
David Etheridge

Java: The Fundamentals of Objects
and Classes
An Introduction to Java Programming

Download free books at

Download free eBooks at bookboon.com

2

David Etheridge

Java: The Fundamentals of
Objects and Classes
– An Introduction to Java Programming

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

3

Java: The Fundamentals of Objects and Classes
– An Introduction to Java Programming
© 2009 David Etheridge & Ventus Publishing ApS
ISBN 978-87-7681-475-5

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

4

Contents

Contents

1. Object-Oriented Programming: What is an Object?
1.1 Introduction to Objects
1.2 Comparison of OOP and Non-OOP
1.3 Object-Oriented Analysis and Design (OOA & D)

2. A First Java Programme: From Class Diagram to Source Code
2.1 Introduction
2.2 The Class Diagram for the Member Class
2.3 The Java Source Code for the Member Class
2.4 Using Member Objects
2.5 Summary

3. Language Basics: Some Syntax and Semantics
3.1 Introduction
3.2 Identifi ers
3.3 Primitive Data Types
3.4 Variables
3.5 Operators
3.6 Summary

6
6
6
9

21
21
21
22
30
35

44
44
44
46
49
58
59

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i!s���i��T�T��6��՛>w]������$�'�x��C

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

5

Contents

4. Methods: Invoking an Object’s Behavior
4.1 How do we get Data Values into a Method?
4.2 How do we get Data Values out of a Method?
4.3 Method Overloading
4.4 The Structure of a Typical Class Defi nition

5. Classes and Objects: Creating and Using Objects
5.1 Invoking an Object’s Constructor
5.2 Object Construction and Initialisation of an Object’s State
5.3 Overloading Constructors
5.4 Initialisation Blocks

6. Collecting Data I
6.1 An Introduction to Arrays
6.2 Arrays as Data Structures
6.3 Declaring Arrays
6.4 Creating Arrays
6.5 Populating Arrays
6.6 Accessing Array Elements
6.7 Arguments Passed to the main Method

60
60
67
68
70

72
72
73
75
77

78
78
79
81
81
82
87
90

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iw)���0��T�T��6����>s^������$�#�+���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

6

Object-Oriented Programming: What is an Object?

1. Object-Oriented Programming: What is an
Object?

1.1 Introduction to Objects

While there is a study guide (available from Ventus) that focuses largely on objects and their
characteristics, it will be instructive to the learner (of the Java programming language) to understand how
the concept of an object is applied to their construction and use in Java applications. Therefore, Chapter
One (of this guide) introduces the concept of an object from a language-independent point of view and
examines the essential concepts associated with object-oriented programming (OOP) by briefly comparing
how OOP and non-OOP approach the representation of data and information in an application. The
chapter goes on to explain classes, objects and messages and concludes with an explanation of how a class
is described with a special diagram known as a class diagram.

1.2 Comparison of OOP and Non-OOP

Despite the wide use of OOP languages such as Java, C++ and C#, non-OOP languages continue to be
used in specific domains such as for some categories of embedded applications. In a conventional,
procedural language such as C, data is sent to a procedure for processing; this paradigm of information
processing is illustrated in Figure 1.1 below.

SQRT

output 2

4
input

SQRT

output 2

4
input

Source: R. A. Clarke, BCU.

Figure 1.1 Passing data to a procedure

The figure shows that the number 4 is passed to the function (SQRT) which is ‘programmed’ to calculate
the result and output it (to the user of the procedure). In general, we can think of each procedure in an
application as ready and waiting for data items to be sent to them so that they can do whatever they are
programmed to do on behalf of the user of the application. Thus an application written in C will typically
comprise a number of procedures along with ways and means to pass data items to them.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

7

Object-Oriented Programming: What is an Object?

The way in which OOP languages process data, on the other hand, can be thought of as the inverse of the
procedural paradigm. Consider Figure 1.2 below.

4

return

sqrt

press this
button

2

4

return

sqrt

press this
button

2
Source: R. A. Clarke, BCU.

Figure 1.2 Passing a message to an object

In the figure, the data item – the number 4 – is represented by the box (with the label ‘4’ on its front face).
This representation of the number 4 can be referred to as the object of the number 4. This simple object
doesn’t merely represent the number 4, it includes a button labeled sqrt which, when pressed, produces
the result that emerges from the slot labeled return.

Whilst it is obvious that the object-oriented example is expected to produce the same result as that for the
procedural example, it is apparent that the way in which the result is produced is entirely different when
the object-oriented paradigm considered. In short, the latter approach to producing the result 2 can be
expressed as follows.

Send the following message to the object 4: “press the sqrt button”

A message is sent to the object to tell it what to do. Other messages might press other buttons associated
with the object. However for the present purposes, the object that represents the number 4 is a very simple
one in that it has only one button associated with it. The result of sending a message to the object to press
its one and only button ‘returns’ another object. Hence in Figure 1.2, the result that emerges from the
‘return’ slot - the number 2 – is an object in its own right with its own set of buttons.

Despite the apparent simplicity of the way in which the object works, the question remains: how does it
calculate the square root of itself? The answer to this question enshrines the fundamental concept
associated with objects, which is to say that objects carry their programming code around with them.
Applying this concept to the object shown in Figure 1.2, it has a button which gives access to the
programming code which calculates the square root (of the number represented by the object). This
amalgam of data and code is further illustrated by an enhanced version of the object shown in Figure
1.3 below.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

8

Object-Oriented Programming: What is an Object?

4

return

sqrt

press this
button

+

3

7

4

return

sqrtsqrt

press this
button

+

33

7
Source: R. A. Clarke, BCU

Figure 1.3 The object with two buttons.

The enhanced object (representing the number 4) has two buttons: one to calculate the square root of itself
– as before - and a second button that adds a number to the object. In the figure, a message is sent to the
object to press the second button – the button labeled ‘+’ – to add the object that represents the number 3
to the object that represents the number 4. For the ‘+’ button to work, it requires a data item to be sent to it
as part of the message to the object. This is the reason why the ‘+’ button is provided with a slot into
which the object representing the number 3 is passed. The format of the message shown in the figure can
be expressed as follows.

Send a message that carries the object 3 to the object 4: “press the
+ button”

When this message is received and processed by the object, it returns an object that represents the number
7. In this case, the message has accessed the code associated with the ‘+’ button. The enhanced object can
be thought of as having two buttons, each of which is associated with its own programming code that is
available to users of the object.

Extrapolating the principal of sending messages to the object depicted in Figure 1.3 gives rise to the
notion that an object can be thought of as comprising a set of buttons that provide access to operations
which are carried out depending on the details in the messages sent to that object.

In summary:

in procedural programming languages, data is sent to a procedure;
in an object-oriented programming language, messages are sent to an object;
an object can be thought of as an amalgam of data and programming code: this is known as
encapsulation.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

9

Object-Oriented Programming: What is an Object?

Whilst the concept of encapsulation is likely to appear rather strange to learners who are new to OOP,
working with objects is a much more natural way of designing applications compared to designing them
with procedures. Objects can be constructed to represent anything in the world around us and, as such,
they can be easily re-used or modified. Given that we are surrounded by things or objects in the world
around us, it seems natural and logical that we express this in our programming paradigm.

The next section takes the fundamental concepts explored in this section and applies them to a simple
object. Before doing so, however, it is worth making the point that this section is not meant to be an
exhaustive exploration of OO concepts: a separate study guide achieves this objective. Suffice it to say
that the main purpose of this section is to explain the key concept of encapsulation.

Finally (in this section) it is also worth making the point that, in Java, data - such as the numbers discussed
above - do not have to be represented by (Java) objects. They can be, but data such as integers are
represented by primitive data types, much as in procedural languages. However representing data such as
the number 4 as an object provides an opportunity to explain encapsulation.

The next section explores a simple object, in preparation to writing a first Java programme in
Chapter Two.

1.3 Object-Oriented Analysis and Design (OOA & D)

1.3.1 What are my Objects?

As might be expected, given that the Java programming language is object-oriented, objects expressed in
Java exhibit encapsulation of data values and operations on those values. Therefore because Java is object-
oriented, elements of Java differ in their syntax compared with a procedural language such as C. Despite
this difference, there are language elements in the Java code that Java objects carry about with them – as a
consequence of encapsulation - that are common to other programming languages, whether they are
object-oriented or not. Consequently as this guide begins to explore and apply the syntax of Java, some
learners may recognize language elements in Java that are similar to their equivalents in other languages.
Language elements such as the following may be familiar, depending on the programming experience of
the learner:

declaring and initializing primitive date types;
manipulating variables;
making decisions in an if…then type of construct;
carrying out repetitions in for…next and do…while types of constructs;
passing arguments to operations (known as methods in Java);
working with arrays and other data structures;
and so forth.

In fact, much of the semantics and syntax of Java is derived from languages such as C and C++, to the
extent that learners with previous experience in non-OO or other OO languages are likely to be familiar
with much of it. The principal difference, when using an OO language such as Java to write application
logic, is that the language elements, such as those exemplified in the list above are encapsulated in an
entity known as an object.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

10

Object-Oriented Programming: What is an Object?

Embarking on a course in Java will require a learner who is experienced in a procedural language to make
the transition from a non-object-oriented language to an object-oriented one. Learners who have some
experience of procedural languages should not be alarmed: this transition is not as difficult as it may seem!
For the novice programmer, this guide begins with objects from the outset. In either case, once some of
the essential concepts of object-oriented programming in Java have been grasped, they can be applied to
almost any Java object. In short, the way that most objects are structured is common to them all. In other
words, we can extrapolate from a relatively small number of concepts and apply them to any Java object.

The next few sub-sections work towards the description of a simple object in a language-independent way;
actual Java code does not appear until Chapter Two. This approach is intended to make the point that
OOA & D is language-independent. When the objects associated with an application are analysed,
described and documented, including diagrammatic documentation, the analysis can be turned into any
target OO language. In this guide, of course, the outcome of analysis and design will be translated into
Java source code.

1.3.2 How do I know what my Objects are?

As has been established, object oriented analysis and design (OOA & D) models everything in the world
around us in terms of software entities called objects. For example, we could model a banking application
as comprising a number of objects including:

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iu}��5��T��^�6�����frX�����,�&�|���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

11

Object-Oriented Programming: What is an Object?

a customer object;
a current account object associated with a particular customer object;
a savings account object associated with the same customer object;
the single bank object associated with customer objects;
and so on.

Similarly for an on-line media store, analysis might show that the following objects exist:

a registered member of the Media Store: there will be many of these objects;
the Media Store itself: there will be only one of these objects;
each member’s virtual membership card;
a DVD object: there will be many of these objects;
a games object: there will be many of these objects;
a CD object: there will be many of these objects;
a book object: there will be many of these objects;
and so forth.

An application that supports the business operations of such a media store will be used throughout this
guide to illustrate how Java can be used to meet the requirements of a realistic business application and
provide examples of concepts and language elements. Throughout the guide, the author’s Media Store
application will be referred to as the guide’s ‘themed application’.

In general, the outcome of the OOA & D process for a set of business requirements results in expressing
the design as encapsulating data (attributes) and operations on these data (behavior) into objects. The
details of OOA & D methodologies are outside the scope of this guide, apart from the use of a simple
diagrammatic technique to describe objects; this chapter and will conclude with such a diagram for one of
the objects of the themed application.

Returning, for a moment, to the bank example outlined at the beginning of this sub-section, let us assume
that the current account object has an attribute called overdraftLimit and that its behaviour is used to set
this attribute to a value of £500. Similarly, let us assume that the customer object has an attribute called
name and that its behaviour is used to set the value of the attribute to “David Etheridge”. Thus an object’s
attributes (or data) and hehaviour (or operations on these data) are closely linked. This linking or bonding
of data and operations is, as we have already established, known as encapsulation.

There is a further implication of encapsulation that hasn’t been explained as yet. The nature of the bond
between data and operations is such that an object’s data values are (usually) only manipulated by using
the object’s behaviour. In other words, an object’s data values are not directly accessed; instead they are
accessed via the object’s behaviour. In short, a useful way of summarising the access to an object’s data
values is to think of an object as comprising private data values and public behaviour to manipulate these
data values.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

12

Object-Oriented Programming: What is an Object?

Another consequence of the OOA & D approach is that the implementation details of an object’s data are
hidden from other objects that wish to use the data values of the object. This means that a user object only
needs to know the behaviour that the provider object offers. Thus, we can think of the provider object’s
behaviour as a kind of a contract that the object offers to its user objects. As we will see in due course, the
behaviour that an object offers to its user objects is known as its interface. All that a user object needs to
know is what behaviour the provider object provides to manipulate its data values; user objects do not
need to know how the provider object’s behaviour is implemented. This means that implementation details
can change, without changing the provider object’s interface.

This property of objects is known as information hiding, another manifestation of encapsulation. This
means that although an object may know how to communicate with another object, via the other object’s
interface, the object does not need to know how the attributes and behaviour of the other object are
implemented: i.e. implementation details are hidden within the provider object. Consider an analogy: one
might know how to drive a car without knowing how the internal combustion engine works! Or, in the
example shown in Figure 1.3, the user object – the object for the number 3 – does not need to know how
the provider object – the object for the number 4 – implements its ‘+’ operation; all that it needs to know
is that the operation is available to the outside world – i.e. it is public - and it needs a value to be passed to
it in the message that asks the provider object to press its ‘+’ button. This means that a further outcome of
OOA & D is a model of the communication amongst objects. For example, the bank object might wish to
send a message to the current account object to alter the value of overdraftLimit.

