Brad Dayley

ESSENTIAL CODE AND COMMANDS

JQuery and
JavaScript

PHRASEBOOK

A PF N "
.] —

£
Ny /
) _i= b

jQuery and
JavaScript

PHRASEBOOK

This page intentionally left blank

jQuery and
JavaScript

PHRASEBOOK

Brad Dayley

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto -« Montreal - London + Munich - Paris - Madrid
Cape Town - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been print-
ed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013950281

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-91896-3

ISBN-10: 0-321-91896-7

First printing: December 2013

Acquisitions Editor Copy Editor Proofreader Cover Designer
Mark Taber Karen Gill Kathy Ruiz Chuti Prasertsith
Managing Editor Indexer Technical Senior Compositor
Kristy Hart Publishing Reviewer Gloria Schurick

: ; Services, Phil Ballard
Project Editor WordWise,

Editorial Assistant
Vanessa Evans

Katie Matejka Larry Sweazy

Dedication

For D!
A&F

Contents

1 Jumping into jQuery, JavaScript, and the

World of Dynamic Web Development 1
Understanding JavaScript 2
Introducing jQuery 4
Introducing jQuery Ul 7
Introducing jQuery Mobile 9
Configuring Browser Development Tools 12

2 Using the JavaScript Language 15
JavaScript Syntax 15
Defining and Accessing Data 16
Defining Functions 20
Manipulating Strings 21
Manipulating Arrays 25
Applying Logic 29
Math Operations 31
Working with Dates 36

3 Interacting with the Browser 43
Writing to the JavaScript Console 43
Reloading the Web Page 44
Redirecting the Web Page 44
Getting the Screen Size 45
Getting Current Location Details 45
Accessing the Browser 47
Using the Browser History to Go Forward and

Backward Pages 49
Creating Popup Windows 50
Manipulating Cookies 52

Adding Timers 55

Contents

4 Accessing HTML Elements
Finding HTML Elements in JavaScript

Using the jQuery Selector to Find HTML
Elements

Chaining jQuery Object Operations
Navigating jQuery Objects to Select Elements

5 Manipulating the jQuery Object Set

Getting DOM Objects from a jQuery
Object Set

Converting DOM Objects into jQuery Objects

Iterating Through the jQuery Object Set
Using .each()

Using .mapQ
Assigning Data Values to Objects

Adding DOM Elements to the jQuery
Object Set

Removing Objects from the jQuery
Object Set

Filtering the jQuery Object Results

6 Capturing and Using Browser and
User Events

Understanding Events
Adding Event Handlers
Controlling Events

Using Event Objects
Handling Mouse Events
Handling Keyboard Events
Form Events

7 Manipulating Web Page Elements
Dynamically
Getting and Setting DOM Element Attributes
and Properties

59
59

61
75
76

83

84
84

85
87
89

91

91
92

95
96
99
107
111
115
118
122

125

126

Vil

viii

Contents

Getting and Setting CSS Properties
Getting and Manipulating Element Content

8 Manipulating Web Page Layout Dynamically

Hiding and Showing Elements
Adjusting Opacity

Resizing Elements
Repositioning Elements
Stacking Elements

9 Dynamically Working with Form Elements

Getting and Setting Text Input Values
Checking and Changing Check Box State

Getting and Setting the Selected Option
in a Radio Group

Getting and Setting Select Values

Getting and Setting Hidden Form Attributes
Disabling Form Elements

Showing/Hiding Form Elements

Forcing Focus to and Away from
Form Elements

Controlling Form Submission

10 Building Web Page Content Dynamically

Creating HTML Elements Using jQuery
Adding Elements to the Other Elements
Removing Elements from the Page
Dynamically Creating a Select Form Element
Appending Rows to a Table

Inserting Items into a List

Creating a Dynamic Image Gallery

Adding HTML5 Canvas Graphics

130
139

143
143
146
149
152
156

159
160
161

162
164
166
167
170

172
175

177
178
179
184
186
189
191
193
196

Contents

11 Adding jQuery Ul Elements
Adding the jQuery Ul Library
Implementing an Autocomplete Input
Implementing Drag and Drop
Adding Datepicker Element
Using Sliders to Manipulate Elements
Creating a Menu
Adding Tooltips

12 Animation and Other Special Effects
Understanding jQuery Animation
Animating Visibility
Making an Element Slide Back to Disappear
Animating Show and Hide
Animating Resizing an Image
Animating Moving an Element

13 Using AJAX to Communicate with
Web Servers and Web Services

Understanding AJAX

AJAX from JavaScript

AJAX from jQuery

Handling jQuery AJAX Responses
Using Advanced jQuery AJAX

14 Implementing Mobile Web Sites with
jQuery
Getting Started with jQuery Mobile
Building Mobile Pages

Implementing Mobile Sites with Multiple
Pages

Creating a Navbar
Applying a Grid Layout
Implementing Listviews

201
201
203
205
212
215
219
223

227
228
234
238
242
246
248

251
251
261
267
282
285

291
291
302

306
314
316
320

ix

Contents

Using Collapsible Blocks and Sets
Adding Auxiliary Content to Panels
Working with Popups

Building Mobile-Friendly Tables
Creating Mobile Forms

Index

326
327
329
332
334

341

Acknowledgments

I'd like to take this page to thank all those who made
this title possible. First, I thank my wonderful wife and
boys for giving me the inspiration and support I need.
I'd never make it far without you. Thanks to Mark
Taber for getting this title rolling in the right direc-
tion; Karen Gill for turning the ramblings of my techie
mind into coherent text; Phil Ballard for ensuring the
accuracy in the book and keeping me honest; Kathy
Ruiz and Gloria Schurick for making sure the book is
the highest quality; Larry Sweazy for making sure that
the readers can actually find what they look for in the
book; Tammy Graham and Laura Robbins for their
graphical genius; Chuti Prasertsith for the stylish and
sleek cover; and Katherine Matejka for all her hard
work in making sure this book is the best it can be.
You guys are awesome!

About the Author

Brad Dayley is a senior software engineer with 20
years of experience developing enterprise applications.
He has used HTML/CSS, JavaScript, and jQuery
extensively to develop a wide array of web pages rang-
ing from enterprise application interfaces to sophisti-
cated rich Internet applications to smart interfaces for
mobile web services. He is the author of Python
Developer’s Phrasebook and Sams Teach Yourself jQuery and
JavaScript in 24 Hours.

We Want to Hear from You!

As the reader of this book, you are our most important
critic and commentator. We value your opinion and
want to know what we're doing right, what we could
do better, what areas you'd like to see us publish in,
and any other words of wisdom you’re willing to pass
our way.

You can email or write directly to let us know what
you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that we cannot help you with technical problems
related to the topic of this book, and that due to the high vol-
ume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s
title and author as well as your name and contact
information.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our Web site and register this book at
informit.com/register for convenient access to any
updates, downloads, or errata that might be available
for this book.

This page intentionally left blank

1

Jumping into
JQuery, JavaScript,
and the World of
Dynamic Web
Development

JavaScript and its amped-up counterpart jQuery have
completely changed the game when it comes to
creating rich interactive web pages and web-based
applications. JavaScript has long been a critical compo-
nent for creating dynamic web pages. Now, with the
advancements in the jQuery, jQuery Ul and jQuery
Mobile libraries, dynamic web development has
changed forever.

This chapter focuses on providing you with some con-
cepts of dynamic web programming and getting set up
to use JavaScript and jQuery in your web pages.

CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

Understanding JavaScript

JavaScript is a programming language much like any
other. What separates JavaScript from other program-
ming languages is that the browser has a built-in inter-
preter that can parse and execute the language. That
means you can write complex applications running in
the browser that have direct access to the browser, web
page elements, and the web server.

This allows JavaScript code to dynamically add, modi-
fy, or remove elements from a web page without
reloading it. Access to the browser gives you access to
events such as mouse movements and clicks. This is
what enables JavaScript to provide functionality such as
dynamic lists as well as drag and drop. Figure 1.1 shows
an example of downloading a web page from a server
and then using JavaScript code to dynamically popu-
late a <u1> element with <1i> children.

Same file is sent
File on the web server to the browser
| . —_—

populates the list of cities

l JavaScript run in the browser

Figure 1.1 JavaScript runs in the browser and
can change the HTML elements on the web
page without needing to retrieve additional

pages from the web server.

Understanding JavaScript

Adding JavaScript to an HTML
Document

<head>
<script type='"text/javascript'>
alert("JavaScript is Enabled!");

</script>
</head>

You can add JavaScript to an HTML document using
HTML <script> tags. When the browser encounters a
<script> tag, it parses the contents and then executes
the JavaScript inside. Typically, the <script> tags are
added to the <head> element, but you can also add
them to the <body> element.

The web browsers currently default all scripts to
javascript; however, it 1s a good idea to still set the
type to "text/javascript” for future compatibility if
that changes.

Watch out!

The order that <script> tags appear in the HTML docu-
ment determines their load order. If you are loading
multiple scripts, keep in mind that using the same vari-
able and function names in subsequent scripts over-
writes the ones already defined in previous ones.

CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

Loading JavaScript from
External Files

<head>
<script type='"text/javascript"
src="scripts/scriptA.js'></script>

<script type='"text/javascript"
src="scripts/scriptB.js'"></script>
</head>

As you create more and more complex JavaScript web
applications, you will find that adding the JavaScript to
your HTML files doesn’t make much sense. The files
become too big, and you will often want to reuse the
scripts in other web pages.

Instead of including the JavaScript inside the <script>
tag, you can specify a src location for the script to be
loaded from. When the browser encounters a src
attribute in the <script> tag, it downloads the script
from the server and loads it into memory.

Watch out!

The browser downloads the external scripts asynchro-
nously. That means you need to be careful if you refer-
ence one script from another because the second
script may not be downloaded yet.

Introducing jQuery

jQuery is a library that is built on JavaScript. The
underlying code is actually JavaScript; however, jQuery
simplifies a lot of the JavaScript code into simple-to-
use functionality. The two main advantages to using
jQuery are selectors and built-in functions.

Introducing jQuery

Selectors provide quick access to specific elements on
the web page, such as list and tables. Selectors also pro-
vide access to groups of elements, such as all para-
graphs, or all paragraphs of a certain class. This allows
you to quickly and easily access specific Document
Object Model (DOM) elements.

jQuery also provides a rich set of built-in functionality
that makes it easy to do a lot more with a lot less
code. For example, tasks such as hiding an element on
the screen or animating the resize of an element take
just one line of code.

Loading jQuery in Your Web Pages

<head>
<script src="local/jquery-2.0.3.min.js"></script>
.or . . .
<script src=

"http://code.jquery.com/jquery-2.0.3.min.js">
</script>
</head>

The jQuery library is just a .js file.You can load it just
like any other JavaScript file. There are two ways to
add jQuery to your web page.

The easiest method of adding jQuery to web pages is
to use one of the several Content Discovery Network
locations, or CDNs. A CDN allows you to load the
libraries from a network of jQuery hosting servers
spread globally. The benefit of this method is that the
servers are spread globally so the downloads are dis-
tributed to multiple servers. Also, if the user has loaded
another web page with a link to the CDN file, it may
already have the jQuery library cached. The following
are some examples of hosting CDNi:

5

CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

//3Query

<script src=
"http://code.jquery.com/jquery-2.0.3.min.js">

</script>

<script src=
"http://code.jquery.com/jquery-migrate-

wl.1.0.min.js">

</script>

//google

<script src=
"https://ajax.googleapis.com/ajax/1ibs/jquery/

=2.0.3/jquery.min.js">

</script>

//Microsoft

<script src=
"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

=2.0.3.min.js">

</script>

The other option is to download the .js file from
http://jquery.com/download and load it with your
other JavaScript libraries. This has the advantage of
being more closely tied to your site’s content so you
don’t have to worry about possible unavailability issues
or site-blocking issues with the external locations.

Accessing jQuery in Your JavaScript

jQuery ("#myElement)
. or .

é("'#myE'I emer'lt'.')

jQuery is accessed using the jQuery object that is
defined when the library is loaded. jQuery also pro-
vides a shortcut $ character that you can use in the
phrases throughout the book. For example, the follow-
ing two jQuery statements are identical:

http://jquery.com/

Introducing jQuery Ul

jQuery ("#myElement™)
$("#myElement")

Introducing jQuery Ul

jQuery UI is an additional library built on top of
jQuery. The purpose of jQuery Ul is to provide a set
of extensible interactions, effects, widgets, and themes
that make it easier to incorporate professional Ul
elements in your web pages.

jQuery UI is made up of two parts: JavaScript and
Cascading Style Sheets (CSS). The JavaScript portion
of jQuery UI extends jQuery to add additional func-
tionality specific to adding UI elements or applying
effects to those elements. The CSS portion of jQuery
UI styles the page elements so that developers don’t
need to style the elements every time.

jQuery UI saves developers time by providing pre-
built UI elements, such as calendars and menus, with
interactions, such as dragging and resizing, right out of
the box.

Getting the jQuery Ul Library

To get started with jQuery U, you need to

download the library and add it to your web pages.
You can download the jQuery library from
http://jqueryui.com/download/ by selecting the
options that you would like to include and clicking on
the Download button at the bottom. This downloads
the jQuery UI files.

7

http://jqueryui.com/download/

CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

When you download the jQuery UI library, you get a
zip file. Inside that file are three main folders that you
need to understand. They are

s js—This is the folder that contains the jQuery Ul
and jQuery libraries files. You need to deploy
these files so you can load them in your web
pages.

= css—This contains the theme-named folders that
house the .css files and an images folder used by
the jQuery UI library. The .css file and images/
folder need to be placed in the same location and
accessible from your web pages.

= development-bundle—This folder contains the full
source for jQuery UL If you are not planning to
modify the jQuery UI code, you can ignore this
folder.

Loading jQuery Ul

<head>
<link rel="stylesheet" type="text/css"
href="1ocal/jquery-ui-1.10.3.css">
<script src="local/jquery-2.0.3.min.js"></script>
<script src="local/jquery-ui-
=]1.10.3.min.js"></script>
. or for CDN.
<1link rel="stylesheet" type="text/css"
href="http://code. jquery.com/ui/1.10.3/themes/
=base/jquery-ui.css'">
<script src=
"http://code.jquery.com/jquery-2.0.3.min.js">
</script>
<script src=
"http://code. jquery.com/ui/1.10.3/jquery-ui.js">
</script>

</head>

Introducing jQuery Mobile

To load jQuery UI, you first need to load the jQuery

library. The jQuery Ul is also a .js file.You can load it
just like any other JavaScript file. Also, just like jQuery,
you can load the script from an external CDN source

or download the library and load it locally.

You also need to load the jQuery Ul .css file using a
<Tink> tag. This can be a local file or an external CDN
location. For example:

<Tlink rel="stylesheet" type="text/css"
href="local/jquery-ui-1.10.3.min.css">
. or for CDN. . .
<link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.10.3/themes/
=base/jquery-ui.css">

Introducing jQuery Mobile

Mobile devices are the fastest growing development
platform. Much of that development is geared toward
making web sites mobile friendly. It is much easier to
implement and maintain a mobile web site than it is to
maintain a mobile application.

jQuery mobile is an additional library built on top

of jQuery. It is designed to streamline many of the
necessary structural, U, and event implementations to
build mobile web sites. jQuery Mobile provides several
advantages with developing mobile solutions, including

= Hiding some of the complexities of resizing page
elements to a wide array of mobile devices.

= Providing simple UI components with mobile
event interactions already built into them.

10 CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development
= Building on JavaScript and jQuery provides a
common and well developed platform that is
based on proven concepts.

= Developing a mobile web apps is simple to do and
does not require any installation of the user’s part.
That is why they are becoming more and more

popular.

Getting the jQuery Mobile Library

To get started with jQuery Mobile, you need to
download the library and add it to your web pages.
You can download the jQuery library from
http://jquerymobile.com/download/. You can also
download jQuery Mobile from
http://jquerymobile.com/download-builder/ by
selecting the version and options that you would like
to include and clicking on the Download button at
the bottom. This downloads a zip file containing the
jQuery Mobile library.

Watch out!

The .css files and the images folder that are included
with the jQuery Mobile library come as a set. You need
to make sure they are installed in the same location
and you don’t mix and match them from different cus-
tom downloads.

When you download the jQuery Mobile library, you
get a zip. Inside the zip file are three main components
that you need to put where your mobile web pages
can load them. They are

http://jquerymobile.com/download/
http://jquerymobile.com/download-builder/

Introducing jQuery Mobile

= js files—There will be a jquery.moble.###.js as
well as a minified version. This is the main library
file, and one of these needs to be placed where
you can add it to your project files in a <script>
tag.

= css files—There will be jquery.mobile.###.css,
jquery.mobile.###.structure.css, and
jquery.mobile.###.theme.css files as well as their
minified forms. This is all the styling code and
should be placed in the same location as the
jquery.moble.###.js file

= images folder—This folder contains the images
and icons used by jQuery Mobile to style the ele-
ments. This should also be placed in the same
location as the jquery.moble.###.js file.

Loading jQuery Mobile

<head>
<link rel="stylesheet"
href="1ocal/jquery.mobile-custom.min.css" />
<script src="local/jquery-2.0.3.min.js"></script>
<script src="local/jquery.mobile-
wcustom.min.js"></script>
. or for CDN .
<link rel="stylesheet" href=
"http://code.jquery.com/mobile/1.4.0/jquery.
wmobile-1.4.0.min.css" />
<script src=
"http://code. jquery.com/jquery-
=1.8.2.min.js"></script>
<script src=
"http://code. jquery.com/mobile/1.4.0/jquery.
wmobile-1.4.0.min.js">
</script>
</head>

11

12

CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

Similar to what you did for jQuery UI, you need to
load jQuery before loading jQuery Mobile. Once
jQuery is loaded, you can load the jQuery Mobile . js
file from an external CDN source or a locally down-
loaded version of the library.

You need to load the jQuery Mobile .css file as well
using a <link> tag. For example, the following code
loads the jQuery library first because it is required by
jQuery Mobile and then loads the jQuery Mobile JS
and CSS files:

<script type="text/javascript"
src="Tlocal/jquery-2.0.3.min.js"></script>

<script type="text/javascript"
src="Tocal/jquery.mobile-custom.min.js"></script>

<link rel="stylesheet"
href="local/jquery.mobile-custom.min.css" />

Configuring Browser
Development Tools

An important aspect of developing JavaScript and
jQuery is using the web development tools incorpo-
rated in web browsers. These tools allow you to see the
script files loaded, set breakpoints, step through code,
and much, much more. It is beyond the scope of this
book to delve too much into the browser tools.
However, I wanted to provide you with the steps to
enable them and encourage you to learn about them if
you have not already done so.

Configuring Browser Development Tools 13

Installing Firebug on Firefox
Use the following steps to enable JavaScript debugging

on Firefox:
1. Open Firefox.
2. Select Tools > Add-Ons from the main menu.
3. Type Firebug in the search box in the top right to

search for Firebug. Then click the Install button to
install it.

Type FireQuery in the search box in the top right
to search for FireQuery. Then click the Install but-
ton to install it. FireQuery extends Firebug to also
support jQuery.

When you reload Firefox, click on the Firebug
button to display the Firebug console.

Enabling Developer Tools in
Internet Explorer

Use the following steps to enable JavaScript debugging
on Internet Explorer:

1.
2.

Open IE.

Click on the Settings button and select Developer
Tools from the drop-down menu. Or you can
press the F12 key.

The Developer console is displayed.

Enabling the JavaScript Console in

Chrome

Use the following steps to enable JavaScript debugging
in Chrome:

14 CHAPTER 1 Jumping into jQuery, JavaScript, and the World
of Dynamic Web Development

1. Open Chrome.

2. Click on the Settings button and select Tools >
Developer Tools from the drop-down menu.
Or you can press Ctrl+Shift+] on PCs or
Cmd+Shift+] on Macs.

3. The JavaScript console is displayed.

Using the
JavaScript
Language

The phrases in this chapter focus on various ins and
outs of the JavaScript language. You need to know
these to be able to fully utilize the full capabilities that
jQuery and JavaScript provide in the HTML stack.

JavaScript Syntax

As a programming language, JavaScript, and conse-
quently jQuery since it is based on JavaScript, requires
a specific syntax. This section gives you a quick primer
on the JavaScript syntax before going into the lan-
guage details.

You should be familiar with the following rules
regarding JavaScript syntax:

= All JavaScript statements end with a semicolon.

= Statements execute in the order they appear in the
script.

16 CHAPTER 2 Using the JavaScript Language

= Blocks of code are defined using {CODE_BLOCK}
brackets.

= Expressions bound in () brackets are evaluated
before they’re applied to the rest of the statement.

= JavaScript is case sensitive.

= To break a code line in the middle of a string, \
must be the last character on the line.

= Strings in JavaScript must be enclosed in either
single ("string') or double ("string") quotes.

= When adding a string to a number, the resulting
value is a string.

= Variables must begin with a letter, $, or _.

Defining and Accessing Data

One of the most important aspects of JavaScript is the
ability to define variables that represent different forms
of data, from individual numbers and strings to com-
plex objects with properties and methods to arrays
containing several items. Once data has been defined,
you can use and reuse it for a variety of purposes. This
section provides phrases that help you create the vari-
ous data structures that you will need to use in
JavaScript.

Defining and Accessing Variables

X = =
z = 10;
results = "X +y + z = " + (x+y+2);

5;

sl "jQuery";
s2 "JavaScript"
s3 sl +" & " + s2;

Defining and Accessing Data

JavaScript makes it easy to define variables. Variables
are assigned using var name = value; syntax. The var
keyword tells JavaScript that this is a new variable
name. Once the variable has been assigned a value, you
can access it using the variable name.You can define
multiple variables on a single line using var namel =
name2 = value; syntax.

‘When you assign a variable to an expression, such as x
+y + z,the expression is evaluated before assigning
the variable a value. The following code snippet shows
you how to define and access different variables.

<script>
var X =y = 5;
var z = 10;

var results = "x + y + z = " + (x+y+2);
var sl = "jQuery";
var s2 = "JavaScript"

var s3 = sl + " & " + s2;

document.write(results);

document.write("
");

document.write(s3);
</script>

ch0201.html

X+y+2z=20
jQuery & JavaScript

Output from ch0201.html

17

18

CHAPTER 2 Using the JavaScript Language

Creating Arrays

X =y =
z 10;
results = "X + y + z = " + (X+y+2);

5;

sl = "jQuery";
s2 "JavaScript"
s3 sl +" & " + s2;

You can create arrays in a few different ways. You can
create them in the definition using [] brackets, such as
var arr=[1,2,3].You can also create a new array object
and add items to it using the push() method.You can
access items in the array using the arr[index] method.
The following code snippet shows an example of cre-
ating an array in each of these ways.

<script>

var weekdays = ["Mon", "Tue", "Wed", "thur",
w"Fri"];

var weekend = new Array(Q);

weekend.push("Sat");

weekend.push("Sun™);

document.write(weekdays.toString() + "
");

document.write(weekend[0] + ", " + weekend[0]);
</script>

ch0202.html

Mon,Tue,Wed, thur, Fri
Sat, Sun

Output from ch0202.html

Defining and Accessing Data 19

Creating Objects

var objl = {name:"Brad", title:"Author", "last-
wname":"Dayley" };
var obj2 = new Object();

obj2.name = "Frodo";
obj2.title = "Hobbit";
obj2["last-name"] = "Baggins";

You can create objects in the definition using
{property:value, ..} syntax,such as

var obj={name:"Brad", title:"Author"};.You can
also create a new object and add properties to it using
standard dot syntax.

The following code snippet shows an example of cre-
ating an array in each of these ways.

<script>
var objl = {name:"Brad", title:"Author", "last-
wname':"Dayley" };
var obj2 = new Object();
obj2.name = "Frodo";
obj2.title = "Hobbit";
obj2["last-name"] = "Baggins";
document.write(objl.name + " "
w+ " " + objl.title + "
");

+ objl["last-name"]

document.write(obj2.name +
-+ " " 4+ obj2.title);
</script>

+ obj2["last-name"]

ch0203.html

Brad Dayley, Author
Frodo Baggins, Hobbit

Output from ch0203.html

CHAPTER 2 Using the JavaScript Language

Defining Functions

function add(a, b){
return a + b;

}
var resultl = add(5, 20);

You need to be familiar with creating and using func-
tions in JavaScript. Functions are defined using the fol-
lowing syntax:

function function_name(arguments){function_block}

You can specify any number of arguments, and because
JavaScript is loosely typed, you can pass in different
object types each time you call the function. To call
the function, simply reference it by name and pass in
the desired arguments enclosed in () brackets. The
code in the function block is then executed.You can
use the return keyword to return a value from the
function call.

The following code snippet shows examples of defin-
ing and calling functions:

<script>
function add(a, b){
return a + b;

}
var resultl = add(5, 20);
var result2 = add("Java", "Script™)

document.write(resultl + "
");
document.write(result2);
</script>

ch0204.html|

Manipulating Strings

25
JavaScript

Output from ch0204.html|

Manipulating Strings

Strings are one of the most important data structures
in JavaScript. Strings represent data that is conveyed to
the user on the web page, whether it is a paragraph
element, the name on a button, a menu label, or a fig-
ure caption. Strings are also used in the background to
define locations, filenames, and a variety of other val-
ues used in web elements.

There are several special characters to define values
that cannot be represented otherwise, such as new lines
and tabs. Table 2.1 lists the special characters in
JavaScript strings.

Table 2.1 String Object Special Character

Character Description

\' Single quote

\" Double quote
\\ Backslash

\n New line

\r Carriage return
\t Tab

\b Backspace

\f Form feed

21

22

CHAPTER 2 Using the JavaScript Language

Getting the Length of a String

var s = "One Ring";
s.length; //returns 8
var s2 = "To Rule\nThem A11";

s2.length; //returns 16 because \n is only 1
wcharacter

String objects have a length attribute that contains the
number of characters in the string. This includes the
number of special characters as well, such as \t and \n.
To get the length of the string, simply use the .Tlength
attribute on the string object.

Finding What Character Is at a
Specific Location in a String

var s = "In The Darkness Bind Them";
s.charAt(7); //returns 'D'

s[7]1; // also returns 'D'

String objects provide the charAt(offset), which
returns the character contained at the offset specified.
Also, strings in JavaScript are basically arrays of charac-
ters, so you can get the character at a specific offset
using stringName[offset]. Keep in mind that the oft-
sets are always zero based, so their first character is at
offset 0.

Converting Numbers to Strings

var n=16;
var a = n.toString(Q; //a = 16

var b = n.toString(16); //b = 10

To convert a number to a string in JavaScript, create a
variable with the numerical value if you don't already

Manipulating Strings

have one and then call .toString(radix) on the num-
ber. The optional radix parameter specifies the base to
use when converting the number. You can specify base
2 up to base 36.

Converting Strings to Numbers

new Number("16"); //returns 16
new Number("0x20"); //returns 32

new Number("32.8"); //returns 32.8

To convert numerical-based strings into a number, cre-
ate a new number object. JavaScript automatically
detects whether the string is a number (even hex
number with 0Ox## formatting) and create a new num-
ber object. If the string is not a valid number format, a
NaN object is returned.

Combining Strings

var strl="jQuery";

var str2=" & ";

var str3="JavaScript";

var str4 = strl.concat(str2, str3); //str5 "jQuery
=& JavaScript"

var str5 = str4 + " Phrasebook"; //str5 = "jQuery
=& JavaScript Phrasebook"

You can combine multiple strings using the
.concat(str, str, .) method. Or you can just use the
str + str + str . . . method.

Changing String Case

var sl = "jQuery and JavaScript";
var s2 = sl.tolLowerCase(); //s2 = "jquery &

=javascript"
var s3 = sl.toUpperCase(); //s3 = "JQUERY &
= JAVASCRIPT"

23

24

CHAPTER 2 Using the JavaScript Language

Strings have built-in functions to change the case. The
.toLowerCase() method returns a lowercase version of
the string. The .toUpperCase() method returns an
uppercase version of the string.

Splicing Strings

"The play's the thing";

sl.splice(4,8); // s2 = "play"

You can carve a string into substrings using
.splice(start, end) by specifying the starting index
and the ending index. The section of the string starting
with the character at the index specified by start and
ending with the character just before end index is
returned. All indexes are zero based.

Splitting Strings

var sl = "on-the-way-to-the/forum";
var arr = sl.split("-"); // arr = ["on", "the",

-"way", "to", "the","forum"];

To split a string into chunks using a specific delimiter,
use the .split(separator [, 1imit]).The separator
defines where to split the string and is not included in
the results. The limit specifies the number of items to
return before stopping. An array of the split portions of
the string is returned.

Checking to See If a String
Contains a Substring

var sl = "I think therefore I am";

var a sl.indexOf("think™); // a=2
var b sl.index0f ("thought"); // b = -1

Manipulating Arrays

The simplest way to check to see if one string is a sub-
string of another is to use .index0f(substring) on the
main string. This function returns an index of the loca-
tion of the first occurrence, or —1 if the substring is
not found.

Finding and Replacing Substrings
Regardless of Case

var sl = "jQuery, sometimes JQuery or JQUERY";

var s2 = sl.replace(/jQuery/gi, "jQuery");
//s2 is now "jQuery, sometimes jQuery or jQuery"

The best way to find and replace substrings while
ignoring case is to use a regular expression in the
.replace() method. If you are not familiar with them,
I'd suggest you at least look into them.They can use
complex formulas for finding matches in strings. For
now, I'll just show you a simple expression.

As an example, to find all instances of the term jQuery
when you may not know the case specified in the
string, you would define the following regular expres-
sion. The g character specifies a global search (meaning
not to stop at the first instance). The 1 character speci-
fies to ignore case.

/3Query/gi

Manipulating Arrays

One of the most useful data structures in JavaScript is
arrays. Arrays are collections of items that can be of
any type.You have already seen how to create and
access the individual items. This section contains
phrases designed to show you how to manipulate the

25

26

CHAPTER 2 Using the JavaScript Language

arrays by combining them, slicing them, searching for
items, and more.

Combining Arrays

var fruits = ["banana", "apple", "orange'];
var veggies = ["broccoli", "carrots", "spinach"];
var grains = ["wheat", "oats"];

var food = grains.concat(fruits, veggies);
//food = ["wheat","oats",'"broccoli","carrots",

=''spinach","banana", "apple", "orange"]

You can combine multiple arrays using the
.concat(arr, arr, .) method.This returns a new array
object with the array elements combined inside.
Splicing Arrays

var week = ["sun", "Mon", "Tue", "Wed", "thur",

-"Fri", "sat"];
var weekdays = week.slice(1,6);

You can carve arrays the same way you can strings by
using the .splice(start, end) method and specifying
the starting index and the ending index. The items in
the array beginning with the start index until the item
just before the end index are returned in a new array
object. All indexes are zero based.

Detecting Whether an Array
Contains an Item

var food = ["broccoli", "carrots", '"spinach"];
0od. index0f (""spinach"); // a=2

var a = f
var b = food.index0f("pizza"); // b = -1

Manipulating Arrays

The simplest way to check whether an item already
exists in an array is to use the .index0f(item). If the
item is found, the index of the first instance is
returned; otherwise, —1 is returned.

Removing Items from the Array

var week = ["sun", "Mon", "Tue", "Wed", "thur",
-"Fri", "sat"];

var weekdays = week.splice(l,5);

var day = week.pop(Q;

// weekdays= ["Mon", "Tue", "Wed", "thur", "Fri"]
// day = "sat"

// week = ["sun", "Mon", "Tue", "Wed", "thur",
-"Fritl;

You can remove the last item in the array using popQ).
If you want to remove items in the middle of the
array, you need to use splice(index, count), where
index is the index to begin removing items from and
count is the number of items to remove.

Creating a Tab-Separated String
from an Array

var weekdays= ["Mon", "Tue", "Wed", "thur", "Fri"]

var weekStr = weekdays.join("\t");
// weekStr = "Mon\tTue\tWed\tthur\tFri"

The .join(separator) method allows you to combine
an array into a string. The optional separator argument
specifies the character or string to place between each
item in the newly created string.

27

28

CHAPTER 2 Using the JavaScript Language

Sorting Arrays

arrl.sort(function(a,b){return a-b;});

arrl.sort(function(a,b){return Math.abs(a)-

=wMath.abs(b);});

arrl.sort(Q);

JavaScript provides a nice interface to sort arrays. The
array object has a sort(function) method. The sortQ
method sorts the elements of the array in alphabetical
order, converting elements to strings if possible, which
is a problem for numerical arrays. You can specify your
own sort function that accepts two elements and
returns the following:

= true or a positive number if the first value
should be sorted higher

= 0 if they are equal

= false or a negative number if the first value
should be sorted lower

<script>
var arrl = [-10, -5, -1, 0, 2, 6, 8];
var arr2 = ["a","b", "c", "A", "B", "C"I;
arrl.sort(function(a,b){return a-b;});
document.write(arrl + "
");
arrl.sort(function(a,b){return Math.abs(a)-
wMath.abs(b);});
document.write(arrl + "
");
arrl.sort();
document.write(arrl + "
");
arr2.sort();
document.write(arr2 + "
");
arr2.sort(function(a,b){return
=a.toUpperCase()>b.toUpperCase();});

Applying Logic

document.write(arr2 + "
");
</script>

ch0205.html|

-10,-5,-1,0,2,6,8
0,-1,2,-5,6,8,-10
-1,-10,-5,0,2,6,8
A,B,C,a,b,c
A,a,B,b,C,c

Output from ch0205.html

Applying Logic

Like any other programming language, JavaScript pro-
vides the basic logic operators and operations. The fol-
lowing sections provide phrases on using the JavaScript
comparison operators to generate if/else blocks,
loops, and a variety of other logic.

Determining If an Object Is Equal
To or Less Than Another

X=5;
y="5";

resultA = x==y; //Evaluates to true
result = x===y; //Evaluates to false

JavaScript uses the standard ==, !=, >, <, >=, <=
operators to compare two objects. It also includes the
=== and !== operators that are type sensitive. For exam-
ple, 1=="1" evaluates to true, whereas 1==="1" does not
because the first is a numerical type and the second is

a string type.

29

30

CHAPTER 2 Using the JavaScript Language

Adding Conditional Blocks of Code

if (age >= 100){
document.write("Wow you are a centurian!");
else if (age >= 18) {
document.write('"You are an adult.");

else {
document.write("You are a child.");

If blocks are created using the basic if (comparison)
{IF_BLOCK}. The if block can be followed up by an
additional else block using else{ELSE_BLOCK}. In addi-
tion, you can add a condition to the else block using
else(condition) {ELSE_BLOCK}.

Using a While Loop

var weekdays = ["Mon", "Tue", "Wed", "Thur", "Fri"];
do{
document.write(day);
var day = weekdays.popQ);
document.write(day+", ");
} while (day != "Wed");
//0utput is "Fri, Thur, Wed, "

The while(condition){LOOP_BLOCK} and
do{LOOP_BLOCK}while(condition); loops allow you to
loop through code until a specific condition occurs.
The code in your LOOP_BLOCK is executed each time
through the loop.

Iterating Through Arrays

var weekdays = ["Mon", "Tue", "Wed", "Thur", "Fri"l;
for(var x=0; x < weekdays.length; x++){
document.write(day+"|");

}
//Output is "Mon|Tue|Wed|Thur|Fri|"

Math Operations

The best method to iterate through JavaScript arrays is
to use a for(init; condition;

adjustment) {LOOP_BLOCK} loop. The for() loop allows
you to initialize a variable and then iterate through
until a condition is met. To loop through the array, ini-
tialize an index and then stop the loop when the index
is equal to the length of the array.

Iterating Through Object Properties

var obj = {first:"Bilbo", last:"Baggins",
=title:"Hobbit"};
for (var key in obj){

document.write(key + "=" + obj[key] + "&");
}

JavaScript provides an additional type of option in the
for() loop. Using the in keyword, you can iterate
through the values in an array or the properties in an
object. The syntax is for(var name in

object) {LOOP_BLOCK}. The name is assigned the proper-
ty name inside the LOOP_BLOCK.

Math Operations

JavaScript has a built-in Math object that provides func-
tionality for extended mathematical operations. The
Math object has property values, listed in Table 2.2, that
contain the most common constants. You can access
the Math object directly from your JavaScript code. For
example, to get the value of pi, you would use the fol-
lowing:

Math.PI

31

32

CHAPTER 2 Using the JavaScript Language

Table 2.2 Math Object Properties

Property Description

E Returns Euler’s number (approx. 2.718)

LN2 Returns the natural logarithm of 2 (approx.
0.693)

LN10 Returns the natural logarithm of 10

(approx. 2.302)

LOG2E Returns the base-2 logarithm of E (approx.
1.442)

LOGI0OE Returns the base-10 logarithm of E
(approx. 0.434)

PI Returns PI (approx. 3.14)
SQRT1_2 Returns the square root of 1/2 (approx.
0.707)

SQRT2 Returns the square root of 2 (approx. 1.414)

The Math object also includes several methods that
allow you to apply higher math operations. The fol-
lowing sections provide phrases for those operations.

Generating Random Numbers

// Random number between 0 and 1
Math.random();
//Random number between 1 and 10

Math. floor(Math.random() * 10) + 1;
//Random number between -10 and 10
Math. floor(Math.random() * 20) - 10;

The Math.random() function generates a random float
value between 0 and 1.To convert that to an integer,
multiply the results of Math.random() by the maximum
value you want for the integer and then use
Math.floor() to round it down.

Math Operations

Rounding Numbers

var x = 3.4;
var y = 3.5;
Math.round(x); //returns 3
Math.round(y); //returns 4

Math.ceil(x); //returns 4
Math.ceil(y); //returns 4
Math.floor(x); //returns 3
Math.floor(y); //returns 3

The JavaScript Math object provides three methods to
round numbers. The .round() method rounds numbers
#.5 up to the next higher integer and numbers
#.49999.. down to the next lowest integer. The .ceilQ
always rounds up to the next highest integer. The
.floor) always rounds down to the next lowest
integer.

Getting the Minimum Number in
a Set

Math.min(8,"0x5",12,"44",8,23,77); //returns 5
var arrl = [4,8,12,3,7,11];
Math.min.apply(Math, arrl); //returns 3

var arr2 = ["0x5",8,12,"4",8,23,77,"0x1F"];
Math.min.apply(Math, arr2); //returns 4

The Math.min(item, item, ..) method allows you to
find the smallest number in a set.You can also apply an
array object to the .min() method using
Math.min.apply(Math, array).This returns the smallest
number in the array. The array can contain string rep-
resentations of numbers, such as "4" and "0x5B", but
not character strings such as "A". If the array contains
character strings, the result will be NaN.

33

34

CHAPTER 2 Using the JavaScript Language

Getting the Maximum Number in
a Set

Math.max(8,"0x5",12,"44",8,23,77); //returns 77
var arrl = [4,8,12,3,7,11];

Math.max.apply(Math, arrl); //returns 12
var arr2 = ["0x5",8,12,"4",308,23,77,"0xFF"];
Math.max.apply(Math, arr2); //returns 308

The Math.max(item, item, ..) method allows you to
find the largest number in a set. You can also apply an
array object to the .max() method using
Math.max.apply(Math, array).This returns the largest
number in the array. The array can contain string rep-
resentations of numbers such as "26" and "0x1F", but
not character strings such as "A". If the array contains
character strings, the result will be NaN.

Calculating Absolute Value

Math.abs(-5); //returns 5
Math.abs(5); //returns 5

Math.abs("-15"); //returns 15
Math.abs("OxFF"); //returns 255

The Math.abs(x) method returns the absolute value of
x. The variable x can be a number or a numerical
string such as "5", "-5", or "OxFF".

Applying Trigonometric Functions

Math.log(2); //returns
Math.sin(0); //returns

Math.cos(0); //returns
Math.tan(1); //returns

Math Operations

The Math object provides several trigonometric meth-

ods that apply trig functions to numbers. Table 2.3 lists

the trig methods to apply things such as natural logs,

sine, cosine, and tangent operations.

Table 2.3 Match Object Trigonometric Methods

Method
acos(x)
asin(x)

atan(x)

atan2(y,x)

cos(x)

Tog(x)

sin(x)

tan(x)

Description
Returns the arccosine of x, in radians
Returns the arcsine of x, in radians

Returns the arctangent of x as a number
between -PI1/2 and P1/2 radians

Returns the arctangent of the quotient
of its arguments

Returns the cosine of x (x is in radians)

Returns the natural logarithm (base E)
of x

Returns the sine of x (x is in radians)

Returns the tangent of an angle

Applying Power Functions

Math.exp(4); //returns 54.59815
Math.pow(2,16); //returns 65536

Math.sqrt(25); //returns 5

The Math object provides several power functions that

allow you to apply exponential and root operations on
numbers. Table 2.4 lists the trig methods to apply
Euler’s exponential, power, and square root functions.

You can pass in the values as numbers or numerical

strings.

35

36

CHAPTER 2 Using the JavaScript Language

Table 2.4 Match Object Trigonometric Methods

Method Description
exp(x) Returns the value of E”x
pow(x,y) Returns the value of x to the power of y

sqrt(x) Returns the square root of x

Working with Dates

A useful built-in JavaScript object is the Date object.
The Date object allows you to get the user’s time by
accessing the system clock through the browser. This
allows you to use JavaScript to get the local time for
the user. The Date object also provides methods for
manipulating the time values to determine time deltas
and generate time and date strings.

Creating a Date Object

var d = new Date();

//Wed Jan 30 2013 09:37:42 GMT-0700

var d = new Date(1209516513246) ;

//Tue Apr 29 2008 18:48:33 GMT-0600

var d = new Date("May 17 2014 13:55:13 GMT-0600");
//Sat May 17 2014 13:55:13 GMT-0600

var d = new Date("1/1/2020");

//Sat Jan 01 2020 00:00:00 GMT-0700

var d = new Date("12/12/2012 12:12:12");
//Wed Dec 12 2012 12:12:12 GMT-0700

var d = new Date(2014, 8, 6, 16, 5, 10, 3);
//Sat Sep 06 2014 16:05:10 GMT-0600

A Date object represents a specific date and time with
millisecond granularity. To create a Date object, all you
need to do is call a new Date() using one of the fol-

lowing methods. The dateString can be in one of sev-
eral different formats, such as "7-17-2013", "11/22/2014

Working with Dates

10:12:05", "Dec 12 2012 12:12:12", and "2014-01-
05T08:03:22.3562"

= new Date();
= new Date(milliseconds);
= new Date(dateString);

= new Date(year, month, day, hours, minutes,

seconds, milliseconds);

Getting the Current Date and Time

To get the current date and time, create a new Date()
object without passing parameters. This creates an
object with the current date and time.

Creating a Date String

var d = new Date();
d.toDateString(Q;

//Returns Sat May 17 2014
d.tolLocaleDateString();
//Returns Saturday, May 17, 2014
d.toISOString(Q);

//Returns 2014-05-17T19:55:13.000Z
d.toUTCString(Q;

//Returns Sat, 17 May 2014 19:55:13 GMT
d.toString(Q;

//Returns Sat May 17 2014 13:55:13 GMT-0600
= (Mountain Daylight Time)

There are several methods to generate a date string
from JavaScript. The first step is to get a Date object.
The Date object provides the following methods that
return differently formatted date strings:

37

38 CHAPTER 2 Using the JavaScript Language

= . toDateString()—Returns an abbreviated date
string.

= .tolLocaleDateString()—Returns a localized date
string.

= . toISOStringO)—Returns the ISO standardized
date string.

= . toUTCStringO—NReturns a date string converted
to UTC time.

= .toString)—NReturns the full date string with
time zone and more.

