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Preface

The solutions to mathematical problems in science and engineering can be
obtained by using either analytical or numerical methods. Analytical (or direct)
methods involve the use of closed-form equations to obtain an exact solution, in a
nonrepetitive fashion; obtaining the roots of a quadratic equation by application
of the quadratic formula is an example of an analytical solution. Numerical (or
indirect) methods involve the use of an algorithm to obtain an approximate
solution; results of a high level of accuracy can usually be obtained by applying
the algorithm in a series of successive approximations.

As the complexity of a scientific problem increases, it may no longer be
possible to obtain an exact mathematical expression as a solution to the problem.
Such problems can usually be solved by numerical methods.

The Objective of This Book

Numerical methods require extensive calculation, which is easily
accomplished using today's desktop computers. A number of books have been
written in which numerical methods are implemented using a specific
programming language, such as FORTRAN or C++. Most scientists and
engineers received some training in computer programming in their college days,
but they (or their computer) may no longer have the capability to write or run
programs in, for example, FORTRAN. This book shows how to implement
numerical methods using Microsoft Excel®, the most widely used spreadsheet
software package. Excel® provides at least three ways for the scientist or
engineer to apply numerical methods to problems:

* by implementing the methods on a worksheet, using worksheet formulas
* by using the built-in tools that are provided within Excel

* by writing programs, sometimes loosely referred to as macros, in Excel's
Visual Basic for Applications (VBA) programming language.

All of these approaches are illustrated in this book.

This is a book about numerical methods. 1have emphasized the methods and
have kept the mathematical theory behind the methods to a minimum. In many
cases, formulas are introduced with little or no description of the underlying
theory. (I assume that the reader will be familiar with linear interpolation, simple
calculus, regression, etc.) Other topics, such as cubic interpolation, methods for
solving differential equations, and so on, are covered in more detail, and a few

XV
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topics, such as Bairstow's method for obtaining the roots of a regular polynomial,
are discussed in detail.

In this book I have provided a wide range of Excel solutions to problems. In
many cases | provide a series of examples that progress from a very simple
implementation of the problem (useful for understanding the logic and
construction of the spreadsheet or VBA code) to a more sophisticated one that is
more general. Some of the VBA macros are simple "starting points" and [
encourage the reader to modify them; others are (or at least I intended them to
be) "finished products" that I hope users can employ on a regular basis.

Nearly 100% of the material in this book applies equally to the PC or
Macintosh versions of Excel. In a few cases I have pointed out the different
keystrokes requires for the Macintosh version.

A Note About Visual Basic Programming

Visual Basic for Applications, or VBA, is a "dialect”" of Microsoft's Visual
Basic programming language. VBA has keywords that allow the programmer to
work with Excel's workbooks, worksheets, cells, charts, etc.

I expect that although many readers of this book will be proficient VBA
programmers, others may not be familiar with VBA but would like to learn to
program in VBA. The first two chapters of this book provide an introduction to
VBA programming — not enough to become proficient, but enough to understand
and perhaps modify the VBA code in this book. For readers who have no
familiarity with VBA, and who do not wish to learn it, do not despair. Much of
the book (perhaps 50%) does not involve VBA. In addition, you can still use the
VBA custom functions that have been provided.

Appendix 1 provides a list of VBA keywords that are used in this book. The
appendix provides a description of the keyword, its syntax, one or more examples
of its use, and reference to related keywords. The information is similar to what
can be found in Excel's On-Line Help, but readers may find it helpful at those
times when they are reading the book without simultaneous access to a PC.

A Note About Typographic Conventions

The typographic conventions used in this book are the following:

Menu Commands. Excel's menu commands appear in bold, as in the
following examples: "choose Add Trendline... from the Chart menu...," or
"Insert—Function..."
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Excel's Worksheet Functions and Their Arguments. Worksheet
functions are in Arial font; the arguments are italicized. Following Microsoft's
convention, required arguments are in bold font, while optional arguments are in
nonbold, as in the following:
VLOOKUP(lookup_value, table_array, column_index_num, range_Jookup)
The syntax of custom functions follows the same convention.

Excel Formulas. Excel formulas usually appear in a separate line, for
example,

=1+1/FACT(1)+1/FACT(2)+1/FACT(3)+1/FACT(4)+1/FACT(5)
Named ranges used in formulas or in the text are not italicized, to distinguish
them from Excel's argument names, for example,

=VLOOKUP(Temp,Table, MATCH(Percent,P_Row,1)+1,1)

VBA Procedures. Visual Basic code is in Arial font. Complete VBA
procedures are displayed in a box, as in the following. For ease in understanding
the code, VBA keywords are in bold.

Private Function Deriv1(x)

'User codes the expression for the derivative here.
Derivi=9*x"2+10*x-5

End Function

Problems and Solutions

There are over 100 end-of-chapter problems. Spreadsheet solutions for the
problems are on the CD-ROM that accompanies this book. Answers and
explanatory notes for most of the problems are provided in Appendix 8.

The Contents of the CD

The CD-ROM that accompanies this book contains a number of folders or
other documents:

» an "Examples" folder. The Examples folder contains a folder for each
chapter, e.g., 'Ch. 05 (Interpolation) Examples.! The examples folder for
each chapter contains all of the examples discussed in that chapter:
spreadsheets, charts and VBA code. The location of the Excel file pertinent
to each example is specified in the chapter text, usually in the caption of a
figure, e.g.,

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation,’ workbook 'Interpolation I,' sheet 'Viscosity')
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a "Problems" folder. The Problems folder contains a folder for each chapter,
e.g., 'Ch. 06 (Differentiation) problems.! The problems folder for each
chapter contains solutions to (almost) all of the end-of-chapter problems in
that chapter. VBA code required for the solution of any of the problems is
provided in each workbook that requires it; the VBA code will be identical to
the code found in the 'Examples' folder.

an Excel workbook, "Numerical Methods Toolbox," that contains all of the
important custom functions in this book.

a copy of "Numerical Methods Toolbox" saved as an Add-In workbook (an
xla file). If you open this Add-In, the custom functions will be available for
use in any Excel workbook.

Two Excel workbooks containing the utilities Solver Statistics and Trendline
to Cell.

Comments Are Welcomed

I welcome comments and suggestions from readers. I can be contacted at

numerical_methods.billo@verizon.net.

E. Joseph Billo
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Chapter 1

Introducing
Visual Basic for Applications

In addition to Excel's extensive list of worksheet functions and array of
calculation tools for scientific and engineering calculations, Excel contains a
programming language that allows users to create procedures, sometimes
referred to as macros, that can perform even more advanced calculations or that
can automate repetitive calculations.

Excel's first programming language, Excel 4 Macro Language (XLM) was
introduced with version 4 of Excel. It was a rather cumbersome language, but it
did provide most of the capabilities of a programming language, such as looping,
branching and so on. This first programming language was quickly superseded
by Excel's current programming language, Visual Basic for Applications,
introduced with version 5 of Excel. Visual Basic for Applications, or VBA, is a
"dialect" of Microsoft's Visual Basic programming language, a dialect that has
keywords to allow the programmer to work with Excel's workbooks, worksheets,
cells, charts, etc. At the same time, Microsoft introduced a version of Visual
Basic for Word; it was called WordBasic and had keywords for characters,
paragraphs, line breaks, etc. But even at the beginning, Microsoft's stated
intention was to have one version of Visual Basic that could work with all its
applications: Excel, Word, Access and PowerPoint. Each version of Microsoft
Office has moved closer to this goal.

The Visual Basic Editor

To create VBA code, or to examine existing code, you will need to use the
Visual Basic Editor. To access the Visual Basic Editor, choose Macro from the
Tools menu and then Visual Basic Editor from the submenu.

The Visual Basic Editor screen usually contains three important windows:
the Project Explorer window, the Properties window and the Code window, as
shown in Figure 1-1. (What you see may not look exactly like this.)

The Code window displays the active module sheet; each module sheet can
contain one or several VBA procedures. If the workbook you are using does not
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Figure 1-1. The Visual Basic Editor window.

contain any module sheets, the Code window will be empty. To insert a module
sheet, choose Module from the Insert menu. A folder icon labeled Modules
will be inserted; if you click on this icon, the module sheet Modulel will
bedisplayed. Excel gives these module sheets the default names Module1,
Module2 and so on.

Use the Project window to select a particular code module from all the
available modules in open workbooks. These are displayed in the Project
window (Figure 1-2), which is usually located on the left side of the screen. If
the Project window is not visible, choose Project Explorer from the View

menu, or click on the Project Explorer toolbutton <& to display it. The Project

Explorer toolbutton is the fifth button from the right in the VBA toolbar.

In the Project Explorer window you will see a hierarchy tree with a node for
each open workbook. In the example illustrated in Figure 1-2, a new workbook,
Book1, has been opened. The node for Book1 has a node (a folder icon) labeled
Microsoft Excel Objects; click on the folder icon to display the nodes it contains—
an icon for each sheet in the workbook and an additional one labeled
ThisWorkbook. If you double-click on any one of these nodes you will display the
code sheet for it. These code sheets are for special types of procedures called
automatic procedures or event-handler procedures, which are not covered in this
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Figure 1-2. The VBE Project Explorer window.

book. Do not use any of these sheets to create the VBA procedures described in
this book. The hierarchy tree in Figure 1-2 also shows a Modules folder,
containing one module sheet, Module1.

The Properties window will be discussed later. Right now, you can press the
Close button to get rid of it if you wish.

Lt ix
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DisplayPageBreaks False
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EnableCalculation True
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Name Sheet1

Scrollarea

Standardwidth 5.43

Yisible -1 - xISheetVisible

Figure 1-3. The Properties window.
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Visual Basic Procedures

VBA macros are usually referred to as procedures. They are written or
recorded on a module sheet. A single module sheet can contain many
procedures.

There Are Two Kinds of Macros

There are two different kinds of procedures: Sub procedures, called
command macros in the older XLM macro language, and Function procedures,
called function macros in the XLM macro language and often referred to as
custom functions or user-defined functions.

Although these procedures can use many of the same set of VBA commands,
they are distinctly different. Sub procedures can automate any Excel action. For
example, a Sub procedure might be used to create a report by opening a new
worksheet, copying selected ranges of cells from other worksheets and pasting
them into the new worksheet, formatting the data in the new worksheet,
providing headings, and printing the new worksheet. Sub procedures are usually
"run" by selecting Macro from the Tools menu. They can also be run by means
of an assigned shortcut key, by being called from another procedure, or in
several other ways.

Function procedures augment Excel's library of built-in functions by adding
user-defined functions. A custom or user-defined function is used in a
worksheet in the same way as a built-in function like, for example, Excel's SQRT
function. It is entered in a formula in a worksheet cell, performs a calculation,
and returns a result to the cell in which it is located. For example, a custom
function named FtoC could be used to convert Fahrenheit temperatures to
Celsius.

Custom functions can't incorporate any of VBA's "action" commands. No
experienced user of Excel would try to use the SQRT function in a worksheet
cell to calculate the square root of a number and also open a new workbook and
insert the result there; custom functions are no different.

However, both kinds of macro can incorporate decision-making, branching,
looping, subroutines and many other aspects of programming languages.

The Structure of a Sub Procedure

The structure of a Sub procedure is shown in Figure 1-4. The procedure
begins with the keyword Sub and ends with End Sub. It has a ProcedureName, a
unique identifier that you assign to it. The name should indicate the purpose of
the function. The name can be long, since after you type it once you will
probably not have to type it again. A Sub procedure has the possibility of using
one or more arguments, Argument1, etc, but for now we will not create Sub
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procedures with arguments. Empty parentheses are still required even if a Sub
procedure uses no arguments.

Sub ProcedureName(Argumentt, ...)
VBA statements
End Sub

Figure 1- 4. Structure of a Sub procedure.

The Structure of a Function Procedure

The structure of a Function procedure is shown in Figure 1-5. The
procedure begins with the keyword Function and ends with End Function. It
has a FunctionName, a unique identifier that you assign to it. The name should be
long enough to indicate the purpose of the function, but not too long, since you
will probably be typing it in your worksheet formulas. A Function procedure
usually takes one or more arguments; the names of the arguments should also be
descriptive. Empty parentheses are required even if a Function procedure takes
no arguments.

Function FunctionName(Argument1, ...)
VBA statements
FunctionName = result

End Function

Figure 1-5. Structure of a user-defined function.

The function's return statement directs the procedure to return the result to
the caller (usually the cell in which the function was entered). The return
statement consists of an assignment statement in which the name of the function
is equated to a value, for example,

FunctionName = result

Using the Recorder to Create a Sub Procedure

Excel provides the Recorder, a useful tool for creating command macros.
When you choose Macro from the Tools menu and Record New Macro... from
the submenu, all subsequent menu and keyboard actions will be recorded until
you press the Stop Macro button or choose Stop Recording from the Macro
submenu. The Recorder is convenient for creating simple macros that involve
only the use of menu or keyboard commands, but you can't use it to incorporate
logic, branching or looping.

The Recorder creates Visual Basic commands. You don't have to know
anything about Visual Basic to record a command macro in Visual Basic. This
provides a good way to gain some familiarity with Visual Basic.
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To illustrate the use of the Recorder, let's record the action of applying
scientific number formatting to a number in a cell. First, select a cell in a
worksheet and enter a number. Now choose Macro from the Tools menu, then
Record New Macro... from the submenu. The Record Macro dialog box
(Figure 1-6) will be displayed.

The Record Macro dialog box displays the default name that Excel has
assigned to this macro: Macrol, Macro2, etc. Change the name in the Macro
Name box to ScientificFormat (no spaces are allowed in a name). The "Store
Macro In" box should display This Workbook (the default location); if not,
choose This Workbook. Enter "e" in the box for the shortcut key, then press OK.

Record Macro [ 2] %}
Macro name:
Macrol
Shortcut key: Store macro in:
Ctrl+{_ IThis Workbook :J
Description:

Macro recorded 8/27/2000 by Billo

] OK l Cancel

Figure 1-6. The Record Macro dialog box.

The Stop Recording toolbar will appear (Figure 1-7), indicating that a macro is
being recorded. If the Stop Recording toolbar doesn't appear, you can always
stop recording by using the Tools menu (in the Macro submenu the Record New
Macro... command will be replaced by Stop Recording).

.I w B .:
|

Figure 1-7. The Stop Recording toolbar.

Now choose Cells... from the Format menu, choose the Number tab and
choose Scientific number format, then press OK. Finally, press the Stop
Recording button.

To examine the macro code that you have just recorded, choose Macro from
the Tools menu and Visual Basic Editor from the submenu. Click on the node
for the module in the active workbook. This will display the code module sheet
containing the Visual Basic code. The macro should look like the example
shown in Figure 1-8.
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Sub ScientificFormaty()

' ScientificFormat Macro
' Macro recorded 6/22/2004 by Boston College

' Keyboard Shortcut: Ctrl+e

Selection.NumberFormat = "0.00E+00"
End Sub

Figure 1-8. Macro for scientific number-formatting, recorded in VBA.

This macro consists of a single line of VBA code. You'll learn about Visual
Basic code in the chapters that follow.

To run the macro, enter a number in a cell, select the cell, then choose
Macro from the Tools menu, choose Macros... from the submenu, select the
ScientificFormat macro from the Macro Name list box, and press Run. Or you can
simply press the shortcut key combination that you designated when you
recorded the macro (CONTROL+e¢ in the example above). The number should be
displayed in the cell in scientific format.

The Personal Macro Workbook

The Record Macro dialog box allows you to choose where the recorded
macro will be stored. There are three possibilities in the "Store Macro In" list
box: This Workbook, New Workbook and Personal Macro Workbook. The
Personal Macro Workbook (PERSONAL.XLS in Excel for Windows, or Personal
Macro Workbook in Excel for the Macintosh) is a workbook that is automatically
opened when you start Excel. Since only macros in open workbooks are
available for use, the Personal Macro Workbook is the ideal location for macros
that you want to have available all the time.

Normally the Personal Macro Workbook is hidden (choose Unhide... from
the Window menu to view it). If you don't yet have a Personal Macro
Workbook, you can create one by recording a macro as described earlier,
choosing Personal Macro Workbook from the "Store Macro In" list box.

As you begin to create more advanced Sub procedures, you'll find that the
Recorder is a useful tool to create fragments of macro code for incorporation into
your procedure. Instead of poring through a VBA reference, or searching
through the On-Line VBA Help, looking for the correct command syntax, simply
turn on the Recorder, perform the action, and look at the code produced. You
may find that the Recorder doesn't always produce exactly what you want, or
perhaps the most elegant code, but it is almost always useful.

Note that, since the Recorder only records actions, and Function procedures
can't perform actions, the Recorder won't be useful for creating Function
procedures.
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Running a Sub Procedure

In the preceding example, the macro was run by using a shortcut key. There
are a number of other ways to run a macro. One way is to use the Macro dialog
box. Again, enter a number in a cell, select the cell, then choose Macro from the
Tools menu and Macros... from the submenu. The Macro dialog box will be
displayed (Figure 1-9). This dialog box lists all macros in open workbooks
(right now we only have one macro available). To run the macro, select it from
the list, then press the Run button.

Assigning a Shortcut Key to a Sub Procedure

If you didn't assign a shortcut key to the macro when you recorded it, but
would like to do so "after the fact," choose Macro from the Tools menu and
Macros... from the submenu. Highlight the name of the macro in the Macro

Name list box, and press the Options... button. You can now enter a letter for
the shortcut key: CONTROL+<key> or SHIFT+CONTROL+<key> in Excel for

21|

Macro name:

I ScientificFormat _"_;J ] Run i

Cancel

Step Into !
Edit I

Create

Delete

Macros in: ’ml Open Workbooks _--_I Options. |

DESC"DUDH e e e L
Macro recorded 6{22/2004 by Boston College

Figure 1-9. The Macro dialog box.

Windows, OPTION+COMMAND+<key> or SHIFT+OPTION+COMMAND+<key>
in Excel for the Macintosh.



CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 9

Entering VBA Code

Of course, most of the VBA code you create will not be recorded, but
instead entered at the keyboard. As you type your VBA code, the Visual Basic
Editor checks each line for syntax errors. A line that contains one or more errors
will be displayed in red, the default color for errors. Variables usually appear in
black. Other colors are also used; comments (see later) are usually green and
some VBA keywords (Function, Range, etc.) usually appear in blue. (These
default colors can be changed if you wish.)

If you type a long line of code, it will not automatically wrap to the next line
but will simply disappear off the screen. You need to insert a line-continuation
character (the underscore character, but you must type a space followed by the
underscore character followed by ENTER) to cause a line break in a line of VBA
code, as in the following example:

Worksheets("Sheet1").Range("A2:B7").Copy _

(Worksheets("Sheet2").Range("C2"))

The line-continuation character can't be used within a string, i.e., within
quotes.

I recommend that you type the module-level declaration Option Explicit at the
top of each module sheet, before any procedures. Option Explicit forces you to
declare all variables using Dim statements; undeclared variables produce an error
at compile time.

When you type VBA code in a module, it's good programming practice to
use TAB to indent related lines for easier reading, as shown in the following
procedure.

Sub Iinitialize()

ForJ=1ToN
PJ)=0

Next J

End Sub

Figure 1-10. A simple VBA Sub procedure.

In order to produce a more compact display of a procedure, several lines of
code can be combined in one line by separating them with colons. For example,
the procedure in Figure 1-10 can be replaced by the more compact one in Figure
1-11 or even by the one in Figure 1-12.

Sub Initialize()
ForJ=1To N: P(J) = 0: Next J
End Sub

Figure 1-11. A Sub procedure with several statements combined.
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[Sub Initialize(): For J = 1 To N: P(J) = 0: Next J: End Sub |

Figure 1-12. A Sub procedure in one line.

Creating a Simple Custom Function

As a simple first example of a Function procedure, we'll create a custom
function to convert temperatures in degrees Fahrenheit to degrees Celsius.

Function procedures can't be recorded; you must type them on a module
sheet. You can have several macros on the same module sheet, so if you
recorded the ScientificFormat macro earlier in this chapter, you can type this
custom function procedure on the same module sheet. If you do not have a
module sheet available, insert one by choosing Module from the Insert menu.

Type the macro as shown in Figure 1-13. DegF is the argument passed by the
function from the worksheet to the module (the Fahrenheit temperature); the
single line of VBA code evaluates the Celsius temperature and returns the result
to the caller (in this case, the worksheet cell in which the function is entered).

Function FtoC(DegF)
FtoC = (DegF — 32) *5/9
End Function
Figure 1-13. Fahrenheit to Celsius custom function.

A note about naming functions and arguments: function names should be
short, since you will be typing them in Excel formulas (that's why Excel's square-
root worksheet function is SQRT) but long enough to convey information about
what the function does. In contrast, command macro names can be long, since
command macros are run by choosing the name of the macro from the list of
macros in the Macro Run dialog box, for example.

Argument names can be long, since you don't type them. Longer names can
convey more information, and thus provide a bit of self-documentation. (If you
look at the arguments used in Excel's worksheet functions, you'll see that single
letters are usually not used as argument names.)

Using a Function Macro

A custom function is used in a worksheet formula in exactly the same way as
any of Excel's built-in functions. The workbook containing the custom function
must be open.

Figure 1-14 shows how the FtoC custom function is used. Cell A2 contains

212, the argument that the custom function will use. Cell B2 contains the
formula with the custom function. You can enter the function in cell B2 by
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typing it (Figure 1-14). When you press enter, the result calculated by the
function appears in the cell (Figure 1-15).

TR
Bl T F ' T.°C
2]  212)=FtoC(A2)

Figure 1-14. Entering the custom function.

i B B

2 212 100

Figure 1-15. The function result.

You can also enter a function by using the Insert Function dialog box. Select
the worksheet cell or the point in a worksheet formula where you want to enter
the function, in this example cell B2. Choose Function... from the Insert menu
or press the Insert Function toolbutton ¥ to display the Insert Function dialog
box. Scroll through the Function Category list and select the User Defined
category. The FtoC function will appear in the Insert Function list box (Figure
1-16).

Search For & Function:

|" ype a brief description of what you want to do and then Go l
chick Go BE

Or select a gategory: |User Defined _'_J

Select a function:

FtoC{deg_F)
No heip available.

Heln on this function oK i Carcel |

Figure 1-16. The Paste Function dialog box.

When you press OK, the Function Arguments dialog box (Figure 1-17) will be
displayed. Enter the argument, or click on the cell containing the argument to
enter the reference (cell A2 in Figure 1-14), then press the OK button.
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Function Arguments - i 5]

i Ftoc L A A i 0 R N L S A S G S S e Sl S S e B S S S o S S o ..W..M.w.m.-..\.w..,%.
Deg_F | %xi= i

No help available,

Deg_F
Formula result =
Help on this function | oK ] Cancel

Figure 1-17. The Function Arguments dialog box.

A Shortcut to Enter a Function

You can enter a function without using Insert Function, but still receive the
benefit provided by the Function Arguments screen. This is useful if the
function takes several (perhaps unfamiliar) arguments. Simply type "="
followed by the function name, with or without the opening parenthesis, and then
press CONTROL+A to bypass the Insert Function dialog box and go directly to
the Function Arguments dialog box.

If you press CONTROL+SHIFT+A, you bypass both the Insert Function dialog
box and the Function Arguments. The function will be displayed with its
placeholder argument(s). The first argument is highlighted so that you can enter
a value or reference (Figure 1-18).

A PENERVE] €
1| T.°F T, °C

Figure 1-18. Entering a custom function by using CONTROL+SHIFT+A.

Unfortunately, if you’re entering the custom function in a different
workbook than the one that contains the custom function, the function name
must be entered as an external reference (e.g., Book1.XLS!FtoC). This can make
typing the function rather cumbersome, and it means that you'll probably enter
the function by using Excel's Insert Function. But, see "Creating Add-In
Function Macros" in Chapter 2.
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Some FAQs

Here are answers to some Frequently Asked Questions about macros.

I Recorded a Command Macro. Where Did It Go? If you have
trouble locating the code module containing your macro, here's what to do "when
all else fails": choose Macro from the Tools menu and Macros... from the
submenu. Highlight the name of the macro in the Macro Name list box, and
press the Edit button. This will display the code module sheet containing the
Visual Basic code.

I Can't Find My Function Macro. Where Did It Go? If you're
looking in the list of macros in the Macro Name list box, you won't find it
there. Only command macros (macros that can be Run) are listed. Function
macros are found in a different place: in the list of user-defined functions in the
Insert Function dialog box. (Choose Function... from the Insert menu and
scroll through the Function Category list and select the User Defined category.)

How Do I Rename a Macro? To rename a Sub or Function procedure,
access the Visual Basic Editor and click on the module containing the procedure.
The name of the macro is in the first line of code, immediately following the Sub
or Function keyword. Simply edit the name. Again, no spaces are allowed in the
name.

How Do I Rename a Module Sheet? You use the Properties window to
change the name of a module. The module sheet whose name you want to
change must be the active sheet. If the Properties window is not visible, choose
Properties Window from the View menu, or click on the Properties Window
toolbutton (2" to display it. The Properties Window toolbutton is the fourth

button from the right in the VBA toolbar.

|Modulel Module
Alphabetic |Categorized ]

Ld 1

Figure 1-19. Changing the name of a module by using the Properties window.
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When you display the Properties window, you will see the single property of
a module sheet, namely its name, displayed in the window. Simply double-click
on the name (here, Module1), edit the name, and press Enter. No spaces are
allowed in the name.

How Do I Add a Shortcut Key? If you decide to add a shortcut key to a
command macro "after the fact,"” choose Tools—~Macro—-Macros.... In the
Macro Name list box, click on the name of the macro to which you want to add a
shortcut key, then press the Options button. In the Shortcut Key box, enter a
letter, either lower- or uppercase. To run the macro, use CTRL+<letter> for a
lowercase shortcut key, or CTRL+SHIFT+<letter> for uppercase.

Warning: The shortcut key will override a built-in shortcut key that uses the
same letter. For example, if you use CTRL+s for the ScientificFormat macro,
you won't be able to use CTRL+s for "Save." This will be in effect as long as the
workbook that contains the macro is open.

How Do I Save a Macro? A macro is part of a workbook, just like a
worksheet or a chart. To save the macro, you simply Save the workbook.

Are There Some Shortcut Keys for VBA? Yes, there are several. Here's
a useful one: you can toggle between the Excel spreadsheet and the VBA Editor
by pressing ALT+F11. A list of shortcut keys for VBA programming is found in
Appendix 2.



Chapter 2

Fundamentals of
Programming with VBA

This chapter provides an overview of Excel's VBA programming language.
Because of the specialized nature of the programming in this book, the material
is organized in a way that is different from other books on the subject. This
book deals almost exclusively with creating custom or user-defined functions,
and a significant fraction of VBA's keywords cannot be used in custom
functions. (For example, custom functions can't open or close workbooks, print
documents, sort lists on worksheets, etc. — these are actions that are performed
by command macros.) Therefore, that portion of the VBA language that can be
used in custom functions is introduced in the first part of this chapter, and
programming concepts that are applicable in command macros appear in the
latter part of the chapter.

If you are familiar with programming in other versions of BASIC or in
FORTRAN, many of the programming techniques described in this chapter will
be familiar.

Components of Visual Basic Statements

VBA macro code consists of statements. Statements are constructed by
using VBA commands, operators, variables, functions, objects, properties,
methods, or other VBA keywords. (VBA Help refers to keywords such as Loop
or Exit as statements, but here they'll be referred to as commands, and we'll use
"statement" in a general way to refer to a line of VBA code.)

Much of the VBA code that you will create will consist of assignment
statements. An assignment statement assigns the result of an expression to a
variable or object; the form of an assignment statement is

variable = expression

for example,
increment = 0.00000001*XValue

or

15
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K=K+1

which, in the second example, says "Store, in the memory location to which the
user has assigned the label 'K', the value corresponding to the expression K + 1."

Operators

VBA operators include the arithmetic operators (+, — * /, *), the text
concatenation operator (&), the comparison operators (=, <, >, <=, >=, <>) and
the logical operators (And, Or, Not)

Variables

Variables are the names you create to indicate the storage locations of values
or references. There are a few rules for naming variables or arguments:

* You can't use any of the VBA reserved words, such as Formula,
Function, Range or Value.

o The first character must be a letter.
* A name cannot contain a space or a period.

o The characters %, $, #, !, & cannot be embedded in a name. If one of
these characters is the last character of a variable name, the character
serves as a type-declaration character (see later).

¢ You can use upper- and lowercase letters. If you declare a variable type
by using the Dim statement (see "VBA Data Types" later in this chapter),
the capitalization of the variable name will be "fixed" — no matter how
you type it in the procedure, the variable name will revert to the
capitalization as originally declared. In contrast, if you have not declared
a variable by using Dim, changing the case of a variable name in any line
of code (e.g., from formuiastring to FormulaString) will cause all instances
of the old form of the variable to change to the new form.

You should make variable names as descriptive as possible, but avoid overly
long names which are tedious to type. You can use the underscore character to
indicate a space between words (e.g., formula_string). You can't use a period to
indicate a space, since VBA reserves the period character for use with objects.
The most popular form for variable names uses upper- and lowercase letters
(e.g., FormulaString).

Long variable names like FormulaString provide valuable self-
documentation; months later, if you examine your code in order to make
changes, you'll probably be more able to understand it if you used (for example)
FormulaString as a variable name instead of F. But typing long variable names is
time-consuming and prone to errors. I like to use short names like F when I'm
developing the code. Once I'm done, I use the Visual Basic Editor's Replace...
menu command to convert all those F's to FormulaString.
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To avoid inadvertently using a VBA keyword as a variable name (there are
hundreds of VBA keywords, so this is easy to do), I suggest that you type the
variable name in all lowercase letters. If the variable name becomes capitalized,
this indicates that it is a reserved word. For example, you may decide to use FV
as a variable name. If you type the variable name "fv" in a VBA statement, then
press Enter, you will see the variable become "FV," a sign to you that FV is a
reserved word in VBA (the FV function calculates the future value of an annuity
based on periodic, fixed payments and a fixed interest rate.)

In fact, it's also a good idea to type words that you know are reserved words
in VBA in lowercase also. If you type "activecell," the word will become
"ActiveCell" when you press the Enter key. If it doesn't, you have typed it
incorrectly.

Objects, Properties and Methods

VBA is an object-oriented programming language. Objects in Microsoft
Excel are the familiar components of Excel, such as a worksheet, a chart, a
toolbar, or a range. Objects have properties and methods associated with them.
Objects are the nouns of the VBA language, properties are the adjectives that
modify the nouns and methods are the verbs (the action words). Objects are
used almost exclusively in Sub procedures, while properties and some methods
can be used in Function procedures. A discussion of objects and methods can
be found in the section "VBA Code for Command Macros" later in this chapter.

Objects

Some examples of VBA objects are the Workbook object, the Worksheet
object, the Chart object and the Range object. It's very unlikely that a custom
function would include any of these keywords. But if a custom function takes as
an argument a cell or range of cells, the argument is a Range object and has all
of the properties of a Range object.

Properties

Objects have properties that can be set or read. Some properties of the
Range object are the ColumnWidth property, the NumberFormat property, the
Font property and the Value property. A property is connected to the object it
modifies by a period, for example

CelFmt = Range("E5"). NumberFormat

returns the number format of cell E5 and assigns it to the variable CelFmt, and
Range("E5").NumberFormat = "0.000"

sets the number formatting of cell E5.
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Some properties, such as Column or Count, are read-only. The Column
property of a Range object is the column number of the leftmost cell in the
specified range; it should be clear that this property can be read, but not changed.
The Count property of a Range object is the number of cells in the range; again,
it can be read, but not changed.

