

The value of the game is 

(4.41) 
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You should convince yourself that this result holds for arbitrary dimen­
sions, i.e. any number of strategies, ofthe payoff matrix. For example, consider 
the game with payoff matrix 

o -IJ. 
3 4 

The row player will play [1/2 1/2] and the column player wishes to know 
which of the following mixes he should play. (Note that the column player is 
interested in making the value of the game as small as possible.) 

[Q6] [Q3] A = 0.3 or B = 0.3 . 
0.1 0.4 

Using mix A the value of the game is 

VA = [0.5 0.5] [ 2 
-1 

and using mix B it is 

VB = [0.5 0.5] [ 2 
-1 

So it is to his advantage to play mix A. 

~ -~J[~:~] = 0.9 
0.1 

o -1J[0.3] 3 4 0.3 = 1.2. 
0.4 

The row player suspects he could do better and becomes interested in the 
question of finding the best possible strategy mix for the game. He wishes to 
find that mix of strategies, against an opponent playing his best mix, which 
makes the value of the game a maximum. 

In considering the row player's problem of finding a best strategy mix 
it is useful to distinguish 2 x 2 games-both players have two available 
strategies-from larger ones. The main reasons for this are that the 2 x 2 
game is simpler to analyze and is important in many theoretical applications. 
The payoff matrix for this special case will be 

the strategy mix for the row player is [x 1 - x], and for the column player 

Now assume the column player chooses Sl' The expected payoff to the row 
player is 
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ax + c(l - x) ~ v. (4.42) 

Since the game has a guaranteed solution, its value is v when the column player 
plays Sl' The row player expects to receive at least the v. Hence the inequality. 
And when the column player picks S2' the row player expects 

bx + d(l - x) ~ v. (4.43) 

The column player has the expectation of at most v for the game. So when the 
row player selects Sl this is 

ay + b(l - y) ::;; v 

and when he plays S2 the column player expects 

cy + d(l - y) ::;; v. 

Since the game has no saddle point 

o < x < 1 and 0 < y < 1. 

The game is solved when we have values for x, y, and v. 

(4.44) 

(4.45) 

First consider the row player's inequalities. As a convenience, these are ex­
pressed as equalities in order to make the solution simpler. Then since they 
both equal the same thing 

ax + c(l - x) = bx + d(l - x) 

which may be solved for x 

x = d - e/((a + d) - (b + e». 

It is equally easy to solve the equalities for the column player. Write 

ay + b(l - y) = cy + d(l - y) 

and solve for y 

y = d - b/((a + d) - (b + e». 

(4.46) 

(4.47) 

There are several things you should note about equations 4.46 and 4.47. 
Since both x and y are probabilities, they are both positive. In order for 4.46 
to be positive it must be the case that either 

[(d > e) and (a + d) > (b + e)] 

or 

[(d < e) and (a + d) < (b + c)] 

is true. Similarly for 4.47 to be positive, either 

[(d > b) and (a + d) > (b + e)] 

or 

[(d < b) and (a + d) < (b + e)] 
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is true. These conditions specify the relative magnitudes of the payoffs which 
characterize a game with no saddle point: 

1. a> d > b > e. 

2. d > a > b > e 
3. a> d > e > b 

etc. 

that is, when both payoffs in one of the diagonals of the matrix is greater than 
either of the payoffs in the other diagonal. 

The value of the game is 

v = ad - be/((a + d) - (b + e)). (4.48) 

This basic analytic procedure also works for larger games. The number 
of conditions on the solution make the process unwieldy with even small 
strategy sets so we shall not go any further with this. 

For example consider the game with payoff matrix 

[ 3 -1J 
-2 1 

for which we wish to find optimal strategies and the value of the game. First 
find 

D=a+d-e-b 

3 + 1 - (-2) - (-1) = 7. 

The optimal mix for the row player is 

x = (1- (-2))/7 = 3/7 

1 - x = 4/7 

from equation 4.46 and for the column player it is 

y = (1 - ( -1))/7 = 2/7 

1 - Y = 5/7. 

If both players play their optimal strategy mix, the payoff is 

v = ((3)(1) - (-2)( -2)( -1))/7 = 1/7, 

that is the row player will gain 1/7 and the column player will lose that 
amount. 

Now let us treat the problem of the optimal strategy mix from another 
perspective. The technique uses a graphical approach and "So is limited to two 
players using an arbitrary number of strategies. It is convenient to have all 
payoffs be positive. Adding 3 to all entries we obtain 
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Find 

and 

D = (a + d) - (b + c) 

= (6 + 4) - (1 - 2) = 7 

x = (4 - 1)/7 = 3/7 

Y = (4 - 2)/7 = 2/7 

4. Generating Predictions 

which is the same mix already obtained. The difference is in the value. 
Calculate 

((6)(4) - (1)(2))/7 = 22/7 

but recall that 3 = 21/7 was added to all entries so 

v- 3 = 22/7 -21/7 = 1/7 

and all is as it should be. So nothing is lost by having all the entries be 
positive. The inequalities 4.42 and 4.43, after dividing through by v, become 

a(x/v) + c((1 - x)/v) ~ 1 

b(x/v) + d((1 - x)/v) ~ 1. 

Now let 

Z1 = x/v 

Z2 = (1 - x)/v 

and the inequalities become 

(1) 6z 1 + Z2 ~ 1 

(2) 2Z1 + 4Z2 ~ 1. 

Each of these inequalities defines a part of the half plane, their conjunction 
defines a region of solutions, and, by a very clever theorem, their intersection 
will be the value of the game. Let us solve these inequalities for Z1 and Z2' 
First, to eliminate Z2 multiply (1) by 4 and subtract the result from (2): 

(2) 2z 1 + 4z 2 ~ 1 
minus (3) 24z1 4Z2 ~ -4 

-22z1 ~ -3 

which can be solved for z 1 

Z1 ;::> 3/22, 

then substituting into (2) to find Z2 

2(3/22) + 4Z2 ~ 1 

Z2 ~ (16/22)/4 = 4/22. 
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ZI 

3/6 (0.50) 

2/6 (0.33) 

1/6 (0.17) 

o+-------~----~~-----+----~~ 

o 1 
Z2 

1/4 
(0.25) 

2/4 
(0.50) 

3/4 
(0.75) ( 1.00) 

Figure 4.5 

Now with these values of the vector z, using the fact that 

v = 1/(ZI + Z2) 

we find 

v = 22/7 
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which is the value obtained earlier. To find the optimal strategy mix for the 
row player we make use of 

as they should. 

Xl = VZ 1 = (22/7)(3/22) = 3/7 

1 - X2 = VZ2 = (22/7)(4/22) = 4/7 

The solution of simultaneous equations can be quite tedious. It is useful to 
have an alternate trick. In Figure 4.5 the inequalities are plotted. The values 
of z which optimize the strategy mix at the intersection of the two lines. The 
lines are obtained as follows. First, in inequality (1), set Z2 = 0 and find 
Zl ~ 1/6; then set Zl = 0 and find Z2 ~ 1. These are the coordinates of the 
boundary of the first inequality as it passes through the axes. Second, in 
inequality (2) set Z2 = 0 and find Zl ~ 1/2; then set Zl = 0 and find Z2 ~ 1/4. 
From the graph one may read that Zl = 0.14 '" 3/22 and Z2 = 0.18", 4/22. 

A particular game called The Prisoner's Dilemma has been broadly ap­
plied in a variety of contexts (Luce and Raiffa, 1957; Jones, 1980; Eigen and 
Winkler, 1981; Maynard-Smith, 1982). The origin of the name is attributed to 
A.W. Tucker who described the game as follows: 

Two suspects are taken into custody and separated. The prosecutor is certain 
that they are guilty of a specific crime, but he does not have adequate evidence 
to convict them at a trial. He makes the following proposal to each prisoner. If 
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they both confess each will serve 8 years, if neither confesses each will serve 
1 year. If one confesses and the other does not the confessor will serve 3 months 
and the other 10 years. (Luce and Raiffa, 1957) 

Here a prisoner is said to "defect" if he confesses, and to "cooperate" if 
he refuses. The general payoff matrix is usually presented as 

Cooperate 
Defect 

Cooperate 

R (reward) 
T(temptation) 

Defect 

S (sucker) 
P (punishment) 

with T:;::: R :;::: P :;::: Sand R :;::: (S + T)/2. When T:;::: R it pays to Defect if 
the other Cooperates. If P :;::: S it pays to Defect if the other Defects. So 
Defect is the optimal strategy for both players (Axelrod and Hamilton, 1981). 
Hamilton's definition of inclusive fitness (1964), and Maynard-Smith's con­
cept of Evolutionary Stable Strategy, ESS, (1973) allowed the extension of 
game theory into evolutionary theory. 

The game which Maynard-Smith (1982) analyzes, with profound implica­
tions for behavioral and phenotypic evolution, is the following: There are 
two strategies 

Hawk: escalate aggression and continue to fight until injured or the op­
ponent retreats. 

Dove: display and retreat immediately if the opponent escalates. 

The value, in terms of increased fitness, of the resource is v. The cost, in terms 
of lost fitness, is c. The payoff matrix is 

Hawk Dove 

Hawk [(V - c)j2 v ] 
Dove 0 vj2' 

Clearly Dove is not an optimal strategy. Hawk is optimal if v :;::: c, if the value 
to be won is greater than the cost. If v :s; c neither Hawk nor Dove is optimal. 
The strategy mix with P(Hawk) = vjc is optimal. 

As mentioned earlier, the work of Hamilton (1964) and Maynard-Smith 
and Price (1973) allowed for the extension of game theory in the theoretical 
development of behavioral evolution. The Prisoner's Dilemma structure has 
been conceptually central to much of this recent explosion. This is an excel­
lent conceptual model of the behavior of organisms under strict Darwinian 
evolution-selfishness is predicted and observed. But so is cooperation 
observed and this was a serious difficulty for evolutionary theory until 
Hamilton showed that inclusive fitness, not individual fitness, is maximized 
in evolution. But the problems were not over. Maynard-Smith and Price 
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showed that some behavioral strategy mixes are strongly selected and not 
subject to modification; the evolutionary stable strategy, ESS, and theoretical 
work on the iterated Prisoner's Dilemma by Axelrod and Hamilton (1981) 
was required to show how cooperation could evolve as an ESS. 

The structure has been used very effectively to describe parent-offspring 
conflict (Trivers, 1974), sex ratio (Maynard-Smith, 1982), coalitions among 
male baboons (Packer, 1977), and many other specific behaviors. 



CHAPTER 5 

Topics in Hypothesis Testing 

5.1. Introduction 

Once more recall the conditional statement and the scientific argument which 
is being evaluated: 

if [not HJ then [probably not PJ 
[not [not P]] 
thus [H]. 

This is simply a reminder. The hypothesis has produced a prediction and 
we are confident that if the hypothesis is false then the prediction will not be 
observed. In this chapter we shall be focussing attention on the prediction. 
Specifically we shall ask whether observations in the world are consistent with 
the prediction. The central part of any scientific program, however, is the 
theory and the hypothesis that produces the prediction. 

From the structure of the scientific program which has been presented the 
specific hypothesis which is to be tested is [not P]. If the observations are 
consistent with P, that is, the prediction occurs, then we shall reject [not PJ. 
The result is the argument structure "deny the consequent," which, then, 
deductively results in the negation of the antecedent, that is [not H]. Recall 
that the observations will actually support the research hypothesis only when 
the consequent in the conditional statement follows deductively from the 
antecedent. In the social sciences this relationship does not commonly obtain. 

In the conditional statement for the scientific program the consequent is 
[not P]. This is the origin of a concept which is frequently puzzling to students 
new to the study of hypothesis testing. It is called the null hypothesis in the 
literature. Recalling the logical structure of the program, the concept should 
be clear. If the research hypothesis has produced a prediction by formal 
argument, then the null hypothesis is conceptually routine. Otherwise con-
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siderable attention must be given to the formulation of this hypothesis since 
the overall validity of the project depends very heavily upon it. Unfortunately 
the statistical tests to be presented are indifferent to the quality of the hypoth­
esis. The techniques will test the fit of data to guesses, hunches, speculations, 
musings, and legitimate hypotheses. This indifference opens the flood gates to 
all manner of random shots. A class of ready examples is called "spurious" 
tests/results/correlations. For example, it is the case that where the stork 
population is high, so is the birth rate. A "hypothesis" about the involvement 
of storks in human births could be, and has been, humorously (I trust) 
supported. It is possible to be very smug and complacent because we know a 
great deal about conception and birth and storks are not included. (You 
should note that condition 2 could not be satisfied-if [not storks] then 
[probably not high birth rate].) It is essential that you understand that when 
the scientific program is short circuited, or abandoned entirely as some would 
have it today, then you run the risk of deciding that storks bring babies, or 
the equivalent. Here is a fundamental principle that you should carve on your 
wall: 

The value (worth) of a statistical test of an hypothesis resides entirely in the 
quality of the hypothesis. 

The less formal the argument generating the prediction, the more attention 
must be given to the null hypothesis. Note that a statistical test will usually 
produce a decision about the null hypothesis-specifically one may (1) reject 
the null hypothesis and accept the alternative, or (2) fail to reject the null 
hypothesis. An option which is always available, but rarely accepted, is to 
suspend judgment. When the data are more variable than was assumed in the 
design of the experiment, the result will be equivocal and decision must be 
foregone. 

The argument structure at the beginning may be used to illustrate the 
concept. Since we wish to accept the theoretical hypothesis, we must observe 
[not [not P]] = P. So [not P], that is, the negation of the prediction, must fill 
the role of the null hypothesis. Note that this is a goal oriented step. The goal 
is to reject the negation of the prediction. This is assuredly not a divine 
objectivity. All resources will be marshalled in the service of the goal. But if 
you cheat-and many have either innocently or malevolently-you risk your 
reputation. This commodity is the only item of professional value that many 
of us have, and to risk it is unthinkable. So we don't cheat. Fortunately the 
rules are clear and well defined, so procedural catholicity is the warrant against 
fraud. 

How to Be Wrong 

Suppose that you predict Armageddon. Hit occurs, then the theory may seem 
more credible-as it does to Polya (1954)-but you may not logically claim 
support for the hypothesis on the basis of good inductive argument. H it does 
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not occur, then what? How do you decide that the event has not occurred/is 
not occurring/will not occur? The short answer is that it can't be done. (This 
is also the long answer.) The prediction must say something like "Armaged­
don next Thursday before noon" or you may never be able to decide. This is 
generally true. The prediction of an event, without specifying its location in 
time or space or both, is not enough to allow a decision. Even more generally, 
the prediction of any change of state must be located in space and/or time. 

The theoretical hypothesis is a model of the frequency of an event (Hoel, 
1962, 1946). It may be either true or false, and the data mayor may not reject 
[not P]. These possibilities mean there are two ways to be wrong: (1) the 
hypothesis is false and [not [not P]] is observed, or (2) the hypothesis is true 
and [not P] is observed. 

Outcome of experiment 
Theoretical hypothesis 

or observation-the H H 
decision True False 

not [not PJ 
Correct Type I 

decision error 

[not P] 
Type II Correct 

error decision 

A type I error is committed when a false hypothesis is accepted or, more 
properly, not rejected; and a Type II error is committed when a true hypothesis 
is rejected. Note well that the outcome of the experiment may support either 
the prediction or its negation regardless of whether the hypothesis is true or 
false. The cause of each error is an interaction between a theoretical descrip­
tion of an event (HYPOTHESIS), and data (PREDICTION). The theory, 
recall, describes the way the world is thought to be. The prediction asserts 
that some observations will be obtained if the world is that way. If the 
experiment is well designed, the data should inform about whether the pre­
dicted observations were obtained. In order that they actually do so, careful 
attention must be given to their acquisition. This is because the observations 
are a finite sample from a potentially infinite population of observations which 
could have been obtained. The theory should also produce some expectation 
about variability in order that the number of observations required may be 
fixed in advance. 

