
David Etheridge

Java: Graphical User Interfaces
An Introduction to Java Programming

Download free books at

Download free eBooks at bookboon.com

2

David Etheridge

Java: Graphical User Interfaces
– An Introduction to Java Programming

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

3

Java: Graphical User Interfaces – An Introduction to Java Programming
© 2009 David Etheridge & Ventus Publishing ApS
ISBN 978-87-7681-496-0

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

4

Contents

Contents

1. The Input/Output Package
1.1 An Introduction to Streams
1.2 Categories of Streams and their Classes
1.3 Using Streams
1.4 Object Streams
1.5 Files and File I/O
1.6 Data Streams
1.7 Summary of Streams

2. Collecting Data II
2.1 The Java Collections Framework
2.2 The Core Collection Interfaces
2.3 Implementation Types
2.4 Operations, Methods, Iterators and Algorithms
2.5 Generics and the Collections Framework
2.6 Collections in the Themed Application
2.7 Summary of the Java Collections Framework

6
7
7
11
19
21
25
27

28
28
28
31
34
36
42
46

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���a<��td������I�M��S1�K?���U����h���

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

5

Contents

3. User Interfaces
3.1 What is a User Interface?
3.2 Client/Server Applications
3.3 The Construction of User Interfaces
3.4 A Visual Approach to GUI Design
3.5 Activating User Interface Components
3.6 The GUI for the Themed Application
3.7 Summary of Event Handling

4. Concurrency with Threads
4.1 An Introduction to Threads
4.2 Creating Threads
4.3 Using Threads in Java Applications
4.4 Summary of Threads

47
47
49
50
64
68
83
87

90
90
91
93
100

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���7f��v=��T���I�J�BS1�Hl��������;��F

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

6

The Input/Output Package

1. The Input/Output Package

Chapter One considers some of the classes of the java.io package. Java defines input and output (I/O) in
terms of classes known as streams. Streams provide system input and output in a way that isolates the
developer from the details about how an operating system provides access to system resources for the
purposes of I/O. Streams are not required for input and output when a graphical user interface (GUI) is
used to capture and display information in an application. Graphical user interface design is examined in
Chapter Three.

There are approximately 60 classes in the java.io package. Consequently, this guide does not aim to cover
every stream class. Instead, some of the main categories of streams are explained in general terms and
examples are provided of the use of specific types of streams in a practical situation.

The reader is referred to the java.io package of the API for the documentation associated with the many
stream classes provided by the Java language.

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���52��q8��_�@�I���FSi�N<ʼ����ǎ�l
�E

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

7

The Input/Output Package

1.1 An Introduction to Steams

A stream is an abstraction of the underlying mechanism that is used by an operating system to transfer
information into and out of a Java programme. The level of abstraction means that the developer uses
classes of the java.io package for I/O. As a consequence, I/O can be regarded as a high-level programming
activity that transparently maps onto the low-level mechanisms associated with system I/O.

A stream is a sequence of bits of information that is passed along a virtual path between a source and a
destination. An input stream provides a path from a source to a programme and, similarly, an output
stream is a path from a programme to a destination. Figure 1.1 visualises the general representation of
streams as paths between code and a source or a destination.

Figure 1.1 The source and destination associated with a stream

Sources and destinations of information include files, disks and networked resources; the information
passed along streams can take any form, such as objects, text, images and sound.

1.2 Categories of Streams and their Classes

Streams in the java.io package usually occur as input/output pairs and fall into one of three categories -
byte streams, character streams or object streams. This section looks at classes in the first of these two
categories in relatively general terms to give a flavour of their functionality and to encourage the reader to
refer to the API for the java.io package. A later section examines object streams.

1.1.1 Byte Streams

A byte streams carries a sequence of binary data and is one of two types, either an input stream or an
output stream. To read a byte stream in an application, one of the subclasses of the InputStream class is
used. An extract from the API displayed on the next page shows some of the input stream classes that are
subclasses of the abstract class InputStream.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

8

The Input/Output Package

java.io

Class InputStream
java.lang.Object

java.io.InputStream
All Implemented Interfaces:

Closeable
Direct Known Subclasses:

AudioInputStream, ByteArrayInputStream, FileInputStream, FilterInputStream,
ObjectInputStream

Table 1.1 below summarises the main functions of these InputStream types, as indicated by the
documentation for each class in the API.

Type Function

AudioInputStream Reads a specified audio format and length of audio file

ByteArrayInputStream Contains in internal buffer that contains bytes read from the stream

FileInputStream Inputs bytes from a file in a file system

FilterInputSteam: has a number of
subclasses

Contains some other input stream, which it uses as its basic source
of data, possibly transforming the data along the way or providing
additional functionality

ObjectInputStream Reads primitive data and objects previously written using an
ObjectOutputStream

Table 1.1 Some of the input streams

Some of the corresponding output stream classes that are subclasses of the abstract class OutputStream

are shown in the next extract from the API.

java.io

Class OutputStream
java.lang.Object

java.io.OutputStream
All Implemented Interfaces:

Closeable, Flushable
Direct Known Subclasses:

ByteArrayOutputStream, FileOutputStream, FilterOutputStream, ObjectOutputStream

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

9

The Input/Output Package

Table 1.2 below summarises the main function of these OutputStream types, as indicated by the
documentation for each class in the API.

Type Function

ByteArrayOutputStream Data is written into a byte array

FileOutputStream Writes data to a file

FilterOutputStream: has a number of
subclasses

Contains some other output stream, which it uses as its basic source
of data, possibly transforming the data along the way or providing
additional functionality

ObjectOutputStream Writes objects to a file for persistent storage

Table 1.2 Some of the output streams

The next sub-section presents a similar overview of some of the character streams.

1.2.2 Character Streams

The Java language uses the UTF–16 (Unified Transformation Format) 16 bit encoding to represent text
characters. The streams that carry text-based information are called readers and writers. To read a
character stream in an application, one of the subclasses of the Reader class is used. The following extract
from the API shows some of the readers that are subclasses of the abstract class Reader.

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���35��!:䴤W�B�I�O��Si�L;���T����=V�A

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

10

The Input/Output Package

java.io

Class Reader
java.lang.Object

java.io.Reader
All Implemented Interfaces:

Closeable, Readable
Direct Known Subclasses:

BufferedReader, CharArrayReader, InputStreamReader, StringReader

Table 1.3 summarises the main function of these readers, as indicated by the API.

Type Function

BufferedReader Reads text from a character-input stream, buffering characters so as
to provide for the efficient reading of characters, arrays, and lines

CharArrayReader This class implements a character buffer that can be used as a
character input stream

InputStreamReader An InputStreamReader is a bridge from byte streams to character
streams. It reads bytes and decodes them into characters using a
specified charset. The charset that it uses may be specified by name
or may be given explicitly, or the platform's default charset may be
accepted

StringReader A character stream whose source is a string

Table 1.3 Some of the readers

Some of the corresponding subclasses of the abstract class Writer are shown in the next extract from
the API.

java.io

Class Writer
java.lang.Object

java.io.Writer
All Implemented Interfaces:

Closeable, Flushable, Appendable
Direct Known Subclasses:

BufferedWriter, CharArrayWriter, OutputStreamWriter, PrintWriter, StringWriter

Table 1.4 on the next page summarises the main function of these writers, as indicated by the API.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

11

The Input/Output Package

Type Function

BufferedWriter Writes text to a character-output stream, buffering characters so as
to provide for the efficient writing of single characters, arrays, and
strings

CharArrayWriter This class implements a character buffer that can be used as a
character output stream

OutputStreamWriter An OutputStreamWriter is a bridge from character streams to byte
streams: Characters written to it are encoded into bytes using a
specified charset. The charset that it uses may be specified by
name or may be given explicitly, or the platform's default charset
may be accepted

PrintWriter Prints formatted representations of objects to a text output stream

StringWriter A character stream that collects its output in a string buffer, which
can then be used to construct a string

Table 1.4 Some of the writers

The next section gives some examples of using streams.

1.3 Using Streams

Although most applications use a GUI to input relatively small amounts of information to an application,
streams are very useful for testing the methods of classes in an application before such an interface is
constructed. On the output side of an application, object streams can be used to write objects out to a file
so that the data associated with an application takes on a persistent state. Streams are also extremely useful
when an application needs to output information to data storage devices or input data from them.

A general algorithm for using streams for I/O in an application can be expressed as follows:

1. Instantiate a stream object: this automatically opens the stream.
2. Read from or write to the stream in a try block.
3. Catch IOException objects (and any other exceptions that may

occur).
4. Close the stream.

An application typically uses more than one stream chained together, depending on whether a buffer or a
bridge or some other functionality is required: see tables 13.1 to 13.4 for a summary of the functionality of
streams. Chaining streams can be visualised as connecting pipes together, as you would do when
undertaking plumbing jobs at home, as shown in Figure 1.2. (The author strongly recommends that the
reader never attempt this kind of thing in your own home; instead, bring in a professional plumber to do
the work.)

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

12

The Input/Output Package

Figure 1.2 Chaining streams together

Chaining is achieved by passing a stream object into the constructor of another stream object, as will be
shown by the examples that are presented in sub-section 1.3.2 below. Before embarking on the examples
of chaining streams, sub-section 1.3.1 looks at how streams are used for screen output.

1.3.1 Screen Output

A number of examples in previous chapters use the statement

System.out.println(<parameter>);

to output the results of test classes to a computer’s screen.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���7`��q8��_�@�I���FSi�N<ʼ����ǎ�l
�E

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

13

The Input/Output Package

The System class includes a number of fields that are used for input and output. The static field with the
identifier out provides an output stream of the PrintStream type. The stream is automatically open and is
ready to accept output data.

The class PrintStream inherits from a subclass of OutputStream, as shown in the extract from the API.

java.io

Class PrintStream
java.lang.Object

java.io.OutputStream
 java.io.FilterOutputStream
 java.io.PrintStream

A PrintStream object adds functionality to its parent output stream, so that it can print primitive data to
the console. All characters printed by a PrintSteam object are converted into bytes using the platform's
default character encoding. One interesting and convenient feature of PrintStream objects is that they
never throw an IOException.

Standalone Java applications, such as those that use a dedicated main method for testing purposes, write a
line of output as follows:

System.out.println(data);

The print and println methods of the PrintStream class are overloaded for primitive data types.

If an object reference is passed to any of the variants of print or println, as in
System.out.println(objectReference);

the println method calls String.valueOf(objectReference) to return the object’s String value before it
behaves as though it invokes println with a String passed to it. In effect, the statement behaves as if it
invokes the toString method on objectReference.

In general, invoking toString on an object reference returns what is known as the String representation of
the object. It is good practice to override this method for all developer-written classes so that the result is a
representation of the object that is informative when invoked.

1.3.2 Keyboard Input

The static field with the identifier in of the System class is an InputStream object that can be used for
keyboard input. Given that InputStream is an abstract class, an appropriate subclass is automatically
instantiated when accessing the in field of System. This stream is already open and ready to supply input
data. The InputStream class has a read method that reads a byte of data and returns an int in the range 0
to 255. The int is cast to convert it to a char.

The example that follows shows how a byte is entered via the computer’s keyboard and output to the
computer’s screen.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

14

The Input/Output Package

import java.io.*;

public class Keyboard {

 public static void main(String[] args) {
 try
 {

System.out.print("Please press any key: ");
 char key = (char)System.in.read();
 System.out.print("The key pressed was: " + key);
 System.out.println("The class is: " + System.in.toString());
 }
 catch(IOException ioe)
 {
 // do something about the exception
 }
 } // end of main

} // end of class definition

Executing main results in the following output:

C:\ > java Keyboard
Please press any key: a
The key pressed was: a
The class is: java.io.BufferedInputStream@3e25a5

The output shows that selecting System.in.toString() returns the object reference of the object that is
automatically instantiated when referring to System.in and shows that the object is of the type
BufferedInputStream. The class BufferedInputStream is shown in the next extract from the API.

java.io

Class BufferedInputStream
java.lang.Object

java.io.InputStream
 java.io.FilterInputStream
 java.io.BufferedInputStream

We can conclude, therefore, that selecting System.in instantiates an object of the BufferedInputStream

type and closes the stream when it has been finished with.

The code for the Keyboard class (on the previous page) implies that invoking read should be included in a
loop to add each char to a String to, in effect, input a string of characters via the keyboard. However, the
code would have to detect when the last character has been entered in order to determine the end of
the loop.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

15

The Input/Output Package

In short, using System.in.read is not a particularly useful way to input data from the computer’s keyboard.
As an alternative, a number of streams can be chained together in order to read characters and strings and
numbers from the keyboard.

String Input via the Keyboard

The following class chains three streams in order to read characters from the keyboard. Firstly, System.in

is the byte stream that is used for keyboard input, as shown in the previous sub-section. Secondly,
System.in is connected to a stream of the InputStreamReader type to act a bridge between the byte stream
and a character stream. Thirdly, a buffer is required because keyboard input tends to be irregular.
Therefore, the InputStreamReader is connected to a buffer of the BufferedReader type. The readLine

method of BufferedReader reads, in the example below, a set of characters from the keyboard. When the
enter key is pressed, the method returns a String.

Chaining the three streams together is achieved by passing one stream object to the constructor of the next
stream in the chain, as shown in the class definition that follows and continues on the next page.

