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Abstract. Several Chinese chess programs exhibit grandmaster playing
skills in the opening and middle game. However, in the endgame phase,
the programs only apply ordinal search algorithms; hence, they usually
cannot exchange pieces correctly. Some researchers use retrograde algo-
rithms to solve endgames with a limited number of attack pieces, but this
approach is often not practical in a real tournament. In a grandmaster
game, the players typically perform a sequence of material exchanges be-
tween the middle game and the endgame, so computer programs can be
useful. However, there are about 185 million possible combinations of ma-
terial in Chinese chess, and many hard endgames are inconclusive even to
human masters. To resolve this problem, we propose a novel strategy that
applies a knowledge-inferencing algorithm on a sufficiently small database
to determine whether endgames with a certain combination of material are
advantageous to a player. Our experimental results show that the perfor-
mance of the algorithm is good and reliable. Therefore, building a large
knowledge database of material combinations is recommended.

1 Introduction

Several Chinese chess programs are playing at a par with human masters or
grandmasters [14]. Most algorithms that are incorporated in Western computer-
chess programs are also suitable for Chinese chess programs. In the opening
game, the most popular strategy involves building an opening book, either by
collecting a large number of games or by inputting only master-level opening
moves. The strategy is successful, in particular for general opening play. If a po-
sition is not in the book, the most important component, the search engine, takes
over and computes the best move by evaluating hundreds of millions of positions.
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Some programs can search more than 14 plies deep with today’s computers.
Although some computer-chess games end in the middle game, the endgame
tends to be the key phase for strong programs.

However, in the endgame, the search performance is not comparable to the
playing strength of master-level players. There are two reasons for this. The first
reason is that players need more moves to finish the game than the search depth
allotted to the program. The second reason is that the result of the endgame is
not always related to the amount of material. For example, KR and KGGMM
usually end in a draw, even though the former has the advantage of a rook. Hence,
a program that uses the material advantage as the main evaluation feature often
misinterprets it as a huge advantage to the attacking side.

To solve endgame problems, van den Herik and Herschberg suggested the
concept of the retrograde strategy in 1985 [1]. Subsequently, van den Herik,
Herschberg, and Nakad constructed a six-man endgame database of chess in
1987 [2]. Thompson proposed an improved retrograde algorithm in 1986 [6] and
solved 6-piece chess endgames in 1996 [7]. Subsequently, Schaeffer (2003) created
a 10-piece endgame database of Checkers [4]. Some games, like Checkers, used
the retrograde method successfully [8]. For instance, Gasser solved Nine-Men’s
Morris in 1996 [11]. For the full game of Western chess, which is a complex game,
the retrograde strategy has so far not been very successful. In 2000, Nalimov
used an efficient partitioning of subgames to build all 3-to-5-men endgames [9].
In summary, we may state that the endgame research is still in progress.

In Chinese chess, Fang used the retrograde method to construct an endgame
database in 2000 [3], and in 2002 Ren Wu [12] used a memory efficient strategy
to build large endgames, including KGMCPKGGMM. In 2006, Wu, Liu, and
Hsu proposed using an external-memory strategy for building a retrograde algo-
rithm for a large endgame database [10]. Nowadays, there are also web sites that
provide the exact values of endgame databases [5]. However, there are serious
time and space limitations when constructing a practical endgame database of
materials with sufficient attack pieces. The current largest endgame database of
Chinese chess comprises no more than two strong attack pieces on each side.
We remark that many useful endgames that contain two strong attack pieces on
both sides cannot be solved by retrograde strategies.

In a typical grandmaster game, before a grandmaster applies his1 endgame
knowledge, he usually performs a series of material exchanges at the end of the
middle game. In each material exchange, he gradually obtains an advantage.
The advantage may not derive from accumulating more materials, but from a
combination of materials that has proven to be better based on prior experiences.
For example, it is generally believed that a combination of one rook, one horse,
and one cannon is better than a combination of two horses and two cannons,
although their material values are roughly equal. The goal of this paper is to
determine whether a material combination is good by performing knowledge
inferencing on a small dataset of kernel knowledge. To this end, we define two
phases in the endgame: (1) the prior phase, during which many attack pieces are

1 For brevity we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.
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still in position and retrograde strategies cannot be applied to them; and (2) the
posterior phase, which can be solved completely by retrograde algorithms.

