Optimal Multiple Parsimony Alignment with
Affine Gap Cost Using a Phylogenetic Tree

Bjarne Knudsen

Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA
bk@birc.dk

Abstract. Many methods in bioinformatics rely on evolutionary rela-
tionships between protein, DNA, or RNA sequences. Alignment is a cru-
cial first step in most analyses, since it yields information about which
regions of the sequences are related to each other. Here, a new method
for multiple parsimony alignment over a tree is presented. The novelty is
that an affine gap cost is used rather than a simple linear gap cost. Affine
gap costs have been used with great success for pairwise alignments and
should prove useful in the multiple alignment scenario. The algorithmic
challenge of using an affine gap cost in multiple alignment is the intro-
duction of dependence between different columns in the alignment. The
utility of the new method is illustrated by a number of protein sequences
where increased alignment accuracy is obtained by using multiple se-
quences.

1 Introduction

An algorithm for pairwise parsimony alignment of biological sequences was de-
vised by Needleman and Wunsch in 1970 [1]. The minimum cost of an alignment
is found by a recursive algorithm in the prefixes of the two sequences. Once the
matrix of optimal prefix alignment costs has been found, the optimal alignment
can be found by going back through the matrix (backtracking). The cost of gaps
in this algorithm is a linear function of the gap length.

The original pairwise alignment algorithm had a time and memory complex-
ity of O(L?) (for sequences of length L). In 1975, however, Hirschberg described
an algorithm for pairwise alignment that reduced the memory complexity to
O(L), while only increasing time consumption by a factor of two [213].

In 1982, Gotoh published an algorithm for pairwise sequence alignment that
can use a gap cost which is an affine function of the gap length, rather than
linear [4]. This was done in a way resembling the Needleman-Wunsch algorithm
while keeping track of three different types of residue configurations of the last
alignment step: 1) residues in both sequences, 2) a residue in sequence one aligned
to a gap in the other, and 3) a residue in sequence two aligned to a gap in
sequence one. The use of an affine gap cost improves the alignments of biological
sequences significantly [5].

At close to the same time, Sankoff and Cedergren described an algorithm
for multiple parsimony alignment over a tree with linear gap cost [6]. Other

G. Benson and R. Page (Eds.): WABI 2003, LNBI 2812, pp. 433-H46] 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.2
     Für schnelle Web-Anzeige optimieren: Ja
     Piktogramme einbetten: Ja
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 600 600 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 600 dpi
     Downsampling für Bilder über: 900 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein
     Bitanzahl pro Pixel: Wie Original Bit

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Untergruppen bilden unter: 100 %
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
     Methode: Standard
Arbeitsbereiche:
     Graustufen ICC-Profil: 
     RGB ICC-Profil: sRGB IEC61966-2.1
     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Nein
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Nein
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Nein
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
     EPS-Info von DSC beibehalten: Nein
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Nein

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 600 600 ]
>> setpagedevice


434 B. Knudsen

methods have used the sum of pairs scores for multiple alignments, rather than
scores based on a tree [7]. This scoring scheme does not have an evolutionary
explanation, which gives it some drawbacks [5]. There has also been various
approximation methods proposed for multiple alignment [8/9/10].

This work gives an algorithm for optimal multiple parsimony alignment with
affine gap cost for any number of sequences related by a tree. It combines ideas
from pairwise alignment with affine gap cost, and ideas from multiple alignment
with linear gap cost [4J6]. The memory reducing technique of Hirschberg is also
applied [2]. The resulting algorithm has a memory complexity of O(7.442N LN —1)
and a time complexity of O(16.817 LY) (for N sequences). These complexities
should be compared to O(LN~1) and O(2V L), respectively, for the linear gap
cost method [2J6].

Some examples are given to show the utility of the algorithm. Due to the
large time and memory complexities, it is not practical to use for more than
three sequences or maybe four short sequences. The method could, however,
prove useful in a number of other situations, such as alignment quality evaluation
and pair-HMM based probabilistic alignment, particularly when using sampling
based approaches.

