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Preface

Preface

The aim of this textbook is to provide a step-by-step guide to financial econometrics
using EViews 6.0 statistical package. It contains brief overviews of econometric
concepts, models and data analysis techniques followed by empirical examples of
how they can be implemented in EViews.

This book is written as a compendium for undergraduate and graduate stu-
dents in economics and finance. It also can serve as a guide for researchers and
practitioners who desire to use EViews for analysing financial data. This book may
be used as a textbook companion for graduate level courses in time series analysis,
empirical finance and financial econometrics.

It is assumed that the reader has a basic background in probability theory and
mathematical statistics

The material covered in the book includes concepts of linear regression, uni-
variate and multivariate time series modelling and their implementation in EViews.
Chapter 1 briefly introduces commands, structure and programming language of
the EViews package. Chapter 2 provides an overview of the regression analysis and
its inference. Chapters 3 to 5 cover some topics of univariate time series analysis
including linear models, GARCH models of volatility, unit root tests. Chapter 6
introduces modelling of multivariate time series.

6
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Introduction to EViews 6.0

Chapter 1

Introduction to EViews 6.0
EViews is a simple, interactive econometrics package which proves many tools used in
econometrics. It provides users with several convenient ways of performing analysis
including a Windows and a command line interfaces. Many operations that can be
implemented using menus may also be entered into the command window, or placed
in programs for batch processing. The possibility of using interactive features like
windows, buttons and menus makes EViews a user-friendly software.

In this chapter we briefly introduce you main features of the language, will
show you the use of some important commands which will be used further in this
textbook. We will start with the interactive Windows interface and then go into more
detailed description about the EViews’ batch processing language and advanced
programming features.
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Introduction to EViews 6.0

1.1 Workfiles in EViews

EViews’ design allows you to work with various types of data in an intuitive and
convenient way. We start with the basic concepts of how to working with datasets
using workfiles, and describing simple methods to get you started on creating and
working with workfiles in EViews.

In the majority of cases you start your work in EViews with a workfile – a
container for EViews objects. Before you perform any tasks with EViews’ objects
you first have to either create a new workfile or to load an existing workfile from the
disc.

In order to create a new workfile you need to provide and information about its
structure. Select File/New/Workfile from the main menu to open the Workfile Create
dialog. On the left side of the dialog is a combo box for describing the underlying
structure of your dataset. You have to choose between three options regarding the
structure of your data – the Dated - regular frequency, the Unstructured, and the
Balanced Panel settings. Dated - regular frequency is normally used to work with
a simple time series data, Balanced Panel is used for a simple panel dataset and
Unstructured options is used for all other cases.

For the Dated - regular frequency, you may choose among the following options:
Annual, Semi-annual, Quarterly, Monthly, Weekly, Daily - 5 day week, Daily - 7 day
week and Integer date. EViews will also ask you to enter a Start date and End date
for your workfile. When you click on OK, EViews will create a regular frequency
workfile with the specified number of observations and the associated identifiers.

The Unstructured data simply uses integer identifiers instead of date identifiers.
You would use this type of workfile while performing a crossectional analysis. Under
this option you would only need to enter the number of observations.

The Balanced Panel entry provides a method of describing a regular frequency
panel data structure. Panel data is the term that we use to refer to data containing
observations with both a group (cross-section) and time series identifiers. This
entry may be used when you wish to create a balanced structure in which every
crosssection follows the same regular frequency with the same date observations.
Under this option you should specify a desired Frequency, a Start and End date,
and Number of cross sections.

Another method of creating an EViews workfile is to open a non-EViews data
source and to read the data into an new EViews workfile. To open a foreign data
source, first select File/Open/Foreign Data as Workfile. First, EViews will open a
series of dialogs asking you to describe and select data to be read. The data will be
read into the new workfile, which will be resized to fit. If there is a single date series

8
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Introduction to EViews 6.0

in the data, EViews will attempt to restructure the workfile using the date series.
A typical workfile view is given in Figure 1.1.

Figure 1.1: Workfile in EViews

Workfiles contain the EViews objects and provide you an access to your data
and tools for working with this data.

Below the titlebar of a workfile is a button bar that provides you with easy
access to some useful workfile operations. These buttons are simply shortcuts to
items that may be accessed from the main EViews menu. Below the toolbar are
two lines of status information where EViews displays the range of the workfile, the
current sample (the range of observations that are to be used in calculations), and
the display filter (rule used in choosing a subset of objects to display in the workfile
window). You may change the range, sample, and filter by double clicking on these
labels and entering the relevant information in the dialog boxes. The contents of
your workfile page is provided in in the workfile directory. You can find there all
named objects, sorted by name, with an icon showing the object type.

Push the Save button on the workfile toolbar to save a copy of the workfile on
disk. You can also save a file using the File/ Save As or File/Save choices from the
main menu. By default, EViews will save your data in the EViews workfile format,
the extension ".wf1". You may also choose to save the data in your workfile in a
foreign data format by selecting a different format in the combo box.

When you click on the Save button, EViews will display a dialog showing
the current global default options for saving the data in your workfile. You should
choose between saving your series data in either Single precision or Double precision.
Single precision will create smaller files on disk, but saves the data with fewer digits
of accuracy (7 versus 16). You may also choose to save your data in compressed or
non-compressed form.

9
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Introduction to EViews 6.0

1.2 Objects

All information in EViews is stored in objects. Each object consists of a collection
of information related to a particular area of analysis. For example, a series object
is a collection of information related to a set of observations on a particular variable.
An equation object is a collection of information related to the relationship between
a collection of variables. Together with the data information, EViews also associates
procedures which can be used to process the data. For example, an equation object
contains all of the information relevant to an estimated relationship, you can examine
results, perform hypothesis and specification tests, or generate forecasts at any time.
Managing your work is simplified since only a single object is used to work with an
entire collection of data and results.

Each object contains various types of information. For example, series, matrix,
vector, and scalar objects contain numeric data while equations and systems contain
complete information about the specification of the equation or system, the estima-
tion results. Graphs and tables contain numeric, text, and formatting information.
Since objects contain various kinds of data, you will work with different objects in
different ways.

10
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Introduction to EViews 6.0

EViews provides you with different tools for each object. These tools are views
and procedures which often display tables or graphs in the object’s window. Using
procedures you can create new objects. For example, equation objects contain pro-
cedures for generating new series containing the residuals, fitted values, or forecasts
from the estimated equation. You select procedures from the Proc menu and views
from the View on the object’s toolbar or from the EViews main menu.

There are a number of different types of objects, each of which serves a unique
function. Most objects are represented by a unique icon which is displayed in the
workfile window. The basic object icons are:

Figure 1.2: Object Icons

In order to create an object, create or loaded a workfile first and then select
Object/New Object from the main menu. You will see the New Object dialog box
where you can click on the type of object you want to create. For some object types,
a second dialog box will open prompting you to describe your object in more detail.
For example, if you select Equation, you will see a dialog box prompting you for
additional information.

Once you have selected your object, you can open it by double clicking any-
where in the highlighted area. If you double click on a single selected object, you
will open an object window. If you select multiple graphs or series and double
click, a pop-up menu appears, giving you the option of creating and opening new
objects (group, equation, VAR, graph) or displaying each of the selected objects in
its own window. Note that if you select multiple graphs and double click or select
View/Open as One Window, all of the graphs will be merged into a single graph and
displayed in a single window. Other multiple item selections are not valid, and will
either issue an error or will simply not respond when you double click. When you
open an object, EViews will display the view that was displayed the last time the
object was opened (if an object has never been opened, EViews will use a default
view). The exception to this general rule is for those views that require significant
computational time. In this latter case, the current view will revert to the default.

An alternative method of selecting and opening objects is to "show" the item.
Click on the Show button on the toolbar, or select Quick/Show from the menu and

11
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Introduction to EViews 6.0

type in the object name or names. Showing an object works exactly as if you first
selected the object or objects, and then opened your selection.

Object windows are the windows that are displayed when you open an object
or object container. An object’s window will contain either a view of the object, or
the results of an object procedure. One of the more important features of EViews
is that you can display object windows for a number of items at the same time.

Let us look again at a typical object window:

Figure 1.3: Object Window in EViews

Here, we see the series window for RETURNS. At the top of the window there
is a toolbar containing a number of buttons that provide easy access to frequently
used menu items. These toolbars will vary across objects. There are several buttons
that are found on all object toolbars:

• View button lets you change the view that is displayed in the object window.
The available choices will differ, depending upon the object type.

• Proc button provides access to a menu of procedures that are available for the
object.

• Object button lets you manage your objects. You can store the object on disk,
name, delete, copy, or print the object.

• Print button lets you print the current view of the object (the window con-
tents).

• Name button allows you to name or rename the object.

12
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Introduction to EViews 6.0

• Freeze button creates a new object graph, table, or text object out of the
current view.

There are two distinct methods of duplicating the information in an object: copying
and freezing. If you select Object/Copy from the menu, EViews will create a new
untitled object containing an exact copy of the original object. By exact copy, we
mean that the new object duplicates all the features of the original (except for the
name). It contains all of the views and procedures of the original object and can be
used in future analyses just like the original object. You may also copy an object
from the workfile window. Simply highlight the object and click on Object/Copy
Selected or right mouse click and select Object/Copy, then specify the destination
name for the object.

The second method of copying information from an object is to freeze a view
of the object. If you click Object/Freeze Output or press the Freeze button on the
object’s toolbar, a table or graph object is created that duplicates the current view
of the original object. Freezing the view makes a copy of the view and turns it into
an independent object that will remain even if you delete the original object. A
frozen view shows a snapshot of the object at the moment you pushed the button.
The primary feature of freezing an object is that the tables and graphs created by
freezing may be edited for presentations or reports. Frozen views do not change
when the workfile sample or data change.

13
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Introduction to EViews 6.0

To delete an object or objects from your workfile, select the object or objects
in the workfile directory and click Delete or Object/Delete Selected on the workfile
toolbar.

Series
An series object contains a set of observations on a numeric variable. Asso-

ciated with each observation in the series is a date or observation label. Note that
the series object may only be used to hold numeric data. If you wish to work with
alphanumeric data, you should employ alpha series.

You can create a numeric series by selecting Object/New Object from the menu,
and then to select Series. EViews will open a spreadsheet view of the new series
object with all of the observations containing "NA" (the missing value). You may
then edit or use expressions to assign values for the series. A second method of
creating a series is to generate the series using mathematical expressions. Click on
Quick/Generate Series in the main EViews menu, and enter an expression defining
the series.

Lastly, you may create the series by entering a series command in the command
window. Entering an expression of the form:

series returns=expression

creates a series with the name returns and assigns the expression to each observa-
tion.

You can edit individual values of the data in a series. First, open the spread-
sheet view of the series. Next, make certain that the spreadsheet window is in edit
mode (you can use the Edit +/– button on the toolbar to toggle between edit mode
and protected mode). To change the value for an observation, select the cell, type
in the value, and press ENTER.

You can also insert and delete observations in the series. First, click on the
cell where you want the new observation to appear. Next, right click and select
Insert Obs or Delete Obs from the menu. You will see a dialog asking how many
observations you wish to insert or delete at the current position and whether you
wish to insert observations in the selected series or in all of the series in the group.
If you choose to insert a single observation, EViews will insert a missing value at
the appropriate position and push all of the observations down so that the last
observation will be lost from the workfile. If you wish to preserve this observation,
you will have to expand the workfile before inserting observations. If you choose to
delete an observation, all of the remaining observations will move up, so that you
will have a missing value at the end of the workfile range.

Groups

14
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Introduction to EViews 6.0

A group is a list of series names that provides simultaneous access to all of the
elements in the list. With a group, you can refer to sets of variables using a single
name. Thus, a set of variables may be analyzed using the group object, rather than
each one of the individual series. Once a group is defined, you can use the group
name in many places to refer to all of the series contained in the group. You would
normally create groups of series when you wish to analyze or examine multiple series
at the same time. For example, groups are used in computing correlation matrices,
testing for cointegration and estimating a VAR or VEC, and graphing series against
one another.

There are several ways to create a group. Perhaps the easiest method is to
select Object/New Object from the main menu or workfile toolbar, click on Group.
You should enter the names of the series to be included in the group, separated by
spaces, and then click OK. A group window will open showing a spreadsheet view
of the group.

If you apply an operation to a group, EViews will automatically evaluate the
expressions for each observation and display the results as if they were an ordinary
series.
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Introduction to EViews 6.0

An equivalent method of creating a group is to select Quick/Show, or to click
on the Show button on the workfile toolbar, and then to enter the list of series,
groups and series expressions to be included in the group. You can also create an
empty group that may be used for entering new data from the keyboard or pasting
data copied from another Windows program.

Samples
One of the most important concepts in EViews is the sample of observations.

The sample is the set of observations in the workfile used for performing statis-
tical procedures. Samples may be specified using ranges of observations and "if
conditions" that observations must satisfy to be included. For example, you can
tell EViews that you want to work with observations from 1973M1 to 1990M12 and
1995M1 to 20066M12. Or you may want to work with data from 1973M1 to 1978M12
where observations in the Returns series are positive. When you create a workfile,
the workfile sample is set initially to be the entire range of the workfile. The workfile
sample tells EViews what set of observations you wish to use for subsequent oper-
ations. You can always determine the current workfile sample of observations by
looking at the top of your workfile window. Here the MYDATA workfile consists of
408 observations from January 1973 to December 2006. The current workfile sample
uses a subset of those 72 observations between 1973M01 and 1978M12 for which the
value of the Returns series is positive.

There are four ways to set the workfile sample: you may click on the Sample
button in the workfile toolbar, you may double click on the sample string display in
the workfile window, you can select Proc/Set Sample from the main workfile menu,
or you may enter a smpl command in the command window.

EViews provides special keywords that may make entering sample date pairs
easier. First, you can use the keyword @all, to refer to the entire workfile range. In
the workfile above, entering @all in the dialog is equivalent to typing "1973M12006M12".
Furthermore, you may use @first and @last to refer to the first and last observation
in the workfile. Thus, the three sample specifications for the above workfile:

@all

@first 2006m12

19733m1 @last

are identical. 1

1You may use the IEEE standard format, “YYYY-MM-DD”, which uses a four-digit year, fol-
lowed by a dash, a two-digit month, a second dash, and a two-digit day. The presence of a dash
in the format means that you must enclose the date in quotes for EViews to accept this format.
For example: "1991-01-03" "1995-07-05" will always be interpreted as January 3, 1991 and July

16
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Sample Commands
EViews allows you to add conditions to the sample specification. In this case

the sample is the intersection of the set of observations defined by the range pairs
in the upper window and the set of observations defined by the if conditions. This
can be done by typing the expression:

smpl 1973m1 1978m12 if returns>0

in the command window. You should see the sample change in the workfile window.
Sample range elements may contain mathematical expressions to create date

offsets. This feature can be particularly useful in setting up a fixed width window
of observations. For example, in the regular frequency monthly workfile above, the
sample string: 1973m1 1973m1+11 defines a sample that includes the 12 observa-
tions in the calendar year beginning in 1973M1. The offsets are perhaps most useful
when combined with the special keywords to trim observations from the beginning
or end of the sample. For example, to drop the first observation in your sample, you
may use the sample statement:

smpl @first+1 @last

Accordingly, the following commands generate a cumulative returns series from the
price levels one:

smpl @first @first

series returns = 0

smpl @first+1 @last

returns = returns(-1) + log(price) - log(price(-1))

The first two commands initialize the cumulative returns series at 0, the last two
commands compute them recursively all remaining dates. Later we will see how
sample offsets can be used to perform the rolling window estimation.

EViews provides you with a method of saving sample information in an object
which can then be referred to by name. To create a sample object, select Object/New
Object from the main menu or the workfile toolbar. When the New Object dialog
appears, select Sample and, optionally provide a name. Click on OK and EViews will
open the sample object specification dialog which you should fill out. The sample
object now appears in the workfile directory with a double-arrow icon. To declare
a sample object using a command, simply issue the sample declaration, followed by
the name to be given to the sample object, and then the sample string:

5, 1995.

17
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Introduction to EViews 6.0

sample mysample 1973m1 1978m12 if returns>0

EViews will create the sample object MYSAMPLE which will use observations
between 1973:01 and 1978:12, where the cumulative returns are positive.

You may use a previously defined sample object directly to set the workfile
sample. Simply open a sample object by double clicking on the name or icon. You
can set the workfile sample using the sample object, by entering the smpl command,
followed by the sample object name. For example, the command:

smpl mysample

will set the workfile sample according to the rules contained in the sample object
MYSAMPLE.

1.3 Eviews Functions

1.3.1 Operators

All of the operators described below may be used in expressions involving series and
scalar values. When applied to a series expression, the operation is performed for
each observation in the current sample.

18
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Table 1.1: Operators

Expression Operator Description

+ add, x+y, adds the contents of X and Y

– subtract, x–y, subtracts the contents of Y from X

* multiply, x*y, multiplies the contents of X by Y

/ divide, x/y, divides the contents of X by Y
∧ raise to the power, x∧y, raises X to the power of Y

> greater than, x>y, takes the value 1 if X exceeds Y, and 0 otherwise

< less than, x<y, takes the value 1 if Y exceeds X, and 0 otherwise

= equal to, x=y, takes the value 1 if X and Y are equal, and 0 otherwise

<> not equal to, x<>y, takes the value 1 if X and Y are not equal, and 0 if they are equal

<= less than or equal to, x<=y, takes the value 1 if X does not exceed Y, and 0 otherwise

>= greater than or equal to, x>=y, takes the value 1 if Y does not exceed X, and 0 otherwise

and logical and, x and y, takes the value 1 if both X and Y are nonzero, and 0 otherwise

or logical or, x or y, takes the value 1 if either X or Y is nonzero, and 0 otherwise

1.3.2 Basic Mathematical Functions

The following functions perform basic mathematical operations. When applied to a
series, they return a value for every observation in the current sample. When applied
to a matrix object, they return a value for every element of the matrix object.