Creating a Time String

var d = new Date();
d.toLocaleTimeString()
1:55:13 PM

d.toTimeString(Q
13:55:13 GMT-0600 (Mountain Daylight Time)

The Date object also allows you to get just a time
string. There are two methods attached to the Date
object that return a time string. The . toTimeString()
method returns a time string with the time, time zone,
and even daylight savings time information. The
.tolLocaleTimeString() returns a more basic time string
with local formatted time.

Getting a Time Delta

atime = new Date('"2014-01-05T08:03:22.356Z");
btime new Date('2014-01-05T09:08:57.758Z2");
delta Math.abs(btime - atime); //3935402ms
totalSec = Math.floor(delta * .001); //3935s

hours = Math.floor(totalSec / 3600); //lhr
minutes = Math.floor(totalSec / 60) % 60; //5min
seconds = totalSec % 3600 % 60; //35sec

Working with Dates

Date objects essentially represent the number of mil-
liseconds from Jan 1, 1970. Therefore, you can get the
time difference between two Date objects by subtract-
ing them from each other. The result is a number that
represents the millisecond diftference between the two
dates.

By the way

When subtracting two dates to get the millisecond
delta between them, you can end up with a negative
number depending on which date is subtracted from
the other. Use Math.abs(timeA-timeB) to always gen-
erate a positive time delta.

Getting Specific Date Components

var d = new Date("Sat Jan 04 2014 15:03:22 GMT-
=0700") ;

.getDate(); //returns 4

.getDay(); //returns 6

.getFullYear(); //returns 2014

.getHours(); //returns 15

.getMinutes(); //returns 3

.getMinutes(); //returns 22

.getTime(); //returns 1388873002000
.getTimeZoneOffset(); //returns 420

d
d
d
d
d
d
d
d

The Date object provides several methods to get the
value of specific components of the date, such as year,
day of month, day of week, and more. Table 2.5 lists
the methods to get specific date components from the
Date object.

39

40

CHAPTER 2 Using the JavaScript Language

Table 2.5 Date Object Methods to Get Specific Date

Components

Method Description

getDate() Day of the month (1-31)
getDay () Day of the week (0-06)
getFullYear() Year (4 digits)

getHours () Hour (0-23)
getMilliseconds() Milliseconds (0—999)

getMinutes()
getMonth()
getSeconds()

getTime()

getTimezoneOffset()

Minutes (0-59)

Month (0-11)

Seconds (0-59)
Milliseconds since 1-1-1970
12:00:00

Difference between UTC
time and local time, in
minutes

Did you know?

Date objects also have methods to obtain the UTC
components by placing UTC after get, such as
getUTCHour () and getUTCSeconds().

<script>

var atime = new Date("2014-01-04T08:45:22.356Z");
var btime = new Date("2014-01-04T12:12:57.7582");

var delta

Math.abs(btime - atime); //3935402ms

var totalSec = Math.floor(delta * .001); //3935s
var hours = Math.floor(totalSec / 3600); //lhr
var minutes = Math.floor(totalSec / 60) % 60;

- //5min

var seconds = totalSec % 3600 % 60; //35sec

document.
-'"
");
document.
-'<phr>");
document.
document.
</script>

ch0206.html|

Total Milli

Working with Dates

write("Total Milliseconds: + delta +

write("Total Seconds: + totalSec +

write("Delta: " + hours + "hrs ");

write(minutes + "secs + seconds + "s");

seconds: 12455402

Total Seconds: 12455
Delta: 3hrs 27secs 35s

Output from ch0206.html

41

This page intentionally left blank

3

Interacting with
the Browser

Dynamic web pages often require you to access and
in some cases even manipulate things beyond the
HTML elements. JavaScript provides a rich set of
objects and functions that allow you to access informa-
tion about the screen, browser window, history, and
more.

The phrases in this chapter describe ways to use the
screen, window, Tocation, and history objects that pro-
vide JavaScript with an interface to access information
beyond the web page. Additional phrases describe uti-
lizing those objects to implement cookies, popup win-
dows, and timers.

Writing to the JavaScript
Console

console.log("This 1is Debug"); //"This 1is Debug" is
wdisplayed in console

var x=5;
console.log("x="+x): //"x=5" is displayed in console

CHAPTER 3 Interacting with the Browser

The JavaScript console can be an important tool when
debugging problems in your jQuery and JavaScript
code. The console log is simply a location where you
can view data output from the JavaScript code. Each of
the major browsers has a console log tool that displays
the output.

To output data to the console log, use
console.write(DEBUG_STRING) and pass it the text that
you want to display on the console.

Reloading the Web Page

A useful feature of JavaScript is the ability to force the
browser to reload the current web page.You may want
to reload the web page because data has changed on
the server or a certain amount of time has elapsed. The
Tocation.reload() method requests that the browser
reload the current URL.

Redirecting the Web Page

location.href="newpage.html";

location.href="http://jqueryin24/index.html;

Another extremely useful feature of JavaScript is the
ability to redirect the browser away from the current
URL to another location.You do this by setting the
location.href value to a new URL.The new URL
can be a full address, such as
http://mysite.com/newlocation/index.html, or a rela-
tive location to the current URL, such as page2.html.

http://mysite.com/newlocation/index.html

Getting Current Location Details

Getting the Screen Size

screen.availHeight; // returns screen height in

=pixels
screen.availWidth; // returns screen width in pixels

An important feature of JavaScript these days is the
ability to get the screen size. The screen sizes of
browsers vary so much that you often need to use dif-
ferent sets of code for larger, medium, or smaller
screens. To get the screen size, use the
screen.availHeight and screen.availWidth attributes.
These values are specified in the number of pixels.

Getting Current Location
Details

The JavaScript location object provides an easy way to
get various pieces of information about the URL the
user is currently viewing. Because JavaScript and
jQuery code are often used across multiple pages, the
location object is the means to get information about
what URL the browser is currently viewing. The fol-
lowing sections provide some phrases that provide
information about the browser’s current location.

Finding the Current Hash

The Tocation.hash value returns the current hash, if
any, that the browser is using. This is useful when you
are displaying a web page with multiple hash anchors.
The hash provides a context to the location on the
page the user actually clicked.

45

46

CHAPTER 3 Interacting with the Browser

Getting the Host Name

location.hostname

The Tocation.hostname value returns the domain name
of the server that sent the page to the user. This is just
the portion after the protocol but before the port
number or path. This allows you to determine which
server to send AJAX requests back to. Often, multiple
servers may handle the web site, but you may want to
interact only with the server that served the web page
in the first place.

Looking at the File Path

Tocation.pathname

The Tocation.pathname returns the path that the page
was loaded from on the server. The pathname also pro-
vides a context as to what page the user is looking at.

Getting the Query String

location.search

The Tocation.search value returns the query string
that was passed to the server to load the page. Typically,
you think about a query string as a server-side script
tool. However, it can be just as valuable to JavaScript
code that manipulates the data returned from the
server and requests additional information from the
server via AJAX.

Accessing the Browser

Determining If the Page Is Viewed
on a Secure Protocol

location.protocol

The easiest way to determine if a page is being viewed
from a secured location on the server is to look at the
Tocation.protocol value. This value will be http on
regular requests or https on secure requests.

Accessing the Browser

Another important object built into JavaScript is the
window object. The window object represents the
browser and provides you with a wealth of informa-
tion about the browser position, size, and much more.
It also allows you to open new child windows, close
windows, and even resize the window.

Getting the Max Viewable Web
Page Size

window. innerHeight; // returns browser view port
wheight in pixels

window. innerWidth; // returns browser view port
wwidth in pixels

The window object provides the innerHeight and
innerWidth of the browser window. These values repre-
sent the actual pixels in the browser window that the
web page will be displayed within. This is a critical
piece of information if you need to adjust the size and
location of elements on the web page based on the
actual area that is being displayed.

47

48

CHAPTER 3 Interacting with the Browser

Setting the Text Displayed in the
Browser Status Bar

window.status = "Requesting Data From Server .

The browser has a status bar at the bottom.You can set
the text that is displayed there to provide to the user
additional information that does not belong on the
page, such as the server name, current status of
requests, and more. To set the text displayed in the
browser status bar, set the window.status value equal to
the string you want displayed.

Getting the Current Location in the
Web Page

window.pageXOffset;
// number of pixels the page has scrolled to the
=right

window.pageYOffset;
// returns number of pixels the page has scrolled
= down

‘When writing dynamic code, it is often necessary to
determine the exact location in the web page that is
currently being viewed. When the user scrolls down or
to the right, the position of the page to the frame of
the browser view port changes.

To determine the number of pixels the page has
scrolled to the right, use the window.pageX0ffset attrib-
ute. To determine the number of pixels the page has
scrolled down, use the window.pageYOffset attribute.

Using the Browser History to Go Forward and Backward Pages

Opening and Closing Windows

//Opens a new blank window, writes to it, and then
=closes it.
var newWindow = window.open();

newWindow.document.write("Hello From a New Window");
newWindow.close(Q);

//0pens another URL in a new window
window.open("http://google.com™);

The window object also provides a set of methods that
allow you to create and manage additional child win-
dows from your JavaScript code.

For example, the window.open(URL) method opens a
new window and returns a new window object. If you
do not specify a URL, the browser opens a blank page
that can be written to using the window.document
object.

You can call .close() on window objects that you
have created, and they will be closed.

Using the Browser History to
Go Forward and Backward
Pages

history.forward(); //forward 1 page
history.back(); //backward 1 page

history.go(-2); //backward 2 pages

The browser keeps track of the pages that have been
navigated to in a history. JavaScript allows you to
access this history to go forward or backward pages.
This allows you to provide forward and backward con-
trols to your web pages.You can also use this feature to
provide bread crumbs displaying links to multiple
pages back in the history.

49

50

CHAPTER 3 Interacting with the Browser

To go forward one page, use history.forward().To go
backward one page, use history.backQ).

To go forward or backward multiple pages, use
history.go(n), where n is the number of pages. A neg-
ative number goes backward that many pages, and a
positive number goes forward that many pages.

Creating Popup Windows

var result = confirm("You Entered " + response +
"is that 0K?");

if(result){ alert("You Said Yes.") }
else {alert("You Said no.")}

‘Window objects provides several different methods
that allow you to launch popup windows that you can
interact with for alerts, prompts, and notifications. The
popup windows are displayed, and the user needs to
interact with the popup before continuing to access
the web page.

There are three kinds of popup boxes that can be
created:

= alert(msg)—Launches a popup window that dis-
plays an alert message and provides a button to
close the popup.

= confirm(msg)—Launches a popup window that
displays a confirmation and message provides an
OK and a Cancel button, which both close the
popup. If you click the OK button, the return
value from confirm() is true; otherwise, it is false.

Creating Popup Windows

= prompt(msg)—Launches a popup window that dis-

plays the message, a text box for input, and an OK
and Cancel button, which both close the popup.
If you click the OK button, the return value from
prompt() is the text typed into the text box; other-
wise, it is false.

The code that follows illustrates these popup boxes, as

shown in Figure 3.1.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 var response = prompt("What is the airspeed "
-

09 "velocity of an unladen swallow:");

10 var result = confirm("You Entered " +
=response +

11 "is that OK?");

12 if(result){ alert("You may pass.") }

13 else {alert("None Shall Pass.")}

14 </script>

15 </head>

16 <body>

17 </body>

18 </html>

ch0301.html

51

52 CHAPTER 3 Interacting with the Browser

What i the airspeed velociy of an unladen swallow:
Tieph

N\

N

“You Entersd 23mphis that OK?

e
/X

s mary pass / \ None Shal Fass.

(e (=]

Figure 3.1 Various popup boxes, with the results
being passed from popup to popup using
JavaScript.

By the way

It is often much better to create a fixed position <div>
element with an overlay than to use these popup
boxes because you have much more control over them.
I'll show you how to do just that a little later in the
book.

Manipulating Cookies

A common task in JavaScript is getting and setting
cookies in the browser. Cookies allow you to store
simple key value pairs of information in the browser in
a persistent manner.You can access the cookies by the

Manipulating Cookies

server-side scripts and JavaScript to determine what
those values are.

You can access cookie information using the
document. cookie object. This object contains all the
cookies in the string format name=value; name=value;

Setting a Cookie Value in the
Browser

function setCookie(name, value, days) {
var date = new Date();
date.setTime(date.getTime()+(days*24%60%60%1000)) ;

var expires = "; expires="+date.toGMTString();
document.cookie = name + + value +
expires + "; path=/";

To add a new cookie for your web site, set
document.cookie = "name=value; expireDate; path;";.
The expire date needs to be a date set using
.toGMTString(), and the path is the path on your web
site that the cookie applies to.

Getting a Cookie Value from the
Browser

function getCookie(name) {
var cArr = document.cookie.split(‘;’);
for(var i=0;i < cArr.length;i++) {
var cookie = cArr[i].split("=",2);

cookie[0] = cookie[0].replace(/A\s+/,"");
if (cookie[0] == name){ return cookie; }
}
}

To get the value of the cookie, split the document.
cookie value using the ; character, and then iterate

53

54

CHAPTER 3 Interacting with the Browser

through the resulting array until you find the name
you are looking for.

Example Getting and Setting
Cookies

The following code shows a full example of setting
and getting cookies. When the code is run, two cook-
ies are set: one for name and the other for language.
The cookies are then retrieved from the browser and
written to the web page, as shown in Figure 3.2.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 function setCookie(name, value, days) {

09 var date = new Date();

10 date.setTime(date.getTime()+(days*24*60%60*
=1000));

11 var expires = "; expires="+date.toCMTString
-(0;

12 document.cookie = name + "=" + value +

13 expires + "; path=/";

14 }

15 function getCookie(name) {

16 var cArr = document.cookie.split(‘;’);

17 for(var i=0;i < cArr.length;i++) {

18 var cookie = cArr[i].split("=",2);

19 cookie[0] = cookie[0].replace(/A\s+/,"");
20 if (cookie[0] == name){ return cookie; }

21 }

22 }

Adding Timers

23 setCookie("name", "Brad", 1);
24 setCookie("Tanguage", "English", 1);
25 document.write("<h3>Cookies</h3>");
26 var cl = getCookie("name");
27 document.write(cl[0] + " 1is set to "+ cl[1]
-i
");
28 var c2 = getCookie("Tlanguage");
29 document.write(c2[0] + " is set to " +
=c2[1]);
30 </script>
31 </head>
32 <body>
33 </body>
34 </html>
ch0302.html
Cookies

name i3 set to Brad

lemguage 15 sel Lo English

Figure 3.2 Adding cookie output using JavaScript.

Adding Timers

Another useful feature of JavaScript is the ability to set
timers that execute a function or evaluate an expres-
sion after a certain amount of time or on a specific
interval.

Using timers allows you to delay the execution of
code so that it does not need to happen at the exact
moment an event is triggered or the page is loaded.
The following phrases show you how to create timers
to delay code execution and to apply recurring
actions.

55

56

CHAPTER 3 Interacting with the Browser

Adding a Delay Timer

function myTimer O {
alert("Timer Function Executed");

}
var timerId = setTimeout(myTimer, 10000);

To simply delay the execution of code for a certain
amount of time, use the setTimeout(code, ms) method,
where code is either a statement or a function that exe-
cutes when the time expires. ms is the number of mil-
liseconds. For example, to execute a function named
myTimer() in 10 seconds, you would use the following:

setTimeout(myTimer, 10000);

Cancel a Timer

function myTimer Q {
alert("Timer Function Executed");

}
var timerId = setTimeout(myTimer, 10000);
clearTimeout(timerId); //timer will not execute

At any point before the time runs out and the code is
executed, you can clear the timer by calling the
clearTimeout(id) method using the ID returned from
setTimeout (). Once the timer has been cleared, it does
not execute. You need to keep track of the ID returned
from setTimeout() using a variable.

Adding a Recurring Timer

var statusTimerId;
var status = "OK";

//checks status every minute as long as it is "OK"
function checkStatus O {
if(status == "OK"){

Adding Timers 57

alert(""Status OK");

statusTimerId = setInterval(checkStatus, 60000);
} else {

alert("Status Failed");

}
}
statusTimerId = setInterval (checkStatus, 60000) ;

You can also start a timer that triggers on a regular
interval using the setInterval(function, ms) method.
This method also accepts a function name and mil-
liseconds as arguments. Inside the function, you need
to call set interval again on the same function so that
the code will be called again.

To turn off the recurring timer, simply do not call
setInterval() again inside the timer function, or use
clearInterval() outside the function.

This page intentionally left blank

A

Accessing HTML
Elements

The most important part of dynamic web develop-
ment is the ability to access the DOM elements quickly
and efficiently. JavaScript inherently provides function-
ality to access the DOM elements. This JavaScript
feature can be useful at times, but this is the area where
jQuery really stands out. At times you will need to use
JavaScript methods to access the DOM elements, but
when possible I recommend using jQuery.

The phrases in this chapter cover both the JavaScript
and jQuery selector methods to find DOM elements.

Finding HTML Elements in
JavaScript

There are three ways to find HTML elements using
JavaScript.You can search for them by the ID attribute
name, by the class name, or by the tag type. The fol-
lowing code shows an example of defining an HTML
<div> element so that each of these methods can use it:

<div id="myDiv" class="myClass">Content</div>

60

CHAPTER 4 Accessing HTML Elements

By adding the ID and class attributes, you can use
those values of "myDiv" and "myClass" to search for the
<div> element.

Finding DOM Objects by ID

var containerObj = document.getElementById("'myDiv");

The simplest method to find an HTML element is to
use the value of the id attribute with the
document.getElementById(id) function.The
document.getElementById(id) function searches the
DOM for an object with a matching id attribute. If
that object is found, the function returns the DOM
object.

Finding DOM Objects by Class
Name

var objs =
w=document.getElementsByClassName(''myClass™);
for (var i=0; i<objs.length; i++){

var htmlElement = objs[i];

You can also search for HTML elements by their class
attribute using the
document.getElementsByClassName(class). This function
returns an array of DOM objects with matching class
attributes. You can then iterate over that list using a
JavaScript loop and apply changes to each DOM
element.

Using the jQuery Selector to Find HTML Elements 61

Finding DOM Objects by Tag Name

var objs = document.getElementsByTagName('div'");
for (var i=0; i<objs.length; i++){

var htmlElement = objs[il;

Another way search for HTML elements is by their
HTML tag using the

document.getElementsByTagName (tag). This function
searches the document for all DOM objects that have
the specified tag name and returns them in an array. You
can then iterate over that array using a JavaScript loop
and access or apply changes to each DOM element.

Using the jQuery Selector to
Find HTML Elements

Unlike JavaScript, jQuery allows you to find HTML
elements in countless ways using selectors. Yes, just like
CSS selectors. In fact, most jQuery selectors are based
on the CSS selectors, thus providing a more secamless
transition between the two.

As demonstrated by the phrases in the upcoming sec-
tions, jQuery selectors make it easy to select just about
any group of HTML elements. Keep in mind that
jQuery selectors return jQuery objects that represent a
set of DOM objects, not a direct array of DOM
objects.

jQuery selector syntax is straightforward. Once the
jQuery library is loaded, simply use $(selector). For
example:

$("#myElement")

62

CHAPTER 4 Accessing HTML Elements

Watch out!

There are several meta characters used in jQuery
selector syntax. If you want to use any of the meta
characters, such as !"#$%&' QO *+,./:;<=>7@[\]A" {|}~
), as a part of a class/ID/name, you need to escape
the character with \\ (two backslashes). For example,
if you have an element with id="my.element", you
would use the selector §("#my\\.element").

Applying Basic jQuery Selectors

; //selects all elements
$(".myClass"); //selects elements with
w=class="myClass"
); //selects the element with id="myDiv"

$("div'"); //selects <div> elements

$("div, span, p"); //selects <div>, , and <p>
=elements

$("div.myClass"); //selects <div> elements with
wclass=""myClass"

The most commonly used selectors are the basic ones.
The basic selectors focus on the ID attribute, class
attribute, and tag name of HTML elements. Table 4.1
lists some examples to show you how to define some
of the basic selectors.

Table 4.1 Examples of Using Basic jQuery Selectors

Syntax/Example Description

$C" ") Selects all HTML elements.
$(".class™) Selects elements based on the
$(".container™) class attribute.

Example: Selects all HTML ele-
ments with class="container".
The . character prefix denotes a

class name.

Using the jQuery Selector to Find HTML Elements

Syntax/Example
$SC"#id™)
$("#menu")

$("element™)
$C"div™)

$("element,element..

$("div, span, p")

$("element.class™)
$("ul.bigLists™)

!

Description

Selects an element based on
the 1id attribute.

Example: Selects the HTML
elements with id="menu".The #
character prefix denotes an id

value.

Selects elements based on tag
type.
Example: Selects all the <div>

elements.

Selects multiple types of
elements based on tag.
Example: Selects all <div>,
, and <p> elements. You
can also specify multiple ele-
ments separated by a comma.
Selects elements of a specific
tag and class.

Example: Selects all <u1>
elements that have
class="bigList" by combining
the element name and class.
Note that there is no space
between the element and the

class name.

63

64

CHAPTER 4 Accessing HTML Elements

Selecting Elements Based on
HTML Attributes

$("input[value=0]"); //selects <input> with
wvalue=
$("pL[class*=my")//selects elements "my" in classname
$("img[srcA="dicons\\/’1");

//selects elements where src starts with
='"jcons/"
$("input[value!="default’]");

//selects <input> elements where the value is not
='default"
$("p[id]"); //selects <p> elements that have 1id set
$("pLid]l[class$=Menu™);

//selects <p> elements with idset and

//classname ending with "Menu"

Another way to use jQuery selectors is to select
HTML elements by their attribute values. It can be a
default attribute or one that you have added to the
HTML elements. Attribute values are denoted in the
selector syntax by being enclosed in [] brackets. Table
4.2 shows some of the ways that you can apply attrib-
ute selectors.

Table 4.2 Examples of Using Attribute jQuery
Selectors

Syntax/Example Description
$([attribute=value]™) Selects elements where attribute
$("input[value=0]") attr=value.
Example: Selects all <input> ele-
ments that have a value attribute
equal to 0.

Using the jQuery Selector to Find HTML Elements

Syntax/Example

$([attr*=value])

$("plclass*=
=Content")

$("[attrA=value]™)
$("img[srcA="1icons

=\\/"1")

$("[attr!=valuel™)
$(“input[value!=
w ‘default text’]™)

$("[attrl™

$C"plidI™)

$("[attr]
w[attr2$=value])

Description

Attribute attr contains value.

Example: Selects all HTML elements
with "Content" in the class name.
For example, all of the following <p>
elements would be selected:

<p class="TeftContent">...</p>

<p class="centerContent">...</p>
<p class="rightContent">...</p>

Attribute attr begins with value.
Example: Selects all elements
whose src attribute starts with
"icons/". Notice that because the
expression was not simple text,
quotes were required around the
value. Also notice that the / character
had to be escaped with \\.

Attribute attr does not equal value.
Example: Selects all the <input> ele
ments where the value does not
equal "default text" or they do
not have a value attribute.

Selects elements that have attribute

attr.

Example: Selects all <p> elements that

have an id attribute.

Selects elements that have attribute
attr and have attribute attr2
equal to value.

65

66 CHAPTER 4 Accessing HTML Elements

Table 4.2 Continued

Syntax/Example Description
$("plid] Example: Selects all <p> elements
= [class$=Menu") that have an id attribute and have a

class attribute that ends with "Menu".
For example, only the top two of the
following HTML elements would be
selected:

<p id="topMenu" class="topMenu
- </p>

<p id="topMenu"
wclass="TeftMenu">...</p>

<p id="contentMenu"
=class="contentMenultem">...</p>
<p class="contentMenu">...</p>

Selecting Elements Based on
Content

$("p:contains(‘free’)™);

//selects <p> elements that contain '"free
$("div:has(span)");

//selects <div> elements that contain
=elements

$("div:empty");

//selects <div> elements with no content or
wchildren
$("div:parent");

//selects <div> elements that have at least some
=content

Another set of useful jQuery selectors are the content
filter selectors. These selectors allow you to select
HTML elements based on the content inside the
HTML element. Table 4.3 shows examples of using
content selectors.

Using the jQuery Selector to Find HTML Elements

Table 4.3 Examples of Using Content jQuery Selectors

Syntax/Example

$(":contains(value)")
$("div:contains
(‘Open Source’)")

$(":has(element)")
$("div:has(span)™)

$(":empty™)
$("div:empty")

$(":parent™)
$("div:parent")

Description

Selects elements that have
the text in value in their

contents.

Example: Selects all <div> ele-
ments that contain the text
"Open Source".

Selects elements that contain

a specific child element.

Example: Selects all <div> ele-
ments that contain a ele-
ment. For example, only the first
of the following elements would
be selected:

<div>Span
wText</div>

<div>No Span Text</div>
Selects elements that have no
content.

Example: Selects all <div> ele-
ments that have no content.
Inverse of :empty, selects ele-
ments that have at least some
content.

Example: Selects all <div> ele-
ments that have at least some

content.

67

68

CHAPTER 4 Accessing HTML Elements

Selecting Elements by Hierarchy
Positioning

$("div span");
//selects elements with a <div> ancestor
$("div.menu > span");
//selects elements whose immediate parent
//is a <div> with class="menu"
$("1abel + input.textItem™);

//selects <input> elements with class="textItem"
=that
//are immediately preceded by a <label>
$("#menu ~ div'");
//selects all <div> elements that are siblings of
//the element with id="menu"

An important set of jQuery selectors is the hierarchy
selectors. These selectors allow you to select HTML
elements based on the DOM hierarchy. This allows
you to write dynamic code that is more content aware
by only selecting elements based on parents, children,
or other elements around them in the DOM tree.
Table 4.4 shows some examples of hierarchy selectors.

Using the jQuery Selector to Find HTML Elements

Table 4.4 Examples of Using Hierarchy jQuery

Selectors

Syntax/Example

$(" ancestor element™)
$("div span")

$("parent > child")
$("div.menu > span")

$("prev + next")
$("Tabel + input.
wtextItem")

Description

Selects elements of a type that
have an ancestor of type
ancestor and match element.

Example: Selects all
elements that have an ancestor
that is a <div>.The <div> ele-
ment does not need to be the
immediate ancestor. For exam-
ple, the following ele-
ment would still be selected:
<div><p>Some Span

wText</p></div>

Selects elements with a specific
parent type. The > indicates an
immediate child/parent rela-
tionship.

Example: Selects all
elements that have an immedi-
ate parent element that is a

<div> with class="menu".

Selects elements immediately
followed by a specific type of
element. The + indicates the
prev item must be immediate-

ly followed by the next item.

Example: Selects all <1abel>
elements that are immediately
followed by an <input>
element that has

class="textItem".

69

70

CHAPTER 4 Accessing HTML Elements

Table 4.4 Continued

Syntax/Example Description
$("prev ~ siblings™) Selects elements that are
$("#menu ~ div") after the prev, have the same

parent, and match the siblings
selector. The ~ indicates
siblings.

Example: Selects all <div> ele-
ments that are siblings of the
element that has id="menu"
and come after the "#menu"
item in the DOM tree. Note
that <div> elements that come
before will not be selected.
For example, only the last two
elements that follow will be
selected:

<div>...</div>

<ul id="menu> ...
 ...
<div> ... </div>
<div> ... </div>

By the way

It is always best to be as specific as possible when
designing your jQuery selectors. For example, if you
want to select all the span elements with
class="menu” and these elements are only under the
<div> element with id="menuDiv", then
$("div#menuDiv .menu") would be much more efficient
than just $("menu") because it would limit the search
to the <div> element before checking from the menu
class attribute.

Using the jQuery Selector to Find HTML Elements 71

Selecting Elements by Form Status

$("input:checked™);

//selects <input> elements that are checked
$("option:selected");

//selects <option> elements that are selected
$("#myForm :focus");

//selects the element in the #myForm <form>

//that currently has the focus
$("input:disabled");

//selects <input> elements that are currently
w=disabled

An extremely useful set of selectors when working
with dynamic HTML forms is the form jQuery selec-
tors. These selectors allow you to select elements in the
form based on the state of the form element. Table 4.5
shows some examples of form selectors.

Table 4.5 Examples of Using Attribute jQuery

Selectors

Syntax/Example Description

$(":checked™) Selects elements with checked

$("input:checked") attribute true.
Example: Selects all <input>
elements that are currently in a
checked state.

$(":selected™) Selects elements with the

$("option:selected") selected attribute true.

Example: Selects all <option>
elements that are currently

selected.
$(":focus") Selects elements that are in focus
$(":focus") in the form.

Example: Selects all HTML ele-
ments that are currently in focus.

72

CHAPTER 4 Accessing HTML Elements

Table 4.5 Continued

Syntax/Example Description

$(":enabled™) Selects enabled elements.

$("input:enabled™) Example: Selects all the <input>
elements that are in the enabled
state.

$("disabled") Selects disabled elements.

$("input:disabled™) Example: Selects all the <input>
elements that are in the disabled

state.

Selecting Elements Based on
Visibility
$("div:visible");

//selects <div> elements that are currently
wyvisible

$("div:hidden");
//selects <div> elements that are currently hidden

If you are using visibility to control the flow and inter-
actions of your web page components then using the
visibility jQuery selectors makes it simple to select the
HTML elements that are hidden or visible. Table 4.6
shows some examples of visibility selectors.

Using the jQuery Selector to Find HTML Elements

Table 4.6 Examples of Using Attribute jQuery
Selectors

Syntax/Example Description
$(":visible™) Selects visible elements
$("div:ivisible™) Example: Selects all <div> elements

currently have at least some height
and width meaning the consume
space in the browser. This will even
include elements that are hidden by
visibility:hidden or opacity:0
because they still take up space.
$(":hidden") Selects hidden elements.

$("div:hidden™) Example: Selects all <div> elements
that currently have the CSS property
of visibility:hidden or opacity:0.

Applying Filters in jQuery Selectors

$("tr:even"); //selects the even <tr> elements
$("1i:0dd"); //selects the odd <1i> elements
$("div:first"); //selects the first <div> element
$("div:1ast"); //selects the last <div> element
$(":header"); //selects <hl>, <h2>, ... elements
$("div:eq(5)"); //selects the 6th <div> element

$C"1i:gt(1)"); //selects <div> elements after the
=first two

$C"19:1t(2)"); //selects the first two <div>
=elements

$(":animated"); //selects elements currently
=animating

73

74

CHAPTER 4 Accessing HTML Elements

Often you need to refine your jQuery selectors to a
more specific subset. One way to accomplish that is to
use filtered selectors. Filtered selectors append a filter
on the end of the selector statement that limits the
results that the selector returns. Table 4.7 shows some
examples of adding filters to selectors.

Table 4.7 Examples of Using Filtered jQuery Selectors

Syntax/Example

$(":even™)

$("tr:even™)

$("odd")
$("1i:0dd")

$C":first™)
$("div:first")

$(":Tast™)

$("div:Tlast™)

$(":header™)
$(":header™)

$("eqCindex)")
$("div:eq(5)™)

Description

Filters out all the odd indexed elements.
Example: Selects all <tr> elements and
then filters the results down to only the
even numbered items.

Filters out all the even indexed elements.
Example: Selects all <11> elements and
then filters the results down to only the

odd numbered items.

Filters out everything but the first

element.

Example: Selects only the first <div>
element encountered.

Filters out all but the last element.
Example: Selects only the last <div>

element encountered.

Selects elements that are header types
such as <h1l>, <h2>, <h3>, and so on.

Example: Selects all header elements.

Selects the element at a specific
zero-based index.

Example: Selects the sixth <div> element
encountered. The reason that the sixth
element and not the fifth is selected is
that the index is zero based, so 0 would
be the first.

Chaining jQuery Object Operations

Syntax/Example Description
$("1i:gt(index)") Filters the list to only include elements
$C"TH:gt ()™ after a specific zero-based index.

Example: Selects every <11> element
after the second one encountered. Once
again, this index is zero based.
$(":1t(index)") Filters the list to only include elements
$C"T (2™ before a specific zero-based index.
Example: Selects only the first and
second <1i> elements encountered.
Once again, this index is zero based.
$(":animated") Selects elements that are currently being
$(":animated™) animated.
Example: Selects all elements that are
currently being animated.

Chaining jQuery Object
Operations

$("div#content") .children("p:first").css("font-

=weight",
"bold") .children("span"). css("color","red");

One of the great things about jQuery objects is that
you can chain multiple jQuery operations together
into a single statement. Each consecutive statement
operates on the results of the previous operation in the
chain. This can simplify your selectors as well as reduce
the amount of class and ID definitions required in
your CSS.

To help illustrate this, consider the following state-
ments. The code first finds the <div> element with

75

76

CHAPTER 4 Accessing HTML Elements

id="content" and then finds the first <p> element inside
and changes the font-weight to bold. Then it finds the
 elements inside the <p> and sets the color to
red:

var $contentDiv = $("div#content");

var $firstP = $contentDiv.children("p:first");
$firstP.css("font-weight","bo1d");

var $spans = $firstP.children("span");
$spans.css("color","red");

The previous code took five lines to accomplish all its
tasks. The following statement of chained jQuery
operations does the same things but with only a single
statement:

$("div#content™).children("p:first").css("font-
=weight","bold").children("span").
css("color","red");

Because each of the operations returns a jQuery
object, you can chain as many jQuery operations
together as you would like. Even though the .cssQ
operation is designed to alter the DOM objects and
not find them, it still returns the same jQuery object
so you can perform other operations on the results.

Navigating jQuery Objects to
Select Elements

Another important set of methods attached to a
jQuery object is the DOM traversing methods. DOM
traversal allows you to select elements based on their
relationship to other elements. A couple of examples of
DOM traversal are accessing all <p> elements that are

Navigating jQuery Objects to Select Elements

children of <div> elements and finding a <label> ele-
ment that is a sibling of an <input> element.

jQuery object provides an incredible set of methods
that allow you to traverse the DOM in almost innu-
merable ways by allowing you to use the current selec-
tion of DOM elements in the jQuery object to select
other sets of DOM elements in the tree. The following
phrases provide some examples of traversing the DOM
elements in jQuery objects to get to other sets of
objects.

Getting the Children of Elements

$C"div") .children("p");
//selects the <p> elements that are direct

=children
//of <div> elements

The .children([selector]) method returns a jQuery
object representing the children of the elements repre-
sented by the current object.You can specify an
optional selector that limits the results to only include
children that match the selector.

Getting the Closest Elements

$("p.menu") .closest("div");

//selects the closest <div> ancestor for <p>
//elements that have class="menu"

The .closest(selector, [context] or object or ele-
ment) method returns a jQuery object representing the
first element that matches the argument that is passed
in. The argument can be a selector, a selector with
context of where to begin searching, a jQuery object,
or a DOM object. The search begins at the current set
of elements and then searches ancestors.

7

78

CHAPTER 4 Accessing HTML Elements

Getting the Elements Contained

$("div").contents();
//selects all the immediate child elements in
= <div> elements

$("select").contents(Q);
//selects all the <option> elements in <select>
=elements

The .contents() returns a jQuery object representing
the immediate children of the current set of elements.
This is especially useful when getting all the <1i> ele-
ments in a list or the <option> elements in a <select>

block.

Finding Descendant Elements

$("table").find("span')
//selects all elements contained
//somewhere in <table> elements

$("#myForm") . find("input")
//selects all <input> elements contained
//somewhere in element #myForm

The .find(filter) method returns a jQuery object
representing descendants of the current set that match
the filter supplied. The filter can be a selector, a
jQuery object to match elements against, or an ele-
ment tag name.

Example: Selects all elements contained some-
where in <table> elements.

Navigating jQuery Objects to Select Elements

Getting Siblings That Come After
Selected Objects

$("#title") .next("p");
//finds the element with id="title" and selects
//the very next <p> element that 1is a sibling
$("p:first™).nextA11Q;
//selects the first <p> element that it finds and

//then selects all the <p> siblings to that
=element
$("p:first").nextUntil("ul");

//selects the first <p> element that it finds and

//then selects all the siblings until it finds a
w element

The .next([selector]) method returns a jQuery
object representing the next sibling of each element in
the current set. If the optional selector is provided, the
next sibling is added only if it matches the selector.

The .nextA11([selector]) method returns a jQuery
object representing all the following sibling objects of
each element in the current set. Also accepts an
optional selector.

The .nextUntil([selector] or [element] [,filter])
method returns a jQuery object representing all the
sibling objects after each element in the current set,
until an object matching the element or selector argu-
ment is encountered. The first argument can be a
DOM object or a selector. The second optional argu-
ment is a filter selector to limit the items returned in
the results.

79

80

CHAPTER 4 Accessing HTML Elements

Getting the Positioning Parents

$("#notify") .offsetParent();
//selects the element with id="notify" and then

=selects
//the ancestor that 1is used to position that
=element

The .offsetParent() method returns a jQuery object
representing the closest ancestor element that has a
CSS position attribute of relative, absolute, or fixed.
This allows you to get the element used for position-
ing, which becomes critical when you need to get the
size of the position container.

Finding the Parent or Ancestors of
Selected Items

$("div#menu") .parent();
//selects the <div> element with id="menu" and
// then finds its immediate parent

$("#data") .parents("div'");

//selects the element with id="data" and then

//returns a set with all <div> ancestors
$("#data") .parentsUntil ("#menu") ;

//selects the parents of #data until

//it finds the one with id="#menu"

The .parent([selector]) method returns a jQuery
object representing the immediate parent objects of
each of the elements represented in the current set. An
optional selector argument allows you to limit the
results to those parents matching the selector.

The .parents([selector]) method returns a jQuery
object representing the ancestors of each of the ele-
ments represented in the current set. An optional
selector argument allows you to limit the results to
those parents matching the selector.

Navigating jQuery Objects to Select Elements

The .parentsUntil([selector] or [element] [,
filter]) method returns a jQuery object representing
the ancestors of each of the elements represented in
the current set, until an object matching the element
or selector argument is encountered. The first argu-
ment can be an element tag name or a selector. The
second optional argument is a filter selector to limit
the items returned in the results.

Getting the Previous Siblings

$("p#footer") .prev("p'")
//Finds the <p> element with id="footer" and
//selects the previous <p> element that 1is a
=sibling
$("div#footer") .prevAll ("div'");
//selects the <div> element with id="footer" and
wthen

//selects all the <div> siblings prior to that
=element
$("div#footer") .prevUntil ("div#header") ;

//finds the <div> element with id="footer" and
=then

//selects all prior siblings until #header is
= found

The .prev([selector]) method returns a jQuery
object representing the previous sibling of each ele-
ment in the current set. If the optional selector is pro-
vided, the previous sibling is added only if it matches
the selector.

The .prevAl1([selector]) method returns a jQuery
object representing all the previous sibling objects of
each element in the current set. It also accepts an
optional selector.

The . prevUntil([selector] or [element] [,filter])
method returns a jQuery object representing all the
sibling objects that come before each element in the

81

82

CHAPTER 4 Accessing HTML Elements

current set, until an object matching the element or
selector argument is encountered. The first argument
can be a DOM object or a selector. The second
optional argument is a filter selector to limit the
items returned in the results.

Getting Siblings

$(".menu").siblings("span")

//selects all elements that are
//siblings to elements with class="menu"

The .siblings([selector]) method returns a jQuery
object representing all the sibling objects for each ele-
ment in the current set. An optional selector argu-
ment allows you to limit the results to those siblings
matching the selector.

®

Manipulating the
JQuery Object Set

An important aspect of jQuery objects is the ability
to access and manipulate the set of DOM elements
that are represented by the object. This is difterent than
manipulating the DOM elements themselves.

jQuery provides several methods that allow you to
modify which DOM elements are represented by the
jQuery object. There are also methods to iterate
through each element to build different elements or
apply other operations.

The following phrases are designed to show you how
to work with the jQuery object set in various ways.

84

CHAPTER 5 Manipulating the jQuery Object Set

Getting DOM Objects from a
jQuery Object Set

$C'div").getQ;
//returns an array of DOM object for all <div>
=elements

$C"div") .get(0);

//returns a DOM object for the first <div>
$C"div").get(-1);

//returns a DOM object for the last <div>

The .get([index]) method returns the DOM elements
represented in the jQuery object set. If no index is
specified, an array of the DOM objects is returned. If
an index is specified, the DOM element at that zero-
based offset in the array is returned.

If the index is a negative number, the item at the
reverse offset from the end of the array is returned. For
example, —1 is the last item and —2 is the second to the
last item.

Converting DOM Objects into
jQuery Objects
var containerObj = document.getElementById('"myDiv");

$(containerObj); //Equivalent to $("#myDiv'");
var objs =

=document.getElementsByClassName("'myClass");
$(objs); //Equivalent to $(".myClass ");

var objs = document.getElementsByTagName(''div");
$(Cobjs); //Equivalent to $('div");

The jQuery constructor $O accepts DOM objects and
arrays as an argument. If you pass in a DOM object,
$O converts the DOM object or array into a jQuery
object that you can then manipulate in the normal

jQuery way.

Iterating Through the jQuery Object Set Using .each()

Iterating Through the jQuery
Object Set Using .each()

$("p") .each(function (idx){

$(this) .htm1("This 1is paragraph " + {idx);
b

The .each(function) method is one of the most
important jQuery object methods because it allows
you to traverse all elements in the jQuery set and per-
form actions on each of them individually. This is dif-
ferent from just applying the same action to all items
in the query.

The .each() method allows you to specify a function
to run for each element in the jQuery object set. The
function is passed an index number as the first argu-
ment. Inside the function, the this variable points to
the current DOM element.

To illustrate using .eachQ), check out the following
snippet of code. It iterates through all paragraph ele-
ments and sets the content of the empty <p> elements
to a string that includes the index number of the ele-
ment, as shown in Figure 5.1:

01 <html>

02 <head>

03 <title>Python Phrasebook</title><meta
wcharset="utf-8" />

04 <script type="text/javascript" src="../js/jquery-
=2.0.3.min.js"></script>

05 <script>

06 $(document) . ready(function ({

07 $("p") .each(function (idx){

08 $(this) .htm1("This is paragraph " + idx);
09 5Ds

85

86

CHAPTER 5 Manipulating the jQuery Object Set

10 B;

11 </script>
12 </head>

13 <body>

14 <p></p>
15 <p></p>
16 <p></p>
17 <p></p>
18 </body>
19 </html>
ch0501.html

This is paragraph 0

Thas 1z paragraph 1
Thus iz paragraph 2

Thas 1z paragraph 3

Figure 5.1 Results of running the ch0501.html code.

Notice that idx is passed in as an index number, O for
the first <p> element, 1 for the second, and so on. Also
note that I converted this to a jJQuery object using
$(this) so that I could call the .htm1() method.

By the way

When using functions with jQuery methods that iterate
through the DOM elements, you can use the this key-
word to access the current DOM object that is being
iterated on. this is a DOM object and not a jQuery
object, so if you need to use the jQuery form of the
DOM object, use $(this). Keep in mind, though, that it
takes work to build the jQuery form of the DOM object,
so only create the jQuery form if you want the function-
ality that is provided.

Using .map(Q) 87

Using .map()

var 1iValues = $("1i").map(function (idx){

return $(this).htm1(Q;
P.getQ;

The .map(function) method also iterates through each
element in the jQuery object set. Although similar to
.eachQ), there is one big difference: .each(returns the
same jQuery object, but .map(Q) returns a new jQuery
object with the values returned by each iteration.