2 The Problem

2.1 Pairwise Parsimony Alignment

Gaps in pairwise alignments are the result of insertions and deletions (indels) of
sequence pieces. The cost of indels in the affine gap cost setting is based on a
gap introduction cost (g; > 0) and a gap extension cost (g. < g:), giving a total
cost of g; + (I — 1)g. for an indel of length I. For a sequence alphabet X' of size n,
a symmetric n x n matrix, {m,; > 0}, gives the cost of matches for all possible
pairs of residues. The cost of matching two identical residues is zero. Here is an
example:

GCGGGT - Cost: mage + mec + gi + ge + maa + mpr + g;
CC--GTA =mgc +29i + ge

Notice that the total indel cost is independent of the nature of the residues,
given the alignment. The optimal alignment of two sequences is the one that
minimizes the total cost.

2.2 Multiple Parsimony Alignment

Assume that N sequences are given, as well as an unrooted binary tree relating
them. The N sequences are located at the leaves of the tree, while the ancestral
sequences are at the internal vertices. Assume for a moment that the ancestral
sequences are known, so an alignment of all these sequences implies a pairwise
alignment of the two sequences at the ends of each edge in the tree. For these
pairwise alignments, columns with gaps in both sequences are removed. Now, the
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A sq B)Anc cCGT- -A Cac CCGTA
St CC-T--T St CC-TT
Anc S2 CGGTCCA
- o S3 CCG---A Anc CCGT - -A
S2 CGGTCCA
— 0\
>—>—>7>—» Anc CCGTA
S3 S3 CCG-A

Fig. 1. A) The phylogenetic tree relating the three sequences S1, S2, and S3, and
their common ancestor, Anc. B) The multiple alignment of the four sequences
and indel configurations at various points (see Sect.3.3)). C) The implied pairwise
alignments. The cost of the multiple alignment is 3g; + g. + bmcc + 2maa +
2maa + 2mrr + mar + meg = 39i + ge + Mmar + mea-

price of the whole alignment is the sum of the costs of all the implied pairwise
alignments of neighboring sequences (see Fig. [I).

If the ancestral sequences are not given, the cost of the multiple alignment of
the N sequences is the minimum cost over all possible ancestral sequences and
all possible alignments of the sequences. An optimal multiple alignment of the
N sequences is one with minimal cost.

2.3 The Objective

Given N sequences, a phylogenetic tree relating them, a matrix of match costs,
a gap introduction cost, and a gap extension cost, we seek the optimal multiple
parsimony alignment of the sequences.

3 Algorithm

3.1 Residue Configurations

For a given tree, label each vertex with either a residue (#) or a gap (-), and
denote that a residue configuration for the tree. Call a residue configuration
acceptable if 1) the vertices labeled by residues form a connected graph and 2)
at least one leaf has a residue (see Fig. ).

A residue configuration will be used to define what occurs in a single column
of a multiple alignment. When aligning two residues, the biological interpretation
is that they are related to each other, which is the reasoning behind condition
one of an acceptable residue configuration. A column with no residues in any
of the sequences being aligned can not be part of an optimal alignment (since
gi > 0), leading to condition two for an acceptable configuration.
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Fig. 2. The three top trees show various residue configurations, while the bot-
tom three shows indel configurations. A) An acceptable residue configuration,
since the vertices with residues form a connected subtree and some leaves have
residues. B) and C) Unacceptable residue configurations. D) An unacceptable in-
del configuration, since some vertices are isolated from all the leaves. E) Another
unacceptable indel configuration, where changing the direction of one arrow iso-
lates some vertices from all the leaves. F) An acceptable indel configuration.

3.2 Indel Configurations

Given a tree, we can choose to label each edge in one of three ways: 1) an arrow
pointing from one end to the other, 2) an arrow pointing the opposite direction,
and 3) just by a line. We will call such a labeling an indel configuration for the
tree.

For an indel configuration on a tree, a vertex, a, is isolated from another, b,
if the path from a to b has an arrow pointing opposite to the direction of the
path. An indel configuration is acceptable if it satisfies the following constraints:
1) no vertex is isolated from all the leaves and 2) this still holds if the direction
of any single arrow is reversed (see Fig. 2)).

The indel configurations are used for keeping track of ongoing indels in a mul-
tiple alignment. There is no immediate biological reasoning for the unacceptable
indel configurations, but it turns out that they can never be part of an optimal
alignment, see Sect. [34]

3.3 The Recursion

Define a prefix alignment of the IV sequences as the optimal alignment of certain
prefixes of the sequences. An N dimensional integer vector v defines the number
of residues from each sequence that is included in the prefix alignment.
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The algorithm starts with the empty prefix alignment (no residues from any
sequences) and builds it up column by column, while keeping track of the minimal
cost. Using this approach, the optimal cost of the entire alignment can be found,
and by backtracking through the costs an optimal alignment may also be found.
Notice that there could be more than one optimal alignment.