A Decision Problem 

For example, and to fix the concepts, assume that a fair coin is to tossed. A 
fair coin, by definition, produces heads with probability 1/2. You do not know 
whether the coin is fair or biased. This knowledge would be very useful, for 
you intend to bet on it. Clearly if you bet as though the coin is biased when 
in fact it is fair, or the reverse, you will lose your shirt. For now, assume that 
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observations are free. If you toss the coin a few times for the purpose of 
deciding whether it is fair or not, there is a calculable non-zero probability 
that you will decide it is biased no matter what criterion you use. Suppose 
that you toss it 10 times and if you get more than 7 or fewer than 3 heads you 
will decide the thing is biased. The probability of this outcome-either 0, 1, 
2, 3, 7, 8, 9, 10 heads-is about 0.34 if the coin is fair. In this case you have 
the prior expectation, from long experience with a variety of coins, that it is 
fair. So H is [the coin is fair]. If the probability of a head is greater than or 
equal to 0.8, or less than or equal to 0.2, then for your purposes it is biased. 

From these considerations we get, e.g. 

if [not P(head) ~ 0.8] then [probably 
not (7 or 8 or 9 or 10 heads)]. 

(Recall that P is the antecedent in a conditional statement and P(·) is the 
probability operator.) Fewer than 7 heads would result in your rejection of 
that part of the null hypothesis which specifies a probability greater than 1/2. 
A strictly symmetrical argument would allow the rejection of the part specify­
ing a probability less than 1/2. (You may be troubled by the fact that the 
probability need not be as great as 0.8 or as small as 0.2 for the coin to be 
biased. For now accept that this is the difference that makes a difference to 
you.) Now we have the conjunction of two conditions 

(if [not (P(head) ~ 0.8)] then probably [not (~ 7 heads)]) 

and 
(if [not (P(head) ~ 0.2)] then probably [not (~ 3 heads)]). 

The negation of the prediction in the first conditional is 

not [not (~ 7 heads)] = « 7 heads) 

and for the second it is 

not [not (~ 3 heads)] = (> 3 heads). 

An outcome resulting in fewer than 7 heads allows acceptance of the hypoth-
esis 

not (P(head) ~ 0.8) = P(head) < 0.8. 

And an outcome with more than 3 heads allows acceptance of P(head) ~ 0.2. 
The conjunction of these is 0.2 < P(head) < 0.8 which for your purposes con­
stitutes a fair coin. 

As we saw earlier the probability of accepting the alternative-[coin is 
biased]-when in fact the coin is fair is about 0.34. This is a Type II error. 
Suppose that instead of 10 sample observations you decide to take 20. Now 
the probability of a Type II error is about 0.002 if a proportional rejection 
region is used-i.e. less than 4 or more than 16 heads. Clearly this is much 
more comfortable and you may be tempted to conclude that increasing the 
number of observations is the answer to all research problems. If so, you are 
not alone, but you are certainly wrong. 
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Suppose you have $21 and each test observation costs $1. If you take 20 
then you've only $1 left to playa game with a probability of 1/2, you have 
decided, of winning on any given trial. You will likely be wiped out rather 
early. There is a more serious objection, however, to increasing the sample 
size mindlessly. It is possible for example, to accumulate enough observa­
tions to discriminate between a probability of 1/2 and one of 0.495. And it is 
conceivable that this difference is important, but for the level of most theory 
in anthropology, it is only conceivable. One should not make any more obser­
vations than are required to reach a decision about a hypothesis for a given 
level of confidence. This is always a fraction of the number required to reach 
that level of confidence in deciding that the probability is within an interval 
of arbitrary width. 

The problems of choosing a rejection region and the number of observa­
tions to be made are strongly interrelated. The clear solution is avilable only 
when the cost of each kind of error is known. For example testing a drug for 
the treatment of cancer clearly involves different costs than testing a drug for 
the treatment of hangnails. The cost of accepting the hypothesis that the drug 
is effective when in fact it is not, or of failing to accept the hypothesis that it 
is effective when in fact it is, may involve heavy costs in suffering and lives in 
the case of the cancer drug, but only minor inconvenience in the case of 
hangnail treatment. For the class of investigations known as academic, which 
by definition have no tangible value, the cost of a Type I error typically is 
having an incorrect view of the world, and of a Type II error it is failure to 
have a correct view. These costs are not easily quantified, but it is essential 
that some prior estimate be made. However, it is important to realize that if 
the costs cannot be clearly specified, then any rejection criterion is arbitrary. 

The life and social sciences have almost universally accepted a rejection 
criterion of 5%. That is, they accept a 5% risk of failing to reject a false hy­
pothesis. This criterion, it must be noted, now has the force of tradition, not 
reason, behind it. Without precise costs attached to each type of error a 5% 
criterion is as good as any. Also note that there is no traditional criterion for 
a Type II error. In general, for a given sample size, the probability of a Type 
II error is inversely related to the probability of a Type I error. This group of 
sciences has adopted the tactic of fixing the probability of a Type I error and 
then obtaining a sample as large as possible. A large sample will tend to reduce 
the probability of a Type II error, but not in a simple or obvious way. 

At any rate, recognizing the arbitrariness of it, a 5% rejection criterion will 
be used here. 

The Logarithmic Transformation 

In the following sections we shall require the use of the logarithmic transfor­
mation of some expressions. Only natural logarithms, i.e. to base e - 2.7, are 
used. For those who do not remember, the rules of logarithms are presented 
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below for reference: 

Expression 
eb 

a·b 
ab 

alb 
a- b 

Transformation 
b 
In (a) + In(b) 
b In(a) 
In (a) - In(b) 
- b In(a) 

113 

Notice that the logarithmic operator is indicated notationally by "In" for 
"logarithm natural." 

Also the following notational conventions will be used throughout this 
chapter: 

i,j, k : subscripts, indexes 
x : observed frequency 
fJ : expected frequency 
m : estimate of expected frequency 
n : probability 
p : estimate of probability (proportion) 

5.2. Testing a One-Dimensional Hypothesis 

A one-dimensional hypothesis asserts that all categories are equally probable. 
For example, the one-dimensional hypothesis about the touching behavior of 
the deBraza monkeys described in the last chapter is that all 6 events~BC, 
BD, CB, CD, DB, DC~are equally likely; each event has probability 1/6. If 
primate mating systems are polygyny, polyandry, promiscuity, and monog­
amy the one-dimensional hypothesis asserts that each has probability 1/4. 

Let the frequency of category i be Xi : i = 1,2, ... , k for a k category variable. 
By hypothesis, the estimate of the expected frequency in each category is 

mi = (11k) LXi' (5.1) 
i 

Also by hypothesis, the ratio (xJmJ should be 1.0. 
The log-likelihood ratio chi-square statistic, defined by 

G 2 = 2 L xi{ln(xJmJ) (5.2) 
i 

has approximately a chi-square distribution with k-l degrees of freedom 
(Haberman, 1978; Fienberg, 1977, 1980). Notice that if the hypothesis is true, 
G 2 = 0 because In(l) = O. 

There are some things to note about equations 5.1 and 5.2. Clearly an mi = 0 
will create problems in 5.2. This would happen if Li Xi = 0, that is when an 
observed frequency is zero. In the case at hand this would be more nuisance 
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Table 5.2.1. Touching Events among Captive deBraza 
Monkeys 

Event Frequency Expected Ratio xjln(x)mJ 

BC 8 15.3 0.523 -5.187 
BD 9 15.3 0.588 -4.776 
CB 6 15.3 0.392 -5.617 
CD 7 15.3 0.458 -5.474 
DB 46 15.3 3.007 50.636 
DC 16 15.3 1.046 0.716 

Total 92 30.298 

G 2 = 2(30.298) = 60.6, df = 5. 

than crisis as the category would simply be eliminated. In general, however 
the matter is more troublesome. Consult Fienberg (1977, 1980) or Bishop, 
Fienberg, and Holland (1976) for guidance. Secondly, note that mj is the es­
timate of the expected value under the hypothesis of equal probabilities for 
all k categories. G 2 is defined in terms of the ratio of observed to expected 
frequency. 

Consider the deBraza monkeys (Sec. 4.3.3). Recall that the notation BC 
means B touches C. The data are in Table 5.2.1. By hypothesis, all events are 
equally likely so the expected frequency is a constant: expected frequency = 

Np = 92(1/6) = 15.3. The ratio of observed to expected is obtained in the 
obvious way, e.g. for the event BC the ratio is 8/15.3 = 0.523. The log of the 
ratio, e.g. for event BC, In(0.523) = - 0.648, is then multiplied by the observed 
frequency, to obtain the last column, e.g. (-0.648)(8) = - 5.184. Note that 
rounding error accounts for the difference between - 5.194 and the totaled 
value - 5.187. Finally the entries in the last column are summed, and multi­
plied by 2 to produce G 2 = 60.6. 

Relative frequencies are displayed in Figure 5.1.1. It is always a good idea 
to produce some kind of graphic for data. The impact of a picture is, for most 
of us, greater than a column of numbers. With 6 - 1 = 5 degrees of freedom, 
a value of G 2 greater than or equal to 11.1 allows rejection of the hypothesis 
of equal probabilities such that the probability of being wrong-committing 
a Type I error-is less than 0.05. (An attenuated table of the chi-square 
distribution will be found in Appendix D.) Note that this probability is directly 
under experimenter control. Do not be tempted into making this probability 
very small just to exercise your authority. The reason is that as the probability 
of a Type I gets small, the probability of a Type II gets large for a given sample 
size. This means that you should give considerable thought to the selection 
of this probability. Specifically it should be chosen so as simultaneously to 
minimize the cost of(l) deciding that a false hypothesis is true, and (2) deciding 
that a true hypothesis is false. This sounds simple. In fact it is not, either 
mathematically or empirically. The difficulty has produced a curious reaction 
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0.6 

Event 

Figure 5.1.1 

-adherence to traditional practice. At best, this is an abrogation of respon­
sibility. Part of the difficulty stems from the fact that determining the appro­
priate costs is troublesome and more so in academic fields such as anthropol­
ogy. It is relatively straightforward in applied fields such as medicine or 
engineering. All the anthropologist risks, after all, is notoriety if he is wrong. 
And people have short memories for such things. I shall, in conformity with 
long tradition, wave my hands at the problem and use the 0.05 level. This is 
for convenience only. 

Standardized Residuals 

Having observed G 2 = 60.6 and rejected the hypothesis, the next step is to 
examine the deviations from expectation. This is accomplished by evaluating 
the standardized residuals. A residual is a deviation from expectation. These 
are standardized by dividing each by an estimate of variability. 

The quantity 

c = Np(l - p) = 92(1/6)(5/6) = 12.8 

estimates the variability for these data. We shall actually use the square root, 
3.6, as the denominator. The expression 

Ri = (Xi - mJ/Jc (5.3) 

is the standardized residual. These are evaluated in Table 5.2.2. 
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Table 5.2.2. Standarized Residuals 
for the Touching Events by the 
Captive deBraza Monkeys 

Standardized 
Event Residual residual 

BC -7.3 -2.04 
BD -6.3 - 1.76 
CB -9.3 -2.60 
CD -8.3 -2.32 
DB 30.7 8.59 
DC 0.7 0.20 

Event 

Figure 5.1.2 

Table 5.2.3. Touching Events among deBraza Monkeys 
Excluding Those Initiated by the Juvenile Toward 
Its Mother 

Event Frequency Expected Ratio xjln(xJmJ 

BC 8 9.2 0.87 -1.11 
BD 9 9.2 0.98 -0.18 
CB 6 9.2 0.65 -2.59 
CD 7 9.2 0.76 -1.92 
DC 16 9.2 1.74 8.86 

Total 46 3.06 

G 2 = 2(3.06) = 6.12, df = 4. 
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Table 5.2.4. Touching Events among deBraza Monkeys 
Excluding All Those Initiated by the Youngster 

Event Frequency 

BC 8 
BD 9 
CB 6 
CD 7 

Total 30 

G2 = 2(0.33) = 0.66, df = 3. 
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Expected Ratio xiln(xJmJ 

7.5 1.07 0.54 
7.5 1.20 1.64 
7.5 0.80 -1.34 
7.5 0.93 -0.51 

0.33 

Event 

Figure 5.1.3 
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The expected value of the Ri is 0 because Xi = mi when the hypothesis is true. 
Clearly the main source of the large value of G 2 is the large deviation for 

the event DB. Recall that B is the mother of D. 
It might be instructive to eliminate the DB events and re-evaluate the 

hypothesis. Note that this is an exploratory process and is not a proper test 
of a hypothesis. The goal is to elaborate our understanding of the social 
organization of the monkeys. Any conclusions would necessarily be tentative 
and subject to independent confirmation. Consider Fig. 5.1.2 and Table 5.2.3. 
Note that even though the value of G 2 is less than the 5% criterion of 9.49, 
the activity initiated by the young animal still seems to distort the structure. 
If we now eliminate the events initiated by the youngster and directed toward 
the other female, Table 5.2.4 and Figure 5.1.3 result. It appears that the fit to 
the hypothesis of random events has been improved considerably by eliminat­
ing the events initiated by the youngster. This suggests that these touching 
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Table 5.2.5. Marital Residence Patterns in the World 
Ethnographic Sample 

Pattern Frequency Expected Ratio xiln(x)mJ 

Patrilocal 154 47.8 3.222 180.2 
Bilocal 12 47.8 0.251 -16.6 
Matrilocal 51 47.8 1.067 3.3 
A vunculocal 18 47.8 0.377 -17.6 
Duolocal 4 47.8 0.084 -9.9 

Total 239 139.4 

0 2 = 2(139.4) = 278.8, df = 4. 

events have two distinct structural components: the set of events initiated by 
the youngster, and the set initiated by anyone else. The former is highly struc­
tured and the latter is apparently random. (The adult male constitutes a 
third component of the social structure which has been ignored.) 

The World Ethnographic Sample (Murdock, 1967) categories and frequen­
cies of marital residence pattern are presented in Table 5.2.5. The estimate of 
the expected frequency of each pattern is mi = 239(1/5) = 47.8. The value of 
G2 = 278.8 is referred to a table of the chi-square distribution with 4 degrees 
of freedom. The critical 5% value is 9.49 so the (one-dimensional) hypothesis 
of equal frequencies is confidently rejected. The denominator for determining 
the standardized residuals is 

Jc = (239(1/5)(4/5))1/2 = 6.18. 

5.3. Testing a Two-Dimensional Hypothesis 

5.3.1. The 2 x 2 Table 

5.3.1.1. BLOODGROUPS AND ILLNESS 

With two dimensions, two variables, the number of possible hypotheses is 
more than doubled. Consider an example. Woolf (1955) obtained a very large 
number of observations of blood group phenotypes A and 0 for people with 
alimentary ulcers and a control group. The observations were collected in 
three cities of the UK., but we shall ignore the city variable. The results are 
presented in Table 5.3.1 and the odds for phenotype 0 relative to A are 
displayed in Figure 5.2. Three questions may be asked about such data: 

(1) Are the frequencies of the blood group types among patients with ulcers 
different from those among controls? 

(2) Is the frequency of ulcers different among people with type 0 from that 
among people with type A? 

(3) Are the variables, blood group type and ulcers, independent? 
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Table 5.3.1. The Joint Distribution of 
Ulcers and Blood Group Phenotypes 
AandO 

Condition 
Ulcer 
Control 

Total 

1.7 

I. 

\. 

1.3 

1.2 

J.I 

Blood group type 

o 
1668 

15708 

17376 

A 
1044 

13255 

14299 

Ulcer Control 

Condition 

Figure 5.2 

Total 
2712 

28963 

31675 
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As it turns out these are all variants of the same question. But they do have 
distinctly different origins in the design of the research. If the project is de­
signed to make exactly 31675 observations, it is called a fixed total design. 
If the total number of cases of ulcers is fixed at 2712 and controls at 28963, 
the row margins are fixed. If the number of cases of type 0 is fixed at 17391 
and of type A at 14299 the column marginals are fixed. 