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���2a��rl��_�G�I�H��S1��h���U����k���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

16

The Input/Output Package

import java.io.*;

public class KeyboardInput {

 public static void main(String[] args) {
 // Instantiate a bridge stream and pass the object instantiated by System.in to

// its constructor.
InputStreamReader isr = new InputStreamReader(System.in);

 // Instantiate a buffered stream and pass the InputStreamReader to its
// constructor.
BufferedReader kbd = new BufferedReader(isr);

 try
 {
 System.out.print("Enter some characters and press “ +

 “return when finished: ");
 String s = kbd.readLine();
 System.out.println("The String was: " + s);
 // Close the initial stream; this will close all streams connected to it.
 kbd.close();
 }
 catch(IOException e)
 {
 e.printStackTrace();
 }
 } // end of main

} // end of class definition

The result of executing main is:

Enter some characters and press return when finished: Hello World
The String was: Hello World

Numerical Input via the Keyboard

System.in cannot be expected to distinguish numerical input from pressing any other of the keys on the
keyboard. The object instantiated by System.in reads the next byte of data entered via the keyboard when
its read method is invoked. When this object is chained, as in the code for KeyboardInput in the previous
sub-section, the readLine method of a BufferedReader returns a String.

Numerical input via the keyboard is relatively straightforward in that a String is returned in a similar way
to that used in the code for the KeyboardInput class. The String is then converted into the corresponding
primitive type.

The class definition shown on the next page illustrates this technique for integer input.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

17

The Input/Output Package

import java.io.*;

public class ReadInt {

 public static void main(String[] args) {
 try
 {
 BufferedReader kbd = new BufferedReader(new
 InputStreamReader(System.in));
 System.out.print("Enter an integer: ");
 String intStr = kbd.readLine();
 // Convert the String into its corresponding integer by calling one of
 // the methods of the Integer wrapper class.
 int number = Integer.parseInt(intStr);
 System.out.println("The number is " + number);
 }
 catch(IOException ioe)
 {
 // do something about it
 }

 } //End of main.

} // End of class definition.

The result of executing main is as follows:

Enter an integer: 123
The number is 123

The class definition shown on the next page shows a similar way to enter a double into a programme from
the keyboard.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

18

The Input/Output Package

import java.io.*;

 public class ReadDouble {

 public static void main(String[] args) {
 try
 {

BufferedReader kbd = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter a double: ");
 String dblStr = kbd.readLine();
 // The next two statements convert the String to a double.
 Double dblObj = Double.valueOf(dblStr);
 double number = dblObj.doubleValue();
 System.out.println("The number is " + number);
 }
 catch (IOException ioe)
 {
 // do something about it
 }
 } // end of main

} // end of ReadDouble

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���c7��&9ඤ��@�I�M�CSi�Hd������Үg���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

19

The Input/Output Package

As the examples show, it takes several lines of code to input primitive data values via the keyboard.
Fortunately, there are a number of classes in the public domain that make this task easier than that shown
in the examples above. One such class is EasyInput written by David J. Barnes. Non-static methods of the
EasyInput class carry out the required steps to enter primitive data values from the keyboard. For example,
the nextInt method of EasyInput returns an int value as follows.

 // Instantiate an EasyInput object.
EasyInput kbd = new EasyInput();

 int intEnteredAtTheKeyboard = kbd.nextInt();

That is all there is to it!

EasyInput can be downloaded from:

http://www.soft32.com/Download/free-trial/Easy_Input/4-227452-1.html

1.4 Object Streams

Section 1.2 mentions a third category of streams: object streams. Object streams are typically used in an
application when live objects are required to be written to a byte stream and either saved to a local file or
transferred across a network to a remote host. An OutputObjectStream object writes such an object to a
stream and an InputObjectStream object reconstitutes the object from the stream.

The process of translating an object into a stream of bytes is known as serialization, where it is important
to use the American spelling (for reasons that will be explained in the next paragraph); the reverse process
of reconstituting an object from an input stream is known as deserialization. The term ‘serialization’ is
usually used to describe the overall process of serialization and deserialization.

To enable an object to be serialized, it must implement the interface java.io.Serializable (spelt with a ‘z’).
The java.io.Serializable interface is a type of interface known as a tagged interface. A tagged interface,
such as the java.io.Serializable interface, does not declare any members. When java.io.Serializable is
implemented, its purpose is to alert the JVM that an object is serializable. Serializing an object to a file
saves the object’s state and deserializing the same object reconstitutes its saved state.

An interesting and vitally useful feature of object serialization is that when an object is serialized, an
object graph is actually serialized. Writing an object graph to an object stream means that all objects
referenced by the object being written to the stream are also written to the stream, as long as their class
definitions include the clause to implement the java.io.Serializable interface.

The next sub-section discusses an example, taken from the themed application, to illustrate how
serialization is used to maintain persistent data in the Media Store application.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

20

The Input/Output Package

1.4.1 Using Object Streams in the Themed Application

When a member joins the Media Store, the new member is provided with a (virtual) membership card that
is used to record the details about each DVD that the member takes on loan from the store. The object
references of new members are added to an array that is used to store the object references of all members
of the Media Store. Therefore, the array that stores the object reference to each member also stores an
object graph for each Member object. In the context of the themed application, the object graph for a
Member object includes references to the member’s DvdMembershipCard object which, in turn, includes
references to each Dvd object associated with the card. The classes DvdMembershipCard, Dvd and Member

implement java.io.Serializable.

The object that represents the Media Store of the type MediaStore includes a method for writing out the
array of members to a binary .dat file, as shown next.

/**
 * This method writes the array of members to a .dat file.

 */
 public void writeMembers() {

 try
 {
 // Create a stream to write data to a file. The String is the path to the .dat file.

 FileOutputStream fos = new
 FileOutputStream("C:\\Temp\\members.dat");

// Connect an object stream to the file stream.
 ObjectOutputStream oos = new ObjectOutputStream(fos);

 // Write the array of members to the object stream; getMembers returns the
 // array of members.
 oos.writeObject(getMembers());

 // Release resources.
 oos.flush();
 oos.close();
 fos.close();
 }
 catch (IOException ioe)
 {
 System.out.println("Error: " + ioe.getMessage());
 }

} // End of writeMembers.

The method is called after each card transaction so that the application’s data is persistent.

The corresponding method that reads the array of members into the application is shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

21

The Input/Output Package

/**
 * This method reads the .dat file of members.
 */

 public void readMembers() {

 try
{

 // The String is the path to the .dat file.
 FileInputStream fis = new FileInputStream("C://Temp//members.dat");
 // Connect an object stream to the file stream.

ObjectInputStream ois = new ObjectInputStream(fis);
 // Note the cast in the next statement; members is a variable of the Member []

// type.
 members = (Member [])ois.readObject();
 // Release resources.
 ois.flush();
 ois.close();
 fis.close();
 }
 catch (IOException ioe)

{
 System.out.println("Error: " + ioe.getMessage());

 }
 } // End of readMembers.

The best that the compiler can promise is to return an object of the Object class when the readObject

method of the ObjectInputStream class is invoked; it does not know – at compile time – what type of
object is read from the stream. Hence there is a cast in the statement that invokes readObject.

Judicious use of the pair of methods writeMembers and readMembers serializes the object graph
associated with the array of Member objects and provides a persistent data layer in the themed application.
Thus, data about members is stored externally to the application to a .dat file on (the author’s) C: drive.

1.5 Files and File I/O

File objects and file streams are useful when an application needs to write data to a file and read data from
a file, where the file (or files) are used for persistent data associated with the application.

The activities associated with files and file I/O involves the following tasks: creating file objects; using
utilities for file objects; reading and writing with file streams.

1.5.1 Creating File Objects

An instance of the File class is an abstract representation of the path name of a file and may or may
not represent an existing file. For example, the following class definition compiles whether the file
exists or not.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

22

The Input/Output Package

import java.io.File;

public class Files {

 public static void main(String[] args) {
 File myFile = new File("C:\\myfile.txt");
 } // end of main

} // end of class definition

If the file does not exist at the path specified and if the file object with the reference myFile is selected in
subsequent code, a FileNotFoundException is thrown.

1.5.2 File Tests and Utilities

If the file does exist, there are several tests and utilities that are available as methods of the File class. The
class that follows illustrates some of these tests and utilities: try … catch blocks are omitted for the sake
of brevity.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���0`��/m������I�L�OS1�I?�︷�����n���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

23

The Input/Output Package

import java.io.File;

public class Files {

 public static void main(String[] args) {
 File myFile = new File("C:\\myfile.txt");
 System.out.println(myFile.getName());
 System.out.println(myFile.getPath());
 System.out.println(myFile.exists());
 } // end of main

} // end of class definition
The result of executing main is.

myfile.txt
C:\myfile.txt
true

1.5.3 Reading and Writing with File Steam Classes

The File streams - FileInputStream and FileOutputStream – and File readers/writers – FileReader and
FileWriter – are used to read from and write to a file.

A FileReader object can be used to read character streams, as illustrated by the following code. A
BufferedReader object is connected to the FileReader object used so that its readLine method can
be invoked.

import java.io.*;

public class FileRead {

 public static void main(String[] args) {
 BufferedReader br = new BufferedReader (
 new FileReader("c:\\myfile.txt"));
 String inStr = br.readLine();
 System.out.println("The contents of the file are: " + inStr);
 } // end of main

} // end of class definition

Executing main displays the contents of the existing file named myfile.txt, as follows:

 The contents of the file are: Hello World

Similarly a FileInputStream object can be used to read a byte stream, as illustrated by the code that
follows on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

24

The Input/Output Package

import java.io.*;

public class FileRead {

 public static void main(String[] args) throws IOException {
 FileInputStream fis = new FileInputStream("c:\\myfile.txt");
 InputStreamReader isr = new InputStreamReader(fis);
 BufferedReader kbd = new BufferedReader(isr);
 String s = kbd.readLine();
 System.out.println("The contents of the file are: " + s);

 } // end of main

} // end of class definition

Executing main displays the contents of the same file named myfile.txt, as follows:

 The contents of the file are: Hello World

Writing to a file is illustrated by the next example, in which a FileReader object is used to read from an
existing text file and a FileWriter object is used to write its contents to another file. The FileWriter object
is connected to a PrintWriter object so that its println method can be invoked.

import java.io.*;
public class ReadAndWrite {

 public static void main(String[] args) {
 // Read from an existing file.
 BufferedReader fIn = new BufferedReader

(new FileReader("c:\\myfile.txt"));
 String inStr = fIn.readLine();

 // Write the contents to another initially empty file.
 File file = new File("c:\\mynewfile.txt");
 PrintWriter out = new PrintWriter(new FileWriter(file));
 out.println(inStr);
 out.close();
 } // end of main

} // end of class definition

Opening the files myfile.txt and mynewfile.txt demonstrates that the contents of the former file are written
to the latter file.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

25

The Input/Output Package

The problem with the simple class ReadAndWrite shown above is that writing to the file mynewfile.txt
overwrites its existing contents. To append to a file, one of the constructors of the FlieWriter class takes a
boolean which if set to true writes text to the end of the file. The modified statement of the class
ReadAndWrite

PrintWriter out = new PrintWriter(new FileWriter(file, true));

results in the contents of myfile.txt appended to the contents of mynewfile.txt.

Random Access Files

The Java statement displayed at the end of the previous sub-section implies that there are constructors for
the FileWriter class that give the developer s degree of control over writing to a file. The
RandomAccessFile class is more sophisticated than the FileWriter class in that it provides a movable
pointer to its content. Methods of the RandomAccessFile class provide read/write operations under the
control of the pointer and give the developer a high degree of control when working with files that form
the persistent data component of an application. The reader is referred to the API for further details about
this class.

1.6 Data Streams

Data streams are used to transmit the binary data of primitive data types. A DataInputStream object reads
primitive data types from an underlying input stream; a DataOutputStream object writes primitive data
types to an output stream. An application can use data streams in tandem so that a data output stream
writes data that can be subsequently read back in to the application by a data input stream.

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���0`��v=��U���I����S1�Ho�ﹲ�����k��G

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

26

The Input/Output Package

The example that follows is a simple illustration of the use of a pair of data streams. The output data
stream writes an int value to a file and the input data stream reads the value back in and outputs it to
the screen.

import java.io.*;
public class DataStreams {

 public static void main(String[] args) {
 // Declare local variables.
 DataOutputStream out = null;
 DataInputStream in = null;

 try
 {
 FileOutputStream fos = new
 FileOutputStream("C:\\mydatafile.dat");
 out = new DataOutputStream(new BufferedOutputStream(fos));
 // write out an int
 out.writeInt(1234);
 out.close();
 }
 catch(IOException e) { }

 try
 {
 FileInputStream fis = new
 FileInputStream("C:\\mydatafile.dat");
 in = new DataInputStream(new BufferedInputStream(fis));
 // read in the int that was previously written out
 int i = in.readInt();
 in.close();
 System.out.println("The file contents are: " + i);
 }
 catch(EOFException e) { }
 catch(FileNotFoundException f) { }
 catch(IOException io) { }

 } // end of main

 } // end of class definition

It should be noted that the writeInt method matches the readInt method in the class above. In general,
write and read methods used to write and read primitive data types are matched in this way.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

27

The Input/Output Package

A further point to note is that the DataInputStream object has a very convenient way to detect the end of
the file that it is reading; its read methods catch an EOFException exception instead of testing for the
return of an invalid value of the primitive being read.