Properties can also modify properties. The following example
Range("A1").Font.Bold = True

makes the contents of cell A1 bold.

There is a large and confusing number of properties, a different list for each
object. For example, as of this writing (Excel 2003), the list of properties
pertaining to the Range object contains 93 entries:

AddIndent Font MergeArea Row

Address FormatConditions MergeCelis RowHeight
AddressLocal Formula Name Rows

AllowEdit FormulaArray Next ShowDetail
Application FormulaHidden NumberFormat ShrinkToFit
Areas FormulaLabel NumberFormatLocal SmartTags
Borders FormulaLocal Offset SoundNote

Cells FormulaR1C1 Orientation Style

Characters FormulaR1C1Local OutlineLevel Summary
Column HasArray PageBreak Text

Columns HasFormula Parent Top
ColumnWidth Height Phonetic UseStandardHeight
Comment Hidden Phonetics UseStandardWidth
Count HorizontalAlignment PivotCell Validation
Creator Hyperlinks PivotField Value
CurrentArray ID Pivotitem Value2
CurrentRegion IndentLevel PivotTable VerticalAlignment
Dependents Interior Precedents Width
DirectDependents ltem PrefixCharacter Worksheet
DirectPrecedents Left Previous WrapText

End ListHeaderRows QueryTable XPath
EntireColumn ListObject Range

EntireRow LocationInTable ReadingOrder

Errors Locked Resize

This large number of properties, just for the Range object, is what makes
VBA so difficult for the beginner. You must find out what properties are
associated with a particular object, and what you can do with them. For our
purposes (creating custom functions), only a limited number of these properties
of the Range object can be used. Some of the properties of the Range object
that can be used in a custom function are listed in Table 2-1. Note that, when
used in a custom function, these properties can only be read, not set.
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Table 2-1. Some Properties of the Range Object

Column Returns a number corresponding to the first column
in the range.

ColumnWidth Returns or sets the width of all columns in the range.

Count Returns the number of items in the range.

Font Returns or sets the font of the range.

Formula Returns or sets the formula.

Name Returns or sets the name of the range.

NumberFormat  Returns or sets the format code for the range.

Row Returns a number corresponding to the first row in
the range.

RowHeight Returns or sets the height of all rows in the range.

Text Returns or sets the text displayed by the cell.

Value Returns or sets the contents of the cell or range.

Using Properties

In a Sub procedure, properties can be set or read. In a Function procedure,
properties can only be read, not changed. To return an object's property, use the
following syntax:

VariableName = ObjectName. PropertyName

For example, to obtain the number of cells in a range of cells passed to a
function procedure as the argument rng, and store it in the variable NCells, use
the following:

NCells = rng.Count

Properties can have values that are numeric, string, or logical.

Functions

Many of the functions available in VBA are similar to the functions
available in Excel itself. There are 187 VBA functions listed in Excel 2003
VBA Help. Tables 2-2 through 2-4 list some of the more useful ones for
mathematical or scientific calculations.

If you are reasonably familiar with Excel's worksheet functions, you will
have little trouble using VBA's functions. The names of many VBA functions,
such as Abs, Exp, Int, Len, Left, Mid and Right, are identical to the
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corresponding worksheet functions (ABS, EXP, INT, LEN, LEFT, MID AND
RIGHT, respectively). Others, such as Asc, Chr and Sqr, are spelled a little
differently (the corresponding worksheet functions are CODE, CHAR and SQRT,
respectively) or completely differently (LCase and UCase correspond to
LOWER and UPPER). These VBA functions are used in exactly the same way
that they are used in worksheet formulas; they take the same type of arguments
and return the same type of values.

Note that although Excel has three worksheet functions that return
logarithms (LN returns the natural or base-e logarithm, LOG10 returns the base-
10 logarithm, and LOG returns a logarithm to a specified base), VBA has only
one logarithmic function, Log, that returns the base-e logarithm. If you need to
work with base-10 logarithms in your VBA code, use the relationship logo(a) =
loge(a)/ log.(10).

VBA does not provide a function to evaluate =, but you can calculate it in a
function by using the expression 4*Atn(1). Or, you can use the worksheet
function PI(), in the manner described in the following section.

Table 2-2. Some VBA Mathematical Functions

Abs Returns the absolute value of a number,

Atn Returns the arctangent of a number. The result is an angle
in radians.

Cos Returns the cosine of an angle in radians.

Exp Returns e raised to a power.

int Returns the integer part of a number (rounds down).

Log Returns the natural (base-e) logarithm of a number.

Rnd Returns a random number equal to or greater than 0 and
less than 1.

Sin Returns the sine of an angle in radians.

Sqr Returns the square root of a number.

Tan Returns the tangent of an angle in radians.

The above mathematical functions, except for Rnd, have the syntax
FunctionName(argument). Rnd takes no argument, but requires the empty
parentheses.

VBA provides functions for working with text; some of the more useful ones
are listed in Table 2-3. Most of these are identical to Excel's text worksheet
functions. If you are unfamiliar with the use of text functions, see the syntax and
examples in Appendix 1.
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Table 2-3. Some VBA Text Functions

Asc Returns the ASCII character code of a character.

Chr Returns the character corresponding to an ASCII code.

Format Formats a number according to a built-in or user-defined
number format expression. The result is a string.

Instr Returns the first occurrence of a substring within a string.
Similar to Excel's FIND worksheet function.

Len Returns the length (number of characters) in a string.

Left Returns the leftmost characters of a string.

Right Returns the rightmost characters of a string.

Mid Returns a specified number of characters from a string.

LTrim Returns a string without leading spaces.

RTrim Returns a string without trailing spaces.

Trim Returns a string without leading or trailing spaces.

Str Converts a number to a string. A leading space is reserved

for the sign of the number; if the number is positive, the
string will contain a leading space.

LCase Converts a string into lowercase letters.

UCase Converts a string into uppercase letters.

VBA also provides a number of information functions, including eight "is"
functions, shown in Table 2-4.

Table 2-4. VBA Information Functions

IsArray Returns True if the variable is an array.

IsDate Returns True if the expression is a date.
IsEmpty Returns True if the variable is uninitialized.
IsError Returns True if the expression returns an error.

IsMissing  Returns True if an optional value has not been passed to a
Function procedure.

IsNull Returns True if the expression is null (i.e., contains no
valid data).

IsNumeric  Returns True if the expression can be evaluated to a

number.
isObject Returns True if the expression references a valid object.
LBound Returns the lower limit of an array dimension.
UBound Returns the upper limit of an array dimension.

All the above Is functions have the syntax FunctionName(argument) and
return either True or False.
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Using Worksheet Functions with VBA

In addition to the 187 VBA functions, you can make use of any of Excel's
worksheet functions in your VBA code. To use one of Excel's worksheet
functions, simply use the syntax

Application.WorksheetFunctionName(argument1,...)

and supply arguments for the function just as you would in a worksheet. For
example, to use the SUBSTITUTE function in VBA, use the code

FormulaString = Application.Substitute(FormulaString, XRef, NewX)

to replace all occurrences, in the string contained in the variable FormulaString,
of the variable XRef with the variable NewX.

Some Useful Methods

Although most methods can only be used within Sub procedures, there are a
few methods that can be used within Function procedures. Only methods that
do not "change the appearance of the screen" can be used in Function
procedures; it should be obvious that methods like Cut, Paste, Open, Close etc.,
cannot be used in a custom function.

Table 2-5. Some Methods Applicable to the Range Object
That Can Be Used in a Function Procedure

Address Returns the reference of a cell or range, as text.

Columns Returns a Range object that represents a single
column or multiple columns.

ConvertFormula Converts cell references in a formula between Al-
and R1C1-style, and between relative and absolute.

Evaluate Converts a formula to a value.

Intersect Returns the reference that is the intersection of two
ranges.

Rows Returns a Range object that represents a single row

or multiple rows.

Volatile Marks a user-defined function as volatile. The
function recalculates whenever calculation occurs in
any cell of the worksheet.
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Other Keywords

In addition to VBA's objects, properties, methods and functions, there are
additional keywords that deal with program control: looping, branching and so
on. These keywords are described in detail in the following sections.

VBA keywords that will not be discussed in this book include objects such
as menu bars, menus and menu commands, toolbars and toolbuttons and the
many properties and methods pertaining to them.

Program Control

If you are familiar with computer languages such as BASIC or FORTRAN,
you will find yourself quite comfortable with most of the material in this section.

Branching

VBA supports If...Then statements very similar to the Excel worksheet
function IF. The syntax of If...Then is

If LogicalExpression Then statement1 Else statement2
The If...Then statement can be a Simple If statement, for example:

If (x >0) Then numerator = 10 * x

If LogicalExpression (in this example x > 0) is True, statement? is carried
out; if LogicalExpression is False, nothing is done (program execution moves to
the next line).

if...Then...Else structures are also possible. For example:

If Err.Number = 13 Then Resume ptt Else End

In a Block If statement, If LogicalExpression Then is followed by multiple
statement lines and is terminated by End If, as in Figure 2-1.

If Err.Number = 13 Then
On Error GoTo 0 'Disable the error handler.

Resume pt1  'and continue execution.
End i

Figure 2-1. Example of VBA Block If structure.

You can also create a Block-If-type structure in a single line, as in the
following statement.

If LogicalExpression Then statement1 : statement2 Else statement3

If...Then... Elself structures are also possible, as illustrated in Figure 2-2.
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If reference.Rows.Count > 1 Then
R = equation.Row

Elself reference.Columns.Count > 1 Then
C = equation.Column

End If

Figure 2-2. Example of the VBA Hf...Eiself...End If structure.

Logical Operators

The logical operators And, Or and Not can be used in LogicalExpression, as
in the following example.

If C>=0And C <=9 Then

Select Case

VBA also provides the Select Case decision structure, similar to the ON
value GOTO statement in BASIC. The Select Case statement provides an
efficient alternative to the series of Elself conditionN statements when conditionN
is a single expression that can take various values. The syntax of the Select
Case statement is illustrated in Figure 2-3.

Select Case TestExpression
Case ExpressionList1
statements
Case ExpressionList2
statements
Case ExpressionList3
statements
Case Else
statements
End Select

Figure 2-3. The VBA Select Case structure.

TestExpression is evaluated and used to direct program flow to the
appropriate Case. ExpressionListN can be a single value (e.g., Case 0), a list of
values separated by commas (e.g., Case 1, 3, 5), or a range of values using the
To keyword (e.g., Case 6 To 9). The optional Case Else statement is executed
if TestExpression doesn't match any of the values in any of ExpressionListN.

Looping

Loop structures in VBA are similar to those available in other programming
languages.
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For...Next Loop
The syntax of the For...Next loop is given in Figure 2-4.

For Counter = Start To End Step Increment
statements
Next Counter

Figure 2-4. The VBA For...Next structure.

For example,

ForJ=1To 100
statements
Next J

Figure 2-5. Example of a For...Next loop.

The Step Increment part of the For statement is optional. If Increment is
omitted, it is set equal to 1. Increment can be negative or nonintegral, for
example

For J=100 To O Step -1

Do While... Loop

The Do...Loop is used when you don't know beforehand how many times the
loop will need to be executed. You can loop While a condition is True or Until a
condition becomes True. The two possibilities are shown in Figures 2-6 and 2-7.

Do While LogicalExpression
statements
Loop

Figure 2-6. The Do While...Loop structure.

Do
statements
Loop While LogicalExpression

Figure 2-7. Alternate form of the Do...Loop While structure.

Note that this second form of the Do While structure executes the loop at
least once.

For Each...Next Loop

The For Each...Next loop is a loop structure peculiar to an object-oriented
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language. The For Each...Next loop executes the statements within the loop for
each object in a group of objects. Figure 2-8 illustrates the syntax of the
statement.

For Each Element In Group
statements
Next Element

Figure 2-8. The VBA For Each...Next structure.

The For Each...Next loop returns an object variable in each pass through the
loop. You can access or use all of the properties or methods that apply to
Element. For example, in a loop such as the one shown in Figure 2-9, the
variable cel is an object that has all the properties of a cell (a Range object):
Value, Formula, NumberFormat, etc.

For Each cel In Selection
FormulaText = cel.Value
statements

Next cel

Figure 2-9. Example of a For Each...Next loop.

Note that there is no integer loop counter, as in the For Counter = Start To
End type of loop structure. If an integer counter is needed, you will have to
initialize one outside the loop, and increment it inside the loop.

Nested Loops

Often one loop must be nested inside another, as illustrated in the following
example.

Fori=1To N1
statements
ForJ=1To N2

statements
Next J
Next |

Figure 2-10. Example of nested loops.

Exiting from a Loop or from a Procedure

Often you use a loop structure to search through an array or collection of
objects, looking for a certain value or property. Once you find a match, you
don't need to cycle through the rest of the loops. You can exit from the loop
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using the Exit For (from a For...Next loop or For Each...Next loop) or Exit Do
(from a Do While... loop). The Exit statement will normally be located within an
If statement. For example,

If CeliContents.Value <= 0 Then Exit For

Use the Exit Sub or Exit Function to exit from a procedure. Again, the Exit
statement will normally be located within an If statement.

Exit statements can appear as many times as needed within a procedure.

VBA Data Types

VBA uses a range of different data types. Table 2-6 lists the built-in data
types. Unless you declare a variable's type, VBA will use the Variant type. You
can save memory space if your procedure deals only with integers, for example,
by declaring the variable as Integer. The keyword Dim is used to declare a
variable's data type, as will be described in a following section.

Table 2-6. VBA's Built-in Data Types

Data Type Storage Required Range of Values

Boolean (Logical) 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long integer 4 bytes -2,147,483,648 t0 2,147,483,647
Single precision 4 bytes —3.402823E+38 to —1.401298E-45

for negative values; 1.401298E-45
to 3.402823E+38 for positive
values

Double precision 8 bytes —1.79769313486232E+308 to
—4.94065645841247E-324 for
negative values;
4.94065645841247E-324 to
1.79769313486232E+308 for
positive values

Currency 8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Date 8 bytes

Object 4 bytes Any Object reference
String 1 byte/character

Variant 16 bytes Any numeric value up to the

+ 1 byte/character  range of a Double or any text
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The Variant Data Type

The Variant data type is the default data type in VBA. Like Excel itself, the
Variant data type handles and interconverts between many different kinds of
data: integer, floating point, string, etc. The Variant data type automatically
chooses the most compact representation. But if your procedure deals with only
one kind of data, it will be more efficient and usually faster to declare the
variables as, for example, Integer.

Subroutines

By "subroutine" we mean a Sub procedure that is "called" by another VBA
program. In writing a VBA procedure, it may be necessary to repeat the same
instructions several times within the procedure. Instead of repeating the same
lines of code over and over in your procedure, you can place this code in a
separate Sub program; this subroutine or subprogram is then executed by the
main program each time it is required.

There are several ways to execute a subroutine within a main program. The
two most common are by using the Call command, or by using the name of the
subroutine. These are illustrated in Figure 2-11. MainProgram calls subroutines
Task1 and Task2, each of which requires arguments that are passed from the
main program to the subroutine and/or are returned from the subroutine to the
main program.

Sub MainProgram()
efc.

Call Task1(argument1,argument2)
efc

Task2 argument3,argument4
etc

End Sub

Sub Task1(ArgName1,ArgName2)
efc
End Sub

Sub Task2(ArgName3,ArgName4)
efc
End Sub

Figure 2-11. A main program illustrating the different syntax of subroutine calls.

The two methods use different syntax if the subroutine requires arguments.
If the Call command is used, the arguments must be enclosed in parentheses. If
only the subroutine name is used, the parentheses must be omitted. Note that the
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variable names of the arguments in the calling statement and in the subroutine do
not have to be the same.

There are several advantages to using subroutines: you eliminate the
repetition of code, and you make the programming clearer by adopting a modular
approach. Perhaps most important, a subroutine that is of general usefulness can
be called by several different procedures.

Scoping a Subroutine

A Sub procedure can be Public or Private. Public subroutines can be called
by any subroutine in any module. The default for any Sub procedure is Public.
A Private subroutine can be called only by other subroutines in the same
module. To declare the subroutine Task3 as a private subroutine, use the
statement

Private Sub Task3()

A Sub procedure that is declared Private will not appear in the list of
macros that can be run in the Macro dialog box. The name of a Sub procedure
that takes arguments (i.e., a subroutine), will also not appear in the Macro dialog
box; only Sub procedures without arguments, that is, with empty parentheses
following the procedure name, appear in the Macro dialog box.

VBA Code for Command Macros

- Command macros (Sub procedures) are "action" macros: they can enter or
modify data on a spreadsheet, create a report, display a dialog box and so on.
The CD that accompanies this book includes some examples of Sub procedures,
so the material in the following sections will be useful in understanding the VBA
code in these procedures.

Objects and Collections of Objects

Some examples of VBA objects are the Workbook object, the Worksheet
object, the Chart object and the Range object. Note that the Range object can
specify a single cell, such as E5 in the preceding example, or a range of cells, for
example, Range("A1:E101"). There is no "cell" keyword in VBA to refer to a
single cell; that would be redundant.

You can also refer to collections of objects. A collection is a group of
objects of the same kind. A collection has the plural form of the object's name
(e.g., Worksheets instead of Worksheet). Worksheets refers to all worksheets
in a particular workbook.

To reference a particular worksheet in a collection, you can use either
Worksheets(NameText) or Worksheets(index), For example, you can refer to
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a specific worksheet by using either Worksheets("Book1") or Worksheets(3).
The latter form is useful, for example, if you want to examine all the worksheets
in a workbook, without having to know what text is on each sheet tab.

There is a hierarchy of objects. A Range object is contained within a
Worksheet object, which is contained within a Workbook object. You specify
an object by specifying its location in a hierarchy, separated by periods, for
example,

Workbooks("Book1").Worksheets("'Sheet3").Range("E5")
In the above example, if you don't specify a workbook, but just use
Worksheets("Sheet3").Range("E5")

you are referring to the active workbook. If you don't specify either workbook or
worksheet, e.g.,

Range("ES5")
you are referring to cell E5 in the active sheet.

Instead of the keyword Worksheets, you may sometimes need to use the
keyword Sheets. Sheets is the collection that includes all sheets in a workbook,
both worksheets and chart sheets.

A complete list of objects in Microsoft Excel is listed in Excel's On-line
Help. You can also use the Object Browser to see the complete list of objects.
To display the Object Browser dialog box, choose Object Browser from the
View menu in the VBE.

"Objects" That Are Really Properties

Although ActiveCell and Selection are properties, not objects, you can treat
them like objects. (ActiveCell is a property of the Application object, or the
ActiveWindow property of the Application object.) The Application object has
the following properties that you can treat just as though they were objects: the
ActiveWindow, ActiveWorkbook, ActiveSheet, ActiveCell, Selection and
ThisWorkbook properties. Since there is only one Application object, you can
omit the reference to Application and simply use ActiveCell.

You Can Define Your Own Objects

The Set keyword lets you define a variable as an object, so that you can use
the variable name in your code, rather than the expression for the object. Most
often this is done simply for convenience; it's easier to type or remember a
variable name rather than the (perhaps) long expression for the object. The
variable will have all of the properties of the object type.
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Note the difference between identical expressions with and without the use
of the Set keyword. In the expression

XValues = Workbooks("Book1").Worksheets("Sheet3").Range("E2:E32")

the variable XVaiues contains only the values in cells E2:E32, while the
expression

Set MyRange = Workbooks("Book1").Worksheets("Sheet3").Range("E2:E32")

creates an object variable MyRange, a Range object that allows you to read (or
set) any of the properties of this object. For example, in addition to the value of
any cell in the range E2:E32, you can obtain its number format, column width,
row height, font and so on.

Remember, VBA will allow you to equate a variable to an object in an
assignment statement, but the variable does not automatically become an object.
If you then attempt to use the variable in an expression that requires an object,
you'll get an "Object required" error message. You must use the Set keyword in
order to create an object variable.

Methods

Objects also have methods. The Excel 2003 VBA Help lists 71 methods,
listed below, that apply to the Range object. Many of these methods correspond
to familiar menu commands.

Activate ClearNotes FindNext RowDifferences
AddComment ClearOutline FindPrevious Run
AdvancedFilter ColumnDifferences  FunctionWizard Select
ApplyNames Consolidate GoalSeek SetPhonetic
ApplyOutlineStyles  Copy Group Show
AutoComplete CopyFromRecordset Insert ShowDependents
AutoFil} CopyPicture Insertindent ShowErrors
AutoFilter CreateNames Justify ShowPrecedents
AutoFit Cut ListNames Sort

AutoFormat DataSeries Merge SortSpecial
AutoOutline Delete NavigateArrow Speak
BorderAround DialogBox NoteText SpecialCells
Calculate Dirty Parse Subtotal
CheckSpeliing FillDown PasteSpecial Table

Clear FillLeft PrintOut TextToColumns
ClearComments FillRight PrintPreview Ungroup
ClearContents FillUp RemoveSubtotal UnMerge
ClearFormats Find Replace

Some Useful Methods

Methods can operate on an object or on a property of an object. Some
methods that can be applied to the Range object are the Copy method, the Cut
method, the FillDown method or the Sort method. Statements involving
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methods usually do not appear in an assignment statement (that is, no equal sign
is required). For example,

Range("A1:E1").Clear
clears the formulas and formatting in the range A1:E1.
Some useful VBA methods are listed in Table 2-7.
Table 2-7. Some Useful VBA Methods

Activate Activates an object (sheet, etc.).

Clear Clears an entire range.

Close Closes an object.

Copy Copies an object to a specified range or to the Clipboard.
Cut Cuts an object to a specified range or to the Clipboard.
FillDown Copies the cell(s) in the top row into the rest of the range.
Select Selects an object. '

Two Ways to Specify Arguments of Methods

VBA methods usually take one or more arguments. The Sort method, for
example, takes 10 arguments. The syntax of the Sort method is

object. Sort(key1, order1, key2, order2, key3, order3, header, orderCustom,
matchCase, orientation)

The object argument is required; all other arguments are optional.

You can specify the arguments of a method in two ways. One way is to list
the arguments in order as they are specified in the preceding syntax, i.e.,

Range("A1:E150").Sort "Last Name", xlAscending

which sorts the data contained in the range A1:E150 in ascending order, using as
the sortkey the values in the column headed by the label Last Name.
xlAscending is one of many built-in constants. You can look them up in the On-
line Help or use the Recorder to provide the correct one.

In the preceding example, only the arguments key? and order? were
specified; the remaining arguments are optional and are not required.

The second way is to use the name of the argument as it appears in the
preceding syntax, with the := operator, to specify the value of the argument, as in
the following:

Selection.Sort Key1:=Range("A2"), Order1:=xlAscending, _
Key2:=Range("B2"), Order2:=xlAscending, Key3:=Range("C2")
Order3:=xIDescending, Header:=xIGuess, OrderCustom:=1, _
MatchCase:=False, Orientation:=xITopToBottom
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When using this method, the arguments can appear in any order, and
optional ones can be omitted if you do not need to specify a value.

Arguments with or without Parentheses

The arguments of a method sometimes appear within parentheses, sometimes
without parentheses (see the examples immediately preceding). Sometimes
either syntax will work, sometimes one or the other fails. Why is this?

As well as performing an action, methods create a return value. The return
value can be either True or False: True means the method worked, False means
that it failed. Even the ChartWizard method creates a return value: True if the
chart was created successfully, False if the method failed. Usually you aren't
interested in these return values; if your procedure executed successfully, you
are happy. But occasionally the return value is important.

An example of a method that creates a useful return value is the
CheckSpelling method. The CheckSpelling method has the following syntax:

Application.CheckSpelling(word)
If you use this method, you'll need the return value (either True or False) to
determine whether the word is spelled correctly.

If you want to use the return value of a method, you must enclose the
arguments of the method in parentheses. If the arguments are not enclosed in
parentheses, then the return value will not be available for use. Put another way,
the expression

result = Application.CheckSpelling(ActiveCell.Value)
does not produce a syntax error, while the expression
result = Application.CheckSpelling ActiveCell.Value

does give a syntax error.

Making a Reference to a Cell or a Range

One of the most important skills you'll need in order to create Sub
procedures that manipulate data in workbooks is the ability to make a reference
to a cell or range of cells. You'll need to be able to send values from a worksheet
to a module sheet so that you can perform operations on the worksheet data, and
you'll need to be able to send the results back from the module sheet to the
worksheet.

A Reference to the Active Cell or a Selected Range
Often a macro will be designed to operate on a user-selected cell or range.
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To refer to the active cell or a selected range of cells, use the ActiveCell or
Selection keywords. The ActiveCell keyword is usually used when the user has
selected a single cell, whereas the Selection keyword is used when the user has
selected a range of cells. However, Selection can refer to a single cell or a
range.

A Reference to a Cell Other than the Active Cell

Sometime a macro will be designed to operate on values from specified rows
and columns in a worksheet, independent of where the cursor has been "parked"
by the user. To refer to a cell or range other than the selection, use either the
Range keyword or the Cells keyword. The syntax of the latter is
Cells{(Rowlndex, Columnindex).

The following references both refer to cell B3:
Range("B3")
Cells(3,2)

The preceding are "absolute" references, since they always refer to, in this
example, cell B3. You can also use what could be called a "computed”
reference, in which the reference depends on the value of a variable. The Cells
keyword is conveniently used in this way. For example, the expression

Celis(x,2)

allows you to select any cell in column B, depending on the value assigned to the
variable x. The Range keyword can be used in a similar way by using the
concatenation operator, e.g.,

Range("B" & x)

It's usually good programming practice not to use the Select keyword unless
you actually need to select cells in a worksheet. For example, to copy a range of
cells from one worksheet to another, you could use the statements shown in
Figure 2-12, and in fact this is exactly the code you would generate using the
Recorder. But you can do the same thing much more efficiently, and without
switching from one worksheet to another, by using the code shown in Figure 2-
13.

Range("D1:D20").Select
Selection.Copy
Sheets("Sheet15").Select
Range("A1").Select
ActiveSheet.Paste

Figure 2-12. VBA code fragment by the Recorder.
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| Range("D1:D20").Copy (Sheets("Sheet15").Range("A1")) |

Figure 2-13. A more efficient way to accomplish the same thing, without selecting cells.

References Using the Union or Intersect Method

VBA can create references by using methods that are the equivalents of the
union operator (the comma) or the intersection operator (the space character)
that can be used in worksheet formulas. The worksheet union operator creates a
reference that includes multiple selections, for example, SUM(A1,B2,C3,D4,E5).
The syntax of the corresponding VBA Union method is Union(range1,
range2,...). The worksheet intersection operator creates a reference that is
common to two references (e.g., the expression F4:F6 E5:15 returns the reference
F5). The syntax of the corresponding VBA Intersect method is
Intersect(range1, range2). Both range? and range2 must be range objects.

Examples of Expressions to Refer to a Cell or Range

1. Using the Range keyword with an address
Range("B1:D10")

2. Using the Cells keyword with row and column numbers
Celis(15, 5)

This expression refers to cell E15.

3. Usingthe Range keyword with a range name
Range("addr1")

The range name addr1 was assigned previously using Insert—+Name—
Define. This method is useful if the user can possibly modify the spreadsheet so
that the addresses of cells needed by the procedure are changed.

4. Using the Cells keyword with variables
Cells(RowNum, ColNum)

5. Using the Range keyword with a variable
Range(addr2)

The variable addr2 was previously defined by means of a statement such as
addr2 = Selection.Address
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6. Using the Range keyword with ampersand
TopRow = 2: BtmRow = 12

Range("F" & TopRow & ":G" & BtmRow)
The Range argument evaluates to “F2:G12")

7. Using the Range keyword with two Cells expressions
Range(Cells(1, 1), Cells(5, 5))

This expression refers to the range A1:E5. This method is useful when both
row and column numbers of the reference must be "computed.”

8. Using the Range keyword with Cells(index)
Range("A5:A12").Cells(3)

This expression refers to cell A7; it provides a way to select individual cells
within a specified range.)

Range("A1:J10").Cells(13)

Accesses first across rows, then by columns; this example selects cell C2.

9. Using the Range keyword with Offset
Range("A1").Offset(3, 1)
This example selects cell B4.
Range("A1:A12").Offset(3, 1)
This example selects the range B4:B15.

10. Using the Range keyword with Offset and Resize
Range("A1:A12").0ffset(3, 1).Resize(1, 1)

Use the Resize keyword to select a single cell offset from a range. This
example selects cell B4.

Getting Values from a Worksheet

To transfer values from worksheet cells to a procedure, use a reference to a
worksheet range in an assignment statement like the following.

variablename = ActiveCell.Value
variablename = Worksheets("Sheet1").Range("A9").Value

The Value keyword can usually be omitted:
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variablename = Range("A" & x)
variablename = Cells(StartRow+x,StartCol)

The corresponding Formula property is used to obtain the formula in a cell,
rather than its value.

Sending Values to a Worksheet

To send values from a module sheet back to a worksheet, simply use an
assignment statement like the ones shown in the following examples. You can
send a label

Range("E1").Value = "Jan.-Mar."

a constant

Cells(1, 2).Value=5

the value of a variable
Worksheets("Sheet1").Range("A1") = variable2

or even a worksheet formula
Cells(1, 3).Formula = "=sum(F1.F10)"

to a cell in a worksheet. Again, the .Value keyword can usually be omitted.

Interacting with the User

VBA provides two built-in dialog boxes for display of messages or for input,
MsgBox and InputBox. These are often incorporated in Sub procedures; they
should never be used in Function procedures.

MsgBox

The MsgBox dialog box allows you to display a message, such as "Please
wait..." or "Access denied."” The box can display one of four message icons, and
there are many possibilities in the number and function of buttons that can be
displayed.

The syntax of the MsgBox function is

MsgBox (prompt_text, buttons, title_text, helpfile, context)

where prompt_text is the message displayed within the box, buttons specifies the
buttons to be displayed, and title_text is the title to be displayed in the Title Bar
of the box. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference. The value of buttons determines the type of message
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icon and the number and type of response buttons; it also determines which
button is the default button. The possible values are listed in Table 2-8. The
values 0-5 specify the number and type of buttons, values 16—64 specify the type
of message icon and values 0, 256, 512 specify which button is the default
button. You add together one number from each group to form a value for
buttons. For example, to specify a dialog box with a Warning Query icon, with
Yes, No and Cancel buttons, and with the No button as default, the values 32 + 3
+256 =291.

Table 2-8. Values for the buttons Parameter of MsgBox
buttons Equivalent

Value  Constant Description
0 vbOKOnly Display OK button only.
1 vbOKCancel Display OK and Cancel buttons.
2 vbAbortRetrylgnore Display Abort, Retry and Ignore buttons.
3 vbYesNoCancel Display Yes, No and Cancel buttons.
4 vbYesNo Display Yes and No buttons.
5 vbRetryCancel Display Retry and Cancel buttons.
0 No icon.
16 vbCritical Display Critical Message icon.
32 vbQuestion Display Warning Query icon.
48 vbExclamation Display Warning Message icon.
64 vbinformation Display Information Message icon.
0 vbDefauitButton1 First button is default.

256 vbDefaultButton2 Second button is default.
512 vbDefaultButton3 Third button is default.

