
David Etheridge

Java: Classes in Java
Applications
An Introduction to Java Programming

Download free books at

Download free eBooks at bookboon.com

2

David Etheridge

Java: Classes in Java Applications
– An Introduction to Java Programming

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

3

Java: Classes in Java Applications – An Introduction to Java Programming
© 2009 David Etheridge & Ventus Publishing ApS
ISBN 978-87-7681-495-3

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

4

Contents

Contents

1. Using the Java Application Programming Interface
1.1 Documentation in Developer-Written Java Classes
1.2 Documentation in the Java Application Programming Interface

2. Flow Control
2.1 Introduction to Flow Control
2.2 Sequential Flow
2.3 Conditional Flow
2.4 Making Decisions
2.5 Controlling the Repetition of Blocks of Code
2.6 Deciding Which Construct to Use
2.7 Branching Statements
2.8 Handling Exception Objects

3. Extending Classes by Means of Inheritance
3.1 What Does Inheritance Mean?
3.2 Overriding and Hiding Methods in a Subclass
3.3 Invoking a Parent Class Constructor from a Subclass Constructor
3.4 fi nal and abstract Classes
3.5 What Does Type Compatibility Mean?

7
7
15

19
19
19
19
20
33
41
42
43

45
45
53
56
57
60

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa�� L�`b��F��H?��HO���ue�����YH����W�oA

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

5

Contents

3.6 Virtual Method Invocation
3.7 Controlling Access to the Members of a Class
3.8 Summary of Inheritance

4. Errors in Java Programmes
4.1 Categories of Error
4.2 What are Unexpected Error Conditions?
4.3 Checked Exceptions
4.4 try … catch … fi nally Blocks
4.5 Throwing Exceptions
4.6 Exceptions in the Themed Application
4.7 Summary of Exceptions

5. Java Interfaces
5.1 What is a Java Interface?
5.2 Defi ning and Implementing a Java Interface
5.3 The Role of Interfaces as a Means to Introduce Behaviour to a Class
5.4 Interfaces as Types
5.5 Summary of Java Interfaces

6. Grouping Classes Together in a Java Application
6.1 An Introduction to Java Packages

64
65
68

70
70
71
73
82
84
87
92

93
93
97
101
103
106

107
107

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������2`Q�DŰH:��HH���ua�����X����^��:�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

6

Contents

6.2 Creating Packages
6.3 Naming Convention
6.4 Packages in the Java Language
6.5 Using and Accessing Package Members
6.6 Compiling and Running Package Members

107
111
111
114
117

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����B�7gT�BŻ�o�������-`�����	����_S�<�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

7

Using the Java Application Programming Interface

1. Using the Java Application Programming
Interface

Chapter One takes examples from the Java Application Programming Interface (API) and the themed
application in order to emphasise the critical importance of documentation. The examples are used to
show how documentation is organised in the API and how it is inserted into developer’s code.

1.1 Documentation in Developer-Written Java Classes

Previous chapters include a number of examples of classes (or partial classes) from the themed application,
the main purpose of which is to illustrate programming concepts. It should not have escaped the notice of
the reader that these examples often include material other than Java statements, usually in a non-bold font.
The inclusion of such material raises a question: what is the purpose of documentation is a class definition?

Perhaps one way to address this question is to consider figures 1.1 and 1.2 below.

Source: http://www.cvr-it.com/PM_Jokes.htm

Figure 1.1 A view of an application as explained by the users

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

8

Using the Java Application Programming Interface

Source: http://www.cvr-it.com/PM_Jokes.htm

Figure 1.2 How the programme was documented

While it is obvious that the images are meant to be amusing, they make a serious point: there is nothing
worse than trying to maintain code written by someone else if there is little or no documentation.

Documentation is an integral part of a Java class in that it is used, inter alia, to explain the purpose of
members of the class (to the development team) and show consistency with the class diagram.

1.1.1 Documentation in the Themed Application

The class diagrams of two of the classes of the themed application are shown in the figure on the
next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

9

Using the Java Application Programming Interface

Figure 1.3 The Member and MembershipCard classes of the themed application

The classes are related by a ‘has a’ relationship, as shown in the next figure.

Figure 1.4 Each Member ‘has a’ MembershipCard

The source code for the Member class follows next. Some of the Java statements, white space and single-
line comments are omitted for the sake of brevity so that the learner can concentrate on Java
documentation, rather than on the logic of the code. Documentation blocks are displayed in a bold font.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

10

Using the Java Application Programming Interface

/**
 * The purpose of the Member class is … < to be completed by the developer >.
 * @author David M. Etheridge.
 * @version 1.0, dated 29 October 2008.
 */

public class Member {
 private String firstName;
 private String lastName;
 private String userName;
 private String password;
 private int membershipNumber;
 private String noOfCards;
 private MembershipCard card;

/**
 * This constructor is used to initalise the first four attributes.
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user name.
 * @param pWord The member's password.
 */

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����E�<7V��ųLm��HM���-1�����[I���^��;�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

11

Using the Java Application Programming Interface

public Member(String fName, String lName, String uName, String pWord) {
 firstName = fName;
 lastName = lName;
 userName = uName;
 password = pWord;

 } // End of constructor.

/**
 * Accessor for the attribute firstName.
 * @return firstName The value of the attribute firstName.
 */
 public String getFirstName() {
 return firstName;
 } // End of definition of getFirstName.

/**
 * Accessor for the attribute lstName.
 * @return lastName The value of the attribute lastName.
 */
 public String getLastName() {
 return lastName;
 } // End of definition of getLastName.

/**
 * Accessor for the attribute userName.
 * @return userName The value of the attribute userName.
 */
 public String getUserName() {
 return username;
 } // End of definition of getUserName.

/**
 * Accessor for the attribute password.
 * @return password The value of the attribute password.
 */
 public String getPassword() {
 return password;
 } // End of definition of getPassword.

/**
 * Accrssor for the attribute membershipNumber.
 * @return membershipNumber The value of the attribute
 * membershipNumber.
 */

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

12

Using the Java Application Programming Interface

 public int getMembershipNumber() {
 return membershipNumber;
 } // End of definition of getMembershipNumber.

/**
 * Accessor for the attribute noOfCards.
 * @return noOfCards The value of the attribute noOfCards.
 */
 public String getNoOfCards() {
 return noOfCards;
 } // End of definition of getNoOfCards.

/**
 * Mutator for the attribute card.
 * @param card The member's membership card.
 */
 public void setCard(MembershipCard card) {
 this.card = card;
 } // End of setCard.

/**
 * Accessor for the attribute card.
 * @return card The member's membership card.
 */
 public MembershipCard getCard() {
 return card;
 } // End of setCard.

} // End of class definition of Member.

Comments in the source code that are placed between /** and */ are known as documentation comments
and can be used to generate documentation about classes automatically. Comments that are tagged with
‘@’ have a specific meaning in that they are used to refer to elements such as the programme’s author,
parameters and return values.

The (similarly simplified) class definition of the MembershipCard class follows on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

13

Using the Java Application Programming Interface

/**
 * The purpose of the class MembershipCard is …
 * @author David M. Etheridge.
 * @version 1.0, dated 29 October 2008.
 */

public class MembershipCard {

 private int noOnLoan;
 private int maxOnLoan;

 /**
 * This constructor is used to initalis the maxOnLoan attribute. *
 * @param max The maximum number of items permitted to be on loan
 * against this card.
 */
 public MembershipCard(int max) {
 maxOnLoan = max;
 } // End of constructor.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������agT�BŻ�o�������-`�����	����_S�<�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

14

Using the Java Application Programming Interface

/**
 * Accessor for the attribute noOnLoan.
 * @return noOnLoan The value of the attribute noOnLoan.
 */
 public int getNoOnLoan() {
 return noOnLoan;
 } // End of definition of getNoOnLoan.

 /**
 * Accessor for the attribute maxOnLoan.
 * @return maxOnLoan The value of the attribute maxOnLoan.
 */
 public int getMaxOnLoan() {
 return maxOnLoan;
 } // End of definition of getNoOnLoan.

} // End of class definition.

Most development environments for Java include a feature that runs the javadoc tool that is provided with
the javac compiler and other java tools in Java’s bin directory. When it is executed, the javadoc tool scans
the tags and generates a set of linked HTML files. A snapshot of part of the documentation for the
MembershipCard class is shown next.

Class MembershipCard
java.lang.Object

MembershipCard

public class MembershipCard extends java.lang.Object
The purpose of the class definition for the class Member is …
Version:

1.0, dated 29 October 2008.
Author:

David M. Etheridge.

Constructor Summary
MembershipCard(int max)

 This constructor is used to initalize the maxOnLoan attribute.

Method Summary
 int getMaxOnLoan()

 Accessor for the attribute maxOnLoan.

 int getNoOnLoan()

 Accessor for the attribute noOnLoan.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

15

Using the Java Application Programming Interface

Constructor Detail
MembershipCard
public MembershipCard(int max)

This constructor is used to initalize the maxOnLoan attribute.
Parameters: max - The maximum number of items permitted to be on loan against this card.

Method Detail
getMaxOnLoan
public int getMaxOnLoan()

Accessor for the attribute maxOnLoan.
Returns: maxOnLoan The value of the attribute maxOnLoan.

getNoOnLoan
public int getNoOnLoan()

Accessor for the attribute noOnLoan.
Returns: noOnLoan The value of the attribute noOnLoan.

The javadoc tool detects tags such as @aurhor, @version, @param and @return and generates the
relevant HTML file, as seen by comparing the source code and documentation for the MembershipCard

class shown above. Single-line comments are not detected by the javadoc tool; they are, however, an
important component of documentation, as is evident by their extensive use in examples presented in
previous chapters.

For further details about javadoc tags, the reader is referred to the section titled Tag Conventions in
http://java.sun.com/j2se/javadoc/writingdoccomments/#sourcefiles

Using the javadoc tool is straightforward and should always to be sued to produce documentation for all
classes written by Java developers as an integral part of the development process.

1.2 Documentation in the Java Application Programming Interface

The opening page of the version of the API (stored on the author’s computer at the time of writing) is
shown in the next screen shot.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

16

Using the Java Application Programming Interface

Figure 1.5 The Java API

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������0d��IŻMh��HJ���u<�ĝ��_H����T�<F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

17

Using the Java Application Programming Interface

Part of the section for the String class is shown below.

java.lang

Class String
java.lang.Object

java.lang.String
All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>
public final class String extends Object
implements Serializable, Comparable<String>, CharSequence

Constructor Summary
String()

 Initializes a newly created String object so that it represents an empty
character sequence.

String(byte[] bytes)

 Constructs a new String by decoding the specified array of bytes using
the platform's default charset.

… other constructors follow but are not shown

Method Summary
 char charAt(int index)

 Returns the char value at the specified index.

 int codePointAt(int index)

 Returns the character (Unicode code point) at the specified index.

 int codePointBefore(int index)

 Returns the character (Unicode code point) before the specified index.

 int codePointCount(int beginIndex, int endIndex)

 Returns the number of Unicode code points in the specified text range of this
String.

 int compareTo(String anotherString)

 Compares two strings lexicographically.

 int compareToIgnoreCase(String str)

 Compares two strings lexicographically, ignoring case differences.

String concat(String str)

 Concatenates the specified string to the end of this string.

... other methods follow but are not shown

Clicking on any of the constructors or methods reveals the details about that member. For example,
clicking on the compareTo method of the String class displays the following page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

18

Using the Java Application Programming Interface

compareTo
public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each
character in the strings. The character sequence represented by this String object is compared
lexicographically to the character sequence represented by the argument string. The result is a
negative integer if this String object lexicographically precedes the argument string. The result
is a positive integer if this String object lexicographically follows the argument string. The
result is zero if the strings are equal; compareTo returns 0 exactly when the equals(Object)
method would return true.

Specified by:
compareTo in interface Comparable<String>
Parameters:
anotherString - the String to be compared.
Returns:
the value 0 if the argument string is equal to this string; a value less than 0 if this string is
lexicographically less than the string argument; and a value greater than 0 if this string is
lexicographically greater than the string argument.

The principal purpose of the illustrations in this section is to show that the documentation provided by the
API is organised in an identical fashion to that produced by the javadoc tool for developer-written classes,
as exemplified in Section 1.1.1. This gives rise to consistently-structured documentation for the infinitude
of Java classes used and written by the worldwide Java development community.

While the examples in Section 1.1.1 are relatively straightforward in terms of the logic of Java source
code, they are included to illustrate the essential principles and purpose of providing single-line and block
documentation as an integral part of writing class definitions.

The next chapter returns to the Java language itself and explores how flow of control is managed in blocks
of Java source code.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

19

Flow Control

2. Flow Control

2.1 Introduction to Flow Control

The Java language provides a number of constructs that enable the developer to control the sequence of
execution of Java statements. Chapter Two provides examples of how these constructs are used to control
the flow of execution through a block of code that is typically contained in the body of a method.

2.2 Sequential Flow

Sequential flow of execution of statements is the execution of Java source code in a statement-by-
statement sequence in the order in which they are written, with no conditions. Most of the examples of
methods that are discussed in previous chapters exhibit sequential flow. In general terms, such a method is
written as follows.

public void someMethod() {

 // first statement to execute
 // second statement to execute
 // third statement to execute
 // and so on, to the final statement
 // final statement to execute

} // end of method definition

A number of the main methods, presented in previous chapters, are structured in this sequential way in
order to satisfy straightforward testing criteria.

2.3 Conditional Flow

While sequential flow is useful, it is likely to be highly restrictive in terms of its logic. Executing
statements conditionally gives the developer a mechanism to control the flow of execution in order to
repeat the execution of one or more statements or change the normal, sequential flow of control.
Constructs for conditional flow control in Java are very similar to those provided by other programming
languages. Table 2.1 on the next page identifies the flow control constructs provided by the Java language.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

20

Flow Control

Statement Type Key words

Decision if … then

Decision if … else

Decision switch … case

Loop for

Loop while

Loop do … while

Branching break: labelled and unlabelled form

Branching continue: labelled and unlabelled form

Exception handling (see Chapter Four) try … catch

Table 2.1 Flow control constructs

The sub-sections that follow show, by example, how these constructs are used.

2.4 Making Decisions

Using a decision-making construct allows the developer to execute a block of code only if a condition is
true. The sub-sections that follow illustrate how decision-making constructs are used.

TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa��¢G�50U����Jo��HO���-7�ȝ��Q��ڀ
X�8F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

21

Flow Control

2.4.1 The if … then Construct

The if … then construct is the most basic of the decision-making constructs provided by the Java language.
If a condition is true, the block of code is executed: otherwise, control skips to the first statement after the
if block. The following code snippet illustrates a simple use of the if … then construct.

 // assume that the value of age has been entered via the keyboard
if (age >= 18) // the if condition is placed between (and)
{ // start of if block

System.out.println(“You can drink legally.”); // the then clause
} // end of if block

 // execute the next statement
System.out.println(“The rest of the programme is next.”);

When the code snippet is run (in a main method), the output when age = 20 is:

 You can drink legally.
 The rest of the programme is next.

and when age = 17, the output is:

 The rest of the programme is next.

In some programming languages, the word ‘then’ is included in the then clause. As the code snippet
above shows, this is not the case in Java.