In particular, we propose a novel strategy that applies a knowledge-inferencing
mechanism on a small knowledge database of material combinations to generate
a database of material for the prior phase of a practical endgame.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
knowledge database of material combinations and the implemented knowledge-
inferencing technique. In Sect. 3, we introduce a probabilistic model for predict-
ing unknown material states. In Sect. 4, we build a practical knowledge database
of material combinations. In Sect. 5, we take the data used by Contemplation
[15] as our experimental data and report the results of applying our model to it.
Then, in Sect. 6, we present our conclusions.

2 Constructing a Knowledge Database

To construct a practical knowledge database of material combinations, henceforth
called a material database, we first need to construct a basic database. Instead
of adding all data manually, we utilize knowledge-inferencing techniques in the
construction phase to reduce the workload and the time required for the task.

2.1 Knowledge Database of Material Combinations

The word material denotes all pieces that appear in a specific position in both
Western and Chinese chess. The material state of a position is an evaluation
measurement that only considers material in the given position, not with respect
to different locations.

For simplicity, we assume that two players in an endgame play either the
attacking role or the defending role. The attacking role, which is called the
attacking player, is defined as the player that has more attack power than the
player with the defending role, who is called the defending player. We define 5
categories of material states for a material combination.

WIN: The score when the attacking player usually wins.
EASY WIN: The score when the attacking player wins in many cases, but

draws in some cases.
CHANCE WIN: The score that ends in a draw in most cases, but the attack-

ing player wins in some cases.
HARD WIN: The score when the attacking player seldom wins.
UNKNOWN: The score when the attack power of either side is strong enough

to capture the king of the opposite side; hence information about the material
is not very useful.

A knowledge database of material combinations consists of the defending ma-
terials that players use. Each item of defending material is mapped to an attack
file that includes all possible attack materials. Attack material is defined as the
pieces that belong to the attacking player. The possible number of materials held
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by a player in Chinese chess can be computed by combinatorics as follows. First,
there are 27 combinations of strong pieces, including rooks, horses, and cannons.
Second, pawns are divided into three categories, as defined in Subsection 2.3. By
using combinations with repetition of all possible numbers of pawns, we retrieve
the combinations of all categories of pawns, which total 56. Third, there are
9 combinations of defending pieces, including guards and ministers. Totally, a
player can have 13,608 (= 27 × 56 × 9) possible material combinations; and the
total number of possible material combinations on both sides is 185 million.

We have designed two useful knowledge inferencing strategies. The first strat-
egy, redundant attacking material checking and elimination, which is described
in Subsection 2.2, can be applied when creating both the basic database and
database queries. The second strategy, called pawn inferencing, can only be used
when creating the basic database. It is described in Subsection 2.3.

2.2 Redundant Attacking Material Checking and Elimination

This knowledge-inferencing tool can find and remove all attack material that is
not necessary. The idea is that if we already know a material state is a WIN,
material states to which attack material is added by one or more pieces are also
WIN states because the attacking player has a bigger advantage in the WIN state.
Similarly, if a material state is a HARD WIN, material states from which attack
material is taken by one or more pieces are also at most HARD WIN states.

By using this algorithm, we can eliminate redundant attack materials when
creating the basic database. For database queries, the same concept is used
when there are some gaps between the attack power of two players. If the state
of attack material found in the database is a WIN and the material is a subset
of the query attack material, we can also report a WIN state. We call this
inferencing algorithm material state extension.

A knowledge database of material combinations is said to be complete if all the
database items that record defense materials have all the necessary information
about attack materials. Generally, the time complexity of a query is O(NM),
where N is the number of defending materials in the database, and M is the
maximum number of attacking materials among all defending materials in the
database. However, if we use a complete material database, we do not need to
search the whole database for the answer to a query. Instead, we only search the
desired attacking file so that the time complexity becomes O(M). We remark
that the time so saved leads to more computation when searching.

