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Abstract. Min-entropy is a statistical measure of the amount of ran-
domness that a particular distribution contains. In this paper we investi-
gate the notion of computational min-entropy which is the computational
analog of statistical min-entropy. We consider three possible definitions
for this notion, and show equivalence and separation results for these
definitions in various computational models.
We also study whether or not certain properties of statistical min-entropy
have a computational analog. In particular, we consider the following
questions:

1. Let X be a distribution with high computational min-entropy. Does
one get a pseudo-random distribution when applying a “randomness
extractor” on X?

2. Let X and Y be (possibly dependent) random variables. Is the com-
putational min-entropy of (X, Y ) at least as large as the computa-
tional min-entropy of X?

3. Let X be a distribution over {0, 1}n that is “weakly unpredictable”
in the sense that it is hard to predict a constant fraction of the
coordinates of X with a constant bias. Does X have computational
min-entropy Ω(n)?

We show that the answers to these questions depend on the computa-
tional model considered. In some natural models the answer is false and
in others the answer is true. Our positive results for the third question
exhibit models in which the “hybrid argument bottleneck” in “moving
from a distinguisher to a predictor” can be avoided.

1 Introduction

One of the most fundamental notions in theoretical computer science is that of
computaional indistinuishability [1,2]. Two probability distributions are deemed
close if no efficient3 test can tell them apart - this comes in stark contrast to
3 What is meant by “efficient” can naturally vary by specifying machine models and

resource bounds on them
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the information theoretic view which allows any test whatsoever. The discovery
[3,2,4] that simple computational assumptions (namely the existance of one-way
functions) make the computational and information theoretic notions completely
different has been one of the most fruitful in CS history, with impact on cryp-
tography, complexity theory and computational learning theory.

The most striking result of these studies has been the efficient construction
of nontrivial pseudorandom distributions, namely ones which are information
theoretically very far from the uniform distribution, but are nevertheless indis-
tinguishable from it. Two of the founding papers [2,4] found it natural to extend
information theory more generally to the computational setting, and attempt
to define its most fundamental notion of entropy4. The basic question is the
following: when should we say that a distribution has (or is close to having)
computational entropy (or pseudoentropy) k?. Interestingly, these two papers
give two very different definitions! This point may be overlooked, since for the
most interesting special case, the case of pseudorandomness (i.e., when the dis-
tributions are over n-bit strings and k = n), the two definitions coincide. This
paper is concerned with the other cases, namely k < n, attempting to continue
the project of building a computational analog of information theory.

1.1 Definitions of Pseudoentropy

To start, let us consider the two original definitions. Let X be a probability
distribution over a set S.

A definition using “compression”. Yao’s definition of pseudoentropy [2] is based
on compression. He cites Shannon’s definition [5], defining H(X) to be the min-
imum number of bits needed to describe a typical element of X . More precisely,
one imagines the situation of Alice having to send Bob (a large number of)
samples from X , and is trying to save on communication. Then H(X) is the
smallest k for which there are a compression algorithm A (for Alice) from S into
k-bit strings, and a decompression algorithm B (for Bob) from k-bit strings into
S, such that B(A(x)) = x (in the limit, for typical x from X). Yao take this
definition verbatim, adding the crucial computational constraint that both com-
pression and decompression algorithms must be efficient. This notion of efficient
compression is further studied in [6].

A definition using indistinguishability. Hastad et al’s definition of pseudoentropy
[4] extends the definition of pseudorandomness syntactically. As a distribution is
said to be pseudorandom if it is indistinguishable from a distribution of maximum
entropy (which is unique), they define a distribution to have pseudoentropy k is

4 While we will first mainly talk about Shannon’s entropy, we later switch to min-
entropy and stay with it throughout the paper. However the whole introduction
may be read when regarding the term “entropy” with any other of its many formal
variants, or just as well as the informal notion of “information content” or “uncer-
tainty”



202 Boaz Barak, Ronen Shaltiel, and Avi Wigderson

it is indistinguishable from a distribution of Sahnnon entropy k (for which there
are many possibilities).

It turns out that the two definitions of pseudoentropy above can be very
different in natural computational settings, despite the fact that in the infor-
mation theoretic setting they are identical for any k. Which definition, then, is
the “natural one” to choose from? This question is actually more complex, as
another natural point of view lead to yet another definition.

A definition using a natural metric space. The computational viewpoint of ran-
domness may be thought of as endowing the space of all probability distributions
with new, interesting metrics.