An example taken from the themed application shows an if … then construct in action in one of the
methods of the Member class. The method adds a member to the array of members only if there is room in
the array of (arbitrary) size 6.

 /**
 * This method adds a member if there is room in the array of members called members.
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user name.
 * @param pWord The member's password.
 */
 public void addMember(String fName, String lName, String uName, String pWord) {

if(noOfMembers < 6)
 {
 members[noOfMembers] = new Member(fName,

lName, uName, pWord);

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

22

Flow Control

 System.out.println("The member has been added.");
 // Increment the number of members.
 noOfMembers++;
 }
 System.out.println("No room for another member.");

 } // End of addMember.

If there is no room in the array because noOfMembers is equal to or greater than 6, control skips to the
print statement that outputs the message “No room for another member.”

2.4.2 The if … else Construct

The if … else construct (sometimes known as the if … then … else construct) provides an alternative path
of execution if the if condition evaluates to false. Figure 2.1 illustrates, diagrammatically, the logic of the
if … else construct.

Figure 2.1 The logic of the if … else construct

Flow of control enters the if clause and the if condition is tested. The result of evaluating the if condition
returns either true or false and one or other of the paths of execution are followed depending on this value.
The else block is executed if the if condition is false.

The next code snippet illustrates a simple use of the if … else construct by modifying the first code snippet
in Section 2.4.1.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

23

Flow Control

if (age >= 18) // the if condition
{ // start of if block

System.out.println(“You can drink legally.”); // the then clause
} // end of if block
else
{ // start of else block

System.out.println(“You are too young to drink alcohol!”);
 } // end of else block
 // execute the next statement

System.out.println(“The rest of the programme is next.”);

When the code snippet is run (in a main method), the output when age = 20 is:

 You can drink legally.
The rest of the programme is next.

and when age = 17, the output is:

 You are too young to drink alcohol!
The rest of the programme is next.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������49��A���3��HN���u3����������_Q�jB

Download free eBooks at bookboon.com

Java: Classes in Java Applications

24

Flow Control

Another example taken from the themed application shows an if … else construct in action in another of
the methods of the Member class. The setCard method is used to associate a member of the Media Store
with a virtual membership card. Each member may have up to two cards, so the method checks whether
another card can be allocated to a member.

 /**
 * This method gives a card to a member by adding it to the member's array of (two) cards.

* The array has the identifier cards.
* @return result A boolean value to state whether the addition of a card is possible.

 * @param card A parameter of the MembershipCard type.
 */
 public boolean setCard(MembershipCard card) {

 // declare a local variable
 boolean result = true;
 // noOfCards is the number of cards allocated to the member
 if (noOfCards < cards.length) {
 cards[noOfCards] = card;
 noOfCards++;
 }
 else {
 System.out.println("No more cards allowed for this member.");
 result = false;
 }
 return result;

 } // End of setCard.

The if … else construct in the method is used to return either true or false, depending upon the result of
evaluating the if condition that determined whether or not the member has fewer than two cards.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

25

Flow Control

2.4.3 Compound if … else Constructs

There is another form of the else part of the if .. else construct: else … if. This form of compound or
cascading construct executes a code block depending on the evaluation of an if condition immediately
after the initial if condition. The compound if … else construct is illustrated diagrammatically in Figure
2.2 below.

Figure 2.2 The logic of the compound if … else construct

The figure shows that any number of else … if statements can follow the initial if statement.

The example on the next page illustrates how the if .. else construct is used to identify the classification
for degrees awarded by universities in the United Kingdom, based on the average mark achieved in the
final year.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

26

Flow Control

 // declare two local variables
int average = 0;

 String result = null;
 if(average >= 70)
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������0`Q�Gű�<�H����u`�Ý��	�����T�?�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

27

Flow Control

Running the code with an average of 30 % produces the following output:

 Your result is: You are going to have to tell your mother about this!

and with an average of 65 %, the output is as follows:

 Your result is: Upper Second

When the value of average is equal to 65, this satisfies more than one of the else … if statements in the
code above. However, the output confirms that the first time that a condition is met – when average >= 60
– control passes out of the initial if statement without evaluating the remaining conditions. When a
condition is met in the code above, the output shows that control skips to the first statement after the initial
if statement, i.e. to the statement

System.out.println("Your result is: " + result);

It is worthwhile alerting learners to the use of braces in compound else … if constructs. Care must be taken
when coding compound else .. if constructs due to the number of pairs of brackets involved: a common
error is to omit one or more of these brackets. In cases where there is only one statement in an if block, it
is good practice to include braces – as shown in the example above – in anticipation of if blocks that
include more than one statement.

The final example in this sub-section shows a compound else … if construct in action in the Member class
of the themed application. The method scans the array of (virtual) cards held by a member and outputs
some information that is stored against each card. (for loops are discussed in a later section of this chapter.)

 /** This method scans the array of cards in a for loop. */
 public void getDetialsOfCards() {

 // Declare a local variable.
 MembershipCard card = null;
 // note the use of the instanceof operator
 for (int i = 0; i < noOfCards; i++)
 {
 if (cards[i] instanceof DvdMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a DVD card with " + getNoOnLoan()
 + " DVDs currently on loan.");
 } else if (cards[i] instanceof GameMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a games card with " +
 getNoOnLoan() + " CDs currently on loan");
 } else
 {

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

28

Flow Control

 System.out.println("Neither type of card.");
 }
 } // End of for loop.

} // End of getDetailsOfCards.

2.4.4 Nested if Statements

As an alternative to compound if statements, as described in sub-section 2.4.3, if statements can be nested
if the method demands this kind of logic. The simple example of nesting if statements shown next is a
variant of the first example in sub-section 2.4.3.

int average = 65;
 String result = null;
 String course = "Java";
 if (course == "Java")
 { // start of outer if
 if(average >= 70) // start of inner if
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);
 } // end of outer if
 System.out.println("No more results are available.");

When the code is run, the output is

 Your result is: Upper Second
No more results are available.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

29

Flow Control

When the next version is run, the output is

 No more results are available.

int average = 65;
 String result = null;
 String course = "C++";
 if (course == "Java")
 { // start of outer if
 if(average >= 70) // start of inner if
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);

} // end of outer if
 System.out.println("No more results are available.");

Care should be taken when using any of the variants of the if statement to ensure and test that the required
logic is implemented in the construct. It is often helpful to draw a diagram of the logic required, in order
to help decide which variant to use to meet specific requirements.

2.4.5 The Conditional Operator

Java provides a ternary, conditional operator ? : that is a compact version of an if … else statement. The
operator takes three operands: the first is a boolean condition; the second is the result if the condition is
true; the third is the result if the condition is false.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

30

Flow Control

Let us recall a previous example from this chapter.

if (age >= 18) // the if condition
{ // start of if block

System.out.println(“You can drink legally.”); // the then clause
} // end of if block
else
{ // start of else block

System.out.println(“You are too young to drink alcohol!”);
 } // end of else block
 // execute the next statement

System.out.println(“The rest of the programme is next.”);

The logic of the if .. else statement can be re-written as follows, using Java’s ternary operator.

int age = 21;
 System.out.println(age >= 18 ? "Old enough to drink" : "Too young to drink");
 System.out.println("The rest of the programme is next.");

and produces the following output when run:

 Old enough to drink
The rest of the programme is next.

The next and final sub-section in the category of decision-making constructs describes the
switch … case construct.

2.4.6 The switch … case Construct

The switch … case construct is an alternative to compound if statements if the condition is an evaluation
of an integer expression. As such, it is often easier to code than compound if statements in that is it less
prone to errors such as the omission of brackets. The switch … case construct is illustrated
diagrammatically in Figure 2.3 on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

31

Flow Control

Figure 2.3 The logic of the switch … case construct

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����M�41T�GźOm��HM���.7�Ɲ��
����XS�l@

Download free eBooks at bookboon.com

Java: Classes in Java Applications

32

Flow Control

The logic of the switch … case construct is such that the integer condition is tested against each case
in order from left to right. When this logic is translated in Java source code, the generalised syntax is
as follows.

int someIntegerValue;
 switch (someIntegerValue) { // start of switch block
 case 1: // do something; break;
 case 2: // do something else; break;
 case 3: // do something else ; break;
 case 3: // do something else; break;
 case 5: // do something else; break;
 } // end of switch block

// first statement after the switch block

The break statement after each case statement is necessary to exit the enclosing switch block when the
switch condition has been satisfied. When a break statement is executed, control passes out of the
enclosing switch block to the first statement after the end of the switch block. On the face of it, it would
seem logical to omit the final break statement. However, it is advisable to include it in case additional
case statements are added to an existing switch block.

In the days before the ubiquitous use of icon-driven applications, old-fashioned text-based user interfaces
for green screen types of applications were often menu-driven. Case statements were typically used to
construct this kind of interface. While it is generally true that menu-driven applications have largely
disappeared, case statements are useful for testing the conditional flow through application logic.

The following example illustrates testing a switch … case construct with a value entered via the
keyboard. (It isn’t necessary to show the code used to capture a number via the keyboard for the
purposes of the example.)

 // a number entered via the keyboard is stored in a variable with the identifier month

int days;
switch(month)
{
 case 9:
 case 4:
 case 6:
 case 11: days = 30; break;
 case 2: days = 28; break;
 default: days = 31; break;
}
System.out.println(“The number of days is: + days);

When this code is run in a main method, the output is as follows:

 Enter the number of the month: 1
The number of days is: 31

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

33

Flow Control

Enter the number of the month: 2
The number of days is: 28

Enter the number of the month: 3
The number of days is: 31

Enter the number of the month: 4
The number of days is: 30

Enter the number of the month: 5
The number of days is: 31

Enter the number of the month: 6
The number of days is: 30

Enter the number of the month: 7
The number of days is: 31

Enter the number of the month: 8
The number of days is: 31

Enter the number of the month: 9
The number of days is: 30

Enter the number of the month: 10
The number of days is: 31

Enter the number of the month: 11
The number of days is: 30

Enter the number of the month: 12
The number of days is: 31

The output shows that the default statement is used to detect all values that aren’t detected by any of
the case statements. The output also shows that when the value of month is 9, 4 or 6, the first three
case statements are said to ‘fall through’ so that the value of days is 30 when the value of month is 9,
4, 6 or 11.

2.5 Controlling the Repetition of Blocks of Code

Controlling the repetition of a block of code can be achieved in one of two ways: by using a counter to
repeat a block of code a known number of times; by using the evaluation of a boolean expression to decide
when to stop repeating the block. The general requirement to repeat a block of code is illustrated in Figure
2.4 on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

34

Flow Control

Figure 2.4 The requirement to repeat a block of code

2.5.1 Counter-Controlled Repetition

The logic of counter-controlled repetition is visualised in Figure 2.5.

Figure 2.5 Counter-controlled repetition of a block of code

Working with the counter is implemented by what is known as a for loop. The general syntax of a for loop

is as follows:

for (declare and initialise the counter;
 final value condition of the counter;
 update counter)
 {

// block to repeat
}

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

35

Flow Control

The general syntax implies that the value of the final condition of the counter is a known value. For
example, consider the following code snippet:

for (int i = 0; i <= someMaxValue; i ++)
 {

// code block to repeat
 }

If the value of someMaxValue is 10, the code block will execute 11 times. If the code snipped is modified
to read as follows with the same value of someMaxValue

for (int i = 0; i < someMaxValue; i ++)
 {

// code block to repeat
 }

the code block will execute 10 times. The purpose of including the two code snippets above is to show
that care must be taken when initialising and setting the final value of the counter’s condition when
controlling the number of times that a for loop is executed.

The example, shown on the next page, shows a for loop in action in one of the methods of the Member

class in the themed application,.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����G�<3��EŲ�o��HJ���tg����
M������8E

Download free eBooks at bookboon.com

Java: Classes in Java Applications

36

Flow Control

 /**
* This method outputs the details of the cards held by the member by scanning across the
* member’s array of cards with the identifier cards.
*/

 public void getDetialsOfCards() {

 // Declare a local variable.
 MembershipCard card = null;

 // Note the use of the instanceof operator.
 for (int i = 0; i < noOfCards; i++) // the value of noOfCards is known
 {
 if (cards[i] instanceof DvdMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a DVD card with “ +
 card.getNoOnLoan() + “ DVDs currently on loan.");
 } else if (cards[i] instanceof GameMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a games card with " +
 card.getNoOnLoan() + " CDs currently on

loan");
 } else System.out.println("Neither type of card.");
 } // End of for loop.

} // End of getDetailsOfCards.

The purpose of the for loop in the method is to scan the array of a member’s (virtual) cards in order to
output some information stored on each card. In the example, the number of cards held by a member is
known: therefore, a for loop is the clear choice of construct to use to repeat the required block of code.

2.5.2 Boolean-Controlled Repetition

Java provides two boolean-controlled constructs to control the repetition of a block of code: the while loop

and the do … while loop.

The while loop

The logic of the while loop is visualised in Figure 2.6 below.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

37

Flow Control

Figure 2.6 The logic of a while loop

Figure 2.6 implies that if the boolean condition returns an initial value of ‘false’, the loop will not execute
at all. If, on the other hand, the boolean condition returns an initial value of ‘true’, the loop will repeat its
execution until such time as the condition eventually returns ‘false’. The general syntax of a while loop
is as follows.

 // initialise the variable used in the boolean condition
 while(condition is true)
 {
 {

// statements to repeat
 }
 // update the condition: finally, exit the loop
 }

The first example from Section 2.5.1 can be modified to use a while loop as shown on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

38

Flow Control

int someMaxValue = 10;
 int counter = 0;
 while(counter < someMaxValue)
 {
 {

System.out.println("Hello world!");
 }
 counter ++ ;
 }

The String “Hello World!” is output ten times.

The do …while loop

The logic of the do … while loop is visualised in Figure 2.7 below.

Figure 2.7 The logic of a do … while loop

Figure 2.7 implies that if the boolean condition returns a value of ‘false’, the loop will execute once. If, on
the other hand, the boolean condition returns a value of ‘true’, the loop will repeat its execution until such
time as the condition eventually returns ‘false’. The general syntax of a do … while loop is shown on the
next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

39

Flow Control

 // initialise the variable used in the boolean condition
 do
 {
 {

// statements to repeat
 }

// update the condition: finally, exit the loop
 } while(condition is true);

The same example from Section 2.5.1 can be modified to use a do … while loop as shown next.

int someMaxValue = 10;
 int counter = 0;
 do
 {
 {
 System.out.println("Hello world!");
 }
 counter ++ ;

} while(counter < someMaxValue);

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to

BrowserTexting.com

and start texting from
your computer!

FREE
 30 days trial!

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����D�51Q�IŴO>��HI���t7�ŝ��\��ۈ_��jF

Download free eBooks at bookboon.com

Java: Classes in Java Applications

40

Flow Control

In this case, the String “Hello World!” is output ten times.

The next example is taken from one of the classes of the graphical user interface (GUI) used to run the
themed application; the example shows a while loop in action. The purpose of the loop is to scan the array
of members of the Media Store when a member logs in via the GUI. When the member is found in the
array, the loop is exited to avoid searching the remainder of the array.