In order to proceed with the analysis, the following notational conventions 
will be used. 

Blood group type 

0 A Total 

Ulcer X11 X 12 X1+ 

Control X2i X22 x2+ 
Total X+1 X+ 2 X++ 
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Table 5.3.2. Evaluation of the Expected Values under the Hypothesis of 
Independence for Table 5.3.1 

Marginal Frequency In (Frequency) 

1+ 2712 7.91 
2+ 28963 10.27 
+1 17391 9.76 
+2 14299 9.57 
++ 31675 10.36 

Blood 
group 

Condition type In(xi+) In(x+j) In(x++) In(mij) mij 

Ulcer 0 7.91 9.76 10.36 7.31 1487.7 
A 7.91 9.57 10.36 7.11 1222.9 

Control 
0 10.27 9.76 10.36 9.67 15898.8 
A 10.27 9.57 10.36 9.48 13072.2 

First consider the case with the total, x++, fixed. The cell probabilities are 
estimated by the proportions 

(5.4) 

From results in the previous chapter we may observe that the expected fre­
quencies, under the hypothesis of independence, are given by 

where Pi+ = Xi+/X++, This may be written as 
mij = (xi+)(x+j)/x++. 

Now taking (natural) logarithms, equation 5.5 becomes 

In(mij ) = In(xi +) + In(x+ j) - In(x++). 

(5.5) 

(5.6) 

Notice that equation 5.6 is linear-it involves only addition and subtraction 
-in the logarithms of the table marginals. It is called a log-linear expression 
because it is linear in the logarithms. The equation is evaluated for the example 
in Table 5.3.2. (This would be a good place to confirm that you are able to 
obtain natural logs and their inverse. For example, find the natural log of 3, 
In(3) = 1.10. Now find exp(1.10) = In-1 (1.10) = 3.) 

Comparing the expected values from the right-most column of Table 5.3.2. 
with the observed values, there are some apparently large discrepancies. For 
example, if condition is independent of blood group type, then one expects 
1487.7 cases of ulcers and type 0 blood; the observed frequency is 1668. From 
these discrepancies it seems that type 0 may dispose one to acquire ulcers. 



5.3. Testing a Two-Dimensional Hypothesis 

Table 5.3.3. Evaluation of Log-Likelihood Ratio Chi-Square for 
Table 5.3.l 

Condition 

Ulcer 

Control 

Total 

Blood 
group 
type 

0 
A 

o 
A 

Observed 

1668 
1044 

15708 
13255 

G 2 = 2[297219.9 - 297199.8] 
= 40.2. 

Expected 

1487.7 
1222.9 

15898.8 
13072.2 

The log-likelihood ratio chi-square statistic is 

Oln(O) 

12375.5 
7256.7 

151769.5 
125818.2 

Oln(m) 

12184.7 
7421.8 

151959.2 
125634.1 

297219.9 297199.8 
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G 2 = 2 L (observed) In (observedjexpected) (5.7) 

= 2[ L (observed) In (observed) - L (observed) In (expected)] (5.8) 

which is evaluated in Table 5.3.3. A 2 x 2 table has 1 degree of freedom. The 
critical value of chi-square at the 5% level is 3.84. The obtained value is larger 
than the critical value so we may reject the hypothesis of independence. Using 
the 5% criterion has the following interpretation. If the variables are actually 
independent and if we could obtain a large number of replications of this 
experiment, then 5% of the calculated G 2 values would be greater than 3.84. 
Notice that the fact that the computed value is much larger than the criterion 
does not enter the interpretation. Specifically we might be tempted to enter­
tain the following argument: since the observed G 2 is about 10 times greater 
than the criterion, the true significance level of the test is about 0.5%, i.e. we 
have 99.5% confidence in rejecting the hypothesis. This is a fallacy. 

5.3.1.2. AGNATIC AND UTERINE ALTRUISM 

Agnatic relatives are related through male geneological links and uterine 
relatives through female links. With regard to conjugal stability and geneolog­
ical souce of altruism, Flinn (1981) observes: 

... " altruism dispensed by a man to his offspring might be utilized by his 
offspring's uterine half-siblings (or other relatives of his ex-wife) who are un­
related to him ... This effect of divorce is similar to paternity uncertainty." 
(ibid., 448) 

The expectation is that conjugal stability will be high where agnatic kin 
are the primary source of altruism. Conversely, where uterine kin are the 
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Table 5.3.4. Conjugal Instability and 
Primary Source of Altruism 

Source of altruism 
Conjugal 
instability Agnatic Uterine Total 

Low 94 0 
High 14 18 

Total 108 18 

Table 5.3.5. Standardized 
Residuals for the Survey of 
Conjugal Instability and 
Primary Source of Altruism 

Source of altrusim 
Conjugal 

94 
32 

126 

instability Agnatic Uterine 

Low 1.5 -3.7 
High -2.6 6.3 

primary source of altruism, conjugal stability will be low. The World Ethno­
graphic Sample and other sources were surveyed for information on conjugal 
instability and primary source of altruism. Partial results are in Table 5.3.4. 
You should confirm the computed value of G 2 = 59.5. With one degree of 
freedom, this allows rejection of the default null hypothesis of no relationship. 
In Table 5.3.5. are the estimated standardized residuals. Note that the relation­
ship is as predicted, i.e. a deficit of cases with (1) an agnatic source of altruism 
and high frequency of conjugal instability, and (2) a uterine source and low 
frequency of instability. Excess cases are observed on the other diagonal. The 
observed odds are displayed in Figure 5.3. 

5.3.1.3. SUICIDE AMONG AMERICAN PHYSICIANS, THE FIRST STUDY 

The study of the frequency of suicide among American physicians that was 
mentioned earlier has a three-dimensional structure. In a later section (Sec. 
5.4.1) we shall treat all dimensions simultaneously. In this section the 3-way 
table is decomposed into all possible 2-way tables. You should note that the 
sampling on this particular project was as follows: the focus of attention was 
on psychiatrists and so all obituaries for psychiatrists were observed; only 
about ten percent of the obituaries of other specialties was observed. This 
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I.S 

Low High 

Conjugal instability 

Figure 5.3 

Table 5.3.6. Death Types by Age and Specialty 
among American Physicians 

Age 

25-54 55-79 

Non-psychiatry 
Suicide 205 148 
Other 352 520 

Total 557 668 

Psychiatry 
Suicide 42 9 
Other 21 30 

Total 63 39 
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Total 

353 
872 

1225 

51 
51 

102 

means that the project shall pay no attention to determining the true rate of 
suicide in the population of all physicians. But questions can be asked about 
differences between types of physicians and/or among the age groups. The 
data are presented in Table 5.3.6. Suppose that we have the research hy­
pothesis that suicide rate increases with age. This is easily rationalized with 
reference to the epidemiological effect of "time at risk." This hypothesis can 
be formulated so that it predicts that the rate of suicide is less in the age group 
under 55 than in the age group over 55. In the context of this project, what 
are we to make of the assertion [not PJ? Clearly [not PJ means that the suicide 
rate in the older age group is not greater than the rate in the younger age 
group, that is, the old rate is less than or equal to the young rate. 
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Death Type by Age 

From Table 5.3.6 we may estimate that the probability of suicide in the 
younger age group is given by PI (S) = (205 + 42)/(557 + 63) = 0.398. In the 
older age group we get that P 2 (S) = (148 + 9)/(668 + 39) = 0.222. Since the 
probability in the older age group is smaller than that in the younger age 
group we may justifiably conclude at this point that the frequency of suicide 
does not increase with age. This conclusion is possible only because the 
prediction was quite specific about the direction of the effect. If the prediction 
had been nondirectional, "there is a difference between young and old MDs 
with regard to suicide rate," then we could not reach any conclusion on the 
basis of the observations so far. As a rule, if the theory is too vague to be 
specific about the direction of an effect, it is usually not worthwhile to obtain 
data. The theory should be refined prior to further work. 

A general procedure for the determination of the truth value of the predic­
tion will now be presented. The null hypothesis to be tested, specifically the 
negation of the consequent, asserts that these two variables, age and death 
type, are not positively correlated. If the variables are independent then they 
are neither positively nor negatively correlated. So if independence is accepted, 
the null hypothesis is accepted. If independence is not accepted, further 
considerations are required to determine whether the correlation is positive 
or negative. Assuming, then, that these are two independent binomial vari­
ables, we get the following unconditional estimates of the parameters of the 
two binomial variables: 

P(suicide) = 404/1327 = 0.30 

P(other) = 923/1327 = 0.70 

P(young) = 620/1327 = 0.47 

P(old) = 707/1327 = 0.53. 

Note that in obtaining these it has been assumed that the sample size was 
fixed at 1327. Under the hypothesis of independence we expect the following 
proportions in each of the four categories of the conjunction of these two 
variables: 

Suicide 

Other 

25-54 

(0.30)' (0.4 7) 
= 0.14 

(0.70)' (0.47) 
= 0.33 

Age 

55-79 

(0.30) . (0.53) 
= 0.16 

(0.70) . (0.53) 
= 0.37 

These are the expected proportions under the hypothesis of independence. 
They allow us to obtain the expected values. 
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Expected Values for Age by Death Type 
Under the Hypothesis of Independence 

Age 

25-54 55-79 

Suicide (0.14) . 1327 (0.16)' 1327 
= 188.4 = 216.3 

Other (0.33)' 1327 (0.37)' 1327 
= 431.3 = 491.0 
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It is the agreement between the observed values and the expected values which 
allow a decision to be made regarding the hypothesis being tested. Specifically 
the quantity to be formed is given by equation 5.8. The observed frequencies 
are presented in Table 5.3.7. The computation ofG2 for the data in Table 5.3.7 
is illustrated in Tables 5.3.8 and 5.3.9. In Table 5.3.8 the expected values are 
obtained according to equation 5.6. And in Table 5.3.9 is the evaluation ofG2 . 

A concept which causes considerable conceptual difficulty for beginning 
students is that of degrees of freedom. The following discussion is intended to 
motivate your intuition. The complete explanation is far beyond the scope of 
this so eventually you will be asked to accept a statement. Consider a binomial 
variable. There are two parameters, II and 1 - II, that characterize this 
distribution. However these parameters are not independent. If one is esti­
mated then the other is known directly and immediately. Consequently there 
is a single degree of freedom for a binomial variate. In the multinomial case 
with n categories the sum of the probabilities still must be identically equal to 
1, there is some greater latitude, "degrees of freedom," regarding n - 1 of the 
values. But once the n - 1 values are specified then the nth value is given 
directly. Consequently there are n - 1 degrees of freedom for this particu­
lar multinomial. The degrees of freedom for the conjunction of binomial or 
multinomial variates is simply the product of the degrees of freedom for each 

Table 5.3.7. Death Types by Age 
among American Physicians 

Age 

Death type 25-54 55-79 

Suicide 247 157 
Other 373 550 

Total 620 707 

G 2 = 48.7, df = 1. 

Total 

404 
923 

1327 
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Table 5.3.8. In Expected Values for Death Type by Age 

Marginals Frequency In (Frequency) 

1+ 404 6.00 
2+ 923 6.83 
+1 620 6.43 
+2 707 6.56 

++ 1327 7.19 

Death 
type Age In(x++) In(x i +) In(x+ j ) In (mi ) mij 

7.19 6.00 6.43 5.24 188.7 
2 7.19 6.00 6.56 5.37 214.9 

2 1 7.19 6.83 6.43 6.07 432.7 
2 2 7.19 6.83 6.56 6.20 492.7 

Table 5.3.9. Evaluation of G 2 for Death Type by Age 

Death 
type Age Observed Expected Oln(O) Oln(x*) 

1 247 188.7 1360.8 1294.3 
1 2 157 214.9 793.8 843.1 
2 1 373 432.7 2208.7 2264.1 
2 2 550 492.7 3470.5 3410.0 

Total 7833.8 7811.5 

G 2 = 2[7833.8 - 7811.5] = 44.7. 

of the component distributions. Specifically note that Table 5.3.7 constitutes 
the conjunction of two binomial variates, age and death type. Consequently 
this table has (2 - 1)' (2 - 1) = 1 degrees of freedom. Notice that this is a 
property of the table, not the sample size. It is necessary to know the degrees 
of freedom for a table in order that the probability of G 2 may be determined. 
To determine the probability of G 2 one simply consults a table of chi-square 
values, entering the table with the degrees of freedom for the table producing 
the value of G 2 • An attenuated table of the values of chi-square by degrees of 
freedom is available in the Appendix D. The tabled value for 1 degree of 
freedom at the 5% level is 3.84. Since the computed value is greater than this, 
we reject the null hypothesis and decide that the variables are not independent. 

It is also useful to have a means of comparing the observed and expected 
frequencies. We know from the value of G 2 that the two variables are not in­
dependent of each other. And we suspect, based on the observation that the 
difference between the relative frequency for (young-MD) minus (old-MD) is 
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Table 5.3.10. Standardized 
Deviates of Observed and 
Expected Frequencies in 
Death Type by Age 

Suicide 
Other 

25-54 

4.2 
-2.8 

Age 

55-79 

-4.0 
2.6 
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not negative, that the frequency of suicide tends to decline with age. A useful 
technique for the comparison between observed and expected frequencies is 

R jj = (Observed-Expected)/J(Expected). (5.9) 

(You may be interested to notice that this measure of deviation, R jj , is simply 
the (signed) square root of the contribution of a particular cell, the ij cell, to 
the value of the Pearson chi-square.) 

The computed values for this measure of residual variation are presented 
in Table 5.3.10. Notice that the measure is large for suicide among young MDs 
and small for suicide among old MDs, i.e. the observed frequency of suicide 
among young MDs is greater than expected while the observed frequency for 
suicide among the older MDs is less than expected. This is sufficient to 
establish that the correlation is not positive. We have accepted the negation 
of the research hypothesis-suicide rate does not increase with age. 

Medical Specialty by Age 

We may suspect that the previous result is due to an age difference between 
psychiatry and other MDs. Notice that we have arrived at a point of know­
ing one thing that suicide is not. It is not positively related to age. (In sepa­
rating the population into two different populations, psychiatrists and non­
psychiatrists, we have begun a process of exploration in an attempt to learn 
something positive about the nature of suicide. The outcome of this ad hoc 
process cannot result in a scientifically valid conclusion about the nature of 
suicide. At the best it may result in an elaborated theory and a new research 
hypothesis, the evaluation of which would require another project.) The 
observed frequencies are presented in Table 5.3.11. Notice that there are about 
twelve times as many non-psychiatrists as there are psychiatrists in this sample 
of observations. This should indicate to you why the measure of deviations 
from expectations that we considered above must be standardized in some 
way. Due to the very large difference in sample sizes, a fractionally small 
deviation from expectation among non-psychiatrists would appear as an 
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Table 5.3.11. Specialty by Age among 
American Physicians 

Age 

25-54 55-79 Total 

Non-psychiatry 557 668 1225 
Psychiatry 63 39 102 

Total 620 707 1327 

G 2 = 10.1, df = 1. 

Table 5.3.12. In Expected Values for Specialty by Age 

Marginals In 

1+ = 1225 7.11 

2+ 102 4.63 
+1 = 620 6.4.3 
+2 = 707 6.56 

+ + = 1327 7.19 

Specialty Age In(x+ +) In(xi+) In(x+j) In(mij) 

7.19 7.11 6.43 6.35 
1 2 7.19 7.11 6.56 6.48 
2 1 7.19 4.63 6.43 3.87 
2 2 7.19 4.63 6.56 4.00 

Table 5.3.13. Evaluation of G 2 for Specialty by Age 

Specialty 

2 
2 

Total 

Age 

1 
2 
1 
2 

Observed Expected 

557 572.5 
668 652.0 

63 47.9 
39 54.6 

G 2 = 2[8270.5 - 8265.5] = 10.0, df = 1. 

Oln(O) 

3521.7 
4344.9 

261.0 
142.9 

8270.5 

mij 

572.5 
652.0 
47.9 
54.6 

Oln(m) 

3537.0 
4328.7 

243.8 
156.0 

8265.5 

absolutely large deviation relative to that observed in the smaller sample. So 
some standardization is required. 