To illustrate using .map(), check out the following
snippet of code. This code iterates through all <1i> ele-
ments and returns an array containing the HTML
content values inside the <1i></1i> elements shown in
Figure 5.2:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function (O{

09 var 1iValues = $("1i").map(function (idx){
10 return $(this).htm1(Q;

11 1} .getQ;

12 b

13 </script>

14 </head>

15 <body>

16

17 Aragorn</1i>

18 Legolas</1i>

19 <1i>Gimli</Ti>

88

CHAPTER 5 Manipulating the jQuery Object Set

20
21 </body>
22 </html>

ch0502.html

[
"Aragorn",
"Legolas",
"Gimli"

Ending value of 1iValues

® Aragomn

s Legolas
* Cimli

Figure 5.2 Results of running the ch0502.html
code.

Notice that during each iteration, the function returns
the HTML content in the <1i> element. This value is
added to the mapped object set that the .mapQ
method returns. The .get() call at the end gets the
JavaScript array object represented in the mapped set.

Assigning Data Values to Objects

Assigning Data Values to
Objects

$("1i:eq(0)") .data("race","Men");
$("1i:eq(1)") .data("race","Elves™);
$("1i:eq(2)") .data({race:"Dwarves"});

$(C"1i") .each(function(){
$(this).append(" of the race of ");
$(this) .append($(this) .data("race"));
{9

jQuery provides the .data(key [,value]) method to
store pieces of data as key=value pairs inside the DOM
object. This allows you to attach additional pieces of
data to the object that you can access later.

There is an alternate form of .data(object) that
accepts JavaScript objects containing the key value
pairs. This becomes useful when you are already work-
ing with objects.

To access a data item once it has been stored, simply
call .data(key), which returns the object value.You
can attach data to any kind of HTML object. For
instance, you can attach additional data to select
<option> elements that provide more information than
the traditional values support.

The following code shows an example of storing data
in objects. Line numbers 9-11 store data in <11i> ele-
ments. Then each function in lines 1215 iterates
through the <1i> elements and appends a string with
the stored value onto the content. Figure 5.3 shows
the resulting HTML page:

89

90

CHAPTER 5 Manipulating the jQuery Object Set

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) . ready(function ({

09 $("1i:eq(0)"™).data("race","Men");

10 $("1i:eq(1)™) .data("race","Elves");
11 $("1i:eq(2)").data("race", "Dwarves");
12 $("11") .each(function(){

13 $(this).append(" of the race of ");
14 $(this).append($(this).data("race"));
15 s

16 e

17 </script>

18 </head>

19 <body>

20

21 Aragorn</1i>

22 Legolas</1i>

23 <1i>Gimli</Ti>

24

25 </body>

26 </html>

ch0503.html

® Aragomn of the rare of Men
® Legolas of the race of Elves
® Gimb of the race of Dwarves

Figure 5.3 Results of running the ch0503.html
code.

Removing Objects from the jQuery Object Set

Adding DOM Elements to the
jQuery Object Set

var pars = $("p');
//contains all <p> elements
var pAndDiv = $("div").add(pars);

//contains all <div> and <p> elements
var pAndDivAndSpan = $("span").add("p").add("div'");
//contains all and <div> and <p> elements

A great feature of jQuery is how easy it is to add addi-
tional elements to the jQuery object set. The
.add(selector) method adds elements that match the
selector to the set represented by the jQuery object.

The .add(object) method accepts another jQuery
object and adds the elements in that object to the cur-
rent object’s set.

Removing Objects from the
jQuery Object Set

var items = $("span');
items.css({color:"red"});
//colors text in all elements red

items.remove(".menu"):
items.css({"font_weight":"bold"});
//set all elements except .menu to bold

Another great feature of jQuery is how easy it is to
remove items from and add additional elements to the
jQuery object set. The .remove([selector]) method
will remove elements that match the selector from
the set represented by the jQuery object. Calling
.remove() with no selector will remove all elements
from the set.

91

92

CHAPTER 5 Manipulating the jQuery Object Set

Filtering the jQuery Object
Results

jQuery objects provide a good set of methods that
allow you to alter the DOM objects represented in the
query. Reducing the results is helpful when you are
trying to pinpoint a specific set of elements within a
jQuery selector result. The following phrases provide
examples of filtering the results of a jQuery selector to
find the set of objects.

Filtering Items Based on Index

$("div#content").eq(l);
//selects the second element found by the selector

The .eq(index) filter will return the element at a spe-
cific index in the jQuery object’s set. The index is zero
based, so .eq(1) actually retrieves the second element
found by the selector.

Filtering Selector Results Using a
Filter Function
$("option").filter(

function (index) {
return (this.value>5); 1);

//selects only the <option> elements with value=5
$C"div") . filter(".myClass™);

//selects only the <div> elements with
wclass=""myClass"

The .filter(filter) method reduces the set to only
those items matching the specified filter. The filter can
be a selector, a specific DOM element, a jQuery
object, or a function that tests each element and
returns true if it should be included.

Filtering the jQuery Object Results

Did you know?

The jQuery selectors that are the same as the CSS
selectors are able to use the native DOM method
querySelectorAl11(), which has some advanced opti-
mizations on DOM objects. Other jQuery selectors
cannot take advantage of that optimization, so it is
better to use a CSS-based selector first and then add
the filter as a chained selector. For example, rather
than using $("div:animated"), you should use
$C"div'") . filter(":animated").

Getting the First or Last Item

$("p").first(Q); //selects the first <p> elmemnt in
=the set

$("p").last(); //selects the last <p> elmemnt in the
wset

The .first() method selects the first element in the
jQuery object’s set. Many of the jQuery methods that
return values end up using the first element in the set.
The .1ast() method selects the last element in the
jQuery object’s set.

Getting Items That Contain Other
ltems

$C"div") .has("p");
//selects <div> element that has <p> descendents
$C"div") .has("#menu");

//selects <div> element that contains
//the element that has id="menu"

The .has(selector or element) method reduces the
set to those elements that have descendent elements
that match the selector or contain the specified DOM
element.

93

94

CHAPTER 5 Manipulating the jQuery Object Set

Filter Items Out Using Not Logic

$C"div") .not(".menu);
//selects <div> element; do not have class .menu
$("option").not(function(){

return (this.value==0); });
b;

//selects <option> elements that do not have
wvalue=0

The .not(filter) method reduces the set to match the
filter.The filter can be a selector, one or more spe-
cific DOM elements, a jQuery object, or a function
that tests each element and returns true if it should be
included.

Slicing Up Selector Results

$C'tr'").slice(2,5);
//selects the <tr> elements between 2 and 4
winclusive

$("p").slice(1,-1);
//selects all <p> elments except the first and
=Jast

The .slice(start, [end]) method removes elements
before index start and after index end and returns
only the items in between. This allows you to break
large selections into smaller chunks. The indexes are
zero based. A negative end indicates the offset from the
end of the list, where —1 is the last element and —2 is
the second to the last element.

O

Capturing and
Using Browser and
User Events

One of the major goals of jJQuery and JavaScript is to
allow developers to create incredibly sophisticated and
richly active web pages. At the heart of interactive web
pages are events. An event refers to anything happening
in the browser environment, from a page loading, to a
mouse movement or click, to keyboard input, to resiz-
ing of the window.

Understanding events, the objects that represent them,
and how to apply them in your web pages will enable
to you to create some spectacular user interaction. This
chapter covers the concepts required to understand
events and how to utilize them in building rich, inter-
active web pages.

The phrases in this chapter are designed to show you
how the JavaScript event engine works and how to
apply JavaScript and jQuery code to implement event
handlers. You will be able to apply the concepts in this
chapter with concepts from other chapters to imple-
ment professional and rich user interactions.

96

CHAPTER 6 Capturing and Using Browser and User Events

Understanding Events

The browser event concept is pretty simple. An event
is anything that alters the state of the browser or web
page. These include loading of the page, mouse move-
ments and clicks, keyboard input, as well as form sub-
missions and other things occurring in the page. Each
event has an event object that describes the event that
took place and what object it took place on.

This section provides a few tables to help you get a
quick overview of what event objects look like, what
some of the more common events triggered in
JavaScript are, and what triggers them.

Reviewing Event Types

An event type is a keyword that JavaScript and jQuery
use to identify the physical event that took place. These
keywords are used to attach handlers to specify types
of events. Also, as you will see later on, the keywords
are used in the names of methods so that you can
attach event handlers or trigger events manually.

JavaScript provides several event types that correspond
to the different events that occur during dynamic page
interaction. jQuery event handling supports all the
JavaScript and adds a few event types of its own. Table
6.1 lists the different event types that JavaScript and

jQuery support.

Table 6.1

Understanding Events

JavaScript and jQuery Event Types

Event Type

abort

blur

change

click

dbTcTick

error

focus

focusin

focusout

keydown
keypress
keyup
Toad

Description

Triggered when an image load is stopped
before completing.

Triggered when a form element loses
focus.

Triggered when the content, selection, or
check state of a form element changes.
Applies to <input>, <select>, and
<textarea> elements.

Triggered when the user clicks on an
HTML element.

Triggered when the user double-clicks
on an HTML element.

Triggered when an image does not load
correctly.

Triggered when a form element gets the
focus.

Triggered when a form element or any
element inside of it gets the focus.
Different from focus in that it supports
bubbling up to parents. This is a jQuery-
only event.

Triggered when a form element or any
element inside of it loses the focus.
Different from blur in that it supports
bubbling up to parents. This is a jQuery-
only event.

Triggered when a user is pressing a key.
Triggered when a user presses a key.
Triggered when a user releases a key.

Triggered when a document, frameset, or
DOM element is loaded.

97

98

CHAPTER 6 Capturing and Using Browser and User Events

Table 6.1 Continued

Event Type

mousedown

mousemove

mouseover

mouseout

mouseup

mouseenter

mouseTleave

reset

resize

Description

Triggered when a user presses a mouse
button. The target element is the one the
mouse is over when the button is
pressed.

Triggered when the mouse cursor is
moving over an element.

Triggered when the mouse cursor moves
onto an element or any of its descen-
dants.

Triggered when the mouse cursor moves
out of an element or any of its descen-
dants.

Triggered when a user releases a mouse
button. The target element is the one
that the mouse is over when the button
is released.

Triggered when the mouse cursor enters
an element. Different from mouseover in
that it 1s triggered only by the element
and not its descendants. This is a jQuery-
only event.

Triggered when the mouse cursor leaves
an element. Different from mouseout in
that it is triggered only by the element
and not its descendants. This is a jQuery-
only event.

Triggered when a form is reset.

Triggered when the document view is
resized by resizing the browser window
or frame.

Adding Event Handlers

Event Type Description

scroll Triggered when a document view is
scrolled.

select Triggered when a user selects text in an
<input> Or <textarea>.

submit Triggered when a form is submitted.

unload Triggered when a page is unloaded from

the <body> or <frameset> element.

Adding Event Handlers

An event handler is a function that is called when the
event is triggered. The event object is passed to the
event handler so you will have access in the event han-
dler to information about the event.

The following phrases show ways to add event han-
dlers in HTML, JavaScript, and jQuery.

Adding a Page Load Event Handler
in JavaScript

<script>
function onloadHandler(){
(initialization code here...)
}

</script>

<body onload="onloadHandler()>

To add initialization code that runs when the pages are
loaded in JavaScript, create a function in JavaScript that
performs the initialization. For example, the following
JavaScript code shows a simple skeleton initialization
function:

99

100 CHAPTER 6 Capturing and Using Browser and User Events

function onloadHandler(){
(initialization code here...)

3

To cause the onloadHandler() to trigger when the page
is fully loaded, add the event hander function to the
onload attribute of the <body> element in the HTML.
For example:

<body onload="onloadHandler()>

Adding Initialization Code in jQuery

$ (document) . ready (function() {
(initialization code here...)
}

or

$ (document) . Toad(function() {
(initialization code here...)

}

In jQuery, you can trigger and execute initialization

code at two different times: when the DOM is ready,
and when the document and its resources have fully

loaded. The option to use depends on what needs to
happen in your initialization code.

Using the .ready() jQuery method triggers the initial-
ization code to run when the DOM is fully ready. All
the DOM objects will be created, and the page will be
displayed to users. Note that not all page resources,
such as images, may have fully downloaded at this
point. This 1s the option that I use most frequently
because it allows me to add interactions and function-
ality as soon as possible. The following shows an exam-
ple of using .ready() to attach a simple initialization
function:

Adding Event Handlers

$(document) . ready(function(){
(initialization code here...)

3

Using the .load() jQuery method triggers the initial-
ization code to run after all page resources have loaded
and are rendered to the user. On occasion, I use this
option if I need resource information, such as image
dimensions, when I am applying the initialization
code. The following code shows an example of using
Toad() to attach a simple initialization function:

$(document) . Toad(function(){
(initialization code here...)

}

Watch out!

The .ready() and .Toad() methods are not compati-
ble with using the onload="..." attribute in the <body>

tag. If you are using jQuery, use .ready() or .load();
if not, use the onload attribute.

Assigning an Event Handler in
HTML

function clickHandler(e){
$C"div") .html ("clicked at X postion: " +
we.screenX);

}

<div onclick="clickHandler(event)">Click Here</div>

The most basic method of adding an event handler to
a DOM element 1s directly in the HTML code. The
advantage of this method is that it is simple and easy to

101

102

CHAPTER 6 Capturing and Using Browser and User Events

see what event handler is assigned to a particular
DOM object.

Event handlers are added to DOM objects in HTML
by setting the value of the handler attribute in the tag
statement. For each event that the element supports,
there is an attribute that starts with on followed by the
name of the event. For example, the click event attrib-
ute 1s onclick, and the Toad event attribute is onload. To
view a list of the event types, see Table 6.1.

The following example shows just how easy it is to
add a click event handler to a DOM element in the
HTML code:

<div onclick="clickHandler()">Click Here</div>

The browser will call the following function when you
click the <div> element:

function clickHandler(){
$C"div") .html ("clicked");
}

You can also include the DOM event object as a
parameter to the event handler using the event key-
word. This allows you to access the event information
in the event handler, for example:

<div onclick="cTickHandler(event)">Click Here</div>

The browser will call the following function when the
<div> element is clicked and change the text to display
the x coordinate of the mouse cursor by reading
e.screenX:

Adding Event Handlers

function clickHandler(e){
$C"div").html("clicked at X postion: " +
we.screenX);

3

Adding Event Handlers in
JavaScript

function clickHandler(e, data){
(Event Handler Code)
}

document.getElementById("divl").addEventListener
- ('click',
function(e){
eventHandler(e,"data");
},false);

You can also dynamically add and remove event han-
dlers to DOM objects inside JavaScript code. To add an
event handler in JavaScript, simply call
addEventListener() on the DOM object.

The addEventListener() function takes three parame-
ters. The first is the event type (event types are defined
in Table 6.1), a function to call and a boolean that
specifies true if the handler should be called during
the capturing phase and the bubbling phase or false if
the handler should be called only during the bubbling
phase.

To pass custom data into the handler call, wrap the
actual function handler inside of a simple wrapper
function that passes the arguments to the event
handler.

For example, the following code calls the click handler
with additional information, including the ID of a dif-
ferent object that is updated:

103

104

CHAPTER 6 Capturing and Using Browser and User Events

function clickHandler(e,objId,num,msg){
var obj = document.getElementById(objId);
obj.innerHTML = "DIV " + num + " says " + msg +"
=at X postion: " + e.screenX;

3

document.getElementById("divl").addEventListener
w('click',
function(e) {
eventHandler(e, "heading", 1, "yes");
},false);

By the way

You can also set the access event handler on the DOM
object using the handler attribute. The handler attribute
will be “on” plus the event type. For example, for the
click event, the attribute is obj.onclick. You can call
the event handler using obj.onclick() or assign it
directly using obj.onclick= function handler(){

P

Removing Event Handlers in
JavaScript

var obj = document.getElementById("divl");
obj.addEventListener('click', clickHandler);

obj.removeEventListener('click', clickHandler);

You can also remove event handlers from the event
using the removeEventListener() function on the
DOM object. You need to specify the event type and
the name of the event handler to remove. For example,
the following code adds an event handler and then
removes it:

Adding Event Handlers

function clickHandler(e){

}
var obj = document.getElementById("divl™);
obj.addEventListener('click', clickHandler);

Adding Event Handlers in jQuery

$C"div").on("click", "span", {name:"Brad",
w=number:7},

function(e){
(event handler code here)

b:

Events are added in jQuery using the

.on(events, [,selector][,data]lhandler(eventObject)
method. This method accepts one or more event types
such as those listed in Table 6.1 as the first argument.

The optional selector value defines the descendant
elements that trigger the event. Any descendant ele-
ments that match the selector also trigger the event.

The data object is anything that you want to pass to
the event handler in the event.data attribute. Typically,
this is either a single value or a JavaScript object.
However, anything is accepted.

The handler function is the function to be executed
when the event is triggered. The eventObject is passed
to the handler function and provides you with the
details about the event.

The great thing about using jQuery to add event han-
dlers is that you get to use the jQuery selector func-
tionality. For example, to add the click handler to the
first paragraph in the document, you would use the
following;:

105

106

CHAPTER 6 Capturing and Using Browser and User Events

$("p:first").on("click", function(e){ (event handler
wcode here) 1}):

Or to add a keyup event handler to all <input> ele-
ments with the .texting class set, you would use this:

$("input.texting").on("click", function(e){ (event
whandler code here) }):

Another example that adds a click event handler to all
<div> elements that is also triggered on descen-
dants and passes an object follows:

$C"div").on("click", "span", {name:"Brad",
wnumber:7},
function(e){
(event handler code here)

P

Removing Event Handlers in jQuery

$C"div") .of f("keypress"):
or
$C"div") .off("click", "span",

function(e){
(event handler code here)

b:

Removing an event handler in jQuery is extremely
easy using the .off(events[,selector][,handler
(eventObject)]) method. This method has similar argu-
ments to the .onQ) event handler. The arguments
match so closely so that you can add multiple event
handlers to elements. Using the arguments helps
jQuery know which event matches the one you want
to turn off.

Controlling Events

Controlling Events

An important aspect of handling JavaScript is the abili-

ty to control the event behavior. The following list

describes the event process that happens when a user

interacts with the web page or browser window.

1.

2.

4.

Physical event happens—A physical event
occurs. For example, a user clicks or moves the
mouse or presses a key.

Events are triggered in the browser—The
user interaction results in events being triggered
by the web browser. Often, multiple events are
triggered at the same time. For example, when a
user presses a key on the keyboard, three events
are triggered: keypressed, keydown, and keyup.

Browser creates an object for the event—
The web browser creates a separate object for
each event that is triggered. The objects contain
information about the event that handlers can use.

User event handlers are called—User-defined
event handlers are called.You can create handlers
in JavaScript that interact with the event objects
or page elements to provide interactivity with
HTML elements. The event handlers can be act-
ing in three phases. The following describes the
three phases shown in Figure 6.1:

= Capturing—The capturing phase occurs on
the way down to the target HTML element
from the document directly through each of
the parent elements. By default, behavior for
event handlers for the capturing phase is

disabled.

107

108 CHAPTER 6 Capturing and Using Browser and User Events

s Target—The target phase occurs when the
event is in the HTML element where it was
initially triggered.

= Bubbling—The bubbling phase occurs on
the way up through each of the parents of the
target HTML element all the way back to the
document. By default, the bubbling phase is
enabled for events.

5. Browser handlers are called—In addition to
user event handlers, the browser has default han-
dlers that do different things based on the event
that was triggered. For example, when the user
clicks on a link, the browser has an event handler
that is called and navigates to the href location
specified in the link.

Capturing Bubbling
Phase Phase

Document

mnce?ors

= = m o mim = = o= mm o= - L |
| Parent

Target Phase

Figure 6.1 Events are handled first in the captur-
ing phase from the document down to the target,
then in the target phase, and finally in the bubbling
phase from the target up through the document.

Controlling Events

The following phrases describe ways to interact with
and control the event process.

Stopping Event Bubbling Up to
Other Elements

function myEventHandler(e) {
...handler code...

e.stopPropogation();
return false;

H

Often, you don’t want an event to bubble up to parent
objects because you have already handled it in a child
object. JavaScript provides a simple way to stop bub-
bling from occurring. Calling the
event.stopPropagation() method on the event object
passed to the handler stops the event from bubbling up
to parent elements. The event still triggers the default
handlers in the browser that provide the web page
interaction, such as selecting a check box or activating

a link.

Stopping Default Behavior

function myEventHandler(e){
...handler code...

e.preventDefault();
return false;

H

Occasionally, you might want to prohibit the browser
from applying the default handler interaction for the
event. For example, you might not want the browser
to activate a link, or you might not want to allow a
form to be reset.You can stop the default browser
action by calling the event.preventDefault() method
on the event object passed to the handler.

109

110 CHAPTER 6 Capturing and Using Browser and User Events

Triggering Events Manually in
jQuery

$("span') .mouseenter();
$("#myButton").clickQ;

$("input.bigText").trigger({'type': 'keypress’',
w 'charCode':13});

jQuery objects have methods such as click() and
db1click () that correspond to many of the event types
that you can call directly. Form elements add additional
methods such as blur(), focus(Q), keypress(), keydown(),
and keyup() that can be called to trigger specific
events. For example, the following statement triggers
the click event for all elements:

$("span").click(Q;

jQuery also provides a way to trigger events while
specifying the values of the event object using the
trigger() method. There are two different syntaxes for
the trigger() method, as listed here:

trigger(eventType [, extraParameters])
trigger(eventObject)

The following is an example of using the first method
to trigger the click event for all elements with
class="checkbox":

$(".checkbox").trigger("click");

Next is an example of using the second method on all
input items with class="bigText". This method actually
passes in a simple event object for the keypress event
that sets the charCode attribute of the event object to
13 or the Return key.

Using Event Objects

$("input.bigText").trigger({'type': 'keypress',
= 'charCode':13});

Using Event Objects

The browser creates event objects when it detects that
an event has occurred. If jQuery defined the event
handler, the event object is converted to a jQuery
event object that has a few more attributes and meth-
ods. Therefore, you need to be aware of which event
object type you are working with.

Event objects provide additional information about the
event, such as what type the event was (such as a click
or a keypress), which key(s) were pressed, what posi-
tion the mouse was in, what HTML element the event
occurred on, and so on.Table 6.2 describes the most
commonly used event attributes that you will be
working with.

Table 6.2 JavaScript and jQuery Event Object
Attributes

Property Description

altKey true if the Alt key was pressed dur-
ing the event; otherwise, false.

button Returns the number of the mouse
button that was pressed: O for left, 1
for middle, and 2 for right.

cancelable true if the default action for the
event can be stopped; otherwise,
false.

charCode Ordinal value of the character that

was pressed if it is a keyboard event.

111

112

CHAPTER 6 Capturing and Using Browser and User Events

Table 6.2 Continued

Property

clientX

clientY

ctrlKey

currentTarget

data

delegateTarget

eventPhase

metaKey

Description

Horizontal coordinate of the mouse
pointer relative to the current
window.

Vertical coordinate of the mouse
pointer relative to the current win-
dow.

true if the Ctrl key was pressed dur-
ing the event; otherwise, false.

The DOM object for the HTML
element that the event handler cur-
rently being executed is attached to.

User data defined when the event
object is created and is attached to
the event object passed to the event
handler when the event is triggered.

The DOM object of the HTML
element that was used in the jQuery
.delegate() or .on() method to
attach the event handler. (.on() and
.delegate() are discussed later in this
chapter.) Available only on jQuery
event objects.

The current phrase that the event
handler is operating in, where 1 is at
the target, 2 is bubbling, and 3 is
capturing.

true if the “meta” key was pressed
during the event; otherwise, false.

Property

relatedTarget

results

screenX

screenY

shiftKey

target

type

timeStamp

which

Using Event Objects

Description

Identifies a secondary target relative
to the UI event. For example, when
uSing the mouseover and mouseexit
events, this indicates the target being
exited or entered.

Last value returned by an event han-
dler that was triggered by this event.
Awvailable only on jQuery event
objects.

Horizontal coordinate based on the
actual display coordinate system.
Vertical coordinate based on the
actual display coordinate system.
true if the Shift key was pressed dur-
ing the event; otherwise, false.

The DOM object for the HTML
element where the event originated.
Text describing the event, such as
click or keydown.

Time in ms since January 1, 1970,
and when the event was triggered.

Actual numerical value.

The following phrases provide examples of utilizing

the data in the event object.

113

114

CHAPTER 6 Capturing and Using Browser and User Events

Getting the Event Target Objects

function myHandler(e){

//get the value of the object that triggered the
=event

var originalValue = $(e.target).val(Q;

//get the value of the current object

var currentValue = $(e.currentTarget).valQ;
//get the inner HTML of the current object
var currentHTML = $(this).htm1Q);

The event object provides a link to the DOM object
that originally triggered the event as the event .target
attribute. The event object also provides a link to the
DOM object that triggered the current event handler
as the event.currentTarget attribute. Having access to
these objects is useful because it allows you to obtain
additional information, such as checked state or value.

The object that triggered the event handler is also
available using the this keyword. For example, you can
get the inner HTML value of the element using the
following:

var currentHTML = $(this).html1(Q);

Getting the Mouse Coordinates

function myHandler(e){

$("#pl") .html ("From left side of screen: " +
we.screenX);

$("#p2") .html ("From right side of screen: " +
we.screenX);

$C"#p3") .html ("From left side of browser: " +
we.clientX);

$("#p4") .html ("From right side of browser: " +
we.clientY);

}

Handling Mouse Events

For many graphical web apps, it is critical to not only
know what target mouse events originated in, but the
exact location on the screen or in the web browser
display. The JavaScript mouse event object includes the
event.screenX and event.screenY attributes that allow
you to get the offset from the top and left of the
screen in pixels.

Additionally, the JavaScript mouse event includes the
event.clientY and event.clientY attributes that allow
you to get the offset from the top and left of the
browser window in pixels. These are often the more
important coordinates because they help establish the
mouse position in relation to the web page.

Handling Mouse Events

The most common events that occur in web browsers
are mouse events. Each movement of the mouse is an
event. Events also include a mouse entering or leaving
an HTML element and mouse clicks and scrolls. The
phrases in this section give you some examples of uti-
lizing the mouse events in your JavaScript and jQuery
code.

Adding Mouse-Click-Handling Code

$("p").on("click", function (e){
$(this) .htm1("You clicked here.");
s

span") .on("dblclick", function (e){
$(this).html1("You double-clicked here.™);
b

To register a click handler in jQuery, you should use
the .on("click") or .on("dblclick") method. Inside
the handler function, you can perform whatever event

115

116

CHAPTER 6 Capturing and Using Browser and User Events

functionality your application requires. It is easy to
apply the click handler to multiple objects using
jQuery selectors. For example, the following applies a
click handler to all <div> elements:

$("div").on("click", function (e){
$(this).html1("You clicked here.");
5D

Handling the Mouse Entering or
Leaving Elements

$("p") .on("mouseover", function (e){
$(this) .html1 ("Hello mouse.™);
b;

$("p") .on("mouseout", function (e){
$(this) .htm1("Wait, don't go.");
b;

The browser provides an event each time the mouse
enters or leaves an element. The standard JavaScript
events are mouseover and mouseout, SO you can use
.on("mouseover") to add an event handler for the
mouse entering an element and .on("mouseout") to
add an event handler for when the mouse leaves.

Applying a Right-Click

$("#menu") .hide(Q);

$("#main") .on("mousedown", function(e){
if(e.button == 2){ $("#menu").showQ; } });

$("#main") .on("mouseup", function(e){

if(e.button == 2){ $("#menu").hideQ; } });
$('#main') .on("contextmenu", function(e){
return false; });

Handling Mouse Events

Applying a right-click to an element requires some
additional actions because the default browser action is
to bring up a right-click menu for the browser page.

The first thing you need to do in your event handler is
to determine which mouse button was clicked by
looking at the event.button attribute, which contains 0
for left, 1 for center, and 2 for right.

You also need to suppress the default browser
contextmenu behavior, as shown in lines 14 and 15, in
most instances to add your own right-click behavior.
The following code example demonstrates how to
implement the framework for your own custom popup
menu that is displayed only when you right-click, as
shown in Figure 6.2:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function(){

09 $("#menu") .hide(Q;

10 $("#main") .on("mousedown", function(e){
11 if(e.button == 2){ $("#menu").show(); }
-1);

12 $("#main") .on("mouseup", function(e){

13 if(e.button == 2){ $("#menu").hide(Q); }
-1);

14 $("#main') .on("contextmenu", function(e){
15 return false; })

16 194

17 </script>
18 </head>

117

118

CHAPTER 6 Capturing and Using Browser and User Events

19 <body>

20 <div id="main"> Right-Click Me

21 <div id="menu">

22 <p>Item 1</p><p>Item 2</p><p>Item 3</p>
23 </div>

24 </div>

25 </body>

26 </html>

ch0601.html

Right-Click Me | |Right-Chcl: IMe
Ttem 1
Ttem 2
Ttem 3

Figure 6.2 Right-licking on the text pops up a
simple list of items.

Handling Keyboard Events

An often forgotten event when working with web
pages 1is the keyboard event. However, keyboard events
can be some of the most useful, especially if you are
trying to make your web site feel more like a web app.

Users are accustomed to hot keys that perform difter-
ent functions and interactions as you enter data into
fields in applications. Keyboard events let you accom-
plish just that. The following phrases show you how to
detect keyboard input and utilize the event object to
determine which key(s) were pressed.

Handling Keyboard Events

Detecting Changes to Text Input
Elements

$("input[type=text]") .on("keypress",
function(){
$("#pl") .html ("Key Pressed"); });
$("input[type=text]") .on("keydown",
function(Q{

$C"#pl"™) .html ("Key 1is Down"); });
$("input[type=text]").on("keyup",
function(){
$("#pl").html ("Key is Up"); 1);

JavaScript provides three events that are triggered
when a key is pressed on the keyboard: keydown,
keypress, and keyup. These events allow you to capture
each keystroke into the text input.

For example, if you want to add an event handler that
is triggered each time a key is pressed in text input,
you could use the following:

$("input[type=text]").on("keypress",
function() {handler_code});

Did you know?

A useful trick when getting the text in a text box while
handling keyboard events to input elements is to use
the keyup instead of the keypress event. When the
keypress event is triggered, the value of the input box
may not include the typed key yet. However, if you use
the keyup event, the textbox value will always include
the typed key.

119

120 CHAPTER 6 Capturing and Using Browser and User Events

Determining What Key Was
Pressed

$("input[type=text]") .on("keypress",
function(e){
var s = "You Pressed ";
if (e.ctrlKey){ s += "CTRL + "; };
if (e.altKey){ s += "SHIFT + "; };

if (e.shiftKey){ s += "SHIFT + "; };
s += String.fromCharCode(e.charCode);
$("#pl") .html (s);

b

The event passed to the event keyboard event handler
includes the character code and the auxiliary key
information. To determine which key was pressed, use
the event.charCode attribute to get the character code.
You can convert the character code to a character
using the String.fromCharCode(code) method. For
example:

var charcter = String.fromCharCode(event.charCode);

To determine if the Ctrl, Alt, or Shift keys were
pressed, you can check the event.shiftKey,
event.altKey, and event.ctrlKey attributes. These are
boolean values that indicate whether that key was
pressed.

The following code shows an example of using the
event data to determine which key(s) were pressed and
display that information to the web page. Figure 6.3
shows the resulting web page interaction:

Handling Keyboard Events

01 <html>
02 <head>
03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />
05 <script type="text/javascript"
06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>
08 $(document) . ready(function(){
09 $("input[type=text]").on("keypress",
10 function(e){
11 var s = "You Pressed ";
12 if (e.ctriKey){ s += "CTRL + "; };
13 if (e.altKey){ s += "SHIFT + "; };
14 if (e.shiftKey){ s += "SHIFT + "; };
15 s += String.fromCharCode(e.charCode);
16 $("#p1l") .html(s);
17 s
18 55
19 </script>
20 </head>
21 <body>
22 <p id="pl"></p>
23 <input type="text" />
24 </body>
25 </html>
ch0602.html
You Pressed a You Pressed CTRL + SHIFT + SHIFT + B
Je [eel

Figure 6.3 Getting the keystroke events in an
event handler using JavaScript in chO602.html.

121

122

CHAPTER 6 Capturing and Using Browser and User Events

Form Events

Some of the most important events especially for e-
commerce sites are form events. Form events are used
heavily when providing users with cart interactions,
checkouts, registrations, and more. Adding event han-
dlers to form events allows you to provide some
dynamic interactions with the user as the user fills out
the forms.

The following phrases are designed to cover the basic
concepts of handling the different types of form
events. Additionally, there are keyboard and mouse
events in the form that have already been covered in
this chapter.

Handling Focus Changes

$("input") .on("focus",
function(e){
gain_focus_code_here

s

$("input") .on("blur",
function(e){
lose_focus_code_here

s

When handling form events, two important events are
focus and blur. These events are triggered when a
form element receives or loses focus. There is a lot that
you can use these events for. For instance, you might
want to change the look and feel of a form element
when it gains focus or loses focus.

Form Events 123

Handling Selection Changes

$("select") .on("change",
function(e) {
select_change_code_here });
$("input[type=checkbox]") .on("change",
function(e) {

checkbox_change_code_here });
$(" dinput[type=radio]"™).on("change",
function(e) {
radio_change_code_here });

Another important type of event to handle when
working with forms is the selection change in check
boxes, radio inputs, and select elements. All these ele-
ments have a change event handler that is triggered
when the selection changes.

To handle selection changes on these items in jQuery,
add the following event handler. Then put whatever
change code you would like inside the handler
function:

$("#formElement") .on("change",
function(e) {
change_code_here

b

This page intentionally left blank

v

Manipulating Web
Page Elements
Dynamically

At the heart of dynamic programming is program-
matically altering the existing web page elements on
the fly to react to user input. This provides the rich
interactive experience that people are beginning to
expect from all web sites.

jQuery and JavaScript provide several methods to easi-
ly alter the appearance, style, and content of the page
elements, from changing an image source and para-
graph content to dynamically highlighting text and
container borders.

The following sections describe how to utilize jQuery
and JavaScript to access and manipulate the web page
elements.

126

CHAPTER 7 Manipulating Web Page Elements Dynamically

Getting and Setting DOM
Element Attributes and
Properties

DOM objects provide direct access to the DOM
object attributes as well as the DOM element proper-
ties of the HTML elements they represent. This really
is not reasonable in jQuery, because jQuery objects
often represent multiple elements with varying attrib-
utes. For that reason, jQuery provides the .attr() and
.prop() methods to get and set the attributes and
properties of these elements.

The .attr(attribute, [value]) method allows you to
specify an attribute name only to get the current value
as well as an optional value to set the current value.
For example, the following code gets the src value for
a specific image element with id="bannerImg":

var state = $("#bannerImg").attr("src");

Then the following statement sets the src attribute
value for all elements:

$("img") .attr("src", "images/default.jpg");

The .prop(property, [valuel) method allows you to
specify the property to get the current value and an
optional value to set the current value. For example,
the following code gets the checked state a specific
element with id="f1irstCheckbox":

var state = $("#firstCheckbox™).prop("checked");

Getting and Setting DOM Element Attributes and Properties

And the following statement sets the checked value of
all <input> elements to true:

$("input") .prop(‘'checked", true);

Did you know?

The only difference between a property and an attrib-
ute as far as jQuery goes is that attributes are values
that define the HTML structure, and properties are val-
ues that affect the dynamic state of the object. For
example, in an <input> element, "type" is an attribute
because it defines the structure, whereas “checked” is
a property because it only affects the state.

Changing a Link Location

<script>
$("#pageLink").attr("href", "complexpage.html");
</script

<body>
Link
</body>

With web pages becoming more and more dynamic,
even the links that are built into have become dynam-
ic. A great advantage of using jQuery and JavaScript in
your pages is that you can easily alter the URL that
links point to dynamically based on user input or
other sources of data.

To change the URL that a link points to, use the
.attr("href", newURL) method. When the user clicks
on the link, the browser reads the href attribute of the
<a> element and then loads that location as the next

page.

127

128 CHAPTER 7 Manipulating Web Page Elements Dynamically

Changing an Image Source File

uon won

var imgArr = ["bison.jpg","peak.jpg","falls.jpg"]1;
var idx = 0;
$ (document) . ready (function Q{

$C"img") .on("click", function(Q{

if(idx<2) { idx++; } else { idx=0; }
$(this).attr("src", imgArr[idx]);

A common task in jQuery and JavaScript is changing
the images displayed on the screen. Whether it is an
online ad, a game, or an image gallery, it is much nicer
to simply swap out the source file for an ele-
ment than reload the web page.

To change the image that is displayed in an ele-
ment, use the .attr("src", newImageURL) method to
specify a new location of the new user file. When the
src attribute changes, the browser automatically down-
loads the new image if needed and renders it in the
web page without requiring a reload.

The following code shows a good example of swap-
ping out images, as illustrated in Figure 7.1. A single
image is in the web page. On line 13, 1in a click han-
dler, the src attribute is changed to one of the values
from the imgArr array:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 var imgArr =

Getting and Setting DOM Element Attributes and Properties

= ["bison.jpg","peak.jpg","falls.jpg"];
09 var idx = 0;

10 $(document) . ready(function ({

11 $(C"img").on("click™, function(){

12 if(idx<2) { idx++; } else { idx=0; }
13 $(this).attr("src", imgArr[idx]);

14 195

15 s

16 </script>

17 <style>

18 img { width:300px; border:3px ridge white;
19 box-shadow: 5px 5px 5px #888888;

wmargin:10px; }

20 </style>

21 </head>

22 <body>

23
24 </body>

25 </html>

ch0701.html|

Click Click

Figure 7.1 Swapping images using jQuery code in
ch0701.html.

129

130

CHAPTER 7 Manipulating Web Page Elements Dynamically

Getting and Setting CSS
Properties

jQuery makes it extremely easy to get and set CSS
values using the .css(property, [value]) method. For
example, the following code retrieves the cursor CSS
property value of an element:

$("#buttonA").css("cursor");
Then the following sets the border-radius value:
$("#buttonA™) .css("border-radius", "10px 15px");

The .css(O method also allows you to pass a map
object with properties and values. This allows you to
set several settings at once. For example, the following
code uses .css() to set the margin, padding, float, and
font-weight attributes at the same time:

$("span").css({margin:0, padding:2, float:"left",
=" font-weight":"bol1d"});

Notice that the property names can either be enclosed
in quotes or not.You need to use quotes if the proper-
ty name contains a - or another character that is not
valid in a JavaScript object name. The values can be
numbers or strings. The numerical values represent dis-
tance, which can be expressed in px, cm, or %. The
default is px, so if you want to specify pixels, you only
need to enter the number. If you want to specify cm, %,
or some other value type, you need to use a string,
such as "100%".

Getting and Setting CSS Properties 131

Changing Colors

$("h1") .on("click", function(){
$(this).css({color:"white",

"background-color":"black"});

b;

A great way to provide interaction with user actions is
to alter the colors of elements on the screen. Colors
can provide additional meaning. For instance, changing
the color of text to red or the background color of
text to a yellow highlight accentuates the text as
important to read.

In jQuery, you can change all the CSS attributes
that control the colors on the screen using the
.css(property, value) method. However, if you are
changing multiple color properties, it makes much
more sense to use the .css({property:value,
property:value...}) method, which allows you to
change several properties at once.

The following code provides a good example of using
jQuery to dynamically change the color of a header
when it is clicked on. A click handler alters the back-
ground and foreground colors so that the header
stands out more, as illustrated in Figure 7.2. Notice
that the background-property key had to be placed in
quotes to support the JavaScript language syntax.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

132

CHAPTER 7 Manipulating Web Page Elements Dynamically

08 $(document) .ready(function ({

09 $("h1").on("click", function({

10 $(this).css({color:"white",

11 "background-

wcolor":"black"});

12 s

i3 s

14 </script>

15 </head>

16 <body>

17 <hl>Heading 1</h1>

18 <hl>Heading 2</h1>

19 </body>

20 </html1>

ch0702.html
Heading 1
Heading 2 Heading 2

Figure 7.2 Changing foreground and background
colors using jQuery code in chO702.html.

Adding Borders

$C"ul™) .on("click", function(){
$(this).css({"border":"3px groove black"});

;s

$C"1i") .on("click", function({

$(this).css({"border-style":"dotted",
"border-size'":1,
"border-color":"blue"});

b;

Getting and Setting CSS Properties

Another useful style that can be programmatically
applied to elements is borders. Borders give you a way
to highlight specific elements on the page or just
change the look of things.

You can change the CSS attributes that apply borders
to elements in jQuery using the .css(property, value)
or .css({property:value, property:value...})
method.

By the way

You can set all the border options at the same time
using the border property with a size, style, and color,
for example:

$(this).css({"border":"3px groove black"});

The following code provides a good example of using
jQuery to dynamically add borders to and <1i>
elements. I provide two examples: one that changes all
attributes in a single border property setting, and the
other that changes them individually. A click handler
applies the borders to the list element and list item ele-
ments illustrated in Figure 7.3:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) . ready(function (O{

09 $C"ul"™).on("click", function(){

10 $(this).css({"border":"3px groove

wbhlack"});

133

134

CHAPTER 7 Manipulating Web Page Elements Dynamically

11 e
12 $C"1i").on("click", function(){
13 $(this).css({"border-style":"dotted",
14 "border-size":1,
15 "border-color":"blue"});
16 B;
17 19)5
18 </script>
19 </head>
20 <body>
21
22 <1i>George Washington</11i>
23 <1i>John Adams</T1i>
24 <1i>Thomas Jefferson</1i>
25
26 </body>
27 </html>
ch0703.html
& George Washi *George Wazhington 1 3
* John Adams
* Thomas Jefferson ® Thomas Jefferson

Figure 7.3 Adding borders using jQuery code in
ch0703.html.

Changing Fonts

$("p") .on("click", function(){
$(this).css({"font-weight": d",
"font-style":"italic",
"font-size":22,

n.n

"font-family":"cursive, sans-serif'});

b;

Getting and Setting CSS Properties

A fun option available using the .css() method is the
ability to alter the font of paragraphs and other ele-
ments. You can use the .css() method for a variety of
purposes, such as illustrating an area already read or
accentuating text that becomes contextually important.
You can adjust the font-weight, font-size, font-style,
and font-family attributes directly to change the
appearance of the text.

To programmatically alter the font values, apply the
.css(property, value) or .css({property:value,
property:value...}) method. The following code pro-
vides a good example of using jQuery to dynamically
change the style of a paragraph once you click it. The
click handler, shown in lines 9-14, applies the font
changes when the user clicks on the paragraph, as
illustrated in Figure 7.4:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) . ready(function ({

09 $("p").on("click", function({

10 $(this).css({"font-weight":"bold",
11 "font-style":"italic",

12 "font-size":22,

13 "font-family":"cursive, sans-
wserif"});

14 1;

15 5)s

16 </script>
17 </head>

135

136

CHAPTER 7 Manipulating Web Page Elements Dynamically

18 <body>

19 <p>The play’s the thing, wherein

20 I’11 catch the conscience of the king.</p>
21 </body>

22 </html>

ch0704.html

The play's the thing, wherein I'll catch the conscience of the king.
The play's the thing, wherein I'll
catfch the conscience of the king.

Figure 7.4 Changing font styles using jQuery code
in ch0704.html.

Adding a Class

$("span") .addClass("baseClass");

An important part of rich interactive web pages is
good CSS design. JavaScript and jQuery can enhance
the CSS design by dynamically adding and removing
classes from elements.

jQuery makes it extremely simple to add, remove, and
toggle classes on and off. If you design your CSS code
well, it’s easy to apply some nice effects.