To summarize and, perhaps, simplify the OOA & D methodology, any application domain can be
analysed and modelled in terms of the objects it comprises, where each object (in that domain) has
attributes and behaviour.

1.3.3 Classes and Objects

Just when the learner thinks that they have grasped the, perhaps new, concept of an object, along comes a
heading that introduces another new term: that of the class. The purpose of this section is to refine and
define these two terms: they operate, as it were, in tandem.

Consider a simple analogy: David and Annette Etheridge’s cat – called Jasmine - can be regarded as an
object or instance of the class Cat, where the instance name is jasmine and where the class is a template
or blueprint for all cats of the species of animal known as ‘cat’. Thus, Mother Nature uses her class Cat as
a template to create every domestic cat in existence. The distinction between a class and an instance or
object of that class is an important one: a class is the blueprint for all objects (or instances) of that class.
Similarly, Mother Nature uses her one and only Aardvark class to create all aardvarks, that is all instances
of aardvarks that walk the earth.

A single class is used to create as many instances (or objects) of
that class as are needed in an application.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

13

Object-Oriented Programming: What is an Object?

For example, referring again to the bank application, we could use the class called Customer to create or
instantiate as many customers as are needed, such that each customer object can subsequently be given
values of the attributes defined in the class.

Similarly let us assume that one of the attributes of the class called Cat is called mood and that one of its
behaviour elements is used to set the value of the attribute named mood of a particular cat. Thus we can
use the template for a cat, i.e. the class called Cat, to create an instance of the class Cat with the name
jasmine and make use of its behaviour to set the value of its attribute mood to “grumpy”. Similarly, we
can use the class Cat to create another instance of the class Cat with the instance name florence and use its
behaviour to set the value of its attribute mood to “cool”. This second instance of the class Cat has a
different value of the attribute called mood. As we will discover in due course, two (or more) objects can
have the same values of some or all of their attributes. However for the purposes of the present example,
our two cat objects (named jasmine and florence) – created from the same class - differ in the value of
their mood attribute. Thus, in terms of encapsulation, our two cat objects carry about with them the ‘code’
to express the value of their attribute named mood to be “grumpy” and “cool” respectively. Finally, it
should be noted that our two objects of the class Cat are given different instance names to distinguish one
from the other and to affirm their separate existence.

The next sub-section will analyse a simple class in order to show how its analysis is documented.

1.3.4 Analysis and Design of the Member Class

In this section, we will work with one of the classes of the themed application introduced in the previous
section. The class is given the name (known as its identifier) Member to distinguish it from other classes
in the application.

Based upon the discussion in the previous sub-section, we know that the class called Member can be used,
in some way as yet to be explained, to create objects of the class Member. Before we work with the class
called Member, let us return to our analogy. Remember that David and Annette Etheridge have a cat called
Jasmine, created from the class called Cat. Thus the class is of type Cat and the particular instance of the
class Cat is an object called jasmine (the reason for the lower case ‘j’ will be explained in a moment).
David and Annette Etheridge used to have a cat called Florence: (Florence has gone through the great cat
flap in the sky!) If both cats were alive today, David and Annette Etheridge would have two instances of
the class Cat called jasmine and florence respectively. Thus the template for the two cats jasmine and
florence is the class Cat (which has been used, by Mother Nature, to create two cats). Note that class type
names begin with a capital letter: this is a convention used by the Java developer community. Thus we
have the class Cat, not cat. Whilst class names always begin with a capital letter, instances of a class
begin with a lower case letter. Thus we have florence and jasmine, not Florence and Jasmine, as
identifiers for the two instances of the class Cat. The example that follows will further illustrate these
naming conventions.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

14

Object-Oriented Programming: What is an Object?

Returning to the class called Member, our task is to define (some of) the attributes and behaviour of the
class, so that when objects (or instances) of the class Member are created (or instantiated) we can give
values to these attributes by making use of the behaviour of the class.

For the purposes of our example, we will identify (some of) the attributes and behaviour of the class
named Member as follows.

Attributes of the Member Class

N. B. Attributes are categorized as one of a type: this can be a primitive data type or a class type as shown
in the table on the next page.

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�isz���7I�T�P\�6��ԛf#Z������$�'�-Z��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

15

Object-Oriented Programming: What is an Object?

Attribute Identifier Type Comments

first name firstName string A string will be used to store the value of this
attribute

last name lastName string Similarly, a string is used

user name userName string

password password string

membership card card MembershipCard The type is a class, because the member’s card
is an object in its own right: note, therefore, the
capital ‘M’ in the type MembershipCard

The first column lists the properties or attributes of the class, expressed in a natural language. The second
column implies that each attributes is given a name, known as its identifier. Note the convention for
identifiers: for example, firstName, not firstname. In short, identifiers that comprise compound words
begin with a lower case letter and all subsequent words in the compound word are capitalised. The third
column gives the type of the attribute, i.e. what kind of data value it represents.

A critically important consequence of identifying types in an OOP language is that they can either be of
the primitive data type, such as integer or string and so on as in a typical procedural programming
language, or they can be a class types. For example, the list of attributes above includes one which is a
class type. The reason for this is that, intuitively, a member’s membership card is an object in its own right,
with its own attributes and behaviour. We cannot represent such a complex entity in a procedural language
by using primitive data types. Thus, the third column illustrates that OO design represents the non-
primitive data types in an application as objects of one of a type. This feature is one of the key differences
between a non-OO programming language and an OO programming language and gives that latter vastly
superior flexibility compared to the former when it comes to identifying the attributes of the complex
entities associated with an application.

Behaviour Elements of the Member Class

In order to represent a real-world instance of the class Member, we need to identify the behaviour that is
used to manipulate the values of its attributes. The syntax that is used to describe behaviour in a language-
independent way is as follows:

behaviourName(a comma-separated list of parameterName: parameterType): returnType

where behaviourName is an arbitrary but meaningful name for the behaviour; note that it begins with a
lower case letter.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

16

Object-Oriented Programming: What is an Object?

The terms parameter and return type are explained more fully later. For the time being, the
parameterName can be thought of as an arbitrary (but meaningful) name of the parameterType, whose
value is passed as an argument to the behaviour when a message is sent to the object to ask for the
behaviour to be executed. The returnType is the type (if any) that the behaviour supplies when it
completes its execution. In this sense, the behaviour is said to return a type when it is executed. For
example, figures 1.2 and 1.3 show an object whose behaviour returns an object that represents a number.

In the context of behaviour, a very important consequence of the OO approach is that parameters and
return types can be primitive data types or class types. Thus, behaviour can be designed so that primitive
data types and/or objects can be passed to it as arguments. An argument that is an object is passed to the
behaviour using the same mechanism as is used to pass a primitive data type to it. Similarly, behaviour
can return an object or a primitive data type, but not both at the same time. For example, Figure 1.3 shows
an object passed as an argument to the ‘+’ behaviour. Similarly, the ‘+’ behaviour could have been
designed to accept an integer argument passed to it and even return an integer when the button is pressed
to execute the behaviour. In practice, actual objects are not passed as arguments; instead, a reference to
the object is passed. We will return to this concept in a later chapter.

Before we go any further, let us use the syntax for expressing behaviour to consider an example of using
or executing behaviour by passing an argument to it. Let us assume that one of the behaviour elements of
our Member class is defined as setPassword(pword: string) – note that there is no return type - where
setPassword is the name of the behaviour, and pword is the identifier (i.e. the name) of its only parameter
which is of the string data type. Thus, when the behaviour is executed, it will expect a value of the string
type to be passed to it in the form of a message. A programming statement such as the following illustrates
the concept of passing such a value to the behaviour when it is executed:

setPassword(“abc999”);

The programming statement above sends a message to the Member object and asks its run-time system to
execute the behaviour and, in doing so, the statement is used to pass the argument to the behaviour. In
such a statement, we can think of the pair of brackets () as acting as a ‘payload’ for the behaviour in that
it provides a simple mechanism to pass values of data or (references to) objects to the behaviour so that
they can be used by the code associated with that behaviour.

Behaviour can be defined such that it does not expect arguments to be passed to it. In such a case,
the payload is empty when the behaviour is executed. Consider, for example, the following
programming statement:

getPassword();

The message to the Member object to request the execution of the behaviour getPassword has been
written so as not to expect value(s) of argument(s) to be passed to it. The behaviour getPassword is
merely programmed to ‘get’ the current value of an attribute; it does not need any data or objects to do this.

We will use programming statements such as those above in the next chapter, when we write the class
definition for the Member class.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

17

Object-Oriented Programming: What is an Object?

In the case of the behaviour setPassword(pword: string), we have assumed, intuitively, that the
behaviour does not return a value of a type when it is executed. On the other hand, let us assume that the
behaviour getPassword does return a value when it is executed and that it is correctly described as
getPassword(): string to imply that the behaviour returns a value of the type string. Thus, the statement

getPassword();

actually produces a result in that it returns a string value that we should be able to output in some way.

The behaviour setPassword(pword: string) and getPassword(): string (discussed above) leads to a
fuller description of the behaviour of the class Member. The general syntax used to describe behaviour can
be used to describe the specific behaviour of the Member class as shown on the next page, where the name
of the behaviour is followed by its parameters in parenthesis and its return type (if any) following a colon.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iw/���5��T��^�6�����frX�����,�&�|���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

18

Object-Oriented Programming: What is an Object?

setFirstName(firstName: string)
getFirstName(): string
setLastName(lastName: string)
getLastName(): string
setUserName(username: string)
getUserName(): string
setPassword(pword: string)
getPassword(): string
setCard(card: MembershipCard)
getCard(): MembershipCard

Note that as a general –but not universal – rule, each attribute has associated with it a pair of behaviour
elements setXxx and getXxx, where Xxx is the capitalized name of the attribute. Broadly speaking, the
reason for this is so that we have sufficient behaviour to be able to set the value of an attribute and also to
get (i.e. find out) the value of the attribute at any point in a programme.

Note, again, the way that behaviour names are written: they begin with a lower case letter and can be
compound words, where words other than the first begin with a capital letter.

Referring to the list above, the setFirstName behaviour can be used to pass an argument of type string

with an identifier firstName to an object of the class Member with the purpose of setting the value of the
object’s firstName attribute to the value of the argument. The getFirstName behaviour can be used to find
out the current value of the attribute firstName in that the behaviour is defined to return the value of the
attribute firstName as a string. A similar analysis applies to the next six behaviour elements in the list.

The purpose of setCard is to pass the object reference card, of the class type MembershipCard, as an
argument to the method in order to set the value of the attribute with the identifier card to refer to a
MembershipCard object. Invoking this method sets the value of the attribute card to the reference to a
previously-created MembershipCard object passed as the only argument to the behaviour. In effect, this
behaviour element associates a member of the Media Store with a membership card. We will see, as the
themed application develops in later chapters, that the behaviour setCard is used to give a member his or
her (virtual) membership card.

The purpose of getCard is to return the current value of the attribute card as an object reference of the
MembershipCard type. Invoking getCard, therefore, returns a reference to a MembershipCard object. In
effect, this behaviour retrieves the member’s membership card so that transactions can be carried out
with it.

It should be noted that the list of behaviour elements of the class Member, shown above, illustrates that a
behaviour element can work with values of primitive data types and/or class types when passed as
arguments. Similarly a behaviour’s return type can be a primitive data types or a class types. In short, the
use of objects as attributes, arguments and return types gives OO programming languages an enormous
advantage over non-OO programming languages in that the former are more easily and readily used to
represent actual things or entities in the world around us compared to the latter. In practice, as we will find
out in due course, an OO language can also represent abstract entities in an application.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

19

Object-Oriented Programming: What is an Object?

The list of behaviour elements of the Member class shows that the (arbitrary but meaningful) identifiers of
the parameters associated with behaviour elements may be the same as those of the attributes that the
behaviour manipulates. We will address this apparent clash when the OOA & D of our Member class is
translated into Java source code in the next chapter. However it should be noted that it is not mandatory
for identifiers of parameters and attributes to be the same.

Let us define some terms at this point.

Parameter names are arbitrary but meaningful identifiers for the types that are
passed to behaviour. Behaviour may or may not have parameters.
Arguments represent actual values passed to behaviour when it is executed so that it
can use them for some specific purpose within the implementation of that behaviour.
The type of an argument can be one of the primitive data types, defined in the
implementation language of the class, or it can be a class type.

 The return type is the type that the behaviour returns when the behaviour is
executed. The type can be one of the primitive data types, defined in the
implementation language of the class, or can be a class type. On the other hand,
behaviour may have no return type; i.e. it does not return a value when it is
executed.

It can be seen that the first behaviour shown in the list for the Member class has no return type, the second
returns a primitive type and the last returns a class type. It seems reasonably intuitive that the
setFirstName behaviour is likely to need an argument to do its work and that the getPassword behaviour
is not likely to need an argument but it is likely to return a value – in this case, a string value.

Remember that the attributes and behaviour in the lists above are a language-independent way of
describing these two aspects of the class Member. However they are merely lists: what we need now is a
diagram that helps us to design the class of our Member objects.

The next section summarises the attributes and behaviour of the class Member in terms of a diagram
known as a Class Diagram. Class diagrams are part of the Unified Modeling Language methodology
(UML) for OOA & D and are a language-independent way of describing a class.