Table 1.2: Mathematical Functions

Function Function Description

@abs(x) absolute value @abs(-3)=3

@ceiling(x) smallest integer not less than X, @ceiling(2.34)=3

@exp(x) exponential, @exp(1)=2.71813

@floor(x) largest integer not greater than X, @floor(1.23)=1

@iff(s,x,y) returns X if condition S is true; otherwise returns Y

@inv(x) reciprocal, @inv(2)=0.5 (For series or scalars only)

@log(x) natural logarithm, @log(2)=0.693...

@log10(x) base-10 logarithm

@logx(x,b) base-b logarithm

@nan(x,y) returns X if X<> NA, and Y if X=NA

@round(x) rounds to the nearest integer @round(-97.5)=-98, @round(3.5)=4

@sqrt(x) square root, @sqrt(9)=3

Time Series Functions The following functions facilitate working with time
series data.

1.3.3 Statistical functions

These functions compute descriptive statistics for a specified sample, excluding miss-
ing values if necessary. The default sample is the current workfile sample. If you
are performing these computations on a series and placing the results into a series,
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Table 1.3: Time Series Functions

Function Function Description

(-k) k-lag operator

(+k) k-lead operator

d(x) first difference

d(x,n) n-th order difference

d(x,n,s) n-th order difference with a seasonal difference at S

dlog(x) first difference of the logarithm

dlog(x,n) n-th order difference of the logarithm

dlog(x,n,s) n-th order difference of the logarithm with a seasonal difference at S

you can specify a sample as the last argument of the descriptive statistic function,
either as a string (in double quotes) or using the name of a sample object.

Statistical Functions

Function Function Description

@cor(x,y[,s]) correlation between X and Y

@cov(x,y[,s]) covariance between X and Y

@inner(x,y[,s]) inner product of X and Y

@obs(x[,s]) number of non-missing observations for X in the current sample

@nas(x[,s]) number of missing observations for X in the current sample

@mean(x[,s]) average of the values in X

@median(x[,s]) computes the median of the X

@min(x[,s]) minimum of the values in X

@max(x[,s]) maximum of the values in X

@quantile(x,q[,s]) q-th quantile of the series X

@ranks(x[,o,t,s])
rank the ranking of each observation in X. The order of ranking is set using o: "a" (ascending -
default) or "d" (descending). Ties are broken according to the setting of t: "i" (ignore), “f” (first),
"l" (last), "a" (average - default), "r" randomize

@stdev(x[,s]) standard deviation of the values in X

@var(x[,s]) variance of the values in X

@skew(x[,s]) skewness of values in X

@kurt(x[,s]) kurtosis of values in X

@sum(x[,s]) sum of the values in X

@prod(x[,s]) product of the values in X

@sumsq(x[,s]) sum of the squares of the values in X

@cumsum(x[,s]) sum of the values in X from the start of the sample to the current observation

@cumprod(x[,s]) product of the values in X from the start of the sample to the current observation

@cummean(x[,s]) mean of the values in X from the start of the sample to the current observation

@cumstdev(x[,s]) standard deviation of the values in X from the start of the sample to the current observation

@cumvar(x[,s]) variance of the values in X from the start of the sample to the current observation

@cumsumsq(x[,s]) sum-of-squares of the values in X from the start of the sample to the current observation

@movsum(x,n) n-period backward moving sum of X for the current and previous n-1 observations

@movav(x,n) n-period backward moving average of X for the current and previous n-1 observations

@movstdev(x,n) n-period backward moving standard deviation of X for the current and previous n-1 observations

@movvar(x,n) n-period backward moving variance of X for the current and previous n-1 observations

@movcov(x,y,n) n-period backwards moving covariance between X and Y of the current and previous n-1 observations

@movcor(x,y,n) n-period backwards moving correlation between X and Y of the current and previous n-1 observations

@movsumsq(x,n) n-period backwards sum-of-squares of X for the current and previous observations
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1.3.4 Statistical Distribution Functions

The following set of functions gives you a possibility to compute and use within your
analysis values of density functions, cumulative distribution, quantile functions, and
random number generators for a variety of statistical distributions.

Table 1.4: Statistical Distribution Functions

This tables provides cumulative, density, quantile functions and the random number generator functions respectively for
the following distributions
Distribution Function Description

Beta β(a, b) @cbeta(x,a,b), @dbeta(x,a,b), @qbeta(p,a,b), @rbeta(a,b)

Binomial B(n, p) @cbinom(x,n,p), @dbinom(x,n,p), @qbinom(s,n,p), @rbinom(n,p)

Chi-square χ2(v) @cchisq(x,v), @dchisq(x,v), @qchisq(p,v), @rchisq(v)

Exponential E(m) @cexp(x,m), @dexp(x,m), @qexp(p,m), @rexp(m)

F-distribution F (v1, v2) @cfdist(x,v1,v2), @dfdist(x,v1,v2), @qfdist(p,v1,v2), @rfdist(v1,v1)

Gamma Γ(b, r) @cgamma(x,b,r), @dgamma(x,b,r), @qgamma(p,b,r), @rgamma(b,r)

Laplace @claplace(x), @dlaplace(x), @qlaplace(x), @rlaplace

Log-normal LN(m, s) @clognorm(x,m,s), @dlognorm(x,m,s), @qlognorm(p,m,s), @rlognorm(m,s)

Negative Binomial NB(n, p) @cnegbin(x,n,p), @dnegbin(x,n,p), @qnegbin(s,n,p), @rnegbin(n,p)

Normal N(0, 1) @cnorm(x), @dnorm(x), @qnorm(p), @rnorm, nrnd

Poisson P (m) @cpoisson(x,m), @dpoisson(x,m), @qpoisson(p,m), @rpoisson(m)

Pareto @cpareto(x,k,a), @dpareto(x,k,a), @qpareto(p,k,a), @rpareto(k,a)

Student t-distribution t(v) @ctdist(x,v), @dtdist(x,v), @qtdist(p,v), @rtdist(v)

Uniform U(a, b) @cunif(x,a,b), @dunif(x,a,b), @qunif(p,a,b), @runif(a,b), rnd

Weibull W (m, a) @cweib(x,m,a), @dweib(x,m,a), @qweib(p,m,a), @rweib(m,a)
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1.4 Programming in Eviews

On addition to the interactive part of the EViews, where you use the menu com-
mands, windows and graphical interface, you can use programming language to
perform your analysis. There are two ways of using the EViews batch language
– either enter and edit commands in the command window, or create programs.
A program is simply a text file containing EViews commands. Each command in
the program will be executed in the order that it appears in the program. Using
programs allows you to use looping, conditioning and subroutine processing.

In order to create a program file in EViews, select File/New/Program from
the main menu. EViews will open an untitled program window where you can enter
your commands. You can save the program by clicking on the Save or Save As
button. EViews will add the extension ".PRG" to the name you provide.

To load a program previously saved on disk, click on File/Open/Program,
navigate to the appropriate directory, and click on the desired name. Alternatively,
from the command line, you may type open followed by the full program name,
including the file extension ".prg". If necessary, include the full path to the file.
The entire name should be enclosed in quotations if necessary.

A program consists of a one or more lines of text. Since each line of a program
corresponds to a single EViews command, simply enter the text for each command
and terminate the line by pressing the Enter key.

There are several ways to execute a program. The easiest method is to execute
your program by pushing the Run button on a program window. The Run dialog
opens, where you can enter the program name and supply arguments. You may use
the radio buttons to choose between Verbose and Quiet modes. In verbose mode,
EViews sends messages to the status line and continuously updates the workfile
window as objects are created and deleted. Quiet mode suppresses these updates,
reducing the time spent writing to the screen.

By default, when EViews encounters an error, it will immediately terminate
the program and display a message. If you enter a number into the Maximum errors
before halting field, EViews will continue to execute the program until the maximum
number of errors is reached (unless there is a serious error occurred).

You may also execute a program by entering the run command, followed by
the name of the program file:

run mysp500 or run c:\eviews\myprog

Simple Programs
The simplest program is just a list of commands. Execution of the program

is equivalent to typing the commands one by one into the command window. En-
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tering commands in the program file has the advantage that you can save the set of
commands for later use, and execute the program repeatedly, making minor mod-
ifications each time. Let us look at a simple example. Create a new program by
typing program MYPROG in the command window. In the program window that
opens for MYPROG, we are going to enter the commands to create a workfile, run
a regression, compute residuals and a forecast, make a plot of the forecast, and save
the results.

Figure 1.4: Program Window

1.4.1 Program Variables

Control variables are variables that you can use in place of numerical values in
your EViews programs. Once a control variable is assigned a value, you can use
it anywhere in a program that you would normally use a number. The name of a
control variable starts with an "!" mark. After the "!", the name should be a legal
EViews name of 15 characters or fewer. Examples of control variable names are: !q
!1 !time

You do not need to declare control variables before your refer to them, though
you must assign them a value before use. Control variables are assigned in the usual
way, with the control variable name on the left of an "=" sign and a numerical value
or expression on the right. For example:

!x = 7

!time = 12

Once assigned a value, a control variable may appear in an expression. For example:

!time = !time + 1

23
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series returns = log(price) - log(price(-!q))

smpl 1950q1+!i 1960q4+!i

Control variables are automatically deleted after a program finishes. As a result,
control variables are not saved when you save the workfile. You can save the values
of control variables by creating new EViews objects which contain the values of the
control variable. For example, the following command:

scalar numberx=!q

saves the numeric value assigned to the control variables !q into a scalar object
numberx.

A string variable is a variable whose value is a string of text. A string
expression or string is text enclosed in double quotes:

"cumulative returns"

"3.14159"

"ar(1) ar(2) ma(1) ma(2)"
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String variables, which only exist during the time that your program is executing,
have names that begin with a "%" symbol. The following lines assign values to
string variables:

%mtvar = "cumulative returns"

%armas = "ar(1) ar(2) ma(1) ma(2)"

%pi = " 3.14159"

You may use strings variables to build up command text, variable names, or other
string values. EViews provides a number of operators and functions for manipulating
strings. Once assigned a value, a string variable may appear in any expression
in place of the underlying string. Here is a quick example where we use string
operations to concatenate the contents of three string variables.

%str1 = "USD/GBP "

%str2 = "cumulative returns"

%st3 = %st1 + %st2

In this example %ST3 is set to the value "USD/GBP cumulative returns". String
variables can be assigned to the table object for the output:

table1(1,1) = %st3

which is equivalent to entering the command

table(1,1) = "USD/GBP cumulative returns"

You can use a string variable to refer to a command, or a name, or portion of names
indirectly. Suppose, for example, that we assign the string variable

%x = "usdgbp"

If you enclose a string variable in curly braces ("" and "") EViews will replace
the expression with the name or name fragment given by the string value. In this
context we refer to the expression "%x" as a replacement variable since the string
variable %x is replaced in the command line by the name or names of objects to
which the string refers. For example, the program line

plot %x

would be interpreted by EViews as

plot usdgbp

Changing the contents of %x to "usdjpy" changes the interpretation of the original
line to
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plot usdjpy

since the replacement variable uses the name obtained from the new %x.
Program arguments are special string variables that are passed to your

program when you run the program. Arguments allow you to change the value of
string variables every time you run the program. You may use them in any context
where a string variable is appropriate. Program arguments will be named %0, %1,
%2, and so on. When you run a program that takes arguments, you will also supply
the values for the arguments. If you use the Run button or File/Run, you will
see a dialog box where you can type in the values of the arguments. If you use
the run command, you should list the arguments consecutively after the name of
the program. For example, suppose we have a program named RETS containing a
command

series returns=log(%0)-log(%0(-1))

To run RETS from the command line with

%0 = ”USDGBP”, enter

run rets usdgbp

This program creates a time series returns using the usdgbp exchange rate defined
or loaded previously in your workfile.

Alternatively, you can run this program by clicking on the Run button on
the program window, or selecting File/Run. In the Run Program dialog box that
appears, type the name of the program in the Program name or path field and enter
the values of the arguments in the Program arguments field. Any arguments in your
program that are not initialized in the run command or Run Program dialog are
treated as blanks.

IF Statements
There are many situations where you want to execute commands only if some

condition is satisfied. EViews uses IF and ENDIF, or IF, ELSE, and ENDIF state-
ments to indicate the condition to be met and the commands to be executed. An
IF statement starts with the if keyword, followed by an expression for the condi-
tion, and then the word then. You may use AND/OR statements in the condition,
using parentheses to group parts of the statement as necessary. If the expression is
TRUE, all of the commands until the matching endif are executed. If the expression
is FALSE, all of these commands are skipped. For example:

if !q = 3 then series returns = dlog(USDGBP) endif

if !time > 100 and !time < 200 then !age = 1/!time else !age = 0 endif
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The FOR Loop
The for loop allows you to repeat a set of commands for different values of

a control or string variable. The FOR loop begins with a for statement and ends
with a next statement. Any number of commands may appear between these two
statements. The syntax of the FOR statement differs depending upon whether it
uses control variables or string variables.

FOR Loops with Control Variables To repeat statements for different
values of a control variable, the for statement involves setting a control variable
equal to an initial value, followed by the word to, and then an ending value. After
the ending value you may include the word step followed by a number indicating by
how much to change the control variable each time the loop is executed. If you do
not include step, the step is assumed to be 1. For example,

for !j=1 to 10

vector(10) weights(!j)=returns(!j)/stddev(!j)

next

The for loop is executed first for the initial value, unless that value is already beyond
the terminal value. After it is executed for the initial value, the control variable is
incremented by step and EViews compares the variable to the limit. If the limit is
passed, execution stops.
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One important use of FOR loops with control variables is to change the sample.
If you add a control variable to a date in a smpl command, you will get a new date
as many observations forward as the current value of the control variable. Here is a
FOR loop that gradually increases the size of the sample and computes an average
returns:

for !i=1 to 60

smpl 1973m1 1974m1+!i

scalar avret!i = @mean(returns) next

One other important case where you will use loops with control variables is in
accessing elements of a series or matrix objects. For example,

!rows=@rows(vec1)

vector cumsum1=vec1

for !i=2 to !rows cumsum1(!i)=cumsum1(!i-1)+vec1(!i) next

computes the cumulative sum of the elements in the vector vec1 and saves it in the
vector cusum1. To access an individual element of a series, you will need to use the
@elem function and @otod to get the desired element

for !i=2 to !rows

cumsum1(!i) = @elem(ser1, @otod(!i)) next

The @otod function returns the date associated with the observation index (count-
ing from the beginning of the workfile), and the @elem function extracts the series
element associated with a given date.

You can nest for loops to contain loops within loops. The entire inner for loop is
executed for each successive value of the outer for loop. For example:

matrix(25,10) xx

for !i=1 to 25

for !j=1 to 10

xx(!i,!j)=(!i-1)*10+!j

next

next

FOR Loops with String Variables When you wish to repeat statements for
different values of a string variable, you can use the FOR loop to let a string variable
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range over a list of string values. Give the name of the string variable followed by
the list of values. For example,

for %y usdgbp usdjpy

series %yrets = dlog(%y) next

creates the returns series of two exchange rates

series usdgbpret = dlog(usdgbp)

series usdjpyret = dlog(usdjpy)

You can put multiple string variables in the same for statement – EViews will
process the strings in sets.

For example:

for %y %z usdgbp usdjpy nzdusd audusd

equation e%y.ls %y c %z

next

In this case, the elements of the list are taken in groups of three. The loop is
executed two times for the different sample pairs:

equation eusdgbp.ls usdgbp c usdjpy

equation eusdgbp.ls nzdusd c audusd

The WHILE Loop In some cases, we wish to repeat a series of commands
several times, but only while one or more conditions are satisfied. Like the FOR loop,
the WHILE loop allows you to repeat commands, but the WHILE loop provides
greater flexibility in specifying the required conditions. The WHILE loop begins
with a while statement and ends with a wend statement. Any number of commands
may appear between the two statements. WHILE loops can be nested. The WHILE
statement consists of the while keyword followed by an expression involving a control
variable. The expression should have a logical (true or false) value or a numerical
value. In the latter case, zero is considered false and any non-zero value is considered
true. If the expression is true, the subsequent statements, up to the matching wend,
will be executed, and then the procedure is repeated. If the condition is false,
EViews will skip the following commands and continue on with the rest of the
program following the wend statement. For example:

!val = 1

!a = 1
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while !val<10000 and !a<10

smpl 1950q1 1970q1+!a

series inc!val = income/!val

!val = !val*10 !a = !a+1 wend

Unlike a FOR statement, the WHILE statement does not update the control vari-
able used in the test condition. You need to explicitly include a statement inside
the loop that changes the control variable, or your loop will never terminate. Use
the F1 key to break out of a program which is in an infinite loop.

Subroutines A subroutine is a collection of commands that allows you to
perform a given task repeatedly, with minor variations, without actually duplicating
the commands. You can also use subroutines from one program to perform the same
task in other programs. A subroutine starts with the keyword subroutine followed
by the name of the routine and any arguments, and ends with the keyword endsub.
Any number of commands can appear in between. The simplest type of subroutine
has the following form:
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subroutine rets

series returns = dlog(price)

endsub

where the keyword subroutine is followed only by the name of the routine. This
subroutine has no arguments so that it will behave identically every time it is used.
It creates the log-return time series from the existing price levels price.