For example, the VBA expression,

MsgBox "You entered " & incr & "." & Chr(13) & Chr(13) & _
"That value is too large." & Chr(13) & Chr(13) & "Please try again.”, 48

where the VBA variable incr has the value 50, produces the message box shown
in Figure 2-14.
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’j You entered 50,
L]

That value is too large.

Please try again.

Figure 2-14. A Msgbox display.

The values of butfons are built-in constants—for example, the value 64 for
buttons can be replaced by the variable name vbinformation. The same result, a
dialog box with a Warning Query icon, with Yes, No and Cancel buttons and
with the No button as default, can be obtained by using the expression

vbinformation + vbYesNoCancel + vbDefaultButton2

in the MsgBox function instead of the value 323.

MsgBox Return Values

MsgBox can return a value that indicates which button was pressed. This
allows you to take different actions depending on whether the user pressed the
Yes, No or Cancel buttons, for example. To get the return value of the message
box, use an expression like

ButtonValue = MsgBox (prompt_text, buttons, title_text, helpfile, context)
(Note that the arguments of MsgBox must be enclosed in parentheses in order
for it to return a value.)

The return values of the buttons are as follows: OK, 1; Cancel, 2; Abort, 3;
Retry, 4; Ignore, 5; Yes, 6; No, 7.

InputBox

The InputBox allows you to pause a macro and request input from the user.
There are both an InputBox function and an InputBox method.

The syntax of the InputBox function is

InputBox(prompt_text, title_text, default, x_position, y_position, helpfile,
context)

where prompt_text and title_text are as in MsgBox. Default is the expression
displayed in the input box, as a string. The horizontal distance of the left edge of
the box from the left edge of the screen, and the vertical distance of the top edge
from the top of the screen are specified by x_position and y_position,
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respectively. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference.

If the user presses the OK button or the RETURN key, the InputBox function
returns as a value whatever is in the text box. If the Cancel button is pressed, the
function returns a null string. The following example produces the input box
shown in Figure 2-15.

ReturnValu = InputBox("Enter validation code number”, _
"Validation of this copy of SOLVER.STATS")

INPUT BOX DEMO

I
Please enter a value now.

Cancel

Figure 2-15. An InputBox display.

The syntax of the InputBox method is

Object.InputBox(prompt_text, title_text, default, x_position, y_position,
helpfile, context, type_num)

The differences between the InputBox function and the InputBox method
are the following: (i) default can be any data type and (ii) the additional
argument type_num specifies the data type of the return value. The values of
type_num and the corresponding data types are listed in Table 2-9. Values of
type_num can be added together. For example, to specify an input dialog box
that would accept number or string values as input, use the value 1 + 2 = 3 for
type_num.

Table 2-9. InputBox Data Type Values
type_num Data Type
Formula
Number
String
Logical
Reference (as a Range object)
Error value
Array

R —= 0N —=O

A~
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The following example causes the InputBox method to return a Range
object (so that you can use its Address property in addition to its Value
property, for example):

Set known_Ys = Application.InputBox _

("Select the range of Y values", "STEP 1 OF 2", , ,, ,, 8)

Visual Basic Arrays

If you're familiar with other programming languages you are probably
familiar with the concept of an array. An array is a collection of related
variables denoted by a single name, such as Sample. You can then specify any
element in the array by using an index number: Sample(1), Sample(7), etc.

Many scientists make extensive use of arrays in their calculations. Because
some aspects of arrays in VBA can be confusing, this chapter provides detailed
coverage of this important topic.

Dimensioning an Array

The Dim (short for Dimension) statement is used to declare the size of an
array. Unless specified otherwise, VBA arrays begin with an index of 0. Thus
the statement

Dim Sample(10)

establishes array storage for 11 elements, Sample(0) through Sample(10).
However, you can specify that the arrays in your procedure begin with an array
index of 1. Since worksheet ranges, worksheet functions and worksheet arrays
use (or assume) a lower array index of 1, always specifying VBA arrays with
lower array index of 1 can eliminate a lot of confusion.

There are two ways to specify the lower array index. You can specify the
lower bound of an array in the Dim statement. For example,

Dim Sample (1 To 10)

sets the lower array index = 1 for the array Sample. It's considered good
programming practice to put the Dim statements at the beginning of the
procedure.

Alternatively, you can use the Option Base 1 statement, which specifies that
all arrays in the procedure begin with a lower index of 1. The Option Base 1
statement is used at the module level: that is, it must appear in a module sheet
before any procedures.
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Use the Name of the Array Variable
to Specify the Whole Array

You can refer to the complete array by using the array variable name in your
code. The array name can be used with or without parentheses.

Multidimensional Arrays

Arrays can be multidimensional. Two-dimensional arrays are common; to
create a 2-D array called Spectrum, with dimensions 500 rows x 2 columns, use
the statement

Dim Spectrum (500,2)

Declaring the Variable Type of an Array

Since multidimensional arrays such as the one above can use up significant
amounts of memory, it's a good idea to define the data type of the variable. The
complete syntax of the Dim statement is

Dim VariableName(Lower To Upper) As Type

The optional Lower To can be omitted. Type can be Integer, Single,
Double, Variant, etc. See the complete list of data types in "VBA Data Types"
earlier in this chapter.) A Variant array can hold values of different data types,
such as integer and string, in the same array.

Several variables can be dimensioned in a single Dim statement, but there
must be a separate As Type for each variable. Thus

Dim J As Integer, K As Integer

is OK but Dim J, K As Integer declares only the variable J as integer.

Returning the Size of an Array

Use the LBound and UBound functions to obtain the size of an array during
execution of your procedure. The LBound function returns the lower index of
an array. For example, for the array Sample described previously,
LBound(Sample) returns 1 and UBound(Sample) returns 10.

The complete syntax of LBound and UBound is LBound(arrayname,
dimension). For the array Spectrum dimensioned thus:

Dim Spectrum (500,2)

the statement UBound(Spectrum,1) returns 500 and UBound(Spectrum,2)
returns 2.
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Dynamic Arrays

If you don't know what array size you will need to handle a particular
problem, you can create a dynamic array. This will allow you to declare a
variable as an array but set its size later. Dimension the array using the Dim
command, using empty parentheses, and use the ReDim command later to
specify the array size, as, for example, in Figure 2-16.

Dim MeanX(), MeanY()

'Get number of cells to use in calculation
Ncelis = XValues.Count
ReDim MeanX(Ncells), MeanY(Ncells)

Figure 2-16. Re-dimensioning an array.

You can also use the ReDim command to change the number of dimensions
of an array.

The ReDim command can appear more than once in a procedure. If you use
the ReDim command to change the size of an array after it has been "populated"”
with values, the values will be erased.

Preserving Values in Dynamic Arrays

You can preserve the values in an existing array by using the Preserve
keyword, e.g.,

Dim MeanX(), MeanY()

ﬁeDim Preserve MeanX(Ncells / 2), MeanY(Ncells / 2)

But, there’s a limitation. Only the upper bound of the last dimension of a
multidimensional array can be changed. Thus, the following code is valid:

Dim MeanXandY(2, 1000)
ReDim Preserve MeanXandY (2,Ncells / 2)
but the following code will generate a run-time error:

Dim MeanXandY(1000, 2)

ReDim Preserve MeanXandY (Ncells / 2, 2)
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If you use Preserve, you can’t use the ReDim command to change the
number of dimensions of an array.

Working with Arrays in Sub Procedures:
Passing Values from Worksheet to VBA Module

There are two ways to get values from a worksheet into a VBA array. You
can either set up a loop to read the value of each worksheet cell and store the
value in the appropriate element of an array, or you can assign the VBA array to
a worksheet range. The former method is straightforward; the latter method is
described in the following section.

Depending on which of these two methods you use, there can be a definite
difference with respect to execution speed that could become important if you
are working with extremely large arrays. An appreciable time is required to read
values from a range of worksheet cells and store them in an internal array, while
calculation using values in an internal array is much faster. Thus, if you need to
access array elements a number of times, it will probably be more time-efficient
to store the values in an internal array.

A Range Specified in a Sub Procedure
Can Be Used as an Array

If a variable in a VBA Sub procedure is set equal to a range of cells in a
worksheet, that variable can be used as an array. No Dim statement is necessary.
Thus the following expression creates a variable called TestArray that can be
treated as an array:

TestArray = Range("A2:A10")

The worksheet array can be a range reference or a name that refers to a
reference. Thus, if the name XRange had been assigned to the range "A2:A10,"
then the following expression would also create a worksheet array called
TestArray:

TestArray = Range("XRange")

A one-row or one-column reference becomes a one-dimensional array; a
rectangular range becomes a two-dimensional array of dimensions array(rows,
columns).

The lower index of these arrays is always 1. Although arrays created within
VBA have a lower array index of zero unless specified otherwise (by means of
the Option Base 1 statement, for example), when you assign a variable name to
a range of worksheet cells, an array is created with lower array index of 1.

Note that the values in the range of cells have not been transferred to an
internal VBA array; the VBA variable simply "points" to the range on the
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worksheet. However, the values in the range can be accessed in the same way
that elements in a true array are accessed; for example, XRange(3) returns the
third element in the "array."

Some Worksheet Functions Used Within VBA
Create an Array Automatically

If you use a worksheet function within VBA that returns an array, the lower
array index will be 1. Such worksheet functions include: LINEST, TRANSPOSE,
MINVERSE and MMULT. That's why it's important to use Option Base 1;
otherwise, you will have some arrays with lower array index of zero and others
with lower array index of one.

An Array of Object Variables
There is an important difference between equating a range of cells in a
worksheet to a simple variable in VBA, e.g.,

ar = Range("A2:B9")
or equating a range of cells in a worksheet an object variable by using the Set
command, e.g.,

Set ar = Range("A2:B9")

Equating a variable in VBA to a worksheet range creates an array in VBA in
which each array element contains the value stored in the cell. Using the Set
command to equate an object variable in VBA to a worksheet range creates a
Range object.

For an array of object variables, you must use a different approach to obtain
the upper or lower bounds of the array indices, e.g.,

ar.Rows.Count
or

ar.Columns.Count.

Working with Arrays in Sub Procedures:
Passing Values from a VBA Module to a Worksheet

There are at least two ways to send values from a VBA array to a worksheet.
You can set up a loop and write the value of each array element to a worksheet
cell, or you can assign the value of the VBA array to the value of a worksheet
range. The latter method can cause a problem when you use this method with a
1-D range, as described next.
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A One-Dimensional Array
Assigned to a Worksheet Range
Can Cause Problems
Arrays can cause some confusion when you write the array back to a
worksheet by assigning the value of the array to a worksheet range.

VBA considers a one-dimensional array to have the elements of the array in
arow. This can cause problems when you select a range of cells in a column and
assign an array to it, as in the following:

Range("E1:E10").Value = TestArray

The preceding statement causes the same value, the first element of the
array, to be entered in all cells in the column. However, if you write the array to
arow of cells instead of a column, e.g.,

Range("E1:N1").Value = TestArray

each cell of the range will receive the correct array value.

There are at least three ways to "work around" this problem caused by a
“horizontal” array and a “vertical” destination range. One obvious way is to use
a loop to write the elements of the array to individual worksheet cells in a
column.

A second way is to specify both the row and the column dimensions of the
array, so as to make it an array in a column, as illustrated in the Sub procedure
shown in Figure 2-16.

Sub ArrayDemo1 O
'‘Second method to "work around" the row-column problem:
‘specify the row and column dimensions.

Dim TestArray(10, 1)
statements to populate the array
"Then writes the array elements to cells E1:E10.
Range("E1:E10").Value = TestArray
End Sub

Figure 2-16. A "work around” for the row—column problem.

A third way is to use the TRANSPOSE worksheet function (Figure 2-17):
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Sub ArrayDemo2()

'Another method to "work around" the row-column problem: use
Transpose.

'Note that Transpose creates a 1-base array.

Dim TestArray(10)

statements to populate the array
Range("E1.E10").Value = Application. Transpose(TestArray)
End Sub

Figure 2-17. Another "work around" for the row—column problem.

Custom Functions

Chapter 1 provided an introduction to Sub procedures and Function
procedures. By now it should be clear that a Sub procedure (a command macro)
is a computer program that you "run"; it can perform actions such as formatting,
opening or closing documents and so on. A Function procedure (a user-defined
function) is a computer program that calculates a value and returns it to the cell
in which it is typed. A Function procedure cannot change the worksheet
environment (e.g., it can't make a cell Bold).

The following sections provide some examples of more advanced features of
custom functions.

Specifying the Data Type of an Argument

You can specify the data type of an argument passed to a Function
procedure by using the As keyword in the Function statement. For example,
the Function procedure MolWt takes two arguments: formula (a string) and
decimals (an integer). The statement

Function MolWt (formula As String, decimais As Integer)

declares the type of each variable. If an argument of an incorrect type is
supplied to the function, a #/ALUE! error message will be displayed.

Specifying the Data Type
Returned by a Function Procedure

You can also specify the data type of the return value. If none is specified,
the Variant data type will be returned. In the example of the preceding section,
MolWt returns a floating-point result. The Variant data type is satisfactory;
however, if you wanted to specify double precision floating point, use an
additional As Type expression in the statement, for example,

Function MolWt (formula As String, decimals As Integer) As Double
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Returning an Error Value from a Function Procedure

If, during execution, a function procedure detects an incorrect value or an
incipient error such as a potential divide-by-zero error, we need to return an error
value. You could specify a text message as the return value of the function
procedure, like this:

If (error found) Then FunctionName = "error message": Exit Function
but this is not the best way to handle an error. Use the CVErr(errorvalue)
keyword to return one of Excel's worksheet error values that Excel can handle
appropriately. For example, if a result cannot be calculated by the function, then
a #N/A error message should be returned. This is accomplished by means of the
following:

If (error found) Then FunctionName = CVErr(xIErrNA): Exit Function

The error values are listed in Appendix 1.

A Custom Function that Takes an Optional Argument
A custom function can have optional arguments. Use the Optional keyword
in the list of arguments to declare an optional argument. The optional argument
or arguments must be last in the list of arguments.
Within the procedure, you will need to determine the presence or absence of
optional arguments by using the IsMissing keyword. As well, you will usually
need to provide a default value if an argument is omitted.

Arrays in Function Procedures

You can create Function procedures that use arrays as arguments, or return
an array of results.

A Range Passed to a Function Procedure
Can Be Used as an Array

If a range argument is passed in a function macro, the range can be treated as
an array in the VBA procedure. No Dim statement is necessary. Thus the
expression

Function MyLINEST(known_ys, known_xs)

passes the worksheet ranges known_ys and known_xs to the VBA procedure
where they can be used as arrays. A one-row or one-column reference becomes
a one-dimensional array; a rectangular range becomes a two-dimensional array
of dimensions array(rows, columns).
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Passing an Indefinite Number of Arguments
Using the ParamArray Keyword

Occasionally a Function procedure needs to accept an indefinite number of
arguments. The SUM worksheet function is an example of such a function; its
syntax is =SUM(number1,number2,...). To enable a Function procedure to
accept an indefinite number of arguments, use the ParamArray keyword in the
argument list of the function, as in the following expression

Function ArrayMaker(ParamArray rng())

Only one argument can follow the ParamArray keyword, and it must be the
last one in the function's list of arguments. The argument declared by the
ParamArray keyword is an array of Variant elements. Empty parentheses are
required.

The lower bound of the array is zero, even if you have used the Option Base
1 statement. Use UBound(rng) to find the upper array index.

Elements in the array of arguments passed using the ParamArray keyword
can themselves be arrays. The following code illustrates how to access
individual elements of each array in an array of elements passed using
ParamArray.

Function ArrayMaker(ParamArray rng())

For J = 0 To UBound(rng)
YSize = rng(J).Columns.Count
For K=1To YSize
statements
Next K
Next J

Figure 2-18. Handling an array of array arguments passed by using ParamArray.

Returning an Array of Values as a Result

The most obvious way to enable a Function procedure to return an array of
values is to assemble the values in an array and return the array. The procedure
shown in Figure 2-19 illustrates a function that returns an array of three values.
To use the function, the user must select a horizontal range of three cells, enter
the function and press CONTROL+SHIFT+ENTER.
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Function MyLINEST(known_ys, known_xs)
Dim Results(3)
code to calculate slope, intercept and R-squared
Results(1) = MySlope
Resulits(2) = Mylntercept
Results(3) = MyRSq
MyLINEST = Results
End Function

Figure 2-19. A Function procedure that returns an array of results.

A second approach is to use the Array keyword. The Array function returns
a variant that contains an array.

Function MyLINEST(known_ys, known_xs)

code to calculate slope, intercept and R-squared
MyLINEST = Array(MySlope,My Intercept, MyRSq)
End Function

Figure 2-20. Using the Array keyword in a Function procedure.

The Array keyword can accommodate only a one-dimensional array. To use
this approach to return a two-dimensional array of results, you must create an
array of arrays, as illustrated in Figure 2-21. Both arrays must contain the same
number of values.

Function MyLINEST2(known_ys, known_xs)
code to calculate slope, intercept, R-squared,
std dev of slope, std dev of intercept, std error of y values.
MyLINEST2 = Array(Array(MySlope, Myintercept, MyRSq), _
Array(stdev_m, _stdev_b, SE_y))
End Function

Figure 2-21. Using the Array keyword to return a 2-D array.

Creating Add-In Function Macros
Saving a custom function as an Add-In is by far the most convenient way to
use it. Here are some of the advantages:

* An Add-In custom function is listed in the Paste Function list box
without the workbook name preceding the name of the function,
making it virtually indistinguishable from Excel's built-in functions.

o If the Add-In workbook is placed in the AddlIns folder, the Add-In will
be available every time you start Excel.
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How to Create an Add-In Macro

To save a workbook as an Add-In, choose Save As... from the File menu.
Choose Microsoft Excel Add-In from the Save File As Type drop-down list box,
then press OK. In Excel for Windows, Add-In workbooks are automatically
given the filename extension .xla.

When you save a workbook as an Add-In, the default location is the AddIns
folder.

Command macros can also be saved as Add-Ins.

Testing and Debugging

When an error occurs during execution of a procedure, VBA will stop
execution and display a run-time error message. There are a large number (over
50) of these run-time error messages. Some (but not all) of these error messages
are self-explanatory. Here are some examples:

Subscript out of range Attempted to access an element of an
array outside its specified dimensions.

Property or method not found Object does not have the specified
property or method.

Argument not optional A required argument was not provided.

The line of code in which the error occurred, or the first line of the
procedure (containing the Sub or Function keyword) will be highlighted,
usually in yellow (see Figure 2-22). After you have corrected the error in your
VBA code, the line will still be highlighted. Press F5 to continue execution.

o

Function MySLOPE(known_ys, known_xs)
N = known_ys.Count

Forz=1ToN

Sx = Sx + known_xs(2)

Sy = 8y + known_ys(z)

Sxx = Sxx + known_xs(z) # 2

Syy = Syy + known_ys(z) * 2

Sxy = Sxy + known_xs(z) * known_ys(z)
Next z

Slope = (N * Sxy - Sx * Sy) / (N * Sxx - Sx * Sx)
MySLOPE = Slope
__End Function

Figure 2-22. VBA code with a highlighted line.
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Tracing Execution

When your program produces an error during execution, or executes but
doesn't produce the correct answer, it is often helpful to execute the code one
statement at a time and examine the values of selected variables during
execution. If your procedure contains logical constructions (If or Select Case,
for example), simply stepping through code will allow you to verify the logic.

Stepping Through Code

There are two ways to begin the process of stepping through the code of a
Sub procedure:

» Select the name of the procedure in the Macro Name list box and press the
Step Into button. This will display the code module containing the
procedure; the first line of the procedure will be highlighted in yellow, as in
Figure 2-22).

» Add a breakpoint as described in the following section, then run the Sub
procedure in the usual way.

When the code window is displayed, with a line of code highlighted, you can
step through the code by pressing F8 or by using the Step Into toolbutton i
The Step Into toolbutton is on the Debug toolbar; choose Toolbars from the
View menu and Debug from the submenu to display the Debug toolbar (Figure
2-23).

The highlighted line of code is the statement to be executed next.

Figure 2-23. The VBA Debug toolbar.

Adding a Breakpoint
A breakpoint allows you to halt execution at a specified line of code, rather

than having to step through the code from the beginning. There are several ways
to add a breakpoint:

= Opposite the line of code where you want to set the breakpoint, click
in the gray bar on the left side of the VBA module sheet. The line of
code will be highlighted (usually in red-brown) and a breakpoint
indicator, a large dot of the same color, will be placed in the margin
(see Figure 2-24).

= Place the cursor in the line of code where you want to set a breakpoint.

Press the Toggle Breakpoint button U on the Debug toolbar.
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» Insert a Stop statement in the VBA code.

» Enter a break expression in the Add Watch dialog box (see
"Examining the Values of Variables" later in this chapter).

Function MySLOPE(known_ys, known_xs)
N = known_ys. Count

Forz=1ToN

S = Sx + known_xs(z)

Sy = S}f + known_ys(z)

Sxx = Sx + known_xs(z) * 2

Syy = Syy + known_ys(z) * 2

Sy = Sxy + known_xs(z) * known_ys(z)
Next z

| @ E_:_,_:_'_“,‘ nga Oy %‘if}.ﬂg"‘%
| MySLOPE = Slope
End Function

Figure 2-24. VBA code with a breakpoint.

When you run the macro, the code will execute until the breakpoint is
reached, at which point execution will stop. You can now step through the code
one statement at a time or examine the values of selected variables, as described
in the following sections.

Since you can't "run" a Function procedure, the only way to step through a
Function procedure is to add a breakpoint, then recalculate a formula containing
the custom function.

To remove a breakpoint, click on the breakpoint indicator, or place the

cursor on the highlighted line and press the Toggle Breakpoint button, or delete a
Stop statement.

Examining the Values of Variables
While in Break Mode

You can examine the values of selected variables while in Break Mode. You
get to be in Break Mode by one of the following:

e Your procedure generated a run-time error and halted.

e Your procedure reached a line with a breakpoint or a Stop statement

To see the current value of a variable, highlight the variable by double-
clicking on it, or simply place the cursor over the variable. The current value of
the variable will be displayed in a yellow "InfoBox" next to the cursor, as
illustrated in Figure 2-25.
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Function MySLOPE(known_ys, known_xs)
N = known_ys.Count

Forz=1ToN

Sx = Sx + known_xs(z)

Sy = Sy + known_ys(z)

Sxux = Sxx + known_xs(z) * 2

Syy = Syy + known_ys(z) * 2

|Syy = 8507.926157 | + known_xs(z) * known_ys(2)
Next z

oy Slope=(N*Sxy- Sx*Sy)/(N*Sux-Sx™* 5x)
MySLOPE = Slope
| End Function

Figure 2-25. Displaying the value of a variable while in break mode.

Examining the Values of Variables During Execution

You can also display the values of selected variables as the code is executed.
There are several ways to select variables or expressions to be displayed:

s Highlight the variable or expression and then choose Quick Watch...

from the Debug menu or press the Quick Watch button ““ on the
Debug toolbar, to display the Quick Watch dialog box (Figure 2-26).

o Highlight the variable or expression and then choose Add Watch...
from the Debug menu to display the Add Watch dialog box (Figure 2-
27).

LINEST2.xls . Module1 .MySLOPE

Expression

Cancel I
Value - Skt il
<QOut of context> Help !

Figure 2-26. The VBA Quick Watch dialog box.
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Expression:

| 57 :
Cancel 1
Context 1

Procedure: |MySLOPE ~ Help

f\_'],}duhz-: Ir‘hjl‘jlilel _'
Project: LINESTZ2.xls

watch Type

{* \Watch Expression

" Break \When value Is True

{ * Break \When Value Changes

Xl

Figure 2-27. The VBA Add Watch dialog box.

To see the values of the selected variables or expressions, you must be in
Step mode. The variables will be listed in the Watches pane (Figure 2-28),
which is usually located below the Code window. The current values of the

variables will be displayed as you step through the code.

Expr vaiue  fType ~ [Context -
&6 Sx 78 VariantDouble  Module1 MySLOPE
&4 Sxx 650 WariantDouble Module1 MySLOPE
|66 Sxy 23368138 WariantDoubkle Module1 MySLOPE
isﬁ Sy 299 307 Wariant/Double Module1 MySLOPE
Syy 926157 WariantDouble Module1 MySLOPE

Madule1 MySLOPE

Figure 2-28. The VBA Watches pane.

To remove a variable or expression from the Watches window, select it in
the Watches window, choose Edit Watch from the Debug menu and press the
Delete button. Or you can simply select it in the Watches window and press the

Delete key.

Watch expressions are not saved with your code.
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Chapter 3

Worksheet Functions
for Working with Matrices

Arrays, Matrices and Determinants

Spreadsheet calculations lend themselves almost automatically to the use of
arrays of values. Arrays in Excel can be either one- or two-dimensional. For the
solution of many types of problem, it is convenient to manipulate an entire
rectangular array of values as a unit. Such an array is termed a matrix. (In Excel,
the terms "range," "array" and "matrix" are virtually interchangeable.) Anm x n
matrix (m rows and » columns) of values is illustrated below:

Ay A - Ay,
Ay Ay ... dyy,
aml am2 amn

The values comprising the array are called matrix elements. Mathematical
operations on matrices have their own special rules, to be discussed in the
following sections.

Some Types of Matrices

A matrix which contains a single column of m rows or a single row of »
columns is called a vector.

A square matrix has the same number of rows and columns. The set of
elements ajj for which i = j (ay, ax,..., am) is called the main diagonal or
principal diagonal.

If all the elements of a square matrix are zero except those on the main

diagonal, the matrix is termed a diagonal matrix. A diagonal matrix whose
diagonal elements are all 1 is a unit matrix.

57
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An upper triangular matrix has values on the main diagonal and above, but
the values of all elements below the main diagonal are zero; similarly, a lower
triangular matrix has zero values for all elements above the main diagonal.

A tridiagonal matrix contains all zeros except on the main diagonal and the
two adjacent diagonals.

A symmetric matrix is a square matrix in which a;; = aj;.

A determinant is a property of a square matrix; there is a procedure for the
numerical evaluation of a determinant, so that an N x N matrix can be reduced to
a single numerical value. The value of the determinant has properties that make

it useful in certain tests and equations. (See, for example, "Cramer's Rule" in
Chapter 9.)

An Introduction to Matrix Mathematics

Matrix algebra provides a powerful method for the manipulation of sets of
numbers. Many mathematical operations, such as addition, subtraction,
multiplication and division, have their counterparts in matrix algebra. Our
discussion will be limited to the manipulations of square matrices. For purposes
of illustration, two 3 x 3 matrices will be defined, namely
[a b c] [2 3 4]
A=|d e f|=13 2 1

g h i] (4 3 7

and
ros t 2 0 2]
B=\u v w|=1{0 3 3
x y z 3 21

Addition or Subtraction. The following examples illustrate addition or
subtraction.

a+q b+g ct+g
Addition of aconstant: A +g=|d+q e+q f+gq
g+qg h+g i+gq

Addition of two matrices (both must have the same dimensions, i.e., contain the
same numbers of rows and columns):

a b ¢ r s t a+r b+s c+t
A+B=i{d e fl+|u v w|=|d+u e+v f+w
g h i x y z g+x h+y i+:z
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Multiplication or Division. Multiplication or division by a constant:

ga gb qc
gA=|qd qe qf
qg qh qi

Multiplication of two matrices can be either scalar or matrix multiplication.
Scalar multiplication of two matrices consists of multiplying the elements of a
matrix by a constant, as shown above, or multiplying corresponding elements of
two matrices:

a b c ros ot axr bxs cxt
AxB=|d e fix|lu v w|=|dxu exv fxw
g h i x y z gxx hxy ixz

Thus it’s clear that both matrices must have the same dimensions m x n.
Scalar multiplication is commutative, that is, A x B=B x A.

Matrix Multiplication. The matrix multiplication of two matrices is
somewhat more complicated. The individual matrix elements of the matrix
product C of two matrices A and B are

n
Cy =D 4uBy
k=1

where i is the row number and j is the column number. Thus, for example,

a b c|lr s t ar+bu+cx as+bv+cy at+bw+cz
AB=|d e fiju v w|=|dr+eu+fx ds+ev+fy dit+ew+fz
g h ijlx y z gr+hu+ix gs+hv+iy gt+hw+iz

Matrix multiplication is not generally commutative, that is A'‘B # B-A.

Transposition. The transpose of matrix A, most commonly written as A”, is
the matrix obtained by exchanging the rows and columns of A; that is, the matrix
element g;; becomes the element g;j; in the transposed matrix. The transpose of a
matrix of N rows and M columns is a matrix of M rows and N columns.

Matrix Inversion. The process of matrix inversion is analogous to obtaining
the reciprocal of a number a. The matrix relationship that corresponds to the
algebraic relationship a x (1/a) = 1 is

AA' =1
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where A" is the inverse matrix and I is the unit matrix. The process for manual
calculation of the inverse of a matrix is complicated and need not be described
here, since matrix inversion can be done conveniently using Excel's worksheet
function MINVERSE.

Evaluation of the Determinant. A determinant is a mathematical value
that can be calculated for a square matrix. Determinants are useful for the
solution of systems of simultaneous equations, as will be discussed in chapter 9.
The "pencil-and-paper" evaluation of the determinant of a matrix of N rows x N
columns is tedious, but it can be done simply by using Excel's worksheet
function MDETERM.

Excel's Built-in Matrix Functions

Performing matrix mathematics with Excel is very simple. Let's begin by
assuming that the matrices A and B have been defined by selecting the 3R x 3C
arrays of cells containing the values shown in Figure 3-1 and naming them by
using Define Name. Remember, we're simply assigning a range name to a range
of cells. We usually refer to it as a range or an array; the fact that we are calling
it a matrix simply indicates what we intend to do with it.

I R
S Matrix A

4 | 2 3

5 | 3 2 -1
6 | 4 3 7
3' : : Matrix B

4 . 2 : 0 5 2
5 | 0 | 3 ' -3
B| 3 2 1

Figure 3-1. Ranges of cells defined as A and B.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Addition or Subtraction. To add a constant (e.g., 3) to matrix A, simply
select a range of cells the same size as the matrix, enter the formula =A+3, then
press COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh) or
CONTROL+SHIFT+ENTER (Windows). When you "array-enter" a formula by
pressing e.g., CONTROL+SHIFT+ENTER, Excel puts braces around the formula, as
shown below:

(=A+3)
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Do not type the braces; if you do, the result will not be recognized by Excel
as a formula.

o ;o m
——
SN~

Figure 3-2. Result matrix {A + 3}.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Subtraction of a constant, multiplication or division by a constant, or addition
of two matrices is performed in the same way by using standard Excel algebraic
operators.

Scalar Multiplication. Scalar multiplication can be either multiplication of
the elements of a matrix by a constant, e.g., a formula such as {=3*A}, or
multiplication of corresponding elements of two matrices, e.g., {=A*B}. The
result of the latter formula is shown in Figure 3-3.