2.3 Pawn Inferencing

In Chinese chess, as in Western chess, it is illegal to move a pawn backwards, but
in Chinese chess a pawn is not promoted when reaching the final rank. Since the
opposite player’s king can only stay somewhere in the last 3 ranks, the distance
between a pawn and the final rank decides the pawn’s power. In the common
definition, there are three types of pawns:
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1. Top-pawn: the pawn stays behind the river line or the pawn line of the
opposite side and has yet to cross the river. It moves forward 3 steps at
most.

2. Low-pawn: the pawn moves forward 4 or 5 steps.
3. Bottom-pawn: the pawn reaches the final rank. Note that a pawn must move

forward 6 steps to reach the final rank.

In general, a top-pawn is more useful than a low-pawn and a low-pawn is more
powerful than a bottom-pawn. Furthermore, if we know the state of material with
one bottom-pawn, we cannot obtain a better result by adding more bottom-
pawns in all cases.

There is a similar rule for low-pawns. If we know the state of material with
two low-pawns, we cannot obtain a better result by adding more low-pawns
in most cases. There are two possible reasons for this. First, if low-pawns can
win, then, based on past experience, only two low-pawns are sufficient to win.
Second, if low-pawns cannot move into the palace or are lower than the king,
adding low-pawns will not solve the problem. For example, the results of the
material combinations KPPKGGMM and KPPPKGGMM are a CHANCE WIN
when all pawns are low-pawns. In our basic database, there are 16,705 material
combinations where the attacking player has two low-pawns, and there are only
361 combinations where the result of corresponding material with three low-
pawns is different. However, when there is one top-pawn in the material, the
attacking player can always gain an advantage by adding another top-pawn.

The pawn-inferencing algorithm is a game-specific inferencing scheme that
is only suitable for Chinese chess. It uses the knowledge of bottom-pawns and
low-pawns. If we have the result of material containing one bottom-pawn or
two low-pawns, we can use the algorithm to copy the results to more bottom-
pawns or low-pawns until the number of bottom-pawns plus low-pawns equals
5. The algorithm reduces the work involved in creating the basic database by
almost half. This is because the combinations of materials with more than one
bottom-pawn or more than two low-pawns that can be generated automatically
are approximately equal to the combinations of materials with one bottom-pawn
or less than or equal to two low-pawns.

3 Predicting Unknown Material States

Although a large number of original unknown material states can be inferred
by methods stated in Sect. 2, we still need a systematic strategy for handling
arbitrary unknown materials. The algorithm that predicts arbitrary unknown
materials is called the unknown state predictor.

3.1 Human Evaluation of Unknown Positions

By exchanging pieces, human experts can accurately infer the results of material
combinations that were previously unheard of. For example, KHKGGMM is
generally a draw. When the result of the material combination KRHKRGGMM
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is in question, we may see the following: if the defending player has a rook, he
can exchange it directly with the rook of the attacking player, and the result
will be a draw. This strategy is called material reduction.

A second example is the material combination KRPKHGGMM. If the attack-
ing side exchanges a pawn for two guards of the defending player, the resulting
material KRKHMM can win easily, but it would not be an absolute win. How-
ever, if the pawn is exchanged for two ministers of the defending player, the
resulting material, KRKHGG would be an absolute win.

The two examples show that making a correct exchange of pieces is important
during the endgame phase.

3.2 Material Exchange Table

We have designed a probabilistic model that predicts the results of unknown
material states by exchanging pieces. Both sides can exchange pieces when nec-
essary. A material exchange table is introduced to compute the probabilities of
exchanging pieces.

The mobility of many types of pieces is different. The ability to exchange
a certain piece for pieces of another type is also different. A helper piece can
be any piece that is not being exchanged, but it can be used to facilitate an
exchange. Each player can select one piece as the helper piece. Generally, actively
exchanging pieces with the assistance of a helper piece will increase the player’s
exchange ability. Similarly, passively exchanging pieces with the aid of a helper
piece may reduce the chance of pieces being exchanged. Hence, we manually
construct a two-dimensional material exchange table to record the probabilities
of exchanging each type of piece with the assistance of helper pieces.

There are 6 types of pieces in addition to the king. To map a table to each
active/passive piece pair, we use 36 tables for all possible types. Each table
contains the probabilities of the specified active piece with all possible helper
pieces and the specified passive piece with all possible helper pieces.