1.3.5 The Class Diagram of the Member Class

Up to this point in the chapter, we have side-stepped any discussion about exactly how an object is created
from its class. Just as Mother Nature knows how to create objects of the class Cat from her template for
the species that we call ‘cat’, the OOP run-time system needs a way of making or constructing objects of
the class Member and storing them in some convenient place in (computer) memory. An OOP language
uses an entity known as a constructor to construct objects of a class. Thus in addition to attributes and
behaviour, one or more constructors form part of a class diagram. We will explore constructors in more
detail in later chapters. For the time being, we will make the constructor for the Member class
straightforward.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

20

Object-Oriented Programming: What is an Object?

The first section of a class diagram contains the class name, the second section lists the attributes and the
third section lists constructors and behaviour. Thus, the class diagram of the Member class derives directly
from the attributes and behaviour discussed earlier in this chapter, with the addition of a no-arguments
constructor: it is shown below.

Member

- firstName: string
- lastName: string
- userName: string
- password: string
- card: MembershipCard

+ Member()
+ setFirstName(firstName: string)
+ getFirstName(): string
+ setLastName(lastName: string)
+ getLastName(): string
+ setUserName(userName: string)
+ getUserName(): string
+ setPassword(pword: string)
+ getPassword(): string
+ setCard(card: MembershipCard)
+ getCard(): MembershipCard

Note that constructors are underlined in class diagrams.

In the diagram, the qualifier ‘-‘ mean private and the qualifier ‘+’ means public, so that access to data
values conforms to the principal of encapsulation discussed earlier.

A further point about class diagrams should be borne in mind at this point: a class diagram identifies types,
parameter and attribute in a language-independent way; its purpose is not to give implementation details
of behaviour – this aspect of OOA & D is language specific and it outside the scope of a class diagram.
However, as we will se in the next chapter, a class diagram contains sufficient information to enable the
programmer to declare attributes, constructors and behaviour elements. The details about the
implementation of the elements of a class are obtained from other aspects of OOA & D and the business
requirements of the application.

The next chapter takes the class diagram above and explains how the information in it translated into Java
source code.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

21

A First Java Programme: From Class Diagram to Source Code

2. A First Java Programme: From Class Diagram to
Source Code

2.1 Introduction

The aim of Chapter Two is to take the simple class diagram shown at the end of Chapter One and explain
how it is translated into Java source code. The code is explained in terms of its attributes, constructor and
behaviour and a test class is used to explain how its constructor and behaviour elements are used.

2.2 The Class Diagram for the Member Class

Before we embark on our first Java programme, let us recall the class diagram with which we concluded
Chapter One. The class diagram is reproduced in Figure 2.1 below, with the omission of the constructor:
this is to keep the code simple to begin with. We will replace the constructor in the class diagram and
provide code for it later in this chapter.

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ir.��aI�T�QY�6��՛>.�������$�$�{��D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

22

A First Java Programme: From Class Diagram to Source Code

Member

- firstName: string
- lastName: string
- userName: string
- password: string
- card: MembershipCard

+ Member()
+ setFirstName(firstName: string)
+ getFirstName(): string
+ setLastName(lastName: string)
+ getLastName(): string
+ setUserName(userName: string)
+ getUserName(): string
+ setPassword(pword: string)
+ getPassword(): string
+ setCard(card: MembershipCard)
+ getCard(): MembershipCard

Figure 2.1 Class diagram for the Member class

In Figure 2.1, let us be reminded that the qualifier ‘-‘ means private and the qualifier ‘+’ means public.
The purpose of these qualifiers will be revealed when we write the code for the class.

The next section explains how the information in the class diagram shown in Figure 2.1 is translated into
Java source code.

2.3 The Java Source Code for the Member Class

Remember that, in general, a class definition declares attributes and defines constructors and behaviour.
The Java developer concentrates on writing types called classes, as a result of interpreting class diagrams
and other elements of the OOA & D of an application’s domain. The Java developer also makes extensive
use of the thousands of classes provided by the originators of the Java language (Sun Microsystems Inc.)
that are documented in the Java Applications Programming Interface (API).

The API can be downloaded from:
http://java.sun.com/javase/downloads/index.jsp

We have established that classes typically comprise attributes and the behaviour that is used to manipulate
these data. Attributes are implemented, in Java, as variables, whose value determines the condition or
state of an object of that class and behaviour elements are implemented using a construct known as a
method. When a method is executed, it is said to be called or invoked.

Collectively, variables and methods of a class are often referred to
as members or fields of that class.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

23

A First Java Programme: From Class Diagram to Source Code

As has been mentioned earlier, an instance of a class is also called an object, such that, perhaps somewhat
confusingly, the terms instance and object are interchangeable in Java. The requirement to create an
instance of a class from the definition of the class gives rise to a fundamental question: how do we actually
create an instance of a class so that its methods can be executed? We will address this question in
this section.

One of the components of a class, which we haven’t explained fully so far in the discussion of the Member

class, is its constructor. A constructor is used to create or construct an instance of that class. Object
construction is required so that the Java run-time environment (JRE) can respond to a call to an object’s
constructor to create an actual object and store it in memory. An instance does not exist in memory until
its constructor is called; only its class definition is loaded by the (JRE). We will meet the constructor for
the Member class later.

Broadly, then, we can think of the Java developer as writing Java classes, from which objects can be
constructed (by calling their constructors). Classes are to objects as an architect’s plan is to a house, i.e.
we can produce many houses from a single plan and we can construct or instantiate many instances from a
single template known as a class. Given that objects can communicate with other objects, this gives the
developer the means to re-use classes from one application in another application. Therefore, with Java
object technology, we can build software applications by combining re-useable and interchangeable
objects, some of which can be standardised in terms of their interface. This is probably the single-most
important advantage of object-oriented programming (OOP) compared with non-OOP in
application development.

We are now at the stage when we can translate the class diagram for the Member class into Java source
code, often shortened to ‘code’. The code that follows is the class definition of the class named Member

but includes only some of the attributes and methods that do not involve object types: this is to keep the
example straightforward. The reason for this restriction is that if we were to declare attributes or
parameters of the MembershipCard class type in the class Member, as required by the class diagram, the
Java compiler would look for the class definition of the class MembershipCard. In order to keep the
example straightforward, we will only write the class definition for the class Member for the time being;
we will refer to the class definition of the class MembershipCard in a later chapter. Thus, in this section,
we will work with a single class that includes only primitive data types; there are no class types included
in the simplified class diagram.

In order to make the example code even more straightforward, the class diagram is further simplified as
shown in the next diagram. The class diagram that we will translate into Java code declares two variables
and their corresponding ‘setter’ (or mutator) and ‘getter’ (or accessor) methods, as follows.

Member

- userName: string
- password: string

+ setUserName(userName: string)
+ getUserName(): string
+ setPassword(pword: string)
+ getPassword(): string

Figure 2.2 Simplified class diagram for the Member class

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

24

A First Java Programme: From Class Diagram to Source Code

The reason for the simplification (of the full class diagram) is so that the class definition can be more
easily understood, compared to its full definition. In short, we well keep our first Java programme as
simple as possible.

In the class definition that follows below, ‘ // ‘ is a single-line comment and ‘ /** … */ ‘ is a block
comment and, as such, are ignored by the Java compiler. For the purposes of the example, Java statements
are written in bold and comments in normal typeface.

// Class definition for the class diagram shown in Figure 2.2. Note that the name of
// the class starts, by convention, with a capital letter and that it is declared as public.
// The first Java statement is the class declaration. Note that the words public and
// class must begin with a lower case letter.

public class Member { // The class declaration.

 // Declare instance variables first. Things to note:
 // String types in Java are objects and are declared as ‘String’, not ‘string’.
 // The qualifier 'private' is used for variables.
 // 'String' is a type and 'userName' and ‘password’ are variable names, also
 // known as identifiers. Thus, we write the following:

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i#x���4M�T�V^�6�C��f%^������$�z�w
�D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

25

A First Java Programme: From Class Diagram to Source Code

private String userName;
private String password;

 // Note that, in the two statements above, we have only declared these two
 // variables, they have not been initialized. In fact they will, at first, be
 // initialized to their default values when the constructor is invoked. If the
 // constructor sets the variables, their default values will be overwritten
 // accordingly.

 // Constructors are defined next in a class definition. In this example, the
 // class includes a no-argument constructor that does nothing; i.e. the code
 // block of the constructor is empty (of Java statements). N. B. The name of
 // an object’s constructor is the same as its class. Note the way that it is
 // documented.
 /**

 * The default constructor.
 * Note that there are no arguments passed to this constructor.
 * Constructors do not declare a return type. When its invocation completes, a
 * constructor returns a reference to the instance created in memory.

 */
public Member() {

 // Typically, one of the tasks of a constructor is to initialize variables.
 // In this case, the absence of code results in an instance created and
 // stored in memory, whose variables are initialized to their default
 // values when this constructor is called.

} // End of constructor.

 // Method implementations are next in a class definition.
 // Things to note:
 // Methods are public; the return type must be stated and, is declared as void
 // if there is no return type.
 // The comma-separated list of parameters (if any) are in parenthesis.

// A method definition begins with the method declaration, followed by the
// body of the method’s implementation.
// Note the convention for method names: they begin with a lower case letter
// and are meaningful in that they should reflect the function of the method.
// Multiple words can be used, where all but the first word begins with a
// capital letter. Note how methods are documented, including the use of ‘@”
// tags. We will find out why these tags are useful in due course, when we
// explore documentation more fully in a later chapter.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

26

A First Java Programme: From Class Diagram to Source Code

 /**
 * Mutator for the variable userName.

 * @param userName The member’s user name.
 */

public void setUserName(String userName) {

// The purpose of calling setUserName, from an object that uses an
// object of the class Member, is to assign the value of the method’s
// argument called userName to the value of the attribute called
// userName.

 // The 'this' refers to the current object and the ‘ . ‘ selects the variable
 // called userName from the current object.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ip/���`��T����6�A��>!_�����$�'�~��@

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

27

A First Java Programme: From Class Diagram to Source Code

this . userName = userName;

// Note that, in this method definition, the parameter’s identifier is the
// same as that of the variable it is modifying. It is permissible to do
// this in Java, but it is important that you know which ‘userName’ is
// which. The compiler knows which is which.

} // End of definition of setUserName.

 /**
 * Accessor for the variable userName.

 * @return userName The value of the variable userName.
 */

public String getUserName() {

 // The next statement returns the current value of userName when the
 // method is called.

return userName;

} // End of definition of getUserName.

/**
 * Mutator for the variable password.

 * @param pword The member’s password.
 */

public void setPassword(String pword) {

 // In this method definition, the name of the parameter is different
 // from the name of the variable that it sets. Therefore, in the next

// statement, we don’t need to refer to the current object with ‘this’.
 password = pword;

} // End of definition of setPassword.

Attribute’s identifier

Argument’s identifier

Current object

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

28

A First Java Programme: From Class Diagram to Source Code

 /**
 * Accessor for the variable password.

 * @return password The value of the variable password.
 */

public String getPassword() {

 return password;

} // End of definition of getPassword.

} // End of class definition of Member.

Inspection of the source code (above) shows that it conforms to its class diagram in that it implements (i.e.
provides the code for) two pairs of methods associated with setting and getting the value of each of the
variables userName and password. Clearly, this version of the class definition of the Member class is a
very simple one, but it is, nevertheless, a true class in that it has variables and methods: it will also have a
constructor in a moment.

It should be noted that the two setter methods and the two getter method of the class Member are very
straightforward in that the former sets the value of a variable and the latter gets the current value of a
variable using a single Java statement. As we will see in due course, the body of a typical method will
usually comprise many more than one Java statement.

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ip/��0H�T�

�6���ӛ>r^�����$�&�{
��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

29

A First Java Programme: From Class Diagram to Source Code

At this point, it will be instructive to compare the class diagram for the class Member with the source code
in an attempt to see how Java programming statements correspond to elements of the diagram.

Figure 2.3 Mapping the class diagram to the class definition

The constructor for the class Member has been omitted from Figure 2.3, for the sake of simplifying the
example. In practice, however, an object’s constructors are included in the class diagram. Accordingly, the
modified class diagram follows next.

Member

- userName: string
- password: string

+ Member()
+ setUserName(userName: string)
+ getUserName(): string
+ setPassword(pword: string)
+ getPassword(): string

Figure 2.4 The class diagram that includes the constructor

Now that we have written the source code for a simplified version of our Member class, we can progress
and find out how we invoke its methods. This is the subject of the next section.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

30

A First Java Programme: From Class Diagram to Source Code

2.4 Using Member Objects

So far we have interpreted a simplified version of the full class diagram for the class Member, in order
to illustrate how to write a class definition. However, we have not explored how we actually use a
class definition.

The class Member can be considered as a provider class, in that it provides or offers – as it were – a
number of public methods for execution. If we assume that one or more of these methods can be called by
any other class – let us call them user classes – we can think of the set of methods as the interface of the
provider class, where the term ‘interface’ is used, in this context, to describe the methods of the provider
class. As we will see later, the code for a user class is likely to include Java statements that, firstly, calls
(one of the) object’s constructors (passing arguments to it if required by the class diagram) and, secondly,
calls methods and passes arguments to them if required by the class diagram. In the case of the latter type
of call, the user object needs to know the provider object’s interface. In other words, a user object only
needs to know the following details about each method of the interface of a provider object:

the name of the method;
it parameter list, if any;
its return type, if any.