// This method finds out if a member has registered with the Media Store and has been added
// to the array of members. The method responds to the ‘Login’ button when a member
// attempts to login via the GUI. The main purpose of the method is to find the member in the
// array of members.
// Read in the array of members. mediaStore is the reference to the MediaStore object created
// elsewhere in the application.

 mediaStore.readMembers();
 // Capture the member's user name and password from the GUI. Store these values in local
 // variables username and password.
 // Concatenate the user’s user name and password.

String searchString = userName + password;
// Search the array of members for the combined user name and password. First, get the array
// of members.
Member[] existingMembers = mediaStore.getMembers();
// Scan the array of existing members and compare the search string with each member's
// combined user name and password.
boolean flag = true;

 while(flag == true)
{

 for (int i = 0; i < mediaStore.getNoOfMembers(); i ++)
 {
 existingMember = existingMembers[i];
 String existingUserName = existingMember.getUserName();
 String existingPassword = existingMember.getPassword();

String combinedNameAndPassword =
existingUserName + existingPassword;

if (searchString.equals(combinedNameAndPassword))
{
 // Found existing member in the array of members.

 // Output a message to the GUI.
 flag = false;
 break; // out of the for loop

 } // end if
 } // end of for loop

 break; // out of the while loop

} // end of while loop

// if there is no match, output a suitable message

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

41

Flow Control

 if (flag == true)
 {

// output "No such member; please try again.");
 }

2.6 Deciding Which Construct to Use

Deciding which construct to use in any particular situation is a matter of judgement that will become
easier to make when the learner gains practical experience. For example, the method implementation
explained at the end of the previous sub-section is a direct consequence of the logic required to find a
member in the array of members and then break out of the loop to avoid unnecessary iterations of the main
loop. As can be seen from the code, the full implementation of the method is a combination of nested if,
while and for constructs.

Before completing our examination of the contents of Table 2.1, it is worthwhile mentioning another ‘loop
within a loop’ nested construct.

2.6.1 Nested for loops

One of my university colleagues sets a fiendish exercise to students enrolled on his Java course. The main
task of the exercise is to print a calendar. While on the face of it this may seem a straightforward exercise,
it actually involves a number of loops within loops, generally referred as nested for loops. A highly
generalised skeleton solution to this exercise might read as follows.

for (int months = 1; months < 13; months ++) // the month loop
 {
 for (int weeks = 1; weeks < 5; weeks ++) // the week loop
 {
 for (int days = 1; days < 32; days ++) // the day loop
 {
 // output the day and date in a calendar format
 }
 }
 } // end of outer for loop

The outline example above suggests that nested for loops can be used to construct tables or two-
dimensional arrays of data. The inner loop is used to output each entry in a row and the outer loop can be
used to move to the next column. The next code snippet outputs the value of each cell of a table or array.

for (int i = 1; i <= numberOfColumns; i++)
 {
 for (int j = 1; j <= cellValue; j++)
 {
 // output the known value of the cell at co-ordinates j , i, i.e. the jth row of the
 // ith column

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

42

Flow Control

 } // end of inner for loop
 } // end of outer for loop

The next section almost completes our examination of Table 2.1 by considering branching statements.

2.7 Branching Statements

Branching statements are used to terminate a loop or a decision construct or to skip an iteration of a loop.

2.7.1 The Unlabelled break Statement

A number of the examples discussed in this chapter include break statements to expedite the immediate
exit from a flow control construct. The break statement is used to terminate switch, for, while and do …

while constructs. For example, when the following method is invoked

public void someMethod() {

 for (int i = 0; i < 11; i++)
 {
 System.out.print(i + ", ");
 if (i == 5)
 break; // out of the enclosing for loop using an unlabelled break
 }

System.out.println("for loop terminated.");

} // End of someMethod

the output is:

0, 1, 2, 3, 4, 5, for loop terminated.

The output shows that the break statement causes the enclosing for loop to terminate and control passes to
the first statement after the for loop.

2.7.2 The Unlabelled continue Statement

We have not encountered the continue statement thus far in this guide. The continue statement is used to
skip an iteration of for, while and do … while loops.

For example, when the method shown on the next page is invoked, it produces the output displayed after
the body of the method.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

43

Flow Control

public void someMethod() {

for (int i = 0; i < 11; i++)
{

 if (i == 5)
 continue; // skip this iteration of the loop using an unlabelled continue
 // statement
 System.out.print(i + ", ");
 }
 System.out.println("The iteration when i is 5 is skipped.");

 } // End of someMethod.

The output is:

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, The iteration when i is 5 is skipped.

The output shows that the continue statement causes the enclosing for loop to skip the iteration when i is 5
and control passes to the next iteration of the enclosing loop.

The examples in sub-sections 2.7.1 and 2.7.2 illustrate the use of the unlabelled form of the break and
continue statements. When loops are nested, the labelled form of the break and continue statements
identify which of the outer loops are involved in a branch. The reader is referred to the relevant section of
Sun’s on-line Java tutorial for examples that explain the labelled form of the branching statements.

 http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html

2.8 Handling Exception Objects

The final row of Table 2.1 mentions a special kind of decision, namely the one that uses the try … catch

construct to detect error conditions in Java programmes. Chapter Four explains how errors are detected by
objects of the Exception class. For the purposes of this chapter, and to complete the consideration of Table
2.1, one way of looking at the try … catch block is to consider the generalised code snippet that is shown
on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

44

Flow Control

 // one or more of the methods invoked in the next code block are known to produce errors, i.e.
 // they are said to ‘throw’ errors that must be detected or ‘caught’ in a separate code block

try
{

// method invocations that throw errors are coded here
}
catch (Exception e)
{

// do something about the error
}

The structure of the try … catch construct implies that a decision is made depending upon whether an error
is detected or not. If an error is thrown by one of the method invocations in the try block, the remaining
statements of the try block are skipped and the statements in the catch block are executed. If, on the other
hand, method invocations in the try block do not throw any errors, the statements of the catch block are
skipped and control passes to the first statement after the end of the catch block. Chapter Four goes into
details about how try … catch blocks are used to write robust Java code.

In the next chapter, we will find out how we can extend classes by means of a very important concept
known as inheritance.

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����M�41T�GźOm��HM���.7�Ɲ��
����XS�l@

Download free eBooks at bookboon.com

Java: Classes in Java Applications

45

Extending Classes by Means of Inheritance

3. Extending Classes by Means of Inheritance

Chapter Three explores one of the cornerstones of OOP, namely that of inheritance. Java classes can be
easily modified and extended for the purpose of re-use by means of inheritance rather than by re-writing
the source code of the class to be modified.

3.1 What Does Inheritance Mean?

In order to explain what inheritance means in the Java language, let us consider a very simple example.
Suppose that we have a class called MyClass, with the following trivial class definition that declares a
single member:

public class MyClass {

 private int someValue;

 }

and suppose that we wish to re-use this class and, in doing so, we wish to give the replica a different name.
To do this, we would write the following class definition:

public class MyOtherClass {

 private int someValue;

 }

In other words, we have re-written the body of MyClass in the class definition of MyOtherClass. In our
trivial example, the effort of re-writing the body of MyClass is minimal in that there in only one member to
declare. In the general case, on the other hand, the effort of re-writing a large class definition ought to be
avoidable.

The concept of inheritance is common to OOP languages and avoids re-writing code from one class to
another. In the example above, the replica class definition is written as follows, to take advantage of the
concept of inheritance as it applies in Java.

public class MyOtherClass extends MyClass {
// the variable someValue is inherited and does not have to be declared again

 }

The keyword extends indicates that the class MyOtherClass inherits the single member of the class
MyClass so that it becomes a members of MyOtherClass.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

46

Extending Classes by Means of Inheritance

The use of the keyword extends in the simple example above raises a question: what is the purpose of
replicating MyClass in the guise of MyOtherClass when we could simply use it as many times as we wish?
The answer to this question lies in the fact that inheritance means that inherited members can either be
modified or left unchanged. This important concept means that we can modify an inherited method if we
wish to and we are free to leave it (or other) inherited methods unchanged. We can also provide additional
methods in an extended class.

The next example enhances the one above to illustrate the true value of extending a class.

public class MyClass {

 private int someValue;

 public void someMethod(String string) {
 System.out.println(“This is the parent class.”);
 }

 }

and

public class MyOtherClass extends MyClass{

// MyOtherClass inherits both members of MyClass.

 }

Given that MyOtherClass inherits both members of MyClass, consider the test class shown next.

 public class TestClass {
 public static void main(String[] args) {
 MyOtherClass moc = new MyOtherClass();
 System.out.println("The value of someValue is: " + moc.someValue);
 }

}

When an attempt is made to compile the test class, the compiler outputs the following message:

someValue has private access in MyClass

The purpose of this simple example is to show that although the private variable someValue is inherited
by MyOtherClass, it is a private variable and, as such, is not directly accessible by selecting the member
via a reference to an object of the class MyOtherClass. The compiler highlights the statement

System.out.println("The value of someValue is: " + moc.someValue);

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

47

Extending Classes by Means of Inheritance

when it outputs its message because it is complaining that

moc . someValue

attempts to access a private variable, albeit an inherited one. Thus we can see that the compiler is
consistent when we attempt to access a private variable directly whether or not the variable is inherited.

In order to access the variable someValue, we could write an accessor method in MyClass and invoke it via
a reference to an object of MyOtherClass in a test class as shown next.

 public class MyClass {
 private int someValue = 42;

 public void someMethod(String string) {
 System.out.println(“This is the parent class.”);
 }

 public int getSomeValue() {
 return someValue;
 }
 }

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������52���Ŵ�>��H����-`՗���
J���[S�8�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

48

Extending Classes by Means of Inheritance

public class TestClass {
 public static void main(String[] args) {
 MyOtherClass moc = new MyOtherClass();
 System.out.println("The value of someValue is: " +
 moc.getSomeValue());
 }

}

Executing main produces the following output.

The value of someValue is: 42

and shows that the public accessor method getSomeValue is inherited by MyOtherClass.

Alternatively, we could modify the inherited method getSomeValue in order to carry out some simple
processing on someValue as shown next.

public class MyOtherClass extends MyClass {

 public int getSomeValue() {

 someValue ++ ;
return someValue;

 }

}

The modified method does not compile because it attempts to access an inherited private variable.
However, the following modification of the method does compile:

public class MyOtherClass extends MyClass {

 public int getSomeValue() {

 int value = 0;
 // invoke getSomeValue in MyClass

 value = super.getSomeValue();
 value = value + 1;
 return value;

 }

}

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

49

Extending Classes by Means of Inheritance

The same test class produces the following output; note the value is 43, not 42:

 The value of someValue is: 43
The statement

value = super . getSomeValue();

includes a call to getSomeValue ‘on’ an object with the reference ‘super’. The use of the keyword super

in this context refers to an object of the class MyClass from which MyOtherClass inherits its members and
shows that we can invoke methods of an extended class in the extending class by referring to the former
via the object reference super.

The relationship between MyOtherClass and MyClass is such that the latter is said to be the superclass of
the former or, looking at the relationship the other way round, the former is a subclass of the latter. The
IDE used to compile the three classes referred to in this section displays this relationship in the screen shot
shown in the next figure.

Figure 3.1 The relationship amongst classes used in Section 3.1

The solid line with the closed arrow indicates that MyOtherClass is a subclass of its superclass MyClass; in
other words, MyOtherClass has an ‘is a’ relationship with its superclass. The dotted line with the open
arrow shows that TestClass has a ‘has a’ relationship with MyOtherClass because TestClass declares a
local variable of the MyOtherClass type in its main method. (The dotted line between MyOtherClass and
TestClass should be a straight line according to the conventions of UML diagrams. It is a quirk of the IDE
that it does not draw straight lines for ‘has a’ relationships.)

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

50

Extending Classes by Means of Inheritance

The simple example discussed in this section shows the superclass-to-subclass relationship between two
classes. In fact, all classes written in Java inherit implicitly from a class whose type is Object and, as a
consequence, inherit the members of the class Object. The following extract from the API shows some of
the members of the Object class.

java.lang

Class Object
 java.lang.Object
 public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects,
including arrays, implement the methods of this class.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����L�a5	�Fű�j�H����uaڒ���[J���XS�:F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

51

Extending Classes by Means of Inheritance

Method Summary
protected Object clone()

 Creates and returns a copy of this object.

 boolean equals(Object obj)

 Indicates whether some other object is "equal to" this one.

protected void finalize()

 Called by the garbage collector on an object when garbage
collection determines that there are no more references to the object.

Class<?> getClass()

 Returns the runtime class of this Object.

 int hashCode()

 Returns a hash code value for the object.

String toString()

 Returns a string representation of the object.

 void wait()

 Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll() method for this object.

wait is overloaded; not shown here.

Thus, the class declaration for MyClass

public class MyClass

actually implies

public class MyClass extends Object

The extends clause is omitted because every Java object inherits from the class Object.

The next extract from the API shows that all classes provided by the Java development environment
inherit from the class Object.

java.lang

Class Short
java.lang.Object

 java.lang.Number
 java.lang.Short

The extract indicates that the class Short is a subclass of Number which is, in turn, a subclass of Object.

Before we move on to explore aspects of inheritance in Java more closely, let us summarise the principal
concepts introduced or implied by the discussion in this section.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

52

Extending Classes by Means of Inheritance

• Inheritance is the ability to create new classes from existing
ones;

• Java exhibits single inheritance; i.e. a subclass can have only
one superclass;

• fields and methods are inherited in a subclass; new ones can
be introduced;

• constructors are not inherited;
• a class called Object is at the top of the inheritance tree, as

shown by the Java API;
• all Java classes implicitly inherit from Object;
• a subclass can modify methods inherited from its parent class;

this is known as overriding; thus, an instance method with the
same signature and return type as a method in the superclass is
said to ‘override’ it;

• the keyword super is used to refer to the members of a
superclass, i.e. variables, methods and constructors; thus, an
overriding method can invoke the overridden method using the
keyword super;

• a method invocation does not have to be on a method in the
superclass; it can be to a method further up the class hierarchy.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa��¥��`9��CŷMj��HN���.4ؕ���[I���XR�;�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

53

Extending Classes by Means of Inheritance

3.2 Overriding and Hiding Methods in a Subclass

Section 3.1 gives a simple example of overriding a method in a subclass. In essence, method overriding is
a means by which inherited behaviour can be modified to suit the specific logic of a subclass, where this is
derived from the general logic of its superclass. Thus, we can think of a superclass comprising members
that are common to its subclasses. Common members are inherited and may or may not be modified in
each subclass as required.

Consider, for example, the simple class hierarchy shown in the Figure 3.2 below.