You can use the return command to force EViews to exit from the subroutine at
any time. A common use of return is to exit from the subroutine if an unanticipated
error is detected.

To define a subroutine with arguments, you start with subroutine, followed by
the subroutine name, a left parenthesis, the arguments separated by commas, and
finally a right parenthesis. Each argument is specified by listing a type of EViews
object, followed by the name of the argument. Control variables may be passed by
the scalar type and string variables by the string type. For example:

subroutine rets1(series r, series p, scalar lg)

series r = dlog(p, lg)

endsub

This subroutine generalizes the example subroutine RETS. Calling RETS1 will fill
the series given by the argument R with the log-returns of frequency LG from the
series P. So if you set R equal to RETURNS, P equal to PRICES, and LG equal to
1, you will get the equivalent of the subroutine RETS above.

Subroutine call Your subroutine definitions should be placed, in any order, at
the beginning of your program. The subroutines are executed by the program using
a call statement. For example:

subroutine rets

series returns = dlog(price)

endsub

’ program execution

load mywork

fetch z

call rets

Execution of this program begins with the load statement. The subroutine defini-
tion is executed only at the last line when it is "called". Subroutines may call each
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other, or even call themselves. Alternatively, you may wish to place frequently used
subroutines in a separate program file and use an include statement to insert them
at the beginning of your program. If, for example, you put the subroutine lines in
the file RETURNS.PRG, then you may put the line:

include returns

at the top of any other program that needs to call RETS or RETS1. You can use
the subroutines in these programs as though they were built-in parts of the EViews
programming language.

If a subroutine has got arguments, it is executed by using the call keyword call
which follows by the name of the subroutine and a list of any argument values you
wish to use, enclosed in parentheses and separated by commas. All arguments must
be provided in the same order as in the declaration statement. For example:

include rets1

load mywork

fetch z price

series returns

call rets1(returns, price, 3)

Subroutines work with variables and objects that are either global or local. Global
variables refer either to objects which exist in the workfile when the subroutine is
called, or to the objects that are created in the workfile by a subroutine. Global
variables remain in the workfile when the subroutine finishes. A local variable is one
that has meaning only within the subroutine. Local variables are deleted from the
workfile once a subroutine finishes.

Global objects may be used and updated directly from within the subroutine.
If, however, a global object has the same name as an argument in a subroutine, the
variable name will refer to the argument and not to the global variable.

Local Subroutines All objects created by a global subroutine will be global
and will remain in the workfile upon exit from the subroutine. If you include the
word local in the definition of the subroutine, you create a local subroutine. All
objects created by a local subroutine will be local and will be removed from the
workfile upon exit from the subroutine. Local subroutines are most useful when
you wish to write a subroutine which creates many temporary objects that you do
not want to keep. You may not use or update global objects directly from within
the subroutine. The global objects corresponding to arguments may be used and
updated by referring to the arguments. All other objects in the subroutine are local
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and will be deleted when the subroutine finishes. If you want to save results from a
local subroutine, you have to explicitly include them in the arguments.

Local subroutines can call global subroutines and vice versa. The global sub-
routine will only have access to the global variables, and the local subroutine will
only have access to the local variables, unless information is passed between the
routines via arguments.
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Chapter 2

Regression Model

2.1 Introduction

This chapter starts with the introduction to a linear regression analysis, estimation
and inference methods. Regression analysis is widely used tool in financial econo-
metrics. They are used to describe and evaluate the relationship between financial
variables, perform forecasting tasks.

This chapter provides only a short and brief description of main tools used in
the regression analysis. More detailed discussion and deeper theoretical background
can be found in Greene (2000), Hamilton (1994), Hayashi (2000), Verbeek (2008),
Mills (1999), Zivot and Wang (2006).

2.2 Linear Regression Model

Consider the linear regression model

Yi = β1 + β2X2i + ...+ βkXki + ui = X′
iβ + ui, i = 1, ..., n, (2.2.1)

where Xi = [1, X2i, ..., Xki]
′ is a k×1 vector of explanatory variables, β = (β1, ..., βk)

′

is a k × 1 vector of coefficients, and ui is a random error term. In matrix form the
model is expressed as

Y = Xβ + u, (2.2.2)

where Y and β are n× 1 vectors and X is a n× k matrix.
The standard assumptions of the linear regression model are:

1. the linear model (2.2.2) is correctly specified;

2. the regressors Xi are uncorrelated with the error term u: E [Xiui] = 0 for all
i = 1, ..., n;

34

4�E�Ƈ�*�V��Kp�����


Download free eBooks at bookboon.com

Financial Econometrics

 
35 

Regression Model

3. E [XiX
′
i] = σXX is of full rank k;

4. ui are independently identically distributed (iid) with mean zero and constant
variance σ2.

Ordinary Least Squares (OLS) estimation is based on minimizing the residual
sum of squares RSS. The fitted model is

Yi = X′
iβ̂ + ûi, i = 1, ..., n,

where
β̂ = (X′X)−1X′Y

and ûi = Yi − Ŷi = Yi −X′
iβ̂. An unbiased estimator of the regression variance is

σ̂2 = û′û
n−k

.
Under the assumptions described above, the OLS estimates β̂ are consistent

and asymptotically normally distributed. A consistent estimator of the asymptotic
variance of the parameters estimator is

var
[
β̂
]
= σ̂2 (X′X) . (2.2.3)

Estimated standard errors se
[
β̂i

]
for individual parameter estimators β̂i are given

by the square root of the diagonal elements of (2.2.3).
Goodness of fit is summarized by the R2 of the regression R2 = 1− RSS

TSS
, where

TSS =
n∑

i=1

(
Yi − Ȳ

)2. The coefficient R2 measures the percentage of the variation of

the dependent variable Y that is explained by the variation of the regressors X. The
usual R2 has the undesirable feature of never decreasing as more variables are added
to the regression, even if the extra variables are irrelevant. A common way to solve
the problem is to adjust R2 for degrees of freedom; this gives R̄2 = 1− (1−R2)n−1

n−k
.

The adjusted R̄2 may decrease with the addition of variables with low explanatory
power.

2.2.1 Hypothesis testing

Suppose that we need to test the null hypothesis

H0 : βj = β0
j .

The OLS test statistic for testing this hypothesis (also called t-statistic) is

t =
β̂j − β0

j

se
[
β̂j

] ,

35
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which is asymptotically distributed N(0, 1) under the null hypothesis. With the
additional assumption of iid Gaussian error term, β̂j is normally distributed and the
t-statistic follows Student’s t distribution with n− k degrees of freedom.

More general linear restrictions hypotheses of the form H0 : Rβ = r, where R

is a fixed m× k matrix of rank m and r is a m× 1 vector, are tested using the Wald
statistic

F =

(
Rβ̂ − r

)′ (
R (X′X)−1 R′) (Rβ̂ − r

)

var [σ̂2]
.

Under the null, the Wald statistic is asymptotically distributed χ2
m. Under the

Gaussian assumptions of residuals, F/m ∼ Fm,n−k.
The statistical significance of all of the regressors excluding the intercept is

captured by the F-statistic

F =
ESS/(k − 1)

RSS/n− k

R2/k

(1−R2)/(n− k)
,

which is distributed Fk−1,n−k under the null hypothesis that all slope coefficients are
zero.
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2.2.2 Residual diagnostics

If the classical assumptions of the linear regression model do not hold it may lead
to inconsistent, inefficient estimates. There are several residual diagnostic statistics
are usually reported along with the regression results to check the validity of the
model predictions.

Two common problems with the regression assumptions are heteroscedasticity
and autocorrelation of the error terms. Heteroscedasticity means that variances of
error terms are not constant from observation to observation. Autocorrelation means
presence of series correlation between error terms. In both cases, the OLS estimator
is unbiased and consistent but not efficient anymore. Moreover, the standard formula
for computing the variance of the parameters estimators (2.2.3) is not valid any
more which may lead to wrong conclusions. If the variance-covariance matrix of
error terms var [u] = σ2Ω then

var
[
β̂
]
= σ̂2 (X′X)X′ΩX (X′X) .

One way of obtaining an efficient estimate of the regression parameters is to use
Generalized Least Squares (GLS) method. The GLS estimator is given by β̂GLS =

(X′Ω−1X)−1X′Ω−1Y with variance var
[
β̂
]
= σ̂2 (X′Ω−1X).

If the matrix Ω is not known, one can use White’s heteroscedasticity consistent
estimator of standard errors of the OLS estimators. The matrix

ˆvar
[
β̂
]
=

(
n∑

i=1

XiX
′
i

)−1 ( n∑
i=1

û2
iXiX

′
i

)(
n∑

i=1

XiX
′
i

)−1

can be used as an estimate of the true variance of the OLS estimator.
There are several testing procedures to detect heteroscedasticity. The White

test suggest to estimate an auxiliary regression of the squared OLS residuals on
a constant and all regressors, their squares and cross products. Under the null
hypothesis of homoscedasticity nR2 statistic is asymptotically distributed χ2(q),
where q is the number of variables in the auxiliary regression minus one. If the
value of statistic is large, the null hypothesis of homoscedasticity in residuals is
rejected.

Another test for heteroscedasticity is Breusch-Godfrey-Pagan test. It suggests
to regress squared residuals from the initial regression scaled by σ̃2 =

∑
û2
i /n on a

set of known variables Zt (they also could be regressors but not restricted to). Under
the null of homoscedasticity, the scaled 1

2
ESS from the auxiliary regression follows

asymptotically χ2(p− 1) distribution, where p is a number of auxiliary variables Zt.

37

4�E�Ƈ�*�V��Kp�����


Download free eBooks at bookboon.com

Financial Econometrics

 
38 

Regression Model

The most common diagnostic statistics for presence of autocorrelation based
on the estimated residuals ûi is the Durbin-Watson statistic DW . It is defined as

DW =

n∑
i=2

(ûi − ûi−1)
2

n∑
i=1

û2
i

(2.2.4)

For large n the Durbin-Watson statistics can be approximated DW = 2 (1− ρ̂),
where ρ̂ is the estimated correlation between and ûi and ûi−1. Thus, the range of
values of DW is from 0 to 4. Values of DW around 2 indicate no serial correlation
in the error terms, values less than 2 suggest positive serial correlation, and values
greater than 2 suggest negative serial correlation.

Exact critical values for a general case cannot be tabulated; however, Durbin
and Watson (1950) established upper and lower bounds (dU and dL respectively) for
the critical values. The testing procedure is as follows:

• if DW < dL we reject the null hypothesis of no autocorrelation in favour of
positive first-order autocorrelation;

• if DW > dU we do not reject the null hypothesis

The bounds for critical values in the case of negative autocorrelation alternative
are 4− dU and 4− dL. The values of the bounds can be found in Savin and White
(1977); some of the are tabulated in Table 2.1.

Table 2.1: Lower and Upper bounds for 5% critical values of the Durbin-Watson
test

Number of regressors
n k = 3 k = 5 k = 7 k = 9

dL dU dL dU dL dU dL dU

25 1.206 1.550 1.038 1.767 0.868 2.012 0.702 2.280

50 1.462 1.628 1.378 1.721 1.291 1.822 1.201 1.930

75 1.571 1.680 1.515 1.739 1.458 1.801 1.399 1.867

100 1.634 1.715 1.592 1.758 1.550 1.803 1.506 1.850

200 1.748 1.789 1.728 1.810 1.707 1.831 1.686 1.852

The Breusch-Godfrey test for autocorrelation considers the regression of the
OLS residuals ûi upon its lad ûi−1. This auxiliary regression produces an estimate
for the first-order autocorrelation coefficient ρ̂ and provides a standard error to this
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estimate. In general case the test is easily extended to higher orders of autocorrela-
tion by including additional lags of the residual. Testing the null hypothesis of no
autocorrelation is equivalent to testing the significance of the auxiliary regression.

Another common diagnostic for serial correlation is the Ljung-Box modified
Q statistic. The Q-statistic at lag q is a test statistic for the null hypothesis of no
autocorrelation up to order q and is computed as:

Q = n(n+ 2)

q∑
j=1

ρ̂2j
n− j

∼ χ2
q,

where ρ̂j is the j-th autocorrelation.
The most often used diagnostic statistic to test for normality of the residuals

is the Jarque-Bera test statistics. It measures the difference of the skewness and
kurtosis of the series with those from the normal distribution. The statistic is
computed as:

JB =
n

6

(
S2 +

(K − 3)2

4

)
∼ χ2

2,

where S is the skewness, and K is the kurtosis. We reject the null hypothesis of
normality if a Jarque-Bera statistic exceeds the corresponding critical value.
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2.2.3 Example: Factor Model

Fama and French (1993) suggested a three-factor model to explain the expected
stock return premium required by investors. The three factors are

• The excess return of the market portfolio (Rmt˘rft);

• The difference between the expected returns on portfolios of small and large
firms (SMBt); the small and large stock portfolios include all stocks with
market capitalization in the lower and upper deciles of the sample median;

• The difference between the expected returns on portfolios of stocks with high
and low book-to-market ratios (HMLt).

Thus, the expected excess return of stock i can be represented as

Rit − rft = β0 + β1(Rit − rft) + β2SMBt + β3HMLt + ut (2.2.5)

As an example we consider monthly returns on IBM stocks for the period Jan-
uary 1990 to September 2007. This data with Fama-French factors is available as
IBM1.xls. Variables in the data sets are

• ibm – monthly returns on IBM stocks;

• Mkt – monthly returns on the market index;

• rf – monthly rate of the risk-free rate;

• SMB and HML – Fama-French size and book-to-market risk factors, respec-
tively.

In order to estimate the relation (2.2.5) we have to construct excess returns
on IBM stocks and market portfolio. In EViews they can be created using

series ibm_ex=ibm-rf

series Mkt_ex=Mkt-rf

There are two ways of estimating linear regression in EViews. The first one, and
more powerful, is through the main menu Quick/Estimate Equation. In the
Equation specification window type the equation to be estimated. Using arith-
metic operation we can specify the equation as

ibm_ex=C(1)+C(2)*Mkt_ex+C(3)*SMB+C(4)*HML

Note that coefficients of the equation should always be in the form C(1), C(2), etc.
However, if the model is linear, it is more common to omit operation and coefficients
signs and write

40

4�E�Ƈ�*�V��Kp�����


Download free eBooks at bookboon.com

Financial Econometrics

 
41 

Regression Model

ibm_ex C Mkt_ex SMB HML

Note, that in the latter specification the dependent variable should be on the first
place. The term C indicates that we are estimating the model with intercept; if it
is omitted, the regression will be estimated without the intercept term.

Figure 2.1: Regression estimation dialog window

In the Estimated setting window make sure LS – Least Squares (NLS
and ARMA) is chosen. The Sample window allows to estimate the model for
different subsamples. This option subsample is specified in the same way as in the
Sample object. Press OK and the regression output appears on the screen.

Another way of estimating a linear regression model is through the command
line. To create an equation object use the declaration command equation following
by a name of the object and the estimation type command (ls in our case stands
for least squares) separated by the dot. Finally one should specify the model in the
same way as above

equation ibmeq.ls ibm_ex C Mkt_ex SMB HML

Estimation Output The regression estimation output looks as follows
The estimated coefficients of the model are given in the column Coefficients

(the coefficient in front of C denote estimate of the intercept term). Slope coefficients
denote the sensitivities of the returns on the stock to the three factors and show
the impact of systematic factors on returns. In column t-statistic, the value of
the test statistic is provided to test that the hypothesis βi = 0. All the coefficients
are highly statistically significant as indicated by low p-values (column Prob). The
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Figure 2.2: Regression estimation output

overall significance of the regression is reflected in the value of F-statistic which
is high enough to reject the null hypothesis of insignificance of all slope coefficients
(p-value is given in Prob (F-statistic).
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The proportion of the variance Rit explained by the variability in the market
index is the usual regression R2 statistic and 1−R2 is the proportion of the variability
of Rit that is due to firm specific factors. The proportion of market specific risk is
R2 = 0.37 and the proportion of firm specific risk is 1−R2 = 0.63.

By estimating the regression model, EViews produces an object Equation,
which can be saved and used later on (press Name button in the top of the
equation window). As each object in EViews, Equation can be represented in
different views. View/Representation view contains the equation specification
of the model, View/Estimation Output provides the familiar model output.
View/Actual, Fitted, Residuals creates various plots of the estimated residual
series, as well as fitted values of the dependent variable. Residual series is automat-
ically stored in the series object resid which created by EViews in each workfile.
Note, that resid contains residuals of the last estimated model and will be lost once
the model is reestimated. Thus, residual series has to be saved for further use, if
necessary. This can done by copying the residual series into a new object

series resid_ibm=resid

Now, the residuals from the CAPM regression for IBM stock returns are stored in
the new series object resid_ibm.

Besides the standard errors of the coefficient estimators, given in the out-
put window, one can retrieve the whole variance-covariance matrix by clicking on
View/Covariance Matrix.

Residuals Diagnostic Before drawing any conclusions from the estimated
regression, it is necessary to perform residual diagnostic to make sure that the
assumptions of the classic linear regression model are satisfied. This can be done in
the section View/Residual Tests. Correlogram - Q-statistic provides values
of the Box-Ljung statistics to test the significance of of autocorrelations of residuals.
The correlogram of the residuals from the factor model is given in Figure ??.