For every event (=test) T in our probability space we define: dT (X, Y ) =
|PrX [T ]−PrY [T ]|. In words, the distance between X and Y is the difference (in
absolute value) of the probabilities they assign to T .5

Note that given a family of metrics, their maximum is also a metric. An
information theoretic metric on distributions, the statistical distance6 (which is
basically 1

2L1-distance) is obtained by taking the maximum over the T -metrics
above for all possible tests T . A natural computational metric, is given by taking
the maximum over any class C of efficient tests. When should we say that a
distribution X is indistinguishable from having Shannon entropy k? Distance to
a set is the distance to the closest point in it, so X has to be close in this metric
to some Y with Shannon entropy k.

A different order of quantifiers. At first sight this may look identical to the
“indistinguishability” definition in [4]. However let us parse them to see the
difference. The [4] definition say that X has pseudoentropy k if there exists a
distribution Y of Shannon entropy k, such that for all tests T in C, T has roughly
the same probability under both X and Y . The metric definition above reverses
the quantifiers: X has pseudoentropy k if for every a distribution Y of Shannon
entropy k, there exists a test T in C, which has roughly the same probability
under both X and Y . It is easy to see that the metric definition is more liberal
- it allows for at least as many distributions to have pseudoentropy k. Are they
really different?

Relations between the three definitions. As all these definitions are natural and
well-motivated, it makes sense to study their relationship. In the information
theoretic world (when ignoring the “efficiency” constraints) all definitions are
equivalent. It is easy to verify that regardless of the choice of a class C of “ef-
ficient” tests, they are ordered in permisiveness (allowing more distributions to
have pseudoentropy k). The “indistinguishability” definition of [4] is the most
stringent, then the “metric definition”, and then the “compression” definition of

5 This isn’t precisely a metric as there may be different X and Y such that dT (X, Y ) =
0. However it is symmetric and satisfies the triangle inequality.

6 Another basic distance measure is the so called KL-divergence, but for our purposes,
which concern very close distributions, is not much different than statistical distance
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[2]. What is more interesting is that we can prove collapses and separations for
different computational settings and assumptions. For example, we show that
the first two definitions drastically differ for logspace observers, but coincide for
polynomial time observers (both in the uniform and nonuniform settings). The
proof of the latter statement uses the “min-max” Theorem of [7] to “switch”
the order of quantifiers. We can show some weak form of equivalence between all
three definitions for circuits. We show that the “metric” coincides with the “com-
pression” definition if NP ⊆ BPP. More precisely, we give a non-deterministic
reduction showing the equivalence of the two definitions. This reduction guaran-
tees high min-entropy according to the ”metric” definition if the distribution has
high min-entropy according to the “compression” distribution with respect to an
NP oracle. A clean way to state this is that all three definitions are equivalent
for PH/poly. We refer to this class as the class of poly-size PH-circuits. Such
circuits are poly-size circuits which are allowed to compute an arbitrary function
in the polynomial-hierarchy (PH). We remark that similar circuits (for various
levels of the PH hierarchy) arise in related contexts in the study of “computa-
tional randomness”: They come up in conditional “derandomization” results of
AM [8,9,10] and “extractors for samplable distributions” [11].

1.2 Pseudoentropy versus Information Theoretic Entropy

We now move to another important part of our project. As these definitions are
supposed to help establish a computational version of information theory, we
attempt to see which of them respect some natural properties of information-
theoretic entropy.

Using randomness extractors. In the information theoretic setting, there are ran-
domness extractors which convert a high entropy7 distribution into one which is
statistically close to uniform. The theory of extracting the randomness from such
distributions is by now quite developed (see surveys [12,13,14]). It is natural to
expect that applying these randomness extractors on high pseudoentropy dis-
tributions produces a pseudorandom distribution. In fact, this is the motivation
for pseudoentropy in some previous works [15,4,16].

It is easy to see that the the “indistinguishability” definition of [4] has this
property. This also holds for the “metric” definition by the equivalence above.
Interestingly, we do not know whether this holds for the “compression” definition.
Nevertheless, we show that some extractor constructions in the literature (the
ones based on Trevisan’s technique [17,18,19,20,10]) do produce a pseudorandom
distribution when working with the “compression” definition.

7 It turns out that a different variant of entropy called “min-entropy” is the
correct measure for this application. The min-entropy of a distribution X is
log2(minx 1/ Pr[X = x]). This should be compared with Shannon’s entropy in which
the minimum is replaced by averaging.
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The information in two dependent distributions. One basic principle in informa-
tion theory is that two (possibly dependent) random variables have at least as
much entropy as any one individually, e.g. H(X, Y ) ≥ H(X). A natural ques-
tion is whether this holds when we replace information-theoretic entropy with
pseudoentropy. We show that the answer depends on the model of computation.
If there exist one-way functions, then the answer is no for the standard model of
polynomial-time distinguishers. On the other hand, if NP ⊆ BPP, then the an-
swer is yes. Very roughly speaking, the negative part follows from the existence
of pseudorandom generators, while the positive part follows from giving a non-
deterministic reduction which relies on nondeterminism to perform approximate
counting. Once again, this result can be also stated as saying that the answer is
positive for poly-size PH-circuits. We remark that the positive result holds for
(nonuniform) online space-bounded computation as well.