3.3 Determining the Score of an Unknown Material State

For an unknown material combination, we can try to make any exchange and to
make a reference to the database for the material state. The strategy of an expert
player is to choose the possible best way to make an exchange. We can accept
an exchange that has a high probability, but we cannot accept an exchange with
a low probability.

An acceptable exchange is formally defined as an exchange of which the mate-
rial state is the most advantageous to the active player in all feasible situations
and of which the probability is higher or equal to a lower bound. To achieve an
acceptable probability of exchange and to avoid wasting time on searching for
exchanges with low probability, we define the probability lower bound, PLB, to
filter out situations with very low probability that seldom occur in practice. In
our test, the best value of PLB is 10%. After an exchange, we make a reference
to the database to retrieve the result of the reduced material. If two or more
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exchanges result in the same material state, we choose the one with the highest
probability. If we cannot find the result in the database, the material state of
the specified material remains UNKNOWN.

The algorithm computes two acceptable exchanges: (1) the attacking player
exchanges pieces actively, and (2) the defending player exchanges pieces actively.
Each exchange reaches its own material state. We define five numerical score
values, 0, 1, 2, 3, and 4, which correspond to UNKNOWN, WIN, EASY WIN,
CHANCE WIN, and HARD WIN, respectively. If the material states of both
sides are known, the final score of the query material is computed by the formula
V = �(Va + Vd)/2�. The values Va and Vd represent the results of the attacking
player and the defending player exchanging pieces actively, respectively. V is
the final score. If one of the material states is unknown, we choose the known
state as our result. If both are unknown, the result remains unknown. This
formula simply computes the average of the two results. It is worth noting that,
because we use division on integers, the result leans towards WIN rather than
HARD WIN, due to the setting of the numerical scores.

4 Constructing a Practical Knowledge Database of
Material Combinations

We use two algorithms, material state extension and unknown state predictor,
to determine the advantage of unknown materials.

To construct a knowledge database of material combinations, we simply gen-
erate each material pair as input for the material state extension algorithm,
which can only be applied to WIN and HARD WIN in the basic database. If the
algorithm cannot find the answer, we input the material pair to the unknown
state predictor algorithm to retrieve an approximate result value.

However, the value of some materials may still be unknown after applying
the unknown state predictor algorithm. Finally, we use a heuristic algorithm
to identify the advantage or disadvantage of the input material. We compute
a player’s attack power by the formula 10 × Rook + 5 × (Horse + Cannon) +
1 × Pawn. In the formula, Rook, Horse, Cannon, and Pawn are the numbers of
the attacking pieces. The difference between the attack power of the two players
is calculated as the formula D = RedPower − BlackPower. RedPower is the
attack power of the attacking player, and BlackPower is that of the defending
player. When D is more than or equal to 10, we reduce the value of the material
state by one. When D is less than 7 and the predicted result is UNKNOWN,
we set it to be CHANCE WIN. This simple algorithm is used to fine tune the
materials when the attacking player has a clear advantage or the value of the
materials cannot be derived by the unknown state predictor algorithm.

The most practical usage of the knowledge database of material combinations
is to retrieve material scores as a part of the evaluation function during the
search phase. When a middle game position changes to an endgame position
due to piece exchange, the search algorithm can select better endgame positions
with the aid of our material database. However, there may be some positions
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where the attack power of both sides is strong; or one player is disadvantaged
in terms of material, but still represents a great threat to the opposite player’s
king. The former can be handled by assigning UNKNOWN states to the positions
when both sides are strong enough to attack each other’s kings. The latter can
be handled by increasing the weight of special locations of piece combinations
in the evaluation function.

5 Experiment Design and Results

To demonstrate the performance of our algorithm, we generate a basic database.
It is a complete database of defense materials with at most one strong attacking
piece plus one pawn and all defending pieces. We use a practical data set as our
test data and compare it with the results obtained by our algorithm.