Low p-values indicate absence of serial autocorrelations up to lag 10. Another
way to test for series correlation is to perform Breusch-Godfrey Test – in EViews
this can be done through Serial Correlation LM Test. In the upper panel of
the Breusch-Godfrey test output there are two versions of the test statistic which
are asymptotically equivalent. Their p-values both confirm the absence of series
autocorrelation up to the second order. The no-autocorrelation null hypothesis is
also not rejected by the Durbin-Watson test; test statistic is given in the regression
output is equal to 1.959 which is in the acceptance region.

The option Histogram - Normality Test builds the histogram of the resid-
uals, their descriptive statistics as well as the value of the Jarque-Bera statistic.
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Figure 2.3: Correlogram of residuals from the factor model for IBM stock returns

Notice that the Jarque-Bera statistic indicates that the residuals from the CAPM
regression are not normally distributed. Note that even the residuals are not nor-
mally distributed, the inference is still correct asymptotically.

EViews also provides a number of test to test the hypothesis of homoscedas-
ticity on the regression. Under the option Heteroscedasticity Tests... one can
choose among Breush-Godfrey-Pagan, Harvey, Glejser, ARCH and White tests.

Three of them – Breush-Godfrey-Pagan, Glejser and White tests reject the
hypothesis of homoscedasticity while Harvey and ARCH test do not reject the null.
The reason for using several tests is that there are many different possible alterna-
tives for the form of heteroscedasticity.

All the tests for autocorrelations and heteroscedasticity can be performed
through the command line as well.

For the Breusch-Godfrey test for serial correlation we should specify the name
of the regression equation we need to test and then the command auto(lags) where
lags corresponds to the order of autocorrelation being tested. For example

ibm_eq.auto(2)

will perform the test for second order autocorrelation in the factor model for IBM
stock.

To perform heteroscedasticity tests we should specify the equation name fol-
lowed by the command hettest(options). In the options field we can specify the test
being performed in the following way: type=keyword, where keyword is either "BPG"
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(Breusch-Pagan-Godfrey - default), "Harvey", "Glejser", "ARCH", or "White". In-
clusion of the command c in the options will lead to inclusion of cross-product terms
in the auxiliary regression specification. Optionally, a list of variables may follow
the command to include them into auxiliary regression as well.

For example,

ibm_eq.hettest(type="White",c)

will perform the WHite’s test for heteroscedasticity for the ibm_eq equation.
Since the exact form of heteroscedasticity is not known, it is not clear how to

perform GLS estimator is this case. EViews allows to compute heteroskedasticity
consistent as well as heteroskedasticity and autocorrelation consistent coefficient co-
variance matrices. In order to compute them, click on Estimate button in the object
menu and choose the Options tab. Tick the box in front of Heteroscedasticity
consistent coefficient matrix to activate the option. Click OK to reestimate the
model.

Figure 2.4: Regression output with White’s heteroscedasticity adjusted standard
errors

All coefficients remain still statistically significant using White’s heteroscedas-
ticity consistent standard errors.

Stability tests Finally, we can test the model for coefficients stability and
structural breaks. In EViews this can be performed under the option Views/Stability
tests. With Ramsey RESET test for model misspecification we cannot reject the
null hypothesis of the correct specification (p-value 0.3754).

We start stability tests with the recursive residuals tests as they can help
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us to detect visually potential breakpoints. Click on Recursive Estimates (OLS
only) and choose Recursive residuals. EViews will produce the plot of recursively
estimated residuals from the model together with their confidence intervals.

Figure 2.5: Recursively estimated residuals and their confidence bounds
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Majority of the recursive residuals are within their confidence intervals however
there are several outliers spraying out their bounds. These are potential points
for the structural breaks in the models. The CUSUM test does not indicate any
potential breakpoints, however the CUSUM squared test suggests that there may
be some breaks in sixties and at the beginning of 2000.

Figure 2.6: CUSUM squared statistics and its confidence bounds

We can go further and test whether there is a structural break at the specified
dates using the Chow test. The p-value of the F-statistic for the Chow test is
0.3090 at the breakpoint January 1961 indicating no structural break at that date.
However, if the breakpoint is specified at January 2000, we reject the null hypothesis
of the parameters constancy at 1% significance level. Structural breaks may occur
in the model due to some misspecifications. For example, from January 2000 there
is one missing factor in the model which plays important role in explaining stock
returns. The breakpoint data also corresponds to the dot.com bubble period where
the classic factors model structure may change. In order to verify our hypothesis,
we can include dummy variable corresponding to the bubble period to eliminate the
effect from the model. To create the dummy which is equal to 1 for the period from
January 2000 to December 2001, we write

series dummy=0

smpl 2000M01 2001M12

series dummy=1
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smpl @all

Since structural breaks may occur in all the parameters, we include the dummy
variable interacting with all regressors. Thus, in the Estimate equation box we
have to specify a new model

ibm_ex C Mkt_ex SMB HML dummy*Mkt_ex dummy*SMB dummy*HML

As a result, the coefficient for interacting term with market portfolio returns and
SMB factor is insignificant, however the interacting term with HML factor is stati-
cally significant at 10% level.

Figure 2.7: Output of the regression estimation with dummy variables

Correcting of misspecification also helps to improve properties of residuals.
After introducing dummy variable all tests for heteroscedasticity indicate either no
heteroscedasticity or produce some marginally significant p-values.

Testing linear restrictions EViews makes it possible to test hypothesis on
the coefficient restrictions by means of Wald test. Consider testing the joint null
hypothesis β1 = 1 and β2 = β3. This hypothesis imposes two linear restrictions on
the parameter vector. In the View option of the object menu choose Coefficient
Tests/Wald – Coefficient Restrictions.... Type the restrictions to be tested in
the box. Note that coefficients of the model are denoted by C(1), C(2), etc. In order
to find out the exact notations of the parameters, go to View/Representation.
P-value of the Wald test statistic is higher than any reasonable significance levels so
we do not reject the null hypothesis of the validity of the restrictions.
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The Wald test can also be performed in the command line. One should first
specify the name of equation being tested followed by dot and command wald. Spec-
ifications of the restrictions follows separated by commas.

eq1.wald c(2)=0, c(3)=0

Predictions After having estimated the regression, often our aim is to con-
struct forecast of the dependent variable. EViews’ forecast function can be invoked
through Forecast option in the menu of the equation object. In the box Forecast
name type the name of the variable where the regression forecasts will be stored.
EViews will automatically create a new series object with the specified name and
plot the predicted series with two confidence region bounds.

Alternatively, one can view the forecast by double-click on the forecast variable.
In the menu option View choose Graph where the required graph type can be
generated.

In order to generate forecasts through the command line, use the command fit
followed by a name of a series variable where the forecast values should be stored

ibmeq.fit ibm_exf
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EViews also allows to generate standard errors of the forecasts along with the
predictions themselves. To do this, simply include a name of another variable at the
end of the line.

ibmeq.fit ibm_exf ibm_exfstd

2.2.4 Programming Example

Note that the factor sensitivities of stock (portfolio) returns represented by the
estimated coefficients vary through time. As the model is estimated for alternative
sample periods, the estimated coefficients will change. A useful analogy is the value
of a stock’s beta that varies through time based on the sample period data used to
estimate the security market line.

The estimated factor model (2.2.5) for IBM uses all of the data over the 57 year
period from January 1950 to September 2007. It is generally thought that coefficients
do not stay constant over such a long time period. To take into account this fact
while building returns forecast based on the factor model, we can perform rolling
window regression. We start with initializing necessary variables (e.g., number of
observation in the workfile, length of the window). For this purpose we make sure
that the current sample is set to the whole range of the data. Type the following
commands in a new program window:

smpl @all

scalar n=@obs(ibm_ex)

scalar window=60

Next, we create new object we will be using in the program – series of the forecasts
and an equation object.

series ibm_exf

equation e

In the next lines we specify a loop where we reset the current sample to the es-
timation window and roll it across the data range. For each of the subsamples we
estimate the factor model.

for !i=0 to n-window-1

smpl @first+!i @first+!i+window-1

e.ls ibm_ex c Mkt_ex SMB HML

Once the model is estimated we reset the sample to a subsample where we want
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to forecast returns. Since we build one-step-ahead forecast, our new subsample will
be just one observation ahead the estimation window.

smpl @first+!i+window @first+!i+window

We generate the forecast using the estimated model. To access the values of the
estimated parameters we use EViews function @coefs. In parentheses we specify the
order of the parameter – it corresponds to the order of respective variable in the
regression model. Note that @coefs contains the values of the last estimated model.
Once the equation is re-estimated, the new values of parameters are stored in @coefs.

ibm_exf=@coefs(1)+@coefs(2)*Mkt_ex+@coefs(3)*smb+@coefs(4)*hml

next

Just to tidy up the workfile we delete auxiliary variables window and n.

delete window n

The series ibm_exf contains the generated forecast from the rolling window model.
Similarly to the use of @coefs function, one can access other OLS statistics.

The specifications are given in Table 2.2.
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Table 2.2: Equation Data Members

Data Member Description

@aic Akaike information criterion

@coefcov(i,j) covariance of coefficient estimates βi and βj

@coefs(i) i-th coefficient value

@dw Durbin-Watson statistic

@f F-statistic

@hq Hannan-Quinn information criterion

@logl value of the log likelihood function

@meandep mean of the dependent variable

@ncoef number of estimated coefficients

@r2 R-squared statistic

@rbar2 adjusted R-squared statistic

@regobs number of observations in regression

@schwarz Schwarz information criterion

@sddep standard deviation of the dependent variable

@se standard error of the regression

@ssr sum of squared residuals

@stderrs(i) standard error for coefficient

@tstats(i) t-statistic value for coefficient

@coefcov matrix containing the coefficient covariance matrix

@coefs vector of coefficient values

@stderrs vector of standard errors for the coefficients

@tstats vector of t-statistic values for coefficients

2.3 Nonlinear Regression

In many cases the relation between variables can happen to be nonlinear. If such
model cannot be transformed into a linear one, we call such model intrinsically
nonlinear regression model.

We can represent such model in the following way

bfY = F (X, θ) + u,

where F is a non-linear function, where Xi = [1, X2i, ..., Xki]
′ is a k × 1 vector of

explanatory variables, and ui is a random error term.
The least squares estimation problem to minimize

S(θ) =
n∑

i−1

(Yi − F (Xi, θ)
2 (2.3.1)

becomes non-linear. The first order conditions are given by

∂S(θ)

∂θj
= −2

n∑
i−1

(Yi − F (Xi, θ))
∂F

∂θj
.
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This gives a set of non-linear normal equations in θ. The non-linear least squares
(NLS) estimator θ̂NLS is defined as the minimizing value of (2.3.1).

In EViews, the Nonlinear Least Squares method has the same implementation
as the OLS. The only difference os that the model in the Equation specification
box should be entered as a mathematical expression instead of a list of variables.
for example,

y=@exp(c(1)*x)+(c(2)*z+4)∧2

Interpretation of the estimation output, residual diagnostic and inference can be
performed in the same way as for the OLS regression.
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Chapter 3

Univariate Time Series: Linear
Models

3.1 Introduction

Time series is a sequence of numerical data in which observations are measured at a
particular instant of time. The frequency of observation can, for example, be annual,
quarterly, monthly, daily, etc. The main goal of time series analysis is to study the
dynamics of the data.

In this chapter we introduce basic time series models for estimation and fore-
casting of financial data. Further details about theory of time series analysis cab be
found in Hamilton (1994), Greene (2000), Enders (2004), Tsay (2002) and others.

3.2 Stationarity and Autocorrelations

3.2.1 Stationarity

A time series {Yt} is said to be strictly stationaryif for all integers i, j and all possible
integers k the multivariate distribution function of (Yi, Yi+1, ..., Yi+k−1) is identical
to (Yj, Yj+1, ..., Yj+k−1). In practice we are very often interested in consequences of
this assumption regarding moments of the distribution. If Yi and Yj have identical
distribution this implies that their means are identical, thus E[Yt] does not depend on
time and equal to some constant µ. Also, because the pairs (Yi, Yi+s) and (Yj, Yj+s)

have identical bivariate distributions it follows that the autocovariances

cov(Yt, Yt+s) = E [(Yt − µ)(Yt+s − µ)] = λs

depend only on the time lag s. This implies also that Yt have constant variance
λ0 = σ2.
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A stochastic process whose first and second order moments (means, variances,
and covariances) do not change with time is said to be second order stationary. More
precisely, a time series Yt is called stationary if the following conditions are satisfied:

E[Yt] = µ, E[(Yt − µ)2] = γ0, E[(Yt − µ)(Yt−s − µ)] = γs for all t

Here µ, γ0, and γk are finite-valued numbers that do not depend on time t.

3.2.2 Autocorrelation

The autocorrelations of a stationary process are defined by ρs = γs
γ0

. These corre-
lations describe the short-run dynamic relations within the time series, in contrast
with the trend, which corresponds to the long-run behaviour of the time series.

The simplest possible autocorrelations occur when a stationary process consists
of uncorrelated random variables. In this case ρ0 = 1, ρs = 0 for all s > 0. Such
time series is called white noise.

It is important when modeling financial returns to appreciate that if {Yt} is
white noise then Yt and Yt+s are not necessarily independent for s > 0.

The partial autocorrelation φs at lag s measures the correlation of Yt values
that are s periods apart after removing the correlation from the intervening lags. It
equals the regression coefficient on Yt−s when Yt is regressed on a constant, Yt−1,...,
Yt−s.

Time series prediction To describe the correlations, we imagine that our ob-
served time series comes from a stationary process that existed before we started ob-
serving it. We denote the past of the stationary process Yt by Yt−1 = {Yt−1, Yt−1, ...},
where the "dots" mean that there is no clear-cut beginning of this past. We call it
also the information set available at time point t− 1. The least squares predictor of
Yt based on the past Yt−1 is the function f(Yt−1) that minimizes E [(Yt − f(Yt−1))

2].
This predictor is given by the conditional mean f(Yt−1) = E[Yt|Yt−1] with corre-
sponding (one-step-ahead) prediction errors et = Yt − f(Yt−1) = Yt − E[Yt|Yt−1].

The process et is also called the innovation process, as it corresponds to the
unpredictable movements in Yt. If the observations are jointly normally distributed,
then the conditional mean is a linear function of the past observations

E[Yt|Yt−1] = a+ p1Yt−1 + p2Yt−2 + ...

Here a models the mean E[Yt] = µ of the series. From the above equation we
get µ = a +

∑
pkµ, so that µ = (1 −

∑
pk)

−1. As the process is assumed to be
stationary, the coefficients pk do not depend on time and the innovation process et
is also stationary. It has the following properties:
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• E[et] = 0 for all t

• E [e2t ] = σ2 for all t;

• E[eset] = 0 for all s �= t.

Here the variance σ2 is constant over time.

3.2.3 Example: Variance Ratio Test

Very often a predictability of stock returns is linked to the presence of autocorrelation
in the returns series. If stock returns form an iid process, then variances of holding
period returns should increase in proportion to the length of the holding period.
If the log return is constant, then under the rational expectation hypothesis stock
prices follows a random walk

pt+h = µ+ pt+h−1 + ut+h = µ+ µ+ pt+h−2 + ut+h + ut+h−1 = pt + µh+
h∑

i=0

ut+i.
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Variance of the returns forecasts

var [pt+h − pt] =
h∑

i=0

E
[
u2
t+i

]
= hσ2

due to the independence. Alternatively, if log returns are iid, then

var [rt,t+h] = var [rt,t+1 + rt+1,t+2 + ...+ rt+h−1,t+h] = hvar [rt+1]

The variance-ratio statistic is defined as

V Rh =
1

h

var [rt,t+k]

var [rt+1]
= 1 +

2

h

h−1∑
j=1

(h− j)ρj,

which should be unity if returns are iid and less than unity under mean reversion.
The variance ratio test is set up as H0 : V Rh = 1 and under the null

Zh =
V Rh − 1√

2(2h− 1)(h− 1)/3hT
∼ N(0, 1).

See Cuthbertson and Nitzsche (2004) for more details about the test. Let us consider
as an example how to program the variance ratio test in EViews.

In this test uses overlapping h-period returns. As an input to the program,
the workfile should contain a series of log prices p used to test for predictability. We
start the program in a usual way.

smpl @all

!h=2

The variable !h denotes the horizon of the returns forecast. The next we create one
period and h period returns.

smpl @first+1 @last

series r=p-p(-1)

In order to build the variance ratio statistics we need to have the actual number
of observations (returns), mean and variance of returns series.

scalar T=@obs(p)

scalar mu=@mean(r)

scalar var1=@sumsq(r-mu)/(T-1)

smpl @first+!h @last

series rh=p-p(-!h)
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scalar varh=@sumsq(rq-!h*mu)/(T-!h+1)

We can now compute the variance ratio statistic

scalar VRh=varh/(!h*var1)

scalar Zh=(VRh-1)/@sqrt((2*(2*!q-1)*(!q-1))/(3*!q*T))

We need a p-value in order to test the hypothesis. Two-sided significance level
(p-value) can be calculated as a follows

scalar Zh_level=2*(1-@cnorm(@abs(Zh)))

Finally, we create a table to report the results. We declare a new table VRTEST
object with 2 rows and 5 columns, set the width of each column and write the
context of each sell down.

table(2,5) VRTEST

Setcolwidth(VRTEST,1,15)

Setcolwidth(VRTEST,2,15)

Setcolwidth(VRTEST,3,10)

Setcolwidth(VRTEST,4,10)

Setcolwidth(VRTEST,5,13)

Setcell(VRTEST,1,1,"Nr of obs")

Setcell(VRTEST,1,2,"Horizon h")

Setcell(VRTEST,1,3,"VRh")

Setcell(VRTEST,1,4,"test stat Zh")

Setcell(VRTEST,1,5,"p-value")

Setcell(VRTEST,2,1,T,0)

Setcell(VRTEST,2,2,!h,0)

Setcell(VRTEST,2,3,VRh,4)

Setcell(VRTEST,2,4,Zh,4)

Setcell(VRTEST,2,5,Zh_level,5)

delete r mu rh T var1 varh Zh Zh_level

next
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3.3 ARMA processes

A zero mean white noise process {εt} can be used to construct new processes. We
describe two commonly used examples first and afterwards their generalization –
autoregressive-moving average (ARMA) model.