Entropy and unpredictability. A deeper and interesting connection is the one
between entropy and unpredictability. In the information theoretic world, a dis-
tribution which is unpredictable has high entropy.8 Does this relation between
entropy and unpredictability holds in the computational world?

Let us restrict ourselves here for a while to the metric definition of pseu-
doentropy. Two main results we prove is that this connection indeed holds in
two natural computational notions of efficient observers. One is for logspace
observers. The second is for PH-circuits. Both results use one mechanism - a
different characterization of the metric definition, in which distinuguishers ac-
cept very few inputs (less than 2k when the pseudoentropy is k). We show that
predictors for the accepted set are also good for any distribution “caught” by
such a distinguisher. This direction is promising as it suggests a way to “bypass”
the weakness of the “hybrid argument”.

The weakness of the hybrid argument. Almost all pseudorandom generators
(whether conditional such as the ones for small circuits or unconditional such
as the ones for logspace) use the hybrid argument in their proof of correctness.
The idea is that if the output distribution can be efficiently distinguished from
random, some bit can be efficiently predicted with nontrivial advantage. Thus,
pseudorandomness is established by showing unpredictability.

However, in standard form, if the distinughishability advantage is ε, the pre-
diction advantage is only ε/n. In the results above, we manage (for these two
computational models) to avoid this loss and make the prediction advantage
Ω(ε) (just as information theory suggests).

While we have no concrete applications, this seem to have potential to im-
prove various constructions of pseudorandom generators. To see this, it suffices
to observe the consequences of the hybrid argument loss. It requires every output
bit of the generator to be very unpredictable, for which a direct cost is paid in the

8 We consider two different forms of prediction tests: The first called “next bit predic-
tor” attempts to predict a bit from previous bits, whereas the second called “com-
plement predictor” has access to all the other bits, both previous and latter.
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seed length (and complexity) of the generator. For generators against circuits, a
long sequence of works [2,21,22,16] resolved it optimally using efficient hardness
amplification. These results allow constructing distributions which are unpre-
dictable even with advantage 1/poly(n). The above suggests that sometimes
this amplification may not be needed. One may hope to construct a pseudo-
random distribution by constructing an unpredictable distribution which is only
unpredictable with constant advantage, and then use a randomness extractor to
obtain a pseudorandom distribution.9

This problem is even more significant when constructing generators against
logspace machines [24,25]. The high unpredictability required seems to be the
bottleneck for reducing the seed length in Nisan’s generator [24] and its refine-
ments from O((log n)2) bits to the optimal O(log n) bits (that will result in
BPL = L). The argument above gives some hope that for fooling logspace ma-
chines (or even just constant-width oblivious branching programs) the suggested
approach may yield substantial improvements. However, in this setup there is
another hurdle: In [26] it was shown that randomness extraction cannot be done
by one pass log-space machines. Thus, in this setup it is not clear how to move
from pseudoentropy to pseudorandomness.

1.3 Organization of the Paper

In Section 2 we give some basic notation. Section 3 formally defines our three ba-
sic notions of pseudoentropy, and proves a useful characterization of the metric
definition. In Sections 5 and 6 we prove equivalence and separations results be-
tween the various definitions in several natural computational models. Section 7
is devoted to our results about computational analogs of information theory
for concatenation and unpredictability of random variables. Because of space
limitations many of the proofs do not appear in this version.

2 Preliminaries

Let X be a random variable over some set S. We say that X has (statistical) min-
entropy at least k, denoted H∞(X) ≥ k, if for every x ∈ S, Pr[X = x] ≤ 2−k.
We use Un to denote the uniform distribution on {0, 1}n.

Let X, Y be two random variables over a set S. Let f : S → {0, 1} be some
function. The bias of X and Y with respect to f , denoted biasf (X, Y ), is defined
by

∣
∣E[f(X)] − E[f(Y )]

∣
∣. Since it is sometimes convenient to omit the absolute

value, we denote bias∗f (X, Y ) = E[f(X)]− E[f(Y )].
The statistical distance of X and Y , denoted dist(X, Y ), is defined to be

the maximum of biasf (X, Y ) over all functions f . Let C be a class of functions
from S to {0, 1} (e.g., the class of functions computed by circuits of size m

9 This approach was used in [16]. They show that even “weak” hardness amplification
suffices to construct a high pseudoentropy distribution using the pseudo-random
generator construction of [23]. However, their technique relies on the properties of
the specific generator and cannot be applied in general.
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for some integer m). The computational distance of X and Y w.r.t. C, denoted
comp-distC(X, Y ), is defined to be the maximum of biasf (X, Y ) over all f ∈ C.
We will sometimes drop the subscript C when it can be inferred from the context.