1.7 Summary of Streams

As is evident from the overall content of this chapter, there are very many streams in the java.io package.
The chapter attempts to summarise most of the main types of streams and provides examples so that the
reader can begin to understand how streams are used for specific tasks in an application. There are a
number of stream types that are not addressed by the chapter. However, it is to be hoped that the reader
gains sufficient understanding of those that are explained and illustrated by example so that further
investigation of the API for the java.io package can be undertaken with a degree of confidence in the
knowledge of the essential principles of using Java streams.

One final point is worth emphasising here: most of the methods provided by stream classes throw
IOException objects, as indicated by the documentation for stream classes in the API for the java.io

package. Whilst some of the examples presented in this chapter may have omitted to either declare or
catch this type of exception for the sake of brevity, the reader should always write code that invokes
methods provided by streams to catch IOException objects if the documentation states that the methods
throws this type of exception.

Before the guide delves into graphical user interfaces (GUIs) in Chapter Three, the next chapter examines
a number of data structures that can be used to store primitive data values or object references as an
alternative to the humble array.

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���1=��'8��^�B�I�O�GSj��j�ﹶ�����lU��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

28

Collecting Data II

2. Collecting Data II

Chapter Two examines some of the classes of the Java Collections Framework in order to explore more
flexible data structures than the humble array.

2.1 The Java Collections Framework

Chapter Six in An Introduction to Java Programming 1: The Fundamentals of Objects and Classesshows
how arrays are used to store primitive data types or object references and, in doing so, highlights one of
the drawbacks of using an array to retrieve such data. When an element is required to be retrieved from an
array, the position in the array where the element is stored – i.e. its index value plus one – must be
established so that the element can be found. If, as is likely, the position of an element in an array is not
known in advance, the array must be searched until the element is found. Java’s Collections Framework
brings together a number of interfaces and classes that can be used to create a variety of data structures,
some of which make storage and retrieval of data elements easier than is the case when using arrays for
this purpose.

A collection type, sometimes called a container, is an object that groups multiple data elements into a
single entity. The Java Collections Framework is a unified architecture for collection types, comprising a
number of interfaces and implementations.

2.2 The Core Collection Interfaces

The core collection interfaces of the Java Collections Framework form a hierarchy of two separate trees.
The following simplified extract from the Java API shows the hierarchy of the core interfaces that
implement the Collection interface, the root interface of the hierarchy.

java.util

Interface Collection<E>
All Known Subinterfaces:

List<E>, Queue<E>, Set<E>, SortedSet<E>

A SortedSet implements the Set interface, as indicated in the extract from the API shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

29

Collecting Data II

java.util

Interface SortedSet<E>

Type Parameters:
E - the type of elements maintained by this set

All Superinterfaces:
Set<E>

The reader will have noticed the presence of an element of Java syntax immediately following the name of
the interfaces listed in the extracts from the API shown above. The presence of <E> indicates that the
interface is generic; we will return to this concept later (in this chapter). For the present, it is sufficient to
state that when an object that implements one of the collection interfaces is instantiated, the developer
should specify the type of object contained in the collection. We will explain the reasoning behind this
statement in due course.

The Map interface is contained in a separate tree from the Collection interface, as shown in the next extract
from the API. Although Map does not extend from Collection, as the hierarchy shows, the concepts and
methods of Map and Collection are sufficiently similar to regard the Map interface as a member of the
Collections Framework.

java.util

Interface Map<K,V>
Type Parameters:

K - the type of keys maintained by this map
V - the type of mapped values

All Known Subinterfaces:
SortedMap<K,V>

One of the benefits of implementing the Map interface is that the implementing data structure can store
name-value pairs. For example, a HashMap object implements the Map interface and could be used to store
object references with an associated String key. We will see an example of using name-value pairs in the
themed application later in this chapter.

The interfaces listed in the extracts from the API shown above form a collection of abstract data types that
are declared as implementation types at compile time. For example, the ArrayList class implements the List

interface and is instantiated as shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

30

Collecting Data II

List< String > list = new ArrayList< String > ();

The syntax < String > determines that the List stores String objects. Instantiating a collection in this way
means that a collection can be manipulated independently from the details of its implementation.

For example, the statement above could be re-written as

List< String > list = new LinkedList< String > ();

Subsequent code that refers to the object reference list does not have to change as a result of changing the
implementation type from an ArrayList to a LinkedList; both of these types implement the List interface.

We will explore some of the implementation types in a later section.

2.2.1 The Core Interfaces

The purpose of this sub-section is to describe briefly the core interfaces of the Collections Framework.

The Collection Interface

Java does not provide any direct implementations of the Collection interface; instead, it provides
implementations of the subinterfaces List, Queue and Set.

The List Interface

A List is an ordered collection of elements that can contain duplicate elements. Code that uses a List has
control over where in the list each element is inserted and accesses elements by their index position in a
similar fashion to an array.

The Queue Interface

A Queue is typically used to store elements when their order matters.

The Set and SortedSet Interfaces

A Set is a collection that cannot contain duplicate elements. A SortedSet is a Set that maintains its
elements in their natural order.

The Map and SortedMap Interfaces

A Map maps keys to values; it cannot contain duplicate keys. Each key in a Map can only map to one value.
A SortedMap is a Map that maintains its key-value mappings in ascending key order.

The next sub-section examines some of the implementation classes that implement the core interfaces.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

31

Collecting Data II

2.3 Implementation Types

Concrete implementation types are the actual data structure objects that implement the core interfaces.
Figure 2.1 below summarises the types that implement the core interfaces; the columns indicate the
storage technology that is used in the concrete implementation.

Figure 2.1 General-purpose implementations of the core interfaces

The API can be used to find out the details of each implementation. For example, an ArrayList is a
resizable array implementation of the List interface.

LinkedHashMap TreeMap HashMapMap

Queue

LinkedList ArrayList List

LinkedHashSet TreeSet HashSet Set

Hash table
+ Linked list

Linked
list

TreeResizable
array

Hash
table

ImplementationsInter-
faces

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���?7��%l��V�@�I�H�FS0��n�ﹶP����8Q��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

32

Collecting Data II

2.3.1 Constructing a General-Purpose Implementation

As a rule, the Java developer ‘programmes’ to the interface type, rather that to the implementation type.
This approach gives the developer enormous flexibility by working with a reference to an interface, rather
than directly with a concrete implementation. The choice of implementation type is usually a function of
performance and is informed by the information provided in the API about the classes listed in Figure 2.1.

For example, let us assume that an application requires some kind of list of elements. The declaration of
the implementation is assigned to a variable of the corresponding interface type, as in the statement

List< E > list = new ArrayList< E >();

Subsequent code that uses the object reference list is independent of implementation because the code
refers to the collection by its interface type, rather than by its implementation type. The flexibility that this
approach provides can be illustrated by the following statement, where it has been decided to change the
implementation type by changing only the constructor:

List< E > list = new LinkedList< E >();

Only one line of code needs to be changed; subsequent statements that include the reference list do
not change.

The practice of changing only the line of code that calls the constructor of the implementation class is
illustrated in the following example: the relevant statement is in a larger font. The first class creates a
HashSet and the second creates a TreeSet. In both cases, the elements of the collection are output using
two different techniques.

import java.util.*;

 public class MyHashSet {

 public static void main (String [] args) {
 // Create a String array.
 String [] anArray = { "deep", "fried", "Mars", "bar“ };
 // Instantiate an implementation object.

 Set< String > set = new HashSet< String >();
 // Add the elements of the array to the collection.
 for (int i=0; i < anArray.length; i ++) {
 set.add(anArray[i]); // Invoke the add method of the
 // collection.
 }
 // Output the elements of the collection using a for … each construct.
 for (Object o : set) System.out.print(o + “ “);
 // Output the elements using an iterator. (Iterators are discussed later.)
 Iterator< String > i = set.iterator(); // Get an iterator for the
 // collection.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

33

Collecting Data II

 while(i.hasNext()) { // while there are elements
 System.out.print(i.next() + “ “); // get the next element
 } // end while
 } // end main

 } // end of class definition

The second, similar class in shown next.

import java.util.*;

 public class MyTreeSet {

 public static void main (String [] args) {
 String [] anArray = { "deep", "fried", "Mars", "bar“ };
 Set< String > set = new TreeSet< String >();
 for (int i=0; i < anArray.length; i ++) {
 set.add(anArray[i]);
 }
 for (Object o : set) System.out.print(o + “ “);
 Iterator i = set.iterator();
 while(i.hasNext()) {
 System.out.print(i.next() + “ “);
 } // end while
 } // end main

 } // end of class definition

Executing main for the first class displays the following output:

 Mars fried bar deep

Mars fried bar deep

and for the second class

 Mars bar deep fried

Mars bar deep fried

It is left as an exercise for the reader to investigate why the output is not in the same order as the String

array and why traversing the HashSet and TreeSet collections give different results.

A close examination of the code for the two classes above shows that a number of collection methods are
used to produce the output. The next section explores some of the main operations associated with the
core interfaces.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

34

Collecting Data II

2.4 Operations, Methods, Iterators and Algorithms

The core interfaces provide a number of operations. These operations carry out basic or bulk tasks
associated with the elements of a collection and form a set of similar methods provided for each type.
Commonly-used methods typically include methods to add or remove an element from a collection. For
example, the add method of Set is used in the classes discussed at the end of the previous section.

An object that implements the Iterator interface allows the elements of a collection to be traversed,
typically for searching or output purposes. The iterator method of the collection returns an Iterator, as
illustrated in the following code block in the classes discussed at the end of the previous section.

Iterator i = set.iterator(); // Get the iterator.
 while(i.hasNext()) { // Traverse the collection if there are elements.
 System.out.print(i.next() + “ “); // Output the next element.
 } // Exit the loop when i.hasNext returns false.

The iterator has only three methods: hasNext, next and remove, two of which are illustrated in the code
block displayed above. It is important to note that the remove method actually removes the last element
returned by the iterator. Therefore, care should be taken when invoking the remove method on a collection.

Finally, in this sub-section, we will examine the polymorphic algorithms associated with the
Collections class.

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to

BrowserTexting.com

and start texting from
your computer!

FREE
 30 days trial!

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���?4��'=��P���I�K�ES0�Hi��������=���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

35

Collecting Data II

The polymorphic algorithms take the form of static methods of the Collections class that take a collection
object as an argument. The reader is advised to refer to the API for further details about the many methods
of this class; it is a direct descendant of the Object object, as shown below.

java.util

Class Collections
java.lang.Object

java.util.Collections

The next example illustrates one of the algorithms in action.

import java.util.*;

public class TestCollections {

 public static void main (String [] args) {

 String [] anArray = { "deep", "fried", "Mars", "bar" };
 List< String > list = new ArrayList< String >();
 for (int i=0; i < anArray.length; i ++) {
 list.add(anArray[i]);
 }

 for (Object o : list) System.out.print(o + " ");

 System.out.println("\n");
 // Reverse the order of the elements in the List.

Collections.reverse(list);
 for (Object o : list) System.out.print(o + " ");

} // end of main

} // end of class definition

The result of executing main is

deep fried Mars bar

 bar Mars fried deep

as expected.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

36

Collecting Data II

2.5 Generics and the Collections Framework

It is evident from the code and API documentation presented in previous sections that collection types are
generic, as pointed out in Section 2.2 where the Java syntax < E > is first encountered. Before we
investigate how generics are used in the Collections Framework, we will digress and establish the basics
of generics in general classes in the next sub-section.

2.5.1 Generics in Java Classes

Generics is a relatively new concept in Java. However, as previous sections in this chapter demonstrate,
we need to know enough about generics in order to use Java’s Collection Framework correctly.

As we saw in Section 3.5 in An Introduction to Java Programming 2: Classes in Java Applications,
casting an object’s type satisfies the Java compiler. However if the actual types used at run- time haven’t
been correctly anticipated by the developer, this is likely to give rise to a run-time ClassCastException.
For obvious reasons, we wish to avoid run-time errors that derive from incorrectly applying the run-time
rules for type casting when writing code. Generics is a mechanism that avoids such run-time exceptions.

Generics are an enhancement to Java’s type system; it provides compile-time type safety in that it
‘catches’ lack of type correctness at compile-time rather than at run-time. Generics eliminates the
drudgery of casting and, potentially, making errors in casting types. In short, generics avoids run-time
ClassCastExceptions and add stability and robustness to code.

Perhaps an effective way to introduce generics is to compare a straightforward class definition with its
generic version. The Java tutorial introduces the concept of a generic class by beginning with a simple,
non-generic class named Box. This class provides two methods: add, which adds an object to the box, and
get, which retrieves it, as follows:

 // Source: The Java Tutorial
 // http://java.sun.com/docs/books/tutorial/java/generics/generics.html

public class Box {

 private Object object;

 public void add(Object object) {
 this . object = object;
 }

 public Object get() {
 return object;
 }

 } // end of class definition

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

37

Collecting Data II

Given that the methods of Box accept or return an object of the Object type, we are free to pass in an
object of any type, but not a primitive type. However, should we wish to restrict the type of the attribute
with the identifier object to a specific type such as an Integer object, invoking get would require a cast
because the compiler can only commit to return an object of the Object type. A test programme would
look something like the one shown next.

public class TestBox {

// only pass objects of the Integer type into the Box object
 public static void main(String[] args) {
 Box integerBox = new Box();
 integerBox.add(new Integer(10));
 // note the cast; get returns an Object object

 Integer someInteger = (Integer)integerBox.get();
 System.out.println(someInteger);
 }

 } // end of test class

The cast from Object to Integer is correct because we know the return type of the get method. The
compiler trusts that the cast is correct; it knows nothing about the actual type returned when the get

method is invoked.