5.1 Experiment Design

We use the endgame knowledge table used by Contemplation as our test data.
There are 17,038 combinations of materials that have been manually annotated
by a 4-Dan expert. Since the data is symmetric, that is, if a material combination
is in the database, information about exchanges between the attacking player
and the defending player is also in the database, the actual number of test data
combinations is 8,519. The scoring scheme used by the test data is different to
that of our method. The score of the test data is divided into 10 values. The
values 0 and 1 are mapped to WIN in our method, which means the attacking
player usually wins. The value 2 is mapped to EASY WIN, 3 is mapped to
CHANCE WIN, 4 is mapped to UNKNOWN, and 5 is mapped to HARD WIN.
The values from 6 to 9 indicate that the attacking player changes places with
the defending player. The value 6 is mapped to CHANCE WIN; 7 is mapped
to EASY WIN; and 8 and 9 are mapped to WIN. A second difference relates
to the definition of pawns. In the test data, all pawns are the same, with no
category information. As a result, our program must compute the approximate
values of materials and then compare them with the test data. Because bottom-
pawns are not considered by the test data, we only compute the approximate
values of materials with top-pawns and low-pawns. The approximation formula
is Vapp = �(Vtop + Vlow)/2�, where Vapp represents the approximated result; Vtop

represents the result of defining all pawns of both players as top-pawns; and
Vlow represents the result of replacing all pawns of the attacking player with
low-pawns. There are 6,396 entries that are not in our basic database. We use
the difference between the attack powers to filter out unreasonable annotations,
which means that the attacking player has less attack power than the defending
player, and is assigned the grade of better than or equal to CHANCE WIN.

There are 1,621 annotations where the attacking player, who has the ad-
vantage of at least CHANCE WIN, has less attack power than the defending
player. The remaining data, containing 4,775 entries, becomes our test set, called
END4775. We use two algorithms in the test: (1) material state extension, and
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(2) unknown state predictor. The first experiment demonstrates the result of
combining the two algorithms. The second experiment demonstrates the result
of only using the unknown state predictor algorithm.

5.2 Experimental Results

In our results, we denote UNKNOWN by U, WIN by 1, EASY WIN by 2,
CHANCE WIN by 3, and HARD WIN by 4. The descriptions and results are
shown in Table 2. We define the following variables to measure our model’s perfor-
mance: (1) total correct number, which records the number of cases where the out-
put scores are equal to the transformed answer; (2) tolerant correct number, which
ignores the error between WIN and EASY WIN and also between CHANCE
WIN and HARD WIN; and (3) slight error number, which records the errors be-
tween WIN and EASY WIN and also between CHANCE WIN and HARD WIN.

For our algorithm, we need to choose a suitable value of PLB, described in
Subsection 3.3. Table 1 shows the relationship between different PLBs and the
ratio of tolerant correct number to the total number of data items, i.e., 4775.
This is the most important measurement, when using only the unknown state
predictor algorithm. As the results show, the value 10% is the best for our test
data. We suggest that users set the PLB value between 10% and to 30%.

The total correct number is 2,169 or 45.42%. The tolerant correct number is
4,200 or 87.96%. The slight error number is 2,031 or 42.53%.

In practical usage, the most importantmeasurement is tolerant correct number
because it identifies the categories of either WIN and EASY WIN, which are

Table 1. The relationships between PLBs from 0 to 100 and the corresponding ratio
of tolerant correct number to the total number of data items

PLB 0 10 20 30 40 50 60 70 80 90 100
% 82.07 84.50 84.13 83.12 82.28 81.53 80.04 76.04 65.13 39.25 39.04

Table 2. Comparison of human annotated answers and the algorithm generated results
for END4775. The horizontal axis represents the number of human annotated material
states. The vertical axis represents the number of material states generated by the
algorithm. U represents an unknown state.

U 1 2 3 4 Sum
U 0 35 55 195 40 325
1 0 990 402 52 0 1444
2 0 1278 663 120 17 2078
3 0 31 30 233 330 624
4 0 0 0 21 283 304

Sum 0 2334 1150 621 670 4775
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considered winning materials, or CHANCE WIN and HARD WIN, which are
considered draw materials. The value 87.96% indicates the percentage of how well
our algorithmfits a human expert’s endgame knowledge.Moreover, the percentage
shows the accuracy of the material part of the evaluation function used by a search
algorithm in prior phase of the endgame, as defined in Sect. 1. Hence, the result
shows that the search algorithm using our method will make as good an exchange
as Contemplation in most cases.