Computational models. In addition to the standard model of uniform and non-
uniform polynomial-time algorithms, we consider two additional computational
models. The first is the model of PH-circuits. A PH-circuit is a boolean circuit
that allows queries to a language in the polynomial hierarchy as a basic gate.10

The second model is the model of bounded-width read-once oblivious branching
programs. A width-S read once oblivious branching program P is a directed
graph with Sn vertices, where the graph is divided into n layers, with S vertices
in each layer. The edges of the graph are only between from one layer to the next
one, and each edge is labelled by a bit b ∈ {0, 1} which is thought of as a variable.
Each vertex has two outgoing edges, one labelled 0 and the other labelled 1. One
of the vertices in the first layer is called the source vertex, and some of the
vertices in the last layer are called the accepting vertices. A computation of
the program P on input x ∈ {0, 1}n consists of walking the graph for n steps,
starting from the source vertex, and in step i taking the edge labelled by xi. The
output of P (x) is 1 iff the end vertex is accepting. Note that variables are read
in the natural order and thus width-S read once oblivious branching programs
are the non-uniform analog of one-pass (or online) space-logS algorithms.

3 Defining Computational Min-entropy

In this section we give three definitions for the notion of computational (or
“pseudo”) min-entropy. In all these definitions, we fix C to be a class of functions
which we consider to be efficiently computable. Our standard choice for this class
will be the class of functions computed by a boolean circuit of size p(n), where n
is the circuit’s input length and p(·) is some fixed polynomial. However, we will
also be interested in instantiations of these definitions with respect to different
classes C. We will also sometimes treat C as a class of sets rather then functions,
where we say that a set D is in C iff its characteristic function is in C. We will
assume that the class C is closed under complement.

3.1 HILL-type Pseudoentropy: Using Indistinguishability

We start with the standard definition of computational (or “pseudo”) min-
entropy, as given by [4]. We call this definition HILL-type pseudoentropy.

Definition 1. Let X be a random variable over a set S. Let ε ≥ 0. We say
that X has ε-HILL-type pseudoentropy at least k, denoted HHILL

ε (X) ≥ k,
if there exists a random variable Y with (statistical) min-entropy at least k such
that the computational distance (w.r.t. C) of X and Y is at most ε.

10 Equivalently, the class languages accepted by poly-size PH-circuits is PH/poly.
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We will usually be interested in ε-pseudoentroy for ε that is a small constant.
In these cases we will sometimes drop ε and simply say that X has (HILL-type)
pseudoentropy at least k (denoted HHILL(X) ≥ k).

3.2 Metric-Type Pseudoentropy: Using a Metric Space

In Definition 1 the distribution X has high pseudoentropy if there exists a high
min-entropy Y such that X and Y are indistinguishable. As explained in the
introduction, it is also natural to reverse the order of quantifiers: Here we allow
Y to be a function of the “distinguishing test” f .

Definition 2. Let X be a random variable over a set S. Let ε ≥ 0. We say that
X has ε-metric-type pseudoentropy at least k, denoted HMetric

ε (X) ≥ k, if
for every test f on S there exists a Y which has (statistical) min-entropy at least
k and biasf (X, Y ) < ε.

It turns out that metric-pseudoentropy is equivalent to a different formula-
tion. (Note that the condition below is only meaningful for D such that |D| < 2k).
The proof of Lemma 1 appears in the full version.

Lemma 1. For every class C which is closed under complement and for every
k ≤ log |S| − 1 and ε, HMetric

ε (X) ≥ k if and only if for every set D ∈ C,
Pr[X ∈ D] ≤ |D|

2k + ε

3.3 Yao-Type Pseudoentropy: Using Compression

Let C be a class of functions which we consider to efficiently computable. Recall
that we said that a set D is a member of C if its characteristic function was in
C. That is, a set D is in C if it is efficiently decidable. We now define a family
Ccompress of sets that are efficiently compressible. That is, we say that a set
D ⊆ S is in Ccompress(�) if there exist functions c, d ∈ C (c : S → {0, 1}� stands for
compress and d : {0, 1}� → S for decompress) such that D = {x|d(c(x)) = x}.
Note that every efficiently compressible set is also efficiently decidable (assuming
the class C is closed under composition). Yao-type pseudoentropy is defined by
replacing the quantification over D ∈ C in the alternative characterization of
metric-type pseudoentropy (Lemma 1) by a quantification over D ∈ Ccompress(�)
for all � < k. The resulting definition is the following:

Definition 3. Let X be a random variable over a set S. X has ε-Yao-type
pseudoentropy at least k, denoted HYao

ε (X) ≥ k, if for every � < k and every set
D ∈ Ccompress(�) , Pr[X ∈ D] ≤ 2l−k + ε
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4 Using Randomness Extractors

An extractor uses a short seed of truly random bits to extract many bits which
are (close to) uniform.