A user object does not need to know how methods are implemented; user objects only need to know the
name, parameters and return type of each method of a provider object’s interface. Thus a provider object
implements the details of what a method does. In short, a provider object knows how a method is
implemented, whilst a user object knows what its provider object implements.

In order to use – i.e. invoke or call - methods of an object of the provider class Member, we usually write a
user class that constructs one or more instances of the class Member and calls their methods using these
named instances. The code for the user class, let us call it TestMember (by convention, the word ‘Test’
precedes the class name), would include a call to the constructor of Member in order to place an instance
of the class Member in memory so that its methods can be called by referring to the instance by its
identifier, known as an object reference.

The code for the class Member in Section 2.3 includes the definition of its default constructor, i.e. its no-
arguments, no code constructor. In practice, if we only need to call an object’s default constructor, there is
no need to include it in the code for the class definition: the Java compiler inserts a default constructor into
the class definition for us. Clearly, if we need a constructor that takes arguments and includes Java
statements in its code block, this must be provided by the developer: the JRE is only able to insert a
default constructor if the developer has not provided any constructors. Although the JRE inserts the
default constructor, the example in this chapter includes the default constructor explicitly in order to
reinforce the purpose of constructors in Java.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

31

A First Java Programme: From Class Diagram to Source Code

Before we can call the (default) constructor for Member in our user object, we need (to declare) a variable
of the type Member in our user class. A variable of a class type is used as an object reference for an object
of that class when it is constructed and stored in memory. When we have declared a variable of the type
Member, we can initialise it by calling the constructor for the Member class.

The result of a call to the constructor of Member means that we have a reference to an actual object that
we can use to call methods of that class. The following code snippet shows how an instance of Member is
constructed in our user class and how one of its methods is called.

 // The next statement declares a variable of the type Member, with an identifier
// called member. Note, again, that class types start with a capital letter and
// identifiers start with a lower case letter.
Member member;

 // In the next statement, the variable is initialised to the object reference to the
// instance created when the default constructor of the class Member is called. The
// entity Member() is the no arguments constructor of the class Member. Thus, the
// types on both sides of the association symbol ‘ = ‘ are compatible. N. B. Java is a
// strongly-typed language.
member = new Member();

The first of the two statements above declares a variable called member of the Member (class) type; the
second statement calls the default constructor of the Member class. The use of the keyword ‘new’
instantiates an object of the class Member and stores it in memory.

Note that the two Java statements above can be combined into one, as follows:

Member member = new Member();

We now have an object reference, called member, to an instance of the Member class stored in memory.
This object reference gives us a way to ‘address’ or find our object in memory; without this reference to
our object, we cannot call methods defined in the class definition.

We can now call methods of the class Member by using the object reference called member. Thus, method
calls from a user object look like this.

// A call to the setUserName method, with a value of the expected type passed to it
// between brackets. Note that String values are placed between quotation marks.
member . setUserName("Dylan");

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

32

A First Java Programme: From Class Diagram to Source Code

// Similarly, a call to the setPassword method.
member . setPassword("abc999");

 // And a call to the getPassword method.
member . getPassword();

The three statements above use the object reference to send a message to the object to call a method of the
Member class. The first statement can be read from right to left thus: pass a String argument “Dylan” to
the method setUserName and call this method ‘on’ the instance of the class Member called member, using
the ‘dot’ (‘ . ‘) selector to identify the specific object (stored in memory) to use for this method call.
According to the class definition of the class called Member, the method setUserName uses the argument
passed to it when it is called to execute the Java statement of the method’s implementation. Thus, the
method does what it is designed to do as a result of a call to it.

We have established that we need to know an object’s reference so that we can select it when invoking its
methods. Thus, the statement at the top of the next page

member . getPassword();

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iqr���5M�T�S\�6����e%������$� �|Y�B

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

33

A First Java Programme: From Class Diagram to Source Code

will compile, whereas the statement

memberOne . getPassword();

will generate a compiler error as follows: cannot find symbol memberOne

The compiler generates this error because we have not declared a variable with the identifier memberOne.

We now have some idea how to invoke methods from a user class, the question remains: how do we
execute our user class? Do we have to write a class definition for it; how do we actually start our user
class? Fortunately, this is not as problematic as it may seem at first sight.

Java statements that make method calls can be included in a special method called main that is included in
the class definition of the user class of the provider class Member. When the main method of the user class
is executed by the Java Virtual Machine (JVM), the statements within main are executed. Typically main

is used to instantiate objects and call methods on those objects. Most Java applications usually contain
several classes, at least one of which must include main. The main method is the entry point of a Java
application; the JVM looks for it in order to start the application. We will use a main method to test the
logic of some of the methods of the provider class.

A simple version of the code for the user class for the provider class Member follows.

// Class declaration of the test class.
public class TestMember {

 // The declaration of main.
public static void main(String[] args) {

 // We will examine the syntax of the declaration of main in due course. For
 // the time being, the inclusion of the modifier ‘static’ can be taken to mean
 // that we do not have to instantiate an object of the class TestMember.

 // A constructor call and some method calls are next.

 // Declare a variable of the type Member and initialise it by instantiating an
 // object of the class type Member with a call to its constructor.

Member member = new Member();

// Invoke one of the ‘set’ methods of Member by using the object reference
// of the instance of the class Member called member. Pass an argument to
// the method using the expected data type.
member . setUserName("Dylan");

} // End of definition of main.

} // End of class definition of TestMember.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

34

A First Java Programme: From Class Diagram to Source Code

Close inspection of the code shows that all that main does is call setUserName, the affect of which will
depend on the code in the body of the method. However, if a call to getUserName were to be included in
the code for TestMember, we ought to be able to observe the result of this method call because it returns a
value. Note that this call is included in a print statement, whose syntax we will examine in due course. The
amended code for TestMember follows: note the order of the two method calls.

// Code for amended test class.
public class TestMember {

public static void main(String[] args) {

 Member member = new Member(); // As before.
member . setUserName("Dylan"); // As before.
// Call the ‘get’ method of Member in a print statement. The method
// call returns a value.
System.out.println(“The member’s user name is: “ +

member . getUserName());

} // End of definition of main.

} // End of class definition of TestMember.

In the amended class definition of TestMember, the purpose of the ‘ + ‘ operator in the argument
passed to the println method is to concatenate the literal String with the String that is returned from the
call to getUserName.

Compilation of TestMember and execution of main produces the following output:

The member’s user name is: Dylan

Inspection of the code for TestMember shows that it does not need to know how the variables and
methods of Member are implemented; rather, TestMember only needs a reference to an object of the
Member class in order to invoke its methods, which it does so by knowing the interface provided by the
object. Thus the user class TestMember invokes setUserName and getUserName in that order merely to
illustrate that the provider class Member does what its interface is contracted to do. In this respect, the
TestMember class has been used to test some of the functionality of the Member class.

If we were to write the body of main as follows:

Member member = new Member();
System.out.println(“The member’s user name is: “ +

member . getUserName());
member . setUserName("Dylan");

the result of executing main is: The member’s user name is: null

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

35

A First Java Programme: From Class Diagram to Source Code

Can you work out why this is the case?

You may have noticed that we haven’t instantiated an object of the class TestMember. This is because its
only member – the main method – is static, which means – in this context - that we don’t have to
instantiate an object of the TestMember type. We will examine static class members in due course.

2.5 Summary

In summary, we have created a simple Java application that comprises two classes: a provider class called
Member and a user, test class called TestMember. The former has variables, a constructor and a number of
methods and the latter constructs an instance of the former and calls two of its methods to access and
manipulate the data value of one of the object’s variables.

Despite its simplicity, the example discussed in this chapter illustrates the following concepts:

encapsulation (of data and behaviour);
coding class definitions for provider and test classes in a Java application;
object construction;
invoking methods;
execution of a main method to carry out some simple testing.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i�x���aJ�T��^�6����?u
������$� �(]�G

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

36

A First Java Programme: From Class Diagram to Source Code

Before we move on to Chapter Three, let us examine a visual representation of an actual Member object in
memory in order to illustrate, visually, how it is created and used in order to show that the visual
representation gives the same result as executing main as we did in Section 2.4.

The screen shot below shows the Member class in a Java development environment known as BlueJ; the
purpose of this illustration is to show what happens when an instance of the class is constructed.

Figure 2.5 The Member class

The single icon in Figure 2.5 (on the previous page) represents the class definition for the Member class
and implies that it has been loaded.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

37

A First Java Programme: From Class Diagram to Source Code

The next screen shot shows that the constructor (Member()) is available for invocation.

Figure 2.6 Access to the constructor

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

38

A First Java Programme: From Class Diagram to Source Code

The constructor is invoked by pressing Ok in the dialogue box shown in the next screen shot.

Figure 2.7 A call to Member()

Figure 2.7 shows that the Java development environment calls the default constructor for Member and
provides a default (editable) object reference to the instance created. In the figure above the object
reference is given the identifier member1.

Following the call to the (default) constructor, the Java development environment represents the actual
object stored in memory as a rectangle at the foot of the screen. The next screen shot shows that this object
– with the reference member1 – has been instantiated and stored in memory.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

39

A First Java Programme: From Class Diagram to Source Code

Figure 2.8 The instance with an object reference of member1

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to

BrowserTexting.com

and start texting from
your computer!

FREE
 30 days trial!

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i�{���0N�T�S��6����?%^������$�r�-��D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

40

A First Java Programme: From Class Diagram to Source Code

The next screen shot shows the four methods of the object; it can be seen that they comply with the
class diagram.

Figure 2.9 The object’s interface, in terms of its public methods

The purpose of the series of screen shots above is to show, in a visual way, how a Member object is
constructed and used, without the need to write a main method. Any of the four methods of the object
stored in memory can be tested using the Java development environment. For example, the next screen
shot shows a call to setUserName.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

41

A First Java Programme: From Class Diagram to Source Code

Figure 2.10 A call to setUserName

Figure 2.10 shows that the call to setUserName expects a String argument, as required by the
class definition.

The next screen shot shows what happens when the value of the variable userName is inspected.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

42

A First Java Programme: From Class Diagram to Source Code

Figure 2.11 The value of the variable userName

Figure 2.11 shows that the value of the variable userName is “Dylan”, as expected. However, we can see
that the value of the variable password is null, because its set method has not been called and the effect of
calling the default constructor initialises all instance variables to their default values. Since initialisation,
the setUserName method has been called. Hence, its value has been changed from null to “Dylan”,
whereas the value of the variable password remains as null, because the default value of a Java String
object is an object reference of value null.

Default object references have the value null.

A call to getUserName is shown in the final screen shot.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

43

A First Java Programme: From Class Diagram to Source Code

Figure 2.12 A call to getUserName

Invocation of getUserName returns the value “Dylan”, the same result that we observed when the main
method in Section 2.4 is executed.

The screen shots show how a constructor of a class has been used to instantiate and store, in memory, an
object so that it is available by using its object reference to call its methods. The purpose of the illustration
is to replicate the function of the main method outlined in Section 2.4, in order to visualise how we can
create and use a Member object and, at the same time, visualise some of the fundamental concepts of
classes and objects that are covered in chapters 1 and 2.

In practice, we usually write one or more test classes to test an object’s methods. When we are satisfied
with the results of our test strategy, we can reject all but one of our test classes so that we retain a single
main method that starts the application in the correct place. When we use a graphical user interfaces (GUI)
to ‘drive’ an application, the main method usually displays the GUI. We will explore GUIs towards the
end of this guide.

Before we add some classes to the themed application, the next chapter explores some of the basic
elements of the Java language.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

44

Language Basics: Some Syntax and Semantics

3. Language Basics: Some Syntax and Semantics

3.1 Introduction

In Chapter Two, we see that class attributes are implemented in Java programmes as variables, whose
values determine the state of an object. To some extent Chapter Two addresses the question of how we
name variables; this question is explored further in this chapter.

Chapter Three explores some of the basic elements of the Java language. Given the nature of this guide, it
is not the intention to make this chapter exhaustive with respect to all of the basic elements of the Java
language. Further details can be found in the on-line Java tutorial.

The Java tutorial that covers language basics is found at:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/index.html

We see in Chapter Two that the two broad categories of Java types are primitives and classes. There are
eight of the former and a vast number of classes, including several thousand classes provided with the
Java language development environment and an infinitude of classes written by the worldwide community
of Java developers. This chapter examines aspects of both categories of types.

3.2 Identifiers

An identifier is a meaningful name given to a component in a Java programme. Identifiers are used to
name the class itself – where the name of the class starts with an upper case letter – and to name its
instances, its methods and their parameters. While class identifiers always – by convention – start with an
upper case letter, everything else is identified with a word (or compound word) that starts with a lower
case letter. Identifiers should be made as meaningful as possible, in the context of the application
concerned. Thus compound words or phrases are used in practice.

Referring to elements of the themed application, we can use the following identifiers for variables in the
Member class:

lastName; firstName; MembershipCard

 but not

last name; membershipCard

because we wouldn’t name a class membershipCard and spaces are not permitted in identifiers.