C = F

16 4 0 8
7 0 B 3
18 -12 s 7

Figure 3-3. Result matrix {A x B}.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Matrix multiplication can be accomplished easily by the use of Excel's
worksheet function MMULT(matrix1, matrix2). For the matrices A and B
defined above, entering the formula =MMULT(A,B) yields the result shown in
Figure 3-4 while the formula =MMULT(B,A) yields the result shown in Figure
3-5.

sl i e F
24| 8 1 K
%9 8 1
%) 13 | 5 6

Figure 3-4. Result matrix A'B.
(folder 'Chapter 03 (Matrices) Examples, workbook "Matrix Math', sheet 'Sheet1")
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- . g
28 12 12 22
29 3 3 24
30 8 -10 3

Figure 3-5. Result matrix B-A.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Matrix multiplication of two matrices is possible only if the matrices are
conformable, that is, if the number of columns of A is equal to the number of
rows of B. The opposite condition, if the number of rows of A is equal to the
number of columns of B, is not equivalent. The following examples, involving
multiplication of a matrix and a vector, illustrate the possibilities:

MMULT (4 x 3 matrix, 3 x 1 vector) =3 x 1 result vector
MMULT (4 x 3 matrix, 1 x 4 vector) = #VALUE!

MMULT (1 x 4 vector, 4 x 3 matrix) = 1 x 4 result vector
In other words, the two inner indices must be the same,

Transposition. The transpose of a matrix may be calculated by using the
worksheet function TRANSPOSE(array) or obtained manually by using the
Transpose option in the Paste Special... menu command.

The size of the array that can be transposed is limited only by the size of the
Excel spreadsheet; the number of rows or columns cannot be* greater than 256.

Matrix Inversion. The process for inverting a matrix "manually"” (i.e., using
pencil, paper and calculator) is complicated, but the operation can be carried out
readily by using Excel's worksheet function MINVERSE(array). The inverse of
the matrix B above is shown in Fi 1gure 3-6.

TR F
6 025 -0.33333333 05
7 0.75 0.66666667 0.5
g 075 0.33333333 05

Figure 3-6. Result matrix B
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

The size of the matrix must not exceed 52 rows by 52 columns.

Evaluation of the Determinant. The determinant of a matrix of N rows x
N columns can be obtained by using the worksheet function MDETERM(array).
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The function returns a single numerical value, not an array, and thus you do not
have to use CONTROL+SHIFT+ENTER. The value of the determinant of B,
represented by [B], is 12.

Some Additional Matrix Functions

Some additional functions useful for working with arrays or matrices are
provided on the CD that accompanies this book. The additional functions are as
follows:

Identity Matrix. The function MIDENT(size) returns an identity matrix of a
specified size. The size argument is optional. Use size when you want to use an
identity matrix in a formula. Omit size when you want to fill a range of cells on
a worksheet with an identity matrix; the size of the matrix is then determined by
the size of the selection. If the selection is not a square matrix, the function
returns the #REF! error value.

The maximum allowable size is 63 x 63 (larger gives #VALUE! error).
Examples:

The expression MIDENT(3) returns {1,0,0;0,1,0;0,0,1}.

The formula =MIDENT() entered in the range A1:ES returns
{1,0,0,0,0,0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1}.

The formula =MIDENT() entered in the range A1:E6 returns #REF! in the
cells (the selection has five rows and six columns).

Finding the Position of a Value in an Array. The function
Mindex(lookup_value, array_, match_type) returns a horizontal 2-element array
containing the row and column numbers of a specified value in an array. The
argument /lookup_value is the value you use to find the value you want in array_.
The argument array_ is a contiguous range of cells containing possible lookup
values. The argument match_type is a number (-1, 0, or 1) that specifies the
value found in array_. If match_type is 0 or omitted, the function returns the
position of the value that is exactly equal to lookup_value, or #N/A. If
match_type is 1, the function returns the position of the largest value that is less
than or equal to Jookup_value. 1If match_type is —1, the function returns the
position of the smallest value that is greater than or equal to lookup_value.
Unlike Excel's INDEX worksheet function, if match_type is —1 or 1, the values do
not have to be sorted in descending or ascending order, respectively.

The array must contain only numbers. If any cells contain text or error
values, Mindex returns the #VALUE! error value. Empty cells are treated as zero.
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Examples:

In the following example the range B13:D15, containing the values {13,0,—-
1;5,12,22;-5,0,1}, was assigned the name A.

The expression Mindex(MAX(A),A) returns the array of values {2,3}.

The expression Mindex(7,A) returns the array of values (#N/A #N/A}.

The expression Mindex(15,A,1) returns the array of values {1,1}.

Scaling Arrays. The function MSCALE(array, scale_factor_logical) calculates
and applies scale factors for a N x M matrix and returns a N x M scaled matrix.
All values in a row are scaled by dividing by the largest element in that row. The
function also creates a column vector of N elements, containing the scale factors.

If the optional argument scale_factor_logical = False or omitted, the function
returns the scaled matrix; if scale_factor_logical = True, returns the scale factor
vector.

Examples:

In the following examples the range A5:C7, assigned the name B, contains
the values {3,20,1000;-0.1,3,100,5,10,-5}.

The formula =MSCALE(B) returns the array {0.003,0.02,1;-
0.001,0.03,1;0.5,1,-0.5}.

The formula =MSCALE(B, TRUE) returns the array {0.001;0.01;0.1}.

Combining Separate Ranges into a Single Array. An array in Excel
must be a contiguous range of cells. It sometimes happens that one would like to
combine noncontiguous ranges into a single array. The function Arr(rangef,
range2...) combines individual 1-D or 2-D arrays into a 2-D array. All individual
arrays must be vertical and must have the same number of rows. The VBA code
for the function is shown in Figure 3-7.

This custom function makes use of the ParamArray keyword, which allows
the function to accept an arbitrary number of ranges.

Some uses for this custom function include the following:

In the solution of a system of simultaneous equations by the Gaussian
Elimination method (see Chapter 9), an augmented matrix of N rows x N + 1
columns is created by combining the N x N matrix of coefficients with the ¥

rows x | column vector of constants. This can conveniently be done by using the
custom function.

The LINEST worksheet function for multiple linear regression (see Chapter
13) requires that the argument known_x's be a contiguous selection of cells. The
custom function can be used to convert a series of noncontiguous ranges into an
array that can be used as the argument known_x's in LINEST.
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Option Explicit

Option Base 1

Function Arr(ParamArray rng())

‘Combines individual 1-D or 2-D arrays into a final 2-D array.
'In this version all individual arrays must be "vertical”.

‘All individual arrays must have same number of rows.
Dim Result()

Dim | As Integer, J As Integer, K As Integer
Dim TempX As Integer, TempY As Integer, XDim As Integer, YDim As Integer
Dim YStart As Integer, YSize As Integer

'First, get sizes of individual arrays, check to make sure all are same size.
For J = 0 To UBound(rng)
'Handles either range, name or array constant arguments
If IsObject(rng(J)) = True Then 'reference is to a range or a name
TempX = rng(J).Rows.Count
TempY = rg(J).Columns.Count
Elself IsArray(rng(J)) Then
TempX = UBound{rg(J), 1)
TempY = UBound(rng(J), 2)
End If
If J = 0 Then XDim = TempX
If XDim <> TempX Then Arr = CVErr(xIErrRef): Exit Function
YDim = YDim + TempY
Next J

'Now combine each individual array into final array.
'l index is used to select within array of arrays.
'K and J are column & row indices of individual arrays.
ReDim Result(XDim, YDim)
YStart =0
For | = 0 To UBound(rng)
YSize = rng(l).Columns.Count
For K=1 To YSize
For J =1 To XDim
Result(J, YStart + K) = Application.Index(rng(l), J, K)
Next J, K
YStart = YStart + YSize
Next |
Arr = Resuit()
End Function

Figure 3-7. VBA function procedure to combine separate ranges into a single array.
(folder 'Chapter 03 (Matrices) Examples, workbook 'ArrayMaker’, module 'Module1")
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Problems

Answers to the following problems are found in the folder "Ch. 03 (Matrices)" in the
"Problems & Solutions" folder on the CD.

1. Find the inverse and the determinant of the following matrices:

2 9 4
(a) 7 5 3
6 1 8
(2 -1 0
(b) -1 2 -1
0 -1 2
[0.75 0.5 0.25
(c) 05 1 05
1025 0.5 0.75
(2 1 1
(d) 111
Ll 2 1

2. Find the value of the determinant of each of the following.
11 3
(a) 2 2 2
13 39

(b) 1 3
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Chapter 4

Number Series

Number series, such as

1

3 reny PR

n

1

N

11
53
are important in many areas of mathematics, such as the evaluation of
transcendental functions, integrals or differential equations. Often, the sum of a
number series is used as an approximation to a function that can't be evaluated
directly. The approximation becomes more and more accurate as more terms are

added to the sum; for example, the value of e, the base of natural logarithms, can
be evaluated by means of the sum of an infinite series:

e=1+Y — (4-1)

If the sum of a series approaches a finite value as the number of terms
approaches infinity, the series is said to be convergent. A series is divergent if
the sum approaches infinity (or does not converge to a definite value) when the
number of terms approaches infinity. Only convergent series will be discussed in
this chapter.

An alternating series in one in which the sign of each successive term is the
opposite of the preceding one. Such a series will always converge if the absolute
value of the nth term approaches zero.

Instead of a series of constant terms, a series may consist of variables, as
exemplified by the series

a0+alx+a2x2+---+a,,x“+--- 4-2)
A series of the form shown above, in which the terms are multiples of non-

negative integral powers of x, is called a power series.

Functions such as €%, sin x, cos x and others can be expressed in terms of the
sum of an infinite series. Of course, Excel already provides worksheet functions
to evaluate €', sin x or cos x, but the ability to use number series in Excel
formulas increases the scope of calculations that you can perform.
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Evaluating Series Formulas

The obvious way to evaluate a series formula is to evaluate individual terms
in the series formula in separate rows of the spreadsheet, and then sum the terms.
Figure 4-1 illustrates the evaluation of e by using equation 4-1, summing terms
until the contribution from the next term in the series is less than 1E-15.

LA vtk R

1. 5o 11K sum

2 | 1
3 1 1 2
4 2 0.5 25
5 3 0.166666667 2.66667
B 4 0.041666667 2.7083333
7 5 0.008333333 2.7166666667
B 6 0.001388889 2.71805555555556
9 7 0.000198413 2.71825386825397
10 8 2.48016E-05 2.71827876984127
11 9 2.75573E-06 2.71828152557319
18 16 4.77948E-14 2.71828182845904
19 17 2.81146E-15 2.71828182845905

Figure 4-1. Evaluation of the terms of a series row-by-row.
The spreadsheet calculates the value of e by using equation (4-1).
Note that some rows of calculation have been hidden.

A more compact way to evaluate the sum of a series is by summing terms in
a single worksheet formula. For example, a value for e can be calculated from
equation 4-1 by using the following worksheet formula

=1+1/FACT(1)+1/FACT(2)+1/FACT(3)+1/FACT(4)+1/FACT(5)

where we sum the first 5 terms of the series. The true value of e to 15 decimal
places) is 2.718 281 828 459 045. The formula returns 2.717 (0.06% error).
Unfortunately, most power series converge much more slowly than this, and
many more terms are required. Hence this is not a practical way to evaluate a
series in a single cell — apart from the fact that it requires a lot of typing, a
worksheet formula is limited to 1024 characters. Fortunately there are other
ways to evaluate the sum of a series in a single worksheet formula.

Using Array Constants to Create Series Formulas

An array constant is an array of values, separated by commas and enclosed in
braces, used as an argument of a function. An example of an array constant,
sometimes referred to as an array literal, is {40,21,300,10}.
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You can use an array constant to make the evaluation of a series formula
much more compact and accurate. For example, to evaluate equation 4-1, the
formula

=1+SUM(1/FACT({1,2,3,4,5,6,7,8,9,10}))
returns the value 2.718 281 801 146 38 (1 x 107° % error).

Using the ROW Worksheet Function
to Create Series Formulas

The ROW worksheet function provides a convenient way to generate a series
of integers. To illustrate the use of this function in a formula, enter the formula

=ROW(1:100)

in a worksheet cell. Now highlight the formula in the formula bar or in the cell
and press F9 (Windows) or COMMAND+= (Macintosh) to display the result of the
formula. You will see the array of integers from 1 to 100, as shown below.
{1,2;3;4,5,6;7,8;9;10;11,12;13;14,15;16;17;18;19,20,21,22,23;24;25;26,27,28,29;
30:31;32;33;34;35:36;37;38;39;40,41;42;43,44,45;46,47,48;49,50,51,52;53;54;55
:56;57,58;59:60,61:62:63,64,65,66,67,68,69;70,71,72;73,74,75,76,77,78,79,80;8
1:82;83,84:85;86;87,88;89;90;91;92;93;94:95;96,97,98;99;100}

Using this method you can evaluate series formulas conveniently. For
example, the formula for e becomes

{=1+SUM(1/FACT(ROW(1:100)))}

and returns a value for e of 2.718 281 828 459 05, identical to the value returned
by Excel's built-in function.

This formula is an array formula, so after typing the formula in the cell, you
must enter it by pressing CTRL+SHIFT+ENTER. Excel indicates that the formula is
an array formula by enclosing it in braces. Don't type the braces as part of the
formula; they are added automatically by Excel.

One problem associated with using the ROW function in a formula is that the
row numbers will be adjusted if you insert or delete rows. For example, if you
insert a row above the row in which the expression ROW(1:100) is entered, the
expression will become ROW(2:101). You can avoid this problem by using the
INDIRECT worksheet function, described in the next section.

The INDIRECT Worksheet Function

The INDIRECT worksheet function creates a reference specified by a text
string. Thus, for example, the formula

=INDIRECT("A1")
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entered in a cell (other than cell A1, of course) creates a reference to cell A1 and
returns the value contained in cell A1. Since the reference is text, it will not
change to A2 if a row is inserted above. The INDIRECT function can be used to
create powerful and versatile worksheet formulas. Some examples will serve to
illustrate.

The formula

=INDIRECT(B1)
(notice the absence of quotation marks) returns the value in cell A27 if cell B1
contains the text value A27.

Since the argument of INDIRECT is a text string, the use of the concatenation
operator (the "&" character) is common. For example, the formula

=INDIRECT("A" & B1)

returns the value in cell A27 if cell B1 contains the value 27.

Using the INDIRECT Worksheet Function
with the ROW Worksheet Function
to Create Series Formulas

The INDIRECT function can be used with the ROW function to create
formulas to evaluate number series. The series formula for e that was shown
previously becomes the formula

{=1+SUM(1/FACT(ROW(INDIRECT("1:20")))}
if you wish to evaluate the first 20 terms, or
{=1+SUM(1/FACT(ROW(INDIRECT("1:"&B1))))}

where the value in cell B1 specifies the number of terms to be evaluated. For
some, but not all, series you can evaluate 65536 (2'®) terms conveniently in this
way.

Again, you must enter the array formula by pressing CTRL+SHIFT+ENTER.

The Taylor Series

A series known as the Taylor series is frequently used in the evaluation of
functions by numerical methods. The Taylor series for the evaluation of a
function F at the point x + /4, given the value of the function and its derivatives at
the point x, is

F(x+h)=F(x)+ Z F k(x)hk L& (4-3)
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where F*(x) is the kth derivative of the function at the point x, and ¢ is the
remainder or error term. As has been illustrated by examples we have seen
earlier, the magnitude of ¢ decreases as k (the number of terms) increases.

To obtain a result that closely approximates the true value of a function, we
need to sum a number of terms. Clearly, we will not have available to us
(without a lot of work) values of a large number of derivatives of the function F,
up to the kth derivative. Fortunately, we will usually need only the first
derivative, the first and second derivatives, or the first, second and third
derivatives to obtain results of sufficient accuracy. We will use the Taylor series
expansion of a function in several of the subsequent chapters.

The order of the approximation is determined by the highest-derivative term
that is included in the approximation; thus the first-order Taylor series
approximation is

F(x+h)y= F(x)+ hF'(x) (4-4)
the second-order approximation is
F(x+h)zF(x)+hF'(x)+ﬁ2—2-F"(x) 4-5)
and the third-order approximation is
F(x+h)zF(x)+hF'(x)+%F”(x)+%F”'(x) (4-6)

Obviously, the accuracy of the approximation increases as the number of
terms is increased. It is also obvious that the accuracy of the approximation will
increase as / is made smaller. Higher-order terms will become more important
as A is increased, or if the function is nonlinear.

The Taylor Series: An Example

The following example will illustrate the use of the Taylor series to evaluate
a function. Consider the polynomial ax’ + bx* + ¢cx + d, witha=1.25,b=9, ¢ =
—Sandd=11. Atx=1, F(x) = 16.25. We wish to evaluate the function at x =
1.6. (Since we are dealing with a known function, we could just evaluate it at x =
1.6, but here we use a known function for purposes of illustration. In subsequent
chapters Taylor series will be used to evaluate functions whose value is known at
a certain point but whose form is unknown.)

From simple calculus, F(x) = 3ax® + 2bx + ¢ = 3.75x* + 18x — 5, F'(x) = 6ax
+2b="75x+ 18 and F"(x)=6a=75. Atx=1, F(x)=16.75, F"(x) = 25.5 and
F"(x) =7.5. Substituting these values, along with # = 0.6, into equations 4-4, 4-
5 and 4-6 yields the results shown in Figure 4-2. As expected, the third-order
approximation provides the highest accuracy.
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Figure 4-2. Evaluation of Taylor series.

A B C Bl E |
10] x F{¢) exact F{ cale error
A1 1 1625 :
12] 16 3116 N S
13| 18 26.3 (term) . 16%
14, 186 3089 (2terms)  0.87%
15| 1.6 ' 3116 (3terms) | 0.00%
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Problems

Answers to the following problems are found in the folder "Ch. 04 (Number Series)"
in the "Problems & Solutions" folder on the CD.

1. Evaluate the following infinite series:
(a) 172 (b) 1/ (c) Un!

2. Evaluate the following:
S=1/11-1/2'+ 1/31 - 1/4! ...

3. Evaluate the following infinite series:
Tax", wherea>1,x <1

4. Evaluate the following:
S=1/2"+1/3"

5. Evaluate the following:
S=1/2"-1/3"

6. Evaluate Wallis' series for m:

x =2H[~——(ﬁ—-——}

(2n-1)2n +1)

over the first 100 terms of the series.

7. Evaluate Wallis' series for 7, summing over 65,536 terms. Use a worksheet
formula that uses ROW and INDIRECT to create the series of integers.

8. A simple yet surprisingly efficient method to calculate the square root of a
number is variously called Heron's method, Newton's method, or the divide-
and-average method. To find the square root of the number a:

1. Begin with an initial estimate x.

2. Divide the number by the estimate (i.e., evaluate a/x), to get a new
estimate

3. Average the original estimate and the new estimate (i.e., (x + a/x)/2)
to get a new estimate
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10.

4. Return to step 2.

Use this method to calculate the square root of a number. The value of the
initial estimate x must be greater than zero.

In the divide-and-average method, the better the initial estimate, the faster the

convergence. Devise an Excel formula to provide an effective initial

estimate.

The series

T =

— (2 -5 2k -1)239%

proposed by Machin in 1706, converges quickly. Determine the value of © to
15 digits by using this series
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Interpolation

Given a table of x, y data points, it is often necessary to determine the value
of y at a value of x that lies between the tabulated values. This process of
interpolation involves the approximation of an unknown function. It will be up
to the user to choose a suitable function to approximate the unknown one. The
degree to which the approximation will be "correct" depends on the function that
is chosen for the interpolation. A large number of methods have been developed
for interpolation; this chapter illustrates some of the most useful ones, either in
the form of spreadsheet formulas or as custom functions. Although some
interpolation formulas require uniformly spaced x values, all of the methods
described in this chapter are applicable to non-uniformly spaced values.

Obtaining Values from a Table

Since interpolation usually involves the use of values obtained from a table,
we begin by examining methods for looking up values in a table.

Using Excel's Lookup Functions
to Obtain Values from a Table

Excel provides three worksheet functions for obtaining values from a table:
VLOOKUP for vertical lookup in a table, HLOOKUP for horizontal lookup and
LOOKUP. The first two functions are similar and have virtually identical syntax.
The LOOKUP function is less versatile than the others but can sometimes be used
in situations where the others fail.

The function VLOOKUP(lookup_value, table_array, column_index_num,
range_lookup) looks for a match between lookup_value and values in the
leftmost column of table_array and returns the value in a specified column in the
row in which the match was found. The argument column_index_num specifies
the column from which the value is to be obtained. The column number is
relative; for example, a column_index_num of 7 returns a value from the seventh
column of table_array.

The optional argument range_lookup (I would have called this argument
match_type_logical) allows you to specify the type of match to be found. If

77
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range_lookup is TRUE or omitted, VLOOKUP finds the largest value that is less
than or equal to lookup_value; the values in the first column of table_array must
be in ascending order. If range_lookup is FALSE, VLOOKUP returns an exact
match or, if one is not found, the #N/A! error value; in this case, the values in
table_array can be in any order. You can use 0 and 1 to represent FALSE and
TRUE, respectively.

Using VLOOKUP to Obtain Values from a Table

The spreadsheet in Figure 5-1 (see folder 'Chapter 05 Interpolation’,
workbook 'Interpolation I', sheet 'Freezing Point') lists the freezing point, boiling
point and refractive index of aqueous solutions of ethylene glycol; the complete
table, on the CD-ROM, contains data for concentrations up to 95% and extends
to row 54.

Lo g B el L 0
 Freezing and Boiling Points
i of Heat Transfer Fluid
Wi% Boiling Refractive
Ethylene Freezing Point, °F  Index
2 | Glycol Point, °F (at1atm) (at 22°C)
i, 00 | 320 212 | 13328
4| 50 | 294 = 213 5 1.3378 |
5 100 | 262 | 214 | 13428
B 150 | 22 | 215 | 1.3478
7,200 179 | 216 1.3530
61210 168 = 216 1.3540
9 220 | 159 216 1.3851 |
10,230 148 217 | 1.3561
11 240 137 217 1.3572
12 250 127 218 13592
13,260 114 218 13503
14 270 104 | 218 | 1.3503
158/280 92 | 219 | 13614
16,290 80 | 219 | 13624
17,300 67 | 220 | 13835
18/ 310 54 = 220 @ 1.3546 |
19320 42 220 | 1365
20 330 @ 29 | 220 | 1.3867
21,340 © 14 = 220 13678
221 350 02 | 221 | 13888 |

Figure 5-1. Portion of a data table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Freezing Point")
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Using VLOOKUP to find the freezing point of a 33% solution is illustrated in
Figure 5-2. The formula

=VLOOKUP(F3,$A%$3:5D%$54,2,0)
was entered in cell G3 and the lookup value, 33, in cell F3.

\'.'I.I'.",t 1};,:3
Ethylene Freezing
Glycol Point, °F

2
3 33.0 28

Figure 5-2. Using VLOOKUP to obtain a value from a table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Freezing Point')

The third argument, column_index_num, is 2 since we want to return
freezing point values from relative column 2 of the database. If we wanted to
return the refractive index of the solution we would use column_index_num = 4.

The fourth argument, range_lookup, is set to FALSE because in this case we
want to find an exact match. The formula returns the value 2.9.

HLOOKUP(lookup_value, table_array, row_index_num, range_lookup) is
similar to VLOOKUP, except that it "looks up" in the first row of the array and
returns a value from a specified row in the same column.

Using the LOOKUP Function
to Obtain Values from a Table

When you use VLOOKUP, you must always “look up” in the first column of
the table, and retrieve associated information from columns to the right in the
same row; you cannot use VLOOKUP to look up to the left. If it is necessary to
look to the left in a table (maybe it's not convenient or possible to rearrange the
data table so as to put the columns in the proper order to use VLOOKUP), you can
sometimes accomplish this by using the LOOKUP function.

LOOKUP(lookup_value,lookup_vector,result_vector) has two syntax
forms: vector and array. The vector form of LOOKUP looks in a one-row or one-
column range (known as a vector) for a value and returns a value from the same
position in another one-row or one-column range. The values in lookup_vector
must be sorted in ascending order. If LOOKUP can't find lookup_value, it returns
the largest value in Jookup_vector that is less than or equal to lookup_value.
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Creating a Custom Lookup Formula
to Obtain Values from a Table

A second way to "lookup" to the left in a table is to construct your own
lookup formula using Excel's MATCH and INDEX worksheet functions. The
MATCH and INDEX functions are almost mirror images of one another: MATCH
looks up a value in an array and returns its numerical position, INDEX looks in an
array and returns a value from a specified numerical position.

The following example illustrates how to use INDEX and MATCH to lookup
to the left in a table. In the table of production figures for phosphoric acid shown
in Figure 5-3 (see folder 'Chapter 05 Interpolation’, workbook 'Interpolation I,
sheet 'VLOOKUP to left), it is desired to find the month with the largest
production.

i A B

| 4 onth Production
5 Jan fb212
b Feb 15379
7 Mar 62220
5 Apr 83118
9 May 33872
10 Jun 80881
11 Jul 54263
12 Aug 35427
13 Sep 50361
14 Oct 7160C
15 Nov 133
16 Dec 22477

Figure 5-3. A table requiring "lookup" to the left.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'VLOOKUP to left')

Use Excel's MAX worksheet function to find the maximum value in the range
of production figures. The expression

=MAX($B$5:5B$16)

returns the value 83119. Now we want to return the month value in the column
to the left in the same row. We do this in two steps, as follows. First, use the
MATCH function to find the position of the maximum value in the range.

The syntax of MATCH is similar to that of VLOOKUP:
MATCH(lookup_value,lookup_array,match_type_num). If match_type_num =
0, MATCH returns the position of the first value that is equal to /ookup_value.
The expression
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=MATCH(83119,$B$5:$B$16,0)

returns 4, the maximum value is the fourth value in the range. Second, use the
INDEX function to return the value in the same position in the array of months:

=INDEX($A$5:$A$16,4)

The specific values 83119 and 4 can now be replaced by the formulas that
produced them, to yield the following "megaformula.”

=INDEX($A3$5:$3A%$16, MATCH(MAX($B$5:$B$16),$B%$5:$B%16,0))

This example could not be handled using LOOKUP, since LOOKUP requires
that the lookup values (in this case in column B) be in ascending order.

Using Excel's Lookup Functions
to Obtain Values from a Two-Way Table

A two-way table is a table with two ranges of independent variables, usually
in the leftmost column (x values) and in the top row (y values) of the table; a two-
dimensional array of z values forms the body of the table. Figure 5-4 shows an
example of such a two-way table (see folder 'Chapter 05 Interpolation’, workbook
‘Interpolation I', sheet 'Viscosity'), containing the viscosity of solutions of
ethylene glycol of various concentrations at temperatures from 0 to 250°F. The
table can also be found on the CD; the data extends down to row 32.

The desired z value from a two way table is found at the intersection of the
row and column where the x and y lookup values, respectively, are located.
Unlike in the preceding example showing the application of VLOOKUP, where
column_index_num was the value 2 (a value was always returned from column 2
of the array), we must calculate the value of column_index_num based on the y
lookup value. There are several ways this can be done. A convenient formula is
the following, where names have been used for references. Temp and Percent
are the lookup values, P_Row is the range $B$3:3K$3 that contains the y
independent variable and Table is the table $A$4:$3K$32, containing the x
independent variable in column 1. The following formula was entered in cell M2
of Figure 5-5.

=VLOOKUP(Temp,Table, MATCH(Percent,P_Row,1)+1,1)
The corresponding expression using references instead of names is
=VLOOKUP(M2, $A$4:$1$32, MATCH(N2, $B$3.:$K$3,1)+1,1)
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i Viscosity of Heat Transfer Fluid (cps)
b0 Volume Percent Ethylene Glycol

Temp, ; I ;
3 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

A T e e bt Bl okl sl el R

3

4 I R R | 1 89671287918522
51 -20 § | | . 40.38) 60.46 89.93/131.32/284.48
6| -10 . | | 27.27 42.05 6350 91.88169.83
7

8

9

0 3 _ 1376 19.34| 30.08 4558 65.04107.77
10 683 1013 1426, 2206 3331 46.89 71.87
9! 2 : 380 538 774 1085 1656 2479 3448 4994
10 30 216 314 433 609 848 1268 1877 2584 3591
1] 40 153 182 253 354 491 BJ7 990 1445 1971 26.59
12| 50 130 156 218 285 404 550 7.85 1131 1529 20.18
13| B0 112 135 186 249 338 455 633 897 1205 1565
14, 70 098 118 161/ 213 287 381 517 722 962 1237
151 B0 086 104 141 184 246 323 428 588 779 993
(16| 90 076 093 124 160 213 276 358 485 638 810
17| 100 068 083 111 141 187 239 303 404 528 688
18| 110 061 075 089 125 164 208 258 340 441 558
19| 120 055 088 090 111 146 182 223 288 373 471
20| 130 051 062 081 100 130 161 193 247 317 401
21| 140 046 057 074 090 117 143 169 213 272 345
22| 150 043 053 088 082 105 128 149 186 235 298
23| 160 039 049 063 075 095 115 132 163 205 260
(24| 170 037 046 058 068 087 104 118 143 180 228
25! 180 034 043 054 063 079 094 106 1.27 158 201

26| 190 032 040 050 058 073 085 095 114 140 1.78

Figure 5-4. Portion of a two-way data table.
(folder 'Chapter 05 Interpolation’, workbook ‘Interpolation I', sheet 'Viscosity’)

h | N O

4 Temp Percent  Viscosity
5 120 B0% = 223 |

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Viscosity')
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Interpolation

Often it's necessary to interpolate between values in a table. You can use
simple linear interpolation, which uses a straight line relationship between two
adjacent values. Linear interpolation can be adequate if the table values are close
together, as in Figure 5-6. Most often, though, an interpolation formula that fits a
curve through several data points is necessary; cubic interpolation, in which four
data points are used for interpolation, is common. The following sections
describe methods for performing linear interpolation or cubic interpolation.

Linear Interpolation in a Table
by Means of Worksheet Formulas

To find the value of y at a point x that is intermediate between the table

values xp, yo and xy, ¥y, use the equation for simple linear interpolation (equation
5-1).

(x=x)

P R (5-1)

yx=y0+

40

o

Freezing point, °F

-60 i i I ; ;
0 10 20 30 40 50 60

Wit% Ethylene Glycol

Figure 5-6. Freezing point of ethylene glycol solutions (data from Figure 5-1).
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation")
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In the following example, we'll assume that values of the independent
variable x in the table are in ascending order, as in Figure 5-1, where the
independent variable is wt% ethylene glycol. We want to find the freezing point
for certain wt% values. Figure 5-2 shows the data (see folder 'Chapter 05
Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation'); it's clear
that, since most of the points are close together, we can use linear interpolation
without introducing too much error.

You can create a linear interpolation formula using Excel's MATCH and
INDEX functions. If match_type_num = 1, MATCH returns the position of the
largest array value that is less than or equal to lookup_value. The array must be
in ascending order. Use this value in the INDEX function to return the values of
X0, Yo, X1 and yy, as shown in the following:

position =MATCHY(lookup_value known_x’s,1)
Xo =INDEX(known_x"s,position)

Xy =INDEX(known_x's,position+1)

Yo =INDEX(known_ys,position)

b%| =INDEX(known_y’s,position+1)

The preceding formulas were applied to the data shown in Figure 5-1 to find
the freezing point of a 33.3 wt% solution of ethylene glycol. The following
named ranges were used in the calculations: known_x's ($A$3:$3A$47), known_y's
($B$3:3B%$47), lookup_value ($F$6), position ($G$6). The intermediate
calculations and the final interpolated value are shown in Figure 5-7.

