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Abstract. In this paper we present new Java framework for Gridification of 
Genetic Algorithms. The framework enables easy implementation of Genetic 
Algorithms and also enables researchers easy and stable usage of the Grid for 
their deployment. The design of the framework was based on principles that 
make it very open and extensible. The Grid components use pure Java imple-
mentation of Grid job submission and retrieval for the Glite grid middleware by 
using Web Services (WS). The framework was tested on the SEEGRID testbed. 
Using this framework we have developed a pilot application for optimizing data 
warehousing VIS problem. 

1   Introduction 

Evolutionary algorithms (EA) are a computational model inspired by the natural proc-
ess of evolution. They have been successfully used for solving complex optimization 
problems. Genetic algorithms (GA), a subclass of EA, search for potential solution by 
encoding the data into a chromosome-like structure. The search is done over a set  
of chromosomes (population) with repetitive application of recombination, mutation 
and selection operators until certain condition is reached. One repetition is called a 
generation. 

Usually the search for a solution using GA is a long and computationally intensive 
process. Fortunately the GA is easily parallelized using data partitioning of the popu-
lation among different processes. This kind of parallelism ensures close to linear 
speedup, and sometimes super-linear speedup. Over the past years many variants of 
parallelization techniques are exploited for parallelization of GA [1][2]. 

Computational Grids [3] represent a technology that enables ultimate computing 
power at the fingertips of users. Today, Grids are evolving in their usability and di-
versity. New technologies and standards are used for improving their capabilities.  

Gridified genetic algorithms have been efficiently used in the past years for solving 
different problems [4][5]. The Grid architecture resources are very suitable for GA 
since the parallel GA algorithms use highly independent data parallelism. Gridifica-
tion and effective utilization of the powerful Grid resources represent a great chal-
lenge. New programming models need to be adopted for implementation of such 
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parallel algorithms. In this paper we present the Java GA Grid Framework that will 
make this utilization easier and more efficient. 

The rest of this paper is organized as follows. In Section 2, we present the architec-
ture of the Java Grid framework for GA (JGFGA). Section 3 describes the Grid com-
ponents of the framework. Real usage of the framework is presented in Section 4 as 
we present the pilot application GROW. Finally, Section 5 concludes this paper and 
gives future development issues. 

2   Java Framework for GA 

In this section we will present the architecture of the new Java Grid framework for 
Genetic Algorithms responsible for implementation of GA. First we will start with the 
architecture design issues and later progress towards presentation of the framework 
components. 

2.1   Designing the Framework 

Various GA frameworks have been developed in the past years, implemented in dif-
ferent programming languages. The reason for developing new GA framework was 
not for introducing new model for parallelizing GA, but to enable easier implementa-
tion, better portability and grid execution of parallel GA. The framework is imple-
mented in Java because of its platform independence and good OO properties. 

The framework design is founded on the following concepts: modularity – the 
framework should be defined as collection of base components that enable modular 
composition when designing a solution; extensibility – one of the main aspects influ-
encing the development of the framework is to provide base components that enable 
easy extension of the framework functionality, i.e. new algorithms or new chromo-
some type with new evaluation function can easily implement this by extending 
classes or implementing interfaces that are part of the framework; flexibility – of the 
way the framework is used either by simply using already defined classes or by im-
plementing extensions, or by choosing parallel or serial execution and other similar 
aspects; and adaptability – a framework should be as adaptable as possible because 
the process of implementation of GA can be divided into several phases, so the 
framework should enable researchers to easily implement new or adapt existing solu-
tions by changing phase implementation. 

2.2   Framework Components 

The Framework organization can be divided in two parts: GA implementation and 
GA gridification. The GA implementation part of the framework consists of compo-
nents that give easy and custom implementation of GA optimizations. On the other 
hand the GA gridification components enable workflow grid parallelization of the 
execution of the implemented GA optimizations. We continue with more detailed 
description of both parts. 

The framework is organized in three main packages: gridapp.grid, gridapp.ga and 
gridapp.util. The focus in this section will be the gridapp.ga package containing  
the core GA classes. Some of the classes are abstract classes, intended for further 
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implementation and specialization. Other classes are normal classes that implement 
some aspects of the GA execution, which are not designed to be extended. Most 
common implementations of the abstract classes can be found in gridapp.ga.impl 
package. The package gridadd.util contains utility classes used by many different 
classes in the framework. The last package gridapp.grid will be discussed in the next 
section. We continue with the presentation of the gridapp.ga and gridapp.ga.impl 
class design and available classes. 