We could have declared other variables in the class definition as follows:

last_name; firstName; $password;

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

45

Language Basics: Some Syntax and Semantics

We cannot use what are known as keywords for identifiers. These words are reserved and cannot be
used solely as an identifier, but can be used as part of an identifier. Thus we cannot identify a variable
as follows:

private int new; // not permitted because int is a keyword

but we could write

private int newInt;

The table below lists the keywords in the Java language.

abstract Continue for New switch
assert*** Default goto* Package synchronized
boolean Do if Private this
break Double implements Protected throw
byte Else import Public throws
case enum**** instanceof Return transient
catch Extends int Short try
char Final interface Static void
class Finally long strictfp** volatile
const* float native super while

* not used
** added in 1.2

*** added in 1.4
**** added in 5.0

Source: http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

Table 3.1 The Java language keywords

Java is case-sensitive: this means that we cannot expect the following statement to compile:

return newint;

if we have not previously declared the identifier newint. On the other hand, if we write

return newInt;

as the last statement of the getNewInt method, it will compile because the identifier named newInt has
been declared previously.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

46

Language Basics: Some Syntax and Semantics

Similarly we cannot expect the compiler to recognise identifiers such as the following

new_int;
 new_Int;
 New_int;

if they have not been declared before we refer to them later in our code.

3.3 Primitive Data Types

In one of the declarations in Section 3.2, we declared a variable with the identifier newInt to be of the int

type, in the following statement:

private int newInt;

Let us deconstruct this simple statement from right to left: we declare that we are going to use an
identifier named newInt to refer to integer values and ensure that access to this variable is private.

This kind of declaration gives rise to an obvious question: what primitive data types are there in the Java
language? The list on the next page summarises the primitive data types supported in Java.

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iqr���5M�T�S\�6����e%������$� �|Y�B

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

47

Language Basics: Some Syntax and Semantics

Data Type Language Element Comments

logical boolean values: true or false

text char use 16 bit Unicode characters;
literal value enclosed between ‘ ‘, as in ‘u’

text String not a primitive, a String of characters is a Java class that is
loaded with the class loader;
literal values enclosed between “ “, as in “hi”

integral byte 1 byte

 short 2 bytes

 int 4 bytes

 long 8 bytes

real double 8 bytes

 float 4 bytes

Table 3.2 Primitive data types

3.3.1 Conversion Between Primitive Data Types

Before we move on to discuss assignment of actual values to variables, it will be instructive to find out if
Java can convert between types automatically or whether this is left to the developer and if compile-time
and run-time rules for conversion between types are different.

In some situations, the JRE implicitly changes the type without the need for the developer to do this. All
conversion of primitive data types is checked at compile-time in order to establish whether or not the
conversion is permissible.

Consider, for example, the following code snippet:

int i = 10;
 double d = i; // assign an int type to a double type

A value of 10.0 is displayed when d is output.

Evidently the implicit conversion from an int to a double is permissible.

Consider this code snippet:

double d = 10;
int i = d;

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

48

Language Basics: Some Syntax and Semantics

The first statement compiles; this means that the implicit conversion from an int to a double is permissible
when we assign a literal integer value to a double. However the second statement does not compile: the
compiler tells us that there is a possible loss of precision. This is because we are trying to squeeze, as it
were, an eight byte value into a four byte value (see Table 3.2); the compiler won’t let us carry out such a
narrowing conversion.

On the other hand, if we write:

double d = 10;
 int i = (int)d; // the cast (int) forces d to be an int; we will examine the concept of casting
 // or explicit conversion later in this section

Both statements compile and a value of 10 is displayed when i is output.

The general rules for implicit assignment conversion are as follows:

 a boolean cannot be converted to any other type;
 a non-boolean type can be converted to another non-boolean type provided that

the conversion is a widening conversion;
 a non-boolean type cannot be converted to another non-boolean type if the

conversion is a narrowing conversion.

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�is)���bI�T����6��D��fr����H��$�$�|
��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

49

Language Basics: Some Syntax and Semantics

Another kind of conversion occurs when a value is passed as an argument to a method when the method
defines a parameter of some other type.

For example, consider the following method declaration:

public void someMethod(double someDoubleValue) {

 // do something with the argument

 } // end of method

The method is expecting a value of a double to be passed to it when it is invoked. If we pass a float to the
method when it is invoked, the float will be automatically converted to a double.

Fortunately the rules that govern this kind of conversion are the same as those for implicit assignment
conversion listed above.

3.3.2 Explicit Conversion Between Primitive Date Types

The previous sub-section shows that Java is willing to carry out widening conversions implicitly. On the
other hand, a narrowing conversion generates a compiler error. Should we actually intend to run the risk of
the possible loss of precision when carrying out a narrowing conversion, we must make what is known as
an explicit cast. Let us recall the following code snippet from the previous sub-section:

double d = 10;
 int i = (int)d; // the cast (int) forces d to be an int

Casting means explicitly telling Java to force a conversion that the compiler would otherwise not carry out
implicitly. To make a cast, the desired type is placed between brackets, as in the second statement above,
where the type of d – a double - is said to be cast (i.e. flagged by the compiler to be converted at run-time)
into an int type. Casting is, typically, carried out when a narrowing conversion is required and, as such, is
never carried out implicitly; an explicit cast must be provided by the Java developer to inform the
compiler that the risk of losing precision is acceptable.

Conversion and casting of object references is beyond the scope of this chapter, but will be addressed in a
later chapter.

3.4 Variables

Broadly-speaking, there are five categories of variables associated with classes: instance variables; class
variables; constants; local variables; parameters.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

50

Language Basics: Some Syntax and Semantics

3.4.1 Instance Variables

Instance variables are data elements or object references that can change in value. Instance variables are
usually declared at the beginning of a class definition. Recalling our Member class, if we ignore the
modifier private for the time being, it declares the following instance variables:

String firstName; // i.e. the type, followed by the identifier, followed by a semi-colon
String lastName;

 String userName;
 String password;
 MembershipCard card;

The first four types are Java String class types and the fourth is one of the class types of the themed
application. The four variables declared above are the instance variables of the Member class. Instance
variables are also known as non-static fields. Objects store their individual state in instance variables, so
called because their values are unique to the object. As the declarations above imply, instance variables
must be declared before they are used.

We can initialise an instance variable when it is declared, as in the next statement:

private String password = “xxxxxxxx”;

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iwsǥ�hI�T�
[�6�����>s�������$� �|
�D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

51

Language Basics: Some Syntax and Semantics

In the example of the Member class, such initialisation is not very useful: it is shown above merely as an
example. However there may be circumstances when initialisation at the same time as declaration of an
instance variable is useful. For example, for business reasons, we might wish to give all new members of
the Media Store a default password, which will be overwritten when the user provides his or her own.
Thus, the statement

private String password = “mediastore”;

declares and initialises the instance variable.

In practice, instance variables are often initialised by means of a constructor call. For example, one of the
constructors of the Member class might be:

public Member(String password) {

 this . password = password;

 } // end of constructor

which when invoked as follows

Member member = new Member (“xxxxxxxx”);

assigns the value “xxxxxxxx” to the variable password of the object whose reference is member.

A method call is typically used to change the value of an instance variable in an application. We know that,
from its class diagram, the Member class includes a method with the identifier setPassword, which when
invoked as in the following statement

member . setPassword(“xxxxxxxx”);

provides the setPassword method with an argument to work with. If we recall the body of the method, it
assigns the argument to the variable password, as follows:

password = pword;

The effect of this statement, which is executed when setPassword is invoked, assigns the value
“xxxxxxxxx” to the variable password.

In summary, there are a number of ways to assign a value to an instance variable:

 when it is declared;
 in the body of a constructor, by using an argument (or arguments) passed to

the constructor when it is called so that its invocation initialises one or more
instance variables;

 following its declaration, later in the code: typically in a method body.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

52

Language Basics: Some Syntax and Semantics

The next sub-section considers class variables.

3.4.2 Class Variables

We use instances variable when we want the fields in an object to have unique values, in other words to
have object-specific values. The set of values of an object’s instance variables is known as its state. Thus,
instance variables can be inintislised and, subsequently, modified so that the state of an object can be the
same or different from other objects of the class.

On the other hand, there are circumstances when we might want the value of a field to be shared, i.e. to be
the same, for all instances of the class. This category of variable is known as a class variable, a variable
specific to the class and not to instances of the class. One of the consequences of declaring class variables
is that if a Java programme changes the value of a class variable, its value changes for all instances. This
will be illustrated by an example in a moment.

Class variables, also known as static fields, are so called because the modifier static means that there is
only one copy of the value of the variable, irrespective of how many instances of the class are in existence:
individual objects do not have their own copy. The concept of a static variable begs a question: why would
we want to declare class variables?

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i$(Ǥ�c��T�Q[�6��ћe&�������$�'�}
��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

53

Language Basics: Some Syntax and Semantics

For example, in the themed application, we could declare a static variable in one of its classes that
allocates and keeps track of membership numbers. This class - it has the identifier MediaStore - keeps a
record of the next available membership number. We don’t want to record this value with every Member

object; instead, we keep a single record of it as a class variable in the MediaStore object.

The code that follows aims to illustrate some of the properties of class variables.

// Simplified version of the MediaStore class.
public class MediaStore {

 // Declare a class variable. The first member will have a membership number
 // of 1000.

private static int nextAvailableMembershipNumber = 1000;

// Define a method that registers a new member with the Media Store.
 public void addMember(String firstName, String lastName,

String userName, String password) {
 // The constructor for Member requires four parameters that are meant to be

// self-evident. The fifth parameter is the next available membership number.
// Hence, the call to getNextAvailableMembershipNumber is next.

 Member newMember = new Member(firstName, lastName,
userName, password, getNextAvailableMembershipNumber());

 // Increment the class variable.
 nextAvailableMembershipNumber++;

 } // End of addMember.

 public int getNextAvailableMembershipNumber() {

 // Get the last member from the file of members. This object is given the
 // reference lastMember. The Member class includes a method that
 // returns a member’s membership number: getMembershipNumber.
 // Get the membership number of the last member and increment it by 1.
 int lastMembersMembershipNumber =
 lastMember.getMembershipNumber();
 nextAvailableMembershipNumber =

 ++lastMembersMembershipNumber;
 // Thus the static member, nextAvailableMembershipNumber, has been
 // set to the incremented value of the most recent member who joined
 // the Media Store. Return the value of the next available membership number.
 return nextAvailableMembershipNumber;

 } // End of getNextAvailableMembershipNumber.

} // end of class definition

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

54

Language Basics: Some Syntax and Semantics

When new Member objects are created and inspected, it can be shown that their membership numbers are
in the sequence 1001, 1002, 1003 and so on.

Before we examine variables that are local to methods, we briefly consider constant types in the next
sub-section.

3.4.3 Constants

Constants are data items whose value cannot change. They are declared like this:

static final discount int = 10; // the standard discount for members of the Media Store is 10 %
 // if they have a good record of returning borrowed items

The term final means that the value cannot change.

3.4.4 Local Variables

A variable that is declared in the body of a method is said to be local to that method. When the method
completes its execution, all local variables are destroyed and are, therefore, said to be out of scope. Local
variables are only visible to the method in which they are declared; they are not accessible to the other
members of the class.

Unlike instance variables, local variables must be initialised by the Java developer; otherwise, the
compiler will complain. For example, consider a version of the setPassword method of the Member class:

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ip/���`��T����6�A��>!_�����$�'�~��@

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

55

Language Basics: Some Syntax and Semantics

public void setPassword(String pword) {

 String defaultPassword; // declare a local String variable
 password = pword; // as before

// add the String defaultPassword to the value of password
 password = password + defaultPassword;

// remaining code

 } // end of method definition

The method does not compile; the compiler’s message is: variable defaultPassword might not have been
initialized. However, the following version does compile:

public void setPassword(String pword) {

 String defaultPassword = null; // declare and initialise a local String variable to its
 // default value
 password = pword; // as before

// add the String defaultPassword to the value of password

 password = password + defaultPassword;

// remaining code

 } // end of method definition

The local variable in the method is initialised to its default value before it is used.

Remember that the default value of a String, or any object
reference, is null.

Local variables must be initialised when they are declared.

3.4.5 Parameters

Parameter variables are listed in the declaration of constructors, methods and try…catch blocks.
(try…catch blocks are examined in Chapter Four in An Introduction to Java Programming 2: Classes in
Java Applications.)

The declaration of a parameter consists of a type and an identifier. For example, an enhanced version of
the themed application includes a constructor for the Member class shown on the next page.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

56

Language Basics: Some Syntax and Semantics

 /**
 * Constructor for objects of class Member.
 *
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param userName The member's user name.
 * @param password The member's password.
 *
 */
 public Member(String fName, String lName, String uName, String pWord) {

 firstName = fName;
 lastName = lName;
 userName = uName;
 password = pWord;

 } // End of constructor.

The constructor declares four parameters, which are replaced at run-time with computable values known
as arguments when the constructor is called, typically from a main method, as follows:

Member memberOne = new Member(“David”, “Etheridge”, “Dylan”, “xxxxxxxx”);

The arguments passed to the constructor, when it is invoked, match the parameter list in its declaration.
Otherwise the compiler alerts the developer to an error.

One of the methods of the Member class is defined as follows:

 /** This method gives a membership card to a member of the Media Store.
 *
 * @return result A boolean to state whether the addition of a card is allowed.
 * @param card A parameter of the MembershipCard type.
 */
 public boolean setCard(MembershipCard card) {

 boolean result = true; // initialise a local variable
 // remainder of method body

return result;

 } // End of setCard.