Figure 3.2 A superclass and two of its subclasses

The class definitions of the three classes follow on the next two pages: some of the documentation has
been omitted for the sake of brevity.

public class Student {

// Declare instance variables.
 private int idNumber;
 private String degreeCourseCode;
 private int yearOfEnrollment = 2008;

public Student(int idNumber, String degreeCourseCode) {
 // Intialise two of the instance variables.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

54

Extending Classes by Means of Inheritance

 this.idNumber = idNumber;
 this.degreeCourseCode = degreeCourseCode;
 }

 public int getIdNumber() {
 return idNumber;
 }

public String getDegreeCourseCode() {
 return "course code " + degreeCourseCode;
 }

 public int getYearOfEnrollment() {
 return yearOfEnrollment;

}

} // End of class definition.

public class FullTimeStudent extends Student {

// Declare instance variables.
 private String fullName;

 public FullTimeStudent(int idNumber,

String degreeCourseCode) {

 // Call the constructor for the superclass.
 super(idNumber, degreeCourseCode);
 }

 // This method overrides the getDegreeCourseCode method in Student; it also calls
 // the overridden method.
 public String getDegreeCourseCode() {
 return "This full-time student is enrolled on: " +
 super.getDegreeCourseCode();
 }

} // End of class definition.

public class PartTimeStudent extends Student {

// Declare instance variables.
 private String fullName;

 public PartTimeStudent(int idNumber,

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

55

Extending Classes by Means of Inheritance

String degreeCourseCode) {
// Call the constructor for the superclass.

 super(idNumber, degreeCourseCode);
 }

 // This method overrides the getDegreeCourseCode method in Student; it also calls
 // the overridden method.

public String getDegreeCourseCode() {
 return "This part-time student is enrolled on: "

 + super.getDegreeCourseCode();
 }

} // End of class definition.

An examination of the source code illustrates how an instance method with the same signature and return
type as a method in the superclass overrides it. Thus, the method getDegreeCourseCode in
PartTimeStudent overrides getDegreeCourseCode in Student. The example also shows how the keyword
super is used to invoke the overridden method in the body of the overriding method.

(One of the rules that govern method overriding states that an overriding method cannot throw different
types of Exception objects than the overridden method. We will find out how exceptions are handled in
the next chapter.)

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������49��A���3��HN���u3����������_Q�jB

Download free eBooks at bookboon.com

Java: Classes in Java Applications

56

Extending Classes by Means of Inheritance

A class method (i.e. a static method) with the same signature as a class method in the superclass is said to
“hide” it. For class methods, the runtime system invokes the method defined in the compile-time type of
the reference on which the method is called; for instance methods, the run-time system invokes the
method defined in the run-time type of the reference on which the method is called. This is illustrated by
providing the following method in the Student class definition.

public static String getDetails() {
 return "I am a student.";
 }

When the main method shown next is run

public class TestStudents {

 public static void main(String[] args) {

 // Create a Student object. The variable s is of the Student type, but refers to
 // a FullTimeStudent object (at run-time).
 Student s = new FullTimeStudent(1234, "Java");
 // Call the static method of Student.
 System.out.println(s.getDetails());
 // Call an instance method of FullTimeStudent.
 System.out.println(s.getDegreeCourseCode());
 }
 }

the output is:

 I am a student.
 This full-time student is enrolled on: course code Java

and illustrates the difference between a method invocation on a compile-time type and a run-time type.
There is one further rule to state concerning class methods at this point: an instance method cannot
override a static method and a static method cannot hide an instance method.

3.3 Invoking a Parent Class Constructor from a Subclass Constructor

A number of examples in previous sections show how the keyword super is used to invoke an overridden
method. The keyword super is also used to invoke a parent class constructor from a constructor of a
subclass. In fact, the call to super(< parameter list >) must be the first statement of a subclass constructor,
as illustrated above in the constructor of PartTimeStudent and FullTimeSudent.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

57

Extending Classes by Means of Inheritance

There are a number of rules that pertain to the call to super(< parameter list >):

• it is necessary to initialise all fields of a superclass; therefore its
constructor must be called;

• a specific constructor is called as determined by the arguments
that are passed to the call to super; this is illustrated by the first
statement in the constructor for FullTimeStudent;

• if no call to super is used in a subclass constructor, the compiler
adds an implicit call to super() that calls the parent, no
argument constructor (which could be its default constructor);

• if the parent class define constructors but does not provide a no
argument constructor, an error message is issued by the
compiler if a call to super() is made from a subclass.

Given these rules, care should be taken when calling the correct superclass constructor from the first
statement of a subclass constructor.

3.4 final and abstract Classes

Figure 3.3 shows an enhanced version of the simple class hierarchy shown in Figure 3.2.

Figure 3.3 An enhanced version of Figure 3.2

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

58

Extending Classes by Means of Inheritance

The Employee class is labelled (by the IDE) as abstract. For the purposes of this simple example, the
Employee class is defined to be abstract because we do not want to instantiate objects of the Employee

class. Instead, we wish to instantiate objects of the Tutor class, in other words we wish to populate the
application with concrete employees such as Tutor, rather than use the abstract and generalised notion of
an employee. The class definitions for Employee is shown next.

public abstract class Employee {

// Declare instance variables.
 String department;

/**
 * This constructor initialises the variable with the identifier department.
 * @param department The employee's department.
 */
 public Employee(String department) {
 this.department = department;

}

// All subclasses of Employee must implement this abstract method.
// Note how it is declared.
public abstract String getDepartment();

} // End of class definition.

Start improving employee retention & performance now.
Get your FREE reports and analysis on 10 of your staff today.

HIT YOUR
EMPLOYEE
RETENTION
TARGETS Amy, let’s just

discuss these action
points

Spot on - I’m all
fired up!! Looking
forward to next

quarter

Can’t believe
this only took me

5 minutes

Awesome! That
nails it for me...

a review with Performance Review Pro

We help talent and learning

& development teams hit

their employee retention

& development targets by

improving the quality and

focus of managers’ coaching

conversations.

GET MY REPORTS

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����D�=6�����O=�HJ���ubؐ���������X�m�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

59

Extending Classes by Means of Inheritance

The class definition of Tutor is next.

 public class Tutor extends Employee {

// Declare instance variables.
 private String tutorsName;
 // An array to store references to students.
 private Student [] studentsInJavaGroup;

/**
 * Constructor for objects of class Tutor.
 * @param department The tutor's department.
 */
 public Tutor(String department) {
 // Call the constructor of the superclass.
 super(department);
 }

 /**
 * Abstact method inherited from Employee; must be overridden.
 */
 public String getDepartment() {
 return department;
 }

 } // End of class definition.

It should be noted that an abstract class may declare abstract methods. For example, the abstract class
Employee declares an abstract method getDepartment that must be overridden in sublclasses of Employee.

The aim of the example shown in Figure 3.3 is to illustrate some of the following rules concerning
abstract classes:

• the complier prevents an abstract class from being directly
instantiated, though it usually has constructors that are called
from the constructor of its subclasses;

• an abstract class may have abstract methods:
- such methods contain no implementation;
- non-abstract subclasses must override these methods

and implement them;
- if all methods are abstract, the class should be an

interface; (we will find out what a Java interface is in
Chapter Five);

• any class with one or more abstract methods is called an
abstract class;

• abstract classes can have data attributes, concrete methods
and constructors.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

60

Extending Classes by Means of Inheritance

At this point, it is useful to note that there is another category of class known as a final class. A final class
cannot be subclassed and a final method cannot be overridden.

3.5 What Does Type Compatibility Mean?

Now that we have explored some of the essential concepts associated with inheritance, we can address the
deferred discussion about conversion of type variables from Chapter Three (An Introduction to Java
Programming 3: The Fundamentals of Objects and Classes).

Java is a strongly-typed language. This means that the compiler
checks for type compatibility at compile time, preventing
incompatible assignments.

Checking for type compatibility is carried out when an expression is assigned to a type variable as follows:

SomeClass sc = < expression that returns an object reference >;

The compiler will regard the types as compatible when one of three conditions applies to the expression:

1. the expression returns an object reference of the SomeClass
type;

2. the expression returns an object reference to a subclass of
SomeClass;

3. the expression returns an object reference to an object that
implements the SomeClass interface. (Java interfaces are
explored in Chapter Five.)

We can use the class hierarchy shown in Figure 3.3 to illustrate the first two conditions.

Consider the following statement:

Student s1 = new Student(111, "Java");

This statement compiles because it complies with the first condition.

Consider the next statement:

Student s2 = new PartTimeStudent(222, "Java");

This statement compiles because it complies with the second condition.

It is worthwhile dwelling on the general nature of the second condition:

SuperClass sc = new SubClass();

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

61

Extending Classes by Means of Inheritance

Up to this point in the guide, we have created objects of a particular class by calling one of the
constructors of that class. However as the statement shows, this condition of compatibility is permitted in
Java. In other words, while the class of an existing object doesn’t change during its lifetime, it can be
referenced by a variable of either its own type or of its superclass type.

Therefore, we would expect the next statement to compile:

Student s3 = new FullTimeStudent(333, "Java");

In the statement above we are, in effect, converting between a subclass type and its superclass type when
we make the association of a FullTimeStudent to a Student.

Types higher up a hierarchy are said to be wider than the narrower types lower down the hierarchy. In the
statement

Student s3 = new FullTimeStudent(444, "Java");

the widening conversion, or upcast, is carried out automatically by the compiler. The implicit safe cast to
a Student object is valid at run-time when it can be shown that s3 refers to a FullTimeStudent object.

On the other hand, consider the next statement:

PartTimeStudent pts = new Student(555, "Java");

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa��¤��45��Fŷ�:��H����u5�ŝ��
��ۈ
��=E

Download free eBooks at bookboon.com

Java: Classes in Java Applications

62

Extending Classes by Means of Inheritance

The compiler issues the following message:

 incompatible types: found Student expected PartTimeStudent.

A narrowing conversion or downcast in this statement will satisfy the compiler, as follows:

PartTimeStudent pts = (PartTimeStudent) new Student(555, “Java”);

If this kind of cast survives a compile-time check, a second check occurs at run-time to determine whether
the class of the object being cast is compatible with the object reference. In other words, a downcast may
not be a safe cast in the sense that it may not be valid at run-time.

When the statement

PartTimeStudent pts = (PartTimeStudent) new Student(555, “Java”);

is included in a main method and main is run, a run-time Exception occurs:

 java.lang.ClassCastException: Student cannot be cast to PartTimeStudent

and shows that this kind of cast is invalid at run-time.

In the context of the class hierarchy shown in Figure 3.3, the run-time rules imply that Student objects
cannot be cast to PartTimeStudent or FullTimeStudent objects, but that PartTimeStudent and
FullTimeStudent objects can be cast to Student objects. In other words, all PartTimeStudent and
FulTimeStudent objects are Student objects in that the former inherit from the latter, but all Student

objects are not necessarily FullTimeStudent or PartTimeStudent objects: a Student object may be a
Student object, as in the next statement:

Student s = new Student(999, “Java”);

While the type of an object reference may be obvious at compile-time, the actual class of the object
referenced in memory may be less obvious or may not be known until run-time. For example, consider the
following statement taken from the MediaStore class of the themed application.

Member[] members = someStream.readObject();

The purpose of the input stream someStream is to read the array of existing members of the Media Store
from a file into the application by calling the stream’s readObject method. (We will examine some of the
stream classes in Chapter One in An Introduction to Java Programming 3: Graphical User Interfaces).
The statement does not compile because the API states that the readObject method returns an object of the
Object type. Therefore, a cast is required, as follows:

Member[] members = (Member[])someStream.readObject();

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

63

Extending Classes by Means of Inheritance

On the face of it, (down)casting an Object object to an object of the Member[] type may not be valid at
run-time. In this case, however, the actual object stored in memory is of the Member[] type; therefore,
run-time compatibility is preserved.

Finally in this section, it is worth reminding the learner that the instanceof operator can be used to find out
the type of an object held in memory, so that a cast can be used to restore full functionality to the object.
For example, one of the test classes of the object hierarchy shown in Figure 3.3 includes the method
shown on the next page.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����E�4`��Hų�8��H����.3������M�ۈXY�8�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

64

Extending Classes by Means of Inheritance

public static void getDetails(Student student) {
// find out the type of the object passed when the method is called

 if (student instanceof PartTimeStudent)
 {
 // note the cast
 PartTimeStudent pt = (PartTimeStudent)student;
 // call an inherited method
 System.out.println("This part-time student enrolled in "
 + pt.getYearOfEnrollment());
 }
 else if (student instanceof FullTimeStudent)
 {
 FullTimeStudent pt = (FullTimeStudent)student;
 System.out.println("This full-time student enrolled in "
 + pt.getYearOfEnrollment());
 }
 else if (student instanceof Student)
 {
 System.out.print("This student enrolled in "
 + student.getYearOfEnrollment());
 }
 }

The reader should note how the instanceof operator and casting is used, in the method shown above, to
find out the type of Student object passed to it as an argument so that it can be processed accordingly.

3.6 Virtual Method Invocation

The rules of compatibility discussed in Section 3.5, raise a question when invoking methods: how do we
know which object is being used when invoking a method?

To illustrate the answer to this question, consider the following code snippet from a test class of the simple
application shown in Figure 3.3.

Student student = new PartTimeStudent(1234, "Java");
System.out.println(student . getDegreeCourseCode());

The output is:

This part-time student is enrolled on: course code Java

The output shows that when you invoke a method via an object reference, it is the run-time type of the
object referred to which governs which implementation is used. Thus, in the statement above, the object
reference student refers to a PartTimeStudent object and the call to

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

65

Extending Classes by Means of Inheritance

student . getDegreeCourseCode();

invokes the getDegreeCourseCode method implemented in the PartTimeStudent class definition and not
that in the Student class definition.

For class methods, on the other hand, the run-time system invokes the method defined in the compile-time
type of the reference on which the method is called. Thus, a call to the static method getDetails as follows

student . getDetails();

invokes the getDetails method of the Student class and not that of PartTimeStudent, as shown in Section
3.2 above.

3.7 Controlling Access to the Members of a Class

Access modifiers are used to determine whether other classes have access to a member of a class. Up to
this point in the guide, we have met the access modifiers public and private as they are applied to modify
declarations of fields and methods of a class. The access modifier public means that all other classes have
access to such members of a class and the access modifier private means that other members of a class
have access to private members of that class.

Extended classes give us an opportunity to explain a further access modifier: that of protected. The access
levels for the access modifiers public, private and protected are summarised in Table 3.1 shown on the
next page.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa�� L�`b��F��H?��HO���ue�����YH����W�oA

Download free eBooks at bookboon.com

Java: Classes in Java Applications

66

Extending Classes by Means of Inheritance

Table 3.1 Access levels

The first row confirms what we know about the access modifier private: i.e. the class itself has access to
other private members, as we would expect.

The second row indicates that if no modifier is specified, classes in the same package have access to such
members. We will encounter packages in Chapter Six. Until then, suffice it to say for the present purposes
that a package is a convenient way to group together a number of related classes to provide namespace
management.

The fourth row shows that all classes have access to public members, regardless of their package
and parentage.

The third row indicates the level of access provided when a class member is declared to be protected. The
first column indicates that other members of the class itself have access to the protected member of that
class; the second column indicates that classes in the same package, regardless of their parentage, have
access to the protected member of the class; the third column indicates that subclasses of the class have
access to the protected member, regardless of what package they are in. However, the subclass-protected
table entry has an interesting twist that we will defer until Chapter Six.

The example code that follows on the next page illustrates the ‘rules’ encapsulated in Table 3.1, but
ignores the second column for the time being.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

67

Extending Classes by Means of Inheritance

Example One

public class MySuperClass {

 private int privateInt;
 protected int protectedInt;

 public void aMethod() {

 System.out.println(privateInt);
 System.out.println(protectedInt);
 }

}

The class compiles and merely shows that one of the members of the class – aMethod – has access to the
private and protected variables of the class.