3.3.1 Autoregressive process

A simple way to model dependence between consecutive observations is

Yt = α0 + α1Yt−1 + εt,

where εt is white noise.Such process is called a first-order autoregressive process or
AR(1) process. It is stationary if the coefficient |α1| < 1.

Since E[εt] = 0 it follows that under the stationarity condition the mean of the
process E[Yt] =

α0

1−α1
and variance var[Yy] =

σ2
ε

1−α2
1

where σ2
ε = var[εt]. An AR(1)

process has autocorrelations ρs = αs
1 for s > 1.

A more general representation of the autoregressive process is

Yt = α0 + α1Yt−1 + ...+ αpYt−p + εt

and called an autoregressive process of order p, or in short, AR(p).
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3.3.2 Moving average process

Consider the process {Yt} defined by

Yt = α0 + εt + β1εt−1

so Yt is a linear function of the present and immediately preceding innovations. This
process is called a moving average process of order 1 and denoted by MA(1).

A MA(1) process is always stationary with mean α0 and variance (1 + β2
1) σ

2
ε .

Its autocorrelations are ρ1 =
β1

1+β2
1

and ρs = 0 for s > 1.
Comparing two time series we see that a shock εt in MA(1) process affects Yt

in two periods (only two positive autocorrelation coefficients), while a shock in the
AR(1) process affects all future observations with a decreasing effect.

The MA(1) process may be inverted to give εt as an infinite series in Yt, Yt−1,...,
namely

εt = Yt + β1Yt−1 + β2
1Yt−2 + ...

that is
Yt = −β1Yt−1 − β2

1Yt−2 − ...+ εt.

Thus, MA(1) time series can be represented as AR(∞) process. It is possible to
invert MA(1) process into a stationary AR process only if |β1| < 1. This condition
is known as invertibility condition.

A more general representation of a moving average process is

Yt = α0 + εt + β1εt−1 + ...+ βqεt−q

and called a moving average process of order q, or in short, MA(q).

3.3.3 ARMA process

It is possible to combine the autoregressive and moving average specification into
ARMA(p, q) model

Yt = α1Yt−1 + ...+ αpYt−p + εt + β1εt−1 + ...+ βqεt−q. (3.3.1)

An ARMA(p, q) time series can be represented in a shorter form using the notion
of lag operator.

The lag operator L, is defined as LYt = Yt−1, the operator which gives the
previous value of the series. This operator can also be used to represent the lags of
the second or higher orders in the following way:

L2(Yt) = L(L(Yt)) = L(Yt−1) = Yt−2.
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In general ARMA(p, q) process is

A(L)Yt = B(L)εt,

where
A(L) = 1− α1L− α2L

2 − ...− αpL
p

B(L) = 1− β1L− β2L
2 − ...− βqL

q

Stationarity requires the roots of A(L) to lie outside the unit circle, and invertibility
places the same condition on the roots of B(L).

Table 3.1: Correlation patterns

Time series acf pacf
AR(p) Infinite: decays towards zero Finite: disappears after lag p

MA(q) Finite: disappears after lag q Infinite: decays towards zero
ARMA(p, q) Infinite: damps out Infinite: decays towards zero

3.3.4 Estimation of ARMA processes

ARMA(p, q) models are generally estimated using the technique of maximum like-
lihood.

An often ignored aspect of the maximum likelihood estimation of ARMA(p, q)

models is the treatment of initial values. These initial values are the first p values
of Yt and q values of εt in (3.3.1). The exact likelihood utilizes the stationary dis-
tribution of the initial values in the construction of the likelihood. The conditional
likelihood treats the p initial values of Yt as fixed and often sets the q initial values of
εt to zero. The exact maximum likelihood estimates (MLE) maximize the exact log-
likelihood, and the conditional MLE maximize the conditional log-likelihood. The
exact and conditional MLEs are asymptotically equivalent but can differ substan-
tially in small samples, especially for models that are close to being non-stationary
or non-invertible.

For pure AR models, the conditional MLEs are equivalent to the least squares
estimates

Model Selection Criteria Before an ARMA(p, q) may be estimated for a
time series Yt, the AR and MA orders p and q must be determined by visually
inspecting the autocorrelation and partial autocorrelation functions for Yt. If the
autocorrelation function decays smoothly and the partial autocorrelations are zero
after one lag, then a first-order autoregressive model is appropriate. Alternatively,
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if the autocorrelations were zero after one lag and the partial autocorrelations decay
slowly towards zero, a first-order moving average process would seem appropriate.

Alternatively, statistical model selection criteria may be used. The idea is to
fit all ARMA(p, q) models with orders p and q and choose the values of p and q

which minimizes model selection criteria:

AIC(p, q) = ln
(
σ̃2(p, q)

)
+

2

T
(p+ q)

BIC(p, q) = ln
(
σ̃2(p, q)

)
+

ln(T )

T
(p+ q)

where σ̃2(p, q) is the MLE of var[εt] = σ2 without a degrees of freedom correction
from the ARMA(p, q) model.

3.3.5 Example: ARMA in EViews

We start our example from the simulation of ARMA process and then we take a look
at its estimation. In order to illustrate the statements in Table 3.1, let us simulate
AR(3), MA(2) and ARMA(3, 2) processes and compute their autocorrelation and
partial autocorrelation functions.
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In particular, we simulate

Yt = 0.8Yt−1 + 0.15Yt−2 − 0.1Yt−3 + ut

Yt = ut − 0.95ut−1 + 0.3ut−2 (3.3.2)

Yt = 0.8Yt−1 + 0.15Yt−2 − 0.1Yt−3 + ut − 0.95ut−1 + 0.3ut−2

To start with, we generate a series of uncorrelated normally distributed resid-
uals (remember, command nrnd generates standard normally distributed random
number)

series u=0.5*nrnd

Also, we have to generate initial values for the series. Since the highest order of
the series is 3, let us generate first three values. This can be done by setting sample
to only fist three observations and assign zero values to all of three series.

smpl @first @first+2

series y1=0

series y2=0

series y3=0

Now, we set the sample for the rest of observations and generate series according
to formulae (3.3.2)

smpl @first+3 @last

y1=0.8*y1(-1)+0.15*y1(-2)-0.1*y1(-3)+u

y2=u-0.95*u(-1)+0.3*u(-2)

y3=0.8*y1(-1)+0.15*y1(-2)-0.1*y1(-3)+u-0.95*u(-1)+0.3*u(-2)

Now, we are ready to build and inspect their correlograms. Remind, that in order to
build a correlogram, one should click on the icon if the time series being investigated
and choose View/Correlogram... option. The correlograms of three time series
is given on Figures ??-??.

As we have expected, the autocorrelation function for the first series (AR(3))
damps out slowly towards zero while its partial autocorrelation function has spikes
at first three lags. The autocorrelation function of the second series (MA(2)) has
spikes at two first lags and disappears afterwards (becomes insignificant) while the
partial autocorrelation function decays oscillating towards zero. Both autocorrela-
tion and partial autocorrelation functions of the third series (ARMA(3, 2)) decay
slowly towards zero without any clear spikes.
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Figure 3.1: Correlogram of an AR(3) process

Figure 3.2: Correlogram of a MA(2) process

Estimation An estimation of the ARMA processes is performed in EViews
in the same way as OLS estimation of a linear regression. The only difference is
in specifying autoregressive and moving average terms in the model. If the series
has got autoregressive components, we should include terms ar(1), ar(2), etc, as
regressors up to the required order. For example, to estimate the first series, type

y1 c ar(1) ar(2) ar(3)

in the estimation equation box. EViews produces an output given in Figure ??
All coefficients are significant as expected and are very close to the true values.
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Figure 3.3: Correlogram of an ARMA(3, 2) process

Figure 3.4: Estimation output of ARMA process

Inference and tests can be performed in the same way as it was done for the OLS
regression.

If one needs to estimate the model containing moving average components,
ma(1), mar(2), etc terms should be included into the model specification. For ex-
ample, to estimate the second time series, we write

y2 c ma(1) ma(2)

Autoregressive and moving average terms can be combined to estimate ARMA
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model. Thus, specification of the third series looks like

y3 c ar(1) ar(2) ar(3) ma(1) ma(2)

After having estimated an ARMA model, one can check whether the estimated coef-
ficients satisfy the stationarity assumptions. This can be done through View/ARMA
structure of the Equation object. For the third series we obtain

Figure 3.5: Table of the roots of the estimated ARMA process

It says that our ARMA series is both stationary and invertible.

3.3.6 Programming example

If we had not known the order of the ARMA series, we would need to apply one
of the information criteria to select the most appropriate order of the series. The
following program illustrates how this can be done using the Akaike criterion.

First we need to define the maximal orders for autoregressive and moving
average parts and store them into variables pmax and qmax. Also we need to declare
a matrix object aic where the values of the Akaike statistic will be written for each
specification of the ARMA process.

smpl @all

scalar pmax=3

scalar qmax=3

matrix(pmax+1,qmax+1) aic
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Next, we define nested loops which will run through all possible ARMA specification
with orders within the maximal values.

for !p=0 to pmax

for !q=0 to qmax

As the number of lags included in the model increases we add a new AR term in
the model. For this purpose we create a new string variable textsf%order containing
the model specification.

if !p=0 then %order=""

else

for !i=1 to !p

%order=%order+" ar("+@str(!i)+")"

next

endif
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We perform the same procedure with the MA term specification.

if !q=0 then %order=%order+""

else

for !i=1 to !q

%order=%order+" ma("+@str(!i)+")"

next

endif

Once the model specification is determined and written in the variable %order we
can use a substitution to estimate the corresponding model.

equation e.ls y3 c %order

%order=""

The last command nullify the variable %order for the use in the next step of the
loops. Now we can write the value of the Akaike criterion for the current in the
table.

aic(!p+1,!q+1)=e.@aic

next

next

delete e

After the program run, the values of the Akaike criterion are stored in the table
aic. Now we can choose that specification of the ARMA model which produces the
smallest AIC value.
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Chapter 4

Stationarity and Unit Roots Tests

4.1 Introduction

Many financial time series, like exchange rate levels of stock prices appear to be
non-stationary. New statistical issues arises when analyzing non-stationary data.
Unit root tests are used to detect the presence and form of non-stationarity.

This chapter reviews main concepts of non-stationarity of time series and pro-
vides a description of some tests for time series stationarity. More information
about such tests can be found in Hamilton (1994), Fuller (1996), Enders (2004),
Harris (1995), Verbeek (2008).

There are two principal methods of detecting nonstationarity:

• Visual inspection of the time series graph and its correlogram;

• Formal statistical tests of unit roots.

We will start with formal testing procedures first.
A nonstationaty time series is called integrated if it can be transformed by

first differencing once or a very few times into a stationary process. The order of
integration is the minimum number of of times the series needs to be first differenced
to yield a stationary series. An integrated of order 1 time series is denoted by I(1).
A stationary time series is said to be integrated of order zero, I(0).

4.2 Unit Roots tests

Let us consider a time series Yt in the form

Yt = α + βYt−1 + ut

ut = ρut−1 + εt (4.2.1)
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Unit root tests are based on testing the null hypothesis that H0 : ρ = 1 against
the alternative H1 : ρ < 1. They are called unit root tests because under the null
hypothesis the characteristic polynomial has a root equal to unity. On the other
hand, stationarity tests take the null hypothesis that Yt is trend stationary.

4.2.1 Dickey-Fuller test

One commonly used test for unit roots is the Dickey-Fuller test. In its simplest form
it considers a AR(1) process

Yt = ρYt−1 + ut

where ut is an IID sequence of random variables. We want to test

H0 : ρ = 1 vs. H1 : ρ < 1.

Under the null hypothesis Yt is non-stationary (random walk without drift). Under
the alternative hypothesis, Yt is a stationary AR(1) process.

Due to non-stationarity of Yt under the null, the standard t-statistic does not
follow t distribution, not even asymptotically. To test the null hypothesis, it is
possible to use

DF =
ρ̂− 1

s.e (ρ̂)
.

Critical values, however, have to be taken from the appropriate distribution, which
is under the null hypothesis of non-stationarity is nonstandard. The asymptotic
critical values of DF based on computer simulations are given in Fuller (1996).

The above test is based on the assumption that the error terms are iid and
there is no drift (intercept term) in the model. The limiting distribution will be
wrong if these assumptions are false.

More general form of the Dickey-Fuller test employs other variants of the time
series process. Consider the following three models for the data generating process
of Yt:

Yt = ρYt−1 + ut (4.2.2)

Yt = ρYt−1 + α + ut (4.2.3)

Yt = ρYt−1 + α + βt+ ut (4.2.4)

with ut being iid process.
Dickey and Fuller (1979) derive a limiting distribution for the least squares

t-statistic for the null hypothesis that ρ = 1 and F-statistic (Wald statistic) for the
null hypotheses of validity of combinations of linear restrictions ρ = 0, α = 0 and
β = 0 where the estimated models are from (4.2.2) to (4.2.4) but in each case that
(4.2.2) is the true data generating process.
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4.2.2 Augmented Dickey-Fuller test

Dickey and Fuller (1981) show that the limiting distributions and critical values
that they obtain under the assumption of iid ut process are also valid when ut is
autoregressive, when augmented Dickey-Fuller (ADF) regression is run. Assume the
data are generated according to (4.2.2) with ρ = 1 and that

ut = θ1ut−1 + θ2ut−2 + ...+ θput−p + εt (4.2.5)

where εt are iid. Consider the regression

∆Yt = φYt−1 + α + βt+ ut

and test H0 : φ = 0 versus H1 : φ < 0. Given the equation for ut in (4.2.5) we can
write

∆Yt = φYt−1 + α + βt+ θ1ut−1 + θ2ut−2 + ...+ θput−p + εt.

Since under ρ = 1 we have ut = Yt − Yt−1, this equation can be rewritten as

∆Yt = φYt−1 + α + βt+ θ1∆Yt−1 + θ2∆Yt−2 + ...+ θp∆t−p + εt. (4.2.6)

Said and Dickey (1984) provide a generalization of this result for ARMA(p, q) error
terms.
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Procedure Before using the ADF test we have to decide how many lags of
∆Y to include in the regression. This can be done by sequentially adding lags and
testing for serial correlation using Lagrange multiplier tests to archive a white noise
residuals.

Use F-test to test the null (β, ρ) = (0, 1) against the alternative (β, ρ) �= (0, 1).
If the null is rejected we know that

either

[
β �= 0

ρ = 1

]
or

[
β = 0

ρ �= 1

]
or

[
β �= 0

ρ �= 1

]

and the next step is to test ρ = 1 using the t-statistic obtained from the estimating
the augmented version of (4.2.4), with the critical values taken from the standard
normal tables. Critical values from the standard normal are appropriate when β is
non-zero, so that if the null hypothesis is not rejected we can rule out the second
and third cases (if β is zero the critical values are non-standard, but will be smaller
than the standard normal ones). Thus, if ρ = 1 is accepted we conclude that β �= 0

and ρ = 1, so that series has a unit root and a linear trend.
If we reject the null then the first alternative can be dismissed. This leaves the

following two alternatives

either

[
β = 0

ρ �= 1

]
or

[
β �= 0

ρ �= 1

]

In either case ρ is not 1, there is no unit root and conventional test procedures can
be used. Thus we may carry out a t test for the null that β = 0.

If we cannot reject (β, ρ) = (0, 1) we know that the series has a unit root with
no trend but with possible drift. To support the conclusion that ρ = 1 we may test
this, given β is assumed to be zero.

If we wish to establish whether the series has non-zero drift, further tests will
be required. Note that we know (β, ρ) = (0, 1), and so we might carry out the F
test. This tests

H0 : (α, β, ρ) = (0, 0, 1) vs. (α, β, ρ) �= (0, 0, 1).

If we cannot reject the null hypothesis, the series is random walk without drift. If
we reject it, the series is a random walk with drift.

We may wish to support these findings on the basis of estimating (4.2.3) by
setting β at zero as suggested by the various previous tests. If β is actually zero then
tests on α and ρ should have greater power once this this restriction is imposed.
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4.2.3 Phillips and Perron tests

The statistics proposed by Phillips and Perron (1988) (Z statistics) arise from their
considerations of the limiting distributions of the various Dickey-Fuller statistics
when the assumption that ut is an iid process is relaxed.

The test regression in the Phillips-Perron test is

∆Yt = φYt−1 + α + βt+ ut

where ut is a stationary process (which also may be heteroscedastic). The PP
tests correct for any serial correlation and heteroscedasticity in the errors ut of the
test regression by directly modifying the test statistics. These modified statistics,
denoted Zt and Zφ, are given by

Zt =

(
σ̂2

λ̂2

) 1
2

tφ=0 −
1

2

(
λ̂2 − σ̂2

λ̂2

)(
Ts.e (ρ̂)

σ̂2

)

Zφ = Tφ− 1

2

(
T 2s.e (ρ̂)

σ̂2

)(
λ̂2 − σ̂2

)

The terms σ̂2 and λ̂2 are consistent estimates of the variance parameters

σ̂2 = lim
T→∞

T−1

T∑
t=1

E
[
u2
t

]

λ̂2 = lim
T→∞

T∑
t=1

E
[
T−1S2

T

]

where ST =
T∑
t=1

ut.