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���1=��'8��^�B�I�O�GSj��j�ﹶ�����lU��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

38

Collecting Data II

Let us imagine that a careless programmer passes an object of the wrong type to the add method. The
resulting test class is as follows.

public class TestBox {

 public static void main(String[] args) {
 Box integerBox = new Box();
 integerBox.add(new String(“Hello World”));
 // the next statement compiles, but throws an exception at run-time
 Integer someInteger = (Integer)integerBox.get();
 System.out.println(someInteger);
 }

 } // end of test class

The code for the test class will compile but will give rise to a run-time error as follows:

 Exception in thread "main" java.lang.ClassCastException:
 java.lang.String cannot be cast to java.lang.Integer

It could be argued that no sensible programmer would ever write a test class such as the second one shown
above: the error is too obvious. The purpose of the simple example is to emphasise that in a substantial
programme where, for instance, similar add and get methods are separated by very many lines of code, it
is relatively easy to fall prey to cast errors. The obvious solution is to ensure that compile-time and run-
time rules for casting types are followed correctly, as illustrated in Section 3.5 in An Introduction to Java
Programming 2: Classes in Java Applications.

Despite the obvious solution that relies on the developer taking note of method descriptions and
documentation to make correct type casts, generics provides an alternative way to avoid a
ClassCastException at run-time. If the Box class is designed with generics in mind, the error in the second
test class is avoided at compile-time and does not cause a run-time exception.

In essence, the non-generic class declaration for a class such as

public class SomeClass {

is modified so that it becomes a generic class

public class SomeClass<T> {

where T is a type variable; it can be used anywhere in the body of the class definition. (This technique can
also be applied to interfaces.)

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

39

Collecting Data II

The on-line Java tutorial goes on to explain the generic Box class by updating the Box class to use generics.
A generic type declaration is created by changing the code "public class Box" to "public class Box<T>“.
This introduces a type variable named T that can be used anywhere inside the class.

The tutorial makes the point that we can think of T as a special kind of variable, whose ‘value’ will be
whatever type is passed in. This can be any class type, any interface type, or even another type variable; it
cannot be any of the primitive data types. In this context, T is said to be a formal type parameter of the
Box class. The generic version of the class named Box:

public class Box< T > {
 private T t; // T stands for "Type“
 public void add(T t) {
 this . t = t;
 }

 public T get() {
 return t;
 }
 } // end of class definition

All occurrences of the type Object in the non-generic class definition have been replaced with type T. To
reference this generic class in a test class, a generic type invocation is performed, which replaces T with
some concrete value, such as the Integer type, as in

Box< Integer > integerBox;

We can think of a generic type invocation as being similar to a normal method invocation, but instead of
passing an argument to a method, we are passing a type argument — Integer in this case — to the Box

class. The statement above does not actually create a new Box object; it simply declares that integerBox

will hold a reference to a "Box of Integer objects", which is how Box<Integer> is read.

The statement

Box< Integer > integerBox = new Box< Integer >();

instantiates a Box object. Once integerBox is initialised, we can invoke its get method without providing a
cast, as shown in the following code snippet from main in the test class.

 // call the constructor for Box

 Box< Integer > integerBox = new Box< Integer >();
 integerBox . add(new Integer(10));

// no cast is required in the next statement
 Integer someInteger = integerBox.get();
 System.out.println(someInteger);

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

40

Collecting Data II

If an incompatible type is added to the Box, such as a String, compilation will fail, alerting the
programmer to what previously would have been a run-time error:

 BoxDemo3.java:5: add(java.lang.Integer) in Box< java.lang.Integer >
 cannot be applied to (java.lang.String) integerBox.add("10"); 1 error

The purpose of explaining the generic version of the Box class is to show that the compiler is alerted to the
fact that only Integer objects are passed to and returned from its methods. This means that invoking the
get method in the test class does not require a cast. Furthermore, if a careless programmer passes an
incorrect type to the add method, this is detected at compile-time rather than at run-time.

We can now return to the use of generics in the Collections Framework.

2.5.2 The Use of Generics in the Collections Framework

Let us consider the following code snippet.

 List myList = new LinkedList();
 myList . add(new Integer(10));
 Integer i = (Integer)myList . iterator() . next();

As we saw in a previous section, the Java programmer must know what kind of data is in the List in order
to make the correct cast. This is because the compiler can only guarantee that an Object object is returned
by the iterator.

If the developer writes the following statement:

 Double d = (Double)myList . iterator() . next();

the compiler will compile the statement because it has no knowledge of the type of objects returned by the
next method; it assumes that the developer does know this and makes the correct cast. As a result, the
statement above will compile but will cause a run-time exception as we saw previously.

The generic version of the code snippet illustrates how generics is applied to the Collection Framework.
The purpose of this is to give the programmer the opportunity to express their clear intent to restrict the
collection to contain a particular type, as shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

41

Collecting Data II

List< Integer > myList = new LinkedList< Integer >();
 myList . add(new Integer(10));
 Integer i = myList . iterator() . next();

The cast is gone because the compiler guarantees that type correctness is checked at compile-time rather
than at run-time.

Figure 2.2 below, summarises what the syntax of the code snippet means.

Figure 2.2 The use of generic declarations

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���3f��$o䴤P���I���ESi��;ʷ�W����l��@

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

42

Collecting Data II

Guaranteeing that type correctness is checked at compile-time rather than at run-time is, clearly, a huge
advantage over the non-generic version of using collections in that it gives code a degree of robustness
that was absent before generics was introduced into the Java language.

2.6 Collections in the Themed Application

One of the requirements of the themed application is to store and retrieve an array of members currently
registered as having joined the Media Store. Thus, there is code that adds a new Member object to the
array and code that writes the array out to a file for subsequent read operations.

The version of the themed application that uses a collection instead of an array includes code that makes it
easier to store and retrieve members, by using statements such as the following.

 // Create a HashMap instead of an array
Map< Integer, Member > members = new HashMap< Integer, Member >();

 // Add a member to it, using a key-value pair of the member’s known
 // membership number (an int) and the known reference to the Member object
 members.put(membershipNumber, member);

// Get a member based on the key; no cast required
 Member member = members.get(membershipNumber);

// Remove a member
 members.remove(membershipNumber);

It should be noted that in the statement

members.put(membershipNumber, member);

the Map expects an Object as the key to the object reference for the Member object. However, we can pass
an int to the put method because Java automatically converts the int with the identifier
membershipNumber to an Integer object.

The table that follows – and continues on the next three pages - compares the version of one of the classes
of the themed application that makes use of arrays with the same class in the version that uses a collection.
The code is stripped of most of its comments and some of its methods so that the reader can gain an
understanding of how the two classes compare.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

43

Collecting Data II

package mediaStore;
/** Array version.
 * @author D. M. Etheridge. */
import java.io.*;

public class MediaStore {

 // Declare instance variables.
 // An array to store Member objects.
 private Member [] members;
 // The number of members.
 private int noOfMembers;

 /**
 * This method returns a reference to the
 * array of members.
 * @return members A reference to the
 * array of members.
 */
 public Member[] getMembers() {

 return members;

 } // End of method

 /**
 * This method adds a member to the array.
 *
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user
 * name.
 * @param pWord The member's password.
 */
 public void addMember(String fName,
 String lName, String uName, String pWord)
 {
 members[noOfMembers] = new
 Member(fName, lName, uName, pWord,
 getNextAvailableMembershipNumber());
 // Increment the number of members.
 noOfMembers++;
 // Increment the next available
 // membership number.
 nextAvailableMembershipNumber++;
 } // End of method

 /**
 * This method returns the member, given
 * his or her membership number.

package mediaStore;
/** Collection version.
 * @author D. M. Etheridge. */
import java.util.*;

public class MediaStore {

 // Declare instance variables.
 // A Collection to store Member objects.
 private Map< Integer, Object > members =
 new HashMap< Integer, Object >();
 // The number of members.
 private int noOfMembers;

 /**
 * This method returns a reference to the
 * Map of members.
 *
 * @return members A reference to the Map
 * of members.
 */
 public Map getMembers() {

 return members;

 } // End of method.

 /**
 * This method adds a member to the
 * Collection of Member objects.
 *
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user
 * name.
 * @param pWord The member's password.
 */
 public void addMember(String fName,
 String lName, String uName, String pWord)
 {

 // Call the constructor for Member.
 Member member = new Member(fName,
 lName, uName, pWord);
 // The member's membership number is
 // used as the key to the new member in
 // the Collection.
 // Get the membership number.
 int key = getMembershipNumber();
 // Put this member into the Collection.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

44

Collecting Data II

 *
 * @return Member The member associated
 * with a particular membership number.
 */
 public Member getMember(int
 membershipNumber) {

 // Declare a local variable.
 Member member = null;

 // Search the array of members for the
 // required membership number.
 for int i = 0; i < getNoOfMembers(); i ++)
 {
 if (membershipNumber==
 members[i].getMembershipNumber())
 {
 System.out.println("Found member
 number " + membershipNumber);
 member = members[i];
 }
 }

 if (member != null)
 {
 return member;
 }
 else
 {
 System.out.println("No such member.");
 return member;
 }

 } // End of method

 /**
 * This method reads the .dat file of
 * members.
 */
 public void readMembers() {

 // Read in the array of members.
 try {
 // The String is the path to the .dat file.
 FileInputStream fis = new
 FileInputStream(
 "C://Temp//members.dat");
 ObjectInputStream ois = new
 ObjectInputStream(fis);
 // Note the cast in the next statement.
 members =

 members.put(key, member);
 noOfMembers++;

 } // End of addMember.

 /** This method returns a member from the
 * Collection.
 *
 * @return member The member associated
 * with a particular key.
 */
 public Member getMember(int key) {

 // Get the member from the Collection.
 Member member = members.get(key);
 return member;

 } // End of method

 /**
 * This method reads the .dat file of
 * members.
 */
 public void readMembers() {

 // Read in the collection of members.
 try {
 // The String is the path to the .dat file.
 FileInputStream fis = new
 FileInputStream(
 "C://Temp//members.dat");
 ObjectInputStream ois = new
 ObjectInputStream(fis);
 // Note the cast in the next statement.
 members =
 (Map)ois.readObject();
 ois.close();
 fis.close();
 }
 catch (Exception e) {
 System.out.println("Error: " +
 e.getMessage());
 }

 } // End of method

 /**
 * This method writes the array of members
 * to its .dat file.
 */
 public void writeMembers() {

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

45

Collecting Data II

 (Member [])ois.readObject();
 ois.close();
 fis.close();
 }
 catch (Exception e) {
 System.out.println("Error: " +
 e.getMessage());
 }

 } // End of method

 /**
 * This method writes the array of members
 * to its .dat file.
 */
 public void writeMembers() {

 try {
 FileOutputStream fos = new
 FileOutputStream(
 "C://Temp//members.dat");
 ObjectOutputStream oos = new
 ObjectOutputStream(fos);
 oos.writeObject(getMembers());
 oos.flush();
 oos.close();
 fos.close();
 }
 catch (Exception e) {
 System.out.println("Error: " +
 e.getMessage());
 }

 } // End of method

} // End of class definition

 try {
 FileOutputStream fos = new
 FileOutputStream(
 "C://Temp//members.dat");
 ObjectOutputStream oos = new
 ObjectOutputStream(fos);
 oos.writeObject(getMembers());
 oos.flush();
 oos.close();
 fos.close();
 }
 catch (Exception e) {
 System.out.println("Error: " +
 e.getMessage());
 }

 } // End of method

} // End of class definition

Table 2.1 Comparison of part of one of the classes of the themed
application that uses arrays to one that uses a Map

It is to be hoped that the reader gains an appreciation how a collection is used in the code in the right-hand
column to add and remove members from the Media Store using simpler code than its equivalent in the
left-hand column.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

46

Collecting Data II

2.7 Summary of the Java Collections Framework

The Java Collections Framework provides useful data structures that are manipulated by interface types;
the developer ‘programmes’ to an interface type rather than to an implementation type. The various
implementation types of each interface are interchangeable, making it very easy to change collection
implementations and reuse code.

Whilst the use of generics is not unique to the Collections Framework, its use avoids type casting and
results in robust code production.

The next chapter – the penultimate one in this guide – finds out how graphical user interfaces (GUIs)
are constructed.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���7<��#e��U�E�I���FS1��>���W����l���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

47

User Interfaces

3. User Interfaces

Constructing a user interface (UI) is one of the most rewarding features of application development using
Java; it is highly creative and gives the developer the opportunity to work very closely with users to
develop the UI that suits their needs. In this chapter, we will find out how user interfaces are constructed.

3.1 What is a User Interface?

The themed application is referred to from time to time in previous chapters. It is not the intention to
appraise the reader about all of the details of the themed application; rather, it is used to illustrate
programming concepts in the context of a realistic application. However, we haven’t yet explained how
the classes of the themed application are used in an actual application, although the purpose of using main

methods to test classes is mentioned and illustrated in previous chapters where relevant or appropriate.

In general, when classes and their methods associated with an application have been thoroughly tested,
often with main methods specifically written for testing purposes, the process of constructing the UI can
proceed. The UI is the component of an application that users use to interact with it in order to carry out
the work provided by the business logic of the application in the form of objects that, collectively, provide
a service to users. The objects that implement the logic of the application are the business objects of the
application in that they meet the business requirements of the application as determined by analysis of the
business domain under consideration. The notion that the business objects of an application provide a
service to users means that we can regard the business objects as the server-side or server component of
an application.