You add classes using the .addClass(className)
method. For example, to add a class named active
to all elements, you could use the following
statement:

$("span").addClass("active™);

Getting and Setting CSS Properties

Removing a Class

$("span") .removeClass("oldClass");

You remove classes using the
.removeClass([className]) method. For example, to
remove the active class from the elements, you
call the following:

$("span™).removeClass("active");

You can also use remove with no className, which
removes all classes from the elements. For example, the
following statement removes all classes from <p> ele-
ments:

$("p") .removeClass(Q);

Toggling Classes

$("span").on("click", function(){

$(this).toggleClass("active");
b

You can toggle classes on and off using the
.toggleClass(className [, switch) method. In addi-
tion to the className, you can specify true or false for
the optional switch parameter, indicating to turn the
class on or off.

For example, to turn the active class and the inactive
class off for all elements, the code would be as
follows:

$("span™).toggleClass("active", true);
$("span™) .toggleClass("inactive", false);

137

138 CHAPTER 7 Manipulating Web Page Elements Dynamically

The following code provides a good example of using
jQuery to dynamically toggle a class on and oft when
a user clicks on a element. The click handler in
lines 9—11 uses the .toggleClass() method to switch
the .active class on and off. Figure 7.5 illustrates the
look and behavior of the code:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function (O{

09 $("span").on("click", function({

10 $(this).toggleClass("active");

11 1);

12 1

13 </script>

14 <style>

15 span {

16 border:3px ridge white; border-radius:10px;
17 padding:3px; color:black; background-
wcolor:#CCCCCC;

18 cursor:pointer; }

19 .active {

20 background-color:blue; color:white;
21 border-color:blue; font-weight:bold;}
22 </style>

23 </head>

24 <body>

25 Option 1

26 Option 2

27 </body>

28 </html>

ch0705.html|

Getting and Manipulating Element Content

Option 1| Option 2 | |m Option 2 |

Figure 7.5 Toggling classes on and off using
jQuery code in chO705.html.

Getting and Manipulating
Element Content

Often, you will not know all the elements that belong
on a web page until a user begins using it, or you will
receive additional information from a web service or
some other interaction. In those cases, you may need
to be able to add or replace element content on the fly
using jQuery and JavaScript code.

The text of the element content is stored in the
innerHTML attribute of the DOM element. You can
change the content using JavaScript simply by setting
the innerHTML to the new content. For example:

document.getElementById("#pl").innerHTML = "New
=Text";

In jQuery, you can change the innerHTML content using
the .htm1() method, which gets or sets the innerHTML
sting. For example:

$("#p1") .html ("Paragraph 1 goes here");

Getting the Content of an HTML
Element

var plContents = $("#pl").htm1(Q);

var divlContents = $("#divl").htm1Q;

139

140 CHAPTER 7 Manipulating Web Page Elements Dynamically

Containing the content inside an HTML element is
easy using the jQuery .htm1() method. Calling this
method with no parameter returns an HTML string
version of the content. If the content is just text, the
return is a simple string. If the content is HTML ele-
ments, the string is included in the HTML tags.

Appending and Prepending Text to
a Basic HTML Element

$("#pl") .prepend("*New* :');

$("#pl") .append(". . .read");

Another common dynamic task is adding text to a
basic HTML element such as a span or paragraph.
jQuery makes this extremely simple using the
.append() method. This method appends content to
the end of the element’s current content. It doesn’t
matter if the content is a string or other elements.

For example, the following code appends the text
". . .read" to a paragraph with id="p1":

$("#p1") .append(". . .read");

You may also want to prepend text to the beginning
of an element’s content. In jQuery, the .prepend()
method prepends content to the beginning of the ele-
ment’s current content. It doesn’t matter if the content
is a string or other elements.

For example, the following code prepends the text
"*New* :" to a paragraph with id="p1":

$("#pl") .prepend("*New* :");

Getting and Manipulating Element Content

Replacing Element Text
$("$mySpan") .html ("content") ;

$("$mySpan™) .htm1 ("'newer content");

$("$mySpan") .html ("even newer content");

Rather than prepending or appending text (or con-
tent, for that matter) to an element, you may want to
replace the element content entirely. The simplest way
to do this in jQuery is to use .htm1(Q), which sets the
value of the content to whatever string or object you
pass into it, thus replacing the existing content.

Appending Elements to Parent
Content

var newP = $("<p></p>");
newP.html ("This is the first paragraph.");

$("div") .prepend(newP) ;
newP.html ("This is the last paragraph.™);
$("div") .append(newP) ;

You can also use the .prepend() and .append() meth-
ods in jQuery to prepend or append content to the
element. Another major advantage of jQuery is that
you can append HTML DOM elements created using
the jQuery constructor jquery(htm1String) or
$(htm1String) to add new HTML elements to the
page. For example, the following code constructs a
jQuery object with a <p> element, sets the content of
the new paragraph element using .htm1(Q, and then
appends the paragraph to all <div> elements.

var newP = $("<p></p>");
newP.html ("This is a new paragraph.");
$("div").append(newP) ;

141

This page intentionally left blank

3

Manipulating
Web Page Layout
Dynamically

One of the coolest interactions that you can make
with web pages is to rearrange elements on the page
based on user interaction. For instance, you can make
elements bigger or smaller and even change the posi-
tion. Additionally, you can change the visibility of ele-
ments, hiding them when you don’t need them and
revealing them when appropriate.

This chapter focuses on the methods to manipulate
elements in such a way that it alters the basic layout of
the page. The phrases are designed to give you usable
examples that apply to an array of purposes.

Hiding and Showing Elements

$("#down") .hide(Q);

$("#up") .on("click", function({
$("#up, #down").toggleQ;
$("#leftNav'") .hideQ; });

$("#down") .on("click", function(Q{
$("#up, #down").toggle(Q);
$("#1eftNav") .show(Q; 3});

144

CHAPTER 8 Manipulating Web Page Layout Dynamically

A simple way of changing the look and feel of web
pages is to toggle the visibility of elements. Hiding ele-
ments that are not necessary and then only showing
them when they become necessary can save a lot of
screen space that can be critical in a well-implemented
web application.

You hide or show elements from JavaScript by setting

jQuery,

in contrast, provides a much more elegant and extensi-

nn

the style.display property to "none" or to

ble solution.

To display an element using jQuery, simply call the
.show() method on the jQuery object. All items in the
object set are shown. Then to hide the elements, use
the .hide() method. Its as simple as that. For example,
to hide all <p> elements, you would use the following:

$("p") .hide(;
Then to display them again, use this:
3$C"p") . show();

Another valuable tool that jQuery provides is the
.toggle() method. This method changes the current
visibility state to the exact opposite. That means you
don’t have to keep track or check to see what the visi-
bility is for items that you simply want to toggle on
and off.

The following code demonstrates changing the visibil-
ity. It hides and shows a simple popup menu. Notice
that the buttons to show and hide the visibility are
themselves being toggled on and oft so that the appro-
priate button is visible to match the menu state. Figure
8.1 shows the basic look and feel of the menu:

Hiding and Showing Elements

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-1.9.0.min.js"></script>
07 <script>

08 var imgArr =

= ["bison.jpg","peak.jpg","falls.jpg"];

09 var idx = 0;

10 $(document) . ready(function ({

11 $("#down") .hide();

12 $("#up").on("click", function({
13 $("#up, #down").toggle(Q);

14 $("#leftNav").hide(; 1);

15 $("#down") .on("click", function(){
16 $("#up, #down").toggle(Q);

17 $("#leftNav") .show(Q; 1);

18 5)s

19 </script>
20 <style>

21 #banner { font:bold 36px/60px "cursive,
wserif";

22 color:white; background-color:blue;

23 text-align:center; }

24 #bar { background-color:black; padding:3px;}
25 #leftNav {background-color:#cccccc;
=padding:5px;

26 width:100px; }

27 p { margin:0; margin-top:2px; border:1px
=solid;

28 text-align:center; border-radius:10px;
29 background-color:white; }

30 </style>

31 </head>

32 <body>

33 <div id="banner">jQuery and JavaScript</div>

145

146 CHAPTER 8 Manipulating Web Page Layout Dynamically

34 <div id="bar"><img id="down" src="expand.png"
- />

35 </div>
36 <div id="TleftNav"><p>Option 1</p>

37 <p>0Option 2</p><p>0ption 3</p></div>

38 </body>

39 </html>

ch0801.html

jQuery and JavaScript jQuery and JavaScript

Figure 8.1 Toggling the visibility of a menu item
when it is not needed using jQuery .show(),
.hide(), and .toggle().

Adjusting Opacity

$("#up") .on("click", function(Q{
var op = parseFloat($("#photo").css("opacity"));
if (op<l) {op += 0.2;};
$("#photo") .css("opacity", op);

b;

$("#down") .on("click", function(){
var op = $("#photo").css("opacity');
if (op>0) {op -= 0.2;};

$("#photo") .css("opacity", op);

b;

Changing the opacity of elements is a great way to
alter the layout of the page. Lowering the opacity
value makes the item less visible, revealing any ele-
ments or background images that are behind the item.

Adjusting Opacity 147

By the way

One problem with using .hide() to hide an element is
that, once applied, the element no longer takes up
page space. Other flowing elements slide in to take its
place. In many cases, this is the way you want it. In
other instances, you may want the element to be invisi-
ble but still take up space, so set opacity to O.

Lowering the opacity (but not to 0) can be a great way
to demonstrate that elements are not currently active
while still showing them. For example, I like to set
menu and button elements that are not yet imple-
mented and active to .5 opacity so that they still show
up but are obviously not clickable.

The opacity CSS property controls the opacity. To
make an element invisible but still take up space, set
the opacity CSS property to 0. For example:

jObj.css("opacity"”, "0");

Then to make the element visible again, set the opaci-

ty back to 1:
jObj.css("opacity"”, "1");

To make an item partially visible, set the opacity
between 0 and 1, such as .5. The following example
creates a web page with two buttons that control the
opacity of an image element. As the opacity increases,
the image becomes more visible and vice versa. The
click handlers for the buttons change the opacity by
incrementing or decrementing the current opacity by
.2. Figure 8.2 shows the opacity changes in action:

148 CHAPTER 8 Manipulating Web Page Layout Dynamically

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-1.9.0.min.js"></script>
07 <script>

08 var imgArr =

= ["bison.jpg","peak.jpg","falls.jpg"];

09 var idx = 0;

10 $(document) . ready(function ({

11 $("#up").on("click", function({
12 var op =
wparseFloat($("#photo").css("opacity™));
13 if (op<l) {op += 0.2;};

14 $("#photo") .css("opacity", op);
s 1;

16 $("#down") .on("cTlick", function(){
17 var op = $("#photo").css("opacity™);
18 if (op>0) {op -= 0.2;};

19 $("#photo") .css("opacity", op);
20 15

21 s

22 </script>
23 <style>

24 img{ vertical-align:middle;}
25 #photo { width:300px; border:5px ridge white;
26 box-shadow: 5px 5px 5px #888888;

=margin:10px; }
27 </style>

28 </head>

29 <body>

30
31

32

Resizing Elements

33 </body>
34 </html>

ch0802.html

Figure 8.2 Toggling the opacity of an image using
the jQuery code in ch0802.html.

Resizing Elements

$("#up") .on("click", function(Q{
$("#photo") .width($("#photo") .width()*1.2);
b

$("#down") .on("click", function(Q{
$("#photo") .width($("#photo") .width()*.8);
b

Another important aspect when dynamically working
with HTML elements is the ability to get and change
an element’s size. JQuery makes this simple using a set
of methods attached to the jQuery object. Table 8.1
shows the methods provided by jQuery objects that
allow you to get the height and width of an element.

149

150

CHAPTER 8 Manipulating Web Page Layout Dynamically

Table 8.1 jQuery Object Methods to Get and Set the

Element Size

Attribute
height([value])

width([value])

innerHeight()

innerWidth

outerHeight
([includeMargin])

outerWidth
([includeMargin])

Description

If a value is specified, the height
of all the HTML elements in the
set is changed; otherwise, the cur-
rent height of the first HTML
element is returned.

If a value is specified, the width
of all the HTML elements in the
set is changed; otherwise, the cur-
rent width of the first HTML
element is returned.

Returns the current height,
including padding, of the first ele-
ment in the set.

Returns the current width,
including padding, of the first ele-
ment in the set.

Returns the current height,
including padding, border, and
margin if specified, of the first
element in the set.

Returns the current width,
including padding, border, and
margin if specified, of the first
element in the set.

Watch out!

The height and width methods return only the size of
the first element in the jQuery objects’ set. For single
object sets, that is not a problem. Just keep in mind

that other objects in the set may have different sizes.

Resizing Elements

To illustrate getting and setting the size of elements,
consider the following sample code. This code defines

a web page with a photo and two buttons. The click
handlers for the buttons increase or decrease the size of
the image by getting the image width using the
.width(Q) method. The image automatically resizes as
the width changes in the handlers. To adjust the size,
pass back a new value of width*1.2 or width*.8 into

the .width() method. Figure 8.3 shows the buttons

that resize the image:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-1.9.0.min.js"></script>
07 <script>

08 $(document) .ready(function (O{

09 $("#up").on("click", function({

10

= $("#photo") .width($("#photo") .width()*1.2);
11 1;

12 $("#down") .on("click", function({

13

= ("#photo™) .width($("#photo") .width()*.8);

14 195

15 1;

16 </script>

17 <style>

18 img{ vertical-align:middle;}

19 #photo { width:300px; border:5px ridge white;
20 box-shadow: 5px 5px 5px #888888;

=margin:10px; }
21 </style>
22 </head>

151

152 CHAPTER 8 Manipulating Web Page Layout Dynamically

23 <body>

24
25
26
27 </body>

28 </html>

ch0803.html

2

9%

Figure 8.3 Resizing an image using the jQuery
code in ch0803.html.

Repositioning Elements

$("#up") .on("click", function(Q{
var offset = $("#photo").offset();

offset.top -= 10;
$("#photo") .of fset(offset) ;
b

In addition to the size of HTML elements, you often
need to determine their position. There are two differ-
ent types of positions when working with HTML ele-
ments. The first type is the position relative to the full
document. The second type is the position relative to

Repositioning Elements

the HTML element that acts as an offset parent. The
element that is the offset parent depends on the posi-
tion settings in CSS.

jQuery provides the .position([position]) method to
get the position relative to the offset parent. The
.offset([position]) method provides the position
relative to the document.You can call both of these
methods with no argument and return a simple object
with a left and right attribute that represent the num-
ber of pixels from the left and top of document or
offset parent.You can also call these methods with a
simple position object with left and right attributes,
in which case they set the position of the element.

For example, the following code retrieves the number
of pixels from the top and the left of the document as
well as the number of pixels from the top and left of

the offset parent for the element with id="myETement".
To get each value using a single statement I reference
the top and Teft attributes directly after the offset of
position call:

var pixelsFromPageTop =

= $("#myETement") .offset().top;

var pixelsFromPageLeft = $("#myElement").offset
w().left;

var pixelsFromParentTop = $("#myElement").position
=().top;

var pixelsFromParentLeft = $("#myElement").position
w().left;

To set the distance of that element exactly 10 pixels
down and 10 pixels to the right of the top-left corner
of the document, use the following statement, which
defines a simple object with Teft and top values and
passes it to the .offset() method:

153

154

CHAPTER 8 Manipulating Web Page Layout Dynamically

$("#myElement") .offset({"top":10,"left":10);

To illustrate using element position, the following code
builds a web page with four control buttons and an
image element. The click handlers for the buttons
move the image around by getting the current offset,
adjusting the top or left attribute, and then setting the
offset again using the .offset() method. Figure 8.4
shows the buttons moving the image around the
screen:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-1.9.0.min.js"></script>
07 <script>

08 var imgArr =

= ["bison.jpg","peak.jpg","falls.jpg"];

09 var idx = 0;

10 $(document) .ready(function ({

11 $("#up").on("click", function(){

12 var offset = $("#photo").offset();
13 offset.top -= 10;

14 $("#photo") .offset(offset);

15 B;

16 $("#down") .on("click", function(){
17 var offset = $("#photo").offset();
18 offset.top += 10;

19 $("#photo") .offset(offset);

20 5D

21 $("#left").on("click", function({
22 var offset = $("#photo").offset();
23 offset.left -= 10;

24 $("#photo") .offset(offset);

Repositioning Elements

25 1

26 $("#right").on("click™, function(){
27 var offset = $("#photo").offset();
28 offset.left += 10;

29 $("#photo") .offset(offset);

30 1)

31 D;

32 </script>

33 <style>

34 img{ vertical-align:middle;}

35 #photo { width:300px; border:5px ridge white;
36 box-shadow: 5px 5px 5px #888888; position:
wfixed; }

37 </style>

38 </head>

39 <body>

40 <div id="buttons">

41

42

43

44
45 </div>

46

47 </body>

48 </html>

ch0804.html

155

156 CHAPTER 8 Manipulating Web Page Layout Dynamically

AVLD

Reposition

Figure 8.4 Moving an image element around the
screen using the jQuery code in chO804.html.

Stacking Elements

$(C"img") .on("click", function(){
$C"img") .css("z-1index", 0);

$(this).css("z-index", 1);
b;

One of the coolest interactions that you can make
with web pages is to rearrange elements on top of
each other based on user interaction. The idea is that
HTML elements can simply be stacked on top of each
other like papers on a desk. At any time, you can reveal
one of the hidden or partially hidden elements and
place it on top of the others.

Stacking Elements

The z-index is a CSS property that specifies the posi-
tion of an HTML element with respect to other ele-
ments not vertically or horizontally, but projected out
toward the user. The element with the highest z-index
is displayed on top of other elements when the brows-
er renders the page.

To get and set the z-index in jQuery, use the .cssQ
method. For example, to get the z-index for an item,
use this:

var zIndex = $("#item").css("z-index");

To set the z-index for an item to, say, 10, use the fol-
lowing statement:

$("#item").css("z-index", "10");

To illustrate how the z-index works, the following
code generates a web page with three images. The
images have fixed positioning in an overlapping fash-
ion. When you click on one of the images, the click
handler first adjusts the z-index of all items to 0 and
then sets the z-index for the item clicked on to 1, thus
placing it on top. This is shown in Figure 8.5:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-1.9.0.min.js"></script>
07 <script>
08 var imgArr =

= ["bison.jpg","peak.jpg","falls.jpg"];
09 var idx = 0;

157

158

CHAPTER 8 Manipulating Web Page Layout Dynamically

10 $(document) . ready(function {

11 $("img").on("click", function(){
12 $("img") .css("z-index", 0);

13 $(this).css("z-index", 1);

14 s

15 5)s

16 </script>

17 <style>

18 img{ width:300px; border:5px ridge white;
19 box-shadow: 5px 5px 5px #888888; position:
wfixed; }

20 #photol { top:10px; left:20px; }

21 #photo2 { top:60px; left:60px; }

22 #photo3 { top:120px; left:120px; }
23 </style>

24 </head>

25 <body>

26
27
28
29 </body>

30 </html>

ch0805.html

Figure 8.5 Stacking elements on top of each
other and reordering them using the jQuery code in
ch0805.html.

Dynamically
Working with
Form Elements

Web forms are an integral part of dynamic web pro-
gramming. You may think of forms only in terms of
credit card payments, online registration, and the like,
but anytime you need actual data input from the user,
you are using web forms.

Web forms can be a positive or negative experience
for users. If it seems difficult to input the data on the
form because the form is clunky or difficult to under-
stand, users hate it and have a bad experience.

Applying dynamic adjustment to the web form by
dynamically accessing and manipulating the flow of
the form allows you to give users a much better expe-
rience. The phrases in this chapter focus on accessing
the form data and then using that data to dynamically
manipulate the form to improve the overall user
experience.

160

CHAPTER 9 Dynamically Working with Form Elements

Getting and Setting Text Input
Values

var inText = $("#inBox").val(Q;
if (inText != "default"){

$("#outBox'") .val (inText) ;
}

The most common type of form elements are textual
inputs. These elements include the <textarea> element
as well as <input> elements with the following type
attribute values: color, date, datetime, datetime-
Tocal, email, month, number, password, range, search,
tel, text, time, url, and week.

Although the browser uses these values a bit different-
ly, all are rendered in the same basic text box and are
accessed in the same basic way. Each of them has a
value attribute that is displayed in the text box as the
image is rendered.

In jQuery, you can access the value text inputs using
the .val() method of the jQuery object. To get the
text typed into the text box, you should call the
.val() method with no arguments. For example, to
get the value of #textbox1, you would use the
following:

var textboxltext = $("#textbox1").val(Q);

To set the text that appears in the text box, you would
use .val(string). For example, to set the value of
#textbox1 to “new string”, you would use this:

$("#textbox1").val("new string");

Checking and Changing Check Box State

Watch out!

The .attr(, .prop(Q), and .val() methods only get
the values of the first element in the matched jQuery
set. If you are working with multiple elements in the
set, you may need to use a .map() or .each() method
to get values from all elements.

Checking and Changing Check
Box State

if ($("#myCheckbox").is(":checked)){
$("#myCheckbox'") . removeAttr('"checked") ;
elsef

$("#myCheckbox'") .attr("checked") ;
}

Check box input elements have a boolean value based
on whether the element is checked.You access the
value by getting the value of the checked attribute. If
the element is checked, then checked has a value such
as true or “checked”. Otherwise, the value will be
undefined or false.

You can get and set the state of a check box element
from JavaScript in the following manner:

domObj.checked = true;
domObj.checked = false;
var state = domObj.checked;

Determining whether an item is checked with jQuery
is a bit different. Remember, in jQuery you may be
dealing with multiple check boxes at once, so the safest
way to see if the jQuery object represents an object
that is checked is the .is() method. For example:

161

162 CHAPTER 9 Dynamically Working with Form Elements

$("#myCheckbox") .is(":checked");

To set the state of a jQuery object representing check
boxes to checked, you would simply set the checked
attribute as follows:

$("#myCheckbox") .attr("checked", true);

Setting the state of a jQuery object representing check
boxes to unchecked is a bit different. You need to
remove the checked attribute using removeAttr(). For
example:

$("#myCheckbox") . removeAttr("checked");

Getting and Setting the
Selected Option in a Radio
Group

if ($("#maleRB").1is(":checked)){
$("#maleRB") .removeAttr (" "checked™);
else{
$("#maleRB") .attr("checked™);

}

var genderGroup = $("input[name=gender]™);

var checkedGender = genderGroup.filter(":checked");
var selectedGender = checkedGender.val(Q);

Radio inputs are almost always used in groups. The
value of a radio input that a group represents is not
boolean. Instead, it is the value attribute of the cur-
rently selected element. For example, the value of the
following radio button group is either "male" or
"female":

Getting and Setting the Selected Option in a Radio Group 163

<input id="maleRB" type="radio" name="gender"
=value="male">

<label for="maleRB">Male</Tabel>

<input id="femaleRB" type="radio" name="gender"
=value="female">

<label for="femaleRB">Female</label>

To get the value of a radio input group in code, you
first need to access all the elements in the group, find
out which one is selected, and then get the value
attribute from that object. The following code gets the
value of a radio input group that is grouped by
name="gender” in jQuery:

var genderGroup = $("input[name=gender]");
var checkedGender = genderGroup.filter(":checked");
var selectedGender = checkedGender.val(Q);

Setting the checked value of individual radio inputs
works the same way as check boxes. To see if the
jQuery object represents a radio button that is
checked, use the .is() method. For example:

$("#maleRB") .is(":checked");

To set the state of a jQuery object representing a radio
button to checked, you simply set the checked attrib-
ute as follows:

$("#maleRB") .attr("checked", true);

To set the state of a jQuery object representing a radio
button to unchecked, you need to remove the checked
attribute using removeAttr(). For example:

$("#maleRB").removeAttr("checked");

164 CHAPTER 9 Dynamically Working with Form Elements

Getting and Setting Select
Values

var value = $("#singleSelect").val(Q;
var values = $("#multiSelect").val(Q;

$("#singleSelect").val ("one");
$("#multiSelect™).val(["two", "three"]);

Select inputs are really container inputs for a series of
<option> elements. The value of the select element is

the value(s) of the currently selected option(s). Once

again, the submission and serialization in jQuery and

JavaScript handle this automatically for you. However,
doing it manually requires a bit of code.

Did you know?

If you do not specify a value attribute for an <option>
element, the value returned is the value of the
innerHTML. For example, the value of the following
option is "one":

<option>one</option>

You may want a couple of different values when
accessing a <select> element. One is the full value
represented by the element. Getting that value is sim-
ple in jQuery using the .val() method. For example,
consider the following code:

HTML:

<select id="mySelect">
<option value="one">0One</option>
<option value="two">Two</option>
<option value="three">Three</option>
</select>

Getting and Setting Select Values

jQuery:
$("#mySelect").valQ;

The value returned by the jQuery statement if the first
option is selected is this:

For multiple selects, the .val() method returns an
array of the values instead of a single value. On a mul-
tiple select, the value returned by the jQuery statement
if the first option is selected is this:

["one"]

On a multiple select, the value returned by the jQuery
statement if the first option is selected follows:

["one", "two", "three"]

You can also use the .val() method to set the selected
elements. For example, the following statement selects
the second element in the previous select:

$("#mySelect").val("one™);

The following statement selects the second and third
options in a multiple select element:

$("#mySelect").val(["two", "three"]);

165

166 CHAPTER 9 Dynamically Working with Form Elements

Getting and Setting Hidden
Form Attributes

hiddenValue
hiddenValue

$("#hidden") .valQ;

$("#hidden") .attr("other");
$("#hidden") .prop("otherProp™);
$("#hidden") .data("storedvalue");

hiddenValue
hiddenValue

A great HTML element to use if you need to supply
additional information to the browser from a form is
the hidden input. The hidden input is not displayed
with the form, but it can contain a name and value
pair that is submitted or even just values that you want
to store in the form and have accessible during
dynamic operations.

The parts to be sent with the form are the name and
value attributes. However, you can attach additional
values to a hidden form object or any HTML DOM
object from jQuery using the .data(key [,valuel)
method. This method works like .attr() and .prop()
in that you pass it a key if you want to get the value
or, alternatively, you pass a key and value if you want
to set the value of a key. For example, the following
code defines a simple hidden element and then uses
jQuery to assign the submission value and an extended
attribute:

HTML:

<input id="invisibleMan" name="InvisibleMan"
=type="hidden" />

Disabling Form Elements

jQuery:

$("#invisibleMan™).val("alive");
$("#invisibleMan") .data("hairColor", "clear");
var state = $("#invisibleMan").val(Q);

var state = $("#invisibleMan").data("hairColor");

Disabling Form Elements

$("#cbSame") .on("cl1ick", function(){
if($(this).is(":checked")){
$("#bi11Info :input").attr("disabled",true); }

else {
$("#bi11Info :input").removeAttr("disabled"); }
b

Disabling web elements still displays them, but it pre-
vents the user from interacting with them. Typically, it
only makes sense to disable a form element instead of
disable it if you still want the user to be able to see the
values of the elements.

To disable a form element, you need to set the
disabled attribute. In JavaScript, you can do this
directly on the DOM object. In jQuery, you use the
.attr() method. For example:

$("#deadElement") .attr("disabled", "disabled");

To re-enable a disabled element, you remove the
disabled attribute. For example:

$("#deadElement") .removeAttr("disabled");

The following code shows an example of using a
check box to enable and disable multiple form ele-
ments. The click handler checks the state of a check

167

168

CHAPTER 9 Dynamically Working with Form Elements

box and, if checked, the input elements inside the
#bi11Info <div> are disabled. Otherwise, they are
enabled. Figure 9.1 shows the form elements that are

disabled and enabled.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function ({

09 $("#cbSame™) .on("click", function(){

10 if($(this).is(":checked")){

11 $("#bil1Info
w:input").attr("disabled",true); }

12 else {

13 $("#bi11Info :input").removeAttr

= ("disabled"); }

14 195

15 1)

16 </script>

17 <style>

18 </style>

19 </head>

20 <body>

21 <form>

22 Shipping Info

23 <div id="shipInfo">

24 <input type="text">Name</input>

25 <input type="text">Address</input>

26 <input type="text">City</input>

27 <select class="state"

wid="state"></select>
28 <input type="text">Zip</input>

29 </div>

Disabling Form Elements

30 Bi11ling Info

31 <input type="checkbox" id="cbSame"/>

32 <label for="cbSame">Same as

= Shipping</label>

33 <div id="bi11Info">

34 <input type="text">Name on
wCard</input>

35 <input type="text">Address</input>

36 <input type="text">City</input>

37 <select class="state"

wid="state"></select>

38 <input type="text">Zip</input>

39 </div>

40 </form>

41 </body>

42 </html>

ch0901.html

Shipping Info Shipping Info

[Name MName
Address I Address
City City

[B Zip [=] Zip

Biling Info Biling Into

™ Same as Shipping rﬁ Same as Shipping
MNare on Card MName on Card

[Addess [Addiess
City Ciy

[~ Zip [=] 7i

Figure 9.1 Disabling form elements by checking
the state of a check box using jQuery code in
ch0901.html.

169

170

CHAPTER 9 Dynamically Working with Form Elements

Showing/Hiding Form Elements

$("#tires,#model") .hide(Q);
$("#make") .on(""change", function(){
if($(this).valQ == ""){

$("#tires,#model") .hide(Q; }
else{ $("#model™).show(Q); }
b;

Another great trick when providing flow control for a
web form is to dynamically hide and show elements.
Less is more; you shouldn’t necessarily show users
more elements than they need to fill out.

For example, if the form has elements for both men’s
sizes and women’s sizes, don’t show both. Wait for users
to select the gender and then display the appropriate
size elements.

Form elements can be shown and hidden in jQuery
using the .show() and .hide() methods. Alternatively,
if you want to make the element invisible but still take
up space, you can set the opacity CSS attribute to 0
or 1.

The following code shows a basic web form with
three selects. Only the select that allows users to select
a car make is displayed at first, but as users select the
make, a model menu appears. Likewise, as users select
the model, a tires size menu appears. The click handlers
use .show() and .hide() to show and hide the menus
appropriately. Figure 9.2 shows the form elements
being displayed as more items are selected:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Showing/Hiding Form Elements

<script type="text/javascript"
src="../js/jquery-2.0.3.min.js"></script>
<script>
$(document) . ready (function (){
$("#tires,#model") .hide();
$("#make") .on("change", function(){
if($(this).val(Q) == ""){
$("#tires,#model™).hide(); }
else{ $("#model").show(); }
)5
$("#mode1S") .on("change", function({
var v = $(this).valQ;
if($(this).val(Q) == ""){
$("#tires").hide(); }
else{
$("#tires").show(); }
1;
5)s
</script>
<style>
select {width:100px; }
</style>

</head>

<body>
<form>

<select id="make">Maker
<option></option>
<option>Jeep</option>

</select><label>Make</Tabel>

<div id="model"><select id="modelS">
<option></option>
<option>Wrangler</option>
<option>Cherokee</option>

</select><label>Model</Tabel></div>

<div id="tires"><select>
<option></option>
<option>32"</option>

171

172

CHAPTER 9 Dynamically Working with Form Elements

42 <option>33"</option>
43 <option>36"</option>
44 </select><label>Tires</label></div>
45 </form>
46 </body>
47 </html>
ch0902.html
*L-ia.k.c Jeep ~iMake Jeep T|Make

v hlodel ‘Wrangler Tadel
Tires
Wrangler E—
Cherokee 391

330
2"

Figure 9.2 Dynamically showing and hiding
selects elements using jQuery code in
ch0902.html.

Forcing Focus to and Away
from Form Elements

$("input[type=radio]") .on("change",
function(){

$("#cardNum") . focusQ ;
b;

A great flow control feature in web forms is to auto-
matically focus elements when you know the user is
ready to enter them. For example, if the user selects a
year and the next element is a month selection, it
makes sense to make the month active for the user
automatically.

Forcing Focus to and Away from Form Elements

To set the focus of an element in jQuery, call the
.focus O method on that object. For example, the fol-
lowing code sets the focus for an object with
id="nextInput":

$("#nextInput").focus();

You can also blur an element that you want to navi-
gate the user away from by calling the .bTur()
method:

$("#nextInput").bTur(Q;

The following code shows an example of a credit card
payment form. The logical step for the user to take
after selecting the card type is to enter the credit card
number. The form detects a change on the radio but-
ton group and then immediately shifts focus to the
card number input element. Figure 9.3 illustrates the
selection automation in the form:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function (O{

09 $("input[type=radio]").on("change",

= function(){

10 $("#cardNum") .focus(Q);

11 s

12 5)s

13 </script>
14 <style>

173

174 CHAPTER 9 Dynamically Working with Form Elements

15 </style>

16 </head>

17 <body>

18 <form>

19 <input type="radio" name="ptype" id="visa" />
20 <label for="visa"><img src="visa.png"

- /></label>

21 <input type="radio" name="ptype" id="mc" />
22 <label for="mc"><img src="mc.png"

- /></Tlabel>

23 <input type="radio" name="ptype" id="amex" />
24 <label for="amex"><img src="amex.png"

- /></label>

25 <div id="ccInfo">

26 <input type="text" id="cardNum">Card
wNumber</input>

27
<input type="text"
wid="csc">CSC</input>

28 <label>Expires</label><select
wid="expiresY"></select>

29 <select id="expiresM"></select>

30 </div>

31 </form>

32 </body>

33 </html>

ch0903.html

Expircsl? G

Figure 9.3 Automatically focusing on the credit
card number when the card type is selected using
jQuery code in ch0903.html.

Controlling Form Submission 175

Controlling Form Submission

$("form") .submit(function(e){
alert("Sorry. Not yet Implemented.");

e.preventDefault();
i N

Another important aspect of dynamic form flow con-
trol is intercepting the submit and reset event and
performing actions based on various conditions. For
example, you might want to validate form values
before you allow the form to be submitted.

The way that you control the form submission func-
tions to attach a submit event handler to the form.
Inside the event handler, you have access to informa-
tion about the event as well as the form data to be
submitted. You can perform whatever tasks you need
and then either allow the form to be submitted or
reset or prevent the default browser action.

The following code illustrates an example of stopping
the form submission by calling .preventDefault() on
the event:

$("form™) .submit(function(e){
alert("Sorry. Not yet Implemented.");
e.preventDefault();
b

This page intentionally left blank

10

Building Web Page
Content
Dynamically

A critical part of using jQuery and JavaScript is the
ability to dynamically build content to add to the
page. This content may be form elements, images, lists,
tables, or whatever type of element fits the need.
Adding content to the page dynamically instead of
requesting a new page from the server eliminates the
server request time and allows you to build only those
new pieces instead of everything.

The phrases in this chapter are designed to help you
understand the methods of creating and adding con-
tent to the web page. They cover appending, prepend-
ing, and inserting elements of different types. Also cov-
ered is how to remove content from the web page.

178 CHAPTER 10 Building Web Page Content Dynamically

Creating HTML Elements Using
jQuery
newP = $('<p id="newp" class="nice">new P</p>');

img = $("");
.attr("src", "images/newImg.jpg");

opt = $("<option></option>");
.htm1("Option 1");

.val(l);

.attr("selected", true):

An extremely important aspect of jQuery is the ability
to create HTML elements from an HTML string. To
create an HTML object from a string, simply call
jQuery (htm1String) or $(htm1String).The string can
include attribute settings and content. For example:

var newP = $('<p id="newp" class="nice">new
=Paragraph</p>"');

Notice that I used single quotes to define the
htm1String. That allowed me to put in the id="newp"
and class="nice" without having to escape the double
quotes. The resulting newP object is a jQuery object
with a single <p> element in its set.

Another big advantage to building HTML is that you
can use the .attr(), .htm1Q), .propQ, .val(Q), and
.data() methods to store additional values and set
attributes, properties, and content.

For example, the following code creates an image ele-
ment and then assigns the src attribute:

var img = $("");
img.attr("src", "images/newImg.jpg");

Adding Elements to the Other Elements

Another example creates a new <option>, assigns a
value, and then sets the <option> as selected by setting
the value of the <select> to the value of the option:

var opt = $("<option></option>");
opt.htm1("Option 1");

opt.val(l);
select.val(opt.valQ);

Adding Elements to the Other
Elements

An important aspect of dynamic web programming is
the ability to add content based on user interaction
without the need to request a new page from the serv-
er. This gives the users a much quicker and more
seamless experience. The phrases in this section are
designed to illustrate the basics of prepending, append-
ing, and inserting new HTML elements into existing
ones.

Prepending to the Beginning of an
Element’s Content

var newDiv = $("<div></div>");
$("body") .append(newDiv) ;

newDiv.append($("<p>Paragraph A</p>"));
$("<p>Paragraph A</p>").appendTo("div");

jQuery provides methods to prepend content before
the existing content in an element. For example, you
can add list items, a table row, or paragraph text before
existing list items, table rows, or text in a paragraph.

179

180

CHAPTER 10 Building Web Page Content Dynamically

These methods are
existingObject.prepend(newContent) and
newContent.prependTo(existingObject). The
existingObject can be an object you already have, or
you can use a selector to specify the existing object.

For example, the following code creates a new <div>
and appends it to body. Then it prepends two para-
graphs each using a different method:

var newDiv = $("<div></div>");

$("body") .prepend(newDiv) ;
newDiv.prepend($("<p>Paragraph A</p>"));
$("<p>Paragraph A</p>").prependTo("div");

Appending to the Bottom of an
Element’s Content

var newDiv = $("<div></div>");
$("body") .append(newDiv) ;

newDiv.append($ ("'<p>Paragraph A</p>"));
$("<p>Paragraph B</p>").appendTo("div'");

jQuery also provides methods to append content after
the existing content in an element. For example, you
can add list items, table rows, or paragraph text at the
end of a list item, table row, or text in a paragraph.

These methods are existingObject.append(newContent)
and newContent.appendTo(existingObject). The
existingObject can be an object you already have, or
you can use a selector to specify the existing object.

For example, the following code creates a new <div>
and appends it to body. Then it appends two paragraphs
each using a different method:

Adding Elements to the Other Elements

var newDiv = $("<div></div>");

$("body™) .append(newDiv) ;
newDiv.append($("<p>Paragraph A</p>"));
$("<p>Paragraph A</p>").appendTo("div");

Inserting into the Middle of an
Element’s Content

$C"ul 1i:eq(2)).insertBefore($("<1i>New
w Ttem</1i>"));
$("<p>Title</p>") .before("#subtitle");

$C"ul 1i:eq(2)).insertAfter($("<1i>New Item</1i>"));
$("<p>Sub Title</p>").after("#title");

Often, you will want to add new items to the middle
of an element’s content. For example, you might need
to insert an item into the middle of a list or select or
add a new paragraph right before an existing para-
graph.

jQuery provides methods to insert content immediate-
ly before and after existing content. The new content
is a sibling of the existing content.

To insert an element before an existing element, use
existingObject.insertBefore(newContent) or
newContent.before(existi ngObject).The
existingObject can be an object you already have, or
you can use a selector to specify the existing object.

For example, the following code inserts a new list item

immediately before the third item already in the list:

$("ul 1i:eq(2)).insertBefore($("<Ti>New
wItem</1i>"));

181

182

CHAPTER 10 Building Web Page Content Dynamically

The following code inserts a new paragraph before
one with an id="subtitle" using the .before()
method:

$("<p>Title</p>") .before("#subtitle™);

To insert an element after an existing element, use
existingObject.insertAfter(newContent) or
newContent.after(existingObject). The existingObject
can be an object you already have, or you can use a
selector to specify the existing object.

For example, the following code inserts a new list item
immediately after the third item already in the list:

$C"ul 1i:eq(2)).insertAfter($("<1i>New Item</1i>"));

The following code inserts a new paragraph immedi-
ately after one with an id="title" using the .after()
method:

$("<p>Sub Title</p>").after("#title");

Adding Elements Example

The code that follows appends, inserts, and prepends
paragraphs to an existing <div> element when the but-
ton is clicked so that you can see how the dynamic
inserts work. Figure 10.1 illustrates how the page looks
before and after adding the elements:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

Adding Elements to the Other Elements

07 <script>

08 $(document) .ready(function (O{
09 $("button™).on("click", function(){
10 $("div").prepend("<p>Paragraph 1</p>");
11 $("div p:eq(1)").after("<p>Paragraph
=3</p>");
12 $("div") .append("<p>Paragraph 5</p>");
13 B;
14 s
15 </script>
16 </head>
17 <body>
18 <button>Add Paragraphs</button>
19 <div>
20 <p>Paragraph 2</p>
21 <p>Paragraph 4</p>
22 </div>
23 </body>
24 </html>
ch1001.html
Acdd Paragraphs
Paragraph 2 Paragraph 1
Paragraph 4 Paragraph 2
Paragraph 2
Taragraph 4
Paragraph 5

Figure 10.1 Dynamically adding paragraph
elements using jQuery code in ch1001.html.

183

184 CHAPTER 10 Building Web Page Content Dynamically

Removing Elements from the
Page

$("p") .remove();
$("p") .remove(" .menu");

$("#myList").children("1i").remove(Q);

You remove elements from the web page using the
.remove([selector]) method on the jQuery object.
This method modifies the DOM and removes the
nodes from the tree.

There are a few different ways to use the .remove()
method. Calling .remove() with no parameters
removes all elements in the jQuery object’s set. For
example, the following statement removes all <p> ele-
ments:

$("p") .remove();

You can also pass a selector into .remove(), which
limits the removal to items in the set that match the
selector value. For example, the following statement
removes all <p> elements with class="menu":

$("p") .remove(".menu");

Often, you won’t want to remove the element itself,
but its children. For example, the following code
removes all <11> elements in a list with id="myList":

$("#myList").children("1i").remove();

Removing Elements from the Page

The following code shows an example of using
selectors to remove elements from a list. The code first
generates a list of ten elements and then provides but-
tons that call handlers that use .remove("1i:even") or
.remove("1i:0dd") to remove only the even or odd
elements from the list, as shown in Figure 10.2:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 $(document) .ready(function (O{

09 for(var i=0; i<10; i++){

10 $C"ul™) .append($("<Ti></1i>") .htm1("Item
-+ 1))

11 }

12 $("#0dd") .on("cTick", function({

13 $("1i:0dd") .remove(); 1);

14 $("#even").on("click", function(){

15 $("1i:even").remove(Q); });

16 1;

17 </script>

18 </head>

19 <body>

20 <button id="odd">Remove Odd</button>

21 <button id="even">Remove Even</button>

22

23 </body>

24 </html>

ch1002.html

185

186 CHAPTER 10 Building Web Page Content Dynamically

Remove Odd | | Remove Even | Remove Odd | | Remove Even |
* Ttem 0 ® Ttem 0
& Jtem 1 * Jtem 2
® Ttem 2 ® Ttem 4
® Ttem 3 ® Ttem 6
® Ttemn 4 ® Ttem 8
* llem 5
& Jtem 6
® Ttem 7
® Jtem 8
® Jtem 9

Figure 10.2 Dynamically removing list elements
using jQuery code in ch1002.html.

Dynamically Creating a Select
Form Element

var select = $("<select></select>");
var opt = $('"<option></option");
opt.val("1");

opt.html ("Option 1");
select.append(opt) ;
select.val(opt.val());

jQuery makes it easy to dynamically generate a select
element. This is useful if you are trying to add selects
with a large number of options or if the data for the

select is coming in a dynamic way, such as user input
or an AJAX request.