I 3 Stepwise calculations
| 4 o deveiop formula
5 | Lookup¥alue Value Formula used in column G
| b 33.3 18 (position) =MATCH{LookupValue XValues,1)
L 33 (_0) =INDEX(XValues,GB)
N 34 6 1) =INDEX(xValues,GE+1)
| 8 2.9 (v_0)  =INDEX(YValues,G6)
| 10 1.4 i y_1) =INDEX(YValues,G6+1)
(11]  resus 2.45 =G8+(FB-G7)*(G10-GIH(GB-GT)

Figure 5-7. Linear interpolation: intermediate calculations.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation’)
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The formulas in cells G6:G11 can be combined into a single "megaformula”
for linear interpolation, shown below and used in cell G15.

=INDEX(YValues, MATCH(LookupValue,XValues,1))+(F15-INDEX(XValues,
MATCH(LookupValue,XValues,1)))*(INDEX(YValues, MATCH(LookupValue,
XValues,1)+1)-INDEX(YValues, MATCH(LookupValue, XValues,1)))/
(INDEX(XValues,MATCH (LookupValue,XValues, 1)+1)-INDEX(XValues,
MATCH(LookupValue XValues, 1)))

R .
13 | Megaformula version
14 LookupValue Value
15 333 2.45

Figure 5-8. Linear interpolation: final interpolated value.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation')

If you use the megaformula, the formulas in cells G6:G11 are no longer
required.

Linear Interpolation in a Table
by Using the TREND Worksheet Function

Excel provides the TREND worksheet function to perform linear
interpolation in a table of data by means of a linear least-squares fit to all the data
points in the table. But TREND can be used to perform linear interpolation
between two adjacent data points.

The syntax of the TREND function is
TREND(known_y's, known_x's, new_x's, const)

where known_y's and known_x's are one-row or one-column ranges of known
values. The argument new_x's is a range of cells containing x values for which
you want the interpolated value. Use the argument const to specify whether the
linear relationship y = mx + b has an intercept value; if const is set to FALSE or
zero, b is set equal to zero.

The TREND worksheet function provides a way to perform linear
interpolation between two points without the necessity of creating a worksheet
formula. Using the TREND function to perform the linear interpolation
calculation that was illustrated in Figure 5-7 is shown in Figure 5-9. Cell G18
contains the formula

=TREND(B20:B21,A20:A21,F18,1)
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16 | Other methods for linear interpolation:
17 ! Using TREND worksheet function
18 | wit% o e o

19 | 33.3 2.45

Figure 5-9. Using the TREND worksheet function for linear interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation')

Note that although TREND can be used to find the least-squares straight line
through a whole set of data points, to perform linear interpolation you must select
only two bracketing points, in this example in rows 20 and 21. It should be clear
from Figure 5-6 that the least-squares straight line through all the data points will
not provide the correct interpolated value.

You can also use TREND for polynomial (e.g., cubic) interpolation by
regressing against the same variable raised to different powers (see "Cubic
Interpolation in a Table by Using the TREND Worksheet Function” later in this
chapter.)

Linear Interpolation in a Table
by Means of a Custom Function

The linear interpolation formula can also be easily coded as a custom
function, as shown in Figure 5-10.

Function Interpl(lookup_value, known_x’s, known_y’s)

Dim pointer As Integer
Dim X0 As Double, YO As Double, X1 As Double, Y1 As Double

pointer = Application.Match(lookup_value, known_x’s, 1)
X0 = known_x"s(pointer)

Y0 = known_y s(pointer)

X1 = known_x"s(pointer + 1)

Y1 = known_y s(pointer + 1)

InterpL = YO + (lookup_value - X0) * (Y1 - YO) / (X1 - X0)
End Function

Figure 5-10. Function procedure for linear interpolation.
(folder 'Chapter 05 Interpotation', workbook 'Interpolation I', module 'LinearInterpolation')

The syntax of the function is
InterpL({/ookup_value, known_x’s,known_y’s).



CHAPTER 5 INTERPOLATION 87

The argument lookup_value is the value of the independent variable for
which you want the interpolated y value; known_x's and known_y’s are the
arrays of independent and dependent variables, respectively, that comprise the
table. The table must be sorted in ascending order of known_x's. Figure 5-11
illustrates the use of the custom function to interpolate values in the table shown
in Figure 5-1; cell G24 contains the formula

=InterplL(F22,$A$3:$A%54,$B$3:$B$54)

21 | Other methods for linear interpolation:
2| Using a custom function for interpolation
23 | wi % ER.F

24 | 33.3 2.45

Figure 5-11. Using the InterpL function for linear interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation')

The custom function can be applied to tables in either vertical or horizontal
format.

Cubic Interpolation

Often, values in a table change in such a way that linear interpolation is not
suitable. Cubic interpolation uses the values of four adjacent table entries (e.g.,
at xo, X1, x; and x3) to obtain the coefficients of the cubic equation y=a + bx + cx?
+ dx® to use as an interpolating function between x; and x,. For example, to find
the freezing point for a 33.3 wt% solution of ethylene glycol using cubic

interpolation requires the four table values in Figure 5-12 whose x values are
highlighted.

A convenient way to perform cubic interpolation is by means of the
Lagrange fourth-order polynomial

_ e xy ) —x3 (x - x4) N (x—x ) (x—x3)(x—x,)
’ () —x)(x; —x3)(x; —x4) 1 (35 =Xy )(xy —x3)(X5 —X4) 2
(x = x)(x = Xy {(x — X4) + (x = x )(x — %) )(x — x3) (5-2)

(3 =203 —20p)(x5 = %) > (xg = X)X — X )4 — X3)
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A B B D
Freezing and Boiling Points
1 of Heat Transfer Fluid
: YWi% Boiling  Refractive
: Ethylene Freezing Paint, °F Index
| 2 Glycol Point, °F  (at1 atm) (&t 22°C)
167 290 80 219 ' 1.3624
|17 300 67 220 1.3635
18] 310 5.4 220 1.3646
19 320 472 220 1.3656
20 33.0 29 220 1.3667
211 340 1.4 220 1.3678
|22] 350 -0.2 221 1.3688
(23] 360 -156 221 1.3699
37.0 -3.0 221 1.3709
38.0 4.5 221 1.3720
39.0 -b.4 221 1.3730

Figure 5-12. Four bracketing x values required
to perform cubic interpolation at x = 33.3%.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet Cubic Interpolation’)

The Lagrange fourth-order polynomial is cumbersome to use in a worksheet
function, but convenient to use in the form of a custom function. A compact and
elegant implementation of cubic interpolation in the form of an Excel 4.0 Macro
Language custom function was provided by Orvis’. A slightly modified version,
in VBA, is provided here (Figure 5-13). The syntax of the custom function is
InterpC(lookup_value, known_x's, known_y’s). The argument /ookup_value is
the value of the independent variable for which you want the interpolated y
value; known_x’s and known_y’s are the arrays of independent and dependent
variables, respectively, that comprise the table. The table must be sorted in
ascending order of known_x’s.

* William J. Orvis, Excel 4 for Scientists and Engineers, Sybex Inc., Alameda, CA, 1993,
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Function InterpC(lookup_value, known_x’s, known_y’s)

' Performs cubic interpolation, using an array of known_x’s, known_y’s.
' The known_x’s must be in ascending order.

' Based on XLM code from Excel for Chemists”, page 239,

' which was based on W. J. Orvis' code.

Dim row As Integer
Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

row = Application.Match(lookup_value, known_x's, 1)
If row <2 Then row = 2
If row > known_x's.Count - 2 Then row = known_x"s.Count - 2

Fori=row-1Torow +2

Q=1
Forj=row-1Torow+2

Ifi <>j Then Q = Q * (lookup_value - known_x’s(j)) / (known_x"s(i)
known_x"s(j))

Next |

Y =Y + Q*known_y’s(i)
Next i
InterpC =Y

End Function

Figure 5-13. Cubic interpolation function procedure.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', module 'Cubiclnterpolation’)

Figure 5-14 illustrates the use of the custom function to interpolate values in
the table shown in Figure 5-12; cell H22 contains the formula

=InterpC(G22,5A$3:3A$47,5B$3:$B%47)

F G Wi |
20 Using a custom function for cubic interpolation
21 wt% FP, °F
22 33.3 2.47

Figure 5-14. Using the InterpC function procedure for cubic interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet ‘Linear Interpolation’)

Cubic Interpolation in a Table
by Using the TREND Worksheet Function

In the TREND function, the array known_x's can include one or more sets of
independent variables. For example, suppose column A contains x values. You
can enter x° values in column B and x’ in column C and then regress columns A
through C against the y values in column D to obtain a cubic interpolation
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function. But instead of actually entering values of the square and the cube of the
x values, you can use an array constant in an array formula, thus

{=TREND(C19:C22,A19:A224{1,2,3},FON1,2,3},1)}

This example of using the TREND function is found in folder 'Chapter 05
Interpolation’, workbook 'Interpolation I', sheet Cubic Interpolation).

Linear Interpolation in a Two-Way Table
by Means of Worksheet Formulas

To perform linear interpolation in a two-way table (a table with two ranges of
independent variables, x and y and a two-dimensional array of z values forming
the body of the table), we can use the same linear interpolation formula that was
employed earlier. Consider the example shown in Figure 5-15; we want to find
the viscosity value in the table for x = 76°F, y = 56.3 wt% ethylene glycol. The
shaded cells are the values that bracket the desired x and y values.

A B C D E F G H
Viscosity of Heat Transfer Fluid (cps)

Yolume Percent Ethylene Glycol

Temp,
F 20% 30% 40% 50% 60% 70% 80% 90%
0 1376 1934 3008 4558 6504 107.77
10 683 1013 1426 2206 3331 4689 7187

20 3.90 5.38 7.74 1085 1656 2479 3448 4994

30 3.14 4.33 6.09 8.48 1268 1877 2584 350

0 40 2.59 3.54 4.91 6.77 990 1445 1971 26.58
. 50 218 295 404 5.50 785 1131 1528 2018
10 60 1.86 2.49 3.38 4.55 6.33 8.97 1205 1565
11 70 1.61 213 2.87 3.81 517 7.22 962 1237
. 80 1.41 1.84 2.46 3.23 4.28 5.88 7.79 9.93

13 90 1.24 1.60 213 276 3.58 485 6.38 8.10
100 1.11 1.41 1.87 2.39 3.03 4.04 5.28 6.68

Figure 5-15. Linear interpolation in a two-way table.

The shaded cells are the ones used in the interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

We must perform three linear interpolations. First, as shown in Figure 5-16,
for the two bracketing values of x we calculate the value of z at y = 56.3. The
formula used in cell B32 is

=InterpL(0.563,$E$3:$F$3,E11:F11)
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Temp,
31 "F Zlinterp)
70 467 (value of z at¥x=70°F, y= 56.3%)
80 3.89 (value of z at x=80°F, y= 56.3%)

o
my
-

Figure 5-16. First steps in linear interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

Then, in this one-way table (A32:B33), we use these two interpolated values
of z to interpolate at x = 76°F, as illustrated in Figure 5-17. The formula in cell
B36 is

=InterpL(A36,A32:A33,B32:B33)

B
Temp,
35 *F  zinterp)
36 76 4.20

Figure 5-17. Final step in linear interpolation in a two-way table.
(folder ‘Chapter 05 Interpolation', workbook 'Interpolation II', module ' Linear Interpolation 2-Way")

The resulting interpolated value suffers from the usual errors expected from
linear interpolation (and in this example may be in error by as much as 3%). A
more accurate value can be obtained by performing cubic interpolation, using
four bracketing values to obtain the coefficients of the interpolating cubic. There
are at least two ways to obtain these coefficients: by using LINEST (the multiple
linear regression worksheet function, described in detail in Chapter 13), or by
using the cubic interpolation function. The latter will be described here, in the
following sections.

Cubic Interpolation in a Two-Way Table
by Means of Worksheet Formulas

To perform cubic interpolation between data points in a two-way table, we
use a procedure similar to the one for linear interpolation. Figure 5-18 shows the
table of viscosities that was used earlier. In this example we want to obtain the
viscosity of a 63% solution at 55°F. The shaded cells are the values that bracket
the desired x and y values.
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s R - A ) " AR v AR 0 K A WM o V51 o s |
Viscosity of Heat Transfer Fluid (cps)

1
24 Volume Percent Ethylene Glycol

Temp, | | : |
3 ¥ g 20% 30% 40% 6BH0% 60% 70% 80% 90%
4 0 1376 1934 3008 4558 6504 107.77
5 10 683 1013 1426 2206 3331 46.83 71.87
65 20| 380 538 774 1085 1656 2473 3448 4994
7 301 314 433 609 848 1268 1877 25684 3591
8 | 40 259 354 49 B.77 990 1445 1971 2659
9 ] 50 219; 295 404 550 785 1131 1529 2018
10 60 186) 249 338 455 633 897 12056 1565
1M1 70 1.61 213 2.87 3.81 517 7.22 962 1237
12 | 80 1.41 1.84° 246 3.23 428 5.88 7.79 9.93
131 90 1.24 1.60 213 276, 358 485 638 810
14 i 100 1.1 1.41 1.87 239  3.03 4.04 5.28 6.68
15 110 099 125 164 208@ 258 340 441 548

Figure 5-18. Cubic interpolation in a two-way table.

The shaded cells are the ones used in the interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Cubic Interpolation 2-Way')

We'll use the InterpC function to perform the interpolation. Figure 5-19
shows the z values, interpolated at y = 63% using the four bracketing y values, for
the four bracketing x values. The formula in cell M8 is

=InterpC{63%,$E$3:$H$3,E8:H8)

Tl SR R TR
T X zaty=63%
8| 40 1115 |
9. &0 8.80

10 60 705 |
11 70 573 |

Figure 5-19. First steps in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Cubic Interpolation 2-Way")

Then, in this one-way table, we use the formula
=InterpC(L15,$L$8:5L.$11,$M$8:5M$11)

in cell M15 to obtain the final interpolated result, as shown in Figure 5-20.
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14 X Z(interp)
15 85 . 786

Figure 5-20. Final step in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Cubic Interpolation 2-Way")

Cubic Interpolation in a Two-Way Table
by Means of a Custom Function

The cubic interpolation macro was adapted to perform cubic interpolation in
a two-way table. The calculation steps were similar to those described in the
preceding section. The cubic interpolation function shown in Figure 5-13 was
converted into a subroutine CI; the main program is similar to the Lagrange
fourth-order interpolation program of Figure 5-12.

The VBA code is shown in Figure 5-21. The syntax of the function is
InterpC2(x_lookup,y_lookup,known_x's,known_y’s,known_z's)

The arguments x_lookup and y_lookup are the lookup values. The arguments
known_x’s and known_y’s are the one-dimensional ranges of the x and y
independent variables (in Figure 5-20, the column of temperature values and the
row of volume percent values). The argument known z's is the table of
dependent variables (the two-dimensional body of the table).

Option Explicit

Option Base 1

B I o B I e R S S
Function InterpC2(x_lookup, y_lookup, known_x's, known_y’s, __ known_z’s)

' known_x’s are in a column, known_y’s are in a row, or vice versa.

' In this version, known_x"s and known_y’s must be in ascending order.
"In first call to Sub, XX is array of four known_y’s

' and YY is array of corresponding Z values, pointer is y_lookup.

' This call is made 4 times in a loop,

' obtaining 4 interpolated Z values, ZZ

"In second call to Sub, XX is array of four known_x's

"and YY is the array of interpolated Z values, pointer is x_lookup.

Dim M As Integer, N As Integer

Dim R As Integer, C As Integer

Dim XX(4) As Double, YY(4) As Double, ZZ(4) As Double, Zinterp(4) As _
Double

R = Application.Match(x_lookup, known_x’s, 1)

C = Application.Match(y_lookup, known_y’s, 1)
FR<2ThenR =2

If R > known_x"s.Count - 2 Then R = known_x's.Count - 2
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fC<2ThenC=2
If C > known_y’s.Count - 2 Then C = known_y’s.Count - 2

ForN=1To 4
' Create array of four known_y’s, four known_z’s, four known_x’s
' Check values to see whether ascending or descending,
‘and transfer input data to arrays in ascending order always.
XX(N) = known_x's(R+ N - 2)
If known_y’s(C + 2) > known_y’'s(C - 1) Then
ForM=1To 4
YY(M) = known_y's(C + M - 2)
Ifknown_z's(R+N-2 C+M-2)=""Then InterpC2 = _
CVErr(xIErrNA): Exit Function
ZZM) =known_z's(R+N-2,C+M-2)
Next M
Else
ForM=1To 4
YY(M) = known_y’s(C - M + 3)
If known_z's(R+N-2,C-M+ 3)=""Then InterpC2 = _
CVErr(xIErrNA): Exit Function
ZZ(M) =known_z's(R+N-2,C-M+3)
Next M
End if
Zinterp(N) = Ci(y_lookup, YY, ZZ)
'This is array of interpolated Z values at y_lookup
Next N

InterpC2 = Cl(x_lookup, XX, Zinterp)

End Function

B 0 1 e e I L L B L B o e i b
Private Function Cl{lookup_value, known_x's, known_y’s)

' Performs cubic interpolation, using an array of known_x’s, known_y’s (four
values of each)

' This is a modified version of the function InterpC.

Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

Fori=1To 4
Q=1
Forj=1To 4

If i <> j Then Q = Q * (lookup_value - known_x"s(j)) / (known_x’s(i) - __
known_x’s(j)}
Next j
Y =Y + Q* known_y’s(i)
Nexti
Cl=Y

End Function

Figure 5-21. Cubic interpolation function procedure for use with a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ‘Cubic2 Way")
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The function InterpC2 was used to obtain the viscosity of a 74.5% weight
percent solution of ethylene glycol at 195°F, as illustrated in Figure 5-22. The
formula in cell M7 was

=InterpC2(K7,L7,$A$4:$A$29,$B$3:$1$3,$B$4:$1$29)

This custom function provides a convenient way to perform interpolation in a
two-way table.

K. L M

5 Using Cubiclnterp2¥Way function
B Temp Percent  Viscosity
7 195 | 745% 1.8

Figure 5-22. Result returned by the cubic interpolation function.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', sheet ‘Cubic Interp 2-Way by Custom Fn’)
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Problems

Data for, and answers, to the following problems are found in the folder "Ch. 05
(Interpolation)" in the "Problems & Solutions” folder on the CD.

1. Using the table "Freezing and Boiling Points of Heat Transfer Fluid" shown
in Figure 5-1 (also found on the CD-ROM), obtain the freezing point of
30.5% and 34.5% solutions of ethylene glycol.

3. Using the table "Freezing and Boiling Points of Heat Transfer Fluid," find
the wt% ethylene glycol that has a freezing point of 0°F.

3. Using the following table (also found on the CD-ROM)

Table 5-27. Data Table for Two-Way Interpolation

y=10.0 0.4 0.8 1.2 1.6 2.0
x=0.0 1.00000 0.92106 0.69671 0.36236 { -0.02920 | -0.41615
0.5 2.43916 2.30901 1.93911 1.38787 0.74230 0.10433
1.0 5.00564 4.79106 4.18120 3.27235 2.20798 1.15615
1.5 8.95215 8.59837 7.59289 6.09444 4.33960 2.60542
2.0 14.10791 13.52462 | 11.86685 9.39633 6.50309 3.64392
2.5 19.47338 | 18.51170 | 15.77851 11.70530 6.93516 2.22118

obtain an interpolated value for z at the following values of x and y by cubic
interpolation: x =1 1/3, y=12/3; x = 1.55, y = 1.425.

Using the table "Viscosity of Heat Transfer Fluid" shown in Figure 5.4 (also
found on the CD-ROM), obtain the viscosity of a 30.5% solution of ethylene
glycol at 95°C, and the viscosity of a 74.5% solution of ethylene glycol at
195°C.

Using the following table (also found on the CD-ROM), obtain a value for
the refractive index of benzene at the following pressure and wavelength
values: 1 atm, 5000 A; 1 atm, 6600 A; 500 atm, 5000 A; 900 atm, 5000 A; 1
atm, 4600 A.
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Table 5-28. Refractive Index of Benzene at Various Wavelengths as a Function of Pressure

Wavelength

4678 A

4800 A | 4922 A

5016 A | 5086 A

5876 A

6438 A

1

1.50690

1.50477 | 1.50284

1.50151 | 1.50050

1.49221

1.48822

246

1.51946

1.51724 | 1.51532

1.51391 | 1.51286

1.50438

1.50025

485

1.52986

1.52762 | 1.52557

1.52421 | 1.52316

1.51445

1.51029

757

Pressure, atm

1.53992

1.53761 | 1.53555

1.53415 | 1.53305

1.52418

1.51991

1108

1.55102

1.54867 | 1.54657

1.53614 | 1.54401

1.53489

1.53052

6. Using the following table (also found on the CD-ROM)

Table 5-29. Data Table for Interpolation

X b 4

0.0 1.0000
0.5 2.2373
1.0 3.7560
1.5 4.7875
2.0 3.6439
2.5 -2.4690
3.0 -17.0501
3.5 -42.6275
4.0 -77.0077
4.5 -106.9697
5.0 -100.2178
5.5 0.7658

obtain an interpolated value for y at the following values of x by cubic
interpolation: 1.81, 3.11,5.2, 5.4.
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Chapter 6

Differentiation

The analysis of scientific or engineering data often requires the calculation of
the first (or higher) derivative of a function or of a curve defined by a table of
data points. These derivative values may be needed to solve problems involving
the slope of a curve, the velocity or acceleration of an object, or for other
calculations.

Students in calculus courses learn mathematical expressions for the
derivatives of many types of functions. But there are many other functions for
which it is difficult to obtain an expression for the derivative, or indeed the
function may not be differentiable. Fortunately, the derivative can always be
obtained by numerical methods, which can be implemented easily on a
spreadsheet. This chapter provides methods for calculation of derivatives of
worksheet formulas or of tabular data.

First and Second Derivatives
of Data in a Table

The simplest method to obtain the first derivative of a function represented
by a table of x, y data points is to calculate Ax and Ay, the differences between
adjacent data points, and use Ay/Ax as an approximation to dy/dx. The first
derivative or slope of the curve at a given data point x;, y; can be calculated using
either of the following forward, backward, or central difference formulas,
respectively (equations 6-1, 6-2, and 6-3).

dy ~ Ay _Yin =i

e (forward difference) (6-1)
dc Ax x x

i+l TN

d i~ -

@ Vi Vi (backward difference) (6-2)
dx X - X

d y,' - yi—

D Y Vi (central difference) (6-3)

dx X - Xy

The second derivative, dzy/dxz, of a data set can be calculated in a similar
manner, namely by calculating A(Ay/Ax)/Ax.

99
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Calculation of the first or second derivative of a data set tends to emphasize
the "noise" in the data set; that is, small errors in the measurements become
relatively much more important. The central difference formula tends to reduce
noise resulting from experimental error.

Points on a curve of x, y values for which the first derivative is a maximum, a
minimum, or zero are often of particular importance and are termed critical
points, that is, points where the curvature (the second derivative) changes sign
are termed inflection points. For example, in the analysis of data from an acid-
base titration, the inflection point is used to determine the equivalence point.

Calculating First and Second Derivatives

A pH titration (measured volumes of a base solution are added to a solution
of an acid and the pH measured after each addition) is shown in Figure 6-1, and a
portion of the spreadsheet containing the titration data in Figure 6-2. The end-
point of the titration corresponds to the point on the curve with maximum slope,
and this point can be estimated visually in Figure 6-1. The first and second
derivatives of the data are commonly used to determine the inflection point of the
curve mathematically.

14.0
12.0
10.0
8.0
s
o
6.0

4.0

20

0.0

0.0 1.0 2.0 3.0 4.0
Volume of 0.1000 M NaOH

Figure 6-1. Chart of titration data.
(folder ‘Chapter 06 Examples’, workbook 'Derivs of Titration Data', worksheet 'Derivs')
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A R S R D O R
2| vimL | pH | AV | ApH | V{awge) | ApH/AV
22| 190 4881 0100 @ 0223 180 = 223
23| 195 5157 0050 0176 @ 1925 352
24| 200 5389 0050 & 0232 ' 1975 | 464
25 205 5928 0050 | 0539 2025 1078
26| 208 7900 0030 1972 2065 6573
27, 210 9115 0020 1215 = 2090 = 6075
28| 215 9804 0050 0489 | 2125 978
29| 220 985 0050 0252 2175 @ 504
30| 230 10125 0100 0269 2250 2.69

Figure 6-2. First derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’, worksheet 'Derivs')

Columns A through F of the spreadsheet shown in Figure 6-2 are used to
calculate the first derivative, ApH/AV. Since the derivative has been calculated
over the finite volume AV = Vi, — ¥, the most suitable volume to use when
plotting the ApH/AV values, as shown in column E of Figure 6-2, is

Vi+1 +Vi

Vaverage = —2— (6-4)

The maximum in ApH/AV indicates the location of the inflection point of the
titration (Figure 6-3).

700 -
60.0
50.0
400

ApHIAV

300 -
200
100

00 L. 1 | I
1.50 1.70 1.90 2.10 2.30 2.50
VvV, mL

Figure 6-3. First derivative of titration data, near the endpoint.
(folder ‘Chapter 06 Examples’, workbook 'Derivs of Titration Data’, worksheet 'Derivs')
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The maximum in the first derivative curve must still be estimated visually.
The second derivative, A(ApH/AV)/AV, calculated by means of columns E
through J of the spreadsheet (shown in Figure 6-4) can be used to locate the
inflection point more precisely. The second derivative, shown in Figure 6-5,
passes through zero at the inflection point. Linear interpolation can be used to

calculate the point at which the second derivative is zero.

fo
23
24
26

27

O IRJIRT
DD D

(]

25

B F G H | J
Viavge) - ApH/AV AV Al{ApH) Vi{avge) A(ApH)'AV
1.850 2.29 0.100 057 1.800 57
1.925 352 0075 1.23 1.888 16.4
1.975 4.64 0.050 1.12 1.950 22.4
2.025 10.78 0.050 6.14 2.000 122.8
2.085 65.73 0.040 5485 2045 13738
2.090 B60.75 0.025 -4.98 2.078 -199.3
2125 9.78 0.035 -50.97 2.108 -1456.3
2175 504 0.050 -4.74 2.150 -94.8
2250 2.69 0.075 -2.35 2213 -31.3

Figure 6-4. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’', worksheet 'Derivs')

2000

A(ApH)/AV?
o

-2000

1 1 |

1.50

1.70

1.90 2.10 2.30 2.50

VvV, mL

Figure 6-5. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’, worksheet 'Derivs')
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There are other equations for numerical differentiation that use three or more
points instead of two points to calculate the derivative. Since these equations
usually require equal intervals between points, they are of less generality. Again,
their main advantage is that they minimize the effect of "noise." Table 6-1 lists
equations for the first, second and third derivatives, for data from a table at
equally spaced interval A.

These difference formulas can be derived from Taylor series. Recall from
Chapter 4 that the first-order approximation is

F(x+h)= F(x)+ hF'(x) (6-5)
or, in the notation used in Table 6-1
YVin =Y +hY (6-6)
which, upon rearranging, becomes
Y T
;I em———— 6'7
Vi P (6-7)

admittedly, an obvious result.
The second derivative can be written as

o _ YV
= 6-8
yl h ( )

When each of the )’ terms is expanded according to the preceding expression
for y', the expression for the second derivative becomes

. =(yi+2 _yi+l)/h—(yl+l -‘yl)/h

, 6-9
Yi P (6-9)
or
v Y2 =2 t Y
= 2 2 1 (6-10)

The same result can be obtained from the second-order Taylor series

expansion
2

F(x+h) ~ F(x)+hF'(x) + %F"(x) (6-11)

which is written in Table 6-1 as
2

. h "
Vi =Yithy, +?yi (6-12)

by substituting the backward-difference formula for F' from Table 6-1.
Expressions for higher derivatives or for derivatives using more terms can be
obtained in a similar fashion.
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Table 6-1. Some Formulas for Computing Derivatives
(For tables with equally spaced entries)

First derivative, using two points:

Forward difference v, =2 i+lh_ Vi

Central difference y, = Yial - Yia
2h

Backward difference y, = Yi "hy -1

First derivative, using three points:

oy 4y =3y,
Forward difference y, = Yix2 +2zz+1 3yi

First derivative, using four points.
C_ T Vi +8yi 8y + i

Central difference v,
12Ah
Second derivative, using three points:
Forward difference y, = Vier = 2Yin + Y
h2
. " -2y, )
Central difference ;= )ﬁil.%*_y_'i
" 2y, +

Backward difference y, = Vi y}'l*z‘ Yi-a

Second derivative, using four points:

. v 2y, =5y, +4Yi, Vi
Forward difference y, = Yi = 2Yin e Yir2 " Vi3

Second derivative, using five points:

Central difference y, =— Yier #1651y —I;ZZ’ 161 = Yo

Third derivative, using four points

Forward difference Y= Yiss = 3Visa 3*3)’”1 —JYi
h
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Using LINEST as a Fitting Function

Instead of calculating a derivative at an x value corresponding to a table
entry, it may be necessary to obtain the derivative at an intermediate x value.
This problem is related to the process of interpolation, and indeed some of the
techniques from the preceding chapter can be applied here (see "Cubic
Interpolation” in Chapter 5). For example, we can obtain a piecewise fitting
function that applies to a localized region of the data set, and use the parameters
of the fitting function to calculate the derivative. In this section and the
following one, we will use a cubic equation

F(x)=ax’ + bx* + cx +d (6-13)

as the fitting function, using four data points to obtain the four coefficients of the
cubic. (The fitted curve will pass exactly through all four points and R will be
exactly 1.) Once we have obtained the coefficients, the derivatives are calculated
from them; the first derivative is

F'(x)=3ax’ +2bx +¢ (6-14)

and the second derivative is
F"(x)=6ax +2b (6-15)

We can use the LINEST worksheet function (the multiple linear regression
worksheet function, described in detail in Chapter 13) to obtain the coefficients a,
b, ¢ and d, then use the coefficients g, b, and ¢ in equation 6-14 or 6-15 to
calculate the first or second derivatives.

The LINEST method will be illustrated using a table of absorbance data taken
at 5-nm increments, part of which is shown in Figures 6-6 and 6-7; the complete
range of x values is in $A$5:$A$85 and the y values in $B$5:$B$85. We wish to
obtain the first derivative of this data set at 2-nm increments over the range 390—

415 nm. R _—

& A ! B ]
3 Original Data

4 Wavelength Absorbance
23 | 390 0552
24 395 0.582

25 400 0.598

26 405 0.600

27 410 0.586

28 | 415 0.559

29 420 0.521

Figure 6-6. Data used to calculate first and second derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using megaformula’)
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0610 Original data points
0.600

0.590

0.580

Absorbance

0.570

0.560

0.550 L t ' 1 1 1
390 395 400 405 410 415 420

Wavelength, nm

Figure 6-7. Chart of some data used to calculate first and second derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using megaformula')

The steps required in the calculation of the first or second derivative at a
specified value of x are as follows:

(i) Use the MATCH function to find the position of the lookup value x in the
table of x values. The lookup value is in cell D5 in Figure 6-8.