Definition 4 ([27]). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for every distribution X on {0, 1}n with H∞(x) ≥ k, the distribution
Z = E(X, Ud) has dist(Z, Um) < ε.

We remark that there are explicit (polynomial time computable) extractors
with seed length polylog(n/ε) and m = k. The reader is referred to survey papers
on extractors [12,13,14]. The following standard lemma says that if a distribution
X has HILL-type pseudoentropy at least k with respect to circuits, then for every
randomness extractor the distribution E(X, Ud) is pseudorandom.

Lemma 2. Let C be the class of polynomial size circuits. Let X be a distribution
with HHILL

ε (X) ≥ k and let E be a (k, ε)-extractor computable in time poly(n)
then comp-distC(E(X, Ud), Um) < 2ε.

Note that by Theorem 1 the same holds for the metric definition. Interest-
ingly, we do not know whether this holds for Yao-type pseudoentropy. We can
however show that this holds for the extractor of Trevisan [17]. Trevisan’s ex-
tractor ETre : {0, 1}n × {0, 1}O(log2 n/ log k) → {0, 1}

√
k is a (k, 1/n)-extractor

Lemma 3. Let C be the class of polynomial size circuits. Let X be a distribution
with HYao

ε (X) ≥ k, then comp-distC(ETre(X, Ud), Um) < 2ε.

The proof of Lemma 3 appears in the full version. Loosely speaking, the cor-
rectness proof of Trevisan’s extractor (and some later constructions, c.f., [14])
shows that if the output of the extractor isn’t close to uniform, then the distribu-
tion X can be compressed (which is impossible for a distribution of sufficiently
high min-entropy). For the lemma, one only needs to observe that in this argu-
ment an efficient distinguisher gives rise to an efficient compressing algorithm.
Thus, running the extractor on an “incompressible” distribution gives a pseudo-
random distribution.

5 Relationships between Definitions

5.1 Equivalence between HILL-type and Metric-Type

The difference between HILL-type and metric-type pseudoentropy is in the order
of quantifiers. HILL-type requires that there exist a unique “reference distribu-
tion” Y with H∞(Y ) ≥ k such that for every D, biasD(X, Y ) < ε, whereas
metric-type allows Y to depend on D, and only requires that for every D there
exists such a Y . It immediately follows that for every class C and every X ,
HMetric(X) ≥ HHILL(X). In this section we show that the other direction also
applies (with small losses in ε and time/size) for small circuits.
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Theorem 1 (Equivalence of HILL-type and metric-type for circuits).
Let X be a distribution over {0, 1}n. For every ε, δ > 0 and k, if HMetric

ε−δ (X) ≥ k
(with respect to circuits of size O(ns/δ2) then HHILL

ε (X) ≥ k (with respect to
circuits of size s)

The proof of Theorem 1 appears only in the full version. We now provide a
sketch of the argument. It is sufficient to show that if HHILL

ε (X) < k then then
HMetric

ε−δ (X) < k. Suppose indeed that HHILL
ε (X) < k. This implies that for every

Y with H∞(Y ) ≥ k there is a small circuit D ∈ C such that biasD(X, Y ) ≥ ε.
We consider a game between two players. The “circuit player” Alice chooses

a small circuit D and the “distribution player” Bob chooses a “flat” distribution
Y with H∞(Y ) ≥ k.11 (Note that both players have a finite number of strategies
in the game.) After the choices are made, Bob pays distD(X, Y ) dollars to Alice.
Our assumption says that if Alice plays after Bob then she can always win ε
dollars. Loosely speaking, the “min-max” theorem of [7] allows to switch the
order of quantifiers and assert that Alice can guarantee the same amount even
when playing first.12 More formally, we conclude that there exists a distribution
D̄ over circuits for Alice such that she expects to get ε dollars for every reply
Y of Bob. Note that we were able to switch the order of quantifiers to that of
the “metric” definition. We are left with the task of converting D̂ into a single
circuit. This is done by sampling sufficiently many circuits D1, · · · , Dt from D̂
and taking their average. By a union bound there exists a choice of D1, · · · , Dt

which is good for every distribution Y .13

In the full version we also prove equivalence for uniform polynomial time
machines.14

5.2 Equivalence between All Types for PH-circuits

We do not know whether the assumption that HYao
ε (X) ≥ k for circuits implies

that HMetric
ε (X) ≥ k′ for slightly smaller k′ and circuit size (and in fact, we

conjecture that it’s false). However, we can prove it assuming the circuits for the
Yao-type definition have access to an NP-oracle.
11 A “flat” distribution is a distribution which is uniformly distributed over a subset

of S.
12 There is a subtlety here. In order to apply the theorem, Alice must be able to win

ε dollars even when Bob plays a mixed strategy (i.e., a convex combination of his
choices). However, a convex combination of flat distributions with min-entropy k
also has min-entropy k.