2.3   GA Classes 

Fig. 1a presents the design of the core classes that implement or allow the implemen-
tation of GA in the framework. We will briefly describe this design. 

The abstract class Gene<T> represents one gene. Every real implementation of a 
gene needs to inherit this class and implement needed methods. The reason why Gene 
class is defined as generic class of type T is because one gene is an array of alleles. T 
is the type of one allele. Available implementations of the Gene<T> class that can be 
found in the gridapp.ga.impl package are shown in Fig. 1b. 

The abstract class Chromosome<T extends Gene> represents one chromosome. It 
can be seen that chromosomes are derived using one Gene type, and the main purpose 
of the Chromosome class is to act as a container of Genes and implement structure for 
gene organization. The only subclass included in the framework that implements the 
Chromosome class is the ArrayChromosome<T> class that organizes the genes into 
an array. If this is not sufficient the users can implement different structures for the 
chromosomes. The Chromosome class has several methods for accessing and manipu-
lation of its genes. Mainly these are methods for accessing the genes using indexes, 
manipulation of the structure such as cloning or copying parts of the gene which later 
are used for recombination or mutation.  

 
      a)   b) 

Fig. 1. a) Core Genetic Algorithm class design and connection; b) Gene<T> class hierarchy 

The class Population<T extends Chromosome> represents single population of 
chromosomes. This class is not abstract since it is only used as a container of chromo-
somes, with standard methods for data access and manipulation. 

The class Domain<T extends Chromosome> plays key role in GA execution. This 
class represents a structure that holds additional information on the chromosomes and 
genes needed for their interpretation. As shown previously, genes and chromosomes 
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carry only raw data organized in certain data structure. The Domain class adds order 
and meaning to this data, usually by storing additional data specific for the problem. 
The class is not abstract, since simple problems that do not need additional informa-
tion can step over this class. 

The class FitnessFunction<T extends Chromosome, S extends Domain<T>> is the 
class that implements the fitness function evaluation for a certain chromosome type 
and domain over that chromosome type. The Domain is critical since it holds the main 
information for interpretation of the chromosomes. The Domain class also holds a 
link towards its FitnessFunction and Population, and hence represents a description 
of the whole problem we are solving. This makes it one of the key ingredients to the 
class Evolver that implements the actual process of evolution of the population. 

Another class that is used by the Evolver is the Policy<T extends Chromosome> 
class. The Policy class specifies the rules the Evolver will use to implement the opti-
mization. In another words the Policy is a “program” that Evolver will follow. The 
policy uses the subclasses of the abstract classes NaturalSelector and GeneticOpera-
tor to specify which operators will be used to create new chromosomes, and which 
selectors will be used to select the new chromosomes.  

The classes NaturalSelector and GeneticOperator are inherited in many classes 
from the gridapp.ga.impl package. Some of them are: RouletteWheelSelector, 
TournamentSelector, LinearRankSelector, EliteSelector, RandomSelector, Cross-
overOperator and MutationOperator. 

3   Gridification of the GA Framework 

In this section we will present the Grid components of the Grid Java framework for 
GA. Gridification of GA optimizations can be divided in two aspects. The first aspect 
is the choice of parallel GA technique. The second aspect is concerned with the un-
derlying Grid connectivity with the Glite grid middleware. 

3.1   Parallel Genetic Algorithms 

The Parallel Genetic Algorithms (PGAs) are extensions of the single population GA. 
The well-known advantage of PGAs is their ability to perform speciation, a process 
by which different subpopulations evolve in diverse directions simultaneously. They 
have been shown to speed up the search process and to attain higher quality solutions 
on complex design problems [6][7].  