The method would be invoked as follows:

// Let us assume that the class definition of the MembershipCard class has been written and
// compiled. Create a membership card

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

57

Language Basics: Some Syntax and Semantics

 MembershipCard card = new MembershipCard();
// and give it to the Member created above.

 memberOne . setCard(card);

We could now retrieve the member’s membership card so that we could carry out transactions with it,
as follows:

memberOne . getCard();

The problem with this method call is that is doesn’t actually achieve anything useful as it stands! We
know, from the class diagram in Chapter One, that this method returns an object of the type
MembershipCard, so the statement should – more usefully – read as follows:

 // Declare a local variable of the MembershipCard type.
 MembershipCard card = memberOne . getCard();

so that both ‘sides’ of the second statement are compatible in terms of types. In other words, the class type
assignment is compatible with the return type resulting from the call to getCard.

Java is a strongly-typed language. This means that the compiler
checks for class type compatibility and prevents incompatible
assignments at compile time.

Start improving employee retention & performance now.
Get your FREE reports and analysis on 10 of your staff today.

HIT YOUR
EMPLOYEE
RETENTION
TARGETS Amy, let’s just

discuss these action
points

Spot on - I’m all
fired up!! Looking
forward to next

quarter

Can’t believe
this only took me

5 minutes

Awesome! That
nails it for me...

a review with Performance Review Pro

We help talent and learning

& development teams hit

their employee retention

& development targets by

improving the quality and

focus of managers’ coaching

conversations.

GET MY REPORTS

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ip{���gO�T�S��6����>p������$�'�w���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

58

Language Basics: Some Syntax and Semantics

Now that we have access to an actual object of the MembershipCard type, it is in fact the card given to the
member in the statement

memberOne . setCard(card);

we can, if we wish, call methods of the MembershipCard object; for example:

card. getNoOnLoan(); // this method returns an int, so it can be called in a print statement

Parameters cannot be explicitly initialised in the declaration of a method or a constructor because they are
implicitly initialised to the arguments passed to the method or constructor when it is called. The parameter
variables of a method or a constructor cease to exist, i.e. they go out of scope, when the method or
constructor completes its execution. In the case of a method, its completion will return a value of type
identified in its declaration; in the case of a constructor, its completion returns an object reference to the
instance created.

Parameters are the variables declared in a method or a constructor
that are replaced at run-time by actual values, known as arguments,
when the method or constructor is invoked. When the method or
constructor is invoked, the arguments must match the parameters in
type and order, otherwise a compiler error ensues.

3.5 Operators

The following list summarises the operators available in the Java language.

Simple Assignment Operator
 = simple assignment operator

Arithmetic Operators
 + additive operator (also used for String concatenation)
 - subtraction operator
 * multiplication operator
 / division operator
 % remainder operator

Unary Operators
 + Unary plus operator; indicates positive value
 - Unary minus operator; negates an expression
 ++ Increment operator; increments a value by 1
 -- Decrement operator; decrements a value by 1
 ! Logical compliment operator; inverts the value of a boolean

Equality and Relational Operators
 == equal to
 != not equal to
 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

59

Language Basics: Some Syntax and Semantics

Conditional Operators
 && Conditional-AND
 || Conditional-OR

Type Comparison Operator
 instanceof compares an object to a specified type; its use returns a boolean

Source: http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Rather than give an example of every operator, it is probably more instructive for the learner to encounter
operators in context; most of them are likely to be reasonably intuitive.

However it will be instructive to give an example of the use of the instanceof operator, given that its
inclusion in the list implies that it is used to compare class types. We will encounter examples of using
this operator in the themed application in later chapters. For the present purposes, we can use this operator
in the following simple example, where we wish to find out the class of an object. Consider the following
code snippet:

 // retrieve an object reference for a member of the Media Store; find out its type
 if (memberOne instanceof Member)
 {
 // do something with the object whose reference memberOne is of the Member type
 }
 else
 {
 // do something else
 }

It can be argued that this example is rather contrived because we know that memberOne refers to a
Member object. Nevertheless the aim of the example is to show that if we are working with an object
reference and we are not sure of its type, the use of the instanceof operator is extremely valuable in that
we can find out the type before we embark on subsequent processing using the object that we are not sure
about. The code snipped above merely confirms that we are definitely working with a Member object by
using the instanceof operator in an if…else construct.

3.6 Summary

The principal focus of this chapter is on categories of variables; Chapter Four forms a pair with it in that it
focuses largely on methods.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

60

Methods: Invoking an Object’s Behavior

4. Methods: Invoking an Object’s Behavior

By now the learner will be familiar, to some extent, with method invocation from earlier chapters, when
objects of the Member class in the themed application are used to give some examples of passing
arguments to methods. Chapter Four goes into more detail about methods and gives a further explanation
about how methods are defined and used. Examples from the themed application are used to illustrate the
principal concepts associated with an object’s methods.

4.1 How do we get Data Values into a Method?

Chapter Three examines an object’s variables, i.e. its state or what it knows what its values are. An
object’s methods represent the behaviour of an object, or what is knows what it can do, and surround, or
encapsulate, an object’s variables. This section answers the question about how we get computable values
into methods.

As we know from previous chapters, a method is invoked by selecting the object reference for the instance
required. The general syntax of a method invocation can be summarised as follows.

object_refernece . methodName(param_1, param_2, …, param_X);

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i%)���g��T����6���֛>'X�����$�r�,Y�G

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

61

Methods: Invoking an Object’s Behavior

Referring, again, to the Member class of the themed application, we could instantiate a number of Member

objects (in a main method) and call their methods as in the following code snippet.

 // Instantiate three members; call the no-arguments constructor for the Member class.
 Member memberOne = new Member();
 Member memberTwo = new Member();
 Member memberThree = new Member();

// Call one of the set methods of these objects.
 memberOne . setUserName(“Bob”);
 memberTwo . setUserName(“Elvis”);
 memberThree . setUserName(“Joni”);

// Call one of the get methods of these objects in a print statement.
 System.out.println(The member’s username is: + memberOne . getUserName();
 System.out.println(The member’s useranme is: + memberTwo . getUserName();

System.out.println(The member’s username is: + memberThree . getUserName();

The screen output from executing this fragment of main is:

The member’s username is: Bob
 The member’s username is: Elvis
 The member’s username is: Joni

In short, we must ensure that we know which method we are calling on which object and in which order.

In the code snippet above, it is evident that setUserName expects a String argument to be passed to it; this
is because its definition is written as:

public void setUserName(Sting username) {

// body of method

 } // end of method definition

The single parameter is replaced by a computable value, i.e. an argument, when the method is invoked.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

62

Methods: Invoking an Object’s Behavior

 The general syntax of a method’s declaration is modifier return_type
method_name(parameter_list) exception_list

 The method’s definition is its declaration, together with the body of the method’s
implementation between braces, as follows:

 modifier return_type method_name(parameter_list) exception_list
 {
 // body of method
 // return statement (if any) is last
 }

The method’s signature is its name and parameter list.

It is in the body of a method where application logic is executed, using statements such as:

invocations: calls to other methods;
assignments: changes to the values of fields or local variables;
selection: cause a branch;
repetition: cause a loop;
detect exceptions, i.e. error conditions.

If the identifier of a parameter is the same as that of an instance variable, the former is said to hide the
latter. The compiler is able to distinguish between the two identifiers by the use of the keyword ‘this’, as
in the following method definition that we met in Chapter One:

public void setUserName(String userName) [

 this . userName = userName; // ‘this’ refers to the current object

 } // end of setUserName method definition

If, on the other hand, we wish to avoid hiding, we could write the method definition as follows:

public void setUserName(String uName) [

 userName = uName;

 }

where the identifier of the parameter is deliberately chosen to be different from that of the instance
variable. In this case, the keyword ‘this’ can be included but it is not necessary to do so.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

63

Methods: Invoking an Object’s Behavior

In both versions of the method setUserName, the value of the parameter’s argument has scope only within
the body of the method. Thus, in general, arguments cease to exist when a method completes its execution.

A final point to make concerning arguments is that a method cannot be passed as an argument to another
method or a constructor. Instead, an object reference is passed to the method or constructor so that the
object reference is made available to that method or constructor or to other members of the class that
invoke that method. For example, consider the following code snippet from the graphical version of the
themed application shown on the next page.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�isz���gH�T��	�6�����e!_���H��$�r�v\��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

64

Methods: Invoking an Object’s Behavior

// The constructor of the GUI takes a parameter of the MediaStore type, passed to it from
// main.
public MediaStoreGui (MediaStore mediaStore) {

// Initalise the instance variable mediaStore of the MediaStoreGui class.
 this.mediaStore = mediaStore;
 // the object reference with the identifier mediaStore is available to members of
 // the MediaStore class.

} // end of definition of constructor

The examples and discussion in this section are meant to raise a question in the mind of the learner: are
arguments passed by value or by reference? This question is addressed in the next sub-section.

4.1.1 Pass by Value versus Pass by Reference

All arguments to methods (and constructors) are, in Java, passed by value. This means that a copy of the
argument is passed in to a method (or a constructor) call.

The example that follows aims to illustrate what pass by value semantics means in practice: detailed code
documentation is omitted for the sake of clarity.

public class SomeClass {

 // declare an instance variable
 private String greeting;

 public void changeValue(int x) {
 x = x + 1; // the body of the method changes the value of parameter x
 System.out.println("x is " + x); // outputs the new value of x
 }

 public void setGreeting(String newGreeting) {
 greeting = newGreeting;
 }

 public String getGreeting() {
 return greeting;
 }

 public void setReference(String greeting) {
 // change the value of the argument greeting to refer to a different String

// object
 greeting = "Hello there!";
 this.greeting = greeting;

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

65

Methods: Invoking an Object’s Behavior

 }

 public String getReference() {
 return greeting;
 }

} // end of class definition

The test class follows.

public class TestSomeClass {

 public static void main(String [] args) {

 // create an instance of SomeClass

 SomeClass sc = new SomeClass();
 int x = 1234; // initialise a local variable
 sc.changeValue(x); // pass a copy of x into the method
 System.out.println("x is " + x); // output the value of local variable x;

 // it should still be 1234
 // create a new String object
 String greeting = new String("Bonjour");
 // pass it to setGreeting

 sc.setGreeting(greeting);
 System.out.println(sc.getGreeting());
 // pass it to setReference

 sc.setReference(greeting);
 System.out.println(sc.getReference());
 System.out.println(greeting);

 } // end of main

} // end of class definition

The output from executing main is:

x is 1235 // the method changeValue changes the value of x
x is 1234 // the original value of x in main is unchanged
Bonjour // the method calls one of the methods of SomeClass that changes the value
 // of one of its instance variables
Hello there! // the value of the argument refers to a different object as a result of the
 // method call
Bonjour // but the original reference declared in main refers to the original object

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

66

Methods: Invoking an Object’s Behavior

The method changeValue changes the value of the argument passed to it – a copy of x – but it does not
change the original value of x, as shown by the output. Thus the integer values 1235 and 1234 are output
according to the semantics of pass by value as they apply to arguments.

When a parameter is an object reference, it is a copy of the object reference that is passed to the method.
You can change which object the argument refers to inside the method, without affecting the original
object reference that was passed. However if the body of the method calls methods of the original object –
via the copy of its reference - that change the state of the object, the object’s state is changed for the
duration of its scope in a programme.

Thus, in the example above, the strings “Bonjour” and “Hello there!” are output according to the
semantics of pass by value as they apply to object references.

A common misconception about passing object references to methods or constructors is that Java uses
pass by reference semantics. This is incorrect: pass by reference would mean that if used by Java, the
original reference to the object would be passed to the method or constructor, rather than a copy of the
reference, as is the case in Java. The Java language passes object references by value, in that a copy of the
object reference is passed to the method or constructor.

The Java language uses pass by value semantics, in that copies of
arguments are passed to methods and constructors when arguments
are any of the primitive data types or a class type.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i!s���i��T�T��6��՛>w]������$�'�x��C

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

67

Methods: Invoking an Object’s Behavior

The statement in the box isn’t true when objects are passed amongst objects in a distributed application.
However, such applications are beyond the scope of this guide. For the purposes of the present guide,
the learner should use the examples above to understand the consequences of Java’s use of pass by
value semantics.

4.2 How do we get Data Values out of a Method?

In previous chapters, we have encountered a number of references to a method’s return type. In the
definition of a method, the return type is declared as part of the method’s declaration and its value is
returned by the final statement of the method.

For example, consider the following definition for one of the methods of the DvdMembershipCard class of
the themed application.

 /**
 * This method searches the array of available DVDs for a DVD by its catalogue number. If the
 * catalogue number doesn't exist, a suitable message is output.
 *
 * @param catNo A String representing the DVD's catalogue number.
 * @return dvd A reference to a Dvd object.
 */
 public Dvd findDvd(String catNo) {

 // Scan the array of DVDs for the one required.
 for (int i = 0; i < dvds.length; i++)
 {
 if ((dvds[i].getCatNo()).equals(catNo))
 {
 dvd = dvds[i];
 System.out.println("Found DVD: “ + dvd.getCatNo() + " " +
 dvd.getTitle());
 } // End of if block.
 } // End of for loop.

 if (dvd != null)
 {

 return dvd; // return statement
 } // End of if block.
 else
 {
 System.out.println("No such catalogue number.");

 return null; // return statement
 } // End of else block.