You should satisfy yourself that the value of G 2 for this table is 10.1, with 
1 degree of freedom. The computation of the expected values is illustrated in 
Table 5.3.12 and G 2 is evaluated in Table 5.3.13. This value of G 2 is improb­
able if the null hypothesis of independence of age and medical specialty is true. 



5.3. Testing a Two-Dimensional Hypothesis 

Table 5.3.14. Standardized 
Residuals in Table 5.3.11 

Non-psychiatry 
Psychiatry 

25-54 

-0.6 
2.2 

Age 

55-79 

0.6 
-2.1 

Table 5.3.15. Specialty by Death Type 
among American Physicians 

Death type 

Suicide Other Total 

Non-psychiatry 353 872 1225 
Psychiatry 51 51 102 

Total 404 923 1327 

G 2 = 18.5, df = 1. 
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Now consider Table 5.3.14 which contains the standardized residuals. There 
you will note that the deviation from expectation for young psychiatrists is 
large and the deviation for old psychiatrists is small. There is an excess of 
young psychiatrists. This is troublesome. It suggests the possibility that the 
inflated frequency of suicide among young MDs in Table 5.3.7 may be due to 
the excess of psychiatrists among young MDs. 

Medical Specialty by Death Type 

In an attempt to remove this "confounding" of effects, we might check for 
the suicide frequency among the medical specialties. If it should be the case 
that psychiatrists are less apt to suicide than are other medical specialties then 
we might be more confident of the generality of the age effect obtained from 
Table 5.3.7. The necessary observations are presented in Table 5.3.15. The 
value of G 2 for this table is 18.5, with 1 degree of freedom. This is an im­
probable result if the suicide rate is the same among psychiatrists and non­
psychiatrists. In Table 5.3.16 are presented the deviations of the observed and 
expected frequencies. You will note that there is an excess of suicides among 
psychiatrists and a deficit among non-psychiatrists. So the death type distri­
butions of the two populations cannot be considered to be the same. 

Now let us review what we have done so far. In Table 5.3.7 it was observed 
that death type is not independent of age. In Table 5.3.11 it was observed that 
medical specialty is similarly not independent of age and consequently it is 
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Table 5.3.16. Standardized 
Residuals in Table 5.3.15 
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Death type 

Non-psychiatry 
Psychiatry 

Suicide 

-1.0 
3.6 

Other 

0.7 
-2.4 

possible that the apparent dependence of suicide frequency on age is nothing 
more than an artifact of the differences among the medical specialties with 
regard to age. In Table 5.3.15 it was concluded that the medical specialties are 
indeed different with regard to the frequency of suicide. 

Notice that this kind of procedure, specifically that of constructing all pos­
sible two-way tables, obscures two potentially very important facts about fre­
quencies. First by considering only marginal distributions in a serial fashion 
such as this it is very difficult to make any sense out of the result. For example 
when we concluded that suicide is not independent of age and then next 
concluded that the medical specialties are also not independent of age we are 
then led to suspect that the conclusion in Table 5.3.15 that medical specialty 
is not independent of death type may be a spurious result. That is, the con­
clusion from Table 5.3.7 may be the spurious result of the frequencies in 
Tables 5.3.11 and 5.3.15. Second, there is no way of determining whether or 
not all three variables need to be considered simultaneously. That is to say the 
frequency of suicide may in fact depend not just on age or on medical specialty 
but on the joint, simultaneous, effect of age and specialty. Also recall that our 
goal is to evaluate the (null) hypothesis that suicide frequency is not positively 
correlated with age. Considering this, the relationship between medical spe­
cialty and death type as well as the relationship between medical specialty 
and age should be considered nothing but noise. That is these effects, in so far 
as they exist, only serve to obscure the primary effect of interest which is 
specifically the relationship between suicide frequency and age. 

5.3.2. The 2 x C Table 

5.3.2.1. DISCRETE LEVELS 

The logic developed for the 2 x 2 table extends in a natural way to accomo­
date the 2 x C case with C > 2. The degrees of freedom are C-l. The main 
reason for treating this situation separately is to consider later the special case 
of ordered categories of the variable with C levels. 

Flinn (1981) also considers cousin marriage preference with regard to 
primary source of altruism. 
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" ... where the father's brother (or other agnatic kin) are important sources of 
altruism, father's brother's daughter marriage will be preferred; where mother's 
brother is an important source of altruism, mother's brother's daughter marriage 
will be preferred; where the father's sister is an important source of altruism, 
father's sister's daugher marriage will be preferred ... " (ibid., 456) 

As an exercise, let the following variable definitions be given: 

K kin selection theory 
A source of altruism 
C preferred cousin. 

The first premise of the argument is 

if [kin selection theory] 
then [source of altruism will determine (probabalistically) 

the preferred cousin marriage] 

which may be rendered: 

if [K] then [if A then C]. 

Note that if we model the event "not (if [source of altruism] then [preferred 
cousin])" by the condition of independence 

P(ClA) = P(C)' P(A), 

that is, [preferred cousin] is independent of [source of altruism], then we may 
assert the argument 

if [not K] then [not (if A then C)] 
[if A then C] 

... K. 

Note that the first premise above is just condition 2 of a good test. Also note 
that if "preferred cousin marriage" is independent of "source of altruism" when 
"kin selection theory" is false then the project is believable; otherwise it is not. 
Partial results are presented in Table 5.3.17. You should confirm that G 2 = 

Table 5.3.17. Cousin Marriage Preference with Regard 
to Primary Source of Altruism 

Source of altruism 

Cousin Agnatic Uterine Total 

Father's sister's daughter 3 6 9 
Mother's brother's daughter 39 5 44 
Father's brother's daughter 14 11 14 

Total 56 11 67 
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Table 5.3.18. Standardized Residuals for the 
Survey of Cousin Marriage Preference and 
Primary Source of Altruism 

Source of altruism 

Cousin 

Father's sister's daughter 
Mother's brother's daughter 
Father's brother's daughter 

.-. 
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Agnatic 

-1.6 
0.4 
0.7 
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Uterine 

3.7 
-0.8 
-1.5 

17.2 and there are 2 degrees offreedom. In Table 5.3.18 are the standardized 
residuals. Note that in all cases the direction of the deviation is as predicted. 
The observed odds are displayed graphically in Figure 5.4. 

5.3.2.2. ORDERED LEVELS OF ONE VARIABLE 

Alfred (1980) reports frequencies of the sickle-cell trait by age obtained from 
various screening clinics in the United States. There was a widespread expecta­
tion among anthropologists and geneticists that the relative frequency should 
decline with age. This is obtained from a standard model used by epidemiol­
ogists to describe the decay of frequency as a function of the time of exposure. 
The longer one is at risk, the greater the probability of death. That this argu­
ment is based on a fallacy is not important here. We wish to test the hypothesis 
that the frequency of the sickle-cell trait declines with age. A natural way of 
doing this is to determine the regression of the proportions on the age 
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Table 5.3.19. Frequency of the Sickle-Cell Trait by Age in 
the United States 

Age Normal 
category, hemoglobin Sickle-cell 

years Zj (nj) trait (Xj) Pj njzj 

1 to < 10 -2 12097 1009 0.077 -26212 
10 to <20 -1 12065 1008 0.077 -13073 
20 to <30 1 3213 320 0.091 3533 

>30 2 3257 331 0.092 7176 

Total 30632 2668 0.087 -28576 

T 1'. P 
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categories. Then if the regression coefficient is negative we would accept the 
hypothesis represented by the epidemiological model. 

The method presented here is due to Cochran (1954). It uses the "common" 
chi-square test as distinct from the log-linear version we've been using. The 
observations are displayed in Figure 5.5 and Table 5.3.19. The column "z/, 
contains the numerical scale for the age categories. The nj are simply the total 
number of observations in age category j. Then the column "P/' is obtained 
by 

Pj = xj/nj . 

These are just the relative frequency estimates of the probability of sickle-cell 
trait in age category j. The regression of the Pj on the Zj is the goal. The 
rightmost column "njz/, is required later. Cochran (ibid., 434) defines the 
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weighted regression of the Pj on the Zj as 

b = L nj(pj - p)(Zj - z) 

L nj(zj - Z)2 

where Z is the weighted mean of the Zj' Note that the numerator is just the 
sum of the weighted product of the deviations of the Pj from their mean, p, 
and the deviations of Zj from their mean, z. This is the weighted covariance 
of the Pj and Zj' The denominator is the sum of weighted squared deviations 
of the Zj from their mean. This is the weighted sum of squares. A bit of 
manipulation of the terms produces 

Numerator = " x.z. _ T.:(L njzj) 
~ J J T 

Cochran (ibid., 435) then defines the chi-square test for regression, with 1 
degree of freedom as 

Ch' (Numerator)2 (5.10) I-square = ------
pq (Denominator) 

Note that P with no subscript is the estimated mean and that q = 1 - p. 
For the problem of this section we find the following: 

P = 0.087, q = 0.913, pq = 0.0794 

Numerator = [(1009)( - 2) + (1008)( -1) + (320)(1) 

+ (331)(2)J - (2668( -28576))/30632 

= - 2044 + 2488.9 

= 444.9 

Denominator = [(13106)( _2)2 + (13073)( _1)2 

+ (3533)(1)2 + (3588)(2)2J - (- 28576? /30632 

= 49994 - 26658.0 

= 23336. 

These results produce 

h' (444.9)2 
C I-square = (0.0794)(23336) 

197936 
1852.9 

= 106.83 

which is significant at the chosen (5%) level. 
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Note that knowing that the slope of the line is not zero does not answer 
the question posed at the beginning. We need to know whether the slope is 
positive or negative. If it is negative, then the epidemiological hypothesis 
would be accepted. Otherwise it is rejected. It is not necessary to know the 
magnitude of the slope, so we can determine by inspection that the slope is 
not negative. We are therefore able to reject the hypothesis that the relative 
frequency of sickle-cell trait decreases with age. 

5.3.3. The R x C Table 

In this section we extend the analytic technique to a two-dimensional table of 
any size. There are no surprises. A new method of standardizing the residuals 
will be presented since the variables defining the dimensions are not binomial. 
More importantly, the results obtained from the example challenge one's com­
mitment to the predetermined level of significance. 

Alfred, Grieg, and Petrakis (1979) report on the relationship between a 
genetic marker, the Duffy system, and educational achievement as measured 
by highest grade completed. As with many of the other examples presented 
so far, the argument is the invalid affirm the consequent. This means that the 
results may be interesting or infuriating but do not compel acceptance. 

The observations are presented in Table 5.3.20a. 
The cummulative relative frequency of educational achievement by Duffy 

phenotype is in Figure 5.6. 
Note that there are two zero entries in Table 5.3.20a. These are called 

random zeros and are distinguished from structural zeros. Structural zeros 
occur with impossible conditions in a table. For example, if age is one dimen­
sion and education another, then depending on the categories used, there may 
be a place in the table for observations of 2 year old Ph.D.'s. As the event is 
impossible, there can be no observations and a structural zero is produced. A 
random zero is an artifact of sampling. 

The expected values are in Table 5.3.21a. 

Table 5.3.20a. Highest School Grade Completed by Duffy Phenotype for 
Males and Females Older than 25 in Stockton, California 

Duffy phenotype 

Education Fy(a+,b+) Fy(a+,b-) Fy(a-, b+) Fy(a-, b-) Total 

At most grade 6 3 0 0 6 9 
Grade 7 to high 

school grad. 2 4 11 29 46 
More than high 

school 2 3 13 19 

Total 7 5 14 48 74 
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Table 5.3.21a. Expected Values for Education by Duffy Phenotype 

Marginals In 

1+ = 9 2.20 
2+ = 46 3.83 
3+ = 19 2.94 
+1=7 1.95 
+2 = 5 1.61 
+3 = 14 2.64 
+4 = 48 3.87 

++ = 74 4.30 

Duffy 
Education phenotype In(xi+) In(x+ j ) In(x++) In(mij) mij 

1 2.20 1.95 4.30 -0.15 0.86 
2 2.20 1.61 4.30 -0.49 0.61 
3 2.20 2.64 4.30 0.54 1.72 
4 2.20 3.87 4.30 1.77 5.87 

2 1 3.83 1.95 4.30 1.48 4.39 
2 2 3.83 1.61 4.30 1.14 3.13 
2 3 3.83 2.64 4.30 2.17 8.76 
2 4 3.83 3.87 4.30 3.40 29.96 
3 1 2.94 1.95 4.30 0.59 1.80 
3 2 2.94 1.61 4.30 0.25 1.28 
3 3 2.94 2.64 4.30 1.28 3.60 
3 4 2.94 3.87 4.30 2.51 12.31 
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Table 5.3.22a. Evaluation of G2 for Education by Duffy Phenotype 

Duffy 
Education phenotype Observed Expected Oln(O) Oln(m) 

3 0.86 3.30 -0.45 
2 0 0.61 0 0 
3 0 1.72 0 0 
4 6 5.87 10.75 10.62 

2 2 4.39 1.39 2.96 
2 2 4 3.13 5.54 4.56 
2 3 11 8.76 26.38 23.87 
2 4 29 29.96 97.65 98.60 
3 2 1.80 1.39 1.18 
3 2 1 1.28 0 0.25 
3 3 3 3.60 3.30 3.84 
3 4 13 12.31 33.34 32.63 

Total 183.04 178.06 

G2 = 2(183.04 - 178.06) = 9.98, df = 6. 

Table 5.3.23a. Standardized Residuals for the Education by Duffy 
Phenotype Data in Table 5.3.20a 

Duffy phenotype 

Education Fy(a+, b+) Fy(a+,b-) Fy(a-,b+) Fy(a-,b-) 

At most grade 6 2.31 -0.78 -1.31 0.05 
Grade 7 to high 

school grad. -1.14 0.49 0.76 -0.18 
More than high 

school 0.15 -0.25 -0.32 0.20 

Notice that these are obtained by equation 5.6. G 2 is evaluated in Table 
5.3.22a. The computed probability of a G 2 this large or larger for this table is 
0.1041 which, while clearly larger than the 5% criterion is nonetheless disturb­
ingly small. This is a case where a deferred decision is indicated. We would 
not be justified in rejecting the null hypothesis of independence of Duffy 
phenotype and educational achievement but the data do suggest the possi­
bility. So rather than abandoning the project we may decide that it is worth 
pursuing further. 

In Table 5.3.23a the standardized residuals are presented. These are calcu­
lated according to equation 5.9 

(5.9) 
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which uses a different denominator than equation 5.3. In ambiguous cases 
such as this where a decision has been deferred, the reason for calculating and 
examining the residuals is for guidance with regard to the next step and future 
research. Note that the (absolutely) large deviations occur in the categories 

At most grade 6 and Fy(a+, b+) = 2.31 

At most grade 6 and Fy(a-, b+) = -1.31 

Grade 7 to high 
school grad and Fy(a+, b+) = -1.14. 

There is no clear pattern to these deviations, so we may try reducing Table 
5.3.20a to a 2 x 2 table using the Duffy phenotypes "Fy(a +, b +)" and 
"Other," and education categories "At most grade 6" and "More than grade 
6." This is done in Table 5.3.20b. The expected values are calculated in Table 
5.3.21b and G 2 in Table 5.3.22b. (The G 2 value in parenthesis was obtained 
by computer and is reported so that you may see the effect of rounding error. 
The probability of a result this large or larger is 0.0281.) 