=MATCH(D5, $A$5:3A$85,1)

(ii) Use the OFFSET function to select the four bracketing x values:
=OFFSET($A$5:3A$85,D5-2,0,4,1)

(iii) Use a similar formula to obtain the four bracketing y values:
=OFFSET($B$5:$B$85,05-2,0,4,1)

(iv) Use these two arrays in the LINEST formula, raising the range of x values to
an array of powers; the LINEST formula must be entered in a horizontal
range of three cells, and you must press CONTROL+SHIFT+ENTER:

=LINEST(OFFSET(known_ys,MATCH(D6,known_xs,1)-2,0,4,1),
OFFSET(known_xs,MATCH(D6,known_xs,1)-2,0,4,1)*1,2,3},1,0)

(v) Use the INDEX function to obtain each of the regression coefficients a, b and
¢ from the LINEST array. (To simplify the formula, the cells containing the
preceding LINEST formula have been given the name LINEST_array.) The
following equation returns the coefficient a:

=INDEX(LINEST _array,1)
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(vi) Use the coefficients a, b, and ¢ to calculate the first or second derivative:
If these formulas are combined into one "megaformula”, the result (entered in
cell E5 in Figure 6-8) is

=3*INDEX(LINEST(OFFSET(known_ys,MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values,MATCH(D5,x_values,1)-2,0,4,1)*{1,2,3},1,0),1)*x"2
+2*INDEX(LINEST(OFFSET(known_ys, MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values, MATCH(DS5,x_values,1)-2,0,4,1){1,2,3},1,0),2)*x
+INDEX(LINEST(OFFSET(known_ys, MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values, MATCH(D5,x_values,1)-2,0,4,1)*{1,2,3},1,0),3)

which is rather confusing. A better approach is to use named formulas. The
following table lists the named formulas and ranges used to calculate the first
derivative shown in Figure 6-7.

x_values =Sheet2!$A$5:3A$85

y_values =Sheet2!$B$5:$B$85

lookup_value =Sheet2!$D$5:$D$17

pointer =MATCH(INDIRECT(ROW()&™""&ROW()) lookup_value ,x_values,1)
known_xs  =OFFSET(x_values,pointer-2,0,4,1)

known_ys  =OFFSET(y_values,pointer-2,0,4,1)

LIN_array = =LINEST(Sheet2!known_ys,Sheet2lknown_xs"{1,2,3},1,0)

aa =INDEX(LINEST_array,1)
bb =INDEX(LINEST _array,2)
cc =INDEX(LINEST _array,3)

Using these named formulas, the formula for the first derivative becomes

=3"aa*x*2+2*bb*x+cc

Note the formula used for pointer. It incorporates an "implicit intersection”
expression. Since both lookup_value and x_values are arrays, the formula

=MATCH(lookup_value ,x_values,1)

returns an array of values instead of a single value. The formula using the
expression INDIRECT(ROW()&":"&ROW()) lookup_value returns a single value,
the value in the array lookup_value that is in the same row as the formula.
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! D E F G
4 X y F'(x) F'00 % 10
5 390 0.552 0.00710 -4.53E-03.
6 392 0.00616 -4 87E-03
7 394 _ 0.00516 -5.20E-03
8 396 0.00405 -5.46E-03
9 398 0.00294 -5.65E-03
{0 400 @ 0.598 0.00176 -5.84E-03
11 402 0.00059 -5.85E-03
12 404 -0.00058 -5.87E-03
3 406 -0.00179 -5.80E-03
14 408 -0.00293 -5.65E-03
115 410 0.586 -0.00408 -5.49E-03
i 16 412 -0.00515 -5.16E-03
(17| 414 -0.00615 -4 88E-03

Figure 6-8. First derivative calculated using LINEST function.
The y values indicate the known experimental points.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST’, sheet 'Using named formulas')

0.005

e
(o]
o
o
First Derivative
Second Derivative x 10

™~

- - . -0.005
TR g 5w \t]

. ! _ _ | -0.010
390 395 400 405 410 415

Figure 6-9. Chart of values of first and second derivative

calculated using LINEST.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using named formulas')
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Part of the table of calculated first derivative values is shown in Figure 6-8,
and the values are charted in Figure 6-9. The formula used in cell F5, for
example, is

=3*aa*x"2+2*bb*x+cc

One could use the x value where F'(x) = 0 to locate the maximum in the
spectrum.

Depending on the data table being differentiated, the errors in the values
returned by this method may be as great as several percent.

Derivatives of a Worksheet Formula

Instead of calculating the first or second derivative of a curve represented by
data points, we may wish to find the derivative of a function (a worksheet
formula). In the following, two different methods are illustrated to calculate the
first or second derivative of a worksheet formula by using a user-defined
function. The calculation of the first derivative of the function y = 3x* + 5x* - 5x
+ 11 is used as the example for each method

Derivatives of a Worksheet Formula
Calculated by Using a VBA Function Procedure

The first example is a Function procedure that returns the first derivative of a
specific worksheet formula. The expression for the derivative is "hard-coded" in
the VBA procedure. The user must be able to provide the expression for the
derivative and must modify the VBA code to apply it to a different formula. The
function's only argument is the value of x, the independent variable for which the
derivative is to be calculated. The main advantage of this approach is that the
returned value of the derivative is exact. This approach will execute the fastest
and would be suitable if the same formula is to be used many times in a
worksheet.

Function Deriv1(x)

'User codes the expression for the derivative here.
Derivi=9*x%2+10*x-5

End Function

Figure 6-10. Function procedure to demonstrate calculation of a first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), module 'Modulel')



110 EXCEL: NUMERICAL METHODS

First Derivative of a Worksheet Formula
Calculated by Using the Finite-Difference Method

The second example is a Function procedure that uses the finite-difference
method. The first derivative of a formula in a worksheet cell can be obtained with
a high degree of accuracy by evaluating the formula at x and at x + Ax. Since
Excel carries 15 significant figures, Ax can be made very small. Under these
conditions Ay/Ax approximates dy/dx very well.

The user must "hard-code" the worksheet formula in VBA, in a suitable
form; the derivative is calculated by numerical differentiation. Again, the
function's only argument is the value of x, the independent variable. This
approach would be useful if the user is unable to provide an expression for the
derivative.

Function Deriv2(x)

OldY = fn(x)

xx = (1.00000001) * x

NewY = fn(xx)

Deriv2 = (NewY - OIdY) / (xx - X)
End Function

Function fn(x)

'User codes the expression for the function here.
fn=3*x23+5*x"2-5"x+11

End Function

Figure 6-11. Function procedure to demonstrate calculation of first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), module 'Modulel")

The Newton Quotient

In the previous section, the finite-difference method was shown to provide an
excellent estimate of the first derivative of a function expressed as a worksheet
formula. The multiplier used in the preceding user-defined function was
1.00000001. What is the optimum value of this multiplier, so that the Newton
quotient Ay/Ax gives the best approximation to dy/dx?

There are two sources of error in this finite-difference method of computing
dy/dx: the approximation error, inherent in using a finite value of Ax, and the
roundoff error, due to the limited precision of the numbers stored in the
computer. We want to find the value of Ax that strikes the best balance between
these two errors. If Ax is made too large, then the approximation error is large,
since dy/dx — Ay/Ax only when Ax — 0. If Ax is made too small, then the
roundoff error is large, since we are obtaining Ay by subtracting two large and
nearly equal numbers, F(x) and F(x + Ax).
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Excel carries 15 digits in its calculations, and it turns out that multiplying x
by a factor of 1.00000001 (a change in the 8th place) produces the minimum
error, before round-off error begins to have an effect. Figure 6-12 illustrates this,
using a quadratic equation as an example; other functions give similar results.
The values in Figure 6-12 show that we can expect accuracy up to approximately
the tenth digit.

e, e 0 it ., L 5 A S

H A ST

' X i Ax Hrdo Yy AyfAx exact % etror

| :-'5 116.25 1.0E-05 7.5001 116.253 340002 34 66E-04
57.5 116.25 1.0E-06 7.50001 116.2503 3400002 34 6.6E-05
5?5 116.25 1.0E-07 7.500001 116.25003 34.000002 34 6.7E-06

{75 116.25 1.0E-08 7.5000001 116.250003 | 34.0000003 34 84E-07
|75 11625 1.0E-09 7.50000001 116.2500003 34.000001 34 4.2E-06
|75 11625 1.0E-10 7.500000001 116.25000003 3400002 34 49E-05
|75 11625 1.0E-11  7.5000000001 116.250000003 340001 34 42E-04

Wlm~omislwin —

Figure 6-12. Newton quotient Ay/Ax as a function of the magnitude of Ax
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), sheet Newton Quotient')

Derivative of a Worksheet Formula
Calculated by Using the Finite-Difference Method

The spreadsheet shown in Figure 6-13 (see folder 'Chapter 06 Examples',
workbook 'Derivs by Sub Procedure') illustrates the calculation of the first
derivative of a function y = x* — 3x* — 130x + 150 by evaluating the function at x
and at x + Ax. Here a value of Ax of 1 x 10°® was used. For comparison, the first
derivative was calculated from the exact expression from differential calculus:
F(x) = 3x* — 6x — 130.

The Excel formulas in cells B11, C11, D11, E11, F11, G11 and H11
(columns C-F are hidden) are

B11 =t"%X"3+u™x"2+v*xX + w F(x)

C11 =A11*(1+delta) x+Ax
D11 =tC1143+u*C11°2+v*C11 + w F(x + Ax)
E11 =A11*delta Ax

F11 =D11-B11 Ay

G11 =F11/E11 Ay/Ax

H11 =3*t*A11/2+2*u*A11+v dy/dx from calculus
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G, W ORI B St R, SR

1 Numerical Differentiation
sd FGO = b"3 + U2 + vy + w

3 | i 1 '

4 | T -3 delta
5 | v -130 ~ 1.00E-08
B | W 150 |
7 | Ay/AX

. By watksheet

a From calculus
8 x y formula

8 | -10 150 230.0000006 230

10, -9 348 167.000005 167

1] -8 486 110.000002 110

121 -7 570 59.000001, 59

13| -6 606 14.000002 14

141 -5 600 -24.9999984 -25

151 -4 558 -57.999998 -58

161 -3 . 486 -84.9999992 -85

171 -2 390 -105.999999 -106

18] -1 276 -120.8999994 -121

19 0 150 #DIvio! -130

Figure 6-13. First derivative calculated on a worksheet by using Ax.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv')

The value in cell G21 illustrates that, using this technique, an x value of zero
will have to be handled differently, since multiplying zero by 1.00000001 does
not produce a change in x. This problem will be dealt with in a subsequent
section.

First Derivative of a Worksheet Formula
Calculated by Using a VBA Sub Procedure
Using the Finite-Difference Method

The approach used in the preceding section can be performed by using a
VBA Sub procedure. The VBA code is shown in Figure 6-14. By means of an
input box the user identifies the range of cells containing the formulas for which
the derivative is to be calculated, with a second input box, the corresponding
cells containing the independent variable x, and with a third input box, the range
of cells to receive the first derivative.
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Option Explicit

Option Base 1

B e o R o S o

Sub Derivs()

Dim z As Integer, N As Integer

Dim Old_Ys() As Double, New_Ys() As Double, Old_Xs() As Double,
Dim Derivs() As Double, increment As Double

Dim known_Xs As Object, known_Ys As Object, cel As Object

increment = 0.00000001

'Use the Set keyword to create an object variable
Set known_Ys = Application.InputBox _
("Select the range of Y values”, "STEP 1 OF 3", , ,,,, 8)
N = known_Ys.Count
ReDim Old_Ys(N), New_Ys(N), Old_Xs(N), Derivs(N)
z=1
For Each cel In known_Ys
Old_Ys(z) = cel.Value
z=z+1
Next cel

Set known_Xs = Application.InputBox _
("Select the range of X values”, "STEP 2 OF 3", ,,,,, 8)
z=1
For Each cel In known_Xs
Old_Xs(z) = cel.Value
cel.Value = Old_Xs(z) * (1 + increment)
z=z+1
Next cel
z=1
For Each cel In known_Ys
New_Ys(z) = cel.Value
z=z+1
Next ce!
z=1
For Each cel In known_Xs
cel.Value = Old_Xs(z)
z=z+1
Next cel

Application.InputBox("Select the destination for derivatives”, _
"STEP 3 OF 3", ,,,,, 8).Select
Forz=1ToN
Derivs(z) = (New_Ys(z) - Old_Ys(2)) / (increment * Old_Xs(z))
ActiveCell.Offset(z - 1, 0).Value = Derivs(z)
Next

End Sub

Figure 6-14. Sub procedure to calculate first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', module Derivs')
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I S, b (R T R R BATHR K

1 Numerical Differentiation

b FOO = D3 + 2 + v+ W

3 t 1 f

4 u -3 delta

5 v -130  1.00E-08

= . i

7 o

3 | 2 v B’yg?::lii;eet From calculus By macro
9|10 150 230.0000006 230 = 230.000001
10| -9 348 167.000005, 167 167.000005
11| -8 ' 488 110.000002 110  110.000002
12| -7 @ s70 59.000001 59 59.0000013
13| -6 = 606 14.000002 14 14.0000016
14| -5 600 -24.9999994 -25 -24.9999994
15| -4 558 -57.999998  -58  -57.999998
16| -3 486 = -84.9999992 -85  -84.9999992
17| -2 3% = -105.999999  -106  -105.399999
18| -1 276 | -120.9999994. 121 121,
9] o 150 | #DMOI 130

120] 1 18 | -132.099998  -133 -133

Figure 6-15. Calculating the first derivative of a formula.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure’, sheet 'Deriv')

The Sub procedure saves the values of x and y from the worksheet (OldX and
0ldY), then writes the incremented value of x (NewX) to the worksheet cell. This
causes the worksheet to recalculate and display the corresponding value of y + Ay
(NewY). The derivative is calculated and written to the destination cell. Finally,
the original value of x is restored. Figure 6-15 illustrates the spreadsheet of
Figure 6-13 after the Sub procedure has been run. The errors produced by this
method are much smaller than those produced by the function based on LINEST.

The code in Figure 6-14 can easily be modified to calculate the partial
derivatives of a function with respect to one or several parameters of the function
(e.g., dy/da, dy/db, etc.) for a cubic equation. Similar code is used in the SolvStat
macro (see Chapter 14, "The Solver Statistics Add-In") and a similar approach is
used in the Solver itself (see "How the Solver Works" in Chapter 14).
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800 - : 200
600 150
[ ]
400 - * 100
#
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g o 0 5
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-200 50 F

-400 -100

-600 -150

-800 i L P -200

-10 -5 0 5 10

Figure 6-16. A chart of a function and its first derivative.
(folder 'Chapter 06 Examples', workbook ‘Derivs by Sub Procedure’, sheet 'Deriv')

The advantage of using a Sub procedure is that the derivative can be
obtained easily, even for the most complicated worksheet formulas. All of the
difficult calculations are done when the spreadsheet updates after the new value
of x is entered in, for example, cell A9. The disadvantage of a Sub procedure is
that if changes are made to precedent cells in the worksheet, the Sub procedure
must be run in order to update the calculations.

First Derivative of a Worksheet Formula
Calculated by Using a VBA Function Procedure
Using the Finite-Difference Method

Unlike the Sub procedure described in the preceding section, a Function
procedure automatically recalculates each time changes are made to precedent
cells. A Function procedure to calculate the first derivative of a formula in a cell
would be very useful. However, a function procedure can't use the approach of
the preceding section (i.e., changing the value of the cell containing the x value),
since a function procedure can't change the contents of other cells. A different
approach will have to be found.

The following VBA code illustrates a simple Function procedure to
calculate the first derivative dy/dx of a formula in cell, using the same approach
that was used in the preceding section: the procedure calculates OldX, OIdY,
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NewX and NewY in order to calculate Ax/Ay. But in this function procedure, both
the worksheet formula and the independent variable are passed to the function as
arguments. The procedure is shown simply to illustrate the method; a number of
modifications, to be described later, will be necessary in order to produce a
"bulletproof” procedure.

The basic principle used in this Function procedure is the following:

(i) The two arguments of the function are references to the independent
variable x and the cell containing the formula to be differentiated, F(x).

(ii) Use the Value property to obtain the values of the arguments; these are
OldX and OidY.

(iii) Use the Formula property of the cell to get the worksheet formula to be
differentiated as the text variable FormulaText.

(iv) Use the SUBSTITUTE worksheet function to replace references to the x
variable in FormulaText by the incremented x value, NewX.

(v) Use the Evaluate method to get the new value of the formula. This is
NewyY.

Since other procedures in this chapter and in subsequent chapters will use the
same method for modifying and evaluating a formula, it will be worthwhile to
examine the VBA code shown in Figure 6-17. The syntax of the function is
FirstDerivDemo(expression,variable). The nine lines of code in this procedure
perform the following actions:

(1) Get FormulaString, the worksheet formula (as text) by using the Formula
property of expression.

(2) Get OIdY, the value of the worksheet formula, by using the Value property
of expression.

(3) Get XRef, the reference to the independent variable x, by using the Address
property of variable. The address will be an A1-style absolute reference

(4) Get OldX, the value of the independent variable x, by using the Value
property of variable.

(5) Calculate NewX, the incremented value of the independent variable, by
multiplying OldX by 1.000000001.

(6) Convert all references in FormulaString to absolute by using the
ConvertFormula method.

(7) Replace all instances of XRef in FormulaString by the value of the new
variable NewX. This is done by using the SUBSTITUTE worksheet
function. For example, the formula string

=3*$B$33+5*3B$32-5*$B$3+11
when cell $B$3 contains the value 2, is converted to
=3*2.00000002/3+5*2.00000002"2-5*x+11.
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(8) Calculate NewY, the new value of the function, by applying the Evaluate
method to the new formula string.
(9) Calculate and return the first derivative.

Option Explicit
Function FirstDerivDemo(expression, variable) As Double
'Custom function to return the first derivative of a formula in a cell.

Dim OldX As Double, OidY As Double, NewX As Double, NewY As Double
Dim FormulaString As String, XAddress As String

FormulaString = expression.Formula

OldY = expression.Value

XAddress = variable.Address 'Default is absolute reference

OldX = variable.Value

NewX = OldX * 1.00000001

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute) ‘Convert all references in formula to absolute
FormulaString = Application.Substitute(FormulaString, XAddress, NewX)
NewY = Evaluate(FormulaString)

FirstDerivDemo = (NewY - OldY) / (NewX - OldX)

End Function

Figure 6-17. Function procedure to demonstrate calculation of first derivative.
(folder 'Chapter 06 Exampies', workbook 'Derivs by VBA (Part 2)', module 'Demo")

Examples of the first derivative of some worksheet formulas calculated by
the custom function are shown in Figure 6-18. The formula in cell D3 is

= FirstDerivDemo (C3,B3)

The formulas labeled "exact" in column E are the appropriate formulas from
differential calculus for the first derivative of the respective functions. For
example, the formula in cell E3 is

=9*B3*2+10*B3-5

BT SO Bl R R R L AR
1] Demo to lllustrate Use of Simple First Derivative Function
2 |Function X Foo F00) exact % Brror
3 EREEE 2 45 51.0000003 51 -5.2E-07
4 ly=sinx 1 0.84147 05403023  0.5403023 -5.8E-08
5 |y=e™ 1038788 0.3678794 0.3678794 2.5E-07
B y=a'(e.n.a=35) 24 104734 243055256 24.3955252 -1.5E-06

Figure 6-18. Using a simple Function procedure to calculate some first derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'Demo Function')
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Improving the VBA Function Procedure
The simple procedure shown in Figure 6-17 requires some modification.

First, the simple procedure replaces all instances of XRef, the reference to the
independent variable x, in FormulaString with a number value. For example, a
cell reference such as A2 will be replaced with a number value such as 0.05. But
there are cases where the substring A2 should not be replaced. Our procedure
needs to handle the following possibilities, all of which contain the substring A2
within FormulaString:

(i) the reference XRef and references in FormulaString may be relative,
absolute or mixed,

(ii) FormulaString contains a name such as BETA2,
(ili) FormulaString contains a reference such as AA2, or
(iv) FormulaString contains a reference such as A25.

By using the Address property to obtain an absolute reference (e.g., $A$2)
and using the ConvertFormula method to convert all references in
FormulaString to absolute, we have already eliminated problems arising from
cases (i), (ii), and (iii). Only case (iv) poses a problem: the substring $A$2 in
$A$25 will be substituted by 0.05, yielding 0.055. And so, as is often the case
with computer programming, a project that initially appeared to be simple
requires some additional programming.

We could write a formula parser that would break FormulaString into its
component parts and inspect each one. Not impossible, but that would require
extensive programming. A much simpler solution turns out to be the following:
by means of a loop, we replace each instance of, for example, A2 individually,
and, instead of replacing the reference with a number (e.g., 0.05), we replace the
reference with the number concatenated with the space character (e.g., 0.05 0).
We then evaluate the resulting string after each substitution. The reference
$A$25 yields the string 0.05 5. When evaluated, this gives rise to an error, and
an On Error GoTo statement is used so that the faulty substitution is not
incorporated into the FormulaString to be evaluated. Inspection of the code in the
latter half of the procedure in Figure 6-21 should make the process clear.

A second problem with the simple procedure of Figure 6-17 is that when x =
0, NewX = OldX, NewY = OIdY and the procedure returns a #VALUE! error. The
error produced by a zero value for the independent variable x is handled by
adding an additional optional argument scale_factor. The syntax of the function
is dydx(expression, reference, Optional scale_factor). If x is zero, a value for
scale_factor must be entered by the user. Scale_factor is used to calculate the Ax
for numerical differentiation. Scale_factor should be the same order of
magnitude as typical x values used in the formula.

The Function procedure is shown in Figure 6-19.
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Option Explicit

Function dydx({expression, variable, Optional scale_factor) As Double
‘Custom function to return the first derivative of a formula in a cell.
'expression is F(x), variable is x.

'scale_factor is used to handle case where x = 0.

‘Workbook can be set to either R1C1- or A1-style.

Dim OldX As Double, NewX As Double, OldY As Double, NewY As Double
Dim delta As Double

Dim NRepl As Integer, J As Integer

Dim FormulaString As String, XRef As String, dummy as String

Dim T As String, temp As String

delta = 0.00000001

‘Get formula and value of cell formula (y).

FormulaString = expression.Formula 'Returns A1-style formula; default is
absolute.

OldY = expression.Value

‘Get reference and value of argument (x).

OldX = variable.Value

XRef = variable.Address 'Default is A1-style absolute reference.

'Handle the case where x = 0.
‘Use optional scale_factor to provide magnitude of x.
'If not provided, returns #DIVO!

If OldX <> 0 Then
NewX = OldX * (1 + delta)
Else

If IsMissing(scale_factor) Or scale_factor = 0 Then _
dydx = CVErr(xIErrDiv0): Exit Function
NewX = scale_factor * delta

End If

'Convert all references to absolute
'so that only text that is a reference will be replaced.
T = Application.ConvertFormula(FormulaString, xIA1, xIA1, xlAbsolute)

'Do substitution of all instances of x reference with value.
'‘Substitute reference, e.g., $A%2,
'with a number value, e.g., 0.2, followed by a space
'so that $A$25 becomes 0.2 5, which results in an error.
'‘Must replace from last to first.
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ™)) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX & " ", J)
If IsError(Evaluate{temp)) Then GoTo pt1
T=temp
pt1: Next J
NewY = Evaluate(T)
dydx = (NewY - OldY) / (NewX - OldX)
End Function

Figure 6-19. Improved Function procedure to calculate first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'FirstDeriv')
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i B T R R S R R
4 Demo to llustrate Use of Advanced First Derivative Function

2 Reference in formula or in argument can be absolute, relative, mixed or a name. ;
3 |Function % FOO F'0d exact % error

4 ly=3C+556x+11 | 2 45 51.00000027 51  -5.2E-07
5 ly=sinx 1) 084147 054030231 05403023 -5.8E-08
6 |y -1 036788 0.36787944 03678794  25E-07
7 |y=d'(eg,a=35) 24 19.4734 2439552611 24.395525  3.8E-07
B y=30+555+11 0 11 #VALUE! -5 #VALUE! |
|9 ly=3C+5C-5x+11 0 11, -4.99999988% -5 2.4E-06

Figure 6-20. Using the improved function procedure to calculate some first derivatives.
The optional argument scale_factor is used in row 9 to eliminate the #/ALUE! error seen in row 8.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet Better Function')

The examples in Table 6-20 illustrate the values of the first derivative
calculated by using the function dydx, compared with the "exact" values.

The worksheet formulas in column C and the corresponding functions in
column D are:

C4 =3*B4r3+5*B4r2-5*B4+11 D4 =dydx($C$4,$B$4)
C5 =SIN($B5) D5 =dydx(C5,B5)

C6 =EXP($B$6) D6 =dydx(C6,B6)

C7 =a*B7 D7 =dydx(C7,B7)

C8 =3*B8"3+5"B82-5*B8+11 D8 =dydx(C8,B8)

C9 =3*BYA3+5*B9"2-5*B9+11 D9 =dydx(C9,B9,1)

Rows 4-6 illustrate that relative, absolute or mixed references can be used in
the worksheet formula or in the arguments of the custom function. Row 9
illustrates the use of the optional argument scale_factor when the x value is zero.

Second Derivative of a Worksheet Formula

The VBA code for the Function procedure shown in Figure 6-21 requires
only slight modification to provide a function that returns the second derivative
of a function as a cell formula. The syntax of the d2xdy2 function is identical to
that of the function dydx.

The code is shown in Figure 6-21. The function calculates the central
derivative uing three points (see the formula in Table 6-1). Note that the
multiplier used to calculate Ax is 1E-4 instead of 1E-8.
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Option Explicit

Function d2ydx2(expression, variable, Optional scale_factor) As Double
‘Custom function to return the second derivative of a formula in a cell.
‘expression is F(x), variable is x.

'‘Uses central difference formula.

'scale_factor is used to handle case where x = 0.

‘Workbook can be set to either R1C1- or A1-style.

Dim OldX As Double, OldY As Double
Dim NewX1 As Double, NewX2 As Double
Dim NewY1 As Double, NewY2 As Double
Dim XRef As String

Dim delta As Double

Dim FormulaString As String, T As String
Dim temp As String

Dim NRepl As Integer, J As Integer

deilta = 0.0001

'Get formula and value of cell formula (y).

FormulaString = expression.Formula 'Returns A1-style formula
OldY = expression.Value

'Get reference and value of argument (x).

OldX = variable.Value

XRef = variable.Address 'Default is A1-style absolute reference

‘Handle the case where x = 0.
'Use optional scale_factor to provide magnitude of x.
'If not provided, returns #DiVO!
If OldX <> 0 Then
NewX1 = OIdX * (1 + delta)
NewX2 = OldX * (1 - delta)
Else
If IsMissing(scale_factor) Or scale_factor = 0 Then _
d2ydx2 = CVErr(xIErrDiv0): Exit Function
NewX1 = scale_factor ® delta
NewX2 = -scale_factor *® delta
End If

'Convert all references to absolute

'so that only text that is a reference will be replaced.

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute)

T = FormulaString
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")) / Len(XRef)
'Do substitution of all instances of x reference with incremented x value
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX1 & " “, J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
‘Evaluate the expression.
NewY1 = Evaluate(T)
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T = FormulaString
‘Now do substitution of all instances of x reference with decremented x value
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX2 & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
NewY2 = Evaluate(T)
d2ydx2 = (NewY1 + NewY2 - 2 * OldY) / Abs((NewX1 - OldX) * (NewX2 - OldX))

End Function

Figure 6-21. Function procedure to calculate second derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2), module 'SecondDeriv')

Figure 6-22 illustrates the use of the dydx and d2ydx2 custom functions. The
formula in cell B4 is

=aa*A4"3+bb*A4"2+cc*Ad+dd
(aa, bb, cc, dd are named ranges. The formula in cell C4 is

=dydx(B4,A4,1)

| RCE IR TR i N - R S L T
| First and Second Derivative Functions
y=2x°-20x* +11x + 30 _
X FO F'é) exact % error F &0 exact % error
| -5 -775 361.0000021 361 5.8E-07 -100.0000002 -100 -2.0E-07
| -4 -462 267.0000003 267 1.0E-07 -88.0000002 -88 -2.0E-07
-3 -237 1850000020 185 1.1E-06 -75.9999997 -76 -45E-07
-2 -88 1149999996 115 3.9E-07 -64.0000003 -64 -5.0E-07
-1 -3 57.0000001 57 1.6E-07 -52.0000000 -52 -7.5E-08
0 30 109939998 11 1.4E-06 -40.0000001 -40 -2.8E-07
23 -22.9999999 -23 -3.9E-07 -28.0000002 -28 -B.BE-07
-12  -45.0000001 -45 -2.0E-07 | -159999999 -16 -6.1E-07
-63  -55.0000004 -55 -7.0E-07  -4.0000003 -4 -8.3E-06
-118  -52.9989997 -53 -50E-07 ~ 7.3999998 8 28E-06
-165 -38.9999993 -39 -1.7E-06  19.9999999 20 2.5E-07

T
L]

P e R R PR TR R R S L S s
=8 (701 T RTY U o b Bt ok A e b bl s

i

M &= W k=

Figure 6-22. Using Function procedures to calculate
first and second derivatives of a function.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2), sheet 'First and Second Derivs')

Note the use of the optional argument scale_factor that prevents an error in
cells C9 and F9 when the value of the independent variable in cell A9 is zero.
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Concerning the Choice of Ax
for the Finite-Difference Method

In preceding sections, the x + Ax used for the calculation of the derivatives
was calculated by multiplying x by 1.00000001. Thus Ax is a "scaled" increment.
An alternative approach would have been to use a constant Ax of, e.g.,
0.00000001. Either approach has its advantages and disadvantages.

The constant-increment method eliminates the need to handle the case of x =0
separately. However, the method fails when x is very large, e.g., 10®. The
scaled-increment method handles a wide range of x values, but fails in some
special cases, such as for sin x when x = 1000.

You should be aware of these limitations when using the dydx and d2ydx2
custom functions.
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Problems

Answers to the following problems are found in the folder "Ch. 06 (Differentiation)"
in the "Problems & Solutions" folder on the CD.

1. Using the data file "Titration Curve", obtain the first and second derivative.
The "endpoint" of a titration is considered to be the volume at the "inflexion
point": that is, where the curve y = F(x) has maximum slope, or where the
first derivative reaches a maximum, or where the second derivative passes
through zero; the last is the easiest to determine graphically or
mathematically.

2. Using the data file "Student Potentiometric Data", obtain the first and second
derivative.

3. Using Excel's SIN function, create a table of siné, in one degree increments of
6 (remember that Excel's trigonometric functions require angles in radians).
Now calculate d sin, using one of the formulas in Table 6-1. Compare your
answer with the exact: d sinf = cosf. Experiment with different formulas
from Table 6-1 to compare the errors.

4. Determine the first and second derivatives of the function
y=2x3-20x2 +11x + 30 over the range x = -5 to x = 10.

5. Determine the first derivative of the function y=x? -1x10%x+1x107"
over the range x =0tox =2 x 107

6. Determine the first derivative of the following functions over suitable ranges

of x:

4
a =
@ Y 1+ x2
(b) y=e-
© y=- sin? x
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7. Show that the slope of the logistic equation
1
14+ e

(e)

at its midpoint (the Hall slope) is equal to a/4.