To dynamically create a select, you first need to create
a <select> element using the following code:

var select = $("<select></select>");

Then you need to add options by creating the
<option> element, setting a value for the option, and

Dynamically Creating a Select Form Element

then defining the HTML to appear in the select. The
following code creates a new <option> and adds it to
<select>:

var opt = $("<option></option");
opt.val("1");

opt.html1("Option 1");
select.append(opt);

You can also set an option as selected using the follow-
ing statement to set the value of the select to the value
of the option:

select.val(opt.val(Q);

The following code illustrates an example of dynami-
cally building date selects of month, day, year using for
loops and a month name array. Figure 10.3 shows the
dynamically generated selects:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script>

08 var mNames = ["Jan", "Feb", "Mar", "Apr",
=-"May",

09 "Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
w'"Dec"];

10 $(document) . ready(function {

11 var months = $('<select
wid="mon"></select>");

12 var days = $('<select id="day"></select>"');

13 var years = $('<select

187

188

CHAPTER 10 Building Web Page Content Dynamically

wid="year"></select>");

14 for(var i=0; i<mNames.length; i++){
15 var month = $("<option></option");
16 var v = mNames[i];

17 month.val(mNames[i]) .htm]1(mNames[i]);
18 months.append(month); }

19 for(var i=1; i<=31; i++){

20 var day = $("<option></option");
21 day.val(i).htm1();

22 days.append(day); }

23 for(var i=2010; i<=2030; i++){

24 var year = $("<option></option");
25 year.val(i).htm1(i);

26 years.append(year); }

27 $("body") .append(months, days, years);
28 $("select").on("change", function(){
29 $C"p") .htm1 ($("#mon") .val () +" " +
30 $("#day").val(Q +", " +

- ("#year").val();

31 55

32 $("select").attr("size", 3);

33 1;

34 </script>

35 </head>

36 <body>

37 <p>Date</p>

38 </body>

39 </html>

ch1003.html

War B, 2019

Jan all7 all2013 &
Fob 2014 —
- =l -

Figure 10.3 Dynamically creating select elements
using jQuery and JavaScript code in ch1003.html.

Appending Rows to a Table 189

Appending Rows to a Table

var newRow = $("<tr></tr>");
var newCell = $("<td>cell</td>");

newRow. append(newCel1);
$("tbody") .append (newRow) :

A common task when dynamically manipulating web
pages is to add rows to elements in a table. To add rows
to a table, you need to create a new <tr> element and
then add the <td> elements. For example:

var newRow = $("<tr></tr>");

var newCell = $("<td>cell</td>");
newRow.append(newCell);
$("tbody") .append(newRow) :

The following example illustrates using table building
using a series of arrays to populate the data. The
buildTable() function selects a random item out of the
arrays to be placed into the <td> elements. Figure 10.4
shows the final table:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 var tArr = ["Mens", "Womens", "Youth",
="Childs"];

09 var sArr = ["XL", "M", "S", "XS"];

10 var kArr = ["pants", "shirt", "sweater",
="belt"];

11 function randInt(max) {

12 return Math.floor((Math.random()*max)+1); }

190

CHAPTER 10 Building Web Page Content Dynamically

13 function buildTable(){

14 for(var x=1;x<10;x++){

15 var row =$("<tr></tr>");

16 row.append($("<td></td>") .htm1(x));

17 row.append ($("<td></td>") .htm1

18 tArr[randInt(3)]+" "+sArr[randInt(3)]
-

19 " " 4kArr[randInt(3)1));

20

wrow.append($("<td></td>") .html (randInt(20)));

21 row.append ($("<td></td>") .htm1

22 ((Math.random()*80)+5) .toFixed(2)));
23 $("tbody™) .append(row) ;}

24 }

25 $(document) .ready(function ({

26 buildTable()

27 5)5

28 </script>
29 <style> td {border:.5px dotted black; }

w</style>

30 </head>

31 <body>

32 <table>

33 <thead><tr>

34 <th class="numeric">ID#</th>
35 <th >Product</th>

36 <th

wclass="numeric">Quantity</th>
37 <th
=class="numeric">Price</th>

38 <td class="spacer"></td>
39 </tr></thead>

40 <tbody></tbody>

41 </table>

42 </body>

43 </html>

ch1004.html|

Inserting Items into a List

ID# Product Quantity Price
1 Childs M belt 0 67.84
2 | Womens XS cweater) 17 24,95,

Childs 3(S belt i15 80.49;
{Youth 3CS shirt 7 56.82i

" Youth M belt iz 56.31]
Womens 3 belt 13 591

Vouth XS sweater |8 1080

Womens S belt 11 62.23
Womens S sweater 13 61.91

Figure 10.4 Dynamically adding rows to a table
using jQuery and JavaScript code in ch1004.html.

Inserting Items into a List

var item = "New Item";
var nextItem = false;
$("ul 1i").each(function(i, item){
if ($Citem).htm1 () > newItem){
nextItem = item;

return false; }});
if (!'nextItem){
$C"ul™) .append($("'<1i></T1i>") .html (newItem)); }
else {
$(nextItem) .before($("<1i></11>").html (newItem));}

Another common task when dynamically manipulating
web pages is to insert elements into a list. But what if
the list needs to be sorted? There are a few different
ways to do this.

One way to add the item would be to iterate through
the list elements until you find one that is larger than
the new item. Then insert the new item before that
existing item. If a larger item is not found, just append
the item to the list.

191

192 CHAPTER 10 Building Web Page Content Dynamically

The following example illustrates using a text input to
allow the user to add items to a grocery list by typing
the item and pressing the Enter key. The items are
added in alphabetical order in the addToList() func-
tion. Figure 10.5 illustrates adding items to the list:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 function addToList(newItem) {

09 var nextItem = false;

10 $("ul 1i").each(function(i, item){

11 if ($CGitem).htm1() > newItem){

12 nextItem = item;

13 return false; }

14 B;

15 if ('nextItem){

16

=»$("ul™) .append($("<1i></1i>") .htm]l (newItem)); }
17 else {

18
w$(nextItem).before($("<1i></1i>") .html (newItem));}
19 }

20 $(document) . ready(function ({

21 $("input™).on("keyup",function(e){

22 if (e.keyCode == 13){

23 addToList($(this).val(Q);

24 $Cthis).val("");

25 }

26 B;

27 s

28 </script>
29 </head>

Creating a Dynamic Image Gallery 193

30 <body>
31 <p>Grocery List</p>
32 <input type="text" />
33 eggs</Ti>milk</Ti>
34 </body>
35 </html>
ch1005.html
Grarery Tast Grorery Tist
ham
* egas * eggs
* qmlk * lion

® milk

Figure 10.5 Dynamically inserting items alphabet-
ically into a list using jQuery and JavaScript code in
ch1005.html.

Creating a Dynamic Image
Gallery

var img = $("");

img.attr("src", "images/newImage.jpg");
$("div") .append(img) ;

Images are becoming a mainstay in web pages. They
deliver much more content, and they accomplish it
more quickly and often more accurately than text.
jQuery and JavaScript allow you to add images to a
web page dynamically on demand by creating image
elements, then setting the source attribute of each and
then appending them to the correct location.

194

CHAPTER 10 Building Web Page Content Dynamically

For example, the following code creates an ele-
ment, sets the src attribute to define the file location,
and then appends the image to a <div> element:

var img = $("");
img.attr("src", "images/newImage.jpg");
$("div") .append(img);

As an example, the following code uses an array of
image names to dynamically build a small image
gallery on the web page. The addImages() function
iterates through the image list and then appends the
images to the page by creating , , and <p>
elements. Figure 10.6 shows the final image gallery:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 var images = ["arch", "flower", "sunset2",
09 "tiger", "falls", "volcano",
10 "beach", "imgl", "flower2"];
11 function addImages(){

12 for (i in images){

13 var imgbox = $("");

14 var img = $("");

15 var label = $("<p></p>").html(images[il);
16 img.attr("src", images[i] + ".jpg");

17 imgbox.append(label, img);

Creating a Dynamic Image Gallery

18 $("div") .append(imgbox); }

19 }

20 $(document) . ready(function (O{

21 addImages(Q);

22 s

23 </script>

24 <style>

25 div, img { border:5px ridge white;
26 box-shadow:10px 10px 5px #888888; }
27 div { background-color:black;

28 width:660px; height:520px }

29 span { display:inline-block; width:200px;
30 text-align:center; margin:10px; }
31 p {color:white; margin:0px;

32 background-color:#3373A5; font-weight:bold;
-}

33 img { height:100px; margin:10px;}

34 </style>

35 </head>

36 <body>

37 <div>

38 </div>

39 </body>

40 </html1>

ch1006.html

195

196 CHAPTER 10 Building Web Page Content Dynamically

3

% =

valeann

Figure 10.6 Dynamically generating an image
gallery using jQuery and JavaScript code in
ch1006.html.

Adding HTML5 Canvas
Graphics

var ¢ = $("canvas").get(0);

var lineValues = [10,15,80,79];
c.width = c.width;

var xAdj = c.width/11ineValues.length;
var ctx = c.getContext("2d");
ctx.fill1Style = "#000000";

ctx.strokeStyle = "#00ff00";
ctx.lineWidth = 3;
var x = 1;
ctx.moveTo(x, (c.height));
for (var 1idx in 1lineValues){
var value = parseInt(lineValues[idx]);

Adding HTML5 Canvas Graphics

ctx.lineTo(x+xAdj, (c.height - value));
X += xAdj;

ctx.stroke(Q);

As HTMLS5 begins to become more and more main-
stream, many possibilities open up for graphics. Using
dynamic jQuery and JavaScript code with the new
<canvas> element, you can easily provide some rich,
interactive graphics to your web pages.

Using JavaScript, you can access the <canvas> element,
get the context, set the line colors and the size, and
then add lines to your file. To illustrate this, look at the
renderSpark() function in the following code.

This code accepts a list of values and a <canvas> ele-
ment and then uses the values to draw a series of lines
on the canvas. The line values are dynamically generat-
ed in the adjvalues() function and updated on a
setTimeout() interval. The result is a dynamically
updating spark line.You can easily replace the
adjvalues() function with an AJAX request to get
server data to populate the canvas graph. Figure 10.7
shows the dynamically rendered graphs on the canvas:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script>

08 function randInt(max) {

09 return Math.floor((Math.random()*max)+1); }
10 function adjValues({

11 $("canvas") .each(function(){

197

198

CHAPTER 10 Building Web Page Content Dynamically

12 var lineValues =
w$(this).data("valueArr™);

13 TineValues.shift();

14 TineValues.push(randInt(100));
15 renderSpark(this, TineValues);
16 s

17 setTimeout(adjValues, 1000);

18 }

19 function renderSpark(c, TineValues){
20 c.width = c.width;

21 var xAdj = c.width/lineValues.length;
22 var ctx = c.getContext("2d");

23 ctx.fil1Style = "#000000";

24 ctx.strokeStyle = "#00ff00";

25 ctx.TineWidth = 3;

26 var x = 1;

27 ctx.moveTo(x, (c.height));

28 for (var idx in TineValues){

29 var value = parseInt(lineValues[idx]);
30 ctx.lineTo(x+xAdj, (c.height - value));
31 X += XAdj;

32 }

33 ctx.stroke();

34 }

35 function getRandomArray(){

36 var arr = new Array(Q;

37 for(var x=0; x<20; x++){
=arr.push(randInt(100)); }

38 return arr;

39 }

40 $(document) . ready(function(){

41 $("canvas") .each(function({

42 $(this).data("valueArr",
=getRandomArray()); 1);

43 adjvalues(Q);

44 ik

45 </script>

Adding HTML5 Canvas Graphics

46 <style>

47 canvas{height:50px;width:200px;background-
wcolor:black;

48 border:3px solid;vertical-align:bottom;
=margin:10px;}

49 Tlabel, span {display:inline-block; text-
=align:right;

50 width:160px;border-bottom:2px dotted;font-
wsize:26px;}

51 span{ width:50px; color:blue;

52 </style>

53 </head>
54 <body>
55 <label>Utilization</label><canvas></canvas>
56 <label>Speed</label><canvas></canvas>
57 <label>Uploads</label><canvas></canvas>
58 <label>Downloads</Tabel><canvas></canvas>
59 </body>
60 </html>
ch1007.html
Utilization

Figure 10.7 Dynamically adding lines to a
<canvas> element using JavaScript code in
ch1007.html.

199

This page intentionally left blank

11

Adding jQuery Ul
Elements

JQuery UI is an additional library built on top of
jQuery. The purpose of jQuery Ul is to provide a set
of extensible interactions, effects, widgets, and themes
that make it easier to incorporate professional user
interface (UI) elements in your web pages.

The jQuery UI library provides a lot of functionality.
The phrases in this chapter are designed to get you
started using jQuery Ul Although these concepts are
not comprehensive, you can apply them to additional
UI elements and interactions.

Adding the jQuery Ul Library

<script type="text/javascript"
src="jquery-ui-1.10.3.min.js"></script>

<1link rel="stylesheet" type="text/css"
href="jquery-ui-1.10.3.min.css">

To get going with jQuery, download the library, add it
to a location where your web pages can see it, and
then load the JS and CSS files in the web page. The

202 CHAPTER 11 Adding jQuery Ul Elements

process of adding the jQuery UI library is described in
the following steps.

1. Download the library from
http://jqueryui.com/download/.

2. Unzip the contents of the downloaded files.

3. Copy the jquery-ui-###.7js, jquery-ui-###.css,
and images folder in the download to a location in
your web site where your pages can access them.
The images folder needs to be in the same loca-
tion as the .css file.

4. Add the following lines to the header of your web
pages to load the jQuery Ul code.You need to
replace the version numbers to match those you
downloaded and set the appropriate paths in the
src and href attributes:

<script type="text/javascript"
src="jquery-ui-1.10.3.min.js"></script>
<link rel="stylesheet" type="text/css"
href="jquery-ui-1.10.3.min.css">

By the way

The jQuery Ul library is based on the jQuery library, so
you need to load the jQuery library first.

http://jqueryui.com/download/

Implementing an Autocomplete Input

Implementing an Autocomplete
Input

. . jQuery . .
$("#autocomplete").autocomplete({
source: ["Monday", "Tuesday", "Wednesday",

="Thursday", "Friday"]

b;
. HTML .

<input id="autocomplete'>

The autocomplete widget is attached to text input ele-
ments. As the user types in the text input, suggestions
from a list are displayed. This is especially helpful when
you have a finite set of possibilities that can be typed
in and you want to make sure the correct spelling is
used.

To apply the autocomplete widget, define a source
array that contains the strings available to autocom-
plete in the text input. Then call the
.autoComplete({source:array}) method on the input
element. For example:

$("#autocomplete").autocomplete({

source: ["Monday", "Tuesday", "Wednesday",
w"Thursday", "Friday"]
ik

The following code illustrates an example of using
autocomplete by adding a day array autocomplete
widget to an <input> element named #autocomplete.
The autocomplete is illustrated in Figure 11.1.The set
of days to autocomplete is added by setting the source
attribute to an array of day names in lines 16 and 17:

203

204

CHAPTER 11 Adding jQuery Ul Elements

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 function dateChanged(dateStr, Object){

13 $("span™) .html("Updated to" + dateStr); }
14 $(document) . ready(function(){

15 $("#autocomplete").autocomplete({

16 source: ["Monday", "Tuesday",
="Wednesday",

17 "Thursday", "Friday"]

18 5Dt

19 105

20 </script>

21 <style>

22 input { border:2px ridge blue;
wborder-radius:5px;

23 padding:3px; }

24 </style>

25 </head>

26 <body>

27 <label for="autocomplete">Day of Week:
w</label>

28 <input id="autocomplete">

29 </body>

30 </html>

ch1101.html

Implementing Drag and Drop 205

R —

Tuesday
Thursday

Figure 11.1 Using jQuery Ul code to implement
an autocomplete text input in ch1101.html.

Implementing Drag and Drop

$("#dragl, #drag2, #drag3").draggable(
{helper:"clone", cursor:"move",
opacity:.7, zIndex:99});
$("#drop") .droppable({accept:"img",
tolerance:"intersect", hoverClass:'"drop-hover"});
$("#drop") .on(""drop", function(e,ui){
var item = $("<div></div>");

item.append($("") .attr("src",
ui.draggable.attr("src")));
jtem.append($ ("'") .html (
ui.draggable.attr("src")));
$(this) .append(item);
;s

You can define one element to be draggable and then
another to be droppable. When draggable elements are
dropped on droppable widgets, you can add JavaScript
and jQuery code that provides whatever interaction
necessary when draggable elements are dropped on
droppable widgets.

The draggable widget provides the necessary interac-
tivity for elements when dragging them with the
mouse. For example, moving an element to another
position in the browser window by dragging it with
the mouse.

Table 11.1 describes the more common draggable
options. The following code shows an example of

206

CHAPTER 11 Adding jQuery Ul Elements

attaching the draggable widget to an element with the

cursor and opacity options:

$("#imgl") .draggable({cursor:"move", opacity:.5});

Table 11.1 Common Draggable Widget Options

Option

axis

containment

cursor

helper

opacity

revert

stack

zIndex

Description

Can be set to x or y or false. x drags
horizontally only, y drags vertically only,
and false drags freely.

Specifies a container to limit dragging
within. Possible values are "parent”,

"document", or "window".

Specifies the cursor to display while
dragging.

Defines what element is displayed when
dragging. Values can be "original",
"clone", or a function that returns a
DOM object.

Sets the opacity while dragging.
Boolean. Specifies if the "original"

object should return to its original
position when dragging stops.

String. If set to "valid", revert only
occurs if the object has been dropped
successfully. "invalid" reverts only if the
object hasn’t been dropped successtully.
Is set to false or a selector. If a selector
is specified, the item is brought to the
top z-index of the element the selector
specifies.

z-index value to use while dragging.

Implementing Drag and Drop 207

The draggable widget also provides the additional
events so handlers can be attached to the element
when dragging starts, is in progress, and stops. Table
11.2 lists the events that you can access on draggable
items. The following code shows an example of adding
a dragstop event to apply a bounce effect when the
item is dropped:

$("#dragl") .draggable({cursor:"move", opacity:.5});
$("#dragl") .on("dragstop",
wfunction(){$(this).effect("bounce", 1000); });

Table 11.2 Draggable Widget Events

Event Description
drag(event, ui) Triggered while dragging.
event is the JavaScript event
object.
ui 1s an object with the follow-
ing values:
= helper—jQuery object repre-
senting the helper for the
draggable item.

= position—{top, left} object
for the current CSS position.
= offset—{top, left} object
for the current CSS offset.
dragstart(event, ui) Triggered when dragging starts.
dragstop(event, ui) Triggered when dragging stops.

The droppable widget defines an element as a valid
drop container usable by draggable items. This allows
you to provide interactions between elements using
simple mouse controls.

208

CHAPTER 11 Adding jQuery Ul Elements

The droppable widget allows you to specify an accept
function that can process information about the event,
such as mouse coordinates and the draggable item
involved. Table 11.3 describes the more common
droppable options. The following code shows an
example of attaching the droppable widget to an ele-
ment and specifying the tolerance level:

$("#divl"). droppable ({tolerance:"touch"});

Table 11.3 Common Droppable Widget Options
Option Description
accept Specifies a selector used to filter the

activeClass

greedy

hoverClass

tolerance

elements that the droppable item will
accept.
Specifies a class that will be applied
to the droppable item while a valid
draggable item is being dragged.
Boolean. The default is false, meaning
that all valid parent droppable items
receive the draggable item as well.
When true, only the first droppable
item receives the draggable item.
Specifies a class to be applied to the
droppable item while a valid draggable
item is hovering over it.
Specifies the method used to determine
if a draggable item is valid. Acceptable
values are
= fit—Draggable entirely overlaps
droppable.

= intersect—Draggable overlaps drop-
pable at least 50% in both directions.

Implementing Drag and Drop 209

= pointer—Mouse is over droppable.

= touch—Draggable overlaps the drop-
pable element anywhere.

The droppable widget also provides the additional
events so handlers can be attached to the element
when dragging and dropping. Table 11.4 lists the
events that you can access on droppable items. The
following code shows an example of adding a
dropactivate event to apply a shake effect when

a drag start activates a droppable item:

$("#dropl") .droppable({tolerance: "pointer"});
$("# dropl™).on("dropactivate",
wfunction(){$(this).effect("shake", 1000); 1});

Table 11.4 Droppable Widget Events

Event Description

dropactivate(event, ui) Triggered when a valid

draggable item begins

dragging.

event is the JavaScript event

object.

ui is an object with the

following values:

= draggable—jQuery
object representing the
actual draggable item.

= helper—jQuery object
representing the helper
for the draggable item.

210 CHAPTER 11 Adding jQuery Ul Elements

= position—{top, left}
object for the current
draggable CSS position.

s offset—{top, left}
object for the current
draggable CSS oftset.

drop(event, ui) Triggered when a draggable

item is dropped on drop-
pable.

dropout(event, ui) Triggered when draggable

leaves droppable based on
tolerance.

dropover(event, ui) Triggered when draggable

enters droppable based on
tolerance.

Now I'll try to put all this together in a practical way.

The following code makes three image elements drag-

gable and then a <div> element droppable. I use the

"clone" option in line 14 so that I can move a copy of

the image and leave the original in place. The drop

event handler uses the image information to create a

new <div> element that contains the image and file-

name, as shown in Figure 11.2:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">

Implementing Drag and Drop

11 <script>

12 $(document) . ready(function(){

13 $("#dragl, #drag2, #drag3").draggable(
14 {helper:"clone", cursor:"move",

15 opacity:.7, zIndex:99});

16 $("#drop") .droppable({accept:"img",

17 tolerance:"intersect", hoverClass:"drop-
=hover"});

18 $("#drop") .on("drop", function(e,ui){
19 var item = $("<div></div>");

20 item.append($("") .attr("src",
21 ui.draggable.attr("src")));

22 item.append($("") .html(
23 ui.draggable.attr("src")));

24 $(this).append(item);

25 1

26 5)s

27 </script>

28 <style>

29 div {display:inline-block; vertical-
=align:top;

30 margin:10px;}

31 img {width:100px; margin:Opx; }

32 #images { width:100px; height:300px; }

33 #drop { width:300px; min-height:150px;
=padding:3px;

34 border:3px ridge white; box-shadow:

35 S5px 5px S5px #888888; }

36 #drop div{ height:80px; width:280px;
wpadding:4px;

37 border:2px dotted; margin-top:5px; }

38 #drop div img {height:80px; margin-
=right:10px; }

39 #drop div span { display:inline-bTlock;

40 vertical-align:top; font:16px/70px arial; }
41 .drop-hover { background-color:#BBDDFF; }
42 </style>

212 CHAPTER 11 Adding jQuery Ul Elements

43 </head>

44 <body>

45 <div id="images">

46
47
48
49 </div>

50 <div id="drop"></div>

51 </body>

52 </html>

ch1102.html

Figure 11.2 Applying draggable and droppable to
elements using jQuery Ul code in ch1102.html.

Adding Datepicker Element

$C "#month").datepicker({
onSelect:dateChanged,
showOn: "button",
buttonImage: "calendar.png",
buttonImageOnly: true,

numberOfMonths:2,

showButtonPanel: true,

dateFormat: "yy-mm-dd"
b

The datepicker widget provided with jQuery allows
you to implement a calendar interface so users can
select a specific day using a simple click of the mouse.

Adding Datepicker Element

This can prevent a lot of problems when users input
dates incorrectly because they are typing them by
hand.

The datepicker widget is attached to a text, date, or
datetime <input> element by calling the .datepicker()
method. When the user clicks on the <input>, the cal-
endar 1s displayed. You can also add an icon image to
launch the datepicker using the buttonImage attribute.

The following code creates a date with an image icon,
as seen in Figure 11.3.To illustrate some of the avail-
able options, I've added settings for the following:

= onSelect—Specifies a function that is called each
time a new date is selected.

= showon—This is set to “button” so that the
datepicker is launched when the button icon is

clicked.

= buttonImage—Specifies the location of the image
file to use.

= buttonImageOnly—When true, the datepicker is
only launched when the button icon is clicked
and not the <input>.

= numberOfMonths—Specifies the number of months
to display.

= showButtonPanel—When true, the Today and
Done buttons are displayed on the bottom of the
datepicker.

= dateFormat—String that describes the format to be
placed in the <input> field.

213

214

CHAPTER 11 Adding jQuery Ul Elements

01 <html>
02 <head>
03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 function dateChanged(dateStr, Object){

13 $("span").html("Updated to" + dateStr); }
14 $(document) . ready(function(){

15 $C "#month").datepicker({

16 onSelect:dateChanged,

17 showOn: "button",

18 buttonImage: "calendar.png",

19 buttonImageOnly: true,

20 numberOfMonths:2,

21 showButtonPanel:true,

22 dateFormat: "yy-mm-dd"

23 5D¢

24 5)s

25 </script>

26 <style>

27 input { border:2px ridge blue; border-radius:
=5px; }

28 </style>

29 <body>

30 <label>Date: </Tabel>

31 <input type="text" id="month"></input>

32

33 </body>

34 </html>

ch1103.htm|

Using Sliders to Manipulate Elements

Date: [FN13-03-22 4] Updated bo2013-03-22

| L March 2013 April 2013 o

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

i L2 S| e S| e 6
i e e [| | S G s o e e 2

10|11y d2)13 |l [16|16 a2 1B S I TS B S S e | S o
TR L8] o200 |21 ,&r)z 23 212223 24y 25(26| 27
24| 25| 26 27 28| 29| 30 28 29| 30

Today Done

Figure 11.3 Implementing a datepicker widget in
jQuery Ul code in ch1103.html.

Using Sliders to Manipulate
Elements

$(C "#red, #green, #blue").slider({
orientation: "horizontal",
range: "min",
max: 255,
value: 127,
slide: refreshSwatch,

change: refreshSwatch
b;
$("#red").slider("value", 128);
$("#green").slider("value", 128);
$("#blue").slider("value", 1238);

The slider widget allows you to create slider controls
that adjust a value by dragging the mouse. The slider
has two components: the slide and the handle. The
slide is styled by the .ui-slider-range class, and the
handle is styled by the .ui-slider-handle class.

215

216

CHAPTER 11 Adding jQuery Ul Elements

Did you know?
You can define both a min and a max handle that

allows you to use a single slider control to define a
range instead of a single value.

The following code provides an example of imple-
menting a set of sliders to adjust the background color
of another element. The slider is applied to the <div>
elements in lines 23-33, and the following options

are set:

= orientation—Can be set to "horizontal" or

"vertical".

= range—Can be set to true, "min", or "max". Used
to define the range. "min" goes from the slider min
to a handler, and "max" goes from the slider max
to a handle.

= max—Specifies the maximum value.
= value—Specifies the current value.

= slide—Event handler to call when the slide
moves.

= change—Event handler to call when the slide
value changes.

Also, pay attention to the class settings in lines 41-46
of the CSS, which alter the appearance of the slider
and handler. Figure 11.4 shows the sliders:

Using Sliders to Manipulate Elements

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 function cValue(selector){

13 var v =

= $(selector).slider("value™).toString(16);

14 if (v.length ===1) { v = "0" + v;}

15 return v;

16 }

17 function refreshSwatch() {

18 $("#mix").css("background-color", "#" +
19

wcValue("#red")+cValue("#green")+cValue("#blue"));

20 $C"#mix") . htm1 ($("#mix") .css("background-
wcolor"));

21 }

22 $(document) .ready(function(){

23 $C "#red, #green, #blue").slider({
24 orientation: "horizontal",

25 range: "min",

26 max: 255,

27 value: 127,

28 slide: refreshSwatch,

29 change: refreshSwatch

30 195

31 $("#red").slider("value", 128);

217

218 CHAPTER 11 Adding jQuery Ul Elements

32 $("#green").slider("value", 128);
33 $("#blue™) .slider("value", 128);
34 5Dt

35 </script>
36 <style>

37 #mix { width:160px; height:100px; text-
=align:center;

38 font:18px/100px arial; }

39 #red, #green, #blue { float: Tleft; clear:
=]eft;

40 width:150px; margin:15px; }

41 #red .ui-slider-range { background:red; }
42 #red .ui-slider-handle { border-color:red; }
43 #green .ui-slider-range { background:green; }
44 #green .ui-slider-handle { border-
=color:green; }

45 #blue .ui-slider-range { background:blue; }
46 #bTue .ui-slider-handle { border-color:blue;
-}

47 </style>

48 <body>

49 <div id="mix"></div>

50 <div id="red"></div>

51 <div id="green"></div>

52 <div id="blue"></div>

53 </body>

54 </html>

ch1104.html

Creating a Menu

rgb(86, 202, 255)

I
W=
I

Figure 11.4 Adding sliders in jQuery Ul code in
ch1104.html.

Creating a Menu

. . jQuery . . .
$C "#menu").menu(Q);
$C "#menu").on("menuselect", function(e, ui){
$C"p"™) .html1("Selected " +
ui.item.children("a:first").htm1Q);
b
. HTML . . .
<ul id="menu">
0pen</11i>
Recent

<11 class="ui-state-disabled">

219

220

CHAPTER 11 Adding jQuery Ul Elements

One of the most often used jQuery UI widgets is the
menu widget. The menu widget allows you to turn an
element tree into an expanding menu. Typically, menus
are created by using cascading sets of <u1>/<1i> ele-
ments with an <a> element that defines the link behav-
ior and menu text.

Did you know?
You can customize the element tags that are used to

build the element using the menus option; for example:
menus:"div.menultem".

The following code creates a jQuery Ul menu from a
set of lists. Notice in the HTML that some of the <1i>
fields include a that has class="ui-icon ui-
icon-{type}". These items will include the jQuery Ul
icon specified along with the menu text.

The selected item is displayed in the <p> element to
show how the selection handler works using the
menuselect event handler defined in line 14. The width
of the menu is defined in the CSS code on line 21 by
setting the width value in the .ui-menu class. The menu
action is illustrated in Figure 11.5:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"
08 src="../js/jquery-ui-1.10.3.min.js"></script>

09 <link rel="stylesheet" type="text/css"
10 href="../js/css/jquery-ui-1.10.3.min.css">

Creating a Menu

11 <script>

12 $(document) . ready(function(){

13 $C "#menu").menu(Q);

14 $C "#menu").on("menuselect", function(e,
wui){

15 $C"p") .html1 ("Selected " +

16 ui.item.children("a:first").htm1Q));
17)5

18 s

19 </script>

20 <style>

21 .ui-menu { width: 200px; }

22 p { border:3px ridge red; color:red;

23 display:inline-block; height:80px;

=width:100px; }
24 </style>

25 <body>

26 <ul id="menu">

27 0pen</1i>

28 Recent

29 Some File</1i>

30 Another File</1i>
31 </1i>

32 Save</1i>

33 <1i class="ui-state-disabled">
34
35 Print...</1i>

36 Playback

37

38 <span class="ui-icon ui-icon-seek-
=start">

39 Prev</11i>

40

41 <span class="ui-icon ui-icon-

wstop''>
42 Stop</11i>
43

221

222 CHAPTER 11 Adding jQuery Ul Elements

44 <span class="ui-icon ui-icon-
=play'>
45 Play</1i>
46
47 <span class="ui-icon ui-icon-seek-
wend">
48 Next</Ti>
49 </Ti>
50
51 <p></p>
52 </body>
53 </html>
ch1105.html
Open
Recent ’
Save
Playback * | Prav
I
" Sto
Selected I P Jm
. * Play
(St
o " Next

Figure 11.5 Implementing a jQuery Ul menu using
the code in ch1105.html.

Adding Tooltips

Adding Tooltips

$(document) . tooltip({
items: "img, input",
position: {my:"left+l5 top", at:"left bottom",
collision:"flipfit" },
content: function() {
var obj = $(this);
if (obj.is("input")) {

return obj.attr("title"); }
if (obj.is("img")) {

var img = $("").addClass(
"mini").attr("src", obj.attr("src"));

var span = $("").htm1(
obj.attr("alt"));

return $("<div></div>").append(img, span); }

s

The tooltips widget allows you to easily add tooltips
to form input, images, and just about any other page
element. To implement the tooltips, apply
.tooltip(options) to the document or other container.
Inside the options, specify the items that should
include tooltips and then the tooltip content handler.

As the mouse hovers over an item supported by the
tooltip, the tooltip message is displayed. The following
code provides an example of implementing tooltips on
<input> and elements, as shown in Figure 11.6.

= items—Specifies the selector used to determine if
the page element supports tooltips.

= content—Tooltip handler function called when a
supported element is hovered over. The function
should return the content to be displayed. Notice
that for the image, a mini version is displayed in
the tooltip.

= position—Specifies the position to place the
tooltip; for example:

223

224

CHAPTER 11 Adding jQuery Ul Elements

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 $(document) . ready(function(){

13 $(document) . tooltip({

14 items: "img, input",

15 position: {my:"Teft+15 top", at:"left
w=bhottom",

16 collision:"flipfit" },

17 content: function() {

18 var obj = $(this);

19 if (obj.is("input")) {

20 return obj.attr("title"); }

21 if (obj.is("img")) {

22 var img = $("") .addClass(
23 "mini").attr("src",
wobj.attr("src"));

24 var span = $("").html(
25 obj.attr("alt"));

26 return $("<div></div>").append(img,
=span); }

27 s

28 1

29 </script>
30 <style>

31 input { border:2px ridge blue; border-radius:
=5pX;
32 padding:3px; }

33 img { height:200px; margin:15px; }

Adding Tooltips

34 .mini {height:30px;}

35 </style>

36 <body>

37 <label for="size">Who are you? </label>
38 <input id="size"

39 title="Nosce te ipsum (Know Thyself)"
-/>

40 <img src="someday.jpg"

41 alt="I'm going there someday"/>

42 </body>

43 </html>

ch1106.html

Nosce te ipsum (Know Thyself)
-l

I'm going there
someday

Figure 11.6 Adding tooltips to elements using
jQuery Ul code in ch1106.html.

225

This page intentionally left blank

12

Animation and
Other Special
Effects

One of the most important features of jQuery is the
ability to add animations to changes you are making to
elements. This gives the user the feel of a slick, well-
developed application rather than a clunky, traditional
web page.

This is especially true if you are moving, resizing, or
dynamically adding elements to the web page. It is
frustrating as a user to all of the sudden have a bunch
of new things appear or disappear. Using transitions
gives the user a chance to see where elements are
expanding from, shrinking to as well as the direction
of movement so he can adjust his mind-set to accept
the changes.

228

CHAPTER 12 Animation and Other Special Effects

Understanding jQuery
Animation

jQuery animation is the process of modifying the prop-
erty of an HTML element from one value to another
in an incremental fashion that’s visible to the user. This
section describes that process and how to implement
animations on CSS attributes.

Animating CSS Settings

$("img") .animate({height:100, width:100});

$("p") .animate({margin-left:30});

Most animation in jQuery is done via the .animate()
method. The .animate() jQuery method allows you to
implement animations on one or more CSS properties.
Keep in mind that the .animate() method acts on all
elements in the jQuery object set at the same time.
Often, you only want to act on a single element, so
you need to filter the set down to one.

The .animate() method accepts a CSS property object
mapping as the first argument. You can specify more
than one property in the object to animate multiple
properties at the same time. For example, the following
code animates the height and width properties for
 elements:

$("img") .animate({height:100, width:100});

By the way

The .animate() method can only animate properties
that have a numerical value. For example, you cannot
animate a border style, but you can animate a border
size.

Understanding jQuery Animation

There are a couple of different ways to call the
.animate() method. The following shows the syntax
of both:

.animate(properties [, duration] [, easing] [,
=complete])
.animate(properties, options)

The first method allows you to specify the duration,
easing, and complete functions as optional arguments.
The second method allows you to specify the options
as a single option map object. For example, the follow-
ing calls .animate() with a duration and easing object
map:

$("img") .animate({height:100, width:100},
{duration:1000, easing:"linear"});

Did you know?
You cannot animate color changes using the color

names, but you can animate color changes using hex
values, such as #ff0000.

Table 12.1 describes the different options available for
the .animate() method. These options are also available
on some of the other animation methods that will be
discussed later in this chapter.

229

230

CHAPTER 12 Animation and Other Special Effects

Table 12.1 Animation Options

Option

complete

duration

easing

queue

step

Description

Defines a function to be called when
the animation has completed.

A string or number specifying how
long the animation will run. The
optional string values are "slow" or
"fast". A number specifies the number
of milliseconds the animation will run.
If no duration is specified, the default
is 400ms.

A string indicating which easing func-
tion to use. jQuery provides the
"swing" (default) and "Tinear" easing
function. jQuery UI add several more.
Figure 12.1, from jqueryui.com, shows
the easing graphs. Think of the hori-
zontal axis of the graphs as duration
time, where left is Os and the right is
complete. Think of the vertical axis of’
the graph as the percentage of change
to the setting(s) where the bottom is
0% and the top is 100%.

Can be true, meaning the animation
will be queued up behind any others
for the object; false, meaning that the
animation will start immediately; or a
string specifying the name of a specific
queue.

Specifies a function to be executed
each step in the animation until the
animation completes.

Understanding jQuery Animation

Option Description

specialEasing You can also map the easing directly in
the properties map, allowing you to do
different easing for different elements.
For example:
$("img") .animate({height:[100,
='"swing"], width:[100,"Tlinear"]},
=1000) ;

Figure 12.1 jQuery and jQuery Ul easing
functions.

Understanding Animation Queues

Animations happen asynchronously with code execut-
ing, meaning that the code continues to execute while
the animation is happening. So what happens if you
specify another animation for an object before the first
one completes? The answer is that jQuery queues up
the animations and then executes them in order one
after another until all are competed. That is, unless you
specify queue:false in the animation options.

231

232

CHAPTER 12 Animation and Other Special Effects

You need to understand the animation queue because
if you allow user interactions to queue up too many

animations by moving the mouse or clicking, the ani-
mations will be sluggish and behind the users’ actions.

Watch out!

You need to pay attention to where you trigger your ani-
mations from. Remember that events will bubble up. If
you execute the same animation from all levels during
the bubble up phase, you can have some seriously
undesired results. To prevent this, you can use the
stopPropagation() and stopImmediatePropagation()
methods.

Stopping Animation

mgl") .stop(true);

$("img") .stop(true, true);

jQuery allows you to stop the animations currently
executing on elements contained in the jQuery object
set. The .stop([clearQueue] [, jumpToEnd]) method
allows you stop animations in a few different ways.

Calling .stop() with no parameters simply pauses the
animations that are in the queue. The next animation
that starts begin executing the animations in the queue
again. For example, the following code pauses all ani-
mations:

$C"*").stopQ);

Calling .stop(true), with the cleareQueue option set to
true stops animations at the current point and removes
all animations from the queue. For example, the

Understanding jQuery Animation

following stops all animations on images and removes
the animations from the queue:

$("img") .stop(true);

Calling .stop(true, true), with the jumpToEnd option
set to true, causes the currently executing animation to
jump to the end value immediately, clear the queue,
and then stop all animations. For example, the follow-
ing stops all animations on images but finishes the
adjustment made by the current animation and then
removes the animations from the queue:

$("img") .stop(true, true);

The .stop() method returns the jQuery object, so

you can chain additional methods onto the end. For
example, the following code stops all animations on
images and then starts a new one to set the opacity

to .5:

$("img") .stop(true, true).animate({opacity:.5},
=1000) ;

Delaying Animation

$("img") .animate({width:500},
1000) .delay(2000) .animate({

opacity:1} 1000);

A great option when implementing animations is
adding a delay before the animation is added to the
queue.You can use this to provide animations in a
more advanced way because you delay the execution
of the animation queue, giving the user a better visual
experience.

233

234

CHAPTER 12 Animation and Other Special Effects

The .delay(duration, [, queueName]) method allows
you to specify the delay duration in milliseconds as
well as an optional queueName that specifies which
queue to apply the delay to. For example, the follow-
ing code adds a size animation to images. Once the
size is complete, there is a delay of 2 seconds, and the
opacity animates up to 1:

$("img") .animate({width:500}, 1000).delay(2000) .
wanimate({opacity:1} 1000);

By the way

The .delay() method is great for delaying between
queued jQuery effects; however, it is not a replacement
for the JavaScript setTimeout() function, which may be
more appropriate for certain use cases—especially
when you need to be able to cancel the delay.

Animating Visibility
jQuery also provides animation capability in fade
methods attached to the jQuery objects. In the end,

the fade methods are equivalent to using .animate()

on the opacity property.

The following sections describe applying animation to
the various fading methods.

Fading Elements In

$("img") . fadeIn(1000, "swing");

The .fadeIn([duration] [, easing] [, callback])
method provides the optional duration, easing, and

Animating Visibility 235

callback options that allow you to animate fading the
opacity of an element from its current value to 1.

For example, the following code applies an animation
of 1 second with swing easing to all image elements:

$("img") .fadeIn(1000, "swing");

Fading Elements Out

$("img") . fadeOut (1000, "swing", function() {

$(this).fadeIn(1000);});

The .fadeIn([duration] [, easing] [, callback])
method provides the optional duration, easing, and
callback options, allowing you to animate fading the
opacity of an element from its current value to 0.

For example, the following code applies an animation
of 1 second with swing easing to all image elements.
Then, when completed, it fades them back in again:

$("img").fade0ut (1000, "swing", function({
$(this).fadeIn(1000);1});

Toggling Element Visibility
On and Off

$("img") . fadeToggle (3000, "swing");

The .fadeToggle([duration] [, easing] [,
callback]) method provides the optional duration,
easing, and callback options, allowing you to animate
fading the opacity of an element from its current value
to 0, depending on its current value.

236

CHAPTER 12 Animation and Other Special Effects

For example, the following code applies an animation
of 3 seconds with swing easing to all image elements.
Images that are currently visible are faded out, and
images that are currently transparent are faded in:

$("img") .fadeTogg1e (3000, "swing");

Fading to a Specific Level of
Opacity

$("img") . fadeTo (2000, .5);
$("img") . fadeTo (2000, 1);

$("img") . fadeTo (2000, .1);

The .fadeTo(duration, opacity [, easing] [,
callback]) method provides the duration and opacity
options that specify a specific opacity to end at and
how long to animate the transition. It also provides
optional easing and callback arguments.

For example, the following code applies an animation
of 2 seconds for all images to transition from the cur-
rent opacity to .5:

$("img") .fadeTo (2000, .5);

Adding a Transition When Changing
Images

. jQuery . . .

img") .on("click", function(Q{
$("#top") . fadeToggle(2000) ;
;s

"

src="1ake.jpg" />

Animating Visibility 237

You cannot directly animate the transition from one
image to another so that one image is fading in while
the other is fading out. The way to overcome that
challenge is to have two images—one on top of the
other—and then animate fading the top one out.

The following code does just that. There are two
images with fixed positioning. When you click on the
top image, it toggles the image opacity in and out, as
shown in Figure 12.2.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 $(document) . ready(function(){

13 $("img").on("click", function(){

14 $("#top") .fadeToggle(2000) ;

15 1;

16 s

17 </script>
18 <style>

19 img { position:fixed; height:300px;

20 border:3px ridge white;

21 box-shadow:5px 5px 5px #888888;

22 margin:10px; background-color:black;}
23 </style>

24 </head>

25 <body>

26 <div>

238 CHAPTER 12 Animation and Other Special Effects

27

28

29 </div>

30 </body>

31 </html>

ch1201.html

* A ahonic c| - U'_ (AL cle- A-

Figure 12.2 Animating transitions between
images using jQuery code in ch1201.html.

Making an Element Slide Back
to Disappear

$("span') .mouseover (function() {
var i = $(this).index("span");
$("img") .eq(i) .animate({height:100}, 1000); });

$("span") .mouseout (function(){
var i = $(this).index("span");
$C"img") .eq(i) .animate({height: .1}, 1000); });

Making an Element Slide Back to Disappear 239

$("#container") .mouseenter (function(e){
e.stopPropagation();
$("#images") .stop(true) .s1ideToggle(1000); });

$("#container") .mouseleave(function(e){
e.stopPropagation();
$("#images") .stop(true) .s1lideToggle(1000); });

The .fadeTo(duration, opacity [, easing] [,
callback]) , .fadeTo(duration, opacity [, easing]
[, callback]), and .fadeTo(duration, opacity [,
easing] [, callback]) methods provide the duration,
easing, and callback arguments that allow you to
animate sliding eftects in the vertical direction.