13 It is crucial that this union bound is not performed over the
�
2n

2k

�
choices for Y but

rather on the 2n inputs. More precisely, we show that there exist D1, · · · , Dt such
that for all inputs x, 1

t

�
Di(x) ≈ �[D̂(x)].

14 We find this surprising because the argument above seems to exploit the non-
uniformity of circuits: The “min-max theorem” works only for finite games and
is non-constructive - it only shows existence of a distribution D̂ and gives no clue
to its complexity. The key idea is the observation that pseudoentropy with respect
to uniform Turing machines implies also pseudoentropy for “slightly non-uniform”
Turing machines. Exact details appear in the full version.



210 Boaz Barak, Ronen Shaltiel, and Avi Wigderson

Theorem 2. Let k′ = k+1 There is a constant c so that if HYao
ε (X) ≥ k′ (with

respect to circuits of size max(s, nc) that use an NP-oracle) then HMetric
ε (X) ≥ k

(with respect to circuits of size s).

The proof of Theorem 2 appears in the full version. The reduction in the
proof of Theorem 2 uses an NP-oracle. The class of polynomial size PH-circuits
are closed under the use of NP-oracles (PHNP /poly = PH/poly). Applying the
argument of Theorem 2 give the following corollary.

Corollary 1. Let C be the class of polynomial size PH-circuits. If HYao
ε (X) ≥

2k then HMetric
ε (X) ≥ k.

6 Separation between Types

Given the results of the previous section it is natural to ask if HILL-type and
metric-type pseudoentropy are equivalent in all natural computational models?
We give a negative answer and prove that there’s large gap between HILL-
type and metric-type pseudoentropy in the model of bounded-width read-once
oblivious branching programs.

Theorem 3. For every constant ε > 0 and sufficiently large n ∈ N, and ,
there exists a random X variable over {0, 1}n such that HMetric

ε X ≥ (1 − ε)n
with respect to width-S read once oblivious branching programs, but HHILL

1−ε (X) ≤
polylog(n, S) with respect to width-4 oblivious branching programs.

Theorem 3 follows from the following two lemmas, whose proofs appear in
the full version:

Lemma 4 (Based on [28]). Let ε > 0 be some constant and S ∈ N such that
S > 1

ε . Let l = 10
ε log S and consider the distribution X = (Ul, Ul, . . . , Ul) over

{0, 1}n for some n < S which is a multiple of l. Then, HMetric
ε (X) ≥ (1 − ε)n

with respect to width-S oblivious branching programs.

Lemma 5. Let ε > 0 be some constant, and X be the random variable (Ul, Ul,
. . . , Ul) over {0, 1}n (where l > log n). Then, HHILL

(1−ε)(X) ≤ 100
log(1/ε) l

3 with respect
to width-4 oblivious branching programs.

7 Analogs of Information-Theoretic Inequalities

7.1 Concatenation Lemma

A basic fact in information theory is that for every (possibly correlated) random
variables X and Y , the entropy of (X, Y ) is at least as large as the entropy of
X . We show that if one-way-functions exist then this does not hold for all types
of pseudoentropy with respect to polynomial time circuits. On the other hand,
we show that the fact above does hold for polynomial-sized PH-circuits and for
bounded-width oblivious branching programs.15

15 With respect to the latter, we only prove that concatenation holds for metric-type
pseudoentropy.
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Negative result for standard model. Our negative result is the following easy
lemma, whose proof is omitted:

Lemma 6. Let G : {0, 1}l → {0, 1}n be a (poly-time computable) pseudorandom
generator.16 Let (X, Y ) be the random variables (G(Ul), Ul). Then HHILL

ε (X) = n
(for a negligible ε) but HYao

1/2 (X, Y ) ≤ l + 1.

Positive result for PH-circuits. Our positive result for PH-circuits is stated in
the following lemma, whose proof appears in the full version:

Lemma 7. Let X be a random variable over {0, 1}n and Y be a random variable
over {0, 1}m. Suppose that HYao

ε (X) ≥ k with respect to s-sized PH-circuits.
Then HYao

ε (X, Y ) ≥ k with respect to O(s)-sized PH-circuits.

Applying the results of Section 5.2, we obtain that with respect to PH-
circuit, the concatenation property is satisfied also for HILL-type and Metric-
type pseudoentropy.

Positive result for bounded-width oblivious branching programs. We also show
that the concatenation property holds also for metric-type pseudoentropy with
respect to bounded-width read-once oblivious branching programs. This is stated
in Lemma 8, whose proof appears in the full version. Note that the quality of this
statement depends on the order of the concatenation (i.e., whether we consider
(X, Y ) or (Y, X)).

