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Abstract. Algorithmic randomness is most often studied in the setting
of the fair-coin measure on the Cantor space, or equivalently Lebesgue
measure on the unit interval. It has also been considered for the Wiener
measure on the space of continuous functions. Answering a question of
Fouché, we show that Khintchine’s law of the iterated logarithm holds
at almost all points for each Martin-Léf random path of Brownian mo-
tion. In the terminology of Fouché, these are the complex oscillations.
The main new idea of the proof is to take advantage of the Wiener-
Carathéodory measure algebra isomorphism theorem.
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1 Introduction

Algorithmic randomness for Brownian motion was introduced by Asarin and
Pokrovskii. They defined what they called (according to the English translation
1) ¢truly random continuous functions. Fouché [3] called these functions complex
oscillations.

In this article we answer a question of Fouché (see [5]) by showing that for each
complex oscillation, Khintchine’s law of the iterated logarithm holds at almost
every point. To that end, in Section [2] we will borrow a construction from the
proof of the Wiener-Carathéodory measure algebra isomorphism theorem. For
the full statement of this theorem, the reader may consult for example Royden
[6], Theorem 15.3.4; we shall not need it. We believe our method based on this
isomorphism theorem can be used to yield other results than the one presented
here. Namely, algorithmic randomness for the unit interval [0, 1] has been studied
more extensively than algorithmic randomness for the space C[0, 1] of continuous
functions, and the isomorphism theorem allows a transfer of some results. For
a general introduction to computability theory and algorithmic randomness on
[0, 1], the reader may consult [2].

Definition 1. Suppose 2 is a set, & = {T; : i € N} a countable Boolean algebra
of subsets of 2, i a probability measure on the o-algebra generated by % . Let
t €[0,1]. Suppose ¢ : N> — N is a total function Turing reducible to t.
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The sequence U, = U, Tp(n,m), n € N is called a t-uniform sequence of
YUF) sets.
A t-effective F-null set is a set A C {2 such that for some such ¢,

1. Ac),, Un, and
2. uU, goes effectively to 0 as n — oo. That is, there is a computable function
¥ such that whenever n > ¢(k), we have pU, < 27k,

We review the Wiener measure W on 2 = C[0, 1]. It is such that for w € £2,
and tp < t; < --+ < ty, the values of w(ty) and w(t;+1 — ¢;) are independent
random variables. Moreover, the probability that w(s+t) —w(s) € A, where A is
some set of reals, is [, (2mt) /2 exp(—x?/2t)dz. This says that w(t) is normally
distributed with standard deviation /¢ (variance ) and mean 0. Informally, a
sufficiently random member of {2 with respect to W is called a path of Brownian
motion.

Let G denotes the closure of G, and let G° denotes the complement of G
moreover, O.(G) is the open e-ball around G.

Definition 2 (Fouché [3]). A sequence Fy = (F; : i < w) of Borel subsets of
2 is a t-effective generating sequence if

(1) for F € Fy, for e >0 and & € {0,1}, if G = O(F®) or if G = F®, then
W(G) =W(G);

(2) there is a t-effective procedure that yields, for each sequence 0 < iy < -+ <
in <w and k < w, a binary number B, such that |W((;<p<, Fir) — Br| <
27 and

(3) for n,i < w, for rational numbers ¢ > 0 and for x € C,,, both the relations
x € O(F;) and x € O.(F?) are t-recursive in x,€,i and n.

A t-effectively generated algebra is the Boolean algebra genmerated from an t-
effective generating sequence.

A set A C C0,1] is of t-constructive measure 0 if, for some t-effectively
generated algebra 7, A is a t-effective F -null set.

If w belongs to no t-effective F-null set, then we say that w is t-F -random
or F-random relative to t. (This also applies when F is not effective.) If t is
computable then we may omit mention of t.

Finally, if there exists a t such that %y is a t-effective generating sequence,
then %y is called a generating sequence. The algebra it generates is similarly
called o generated algebra.

The precise definition of complex oscillations is immaterial to the present paper,
but we include it for completeness.