8. The van der Waals equation is an equation of state that applies to real gases.
For 1 mole of a gas, the van der Waals equation is

(P + %)(V —b)=RT

where R is the gas constant (0.0821 L atm K™ mol™) and T is the Kelvin
temperature. The constants a and b are constants particular to a given gas,
and correct for the attractive forces between gas molecules, and for the
volume occupied by the gas molecules, respectively. For methane (CH,), the
constants are ¢ = 2.253 L? atm and b = 4.278 x 102 L. Using the rearranged
form of the van der Waals equation

RT a

V-b V?
calculate the pressure of 1 mole of methane as a function of container volume
at 0°C (273 K) at suitable volumes from 22.4 L to 0.05 L. Use one of the
custom functions described in this chapter to calculate the first and second
derivatives of the P-V relationship. Compare with the exact expressions

ap___RT | 2a
av  y-b vV

d*P  2RT  6a

v’ y-s} V'
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Chapter 7

Integration

The solution of scientific and engineering problems sometimes requires
integration of an expression. Symbolic integration involves the use of the
methods of calculus to yield a closed-form analytical expression: the indefinite
integral, or mathematical function F(x) whose derivative dy/dx is given. We will
not attempt to find the indefinite integral — Excel is not equipped to do symbolic
algebra — but instead find the area under the curve bounded by a function F(x)
and the x-axis. This area is the definite integral.

It may be difficult or even impossible to obtain an expression for the integral
of a particular function. But by using numerical methods we can always obtain a
value for the definite integral. The result of numeric integration is the area under
the curve, between specified limits, from x = g to x = 5. The calculation will
involve a curve described either by a table of experimental x, y values or by a
function y = F(x).

This chapter provides methods for calculating the area under a curve that is
described by a table of x, y values on a worksheet or by a worksheet formula.
Some methods require evenly spaced x values, while for others the x values can
be irregularly spaced.

Area under a Curve

By "area under a curve" we mean the area bounded by a curve and the x-axis
(the line y = 0), between specified limits. The area can be positive if the curve
lies above the x-axis or negative if it is below.

Calculation of the area under a curve is sometimes referred to as quadrature,
since it involves subdividing the area under the curve into a number of "panels"
whose areas can be calculated. The sum of the areas of the panels will be an
approximation to the area under the curve. The three most common approaches
are the rectangle method, in which the panels are rectangles, the trapezoid
method, in which the panels are trapezoids and Simpson's method, which
approximates the curvature of the function. These methods require that we have

127
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a table of values of the function; the three methods are illustrated in Figure 7-1.
Only Simpson's method requires panels of equal width.

The simplest approach is to approximate the area of the panel by a rectangle
whose height is equal to the value of one of the two data points, illustrated in
Figure 7-1. If we have a table of » data points, we will have n—1 panels.

As the x increment (the interval between the data points) decreases, this
rather crude approach becomes a better approximation to the area. The area
under the curve bounded by the limits xjjriql and xfinal is the sum of the n

individual rectangles, as given by equation 7-1.

n-l
area A = zyi(xm - Xx;) (7-1)
i=1
A better approximation is to use the average of the two y values as the height
of the rectangle. This is equivalent to approximating the area by a trapezoid
rather than a rectangle. The area under the curve is given by equation 7-2.

n-1
- YitYisl
A= = G - ) (7-2)
i=1
10 - .
Simpson's Rule
9 - method
8 I
7 L
& 6
ﬁ 5 L Trapezoid
;0_< method
< 4 -
3 Rectangie
2 method
1
0 ! !
1.5 2 25
Axis Title

Figure 7-1. Graphical illustration of methods of calculating the area under a curve.

Simpson's 1/3 rule approximates the curvature of the function by means of a
quadratic interpolating polynomial. The 1/3 rule, calculated by means of
equation 7-3, requires two intervals of equal width &; thus each element of area is
evaluated by using three data points.
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n-2

h
A= — i +4yia +Yi2) (7-3)
3 i=1,3,5...

The 1/3 rule requires an even number of panels; thus the number of data
points » must be an odd number. If » is even, the area of the first or last panel
can be calculated using the trapezoid formula. The end panel to be so calculated
should be the one in which the function is more linear.

Simpson's 3/8 rule (equation 7-4) approximates the area by a cubic
interpolating polynomial, evaluates the area of three panels of equal width, and
requires four data points for each element of area.

3h
A= ?Z(y,- +3YVi+3Vin2 + Vi) (7-4)
i=1
The 3/8 rule is often used when evaluating the area under a curve described
by an odd number of panels: the first or last three panels are evaluated using the
3/8 rule, and the remainder by the 1/3 rule.

Calculating the Area under a Curve
Defined by a Table of Data Points

In the fields of toxicology and pharmacology, the area under the curve of a
plot of plasma concentration of a drug versus elapsed time after administration of
the drug has a number of important uses. The area can used to calculate the total
body clearance and the apparent volume of distribution.

In a study, a drug was administered intravenously to a patient. Blood
samples were taken at intervals of time, plasma was separated from each blood
sample, and the plasma samples were analyzed for drug concentration. The data
are shown in Figure 7-2. The dashed line indicate extrapolation of the data.

100 |
80 |
60 |
40 |

20 r

concentration, yg/mL

O L i L il \ o
0 2 4 6 8 10

Time after administration, hr

Figure 7-2. Plot of drug concentration versus time.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curvel by worksheet’)
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__l___: Time, hr Curm;.u.gimL_ area

2 | 0 95

3 | 05 85 45
4 | 1) 74 3975
9 | 2 55 64.5
B | 3 41 48
7| 4 30 355
8 5 22 26
9 B 17 19.5
10 7 12 14.5
11 8 a.1 10.55
12 9 6.7 7.9
13 11 40 10.7
14 20 0 18
15] B Sum= 340

Figure 7-3. Calculating the area under a curve.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet ‘Curvel by worksheet')

The formula in cell C3, used to calculate the area increment by the
trapezoidal approximation, is

=(B2+B3)/2*(A3-A2)

The area increments were summed to obtain the area under the curve.

Calculating the Area under a Curve
Defined by a Table of Data Points
by Means of a VBA Function Procedure
A simple VBA custom function to find the area under a curve defined by a

table of x, y data points, using the trapezoidal approximation, is shown in Figure
7-4. The syntax of the function is CurvArea(x_values, y_values).

Function CurvArea(x_values, y_values)
'Simple trapezoidal area integration

N1 =y_values.Count

ForJ=2To N1

area = area + (x_values(J) - x_values(J - 1)) * (y_values(J) +y_values(J - 1))/ 2
Next J

CurvArea = area

End Function

Figure 7-4. Simple VBA function CurvArea to calculate the area under a curve.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', module 'CurvArea')
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Calculating the Area under a Curve
Defined by a Formula
Instead of determining the area under a curve defined by a table of data
points, you may need to determine the area under a curve defined by a formula.
For example, you may need to determine the area under the curve defined by
equation 7-6
x3

ex —1

y= (7-6)
which is shown in Figure 7-5. It is clear from the figure that summing areas of
panels from x = 0 to x = 15 will provide an accurate determination of the area. In
the calculation of the area, you are not limited by a table of values, as in the
previous section, but instead you can create your own table by calculating values
of the function for a range of suitable x values. Nor are you limited to using
Panels of equal width. You can increase the accuracy obtained from the simple
trapezoidal function by choosing panels of smaller width in regions where the
curvature is greater. A chart of the function will show where the x increments
should be made smaller; this should be evident from Figure 7-5.

16

1.2

0.8

04

00

Figure 7-5. Graph of the function y = x*/(e"*~1).
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet')

Part of the data table is shown in Figure 7-6, along with the area under the
curve calculated by the trapezoidal approximation. The result returned by the
custom function

=curvarea($B%$4:$B$39,$A34:$A$39)
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is 6.514. The exact value for the area under the curve is 7*/15 = 6.494; the error
in the value returned by the custom function is 0.3%.

1 _Integration of Area Under a Curve
2 | y=x1e’- 1)

ER ¥ area

5 | 0.05 0002438  0.000081
6 | 0.1 0009508  0.000299
7] 0.2 0036133 0.002282
a8 | 04 0130128 0.016626
9] 06 0262736  0.039286
10| 0.8 0417775 0.068051
11| 1 0581977 0.099975
12, 1.2 0744790 0132677
38 14, 0002282  0.003624
39 | 15 0.001032 0.001657
40 | . Sum= 6.514127

Figure 7-6. Portion of data table for calculation of area under a curve.
Note that rows 13—37 have been hidden.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet')

Area between Two Curves

The area between two curves can be determined by using any of the
calculation methods described previously. The area is determined by the
absolute value of the difference between the two curves, as in equation 7-7.

b
A= [|f(0) - gl -7

There are several possibilities for the "area between two curves": the area can
either be bounded by the curves f(x) and g(x) between specified limits (for
example, the vertical lines x = a; and x = b; in Figure 7-7) or by the two curves
ftx) and g(x) between two points where they cross (the points x = g, and x = b, in
Figure 7-7).
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Figure 7-7. Areas bounded by two curves (between g, and a; or between b, and b,).
(folder 'Chapter 07 Examples', workbook 'Area between two curves', worksheet ‘Sheet1')

For the first case (area bounded by two curves between specified limits) the
calculation is straightforward. In the second case, it is necessary to find the two
values of x where the curves intersect. This can be done "manually," by
inspecting the table of values for f{x) and g(x), or by methods described later in
this book (see "Finding Values Other Than Zeroes of a Function" in Chapter 8).

Integrating a Function

Instead of finding the area under a curve defined by a set of data points, you
may wish to integrate a function F(x). You could simply create a table of
function values and use one of the methods described in earlier sections to
calculate the area. But a more convenient solution would be to create a custom
function that uses the Formula property of the cell to get the worksheet formula
to be integrated, in the same way that was used in the preceding chapter, and uses
the formula to find the area under the curve. This approach will be described in
subsequent sections.

Integrating a Function
Defined by a Worksheet Formula
by Means of a VBA Function Procedure

In this section, the trapezoidal and Simpson's rule methods are implemented
as VBA custom functions, using an approach similar to that used in the
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differentiation functions of the previous chapter. The Formula property of the
cell is used to get the worksheet formula to be differentiated into the VBA code
as text. Then the SUBSTITUTE worksheet function is used to replace the
variable of interest by an incremented value, and the Evaluate method used to get
the new value of the formula. These values are used to calculate the area of each
panel, and the areas of the panels are summed to obtain the area under the curve.

This function procedure can be used to integrate an expression F(x) defined
by a worksheet formula, between specified lower and upper limits a and b
respectively. A table of function values is not required.

b
A= j F(x)dx (7-8)

The syntax of the function is Integrate(expression, variable, from_lower,
to_upper). The argument expression is the integrand, the expression to be
integrated. The argument variable is the variable of integration, and the
arguments from_lower and to_upper are the lower and upper limits of integration,
respectively. The VBA code is shown in Figure 7-8. Function procedures for
both trapezoidal (IntegrateT) and Simpson's rule (integrateS) methods are shown.

The range of x values over which the integration is to be performed
(to_upper - from_lower) is divided into N panels. The user can adjust the
accuracy of the integration by changing the value of N in the procedure, with a
concomitant increase in calculation time.

Option Explicit
Function integrate T(expression, variable, from_lower, to_upper)
'Simple trapezoidal area integration

Dim FormulaString As String, T As String, Xref As String
Dim H As Double, area As Double, X As Double

Dim N As Integer, K As Integer, J As Integer

Dim NRepl As Integer

Dim temp As String

Dim F1 As Double, F2 As Double

FormulaString = expression.Formula
T = Application.ConvertFormula(FormulaString, xIA1, xlA1, xlAbsolute)
XRef = variable.Address

N = 1000
H = (to_upper - from_lower) / N
area=0

X = from_lower
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ""))) / Len(XRef)

ForK=1To N
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For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X &" ", J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
F1 = Evaluate(T)
T = Application.ConvertFormula(FormulaString, xIA1, xIA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X + H&" ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
F2 = Evaluate(T)

area=area+H*(F1+F2)/2
X=X+H

Next K

integrateT = area

End Function

Figure 7-8. VBA Function procedure to integrate a worksheet formula
by the trapezoidal approximation method.
(folder 'Chapter 07 Examples,' workbook ‘Integration,’ module 'Simplelntegration')

Function IntegrateS(expression, variable, from_lower, to_upper)
'Simpson's 1/3 rule area integration

Dim FormulaString As String, T As String, Xref As String
Dim H As Double, area As Double, X As Double

Dim N As Integer, K As Integer, J As Integer

Dim NRepl As Integer

Dim temp As String

Dim YO As Double, Y1 As Double, Y2 As Double

FormulaString = expression.Formula
XRef = variable Address

N = 1000
H = (to_upper - from_lower) /N / 2

ForK=0ToN-1
X=2*K*H
T = Application.ConvertFormula(FormulaString, xiA1, xIA1, xlIAbsolute)
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower + X &" ", J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
YO = Evaluate(T)
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T = Application.ConvertFormula(FormulaString, xl1A1, xlA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower + X+ H & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
Y1 = Evaluate(T)
T = Application.ConvertFormula(FormulaString, xIA1, xlA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower+ X +2*H & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt3
T =temp
pt3: Next J
Y2 = Evaluate(T)
area=area+H*(YO+4*Y1+Y2)/3
Next K
IntegrateS = area
End Function

Figure 7-9. VBA function procedure to integrate a worksheet formula
by Simpson’s method.
(folder 'Chapter 07 Examples', workbook 'Integration’, module 'Simplelntegration’)

Some results returned by the IntegrateT and IntegrateS functions are shown
in Figures 7-10 and 7-11, respectively. In general, results are more accurate
when using the Simpson's method function.

T

(R R MR 1< B 1 3 SR ! VO 1 Rt

| 1 Integration function using simple trapezoidal approx.
2 Function ¥ F@ from to Area exact % error
30 ° 1 0 1 02500003 025 1.0E-04
4 4ged 1 00 0 1] 314156 314159 1.2E-03
5  ftriangle | 1 2 0 2 400000000 4 0.0E+00
5 | Gaussian” | 95 0.035 20 180 1.00000000 1 31E-12
8 | *slope = 2, intercept= 4
9 *u=100,6=10

Figure 7-10. Some results returned by the IntegrateT custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet 'Trapezoidal Integration Fn')
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B SR T e T e e |

1] Integration function using Simpson’s method :
2 | Functioh x F0o from to Area exact % error
8 * 1.1 0 1 02600000 025 44E-14
L4 | 40D 1 0 0 1 3141588 3141593  16E-04
| 5 | triangle’ 1 2 0 2 40000000 4 22E-14

6 | Gaussian’ 95 0.035 20 180 1.0000000 1 1.3E-13

E ; ! _

8 *slope =2, _ihtercep't=_4

9 Tp=100,0=10

Figure 7-11, Some results returned by the IntegrateS custom function.
(folder 'Chapter 07 Examples’, workbook 'Integration’, sheet Simpson Integration Fn')

Because some functions may require a large number of iterations, there may
be a noticeable delay in calculation.

Gaussian Quadrature

The preceding methods for numerical integration employ evenly spaced
values of x at which the function is evaluated. Other formulas have been
developed whereby the function is evaluated at specially selected values of x.
These Gaussian quadrature formulas are significantly more efficient, in terms of
the accuracy of the evaluation.

Gaussian quadrature formulas involve the evaluation of the function at a set
of x; values (nodes), with the use of a corresponding set of weights w;, in the
following formula

1 N
A= j F(x)dx=Y wF(x,) (7-9)
-1 i=1

The nodes and weights can be derived from certain kinds of polynomials.
The Legendre polynomials will be used here to determine the values of x; and w;.
The Legendre polynomials are a set of polynomials of degree N. Increasing N
provides an increase in accuracy of evaluation but requires a concomitant
increase in computation time. Values of Legendre polynomials for N up to 100
have been published.

The integration need not be limited solely to the interval —1 to 1. By

employing a change of variable
z= 2x—(a+b) (7-10)
(b-a)

the integral expression is
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b 1
A:J’F(x)dx:b;aJF((b_a)Z;(b”))dz (7-11)
and equation 7-9 becomes
Aslj[F(x)dx:b_aZN:w,-F((b—a)zi +(b+a)j (7-12)
; 2 = 2

which permits integration over any range.

The code shown in Figure 7-12 performs Gaussian quadrature using equation
7-12 and a tenth-order Legendre polynomial. Some results returned by the
function are shown in Figure 7-13.

Option Explicit

B i T i e o e S T o S S R e L

Function Integrate(expression, variable, from_lower, to_upper, Optional _
tolerance)

Dim FormulaString As String, XAddress As String
Dim result As Double

FormulaString = expression.Formula

XAddress = variable.Address 'Defauit is absolute

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute)

Call GaussLeGendre10(FormulaString, XAddress, from_lower, to_upper, _
tolerance, result)

Integrate = result

End Function

B o e

Sub GaussLeGendre10(expression, XRef, from_lower, to_upper, tolerance,
result)

'Uses ten-point Gauss-Legendre quadrature formula.

'Adapted from Shoup, p.203

Dim XJ As Variant, AJ As Variant
Dim TotalArea As Double, OldArea As Double, area As Double

Dim T As String, temp As String

Dim | As Integer, J As integer, K As Integer, JJ As Integer

Dim N As Integer, NRepl As Integer

Dim A As Double, B As Double, C As Double, D As Double, F As Double
Dim H As Double

XJ = Array(-0.973906528517172, -0.865063366688984, -0.679409568299024, -
0.433395394129247, -0.148874338981631, 0.973906528517172,
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0.865063366688984, 0.679409568299024, 0.433395394129247,
0.148874338981631)

AJ = Array(0.066671344308688, 0.149451349915058, 0.219086362515982,
0.269266719309996, 0.295524224714753, 0.066671344308688,
0.149451349915058, 0.219086362515982, 0.269266719309996,
0.295524224714753)

If IsMissing(tolerance) Then tolerance = 0.0000000001

OldArea =0

N=1

For K =1 To 10 'increments divided by 1,2,4,8,16,32,64,128,256,512
area=0

H = (to_upper - from_lower) / N

Forl=1ToN

A = from_lower+ (1-1)*H
B=A+H

C=(B+A)/2
D=(B-A)/2

ForJ=1To 10
T = expression
NRep! = (Len(T) - Len(Application.Substitute(T, XRef, "))) / Len(XRef)
For JJ = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, C+ D * XJ(J) &" ", JJ)
If IsError( Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next JJ
F = Evaluate(T)
area=area + AJWJ) *F
Next J
Next |
area=area*D
If Abs((area - OldArea) / area) < tolerance Then GoTo AllDone
OldArea = area
N=2*N
Next K
AliDone:
result = area
End Sub

Figure 7-12. Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, module 'Legendrelntegration’)
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oA FRGC R F G .

Custom Function to Integrate Area Under a Curve
=Integrate{formuia_in_cellvariable,from_lowerto_uppertolerance)

3 | Function X Foo from fto area exactvalue % error
N 1 0 -1 1 31415928 3.1415927 4.0E-06

5 dx 1 1.0 1 0.2500000002 0.25 7.9E-08
B (mx+bydx 2 0 0 2 4.000000003 4 7.6E-08
7 sinGodx 0 0 0 314 2.000000001 2 7.4E-08
|8 (ce™dx 1 037 0 1000 1.000000001 1 9.5E-08
9 (15 dx 1 11 2 069314718 069314718 7.7E-08

Figure 7-13. Some results returned by the Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet ‘GaussLegendre Integration Fn')

Early versions of this program returned inaccurate results when the range b — a
was large. The function integrate illustrates one approach to overcoming this
problem. First, the integral is evaluated over the total range b — a. Then the
interval is divided into two halves and each "panel" is integrated separately. The
sum of the two panels is compared to the previous value. If the difference is
larger than a tolerance value, the interval is divided into quarters, the areas
summed and so on. The process is continued for 10 cycles of iteration (512
panels) or until the area difference is less than a specified tolerance.

Because some functions may require a large number of iterations, there may

be a noticeable delay in calculation. Increasing the value of tolerance should
speed up calculation, but only at the expense of accuracy.

Integration with an Upper or Lower Limit of Infinity
Integrals such as

A= jF(x)dx (7-13)

can be evaluated by summing the areas of a number of panels covering the range
from x = a to x = a suitably large value. It is to be expected that as x— oo the area
of panel(x) — zero. Thus the integral can be evaluated by summing the integrals
of a series of panels of increasing width (e.g., from 0-1, 1-10, 10-100, etc),
ending the summation when the area of the last panel is suitably small. Manual
adjustment of the panel widths is easily done by inspection of the results. Figure
7-14 shows a typical resulit.



Figure 7-14. Integrating from a lower limit to an upper limit of infinity.
Results returned by the Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet 'Integrating to infinity by sum')

CHAPTER 7 INTEGRATION 141
- S T T il
33 Function x F(x) from to integrated value = % error

34 y=1K(efsat() 1 05 O 001 01989708 01989708 | 9367
35 1 05 001 01 04132174 06121882 | 8051
36 | 1 05 01 1 08582416 15704298 5001
37 | 1 05 1 10 09582416 25286714 | 1951 |

138 1 05 10 100 04132174 29418888 | 6.36

139] 1 05 100 1000 01361128 3.0780016 | 202 |

| 40 | 1 05 1E+03 1E+04 00432252 31212268 @ 065 |
41| 1 05 1E+04 1E+05 00136748 31349016 = 0.21

142 ] 1 05 1E+05 1E+06 00043245 31392261 = 008

| 43 ] 1 05 1E+06 1E+08 00018000 31410261  0.02

| 44 1 05 1E+08 1E+10 00001800 31412061 001

| 45 1 .05 1E+10 1E+14 00000198 31412253 001
45 1 05 1E+#14 1E+18 00000002 31412261 001
47 | exact value 31415927

Distance Traveled Along a Curved Path

The length of a plane curve can be estimated by dividing the curve into
segments, as in Figure 7-15, and approximating the length of the curve segment

by the straight line AB. The length of AB = J(Ax)2 +(y)* . The distance along
the curve is found by summing the lengths of the segments.

SNA

B

AN

Figure 7-15. Approximating the distance along a curve AB

by the length of the straight line segment AB.

(folder ‘Chapter 07 Examples', workbook 'Curve Distance’, sheet 'Curve Distance (Circle)')
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A ' B C !
| Distance Travelled Along a Curve
174 circle with r=1

3 (distance should be w/2)

4 * y d
5| 0000 = 1.000

5| 0050  0.999 0.050
e 0.075 0.997 0.025
5 0.100 0.995 0.025
9 0125 0982 0.025
51, 0880 0199 0.024
52 | 0.985 0173 0.027
53 0.990 0.141 0.032
54  0.9925 0.122 0.019
55 0.9950 0.100 0.023
56 0.8975 0.071 . 0.029
57 0999  0.045 0.026
55 1000 0000 @ 0.045
59 . Sumx2= 314145
60 | . %error=  4.BE-03

Figure 7-16. Approximating the circumference of a circle of radius 1.
Note that the rows between 9 and 51 are hidden.
(folder 'Chapter 07 Examples', workbook 'Curve Distance', sheet 'Curve Distance (Circle)')

The procedure is illustrated by estimating the length of one quarter of a circle

of radius r = 1. The equation of the circle is x> +y* =1, or y =‘Jl—x2 . As shown
in Figure 7-16, the value of y and the distance d between successive points was
calculated from x = 0 to x = 1, using an x increment of 0.025. Near the end of the

range of x values, where y changes more rapidly, the x increment was decreased.
The formula in cell C6 is

=SQRT((A8-A5)"2+(B8-B5)"2)

The sum of the distances x 2, in cell C59 is a reasonable estimate of 7.
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Problems

Answers to the following problems are found in the folder "Ch. 07 (Integration)” in
the "Problems & Solutions” folder on the CD.

w 2
1. Find the area under the curve of the function J'——xx—ldx by Simpson's
e —_—
0

method.

2. Integrate the following expressions, using one of the custom functions for

integration.

1
(a) Ix"dx

0

! 2
b feTax

(©) jsin xdx
0
l Inx
(d) j———dx
01+x

1

© J' Inx !

1— x2
0 X

1

) j(ln x)3dx
0
1

(2 Ide

1
o Inx

3. Evaluate the elliptic integral
n/2

J}h —(1/2)sin? xdx
0
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4. An ellipse is a plane figure described by the locus of a point P(x, y) that
moves such that the sum of its distances from two fixed points (foci) is a
constant. If the ellipse has foci located at A (-c, 0) and B (c, 0) and the

distance ACB is 2a, then by setting b =+va” —c? , the equation of the ellipse
is simplified to

2 2
x—2+%-=1
a b

(a and b are termed the semiaxes of the ellipse).
C
*

1 -
-
0.5 | “\\
¥ s Gl
A S B .’ b

3,,-."-'-0. ..'_I . } -
-1.9 - -0.5 0 0.5 1.5

#
* €

-1
Figure 7-17. Approximating the circumference of an ellipse.

For the ellipse shown in Figure 7-17, with foci atx =-0.5, y=0and x = 0.5,
y=0and a =1, determine the circumference of the ellipse.

5. Determine the area of the ellipse of problem 7-4.
6. Find the area between the curve y = 2x — x” and the line y =-3.
7. Find the area between the curve y = 2x — x* and the line y = 2.5x — 2.3.

8. Find the area enclosed between the two curves shown in Figure 7-7: y; = x° —
20x* — 100x + 2000 and y, = 2x° — 5x” — 300x + 1000. The curves intersect in
the region between x =-5 and x = 15.

9. The area between the curve y = x* and the horizontal line y = 4 is divided into
two equal areas by the horizontal line y = c¢. Find c.
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10. The area between the curve y = x* + 3 and the line y = 12 is divided into two
equal areas by the line y =c. Find c.

11. Integrate the following expression.

12. Integrate the following expressions, using the custom function for

integration.

(a) j e—xdx
0

(b) jxe ~Xdx
0

(©) J' e-x2dx
0

(d) e dx

(e) O]‘—e—_—idx
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Chapter 8

Roots of Equations

Many problems in science and engineering can be expressed in the form of
an equation in a single unknown, i.e., y = F(x). A value of x that makes y = 0 is
called a root of the function; often the solution to a scientific problem is a root of
a function. If the function to be solved is a quadratic equation, there is a familiar
formula to find the two roots of the expression. But for almost all other
functions, similar formulas aren't available; the roots must be obtained by
successive approximations, beginning with an initial estimate and then refining it.
This chapter presents a number of methods for obtaining the roots or zeroes of a
function.

A Graphical Method

As a preliminary step in finding the roots of a complicated or unfamiliar
function, it is helpful to make a chart of the function, in order to get preliminary
estimates of the roots, and indeed to find out how many roots there are. A cubic
equation such as the one shown in equation 8-1 and Figure 8-1,

y=x"+0.13x* - 0.0005x — 0.0009 (8-1)

always has three roots, either three real roots as in Figure 8-1, or one real and two
imaginary roots. Figure 8-27 later in this chapter shows an example of the latter
case.

0.0004

0.0002 +

-0.0002

T

-0.0004

T

-0.0006 L
-0.20 -0.10 0.00 0.10

X

Figure 8-1. A regular polynomial with three real roots.

147
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But the number of roots of other functions, such as
y=-1.04 Inx—-1.26 cos x+ 0.0307 ¢* (8-2)

may not be obvious. A chart of the function is useful to show the number and
approximate value of the roots of the function. The chart in Figure 8-2 shows
that the function shown in equation 8-2 has two real roots.

3 r

Figure 8-2. A function with two real roots.

AI - B 131
5] 1.4 | 043

6| 15 03732
17] 1.6 | -0.29985
18] 17 | -0.22146
19/ 18 | -0.1393
20| 19 005493
21] 20 0030316

22, 21 0115193
23| 22 0199584
24 23 027943
25| 24 | 035704

Figure 8-3. Portion of data table of x and y values
showing the pair of values that bracket a root of the function shown in Figure 8-2.
(folder ‘Chapter 08 Examples’, workbook 'Roots of Equations', worksheet 'Graphical Method')
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Once a chart has been created, it is very easy to expand the scales of the axes
to examine the crossing region at higher and higher magnification. Figure 8-3
shows part of the data table used to create Figure 8-2; the formula in column B is
the function shown in equation 8-1. The two values that bracket one of the roots
of the function are highlighted.

0.0004

0.0003

0.0002

0.0001
1.865

0

1.9
-0.0001

-0.0002

-0.0003

-0.0004

Figure 8-4. Expanded chart of a function, for graphical estimation of a root.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Graphical Method')

The expanded portion of the chart, shown in Figure 8-4, was created by
selecting the four cells A20:B21, creating a chart and changing the x- and y-axis
scales. From the figure, one can estimate that the root that lies between x = 1.9
and x = 2.0 has the value 1.96446. This is probably adequate for most purposes.
Remember to choose the Smoothed Lines option in the ChartWizard.

The Interval-Halving or Bisection Method

This method and the one that follows make use of the fact that, as can be
seen for example in Figure 8-3, a real root of a function lies between two
adjacent x values for which y exhibits a change in sign. In order to obtain a root
of a function by this method, you need to create a table of x values and the
corresponding y values of the function, and identify two adjacent y values, one
positive and the other negative. These and the corresponding x values will be the
starting values for a binary search.

Once you have obtained the two starting x values, x; and x;, the midpoint of
the interval between them, x3, is an approximation to the root. Now choose the
pair of x values with opposite signs, either x; and x3 or x; and x; and bisect the
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interval between them to get a further improvement. Repeat the process until a
desired level of accuracy is attained. Figure 8-5 illustrates the application of this
method, using equation 8-2. Only a portion of the table is shown; 34 rows were
required to reach convergence at the 1E-10 level, at which point x =
1.96445854473859.

L U, e P SRR I
1] Interval-Halving Method

2 | X1 Y X2 \d
3 5 2525054 1 -059733
4 | 3 072146 1 059733
5 | 2 0.030316 1 059733
B 15 03732 2 0030316
7 | 1.75 -0.18074 2 0.030316
8 | 1875 007615 20030316
g | 1.9375 -0.02299 2 0.030316.
1] 1 I 1.96875 0003661 19375 -0.02293
11 1.953125 .0.00967 196875 0.003661
12| 19809375  -0.003 196875 0.003661

13| 196484375 0000329 19609375  -0.003
14| 1.962890625 -0.00134  1.96484375 0.000329
15| 1963867188 -0.0005 196484375 0.000329
16| 1.964355469 -BBE05 196484375 0.000329
17| 1964599609 0.00012  1.964355469 -8.8E-05

Figure 8-5. Using the binary search method to find a real root of a function.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet 'Binary Search Method")

To construct the worksheet of Figure 8-5, the initial values x; and x, were
entered in cells A3 and C3, respectively, and the formula for the function in cells
B3 and D3. Next, the formulas that perform the binary search were entered in
row 4; the formula in cell A4 calculates the midpoint value between the x values
in the previous row

=(C3+A3)/2

and the formula in cell C4 selects the y value that has the opposite sign to the
value in the previous row.

=|IF(SIGN(B4)<>SIGN(B3),A3,C3).

Cells B4 and D4 contain the formula for the function. Finally, the formulas
in A4:D4 were filled down into subsequent rows. Each row constitutes an
iteration cycle; convergence was observed visually.

Although unsophisticated, this method will always find a root.
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The Interval Method with Linear Interpolation
(the Regula Falsi Method)

The interval-halving method can be made much more efficient in the
following way. Instead of simply bisecting the difference between the two
estimates of the root, you can obtain a better estimate of the root by using linear
interpolation, as illustrated in Figure 8-6.

L

Figure 8-6. The binary search method with linear interpolation
(the Regula Falsi method)

The equation for linear interpolation is either

X2 —X

X3 =X+ (8-3)
Y2 =N
or
X, —X
Xy =X —y, —2—— (8-4)
Y= N

Again, two starting values of x must be obtained, for which the y values have
opposite signs.