In the Dickey-Fuller specification we can use the critical values given by Dickey
and Fuller for the various statistics if ut is an iid and we should use Phillips-Perron’s
counterparts if it is not iid.

An indication as to whether the Z statistic should be used in addition to (or
instead of) the ADF tests might be obtained in the diagnostic statistics from the DF
and ADF regressions. If normality, autocorrelation or heterogeneity statistics are
significant, one might adopt the Phillips-Perron approach. Furthermore, power may
be adversely affected by misspecifying the lag length in the augmented Dickey-Fuller
regression, although it is unclear how far this problem is mitigated by choosing the
number of lags using data-based criteria, and the Z-tests have the advantage that
this choice does not have to be made. Against this, one should avoid the use of the
Z test if the presence of negative moving average components is somehow suspected
in the disturbances.
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Under the null hypothesis that φ = 0, the PP Zt and Zφ statistics have the
same asymptotic distributions as the ADF t-statistic and normalized bias statistics.
One advantage of the PP tests over the ADF tests is that the PP tests are robust to
general forms of heteroskedasticity in the error term ut. Another advantage is that
the user does not have to specify a lag length for the test regression.

4.3 Stationarity tests

The ADF and PP unit root tests are for the null hypothesis that a time series Yt is
I(1). Stationarity tests, on the other hand, are for the null that Yt is I(0). The most
commonly used stationarity test, the KPSS test, is due to Kwiatkowski, Phillips,
Schmidt and Shin (1992) (KPSS). They derive their test by starting with the model

Yt = α + βt+ µt + ut

µt = µt−1 + εt, εt ∼ WN(0, σ2
ε)

where ut is I(0) and may be heteroskedastic.
The null hypothesis that Yt is I(0) is formulated as H0 : σ

2
ε = 0, which implies

that µt is a constant. Although not directly apparent, this null hypothesis also
implies a unit moving average root in the ARMA representation of ∆Yt.
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The KPSS test statistic is the Lagrange multiplier (LM) or score statistic for
testing σ2

ε = 0 against the alternative that σ2
ε > 0 and is given by

KPSS =

(
1

T 2

T∑
t=1

Ŝ2
t

)
/λ̂2

where Ŝt =
t∑

j=1

ûj, ût is the residual of a regression Yt on t and λ̂2
t .

Critical values from the asymptotic distributions must be obtained by simula-
tion methods. The stationary test is a one-sided right-tailed test so that one rejects
the null of stationarity at the α level if the KPSS test statistic is greater than the
100(1− α) quantile from the appropriate asymptotic distribution.

4.4 Example: Purchasing Power Parity

It is very easy to perform unit root and stationarity tests in EViews. As an example,
consider a Purchasing Power Parity condition between two countries: USA and UK.
In efficient frictionless markets with internationally tradeable goods, the law of one
price should hold. That is,

st = pt − p∗t ,

where st is a natural logarithm of the spot exchange rate (price of a foreign currency
in units of a domestic one), pt is a logarithm of the aggregate price index in the
domestic country and p∗t is a log price in the foreign country. This condition is
referred to as absolute purchasing power parity condition.

This condition is usually verified by testing for non-stationarity of the real
exchange rate qt = st + p∗t − pt. Before we perform this let us look at properties of
the constituent series.

We consider monthly data for USA and UK over the period from January 1989
to November 2008.

Although plots of both consumer price indices and the exchange rate indicate
non-stationarity, we perform formal tests for unit root and stationarity.

In the dataset PPP.wf1, there are levels of the exchange rate and consumer
price indices are given, so we need to create log series to carry out tests. This is
done as usually,

series lcpi_uk=log(cpi_uk)

series lcpi_uk=log(cpi_uk)

series lgbp_usd=log(gbp_usd)
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Let us start with the UK consumer price index. We can find the option Unit Root
Tests... in the View section of the series object menu (double click on lcpi_uk icon).
In the Test Type box there is a number of tests available in EViews. We start with
Augmented-Dickey-Fuller test. As we are interested in testing for unit roots in levels
of log consumer price index, we choose Test for unit root in levels in the next
combo-box, and finally we select testing with both intercept and trend as it is the
most general case.

Figure 4.1: Augmented Dickey-Fuller test dialog window
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EViews will also select the most appropriate number of lags of the residuals
to be included in the regression using the selected criteria (it is possible to specify
a number of lags manually is necessary by ticking User specified option).

Click OK and EViews produces the following output

Figure 4.2: Output for the Augmented Dickey-Fuller test

The absolute value of the t-statistic does not exceed any of the critical values
given below so we cannot reject the null hypothesis of the presence of unit root in
the series.

Unfortunately, EViews provides only the test of the null hypothesis H0 : φ = 0.
One can perform more general test by estimating Dickey-Fuller regression (4.2.6).
In the command line type the following specification

ls d(lcpi_uk) c lcpi_uk(-1) @trend(1989M01)

to run the ADF regression with intercept and trend component. As you noted, the
function @trend allows to include the time trend component that increases by one
for each date in the workfile. The optional date argument 1989M01 is provided to
indicate the starting date for the trend. We did not include any MA components in
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the regression since based on the previous results (see Figure ??) zero lag is optimal
according to the Schwartz selection criterium.

The regression output is identical with that produced by the Augmented
Dickey-Fuller test

Figure 4.3: Output of the regression-based procedure of the Augmented Dickey-
Fuller test

However, the approach enables us to perform the Wald test of linear restrictions
and specify the null hypothesis H0 : (β, φ) = (0, 0) (or more general, H0 : (α, β, φ) =

(0, 0, 0)).

Figure 4.4: Wald test results for the Augmented Dickey-Fuller test specifications

The value of Wald test statistic in the case of the null H0 : (β, φ) = (0, 0) is
1.7648; this has to be compared with the critical values tabulated in MacKinnon
(1996).

As the test statistic is smaller than all of the critical values, we cannot reject
the null hypothesis, which confirms non-stationarity of the log consumer price index
series.
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This conclusion is also confirmed by other stationarity tests. For example, in
Kwiatkowski-Phillips-Schmidt-Shin test (specification with the intercept and trend),
the test statistic is 0.4257 which is higher than the critical value at 1% significance
level (which is 0.216). Thus, we reject the null hypothesis of stationarity of the
series.

If the Purchasing Power Parity condition holds one would expect the real
exchange rate qt = st−pt+p∗t to be stationary and mean reverting. The presence of
unit root in the deviations series would indicate the existence of permanent shocks
which do not disappear in a long run.

We create a series of deviations

d=lgbp_usd-lcpi_uk-lcpi_us

Augmented Dickey-Fuller does not reject the null hypothesis of the presence of unit
root in the deviations series. Also, the value of Wald test statistic is 1.8844 indicates
which confirms nonstationarity of the deviations from the Purchasing Power Parity
condition.
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Chapter 5

Univariate Time Series: Volatility
Models

5.1 Introduction

In Chapter 3 we have considered approaches to modelling conditional mean of a
univariate time series. However, many areas of financial theory are concerned with
the second moment of time series – conditional volatility as a proxy for risk.

In this chapter we introduce time series models that represent the dynamics
of conditional variances. In particular we consider ARCH, GARCH model as well
as their extensions.

The reader is also referred to Engle (1982), Bollerslev (1986), Nelson (1991),
Hamilton (1994), Enders (2004), Zivot and Wang (2006).

5.2 The ARCH Model

Besides a time varying conditional mean of financial time series, most of them also
exhibit changes in volatility regimes. This is especially applicable to many high
frequency macroeconomic and financial time series.

While modelling such time series, we cannot use homoscedastic models. The
simplest way to allow volatility to vary is to model conditional variance using a
simple autoregressive (AR) process.

Let Yt denote a stationary time series, then Yt can be expressed as its mean
plus a white noise:

Yt = c+ ut (5.2.1)

where c is the mean of Yt, and ut is i.i.d. with mean zero. To allow for conditional
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heteroscedasticity, assume that

vart−1[ut] = σ2
t .

Here vart−1 denotes the variance conditional on information at time t − 1, and is
modelled in the following way:

σ2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p. (5.2.2)

In order to show that this specification is equivalent to AR representation of squared
residuals, note that vart−1[ut] = E

[
u2
t−1

]
= σ2

t since E[ut] = 0. Thus, equation
(5.2.2) can be rewritten as:

u2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p + εt, (5.2.3)

where εt = u2
t − Et−1 [u

2
t ] is a zero mean white noise process. The model in (5.2.1)

and (5.2.3) is known as the autoregressive conditional heteroscedasticity (ARCH)
model of Engle (1982), which is usually referred to as the ARCH(p) model. More
generally, ARCH model can be rewritten as

Yt = c+ ut

ut = σtηt

σ2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p,

where ηt is an iid normal random variable.

5.2.1 Example: Simulating an ARCH(p) model in EViews

It is relatively easy to simulate ARCH process in EViews. Let us consider as example
the following ARCH(2) model

Yt = σtηt

σ2
t = 3.5 + 0.5Y 2

t−1 + 0.48Y 2
t−2 (5.2.4)

with ηt being independent random variables following N(0, 1)distribution. Similarly
to ARMA process we need to generate error term process ηt and first two initial
values of Yt after which the whole process can be simulated. Create a new workfile
and in the command line enter

smpl @all

series eta=nrnd

smpl @first @first+1
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series y=@sqrt(3.5/(0.5+0.48))*eta

smpl @first+2 @last

y=@sqrt(3.5+0.5*y(-1)∧2+0.48*y(-2)∧2)*eta

smpl @all

The last statement is included to ensure that we come back the whole data range.
The plot of the simulated series is given in the following figure.

Figure 5.1: Plot of simulated ARCH process
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Visually, the process looks stationary, mean reverting and with zero mean as
expected from the equation (5.2.4).

Testing for ARCH Effects In order to test for the presence of ARCH effects
in the residuals, we can use AR representation of squared residuals in the following
way. Based on equation (5.2.2), construct an auxiliary regression

û2
t = α0 + α1û

2
t−1 + ...+ αpû

2
t−p + εt, (5.2.5)

. The significance of parameters αi would indicate the presence of conditional volatil-
ity. Under the null hypothesis that there are no ARCH effects:

α1 = α2 = ... = αp = 0,

the test statistic LM = TR2 a∼ χ2
p where T is the sample size and R2 is computed

from the regression (5.2.5).

5.3 The GARCH Model

More general form of conditional volatility is based on ARMA specification as an
extension of AR process of squared residuals. Bollerslev (1986) introduces GARCH
model (which stands for generalized ARCH) where he replaces the AR model in
(5.2.2) by:

σ2
t = α0 +

p∑
i=1

αiu
2
t−i +

q∑
j=1

βiσ
2
t−j, (5.3.1)

where the coefficients αi and βj are positive to ensure that the conditional variance
σ2
t is always positive. In order to emphasize the number of lags used in (5.3.1) we

denote the model by GARCH(p, q).
When q = 0, the GARCH model reduces to the ARCH model. Under the

GARCH(p, q) model, the conditional variance of ut, σ2
t , depends on the squared

residuals in the previous p periods, and the conditional variance in the previous q

periods. The most commonly used model is a GARCH(1, 1) model with only three
parameters in the conditional variance equation.

A GARCH model can be expressed as an ARMA model of squared residuals.
For example, for a GARCH(1, 1) model:

σ2
t = α0 + α1u

2
t−1 + β1σ

2
t−1.

Since Et−1 [u
2
t ] = σ2

t , the above equation can be rewritten as:

u2
t = α0 + (α1 + β1)u

2
t−1 + εt − β1εt−1, (5.3.2)
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which is an ARMA(1, 1) model. Here εt = u2
t − Et−1 [u

2
t ] is the white noise error

term.
Given the ARMA representation of the GARCH model, we conclude that

stationarity of the GARCH(1, 1) model requires α1 + β1 < 1. The unconditional
variance of ut is given by

var[ut] = E
[
u2
t

]
= α0/(1− α1 − β1),

Indeed, from (5.3.2)

E
[
u2
t

]
= α0 + (α1 + β1)E

[
u2
t−1

]

and thus E [u2
t ] = α0 + (α1 + β1)E[u2

t ] since u2
t is stationary. For the general

GARCH(p, q) model (5.3.2), the squared residuals u2
t behave like an ARMA(max(p, q), q)

process.
One can identify the orders of the GARCH model using the correlogram of the

squared residuals. They will coincide with ARMA orders of the squared residuals
of the time series.

GARCH Model and Stylized Facts In practice, researchers have uncovered
many so-called stylized facts about the volatility of financial time series; Bollerslev,
Engle and Nelson (1994) give a complete account of these facts. Using the ARMA
representation of GARCH models shows that the GARCH model is capable of ex-
plaining many of those stylized facts. This section will focus on three important
ones: volatility clustering, fat tails, and volatility mean reversion. Other stylized
facts are illustrated and explained in later sections.

Volatility Clustering Usually the GARCH coefficient β1 is found to be
around 0.9 for many weekly or daily financial time series. Given this value of β1, it
is obvious that large values of σ2

t−1 will be followed by large values of σ2
t , and small

values of σ2
t−1 will be followed by small values of σ2

t . The same reasoning can be
obtained from the ARMA representation in (5.3.2), where large/small changes in
u2
t−1 will be followed by large/small changes in σ2

t .
Fat Tails It is well known that the distribution of many high frequency fi-

nancial time series usually have fatter tails than a normal distribution. This means
that large changes are more often to occur than under a normal distribution. Thus
a GARCH model can replicate the fat tails usually observed in financial time series.

Volatility Mean Reversion Although financial markets may experience ex-
cessive volatility from time to time, it appears that volatility will eventually settle
down to a long run level. The previous subsection showed that the long run variance
of ut for the stationary GARCH(1, 1) model is α0/(1 − α1 − β1). In this case, the
volatility is always pulled toward this long run level.
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5.3.1 Example: Simulating an GARCH(p, q) model in EViews

It is slightly trickier to simulate GARCH process than the ARCH one in EViews.
Since it is necessary simultaneously to generate Yt and σt processes, we will need to
use loop to accomplish it. Therefore, it is more convenient to use program object
rather than doing it in the command line. Consider as an example GARCH(2, 1)

series

Yt = σtηt

σ2
t = 3.5 + 0.5Y 2

t−1 + 0.28Y 2
t−2 + 0.2σ2

t−1 (5.3.3)

We start the program with the same commands as in the ARCH case; the only
difference is that we generate a conditional variance process s.

smpl @all

series eta=nrnd

scalar n=@obs(eta)

smpl @first @first+1

series s=3.5/(0.5+0.28+0.2)

series y=@sqrt(s)*eta
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The next part of the program creates the loop where both series Yt and σ2
t are

generated observation after observation.

for !i=2 to n-2

smpl @first+!i @first+!i

s=3.5+0.5*y(-1)∧2+0.28*y(-2)∧2+0.2*s(-1)

y=@sqrt(s)*eta

next

smpl @all

The graph of the simulated GARCH process is given on Figure ??.

Figure 5.2: Plot of the simulated GARCH process

We can see on the graph a clear effect of volatility clustering. In most cases
volatility stays low but there are several spikes with high volatility which persist for a
number of periods. Another stylized fact can be seen from the histogram of the simu-
lated observations (click on View/Descriptive Statistic and Tests/Histogram
and Stats). Jarque-Bera test strongly rejects the null hypothesis of normality and
the kurtosis is extremely high indicating fat tails of the generated distribution.

5.4 GARCH model estimation

This section illustrates how to estimate a GARCH model. Assuming that ut follows
normal or Gaussian distribution conditional on past history, the prediction error
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Figure 5.3: Histogram of the simulated GARCH process

decomposition of the log-likelihood function of the GARCH model conditional on
initial values is:

logL = −T

2
log(2π)− 1

2

T∑
i=1

log
(
σ2
t

)
− 1

2

T∑
i=1

u2
t

σ2
t

.

The unknown model parameters c, αi (i = 0, ..., p) and βj, (j = 1, ..., q) can be
estimated using conditional maximum likelihood estimation (MLE). Details of the
maximization are given in Hamilton (1994). Once the MLE estimates of the pa-
rameters are found, estimates of the time varying volatility σ2 (t = 1, ..., T ) are also
obtained as a side product.

5.5 GARCH Model Extensions

In many cases, the basic GARCH model (5.3.2) provides a reasonably good model
for analyzing financial time series and estimating conditional volatility. However,
there are some aspects of the model which can be improved so that it can better
capture the characteristics and dynamics of a particular time series.

In the basic GARCH model, since only squared residuals u2
t−i enter the equa-

tion, the signs of the residuals or shocks have no effects on conditional volatility.
However, a stylized fact of financial volatility is that bad news (negative shocks)
tends to have a larger impact on volatility than good news (positive shocks).
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5.5.1 EGARCH Model

Nelson (1991) proposed the following exponential GARCH (EGARCH) model to
allow for leverage effects:

ht = α0 +

p∑
i=1

αi
|ut−i|+ γiut−i

σt−i

+

q∑
i=1

ht−j,

where ht = log σ2
t . Note that when ut−i is positive, the total effect of ut−i is (1 +

γi)|ut−i|; in contrast, when ut−i is negative, the total effect of ut−i is (1 − γi)|ut−i|.
Bad news can have a larger impact on volatility, and the value of γi would be
expected to be negative.