For a prefix alignment, the indel cost of an additional column will depend on
which pairwise indels have been initiated, since the gap cost is affine. The indel
configurations are used to keep track of ongoing indels between two sequences
that are neighbors on the tree. An arrow indicates that an indel was present
between the sequences at the ends of the corresponding edge in the last column
involving any of these two sequences. The arrow points in the direction of the
sequence that had a residue and away from the one with a gap. A line with
no arrow indicates a match in the last column involving the two sequences (see
Fig. ).

Because of the dependence on past indels, we will keep track of each possible
ending indel configuration for the prefix alignments. Let Eq(,d) denote the optimal
cost of the prefix alignment of the sequences corresponding to the sequence vector
v and indel configuration d.

The addition of a column in the alignment may change the indel configura-
tion depending on which matches are made and which gaps are introduced and
extended. For a given indel configuration, let us say that we apply a residue
configuration when adding a column with the corresponding residues to give a
new indel configuration (see Fig. Bl). The change in indel configuration is given
by one of the following three possibilities. 1) An edge with residues at both ends
changes the indel configuration to a line at that edge (at no cost). 2) An edge
with a residue at one end, and a gap at the other, changes the indel configura-
tion to an arrow pointing toward the residue (at a cost of g. or g; if the same
arrow was there already or not, respectively). 3) An edge with gaps at both ends
does not change the indel configuration (and has no cost). Thus, the gap cost of
applying a residue configuration to an indel configuration is the gap cost of the
new alignment column, given the existing prefix alignment.

For a vector, e, with coordinate values of one or zero for each sequence
(including ancestors), the corresponding residue configuration is the one with
residues for ones and gaps for zeros. For an indel configuration d’, applying
the residue configuration corresponding to the vector yields another indel con-
figuration, d. We write this as d’ = d. The gap cost of applying the residue

configuration is written Géd ),

When going from prefix alignment v — é to v (with é denoting the vector
with only the N entries of e corresponding to the leaves), the residues of the
sequences are known, and the optimal ancestral residues are found by a post
order tree traversal giving the minimal residue match cost [I1]. The match cost
is written as M (,_g)—y, Which is not dependent on which ancestral sequences
has residues, since matching two identical residues is free (m; = 0). For the
alphabet, X', the match costs can be found for all possible residue configurations
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X

Fig. 3. A residue configuration (over double arrow) is applied to an indel con-
figuration (left) giving a new indel configuration (right). The associated cost is
29i + 296-

before starting the recursion, which will have no effect on the time or memory
complexity for large L.

Each acceptable residue configuration defines a possible column in the align-
ment, and thus a step from one prefix alignment to the next. We can write the
algorithm for finding the optimal cost as this recursion:

EW = min {EY), + G 4 My o0} | (1)

e, d'5d

with E(()d) = 0 for the indel configuration, d, where all edges are labeled with a

line, and E((,d/) = oo for all other indel configurations, d’. Keeping all the optimal
prefix alignment scores, we can see which shorter prefix alignment each one came
from. Doing this from the full alignment to the empty alignment, we obtain an
optimal multiple alignment.

3.4 Reduced Resources Recursion

We saw in Sect. B.1] that only acceptable residue configurations can be part
of an optimal alignment. It will be shown here that the same applies to indel
configurations.

Assume that we have an indel configuration where some vertices are isolated
from all the leaves. Let a be the last of these vertices to have a residue (or one of
the last if there is more than one), and consider the column in the prefix align-
ment where that occurred. Since only acceptable residue configurations are used,
this column must have had a residue at a leaf and there would be a connected
set of vertices with residues between a and the leaf. Since this is the case, a can
not be isolated from that leaf immediately after this column. The only way to
isolate a from the leaf is by having a later column with a residue at a and none
at the leaf, which is a contradiction.