For example, the following code applies an animation
of 1 second to slide an element down and then a delay
of 3 seconds to slide the element back up:

$("#menu") .sTideDown (1000) .deTlay(3000) .s1ideUp(1000);

You can animate the .slideToggle() method in a simi-
lar fashion. For example, the following code animates
visibility of a <div> element using a slide animation:

$("div").s1lideToggle(1000);

I like to use the width and height properties to create
a sliding element.You can create a vertical slide anima-
tion by animating the height and a horizontal slide
animation by animating the width.

There are a couple of tricks. You need to provide both
a width and a height value for the element if you want
to have the full slide effect and not just a resize effect.
Also, if you want the element to maintain space on the
page, you cannot animate the value all the way down
to 0. However, you can animate down to .1 and the
other dimension will retain its space.

240 CHAPTER 12 Animation and Other Special Effects

The following example shows a slide down animation
by changing the height to 100 and then back up by
changing the height to .1:

$("img") .animate({height:100}, 1000);
$("img") .animate({height:.1}, 1000);

The following code creates a simple web page with a
title bar that has a sliding eftect revealing an image
menu, as shown in Figure 12.3. As you hover over each
item in the menu, an image slides down and then
slides back up as you leave the menu:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 $(document) . ready(function(){

13 $("div div").hide(Q;

14 $("span™) .mouseover (function(){

15 var i = $(this).index("span");

16 $("img") .eq(i) .animate({height:100},
=1000); 1);

17 $("span™) .mouseout(function(){

18 var i = $(this).index("span");

19 $("img") .eq(i) .animate({height:.1},
=1000); 1);

20 $("#container") .mouseenter(function(e){

21 e.stopPropagation();

Making an Element Slide Back to Disappear

22

= $("#images") .stop(true).slideToggle(1000); 1});
23 $("#container") .mouseleave(function(e){
24 e.stopPropagation();

25

= $("#images") .stop(true).slideToggle(1000); });
26 B;

27 </script>

28 <style>

29 img{ display:inline-block; width:100px;
=height:.1lpx;

30 margin:Opx; padding:0px; float:left;}

31 p, span { display:inline-block; width:400px;
32 background-color:black; color:white;

33 margin:Opx; padding:0px; text-align:center;
34 }

35 span {width:100px; margin:-1px; float:left;
36 border:1px solid; background-color:blue; }
37 #container { width:410px; }

38 </style>

39 </head>

40 <body>

41 <div id="container">

42 <p>Images</p>

43 <div id="images">

44 Image lImage 2
45 Image 3Image
=4

46 <img src="img3.jpg"
- />

47 <img src="img7.jpg"
- />

48 </div>

49 </div>

50 </body>

51 </html>

ch1202.html

241

242 CHAPTER 12 Animation and Other Special Effects

Figure 12.3 Animating expanding and collapsing
menus using sliding techniques in jQuery code in
ch1202.html.

Animating Show and Hide

You have already seen the .show() and .hide() meth-
ods in action in Chapter 9, “Dynamically Working
with Form Elements.” It is common practice to ani-
mate this functionality, so jQuery has nicely provided
animation options for these methods to make your life
easier.

Animating hide()

$("#box") .hide(1000, "linear", function() {

$("#1abel™) .htm1 ("Hidden!") });

The .hide([duration] [, easing] [, callback])
method provides the optional duration, easing, and
callback options allowing you to animate the hide
effect, making less of a jump when the element
disappears.

For example, the following code applies an animation
of 1 second with Tinear easing and executes a simple
callback function when hiding an element:

$("#box") .hide (1000, "linear", function() {
$("#1abel") .htm1("Hidden!") 1);

Animating Show and Hide

Animating show()

$("#box") .show(1000, "linear", function() {

$("#1abel™) .html1 ("Shown!") });

The .show([duration] [, easing] [, callback])
method provides the optional duration, easing, and
callback options, allowing you to animate the show
effect and make an easier transition as an element
appears.

For example, the following code applies an animation
of 1 second with Tinear easing and executes a simple
callback function when showing an element:

$("#box") .show(1000, "Tinear", function() {
$("#1abel™) .htm1("Shown!") 1}1);

Animating toggle()

if ($("#hand1e").htm1 Q) == "+'){
$("#photo") .show (1000, function({
$("#footer™).toggle(;});
$("#handle™) .htm1('-");

} else {
$("#footer").toggleQ;
$("#photo") .hide(1000) ;
$("#handle") .htm1('+'); }

The .toggle([duration] [, easing] [, callback])
method provides the optional duration, easing, and
callback options, allowing you to animate the toggle
between the show and hide effect.

For example, the following code applies an animation
of 1 second with Tinear easing and executes a simple
callback function when toggling an element between

hidden and shown:

243

244

CHAPTER 12 Animation and Other Special Effects

$("#switch™).show (1000, "linear", function() {
$("#1abel") .html ("Switch Toggled!™) 1});

The following code implements the .hideQ), .showQ,
and .toggle() and creates a simple web element that

provides a title bar with a collapse and expand button
on the left so you can expand and collapse an image.

Figure 12.4 illustrates the animation.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 function toggleImage(){

13 if ($("#handle™).htm1 Q) == '+'){

14 $("#photo") .show(1000, function(){

15 $("#footer") .toggle(;});

16 $("#handle") .htm1('-");

17 } else {

18 $("#footer") .toggleQ);

19 $("#photo™) .hide(1000) ;

20 $("#handle") .htm1('+');

21 }

22 }

23 $(document) .ready(function(){

24 $("#handle™) .click(toggleImage);

25 5Ds

26 </script>
27 <style>
28 div{ width:200px; text-align:center; }

Animating Show and Hide

29 #bar, #handle, #footer{ font-weight:bold;
30 background-color:blue; color:white; }
31 #handle{ display:inTline-block;
=cursor:pointer;

32 background-color:black; width:15px;
wfloat:left; }
33 #footer{ font-size:10px; background-

wcolor:black; 3}
34 </style>

35 </head>

36 <body>

37 <div>

38 <div id="bar">-
39 Image</div>

40 <img id="photo" src="img3.jpg"
wwidth="200px" />

41 <div id="footer">Image Ready</div>
42 </div>

43 </body>

44 </html>

ch1203.html

Figure 12.4 Animating showing and hiding image
elements in jQuery code in ch1203.html.

245

246

CHAPTER 12 Animation and Other Special Effects

Animating Resizing an Image

$("img") .mouseover (function() {
$(this).animate(
{width:"200px", opacity:1}, 1000); });

$("img") .mouseout(function(){
$(this).animate(
{width:"100px", opacity:.3}, 1000); });

Similar to the way you use the height and width to
create a sliding effect, you can use them to create a
resize animation. The difference between a slide and a
resize is that the aspect ratio of the image is main-
tained on a resize, so the element appears to be grow-
ing or shrinking rather than being unfolded or
untucked.

To create a resize animation, you need to specify both
height and width in the .animate() statement, or one
of them has to be auto in the CSS settings and you
can only animate the one that has a value.

The following code shows a resize animation of an
image up to 500 pixels over 1 second and then slowly
over 5 seconds back down to 400 pixels:

$("img") .animate({height:500, width:500}, 1000) .
wanimate(
{height:500, width:500}, 5000);

The following code creates a basic image gallery view
that resizes images and applies opacity changes in the
same animation as the mouse enters and leaves the
image (see Figure 12.5).

Animating Resizing an Image

01 <html>
02 <head>
03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">
11 <script>

12 $(document) . ready(function(){

13 $("img") .mouseover (function(){

14 $(this).animate(

15 {width:"200px", opacity:1}, 1000);
-1);

16 $("img") .mouseout(function(){

17 $(this).animate(

18 {width:"100px", opacity:.3}, 1000);
-1);

19 s

20 </script>

21 <style>

22 div{ padding:0px; }

23 img{ opacity:.3; width:100px; float:left; }
24 </style>

25 </head>

26 <body>

27 <div id="photos">

28
29
30

31 </div>

32 </body>

33 </html>

ch1204.html|

247

248 CHAPTER 12 Animation and Other Special Effects

Figure 12.5 Animating resizing an image using
jQuery code in ch1204.html.

Animating Moving an Element

var position = $("#element").offset();
$("#element") .animate({top:position.top+10,

top:position.left+100}, 1000);

Another dynamic that is good to animate is reposition-
ing of elements—specifically, moving an element from
one location to another. Users hate it when they do
something and page elements suddenly appear in a dif-
ferent location. Animating the move allows users to see
where things go and make the necessary adjustments
in their thinking.

To apply move animations, you will be animating
changes to the top and Teft CSS properties. To ani-
mate movement vertically, you use top, and to animate
horizontally, you use Teft. For example, the following
statements animate moving an element to the right 10
pixels and then down 10 pixels:

Animating Moving an Element

var position = $("#element").offset();
$("#element") .animate({top:position.top+10}, 1000);
$("#element") .animate({top:position.Teft+10}, 1000);

You can also animate in a diagonal direction by ani-
mating both top and Teft at the same time. For exam-
ple, the following animates movement down 10 pixels
and to the right 100 pixels in the same animation:

var position = $("#element").offset();
$("#element") .animate({top:position.top+10,
top:position.left+100}, 1000);

The following code shows an example of employing a
move animation for a pointless purpose, although it
does illustrate the use of this phrase. When the button,
shown in Figure 12.6, is hovered over, a move anima-
tion moves the element to a new location on the
screen, making it impossible to click on:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script type="text/javascript"

08 src="../js/jquery-ui-1.10.3.min.js"></script>
09 <link rel="stylesheet" type="text/css"

10 href="../js/css/jquery-ui-1.10.3.min.css">

11 <script>
12 function randInt(max, min) {

13 return Math.floor((Math.random()*max)+min);
-}
14 $(document) .ready(function(){

15 $("span™) .mouseover (function(){

249

250

CHAPTER 12 Animation and Other Special Effects

23

var newTop = randInt(500,10);
var newLeft = randInt(700,10);

$(this).animate(
{top:newTop, Tleft:newLeft}, 200);
s
</script>
<style>

span {border:3px ridge blue; padding:5px;

=position:fixed;

24

border-radius: 30px 10px; background-

wcolor:blue; color:white;

25 font:bold italic 22px cursive, serif; }
26 </style>
27 </head>
28 <body>
29 Click Here
30 </body>
31 </html>
ch1205.html
€ & localhost/pbichizfchiz0s | = |- ﬂv

Figure 12.6 Animating moving and element using
jQuery code in ch1205.html.

5DE

13

Using AJAX to
Communicate with
Web Servers and
Web Services

A]AX communication is one of the most vital parts
of most web sites. The sites allow jQuery and
JavaScript to get additional data from the server and
update individual elements on the page instead of
reloading or loading a new web page.

The phrases in this chapter are designed to help you
explore the world of asynchronous communication
with the server using AJAX requests in jQuery and
JavaScript.

Understanding AJAX

Despite its importance, AJAX tends to be a bit daunt-
ing to get into at first. With all the communication
terms, it may seem easy to get overwhelmed. That real-
ly shouldn’t be the case. AJAX is simply a request from

252

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

jQuery or JavaScript to the web server. The request
sends data to the server, and the server responds with a
success or failure and possibly additional data. That is
it—nothing more, nothing less.

Watch out!

Don’t confuse server-side dynamic creation of web
pages with AJAX. Dynamic creation of web pages is
still the old traditional method, but it is just a bit easi-
er to manage. Each request back to the server still
requires a full new web page to be returned. The only
advantage is that the web page is generated in memo-
ry instead of read from disk.

The cool thing about AJAX requests is that they only
send and receive the bits of data that are necessary
instead of full pages. Traditional web requests always
build full web pages that are loaded/reloaded in the
browser. Figure 13.1 illustrates the difference between
the two methods of updating data in the browser. The
following is a list of a few of the benefits of AJAX
requests:

= Less data requested from the web server.

= Allows the user to continue using the web page
even while the request is being processed.

= Errors can be caught and handled on the client
side before a request is ever made to the server.

Understanding AJAX

Page Linking Request Model

WebServer
Web Page

=

Response :

New Web Page

New Web Page

AJAX Request Model WebServer

Web Page
- Response

— <

= « Request —>»

= P — Response

= I Request -
D Response 7

Figure 13.1 Comparison of AJAX requests to tra-
ditional page linking.

Understanding Asynchronous
Communication

When you request a web page from the web server,
the communication is synchronous to your browser.
That means the browser waits until the HTML docu-
ment is downloaded from the server before it begins
rendering it and retrieving the additional resources

necessary.

253

254

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Did you know?

You can do synchronous AJAX requests with both
jQuery and JavaScript. The jQuery .ajax() method and
the JavaScript send() function both have a boolean
field that allows this. | don’t recommend this, though,
because you can cause the browser to lock up, which
creates some unhappy users. In fact, in jQuery 1.8 and
later, that option is deprecated.

Asynchronous AJAX communication is difterent.
When you send an AJAX request, control is returned
immediately back to the jQuery or JavaScript, which
can do additional things. Only when the request has
completed or timed out are events triggered in the
browser that allow you to handle the request data.

Understanding Cross-Domain
Requests

Cross-domain requests occur when you send AJAX
requests to separate servers from different domains. The
browser prevents this, and correctly so, because of a
multitude of security reasons.

The only problem with blocking cross-domain
requests is that you often want to obtain data from
services external to the current web site. You can get
around this in a couple of different ways.

The first method is to have the web server act as a
proxy to the other servers or services, meaning that
instead of directly communicating via JavaScript, you
send the request to the server and have the server do it
for you.

Understanding AJAX

Another option is to do what is called on-demand
JavaScript, which JSON with Padding (JSONP) uses.
This method takes advantage of the fact that you can
download a script from another web site as a resource
using the following syntax:

<script type="text/javascript"
src="http://new.domain.com/getData?jsonp=

wparseData">

</script>

Understanding GET versus POST
Requests

The two main types of requests that you send to the
web server are GET and POST. A GET request passes
parameters as part of the URL, whereas a POST request
passes them as part of the request data.

GET Request URL:

http://localhost/code/examplel.html?first=Brad&last=
=Dayley

GET Request Data:

<empty>

POST Request URL:
http://lTocalhost/code/examplel.htm]
POST Request Data:

first=Brad
Tast=Dayley

255

256

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Understanding Response Data

When you send an AJAX request to the server, the
server responds with response data. There are four
main types of response that you will be working. These
response data types are script, text, JSON, and
XML/HTML.

In JavaScript, the response data is available in the
response and responseText attributes of the
XMLHttpRequest object once the request completes. In
jQuery, the response data is passed as the first parame-
ter to the AJAX handler function you define.

The script and text are handled pretty simply by the
.Toad() and .getScript() methods. JSON and
XML/HTML can be a bit more complex.

Using .getScript() to Load JavaScript
Using AJAX

$.getScript("scripts/ajax/newLibray.js",
function(script, status, jqxr){

. handler code here . . .

1

Script data is JavaScript code that can be loaded in the
browser and subsequently used after the AJAX request.
The best way to handle script data is to use the jQuery
.getScript(url [,successHandler(script,status,
jaXHR)) method. This method loads the script automat-
ically so that it is available for use.

The url is the location of the script on the server, and
the optional successHandler is the AJAX handler func-
tion that is triggered on success.

Understanding AJAX 257

Handling Text Data

. jQuery . .
function ajaxHandler(data){
$("#myP") .html (data); }
. JavaScript .
var xmlhttp = new XMLHttpRequest();

xmThttp.onreadystatechange=function() {
document.getElementById(
"myP") . innerHTML=xmThttp.responseText;

Text data 1s the most basic type of return value.You
can treat the text data as a simple string. For example,
in jQuery, to set a paragraph element to the text
returned by the server, you would use the following

AJAX handler:

function ajaxHandler(data){
$("#myP") .htm1(data); }

In JavaScript, you can just use the responseText attrib-
ute of the XMLHttpRequest object:

var xmlhttp = new XMLHttpRequest();
xmThttp.onreadystatechange=function() {
document.getElementById(
"myP") .innerHTML=xmThttp.responseText;

Using JSON Response Objects

function ajaxHandler(jsonData){

var name = jsonData.first + + jsonData.last;

H

JSON data is by far the easiest format to work with in
AJAX responses when dealing with complex data. In

258 CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services
jQuery, JSON data is automatically converted to a
JavaScript object. So you can access the data via dot
naming. For example, the following JSON response
from the server:

{"first":"Brad", "last":"Dayley"}

Can be accessed in the response data as follows:

var name = data.first + + data.last;

Converting JSON Response Strings to
JavaScript Objects

. . jQuery . .

var data = $.parseJSON(

'{"first":"Brad", "last":"Dayley"}');
var name = data.first + " " + data.last;

. JavaScript . . .
var data = JSON.parse(
'{"first":"Brad", "last":"Dayley"}');
var name = data.first + " " + data.last;

In JavaScript and even some cases in jQuery, you end
up with a text response that contains a JSON string.
That is also simple to handle. In jQuery, you can use
$.parseJSONQ) to convert the JSON string to a
JavaScript object. For example:

var data = $.parselJSON('{"first":"Brad",
w"last":"Dayley"}');
var name = data.first + " " + data.last;

In JavaScript, you use the JSON.parse() method to
convert the JSON string to a JavaScript object:

Understanding AJAX

var data = JSON.parse('{"first":"Brad",
='"last":"Dayley"}');
var name = data.first + " " + data.last;

Using XML/HTML Response Data
Response Objects

. jQuery . . .
var name = $(data).find("first").text() + " " +
$(data).find("last").text(Q;;

}
. JavaScript . . .
var first =
xmlhttp.responseXML.getElementsByTagName("first");
var last =
xmlhttp.responseXML.getElementsByTagName("last");

XML/HTML data is not as easy as JSON, but jQuery
does make it fairly simple to work with. XML data in
the response is returned as a DOM object, which can
be converted to jQuery and searched/navigated using
jQuery’s extensive options. For example, the following
XML response from the server:

<person><first>Brad</first><last>Dayley</last></
=person>

Can be accessed 1in the response data as follows:

var name = $(data).find("first").text() + " " +
w$(data) . find("last").text();

The XML/HTML data can be accessed in the
JavaScript AJAX response in the responseXML attribute
of the XMLHttpRequest object. For example:

259

260

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

var first =
wxmlhttp.responseXML.getElementsByTagName("first");
var last =
=wxmlhttp.responseXML.getElementsByTagName("last");

Converting XML/HTML Response Data
into XML DOM Object

var xmlStr =
"<person><first>Brad</first><last>Dayley</last></
wperson>");

. . jQuery . .
var data = $.parseXML(xm1Str);
var name = $(data).find("first").textQ + " " +

$(data).find("last").text(Q;

. JavaScript . .

parser=new DOMParser();
xmlDoc=parser.parseFromString(xm1Str,"text/xm1");
var last = xmlDoc.getElementsByTagName(''last");

Similar to JSON, if the response data object comes as a
string, you can use the .parseXML() to get a DOM
object. For example:

var data = $.parseXML(
"<person><first>Brad</first><last>Dayley</last></

=person>");

var name = $(data).find("first").text() + " " +
$(data).find("last").text();

In JavaScript, you need to get an XML DOMParser
Object and then call the parseFromString(xm1String,
"text/xm1") method. This returns a DOM object of
the XML string:

AJAX from JavaScript

parser=new DOMParser();
xmlDoc=parser.parseFromString(
xmlhttp.responseText, "text/xm1");

AJAX from JavaScript

To implement an AJAX request in JavaScript, you need
access to a new window.XMLHttpRequest object. Table
13.1 describes the important methods and attributes of
the XMLHttpRequest object.

Table 13.1 Important Methods and Attributes of the
XMLHttpRequest Object

Method/Attribute Description

open() Allows you to construct a GET or
POST request.

send() Sends the request to the server.

onreadystatechange Event handler that is executed
when the state of the
XMLHttpRequest object changes.

response Object created by the browser
based on the data type.

responseText Raw text returned in the response
data from the server.

setRequestHeader Allows you to set HTTP request
headers that are necessary to
implement the request.

status Status response code from server
(for example, 200 for success, 404
for not found, and so on).

261

262

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Geting an XMLHttpRequest Object

var xmlhttp;
if (window.XMLHttpRequest){ //newer Browsers
xmThttp=new XMLHttpRequest(); }

else {// Older IE6, IE5
xmlhttp=new ActiveXObject("Microsoft.XMLHTTP"); }

Newer browsers provide the XMLHttpRequest object
directly as window.XMLHtpRequest. Older IE browsers do
not provide an XMLHttpRequest object directly. Instead,
they use an ActiveXObject("Microsoft.XHMLHTTP")
object. If you want your AJAX code to support the
older browsers, you need to add an alternative way of
getting the access to an XMLHttpRequest by building the
IE version if window.XMLHttpRequest is not available.

Sending a GET Request from
JavaScript

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange=function() {
if (xmThttp.readyState==4 && xmlhttp.status==200)
{ document.getElementById("email").innerHTML=

wxmlhttp.responseText;}}

xmlhttp.open("GET", "getUserEmail.php?userid=brad",
=true);

xmThttp.send(Q);

To send a GET request from JavaScript, you first need to
implement an onreadystatechange event handler to
handle the response or responseText values. Then you
need to call open("GET", URL) to open the connection
and send() to send the request.

The following code shows an example of a GET request
that is sent to the web server via JavaScript. The user

AJAX from JavaScript

value is added to the query string in line 15. Figure
13.2 shows the response string below the input field:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script>

06 var xmlhttp = new XMLHttpRequest();

07 xmlhttp.onreadystatechange=function() {
08 if (xmlhttp.readyState==4 &% xmlhttp.
wstatus==200) {

09 document.getElementById(

10

="message") .innerHTML=xmlhttp.responseText;
11 }

12 3
13 function getEmail(){
14 var user =

=document.getElementById("email").value;

15

=xmlhttp.open("GET", "getEmail.php?user="+user) ;
16 xmThttp.send(Q);

17 }

18 </script>

19 </head>

20 <body>

21 <input id="email" type="text" />

22 <button onclick="getEmail()">Get Email</
=button>

23 <p id="message"></p>

24 </body>

25 </html>

ch1301.html

263

264 CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

[Brad GetEmail |

Brad's Email Address is Brad@somedomain. com

Figure 13.2 Results of sending a GET request
using JavaScript code in ch1301.html.

Sending a POST Request from
JavaScript

var xmlhttp = new XMLHttpRequest();

var params = "first=Brad&last=Dayley&email=brad@

wdayleycreations.com";

xmThttp.setRequestHeader ("Content-type",
"application/x-www-form-urlencoded");

xmlhttp.setRequestHeader("Content-length",

wparams.length);

xmlhttp.onreadystatechange=function() {
if (xmThttp.readyState==4 && xmlhttp.status==200)
{ alert("Email Updated: " +
wxmlhttp.responseText); }
}
xmlhttp.open("POST", "setUserEmail.php", true);
xmThttp.send(params) ;

To send a POST request from JavaScript, you first need
to implement an onreadystatechange event handler
to handle the response or responseText values. For
example:

xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState==4 & xmlhttp.status==200)
{ alert("Email Updated: " +
wxmlhttp.responseText); }

3

Next, you need to add the Content-length and
Content-type headers to make sure that the data is
treated correctly at the server. The Content-Tength is set

AJAX from JavaScript

to the length of the params string. The Content-type
tells the server how to handle the data in the POST. Use
"application/x-www-form-urlencoded” when submitting
form data.

var params = "first=Brad&last=Dayley&email=brad@
=dayleycreations.com";
http.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");
http.setRequestHeader("Content-Tength",
=params.length);

Finally, you can call open("POST", URL) to open the
connection and send(params) to send the request:

xmThttp.open("POST", "setUserEmail.php",true);
xmlhttp.send(params) ;

The following code shows an example of a POST
request that is sent to the web server via JavaScript.
The user and email values are added to the params
string that is sent in the send(params) call in line 24.
Figure 13.3 shows the response string below the input

field:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script>

06 var xmlhttp = new XMLHttpRequest();
07 xmlhttp.onreadystatechange=function() {
08 if (xmlhttp.readyState==4 & & xmlhttp.

wstatus==200) {
09 var response =

265

266

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

= JSON.parse(xmlhttp.response);

10 document.getElementById(

11 "message") .innerHTML=response.msg;

12 }

13 }

14 function setEmail(){

15 var params = "user="

16 params +=
=document.getElementById("user").value;

17 params += "&email=";

18 params +=
wdocument.getETementById("email").value;

19 xmThttp.open("POST", "postEmail.php", true);
20 xmlhttp.setRequestHeader("Content-type",
21 "application/x-www-form-urlencoded™);

22 xmlhttp.setRequestHeader("Content-length",
23 params.length);

24 xmThttp.send(params) ;

25 }

26 </script>

27 </head>

28 <body>

29 <input id="user" type="text">User</input>

30 <input id="email"
wtype="text">Email</input>

31 <button onclick="setEmail()">Set Email</
=button>

32 <p id="message"></p>

33 </body>

34 </html>

ch1302.html|

AJAX from jQuery

brad User
brad@dayleycreations Email

Set Email I

brad's Email Address 15 set to brad@dayleycreations.com.

Figure 13.3 Results of sending a POST request
using JavaScript code in ch1302.html.

AJAX from jQuery

jQuery provides wrapper functions that offer a bit
cleaner interface to send AJAX requests. In jQuery, the
XMLHttpRequest object is replaced by the jgXHR object,
which is a jQuery version with a few additional meth-
ods to support the jQuery AJAX wrapper functions.
The following is a list of the jQuery AJAX wrapper
functions:

.Toad(url [, data] [, success(data,
textStatus, jgXHR) 1)—This method is used to
load data from the server directly into the ele-
ments represented by jQuery object.

.getScript (url [, data] [, success(data,
textStatus, jgXHR) 1))—This method is used
to load and then immediately execute a

JavaScript/jQuery script.

.getIJSONCurl [, data] [, success(data,
textStatus, jgXHR) 1)) —This method is used
to load data in JSON format using a JSONP
request to servers on different domains.

.get(url [, data] [, success(data, textStatus,
jgXHR) 1 [, dataType 1))—This method is used
to send a generic GET request to the server.

267

268

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services
= .postCurl [, data] [, success(data,
textStatus, jgXHR) 1 [, dataType 1))—This
method is used to send a generic POST request to
the server.

Each of these methods allows you to specify the url of
the request. The .load() method loads data directly
into elements represented by the jQuery object. The
.get() and .post() methods are used to send GET and
POST requests.

The data argument can be a string or a basic
JavaScript object. In the following example, obj,
objString, and formString are all valid data arguments:

var obj ={"first":"Brad", "last":"Dayley"};
var objString = $.param(obj);
var formString = $("form").serializeQ);

You can also specify the function that executes when
the response from the server succeeds. For example,
the following success handler sets the value of the
#email element to the value response data:

$.get("getEmail.php?first=Brad&last=Dayley", null,
= function (data, status, xObj){

$("#email") .html(data);
);

The .get() and .post() methods also allow you to
specify a dataType parameter as a string, such as "xm1",
"json", "script" ,and "htm1", that formats the expected
format of the response data from the server. For exam-
ple, to specify a response type of JSON, you would use

this:

AJAX from jQuery

$.get("getUser.php?first=Brad&last=Dayley", null,
= function (data, status, xO0bj){

$("#email") .html(data.email);
1}, "json");

Loading HTML Data into Page
Elements

$("#content") .load("new.html1");

A great way to add dynamic data to a web page is to
have the web server deliver the data already formatted
as HTML. Then, using the jQuery .Toad() AJAX
method, you can load the data directly into an
element.

The .10ad() AJAX method can be called from any
jQuery object and performs an AJAX get request in
the background, formats the response, and injects it as
the innerHTML of the element. For example:

$("#content").load("new.htm1");

The following code shows an example of using the
.Toad() method to load lorem ipsum article data from
the web server into an existing <div> container. Figure
13.4 illustrates loading the difterent articles by clicking
on the nav items on the left:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

269

270

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

08 function setArticle(){

09 $("#content™).Toad($(this).attr
= ("article™)+".htm1");

10 }

11 $(document) . ready(function(){

12 $(".navItem").click(setArticle);
13 s

14 </script>
15 <style>

16 div {display:inline-block; float:left;

17 text-align:center; }

18 .navItem { border:1px dotted; display:block;
19 margin:3px; cursor:pointer;}

20 #content {border:1px solid blue;}

21 #article { width: 372px; height:360px;
=padding:10px;

22 overflow-y:scroll; border:1lpx solid;}

23 #title { font-size:20px; display:block;

24 background-color:black; color:white; }

25 p {background-color:#DDDDDD; border-radius:
=5px; }

26 </style>

27 </head>

28 <body>

29 <div>

30 <div id="leftNav">

31
32 jQUery Under the Hood

33
34 jQuery Your New Best Friend

35 </div>

36 <div id="content">

37

38 <div id="article"></div>

39 </div>

40 </div>

AJAX from jQuery

41 </body>
42 </html>

ch1303.html

B Doy 2252013

Lovem s ke 8 st oo teka wbparir o

e 1. i] ot . sl o sl B

Figure 13.4 Loading HTML data directly into a
<div> element using jQuery code in ch1303.html.

Using a jQuery .get() AJAX
Request to Handle JSON Data

$.get("'getISONData.php", myHandler) ;
function myHandler(data){

var responseValue = data.value;

}

Using jQuery to get JSON data from the server is
extremely easy. Just call the .get(url, handler(data))
method, pass in the url to the server location, and
specify a handler to handle the data. For example:

$.get("getISONData.php", myHandler);

The JSON data returned by the response will be a
JSON object that is passed as the first argument to the
handler function.You can access the data using dot
syntax; for example:

271

272

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

function myHandler(data) {
var responseValue = data.value;

3

The best way to demonstrate how to handle a .get()
request with JSON data is to show you an example.
The following code makes a .get() request directly to
a JSON file and then uses that data to build the image
list shown in Figure 13.5.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 function updateImages(data){

09 for (i=0; i<data.length; i++){

10 var imageInfo =datali];

11 var img = $('"').attr("src",

12 "../images/"+imageInfo.image);

13 var title =
w$("<p></p>") .html (imageInfo.title);

14 var div = $("<div></div>").append(img,
wtitle);

15 $("#images") .append(div);

16 }

17 }

18 $(document) . ready(function(){

19 $.get("images.json", updateImages);

20 s

21 </script>

22 <style>

23 div {border:3px ridge white; display:inline-
whlock;

AJAX from jQuery

24 box-shadow: 5px 5px 5px #888888;
=margin:10px; }

25 p { background-color:#E5SE5ES;

26 margin:0px; padding:3px; text-align:center;
-}

27 img { height:130px; vertical-align:top; }
28 #images { background-color:black;

wpadding:20px; }
29 </style>

30 </head>

31 <body>

32 <div id="images"></div>
33 </body>

34 </html>

ch1304.html

[{"title":"Rugged Strength", "image":"bison.jpg"},
{"title":"Great Heights", "image":"peak.jpg"},
{"title":"Summer Fun", "image":"boy.jpg"},
{"title":"Grandure of Nature",

='"image":"falls.jpg"},

{"title":"Soft Perfection", "image":"flower.jpg"},
{"title":"Looking Forward", "image":"boy2.jpg"},
{"title":"Joy of Finishing",

="image":"sunset.jpg"}]

JSON Server Response

273

274

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Figure 13.5 Using a .get() AJAX request to turn
JSON data into an image gallery using the jQuery
code in ch1304.html.

Using a jQuery .get() AJAX
Request to Handle XML Data

$.get("'getXMLData.php", myHandler);
function myHandler(data){
var parks = $(data).find("park");
parks.each(function(Q){

var value = $(this).children("value").text(Q);
}
}

Using jQuery to get XML data from the server is a bit
different from using JSON data.You still call the
.get(url, handler(data)) method and pass in the url
to the server location and specify a handler to handle
the data. For example:

$.get("getXMLData.php", myHandler);

However, the XML data returned by the response will
be a DOM object that is passed as the first argument
to the handler function. The best way to handle the

AJAX from jQuery

DOM object is to convert it to a jJQuery object and
then use the extensive jQuery filtering and navigating
methods to get the data you want. For example:

function myHandler(data){
var parks = $(data).find("park");
parks.each(function(){
var value = $(this).children("value").text(Q;
}
}

The best way to demonstrate how to handle a .getQ
request with XML data is to show you an example.
The following code makes a .get() request directly to
an XML file and then uses that data to build the image
list shown in Figure 13.6.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>
07 <script>

08 function updateTable(data){

09 var parks = $(data).find("park");

10 parks.each(function(){

11 var tr = $("<tr></tr>");

12 tr.append($("<td></td>") .htm1(

13 $(this).children("name").text()));
14 tr.append($("<td></td>") .htm1(

15 $(this).children("location").text()));
16 tr.append($("<td></td>") .htm1(

17

w$(this).children("established").text()));
18 var img = $('"').attr("src",

275

276

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

=" . /images/"+

19 $(this).children("image").text());
20 tr.append($("<td></td>") .append(img));
21 $("tbody") .append(tr);

22 55

23 }

24 $(document) .ready(function(){

25 $.get("parkdata.xml", updateTable);

26 5Ds

27 </script>
28 <style>

29 img {width:80px;}

30 caption, th { background-color:blue;
wcolor:white;

31 font:bold 18px arial black; }

32 caption { border-radius: 10px 10px Opx Opx;
33 font-size:22px; height:30px; }

34 td { border:1px dotted; padding:2px; }
35 </style>

36 </head>

37 <body>

38 <table>

39 <caption>Favorite U.S. National Parks</
=caption>

40 <thead><th>Park</th><th>Location</th>
41

= <th>Established</th><th> </th></thead>
42 <tbody></tbody>

43 </table>

44 <p></p>

45 </body>

46 </html>

ch1305.html|

AJAX from jQuery

<parkinfo>

<park>
<name>Yellowstone</name>
<location>Montana, Wyoming, Idaho</location>
<established>March 1, 1872</established>


</park>

<park>
<name>Yosemite</name>
<location>California</location>
<established>March 1, 1872</established>


</park>

<park>
<name>Zion</name>
<location>Utah</location>
<established>November 19, 1919</established>


</park>

</parkinfo>

XML Server Response

Favorite 11,S. National Parks

Yellowstone i Montana, Wyoming, Idaho i harch 1, 1872

Tosemite California March 1, 1872

Zion Ttah Movember 19, 1919

Figure 13.6 Using a .get() AJAX request to turn
XML data into a table using the jQuery code in
ch1305.html.

277

278

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Using a jQuery .post() AJAX
Request to Update Server Data

var params = [{name:"user",value:"Brad"},
{name:"rating", value:"1"}]

$.post("setRating.php", params, myHandler);

Using jQuery to post data to the server is easy with
the .post() helper method because .post() handles all
the necessary headers in the background.You call the
.post(url, params, handler(data)) method and pass
in the url to the server location, parameter string, or
object. Then you specify a handler to handle the data.

If you pass in an object, it needs to be a list of objects
with name and value pairs. For example:

var params = [{name:"user",value:"Brad"},
{name:"rating", value:"1"}]
$.post("setRating.php", params, myHandler);

The handler function works the same way that the
.get() handler function works. The following code
shows an example of using a .post() request to update
data on the server. The code you need to focus on is in
lines 31-39. That function builds the params array and
then sends the .post() request to the server to update
the rating using a PHP script.

The PHP script alters the JSON file that is used to
build the data shown in Figure 13.7. Notice that in the
handler function for the .post() request retrieves the
updated data from the server and updates the web page
with the posted values.

AJAX from jQuery

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script>

08 function addTrip(data){

09 for (var idx in data){

10 var item = data[idx];

11 var div = $("<div></div>").attr("id",

12 item.location);

13 div.append($("").attr("src",
14 "../images/"+item.image) .addClass

= ("photo"));

15 div.append($("") .htm1(

16 item.location));

17 for(var i=0;i<parseInt(item.rating);i++){
18 div.append($("").attr("src",
19 "../images/star.ico").addClass("star"))
-5}

20 for(var i=0;i<(5-parseInt(item.rating));
-it+) {

21 div.append($("").attr("src",
22 "../images/empty.ico").addClass
=("star")); }

23 $("#vacations") .append(div);

24 }

25 $(".star").click(sendRating);

26 }

27 function getTrips(){

28 $("#vacations").children().remove();

29 $.get("trips.json", addTrip);

30 }

31 function sendRating(){

32 var parent = $(this).parent();

33 var rating =

279

280 CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

34 parent.children(".star").index($(this))
-il;

35 var params = [{name:"location",

36 value:parent.attr("id")},
37 {name:"rating", value:
=rating}]

38 $.post("setRating.php", params, getTrips);
39 }

40 $(document) . ready (function(){

41 getTripsQ;

42 1;

43 </script>

44 <style>

45 #banner, #vacations { display:block;

46 font-size:30px; width:500px;}

47 div, span { display:inline-block;

48 width:120px; text-align:center;}

49 span { font-size:20px; }

50 .photo { height:50px; border:5px ridge
wwhite;

51 box-shadow: 10px 10px 5px #888888;
wmargin:20px;

52 border-radius:10px;}

53 .star { border:none; height:auto; width:auto;
-}

54 </style>

55 </head>

56 <body>

57 <div><div id="banner">Vacations</div>

58 <div id="vacations"></div>

59 </body>

60 </html>

ch1306.html

AJAX from jQuery 281

location=Zion&rating=5

POST Data to setRating.php

[{"Tocation":"Hawaii","image":"flower.jpg",
w"rating":"4"},
{"Tocation":"Yosemite","rating":"4","image":"falls.
=jpg"},

{"location":"Montana","rating":"5","image": "bison.
=3jpg"},

{"location":"Zion","rating":"5","image": "peak.jpg"}]

JSON Server Response

Vacations

Hawaii Yosemile Montana

Figure 13.7 A .post() AJAX request updates
server data using the jQuery code in ch1306.html.

282 CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Handling jQuery AJAX
Responses

$.get(""getUser.php?first=Brad&last=Dayley", null,
= function (data, status, x0bj){

alert("Request Succeeded");
}), "json").fail(function(data, status, xO0bj){

alert('"Request Failed");

}) .always(function(data, status, x0bj){
alert('"Request Finished");

b;

In addition to specifying the success option, the wrap-
per methods also allow you to attach additional han-
dlers using the following methods:

= .done(data, textStatus, jgXHR)—Called when a
successful response is received from the server.

= .fail(data, textStatus, jgXHR)—Called when a
failure response is received from the server or the
request times out.

= .always(data, textStatus, quHR)—Always called
when a response is received from the server.

For example, the following code adds an event handler
to be called when the request fails:

$.get("getUser.php?first=Brad&last=Dayley", null,
= function (data, status, xO0bj){
$("#email") .html (data.email);
}), "json").fail(function(data, status, x0bj){
alert("Request Failed");
5D¢

To illustrate this in a practical example, the following
code implements the .done(), .fail(), and .alwaysQ
AJAX event handlers on a basic login request. The

Handling jQuery AJAX Responses

login page sends the username and password to a
server-side PHP script that checks for username="user"
and password="password". If the correct username and
password are entered, the request succeeds; otherwise,
the request fails. Alerts are called for all three types of
handler functions, as shown in Figure 13.8.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>
04 <meta charset="utf-8" />

05 <script type="text/javascript"

06 src="../js/jquery-2.0.3.min.js"></script>

07 <script>

08 function failure(){ alert("Login Failed"); }
09 function success(){ alert("Login Succeeded");
-}

10 function always(){ alert("Login Request
wdone"); }

11 function login({

12 $.get("login.php",

13 $("#loginForm™") .serialize()) .done(

14 success) .fail(failure).always(always);
15 return false;

16 }

17 $(document) .ready(function(){

18 $("#1oginButton").click(login);

19 58

20 </script>

21 <style>

22 #login { border-radius: 15px; text-align:
wcenter;

23 height:180px; width:250px; border:3px ridge
wblue;}

24 #title { background-color:blue; color:white;
25 border-radius:10px 10px Opx Opx;

=height:30px;

283

284 CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

26 font:bold 22px arial black; }

27 input { border-radius:10px; border:3px groove
whlue;

28 margin-top:20px; padding-Teft:10px; }
29 Tlabel { font:italic 18px arial black; }
30 </style>

31 </head>

32 <body>

33 <div id="Tlogin">

34 <div id="title">Login</div>

35 <form id="TloginForm">

36 <label>Username: </label>

37 <input type="text" name="user" />

38 <label>Password: </label>

39 <input type="password" name="pw" />

40 <input id="ToginButton" type="button"
41 value="Login" />

42 </form>

43 </div>

44 </body>

45 </html>

ch1307.html

Login

Password: fai |()

Login Faled

.always()

(=)

Figure 13.8 Handling success, failure, and always
AJAX events using the jQuery code in ch1307.html.

Using Advanced jQuery AJAX

Using Advanced jQuery AJAX

The concepts already covered in this chapter should
take care of most of your AJAX needs. However, they
far from cover the full power of the jQuery AJAX
interface. The following sections discuss some of the
additional AJAX functionality built directly into

jQuery.

Changing the Global Setup

$.ajaxSetup({url:"service.php", accepts:"json})

jQuery provides the .ajaxSetup() method that allows
you to specify options that configure AJAX requests
throughout the script. Table 13.2 lists some of the
options that can be specified when calling
.ajaxSetup(). For example, the following code sets the
default global URL for requests:

$.ajaxSetup({url:"service.php", accepts:"json})

Using Global Event Handlers

$ (document) .ajaxStart(function() {
$("form") .addClass("processing");
b

$ (document) .ajaxComplete(function(){
$("form") .removeClass("processing") ;

b;

jQuery provides methods to create global event han-
dlers that are called on events such as initialization or
completion for all AJAX requests. The global events are
fired on each AJAX request. Table 13.2 lists the meth-
ods that can be used to register global event handlers.

285

286

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

An example of using a global event handler to set the
class of a form is shown here:

$(document) .ajaxStart(function(){
$("form™) .addClass("processing");

5Dt

$(document) .ajaxComplete(function(){
$("form").removeClass("processing");

55

By the way

Global events are never fired for cross-domain script or
JSONP requests, regardless of the value of global.

Table 13.2 jQuery Global AJAX Event Handler
Registration Methods

Method Description

.ajaxComplete Registers a handler to be called when
(function) AJAX requests are fully complete.

.ajaxError Registers a handler to be called when
(function) AJAX requests fail.

.ajaxSend Registers a function to be executed
(function) before an AJAX request is sent.
.ajaxStart Registers a handler to be called when
(function) the first AJAX request starts.
.ajaxStop Registers a handler to be called when

(function) all AJAX requests have completed.

.ajaxSuccess Registers a function to be executed

(function) whenever an AJAX request completes
successfully.

Using Advanced jQuery AJAX 287

Implementing Low-Level AJAX
Requests

.ajax({
url:"setEmail",
type:'"get",
accepts:"json",

contentType: 'application/x-www-form-urlencoded;
wcharset=UTF-8',

data: {"first":"Brad", "last":"Dayley"}
P .fail(function(O{ alert("request Failed"); });

All AJAX request wrapper methods that you have been
working with in his chapter are handled underneath
through the .ajax(url [, settings]) interface. This
interface is a bit more difficult to use, but it gives you
much more flexibility and control of the AJAX
request.

The .ajax() method is called the same way that .get(
and .post() are, but the settings argument allows you
to set a wide variety of settings when making the
request.