 } // End of findDvd method definition.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

68

Methods: Invoking an Object’s Behavior

It isn’t necessary for the reader to understand how the method works in detail. Rather, the purpose of the
example is to illustrate that the method’s return type – the Dvd class type – matches the final return
statement, a reference to an object of the Dvd class. While it may appear, at first sight, that there are two
return statements, only one of them will execute because they are in an if…else construct. Thus, the return
statement will either return a non-null object reference or a null object reference.

A method’s return type can be one of three types:

 ‘void’, if the method does not return a value
 one of Java’s primitive types
 a class type

The return statement in the second and third case must match the return type specified in the declaration of
the method in that it must return a value of the same type as the return type. There is no return statement if
the method is ‘void’ in that it does not return a value.

Some of the most common compiler errors encountered by learners of the Java language are to omit the
return statement if there is a return type, or include it if the method is ‘void’, or erroneously provide a
mismatch between the value of what is returned in the method’s final statement and the type declared in
the method’s declaration. Rather than give an example of each compilation error, it is left to the learner to
experience these errors – and correct them – when defining methods. In other words, dealing with this
kind of compiler error is best understood by experiencing it in context.

4.3 Method Overloading

Methods with the same name but with different parameter lists are said to be overloaded. The term
overloading, as it applies to methods, means that the method name has more than one meaning. This
concept begs a question: why would we want to overload methods? There aren’t any overloaded methods
in the themed application, so an example from the Java API is used to address this question.

Amongst the methods of the PrintStream class are the following variants of the print method shown on
the next page:

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

69

Methods: Invoking an Object’s Behavior

 void print(boolean b)
 Prints a boolean value.

 void print(char c)
 Prints a character.

 void print(char[] s)
 Prints an array of characters.

 void print(double d)
 Prints a double-precision floating-point number.

 void print(float f)
 Prints a floating-point number.

 void print(int i)
 Prints an integer.

 void print(long l)
 Prints a long integer.

 void print(Object obj)
 Prints an object.

 void print(String s)
 Prints a string.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iw)���0��T�T��6����>s^������$�#�+���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

70

Methods: Invoking an Object’s Behavior

It would be very inconvenient to invent a separate identifier for each variant of the print method; instead,
the same name is used and the methods are overloaded by dint of their differing parameter lists. The Java
compiler distinguishes amongst overloaded methods on the basis of their parameter lists: the method’s
return type is not considered when methods are overloaded. Thus the two method declarations that follow
are not overloaded because they have the same signature; they will generate a compiler error:

public void myPrintMethod(int someValue) { }

and

public int myPrintMethod(int someOtherValue) { }

The compiler highlights the second method declaration and outputs the message: myPrintMethod already
defined. In other words, the compiler cannot distinguish between the two methods.

As the list of print methods shown above implies, method overloading is typically used when variants of a
method accept data passed to it in various forms.

It is worth mentioning, at this point in the chapter, that constructors can also be overloaded. Constructors
are examined in the next chapter.

4.4 The Structure of a Typical Class Definition

The class definitions used as examples in this and previous chapters suggest that a typical class definition
comprises the following outline structure:

public class ClassName {

// Firstly, declare instance variables.
 // Secondly, define constructors.
 // Thirdly, define methods.

}

While this structure may appear, on the face of it, to be simplistic, it is used by the worldwide Java
developer community such that the three categories of class members, namely: instance variables;
constructors; methods are usually defined in that order by convention.

We can use this simple structure to summarise the main points made in this chapter, i.e. how do we invoke
an object’s methods. This is illustrated in Figure 4.1 below.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

71

Methods: Invoking an Object’s Behavior

Figure 4.1 Calling an object’s constructor and methods

Figure 4.1 shows a code snippet of a simple test class for the class whose definition is called MyClass. If
we assume that one of the constructors of objects of the type MyClass is a no-argument constructor and
that the class diagram of MyClass includes a no-argument method with the identifier someMethod, the
two statements of the code snippet for main that follow

 MyClass mc = new MyClass(); // instantiate an object of the MyClass type
mc . someMethod(); // call a method by referring to the object reference declared and

 // initialised in the first statement

return us to the introduction to the main theme of this chapter, namely: that we instantiate an object so that
we can invoke its methods.

The next chapter explains how we create objects by invoking their constructors.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

72

Classes and Objects: Creating and Using Objects

5. Classes and Objects: Creating and Using Objects

5.1 Invoking an Object’s Constructor

There are several examples in previous chapters that illustrate how constructors are used to instantiate
objects of a class. Let us recall the overall technique before we bring together a number of features of
constructors in this chapter.

One of the constructors for Member objects in the themed application is as follows:

 /**
 * Constructor for objects of class Member.
 *
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param userName The member's user name.
 * @param password The member's password.
 */
 public Member(String fName, String lName, String uName, String pWord) {

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iu}��5��T��^�6�����frX�����,�&�|���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

73

Classes and Objects: Creating and Using Objects

// initialise instance variables
firstName = fName;

 lastName = lName;
 userName = uName;
 password = pWord;
 // instances have access to static members
 // set the membership number by incrementing the next available membership number.

membershipNumber = ++Member.nextAvailableMembershipNumber;

} // End of constructor.

An object’s constructors have the same name as the class they
instantiate.

To access an object of the class Member in an application, we first declare a variable of the Member type
in a main method in a test class as follows:

 Member member;

The statement above does not create a Member object; it merely declares a variable of the required type
that can subsequently be initialised to refer to an instance of the Member type. The variable that refers to
an object is known as its object reference. The object that an object reference refers to must be created
explicitly, in a statement that instantiates a Member object as follows.

 member = new Member(“David”, “Etheridge”, “Dylan”, “xxxxxxxx”);

The two statements above can be combined as follows.

Member member = new Member(“David”, “Etheridge”, “Dylan”, “xxxxxxxx”);

When the Member object is created by using ‘new’, the type of object required to be constructed is
specified and the required arguments are passed to the constructor. The JRE allocates sufficient memory
to store the fields of the object and initialises its state. When initialisation is complete, the JRE returns a
reference to the new object. Thus, we can regard a constructor as returning an object reference to the
object stored in memory.

While objects are explicitly instantiated using ‘new’, as shown above for a Member object, there is no
need to explicitly destroy them (as is required in some OO run-time systems). The Java Virtual Machine
(JVM) manages memory on behalf of the developer so that memory for objects that is no longer used in an
application is automatically reclaimed without the intervention of the developer.

5.2 Object Construction and Initialisation of an Object’s State

In general, an object’s fields can be initialised when they are declared or they can be declared without
being initialised. For example, the code snippet on the next page shows part of the class declaration for a
version of the Member class:

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

74

Classes and Objects: Creating and Using Objects

// Declare instance variables.
 private String firstName;
 private String lastName;
 private String userName;

// Initialise the next variable to a literal value.
 private String password = “defaltPassword”;
 private int membershipNumber;
 // Initialise a class variable so that the first membership number is 100.
 private static int nextAvailableMembershipNumber = 100;
 // Declare an array used to store references to a member's two virtual membership cards.
 // (Arrays are explored in the next chapter.)
 private MembershipCard [] cards = new MembershipCard[2];
 // The next variable keeps track of the next available space in the array of cards.
 private int noOfCards;

The code snippet illustrates an example where some of the instance variables are initialised and some are
only declared. In the case of the latter type of declaration, the instance variable is initialised to its default
value when the constructor returns an object reference to the newly-created object. For example, the
instance variable noOfCards is initialised to 0 when the object is created.

Declaring and initialising none, some or all instance variables in this way if often sufficient to establish
the initial state of an object. On the other hand, where more than simple initialisation to literals or default
values is required and where other tasks are required to be performed, the body of a constructor can be
used to do the work of establishing the initial state of an object. Consider the following part of the
constructor for the Member class.

public Member(String fName, String lName, String uName, String pWord) {

 // initialise instance variables

firstName = fName;
 lastName = lName;
 userName = uName;
 password = pWord;

// remaining code of the constructor.

 } // end of definition of constructor

This constructor is used when simple initialisation of Member objects is insufficient. Thus, in the code
block of the constructor above, the arguments passed to the constructor are associated with four of the
fields of the Member class. The effect of the four statements inside the constructor’s code block is to
initialise the four fields before the constructor returns a reference to the object.

Constructors can, like methods, generate or throw special objects that represent error conditions. These
special objects are instances of Java’s in-built Exception class. We will explore how to throw and detect

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

75

Classes and Objects: Creating and Using Objects

Exception objects in Chapter Four in An Introduction to Java Programming 2: Classes in Java
Applications.

It is worthwhile being reminded at this point in the discussion about constructors that the compiler inserts
a default constructor if the developer has not defined any constructors for a class.

The default constructor takes no arguments and contains no code. It
is provided automatically only if the developer has not provided any
constructors in a class definition.

5.3 Overloading Constructors

We saw in the previous chapter that methods can be overloaded. Constructors can be similarly overloaded
to provide flexibility in initialising the state of objects of a class. For example, the following class
definition includes more than one constructor.

public class SetTheTime {

 private int hours;
 private int minutes;
 private int seconds;

 public SetTheTime() {
 // this constructor does nothing, so hours, minutes and seconds will be set to
 // their default value of 0
 }

 public SetTheTime(int h, int m) {
 // initialise two instance variables
 hours = h;
 minutes = m;
 }

 public SetTheTime(int h, int m, int s) {
 // call one of the other constructors
 this(h, m);
 }

 public void getTheTime() {
 System.out.println("The time is " + hours + ":" + minutes);
 }

} // end of class definition

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

76

Classes and Objects: Creating and Using Objects

The test class is as follows:

public class TestSetTheTime {

 public static void main(String [] args) {

 // call the no arguments constructor
 SetTheTime time1 = new SetTheTime();

 // this will create an object whose time will be set to 1245
 SetTheTime time2 = new SetTheTime(12, 45, 30);

 time1.getTheTime();
 time2.getTheTime();

 } // end of main

} // end of class definition

The output when main is executed is:

The time is 0:0 // as a result of calling the no-argument constructor
The time is 12:45 // as a result of calling one constructor from another

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�isz���7I�T�P\�6��ԛf#Z������$�'�-Z��

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

77

Classes and Objects: Creating and Using Objects

The example class – SetTheTime – is a simple illustration of a class which provides more than one
constructor. The example also shows that a constructor can be called from the body of another constructor
by using the ‘this’ invocation as the first executable statement in the constructor. Thus, in the example
above, the two argument constructor is called in the first statement of the three argument constructor.

5.4 Initialisation Blocks

Complex initialisation of fields can be achieved by using what is known as an initialisation block. An
initialisation block is a block of statements, delimited by braces, that appears near the beginning of a class
definition outside of any constructor definitions. The position of such a block can be generalised in the
following simple template for a typical class definition:

public class MyClass {

 // declare instance variables first

 // declare initialisation blocks next
{

 // code for such a block goes here
} // end of initialisation block

 // define constructors next

 // define methods next

} // end of class definition

An initialisation block is executed as if it were placed at the beginning of every constructor of a class. In
other words, it represents a common block of code that every constructor executes.

Thus far, in this study guide, we have only been able to work with single values of primitive data types
and object references. In the next chapter, we will find out how we can associate multiple values of types
with a single variable so that we can work with multiple values of primitives or object references in
an application.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

78

Collecting Data I

6. Collecting Data I

Chapter Six explores one of the ways in which we can collect data values or object references into a
single data structure known as an array. Other data structures are explored in Chapter Two (Collecting
Data II) in An Introduction to Java Programming 3: Graphical User Interfaces.

6.1 An Introduction to Arrays

Up to this point in the guide, we have encountered many examples of instance variables that refer to a
single value, using statements such as:

 private int value1 = 1;
 private int value2 = 2;
 private int value3 = 3;

and

private Member memberOne = new Member();
 private Member memberTwo = new Member();
 private Member memberThree = new Member();
 private Member memberFour = new Member();

Whilst this kind of declaration and initialisation is well understood, there are situations (in an application)
when we might want to manipulate a logical group or collection of primitive data values or object
references as a whole. For example, we might want to store the four Member objects instantiated above in
a file. In such an event we would have to copy the Member objects to the file using four Java statements,
one for each object. In order to make it easier to satisfy such a requirement, we need some kind of data
structure that holds our group of object references in such a way that the group can be referred to by a
single identifier.

For example if we could group the four object references for the Member objects instantiated above in
some way and give the group an identifier as if it were an instance variable, we will have met our general
requirement of manipulating multiple values of primitive data types or object references with a single
variable. This concept is illustrated in Figure 6.1 on the next page.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

79

Collecting Data I

Figure 6.1 A collection of Member objects

In the figure, the variable members refers to the group of four references to Member objects that have
been previously instantiated.

Fortunately in Java, as in most programming languages, a data structure that meets our requirement exists
in the form of an array.

An array is a data structure that holds multiple values of the
same type.

The fact that Java supports arrays raises a question: how do we work with arrays? The remainder of this
chapter aims to address this question.

6.2 Arrays as Data Structures

The previous section introduces arrays as concrete data structures that can be used to store a homogeneous
collection of the values of the same primitive data type or object references to instances of the same class
type. We can visualise an array as a collection of containers, into each of which we can place an element
of the type that the array is expecting.

Figure 6.2 shows an empty array and Figure 6.3 shows the array populated with elements of the same type.

Figure 6.2 A visual representation of an empty array

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

80

Collecting Data I

Figure 6.3 The array populated with elements of the same type

The array shown in Figure 6.4 is not supported in Java because one of the types is different from
the others.