5.5.2 TGARCH Model

Another GARCH variant that is capable of modeling leverage effects is the threshold
GARCH (TGARCH) model, which has the following form:

σ2
t = α0 +

p∑
i=1

αiu
2
t−i +

p∑
i=1

αiSt−iu
2
t−i +

q∑
j=1

βjσ
2
t−j,

where

St−i =

{
1 ut−i < 0

0 ut−i ≥ 0
.
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That is, depending on whether ut−i is above or below the threshold value of
zero, u2

t−i has different effects on the conditional variance σ2
t : when ut−i is positive,

the total effects are given by αiu
2
t−i; when ut−i is negative, the total effects are given

by (αi + γi)u
2
t−i. So one would expect γi to be positive for bad news to have larger

impacts.

5.5.3 PGARCH Model

The basic GARCH model can be also extended to allow for leverage effects. This is
made possible by treating the basic GARCH model as a special case of the power
GARCH (PGARCH) model proposed by Ding and (1993) (1993):

σd
t = α0 +

p∑
i=1

αi (|ut−i|+ γiut−i)
d +

q∑
j=1

βjσ
d
t−j, (5.5.1)

where d is a positive exponent, and γi denotes the coefficient of leverage effects.
Note that when d = 2, (5.5.1) reduces to the basic GARCH model with leverage
effects.

Two Components Model The GARCH model can be used to model mean
reversion in conditional volatility. Recall the mean reverting form of the basic
GARCH(1, 1) model:

(u2
t − σ̄2) = (α1 + β1)(u

2
t−1 − σ̄2) + εt − β1εt−1,

where σ̄2 = α0/(1−α1−β1) is the unconditional long run level of volatility which is
constant over time. Engle and Lee (1999) propose a model with time varying long
run volatility level. The general form of the two components model is:

σ2
t = qt + st (5.5.2)

qdt = α1|ut−1|d + β1q
d
t−1 (5.5.3)

sdt = α0 + α2|ut−1|d + β2s
d
t−1. (5.5.4)

The long run component qt follows a highly persistent PGARCH(1, 1) model, and
the transitory component st follows another PGARCH(1, 1) model.

GARCH-in-the-Mean Model In financial investment, high risk is often
expected to lead to high returns. Although modern capital asset pricing theory does
not imply such a simple relationship, it does suggest there are some interactions
between expected returns and risk as measured by volatility. Engle, Lilien and
Robins (1987) propose to extend the basic GARCH model so that the conditional
volatility can generate a risk premium which is part of the expected returns. This
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extended GARCH model is often referred to as GARCH-in-the-mean (GARCH-M)
model.

The GARCH-M model extends the conditional mean equation (5.2.1) as fol-
lows:

Yt = c+ αg(σt) + ut,

where g(·) can be an arbitrary function of volatility σt.
Exogenous Variables in Conditional Mean So far the conditional mean

equation has been restricted to a constant when considering GARCH models, except
for the GARCH-M model where volatility was allowed to enter the mean equation
as an explanatory variable. It is possible to add ARMA terms as well as exogenous
explanatory variables in the conditional mean equation. A more general form for
the conditional mean equation is

Yt = c+ δ′Xt + ut

where Xt is a k × 1 vector of regressors and δ is a vector of coefficients.
Also, one can add explanatory variables into the conditional variance formula

which may have impacts on conditional volatility.
Error Distributions In all the examples illustrated so far, a normal error

distribution has been exclusively used. However, given the well known fat tails in
financial time series, it may be more desirable to use a distribution which has fatter
tails than the normal distribution.

EViews allows two fat-tailed error distributions for fitting GARCH models:
the Student t distribution and the generalized error distribution.

5.5.4 Prediction

GARCH models are frequently used to forecast volatility of return. It is straight-
forward to forecast the conditional variance from an ARCH model. Assuming that
the model parameters are known, the one-period ahead forecast is

σ2
t+1|t = α0 + α1u

2
t + ...+ αpu

2
t−p+1

Forecasting the conditional volatility for h periods ahead can be done by a recursion

σ2
t+h|t = α0 + α1σ

2
t+h−1|t + ...+ αpσ

2
t+h−p,

where σ2
t+j = u2

t+j for j ≤ 0.
The h-period ahead variance forecast for a GARCH(1, 1) model is

σ2
t+1|t = α0

[
h−1∑
i=0

(α1 + β1)
i

]
+ (α1 + β1)

hσ2
t .
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5.5.5 Example: GARCH Estimation

As an example of GARCH model estimation in EViews we consider a series of 2
minutes exchange rates between the Euro and the British Pound for 21 August 2007
between 7:00 and 16:00 GMT. The data is contained in the file EURGBP.wf1. Plot
of the EUR/GBP returns is given in Figure ??.

Figure 5.4: 2 minutes EUR/GBP returns on 21 August 2007
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We can clearly see periods of high and low volatility of the returns, thus an
ARCH type model can be appropriate to model volatility.

Let us first estimate an OLS regression of returns on a constant term. This
will give us an opportunity to test for the presence of ARCH effect more formally.
Having typed

ls r_eurgbp c

in the command line and pressed Enter, go to View/Residual Tests/ Het-
eroscedasticity Tests... in the equation object window and choose ARCH option
there. The test result is given in Figure ??

Figure 5.5: ARCH test results

The p-value of the test is very small which rejects the null hypothesis of ho-
moscedasticity of residuals in favor of ARCH alternative. Thus, based on this result
we decide to estimate regression with ARCH specification. Go to Quick/Estimate
Equation option of the main workfile menu and specify the model as you were
specifying it for the OLS regression. That is, type r_eurusd c in the Equation
Specification box. Now, in the Method field, choose ARCH – Autoregressive
Conditional Heteroscedasticity. This will open you more option for ARCH
model specification. In the ARCH-M we can indicate whether we want to include
ARCH-in-mean term in the equation and, if yes, whether variance or standard de-
viation should enter it. In the Variance and distribution specification part we
can select between simple ARCH/GARCH/TARCH model, EGARCH, PGARCH
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or two component GARCH model. We will stay with the simplest first option. In
the Order field we should write orders of ARCH and GARCH terms in the variance
equation. Let us specify GARCH(3,3) model, so enter 3 and 3 respectively in each
of the box. If we do not want to include GARCH terms, simply put 0 in front of the
GARCH field. Variance regressors box will be useful if we want to include some
exogenous variables in the variance equation. Errors distribution box allows us to
choose between Gaussian and Student - distributions of the error term. The model
estimation output is given in Figure ??.

Figure 5.6: GARCH estimation output

The resid terms of the output correspond to αi coefficients (ARCH terms) and
GARCH terms correspond to βi coefficients in (5.3.2).

We can see that α3 and β3 coefficients are statistically significant and α2 is on
a border line of significance.

In View/Representation section one can find the variance specification.
Also EViews allow to plot both standardized and on-standardized residual plots
(in Actual, Fitted, Residuals), test for parameter constancy, linear restriction,
build correlogram of residuals and squared residuals in the same way as it is done
for the OLS regression.

In order to estimate the above model using the command line one should type

93
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equation e.arch(3,3) r_eurgbp c

where the term arch indicates that an ARCH estimation method should be used,
order of the ARCH and GARCH terms follow in parentheses. Then you should
specify the conditional mean equation as it is done on the least squares model case
(the dependent variable should be in the first place).
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Chapter 6

Multivariate Time Series Analysis

6.0.1 Introduction

Multivariate analysis investigates dependence and interactions among a set of vari-
ables in multi-values processes. One of the most powerful method of analyzing
multivariate time series is the vector autoregression model. It is a natural extension
of the univariate autoregressive model to the multivariate case.

In this chapter we cover concepts of VAR modelling, non-stationary multivari-
ate time series and cointegration.

More detailed discussion can be found in Hamilton (1994), Harris (1995), En-
ders (2004), Tsay (2002), Zivot and Wang (2006).

6.1 Vector Autoregression Model

Let Yt = (Y1,t, Y2,t, ..., Yn,t)
′ denote an k × 1 vector of time series variables. The

basic vector autoregressive model of order p, V AR(p), is

Yt = c+Π1Yt−1 +Π2Yt−2 + ...+ΠpYt−p + ut, t = 1, ..., T, (6.1.1)

where Πi are k× k matrices of coefficients, c is a k× 1 vector of constants and ut is
an k× 1 unobservable zero mean white noise vector process with covariance matrix
Σ.

If we consider a special case of two dimensional vector Y, the V AR consists
of two equation (also called a bivariate V AR)

Yt =

(
Y1,t

Y2,t

)
=

(
c1
c2

)
+

(
π1
11 π1

12

π1
21 π1

22

)(
Y1,t−1

Y2,t−1

)

+

(
π2
11 π2

12

π2
21 π2

22

)(
Y1,t−2

Y2,t−2

)
+

(
u1,t

u2,t

)
(6.1.2)
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with cov (u1,t, u2,s) = σ12 for t �= s.
As in the univariate case with AR processes, we can use the lag operator to

represent V AR(p)

Π(L)Yt = c+ ut,

where Π(L) = In − Π1L− ...− ΠpL
p.

If we impose stationarity on Yt in (6.1.2), the unconditional expected value is
given by

µ = (In − Π1 − ...− Πp)
−1c.

Very often other deterministic terms or stochastic exogenous variables may be in-
cluded into the VAR specification to represent. More general form of the V AR(p)

model is
Yt = Π1Yt−1 +Π2Yt−2 + ...+ΠpYt−p + ΓXt + ut,

where Xt represents an m × 1 matrix of exogenous or deterministic variables, and
Γ is a matrix of parameters.
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6.1.1 Estimation of VARs and Inference on coefficients

Since the V AR(p) may be written as a system of equations with the same sets of
explanatory variables, its coefficients can be efficiently and consistently estimated
by estimating each of the components using the OLS method (see Hamilton (1994)).
Under standard assumptions regarding the behavior of stationary and ergodic VAR
models (see Hamilton (1994) the estimators of the coefficients are asymptotically
normally distributed.

An element of Π̂i is asymptotically normally distributed, so asymptotically
valid t-tests on individual coefficients may be constructed in the usual way (see
Chapter 2). More general linear hypotheses can also be tested using the Wald
statistic.

Lag Length Selection A reasonable strategy how to determine the lag length
of the VAR model is to fit V AR(p) models with different orders p = 0, ..., pmax and
choose the value of p which minimizes some model selection criteria. Model selection
criteria for V AR(p) could be based on Akaike (AIC), Schwarz-Bayesian (BIC) and
Hannan-Quinn (HQ) information criteria:

AIC(p) = ln |Σ̄(p)|+ 2

T
pn2

BIC(p) = ln |Σ̄(p)|+ lnT

T
pn2

HQ(p) = ln |Σ̄(p)|+ 2 ln lnT

T
pn2

Forecasting We can use VAR model to forecast times series in a similar way
to forecasting from a univariate AR model.

The one-period-ahead forecast based on information available at time T is

YT+1|T = c+Π1YT + ...+ΠpYT−p+1

while h-step forecast is

YT+h|T = c+Π1YT + ...+ΠpYT−p+1,

where YT+j|T = YT+j for j < 0. The h-step forecast errors may be expressed as

YT+h −YT+h|T =
h−1∑
s=0

ΨsεT+h−s,

where the matrices Ψs are determined by recursive substitution

Ψs =

p−1∑
j=1

Ψs−jΠj (6.1.3)
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with Ψ0 = In and Πj = 0 for j > p. The forecasts are unbiased since all of the
forecast errors have expectation zero and the MSE matrix for Yt+h|T is

Σ(h) = MSE
(
YT+h −YT+h|T

)
=

h−1∑
s=0

ΨsΣΨ
′
s.

The h-step forecast in the case of estimated parameters is

ŶT+h|T = Π̂1ŶT+h−1|T + ...+ Π̂pŶT+h−p|T ,

where Π̂j are the estimated matrices of parameters. The h-step forecast error is now

YT+h − ŶT+h|T =
h−1∑
s=0

ΨsεT+h−s +
(
Yt+h − ŶT+h|T

)

The estimate of the MSE matrix of the h-step forecast is then

Σ̂(h) =
h−1∑
s=0

Ψ̂sΣ̂Ψ̂
′
s

with Ψs =
s∑

j=1

Ψ̂s−jΠ̂j.

6.1.2 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the VAR
model provides information about a variable’s or a group of variables’ forecasting
ability for other variables. The following intuitive notion of a variable’s forecasting
ability is due to Granger (1969). If a variable, or group of variables, Y1 is found
to be helpful for predicting another variable, or group of variables, Y2 then Y1 is
said to Granger-cause Y2; otherwise it is said to fail to Granger-cause Y2. For-
mally, Y1 fails to Granger-cause Y2 if for all s > 0 the MSE of a forecast of Y2,t+s

based on (Y2,t, Y2,t−1, ...) is the same as the MSE of a forecast of Y2,t+s based on
(Y2,t, Y2,t−1, ...) and (Y1,t, Y1,t−1, ...). Note that the notion of Granger causality only
implies forecasting ability.

In a bivariate V AR(p) model for Yt = (Y1t, Y2t)
′, Y2 fails to Granger-cause Y1

if all of the p VAR coefficient matrices Π1, ...,Πp are lower triangular. That is, all of
the coefficients on lagged values of Y2 are zero in the equation for Y1. The p linear
coefficient restrictions implied by Granger non-causality may be tested using the
Wald statistic. Notice that if Y2 fails to Granger-cause Y1 and Y1 fails to Granger-
cause Y2, then the VAR coefficient matrices Π1, ...,Πp are diagonal.
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6.1.3 Impulse Response and Variance Decompositions

As in the univariate case, a V AR(p) process can be represented in the form of a
vector moving average (VMA) process.

Yt = µ+ ut +Ψ1ut−1 +Ψ2ut−2 + ...,

where the k×k moving average matrices Ψs are determined recursively using (6.1.3).
The elements of coefficient matrices Ψs mean effects of ut−s shocks on Yt.

That is, the (i, j)-th element, ψs
ij, of the matrix Ψs is interpreted as the impulse

response
∂Yi,t+s

∂uj,t

=
∂Yi,t

∂uj,t−s

= ψs
ij, i, j = 1, ..., T.

Sets of coefficients ψij(s) = ψs
ij, i, j = 1, ..., T are called the impulse response

functions.
It is possible to decompose the h-step-ahead forecast error variance into the

proportions due to each shock ujt.
The forecast variance decomposition determines the proportion of the variation

Yjt due to the shock ujt versus shocks of other variables uit for i �= j.
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6.1.4 VAR in EViews

As an example of VAR estimation in EViews, consider two time series of returns of
monthly IBM stocks and the market portfolio returns from Fama-French database
(data is contained in IBM1.wf1).

There are several ways to estimate VAR model in EViews. The first one is
through the main menu. Clicking on View/Estimate VAR... will open a dialog
window for VAR model estimation.

Figure 6.1: VAR model estimation dialog window

We choose Unrestricted VAR and in the Endogenous Variables box we
have to specify the list of endogenous time series variables to be included in the
VAR model. We consider two excess return series of the IBM stock IBM_ex and the
market portfolio Mkt_ex.

In the Lag Intervals for Endogenous we have to specify the order of the
model, that is interval of lags to be included in the model. If we want to build a
model with only two lags, we write 1 2. This means, we include all lags beginning
from the first one and ending with the lag of order 2. We do not specify any
exogenous variables apart from the intercept term c.

Another way of calling the VAR estimation dialog window is to select both
endogenous variables in the workfile and in the context menu (right button click)
choose Open/as VAR.... The Endogenous Variables box will be filled in auto-
matically.

Finally, we can estimate VAR model from the command line. There is a
separate object, called var, to declare the VAR model. The estimation of the above
mentioned example will look like

100

4�E�Ƈ�*�V��Kp�����


Download free eBooks at bookboon.com

Financial Econometrics

 
101 

Multivariate Time Series Analysis

var ibm2.ls 1 2 ibm_ex mkt_ex

Here ibm2 is a name of the var-object which will be saved in the workfile, ls indicates
the estimation method; in this case it is OLS estimation method of the unrestricted
VAR model. Then, specifications of the lags pairs and the list of endogenous vari-
ables follow. If one wishes to include exogenous variables besides the intercept, it
can be done by typing a symbol @ followed by a list of exogenous variables. For
example,

var ibm2.ls 1 2 ibm_ex mkt_ex @ exvar1 exvar2

Click OK and EViews produces an estimation output for the specified VAR model.

Figure 6.2: Output for the VAR model estimation

Two columns correspond to two equation in the VAR model. The only signifi-
cant coefficient besides the intercept one is at the second lag of the market portfolio
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returns in the IBM equation. As expected, there is a unidirectional dynamic rela-
tionship from the market portfolio returns to the IBM returns, Thus, the IBM return
is affected by the past movements of the market while past movements of IBM stock
returns do not affect the market portfolio returns. The second equation (for market
portfolio) is not significant as suggested by the F-statistics. This means that the
the estimated model cannot explain variation in the market portfolio returns. This
can happen because we possibly omitted some important exogenous variables or the
order of the model is inappropriately selected. EViews provides a tool to choose the
most suitable lag order. In the workfile menu choose View/Lag Structure/Lag
Length Criteria... to determine the optimal model structure. In the appeared
Lag Specification window we choose pmax = 8 (maximal lag order).