Table 5.3.20b. Reduction of Table 5.3.20a, Highest 
Grade Completed by Duffy Phenotype in 
Stockton, California 

Education 

At most grade 6 
More than grade 6 

Total 

Fy(a+, b+) 

3 
4 

7 

Other 

6 
61 

67 

Total 

9 
65 

74 

Table 5.3.21b. Expected Values for Education by Duffy Phenotype, 
from Table 5.3.20b 

Marginals In 

1+ = 9 2.20 
2+ = 65 4.17 
+1=7 1.95 
+2 = 67 4.21 

++ = 74 4.30 

Duffy 
Education phenotype In(xj+) In(x+j) In(x++) In(mjj) mij 

1 2.20 1.95 4.30 -0.15 0.86 
2 4.17 1.95 4.30 1.82 6.17 

2 1 2.20 4.21 4.30 2.11 8.25 
2 2 4.17 4.21 4.30 4.08 59.15 



5.4. Tests of Hypotheses in Three or More Dimensions 

Table 5.3.22b. Evaluation of G 2 for Education by Duffy Phenotype 
in Table 5.3.20b 

Education 

2 
2 

Total 

Duffy 
phenotype 

1 
2 
1 
2 

Observed Expected Oln(O) 

3 0.86 3.30 
6 6.17 10.75 
4 8.25 5.55 

61 59.15 250.76 

270.36 

G2 = 2(270.36 - 267.80) = 5.12, df = 1. 

(G2 estimated by computer = 4.82.) 

Table 5.3.23b. Standardized Residuals for 
the 2 x 2 Education by Duffy Phenotype 
Data in Table 5.3.20b 

Education 

At most grade 6 
More than grade 6 

Duffy phenotype 

Fy(a+,b+) 

2.31 
-1.48 

Other 

-0.07 
0.24 

Oln(m) 

-0.45 
10.92 
8.44 

248.89 

267.80 
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There you will note that G 2 exceeds the 5% significance criterion allowing 
a decision to be reached. Since this is an ad hoc result, however, and since the 
argument structure of the project is invalid, it can only be used as a guide to 
further research. It would be unacceptable at this point to conclude that the 
Duffy phenotype affects educational achievement. There is such a suspicion, 
however. The standardized residuals are in Table 5.3.23b. Note the excess rep­
resentation in the "Fy(a +, b + ) and at most grade 6" category and the deficit 
in the "Fy(a +, b + ) more than grade 6" category. 

5.4. Tests of Hypotheses in Three or More 
Dimensions 

5.4.1. The 2 x 2 x 2 Table 

5.4.l.1. DEATH TYPE, MEDICAL SPECIALTY, AND AGE 

Here we shall continue the analysis of death types among MDs begun in 
Section 5.3. Recall the objections to the analysis developed there, i.e. the 
decomposition into all possible 2-way tables eliminates information. 
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Table 5.4.1. Indexing Structure of 
Table 5.3.6 

Variable Index 

Medical specialty 
Death type 
Age 

. Suicide 
Non-psychiatry a h 

t er 

Psychiatry Suicide 
Other 

j 
k 

25-54 

111 
121 

211 
221 

Maximum 

Age 

I 
J 
K 

55-79 

112 
122 

212 
222 

We need to develop a different analytic structure in order to correct this 
defect. In developing this structure we will refer to Table 5.3.6 which is death 
type by age by MD specialty. We shall refer to the medical specialty by an 
index, i, and the death types by an index, j, and the age categories by an in­
dex, k, so that any cell in the table may be referenced by Xijk' 

Before considering the analysis of Table 5.3.6 it is important that you be 
able to read the indexing structure of complex tables. It is no longer possible 
simply to let one index be used for rows and another for columns. The indexing 
structure of Table 5.3.6 is presented in Table 5.4.1. Notice that there are 
I' J . K, cells in the table. The two-way marginals for medical specialty by 
death type are formed by Xij + = Xij I + X ij 2' The two-way marginals for 
medical specialty by age are formed by Xi+k = Xilk + X i2k' And the two-way 
marginals for death type by age are formed by X+ jk = X 1jk + X2jk' The one­
way marginals are formed similarly. Be aware that in each instance of a 
summation it is assumed that the sum proceeds over all values of the indexes 
which are replaced by plus signs. 

It should be intuitively apparent that Table 5.3.6 has considerably greater 
informational content than is present in all the 2-way tables. In terms of the 
number of hypotheses which can be evaluated from a three-way table by 
comparison with the number in a two-way table we shall soon be able to 
substantiate intuition. 

Notice that when the subscript i has the value 1 it refers to non-psychiatry 
and when its value is 2 it refers to psychiatry. When the subscript j has the 
value 1 it refers to suicide, and when it has the value 2 the reference is to 
non-suicides. Similarly when the subscript k has the value 1 it refers to the age 
category 25-54, and the value 2 refers to the age category 55-79. 

There is one more fact which is required in order to develop our analytic 
structure. The sum of the differences between a series of numbers and their 
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expected value is always identically equal to zero. For example, consider that 
we have a random variable ai . Then its expected value is E(a) = J.l. Then 
(a1 - J.l) + (a2 - J.l) + ... + (an - J.l) = o. 

Under the hypothesis of the independence of the variables in Table 5.3.6 
we obtain the cell probabilities by 

IIijk = IIiIIjIIk· 

The right-hand side is estimated by 

IIiIIjIIk = PiPjPk 

which allows us to obtain the estimates of the expected cell frequencies by 

mijk = PiPjPk N 

where N is the total number of observations in the table. Since 

we may write 

Pj = x+j+/N 

Pk = x++k/N 

In(mijk ) = In(xi++/N) + In(x+j+/N) + In(x++k/N) + In(N) 

= - 2 In(N) + In(xi++) + In(x+j+) + In(x++k). 

(5.11) 

(5.12) 

You should notice that this is simply a straightforward application of two of 
the laws of logarithms which were presented earlier. 

Now consider that the basic problem is to develop a model which accounts 
for, that is, adequately describes, the observations which have been obtained. 
This shall mean for us that we seek a mathematical expression which pro­
duces expected values close to the observed values. In the case at hand, we 
shall determine whether the model of independence produces expected values 
which are close to the observed values or not. The odds for suicide are 
displayed in Figure 5.7 by age and specialty. 

It is possible that all entries in the table simply represent random fluctua­
tions around a constant, the grand mean. So the first component of the model 
is this constant, u. We need another term for the effect of the variable which 
we are calling death type. We shall use the notation u l(i) for this term. Similarly 
we shall require a term for the effect of age and use the notation u2 (j)' Lastly, 
a term is needed for the effect of medical specialty, U 3(k)' 

5.4.1.1.1. The Model of Mutual Independence 

Now we are able to write an expression for the expected values in the table 
as the sum of several different independent effects: 

(5.13) 
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The u term with no subscript is the grand mean, a constant. In the new 
notational convention this is the expression of the model for the expected 
values expressed in terms of independent effects only. 

Still this model is not usable until estimates for the terms are defined. It is 
quite natural to express the estimate of the grand mean (u with no subscript) 
as the average of the logs over all observations in the table. Let us also adopt 
the notational convention that I is the number of rows in the table, J is the 
number of columns, and K is the number of slabs. In the case at hand 
I = J = K = 2. Then by summing all of the In(xijk) and dividing by the 
number of cells in the table we shall obtain a grand mean of the logs for the 
table. If the estimate of the row effect is defined as the sum ofthe row deviations 
from the grand mean, then the effect of row i may be expressed as the deviation 
of the marginal for row i from the grand mean. Similarly we can express the 
estimated effect for column j as the deviation of the marginal for column j 
from the grand mean. The notation for these concepts is presented as 

1 
u = ~ L L L In(xijk) 

11K i j k 

1 
u + U1(i) = JK ~ f In(xijk) 

1 
u + u2 (j) = IK f f In(xijk) 

1 
u + U3(k)k = - L L In(xijk). 

11 i j 

(S.14a) 

(S.14b) 

(S.14c) 

(S.14d) 
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Note that 
L U 1(i) = L U2(i) = L U 3(k) = O. 
i j k 

We may now express the model which was defined in equation 5.13 as 

1 1 
In(mijk ) = - 2 UK f ~ f In(xijk ) + JK ~ ~ In(xijk ) 

1 1 
+ IK f ~ In(xijk ) + U f ~ In(xijk )· 

(5.15) 

In Table 5.4.2 are computed the expected values under the hypothesis of 
mutual independence for each of the eight cells of this table. Notice that there 
are now three subscripted u terms because there are three variables. And in 
Table 5.4.3 the goodness of fit of these expected values is evaluated. Notice 
that G 2 = 79.6. Also notice that both G 2 and df are now subscripted. 

Table 5.4.2. In Expected Values for Table 5.3.6 under the Hypothesis of 
~utualIndependence 

U1(i) u2(j) U3(k) U 

MD Death Age In(xi+ +) In(x+ j +) In(x+ +k) 2In(x+ + +) In(m) m 

1 1 7.11 6.00 6.43 14.38 5.16 174.2 
1 2 7.11 6.00 6.56 14.38 5.29 198.7 
2 1 7.11 6.83 6.43 14.38 5.99 398.1 

1 2 2 7.11 6.83 6.56 14.38 6.12 454.0 
2 1 4.63 6.00 6.43 14.38 2.68 14.5 
2 1 2 4.63 6.00 6.56 14.38 2.81 16.5 
2 2 1 4.63 6.83 6.43 14.38 3.51 33.1 
2 2 2 4.63 6.83 6.56 14.38 3.64 37.8 

Table 5.4.3. Evaluation of G 2 for the Hypothesis of ~utual 
Independence in Table 5.3.6 

MD Death Age Observed Expected Oln(O) Oln(m) 

205 174.2 1091.2 1057.8 
1 2 148 198.7 739.6 783.2 
2 1 352 398.1 2064.0 2107.3 

1 2 2 520 454.0 3252.0 3181.4 
2 1 1 42 14.5 157.0 112.3 
2 1 2 9 16.5 19.8 25.2 
2 2 1 21 33.1 63.9 73.5 
2 2 2 30 37.8 102.0 109.0 

Total 7489.5 7449.7 

G~ = 2[7489.5 - 7449.7] = 79.6, dfl = lJK - I - J - K + 2 = 4. 
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Table 5.4.4. Standardized Deviates for the 
Model of Mutual Independence in 
Table 5.3.6 

Age 

25-54 55-79 

Non-psychiatry Suicide 2.3 -3.6 
Other -2.3 3.1 

Psychiatry 
Suicide 7.2 -1.9 
Other -2.1 -1.3 

The expression for the degrees of freedom for the hypothesis of mutual 
independence of three variables is 

IJ K - I - J - K + 2. 

In this example I = J = K = 2, so there are four degrees offreedom. Referring 
this value to a table of chi-square we discover that 14.86 is the critical value 
for the test of an hypothesis at the 0.05, or 5%, level of confidence with 4 
degrees of freedom. We therefore conclude that the model of independence 
does not fit the data. 

The standardized residuals for the departures from the model of mutual in­
dependence are presented in Table 5.4.4. There it will be noted that the largest 
departure, excess, is that for suicide among young psychiatrists. Less notable 
but still quite large is the negative departure, deficit, for suicide among older 
non-psychiatrists. You should be warned against concluding from these re­
sults that young psychiatrists are at greater risk of suicide than are young phy­
sicians of other specialties. The evaluation of relative risk can only be mean­
ingfully made when we have obtained a model that fits the data acceptably. 

The complete general log-linear model for the three-way table is 

In(llijk) = U + U 1(i) + u2(j) + U 3(k) 

+ U 12(ij) + U 13(ik) + U 23 (jk) (5.16) 

+ U 123(ijk)' 

The model of mutual independence is simply the first four terms on the 
right-hand side of equation 5.l6. Then evaluation of the model of mutual 
independence is equivalent to setting 

U 12(ij) = U 13(ik) = U 23(jk) = U 123(ijk) = o. 
This means that all possible two-way interactions between variables as well 
as higher order interactions are assumed to be zero. Consequently it should 
come as no surprise that the model of mutual independence does not fit the 
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data. From the earlier examination of two-way tables it became quite clear 
that there was considerable pairwise dependence between these variables. The 
hypothesis of mutual independence which excludes pairwise independence 
should not fit the data. 

You should form the habit of thinking of every term in equation 5.16 as a 
potential model of the data. Furthermore models may be formulated by com­
binations of terms in this equation. For example it is conceivable to specify a 
model as u + U12(ij)' or U123(ijk). 

This is an appropriate time to mention that all log-linear models have a 
hierarchical structure. Simply stated this means that if a model is specified as 
U123(ijk) hierarchical structure means that all possible lower order models 
involving the subscripts are also included in the model. Specifically an alter­
nate way of expression equation 5.16 is 

In(llijk) = U123(ijk)· 

Similarly, if the model is expressed as U23(jk) this means that 

U12(ij) = U13(ij) = U123(ijk) = 0 

and all other terms in equation 5.16 are, by hypothesis, not equal to zero. If 
the model is specified as U3(k) this means that 

U 1(i) = u2(j) = U12(ij) = U13(ik) = U23(jk) = U123(ijk) = o. 
The order (degree) of a model will be defined as the maximum number of 
subscripts on any term in the model. So equation 5.16 is called a third degree 
model. A model specified as 'U 12(ij) + U 13(ik)' is called a second degree model. 
(This is a slight departure from common usage which refers to this as a first 
degree model. The difference originates in the specification of the degree of 
the model of mutual independence which is usually said to have order zero. 
It seems more intuitive to refer to model order in terms of subscripts.) 

5.4.1.1.2. Independence of One Variablefrom the Joint Distribution 
of the Other Two 

Earlier we saw that age and medical specialty are probably dependent on each 
other. Let us determine whether death type is independent of the joint distri­
bution of age and medical specialty. The model is expressed as 

In(llijk) = U + U 1 (i) + u2 (j) + U 3(k) + U 13(ik)· 

The closed expression for the estimate of the expected values is 

mijk = (x+j+)(Xi+j)/x+++ 

which on transformation becomes 

In(mijd = In(x+j+) + In(xi+k) - In(x+++) 

(5.17) 

(5.18) 

(5.19) 
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Table 5.4.5. Age by Medical 
Specialty Marginals (Xi+k) 

Age 

5. Topics in Hypothesis Testing 

25-54 55-79 

Non-psychiatry 
Psychiatry 

557 
63 

668 
39 

Table 5.4.6. In Expected Values for Table 4.1 under Model 
Equation 5.19 

u2 (j) U1JOk) U 

MD Death Age In(x +j+) In(xi+j) In(x+++) In(mijk) 

6.00 6.32 7.19 5.13 
2 6.00 6.50 7.19 5.31 

2 1 6.83 6.32 7.19 5.96 
1 2 2 6.83 6.50 7.19 6.14 
2 1 1 6.00 4.14 7.19 2.95 
2 2 6.00 3.66 7.19 2.47 
2 2 1 6.83 4.14 7.19 3.78 
2 2 2 6.83 3.66 7.19 3.30 

where it is assumed that 

U 12(ij) = U 2 3(jk) = U 123(ijk) = O. 

Notice that this model description illustrates the hierarchical structure of 
log-linear models on frequency data. Specifically when a term is included in 
the model all lower order terms involving the same subscripts are auto­
matically included. Also you should be aware that in general there are three 
models with this structure. 

In order to evaluate the goodness of fit for the expected values to the 
observations we must first construct the two-way marginals of age and med­
ical specialty. These marginals are presented in Table 5.4.5. The logs of the 
expected values obtained from equation 5.19 are presented in Table 5.4.6. And 
these expected values are tested for goodness offit to the observed frequencies 
in Table 5.4.7. Notice that this test is computed according to equation 5.19. 
There are [(I - 1)( JK - 1)] = 3 degrees offreedom for testing the fit of this 
model and G~ = 73.6 is significantly different from the value which would be 
obtained if the model did in fact fit the data. 

Even though this model does not fit the data it has improved the situation 
somewhat over the model of mutual independence. Let us evaluate the im­
provement. The difference between the values of G 2 for mutual independence 
and for this model is 6.0, and the difference in degrees of freedom between 
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Table 5.4.7. Goodness of Fit of the Model ofthe Independence 
of Death Type from Age and Medical Specialty Jointly 

MD Death Age Observed Expected Oln(O) 

205 169.0 1091.2 
1 2 148 202.4 739.6 
2 1 352 387.6 2064.0 
2 2 520 464.1 3252.0 

2 1 42 19.1 157.0 
2 1 2 9 11.8 19.8 
2 2 1 21 43.8 64.0 
2 2 2 30 27.1 102.0 

Total 7489.6 

G~ = 2[7489.6 - 7452.8] = 73.6, df2 = [(1 - 1)(JK - 1)] = 3. 