Example Two

public class MySubClass extends MySuperClass {

 public void aMethod() {

 // System.out.println(privateInt);
// the statement above is illegal: privateInt has private access
// in MySuperClass

System.out.println(protectedInt);
 }

}

The class compiles and shows that the subclass does not have access to the private variable of the
superclass but that it does have access to the protected variable of the superclass.

Whilst on the face of it, the access level known as protected might be regarded as implying a high degree
of ‘protection’ from other classes, the table and example code above shows that this is not the case. The
class MySubClass shows that all subclasses of MySuperClass have access to protected members of
MySuperClass. Thus we can see that the protected access level is not as protected as private. Nevertheless,
it may be the case that the developer wishes to make a number of members of a superclass protected in
order to provide easy access to them from subclasses.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

68

Extending Classes by Means of Inheritance

3.8 Summary of Inheritance

Although it is not made explicit at the beginning of this chapter, the examples used aim to illustrate two
forms of inheritance. Rather than merely mention them both at the outset, it is to be hoped that both forms
emerge from the explanations and code examples used in the chapter.

The previous sections aim to show how a class can be extended or subclassed and that a subclass can be
used in code designed to work with the superclass. For example, FullTimeStudent objects can be used by
code designed to work with Student objects. If a method expects a parameter of the type Student, you can
pass it a FullTimeStudent object and it will work, although you are likely to have to find out the type of
the argument – by using the instanceof operator – and restore the full functionality of the object by a
suitable cast, as shown in Section 3.5. This feature of object references is known as polymorphism. An
object that is declared to be of the Student type can have many forms in that it can be used as a Student

object, a FullTimeStudent object, or a PartTimeStudent object.

The behaviour of a Student object is inherited by a FullTimeStudent object: the latter is said to extend the
former. Extended behaviour can be entirely new – by means of adding new methods to the subclass – or it
can modify inherited behaviour by overriding a method with the same signature and return type as the
overridden method. Thus an extended class can override the behaviour of its superclass by providing new
implementations of one or more of the inherited methods.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������2`Q�DŰH:��HH���ua�����X����^��:�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

69

Extending Classes by Means of Inheritance

Overall, extending classes gives rise to two forms of inheritance:

1. inheritance of type, where the subclass acquires the type of the
superclass so that it can be used polymorphically in code
designed to work with the superclass type;

2. inheritance of implementation, where the subclass acquires the
implementation of the superclass in terms of its members.

Inheritance is a fundamental concept in OOP languages; as a consequence, further examples could have
been provided in this chapter to illustrate further the essential features of extending classes. At this stage,
however, it is probably wise to conclude this chapter and leave it to the leaner to work with extended
classes in practice and encounter concepts in practical situations.

The next chapter explains how errors are handled in Java programmes.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

70

Errors in Java Programmes

4. Errors in Java Programmes

With the best will in the world, errors will occur when developing applications irrespective of the target
language: Java programmes are no exception. However, object-oriented programming (OOP) languages
such as Java offer a distinct advantage over non-OOP languages in that the former are able to respond to
certain error conditions by creating an object to represent the error. This approach leaves the developer
with the responsibility of processing error objects in order to respond to errors occurring when an
application is running.

This chapter explains how errors are handled in Java programmes; it does not include syntax errors.
Syntax errors are caused by incorrect use of the Java language on the part of the developer; the compiler
checks for this category of error and notifies the developer accordingly.

4.1 Categories of Error

A search of the previous nine chapters reveals the following error messages in the discussion of examples:

ArrayIndexOutOfBoundsException

and

ClassCastException

These two messages imply that something happened at run-time when the example programmes were
executed. In fact, both of these error messages imply that the developer has made a logic error. Logic
errors that occur at run-time are usually reflected in the output from the application. Logic errors are
eliminated by further testing and debugging of the programme at compile time.

At compile time, in the first case, the compiler could not be expected to anticipate that an out of bounds
array index is being processed at runtime. The occurrence of an ArrayIndexOutOfBoundsException should
be sufficient information for the developer to check the logic of the code that produces such an error.

At compile time, in the second, case, the developer has not obeyed the rules for casting object references.
Although, the code has compiled because the compile-time rules have been obeyed, the run-time rules
have been broken; again, the nature of the error message should be sufficient information for the
developer to check that the statements that include a cast obey both the compile-time and run-time rules of
object reference casting as explained in the previous chapter.

In short, the two errors indicated by the messages

ArrayIndexOutOfBoundsException

and

ClassCastException

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

71

Errors in Java Programmes

should have been fixed by the developer at compile time; they cannot be recovered from at run-time.
Given that they were not anticipated by the developer, they are relatively easily eliminated by working
through and correcting the logic of the code that produced the error messages. Working through the logic
of source code is known as debugging. Integrated Development Environments (IDEs) usually provide a
debugging tool that can be used to step through code statement by statement.

There is, on the other hand, a number of other run-time errors that can occur when a programme executes
that are outside the control of the programme’s logic. These include, for example, error conditions that are
reasonably likely to occur in that they have the potential to impair access to data and access to other local
and networked resources. The kind of error that is reasonably likely to occur at run-time should be
recoverable so that the programme does not terminate abnormally.

Anticipating that such errors have the potential to occur does not include expected conditions such as,
for example, detecting the end of a file that is being read by a method. In this case, the method that reads
the file should include code that detects the end of the file so that an ‘end of file’ error does not occur at
run-time.

The inevitable existence of run-time errors raises an important question: how does the developer
anticipate run-time error conditions? If the developer takes an exhaustive position and anticipates that all
error conditions have the potential to occur with all methods, the resulting code is highly likely to be
cumbersome to write and almost unreadable. On the other hand, if the developer takes an optimistic
position and doesn’t anticipate many error conditions, the resulting code may not be robust enough when
the application is released to its users. The answer to the question (posed at the beginning of this
paragraph) is not a straightforward one in that it is not easy to decide which errors to anticipate and which
not to anticipate. In practice, the answer lies in arriving at a reasonable practical compromise between the
two positions.

4.2 What are Unexpected Error Conditions?

The two error messages listed in Section 4.1 reveal a clue to how unexpected error conditions are dealt
with in a Java programme. A cursory examination of the messages

ArrayIndexOutOfBoundsException

and

ClassCastException

reveals that the two compound words have something in common: the word ‘Exception’. It is to be hoped
that the reader immediately recognises that an Exception is a Java class. Therefore an
ArrayOutOfBoundException is a type of Exception class. This is indeed the case as the following extract
from the API confirms.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

72

Errors in Java Programmes

java.lang

Class ArrayIndexOutOfBoundsException
java.lang.Object

 java.lang.Throwable
 java.lang.Exception
 java.lang.RuntimeException
 java.lang.IndexOutOfBoundsException
 java.lang.ArrayIndexOutOfBoundsException

Exception objects (usually shortened to exceptions) that are subclasses of the RunTimeException class, as
in the case of an ArrayOutOfBoundException, usually arise as a result of logic errors and are the
responsibility of the developer to eliminate at compile time. This kind of exception is known as an
unchecked exception.

The discussion of the two error messages

ArrayIndexOutOfBoundsException

and

ClassCastException

implies that they are both examples of unchecked exceptions.

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����B�7gT�BŻ�o�������-`�����	����_S�<�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

73

Errors in Java Programmes

Exceptions that are reasonably recoverable at run-time and that are not the result of logic errors are not
unchecked exceptions; this type of exception is incorporated into the implementation of methods that give
rise to them, as shown in the next section.

4.3 Checked Exceptions

Exceptions provide a straightforward mechanism to check for errors without cluttering code with
additional statements such as if .. else constructs and other statements to test the value of fields in order to
detect when an error condition might arise. The exceptions that a method might produce are explicitly
included as part of the method’s declaration. This means that exceptions are as important a part of a
method’s programming interface as are its return type and parameters. The inclusion of exceptions in the
declaration of a method means that they are made known to the code that invokes the method and, as a
result, the compiler knows about them. The type of exception that is checked by the compiler is known as
a checked exception.

When an error occurs when a method is invoked, the exception object is passed to the run-time system;
this process is known as throwing an exception. The run-time system tries to find some code in the calling
method that is designed to respond and handle the error. If this handling code cannot be found in the
calling method, the run-time system works its way through the set of methods that has been called to call
the method that throws the exception until it finds some handling code. This set of methods is known as
the call stack. If handling code has not been provided by the developer, the run-time system eventually
arrives at the end of the method invocation stack to the thread that runs the application’s main method. If
main does not handle the exception, main’s thread of execution will terminate abnormally. In other words,
the application will ‘crash’ when main terminates in an abnormal way. (We will examine threads in
Chapter Four in An Introduction to Java Programming 3: Graphical User Interfaces.)

On the other hand, if handling code has been provided by the developer somewhere in the call stack, the
exception is said to be caught by the block of code that is the handler.

It will be instructive, at this point in the discussion of exceptions, for the learner to study an example that
illustrates how checked exceptions are thrown and caught.

4.3.1 How is a Checked Exception Handled in a Java Programme?

The example that follows shows how an exception is thrown and caught in order to illustrate the key
concepts associated with exception handling in a Java programme.

The code for a simple exception class follows on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

74

Errors in Java Programmes

public class MyException extends Exception {

 // constructor
public MyException() {

 super("You are attempting to divide by zero.");

 }

} // end of class definition

The constructor for MyException passes a String to the superclass Exception; this String is used to
construct an error message.

Strictly speaking, an attempt to divide a number by zero throws an instance of an ArithmeticException,
which is type of RunTimeException: i.e. it is an unchecked exception. However making MyException a
checked exception by inheriting directly from Exception, means that the example can be used to illustrate
how a checked exception is thrown and caught.

The class MyObject includes a method that declares that it throws MyException objects: note the use of the
keyword ‘throws’ in the declaration of quotient. The class definition is next.

public class MyObject {

 public double quotient(int num, int den) throws MyException {

 if(den == 0)
 {
 System.out.println("quotient has exited and thrown an " +
 "instance of MyException.");
 throw new MyException();
 }
 else
 {
 System.out.println("quotient has completed.");
 return (double) num / den;
 }

 } // end of quotient

public void myMethod(int num, int den) {

 try
 {
 double answer = quotient(num, den);

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

75

Errors in Java Programmes

 System.out.println("The value of num / den = " + answer);
 }
 catch(MyException me)
 {
 me.printStackTrace();
 }
 System.out.println("myMethod has completed.");

 } // end of myMethod

} // end of class definition

The method quotient includes an if .. else construct that determines the condition when an instance of
MyException is thrown. If the denominator (den) is not zero, the method returns the double value of the
numerator (num) divided by the denominator (den).

The method myMethod invokes the method quotient and checks for the exception using what is known as
a try … catch construct. The try block includes the call to quotient. If den is not equal to zero, the
statements of the try block execute and the catch block is skipped and the message "myMethod has
completed." is output.

If den is equal to zero when quotient is called by myMethod, the method quotient will stop its execution
and the remaining statements in the try block are skipped and the catch block is executed. The statement
in the catch block calls an inherited method of MyException in order to output useful information about
the error condition. In short, the exception is caught in myMethod when it is thrown by the call to quotient.
The print statements in both methods in MyObject serve to show where processing has reached when an
exception is thrown.

In order to illustrate what happens when myMethod is called, a test class is required. The code for the test
class follows on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

76

Errors in Java Programmes

public class TestClassOne {

 public static void main (String[] args) {

 // use EasyInput to input two int values; -99 escapes the loop
 int den = 0;
 while(den != -99)
 { // start of loop
 EasyInput keyboard = new EasyInput();
 System.out.println("Entering -99 for the second number " +
 "will terminate main.");
 System.out.print("Enter the first number: ");
 int num = keyboard.nextInt();
 System.out.print("Enter the second number: ");
 den = keyboard.nextInt();

 // test the value of den

 if(den == -99)
 {
 break;
 }
 else // carry on

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����E�<7V��ųLm��HM���-1�����[I���^��;�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

77

Errors in Java Programmes

 {
 // instantiate a MyObject object
 MyObject mo = new MyObject();
 mo.myMethod(num, den);
 System.out.println("main is still running.");
 } // end else
 } // end of loop
 System.out.println("main has terminated.");

 } // end of main

} // end of class definition

TestClassOne uses an instance of a class called EasyInput (the code for which is not shown); EasyInput

provides a number of methods to capture data entered via a computer’s keyboard. The main method in the
test class above includes a simple loop and exit strategy.

Firstly, let us find out what happens when we don’t attempt to divide by zero. The output is as follows and
is what is expected, given the source code shown above.

 Entering -99 for the second number will terminate main.
Enter the first number: 1
Enter the second number: 2
quotient has completed.
The value of num / den = 0.5
myMethod has completed.
main is still running.
Entering -99 for the second number will terminate main.
Enter the first number: 1
Enter the second number: -99
main has terminated.

Next, let us find out what happens when we attempt to divide by zero. The output is as follows.

Entering -99 for the second number will terminate main.
Enter the first number: 1
Enter the second number: 4
quotient has completed.
The value of num / den = 0.25
myMethod has completed.
main is still running.
Entering -99 for the second number will terminate main.
Enter the first number: 2
Enter the second number: 0
quotient has exited and thrown an instance of MyException.
myMethod has completed.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

78

Errors in Java Programmes

main is still running.
Entering -99 for the second number will terminate main.
Enter the first number:

MyException: You are attempting to divide by zero.
 at MyObject.quotient(MyObject.java:9)
 at MyObject.myMethod(MyObject.java:23)
 at TestClassOne.main(TestClassOne.java:27)

(There are other methods in the call stack that call main that are specific to the IDE [BlueJ] that was used
to run the example. However, these are omitted for the sake of clarity.)

The output is what is expected: quotient throws an exception and exits; the exception is caught by the
catch block of myMethod and outputs the stack trace. However, main is still running and shows that the
exception has been recovered at run-time.

Next, let us find out what happens when myMethod doesn’t catch MyException objects but declares that it
throws them.

The code for MyObject is now as follows.

public class MyObject {

 public double quotient(int num, int den) throws MyException {

 if(den == 0)
 {
 System.out.println("quotient has exited and thrown an " +
 "instance of MyException.");
 throw new MyException();
 }
 else
 {
 System.out.println("quotient has completed.");
 return (double) num / den;
 }

 }

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

79

Errors in Java Programmes

 public void myMethod(int num, int den) throws MyException {

 double answer = quotient(num, den);
 System.out.println("The value of num / den = " + answer);
 System.out.println("myMethod has completed.");

 }

} // end of class definition

It is now the responsibility of main, as shown by the call stack, to catch MyException objects. The relevant
section of the amended test class follows on the next page.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������agT�BŻ�o�������-`�����	����_S�<�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

80

Errors in Java Programmes

// test the value of den

 if(den == -99)
 {
 break;
 }
 else // carry on
 {
 // instantiate a MyObject object

 MyObject mo = new MyObject();
 try
 {
 mo.myMethod(num, den);
 System.out.println("main is still running.");
 }
 catch(MyException me)
 {
 me.printStackTrace();
 System.out.println("main is still running.");
 }

The output is as follows.