Consider, for example, the classes of the themed application shown in Figure 3.1 on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

48

User Interfaces

Figure 3.1 Classes of the themed application

The classes shown in Figure 3.1 encapsulate the business requirements of a realistic application that is
referred to in this guide as the ‘themed application’. The ‘has a’ and ‘is a’ associations shown in the figure
imply that the class that represents the Media Store has a number of Member objects and Item objects of
either the Dvd or Game type. Each member is provided with two virtual membership cards, one for
recording the details about DVDs on loan (from the Media Store) and another for recording the details
about games. Only the DvdMembershipCard class is defined in the version of the themed application
shown in the figure; hence, the ‘has a’ link between this class and the Item class. For the purposes of the
present discussion, the DVD membership card object implements methods to borrow and return DVDs.
The state of each Member object, along with the graph of objects associated with Member –
DvdMembershipCard and Dvd – are serialized to a data file. The classes shown in the figure comprise the
server-side of the application.

The various methods of the classes of the application were tested (by the author of this guide) with, in the
first instance, a number of main methods that test the correctness of card transactions when taking items
out on loan and returning them. When testing was complete, the next stage in the development of the
application was to construct the UI. The classes associated with the UI comprise the client-side of
the application.

The client-side of the themed application is used – as we will see later in this chapter – to interact with the
server-side. For example, there are buttons on the UI that call methods of the DvdMembershipCard class to
borrow and return DVDs. Clearly, and rather obviously, there is a close coupling between the UI and the
business objects with which it interacts. In other words, the server-side of the application is of no value
without the client-side of the application and vice versa. In general, whilst the development and testing of

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

49

User Interfaces

the client and server sides of an application may proceed independently of one another, both sides of an
application will eventually be brought together to comprise the complete application. Final testing will test
that the UI operates correctly in its interaction with server-side objects.

The combination of the server and client ‘sides’ of the themed application into a single application results
in what is known, in this case, as a standalone application in the sense that it runs on one computer: i.e. a
standalone application runs in a single address space using a single Java Virtual Machine. Whilst it can
readily be argued that the standalone version of the themed application is not realistic in that it is not
designed to run on a (computer) network, its purpose in this guide is to provide a source of examples that
illustrate how a number of fundamental Java programming concepts can be applied in the context of an
application that is appropriate for learners. In short, the development of standalone applications is relevant
from a learning point of view.

3.2 Client/Server Applications

The combination of the client and server sides of the themed application (discussed in the previous section)
suggests that we can regard any standalone application as comprising client and server components that
interact with one another. Perhaps not surprisingly, such applications are labelled with the term
client/server.

Figure 3.2, shown on the next page, illustrates the architecture of a typical client/server application.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���dg��/n��S�E�I�L��Sj��9���T����m��B

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

50

User Interfaces

Figure 3.2 The architecture of a typical client/server application

Tier 1, the client tier, comprises the UI; tier 2, the server tier, comprises the business objects of the
application; tier 3, the persistent data tier, comprises data storage components such as data files and
database tables. In the case of the themed application, the third tier comprises a data file that stores an
array of members of the Media Store. In a typical client/server application, the UI interacts with the
server-side objects which, in turn, interact with the data tier. In other words, the UI interacts with the
server-tier; the UI does not access the data tier directly.

The double-headed arrow (in the figure) that implies that the client and server tiers are connected is, in the
case of a standalone application, an indication that the client and server tiers are deployed in the same
address space. In the case of a networked application, the connection between the client and server tiers
will either be an intranet or the Internet.

Now that we have placed user interfaces in the context of a client/server architecture, the next section
moves on to find out how a UI is constructed.

3.3 The Construction of User Interfaces

In broad terms, there are two principal stages in the construction of a UI.

1. Organising UI components;
2. Activating UI components.

Stage 1 involves organising the layout and relative positions of UI components such as buttons, text fields
and so on; stage 2 involves activating those components that are designed to call methods implemented in
server-side classes in response to the user ‘operating’ the component.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

51

User Interfaces

3.3.1 Organising User Interface Components: Some Examples

The principal task associated with graphical user interface (GUI) design involves making decisions about
organising UI components (also known as controls) into what are known as containers.

• A container is an object that can contain components and other
containers;

• a component is an object that is (usually) visible when the GUI
is displayed;

• a layout manager is an object that is used to organise the
position of components in their container.

The aim of the examples that follow is to illustrate a structured approach to GUI design. At the end of the
set of examples, we will be in a good position to make a number of points about classes used to organise
and contain components.

Example One

Figure 3.3 shown a simple GUI; its code is shown on the next page. The reader should read the comments
in the code in order to get an initial understanding about how the GUI is created.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���0`��/m������I�L�OS1�I?�︷�����n���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

52

User Interfaces

Figure 3.3 A simple GUI

 // Import packages that contain components, containers and layout managers.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

// The GUI class inherits from a container of the JFrame type. The JFrame container will act
// as a top-level, outer container for any inner containers that are added to it.
public class SwingHelloGUI extends JFrame {

 // Declare instance variables.
 // A JTextField component can be used to enter text.

private JTextField tf;
// A JButton component is typically used as an active component that the user presses
// in order to trigger an action to take place.
private JButton b;
// A JPanel is an inner container that can be placed inside a JFrame.
private JPanel p;
// The constructor does the work of rendering the GUI.

 public SwingHelloGUI() {
 // Call the parent constructor.
 super("Hello GUI");
 // Initialise tf and p.
 tf = new JTextField();
 p = new JPanel();
 // Set the layout manager of the panel to be a grid of two rows and one column.
 p.setLayout(new GridLayout(2, 1));
 // Initialise b.
 b = new JButton("Click me...");
 // Add the button to the first position in the grid.

p.add(b);
// Add the text field to the second position in the grid.

 p.add(tf);
 // Add the panel to the current (JFrame) object.
 this.add(p);
 // The pack method ensures that the JFrame is sized to fit the preferred size of

// its components.
 this.pack();

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

53

User Interfaces

 // Show the JFrame when the constructor is called.
 this.setVisible(true);
 } // End of constructor.

} // End of class definition.

The main method is omitted from the code for the sake of brevity. The purpose of main is to call the
constructor for the GUI; the result of executing main is shown in Figure 3.3 above.

The default layout manager for a JPanel is FlowLayout; this layout manager arranges components in a
directional flow from left to right in a container that uses it. As can be seen from the code for Figure 3.3,
the default layout has been changed to a grid using the following statement:

p.setLayout(new GridLayout(2, 1));

The constructor for a GridLayout object is passed to the panel’s setLayout method in order to change the
panel’s layout manager to be a grid of two rows and one column.

When components are added to a grid, they are added in the
following order: first row from left to right across the columns, second
row from left to right across the columns and so on to the end of the
last row.

The next part of the code adds the text field and the button to the JPanel in that order, with the result
shown in Figure 3.3.

 // Add the button to the first position in the grid.
p.add(b);
// Add the text field to the second position in the grid.

 p.add(tf);

These two statements populate the JPanel with two components in the correct order. The completed
JPanel is now ready to be added to its outer container, the JFrame, as follows:

 // Add the panel to the current (JFrame) object.
 this.add(p);

The populated JFrame is now ready to be displayed.

Despite its apparent simplicity, the example above illustrates that there are a number of steps that are
associated with GUI design. Thus, the overall approach to GUI design can be summarised as comprising
the steps summarised on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

54

User Interfaces

1. Import packages;
2. instantiate the top-level, outer container;
3. instantiate inner containers as required;
4. add controls to inner containers;
5. add inner containers to the top-level container;
6. display the top-level container;
7. make the GUI thread safe.

The example explained above illustrates steps 1 to 6; we will return to Step 7 in due course.

The important point to make about the example and the list of steps is that the overall conception of the
look of a GUI is a top-down activity, whilst the population of inner containers is a bottom-up activity. In
other words, inner containers must be populated in their correct sequence before they are added to their
top-level container.

An example of one kind of mistake in the bottom-up aspect of rendering a GUI is displayed in the screen
shot shown in Figure 3.4; this arises as a result of adding the text field and button to the panel in the wrong
order.

Start improving employee retention & performance now.
Get your FREE reports and analysis on 10 of your staff today.

HIT YOUR
EMPLOYEE
RETENTION
TARGETS Amy, let’s just

discuss these action
points

Spot on - I’m all
fired up!! Looking
forward to next

quarter

Can’t believe
this only took me

5 minutes

Awesome! That
nails it for me...

a review with Performance Review Pro

We help talent and learning

& development teams hit

their employee retention

& development targets by

improving the quality and

focus of managers’ coaching

conversations.

GET MY REPORTS

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���04�� jⱤ����I�H�OS1��<�︵�����g��I

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

55

User Interfaces

Figure 3.4 Adding components in the incorrect sequence

The code that gives rise to the GUI shown in Figure 3.4 is

p.add(tf);
 p.add(b);

It is left as an exercise for the reader to analyse the code for the remaining examples, in the knowledge
of how each GUI looks,. The main method that renders the GUI in each example is omitted for the sake
of brevity.

Example Two

Figure 3.4 shows a JFrame containing two buttons arranged by a FlowLayout manager.

Figure 3.4 The FlowLayout manager

The default layout manager for a JFrame is BorderLayout (see a later example). To achieve the GUI
shown in Figure 3.4, the layout manager for the top-level JFrame container is changed to FlowLayout, as
shown in the code for the GUI that follows next.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FlowLayoutExample {

 private JFrame f;
 private JButton b1;
 private JButton b2;

 private FlowLayoutExample() {

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

56

User Interfaces

 f = new JFrame("Flow layout GUI Example");
 b1 = new JButton("Press Me");
 b2 = new JButton("Don't press Me");
 f.setLayout(new FlowLayout());
 f.add(b1);
 f.add(b2);
 f.pack();
 f.setVisible(true);

 } // End of constructor.

} // End of class definition.

The GUI shows that FlowLayout manager adds components to their container from left to right and, if
necessary, from top to bottom. The FlowLayout manager aligns components centrally, as can be seen
from Figure 3.4.

Example Three

Figure 3.5 shows a JFrame that uses a BorderLayout manager to arrange a number of buttons.

Figure 3.5 The BorderLayout manager

Given that the default layout manager for a JFrame is BorderLayout, the buttons are added directly to their
top-level container – there being no inner containers in this example – to one of five positions, as shown in
the following code.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class BorderLayoutExample {

 private JFrame f;
 private JButton bn;
 private JButton bs;
 private JButton be;
 private JButton bw;
 private JButton bc;

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

57

User Interfaces

 private BorderLayoutExample () {

 f = new JFrame("Border layout GUI Example");
 bn = new JButton("Button North");
 bs = new JButton("Button South");
 be = new JButton("Button East");
 bw = new JButton("Button West");
 bc = new JButton("Button Centre");
 f.add(bn, BorderLayout.NORTH);
 f.add(bs, BorderLayout.SOUTH);
 f.add(be, BorderLayout.EAST);
 f.add(bw, BorderLayout.WEST);
 f.add(bc, BorderLayout.CENTER);
 f.pack();
 f.setVisible(true);

 } // End of constructor.

} // End of class definition.

The GUI shows that the BorderLayout manager adds components to a position determined by one of the
static fields of the BorderLayout class.

Example Four

Figure 3.6 below displays an example of a JFrame that uses a GridLayout manager to arrange a number of
buttons. The GUI uses a grid with more cells than the one used in Example One above.

Figure 3.6 The GridLayout manager

The GUI shows that components are added to grid cells from left to right and top to bottom.

Example Five

Figure 3.7 (on the next page) shows an example of a slightly more complex JFrame that uses more than
one inner container to arrange the components of the GUI.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

58

User Interfaces

Figure 3.7 Containers within containers

The code for the GUI is next. The reader should note carefully how inner containers are populated and
added to the top-level container.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���ef��#j��S���I����S1�Ni�ﹶ���ڮ<U��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

59

User Interfaces

public class ComplexLayoutExample {
 private JFrame f;

private JButton b1;
private JButton b2;
private JLabel l;
private JTextField tf;
private JPanel upperPanel;
private JPanel lowerPanel;

private ComplexLayoutExample () {
 f = new JFrame("More Complex Layout GUI Example");
 upperPanel = new JPanel();
 lowerPanel = new JPanel();
 upperPanel.add(l = new JLabel("Enter your password:"));
 upperPanel.add(tf = new JTextField(20));
 lowerPanel.add(b1 = new JButton("Cancel"));
 lowerPanel.add(b2 = new JButton("Login"));
 f.setLayout(new GridLayout(2,1));
 f.add(upperPanel);
 f.add(lowerPanel);
 f.pack();
 f.setVisible(true);
 } // End of constructor.

} // End of class definition.

The label and the text field are added to their (JPanel) container using the default FlowLayout manager for
the JPanel and the two buttons are similarly added to their own container. The default BorderLayout

manager for the top-level container (a JFrame) is changed to use a GridLayout to arrange the two inner
containers as shown in the figure. The purpose of adding two separate containers to the grid is to achieve
the desired look for the GUI.

If all four components are added to a single container which, in turn is added to the top-level container, the
GUI would not achieve the required look. This is illustrated in Figure 3.8 below.