A material combination KCPGGKPPP in our test data is assessed as EASY
WIN by a human expert, but reported as HARD WIN by our algorithm. The
discrepancy is due to the different opinions about the defense ability of a de-
fending player who has three pawns. Since even masters have different opinions
about hard endgames, a slightly different human annotated answer is reasonable.

The performance of the individual algorithms is as follows. The number of
material combinations that can be inferred by the material state extension algo-
rithm is 2,614. The total correct number among 2,614 entries is 1,379 (52.75%);
the tolerant correct number is 2,562 (98.01%); and the slight error number is
1,183 (45.25%).

By using the heuristic strategy described in Sect. 4, we did not obtain any
unknown material states in this test. The number of the entries that could not be
handled by the material state extension is 2,152. However, they can be predicted
by our predictor algorithm or the heuristic algorithm. The total correct number
is 781 (36.29%); the tolerant correct number is 1,814 (84.29%); and the value of
slight error number is 1,033 (48.00%).

Although the ratio of total correctness is reduced by using the heuristic strat-
egy compared to that of combining two algorithms, we believe that our predictor
algorithm is reliable for the following three reasons. First, the input of 2,152
entries is the most complex data among all data sets. Second, the total correct-
ness ratio shows that, for the given material, the algorithm can distinguish the
true advantage or disadvantage in endgames. Third, even master players can-
not clearly identify the difference between WIN and EASY WIN and between
CHANCE WIN and HARD WIN based only on information about the material.
For example, Y. C. Xu, a Chinese chess grandmaster, gave his opinions about a
practical endgame in his publication “YinChang Chess Road.” He criticized his
opponent, G. L. Wu, who is also a Chinese chess grandmaster [13].

The human annotated answer for the material combination KHCPKHCM in
our test data is an EASY WIN; however, our algorithm reports CHANCE WIN,
which has different advantage. If a situation like this occurred during a real game,
a grandmaster would not usually exchange an attack piece with his opponent be-
cause any exchange would result in a draw. These kinds of material combination
problems cannot be solved by reducing the amount of material.

To evaluate the performance of using the unknown state predictor algorithm
alone, we apply it to all 4,775 material combinations. The detailed experimental
results are presented in Table 3.

The total correct number is 2,110 (44.19%); the tolerant correct number is
4,035 (84.50%) and the slight error number is 1,925 (40.31%).
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Table 3. Results using only the unknown state predictor algorithm

U 1 2 3 4 Sum
U 0 76 30 188 31 325
1 0 1302 30 112 0 1444
2 0 1615 281 158 24 2078
3 0 35 80 261 248 624
4 0 4 2 32 266 304

Sum 0 3032 423 751 569 4775

Note that the ratios of the tolerant correct numbers to the total number of
data items are similar among the two tests, and so do the slight error number
values. This shows that the data input to the unknown state predictor algorithm
in the first experiment is really hard. The difference between the ratio of the
tolerant correct number to the total number of data items of the two experiments
is 3.46%. This indicates that the advantage predicted by our predictor algorithm
is still reliable, even for hard data.

The space used to store all defense materials up to one strong piece plus
a pawn and all combinations of defense pieces and their corresponding attack
materials is 2.44M bytes.

6 Conclusions

Endgame problems represent a difficult issue in both Western chess and Chi-
nese chess. The largest Chinese chess endgame database built by a retrograde
algorithm currently contains only two strong attack pieces on each side. How-
ever, the endgame results show that many strong attack pieces exist. We have
designed a knowledge inferencing scheme to build a practical material database
for the initial phase of the endgame. In addition, we use the material state
extension algorithm and the unknown state predictor algorithm to construct
endgames with many strong attack pieces. Our experimental results show that
the performance of our algorithms is good and reliable. When predicting the
advantage of a material combination with a large number of pieces, we may
conclude from the results above that our material state extension algorithm is
an effective approach. However, if the extension algorithm fails, the predictor
algorithm takes over and reports an inferred solution. This strategy can be used
to solve the problem when a complete knowledge database of an endgame with a
large amount of material cannot be built using conventional computer methods,
and only advantage information is required to know for the material state.
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