Figure 6.4 A heterogeneous array

In the sections that follow, we will find out how we can place elements in an array and how, subsequently,
we can gain access to them.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�iw/���5��T��^�6�����frX�����,�&�|���

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

81

Collecting Data I

6.3 Declaring Arrays

The general syntax for declaring an array is as follows:

 type[] identifier;

Thus, we can have the following declarations:

 private Pineapple[] pineapples;
 private Banana[] bananas;
 private int[] someValues;
 private String[] dvdTitles;
 private Member[] members;

Statements such as those above do not create the array, they declare a variable and give it an identifier just
as if we are declaring an instance variable; the only difference is the inclusion of the pair of square
brackets [] to indicate that the variable is an array.

6.4 Creating Arrays

Arrays are created by using ‘new’, just as if we are instantiating an object. In fact, an array is an object so
it is perhaps not surprising that arrays are created by using ‘new’.

The general syntax for creating an array is:

type[] identifier = new type[size];

where size is the number of elements specified to be reserved (in memory) for the array. This attribute of
any array provides a public final variable of an array with the identifier length. Once the size of an array
has been specified, as in the statement in the box above, its length cannot be changed.

To create an array, we write a statement such as the following:

char[] alphabet = new char[26]; // ‘new’ returns a reference (alphabet) to an array of char

 // values
 String[] dvdTitles = new String[1000];
 Pineapple[] pineapples = new Pineapple[7]; // the array in Figure 6.3
 Member[] members = new Member[500]; // an array of references of the Member type.

The value placed between [and] must be provided by the Java developer.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

82

Collecting Data I

6.4.1 Initialising Arrays

All elements in an array are initialised to their default value until actual values are placed in array
positions. The next section explains how an array is populated.

6.5 Populating Arrays

When an array is populated with values, we can visualise it as shown in figures 6.4 and 6.5 on the
next page.

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ir.��aI�T�QY�6��՛>.�������$�$�{��D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

83

Collecting Data I

Figure 6.4 An array of integers of length = 7

Figure 6.5 An array of references to Member objects

Figure 6.6 redraws Figure 6.5 in such a way that the object references are more clearly seen as the
elements of the array.

Figure 6.6 null and non-null object references to Member objects in an array

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

84

Collecting Data I

In broad terms, there are three commonly-used ways to populate an array.

Population on Declaration

There is no need to use ‘new’ when this technique is used. The size of the array is determined from the
number of elements placed between { and }. For example, the statement

Member[] members = { memberOne, memberTwo, memberThree };

creates an array of length = 3 and populates it with object references. In such a statement, if any of the
object references placed between { and } are null, a null object reference is placed in the array as shown in
Figure 6.6 above.

Using a Loop

A loop can often be used to populate an array. A later chapter (Chapter Two in An Introduction to Java
Programming 2: Classes in Java Applications) includes an explanation of using loops in Java, its use in
the code snippets that follow is meant to be intuitive.

Consider the following example.

 int[] counter = new int[10];
 for(int i = 0; i < counter.length; i ++)
 {
 counter[i] = i; // the length of the array is 10
 }

The effect of the three statements between the (and) of the for loop executes the loop ten times, such that
the first value of i used within the { and } of the for loop is 0 and the final value is 9. When the code is
included in main, the values of the array elements output in a print statement are as follows:

0 1 2 3 4 5 6 7 8 9

Before we move on to look another simple example, it will be instructive to deliberately introduce a logic
error in the for loop above. Consider the modified code snippet.

 int[] counter = new int[10];
 for(int i = 0; i <= counter.length; i ++)
 {
 counter[i] = i; // the length of the array is still 10
 }

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

85

Collecting Data I

In the modified code snippet, the effect of the statements between the (and) of the for loop executes the
loop eleven times, because the first value of i (used within the { and } of the for loop) is 0 and the final
value is 10. When the code is included in main, the output that follows indicates that there is an error
when attempting to populate the array position whose index is 10.

0 1 2 3 4 5 6 7 8 9 java.lang.ArrayIndexOutOfBoundsException: 10

The length of the array is unchanged – it is still 10 – but the loop tries to place an integer with value 11
into the 11th position in the array; this position does not exist for this array and an error ensues. The error
occurs at run-time and is one of the most common errors experienced by learners when using arrays for
the first time.

When using a for loop to populate an array, the logic of the loop must be carefully checked in order to
avoid an ArrayIndexOutOfBoundsException type of error.

A for loop could be used to populate an array with object references, as shown in the next code snippet.

Member[] members = new Member[10];
 for(int i = 0; i < members.length; i ++)
 {
 members[i] = new Member(); // populate each array position with a reference to a
 // new Member object

}

The statement

i < members.length

between the pair of brackets () of the for loop ensures that the final value of i does not exceed the value of
the last index position in the array – i.e. it does not exceed 9 in this case.

The statement

members[i] = new Member();

in the code block of the for loop could have been written as follows:

Member member = new Member(); // i.e. the object reference is explicit
Members[i] = member;

The outcome is the same in both cases: we have placed a new Member object in the ith position of the
array. Given that this is done inside a for loop, we can re-use the identifier member each time the loop is
executed. Whichever way we look at it, we do not need to know the identifier of the object references in
the array. It is only when we retrieve an object reference from an array that we need to give it a reference
of the correct type so that we can invoke its methods. We will examine how we access array elements later
in this section.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

86

Collecting Data I

Populate an Array When Required

Individual array positions can be populated as and when required, as exemplified in the statements on the
next page.

Member[] members = new Member[10];
 members[0] = new Member();
 members[1] = new Member();

A shortened version of the MediaStore class of the themed application adds a new member to the Media
Store by calling one of the constructors of the Member class in a method, as shown in the code below.

public class MediaStore {

// Declare an array to store references to Member objects.
private Member [] members;
// The number of members who have joined the Media Store.

 private int noOfMembers;

// Initialise the size of the array of members for testing purposes.
 members = new Member[10];

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�i#x���4M�T�V^�6�C��f%^������$�z�w
�D

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

87

Collecting Data I

 /**
 * This method adds a member to the array.
 *
 * @param fName The member’s first name.
 * @param lName The member’s last name.
 * @param uName The member’s user name.
 * @param pWord The member’s password.
 */
 public void addMember(String fName, String lName, String

uName, String pWord) {

members[noOfMembers] = new Member(fName,
lName, uName, pWord);

 noOfMembers++;

 } // end of addMember

// remainder of the class definition

} // end of class definition

The instance variable noOfMembers, whose initial value is 0, is used to keep track of the next available
index value of the next empty position in the array. The effect of invoking addMember ten times places
the reference to the newly-created Member object in the next position in the array until it is full.

The use of the three techniques described above raises a question: how do we access array elements? This
will be addressed in a moment.

6.5.1 The Bounds of Array Indices

The examples and figures presented in previous sections aim to show that an array is bounded by the
index value 0 and (length – 1). As we have seen already, using an out of bounds index gives rise to a run-
time error in the guise of an ArrayIndexOutOfBoundsException object. (Chapter Four in An Introduction
to Java Programming 2: Classes in Java Applications explains how Exception objects are dealt with.)

6.6 Accessing Array Elements

At the end of Section 6.2, a question is raised: how do we access array elements? We have seen that
placing a value in an array is straightforward. However retrieving values (from an array) is less than
straightforward because we either need to know the index value of the position in the array of the element
we are seeking or, if we don’t know this value, we have to scan the array until we find what we are
looking for. (There are other data structures available in Java that makes it easier to find elements without
the need to know where in the data structure the element sought has been placed. Chapter Two in An
Introduction to Java Programming 3: Graphical User Interfaces explores some of these classes.)

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

88

Collecting Data I

Section 6.5 includes these statements

counter[i] = i; // place the value of i into the (i + 1)th position in the array
 members[i] = new Member(); // place the reference to the new Member object into the
 // (i + 1)th position in the array
 members[0] = new Member(); // place the reference to a new Member object in the first
 // position in the array
 members[1] = new Member(); // place the reference to a new Member object in the second
 // position in the array
 members[noOfMembers] = new Member(); // place the reference to a new Member object
 // in the position in the array whose index is
 // given by the current value of the variable
 // noOfMembers

It is evident from their use (in Section 6.5) that an array element is populated by placing the index value
between [and] and associating the array position with a value. Accessing an array element is achieved in
a similar way. For example, the statement

members[noOfMembers];

accesses the object reference of the Member object whose index is given by the current value of
noOfMembers. If the value of noOfMembers is equal to 5, the statement accesses the sixth element in
the array.

Similarly, the statement

someArray[2];

accessed the third element in the array whose identifier is someArray.

A common logic error often made by learners is to write statements such as

members[noOfMembers];

and

someArray[2]; // an array of integers

and wonder why nothing happens. In order to access and retrieve an element from an array, we declare
a variable of the compatible type and associate the array element with it, as follows for the two
statements above:

Member member = members[noOfMembers];

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

89

Collecting Data I

and

int someValue = someArray[2];

In the case of the first statement, we now have a variable that refers to the array element so that we can
work with this Member object and, for example, invoke its methods.

While it may seem that accessing an array element is obvious in that it requires only one line of code, it
should be remembered that the line of code above only make sense when we know where in the array to
find the element we are looking for. In some cases, we will know the value of the index position to access.
More often that not, though, we do not know this value and we have to search the array for the element we
are seeking. A simplified code snippet from one of the methods of the themed application provides an
example when such a search is required.

 // One of the buttons of the GUI is the login button for existing members.
// The purpose of this code block is to find the member in the array of members.

 // Capture the existing member's user name and password from the GUI and store these data in
// the variables named username and password. Concatenate the user name and password.
String searchString = userName + password;

 // Search the array of members for the combined user name and password.
// First, get the array of members.
Member[] existingMembers = mediaStore.getMembers();
// Search the array of existing members and compare the search string with each member's
// combined user name and password.

 for (int i = 0; i < mediaStore.getNoOfMembers(); i ++)
 {
 existingMember = existingMembers[i];
 String existingUserName = existingMember.getUserName();
 String existingPassword = existingMember.getPassword();
 String combinedNameAndPassword = existingUserName + existingPassword;
 if (searchString.equals(combinedNameAndPassword))
 {
 // Found existing member in the array of members.
 // Exit the for loop.

} // end of if block
else

 {
 // do something else

} // end of else block

 } // end of the for loop

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Java: The Fundamentals of
Objects and Classes

90

Collecting Data I

The statement

if (searchString.equals(combinedNameAndPassword))

uses the equals method of Java’s String class. The relevant page of the Java API is summarised below.

java.lang

Class String
java.lang.Object
java.lang.String

equals

 public boolean equals(Object anObject)

Compares this string to the specified object. The result is true if and only if the argument is not
null and is a String object that represents the same sequence of characters as this object.

Overrides:
equals in class Object

Parameters:
anObject - The object to compare this String against

Returns:
true if the given object represents a String equivalent to this string, false otherwise

The use of the equals method in the for loop enables the code to compare the two strings for each iteration
of the loop until an exact match is found.

We will explore the documentation that Java developers provide for their classes and the documentation
that is provided by Sun Microsystems Inc. – as exemplified by the extract from the API for the String

class shown above – in the next chapter.

6.7 Arguments Passed to the main Method

Before we move on to the next chapter, it is worthwhile reflecting that we now know enough about arrays
to be able to analyse fully the signature of main at this juncture. We have encountered the declaration of
main a number of times in previous chapters: it is

public static void main(String[] args)

The declaration of main can be deconstructed as shown on the next page.

�o��ĉH&9醭H�?��N�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: The Fundamentals of
Objects and Classes

91

Collecting Data I

 public main has the modifier public so that the JVM can access it and use it as the
 starting point of an application

 static defines main to be a class member

 void main does not return values of types

 String[] the single parameter is an array of String objects

The example code snippets that include main in previous chapters do not actually use the parameter args.
This raises a question: what is args used for?

The parameter args can be used to take an argument that is an array of String objects. For example, if we
were to execute a Java programme by using a batch file that is run by double-clicking a screen icon, we
are – in effect – executing a DOS command in the batch file such as the following:

C:\ > java MyClass

where the java part of the command executes a programme called java.exe.

�o��ĉH&9醭H�?��N�
�o��ĉH&9醭H�?��N��Cu��*�4�)
�ip/���`��T����6�A��>!_�����$�'�~��@

Java: The Fundamentals of
Objects and Classes

92

Collecting Data I

java.exe will run main, if there is a main method in the class MyClass. Thus, we can call main from the
DOS prompt.

On the other hand, we can include arguments in the DOS command and pass values directly into main, as
exemplified by the next command:

C:\ > java MyClass 192.168.1.2

The result of this command is to place the IP address into args[0] so that somewhere in the body of main

we can write:

String ipAddress = args[0];

to retrieve the String value stored in args[0].

The example shows how we can use the parameter defined for the main method to pass String arguments
directly into main. This is often useful when we need to pass values of, typically, fixed data into main so
that these data are made available to classes in an application. The example above shows how we can pass
the IP address of, for example, a server’s location into a client component of a client/server application.
This technique is used for some categories of distributed applications written in Java in cases where the IP
address of the server is fixed and can be hard-coded into a DOS command as shown above. If the IP
address of the server changes, the disadvantage of using the parameter args is that the batch file would
have to be re-written to take account of the new IP address.