Table 5.4.8. Standardized Deviates for the 
Model of the Independence of Death Type 
from Age and Medical Specialty Jointly 

Age 

25-54 55-79 

. Suicide 2.7 -3.9 
Non-psychiatry 0 h -1.8 2.6 t er 

Psychiatry Suicide 5.2 -0.8 
Other -3.4 0.6 

these two models is 1: 

Gi - G~ = 79.6 - 73.6 = 6.0 

dfl - df2 = 4 - 3 = 1. 

Oln(m) 

1051.6 
785.9 

2097.9 
3192.9 

123.9 
22.2 
79.4 
99.0 

7452.8 
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Since the critical value ofG2 with 1 degree offreedom is 3.84 we conclude that 
the observed value of 6.0 is a significant improvement. This means that the 
inclusion of an interaction term expressing the dependence between age and 
medical specialty enhances the fit between the model and the observations in 
a significant manner. But clearly the model of the independence of death type 
from the joint distribution of age and medical specialty, even though it is better 
than the model of mutual independence, is still a long way from being an 
adequate model of the data. 

The standardized deviates of expected values from observations are in Table 
5.4.8. Note the large excess of suicides among young psychiatrists. 
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You should note very carefully that this evaluation of the improvement of 
fit between different models is a luxury which is provided only by the use of 
log-linear models as opposed to traditional chi-square tests of goodness offit. 
This is a very great advantage in the process of examining data as well as 
testing complex models. For specific tests of specific hypotheses the values of 
G 2 and chi-square are very close together and there is no prior logic to 
establish a preference for one or the other when N is "about four or five times 
the number of cells" (Fienberg, 1980, 173), though the flexibility and intuitive 
simplicity of linear models is certainly noteworthy. The ability to fit a model 
in a stepwise fashion to a set of observations is a very powerful technique for 
data exploration. 

5.4.1.1.3. Conditional Independence of One Variable from Another Given the 
Third 

Next we evaluate the model of conditional independence of age from death 
type given medical specialty. The model is expressed by 

In(.uijk ) = u + U 1(i) + u2 (j) + U 3(k) + U1 2(ij) + U13(ik)' 

The closed expression for the estimates of the expected values is 

mijk = (Xij+)(Xi+k)/(Xi++) 

Table 5.4.9. Marginals Required by the 
Model of the Conditional Independence of 
Age from Death Type Given Medical 
Specialty 

Age by medical specialty marginals (Xi+k) 

Non-psychiatry 
Psychiatry 

25-54 

557 
63 

Age 

55-79 

668 
39 

Death type by medical specialty marginals (xij+) 

Death type 

Non-psychiatry 
Psychiatry 

Suicide 

353 
51 

Other 

872 
51 

Medical specialty marginals (Xi + +) 

Non-psychiatry 1225 
Psychiatry 102 

(5.20) 

(5.21) 
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which on transformation becomes 

In(mijk) = In(xij+) + In(xi+k) - In(xi++) 

where it is assumed that 

U230k) = U 123(ijk) = O. 
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(5.22) 

Note that now two sets of two-way marginals and one set of one-way mar­
ginals (Table 5.4.9) are required: the marginal of age by medical specialty and 
the other of death type by medical specialty. 

In Table 5.4.10 the expected values under the model of the conditional 
independence of age from death type given medical specialty are obtained. 
And in Table 5.4.11 these expected values are evaluated with regard to good­
ness of fit to the observed values. Note that there are K(J - l)(J - 1) = 2 
degrees of freedom for the test and that G~ = 56.8. This outcome is very 

Table 5.4.10. In of Expected Values under the Model of the 
Conditional Independence of Age from Death Type Given 
Medical Specialty 

U12(ij) U13(ik) U1(i) 

MD Death Age In(xij +) In(xi+j) In(xi+ +) In(mijk) 

5.87 6.32 7.11 5.08 
1 2 5.87 6.50 7.11 5.26 

1 2 1 6.77 6.32 7.11 5.98 
1 2 2 6.77 6.50 7.11 6.16 
2 1 1 3.93 4.14 4.62 3.45 
2 1 2 3.93 3.66 4.62 2.97 
2 2 1 3.93 4.14 4.62 3.45 
2 2 2 3.93 3.66 4.62 2.97 

Table 5.4.1l. Goodness of Fit of the Model of Conditional 
Independence of Age from Death Type Given Medical Specialty 

MD Death Age Observed Expected Oln(O) Oln(x*) 

1 1 1 205 160.8 1091.2 1041.4 
1 1 2 148 192.5 739.6 778.5 
1 2 1 352 395.4 2064.0 2104.9 
1 2 2 520 473.4 3252.0 3203.2 
2 1 1 42 31.5 157.0 144.9 
2 1 2 9 19.5 19.8 26.7 
2 2 1 21 31.5 64.0 72.5 
2 2 2 30 19.5 102.0 89.1 

Total 7489.6 7461.2 

G~ = 2[7489.6 - 7461.2] = 56.8, df3 = K(l - 1)(J - 1) = 2. 
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Table 5.4.12. Standardized Deviates for 
the Model of Conditional Independence 
of Death Type from Age Given Medical 
Specialty 

Age 

25-54 55-79 

. Suicide 3.5 -3.2 
Non-psychIatry a h -2.2 2.0 t er 

Psychiatry 
Suicide 1.9 -2.4 
Other -1.9 2.4 

improbable if the model is true. You will note, however, that the value of G~ 
for the fit of this model is smaller than the value of G~ for the model of the 
independence of death type from age and medical specialty jointly. So it would 
appear that some further improvement in model fit has been obtained by 
including a term for the death type by medical specialty interaction. The 
improvement is measured as 

G~ - G~ = 73.6 - 56.8 = 16.8 

df2 - df3 = 3 - 2 = 1. 

The difference between the two calculated values ofG2 is 16.8 with one degree 
offreedom. This indicates that a significant improvement has been obtained. 
And in Table 5.4.12 the standardized deviates for the model of conditional 
independence of death type from age given medical specialty are presented. 

5.4.1.1.4. Pairwise Relations among the Three Variables 

If we now add the term for the interaction of death type with age then you 
will note that all possible two-way interactions are included in the model 
simultaneously. The model is expressed as 

In(llijk) = U + UI(i) + u2(j) + U3(k) 

+ UI2(ij) + U13(ik) + U23(jk)' 

Note that it is assumed that UI23(ijk) = O. 

(5.23) 

First refer back to equations 5.18 and 5.21. All these equations are referred 
to as closed equations for the expected values. Unfortunately no similar 
equation exists for the expected values for this particular model. So an entirely 
different strategy must be adopted for determining the expected values. Several 
techniques are available, but the one that we will use here is that developed 
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by Fienberg (1977, 1980) called Proportional Iterative Fitting. Basically what 
this means is that one starts with a guess as to the value in question and 
successively, that is iteratively, refines this guess. The particular refinement 
technique that is used is the ratio of the observed value to the "current" 
estimate. 

Any technique involving iteration almost by definition requires a computer. 
The reason is that there is simply too much arithmetic to be done for modern 
students. It is a brute force kind of device for obtaining estimates for which 
there is no specific closed equation. All computer programs which will perform 
these tests of various models on contingency tables use some kind of iterative 
technique in order to obtain the expected values. Only the proportional 
iterative fitting technique will be illustrated here. An iterative technique is said 
to converge to a specific value when the difference between successive es­
timates of the value is smaller than a criterion. 

Commonly the initial values are set to 1. The expected values, then, on the 
first step of the process are alII. The next step is to obtain estimated expected 
values in a step-by-step manner until the estimates converge. It is certainly 
possible that the estimates will not converge, in which case there is no solution. 
The mechanics of the process are laid out as 

Initial values: x!7~ = 1. 

Then for n = 0,1,2, ... 

Step 1: X(3n+1) _ x ij + x(3n) 
ijk - (3n) ijk 

x ij + 

Step 2: X(3n+2) _ Xi+k x(3n+l) 
ijk - (3n+l) ijk 

Xi+k 

Step 3: X(3(n+l)) _ x+jk x(3n+2) 
ijk - (3n+2) ijk 

X+jk 
(5.24) 

Notice that each of the steps adjusts all of the estimates for the ratio of an 
observed set of marginals to a current estimate of their value. Since there are 
three sets of two-way marginals in this particular model, there are three steps 
in the adjustment procedure. Then these same three steps are performed re­
peatedly until convergence is achieved. Ordinarily convergence is quite rapid. 

The necessary marginals are presented in Table 5.4.l3. 
In Table 5.4.l4 the estimates of the expected values are displayed for each 

step in the process. Note that convergence is effectively achieved by the third 
cycle of iteration. The test for goodness of fit of this model is presented in 
Table 5.4.15. You will note that the value ofG2 has been dramatically reduced, 
G~ = 6.4 with (I - l)(J - l)(K - 1) = 1 degree of freedom. This computed 
value of G 2 is still significant but clearly the addition of the term for the 
interaction of age by death type has improved the fit greatly. Since the 
calculated value of G 2 is significantly large, this model does not fit the data. 
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Table 5.4.13. Marginals Required by the 
Model of All Pairwise Relations 

Two-way marginals 

Specialty by death type 

Non-psychiatry 
Psychiatry 

Specialty by age 

Non-psychiatry 
Psychiatry 

Death type by age 

Suicide 
Other 

Death 

Suicide Other 

353 
51 

Age 

872 
51 

25-54 55-79 

557 
63 

25-54 

247 
373 

668 
39 

Age 

55-79 

157 
550 

Table 5.4.14. Convergence of Estimates of the Expected 
Values under the Model AD, DF, AF 

Iteration 

MD Death Age 2 3 6 

1 1 1 211.6 210.5 210.7 210.7 
1 1 2 139.5 142.4 142.3 142.3 
1 2 1 345.4 346.5 346.3 346.3 
1 2 2 528.5 525.6 525.7 525.7 
2 1 1 37.9 36.4 36.3 36.3 
2 1 2 15.4 14.8 14.7 14.7 
2 2 1 25.1 26.6 26.7 26.7 
2 2 2 23.6 24.3 24.3 24.3 
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Table 5.4.15. Test of Goodness of Fit of the Model with All 
Pairwise Marginals 

MD Death Age Observed Expected Oln(O) 

1 1 205 210.7 1091.2 
1 2 148 142.3 739.6 
2 1 352 346.3 2064.0 
2 2 520 525.7 3252.0 

2 1 42 36.3 157.0 
2 2 9 14.7 19.8 
2 2 1 21 26.7 64.0 
2 2 2 30 24.3 102.0 

Total 7489.6 

Gi = 2[7489.6 - 7486.4] = 6.4, df4 = (1 - 1)(J - 1)(K - 1) = 1. 

Table 5.4.16. Standardized Deviates for 
the Model of All Pairwise Marginals 

Age 

25-54 55-79 

. Suicide -0.4 0.5 
Non-psychIatry 0 h 

0.3 -0.2 t er 

Psychiatry 
Suicide 0.9 -1.5 
Other -1.1 1.2 

Oln(m) 

1096.8 
733.8 

2058.3 
3257.7 

150.9 
24.2 
69.0 
95.7 

7486.4 
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This means that the only adequate fit is the model which includes the three­
way interaction term. This is referred to as the saturated model. It is saturated 
because it includes all terms in equation 5.16. 

The standardized deviates for the fit of all pairwise marginals is presented 
in Table 5.4.16. The largest deviation, in absolute value, in the table is observed 
among psychiatrists. 

In Table 5.4.17 is a summary of the results to this stage. (There are some 
minor differences between the log-likelihood ratio chi-squares which are 
reported and those which we have obtained in the text. The results in Table 
5.4.17 were obtained by computer and should, therefore, be considered more 
accurate than those we have done with a calculator and which include a large 
amount of rounding error.) Model # 1 in Table 5.4.17 is the model of mutual 
independence. Model # 2 is the model of the independence of death type from 
age and medical specialty jointly; and model # 3 is the model for the inde­
pendence of age and death type conditional on field of specialty. Model # 4 
includes all pairwise marginals simultaneously. In the right-most two columns 
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Table 5.4.17. Summary of Results 

0 2 df 
Model 0 2 df Difference Difference 

1. A,F,D 79.6 4 
2. AF,D 69.3 3 10.3 
3. AF,DF 50.8 2 18.5 
4. AF,DF,AD 6.5 1 44.3 

A age, F medical specialty, D death type. 

ofthis table is presented the difference in observed values of the log-likelihood 
ratio chi-square for successive models and the degrees of freedom for the 
difference. Notice that the inclusion of the term for the interaction of age by 
medical specialty results in a decrease of G 2 of 10.3. This is the measure of the 
amount of improvement in goodness of fit which is achieved by including this 
interaction term relative to that which assumed no interactions. Continuing, 
then, we note that the inclusion of a term for the interaction of death type by 
field of medical specialty improves the fit by 18.5. Finally, the inclusion of the 
term for age by death type improves the fit over model # 3 by 44.3. All the 
values of G 2 in Table 5.4.17 are significant at our chosen 0.05, 5%, level of 
significance; so none ofthe models fit the data adequately, and each increment 
in model complexity improves the fit significantly. 

In the context of the research program with which we began, the terms for 
the interaction of age by medical specialty and the terms for death type by 
medical specialty should be considered as nuisance variables. That is to say, 
the original concern focussed on the interaction of age by death type. The 
research question of interest at the moment, then, is whether # 4 in Table 
5.4.17 is a better test of the research hypothesis than is the test that was 
performed on Table 5.3.7. Recall that the value of G2 there was 48.7 with 1 
degree of freedom, indicating that age and death type are definitely not in­
dependent of each other in these data. But those data contained a great deal 
of noise. We suspect that medical specialty should have some effect on death 
type choice. When the data are structured as in Table 5.3.6 some of this noise 
is removable. For example, consider model # 3 in Table 5.4.17. That is the 
model which includes the sampling artifact of age by medical specialty and 
the death by medical specialty interactions. A more powerful test of the sig­
nificance of the interaction of age by death type is provided by the removal 
of these nuisance factors. Model # 4 accomplishes this, particularly when it 
is compared to model # 3. 

Recall that the research hypothesis for this work asserted that suicide 
frequency would increase with age. We have reached a point of considerable 
confidence that there is some relationship between suicide frequency and age 
(within the population of all U.S. physicians) but we still need to make a 
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Table 5.4.l8. Estimated 
Probabilities of Suicide by Age 
for Medical Specialty 

Overall 
Non-psychiatry 
Psychiatry 

25-54 

0.40 
0.37 
0.67 

Age 

55-79 

0.22 
0.22 
0.23 
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statement about the direction of the effect. We have successfully rejected the 
null hypothesis that suicide frequency is independent of age and now we ask 
whether it increases or decreases with age. We shall approach this problem 
intuitively rather than rigorously. Consider Table 5.4.18. There are presented 
the estimated overall probabilities of suicide in line 1 taken from Table 5.3.5 
and in lines 2 and 3 are the estimated probabilities for the medical specialties 
taken from Table 5.3.6. Recall that it is not possible for us to be concerned 
with specific rates of suicide. Rather we are concerned with, for example, 
differences between age categories. In line 1 you will note that the change in 
suicide frequency with aging is devisively not positive. Lines 2 and 3 provide 
more sensitive comparisons between age groups, since the factor of medical 
specialty has been removed. Also recall that the data for line 1 includes all 
noise factors. You should be struck by the fact that in no case in Table 5.4.18 
does the suicide frequency, expressed as the proportion of suicides, increase 
with age. So we are able to reject not only that part of the null hypothesis 
which specifies no age effect, but also to reject the other part which asserts 
that the frequency should increase with age. This constitutes sufficient evi­
dence to allow rejection ofthe theory from which the hypothesis was obtained. 