Figure 3.8 The incorrect look for the GUI of Example Five

The required look for the GUI of Example Five is two rows of components. One way to achieve this look
is to use two inner containers as shown in the code for the GUI shown in Figure 3.7.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

60

User Interfaces

The examples in this sub-section illustrate a few of the many UI components available in the javax.swing

package. The reader is referred to the API for details about other components and their class hierarchy.
There are other layout managers available in the javax.swing and java.awt packages; again, the reader is
referred to the Java API for further details.

3.3.2 Summary of Components and Layout Managers

The examples in sub-section 3.3.1 suggest that we are now in a position to enhance the list of steps that is
proposed at the end of Example One above. The enhanced list of steps or activities that are typically
included in GUI design is shown on the next page.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���35��vj��W���I���GSj�I8ʷ�P����fP�I

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

61

User Interfaces

1. Import packages;
2. instantiate the top-level, outer container;

• typically a JFrame object; (a JFrame is a visible component
when it is displayed)

• the default layout manager for a JFrame is BorderLayout
3. change from the default layout manager to another if required
4. decide on how the outer container will be closed (see below)
5. decide what the look and feel of the GUI should be (see below)

• instantiate inner containers as required;
• typically a number of JPanel objects; (a JPanel is not visible

when it is displayed)
• panels can be added to panels; the final, outer panel is

often added to the top-level JFrame
• the default layout for a JPanel is FlowLayout
• change from the default layout manager to another if

required
• add UI components to their inner containers;

6. add the outer panel (containing inner panels) to the top-level
container;

7. display the top-level container;
8. make the GUI thread safe (see below).

Step 3: closing the top-level container

One of the methods of the JFrame class is used to set an action to take when the user closes the frame, as
in the following statement:

frame.setDefaultCloseOperation(JFrame.<action>);

where action is one of

EXIT_ON_CLOSE
 DO_NOTHING_ON_CLOSE
 HIDE_ON_CLOSE (default)

DISPOSE_ON_CLOSE

Step 4: decide on the look-and-feel of the GUI

Swing can specify a uniform look-and-feel (L & F) across platforms by means of the static
setLookAndFeel method of the UIManager class, as shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

62

User Interfaces

 try
 {

 UIManager.setLookAndFeel(<LookAndFeel>);
}
catch(Exception e) { }

where LookAndFeel can be one of

 UIManager.getCrossPlatformLookAndFeelClassName()

UIManager.getSystemLookAndFeelClassName()

“javax.swing.plaf.metal.MetalLookAndFeel”

“com.sun.java.swing.plaf.windows.WindowLookAndFeel”

“com.sun.java.plaf.motif.MotifLookAndFeel”

Otherwise, the UIManager sets a default look-and-feel.

The reader is referred to the API for the javax.swing package for further details about closing frames and
setting the look-and-feel.

Step 9: make the GUI thread safe

The Java Virtual Machine allows an application to have multiple threads of execution running
concurrently. The on-line Java tutorial recommends that a GUI executes in its own thread (of execution).
This recommendation is reflected in the code for the main method that calls the constructor for a GUI.
(Threads in Java programmes are discussed in the final chapter of this guide.)

Step 9 is included in a main method, usually in a separate, lightweight class with the generalised class
definition shown on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

63

User Interfaces

public class RenderTheGui {

public static void main(String[] args) {

 // The next statement is a call to the invokeLater method of the
// SwingUtilities class of the javax.swing package.
// The invokeLater method takes a Runnable object as an argument. In
// essence, the purpose of the Runable object is to initialise the GUI and
// schedule it for execution in a thread.

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 // start of anonymous class definition of the Runnable object
// call the thread’s run method
public void run() {

// call the GUI’s constructor
MySwingClass gui = new MySwingClass();

} // end of run method

} // end of Runnable class definition
); // end of call to invokeLater method

} // end of main

} // end class definition

Although there is quite a lot going on in main, it is not important that the reader understands its code in
full yet. For the present purposes, it is important to note that an anonymous Runnable object has been
created by calling its constructor within the brackets of the invokeLater method. In effect, the purpose of
the class called RenderTheGui is to make it thread safe by scheduling the thread’s run method to execute
in its own thread. (We will meet anonymous classes again in a later section of this chapter.)

Before we move on to explain the second principal stage involved in the construction of a GUI –
activating UI components – it will be beneficial to the reader to examine briefly one of the widely-used
visual approaches to the organisation of UI components.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

64

User Interfaces

3.4 A Visual Approach to GUI Design

The IDE known as BlueJ referred to in this and previous chapters of this guide was used to write, edit,
compile and run the example programmes presented in this guide, including the Swing examples shown in
Section 3.3.1. However the look of a GUI developed in a BlueJ project is only evident when its main

method is executed. Up to the point of calling main, the developer relies on his or her skill in following
the steps outlined in Section 3.3.2 to render the correct look of the GUI. Thus, the process of display, edit
and run is an iterative one in order to render a GUI correctly. It is in this sense that we can think of coding
GUIs as coding by hand. Coding a GUI by hand is recommended by the author of this guide as the most
effective way for a learner to practice the steps set out in Section 3.3.2.

When the learner gains experience in GUI design, he or she can progress to using a visual approach to
GUI design. A visual approach automates the organisation of components, leaving the developer to
concentrate on writing the code to activate UI components (see Section 3.5 later in this chapter).

One such visual design is provided by the IDE known as NetBeans™ (available from
http://www.netbeans.org/). NetBeans™ is a highly sophisticated, professional-level IDE that, amongst
other things, provides features that facilitate visual design for Java Swing GUIs.

The screen shot displayed in Figure 3.9 on the next page shows a NetBeans™ project that includes a
single class that extends form the JFrame class.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���a<��td������I�M��S1�K?���U����h���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

65

User Interfaces

Figure 3.9 A NetBeans™ project containing a ‘visual’ JFrame

The central pane of the screen displays the design surface, with the palettes of Swing containers and
components on the right-hand side.

Components can be dragged from the palette and dropped onto the design surface, as shown in the screen
shot, shown on the next page, of a simple login screen for the themed application.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

66

User Interfaces

Figure 3.10 Visual design of a simple GUI

Selecting the Source tab (circled in the figure) displays the automatically-generated source code for the
GUI. This file includes main, rather than placing it in a separate class, and – as expected – the following
variable declarations:

 private javax.swing.JButton jButton1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;

The visual approach adopted by NetBeans™ uses the GroupLayout manager that is principally intended
for use in IDEs. The principal benefit of using GroupLayout is that UI components can be moved around
the design surface as required.

In the example shown in Figure 3.10, UI components are added directly to the top-level container in that
they are added directly to the design surface. It is equally easy to add Swing containers to the design
surface so that they can be subsequently populated by UI components.

The next screen shot shows a JFrame containing two empty JPanels.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

67

User Interfaces

Figure 3.11 A JFrame containing two empty JPanels

Selecting the review button (circled in the figure) shows that panels are opaque when the GUI is displayed,
as shown in the next screen shot.

Figure 3.12 The JFrame shown in Figure 3.11

Components could be dragged and dropped onto the containers shown in Figure 3.11 to construct a GUI
that comprises components contained in two inner containers that have been added to the top-level JFrame.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

68

User Interfaces

The main benefit of organising containers and components visually is that the code of the GUI is
automatically generated; this leaves the developer to concentrate their efforts on writing code that
activates those components that are meant to trigger some action in the context of an application. The
second principal stage involved in the construction of a GUI – activating UI components – is explored in
the next section.

3.5 Activating User Interface Components

Activating a UI component, such as a button, to carry out processing in the context of an application
involves creating an object that represents a user-generated event and writing one or more event-handler
methods that respond to such events. The fundamental aspects of event handling are explored by means of
examples that are presented later in this section. Following the examples, a number of points about event
handling are made.

Figure 3.13 displays a hand-coded GUI that is used for existing members of the Media Store – the themed
application – to login before they can use their membership card.

Figure 3.13 The login screen for the themed application

The code for the GUI is shown on this and the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

69

User Interfaces

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LoginScreen {

 private JFrame f;
 private JButton login;

private JLabel usernameLabel;
private JLabel passwordLabel;
private JTextField usernameTextField;
private JPasswordField passwordField;
private JTextArea messages;
private JPanel usernamePanel;
private JPanel passwordPanel;
private JPanel buttonPanel;
private JPanel messagesPanel;

public LoginScreen() {

f = new JFrame("Login screen");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setLayout(new GridLayout(4,1));

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���7f��v=��T���I�J�BS1�Hl��������;��F

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

70

User Interfaces

 usernamePanel = new JPanel();
usernamePanel.add(usernameLabel =

new JLabel("Enter your user name:"));
usernamePanel.add(usernameTextField =

new JTextField(20));

passwordPanel = new JPanel();
passwordPanel.add(passwordLabel =

new JLabel("Enter your password:"));
passwordPanel.add(passwordField =

new JPasswordField(20));

buttonPanel = new JPanel();
buttonPanel.add(login =

 new JButton("Press to login"));

messagesPanel = new JPanel();
messages = new JTextArea(10, 40);
messagesPanel.add(messages);

f.add(usernamePanel);
f.add(passwordPanel);
f.add(buttonPanel);
f.add(messagesPanel);
f.pack();
f.setSize(700, 400);
f.setVisible(true);

} // end of constructor

} // end of class definition

The GUI comprises four panels of components added to a frame’s grid of size four rows by one column;
comments are omitted from the code. It is left as an exercise for the reader to analyse the code, given the
look of the GUI, in order to understand how the GUI is constructed. The third row (from the top) of the
GUI comprises a button component, the purpose of which is to enable the member of the Media Store to
login. The fourth row from the top comprises a text area, the purpose of which is to output messages that
inform the user if he or she has logged in correctly or not.

The fundamental principal of handling user-generated events is to write the class definition for the object
that will respond to such events. This category of object is known as a listener. The examples that follow
use the GUI shown in Figure 3.13 to illustrate a number of ways to provide code to respond to a user who
logs in and presses the button.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

71

User Interfaces

Example One: an external listener class

In this example, the listener class is separate from the class that displays the GUI. Given that the listener
class is designed to respond to button events by outputting messages in the text area of the GUI, the
listener class requires access to the text area component. This is achieved by providing a get method for
the text area in the GUI class and passing the object reference of the GUI to the listener class.

The additional code for the GUI shown in Figure 3.13 – called ExternalEventHandler in this example -
adds an object that implements the ActionListener interface to the button before it is added to its panel, as
shown on the next page.

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���52��q8��_�@�I���FSi�N<ʼ����ǎ�l
�E

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

72

User Interfaces

buttonPanel = new JPanel();
 login = new JButton("Press to login");

// ‘Register’ the button with its listener class.
 login.addActionListener(new ButtonHandler(this));
 buttonPanel.add(login);

The code for getTextArea is simply:

 public JTextArea getTextArea() {
 return messages;
 }

The addActionListener method ‘adds’ an object that implements the ActionListener interface to the button.
ActionListener is the listener interface for receiving button events. The listener class that processes button
events – called ButtonHandler in this example - implements this interface and provides code for the
actionPerfomed method declared in the interface. The object that is created from this class is ‘registered’
with the button component by invoking its addActionListener method.

The code of the ButtonHandler class is as follows.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonHandler implements ActionListener {

 private ExternalEventHandler gui;

 public ButtonHandler(ExternalEventHandler gui) {
 this.gui = gui;
 }

 public void actionPerformed(ActionEvent e) {
 gui.getTextArea().setText("Output messages here.");
 }

} // End of class definition.

The object’s actionPerformed method is invoked when a button event occurs. In this case, a simple
message is output to the GUI’s text area.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

73

User Interfaces

The result of pressing the login button is shown in the next screen shot.

Figure 3.14 A button event for Example One

In the example, and the ones that follow, the body of the actionPerformed method declared in the
ActionListner interface is kept simple in order to illustrate how the listener class is defined. In the themed
application, the body of the actionPerformed method reads the information entered into the two text fields
of the GUI and uses this to scan the array of existing members to find the member who has logged in. A
suitable message is output to the text area if the member has logged in correctly or cannot be found in the
array. In general, the body of an actionPerformed method is likely to comprise many lines of code,
depending on how much work it is required to do.

Example Two: the GUI class is its own listener

In this example, the GUI class is its own listener; i.e. a separate listener class is not provided. The code
associated with adding the button to its panel is:

buttonPanel = new JPanel();
 login = new JButton("Press to login");

// Register the current object with the button.
 login.addActionListener(this);
 buttonPanel.add(login);

The actionPerformed method is a member of the GUI class; the code for the method is next.

public void actionPerformed(ActionEvent e) {
 messages.setText("Output messages here.");
 }

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

74

User Interfaces

In the case of the GUI class acting as its own listener, it should be noted that the body of the
actionPerformed method has direct access to private instance variables of the class. Hence, the body of
actionPerformed has access to the variable with the identifier messages.

The result of pressing the login button is shown in the next screen shot; the result of pressing the button is
the same as that shown in Figure 3.14.

Figure 3.15 A button event for Example Two

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���35��!:䴤W�B�I�O��Si�L;���T����=V�A

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

75

User Interfaces

Example Three: event handling using an inner class

In this example, an inner class is used as the listener class instead of an external class (as in Exercise One).
An inner class is a complete class definition contained entirely inside an enclosing class definition and is
regarded as a member of the enclosing class.