Table 13.3 lists the more common settings you can
apply to the .ajax() method.

Table 13.3 Common Settings Available in the
.ajax() Request Method

Method/ Description

Attribute

accepts Specifies the content type(s) the server
can send back in the response, such as
application/Json.

async Boolean. Default is true, meaning the

request is sent and then received asyn-
chronously.

288

CHAPTER 13 Using AJAX to Communicate with Web Servers
and Web Services

Table 13.3 Continued

Method/ Description

Attribute

beforeSend Specifies a function that should be run
before sending the request.

complete Function to execute when the response
is fully received.

contentType Sets the content type to send with the

crossDomain

data

error

headers

success

timeout

type
url

request. The server uses the content type
to determine how to parse the data.
Boolean. Allows you to send a cross-
domain request such as JSONP.
Specifies the data payload to send with
the request.

Specifies a function to execute if the
request fails.

Object that contains the headers with
values that should be sent to the server.
For example:

{"Content-length": data.length}
Function to execute if the response
comes back with a 200 status, meaning
the request was successful.

Specifies the milliseconds to wait before
giving up on getting a response.

Set to GET or PUT to specify request type.
Specifies the URL on the web server to
send the request.

Using Advanced jQuery AJAX

A simple example of using the .ajax() interface is
shown in the following code:

$.ajax({

url:"setEmail",

type:"get",

accepts:"json",

contentType: 'application/x-www-form-urlencoded;
wcharset=UTF-8"',

data: {"first":"Brad", "last":"Dayley"}
}) .fail(function(O{ alert("request Failed"); 1);

The .ajax() method returns a jgXHR method that pro-
vides some additional functionality, especially when
handling the response. Table 13.4 lists some of the
methods and attributes attached to the jgXHR object.

Table 13.4 Common Methods and Attributes of the
jgXHR Object Returned by .ajax()

Method/Attribute Description

abort() Aborts the request.

always (function) Specifies a function to be
called when the request
completes.

done(function) Specifies a function to be

called when the request
completes successfully.
fail(function) Specifies a function to be
called when the request fails.
getAlTResponseHeaders() Returns the headers includ-
ed in the response.
getResponseHeader(name) Returns the value of a
specific response header.

289

290

CHAPTER 13 Using AJAX to Communicate with Web Servers

and Web Services

Table 13.4 Continued

Method/Attribute

setRequestHeader
(name, value)

readyState

status

statusText

Description

Sets the value of an HTTP
header to be sent with the
AJAX request.

Values:

1—Has not started loading
yet

2—Is loading

3—Has loaded enough, and
the user can interact with it

4—Fully loaded

Contains the response status
code returned from the
server, such as 200 status,
meaning the request was
successful.

Contains the status string
returned from the server.

14

Implementing
Mobile Web Sites
with jQuery

Mobﬂe devices are the fastest growing development
platform. Much of that development is geared toward
making web sites mobile friendly. Users expect the
portability provided by their mobile devices but the
robustness that is already implemented in the tradition-
al web sites.

This chapter focuses on using the jQuery Mobile
library to help you get moving on creating some clean,
cool mobile web pages. The jQuery Mobile library has
extensive capabilities. The phrases in this chapter cover
the basic structure, syntax, and concepts to help you
implement a much wider variety of mobile solutions.

Getting Started with jQuery
Mobile

Much of the jQuery Mobile framework is built on
extending the current HTML elements with additional

292

CHAPTER 14 Implementing Mobile Web Sites with jQuery

functionality. jQuery Mobile builds on the HTML
framework by adding data attributes to the HTML
elements.

All the data attributes begin with data- and end with
some slightly descriptive word of what the attribute
means. The jQuery Mobile library’s additional meth-
ods, events, styles, and values that fit the mobile needs
are attached to the element. You will see this extensive-
ly in the examples to come.

Table 14.1 lists many of the attributes along with some
of the values they support. The table is a good way to
visualize how the data attribute method works and can
act as a reference.

Table 14.1 A Few of the Data Attributes Added in
jQuery Mobile

Event Description

data-role This is used to define the role that
HTML will play in the mobile page,
such as a dialog box, button, or panel.

data-mini Each UI element has a compact ver-
sion that is used if this is set to true.
data-theme Specifies the letter (a—z) that is used
when rendering the Ul component.
data- Specifies a transition effect to use
transition when transitioning from one page/

state to another, such as s1ide or pop.

data-direction Specifies the direction of the anima-
tion so that it can match the transi-
tion. An example is reverse for page

back.

Event

data-rel

data-title

data-icon

data-iconpos

data-add-
back-btn

data-collapsed

data-collapsed-
icon
data-expanded-
icon

data-close-btn

Getting Started with jQuery Mobile

Description

Defines the relationship that the ele-
ment has to a link.Values include
back, dialog, external, and popup
Text displayed when page is shown.
Specifies an icon to attach to an
HTML element. Possible values are
home, delete, plus, arrow-u, arrow-d,
check, gear, grid, star, custom,
arrow-r, arrow-1, minus, refresh
forward, back, alert, info, and search
Specifies the icon position when
attached to an element: Teft, right,
top, bottom, notext.

For items with data-role="dialog", if
true a back button is added.

For items with role="collapsible"
specifies whether the state is
collapsed.

Defines the collapsed icon for
role="collapsible" elements.
Defines the expanded icon for
role="collapsible" elements.

For items with role="dialog", if true
a close button is added.

Determining if the Page Is Being
Viewed on a Mobile Device

if(
= /Android|web0S | iPhone | iPad|iPod|BlackBerry/i.test(

navigator.userAgent)) {
. mobile code here .

}

293

294

CHAPTER 14 Implementing Mobile Web Sites with jQuery

You can use the following JavaScript and regex state-
ment to parse the navigator.userAgent value and
determine whether a user is coming into your web site
on a mobile device:

if(/Android|web0S|iPhone|iPad|iPod|BlackBerry/
=i.test(navigator.userAgent)) { }

The statement parses the userAgent attribute and tries
to find the most common strings incorporated in the
mobile browsers.

Detecting Mobile Screen Size

$("#contentBody") .width(screen.width) .height(screen.
=height);

In today’s mobile world, the fact that a user is on a
mobile device is no longer the critical question. The
new critical question is this: How much screen space
do users have to work? You need to check on the
device’s screen size. Does it have a 3-inch, 4-inch, or
11-inch screen? There is a big difference. To get the
screen size, use screen.height and screen.width in
JavaScript and then adjust your pages dynamically to
support that size.

Specifying Different Theme
Swatches

<div data-role="header" data-theme="b">
<h1l>Teach</hl></div>

<a data-role="button"

data-theme="a" src="next'">Next

Getting Started with jQuery Mobile

The CSS files that come with jQuery Mobile include
several versions of styling called swatches. A swatch is
just a letter assignment that specifies what color
scheme to use when rendering the mobile elements.
Swatches are typically specified using the data-theme
attribute. For example:

<div data-role="header" data-
wtheme="b"><hl>Teach</hl></div>

Handling New Mobile Events

$("#myImage") .on("swipeleft", function(e) {
.swipe left code . . . });

$(document) .on("pageLoad", function(e, data) {
. page load code . . . });

$(document) .on("pagebeforechange", function(e, data)
-{
var toPage = data.toPage;
. page change code . . . });

One of my favorite features of jQuery Mobile is how
easy it is to implement mobile events. The library
automatically creates the events and adds them to ele-
ments based on the data attributes. If you want to add
or remove a specific mobile event, you can do so using
the .on() method from jQuery that you are already
familiar with.

For example, to add a tap handler to an element
#myImage, you would use the following:

$("#myImage").on("swipeleft", function() { });

Table 14.2 lists some of the mobile events and
describes their purpose.

295

296

CHAPTER 14 Implementing Mobile Web Sites with jQuery

Table 14.2 New Events Added by jQuery Mobile

Event

tap

taphold

swipe

swipeleft

swiperight

orientationchange

scrollstart

scrollstop

pagebeforeload

pageload

pagebeforechange

pagechange

pagebeforeshow

pageshow

Description
Triggered on a quick touch.

Triggered after the touch is held
for more than a threshold. Default
1s 750ms.

Triggered by a quick horizontal
drag.

Triggered by a quick horizontal
drag to the left.

Triggered by a quick horizontal
drag to the right.

Triggered when the device orien-
tation changes from portrait to
landscape or vice versa.

Triggered when scrolling starts.
Triggered when scrolling stops.
Triggered right before a mobile
page is loaded into the DOM.
Triggered after a mobile page is
loaded into the DOM.

Triggered right before a mobile
page is changed to a different
page. The two pages may be in the
same HTML document.
Triggered after a mobile page is
changed to a different page.
Triggered right before a page
transition occurs. The event is
triggered on the new page.
Triggered after a page transition
has occurred.

Getting Started with jQuery Mobile

An important feature included with jQuery mobile is
the ability to trigger and handle events linked to
changing and loading pages.

‘When you change pages, the following events are trig-
gered:

= pagebeforechange, pagechange, pagebeforeload,
pageload, pageshow, pagehide

When you load pages, the following events are trig-
gered:

= pagebeforeload, pageload

These events allow you to implement code to handle
new pages being transitioned and prevent pages from
being downloaded from the server. The events are
implemented as standard jQuery events, and the object
passed back to the handler includes things like ur1,
toPage, absUr1, dataUr1, and xhr object as well as the
options used for changing pages.

The following code shows an example of adding a
pageload event handler:

$(document) .on("pageload", function(e, obj){
if($("#pageThree .ui-content").length) {
$("#pageThree .ui-content").append("Page loaded
= from ."+ obj.url); }

EDE

297

298 CHAPTER 14 Implementing Mobile Web Sites with jQuery

By the way

jQuery Mobile also includes several virtual mouse
events, such as the mask, the mouse, and touch
events, to allow developers to register just the basic
mouse events. These work well for the most part, but
there are still a few quirks with them. The virtual
events are vmouseover, vmouseout, vmousedown,
vmousemove, vmouseup, vmouseclick, and
vmousecancel.

Changing Pages with jQuery Code

$("#pageTwo") .on("swipeleft", function(){

$.mobile.changePage("newPage.html", {transition:
='slide", reverse:true}); });

jQuery provides the $.mobile.changePage(URL,
options) method to dynamically change pages, where
URL is the new page location. Table 14.3 shows the
available options for the .changePage() call. The
following code is an example of adding a swipeleft
event handler to load a remote web page when the
user left-swipes the page on the device. Notice that a
transition of “‘slide” is used, and reverse option is set to
true:

$("#pageTwo") .on("swipeleft", function(){
$.mobile.changePage("newPage.htm1", {transition:
='"sTlide", reverse:true}); });

Getting Started with jQuery Mobile

Table 14.3 Options for the .changePage() and
.loadPage () Calls

Method

changeHash

data

dataurl

pageContainer

reloadPage

reverse

role

showLoadMsg

transition

type

Description

Specifies whether the hash in the
location bar should be updated.
Object or string data to send with an
AJAX request.

The URL used when updating the
browser location. If not specified, the
value of the data-url attribute is used.
Specifies the element that should con-
tain the page.

Boolean. Reloads the page from the
server if it 1s already in the DOM.
Boolean. Specifies the direction the
page change transition runs.

The data-role value to be used when
displaying the page.

Boolean. Specifies whether the load-
ing message should be shown.

The transition to use when showing
the page.

Specifies the method of the AJAX
request: "get" (default) or "post".

Loading Mobile Pages without
Displaying Them

<$.mobile.loadPage("newPage.php",

{data=$("form") .serialize(), type="post"});

Another helpful function is .ToadPage(URL, options). It

downloads the mobile page from the web server using
an AJAX call but does not change the mobile page to

299

300

CHAPTER 14 Implementing Mobile Web Sites with jQuery

the downloaded one. Actually, .changePage() calls
.ToadPage() underneath to retrieve the page. Most of
the options listed in Table 14.3 are also available via
.ToadPage (), except changeHash, dataUr1, reverse, and
transition.

The .loadPage() function is useful for preloading pages
in the initialization functions that you want available
later but do not want to display yet. The following
code shows an example of loading a page using POST
data from a form:

$.mobile.TloadPage("newPage.php",
{data=$("form").serialize(), type="post"});

Defining the Viewport Meta Tag

<meta name="viewport" content="width=device-width,

initial-scale=1">

A critical component of using jQuery Mobile is
adding the viewport settings in a <meta> tag inside the
page <head> tag. The viewport defines how the brows-
er displays the page zoom level and the dimensions
used.

Specifically, you need to set the
content="width=device-width, initial-scale=1" as
shown next. These settings force the device’s browser
to render the web page width at exactly the number of
pixels available on the device:

<meta name="viewport" content="width=device-width,
initial-scale=1">

Getting Started with jQuery Mobile

Without specifying the viewport setting, the mobile
page is at a much higher size than the screen width,
making the page look small. The user can still zoom in
on the web page.

Configuring jQuery Mobile Default
Settings

<script src="../js/jquery-2.0.3.min.js"></script>
<script>
$(document) .bind("mobileinit", function) {
$.mobile.page.prototype.options.headerTheme
b

.mobile.page.prototype.options.footerTheme

-"'b;
b;

</script>

<script src="../js/jquery.mobile-

=custom.min.js'"></script>

jQuery Mobile is initialized when the library is
loaded. Any page elements with jQuery Mobile tags
are initialized as well and use the default settings to
create mobile versions of the elements.

Occasionally, you may want to override the default
settings. To do this, you need to add a mobileinit event
handler to the document object before loading the
jQuery Mobile library. Then you can add your default
override code in that handler function.

I mostly use the mobileinit handler to change the
default theme swatches because that can’t be done on
the fly after the library has been loaded. The following
code shows an example of setting the default header
and footer themes:

301

302 CHAPTER 14 Implementing Mobile Web Sites with jQuery

<script src="../js/jquery-2.0.3.min.js"></script>
<script>

$(document) .bind("mobileinit", function () {

$.mobile.page.prototype.options.headerTheme

TN
$.mobile.page.prototype.options.footerTheme =
-"b";
5Ds8
</script>
<script src="../js/jquery.mobile-

wcustom.min.js"></script>

Notice that the init <script> is placed after jQuery is
loaded but before jQuery Mobile is loaded.

Building Mobile Pages

Creating mobile pages is actually simple. Pages consist
of <div> elements that are enhanced in jQuery Mobile
using the data tags discussed in the previous chapter.
This section focuses on using the data tags to define
mobile web pages.

Creating a Mobile Web Page

<div data-role="page">
<div data-role="header"><hl>Header</hl></div>
<div data-role="content" id="content">
<p>Images</p>

</div>
<div data-role="footer"><h4>Footer</h4></div>
</div>

Mobile pages are composed of three main parts: the
header, the footer, and content between them. All three
are not necessarily required, but it is a good idea to at

Building Mobile Pages

least have a header with the content, especially when
working with multiple pages.

All these elements are defined by adding data-role
attributes to <div> elements. The content inside the
<div> elements can be just about anything, including
text, images, forms, and lists.

The following code shows an example of creating a
simple mobile web page with a header, footer, and text
and image content. Figure 14.1 illustrates the look of
the web page:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
wwidth,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>
09 <script

10 src="../js/jquery.mobile-
=custom.min.js"></script>

11 <1link rel="stylesheet"

12 href="../js/css/jquery.mobile-

wcustom.min.css" />
13 <script>

14 $(document) . ready(function() {
15 checkForMobile();
16 1;

17 </script>

18 <style>

19 p { text-align:center; font:italic 45px
wHelvetica;

20 color:blue; margin:5px; }

303

304

CHAPTER 14 Implementing Mobile Web Sites with jQuery

21 img { width:235px; }

22 </style>

23 </head>

24 <body>

25 <div id="border"><div id="frame"><div data-
=role="page">

26 <div data-role="header"><hl>Header</hl></div>
27 <div data-role="content" id="content">

28 <p>Yosemite</p>

29 <p>Falls</p>

30

31 </div>

32 <div data-role="footer"><h4>Footer</h4></div>
33 </div></div></div>

34 </body>

35 </html>

ch1401.html

Notice that each of the components has a distinct
value for data-role. Figure 14.1 shows the resulting
mobile web page.

By the way

All the mobile examples included in this chapter con-
tain <div id="border"><div id="frame"> elements in
the HTML <body> and a call to checkForMobile() in
the jQuery code. The checkForMobile() code is locat-
ed in the included initmobile.js file | created. It
styles those elements for non-mobile browsers so that
a phone image is displayed as the background. | used
this to capture the images for this chapter. | also use
this concept with mobile development because | can
see in my development browser. | then test on an actu-
al device.

Building Mobile Pages

Header

Yosemilte
Falls

Footer

Figure 14.1 Basic mobile web page with a head-
er, a footer, and a comment with text and images
from ch1401.html.

Creating Fixed Headers and
Footers

<div data-role="header" data-position="f1ixed">
<h1l>Header</hl></div>

<div data-role="footer" data-position="fixed">
<h4>Footer</h4></div>

305

306 CHAPTER 14 Implementing Mobile Web Sites with jQuery

By default, both the header and the footer flow with
the content, meaning that if you scroll the content up
or down, the header scrolls with the content. Often,
you want the header, footer, or both to stay in a fixed
position on the device screen so that it is always dis-
played. jQuery Mobile makes that adjustment simple
to make.

To make the header or footer—or a toolbar for that
matter—fixed, all you have to do is add the data-
position="fixed" attribute to the <div>.This make
them stay in place, the header at the top of the page
and the footer at the bottom regardless of how the
content scrolls.

Implementing Mobile Sites
with Multiple Pages

Mobile sites are composed of either a single HTML
document with multiple <div data-role="page">
elements or multiple HTML documents with those
elements. Each <div> element represents a single
mobile page.

‘When using multiple pages in your mobile web site,
you need to implement code and UI controls to pro-
vide ways for the user to transition from one mobile
page to another. The transitions should be smooth and
intuitive based on the controls and content interaction.

You can change mobile pages by linking to the second
page from the first using one of two methods: adding
navigation buttons or programmatically changing the
page in your jQuery code.

Implementing Mobile Sites with Multiple Pages

The pages can come from <div> elements in the same
web page or external URLs downloaded to the
device. The following phrases describe the methods of
implementing multiple page mobile sites.

Adding Navigation Buttons

Page2

<a href="hour2201-page3.html" data-
role="button">Page

Navigation buttons are links to other mobile pages.
Typically, navigation buttons are added to the header
or footer element for easy visibility. However, you can
also place them inside the mobile content.

Navigation buttons are created by adding the data-
role="button" attribute to an <a> link. The href attrib-
ute should point to the hash tag or URL of the
mobile page you want to switch to. The following
code shows the syntax for defining an <a> tag as a nav-
igation link for a local link:

Page2

The following code shows the syntax for defining an
<a> tag as a navigation link for a remote link:

<a href="hour2201-page3.html"
=data-role="button">Page3

Positioning Navigation Buttons

<a href="#page3" data-role="button"
class="ui-btn-right">Next

<a href="#pagel" data-role="button"
class="ui-btn-1eft">Prev

307

308 CHAPTER 14 Implementing Mobile Web Sites with jQuery

You can position the button on the left or right side
of the header or footer, adding the .ui-btn-right or
.ui-btn-Teft class to the <a>.This applies jQuery
Mobile CSS styles to position the button on the right
or left side of the header or footer.

Adding Page Change Transitions

. in HTML .
<a data-role="button" data-
wtransitio slide'">Next
<a data-role="button" data-transition="sl1ide"
data-direction="reverse'">Prev

. in jQuery . .
$.mobile.changePage("#next", {transition:"slide" });
=1);
$.mobile.changePage("#prev", {transition:"slide",
reverse:true }); });

Transitions are added to page changes by adding the
data-transition attribute to the <a> link or other ele-
ment that is generating the transition. You can also
specify transition in the options element if you are
calling .changePage(). For example:

<a data-role="button" data-
wtransition="slide">Next

or

$.mobile.changePage("#next", {transition:"slide" });
=1);

You can also reverse the direction of the transition,
which is especially useful if you want the screen to
look like it is scrolling backward to a previous page.

Implementing Mobile Sites with Multiple Pages

To change the direction of the transition, use data-
direction="reverse" in the <a> tag or add reverse:true
to the .changePage() options. For example:

<a data-role="button" data-transition="slide"
data-direction="reverse">Prev

or

$.mobile.changePage("#prev", {transition:"slide",
reverse:true }); 1);

Creating a Back Button

<a data-rel="back data-role="button"

class="ui-btn-right">Next</div>

Another useful feature included in jQuery Mobile is
the ability to define a navigation button as a back but-
ton. A back button uses the browser history to navigate
to the previous button mobile page.To define a link as
a back button, you need to add the data-rel="back"
attribute. For example:

<a data-rel="back data-role="button" class="ui-btn-
wright">Next</div>

Notice that there is not an href attribute. That is
because the href attribute will be ignored; instead, the
most recent URL will be popped off the browser’s
navigation history list.

309

310 CHAPTER 14 Implementing Mobile Web Sites with jQuery

Changing Pages with Swipe Event
Handlers

$("#image") .on("swipe", function(){
. swipe code here .

;s
$("#pageTwo") .on("swipeleft", function(){

$.mobile.changePage("#page3",
w {transition:"slide"}); });
$("#pageTwo") .on("swiperight", function(){
$.mobile.changePage("#pagel", {transition:"slide",
=reverse:true}); });

The second method is to use the use the
$.mobile.changePage(URL, options) function call,
where the URL is the link location. Table 14.3 shows
the available options for the .changePage() call.

The following is an example of adding a swipeleft
event handler to load a remote web page when the
user left-swipes the page on the device. Notice that a
transition of "slide" is used, and the reverse option is
set to true to make the transition slide to the left:

$("#pageTwo") .on("swipeleft", function(){
$.mobile.changePage("#page3", {transition:"slide",
=reverse:true}l); 1);

The following is an example of adding a swiperight
event handler to load a remote web page when the
user right-swipes the page on the device. Notice that a
transition of "slide" is used, but the reverse option is
not set:

$("#pageTwo™) .on("swiperight", function({
$.mobile.changePage("#pagel", {transition:"slide"
=1); s

Implementing Mobile Sites with Multiple Pages

Adding Navigation Buttons and
Swipe Events Example

The following code shows a full example of imple-
menting navigation buttons and swipe events to tra-
verse three different pages. The code in lines 14-27
implement swipe event handlers that call .changePage)
with transitions to handle finger swipes. Lines 38—47
implement the first mobile page, lines 48—59 imple-
ment the second mobile page, and lines 60-68
implement the third. Each of the pages has one or two
navigation buttons in the header. Figure 14.2 illustrates
the multipage app:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
wwidth,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>
09 <script

10 src="../js/jquery.mobile-
=custom.min.js"></script>

11 <1link rel="stylesheet"

12 href="../js/css/jquery.mobile-

wcustom.min.css" />
13 <script>

14 $(document) .ready(function() {

15 checkForMobiTle();

16 $("#pagel™) .on("swipeleft"”, function(){
17 $.mobile.changePage("#page2",

18 {transition:"slide"}); });

311

312 CHAPTER 14 Implementing Mobile Web Sites with jQuery

19 $("#page2") .on("swiperight", function(){
20 $.mobile.changePage ("#pagel",

21 {transition:"slide", reverse:true});
=1);

22 $("#page2") .on("swipeleft”, function(){
23 $.mobile.changePage("#page3",

24 {transition:"slide", }); 1);

25 $("#page3").on("swiperight", function(){
26 $.mobile.changePage("#pagel",

27 {transition:"slide", reverse:true});
=-1);

28 5Ds

29 </script>

30 <style>

31 p { text-align:center; font:italic 45px
wHelvetica;

32 color:blue; margin:5px; }

33 img { width:235px; }

34 </style>

35 </head>

36 <body>

37 <div id="border"><div id="frame">
38 <div data-role="page" id="pagel">

39 <div data-role="header"><hl>Page 1</hl>
40 <a data-role="button" href="#page2"
41 data-transition="s1ide"

42 class="ui-btn-right">Page 2

43 </div>

44 <div data-role="content">

45 <p>Arches NP</p>

46 </div>

47 </div>

Implementing Mobile Sites with Multiple Pages

48 <div data-role="page" id="page2">

49 <div data-role="header"><h1l>Page 2</hl>
50 <a data-role="button" href="#pagel"
51 data-transition="slide"

52 data-direction="reverse">Page 1l
53 <a data-role="button" href="#page3"
54 data-transition="slide">Page 3
55 </div>

56 <div data-role="content">

57 <p>TiKal</p><img src="../images/
=pyramid2.jpg"/>

58 </div>

59 </div>

60 <div data-role="page" id="page3">

61 <div data-role="header"><hl>Page 3</hl>
62 <a data-role="button" href="#page2"
63 data-transition="slide"

64 data-direction="reverse">Page 2
65 </div>

66 <div data-role="content">

67 <p>Sunset</p><img src="../images/jump.jpg"
-/></div>

68 </div>

69 </div></div>

70 </body>

71 </html>

ch1402.html|

313

314

CHAPTER 14 Implementing Mobile Web Sites with jQuery

Swipe Swipe Swipe
p p p

Figure 14.2 Multipage web site that allows you to
navigate using navigation buttons or page swipes
ch1402.html.

Creating a Navbar

<div data-role="navbar" >

Page 2</1i>
page 3</1i>

page 4</11i>

</div>

Another method of navigating pages is a navbar. A
navbar is a set of buttons grouped together in a single
bar element. Each button links to a different mobile
page.

Navbars are defined by adding the role="navbar" to a
<div> and then adding a list of pages to link to using
, <19>, and <a> elements. For example, the follow-

ing code renders a navbar similar to the one in Figure
14.2:

Creating a Navbar

<div data-role="navbar" >

Page 2</1i>
page 3</1i>
page 4</Ti>

</div>

The navbar <div> can be placed anywhere; you can put
it in the header as shown in Figure 14.3, in the footer,
with the content, or it can stand alone between the
other sections of the mobile page. A common place to
put the navbar is in a fixed footer. This allows the
navbar to remain present even as the content scrolls.

Navbar Below Header

Page 1

Page 2 page 3 page 4

Arches NP

Arches NP

Page 2 a page d

Navbar in Fixed Footer

Figure 14.3 Mobile web page with navbar below
the header and as a fixed footer.

315

316 CHAPTER 14 Implementing Mobile Web Sites with jQuery

Applying a Grid Layout

<div class="ui-grid-a">
<div class="ui-block-a">Row 1 Column 1l</div>
<div class="ui-block-b">Row 1 Column 2</div>

<div class="ui-block-a">Row 2 Column 1l</div>
<div class="ui-block-b">Row 2 Column 2</div>
</div>

One of the basic layouts provided by jQuery Mobile is
the grid. The idea behind the grid layout is to split the
page into equal-sized blocks, similar to an HTML
table. You can then place content in those blocks, and
they are automatically laid out correctly.

To add a grid layout, you need to add a

<div class="ui-grid-#">, where # specifies the
number of columns to include. The values are a (2
columns), b (3 columns), ¢ (4 columns), and so on. For
example, the following defines a three-column grid:

<div class="ui-grid-b"> </div>

Items are added to the grid by specifying a

<div ui-block-#>, where # is the column letter, a
(first), b (second), and so on. The first time a column
letter is specified, the item is placed in row 1 of the
grid in that column position. The second time it is
placed in row 2. For example, to create a 2X2 grid, use
the following code:

<div class="ui-grid-a">
<div class="ui-block-a">Row 1 Column 1</div>
<div class="ui-block-b">Row 1 Column 2</div>
<div class="ui-block-a">Row 2 Column 1</div>
<div class="ui-block-b">Row 2 Column 2</div>
</div>

Applying a Grid Layout

You can also create a single-column grid using
<div class="ui-grid-solo">. For example:

<div class="ui-grid-solo">
<div class="ui-block-a"><p id="number"></p></div>
</div>

The best way to demonstrate how grid layouts work is
to show you a practical example. The following code
implements three different grid layouts in a single page
to build a basic calculator app, shown in Figure 14.4.
The first is a basic single-item grid with a number
display, and then a 3x4 grid with calculator digit
elements. The last grid is a 5X1 grid with calculator
buttons:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
=width,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>

09 <script src="../js/jquery.mobile.js"></script>
10 <1link rel="stylesheet"

11 href="../js/css/jquery.mobile.css" />

12 <script>

13 $(document) . ready(function() {

14 $(document) .ready(function() {

15 checkForMobile();

16 $("p").on("click", function({

17 $("#number') .append($(this) .htm1());

-1);

317

318 CHAPTER 14 Implementing Mobile Web Sites with jQuery

18 $("span").on("click", function(){

19 if ($(this).html1 () === "="){

20 $("#number™) .html (eval ($("#number™).
=html()));

21 } else {$("#number").htm1(""); };

22 B;

23 5D

24 ik

25 </script>
26 <style>

27 p, span { margin:2px; border-radius:15px;
28 background-color:#888888; color:white;}
29 p, span { font:bold 30px/50px arial;

30 text-align:center; border:3px ridge blue;}
31 #number { background-color:black; min-
=height:50px;

32 text-align:right; padding-right:5px; }
33 span { background-color:#555555;
wdisplay:block; }

34 #logic span { background-color:#B10000; }
35 #logic p { background-color:#0066AA; }

36 </style>

37 </head>

38 <body>

39 <div id="border"><div id="frame">

40 <div data-role="header"><h1>Grid
=Page</h1l></div>

41 <div data-role="content">

42 <div class="ui-grid-solo">

43 <div class="ui-block-a"><p id="

wnumber'"></p></div>

Applying a Grid Layout

44 </div>

45 <div class="ui-grid-b">

46 <div class="ui-block-a"><p>1</p></div>
47 <div class="ui-block-b"><p>2</p></div>
48 <div class="ui-block-c"><p>3</p></div>
49 <div class="ui-block-a"><p>4</p></div>
50 <div class="ui-block-b"><p>5</p></div>
51 <div class="ui-block-c"><p>6</p></div>
52 <div class="ui-block-a"><p>7</p></div>
53 <div class="ui-block-b"><p>8</p></div>
54 <div class="ui-block-c"><p>9</p></div>
55 <div class="ui-block-
=a'">C</div>

56 <div class="ui-block-b"><p>0</p></div>
57 <div class="ui-block-

wC">CE</div>

58 </div>

59 <div class="ui-grid-d" id="1ogic">

60 <div class="ui-block-a"><p>+</p></div>
61 <div class="ui-block-b"><p>-</p></div>
62 <div class="ui-block-c"><p>*</p></div>
63 <div class="ui-block-d"><p>/</p></div>
64 <div class="ui-block-
we''>=</div>

65 </div>

66 </div>

67 </div></div>

68 </body>

69 </html>

ch1403.html|

319

320 CHAPTER 14 Implementing Mobile Web Sites with jQuery

Grid Page

Figure 14.4 Using the jQuery Mobile grid layout to
implement a basic calculator app in ch1403.html.

Implementing Listviews

One of the most common ways to organize mobile
content is with listviews. Listviews organize the con-
tent into scrollable, linkable lists that are easy to view
and navigate. jQuery UI does a great job of providing
a framework to easily implement listviews in your

code.

Implementing Listviews

The application of listviews varies a lot depending on
the amount and type of data that is being placed in
them. To handle this, jQuery provides an array of dif-
ferent types of lists. The following sections cover the
most commonly used.

Watch out!

If you dynamically add items to lists, tables, and so on
in jQuery code, you need to call the refresh() action
on that element to refresh the contents with jQuery
Mobile.

Creating a Basic Listview

<ul data-role="Tistview">
Link l</1i>
Link 2</1i>

<1i>Non Linkable Item</11i>

Lists are created by adding the data-role="Tistview" to
a or element. jQuery automatically handles
formatting the <1i> elements into a list form. For <o1>
elements, the formatted listview contains the number-
ing for each line item.

Using Nested Lists

<ul data-role="Tistview" >
<11i>Hobb1its<11i>Frodo</1i><11i>Sam</11i>
<1i>Bilbo</Ti></11i>
<1li>ElvesLegolas</11i><1i>Elrond</11i>

Galadriel</Ti></11i>
<1i>Men<1l1i>Aragorn</1i><1i>Boromir</11i>
<1i>Theoden</11i></11i>

321

322

CHAPTER 14 Implementing Mobile Web Sites with jQuery

Nested lists are created by nesting additional ele-
ments inside the listview. jQuery Mobile automatically
detects this and builds up linkable pages to the sublists.
The following code shows an example of implement-
ing nested lists, as shown in Figure 14.5:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
=width,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>
09 <script src="../js/jquery.mobile.js"></script>
10 <link rel="stylesheet"

11 href="../js/css/jquery.mobile.css" />
12 <script>

13 $(document) . ready(function() {

14 checkForMobile(Q);

15 1)

16 </script>

17 </head>

18 <body>

19 <div id="border"><div id="frame">
20 <div data-role="page" id="nested">

21 <div data-role="header"><hl>Nested
w|ist</hl></div>

22 <div data-role="content">

23 <ul data-role="Tistview">

24 <Ti>Hobbits<1i>Frodo</1i><1i>Sam</1i>
25 <1i>Bilbo</Ti></Ti>

26

=<]i>ElvesLegolas</1i><1i>ETrond</Ti>
27 Galadriel</Ti></Ti>

Implementing Listviews

28 Men<1li>Aragorn</Ti><1i>Boromir</Ti>
29 <1li>Theoden</Ti></Ti>

30 </div></div>

31 </div></div>

32 </body>

33 </html>

ch1404.html

Legolas

Elrond

Galadriel

Figure 14.5 Applying nested lists using the
jQuery Mobile code in ch1404.html.

323

324 CHAPTER 14 Implementing Mobile Web Sites with jQuery

Implementing Split Button List

<ul data-role="Tistview">

Jeep<a href="#" data-
wicon="star">Like</11i>

<a hre #">Ford<a href="#" data-

wicon="star">Like</11i>

Chevy<a href="#" data-
wicon="star">Like</11i>

Split-button lists are lists that include multiple options
on each line. This can be useful in a variety of ways.
When listing products for sale, the main part can link
to more details and the secondary link can add the
item to the cart. To create a split-button list, create two
<a> elements in the <1i> item.

Adding Dividers to Lists

<ul data-role="Tistview" >
<1i data-role="Tlist-divider">Numbers</1i>
1</T1i><11>2</Ti><11i>3</11i>
<1i data-role="Tlist-divider">Letters</11i>
<1i>A</11i><11>B</1i><1i>C</11i>

<ul data-role="Tistview" data-autodividers="true">
Alex</1i><11i>Alice</1i><11i>Brad</11i><11i>DaNae

w</Ti><1i>David</11i>
Isaac</1i><11i>Jordan</1i><1i>Nancy</1i>

A divided list is one in which elements of the list are
divided from each other by a simple bar. The idea is to
make it easier for the user to see the list items by split-
ting up the view.

Implementing Listviews

You can create divided lists manually by injecting your
own dividers and adding a data-role="Tlist-divider"
to one of the <19> elements. For example:

<ul data-role="Tistview" >
<1i data-role="Tist-divider">Numbers</1i>
1</1i><Ti>2</Ti><1i>3</11i>
<1i data-role="list-divider">Letters</11i>
<1i>A</1i><Ti>B</Ti><1i>C</11i>

You can also automatically add dividers by adding
data-autodividers="true" to the element. This
splits the elements every time the first character
changes and creates a divider for that letter. For exam-
ple, the following code adds an autodivider:

<ul data-role="Tistview" data-autodividers="true">
Alex</Ti><Ti>Alice</Ti><1i>Brad</1i><1i>DaNae

w</1i><Ti>David</1i>
Isaac</Ti><1i>Jordan</1i><Ti>Nancy</11i>

Implementing a Searchable List

<ul data-role="Tlistview" data-filter="true">
<11i>Rome</1i><1i>Milan</1i><1i>Florence</1i><11i>
wGenoa</1i><11i>Venice</11i>

Naple</1i><1l1i>Balonga</1i>Bari</1i><11i>
wTurin</1i><11i>Palermo</11i>

Another useful feature is the searchable list. jQuery
Mobile has a nice search feature built in that allows
you to search the current list. The search feature adds a

325

326 CHAPTER 14 Implementing Mobile Web Sites with jQuery

text input at the top of the list and filters the items as
you type text into the list. Only the items that match
the filter text are displayed.

Searchable lists are created by adding data-filter=
"true" to the element containing the list. For
example, the following code adds a searchable list:

<ul data-role="Tlistview" data-filter="true">
<1li>Rome</Ti><1i>Milan</Ti><1i>Florence</1i><1i>

wGenoa</Ti><1i>Venice</11i>
Naple</Ti><Ti>BalongaBari<1i>

wTurin<1li>Palermo</1i>

Using Collapsible Blocks and
Sets

<div data-role="collapsible" data-collapsed="false">
<h3>Photo Information</h3>
<p>Single Content.</p>

</div>

<div data-role="collapsible-set">
<div data-role="collapsible">

<h3>Image 1</h3></div>
<div data-role="collapsible" >
<h3> Image 2</h3></div>
<div data-role="collapsible">
<h3> Image 3</h3></div>
</div>

Another useful way to represent content is by dividing
it into collapsible elements. A header is presented that

the user can see, but the content the header represents
is hidden until the header is clicked.

Adding Auxiliary Content to Panels

This allows you to show and hide the content in-line
rather than linking to another page. Collapsible ele-
ments can be represented as a stand-alone block or as a
set of connected blocks.

To create a collapsible item, all you need to do is add
data-role="collapsible" to a <div> element. The <div>
element needs to have a header to display in a bar
when it’s collapsed. To group items, you add multiple
<div data-role="collapsible"> elements inside a

<div data-role="collapsible-set"> element

To force an item to be expanded, add data-collapsed=
"false". This sets the initial state to expanded, although
you can still collapse and expand it by clicking on the
header.

Also, you can control the themes used to render the
collapsible sets using data-theme to define the header
and data-content-theme to define the collapsed
content.

Adding Auxiliary Content to
Panels

<div data-role="panel" 1id="confi
data-position="right" data-display="reveal">
<div data-role="header" data-theme="a">
<h3>Panel</h3></div>
<h3>Settings</h3>

<label for="Optionl">0Option 1l</label>

<input type="checkbox" id="Optionl"></input>
<label for="Option2">0ption 2</label>

"

<input type="checkbox" id="Option2"></input>
<a data-role="button" data-icon="delete"
data-rel= ose" data>Close Config
</div>

327

328

CHAPTER 14 Implementing Mobile Web Sites with jQuery

A useful way to present data that is not necessarily part
of the page but is relevant is panels. A panel is similar
to the page but sits off to the left or right side. When
opened, the panel reveals the additional information.

Panels are defined using data-role="page" and must be
siblings to the header, content, and footer elements
inside a mobile page. Panels are opened by linking to
the id value, similar to opening a new page. When the
link 1s clicked, the panel is displayed using one of the
following three display modes:

= data-display="overlay"—Panel elements overlay
the existing page with a transparent background.

= data-display="push"—Panel content “pushes” the
existing page as it is exposed.

= data-display="reveal"—Panel sits under the cur-
rent page and is revealed as the current page slides
away.

The panel is positioned using data-position="right"
or data-position="Teft". When opened, it scrolls with
the page.You can force a fixed position using data-
position-fixed="true", in which case the panel con-
tents appear relative to the screen and not the scroll
position.

To close the panel, add a link button with the

<a data-rel="closed"> attribute set to the panel page.
You can also close a panel from jQuery code using the
following:

$("#panelId").panel("close");

Working with Popups

Working with Popups

<div data-role="panel" 1id="confi
data-position="right" data-display="reveal">
<div data-role="header" data-theme="a">
<h3>Panel</h3></div>
<h3>Settings</h3>

<label for="Optionl">0Option 1l</label>

<input type="checkbox" id="Optionl"></input>
<label for="Option2">0ption 2</label>
<input type="checkbox" id="Option2"></input>
<a data-role="button" data-icon="delete"
data-rel="close" data>Close Config
</div>

One of your best friends when implementing mobile
page content is the popup. A popup is different from a
panel in that it can be displayed anywhere on the page
that’s currently being viewed. This allows you to add
additional bits of extra information that the user can
easily click and see.

Popups are defined using data-role="popup" and can
be placed anywhere inside the content of a mobile
page. Popups are also opened by linking to the ID
value of the <div data-role="popup"> tag. However,
you must add a data-rel="popup" to the <a> tag that
links to the popup.You can also manually open a
popup using the following from jQuery code:

$("#popupId").popupO;

The popup is positioned using data-position-to
attribute that can be set to window, origin, or the #id
of an element. jQuery Mobile tries to center the
popup over that element.

To close the popup, simply click on the page some-
where other than the popup. Also, you can add a
Close button to the popup <div> by adding the

329

330

CHAPTER 14 Implementing Mobile Web Sites with jQuery

data-rel="back" attribute. For example, the following
code adds a Close button and specifies the delete icon
and notext:

<a href="#" data-rel="back" data-role="button" data-
=theme="a"
data-icon="delete" data-iconpos="notext"

wclass="ui-btn-right">Close

The following shows an example creating a popup
menu of links that tie to photo popups, as illustrated
in Figure 14.6. One thing to note is that the image
popup has a class="photopopup". This provides class
settings to style the image popup container.

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
wwidth,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>

09 <script src="../js/jquery.mobile.js"></script>
10 <link rel="stylesheet"

11 href="../js/css/jquery.mobile.css" />

12 <script>

13 $(document) .ready(function() {

14 checkForMobile();

15 b

16 </script>

17 <style>

18 .photopopup img { width:220px; }
19 #menu-popup {width:200px; }

Working with Popups

20 </style>

21 </head>

22 <body>

23 <div id="border"><div id="frame">
24 <div data-role="page" id="pageOne">

25 <div data-role="header"><h1l>Popups</hl></div>
26 <div data-role="content">
27 <a data-role="button" href="#menu" data-

=rel="popup"

28 id="menuLink">Popup Menu

29 <div data-role="popup" id="menu"

30 data-position-to="#menuLink">

31 <ul data-role="Tistview">

32 <a href="#photol" data-rel="popup"
33 id="imageLink">Image 1l</1i>

34 <a href="#photo2" data-rel="popup"
35 id="1imagelLink">Image 2</Ti>

36 </div>

37 <div data-role="popup" id="photol"

38 data-position-to="window" class=

= "photopopup'>

39 <a href="#" data-rel="back" data-
=role="button"

40 data-icon="delete" data-
=ijconpos="notext"

41 class="ui-btn-right">Close

42 </div>
43 <div data-role="popup" id="photo2"

44 data-position-to="window" class=

= "photopopup">

45 <a href="#" data-rel="back" data-
=role="button"

46 data-icon="delete" data-
w=jconpos="notext"

47 class="ui-btn-right">Close

48 </div>

49 </div>

331

332 CHAPTER 14 Implementing Mobile Web Sites with jQuery

50 </div>

51 </div></div>
52 </body>

53 </html>

ch1405.html

Figure 14.6 Creating a menu popup that links to
photo popups using jQuery Mobile code in
ch1405.html.

Building Mobile-Friendly Tables

<table data-role="table" data-mode="reflow"
id="parkTable">
.or ...
<table data-role="table" data-mode="columntoggle"
id="parkTable">
<thead><tr><th>Park</th>

<th data-priority="1">State</th>

<th data-priority="2">Est.</th>

<th data-priority="3">Photo</th></tr>
</thead>
<tbody>

Building Mobile-Friendly Tables 333

<tr><td>Yellowstone</th><td>MT</td><td>1872</td>
<td></tr>
<tr><td>Yosemite</th><td>CA</td><td>1872</td>
-<td>
</tr>

<tr><td>Zion</th><td>UT</td><td>1919</td><td>
</tr>
</tbody>
</table>

jQuery Mobile adds a data-mode attribute to the
<table> tag to allow for mobile-friendly tables. There
are two types of ways to make a table mobile-friendly.