Now, assume that we have an indel configuration where no vertices are iso-
lated from all leaves, but the reversal of an arrow at the edge « isolates some
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vertices from all leaves. The last column involving residues at either end of «
must have had a residue at one end and a gap at the other end. The vertex,
a, that had the gap must become isolated upon the reversal of the arrow at a.
Thus, the last column, C;, with a residue at a could not have had a residue at
any of the leaves on the same side of the tree relative to a. Let C; be the last
column before C;, where a leaf on this side of the tree had a residue.

The prefix alignment of all sequences (including ancestral), leading to this
indel configuration, could be changed to have a gap at a, and all other vertices
on that side of the tree, in the columns C11 to C;. This would not change the
alignment of the leaf sequences. Furthermore, the cost of this prefix alignment
would be lower, since the match cost would be the same and it has less gap
introductions or less gap extensions, or both. This means that the assumed
indel configuration could never be part of an optimal alignment if g. > 0. If
ge = 0, both configurations could be optimal, so the assumed indel configuration
is again not necessary to ensure finding an optimal alignment.

With this, it has been shown that only acceptable indel configurations need
to be taken into account in the recursion. Furthermore, for certain indel config-
urations only a subset of the acceptable residue configurations (the ones leading
to acceptable indel configurations) needs to be applied.

3.5 Hirschberg’s Memory Reduction

In (), each prefix alignment cost, Eq(,d), only depends on the costs for v, where
any coordinate is the same or one lower than v. Denote a row of costs as a set
of costs where the coordinate of v corresponding to sequence one is the same.
To find the cost of the optimal alignment, we only need to keep the present and
the previous row of costs in memory. This reduces the memory complexity by a
factor of L. With this we can not, however, find the optimal alignment since we
lost the information we need to backtrack.

Using a backwards recursion for finding the prices from the full alignment
to shorter prefixes, an optimal prefix in the middle of the alignment (relative to
the first sequence) can be chosen and the alignment problem can be split into
two problems of smaller size. The two problems together will take at most half
as much time as the original problem, so the total time will be no more than
a factor 1 4 % + i + -+ = 2 longer [2]. With this, the memory complexity has
been reduced by a factor of L, while the time complexity has only increased by
a factor of two.

4 Algorithm Analysis

Here, it is assumed that the tree is binary. For trees with higher vertex orders,
the time and memory limits will still hold.
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4.1 Memory Complexity

The memory complexity of the algorithm is in the order of L™V ~1 times the
number of acceptable indel configurations for N sequences.

The indel configurations for a rooted tree can be represented by a three
dimensional vector, f. The first coordinate is the number of indel configurations
where the root is not isolated from all leaves and reversing a single arrow does
not change that. The second coordinate is the number of indel configurations
where the root is not isolated from all leaves, but reversing a single arrow changes
that. The third coordinate is the number of indel configurations where the root
is isolated from all leaves.

The configurations for a rooted tree can be calculated from the two rooted
subtrees (a and b) connected to the root as:

fab: [faAfg fanlq; facflq;] )

where:
631 221 111
A= 1310 B=1221 C=1|111
100 110 111

These relationships can be found by connecting the roots of the two subtrees
to a vertex (the new root) with all nine combinations of labels for the two new
edges.

Two rooted trees (a and b) can be connected by a single edge to give an
unrooted tree. There are three configurations for the connecting edge, but only
some of these lead to acceptable indel configurations for the whole unrooted tree,
depending on the configurations of a and b. By going through these possibilities,
the total number of acceptable indel configurations for the unrooted tree can be
determined as:

321

fol210] fF . (2)
100

where f, and f; are the configurations for the two subtrees.

Define a linear tree as one where any vertex is at most one edge away from
a leaf. Here, a proof will be sketched that for a given number of leaves, the
linear tree has the highest number of acceptable indel configurations. Consider
the following rearrangement of a tree, where T7 and T5 represent subtrees with
at least two leaves and the dashed lines represent a linear connecting tree:
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The number of acceptable indel configurations never decreases by such a rear-
rangement. This can be proven by showing that it applies for all symmetric (in
the two ends) pairs of configurations for the connecting linear tree (proof left
out because of space limitations). By doing a finite number of these changes, the
linear tree will always be reached and it therefore has the maximal number of
acceptable configurations.