There are three major classes of PGA: Master-slave, Cellular and Island. Master-
slave parallelization uses single population of chromosomes and parallelizes only the 
chromosome evaluation part of the optimization. This makes it suitable for usage 
where the parallel environments have shared memory. Cellular PGA also consists of 
single chromosome population, but the computation can be spatially structured. This 
is mostly suitable for massively parallel systems, consisting of large number of proc-
essing elements organized in a topology, which is followed by the PGA. Most widely 
used and most sophisticated PGA is the Island PGA, or in other words Multi-
population PGA. This approach enables parallel nearly-independent execution of 
populations. The only connection between the populations is occasional migration of 
chromosomes. This PGA is suitable for message passing parallelism environments. 
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The nature of the Grid makes it best suited for Island PGA for achieving high per-
formance parallelism. The available cluster resources can be used using MPI or simi-
lar parallelization mechanism. This approach is extended in the Grid-enable Hierar-
chical PGA (HPGA)[8] which uses two level of population distribution. The first 
level makes several independent islands distributed over several clusters. On each 
cluster several parallel jobs are started which take part of the island (sub-island) on 
which they run the GA. After several iterations the sup-islands are rejoined and muta-
tion is done. This process is repeated. Another positive aspect of using several clusters 
in parallel is having bigger population and separation into islands might increase 
diversity and speed up convergence. 

3.2   Grid Workflow Genetic Algorithms 

The JGFGA implements the PGA by using workflow execution. A grid workflow is a 
directed acyclic graph (DAG), where nodes are individual jobs, and the vertices are 
inter-job communication and dependences. The workflow inter-job communication is 
implemented by input and output files per job. More precisely the first job outputs 
data into files, and after the job terminates the files are transferred as input files to the 
second job. gLite WMS service takes care of the job scheduling and file transfers. 

The JGFGA enables implementation of PGA by menas of four classes (jobs): 
Breeders, Migrator, Creator and Collector, all members of the gridapp.grid package. 
Breeders take as input a domain file and policy file. The domain file is simply Java 
serialized Domain object, while policy file is a java serialized Policy object. Having a 
population and a policy the Breader calls the Evolver and iterates several generations. 
The resulting population is again serialized into a domain file. Migrators on the other 
hand take as input several domain files, execute the inter-population migrations and 
output one resulting domain. The Creator and Collector classes enable easy creation 
of new random populations and collect several populations into one. 

Having this four classes, currently we have implemented the class JobGraph<T ex-
tends Chromosome> that enables automatic workflow generation. Generated work-
flows contain several iterations of Breeder and Migrator jobs where each node is 
mapped to a separate Grid job. One iteration of breeding is called an epoch. An ex-
ample of a sample workflow is shown on Fig. 2. The same class enables users to gen-
erate JDL (Job Description Language) files specifying the workflow for gLite grid 
middleware. These files are later submitted using the Grid submission tools. The 
parameters that can be given to JobGraph in order to model the Grid execution are: 
number of islands, number of epochs and migration width. Additional parameters that 
specify the population and policy are number of iteration per epoch and size of a sin-
gle population. Further parameters that define Grid execution characteristics are the 
Retry counts which make the workflow more resilient when some job hits problem-
atic Grid site and fails to execute. 

The scheduling and execution of the generated workflows are not controlled by the 
framework. The Grid mapping decisions are done by the gLite WMS service. We plan 
in later developments to introduce additional properties for defining constraints in the 
JobGraph class that will enable guided mapping of jobs to Grid resources. 

It can easily be seen that JGFGA has superior flexibility than HPGA. Most impor-
tant disadvantage is the restrictions of HPGA for inter island material exchange. 
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Fig. 2. Sample Grid Workflow GA. The circles are breeders and squares are Migrators. 

3.3   Java Grid Framework Components 

The Grid components of the framework that enable usage of the gLite Grid testbeds 
are based on the Workload Management System (WMS) and Logging and Bookeep-
ing (LB) Web Services (WS). The framework is bundled with several libraries that 
support the WMSWS and LBWS connectivity. Additional functionality of the frame-
work is Grid authentication by using VOMS-proxy-init. This makes the framework 
completely independent from the Glite UI installation and enables users to use it from 
any available platform. 

In order for the framework to work, the user only needs to provide his/hers valid 
certificate, and put it in .globus directory in the his/hers home. For convenience  we 
decided that it is best to provide the certificate in .pkcs12 format, even though the 
framework will work if the certificate is in .pem format. Additionally the user needs 
to specify the directory with the CA certificates and vomses configuration and voms 
certificates. Best place for this directories are .globus/certificate, .globus/vomses, 
.globus/vomsdir. 