The section of code that adds the button to its panel is shown below:

buttonPanel = new JPanel();
 login = new JButton("Press to login");

// Register the inner class as the handler class.
 login.addActionListener(new InnerButtonHandler());
 buttonPanel.add(login);

The class definition of the inner class is:

class InnerButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 messages.setText("Output messages here.");
 }

 } // end of inner class definition

It should be noted that the inner class definition is not declared to be public; this means that it can be
stored in the same file that stores the enclosing class – InnerClass.java in this exercise – and is not
accessible from outside the outer class. In addition, members of an inner class have direct access to private
instance variables of the outer class, as the code for the actionPerformed method shows.

The result of pressing the login button is shown in the next screen shot; the result of pressing the button is
the same as for exercises one and two.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

76

User Interfaces

Figure 3.16 A button event for Example Three

Example Four: event handling using an anonymous class

In this example, a category of class known as an anonymous class is declared as the listener for the button.
An anonymous class is somewhat similar to an inner class, except that it is created and used all at once.
The class is ‘anonymous’ in the sense that it isn’t given an explicit object reference; rather, it is created
where it is needed. The entire class definition of an anonymous class is contained within the scope of an
argument of a method, as shown in the code that adds the button to the panel (for Example Four) that is
displayed next.

buttonPanel = new JPanel();
 login = new JButton("Press to login");
 login.addActionListener(new ActionListener() { // start of anonymous class definition
 public void actionPerformed(ActionEvent e) {
 messages.setText("Hello world");
 }
 }); // end of anonymous class, then end of addActionListener method
 buttonPanel.add(login);

The argument to the addActionListener method is an object that is an ActionListener, i.e. it an object of a
class that implements the ActionListener interface. The invocation of the method addActionListener on the
button (in the code above) uses special Java syntax to define an anonymous, inner class to create an object
of the class that is passed as an argument to the addActionListener method. The argument passed to
addActionListener is a call to ActionListener(); this call begins the definition of the anonymous class that
implements the ActionListener interface and is shorthand for

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

77

User Interfaces

public class MyHandler implements ActionListener {

The closing brace of the anonymous class definition is followed by the closing bracket that holds the
argument of the addActionListener method call on the button. Given the nature of the special syntax, the
reader should be aware that great care must be taken when coding anonymous classes.

As has been pointed out earlier, it is likely that the code for the actionPerformed method contains many
lines of code, all of which will be included in the body of the definition of the anonymous class which is,
in turn, passed as a parameter to the addActionListener method of the button. This usually makes it
difficult to read the code for event handlers that are members of anonymous classes. Despite this potential
disadvantage, an anonymous class has access to the private variables of the enclosing class, as shown in
the next statement.

messages.setText("Hello world");

An improved way to code an anonymous listener class is to invoke a method of the enclosing class, as
shown in an alternative version of the code that adds the button to the panel (in Example Four) as follows.

buttonPanel = new JPanel();
 login = new JButton("Press to login");
 login.addActionListener(new ActionListener() { // start of anonymous class definition

public void actionPerformed(ActionEvent e) {
// delegate event handling to a method of the enclosing class

 buttonAction(e);
 }

}); // end of anonymous class, then end of addActionListener method
buttonPanel.add(login);

The code for the body of the buttonAction method is

public void buttonAction(ActionEvent e) {
 // event handling code

 messages.setText("Hello world");
}

Both versions of Exercise Four produce the same result, as illustrated in the next screen shot.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

78

User Interfaces

Figure 3.17 A button event for Example Four

The advantage of the second approach illustrated in Example Four is to pass the responsibility for event
handling code to a method of the enclosing class. The developer provides event handling code for this
method, rather than embedding it within the definition of an anonymous class.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���7`��q8��_�@�I���FSi�N<ʼ����ǎ�l
�E

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

79

User Interfaces

Example Five

The alternative approach when using an anonymous class illustrated in Example Four is adopted by the
visual design features of NetBeans™.

Double-clicking on the button of the GUI discussed in Section 3.4, shown in design view in the next
screen shot automatically inserts event handling code.

Figure 3.17 The design view of the login screen of the themed application

The event handler method inserted by NetBeans™ is highlighted in the screen shot shown on the
next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

80

User Interfaces

Figure 3.18 The event handling method

Further examination of the code that is automatically inserted by MetBeans™ shows that the method is
called from an anonymous class, as highlighted in the screen shot that is displayed on the next page.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

81

User Interfaces

Figure 3.19 An anonymous class calls the event handling method

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���2a��rl��_�G�I�H��S1��h���U����k���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

82

User Interfaces

Editing the event handler method as shown in the screen shot seen in Figure 3.20 on the next page
produces the same result as before. The result of executing main in the GUI class in the NetBeans™
project is shown in the screen shot shown in Figure 3.21.

Figure 3.20 Providing the event handling code

Figure 3.21 A button event for example five

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

83

User Interfaces

Summary of Listener Classes

The examples above illustrate that there are a number of ways to define the listener class that handles UI
events. These include:

1. The use of a separate, external listener class:
• pass a reference to the GUI class to the constructor of the listener class;
• this gives the listener class access to GUI components via their ‘get’ methods;

2. the GUI class is its own listener;
3. use inner class(es);
4. use an anonymous class(es) that invokes an event handler method of the

enclosing class.

Methods of the listener classes defined by methods 2, 3 and 4 have direct access to the private variables,
including the UI components, of their enclosing class. This is more convenient than Method 1, where ‘get’
methods have to be provided in the GUI class so that UI components can be accessed by means of the
object reference to the GUI object that is passed to the external listener class. Although Method 1
delegates event handling code to a separate class definition – which gives it flexibility and convenience –
Method 4 is recommended by the author (of this guide) firstly because event handling code is delegated to
dedicated methods that are coded by the developer and, secondly, because many IDEs adopt this approach.

3.6 The GUI for the Themed Application

The complete GUI for the themed application is shown in the series of screen shots that follow on the next
two pages. Each part of the GUI is implemented as a JPanel component that has been added to each of the
tabbed panes of a JTabbedPane container.

Figure 3.22 The welcome tab

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

84

User Interfaces

Figure 3.23 The new members tab

Figure 3.23 The existing members tab

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

85

User Interfaces

Figure 3.24 The tab for card transactions

The GUI shown in the screen shots above was constructed by hand in the first instance and then it was
constructed using the visual design features in NetBeans™. In both cases, the code for the event handler
methods is the same. For example, the event handler for the login button scans the array of existing
members in order to find the member who is attempting to login. The code for the event handler method is
as follows.

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���c7��&9ඤ��@�I�M�CSi�Hd������Үg���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

86

User Interfaces

// Event handler for the ‘Login button’ for existing members. The purpose of this handler is to
// find the member in the array of existing members.

 if ((JButton)(ae.getSource()) == loginButton)
 {
 // Read in the array of members.
 mediaStore.readMembers();
 // Capture the existing member's user name and password.
 String userName = userNameFieldExistingMember.getText();
 // Next, get the contents of the password field.
 char [] chars = passwordFieldExistingMember.getPassword();
 // Declare a local variable to store the password and add the array of characters to a

// String.
 String password = new String (chars);
 // Concatenate the user name and password.
 String searchString = userName + password;
 // Search the array of members for the combined user name and password.
 // First, get the array of members.
 Member[] existingMembers = mediaStore.getMembers();
 // Scan the array of existing members and compare the search string with each

// member's combined user name and password.
 boolean flag = true;
 while(flag == true)
 {
 for (int i = 0; i < mediaStore.getNoOfMembers(); i ++)
 {
 existingMember = existingMembers[i];
 String existingUserName = existingMember.getUserName();
 String existingPassword = existingMember.getPassword();
 String combinedNameAndPassword = existingUserName +

existingPassword;
 messagesAreaExistingMembers.append(

"\nThe combined “ + name and password is: " +
combinedNameAndPassword);

 if (searchString.equals(combinedNameAndPassword))
 {
 // Found existing member in the array of members.
 // Output a message.
 messagesAreaExistingMembers.append(

"\nFound member.");
 messagesAreaExistingMembers.append(

"\nYour user name” +“ is: “ +
existingMember.getUserName());

 messagesAreaExistingMembers.append(
 \nYour password” +

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

87

User Interfaces

“ is: " + existingMember.getPassword());
 messagesAreaExistingMembers.append("\nYour” +

“ membership number is: " +
 existingMember.getMembershipNumber());
 // Test: find out if the DVD card object has a non-null

// reference.
 messagesAreaExistingMembers.append("\nYour DVD” +

“ card is: " + existingMember.getCard(0));

 // Enable the next tab.
 tabbedPane.setEnabledAt(3, true);

 flag = false;
 break; // out of the for loop
 } // End if.
 } // End of for loop.
 break; // out of the while loop
 } // End of while loop.

 // If there is no match, output a suitable message.
 if (flag == true)
 {
 messagesAreaExistingMembers.append("\nNo such “ +
 “ member; please try again.");
 }

 } // end of outer if

The purpose of presenting the complete code for the event handler is not to encourage the reader to
understand its every statement. Rather, it is intended to show the reader that code for an event handler
method can be substantial. In the example shown above, the event handler has work to do when an exiting
member attempts to login. If the login is successful, the ‘Use Your DVD Card’ tab is enabled so that the
member can use his or her card to borrow or return DVDs.

3.7 Summary of Event Handling

The examples discussed in Section 3.6 present an opportunity to make a number of general points
about the second stage of the construction of a GUI: activating UI components. These are presented in
the box below.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

88

User Interfaces

• Constructing a GUI that responds to events requires an event
handler method encapsulated in a listener object.

• Events are objects that are automatically instantiated when a
user interacts with a UI component.

• The UI component sends the event to one or more listener
objects which are registered with the UI component.

• Every event has a corresponding listener interface which
declares which methods must be defined in listener classes that
implement them.

• Listener objects, with their handler methods, are registered with
a UI component that they then observe or listen to.

• A listener contains one or more event handler methods that
receive and process events.

The examples in Section 3.6 consider only the ActionListener interface implemented by button listeners.
As the code shows, this interface declares a single method:

public void actionPerformed(ActionEvent e)

that takes an ActionEvent object as its only argument.

The API lists many interfaces and listeners associated with event handling. The tables that follow on the
next page lists a few of these merely to indicate their scope to the reader.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���0`��/m������I�L�OS1�I?�︷�����n���

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

89

User Interfaces

Interface Summary

ActionListener The listener interface for receiving action events.

ItemListener The listener interface for receiving item events.

KeyListener The listener interface for receiving keyboard events (keystrokes).

MouseListener
The listener interface for receiving "interesting" mouse events
(press, release, click, enter, and exit) on a component.

MouseMotionListener
The listener interface for receiving mouse motion events on a
component.

MouseWheelListener
The listener interface for receiving mouse wheel events on a
component.

Table 3.1 Interfaces

Class Summary

KeyEvent An event which indicates that a keystroke occurred in a component.

MouseEvent
An event which indicates that a mouse action occurred in a
component.

TextEvent A semantic event which indicates that an object's text changed.

Table 3.2 Listener classes

For example, an ItemListener can be registered with a JCheckBox component as follows:

myCheckBox.addItemLIstener(new ItemListener())

where the ItemLIstener interface declares a single method

public void itemStateChanged(ItemEvent e)

that is invoked when an item has been selected by the user of the check box.

In short, the API can be used to find out how to register a UI component with an appropriate listener that
implements the relevant interface, depending on the nature of the event or events associated with users
when they interact with the component.

Section 3.3.2 includes a list of suggested steps that should be taken when constructing a GUI. Step 9 (in
the list) reiterates the recommendation stated in the on-line Java tutorial that a Swing GUI should execute
in what is known as a thread of execution. The next, and final, chapter of this guide examines how a Java
programme can achieve concurrency of execution of tasks by means of threads.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

90

Concurrency with Threads

4. Concurrency with Threads

The use of the Thread class is often regarded as a relatively advanced topic for a beginners’ guide to Java.
However the reader may recall, from Chapter Three, that a Swing GUI executes in its own thread of
execution. This is an outcome of the fact that the Java Virtual Machine allows an application to have
multiple threads of execution running concurrently. Despite the relative advanced nature of threads (of
execution), it is clear from a study of Chapter Three that the reader should be aware of the fundamental
concepts associated with threads in Java applications. Chapter Four briefly examines how more than one
task can be carried out concurrently in Java programmes by means of threads.

4.1 An Introduction to Threads

Section 3.3.2 gives the code for the main method that renders a Swing GUI in its own thread. The main

method that calls the constructor for a GUI is usually a member of a lightweight class with the following
generalised class definition.

public class RenderTheGui {

public static void main(String[] args) {
 // The next statement is a call to the invokeLater method of the

// SwingUtilities class of the javax.swing package. The invokeLater

// method takes a Runnable object as an argument. In essence, the purpose of
// the Runnable object is to initialise the GUI and schedule it for execution in
// a thread.

 javax.swing.SwingUtilities.invokeLater(new Runnable() {
// start of anonymous class definition of the Runnable object;

 // call the thread’s run method
public void run() {

// call the GUI’s constructor
MySwingClass gui = new MySwingClass();

} // end of run method
} // end of Runnable class definition

); // end of call to invokeLater method
} // end of main

} // end class definition

An anonymous object that implements the Runnable interface is created and passed as an argument to the
invokeLater method. The effect of calling the invokeLater method is to schedule the creation of the GUI
to execute in its own thread and causes the thread’s run method to be called, the purpose of which is to
call the constructor for the GUI.