For the linear rooted tree with n leaves, we can write the number of config-
urations of the different kinds as f,,, with f1 =[1 0 0]:

.fn: [.fn—lAff fn—lB.f? fn—lcf?} :fn—IXzf1Xn71
621
with X = | 321
111

By connecting the rooted tree with n — 1 leaves to the rooted tree with one leaf,
the maximal number of acceptable configurations for the unrooted linear tree
with n leaves (g,,) can be found by using (2)):

321 3
gn=Fn-1 |210| fT=[100]X""2]|2
100 1

[3 2 1] is a linear combination of all three eigenvectors of X, so g, grows expo-
nentially as O(m™), where m is the maximal eigenvalue of X:

1
m=3+% (6/214—2'\/594— 6/21—2'\/59> = 7.441622. ..

It follows that the memory complexity of the algorithm is O(m™ LN~1). For
specific numbers of acceptable indel configurations, see Table [T]

4.2 Time Complexity

Since each acceptable residue configuration is applied to each acceptable indel
configuration, the time complexity of the algorithm is at most proportional to
the memory complexity times the number of acceptable residue configurations.

Here, the growth rate of the numbers of acceptable indel configurations as a
function of the number of leaves will be found. First, let us look at rooted trees
that has a residue at the root. For a rooted tree, a, let x, denote the number of
residue configurations with a residue at the root and where the vertices labeled
with a residue form a connected graph. These configurations are acceptable,
except for the possibility that no leaf has a residue.

Combining two rooted trees, a and b, to a new root vertex gives:

Tap = (g + 1)(zp+1) ,
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Table 1. The number of the various configurations as a function of the topology
(from the top): 1) total indel configurations, 2) acceptable indel configurations,
3) total residue configurations, and 4) acceptable residue configurations

19,683 1,594,323
9,534 527,985
1,024 16,384

124 543
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16
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256

177,147
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4,096
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16,384
671

Ay
Lo A
& AN s
Al Ay

where the addition of one comes from having no residues in the corresponding
subtree. Define:

y=log(z+1) .

Let x; and y; be the maximal x and y values, respectively, over the rooted tree
topologies with ¢ leaves. Also let wy = 1, and:

Wort1 = (wor +1)?  and 2o = log(wqr +1) for k>0 .

By recursively forming balanced trees, it is clear that z; > w; for i = 2F. It
follows that the growth rate of x; is at least equal to the growth rate of w;
(when defined, i.e. i = 2¥). To see that the growth rate is not higher, we will
show that:

okt —g -2k
92k

22k+ Qk

IN

Yi zoer1 for 2F <4 < 2R (3)
The right side is an affine function going through zyr for i = 2¥ and zqr+1 for

i = 25*1. By showing this, we have a strict limit for the growth of x,, between
the values where w,, is defined. We have:

Wok+1 + 1 (U}Qk + 1)2 Zok+1 — Zok < Zok — Zok—1
Wok + 1 (ka—l + 1)2 2k+1 — 2k 2k — Qk_l
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This means that the slope of the affine function in (B)) decreases as k increases.
If B) holds, we then also have:

2k+1 - i— 2k
2k

y; < Zoky1 forall k>0 . (4)

Equation (@) holds for i = 1 since y; = z; = log(2). Assume that (@] also
holds for i < n and choose k so that 2% < n +1 < 2¥+1 By using (@) we have:

2k — i— 2kt

ghoT 22k fori<n .

It follows that:

Yn+1 < max log(exp(yi + Ynt1—i) + 1)
1<i<n

2k — (n 41 n+1)—2F
= log (exp (%ngl + (T)IZQk) + 1) (5)
2kl — (n 41 n+1)—2k
§ 215 )ZQk —+ ( 211 Zok+1 . (6)

The fact that () is less than or equal to (@) for 28 < n +1 < 28! can be
seen by realizing that A) the two expressions are identical for n + 1 = 2% and
for n +1 = 281 and B) (@) is affine in n, while (B) is convex in n, since
j—; log(exp(az + b) + 1) > 0 for a > 0.

Induction leads us to conclude that (@) holds for all ¢. Aho and Sloane [12]
have shown that the recursion g;41 = ¢? + 1 with go = 1 grows as O(a?") with a
given by:

a = ex 110 2+110 §+110 %Jrilo @Jr
TP\ Q0BT e T R8s T g BT T

= 1.502837 ...

Because of the affine relationship described in (@) and because wyr = qx—1, we
see that z,, grows as O(a®"), where a? = 2.258518.... ..