The first is to reduce thenumber of columns displayed,
and the second is to collapse rows into column sets so
they can be stacked on each other. This is done by
adding the data-role="table" and data-mode="reflow"
to the <table> tag. Cells in the table are repositioned
so that they flow with the rest of the page. In reflow
mode, when the table is 2 columns wide, the columns
are broken up into individual and cells stacked on top
of each other. Then the headers in the column are
added as labels to the cells so that each cell contains
the column header to the left to identify the value.

The second solution is to add a data-mode="column-
toggle" to the <table> tag. This provides the user with
a popup menu so the user can enable/disable columns
to display. The columns that can be enabled/disabled in
columntoggle mode are designated by adding a data-
priority=# attribute to the <th> items in the first <tr>
of the <thead> element.You cannot disable columns
without the data-priority. The # value of data-
priority ranges from 1 (highest) to 6 (lowest).

334 CHAPTER 14 Implementing Mobile Web Sites with jQuery

Creating Mobile Forms

jQuery Mobile introduces several attributes for ele-
ments that extend and define the behavior to support
mobile devices. Table 14.4 lists some of those attributes
that you need to be familiar with as you implement
mobile forms. The list is not comprehensive.

Table 14.4 jQuery Mobile Data Attributes for Form

Elements

Attribute Description

data-role= Allows for multiple form elements to

"fieldcontain" be styled as a single group.

data-role= Allows you to group buttons into a

"controlgroup" single block similar to a navigation
bar.

data-type Specifies if the items in the

controlgroup should be organized
"vertical" or "horizontal".
data-corners= Adds a corner radius to elements.
"true"
data-icon Specifies an icon to be added to an
element:
home, delete, plus, arrow-u, arrow-d,
check, gear, grid, star, custom, arrow-r,
arrow-1, minus, refresh, forward, back,
alert, info, search
data-iconpos Specifies the location the icon is
placed:

Teft, right, top, bottom

Creating Mobile Forms

Attribute Description

data-mini Boolean. If true, a mini version of the
element is rendered with limited
padding and margins.

data-theme Applies a theme swatch to the
element (a—z).

Adding/Hiding Labels

<div data-role="fieldcontain" class="ui-hide-1abel">
<label for="username'">Username:</1abel>
<input type="text" name="username" id="username"

value=
</div>

placeholder="Username" />

Labels are required on form inputs in jQuery Mobile.
This allows the library to format the form elements
appropriately for mobile devices. Therefore, you need
to add a label and use the for attribute to link it to the
form input. The good news is that jQuery mobile pro-
vides a class that you can easily hide the label with.

Disabling Form Elements

<input type='"text" name="username" id="username"
wvalue=""

placeholder="Username" class="ui-disabled" />

You can disable form elements by adding the
ui-disabled class to them in the HTML definition or
programmatically in your jQuery code. Disabling the
elements prevents the control from accepting input
from the user. Also, jQuery Mobile has special styling
that is applied to disabled controls to make it apparent
to the user that the form element cannot be used.

335

336

CHAPTER 14 Implementing Mobile Web Sites with jQuery

Refreshing Form Elements

var mySelect = $("#mySelect");

mySelect [0].selectedIndex = 1;
mySelect.selectmenu("refresh™);

$ ("#myCheckbox'") .prop("checked", true) .checkboxradio

w ("refresh");

$("#myRadio") .prop(''checked", true) .checkboxradio("re
wfresh");

$("#mySTider™).val(100) .s11ider("refresh");

‘When programmatically changing items in a form,
such as adding options to a select, you need to call the
refresh function on the item. Following are some
examples of adjusting form elements using jQuery and
then refreshing them.

Adding Form Elements

jQuery Mobile elements are for the most part stan-
dard. jQuery Mobile formats them for better display
on mobile devices. However, there are a few data
attributes that you should be aware of:

= data-role="fieldcontain"—Add to a container
class around multiple form elements. Helps mobile
elements, especially <label> elements, track closer.

= class="ui-hide-1abel">—Adding this class to a
fieldcontain container causes the label to hide.

= data-role="button"—Forces <a> links to be dis-
played as mobile buttons.

= data-icon—Specifies an icon that can be added to
a button or link.

= data-iconpos—Specifies the location of the icon.

Creating Mobile Forms

= data-role="controlgroup"—Add to a container
class around multiple form elements. The elements
are rendered as a single set. You can also add data-
type="horizontal" and data-type="vertical to
define whether the buttons are stacked on top of
each other or in a row.

The best way to illustrate a mobile form is to show
you an example. The following code implements sever-
al of the HTML form elements and applies the jQuery
Mobile attributes to them. The rendered version of the
form is shown in Figure 14.7:

01 <html>

02 <head>

03 <title>Python Phrasebook</title>

04 <meta charset="utf-8" />

05 <meta name="viewport" content="width=device-
wwidth,

06 initial-scale=1">

07 <script src="../js/jquery-
=2.0.3.min.js"></script>

08 <script src="../js/initmobile.js"></script>
09 <script src="../js/jquery.mobile.js"></script>
10 <1link rel="stylesheet"

11 href="../js/css/jquery.mobile.css" />
12 <script>

13 $(document) .ready(function() {

14 checkForMobiTle();

15 s

16 </script>

17 <style>

18 </style>

19 </head>

20 <body>

21 <div id="border"><div id="frame">

337

338

CHAPTER 14 Implementing Mobile Web Sites with jQuery

22 <div data-role="page" id="pageOne">
23 <div data-role="header"><hl>Form</hl></div>
24 <div data-role="content">

25 <div data-role="controlgroup"

26 data-type="horizontal" data-mini="true">
27 <button data-icon="grid"

28 data-iconpos="notext">b</button>

29 <button data-icon="gear"

30 data-iconpos="notext">b</button>

31 <button data-icon="star"

32 data-iconpos="notext">b</button>

33 </div>

34 <div data-role="fieldcontain" class="ui-hide-
wTabel">

35 <label for="search">Search</label>
36 <input type="search" name="search"
37 id="search" value="" />

38 </div>

39 <div data-role="fieldcontain" class="ui-hide-
=]abel">

40 <input type="text" name="username"
=jd="username"

41 placeholder="your name here"/>

42 <label for="username">Name</Tabel>

43 </div>

44 <fieldset data-role="controlgroup" data-
wmini="true">

45 <input type="radio" name="rc" id="rcl"
wvalue="rcl"/>

46 <label for="rcl">Family</Tlabel>

47 <input type="radio" name="rc" id="rc2"
wvalue="rc2"/>

48 <label for="rc2">Friend</label>

49 </fieldset>

50 <div data-role="controlgroup" data-type=

="horizontal"

51 data-mini="true" data=theme="a">

Creating Mobile Forms

52 <input type="checkbox" name="hcb" id="hcbl"
- />

53 <label for="hcbl">Post</Tabel>

54 <input type="checkbox" name="hcb" id="hcbh2"
- />

55 <label for="hcb2">Link</Tabel>

56 <input type="checkbox" name="hcb" id="hcb3"
- />

57 <label for="hcb3">Share</label>

58 </div>

59 <div data-role="fieldcontain" class="ui-hide-
=]abel">

60 <label for="area">Comments:</label>

61 <textarea name="textarea" id="area" data-
=theme="a">

62 Comments</textarea>

63 </div>

64 <button data-inline="true"

65 data-theme="b">Accept</button>

66 <button data-inline="true"

67 data-theme="e">Decline</button>

68 </div>

69 </div></div>

70 </body>

71 </html>

ch1406.html

339

340 CHAPTER 14 Implementing Mobile Web Sites with jQuery

@ 0 0

Siearch
your name here

Family

Friend

Post Link Share

Figure 14.7 Creating basic mobile form elements
using the jQuery Mobile code in ch1406.html.

Index

A

absolute values,
calculating, 34

accessing
browsers, 47-49
accessing cookies,
52-55
history, 49
HTML
chaining object
operations, 75-76
elements, 59
navigating objects,
76-82
searching elements,
59-68, 71-74
jQuery in JavaScript, 6
libraries, 7
Mobile, 10
variables, 16

addEventListener()
function, 103

adding
auxiliary content to
panels, 328

borders, 134

conditional blocks of
code, 30

cookies, 53

dividers to lists, 324

DOM elements to
objects, 91

elements to elements,
179-183

event handlers, 99, 105
forms
elements, 336
mobile, 334-336, 340
initialization code, 100
items to lists, 191-193
JavaScript

to HTML docu-
ments, 3

loading from
external files, 4
jQuery to web pages,
5-6
labels, 335

mouse-click-handling
code, 115

navigation buttons,
307, 311, 314

page load event
handlers, 99

rows to tables, 189-191
tables, 333

timers, 55-57
transitions, 308

342 adding

Ul elements
applying sliders,
215-216, 219

attaching datepicker,
212-215

coding tooltips,
223-225

creating menus,
220-222

downloading
libraries, 201-202

dragging/dropping,
205-212

implementing auto-
complete, 203-205

jQuery, 201
adjusting opacity, 146-149.
See also modifying
adjValues() function, 197
AJAX

asynchronous commu-
nication, 253-254

cross-domain
requests, 254

GET/POST requests, 255
JavaScript, 261-267
jQuery, 267-289
overview of, 251-252

response data types,
256-259

ancestors, searching, 80

.animate() method,
228-229

animation, 227-228
.hide() method, 242
.show() method, 243

.toggle() method,
243-245

CSS settings, 228-229
delaying, 233
images
moving elements,
248-250
resizing, 246-248
queues, 231
sliding toggles, 239-242
stopping, 232-233
visibility, 234-238
appending
bottom of element’s
content, 180
elements, 141
rows to tables, 189-191
text, 140
applications, Mobile, 9-12
applying
AJAX, 251-252

asynchronous
communication,
253-254

cross-domain
requests, 254

GET/POST requests,
255

JavaScript, 261-267
jQuery, 267-289

response data
types, 256-259

event objects, 111-114
filters to selectors, 74
for() loops, 31

grid layouts,
316-317, 320

browsers 343

logic, 29-31 B
.map() method, 87-88
nested lists, 322
popups, 329, 332
power functions, 35
right-click, 117-118
selectors, 62

back buttons, creating, 309
behavior, events, 107-110
blocks, adding code, 30
.blur() method, 173
borders, adding, 134
bottom of element’s

slniders, 215_"216’ 219 content, appending, 180
trigonometric browsers. See also
functions, 35 interfaces
while() loops, 30 accessing, 47-49
arguments, 20 cookies, modifying,
arrays 52-55
combining, 26 current location details,
creating, 18 45-47
items development tools,
deleting, 27 configuring, 12-13
detecting, 27 events
iterating, 31 adding event
manipulating, 25-27 handlers, 99-106
) forms, 122-123
sorting, 28
. keyboards, 118-120
splicing, 26)
- managing, 107-110
assigning
mouse, 115-118
data values to]
objects, 89 objects, 111-114
event handlers in overview of, 96
HTML, 101 types, 96, 99
asynchronous history, accessing, 49
communication, 253-254 JavaScript consoles,
attaching datepicker applying, 44
element, 212-215 navigating, 43
.attr() method, 126, 166 popup windows,
attributes, selecting creating, 50-51
based on HTML, 64 screens, sizing, 45
autocomplete, timers, adding, 55, 57

implementing, 203-205

344

browsers
web pages
redirecting, 44
reloading, 44

building mobile pages, 302-
304
buttonlmage option, 213
buttonlmageOnly option, 213
buttons
back, creating, 309
navigation

adding, 307,
311, 314

positioning, 308
split lists, 324

C

calculating absolute
values, 34

calling functions, 20
cancelling timers, 56

Cascading Style Sheets.
See CSSs

case, modifying strings, 24
CDNs (Content Discovery
Networks), 5, 9

chaining object operations,
75-76

change option, 216
.changePage() method, 298

changes to text,
detecting, 119

characters
searching, 22

special, string
objects, 21

check box state, modifying,
161-162

checking
items in arrays, 27
for substrings, 25

children, retrieving
elements, 77

Chrome, enabling
JavaScript in, 13

classes
deleting, 137

names, searching DOM
objects, 60

toggling, 137, 139
click() method, 110

closest elements,
retrieving, 77

closing windows, 49
code
blocks, adding, 30
dynamic programming.
See dynamic
programming
initialization, adding, 100
JavaScript

adding to HTML
documents, 3

consoles, 44

loading from
external files, 4

overview of, 2

mouse-click-handling,
adding, 115

collapsible elements, divid-
ing content into, 326-327

colors, modifying, 131-132

combining
arrays, 26
strings, 23
communication,
asynchronous, 253-254
complete function, 229-230
components, dates, 39

conditional blocks of code,
adding, 30

configuring

browser development
tools, 12-13

cookie values, 53
CSS properties, 130-139

default mobile
settings, 301

DOM element
properties, 126-129

hidden form
attributes, 166

select inputs, 164-165
selected option in radio
groups, 162
text
input values, 160
status bars, 48
timers, 55-57
consoles, JavaScript, 44
content
auxiliary, adding to
panels, 328
HTML elements, select-
ing based on, 66
parent, appending
elements, 141

CSSs (Cascading Style Sheets) 345
web pages
adding elements,
179-183

appending rows to
tables, 189-191

building dynamically,
177

deleting elements,
184-185

HTML elements, 178

HTML5 canvas
graphics, 197-199

image galleries,
193-196

inserting items into
lists, 191-193

select form
elements, 186-188

Content Discovery
Networks. See CDNs

content tooltip, 223
converting
DOM objects into
jQuery objects, 84
numbers to strings, 22
strings to numbers, 23

coordinates, getting
mouse, 115

cross-domain requests,
AJAX, 254

.css() method, 130

CSSs (Cascading Style
Sheets), 7

animating, 228-229
elements, 130-139
theme swatches, 295

346

current date and time, getting

current date and time,
getting, 37

current hashes,
searching, 45

current location details,
45-47
current location of web
pages, 48
customizing. See also
configuring
forms, 334-336, 340
popups, 329-332
tables, 333

D

.data() method, 166

data types, AJAX, 256-259
Date object, 36-40
dateFormat option, 213

datepicker element,
attaching, 212-215

dates, components, 39
dblclick() method, 110

debugging JavaScript
consoles, 44

default behavior,
stopping, 109

default mobile settings,
configuring, 301

defining

functions, 20

variables, 16

viewport meta tags, 300
delay timers, adding, 56

delaying animation, 233
deleting
classes, 137

elements to elements,
184-185

event handlers
JavaScript, 104
jQuery, 106
items from arrays, 27
objects, 91
deltas, formatting time, 39

descendent elements,
searching, 78

detecting
changes to text, 119
items in arrays, 27
mobile screen size, 294

Developer Tools (Internet
Explorer), 13

development

browser tools,
configuring, 12-13

jQuery Mobile, 9-12
devices, Mobile, 9-12
disabling form elements,
167-169, 335

dividers, adding to lists, 324

dividing content into
collapsible elements,
326-327

Document Object Model.
See DOM

documents, adding
JavaScript to HTML, 3

DOM (Document Object
Model), 5

elements
adding, 91
configuring proper-
ties, 126-129
content, 139-141
objects, 60-61, 84
downloading jQuery Ul
libraries, 201-202
dragging/dropping
elements, 205-212
droppable widget
options, 208
duration function, 229-230
dynamic programming
forms

check box state,
161-162

disabling elements,
167-169

elements, 159

forcing focus
to/away from
elements, 172-174

hidden attributes, 166

managing submis-
sions, 175

radio inputs, 162

select values,
164-165

showing/hiding
elements, 170-172

text input values, 160

dynamic programming

web pages, 177
adding elements,
179-183
adjusting opacity,
146-149

appending rows to
tables, 189-191

CSS properties,
130-139

deleting elements,
184-185

DOM element
properties, 126-129

element content,
139-141

hiding/viewing
elements, 144-146

HTML elements, 178

HTML5 canvas
graphics, 197-199

image galleries,
193-196

inserting items into
lists, 191-193

modifying, 125

modifying layouts,
143

repositioning
elements, 152-153,
156

resizing elements,
149, 152

select form
elements, 186-188

stacking elements,
156-158

347

348 .each() method

.each() method, 85

easing function, 229-230

effects, animation, 227-228
CSS settings, 228-229
delaying, 233
.hide() method, 242

moving elements,
248-250

queues, 231

resizing images,
246-248

.show() method, 243

sliding toggles, 239-242

stopping, 232-233

.toggle() method,
243-245

visibility, 234-238
elements

appending, 141

children, retrieving, 77

content, 139-141

CSS properties,
130-139

descendent,
searching, 78

DOM, 5
adding, 91

configuring
properties, 126-129

fading, 239, 242
forms, 159
adding, 336
check box state,
161-162
creating select,
186-188

disabling, 167-169,
335

forcing focus
to/away from
elements, 172-174

hidden attributes, 166

managing submis-
sions, 175

radio inputs, 162

refreshing, 336

select values,
164-165

showing/hiding,
170172
text input values, 160
HTML
adding, 179-183
deleting, 184-185
jQuery, 178
moving, animating,
248-250
Uls
adding, 201
applying sliders,
215-219
attaching datepicker,
212-215
coding tooltips,
223-225
creating menus,
220-222
downloading
libraries, 201-202
dragging/dropping,
205-212
implementing auto-
complete, 203-205

forcing focus to/away from form elements

web pages
hiding/viewing,
144-146

loading HTML into,
269-271

repositioning,
152-156
resizing, 149-152
stacking, 156-158
enabling

Developer Tools on
Internet Explorer, 13

JavaScript in Chrome, 13
.eq (index) filter, 92
equality, objects, 29
event handlers

global, 285

swipe, 310, 314
event.preventDefault()

method, 109

event.stopPropagation()
method, 109

events
browsers

adding event han-
dlers, 99-106

forms, 122-123
keyboards, 118-120
managing, 107-110
mouse, 115-118
objects, 111-114
overview of, 96
types, 96, 99
draggable widget, 207
droppable widget, 209

mobile, 295-297
reset, 175
submit, 175
existingObject, 180
external files, loading from
JavaScript, 4

F

fading
animation elements
in/out, 234-235
elements, 239-242
to levels of opacity, 236
files
accessing, 6

JavaScript, loading from
external, 4

paths, viewing, 46

web pages, loading, 5-6
filter(filter) method, 92
filters

object results, 92-94

selectors, applying, 74
finding. See searching
Firefox, installing Firebug, 13
first() method, 93
focus, modifying, 122
.focus() method, 173
fonts, modifying, 136
footers, mobile web

pages, 304

for() loops, 31

forcing focus to/away from
form elements, 172-174

349

formatting

formatting

arrays, 18

back buttons, 309
dates, 36-40
HTML

adding elements,
179-183

deleting elements,
184-185

elements, 178
image galleries, 193-196
listviews, 320-325
menus, 220-222
mobile pages, 302-304
navbars, 314
objects, 19
popup windows, 50-51
strings, modifying,

21-25
text, input values, 160
time

deltas, 39

strings, 38
tooltips, 223-225

forms

elements, 159

adding, 336

check box state,
161-162

creating select,
186-188

disabling, 167-169,
335

forcing focus
to/away from
elements, 172-174

hidden attributes, 166

managing submis-
sions, 175

radio inputs, 162

refreshing, 336

select values,
164-165
showing/hiding,
170-172
text input values, 160
events, 122-123
HTML elements, select-
ing based on, 71
mobile, adding,
334-336, 340

functionality, AJAX, 285-289
functions

addEventListener(), 103
adjValues(), 197
calling, 20

complete, 229-230
defining, 20

duration, 229-230
easing, 229-230
handler, 105

power, applying, 35
queue, 230

removeEventListener()
function, 104

renderSpark(), 197

trigonometric,
applying, 35

history, navigating browsers

G H
galleries, formatting image, handlers
193-196 functions, 105
generating random events
numbers, 32 adding, 99

GET requests, AJAX, 255,
262-264

.get() method, 84

JSON, handling, 271-274

XML, handling, 274, 277
.getScript() method, 256
getting

CSS properties, 130-139

DOM element
properties, 126-129

Elements, content,
139-141

event target objects, 114

hidden form
attributes, 166

mouse coordinates, 115
select inputs, 164-165
selected option in radio
groups, 162
text input values, 160
global event handlers, 285
global setup, modifying, 285

graphics, HTML5 canvas,
197-199

grids, layouts, 316-320
groups, getting/setting
radio options, 162

swipe, 310-314

global event, 285
handling

events

forms, 122-123

keyboards, 118-120

mouse, 115-118
JSON data, 271-274
selection changes, 123
text data (AJAX), 257
XML data, 274-277

.has(selector or element)
method, 93

hashes, current, 45

headers, mobile web
pages, 304

hidden form attributes, 166

.hide() method, 144,
170, 242
hiding
elements, web pages,
144-146
form elements,
170-172
labels, 335
hierarchies, selecting
based on HTML
elements, 68
history, navigating
browsers, 49

351

352

hosts, searching names

hosts, searching names, 46

HTML (Hypertext Markup
Language)
elements
accessing, 59
adding, 179-183

appending/
prepending text,
140

chaining object
operations, 75-76

deleting, 184-185

getting content
of, 140
jQuery, 178
navigating objects,
76-82
repositioning,
152-156
resizing, 149, 152

searching, 59-68,
71-74

stacking, 156-158
event handlers,
assigning in, 101
JavaScript, adding to, 3
response data, 259

HTML5 canvas graphics,
196-199

.html() method, 140

ID, searching DOM
objects, 60

images
galleries, creating,
193-196

resizing, animating,
246-248
source files,
modifying, 128
transitions, adding,
237-238
implementing
autocomplete, 203-205

low-level AJAX requests,
287-289

mobile sites with
multiple pages,
306-314

searchable lists, 325

split button lists, 324

initialization code,
adding, 100

innerHeight, 47
innerWidth, 47
input
autocomplete, imple-
menting, 203-205
radio, 162
select, 164-165
text values, 160

inserting into middle of
element’s content, 181

installing Firebug on
Firefox, 13

interfaces
browser development
tools, configuring,
12-13
loading, 9
navigating, 7
Internet Explorer, enabling
Developer Tools, 13

.is() method, 161-163
items
arrays
deleting, 27
detecting, 27
lists, 191-193
tooltip, 223
iterating
arrays, 31
jQuery objects, 85-86
through object
properties, 31

JavaScript
AJAX from, 261-267
arrays
creating, 18
manipulating, 25-27
Chrome, enabling in, 13
consoles, 44
Date object, 36-40
event handlers
adding, 103
deleting, 104
events, 96, 99

adding page load
event handlers, 99

managing, 107-110
external files, loading
from, 4
functions, defining, 20

GET requests, sending
from, 262-264

jQuery 353

HTML
adding to
documents, 3

searching elements,
59-61

jQuery, accessing, 6
logic, applying, 29-31
math operations, 31-35
objects, creating, 19
on-demand, 255
overview of, 2

POST requests, sending
from, 264, 267

strings, manipulating,
21-25

syntax, 15
variables, defining, 16

JavaScript Object Notation.
See JSON

.join() method, 27
jQuery
AJAX from, 267-289
animation, 227-228

CSS settings,
228-229

delaying, 233

.hide() method, 242

queues, 231

.show() method, 243

sliding toggles,
239-242

stopping, 232-233

.toggle() method,
243-245

visibility, 234-238

jQuery

event handlers
adding, 105
deleting, 106
events, 96, 99
HTML elements, 178
initialization code, 100
JavaScript, accessing, 6
Mobile, 9-12
mobile web sites, 291
applying grid
layouts, 316-320
building web pages,
302-304
creating navbars, 314
customizing popups,
329, 332
dividing into
collapsible ele-
ments, 326-327

formatting listviews,
320-325

forms, 334-340

implementing with
multiple pages,
306-314

overview of, 291-300

tables, 333

viewing panels, 328

objects

adding DOM
elements to, 91

applying.map()
method, 87-88

assigning data
values to, 89

chaining operations,
75-76

converting DOM
objects into, 84
deleting, 91
filtering results,
9294
getting, 84
iterating, 85-86
modifying, 83
navigating to select
elements, 76-82
overview of, 4
Uls
accessing libraries, 7
adding, 201
applying sliders,
215-219

attaching datepicker,
212-215

coding tooltips,
223-225

creating menus,
220-222

downloading
libraries, 201-202

dragging/dropping,
205-212

implementing auto-
complete, 203-205

loading, 9
navigating, 7
web pages, loading, 5-6

jQuery Selector, searching

HTML elements, 61-74

JSON (JavaScript Object

Notation)
handling, 271-274
response data, 257-258

JSON.parse() method, 258

JSONP (JSON with
Padding), 255

K-L

keyboard events, 118-120
keys, pressing, 120
keywords, 17, 96, 99

labels, adding/hiding, 335
languages
JavaScript

adding to HTML
documents, 3

loading from
external files, 4

overview of, 2
syntax, 15
last() method, 93
layouts
grids, applying,
316-317, 320
web pages
adjusting opacity,
146-149
hiding/viewing
elements, 144-146
modifying, 143
repositioning
elements,
152-153, 156

resizing elements,
149-152

stacking elements,
156-158

lists

length, strings, 22
levels, tolerance, 208
libraries
accessing, 7
CDNs, loading, 5
jQuery Mobile, 291
applying grid
layouts, 316-320
building web pages,
302-304
creating navbars, 314
customizing popups,
329-332
dividing into
collapsible ele-
ments, 326-327

formatting listviews,
320-325

forms, 334-340
implementing with
multiple pages,
306-314
overview of, 291-300
tables, 333
viewing panels, 328
jQuery Ul, adding,
201-202
loading, 9
Mobile, 9-12
links, modifying
locations, 127
lists
dividers, adding, 324
items, inserting into,
191-193
nesting, 322

355

356 lists

searchable, implement-
ing, 325
split button, 324

listviews, formatting,
320-325

Jload() method, 101
loading
HTML into page
elements, 269-271

JavaScript from
external files, 4

jQuery in web pages,
5-6

libraries, 5, 9

Mobile, 12

mobile pages without
displaying, 299

.loadPage() method, 298

location.reload()
method, 44

locations
current location, 45-47
links, modifying, 127
web pages, 47-48
logic, applying, 29-31
loops
for(), 31
while(), 30

low-level AJAX requests,
287-289

managing
events, 107-110
form submissions, 175

manipulating
arrays, 25-27
cookies, 52-55
strings, 21-25
.map() method, applying,
87-88
Math object, 31-35
max option, 216
maximum numbers in
sets, 34

menus, formatting,
220-222

meta tags, defining
viewports, 300

methods
.animate(), 228-229
.attr(), 126, 166
autocomplete, 203
.blur(), 173
.changePage(), 298
click(), 110
.css(), 130
.data(), 166
.datepicker(), 213
dblclick(), 110
.delay(), 234
.each(), 85

event.preventDefault(),
109

event.stopPropagation(),
109

filter(filter), 92
first(), 93
focus(), 173

modifying 357

.get() .slideToggle(), 239
JSON data, 271-274 toggle(), 243, 245
XML data, 274, 277 .toLowerCase(), 24

.get([index]), 84 .toUpperCase(), 24

.getScript(), 256 .val(), 160, 164

.has(selector or middle of element’s

element), 93 content, inserting into, 181
.hide(), 144, 170, 242 minimum numbers in
.html(), 140 sets, 33
.is(), 161-163 Mobile (jQuery), 9-12
Jjoin(), 27 mobile web sites
JSON.parse(), 258 (iQuery), 291
Jlast(), 93 overview of, 291-300
Joad(), 101 web pages

applying grid

.loadPage(), 299
location.reload(), 44
.map(), 87-88
.not(filter) method, 94
.off(), 106

.offset(), 153

.on(), 105
onloadHandler(), 100
pop(), 27

.position(), 153
.post(), 278-281
.prop(), 126, 166
push(), 18

.ready(), 101
.remove(), 184
removeAttr(), 162
setTimeout(), 197
.show(), 144, 170, 243
sort(), 28

.slice(start, [end]), 94

layouts, 316-320
building, 302-304
creating navbars, 314
customizing popups,

329-332
dividing into

collapsible

elements, 326-327

formatting listviews,
320-325

forms, 334-340

implementing with
multiple, 306-314

tables, 333

viewing panels, 328

modifying

check box state,
161-162

colors, 131-132
cookies, 52-55

modifying

elements
applying sliders,
215219
content, 139-141
focus, 122
fonts, 136
global setup, 285
image source files, 128
link locations, 127
mobile web pages, 298
objects, 83
adding DOM
elements to, 91
applying.map()
method, 87-88
assigning data
values to, 89

converting DOM
objects into, 84

deleting, 91
filtering results,
9294
getting, 84
iterating, 85-86
radio inputs, 162
select inputs, 164-165
selections, 123
strings, 21-25
text, detecting, 119
web pages
adjusting opacity,
146-149
CSS properties,
130-139
DOM element prop-
erties, 126-129

dynamic program-
ming, 125

element content,
139-141

hiding/viewing
elements, 144, 146

layouts, 143

repositioning
elements,
152-153, 156

resizing elements,
149-152

stacking elements,
156-158

mouse
coordinates, getting, 115
events, 115-118

mouse-click-handling
code, adding, 115

mouseout events, 116
mouseover events, 116
moving

elements, animating,
248-250

HTML elements,
152-156

names
attributes, 166

classes, searching
DOM objects, 60

hosts, searching, 46

tags, searching DOM
objects, 61

navbars, formatting, 314

navigating
browsers, 43
accessing, 47-49
adding timers,
55-57
applying JavaScript
consoles, 44

current location
details, 45-47

history, 49

modifying cookies,
52-55

popup windows,
50-51

redirecting web
pages, 44

reloading web
pages, 44

sizing screens, 45

jQuery Mobile library,
291-300

objects to select
elements, 76-82

Uls, 7
accessing libraries, 7
loading, 9
navigation buttons
adding, 307-314
positioning, 308
nested lists, applying, 322
networks, CDNs, 5
.not(filter) method, 94
numberOfMonths
option, 213
numbers
dates, formatting, 36-40
maximum in sets, 34

objects 359

minimum in sets, 33
random, generating, 32
rounding, 33

strings, converting, 22

0

objects

creating, 19
Date, 36-40
DOM, 60-61

elements, navigating to
select, 76-82

equality, 29
events, 111-114
existing, 180
getting, 84
jQuery
adding DOM
elements to, 91
applying map()
method, 87-88

assigning data
values to, 89

converting DOM
objects into, 84

deleting, 91

filtering results,
92-94

iterating, 85-86
location, 45-47
Math, 31, 34-35

modifying, 83
operations, chaining,
75-76

properties, iterating, 31

objects

strings, special
characters, 21

window.XMLHttpRequest,
261

windows, 47-49
XMLHttpRequest, 261
.off() method, 106
.offset() method, 153
.on() method, 105
on-demand JavaScript, 255

onloadHandler()
method, 100

onSelect option, 213
opacity

adjusting, 146-149

fading to levels of, 236
opening windows, 49
operations

math, 31-35

objects, chaining, 75-76
options

animation, 229

draggable widget, 205

droppable widget, 208

radio groups,

getting/setting, 162

orientation options, 216

P

pages
elements, loading
HTML into, 269-271

load event handlers,
adding, 99

panels, viewing, 328

parents

content, appending
elements, 141

searching, 80
paths, viewing files, 46
physical events, 107. See
also events
pop() method, 27
popups
creating, 50-51
applying, 329, 332
position tooltip, 223
.position() method, 153
positioning
HTML elements,
152-156
navigation buttons, 308
parents
retrieving, 80
searching, 80

POST requests, AJAX, 255,
264, 267

.post() method, 278-281
power functions,
applying, 35
prepending
content, 179
text, 140
pressing keys, 120
previous siblings, 81
programming
dynamic, 125. See also
dynamic programming
JavaScript

adding to HTML
documents, 3

loading from
external files, 4

overview of, 2
syntax, 15
.prop() method, 126, 166
propagation, stopping
event, 109
properties

CSS, getting/setting,
130-139

DOM, configuring
elements, 126-129

objects, iterating, 31
push() method, 18

Q-R

queries, retrieving strings, 46
queues
animating, 231
functions, 230

radio inputs, 162

random numbers,
generating, 32

range option, 216
.ready() method, 101
recurring timers, adding, 57
redirecting web pages, 44
refreshing form

elements, 336

reloading web pages, 44
.remove() method, 184
removeAttr() method, 162

removeEventListener()
function, 104

renderSpark() function, 197

rows, appending tables

replacing
strings, 25
text, 141
repositioning HTML
elements, 152-156
requests, AJAX
cross-domain, 254
GET/POST, 255
JavaScript, 261-267
jQuery, 267-289
response data types,
256-259
reset event, 175
resizing
HTML elements,
149-152
images, animating,
246-248
responses, AJAX
jQuery, 282-284
data types, 256-259

results, filtering objects,
92-94
retrieving, 79
children elements, 77
cookie values, 53
parents, positioning, 80
previous siblings, 81
query strings, 46
siblings, 79-82
right-click, applying,
117-118
rounding numbers, 33

rows, appending tables,
189-191

361

362

screens

S

screens

mobile, detecting
size, 294
sizing, 45
searchable lists,
implementing, 325
searching
ancestors, 80
characters, 22
current hashes, 45
current location of web
pages, 48
descendent elements,
78
host names, 46
HTML
chaining object
operations, 75-76
elements, 59-68,
71-74
parents, 80
strings, 25
secure locations, viewing
from, 47

select form elements,
creating, 186-188

select inputs, 164-165
selecting

elements, navigating
objects to, 76-82

modifying, 123
selectors

applying, 62

filters, 74

sending

GET requests from
JavaScript, 262-264

POST requests from
JavaScript, 264-267

servers
AJAX

asynchronous
communication,
253-254

cross-domain
requests, 254

GET/POST requests,
255

JavaScript, 261-267
jQuery, 267-289
overview of, 251-252

response data
types, 256-259

updating, 278-281
sets
maximum numbers in, 34
minimum numbers in, 33
setTimeout() method, 197
settings. See also
configuring
CSS
animating, 228-229
properties, 130-139

DOM element
properties, 126-129

hidden form
attributes, 166

select inputs, 164-165

selected option in radio
groups, 162
text input values, 160

setup, modifying global, 285

.show() method, 144,
170, 243

showButtonPanel option, 213
showOn option, 213
siblings

previous, 81

retrieving, 79-82
sizing

screens, 45, 294

web pages, 47
.slice(start, [end])

method, 94

slide option, 216
.slideToggle() method, 239
sliders, applying,

215-216, 219
sliding toggles, 239-242
sorting arrays, 28

source files, modifying
images, 128

special characters, 21

special effects, animation,
227-228

CSS settings, 228-229
delaying, 233
.hide() method, 242

moving elements,
248-250

queues, 231

resizing images,
246-248

.show() method, 243

sliding toggles,
239-242

stopping, 232-233

submitting forms, managing 363

.toggle() method,
243-245

visibility, 234-238
splicing

arrays, 26

strings, 24
split button lists, 324
splitting strings, 24
stacking HTML elements,

156-158

state, modifying check
boxes, 161-162

status bars, configuring
text, 48

step function, 231
stopping
animation, 232-233
default behavior, 109
event propagation, 109
strings
case modifying, 24
combining, 23
dates, formatting, 37
manipulating, 21-25
numbers, converting, 22
queries, retrieving, 46
replacing, 25
searching, 25
splicing, 24
splitting, 24
substrings, checking
for, 25
time, formatting, 38
submit event, 175

submitting forms,
managing, 175

364

substrings, checking for

substrings, checking for, 25
swatches, theme, 295

swipe event handlers,
310, 314

syntax, JavaScript, 15

T

tab-separated strings,
creating arrays from, 27

tables
adding, 333
rows, appending,
189-191

tags, searching DOM
objects, 61

targets, getting event
objects, 114

text
AJAX, 257
appending/
prepending, 140

autocomplete, imple-
menting, 203-205

input values, 160

modifying, detecting, 119

replacing, 141

status bars,

configuring, 48

theme swatches, 295
time

current, getting, 37

deltas, formatting, 39

strings, formatting, 38
timers, adding, 55-57
.toggle() method, 243-245

toggling
classes, 137-139

element visibility
on/off, 235

tolerance levels, 208
.toLowerCase() method, 24
tools

browser development,
configuring, 12-13

JavaScript consoles, 44

tooltips, formatting,
223-225

.toUpperCase() method, 24
transitions

adding, 308

animation, 237-238
triggering

animation, 232

events manually, 110
trigonometric functions,

applying, 35

types of events, 96, 99

U

Uls (user interfaces)
elements

adding, 201

applying sliders,
215-219

attaching datepicker,
212-215

coding tooltips,
223-225

creating menus,
220-222

downloading
libraries, 201-202
dragging/dropping,
205-212
implementing auto-
complete, 203-205
libraries, accessing, 7
loading, 9
updating servers, 278-281

user interaction, adding,
179-183

user interfaces. See Uls

\'J

.val() method, 160, 164
value option, 216
values
absolute, calculating, 34
attributes, 166
cookies, configuring, 53
objects, assigning, 89
text input, 160
var keyword, 17
variables
accessing, 16
defining, 16
viewing
elements, web pages,
144-146
file paths, 46
form elements,
170172
listviews, formatting,
320-325

web pages 365

mobile pages,
loading without
displaying, 299
panels, 328
web pages, 47
web sites on mobile
devices, 294
viewports, defining meta
tags, 300
visibility
animation, 234-238

HTML elements,
selecting based
on, 72

w

web forms, 159. See also
forms

web pages. See also HTML
content

adding elements,
179-183

appending rows to
tables, 189-191

building dynamically,
177

deleting elements,
184-185

HTML elements, 178

HTML5 canvas
graphics, 197-199

image galleries,
193-196

inserting items into
lists, 191-193

select elements,
186-188

366 web pages

current location of, 48
dynamic programming
CSS properties,

130-139

DOM element
properties,
126-129

element content,
139-141

modifying, 125
events

adding event
handlers, 99-106

forms, 122-123
keyboards, 118-120
managing, 107-110
mouse, 115-118
objects, 111-114
overview of, 96
types, 96-99
history, navigating, 49

HTML, loading into,
269-271
jQuery, loading, 5-6
layouts
adjusting opacity,
146-149
hiding/viewing
elements, 144-146
modifying, 143
repositioning
elements, 152-156
resizing elements,
149-152
stacking elements,
156-158

mobile, building,
302-304
navbars, formatting, 314
redirecting, 44
reloading, 44
secured locations,
viewing from, 47
Ul elements
adding, 201
applying sliders,
215-219

attaching datepicker,
212-215

coding tooltips,
223-225

creating menus,
220-222

downloading
libraries, 201-202

dragging/dropping,
205-212

implementing
autocomplete,
203-205

viewing, 47
web servers, AJAX

asynchronous commu-
nication, 253-254

cross-domain
requests, 254

GET/POST requests,
255

JavaScript, 261-267
jQuery, 267-289
overview of, 251-252

response data types,
256-259

web sites, mobile (jQuery),
291. See also web pages
applying grid layouts,
316-320
building web pages,
302-304
creating navbars, 314
customizing popups,
329-332
dividing into collapsible
elements, 326-327

formatting listviews,
320-325

forms, 334-340
implementing with
multiple pages,

306-314
overview of, 291-300
tables, 333
viewing panels, 328
while() loops, 30
widgets
datepicker, attaching,
212-215

draggable/droppable,
205-212

menus, creating,
220-222

tooltips, creating,
223-225

window.XMLHttpRequest
object, 261
windows
closing, 49
objects, 47-49
opening, 49
popup, creating, 50-51

z-index

X-Z
XML (Extensible Markup
Language)
handling, 274, 277
response data, 259

XMLHttpRequest
object, 261

z-index, 157

367

	Contents
	1 Jumping into jQuery, JavaScript, and the World of Dynamic Web Development
	Understanding JavaScript
	Introducing jQuery
	Introducing jQuery UI
	Introducing jQuery Mobile
	Configuring Browser Development Tools

	2 Using the JavaScript Language
	JavaScript Syntax
	Defining and Accessing Data
	Defining Functions
	Manipulating Strings
	Manipulating Arrays
	Applying Logic
	Math Operations
	Working with Dates

	3 Interacting with the Browser
	Writing to the JavaScript Console
	Reloading the Web Page
	Redirecting the Web Page
	Getting the Screen Size
	Getting Current Location Details
	Accessing the Browser
	Using the Browser History to Go Forward and Backward Pages
	Creating Popup Windows
	Manipulating Cookies
	Adding Timers

	4 Accessing HTML Elements
	Finding HTML Elements in JavaScript
	Using the jQuery Selector to Find HTML Elements
	Chaining jQuery Object Operations
	Navigating jQuery Objects to Select Elements
	5 Manipulating the jQuery Object Set
	Getting DOM Objects from a jQuery Object Set
	Converting DOM Objects into jQuery Objects
	Iterating Through the jQuery Object Set Using .each()
	Using .map()
	Assigning Data Values to Objects
	Adding DOM Elements to the jQuery Object Set
	Removing Objects from the jQuery Object Set
	Filtering the jQuery Object Results

	6 Capturing and Using Browser and User Events
	Understanding Events
	Adding Event Handlers
	Controlling Events
	Using Event Objects
	Handling Mouse Events
	Handling Keyboard Events
	Form Events

	7 Manipulating Web Page Elements Dynamically
	Getting and Setting DOM Element Attributes and Properties
	Getting and Setting CSS Properties
	Getting and Manipulating Element Content

	8 Manipulating Web Page Layout Dynamically
	Hiding and Showing Elements
	Adjusting Opacity
	Resizing Elements
	Repositioning Elements
	Stacking Elements

	9 Dynamically Working with Form Elements
	Getting and Setting Text Input Values
	Checking and Changing Check Box State
	Getting and Setting the Selected Option in a Radio Group
	Getting and Setting Select Values
	Getting and Setting Hidden Form Attributes
	Disabling Form Elements
	Showing/Hiding Form Elements
	Forcing Focus to and Away from Form Elements
	Controlling Form Submission

	10 Building Web Page Content Dynamically
	Creating HTML Elements Using jQuery
	Adding Elements to the Other Elements
	Removing Elements from the Page
	Dynamically Creating a Select Form Element
	Appending Rows to a Table
	Inserting Items into a List
	Creating a Dynamic Image Gallery
	Adding HTML5 Canvas Graphics

	11 Adding jQuery UI Elements
	Adding the jQuery UI Library
	Implementing an Autocomplete Input
	Implementing Drag and Drop
	Adding Datepicker Element
	Using Sliders to Manipulate Elements
	Creating a Menu
	Adding Tooltips

	12 Animation and Other Special Effects
	Understanding jQuery Animation
	Animating Visibility
	Making an Element Slide Back to Disappear
	Animating Show and Hide
	Animating Resizing an Image
	Animating Moving an Element

	13 Using AJAX to Communicate with Web Servers and Web Services
	Understanding AJAX
	AJAX from JavaScript
	AJAX from jQuery
	Handling jQuery AJAX Responses
	Using Advanced jQuery AJAX

	14 Implementing Mobile Web Sites with jQuery
	Getting Started with jQuery Mobile
	Building Mobile Pages
	Implementing Mobile Sites with Multiple Pages
	Creating a Navbar
	Applying a Grid Layout
	Implementing Listviews
	Using Collapsible Blocks and Sets
	Adding Auxiliary Content to Panels
	Working with Popups
	Building Mobile-Friendly Tables
	Creating Mobile Forms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