For simplicity reasons the Grid components are organized in a single class called 
GridServices. The GridServices class offers the following methods: buildProxy, is-
ProxyValid, jobListMatch, jobSubmit, dagJobSubmit, getJobStatus, getJobOutput and 
jobPurge. The constructor of the class requires for a Properties object that specify the 
Grid configuration parameters: tmpDir, userGlobusDir, proxyFile, vomsesDir, voms-
Dir, caDir, delegationId, WMProxyURL and LBProxyURL. If some of the parameters 
are not supplied the default values are assumed. 

4   Implementation of Pilot Application 

The pilot application that was successfully implemented using the Java Grid  
Framework for GA is the GRid Optimization for data Warehousing (GROW). The 
application problem area is VIS optimization of Data Warehouses. We choose this 
application as it was addressed in our previous research on GA optimizations [9][10]. 

The performance of the system of relational data warehouses depends of several 
factors and the problem of its optimization is very complex. The main elements of a 
system for data warehouse optimization are: definition of solution space, evaluation 
function and the choice of optimization method. The solution space includes factors 
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relevant for data warehouse. Previous research has shown performance and quality 
aspects of different approaches towards solving this problem. Some of them use ge-
netic algorithms for the search for optimal result [10]. 

The focus on this paper is not to develop new optimization algorithm for the VIS 
problem, but to implement the problem using the Java Grid Framework for GA. 

 
ViewGene.java 

Public class ViewGene 
  extends Gene<Boolean> { 
  static Random rand = new Random(); 
  int size = 0; 
  BitSet view; 
  // Constructors … 
  @Override 
  public Boolean getAllele(int index) { 
    return this.view.get(index); 
  } 
  @Override 
  public void setAllele(Boolean allele, int index) { 
    this.view.set(index, allele); 
  } 

  ... 
 
 @Override 
  public void mutate(int index) { 
    this.view.flip(index); 
  } 
  @Override 
  public int size() { 
    return this.size; 
  } 
  public Iterator<Boolean> iterator() { 
    return new BitSetIterator(size, this.view); 
  } 
} 

ViewFunction.java 
Public class ViewFunction 
  extends FitnessFunction<ViewChromosome, ViewDomain> { 
  ViewChromosome ch; 
  double value; 
  private void positiveEffect() {  …  } 
  private void negativeEffect() {  … } 

  public double setFitnessValue(ViewChromosome chromosome) { 
    ch = chromosome; 
    positiveEffect(); 
    negativeEffect(); 
    chromosome.fitnessValue = value; 
    return value; 
  }} 

Fig. 3. Implementation of GROW GA 

The implementation of GROW follows the path of every GA implementation in 
JGFGA. It starts with the implementation of Gene and Chromosome and later contin-
ues with the implementation of the FitnessFunction class for the problem in conjunc-
tion with  the Domain class. All classes need to be implemented as extensions of 
classes from the framework mentioned above. 

The GROW application implements ViewGene using BitSet structure and overrid-
ing the required methods as shown in Fig. 3. The ViewChromosome is extension of 
the ArrayChromosome class and uses ViewGene objects. The evaluation ViewFunc-
tion uses the implemented ViewChromosome and ViewGene classes and is imple-
ments by defining positive and negative functions (Fig. 3). At the end the Domain is 
implemented to hold the Population, ViewFunction and additional information. In 
order to enable easier gridification prior to the implementation of the applications 
frontend the GROW GA was packed into a single jar archive. 

The developed pilot application for data warehousing is currently running on the 
SEE-GRID testbed. We are currently using the application for our future research in 
the field of GA for Data Warehousing. 

5   Conclusion and Future Work 

In this paper we presented the new Java Grid Framework for GA. The framework 
represents a powerful tool in the hands of researchers, enabling easy creation of Gridi-
fied GA optimizations. 

Our current research is oriented on testing different kinds of approaches for Grid 
paralellizations of GA, mainly focused on what kind of models of workflow paralleli-
zation (based on previously defined parameters) can be most effective when using the 
Grid infrastructure. 
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Further development of the JGFGA is oriented towards implementation of grid 
data management and job wrapping per island in order to overcome the problem with 
job failure. The job wrapping can be easily facilitated since the input and output files 
of each job are in the same format (Domain files). Hence in failed nodes we can skip 
the epoch iteration and just copy the input files as output files. This approach will 
decrease the convergence of the optimization process and might produce worse final 
results, but will increase Grid job success rate which is the biggest problem with 
gridified workflows nowadays. 
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