Lemma 8. Let X be a random variable over {0, 1}n and Y be a random variable
over {0, 1}m. Suppose that HMetric

ε (X) ≥ k with respect to width-S read-once
oblivious branching programs. Then, HMetric

ε (X, Y ) ≥ k and HMetric

2εS (Y, X) ≥
k − log(1/ε) with respect to such algorithms.

7.2 Unpredictability and Entropy

Loosely speaking, a random variable X over {0, 1}n is δ-unpredictable is for
every index i, it is hard to predict Xi from X[1,i−1] (which denotes X1, . . . , Xi−1)
with probability better than 1

2 + δ.

Definition 5. Let X be a random variable over {0, 1}n. We say that X is δ-
unpredictable in index i with respect to a class of algorithms C if for every
P ∈ C, Pr[P (X[1,i−1]) = Xi] < 1

2 + δ. X is δ-unpredictable if for every P ∈ C
Pr[P (i, X[1,i−1]) = Xi] < 1

2 + δ where this probability is over the choice of X
and over the choice of i←R [n]. We also define complement unpredictability by
changing X[1,i−1] to X[n]\{i} in the definition above.

16 We mean here a pseudorandom generator in the “cryptographic” sense of Blum,
Micali and Yao [3,2]. That is, we require that G is polynomial time computable.
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Yao’s Theorem [2] says that if X is δ-unpredictable in all indices by poly-
nomial-time (uniform or non-uniform) algorithms, then it is nδ-indistinguishable
from the uniform distribution. Note that this theorem can’t be used for a con-
stant δ > 0. This loss of a factor of n comes from the use of the “hybrid argu-
ment” [1,2]. In contrast, in the context of information theory it is known that if
a random variable X is δ-unpredictable (w.r.t. to all possible algorithms) for a
small constant δ and for a constant fraction of the indices, then H∞(X) ≥ Ω(n).
Thus, in this context it is possible to extract Ω(n) bits of randomness even from
δ-unpredictable distributions where δ is a constant [20].

In this section we consider the question of whether or not there exists a
computational analog to this information-theoretic statement.

Negative result in standard model. We observe that if one-way functions exist,
then the distribution (G(Ul), Ul) where |G(Ul)| = ω(l)) used in Lemma 6 is also
a counterexample (when considering polynomial-time distinguishers). That is,
this is a distribution that is δ-unpredictable for a negligible δ in almost all the
indices, but has low pseudoentropy. We do not know whether or not there exists
a distribution that is δ-unpredictable for a constant δ for all the indices, and
has sublinear pseudoentropy.

Positive results. We also show some computational settings in which the in-
formation theoretic intuition does holds. We show this for PH-circuits, and for
bounded-width oblivious branching programs using the metric definition of pseu-
doentropy. We start by considering a special case in which the distinguisher has
distinguishing probability 1 (or very close to 1).17

Theorem 4. Let X be a random variable over {0, 1}n. Suppose there exists a
size-s PH-circuit (width-S oblivious branching program) D such that |D−1(1)| ≤
2k and Pr[D(X) = 1] = 1. Then there exists a size-O(s) PH-circuit (width-
S oblivious branching program) P such that Pri∈[n],x←RX [P (x[1,i]) = xi] ≥
1−O( k

n )

The main step in the proof of Theorem 4 is the following lemma:

Lemma 9. Let D ⊆ {0, 1}n be a set such that |D| < 2k. Let x = x1 . . . xi−1 ∈
{0, 1}i−1, we define Nx to be the number of continuations of x in D (i.e., Nx =
|{x′ ∈ {0, 1}n−i | xx′ ∈ D}|). We define P (x) as follows: P (x) = 1 if Nx1

Nx
> 2

3

and P (x) = 1 if Nx1
Nx

< 1
3 , where P (x) is undefined otherwise. Then, for every

random variable X such that X ⊆ D,
Pri∈[n],x←RX

[

P (x[1,i−1]) is defined and equal to xi

]

≥ 1−O
(

k
n

)

Proof. For x ∈ {0, 1}n, we let bad(x) ⊆ [n] denote the set of indices i ∈ [n]
such that P (x[1,i−1]) is either undefined or different from xi. We will prove the

17 Intuitively, this corresponds to applications that use the high entoropy distribution
for hitting a set (like a disperser) rather than for approximation of a set (like an
extractor).
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lemma by showing that |bad(x)| ≤ O(k) for every string x ∈ D. Note that
an equivalent condition is that |D| ≥ 2−Ω(|bad(x)|). Indeed, we will prove that
|D| ≥ (1 + 1