In effect, the purpose of the class called RenderTheGui is to schedule the GUI to execute in its own thread.
The principal aim of this action is so that the GUI does not ‘freeze’ when it is used by a user, irrespective
of what other tasks that the application is carrying out.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

91

Concurrency with Threads

The example shows that the actual work of a thread is done in its run method; i.e. that task or tasks
that the thread is required to carry out on behalf of the application is coded in the body of the thread’s
run method.

4.2 Creating Threads

One of the tools that are integrated with BlueJ, the IDE used to develop most of the examples presented in
this guide, shows that several threads are running when the GUI of the themed application is rendered.
Most of these threads are system threads or threads that are associated with running BlueJ as an
application. Two of these threads are associated with the themed application, namely the thread that runs
main and the thread that displays the GUI. The only thread that is created explicitly by the developer is the
one that calls the constructor of the GUI, as shown in the code in Section 4.1: the other threads are created
automatically by the JVM in order to manage the IDE and various system resources.

The code in Section 4.1 illustrates one of two methods of creating a thread: i.e. create an object that
implements the Runnable interface.

There are two methods of explicitly creating a thread in a Java programme:

1. Create an object that inherits from the java.lang.Thread class.
2. Create an object that implements the java.lang.Runnable interface.

4.2.1 An Object that Inherits from the Thread Class

A template for the definition of a class that inherits from the Thread class follows on the next page.

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���0`��v=��U���I����S1�Ho�ﹲ�����k��G

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

92

Concurrency with Threads

public class MyThreadOne extends Thread {

// declare instance variables

// constructor for the thread
public MyThread() {

// code goes here
}

// override the run method of the Thread class
public void run() {

// code executed by thread
}

// other members of the class

} // end of class definition

The thread object is instantiated by calling the start method of the Thread class; this invocation places the
thread in a runnable state, which means that it becomes available for scheduling by the JVM. The start

method automatically calls the thread’s run method.

The thread is typically instantiated in a separate, lightweight class that includes a main method. A
template for this class follows.

public class TestMyThreadOne {

public static void main(String args[]) {
MyThreadOne mto = new MyThreadOne();
mto.start();

}

} // end of class definition

The body of the main method instantiates an instance of the thread by calling its no-arguments constructor;
the start method of the thread is called on this instance.

4.2.2 An Object that Implements the Runnable Interface

A template for the class definition of a class that implements the Runnable interface is as follows.

public class MyThreadTwo implements Runnable {

// declare instance variables

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

93

Concurrency with Threads

// constructor for objects of this class
public MyThreadTwo() {

// code goes here
 }

// implement the run method of the Runnable interface
 public void run() {
 // code executed by thread
 }

} // end of class definition

The next template instantiates objects of the class that implements the Runnable interface.

public class TestMyThreadTwo {

public static void main(String args[]) {
MyThreadTwo mtt = new MyThreadTwo();
Thread thread = new Thread(mtt);
thread.start();

}

} // end of class definition

In this case, the body of the main method instantiates an instance of the class that implements the
Runnable interface and it passes this object reference to the constructor of the Thread class that takes a
Runnable object as its only parameter. The start method of the thread is called, as before.

The outcome of using either of the two methods that can be used to create threads is that the developer
provides the body of the thread’s run method; it is this method that does the work that the thread is
required to do in a Java application.

4.3 Using Threads in Java Applications

There are a number of tasks that could be designed to execute in a dedicated thread; these include:

• I/O tasks that require substantial resources or are large in scale;
• large-scale printing tasks where the print driver executes in its own thread;
• synchronised multiple read/write tasks;
• server applications that provide an application service to multiple clients.

The fourth item in the list above identifies applications that require shared access to resources from
multiple client applications and implies a high degree of synchronisation in order to maintain the
integrity and security of data. The next sub-section explains, with an example, how synchronisation
can be achieved.

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

94

Concurrency with Threads

4.3.1 The synchronized Keyword

It seems reasonable to assert that data that is required to be accessed by multiple client applications must
be synchronised to protect the state of the data so that it is consistent from the point of view of client
applications that need to use it. Synchronisation logic is required for any server application that provides
simultaneous services to multiple clients that require read/write access to shared data. This can be
achieved in Java applications by controlling the thread that accesses an object’s data values by identifying
the critical sections of code that require exclusive access to shared data and ‘flagging’ such code by using
the keyword synchronized.

Synchronisation of critical sections of code relies on an entity known as the intrinsic lock of an object. A
thread ‘owns’ an object’s lock between the time it acquires it and releases it. The Java language provides
two synchronising idioms: synchronised methods and synchronised statements.

When a thread invokes a synchronised method, it acquires the lock for that method’s object and releases it
when the method returns. Synchronising a method allows exclusive access to code that accesses shared
data and ensures that it is not possible for two invocations of the method to interleave and interfere with
one another. When a thread invokes a synchronised method of an object, all other threads that invoke
synchronised methods of that object are blocked until the first thread has finished with the object and
releases its lock. Thus, sharing an object amongst threads is made safe by declaring methods to be
synchronised using the keyword synchronized as follows:

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���1=��'8��^�B�I�O�GSj��j�ﹶ�����lU��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

95

Concurrency with Threads

public synchronized void aMethod(){
// body of method

}

Synchronising statements, on the other hand, provides a finer-grained approach than with synchronising
methods. When synchronising a block of statements, the block must specify the object that provides the
lock, as shown next.

public void aMethod() {
 synchronized(anObjectReference) {

// scope of synchronised block
 }

When the thread reaches the synchronised block, it examines the object passed as an argument and obtains
the object’s lock before continuing with the execution of the statements in the block. The lock is released
when the thread passes the end of the block.

The example that follows on the next few pages illustrates how methods and statements are synchronised
in the thread that runs a banking application. The author (of this guide) uses the example to teach some of
the principles of distributed, client/server applications where the client and server run in separate JVMs on
a computer network. The outcome of distributing the client and server components of the application
means that the synchronised code in the server ensures that only one client at a time can access a
customer’s account. Some of the code of the bank’s server class is omitted in order to allow the reader to
identify and study the purpose of the code that is synchronised. The definitions of the Account and
BankingException classes do not need to be shown here.

An object of the class that follows is instantiated in the run method of a thread so that its methods can be
called from multiple clients.

/**
* The server class is based on David Flanagan’s code; it implements methods for bank
* account transactions. Account data is written out to a data a file.
* Modified by David M. Etheridge.

 * @version 1.0, dated 17 January 2008.
* Source: David Flanagan, Java Examples in a Nutshell, 2nd Edition, 2000.

 */
import java.util.*;
import java.io.*;

public class BankServer {
 /** This data structure stores accounts. */

Map accounts = new HashMap();
 /** The constructor reads the accounts from a file. */

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

96

Concurrency with Threads

public BankServer() {
 try
 {

readData();
 }
 catch(Exception e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 } // end of constructor

 /** This method opens a bank account with a name and password. It is synchronised
* to make it thread safe, since it manipulates the data structure of accounts.

 * @param name The name of the account.
* @param password The account's password.
*/

 public synchronized void openAccount(String name, String password)
throws BankingException, IOException, ClassNotFoundException {
// find out if there is already an account with this name

 if (accounts.get(name) != null)
{

 throw new BankingException("Account already exists.\n");
}

 // otherwise, if the account doesn't exist: create it
 else
 {
 Account acct = new Account(name, password);
 // put the account in the data structure
 accounts.put(name, acct);
 }
 // write the accounts to a file
 try
 {
 FileOutputStream fos = new FileOutputStream(

"C:\\temp\\accounts.dat");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(accounts);
 oos.flush();
 oos.close();
 fos.close();
 }
 catch (IOException e) {
 System.out.println("Error: " + e.getMessage());
 }

} // end of openAccount method

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Graphical User Interfaces

97

Concurrency with Threads

 /** This method cannot be invoked from the client GUI. Given a name and password,
* it checks to see if an account with that name and password exists. If so, it returns the
* Account object. Otherwise, it throws an exception.

 * @return A reference to an existing account.
 * @param name The name of the account.
 * @param password The account's password.

*/
 Account verify(String name, String password) throws BankingException {

synchronized(accounts)
{ // start of synchronised block; note the cast

 Account acct = (Account)accounts.get(name);
 if (acct == null)
 {
 throw new BankingException("No such account.\n");
 } else {
 if (!password.equals(acct.password))
 {
 throw new BankingException(

"Invalid password.\n");
 } // end if

 } // end else
 return acct;

 } // end of synchronized block
 } // end of verify method

Φ��t�a}7sp�w�{�
F�5
Φ��t�a}7sp�w�{�
F�5�g�u��ad�=���?7��%l��V�@�I�H�FS0��n�ﹶP����8Q��

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

98

Concurrency with Threads

/** This method closes an account. It is synchronisd to make it thread safe, since it
* manipulates the data structure of accounts.

 * @param name The name of the account.
 * @param password The account's password.

*/
 public synchronized void closeAccount(String name, String password)

throws BankingException {

Account acct = verify(name, password);
accounts.remove(name);

 acct.transactions.add("Account closed at " + new Date());
 // before changing the balance an account, we first have to obtain a lock on

// that account
synchronized (acct)
{ // start of synchronised block

 double balance = acct.balance;
 // assume a closing balance of zero
 acct.balance = 0;

// write the accounts to a file as in the openAccount method
} // end of synchronised block

 } // end of closeAccount method

 /** This method deposits an amount in the named account.
 * @param name The name of the account.
 * @param password The account's password.
 * @param depositAmount The amount to be deposited.

*/
 public void deposit(String name, String password, double depositAmount)

throws BankingException {

Account acct = verify(name, password);
 synchronized(acct)

{ // start of synchronised block
 acct.balance += depositAmount;
 acct.transactions.add(

"Deposited " + depositAmount + " on " + new Date());
// write the accounts to a file

} // end of synchronised block
 } // end of deposit method

 /** This method withdraws an amount from the named account.
 * @param name The name of the account.
 * @param password The account's password.
 * @param depositAmount The amount to be withdrawn.

*/

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

99

Concurrency with Threads

 public double withdraw(String name, String password, double
withdrawAmount) throws BankingException {

Account acct = verify(name, password);
synchronized(acct)

 { // start of synchronized block
 if (acct.balance < withdrawAmount)
 {
 throw new BankingException(

"Insufficient funds for this withdrawal.\n");
 }
 else
 {
 acct.balance - = withdrawAmount;
 acct.transactions.add(

"Withdrew " + withdrawAmount + " on "
+ new Date());

 }
 // write the accounts to a file

 return withdrawAmount;

} // end of synchronised block
} // end of withdraw method

 /** This method returns the current balance of the named account.
 * @return The account's balance.
 * @param name The name of the account.
 * @param password The account's password.

*/
 public double getBalance(String name, String password)
 throws BankingException {

 Account acct = verify(name, password);
 synchronized(acct)
 { // start of synchronised block
 return acct.balance;

} // end of synchronised block
 } // end of getBalance method

/** This method returns a List of strings containing the transaction history of the
 * named account.

 * @return The transaction history of the account.
 * @param name The name of the account.
 * @param password The account's password.

*/

Φ��t�a}7sp�w�{�
F�5

Download free eBooks at bookboon.com

Java: Graphical User Interfaces

100

Concurrency with Threads

 public List getTransactionHistory(String name, String password)
throws BankingException, ClassNotFoundException {

 Account acct = verify(name, password);
 synchronized(acct)
 { // start of synchronised block
 return acct.transactions;
 } // end of synchronised block
 } // end of getTransactionHistory method

 /** This method reads the accounts from a file; it is called from the constructor. */
 public void readData() throws IOException, ClassNotFoundException {
 try

{
FileInputStream fis = new FileInputStream(

"C:\\temp\\accounts.dat");
 ObjectInputStream ois =

new ObjectInputStream(fis);
 accounts = (Map)(ois.readObject());
 ois.close();
 fis.close();
 }
 catch (IOException e) {
 System.out.println("Error: " + e.getMessage());
 }

} // end of readData method

} // end of BankServer class definition

The reader is not expected to understand fully how the bank application works. Rather, the aim of
presenting the substantive code for the BankServer class is so that the reader can gain an understanding
how synchronisation is used to synchronise methods and blocks of code in order to meet the requirements
of the application in a way that ensures that a named account can be accessed by only one client
application at a time.

4.4 Summary of Threads

Chapter Four explains how the Thread class and the Runnable interface are used in a Java programme to
create threads of execution. An example is used to illustrate how synchronised access to code is achieved
in situations that require exclusive access to shared data resources.

Φ��t�a}7sp�w�{�
F�5

Java: Graphical User Interfaces

101

Concurrency with Threads

The chapter omits any discussion of thread scheduling. It is sufficient to say, for the purposes of this guide,
that Java threads are pre-emptive. This means that the pre-emptive scheduler knows that a number of
threads are runnable because their run method has been invoked implicitly by the JVM or explicitly by the
developer’s code. However, only one thread is actually running at a time. A running thread continues to
run until it ceases to be runnable or another thread of higher priority becomes runnable. In the latter case,
the lower priority thread is pre-empted by the higher priority thread. A thread might cease to be runnable
(i.e. it become blocked) for a variety of reasons, such as it might have to wait to access a resource. This
gives other threads a chance to execute.

Some of the scheduling conditions can be influenced by developer’s code; however, the fields and
methods of the Thread class are not considered in this chapter. The reader is referred to the documentation
of the Thread class in the Java API for an initial insight concerning how the developer can influence
thread scheduling.