These calculations were for rooted trees with a residue at the root and the
possibility of no residue at any leaves. Due to the exponential growth rate of x,,
it can easily be shown that the contributions from the configurations with no
residues at the root, and from those with no residues at any leaves, are negligible.
Furthermore, the growth rate for unrooted trees is the same as for rooted trees.

This means that the time complexity of the algorithm is O(t™ LY), with
t = ma® = 16.807040.... A slightly smaller exponential value than ¢ is likely
to apply for two reasons. 1) For a given indel configuration, only the residue
configurations leading to acceptable indel configurations need to be considered.
2) The worst case was the linear tree for the residue configurations and the
balanced tree for the indel configurations. It is uncertain whether there is any
type of tree topology that is worst case for both types of configurations.
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Much like for the indel configurations, specific numbers of acceptable residue
configurations can be found by considering vectors representing different cases
for rooted trees and then joining two rooted trees to form an unrooted one, see
Table [1

5 Results

The HOMSTRAD database consists of 1033 protein alignments (April 2003)
which were made using structural information [13]. These alignments will be
considered correct in the following analyses. Three data sets of triple align-
ments were made by choosing sequences with pairwise identities in the ranges
[15%; 25%), [25%;35%), and [35%;50%) (see Table @). Since the starting and
ending points of the sequences varied, indels in the ends of the alignments were
removed. As many triples as possible (16 to 18) within the identity ranges and
with an average sequence length between 100 and 150 amino acids (after re-
moving the ends) were randomly chosen from different HOMSTRAD families to
form the data sets.

Table 2. The percentages of correctly aligned positions for pairwise and triple
alignments of three data sets. Each set has a number of triple alignments from
different families in the HOMSTRAD database [13]. The minimum and maxi-
mum pairwise identities between each pair in the alignments define each data
set. The size refers to the number of alignments each set contains. Gap intro-
duction and extension costs were chosen to optimize the number of correctly
aligned positions. The percentage of correctly aligned positions by Clustal W is
included for comparison [10].

Identity Pairwise Triple
Set  Size range gi ge Correct Clustal g¢g; ge Correct Clustal
A 18 35% —50% 3.6 1.3 93.9% 94.1% 32 1.6 93.7% 94.2%
B 16 25% —35% 4.4 2.0 82.1% 83.2% 4.5 2.0 83.8% 85.2%
C 18 15% —25% 4.4 1.2 60.9% 66.6% 41 1.3 64.0% 66.5%

For each triple alignment in the data sets, two analyses were made. 1) All
three possible pairwise alignments were performed and the percentage of correct
matches was found. 2) The triple alignment was performed and the percentage
of pairwise correct matches was found. For each data set, the gap introduc-
tion and extension costs were chosen to maximize the percentage of correct
matches, which are recorded in Table[2 Triple alignments are better than pair-
wise alignments for the less similar sequences. For the most similar sequences
the performance is very close to identical.

Alignments made by the program Clustal W are a little better than with the
algorithm presented here. This is not surprising given the more sophisticated
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position specific gap penalties of Clustal W and the simple distance matrix used
here.

6 Conclusion

It has been shown how an optimal multiple parsimony alignment with affine
gap cost over a tree can be found. The algorithm has a memory complexity of
O(7.442N LN=1) and time complexity of O(16.81V L"). This should be compared
to the memory complexity of O(L¥ 1) and time complexity of O(2" LY) of the
linear gap cost algorithm of [6] combined with the Hirschberg approach [2].

Triple alignment has been shown to outperform pairwise alignment on protein
sequences. It is likely that this trend will continue for more sequences, but time
and memory become limiting factors in the calculations. However, it may be
worthwhile to spend the extra computation time to do triple rather than use
pairwise alignments in progressive alignment methods.

Given a multiple alignment, the present method may be used to find its cost
by limiting the dynamic programming to the prefixes defined by the alignment.
The time and memory complexity for this would be quite small. This may be
useful in heuristic alignment methods that seek to improve alignments by local
iterative adjustments.

The advances made in this work may form the basis of more probabilistic
methods. Statistical alignment methods may be developed that can utilize some
of the same approaches for keeping track of gap introductions and extensions.
This could also be useful in the context of analyses of multiple alignments using
stochastic grammars, e.g., in RNA and protein structure prediction, and gene
finding.
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