Entering -99 for the second number will terminate main.
Enter the first number: 12
Enter the second number: 0
quotient has exited and thrown an instance of MyException.
main is still running.
Entering -99 for the second number will terminate main.
Enter the first number:

MyException: You are attempting to divide by zero.
 at MyObject.quotient(MyObject.java:9)
 at MyObject.myMethod(MyObject.java:21)
 at TestClassOne.main(TestClassOne.java:29)

Again, the output is what is expected.

Finally, in this section, let us see what happens it main does not catch MyException objects but declares
that it throws them. The amended declaration for main is as follows:

public static void main (String[] args) throws MyException

The body of main does not attempt to catch MyException objects.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

81

Errors in Java Programmes

The output is as follows:

Entering -99 for the second number will terminate main.
Enter the first number: 9
Enter the second number: 0
quotient has exited and thrown an instance of MyException.

MyException: You are attempting to divide by zero.
 at MyObject.quotient(MyObject.java:9)
 at MyObject.myMethod(MyObject.java:21)
 at TestClassOne.main(TestClassOne.java:27)

The IDE used to run the application indicates that main has terminated abnormally – in other words the
programme has crashed – because main has not caught the exception and has merely declared that it is
thrown. This illustrates that exceptions must be either caught or declared to be thrown by methods in the
call stack and that main is the final opportunity to catch them.

As a general rule, it is good practice to catch an exception when the
method that throws it is called.

The example code and output explained in this section shows that the run-time system searches the call
stack in the reverse order in which methods are called until it finds a catch block that is designed to
respond to the exception thrown by a method. When a catch block is found, the exception is handed to it
by the run-time system. If the exception is caught before it reaches main or if main catches it, the
programme will not terminate abnormally; if main does not handle it but declares that it is thrown, main

will crash.

Now that we have thoroughly explored an example and shown how a simple exception is thrown and
caught in different places in the call stack, we are in a position to make some more comments about
handling exceptions in the sections that follow.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

82

Errors in Java Programmes

4.4 try … catch … finally Blocks

The code and output associated with the examples discussed in the previous section provide practical
evidence that enables us to bring together a number of points concerning handling exceptions.

• Developer-written code that might throw an exception is
enclosed in a try block.

• Similarly, method invocations that are defined to throw
exceptions as indicated by the API for a method should be
enclosed in a try block.

• A try block is followed by one or more catch blocks.
• Each catch block specifies the type of exception it catches (i.e.

handles) and contains a handler for that exception type.
• After the last catch block, an optional finally block contains

code that always executes.
• When an exception occurs, catch blocks are searched in their

order for the appropriate handler.
• It is usual to sequence catch blocks from the specific to the

general, i.e. objects of the Exception class are caught in the
last catch block, which serves as a catch-all if any specific
exceptions have not been caught.

• If an exception is not handled in a try…catch block, it is thrown
to the next method in the call stack.

• If the exception is passed to the main method and is not
handled there, the program terminates abnormally.

When non-memory resources such as files and I/O Streams – see Chapter One in An Introduction to Java
Programming 3: Graphical User Interfaces - are used in a programme, they must eventually be released
independently of Garbage Collection (of memory
resources such as identifiers and object references). The use of the finally block that follows a try … catch

block is a good opportunity to release such resources. The general syntax of a try … catch … finally

construct is as follows.
try
{

 // statements that invoke methods that throw Exceptions
 // statements that acquire resources
}
catch(AKindOfException ex1)
{

 // exception handling statements for ex1
}
catch(AnotherKindOfException ex2)
{

 // exception handling statements for ex2
}

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

83

Errors in Java Programmes

catch(Exception e)
{
 // exception handling statements for e
}
finally
{

 // resource-release statements
}

The code for myMethod in the class definition for MyObject is modified to illustrate the use of a finally

block; it doesn’t release any resources, but the output of the programme shows that it is always executed.

public void myMethod(int num, int den) {

 try
 {
 double answer = quotient(num, den);
 System.out.println("The value of num / den = " + answer);
 }
 catch(MyException me)
 {
 me.printStackTrace();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 System.out.println("finally block: myMethod has completed.");
 }

} // end of myMethod

The output is shown on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

84

Errors in Java Programmes

Entering -99 for the second number will terminate main.
Enter the first number: 1
Enter the second number: 2
quotient has completed.
The value of num / den = 0.5
finally block: myMethod has completed.
main is still running.
Entering -99 for the second number will terminate main.
Enter the first number: 1
Enter the second number: 0
quotient has exited and thrown an instance of MyException.
finally block: myMethod has completed.
main is still running.
Entering -99 for the second number will terminate main.
Enter the first number:

MyException: You are attempting to divide by zero.
 at MyObject.quotient(MyObject.java:9)
 at MyObject.myMethod(MyObject.java:23)
 at TestClassOne.main(TestClassOne.java:27)

4.5 Throwing Exceptions

The example in Section 4.3.1 shows that an exception is thrown by a method by using the following
generalised syntax:

public void aMethod() throws AnException {

 if (<some condition>)
 {
 throw new AnException();
 }
 else { }

}

} // end of method implementation

and is caught by the calling method as shown on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

85

Errors in Java Programmes

// a method that calls aMethod

try {
 objectRef.aMethod();

}
catch (AnException ae) {

// do something about the Exception
}

The catch block can re-throw the exception to its calling method, as follows:

// a method that calls aMethod

try {
 objectRef.aMethod();

}
catch (AnException ae) {

 throw ae;
}

With us you can
shape the future.
Every single day.
For more information go to:
www.eon-career.com

Your energy shapes the future.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������0d��IŻMh��HJ���u<�ĝ��_H����T�<F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

86

Errors in Java Programmes

Returning to the example, the method myMethod could be re-written as shown next.

public void myMethod(int num, int den) throws MyException {

 try
 {
 double answer = quotient(num, den);
 System.out.println("The value of num / den = " + answer);
 }
 catch(MyException me)
 {
 // re-throw object me to the next method in the call stack

 throw me;
 }
 finally
 {
 System.out.println("finally block: myMethod has completed.");
 }

} // end of myMethod

In this case, it will be the responsibility of main to catch exceptions of the MyException type.

A catch block can throw a different type of Exception, as follows.

// code that calls aMethod

try {
 objectRef.aMethod();

}
catch (AnException ae) {

 throw new AnotherException();
}

Referring to example again, the method myMethod could be re-written as shown next.

public void myMethod(int num, int den) throws SomeOtherException {

 try
 {
 double answer = quotient(num, den);
 System.out.println("The value of num / den = " + answer);
 }
 catch(MyException me)
 {
 throw new SomeOtherException();
 }

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

87

Errors in Java Programmes

 finally
 {
 System.out.println("finally block: myMethod has completed.");
 }

} // end of myMethod

In this case, it will be the responsibility of main to catch exceptions of the SomeOtherException type.

4.6 Exceptions in the Themed Application

The themed application includes a developer-defined exception that indicates when a member of the
Media Store has exceeded their allowance of DVDs on loan against their virtual DVD membership card.

The source code for the class definition is shown on the following page. TMP PRODUCTION NY026057B

PSTANKIE

gl/rv/rv/baf

ACCCTR0005

Bookboon Ad Creative

4

6 x 4

12/13/2013

Bring your talent and passion to a
global organization at the forefront of
business, technology and innovation.
Discover how great you can be.

Visit accenture.com/bookboon

©
2013 Accenture.

All rights reserved.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa��¢G�50U����Jo��HO���-7�ȝ��Q��ڀ
X�8F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

88

Errors in Java Programmes

/**
* Class ItemLimitException detects transactions that exceed the limit set for a member’s DVD
* card.

 * @author D. M. Etheridge.
 * @version 1.0, dated 6 December 2008.
 */

public class ItemLimitException extends Exception {

 // Declare instance variables.
 private int overLimit;

 /**
 * Constructor for objects of class ItemLimitException.
 */
 public ItemLimitException(String message, int overLimit) {

 super(message);
 this.overLimit = overLimit;

 } // End of constructor.

 /**
 * This method overrides getMessage().
 *
 * @return a String message that includes the value of the overLimit attribute.
 */
 public String getMessage() {

 return super.getMessage() + overLimit;

 } // End of getMessage.

} // End of class ItemLimitException.

The takeItemOnLoan method of the DvdMembershipCard class throws this exception, as shown by the
code that follows on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

89

Errors in Java Programmes

/**
 * This method takes a DVD on loan. It overrides the method in the parent class.
 *
 * @param catNo The catalogue number of the DVD taken on loan.
 */
 public void takeItemOnLoan(String catNo) throws ItemLimitException {

 // Find out if the DVD exists before attempting a transaction.
 // Note: the instance variable dvd and the method findDvd are members of
 // the same class as this method.
 dvd = findDvd(catNo);
 if (dvd == null)
 {
 System.out.println("No such dvd; please try again.");
 }
 else // Carry out the transaction.
 {
 if (noOnLoan + 1 <= maxOnLoan)
 {
 System.out.println("You are taking 1 DVD on loan.");
 System.out.println("This transaction is acceptable and " +
 "increases the number\n of DVDs that you have " +
 "on loan by 1.");
 noOnLoan = noOnLoan + 1;
 dvdsOnLoan[noOnLoan - 1] = dvd;
 System.out.println("You are taking " + dvd.getCatNo() + " " +
 dvd.getTitle() + " on loan.");
 }
 else
 {
 System.out.println("This transaction is not acceptable " +
 "because it exceeds the maximum number\n" +
 "of DVDs that you are permitted to have on loan.");
 throw new ItemLimitException("This transaction is not “ +

 “acceptable because it exceeds the maximum number\n" +
 "of DVDs that you are permitted to have on loan by ",
 (maxOnLoan - noOnLoan + 1));
 } // end inner else
 } // end outer else

} // End of takeItemsOnLoan.

It is not important that the reader understands all of the code. The important things to notice are that the
method declaration specifies that the method throws ItemLimitException objects and these are thrown in
the inner else block.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

90

Errors in Java Programmes

Instances of ItemLimitException are caught by one of the buttons of the application’s graphical user
interface (GUI). We will explore GUIs in a later chapter.

The simplified code for the method that calls takeItemsOnLoan is as follows:

// if the button pressed is the ‘Borrow DVD’ button.
 {
 // Get the film from the list of DVDs available for loan.
 // Get the catalogue number of the DVD.
 // Use the catalogue number to borrow the film using the member's DVD card.
 // takeItemOnLoan throws an exception.
 try
 {
 membersCard.takeItemOnLoan(catNo);
 }
 catch(ItemLimitException ile)
 {
 messagesArea.setText(ile.getMessage());
 }

 } // end if

Error messages are output to a text area component of the user’s GUI.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������49��A���3��HN���u3����������_Q�jB

Download free eBooks at bookboon.com

Java: Classes in Java Applications

91

Errors in Java Programmes

There in only one exception specified in the API that is thrown by methods in the themed application. An
IOException is thrown by the readObject method of the ObjectInputStream class and the writeObject

method of the ObjectOutputStream class, as shown by the following extracts from the API.

readObject
 public final Object readObject()
 throws IOException

and

writeObject
 public final void writeObject(Object obj)
 throws IOException

Therefore when either of these methods is called, the calling method must either catch IOException

objects or declare them to be thrown. The two methods in the MediaStore class of the themed application
that call readObject and writeObject are shown next.

/** This method reads the file of members. */
 public void readMembers() {

 try { // Start of try block.
 // The String is the path to the file.
 FileInputStream fis = new FileInputStream("C:\\Temp\members.dat");
 ObjectInputStream ois = new ObjectInputStream(fis);
 // Note the cast in the next statement.
 members = (Member [])ois.readObject();
 ois.close();
 fis.close();
 } // End of try block.
 catch (IOException e) { // Start of catch block.
 System.out.println("Error: " + e.getMessage());
 } // End of catch block.

} // End of readMembers.

 /** This method writes the array of members to its file. */
 public void writeMembers() {
 try { // Start of try block.
 FileOutputStream fos = new

FileOutputStream("C:\\Temp\\members.dat");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(getMembers());
 oos.flush();
 oos.close();
 fos.close();
 } // End of try block.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

92

Errors in Java Programmes

 catch (IOException e) { // Start of catch block.
 System.out.println("Error: " + e.getMessage());
 } // End of catch block.

} // End of writeMembers.

The code from the themed application shown in this section illustrates the flexibility of the Exception

class in that objects of this class are used to catch developer-defined exceptions and those declared in the
Java API.

4.7 Summary of Exceptions

Objects of the Exception class are handled in a Java application when they are declared to be thrown by
methods of classes documented in the Java API. These checked exceptions respond to error conditions
outside the control of the developer. In the case of the themed application, IOException objects are caught
by the method that transfers data out of the application to a file and the method that reads these data back
in to the application.

Developer-defined exceptions respond to specific invalid conditions that are a function of the business
rules associated with an application. In the case of the themed application, a developer-defined exception
occurs when a member of the Media Store attempts to use their card in a way that is not permitted by the
business rules of the Media Store.

The examples discussed in this chapter aim to show that there are advantages to using Exception

objects to represent error conditions compared to the traditional approach to error handling adopted in
non-OOP languages.

1. The use of objects to represent error conditions means that
code to handle - i.e. catch - exceptions is separate from
application logic.

2. If there are circumstances where an exception does not need to
be caught at the point it is thrown, it can be propagated up the
call stack to reach whichever calling method is chosen to handle
it.

3. Given that all exceptions are objects, the class hierarchy of the
Exception class can be used to put similar exceptions into
groups.

The outcome of point 3 is that the class of an exception object indicates the type of exception thrown by a
method. Instances of the IOException class and its descendants, for example, are a group of related
exceptions that represent the kinds of error associated with input/output (I/O) to/from a Java application.
We will find out how to use some of the I/O classes in Chapter One in An Introduction to Java
Programming 3: Graphical User Interfaces.

The next chapter explores one of the most important concepts associated with Java, namely that of
the interface.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

93

Java Interfaces

5. Java Interfaces

Up to this point in the guide, the reader will not have encountered any examples of a Java interface. This
chapter explains how members, in addition to those accessible to a class by means of inheritance, can be
introduced into Java classes by means of a special class known as a Java interface.

5.1 What is a Java Interface?

Examples discussed in previous chapters readily show that method implementations embody the
application logic of a Java application and method invocations run the application. It almost goes without
saying, therefore, that the methods implemented in the classes defined in a Java application are
fundamental to its operation.

In the light of the content of previous chapters, what do we know about a method written by a developer or
one that is specified by the Java API? To answer this question, let us re-visit two of the methods in the
themed application.

Firstly, the documentation and declaration of the takeItemOnLoan method of the DvdMembershipCard

class is as follows.

 /**
 * This method takes a specific DVD on loan. It overrides the method in the parent class.
 * @param catNo The catalogue number of the DVD to take on loan.
 */
 public void takeItemOnLoan(String catNo) throws ItemLimitException { }

Secondly, let us recall from Chapter Four that the readMembers method of the MediaStore class calls the
readObject method of one of the I/O classes in a try block. Part of the documentation of the readObject

method, taken from the Java API, includes the following information:

readObject
 public final Object readObject()
 throws IOException

The documentation of both methods includes a number of elements that are known to the user of the
method. The known elements of the two methods are listed in the box on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

94

Java Interfaces

• the method’s identifier;
• the method’s return type;
• the method’s parameters;
• the exceptions thrown by the method.