Definition 3. For n > 1, we write C,, for the class of continuous functions
on [0,1] that vanish at 0 and are linear with slope ++/n on the intervals [(i —
1)/n,i/n],i=1,...,n.

To every x € C, one can associate a binary string in {1,—1}*, a1 ---an,
of length n by setting a; = 1 or a; = —1 according to whether x increases or
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decreases on the interval [(i — 1)/n,i/n]. We call the word ay - - - ay,, the code of
x and denote it by c(x).

A sequence {xp}nen in C[0,1] is complex if x, € C, for each n and there
is some constant d > 0 such that K(c(xy)) > n—d for all n, where K denotes
prefiz-free Kolmogorov complexity.

A function x € C[0,1] is a complex oscillation if there is a complex sequence
{Zn}nen such that x, — x converges effectively to 0 as n — oo, in the uniform
norm.

The only use we make of Definition ] is to quote the following result.

Theorem 1 (Fouché [3]; see also [4]). Fach complex oscillation is in the
complement of each set of constructive measure 0.

Let LIL(w,t) be the statement that

. |w(t +h) —w(®)]
lim sup =
h—0  +/2|h|loglog(1/|h|)
Thus LIL(w,t) says that Khintchine’s Law of the Iterated Logarithm holds for
w at t.

Theorem 2 (following Fouché [IE]) Ift € [0,1], and f is t-F -random for
each t-effectively generated algebra %, then the Law of the Iterated Logarithm
holds for f att.

The proof is a straightforward relativization to ¢ of Fouché’s argument (which
covers the case where ¢ is computable).

2 Isomorphism Theorem

Let f) be a generating sequence. Write <% = {A,, }nen.

— Let 2, be the Boolean algebra generated by {A1,..., A,}.

— Let & = A =J,, A, the Boolean algebra generated by 7.

— Let J be the Boolean algebra of finite unions of half-open intervals [a, b) in
[0,1).

A Boolean measure algebra homomorphism is a map that preserves measure,
unions, and complements.

Theorem 3 (Wiener, Carathéodory). There is a Boolean measure algebra

~

homomorphism & : &/ — 7

Proof. To start, since 2y = {0, Ay, A}, 2} and pA; + pA] = pu2 = 1, we let
B(Ar) = [0,pA1), B(A}) = [uAy, 1), B(0) = 0, and H(2) = [0,1). Then & is
clearly a Boolean measure algebra homomorphism from 2{; into J.
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Suppose now that @ has been defined on 2(,,_; so that it is a Boolean measure
algebra homomorphism from 2,,_; onto the algebra generated by k € N many
half open intervals [zg,x1), [x1,22), ..., [Tr_1,Z), Where g = 0 and 3, = 1.

We wish to extend the mapping @ to A,,. Let B; be the set in 21,,_1 which is
mapped onto the interval [z;,2;41), for j < k. Then 2,1 consists of all finite
unions of the sets Bj, j < k, and 2, consists of all finite unions from the 2k sets
A, NBj, A° N Bj, j <k. Let

P(An N Bj) = [z, + n(An N By))
D(A, N By) = [z + (A N Bj), j41)
This might define @ of some sets to be of the form [z;,z;) = 0.

Clearly @ as so defined is measure-preserving, ®(4,, N B;) U $(A;, N B;) =
[33j,.1‘j+1) = @(Bj), and [I,(An N Bj) + M(Afn N Bj) = ,U,(Bj) = Tj41 — xj. From
this it follows that we can extend @ to all of 2(,, so that it is a Boolean measure
algebra homomorphism. Since 2o, = |J,, U», we have thus defined ¢ on all of .

Remark 1. The function @ is effective in the following sense: if # = {T}, : k € N}
is a t-effectively generated algebra, then the measure of @(T}) can be computed
t-effectively, uniformly in k.

Lemma 1. Suppose I, = (an,b,), n € N, is a sequence of open intervals
with (@n41,bn41) € (an,byn). Suppose (), (an,bn) = 0. Then either {a,}nen
or {bp tnen s an eventually constant sequence.

The proof is routine. The set of Martin-Lof real numbers in [0,1] is denoted
RAND, and relativized to ¢, RAND®.