5.4.1.2. BLOOD GROUPS, ILLNESS AND CITY 

In Section 5.3.1.1 the relationship of some blood group types to illness was 
considered. The data are also structured by city (Woolf, 1955; Dixon et ai., 
1981), as in Table 5.4.19. 

The odds for type 0 are displayed in Figure 5.8 by condition and city. There 
you may observe that the odds are always greater for blood group type 0 than 
for type A; but the cities do not seem to be homogeneous. The results of fitting 
a set of possible models are presented in Table 5.4.20. 

As usual, the model of mutual independence is tested first. Clearly it does 
not fit the data. Note that the addition of a term expressing the interaction of 
illness and city, Ie, reduces the value of G 2 by 670.88 with 2 degrees of 
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Table 5.4.19. Blood Group, by Illness, by City 

:( 
(5 

City 

London 

Manchester 

Newcastle 

Total 

2 

1.8 

1.6 

-;: 1.4 
-0 
-0 o 

I.2 

0.8 ....L...---

Illness 

Blood Group Ulcer Control 

0 911 4578 
A 579 4219 

Total 1490 8797 

0 361 4532 
A 246 3775 

Total 607 8307 

0 396 6598 
A 219 5261 

Total 615 11859 

Ulcer Control 

Condition 

Figure 5.8 

Total 

5489 
4798 

10287 

4893 
4021 

8914 

6994 
5480 

12474 

31675 

Legend 

~ London 

• Manchester 

ewcastle 

freedom. This is apparently the strongest effect, i.e. makes the biggest differ­
ence, among the single pairwise interaction models. So the process arrives at 
model 3. From there, the next largest effect seems to be the addition of a term 
for the interaction of blood group and illness, IB (model 5). Including this 
term produces a reduction in G 2 of 53.45 with 1 degree of freedom. Finally 
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Table 5.4.20. Summary of 
Models Fitted to the Blood 
Group, Illness, and City Data 

Model 

1. I,B,C 
2.I,BC 
3. B,IC 
4. C,IB 
5. IB,IC 
6. IC,BC 
7. BC,IB 
8. IB,IC,BC 

df 

7 
5 
5 
6 
4 
3 
4 
2 

754.45 
737.76 
83.57 

700.99 
30.12 
66.90 

684.28 
2.97 

B: blood group, I: illness, C: city. 

Table 5.4.21. Expected Values Produced by the 
Model Using All Pairwise Interactions for the 
Blood Group, Illness, and City Data 

Illness 

City Blood Group Ulcer Control 

London 0 898.3 4590.7 
A 591.7 4206.3 

Manchester 0 378.5 4514.5 
A 228.5 3792.5 

Newcastle 0 391.2 6602.8 
A 223.8 5256.2 

157 

this inclusion of the last of the pairwise terms reduces G 2 by 27.15 with 2 
degrees of freedom and produces an adequate model of the data (model 8). 
Note that the model which includes only pairwise interations is much simpler 
than that which requires the simultaneous interaction of all three variables 
and, so, is a great advance. Also, however, note that each term would probably 
be of interest separately to different kinds of investigators. For example, a 
study of genetic drift would likely focus on the BC term (Why are there 
differences among cities for the blood group type?), an epidemiologist might 
attend the IC term (Why is the frequency of illness different among cities?), 
and an evolutionist would be attracted by the IB term (Why is the frequency 
of illness different for the blood group types?). 

The expected values produced by model 8 are presented in Table 5.4.21. 
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5.4.2. The 2 x 2 x 2 x 2 Table: Sickle-Cell Trait, Age, Sex, 
and City 

In this section we consider an extension of the previous results to a 4-way 
table. (In principle, higher dimensions can be analyzed, but as a practical 
matter a 5-way table is about the useful limit.) In order to motivate this, we 
shall consider some data on sickle-cell trait in the U.S. 

One of the things that has received the attention of evolutionary theorists 
for some time is what happens to a particular allele when the selective pressure 
maintaining it is removed. An example is the sickle-cell trait. This trait, as you 
know, is highly deleterious in the homozygous state, and so under ordinary 
circumstances one would expect it to be eliminated rather quickly. However, 
in West Africa and other places, the frequency of the trait is maintained in 
rather high frequencies through its role in protecting against malaria. When 
African populations are removed to the New World they enter an area where 
malaria, while present in the southeastern United States, is certainly not a 
major health hazard. Effectively then one may consider this to be a popula­
tion for which the selective pressure for high frequencies of sickle-cell trait has 
been removed. Until very recently, recognizing that the trait is deleterious in a 
double dose, most evolutionary theorists were of the opinion that a population 
snapshot at any given point in time would exhibit a declining frequency with 
age. The expectation clearly has been that natural mortality will tend selec­
tively to eliminate trait carriers from the population. 

In the 1970s a large number of sickle-cell screening clinics were operated 
throughout the United States. The purpose was to locate individuals who had 
a copy of the trait in order to advise them of this fact. There was also concern 
by public health officials that these individuals might be at somewhat greater 

Table 5.4.22. Genotype Frequency by Age, Sex, 
and City 

Age 

Sex Genotype City 01-20 GT20 

Normal Tampa 4026 821 

Male New York 7003 1210 

Sickler Tampa 427 95 
New York 522 108 

Normal Tampa 5083 2235 

Female New York 8050 2204 

Sickler Tampa 507 268 
New York 561 180 
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Table 5.4.23. Genotype by Age 
Marginals for Sickle-Cell Frequency 

Genotype 

Age 

01-20 
GT20 

Normal 

24162 
6470 

G 2 = 15.2, df = 1. 

Sickler 

2017 
651 

P(S) 

0.077 
0.101 

risk for a variety of potential problems. Two large screening clinics were op­
erated in Tampa, Florida, and New York City. 

In Table 5.4.22 are the frequencies of carriers of the trait and normals 
displayed by age, sex, and location. The odds for sickle-cell by age are pre­
sented in Figure 5.9. The evolutionary hypothesis of interest is that the trait 
frequency should be lower in the older age group than it is in the younger age 
group. In Table 5.4.23 are the frequencies of the genotypes by age. The value 
of G 2 for this table is 15.2 with one degree of freedom which is a significant 
value. Also note that the probability of the sickler genotype among the young 
is 0.077, while among the older age group it is 0.101. So age and genotype are 
clearly not independent, but the direction of the difference in frequencies 
between the two age groups is not that which was predicted. 
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Table 5.4.24. Genotypes by Sex 

a. Genotype by sex marginals 
Genotype 

Sex Normal Sickler 

Male 
Female 

G 2 = 0.29, df = 1. 

13060 
17572 

1152 
1516 

b. Age by genotype given sex marginals 
Genotype 

Male 

Age 

01-20 
GT20 

G 2 = 3.3, df = 1. 

Female 01-20 
GT20 

G 2 = 13.1, df = 1. 

Normal 

11029 
2031 

13133 
4439 

Sickler 

949 
203 

1068 
448 

P(S) 

0.081 
0.079 

P(S) 

0.079 
0.091 

0.075 
0.092 

In Table 5.4.24a are the genotype by sex marginals. Note that the value of 
G 2 for this table is non-significant. This is reflected in the relative frequencies 
of the trait carriers for male and female which are almost identical. In part b 
of this table are the age by genotype marginals for each sex. Note that for 
males the G 2 = 3.3, is smaller than the critical value of 3.84, with one degree 
of freedom. Consequently we would assert that there is no difference in 
frequency by age for males. In the second part are the results for females. 
G 2 = 13.1 is significant so we are confident of significant age differences 
among females. Note that the direction of the difference is opposite that 
predicted. 

In Table 5.4.25a are the genotype by city marginals. There is a clear dif­
ference between Tampa and New York in the overall frequency of the trait. 
In part b of that table is displayed the genotype by age marginals for each 
city. Note that while the age effect is significant in both locations, most of the 
difference between cities is in the overall relative frequency, and very little in 
the age effect. Still, however, the direction of the difference is opposite that 
predicted. 

Refer back to Table 5.4.24. There we observed that overall there is no 
difference between male and female with regard to the relative frequency of 
the trait. However, when this result was elaborated in part b of that table by 
discriminating between age categories it was observed that there is no signifi­
cant difference between the age categories for males but a highly significant 



5.4. Tests of Hypotheses in Three or More Dimensions 

Table 5.4.25. Genotypes by City 

a. Genotype by city marginals 
Genotype 

City 

Tampa 
New York 

G 2 = 79.5, df = 1. 

Normal 

12165 
18467 

Sickler 

1297 
1371 

b. Genotype by age given city marginals 
Genotype 

P(S) 

0.096 
0.069 

Age Normal Sickler P(S) 

Tampa 

G 2 = 5.0, df = 1. 

New York 

G 2 = 5.2, df = 1. 

01-20 
GT20 

01-20 
GT20 

9109 
3056 

15053 
3414 

934 
363 

1083 
288 

0.093 
0.106 

0.067 
0.078 
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difference between age categories for females. This is primarily the result of 
there being a larger deficit of trait carriers among young females than is true 
for males, associated with there being correspondingly greater excess of older 
trait carriers among females than among males. 

By now it is clear that there is a large number of sampling artifacts present 
in these data. Recall that any effect other than that related to the relationship 
between age and genotype is considered to be noise. Specifically this means 
that any difference in relative frequencies for the age categories by sex, any 
difference in the age categories for cities, any difference in the relative fre­
quencies for the sexes by the cities or any combination of these should be 
removed from the data in so far as it is possible. This is accomplished by "fixing 
the marginals." When marginals are fixed this is equivalent to declaring a 
variable to be an independent, or explanatory, variable. In the case at hand 
the variable is a complex one, that is, it actually involves three observational 
variables (age, sex, city). So we must remove the effect of the interactions 
between these three observational variables. This is accomplished by fixing 
that set of three-way marginals. Then the variablility which remains, residual 
variability, in the relative frequencies of trait carriers for the age categories is 
that which is of interest. Notice that this process of the removal of variability 
is not restricted to the three-way marginals for age, sex, and city. We should 
remove all sources of variability which in some sense contaminate the relation­
ship of concern. In Table 5.4.26 are presented some tests of significance on 
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Table 5.4.26. Goodness of Fit Tests for Some Models for the 
Effect of Age, Sex, and City on Genotype 

0 2 df 
Model 0 2 P df Difference Difference 

1. ASC,G 92.2 0.0 7 
2. ASC,GC 12.6 0.04 6 79.6 
3. ASC, GC, GA 2.5 0.78 5 10.1 

A: age, S: sex, C: city, G: genotype. 

residual variability after the three-way interaction for age, sex, and city has 
been removed. Model # 2 there tests for the significance of the difference 
between relative frequencies for the genotypes between the cities after some 
of the noise has been removed. Notice that G 2 = 12.6 for model # 2 is 
significant and so we are confident that this model is not adequate. We may 
therefore conclude that the interaction between genotype frequencies and 
cities is also noise. In model # 3 the two-way interaction for genotype by age 
has been added to model #2. Note that G 2 = 2.5 is insignificant with 5 
degrees of freedom. This indicates that model # 3 fits the data adequately. We 
confidently conclude then that there is an age by genotype interaction in the 
residual variability after the noise has been removed. Observing the results 
that were obtained earlier we are also confident that the direction of this effect 
is the opposite of that which is predicted by the theory with which we began. 
And in fact an examination of the parameters of the model confirms this 
observation. 

It may have occurred to you that the proper models for comparison are: 
(1) ASC, GC, GS, and (2) ASC, GC, GS,GA. In this case the difference in com­
plexity which results by including the interaction term with sex is relatively 
minor when compared to the accepted model. As a general rule we seek the 
simplest possible model which provides an adequate test of the hypothesis. 
The model which has been accepted is simpler than that which includes an in­
teraction term GS and is, therefore, preferred. The process of selecting 11 model 
to fit the data is at least partially artful. There are no firm rules which can be 
presented which assure a proper decision. Guidelines such as "simplicity" and 
"adequacy" are necessarily invoked. 

Interpreting this result--a positive relationship between age and genotype 
frequency-is straightforward. The only evolutionary force which could pro­
duce this observation is differential fertility. Parents with normal hemoglobin 
produce more offspring than do those with the sickle-cell trait. This fertility 
differential is greater than the mortality differential so the slope ofthe response 
frequency curve is positive. 

We shall drop the matter here, and leave the intriguing questions related 
to sex differences for another time. It appears to be the case that the difference 
between the rate of production of male trait carriers is not greater than male 
mortality. 
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5.5. Special Topics 

5.5.1. Test of a Markovian Hypothesis 

The initial question needing attention is whether the transition probabilities 
are changing through time. All the machinery of Section 4.3.2 assumes that 
the matrix of transition probabilities contains only constants. In order that 
this determination be made, the matrix of probabilities must be estimated at 
(at least) two points in time. This may be considered as a problem in 3-
dimensions, the first two describe the matrix, and so are equal, and the third 
is time. The log-linear model corresponding to the question of constant 
probabilities is 

u + U l(j) + U 2(j) + U 3(k) + U 12(ij) + U 13(ik) 

(Bishop, Fienberg, and Holland, 1977,265). The term U 13(ik) must not be zero 
because the rows of each matrix in the series must sum to 1.0. No such 
constraint exists for the columns of the matrices, so U23(jk) = O. Of course, 
U 123(ijk) = O. If this model fits, the observations are not incompatible with the 
hypothesis of a stationary Markov chain. 

5.5.2. Test of a Causal Hypothesis 

These concepts will be illustrated with reference to the blood group, illness, 
and city data of Section 5.4.1.2. Recall that caustion can never be observed 
directly. It is possible, however, to make observations which will allow the 
rejection of a theoretical hypothesis which is obtained by assuming a parti­
cular causal relationship among the variables. The basic tool for describing 
causal assumptions is the path diagram. By definition, the causal relationship 
is asymetrical. If A causes B, then it cannot be the case that B causes A si­
multaneously. (Note that the special, though very common, case of feedback 
is characterized by a sequence of reversals of the direction of the effect.) It 
is only necessary that the connectedness be specified between any two vari­
ables in order that a complete set of path diagrams be constructed. The set 
of connections among three variables is in Figure 5.10. When a diagram of 
connectedness is augmented with directional indicators, it is called a path 
diagram. Let us list all the path diagrams in each of the groups above. In the 
first the constraint is that all pairs are present. Specifically we may write 

1.1 AB,BC,CA 
1.2 AB,BC,AC 
1.3 AB,CB,CA 
1.4 AB,CB,AC 
1.5 BA,BC,CA 
1.6 BA,BC,AC 
1.7 BA,CB,CA 
1.8 BA,CB,AC 
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1. All pairs of variables connected 
A 

I "'-B 
C/ 

5. Topics in Hypothesis Testing 

2. Two of three pairs of variables connected 

A A A~ 

I~B I/B /B 
C C C 

3. One of thtee pairs of variables connected 

A A~ A 

I B B /B 
C C C 

4. No connections 
A 

B 

c 

Figure 5.10 

where the sequence indicates the direction of the effect that is, "AB" means "A 
causes B." In the second group the constraint is that only two pairs are present, 

2.1.1 AC,AB 
2.1.2 AC,BA 
2.1.3 CA,AB 
2.1.4 CA,BA 
2.2.1 AC,BC 
2.2.2 AC,CB 
2.2.3 CA,BC 
2.2.4 CA,CB 
2.3.1 AB,BC 
2.3.2 AB,CB 
2.3.3 BA,BC 
2.3.4 BA,CB 

In row three the constraint is that only one pair is present: 

3.1.1 AC 
3.1.2 CA 
3.2.1 AB 
3.2.2 BA 
3.3.1 BC 
3.3.2 CB 

And in row four there are no pairs. 



5.5. Special Topics 165 

Note that there are 27 path diagrams for the possible relationships among 
three variables. The hypotheses which are testable with a log-linear model are 
of the form: "the correct path diagram is one of group {1, 2,3,4 }." All models 
within a group are statistically equivalent. Unless the theory is quite specific 
about the causal relations among variables it is not particularly meaningful 
to determine the most likely group for the model. 