The contents of the box above are, in fact, the method’s return type, signature and throws clause. For the
sake of brevity, we will refer to the set of (four) components as the method’s description.

There is no reason why we cannot extrapolate this notion and state that any Java method can be
similarly described.

The description of a method is aimed at the user of the method, i.e. the code – another method - that
invokes it. This means that the description of a method must be known to the developer so that other
methods can invoke the method without having to know how the method is implemented. All that the
calling method needs to know are the four items in the box above.

For example, the calling method of the takeItemOnLoan method in the themed application is a method
that calls takeItemsOnLoan when one of the buttons of the application’s GUI is pressed. Recalling the
simplified code for the calling method from Chapter Four, we can see that the code shown below only
needs to know that takeItemsOnLoan throws an exception and that it takes an argument of the String type,
as follows:

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������0`Q�Gű�<�H����u`�Ý��	�����T�?�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

95

Java Interfaces

// if the button pressed is the ‘Borrow DVD’ button.
 {
 // Get the film from the list of DVDs available for loan.

// Get the catalogue number of the DVD; this is a String.
 // Use the catalogue number to borrow the film using the member's DVD card.
 // takeItemOnLoan throws an exception.
 try
 {
 membersCard.takeItemOnLoan(catNo);
 }
 catch(ItemLimitException ile)
 {
 messagesArea.setText(ile.getMessage());
 }

 } // end if

The code shows that the calling method does not need to know how takeItemOnLoan is implemented in
terms of its statements; the calling method calls takeItemOnLoan in the knowledge of its description.

Similarly, the code that calls the readObject method of the I/O stream needs to know that readObject

returns an Object, takes no arguments and throws an exception. The calling method in the themed
application is shown below.

 /**
 * This method reads the file of members.
 */
 public void readMembers() {

 try
 { // Start of try block.
 // The String is the path to the file.
 FileInputStream fis = new FileInputStream("C:\\Temp\members.dat");
 ObjectInputStream ois = new ObjectInputStream(fis);
 // Note the cast in the next statement.
 members = (Member []) ois.readObject();
 } // End of try block.
 catch (IOException e) { // Start of catch block.
 System.out.println("Error: " + e.getMessage());
 } // End of catch block.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

96

Java Interfaces

 finally
 {
 ois.close();
 fis.close();
 }

 } // End of readMembers.

The code shows that the calling method does not need to know how readObject is implemented; the
calling method calls readObject in the knowledge of its description specified in the API.

The two examples above show that a calling method does not need to know how the method called is
implemented; rather, it only needs to know what the method does in terms of its description. The outcome
of decoupling the how and what of a method, illustrated by the examples above, means that the
implementation of a method can change – to make it more efficient for example – without changing
its description.

The outcome of the examples and their explanation above serves to emphasise the fundamental
importance of a method’s description in that it provides the developer with sufficient information to
invoke it. Therefore, we can regard the notion of a method’s description as a kind of contract offered by
the method in that it indicates how it is invoked. Extrapolating from the examples above implies that any
method that invokes another method can do so in the knowledge of the latter’s description; the calling
method does not need to know how the called method is implemented. In practice, if the body of a method
is changed without changing its description, method invocations do not have to be re-written.

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����M�41T�GźOm��HM���.7�Ɲ��
����XS�l@

Download free eBooks at bookboon.com

Java: Classes in Java Applications

97

Java Interfaces

The outcome of decoupling method implementation from method description has profound implications in
Java. Methods can be published, as in the Java API, so that developers can programme to their description
without regard to their implementation.

Publishing the descriptions of methods of Java classes implies that they can be standardised so that a client
application – i.e. one that invokes published methods – can be written in the knowledge of the description
of the methods provided by a server application – i.e. one that implements the published method.

(There is a category of applications – that are outside the scope of this guide – in which the client
application calls server methods across the Internet. The provider of the server part of the application
publishes – to Java developers – the description of methods implemented by the server application so that
the developer can write Java clients independently of the implementation of the server. This category of
Internet-based application is known as a Web service. Web services rely on published method descriptions
known as interfaces. In the case of a Web service, the client and server applications can be written in any
language; in fact, the client and server do not have to be written in the same language given that the client
is programmed to the server application’s interface.)

The outcome of this section is to emphasise the fundamental importance of a method’s description and
leads to the concept of a Java interface.

A Java interface is a category of Java class that includes the
description of one or more methods in a collective contract that other
classes can use.

Classes that use a Java interface are said to implement that interface. Defining and implementing
interfaces is explained in the next section.

5.2 Defining and Implementing a Java Interface

An interface is similar to a class in that it declares members. An interface can declare constants and
declares methods by their description; there are no method bodies. Interfaces cannot be instantiated; they
can only be implemented by classes or extended by other interfaces.

Defining an interface is similar to declaring a class definition. For example, a version of the themed
application includes the interface shown below.

 /** The Interface CardStatus introduces new behaviour to its implementing classes.
 * @author David M. Etheridge.
 * @version 1.0, dated 29 November 2008.
 */

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

98

Java Interfaces

public interface CardStatus {

 /**
 * setStatus sets the status of the card to either "Standard" or "Premier" when it is called.
 * @param status A String to set the variable status in the MembershipCard class.
 */
 void setStatus(String status);

 /**
 * getStatus returns the value of the attribute status.
 * @return The value of the variable status in the MembershipCard class.
 */
 String getStatus();

 /**
 * setDiscout sets the level of discount of the card.
 * @param discount An integer used to set the discount for the card.
 */
 void setDiscount(int discount);

 /**
 * getDiscount returns the value of the discount.
 * @return The value of the discount.
 */
 int getDiscount();

 } // End of interface definition.

It should be noted that method declarations in an interface are terminated with a semi-colon and do not
require the modifier public.

In this version of the themed application, the MembershipCard class implements the CardStatus interface
and provides a body for each method declared in the interface. If the developer omits any of these methods,
the compiler issues a warning to this effect. A simplified version of the MembershipCard class follows, the
purpose of which is to show the reader how the interface is implemented by the class.

/**
 * The MembershipCard class implements the methods required for transactions carried out
 * by a member’s virtual membership card.
 * @author D. M. Etheridge.
 * @version 1.0, dated 29 November 2008.
 */

public class MembershipCard implements Serializable, CardStatus {

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

99

Java Interfaces

 // Declare instance variables.
 protected int noOnLoan.
 protected int maxOnLoan;
 protected int discount;
 protected String status;

 /**
 * Constructor for objects of class MembershipCard.
 * @param max The maximum number of items allowed on loan.
 */
 public MembershipCard(int max) {

 // The argument passed to this constructor is used to initialise the
 // maxOnLoan field.

 maxOnLoan = max;

 } // End of constructor.

 // Methods to return the maximum number of items permitted to be on loan, to return
 // the number of items currently on loan, take items on loan and return items on loan
 // would follow but are omitted for the purposes of the present discussion.

 // Methods associated with the interface CardStatus are on the next page.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����G�<3��EŲ�o��HJ���tg����
M������8E

Download free eBooks at bookboon.com

Java: Classes in Java Applications

100

Java Interfaces

 /**
 * This method sets the variable called status.
 * @param status The value of the card's status: "Standard" or * "Premier", is passed to
 * the method when it is called.
 */
 public void setStatus(String status){

 this.status = status;

 } // End of implementation of setStatus.

 /**
 * This method returns the value of the variable called status.
 * @return status The value of status.
 */
 public String getStatus(){

 return status;

 } // End of implementation of getStatus.

 /**
 * This method has an empty body in this version of the application.
 */
 public void setDiscount(int discount) { }

 /**
 * This method also has an empty body in this version of the application.
 * @return discount The value of discount.
 */
 public int getDiscount() { }

 } // End of class definition of MembershipCard.

As the code shows, the setter and getter methods for the variable discount are empty in this version of the
themed application. (An empty method is often referred to as a stub.) However setDiscount and
getDiscont must be implemented, either with a body or as a stub, because the contract of the CardStatus

interface demands as much. If either setDiscount or getDiscount are omitted by the developer, the
compiler would issue a warning to this effect.

The class declaration also shows that an interface with the identifier Serilaizable is also implemented by
MembershipCard. It is evident, therefore, that a class may implement more than one interface.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

101

Java Interfaces

The definition of a Java interface can be summarized by the following general syntax:

public interface < NameOfInterface > extends < SuperInterfaces >

An interface, unlike a class, can extend any number of interfaces in a comma-separated list.

5.3 The Role of Interfaces as a Means to Introduce Behaviour to a
Class

A similar version of the themed application modifies the class definition for MembershipCard as follows:

public class MembershipCard extends Card implements Serializable, CardStatus {

and shows that a class can extend from only one class – as we discovered in Chapter Three – but can
implement more than one interface. This means that the MembershipCard class not only contains its own
methods and those inherited from the Card class, it also contains methods declared in the interface
CardStatus. (The interface Serializable is one of a number of tagged interfaces. Tagged interfaces do not
declare methods; they are used to indicate to the run-time system that an activity is required; in this case
the activity required involves reading and writing objects to an input/output stream. [We will encounter
input/output streams in Chapter One in An Introduction to Java Programming 3: Graphical User
Interfaces.] This activity is known as object serialization – or serialization for short - and is used in the
themed application to store an array of Member objects to a file. Serialization is achieved by declaring that
a class implements the Serializable interface.)

Both versions of the class declarations of MembershipCard referred to above implement the CardStatus

interface and, in effect, introduce behaviour to the class in addition to inherited behaviour. Given that Java
does not permit multiple inheritance, interfaces are used as an alternative in order to add methods to a
class. Adding methods to a class by means of interfaces gives them a very important role in Java.

The role of Java interfaces arises due to the fact that interfaces are not part of the general class hierarchy.
An extract from the API for the Serializable interface of the java.io package shown on the next page
illustrates this.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

102

Java Interfaces

java.io

Interface Serializable
All Known Subinterfaces:

AdapterActivator, Attribute, Attribute, Attributes, BindingIterator, ClientRequestInfo,
ClientRequestInterceptor, Codec, CodecFactory, Control … etc.

Selecting the subinterface Attribute displays to the following page of the API.

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to

BrowserTexting.com

and start texting from
your computer!

FREE
 30 days trial!

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����D�51Q�IŴO>��HI���t7�ŝ��\��ۈ_��jF

Download free eBooks at bookboon.com

Java: Classes in Java Applications

103

Java Interfaces

Interface Attribute
All Superinterfaces:

Cloneable, Serializable
All Known Implementing Classes:

BasicAttribute

The point of these illustrations is not to find out what the various interface do, it is to note that interfaces
have their own internal hierarchy that is not part of the overall class hierarchy. This means that a class can
implement more than one interface and an interface can be implemented by more than one unrelated class.

Interfaces combine with classes in that the API specifies which classes implement which interface, as is
shown above for the interface Attribute.

5.4 Interfaces as Types

This chapter has shown that a Java class can inherit from only one class but that it can implement more
than one interface. This means that an object can have multiple types: its own type, superclass types – as
we saw in Chapter Three - and the types of all interfaces that the class implements.

Consider, for example, the version of the themed application shown in the screen shot:

Figure 5.1 The class diagram for (a version of) the themed application

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

104

Java Interfaces

For the purposes of the present discussion, it is not important to know what each class in the application
does, rather, the reader should note that the figure shows that MembershipCard inherits from Card and has
two subclasses which both implement the CardStatus interface.

In the context of the application shown in Figure 5.1, the following statements compile:

// Note: the constructors for MembershipCard, DvdMembershipCard and
// GameMembershipCard take an integer argument.
// Instantiate an object whose type is the same as the run-time type.
Card cardOne = new Card();
// Instantiate an object whose type is the superclass of the run-time type.
Card cardTwo = new MembershipCard(10);
// Instantiate an object whose type is the interface implemented by one of its run-time types.
CardStatus cardThree = new DvdMembershipCard(10);
// Instantiate an object whose type is the interface implemented the other run-time type.
CardStatus cardFour = new GameMembershipCard(10);

The third and fourth statements show that when a class type variable is declared to be an interface type,
the variable can be used as an object reference to an object that implements that interface. In other words,
the instance can be accessed by a reference of the interface type.

Now that it has been have shown - by example - that interfaces can be declared as class types, this raises a
question: how can we use an interface as a type?

5.4.1 The Use of Interfaces as Class Types

Referring to the example in Section 5.4, let us assume that a substantial amount of code has to be written
for a class that process instances of DvdMembershipCard objects. The code would, firstly, instantiate, an
instance of DvdMembershipCard as follows:

// Instantiate an object whose type is the interface implemented by DvdMembershipCard.
CardStatus membersCard = new DvdMembershipCard(10);

The code that follows this declaration might include a number of statements that include the variable
membersCard.

Let us also assume that code also has to be written for a similar class that process instances of
GameMembershipCard objects. This code would also instantiate an instance of a GameMembershipCard

object as shown next:

// Instantiate an object whose type is the interface implemented by GameMembershipCard.
CardStatus membersCard = new GameMembershipCard(10);

Let us assume that the code that follows this declaration is the same as the code that processes a member’s
DVD card. (This assumption is based on the notion that card processing is the same irrespective of the
type of card.)

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

105

Java Interfaces

This means that the code that processes a member’s DVD card can be copied to form the code that
processes a member’s games card. The only statement that would need to be re-written is the one that calls
the constructor of the card; all other statements that include the variable membersCard would not have to
be re-written.

A similar use of interfaces as types arises when a number of similar classes implement the same interface.
For example let us assume that there are a number of data structures that can be used to store a specific
primitive data type or object type, all of which implement the same interface.

Instantiating an object of one of these data structures is generalised as follows:

 // SomeDataStructure implements AnInterface.
AnInterface dataStructure = new SomeDataStructure();

followed by code that includes the variable dataStructure.

If we wish to change the data structure, in the light of testing the application, we need to re-write only one
line of code, i.e. the call to the constructor of the new data structure, as follows:

 // SomeOtherDataStructure implements AnInterface.
AnInterface dataStructure = new SomeOtherDataStructure();

Join American online
 LIGS University!

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����M�41T�GźOm��HM���.7�Ɲ��
����XS�l@

Download free eBooks at bookboon.com

Java: Classes in Java Applications

106

Java Interfaces

Subsequent statements that include the variable dataStructure do no have to be re-written.

The examples in this section show how the compatibility rules for using interfaces as types can be
exploited to minimise re-writing code and gives rise to significant re-useability of code.

5.5 Summary of Java Interfaces

The principal concepts associated with Java interfaces are summarised next.

• Java allows a class to inherit from only one superclass but
allows the class to implement one or more interfaces.

• Interfaces are not part of the class hierarchy; unrelated classes
can implement the same interface.

• Interfaces can be declared as class types at compile time.

The ways in which Java interfaces can be used is summarised as follows.

• Declaring methods that one or more classes can implement.
• Determining an object’s programming interface without the need

to reveal the body of the methods implemented in the class.
• Exposing similarities amongst unrelated classes without forcing

a “is a“ class relationship.
• Simulating multiple inheritance by declaring that a class

implements more than one interface.