An effectively generated algebra .# = {T} : k € N} is non-atomic if for any
b:N—{0,1}, we have W((, T,f(k)) = 0. Here T}! = T}, and as before T} is the
complement of T}.

Lemma 2. Lett € [0,1] and let F = {T}, : k € N} be a non-atomic, t-effectively
generated algebra. Let a function ¢ from C[0,1] to 2¢ be defined by: p(w) = the
unique member of {P(Ty) : w € Ty}, if it exists.

(1) The domain of ¢ includes all t-F -randoms.
(2) If p(w) is defined then for each k,

we Ty, « go(w) S @(Tk)

Proof. (1): Suppose w is not in the domain of ¢. That is, S = N{P(T%) : w € T} }
does not have a unique element. It is clear that S is an interval. Since .% is
non-atomic, this interval must have measure zero. Thus, since S does not have
exactly one element, S must be empty.

By Remark [l and Lemma [Il there is a t-computable point a or b such that
an — a or b, — b, where (an,bn,) = Ng<n@(Tk). Using this point a or b one
can t-effectively determine whether w € Ty, given any £ € N. Thus w is not
t-Z-random.

(2)«: Since {T }ren is a Boolean algebra and so closed under complements.

(2)—: By definition of ¢.
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2.1 Effectiveness Lemmas

A presentation of a real number a is a sequence of open intervals I,, with rational
endpoints, containing a, such that I,, has diameter < 27",

Lemma 3. There is a Turing machine which, given a presentation of a = ag®ay
as oracle, terminates iff ag < a;.

Proof (Proof sketch.). The presentation provides some information about ag and
a1. The machine terminates once enough information has been found to conclude
that ag < ag.

On the other hand, it is well known that if a = b then no algorithm will be able
to verify this in general. For intervals (a,b), (¢,d), we say (a,b) is bi-properly
contained in (¢,d) if ¢ <a <b < d.

Lemma 4. (1) The set of pairs o, k such that ®(T}) is bi-properly contained in
i([o]), is computably enumerable.

(2) The set of pairs o, k such that i([o]) is bi-properly contained in ®(T}) is
computably enumerable.

Proof. The endpoints of ¢(T},) and i([o]) have computable presentations. Thus
the result follows from Lemma [3l

Lemma 5. Let t € [0,1] and let # = {T}, : k € N} be a t-effectively generated
algebra.

(1) If F is non-atomic, then for each t-ML-test {U, } nen there is a t-computable
function f : N?> — N such that

U, N RAND = | J®(T}(,m)) N RAND.

(2) If for a t-computable function f : N* — N, we have Uy, = U, D(Tt(n,m))
then U, has a subset U, such that U, N RAND = U} N RAND and {U}} nen
is uniformly X9(t).

Proof. (1): We can enumerate the cones [o] contained in U,,. Once we see some
[0] get enumerated and then see (using Lemma H(1)) that some &(T}) is bi-
properly contained in [o], we can enumerate @(T}). Since % is non-atomic,
we will gradually enumerate all of [o] except for possibly one or more of its
computable endpoints.

(2): By Lemma E(2). Given an enumeration of the sets @(Tf(,,m)), m € N,
we can enumerate sets [0y, m,p] that are bi-properly contained in &(T'f(,, ) to
ensure that {J,, 2(Ty(n,m) NRAND = U, ,,[0%,m,p] N RAND. The endpoints of
&(T};) are computable and hence not in RAND.
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The only result of this section that will be used in the next is the following:

Theorem 4. Letw € 2, t € [0,1], and let Fo = {T} : k € N} be a non-atomic
t-effective generating sequence, and F its generated algebra. The following are
equivalent:

(1) w is t-F -random;
(2) p(w) € RAND'.

Proof. (2) implies (1): Suppose w is not ¢t-#-random, so w € (), V5, a t-%-null
set. Then V,, = U,,, Tf(n,m) for some t-computable f.

Let Uy = U,, ?(Tf(n,m))- Note
(a) U, is uniformly X9(¢) by Lemma [Bl(2).
(b) Since ¢ is measure preserving on .% and is a Boolean algebra homomorphism
by Theorem [3]

Ui 2(T0,)) = @V Ta,)) = w(Ui Ta,)

Since the measure of a countable union is the limit of the measures of finite
unions, puU, = puV, <277,
By (a) and (b), {Up}new is a t-ML-test.