All criteria indicate that the optimal lag order of the model is 0. This means
that the VAR model is inappropriate model to explain IBM and market portfolio
returns. Indeed, we know from the CAPM that market portfolio returns affect
the stock returns contemporaneously and are not in lag relationship. Thus, either
additional exogenous factors should be found to include in the model or another
structure of the model should be employed in this case.
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Figure 6.3: Output for the lag length selection procedure

Lag selection can be programmed manually in the same way as it is done for
ARMA model (see Chapter 3). There are some command references given below
which can be used to assess various statistic values in the VAR analysis in EViews.

6.2 Cointegration

The assumption of stationary of regressors and regressands is crucial for the proper-
ties and the OLS estimators discussed in Chapter 2. In this case, the usual statistical
results for the linear regression model and consistency of estimators hold. However,
when variables are non-stationary then the usual statistical results may not hold.

6.2.1 Spurious Regression

If there are trends in the data (deterministic or stochastic) this can lead to a spurious
results when running OLS regression. This is because time trend will dominate other
stationary variables and the OLS estimators will pick up covariances generated by
time trends only. While the effects of deterministic trends can be removed from the
regression by either including time trend regressor or simply de-trending variables,
non-stationary variables with stochastic trends may lead to invalid inferences.
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Var Data Members

Data Member Description

@eqlogl(k) log likelihood for equation k

@eqncoef(k) number of estimated coefficients in equation k

@eqregobs(k) number of observations in equation k

@meandep(k) mean of the dependent variable in equation k

@r2(k) R-squared statistic for equation k

@rbar2(k) adjusted R-squared statistic for equation k

@sddep(k) standard deviation of dependent variable in equation k

@se(k) standard error of the regression in equation k

@ssr(k) sum of squared residuals in equation k

@aic Akaike information criterion for the system

@detresid determinant of the residual covariance matrix

@hq Hannan-Quinn information criterion for the system

@logl log likelihood for system

@ncoefs total number of estimated coefficients in the var

@neqn number of equations

@regobs number of observations in the var

@sc Schwarz information criterion for the system

@svarcvgtype
Returns an integer indicating the convergence type of the structural decomposi-
tion estimation: 0 (convergence achieved), 2 (failure to improve), 3 (maximum
iterations reached), 4 (no convergence-structural decomposition not estimated)

@svaroverid over-identification LR statistic from structural factorization

@totalobs sum of "@eqregobs" from each equation ("@regobs*@neqn")

@coefmat coefficient matrix (as displayed in output table)

@coefse matrix of coefficient standard errors (corresponding to the output table)

@impfact factorization matrix used in last impulse response view

@lrrsp accumulated long-run responses from last impulse response view

@lrrspse standard errors of accumulated long-run responses

@residcov covariance matrix of the residuals

@svaramat estimated A matrix for structural factorization

@svarbmat estimated B matrix for structural factorization

@svarcovab covariance matrix of stacked A and B matrix for structural factorization

@svarrcov restricted residual covariance matrix from structural factorization

Consider, for example,

Y1,t = Y1,t−1 + u1,t, u1,t ∼ IN(0, 1)

Y2,t = Y2,t−1 + u2,t, u2,t ∼ IN(0, 1)

Both of the variables are non-stationary and independent from each other. In the
regression Y1,t = β0 + β1Y2,t + εt, the value of true slope parameter β1 = 0. Thus,
the value of the OLS estimate β̂1 should be insignificant. The actual estimations
produce high R2 coefficients and highly significant β1.

The problem with the spurious regression is that t- and F-statistics do not
follow standard distributions. As shown in Phillips (1986), β̂1 does not converge in
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probability to zero, R2 converges to unity as T → ∞ so that the model will appear
to fit well even though it is misspecified.

Regression with I(1) data only makes sense when the data are cointegrated.

6.2.2 Cointegration

Let Yt = (Y1t, ..., Ykt)
′ denote an k× 1 vector of I(1) time series. Yt is cointegrated

if there exists an k × 1 vector β = (β1, ..., βk)
′ such that

Zt = β′Yt = β1Y1t + ...+ βkYkt ∼ I(0). (6.2.1)

The non-stationary time series in Yt are cointegrated if there is a linear combination
of them that is stationary. If some elements of β are equal to zero then only the
subset of the time series in Yt with non-zero coefficients is cointegrated.

There may be different vectors β such that Zt = β′Yt is stationary. In general,
there can be 0 < r < k linearly independent cointegrating vectors. All cointegrating
vectors form a cointegrating matrix B. This matrix is again not unique. Some
normalization assumption is required to eliminate ambiguity from the definition.
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A typical normalization is

β = (1,−β2, ...,−βk)
′

so that the cointegration relationship may be expressed as

Zt = β′Yt = Y1t − β2Y2t − ...− βkYkt ∼ I(0).

6.2.3 Error Correction Models

Engle and Granger (1987) state that if a bivariate I(1) vector Yt = (Y1t, Y2t)
′ is coin-

tegrated with cointegrating vector β = (1,−β2)
′ then there exists an error correction

model (ECM) of the form

∆Y1t = δ1 + φ1(Y1,t−1 − β1Y2,t−1 +
∑
j=1

αj
11∆Y1,t−j +

∑
s=1

αj
12∆Y2,t−j + ε1t (6.2.2)

∆Y2t = δ2 + φ2(Y1,t−1 − β2Y2,t−1 +
∑
j=1

αj
21∆Y1,t−j +

∑
s=1

αj
22∆Y2,t−j + ε2t (6.2.3)

that describes the long-term relations of Y1t and Y2t. If both time series are I(1)

but are cointegrated (have a long-term stationary relationship), there is a force that
brings the error term back towards zero. If the cointegrating parameter β1 or β2 is
known, the model can be estimated by the OLS method.

6.2.4 Tests for Cointegration: The Engle-Granger Approach

Engle and Granger (1987) show that if there is a cointegrating vector, a simple
two-step residual-based testing procedure can be employed to test for cointegration.
In this case, a long-run equilibrium relationship between components of Yt can be
estimated by running

Y1,t = βY2,t + ut, (6.2.4)

where Y2,t = (Y2,t, ..., Yk,t)
′ is an (k− 1)× 1 vector. To test the null hypothesis that

Yt is not cointegrated, we should test whether the residuals ût ∼ I(1) against the
alternative ût ∼ I(0). This can be done by any of the tests for unit roots. The
most commonly used is the augmented Dickey-Fuller test with the constant term
and without the trend term. Critical values for this test is tabulated in Phillips and
Ouliaris (1990) or MacKinnon (1996).

Potential problems with Engle-Granger approach is that the cointegrating vec-
tor will not involve Y1,t component. In this case the cointegrating vector will not be
consistently estimated from the OLS regression leading to spurious results. Also, if
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there are more than one cointegrating relation, the Engle-Granger approach cannot
detect all of them.

Estimation of the static model (6.2.4) is equivalent to omitting the short-term
components from the error-correction model (6.2.3). If this results for autocorrela-
tion in residuals, although the results will still hold asymptotically, it might create a
severe bias in finite samples. Because of this, it makes sense to estimate the full dy-
namic model. Since all variables in the ECM are I(0), the model can be consistently
estimated using the OLS method. This approach leads to a better performance as
it does not push the short-term dynamics into residuals.

6.2.5 Example in EViews: Engle-Granger Approach

Consider as an example the Forward Premium Puzzle. Due to rational expectation
hypothesis, forward rate should be unbiased predictor of future spot exchange rate.
This means that in the regression of levels of spot St+1 on forward rate Ft the
intercept coefficient should be equal to zero and the slope coefficient should be
equal to unity.

Consider monthly data of the USG/GBP spot and forward exchange rate for
the period from January 1986 to November 2008 (the data is in FPP.wf1 file).
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Unit roots are often found in in levels of spot and forward exchange rates.
Augmented Dickey-Fuller test statistic values are -2.567 and -2.688 which are high
enough to fail rejecting the null hypothesis at 5% significance level. Phillips-Perron
test produces test statistic which value os on the border of the rejection region.
Thus, if two series are not cointegrated, there is a danger to obtain spurious results
from the OLS regression. However, if we look at plots of the two series we can see
that they co-move together very closely, so we can expect existence of cointegrating
relation between them.

Figure 6.4: Plots of forward and future spot USD/GBP exchange rates

To perform Engle-Granger test for cointegration let us run OLS regression
St+1 = βFt + ut in EViews and generate residuals from the model.

ls f_spt fwd

series resid1=resid

The second step is to test the residuals for stationarity. Augmented Dickey-Fuller
test strongly rejects the presence of a unit root in the residual series in the favour
of stationarity hypothesis.

Similar results are generated by other testing procedures. Thus, we conclude
that future spot and forward exchange rates are cointegrated. Hence, the OLS
results are valid for the regression in levels as well. In this case the slope coefficient
is equal to 0.957 which is positive and close to unity. However, we reject the null
hypothesis H0 : β1 = 1 with the Wald test.

Thus, the forward premium puzzle also exists even for the model in levels for
the exchange rates.
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Figure 6.5: Results of Augmented Dickey-Fuller test for residuals from the long-
run equilibrium relationship

Figure 6.6: Wald test results for testing H0 : β1 = 1

Another way of estimating cointegrating equation is to estimate a vector error
correction model. To do this, open both forward and spot series as VAR system
(select both series and in the context menu choose Open/as VAR...). In the VAR
type box select Vector Error Correction and in the Cointegration tab click on
Intercept (no trend) in CE - no intercept in VAR. EViews’ output is given
in Figure ??.

As expected, the output shows that the stationary series is approximately
St+1 − Ft with the mean around zero. Deviations from the long-run equilibrium
equation have significant effect on changes of the spot exchange rate. Another
highly significant coefficient α1

22 indicates a significant impact of ∆St on ∆Ft which
is not surprising. This underlies the relationships between the spot and forward rate
through the Covered Interest rate Parity condition (CIP).

The following subsection introduces an approach of testing for cointegration
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Figure 6.7: Output of the vector error correction model

when there exists more than one cointegrating relationship.

6.2.6 Tests for Cointegration: The Johansen’s Approach

An alternative approach to test for cointegration was introduced by Johansen (1988).
His approach allows to avoid some drawbacks existing in the Engle-Granger’s ap-
proach and test the number of cointegrating relations directly. The method is based
on the VAR model estimation.

Consider the V AR(p) model for the k × 1 vector Yt

Yt = Π1Yt−1 + ...+ΠpYt−p + ut, t = 1, ..., T, (6.2.5)

where ut ∼ IN(0,Σ).
Since levels of time series Yt might be non-stationary, it is better to transform

Equation (6.2.5) into a dynamic form, calling vector error correction model (VECM)

∆Yt = ΠYt−1 + Γ1∆Yt−1 + ...+ Γp−1∆Yt−p+1 + ut,

where Π = Π1 + ...+Πp − In and Γk = −
p∑

j=k+1

Πj, k = 1, ..., p− 1.
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Let us assume that Yt contains non-stationary I(1) time series components.
Then in order to get a stationary error term ut, ΠYt−1 should also be stationary.
Therefore, ΠYt−1 must contain r < k cointegrating relations. If the V AR(p) process
has unit roots then Π has reduced rank rank(Π) = r < k. Effectively, testing for
cointegration is equivalent to checking out the rank of the matrix Π.

If Π has a full rank then all time series in Y are stationary, if the rank of Π is
zero then there are no cointegrating relationships.

If 0 < rank (Π) = r < k. This implies that Yt is I(1) with r linearly indepen-
dent cointegrating vectors and k − r non-stationary vectors. Since Π has rank r it
can be written as the product

Π
(k×k)

= α
(k×r)

β′

(r×k)

,

where α and β are k × r matrices with rank(α) = rank(β) = r. The matrix β

is a matrix of long-run coefficients and α represents the speed of adjustment to
disequilibrium. The VECM model becomes

∆Yt = αβ′Yt−1 + Γ1Yt−1 + ...+ Γp−1∆Yt−p+1 + ut, (6.2.6)

with β′Yt−1 ∼ I(0).
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Johansen’s methodology of obtaining estimates of α and β is given below.
Johansen’s Methodology
Specify and estimate a V AR(p) model (6.2.5) for Yt.
Determine the rank of Π; the maximum likelihood estimate for β equals the

matrix of eigenvectors corresponding to the r largest eigenvalues of a k× k residual
matrix (see Hamilton (1994), Lutkepohl (1991), Harris (1995) for more detailed
description).

Construct likelihood ratio statistics for the number of cointegrating relation-
ships. Let estimated eigenvalues are λ̂1 > λ̂2 > ... > λ̂k of the matrix Π.

Johansen’s likelihood ratio statistic tests the nested hypotheses

H0 : r ≤ r0 vs. H1 : r > r0

The likelihood ratio statistic, called the trace statistic, is given by

LRtrace(r0) = −T

k∑
i=r0+1

log
(
1− λ̂i

)
.

It checks whether the smallest k−r0 eigenvalues are statistically different from zero.
If rank (Π) = r0 then λ̂r0+1, ..., λ̂k should all be close to zero and LRtrace(r0) should
be small. In contrast, if rank (Π) > r0 then some of λ̂r0+1, ..., λ̂k will be nonzero (but
less than 1) and LRtrace(r0) should be large.

We can also test H0 : r = r0 against H1 : r0 = r0 + 1 using so called the
maximum eigenvalue statistic

LRmax(r0) = −T log
(
1− λ̂r0+1

)
.

Critical values for the asymptotic distribution of LRtrace(r0) and LRmax(r0) statistics
are tabulated in Osterwald-Lenum (1992) for k − r0 = 1, ..., 10.

In order to determine the number of cointegrating vectors, first test H0 : r0 = 0

against the alternative H1 : r0 > 0. If this null is not rejected then it is concluded
that there are no cointegrating vectors among the k variables in Yt. If H0 : r0 = 0 is
rejected then there is at least one cointegrating vector. In this case we should test
H0 : r0 ≤ 1 against H1 : r0 > 1. If this null is not rejected then we say that there
is only one cointegrating vector. If the null is rejected then there are at least two
cointegrating vectors. We test H0 : r0 ≤ 2 and so on until the null hypothesis is not
rejected.

In a small samples tests are biased if asymptotic critical values are used without
a correction. Reinsel and Ahn (1992) and Reimars (1992) suggested small samples
bias correction by multiplying the test statistics with T − kp instead of T in the
construction of the likelihood ratio tests.
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6.2.7 Example in EViews: Johansen’s Approach

A very good example of a model with several cointegrating equations has been given
by Johansen and Juselius (1990) (1992) (see also Harris (1995)). They considered a
single equation approach to combine both Purchasing Power Parity and Uncovered
Interest rate Parity condition in one model.

In this model we expect two cointegrating equations between the UK consumer
price index P , the US consumer price index P ∗, USD/GBP exchange rate S and
two interest rates I and I∗ in the domestic and foreign countries respectively. If we
denote their log counterparts by the corresponding small letter, the theory suggest
that the following two relationships should hold in efficient markets with rational
investors: pt − p∗t = st and ∆st+1 = it − i∗t . The data is considered within the range
from January 1989 to November 2008 is given in PPPFP1.wf1 file.

We create the log counterparts of the variables in the standard ways, like

series lcpi_uk=log(cpi_uk)

and so on. In order to check for cointegration we can either estimate VECM
(open 5 series as VAR model) or create a Group with the variables. Johansen and
Juselius (1990) included into the model seasonal dummy variables as well as crude oil
prices. We restrict ourself with only seasonal dummy for simplicity. We can create
dummy variables by using a command @expand, which allows to create a group of
dummy variables by expanding out one or more series into individual categories.
For this purposes we need first to create a variable indicating the quarter of the
observation. We do it in the following way

series quarter=@quarter(cpi_uk)

The command @quarter returns the quarter of the year in which the current ob-
servation begins. The second step is to create the dummy variables:

group dum=@expand(quarter)

EViews will create a new group object dum containing four dummy variables for
each of the quarter of the observation.

In both cases, either with VAR or with group objects, one can perform Jo-
hansen’s test procedure by clicking on View/Cointegration Test....

The dialog window will ask offer to specify the form of the VECM and the
cointegrating equation (with or without intercept or trend components). We choose
the first option with no trend and intercept to avoid perfect collinearity since we
include four dummy variables as exogenous in the model. In the box Exogenous
Variables enter the name of the dummy variables group dum.

In the box Lag Intervals for D(Endogenous) we set 1 4 – we include 4 lags
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Figure 6.8: Johansen’s Cointegration test dialog window

in the model. This is determined by EViews as optimal according to 3 criteria (first
estimate VAR with any of the lag specifications, check the optimality of the lag
order in View/Lag Structure/Lag Specification/Lag Length Criteria and
then re-estimate the VECM with the optimal lag order).
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Figure 6.9: Output for Johansen’s Cointegration test

EViews produces results for various hypothesis tested, from no cointegration
(r = 0) to to increasing number of cointegrating vectors (see Figure ??). The
eigenvalues of matrix Π̂ is given in the second column. In the third column λtrace

statistic is higher than the corresponding critical value at 5% significance for the
first hypothesis. This means that we reject the null hypothesis of no cointegration.
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However, we cannot reject the hypothesis that there is at most one cointegrating
equation. On the basis of λmax statistics (the second panel) it is also possible to
accept that there is only one cointegrating relationship. The following two panels
provide estimates of matrices β and α respectively.

Note the warning on the top of the output window that saying that critical
values assume no exogenous series. This means that we have to take into account
that the critical values we are using might not be fully correct as we included ex-
ogenous dummy variables in the model. This may give as an explanation why we
detected only one cointegrating equation instead of two which were expected. An-
other reason may be that the second relation based on the UIP condition involves
changes of exchange rate rather than levels considered in the VAR model.
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