2 )|bad(x)|. Let Ni denote the number of continuations of x[1,i] in D
(i.e., Ni = Nx[1,i]). We define Nn = 1. We claim that for every i ∈ bad(x),
Ni−1 ≥ (1 + 1

2 )Ni. (Note that this is sufficient to prove the lemma). Indeed,
Ni−1 = Nx[1,i−1]0 + Nx[1,i−1]1, or in other words, Ni−1 = Ni + Nx[1,i−1]xi

(where

xi
def
= 1− xi). Yet, if i ∈ bad(x) then Nx[1,i−1]xi

≥ 1
3 (Ni +Nx[1,i−1]xi

) ≥ 1
2Ni. ��

We obtain Theorem 4 from Lemma 9 for the case of PH-circuits by observing
that deciding whether P (x) is equal to 1 or 0 (in the cases that it is defined) can
be done in the polynomial-hierarchy (using approximate counting [29]). The case
of bounded-width oblivious branching programs is obtained by observing that
the state of the width-S oblivious branching program D after seeing x1, . . . , xi−1

completely determines the value P (x1, . . . , xi−1) and so P (x1, . . . , xi−1) can be
computed (non-uniformly) from this state.18

We now consider the case that Prx←RX [x ∈ D] = ε for an arbitrary constant
ε (that may be smaller than 1

2 ). In this case we are not able to use standard
unpredictability and use complement unpredictability.

Theorem 5. Suppose that X is δ-complement-unpredictable for a random index
with respect to s-sized PH-circuits, where 1

2 > δ > 0 is some constant. Let
ε > δ be some constant, then HMetric

ε (X) ≥ Ω(n) with respect to O(s)-sized
PH-circuits.

Proof. We prove the theorem by the contrapositive. Let ε > δ and suppose that
HMetric

ε (X) < k where k = ε′n (for a constant ε′ > 0 that will be chosen later).
This means that there exists a set D ∈ C such that Prx←RX [x ∈ D] ≥ |D|

2k + ε.
In particular, this means that |D| < 2k and Prx←RX [x ∈ D] ≥ ε. We consider
the following predictor P ′: On input i ∈ [n] and x = x1, . . . , xi−1, xi+1, . . . , xn ∈
{0, 1}n−1, P ′ considers the strings x0, x1 where xb = x1, . . . , xi−1, b, xi+1, . . . , xn.
If both x0 and x1 are not in D, then P ′ outputs a random bit. If xb ∈ D and
xb 	∈ D then P ′ outputs b. Otherwise (if x0, x1 ∈ D), P ′ outputs P (x1, . . . , xi−1),
where P is the predictor constructed from D in the proof of Lemma 9. Let
Γ (D) denote the set of all strings x such that x 	∈ D but x is of Hamming
distance 1 from D (i.e., there is i ∈ [n] such that x1, . . . , xi−1, xi, xi+1, . . . , xn ∈
D). If S ⊆ {0, 1}n, then let X�S denote the random variable X |X ∈ S. By
Lemma 9 Pri∈[i],x←RX�D

[P ′(x[n]\{i}) = xi] ≥ 1 − O( k
n ) while it is clear that

Pri∈[i],x←RX�{0,1}n\(D∪Γ (D))
[P ′(x[n]\{i}) = xi] = 1

2 . Thus if it holds that Pr[X ∈
Γ (D)] < ε′ and k < ε′n, where ε′ is some small constant (depending on ε and δ)
then Pri∈[i],x←RX [P ′(x[n]\{i}) = xi] ≥ 1

2 + δ and the proof is finished.
However, it may be the case that Pr[X ∈ Γ (D)] ≥ ε′. In this case, we

will consider the distinguisher D(1) = D ∪ Γ (D), and use D(1) to obtain a

18 Lemma 9 only gives a predictor given a distinguisher D such that Prx←RX [x ∈ D] =
1. However, the proof of Lemma 9 will still yield a predictor with constant bias even
if 1 is replaced by 9

10
(or any constant greater than 1

2
).
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predictor P (1)′ in the same way we obtained P ′ from D. Note that |D(1)| ≤
n|D| and that, using non-determinism, the circuit size of D(1) is larger than
the circuit size of D by at most a O(log n) additive factor.19 We will need to
repeat this process for at most 1

ε′ steps,20 to obtain a distinguisher D(c) (where
c ≤ 1

ε′ ) such that |D(c)| ≤ nO(1/ε′)|D| ≤ 2k+O(log n(1/ε′)), Pr[X ∈ D(c)] ≥ ε

and Pr[X ∈ Γ (D(c))] < ε′. The corresponding predictor P (c)′ will satisfy that
Pri∈[i],x←RX [P (c)′(x[n]\{i}) = xi] ≥ 1

2 + δ thus proving the theorem. ��
Acknowledgements We thank Oded Goldreich and the RANDOM 2003
referees for helpful comments.
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