If w is not in the domain of ¢ then w is not .#-random, by Lemma 2(1); so
we may assume ¢(w) exists. Hence, since w € (), V,, by definition of ¢, we have
o(w) €N, Un. Thus p(w) ¢ RAND'.

(1) implies (2): Suppose p(w) is not 1-t-random, so p(w) € ), Uy, for some
t-Martin-Lof test {Up}nen. Let Vi, := Uy Ty my With f as in Lemma[l So by
its definition, V;, is uniformly X7(%). As in the proof that (2) implies (1), V,,
and U, have the same measure. Since p(w) € (), Uy, by Lemma [2[(2) we have
we, Va.

Remark 2. Our identification of binary sequences with numbers in [0, 1] deserves
some comment. A number ¢ € [0,1] is a dyadic rational if it is of the form
an> for p,n € N; otherwise, ¢ is called a dyadic irrational. The set of dyadic
irrationals can be identified with a full-measure subset of 2V via the map ¢
such that ¢(},+, b2~ = {b;}i>1. This also gives an identification of cones
[0] = {A € 2V : Vn < |o| A(n) = o(n)} for ¢ € {0,1}* with intervals in the
dyardic irrationals. Formally, we can let i(2¥) = (0,1) and if i([o]) = (a, b) then
i([00]) = (a,a+ (b—a)/2) and i([ol] = (a+ (b—a)/2,b), but we leave ¢ implicit.
We only need ¢ restricted to the .#-random functions w € 2. By Theorem [l ¢
maps such functions w into RAND and in particular into the dyadic irrationals.

3 Khintchine’s Law for Complex Oscillations

It is common in probability theory to write, for w € 2 and z € [0,1], By(w) =
w(x). This allows us to refer to the set {w € 2 : w(z) < y}, for example (where z,
y are fixed rational numbers) as the event that B, < y, and as a set this is written
[By < y]. In words, the value of the Brownian motion at time x is less than y.
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Let, for each t € [0,1], .%; be an t-effectively generated algebra that con-
tains the one used in Theorem 2] and that moreover is non-atomic. The latter is
achieved by including all events of the form [B, < y] for rational z € [0,1] and ar-
bitrary rational y. Note that if # and .%’ are effectively generated algebras, and
F C 7', then each .#'-random function w € £ is also .%-random, since adding
elements to an effective generating sequence only adds new effective null sets.

Lemma 6. For each t € [0,1] and each w with ¢(w) € RAND', we have
LIL(w,t). In particular, for each t € RAND and each w with o(w) € RAND',
we have LIL(w,t).

Proof. Suppose t € [0,1] and ¢(w) € RAND'. By Theorem HE w belongs to no
t-effective .#-null set. Hence by Theorem 2] LIL(w,t).

The point now is that in the image of ¢, we already know more of what is going
on. Let A B={2n:ne€ A} U{2n+1:n € B}, for reals A, B (equivalently,
A, B CN).

Theorem 5 (van Lambalgen’s Theorem). Let A, B be reals. The following
are equivalent.

— A€ RAND and B € RAND*;
— A® B € RAND:;
— B € RAND and A € RANDP.

We can now approach our desired result:
Lemma 7. If o(w) € RAND and t € RAND*“) then LIL(w,t).

Proof. Suppose ¢(w) € RAND and t € RAND?). By Theorem [l with A =
¢(w) and B = t, we have that t € RAND and ¢(w) € RAND'. Hence by Lemma
[6l we have LIL(w,t).

Theorem 6. If w is a complex oscillation, then for almost all t, LIL(w,t).

Proof. Suppose w is a complex oscillation. By Theorem [ p(w) € RAND. By
Lemma [ LIL(w,t) holds for each t € RAND?(“). Since RAND# has measure
1 for each A € 2%, we are done.

Finally, we remark that our main result can be extended from Martin-Lof ran-
domness to Schnorr randomness, using a weak version of van Lambalgen’s the-
orem that holds for Schnorr randomness.
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