Fienberg (ibid., 91ff) shows that the following log-linear models are asso­
ciated with each group of path diagrams: 

Group 

1 
2.1 
2.2 
2.3 
3.1 
3.2 
3.3 
4 

Log-linear model 

UABC = 0 
UBC = UABC = 0 
UAB = UABC = 0 
UAC = UABC = 0 
UAB = UBC = UABC = 0 
UAC = UBC = UABC = 0 
UAC = UAB = UABC = 0 
UAB = UBC = UCA = UABC 

=0 

For example, consider the blood group, disease, and city model of Section 
5.4.1.2. Recall that a model of group 1 was accepted there, i.e. 

UIBC = 0 

where I: illness, B: blood group, C: city. There is no ambiguity about causal 
direction for these data. The term UIB is interpreted as "[blood group] causes 
[condition]." The reverse, fortunately, is nonsense. Also the term U1C is inter­
preted as "[city] causes [condition];" and the term UBC is "[city] causes [blood 
group]." To reverse any of these pairwise relations creates gibberish. Recog­
nizing that, however, does not solve the problems. In fact, none of the terms 
is meaningful without prior theoretical justification. For example, the term 
"[blood group] causes [conditions]" seems to require a medical explanation, 
the term "[city] causes [condition]" needs an epidemiological explanation, 
and "[city] causes [blood group]" needs an explanation from evolutionary 
biology. 

It is essential to realize that the matter of causation is not amenable to a 
statistical resolution. A theory which asserts a causal connection may only be 
supported or rejected. 



CHAPTER 6 

Summary and Conclusions 

This entire effort should be treated as an analog of the sketch of a building 
on the back of an envelope. The intended construction is anthropology. There 
is only the suggestion of materials-that comes much later. Even the overall 
outline of the edifice is little more than a few shaky scratches-hinting at the 
thing to come. Many more versions will be proposed before delivering the 
concept to the draftsmen. Anthropologists have spent a great deal of time 
discussing the bricks with no clear idea of what is on order. This is the way 
termites work. Eventually termites do produce vast and wonderful mounds, 
but the human brain can improve on this procedure. Hnot, we should all wear 
masks when accepting a paycheck. A comprehensive theory with deductive 
power is required to give focus and direction to technical effort. No termite 
has ever designed a mound. It is still uncertain whether any human has ever 
designed a theory of anthropology. So the discipline is being built willy-nilly 
with neither long-term objectives nor day-do-day directives. 

An exercise that has produced great consternation among many of my 
students is to find some examples in the literature of each of the four argument 
structures presented in Chapter 2. Attending structure only and ignoring, 
largely, the general failure to deduce hypotheses, logically valid arguments are 
distressingly rare. It is quixotic to search for examples of valid arguments 
which satisfy both conditions of a good test. There are occasional claims, with 
associated empirical justification, that, a sequence of observations is adequately 
described by a model of some type or another. In order that these efforts rise 
above the descriptive level two additional steps are necessary: (1) it must be 
shown that if a model of this type is appropriate the observations would result, 
and (2) no other type of model could produce them. These steps require an 
understanding of dynamics at a level foreign to most anthropologists. They 
are, nonetheless, essential to the development of a mature science. 
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Statistical tests of true hypotheses-not guesses, or hunches, or such ilk­
are an essential ingredient of the enterprise. This is especially true for a nas­
cent science such as anthropology. At best, at this stage of development of our 
discipline, all models can be only approximate. Statistical tests are the only 
way to decide if a specific, approximate, model has potential explanatory 
power or not. Usually, the decision is negative. One of the chronic failures of 
anthropology becomes evident when the decision is tentatively positive. There 
is no sequel, no follow-up. The model is not investigated to exhaust all its 
potential. It is not refined and made more precise. Partial success kills anthro­
pological theory. This is an incomprehensible state of affairs. It is tempting to 
blame professional, career, concerns and entrenched professional arbiters. A 
small success is a fragile thing and few of us are ready to go to the wall with 
only that for defense. And few of us possess the "insanity" of Mendel or Darwin 
or Hamilton. Many disciplines have been resurrected by marginal individuals 
from outside the ranks of the professional elite. There is no reason to think 
that anthropology is any different from, say, pre-Darwinian biology. 

Historically, anthropology in North America has had a strong preference 
for documenting the bewildering variety of solutions to a few human "needs" 
in the interest of showing that one solution is as good as another. This 
effort is as variable as the solutions. Many have observed that the writing of 
ethnography is the anthropologist's TAT test. This idiosyncratic fascination 
with data has produced a body of scientifically useless, though engrossing, 
literature. A change in orientation is overdue. 

When it occurs, it will have the components outlined here. Valid argument 
structure will be fundamental without the baroque lapses into sophistry. Most 
attention will be directed to the model of the theory. Through rigorous argu­
ment, then, a hypothesis will be shown to be a deductive consequence of the 
theory. Finally, the hypothesis will be tested statistically. My confidence stems 
from the simple recognition that these are the components of a mature science. 



ApPENDIX A 

Matrix Manipulation 

A matrix is a rectangular array of numbers. The dimensions of a matrix are 
r x c where r is the number of rows and c the number of columns. Matrices 
will be identified by uppercase boldface, e.g. 

A = r::: :;; ::: :::] 
arI arc 

Two matrices are equal when all their elements are equal. 
Matrix addition is defined only for matrices of the same dimensions, e.g. 

Q=A+B 

[au 
= a2I 

a3I 

a 12 

a22 
a32 

a 12 + bI2 a I3 + b13 a I4 + b14] 
a22 + b22 a23 + b23 a24 + b24 . 

a32 + b32 a33 + b33 a34 + b34 

When one of the dimensions of a matrix is 1 it is called a vector; e.g. 

[all] a2I 
a= . , 

arI 
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a is (r x I), an r element column vector; and b is (1 x c), a c element row 
vector. Vectors will be identified by lowercase boldface. 

Any matrix may be multiplied by a scalar, a (1 x I) matrix, e.g. 

lcall ca12 ... calcJ 
ca2l ca22 . . . ca20 

c·A= . . 

Carl Car2 care 

Two matrices may be multiplied when the "internal dimension" is the same, 
e.g. if A is (r x c) and B is (c x d) the product A· B is defined but the product 
B· A is not unless r = d. The product matrix has dimensions (r x d). Order of 
multiplication is relevant, which distinguishes matrix multiplication from the 
multiplication of numbers. Matrix multiplication is defined by the following 

For example 

then 

Q = A . B = [2a + b + 3c 2d + e + 3fJ. 
b+2c e+2f 

Notice that the product B· A is also defined 

[
2a a + d 

S = B· A = 2b b + e 
2c c + f 

Note that A·B #- B·A. 

3a + 2d] 
3b + 2e . 

3c + 2f 

The following is a modification of an example given by Emlen (1984). 
Suppose a population with 4 age classes, say 0-15, 15-30, 30-45, 45 + for 
example. There are n l (t) in age class 1 at time t, n2(t} in class 2, n3(t} in class 
3 and n4 (t} in class 4. Then at time t the population is described by the vector 
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Suppose the probability of surviving class 1 and entering class 2 at time t + 1 
is PI' of surviving class 2 and entering class 3 at time t + 1 is P2' of surviving 
class 3 is P3' The probability of surviving class 4 is 0. Then 

n2(t + 1) = P1nl(t) 

n3(t + 1) = P2n2(t) 

n4 (t + 1) = P3n3(t). 

The number of offspring still alive after 1 time unit born to mothers in all age 
classes is (0, b2, b3, b4 ). These offspring constitute the first age class so that 

These results may be displayed as the matrix equation 

It is instructive to perform the indicated multiplication. 

If the matrix of coefficients is denoted A and the population vector 0 then we 
may write 

o(t + 1) = Ao(t) 

which is a very useful economy of notation as the number of age categories 
increase. 

From the foregoing it is evident that the multiplication of square matrices 
has many, but not all, of the properties of ordinary multiplication. For ex­
ample, for all real numbers 

a(1/a) = 1 

but the analog of the reciprocal, called the matrix inverse, does not always 
exist. For a matrix A we seek a matrix A-I such that 

AA- 1 = A- 1A = I 

where I is the identity matrix, 
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I ~r! 
0 0 

J 1 0 

0 0 

Note that only square matrices have an inverse. 
Here is presented one of several methods of finding A-I, called the method 

of cofactors. Consider the (3 x 3) matrix 

Each element in A has a minor defined as 

Element Minor 

a 1 b2 c3 - b3 c2 

a 2 b1 C3 - b3 c1 

a 3 b1 c2 -b2 c1 

b1 a 2c3 - a3 c2 

b2 a 1 c3 - a 3 c1 

b3 a 1c2 - a 2 c l 

C 1 a 2 b3 - a 3 b2 

C2 a 1 b3 - a 3 c1 

C3 a 1 b2 - a 2 b1 

When the minor is signed it is called a cofactor. The sign is determined as 
follows. Label the rows from top to bottom (1,2,3), and label the columns 
similarly from left to right. Find the sum of the row and column label of the 
element. If the sum is even, the sign of the cofactor is +; if the sum is odd 
the sign is -. 

Element Row Column Sign 

a 1 + 
a2 2 
a 3 3 + 
b1 1 2 
b2 2 2 + 
b3 3 2 
c 1 1 3 + 
c 2 2 3 
C3 3 3 + 
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The cofactor of the element is identified with a capital letter 

Element Cofactor 

A1 = +(bZ c3 - b3 cz) 
Az = -(b1 C3 - b3 c1 ) 

A3 = +(b1 Cz - b2 cd 
B1 = -(aZc3 - a3 cz) 
B2 = +(a1 c3- a3 cd 
B3 = -(a1 C1 - a1cd 
C1 = +(a1b3 - a3 b1) 
Cz = -(a1 b3 - a3 c1) 

C3 = +(a1 bl - a2 bd 

A property of the matrix called the determinant is defined as 

detA = a l A1 + a2 A2 + a3 A3 • 

As you will see below, if det A = 0, then A has no inverse. 
It can be easily shown that 

if det A #- O. For example let 

+l 
The matrix of cofactors is 

then 

which will be zero when 

Then 
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1 - q101 qz qZ0 1 

1 - q10l - qzOz 1 - '11 01 - 'h 01 1 - qi 0 1 - qz O2 

A- 1 = Oz 1 0 1 

1 - q101 - q2 O2 1 - q101 - q2 O2 1 - q1 0 1 - qz O2 

q1 0 2 q1 1 - qzOz 
1 - q101 - q2 O2 1 - q101 - q2 O2 1 - q101 - q2 O2 

Let us confirm that this is the inverse. If so then AA -1 = I, so we may list 
the elements of the product. Those elements on the diagonal must be 1, and 
all others O. 

1 - q101 - q20Z 
o 

q2 0 1 = 0 
1- Q101 - Q202 

°1(Q1 0 2) = 0 
1 - Q101 - Q202 

Q1 0 1 = 1 
1 - Q101 - Q202 

-02(Q2 0 d 0 1 -01(1 - Q2 0 Z) 0 
~= + + = 

1 - Q101 - Q2 O2 1 - Q101 - Q2 O2 1 - Q1 0 1 - Q2 O2 

ql 0 2 ql 0 2 
131 = - + = 0 

1 - q101 - q202 1- q101 - Q202 

-Q1 Q1 0 
~=- + = 

1 - Q101 - Q20Z 1 - Q1 0 1 - Q20Z 

133 = - Q1 0 1 + 1 - Q2 O2 = 1. 
l-Q1 0 1-Q20 2 1-Q1 0 1-Q2 0 2 

This demonstrates that A -1 is actually the inverse of A. 
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Conversion of the Base of Logarithms 

Recall that a logarithm is an exponent. For base a, loga(x) is the power to 
which a must be raised to produce x. That is, ifloga(x) = y then aY = x-when 
a is raised to the power y, the result is x. Two common bases are 10 and 
e '" 2.7183. Modern hand calculators will return the loglo usually with a key 
labelled "log" and the log. with a key ''In.'' They do not commonly produce 
log2' the conversion from one base to base 2 is often required. Fortunately it 
is simple. 

log2(x) = IOglO(X)/lOglO(2) = loglo(x)j0.301O 

log2(x) = log.(x)/log.(2) = log.(x)/0.6931. 
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Bayes~ Theorem 

In discussions of conditional probability it has become conventional to label 
the conditioning event as the hypothesis. Assume for example that there are 
two possible mutually exclusive hypotheses for an event. Bayes' theorem is a 
mathematically rigorous technique for obtaining the conditional probability 
of the hypothesis given the data. It is a straightforward exercise. Let A denote 
the event, HI and H2 are two hypotheses. Then consider 

P(AIH I) = peA and HI)/P(Hd 

P(AIH2) = peA and H2)/P(H2) 

and we are interested in an expression of the sort P(HIIA). Notice that this 
would be written as 

P(HIIA) = peA and HI)/P(A). 

The conjunction of the events A and HI can be obtained from 

peA and Hd = P(Hd· P(AIHl). 

The unconditional probability of the event A may be obtained by 

peA) = peA and HI) + peA and H2)· 

Now the desired result is given by 

Lest you be tempted to see in this formulation a mechanical salvation for 
science, consider that if you conclude for example that HI is true-because 
P(H 11 A) is large-then you ha ve committed the logical fallacy called affirming 
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the consequent. Also note that this argument depends on the existence of a 
set of prior probabilities for the hypotheses. 

Plato used this kind of argument to prove the existence of Atlantis, and 
philosophers used it to prove the absurdity of Newtonian mechanics. 

Clearly the theorem can be extended to any number of hypotheses, the 
only conditions being that they be mutually exclusive and exhaustive. The 
technique is useful for guidance only. Except in special cases, it should not be 
considered as a scientific tool, particularly since the prior probability dis­
tribution of the set of hypotheses is required. Typically this is the subject of 
scientific investigation. 



ApPENDIX D 

Table of Chi~Square Distribution, 5% 
Points 

Df Chi-square Df Chi-square 

1 3.84 19 30.1 
2 5.99 20 31.4 
3 7.81 21 32.7 
4 9.49 22 33.9 
5 11.1 23 35.2 
6 12.6 24 36.4 
7 14.1 25 37.7 
8 15.5 26 38.9 
9 16.9 27 40.1 

10 18.3 28 41.3 
11 19.7 29 42.6 
12 21.0 30 43.8 
13 22.4 40 55.8 
14 23.7 50 67.5 
15 25.0 60 79.1 
16 26.3 70 90.5 
17 27.6 80 101.9 
18 28.9 90 113.2 



ApPENDIX E 

The Choice of Computing Software 
for Log Linear Models 

Currently there exists a wide variety of computer programs and packages 
for analyzing counted data. By far the most commonly used will be the "log 
linear" capability of the recent issue of the SPSS-X language, and P4F of the 
BMDP series. Other than availability there is little to choose between these 
two offerings. Both are very fast and flexible. Since each BMDP program is 
independent of the others, a smaller computing system is sufficient for this 
particular series than is true for the larger SPSS-X language. In fact a special 
microcomputer has recently been advertised specifically for handling the 
BMDP programs. A version of SPSS, which I have not used, is available for 
the IBM-PC compatibles. I have also not used SYSTAT, available for the PC, 
or GUM each of which will perform all the statistical analyses presented 
here (Fienberg, 1986). 
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structural, 135 

Zero-sum games, 96-98 (see also Game 
theory) 



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Gray Gamma 2.2)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Off

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Perceptual

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /sRGB

  /DoThumbnails true

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions false

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams true

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /Warning

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 150

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /Warning

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 150

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /Warning

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 600

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /PDFA1B:2005

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<





    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>





    /HRV <>

    /HUN <>

    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

    /NOR <>

    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

    /PTB <>





    /SKY <>



    /SUO <>

    /SVE <>

    /TUR <>



    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

  >>

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [595.276 841.890]

>> setpagedevice