A close inspection of the title of the window displayed in Figure 5.1 reveals that it includes the term
[mediaStore] (in square brackets). The component of the application, whose classes are shown in Figure
5.1, referred to as [mediaStore] is an example of what is known as a Java package. The next chapter
explains the purpose of packages in a Java application.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

107

Grouping Classes Together in a Java Application

6. Grouping Classes Together in a Java Application

Chapter Twelve explains how classes and interfaces can be grouped together, using a concept not unlike
that of a generic namespace arrangement. Collecting a number of related classes together in a single
structure known as a package makes them easier to manage and avoids potential naming conflicts.

6.1 An Introduction to Java Packages

As an illustration of namespace management, assume that a banking application has two classes named
Account: one of the classes is the definition of a class for a current account and the other class is that for a
savings account. The name of the two classes can be the same (Account) as long as they are placed in
separate packages. This is because each package creates a new namespace such that the types in one
package do not conflict with the same types in another package.

A simple analogy might help the reader to appreciate the need to manage class names and their
namespaces. The use of packages in a Java application is rather like the obvious distinction between a
business address in Main Street in Freetown and a similar address in Main Street in Freeville as

Top Ten Records, Main Street, Freetown and Top Ten Records, Main Street, Freeville

The notation for the address of each Top Ten Records store is for the obvious benefit to everyone
concerned.

The outcome of placing the classes named Account in separate packages means that their unique, fully-
qualified names are written as follows:

currentAccount . Account // refers to the Account class in the package named

 // currentAccount

and

savingsAccount . Account // refers to the Account class in the package named

 // savingsAccount

The notation used for the fully-qualified name of a class means that it can be referred to unambiguously

and accessed by means of the usual ‘ . ‘ (dot) selector.

6.2 Creating Packages

A version of the themed application shown in Figure 6.1 below indicates that classes of the application are
bundled together in one of two packages depending upon their function in the application.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

108

Grouping Classes Together in a Java Application

Figure 6.1 The package structure of the themed application

The two test classes – i.e. the ones that include a main method – named TestGui and TestReferences are
not in a named package and are said to be in the default package of the application.

The package named gui contains a single class named MediaStoreGui. The statements

 package gui; // the class MediaStoreGui is in this package
import mediaStore.*; // the class has access to the classes contained in the other package of
 // the application

are written before the class declaration and state that the class named MediaStoreGui is in the package
named gui and that it requires access to all of the classes in the package mediaStore by virtue of the
wildcard ‘ * ‘ written to the right-hand side of the (dot) selector in the import statement.

This version of the themed application has only one class that displays the graphical user interface (GUI)
for the application. Nevertheless, it makes sense to place this class in its own package: other versions of
the application might contain additional classes that are concerned with the display of the GUI that and
would be placed in the package named gui.

The import statement is required because components of the GUI require access to classes in the
mediaStore package to invoke their methods and run the application.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

109

Grouping Classes Together in a Java Application

The package named mediaStore contains eight classes, each of which begins with the package statement

package mediaStore;

The eight classes are bundled together in their own package because they represent the business logic of
the application. None of these classes has any role in the display of the GUI; therefore, there is no
requirement to import the contents of the gui package into the package named mediaStore.

Whilst the two test classes could have been placed in their own package, this version of the themed
application is used to illustrate the contents of the default package of the application. Both test classes
require access to classes in both packages, which means that the following import statements appear at the
beginning of each source code file:

import gui.*;
import mediaStore.*;

There is no package statement at the head of the source code file of the two test classes; this means that
these two classes are automatically placed in the default package of the application.

The version of the themed application discussed above illustrates the principal reasons why classes and
interfaces are bundled in a package; i.e. the types in a package are functionally related in the context of an
application. A number of other reasons derive from this; they are summarised in the box shown on the
next page.

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa������52���Ŵ�>��H����-`՗���
J���[S�8�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

110

Grouping Classes Together in a Java Application

Reasons why packages are employed in a Java application:

• developers can easily determine from the structure of an
application how application logic is partitioned amongst its
packages;

• developers can easily find related classes in an application;
• packages in the Java API imply that their contents are a

collection of related classes (see later in this chapter);
• the names of types in one package won’t conflict with the same

names in another package;
• types in a package can have unrestricted access to one another

but restricted access to types outside the package (see later in
this chapter).

The structure of an application, in terms of its packages, is reflected in its directory structure as used by
the operating system that hosts the application. For example, the package structure of the version of the
themed application shown in Figure 6.1 above is reflected in its directory and folder structure in
Windows™ as shown in Figure 6.2 below.

Figure 6.2 The directory of the application shown in Figure 6.1

Figure 6.2 shows that the two test classes are in the default (unnamed) package and remaining classes
have been placed in one of two packages. The IDE used to develop the application shown in figures 12.1
and 12.2 automatically creates a Windows™ folder for each package created by the developer. In practice,
all IDEs will create a Windows™ folder for each package created by the IDE.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

111

Grouping Classes Together in a Java Application

6.3 Naming Convention

Figures 12.1 and 12.2 show that the author (of this guide) has named the packages of the themed
application with a single word that starts with a lower case letter. This simple convention works well
unless independent developers use the same package and class names for applications that are in the
public domain or that are accessible by members of the Java development community.

To overcome the potential problem of more than one application containing a class named
mediaStore.Member – to take, as an example, one of the classes of the themed application – there is a
convention in the Java developers’ community whereby an organisation uses its Internet domain name in
reverse to start package names. For example, the package named mediaStore shown in figures 12.1 and
12.2 should – by convention – be named along the following lines:

 uk.ac.bcu.tic.etheridge.mediaStore

so that the class named Member is given the fully-qualified name of

 uk.ac.bcu.tic.etheridge.mediaStore.Member

Up to this point in the chapter, we have largely considered packages provided by the developer of an
application. The Java language itself is partitioned into a number of packages as is suggested by the
statements at the head of the class definition for the MediaStore class of the mediaStore package of the
themed application, as follows:

package mediaStore;
import java.io.*;

The first statement denotes that the MediaStore class is a member of the mediaStore package. The second
statement implies that the class requires access to all of the classes of the java.io package.

The next section looks briefly at the use of package in the Java language.

6.4 Packages in the Java Language

The mane of the majority of the packages in the Java language begins with java or javax. For example, the
relevant page of the Java API for the java.io package is shown in Figure 6.3 below.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

112

Grouping Classes Together in a Java Application

Figure 6.3 The opening page of the java.io package in the API

The lower left-hand pane shows the first part of the list of interfaces, classes and exceptions associated
with the package. There are about 60 classes in the java.io package that are available to the Java developer.

Although the statement

import java.io.*;

referred to above implies that the author wishes to import all 60 classes of the java.io package into the
MediaStore class of the themed application, he used only four of these classes in the code. In this case,
four import statements would have sufficed, as shown on the next page.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

113

Grouping Classes Together in a Java Application

import java.io.FileInputStream;
 import java.io.FileOutputStream;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;

The set of import statements imports the four classes of the java.io package required for the Member class.
(Chapter Thirteen examines some of the classes of the java.io package in the context of what are known as
input/output streams.)

The use of the ‘import all’ statement

import java.io.*;

is useful when developing an application because it means that the developer can use any of the classes of
– in this case - the java.io package without having to insert specific import statements.

The large, central pane shown in Figure 6.3 begins with a brief description of the contents of the java.io

package and includes a hyperlink to a more detailed description. This kind of overall structure of linked
HTML pages in the Java API is typical of most packages, of which there are about 225 in the Java Version
6 Standard Edition API. The sheer number of packages – in excess of 200 – confirms the large scale and
very wide functionality of the standard edition of the Java language. Clearly, in a guide such as this one,
the author can only scratch the surface of what is available to the developer in the API.

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa����L�a5	�Fű�j�H����uaڒ���[J���XS�:F

Download free eBooks at bookboon.com

Java: Classes in Java Applications

114

Grouping Classes Together in a Java Application

At this point, it is worth mentioning that the Java run-time system automatically imports the (classes of)
the java.lang package into all applications. The java.lang package contains about 40 classes, including
widely-used ones such as the wrapper classes - Boolean, Character, Double, Integer and so on - that are
object representations of the primitive data types, as well as classes such as System, String and Thread.
The rationale for this automatic inclusion is that commonly-used classes should be readily available
without having to insert import statements for them.

6.5 Using and Accessing Package Members

We have seen that the import statement provides access to one or more members of a named package in a
class definition. In order to use a public member from outside its package, one of the following must
be done:

1. The member must be referred to by its fully-qualified name.
2. The member must be imported.
3. The member’s entire package must be imported.

Referring to a member by its fully-qualified name is required each time the reference is used in Java
statements and, therefore, is a satisfactory approach when there are relatively few such uses. For frequent
references, it makes more sense to import the member at the head of the class definition. Once a member
has been imported by an import statement, it can be referred to in the code by its class name rather than by
its fully-qualified name.

However, care should be taken when importing members of packages when, for instance, there are
identically-named classes in them. For example, consider the following code snippet:

 package mynewpackage;
 import currentAccount.Account;
 import savingsAccount.Account;

A reference to the type Account in the class definition that follows the package statement and import

statements would produce a compiler error because the compiler does not know which of the two Account

classes is being referred to. In such a case, the compiler will be able to distinguish between the two
Account types when their fully-qualified name is used in the code even though both Account classes have
been specifically imported.

When a member’s entire package is imported, any member of that package can be referred to by its class
name in the subsequent code.

6.5.1 Controlling Access to Package Members

Let us recall the access levels for the access modifiers listed in Table 3.1; the table is reproduced in Table
6.1 on the next page

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

115

Grouping Classes Together in a Java Application

Table 6.1 Access levels to class members

The first row of Table 6.1 reaffirms what we know about the access modifier ‘private’: i.e. the class itself
has access to its private members as we would expect.

The second row can be regarded as a class’s package contract whereby if no modifier is specified classes
in the same package have access to such members and trust one another to access each other’s members.
A class’s package contract can be used to hide things such as implementation details that are not required
to be known to classes outside the package. This type of contract means that such details can be changed
without changing a class’s public contract.

A class’s public contract declares it as a type that is available to developers using its containing package.
Thus the fourth row shows that all classes have access to public members, regardless of their package and
parentage. We will return to the third row in due course.

As we work our way down the ‘Modifier’ column from ‘private’, ‘default’ (i.e. package level),
‘protected’ and ‘public’, each of the four access levels embraces a wider scope of the kind of class that
can access that member.

Let us return to the third row of the table that was first displayed in Chapter Nine: the protected contract.
The third row indicates what level of access is provided when a class member is declared to be ‘protected’.
The first column indicates that other members of the class itself have access to the protected member of
that class; the second column indicates that classes in the same package, regardless of their parentage,
have access to the protected member of the class; the third column indicates that subclasses of the class
have access to the protected member, regardless of what package they are in. However, the subclass-
protected table entry requires further comment.

The subclass-protected entry in the table can be stated more precisely: a protected member can be
accessed from a class via object references that are of the same type as the class or one of its subtypes.
Despite the apparent clarity of this statement, it gives rise to an interesting twist as the following example
aims to illustrate.

n�M�Eq�������(�N�T�

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

116

Grouping Classes Together in a Java Application

Suppose that we have a simple class in a package named packageone that includes a protected member,
as shown by the following code.

package packageone;
public class Cat {

// The class Mammal is also in packageone but its code is not included here.
 protected Mammal mammal;
 public void setSpeciesName() { }

} // end of class definition

A subclass of Cat is in a separate package.

package packagetwo;
public class DomesticCat extends packageone.Cat {

 // Inherits the protected variable mammal of the Mammal type.
 // Other members of DomesticCat would follow next.

} // end of class definition

Suppose that DomesticCat overrides the method setSpeciesName with a simple implementation.

public void setSpeciesName() {
 // The current object is a subclass of Cat, so access to the protected member inherited
 // from Cat is allowed.
 this.mammal = null;
 }

n�M�Eq�������(�N�T�
n�M�Eq�������(�N�T��2�+�W��wa��¥��`9��CŷMj��HN���.4ؕ���[I���XR�;�

Download free eBooks at bookboon.com

Java: Classes in Java Applications

117

Grouping Classes Together in a Java Application

Given that the current object (this) is a subclass of Cat, access to the protected member mammal is
allowed even though Cat and DomesticCat are in different packages.

Suppose that one of the methods of DomesticCat takes a DomesticCat as an argument and accesses its
protected member, as follows.

public void aMethod(DomesticCat florence) {
 packageone.Mammal m = florence.mammal;
 }

This method compiles because the method accesses the protected member of an object passed as an
argument. Access is allowed because the class attempting to access the protected member (mammal) is a
DomesticCat and the type of the reference florence is also a DomesticCat.

Finally, suppose also that the class DomesticCat defines an overridden method, as follows.

public void aMethod(packageone.Cat florence) {
 packageone.Mammal m = florence.mammal;
 }

The statement

packageone.Mammal m = florence.mammal;

doesn’t compile; the compiler issues the message:

mammal has protected assess in packageone.Cat

The reason why the compiler issues the message is that the class attempting to access the protected
member is DomesticCat and the type of the reference florence is Cat. Access to the protected member is
not allowed because the Cat type is not the same as or a subclass of DomesticCat. Although every
DomesticCat object a subclass of a Cat object, not every Cat object is a DomesticCat.

Although some of the points made in this sub-section may appear to be rather erudite at first, it is
important that the leaner emerges from this section with a reasonable understanding of access levels and
how they are controlled by means of access contracts. Even though some of the implications of controlling
access to class members may appear to be technically difficult, they will be more easily understood when
the reader encounters compiler messages that issue warnings about access to protected members.

6.6 Compiling and Running Package Members

It is likely that the learner will use a learner-level IDE such as BlueJ to write their first Java programmes
to learn the basics of the language. When the learner gains experience, he or she can progress to the use of
a professional-level IDE such as NetBeans™. In any event, an IDE typically provides buttons or menu
options to use to compile and run a Java application; the IDE will ‘find’ and interoperate with the Java
compiler installed on the learner’s computer.

n�M�Eq�������(�N�T�

Java: Classes in Java Applications

118

Grouping Classes Together in a Java Application

If the learner does not use a learner-level IDE in the first instance, code can be written using a simple
text editor and source code files can be compiled from the DOS prompt in the case of a Windows™
operating system.

Referring to the example shown in Section 6.5.1, the package named packageone includes a test class
named UserClassOne with a main method. This class can be compiled from the DOS prompt with the
following command:

C:\ > javac packageone \ UserClassOne.java

and main can be executed as follows:

C:\ > java packageone . UserClassOne

The fully-qualified class name and directory path are, as we would expect, in parallel. This means that the
developer can go to the directory that contains the folder named packageone and compile and run any of
the classes in that package. Similarly, the develop could compile all of the classes in the package named
packagetwo as follows

C:\ > javac packagetwo \ *.java

As long as the programmes javac and java are on the computer’s PATH environment variable, source
code files can be compiled from the DOS prompt. The compiler issues the same messages in the DOS
prompt window as it does if an IDE is used to compile and run the application.

The next chapter examines some of the classes of the java.io package that provide for input to and output
from applications.