When applied to the same function as in the preceding example, this method
converges efficiently to a root, as illustrated in Figure 8-7.

Again, cells A3 and C3 contain the initial values for x; and x,, respectively,
and cells B3 and D3 contain the formula for the function. Cell A4 contains the
linear interpolation formula:
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=C3-D3*(C3-A3)/(D3-B3)

and cell C4 contains the same formula as used in the previous example to select
the y value that has the opposite sign to the value in the previous row:

Interval Method with Linear Interpolation

X Y1 X2 Y2

i 5 2525054 1 059733
1.765222575  -0.1682 5 2525054

1967236444 0.00237 1765222575 -0.1682
1964429524 -25E-05 1967236444 0.00237
1964458545 -16E-10  1.967236444 0.00237
1964458545 -1.2E-15  1.967236444 0.00237
| 1.964458545 0 1.964458545 -1.2E-15

2
3
4
5
B
:E'
8
g

Figure 8-7. Using the Regula Falsi method to find a real root of a function.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi Method")

In general this method converges more efficiently to the root than does the
binary search method, although unfavorable situations can occur, as illustrated in
Figure 8-8. In this example, one end of the interval is "stuck," and even after 19
cycles of iteration, convergence has only reached the 1E-03 level.
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| A | B | C | D
1 Slow convergence

2] Y1 X2 Y2

3 | 0.01000 3.560449 1 -0.59733
4| 085777 059226 0.01 3.560449
5| 073686 -0.55142 0.01 3.560449
6 | 063939 -0.48778 0.01 3.560449
7| 056355 -0.41478 0.01 3.560449
"B | 050579 -0.34243 0.01 3.560449
9| 046229 -0.27658 0.01 3.560449
10| 0.42969 -0.2198 0.01 3.560449
1] 040529 01726 0.01 3.560449
12| 0.38701 -0.13433 0.01 3.560449
13| 0.37330 -0.10385 0.01 3.560449
14| 0.36301 -0.07989 0.01 3.560449
15| 035526 -0.06123 0.01 3.560449
16| 0.34942 -0.04679 0.01 3.560449
17| 0.34502 -0.03568 0.01 3.560449
18| 034170 -0.02717 0.01 3.560449
19| 0.33919 -0.02066 0.01 3.560449
20| 033728 -0.0157 0.01 3.560449
21| 033585 -0.01192 0.01 3.560449
22| 033476 -0.00904 0.01 3.560449

Figure 8-8. A case with slow convergence of the Regula Falsi method.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet 'Regula Falsi (2))

The Regula Falsi Method
with Correction for Slow Convergence

The preceding example shows that an unlucky choice of starting values can
lead to slow convergence. By examination of the example in Figure 8-7, it can
be seen that the ideal situation for rapid convergence occurs when, in almost
every cycle, there is a change in the value of both x; and x,, y; and y, or in the
sign of y) or y5. Any one of these can be used to test for slow convergence.

The slow-convergence situation in Figure 8-8 was remedied by changing the
interpolation calculation so that if the value of x, does not change from one cycle
to the next, the value of y, used in the interpolation is halved. The performance
of the modified formula is illustrated in Figure 8-9. The only change is the
formula in cell D4

=IF(C4=C3,D3/2,-1.04*LN(C4)-1.26*COS(C4)+0.0307*EXP(C4))
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This formula divides the value of y, by 2 if there has been no change in x; in the
preceding two iteration cycles (this has occurred in rows 5, 6 and 7, for example).
Otherwise the function is calculated by means of the usual formula.

A nested IF could be used to handle the case where either x; or x; is "stuck."

A4 .0 LR ),
1 | Modified formula improves convergence
2 X1 Y1 X2 Y2
3 | 0.01000 3580449 1 -0.59733
4 | 085777 059226 0.01 3.560449
5 | 0.73686 -0.55142 0.01 1.780224
5 056496 -0.41636 0.01 0.890112
7 | 0.38810 -0.13669 0.01 0.445056
§  0.29926 0092106 0.3881 -0.13669
9  0.33503 -0.00974 0.29926 0.092106
10| 033161 -0.00062 0.29926 0.046053
11 0.33117 0000538 0.33161 -BE-04
12 033137 -25E-07 033117  5E-04
13| 033137 99E-11 033117  3E-04

14 0.33137 993E-11 033137 -1E-10
1‘Si 033137 -1.9E-16° 0.33137 1E-10

Figure 8-9. Modifying the Regula Falsi method to handle slow convergence.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi (3)")

The Newton-Raphson Method

The preceding methods require manual selection of a pair of starting values
with opposite signs. The Newton-Raphson method (sometimes referred to
simply as Newton's method) requires only a single function value as the starting
value, and is therefore self-starting. The Newton-Raphson method is a classic
exercise from freshman calculus—it uses the first derivative of the function (the
slope of the curve) at the initial estimate, x;, and extrapolates this tangent line to
the x axis to obtain an improved value, x,. The process is repeated to obtain
further approximations to the root, as illustrated in Figure 8-10, until the desired
convergence level is reached.
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500

400 |

300 +

> 200 r

100 +

-100

Figure 8-10. The Newton-Raphson method for obtaining a root of a function.

The slope of the curve at x; is the first derivative of the function, dy/dx. The
improved estimate can be calculated by rearranging the expression for the slope,
m = (y; — y1)/(x2 — x1), and setting y, = 0. This results in the equation

Xy = (mxy—y1)/m (8-5)
or the equivalent
xy=x;—(y/m) (8-6)
sometimes written as
X =x1=yi/n’ (8-6a)

In pencil-and-paper calculations the slope would be obtained by calculating
the first derivative using calculus, but in spreadsheet calculations you can use
numerical differentiation (see Chapter 6, "Differentiation"). Increase x by a small
amount Ax, which increases the y value by a small amount Ay. If you make Ax
small enough, Ay /Ax will be a good approximation to the first derivative dy/dx.
In the following example, x + Ax was obtained by multiplying x by 1.00000001.
(See "The Newton Quotient" in Chapter 6.)

The calculations of the Newton-Raphson method are illustrated in Figure 8-
11. The function for which a root is sought is the regular polynomial

y=3x+2.5x"~5x— 11 (8-7)
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>
m
L9

S T P I L e Y
Nevvion-Raphson Method
defta= 1 .00E-08
*1 ¥1 X2 y' m nesww X1
5 401.5, 5.00000005 401.50001 245 336122451 —l

. L 3.36122451 114.36208 3.36122454 114 36209 11348659 235351003
. 235351003 30188317 235351005 30.188318 56618636 1.82032311
! 182032311 6.277663 1.82032313 62776637 33.923802 163527123
’ 1.63527123 06276192 163527125 06276196 27.243364 161223373
161223373 0.0091011| 161223374 00091015 26.454847 1.61188970
161188970 2.013E-06' 161188972 2439E-06 26443144 161188963
161188963 1.066E-13 161188964 4.262E-07 26443142 161188963

oo~ oo &= Wik

N3 =21 OO

s b

|
Figure 8-11. Calculation of a root of a function by the Newton—Raphson method.

The formulas in row 6 were filled down until convergence was observed.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet Newton-Raphson Method')

The starting value, in this case 5, was entered in cell B4. The formulas in
cells C4, D4, E4, F4 and G4 are, respectively,

C4: =3"B4"3+2.5*"B4"2-5"B4-11 (the function y)
D4: =B4+0.0000001*B4 (increment x by a small amount Ax)
E4: =3"D4/3+2.5*D4*2-5*D4-11 (this is y + Ay)
F4: =(E4-C4)/(D4-B4) (m = Ax/ Ay)
G4: =(F4*B4-C4)/F4 (Xnew = (M X Xgia=Yoia)/m)

Then the formula =G4 was entered in cell B6, so as to use the improved x
value as the starting value in the next row (row 5 was left empty for purposes of
illustration only). The formulas in C4:G4 were copied and pasted into the
corresponding cells in row 6. Finally, the formulas in cells B6:G6 were Filled
Down into succeeding rows until convergence was observed in column G or a
sufficiently small value of y was obtained in column C.

Using Goal Seek...

Excel provides a built-in way to find a real root of a function. The Goal
Seek... command in the Tools menu can be used to perform what is sometimes
called "backsolving"; that is, it varies x in order to make y reach a specified
value. Thus you can use Goal Seek... to find a value of x that makes the value



CHAPTER 8 ROOTS OF EQUATIONS 157

of the function y become zero, or at least very close to zero. The computer code
that performs the Goal Seek function probably involves the Newton-Raphson
method.”

As an example to illustrate the use of Goal Seek..., we'll return to the cubic
equation 8-1, y = x* + 0.13x* — 0.0005x — 0.0009. Figure 8-12 shows a part of the
data table that was used to produce the chart shown in Figure 8-1.

Ao SO0 o, Pbate, Mabania] - FHASHRA
3 | X Y

4| 015 -4 B5E-04
5 014 -2.16E-04
6| -013 -2 50E-05
7 012 1.14E-04
8 0.1 2 07E-04
9| -010 2 BOE-04

Figure 8-12. Part of a data table.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek")

It can be seen that one of the roots of this function must lie between x = —0.13
and x = —0.12, since there is a change in sign of the function somewhere in this
interval. To use Goal Seek..., enter a trial value of x in a cell and the function in
another cell, as illustrated in Figure 8-13. The cell containing the value of x is
referred to as the changing cell, the cell containing the function as the target cell
or the objective.

Changing Target
26 | cell cell
14 : -0.2 -2.79E-03

Figure 8-13. Target Cell and Changing Cell for Goal Seek.
(folder 'Chapter 08 Examples’, workbook 'Roots of Equations', worksheet 'Using Goal Seek")

Now choose Goal Seek... from the Tools menu to display the Goal Seek
dialog box (Figure 8-14). (Although not necessary, it's convenient to select the
target cell before beginning.)

* According to Microsoft, "Goal Seek uses an iterative process in which the source cell is
incremented or decremented at varying rates until the target value is reached.”
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Enter a reference to the target cell in the Set Cell box (the cell reference will
appear there if you selected that cell before choosing Goal Seek...). Enter 0 in
the To Value box and a reference to the changing cell in the By Changing Cell
box, and press OK.

x|
Set cell; |B27 d
To value: |D
By chanaing cell: |$,q$27 }J
| QK I Cancel I

Figure 8-14. The Goal Seek dialog box.

After a few iteration cycles the Goal Seek Status dialog box (Figure 8-15)
will be displayed. When you press OK the final values of the changing cell and
target cell will be displayed in the worksheet cells, as shown in Figure 8-16.

Goal Seeking with Cell B27
found a solution,

Cancel
Target value: 0

Current value:  -1.86E-18 tern I

Figure 8-15. The Goal Seek Status dialog box.

Lo Sl ORI - Bailiie
Changing Target
26 | cell cell

27 | 01284371 -1.86E-18

Figure 8-16. Obtaining a root of a function by using Goal Seek.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet ‘Using Goal Seek')

For scientific and engineering problems, it's critical that you set the
convergence limit (the stopping parameter) of Goal Seek to suit your problem.
Choose Options... from the Tools menu and choose the Calculation tab (see
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Figure 8-17). The Maximum Change parameter sets the convergence limit; when
the value of the target cell becomes less than this value, iteration ceases. The
default value for Maximum Change is 0.001, which is suitable for this problem,
but will not be suitable for many other problems. For a problem where the
magnitude of the result (the changing cell value) is a very small number, you can
set Maximum Change to a value such as 1E-15. Alternatively, you can set it to
zero, which will usually result in Goal Seek completing 100 iteration cycles
before quitting.

21
Color I International l Save ’ Error Checking i Spelling l Security l
view  Calculation | Edt | Gemeral | Transiion | customtists | chan |
Calculation

(+" Automatic " Manual Calc Now (F9) ]
" Automatic except tables M Recalcul

Calc Sheet l
[ Ireration

Maxirum iterations: { 100 Maximum change: Ile—15|

¥ Update remote references IV Save external link values
™ Precision as displayed [ Accept labels in formulas
[T 1904 date system

1 QK l Cancel

Figure 8-17. The Calculation Options dialog box.

Since Goal Seek... almost certainly uses something like the Newton-
Raphson method to find a root, it should be clear from Figure 8-1 that the trial
value that you use will determine the root that is found. The cubic equation that
we used in our example, shown in Figure 8-1, has three real roots. It is clear that
if 0.01 is used as initial estimate, the largest of the three roots will be calculated,
while using —0.2 as an initial estimate will result in the smallest of the three roots.
Thus, to obtain a particular root, some guidance must be provided by the user.
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Figure 8-18 illustrates the three roots of the function obtained by using different
initial estimates.

Starting

Value

0.01 - 0.025701

020  -0.128437

001  -0.027264

Root Found

Figure 8-18. Different starting values lead to different roots.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek')

The Secant Method

The secant method is similar to the Newton-Raphson method, except that it is
not necessary to calculate the slope of the curve. Instead, the slope is
approximated by using two values of x, as illustrated in Figure 8-19. Although
this may be a poor approximation to the tangent to the curve, it becomes more
and more accurate as the iterations approach the root. This method is not self-
starting, since values of the function at two adjacent x values must be provided to
begin the calculation. The calculations are illustrated in Figure 8-20, applied to
the function shown in equation 8-1.

X

L

Figure 8-19. The secant method for obtaining a root of a function.
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e S e G - sty M Ok, e MDD A e
o Secant Method

2 | X1 ¥1 K2 Y2 m new X2

3 | 5 25251 49 22349 290168 | 4129796266
4 | 49 22343 41207963 1.1268 143875  3.346645771
5 | 41297963 11268 3.3466458 0.8494 0.35412  0.947915289
5 | 33466458 0.8494 09479153 -0.6002 0.60434 1.941087368
7 | 09479153 -0.6002 1.9410874 -0.0199 0.58426 @ 1.975206929
5 | 1.9410874 -0.0199 19752068 0.0092 0.85302 | 1.864457031
9 | 1.9752069 00092 1.964457 00000 0.85314 1.964458545
10 1.9644570 0.0000 1.9644585 0.0000 0.85314 = 1.964458545
11 1.9644585 0.0000 1.9644585 0.0000 0.85313  1.964458545

Figure 8-20. Using the secant method to obtain a root of a function.
(folder 'Chapter 08 Examples', workbook Roots of Equations’, worksheet 'Secant Method')

The formulas in row 3 are identical to those in Figure 8-10, except that cell
C3 contains a value rather than a formula.

The Newton-Raphson Method
Using Circular Reference and Iteration

The Newton-Raphson method discussed in a previous section requires the
user to fill down formulas until convergence is observed visually. One can create
a Newton-Raphson calculation that runs automatically by using an intentional
circular reference.

A circular reference is created when a formula refers to itself, either directly
or indirectly. If a circular reference occurs, Excel issues a "Cannot resolve
circular references" message and displays a zero value in the cell. Usually,
circular references occur because the user entered an incorrect cell reference in
an equation. But occasionally a problem can be solved by intentionally creating
a circular reference.

The calculation is illustrated in Figure 8-21. A single change was made to
the worksheet in Figure 8-11. After entering the formulas in row 4, the initial
value 5 in cell B4 was replaced by the formula =G4. In this way the improved
estimate of x was entered as the start value of the process.



162 EXCEL: NUMERICAL METHODS

AL C D Eo i P 0 TH
1 Newton-Raphsan Method with Circular Reference
| 2 delta = 1E-08

3 K1 Y1 K2 Y2 m ey X1

4 5 401.5 5.00000005: 401.5 2450000 3.36122451

g

Figure 8-21. Calculation of a root of a function by the Newton—Raphson method
(before creating intentional circular reference).
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet Newton-Raphson circular’)

When you press ENTER after typing the formula in cell G4, the "Cannot
resolve circular references" message is displayed, and Excel displays a zero in
the cell to indicate a circular reference, as shown in Figure 8-22.

1 Newton-Raphson Method with Circular Reference

|2 | delta= 1E-08

13 ] X1 Y1 X2 m new X1
4 1 r 0 401.5 5.0000000% 401.5 2450000 3.36122451 -I
0 -

Figure 8-22. Creating an intentional circular reference.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet Newton-Raphson circular’)

To force Excel to evaluate the circular reference, using the results of the
previous calculation cycle as start values for the next cycle, choose Options...
from the Tools menu and choose the Calculation tab. Check the Iteration box
and enter 0 in the Maximum Change box. (The default settings are Maximum
Iterations = 100 and Maximum Change = 0.001.) When you press the OK button
the circular reference will be evaluated. The results of the calculations are shown
in Figure 8-23.

B e A BGRRASH Sarh BIATST SRSV VRN b ST R 6 |H]
1 Newton-Raphson Method with Circular Reference

2 | delta= 1E-08

3] X1 Y1 X2 Y2 m new X1

4 | r 1.61188963 0 161188964 43E-07 26.4431 1.61188963_—|
51 ;

Figure 8-23. Finding a root by the Newton-Raphson method and circular reference.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet Newton-Raphson circular')
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A Newton-Raphson Custom Function

The Newton-Raphson method can also be used in the form of a custom
function. The VBA code is shown in Figure 8-24.

Option Explicit

Function NewtRaph(expression, variable, Optional initial_value)
'Finds a root of a function by Newton-Raphson method.
'Expression must be a reference to a cell containing a formula.
'Variable must be a cell reference (cannot be a name).
'Initial_value can be a number, reference or omitted.

‘Reference style can be either A1-style or R1C1-style.

Dim FormutaString As String, XRef As String

Dim delta_x As Double, tolerance As Double

Dim X1 As Double, X2 As Double, X3 As Double
Dim Y1 As Double, Y2 As Double

Dim m As Double

Dim | As Integer, J As Integer, NRepl As Integer
Dim temp As String, T As String, dummy As String

'‘Get F(x) and x.
FormulaString = expression.Formula
If Left(FormulaString, 1) <> "=" _
Then NewtRaph = CVErr(xIErrNA): Exit Function
XRef = variable.Address

‘Convert all references to absolute

'so that only text that is a reference will be replaced.

FormulaString = Application.ConvertFormula(FormulaString, xlA1, xIA1, _
xlAbsolute)

'Handle initial values that cause problems
If IsMissing(initial_value) Then initial_value = variable
If initial_value = """ Then initial_value = variable

'Set delta_x for numerical differentiation, stopping tolerance
delta_x = 0.00000001
tolerance = 0.0000000001

'Perform the Newton-Raphson procedure
X1 = initial_value
Forl=1To 100 '100 iterations maximum
T = FormulaString 'Start with original formula each time thru loop
'Do substitution of all instances of x reference with value.
'Substitute reference, e.g., $A$2,
‘with a number value, e.g., 0.2, followed by a space
'so that $A$25 becomes 0.2 5, which results in an error.
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")}})) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X1 & " ", J)
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If IsError(Evaluate(temp)) Then GoTo pt1
T =temp

pt1: Next J

Y1 = Evaluate(T)

T = FormulaString '‘Begin with original formula again.
If X1 =0 Then X1 = delta_x
X2 =X1+X1*delta_x
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X2 & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T=temp
pt2: Next J
Y2 = Evaluate(T)
m=(Y2-Y1)/ (X1 * delta_x)
X3=X1-Y1/m
'Exit here if a root is found
If Abs(X3 - X1) < tolerance Then NewtRaph = X3: Exit Function
X1=X3
Next |
'Exit here with error value if no root found
NewtRaph = CVErr(xIErrNA)
End Function

Figure 8-24. VBA code for the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', module 'Moduiel")

The syntax of the custom function is
NewtRaph(expression,variable,initial_value)

Expression is a reference to a cell that contains the formula of the function,
Variable is the cell reference of the argument to be varied (the x value of F(x) or
Goal Seek's changing cell) and initial_value is an optional argument that can be
used to determine which root will be found.

To illustrate the use of the custom function, we will use it to find a root of the
cubic equation y= —2x* + 16x> + 60x —300. A chart of the function is shown in
Figure 8-25. A portion of the data table to generate the chart is shown in
columns A and B of Figure 8-26. The formula in cell B7 is

=aa*A7"3+bb*A7"2+cc*A7+dd

where aa, bb, cc and dd are the coefficients of the cubic.
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800
600 +
400 1
> 200 + A
-8 -6 4 6 8 12
-400 1

Figure 8-25. Root of a function returned by the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook "Newton-Raphson Function’, sheet Newton-Raphson')

To use the custom function, enter the function in cell C7 by typing it
following the syntax above, or choose Imsert—Function..., choose the User
Defined category and choose the function from the list box. For the expression
argument, enter a reference to a cell containing the worksheet function (e.g., cell
B7 in Figure 8-26). For the variable argument, enter A7, the cell reference of the
independent variable in the formula expression. If you do not enter a value for
the optional initial_value argument, the value of the independent variable will be
used as the starting value. When you press ENTER, a root of the function is
returned, as shown in Figure 8-26.

2 2 e —
4 y root trial value
<] 7 750 -4.79212051203765 -100
b -6 348 3.29634999529599 0

-5 50 9.49577051674166 100

-4 -156 -4.79212051203764

Figure 8-26. Root of a function returned by the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook "Newton-Raphson Function', sheet Newton-Raphson')

The root that is returned depends on the initial or trial value used by the
Newton-Raphson procedure. In this example, if a relatively large negative value
is used (e.g., —7), the root near —5 will be obtained. (See Figure 8-10 if this is not
clear.) Some caution must be exercised in choosing a trial value to direct the
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procedure towards a particular root, as illustrated by the results for the same
polynomial shown in Figure 8-27.

&8 C
4 | X v root
17 | 3.296349995295499
18 -4.79212051203765
19 9.48577051674166

Figure 8-27. The root that is returned can be very sensitive to the choice of trial value.
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', sheet 'Newton-Raphson')

If no root is found after 100 cycles of iteration, the function returns the #N/A
error value.

The advantage of this custom function compared to Goal Seek... is, of
course, that if the coefficients aa, bb, cc, or dd are changed, the value of the root
is automatically updated.

Bairstow's Method
to Find All Roots of a Regular Polynomial

A regular polynomial is one that contains only integer powers of x. The
Bairstow (or Bairstow-Lin) method finds all roots, both real and imaginary, of a
regular polynomial with real coefficients. The method involves the successive
extraction of quadratic factors from the original polynomial of degree N and
subsequent reduced polynomials of degree N-2, N—4 and so on. The quadratic
formula is then used to obtain pairs of roots, either real or complex, from the
quadratic factors. If the degree of the polynomial is odd, then the remainder,
after extracting quadratic factors, will be a linear factor, yielding the final root
directly.

The calculation proceeds as follows. For the polynomial
y=ax"+a.x" + ... +ax+a (8-3)
performing synthetic division by a trial quadratic
X +pxtq (8-9)
yields a quotient and a remainder.
Y=+ px+q) (b + b,xX + L+ b)) + (Re + S) (8-10)

If (x* + px + ¢) is an exact divisor, then the remainder (Rx + S) will be zero.
Our task therefore is to find the values of p and ¢ that make (Rx + S) equal to
zero. This will make (x* + »x + 5) a quadratic factor of the polynomial.
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Examination of the process of synthetic division reveals that there is a
correspondence between the coefficients of the two preceding forms of the
polynomial:

b, = a, (8-11)

byt = Gnt — pb, (8-12)

bpo = Gpy = pbny — qby (8-13)

by k= Apk— Pbrir1 — qbuana (k=2,3, ..., n-1) (8-14)
R=a, - pb, - qb; (8-15)

S=ay—qb; (8-16)

If the polynomial has been normalized so that a, = 1, then the equations are
simplified somewhat.

The trial quadratic will be a factor of the polynomial if the remainder is zero,
that is, R=S5=0. Since R and S are functions of p and g:

R=R(,q) (8-17)

§=S8@, q) (8-18)

we need to find the values of p and g that make R and S equal to zero. We will
do this by means of a two-dimensional analog of the Newton-Raphson method.
If p* and g* are the desired solution, then the solution can be expressed as a
Taylor series

. % ob ob
R(p*,q")=R(p,q)+—Ap+—LAg + - (8-19)

op &

and

. b b
S(p*,q*)=S(p,q) + —=>Ap + —>Ag + - (8-20)

op oq
where Ap=p*-p (8-218)
and Ag=qg*—¢q (8-22)

ignoring terms other that the first, since as we approach the correct answer the
higher terms become negligible. The preceding result in two equations in two
unknowns, which can be solved to obtain
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AP = ZR3S 35 oR

§OR R3S
dq oq

(8-23)

“BRAS oS oR (8-24)

O0p dq Op oq

To find the partial derivatives SR/dp, etc, we could follow the usual
procedure of making a small change in p to find the corresponding change in b.
Instead, we will calculate the partial derivatives using analytical expressions.
Differentiating the expressions 8-11 to 8-14 with respect to p yields the

following:

c, = b (8-25)
op
b d
Dozt - pn (8-26)
15/ " dp
d 3
_ b,z =—b —p%— % (8-27)
P P
ob,_ ob,,_
= by k1 = P g;*‘ -q ”a;” (8-28)
b b
=g (8-29)

B op op
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Equations 8-25 to 8-29 can be written in the form

¢, =0 (8-30)
cor =b, —pe, (8-31)
Cpa =b _ —pCyu—qc, (8-32)
Cpok =bp_k = PCr_s1 —4C k12 (8-33)
co =—4cC; (8-34)
The simultaneous equations to be solved are
CAp + c3Aqg =-by (8-35)
ciAp + cAqg = by (8-36)
Using Cramer's rule, we obtain
b <
-b
Ap=20_ 2l (8-37)
€2 €3
&G O
¢ —b
c; -b
Ag = 1~ 7ol (8-38)
C2 €3
G &

The procedure for calculating the roots therefore is as follows: with initial
estimates of p and g (zero or one can be used), calculate the values of b; and c;.
Use these values to calculate Ap and Ag, and correct the initial values. Continue
until convergence is reached. Obtain the two roots by use of the quadratic
formula. Use the result of synthetic division of the polynomial as the new
polynomial, and repeat the process. Continue until the polynomial is of order
one or zero.

The VBA code is shown in Figure 8-28. The portion of the code that
performs the Bairstow calculation is based on code found in Shoup, T. E.,
Numerical Methods for the Personal Computer, Prentice-Hall, 1983.
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This procedure contains code, not found in other procedures in this book, that
allows the macro to accept a polynomial equation as a reference to a cell that
contains a formula or as a reference to a cell that contains a formula as text. The
procedure also handles an implicit reference.

Option Explicit

B T a0 b o b e e ot 20 AL o o o o o o o o o o it ot ot
Function Bairstow(equation, reference)

'Obtains the coefficients of a regular polynomial (maximum order = 6).
'Polynomial is a cell formula.

'Polynomial can contain cell references or names.

'Poynomial can be text.

'Reference can be a cell reference or a name.

Dim A() As Double, Root() As Double

Dim J As Integer, N As Integer

Dim p1 As integer, p2 As Integer, p3 As Integer

Dim expnumber As Integer, ParenFlag As Integer

Dim R As Integer, C As Integer

Dim FormulaText As String, RefText As String, NameText As String
Dim char As String, term As String

ReDim A(6)

' GET equation EITHER AS CELL FORMULA OR AS TEXT.
If Application.IsText(equation) Then
FormulaText = equation
'If in quotes, remove them.
If Asc(lLeft(FormulaText, 1)) = 34 Then _
FormuiaText = Mid(FormulaText, 2, Len(FormulaText) - 1)
Else
FormulaText = equation.Formula
End If
If Left(FormulaText, 1) = "=" Then FormulaText = Mid(FormulaText, 2, 1024)
FormulaText = Application.ConvertFormula(FormulaText, xIA1, xiA1, _

xlAbsolute)

FormulaText = Application.Substitute(FormulaText, " ", ™) 'remove all spaces
‘GET THE NAME CORRESPONDING TO reference

NameText ="

On Error Resume Next 'Handles case where no name has been assigned
NameText = reference.Name.Name

On Error GoTo 0

NameText = Mid(NameText, InStr(1, NameText, "I") + 1)

‘HANDLE CASE WHERE reference 1S A RANGE
‘by finding cell in same row or column as cell containing function.
If reference.Rows.Count > 1 Then

R = equation.Row

Set reference = Intersect(reference, Range(R & ":" & R))
Elself reference.Columns.Count > 1 Then

C = equation.Column

Set reference = Intersect(reference, Range(C & "" & C))
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End If
RefText = reference.Address

'PARSE THE FORMULA INTO TERMS
‘pointers: p1, beginning; p2, end of string.
FormulaText = FormulaText & " " 'add extra character for parsing
p1=1
ParenFlag =0 'Keep track of left and right parentheses
For J =1 To Len(FormulaText)
char = Mid(FormulaText, J, 1)
If char = "(" Then ParenFlag = ParenFlag + 1
If char =")" Then ParenFlag = ParenFlag - 1
If ((char ="+" Or char = "-") And ParenFlag = 0) Or J = Len(FormulaText) _
Then
‘term = Mid(FormulaText, p1, J - p1)
term = Application.Substitute(term, NameText, RefText)
p2=J:p1=p2

'GET THE EXPONENT AND COEFFICIENT FOR EACH TERM
'p3: location of reference in term.
If InStr(1, term, RefText & "*") Then ‘'function returns zero if not found
These are the x*2 and higher terms

p3 = InStr(1, term, RefText & "*")

expnumber = Mid(term, p3 + Len(RefText) + 1, 1)

term = Left(term, p3 - 1) 'term is now the coefficient part
Elself InStr(1, term, RefText) Then
"This is the x term

p3 = InStr(1, term, RefText)

expnumber = 1

term = Left(term, p3 - 1) 'term is now the coefficient part
Else
This is the constant term

expnumber =0

End If
If term = "" Then term ="=1" 'If missing, Evaluate will require a string.
If term ="+" Or term = "-" Then term = term & "1"

If Right(term, 1) = "*" Then term = Left(term, Len(term) - 1)
A(expnumber) = Evaluate(term)

End If

Next J

'RESIZE THE ARRAY

ForJ =6 To O Step -1

If A(J) <> 0 Then N = J: Exit For
Next

ReDim Preserve A(N)

ReDim Root(1 To N, 1)

'REDUCE POLYNOMIAL SO THAT FIRST COEFF = 1
For J=0To N: A(J) = A(J) / A(N): Next

'SCALE THE POLYNOMIAL, IF NECESSARY
'<code to be added later>




172 EXCEL: NUMERICAL METHODS

Call EvaluateByBairstowMethod(N, A, Root)
Bairstow = Root()

End Function

i e o o o B e
Sub EvaluateByBairstowMethod(N, A, Root)

'‘Code adapted from Shoup, "Numerical Methods for the Personal Computer".

Dim B() As Double, C() As Double

Dim M As Integer, | As Integer, J As Integer, iT As Integer

Dim P As Double, Q As Double, delP As Double, delQ As Double
Dim denom As Double, S1 As Double

Dim tolerance As Double

ReDim B(N + 2), C(N + 2)
tolerance = 0.000000000000001
M=N

While M >0
If M = 1 Then Root(M, 0) = -A(0): Call Sort(Root, N): Exit Sub
P=0:Q=0:delP =1:delQ =1
Forl=0To N; B(l) = 0: C(l) = 0: Next
ForiT=1To 20
If Abs(delP) < tolerance And Abs(delQ) < tolerance Then Exit For
ForJ=0ToM
BM-J)=AM-N)+P*BM-J+1)+Q*BM-J+2)
CM-D)=BM-N+P*CM-J+1)+Q*C(M-J+2)
Next J
denom=C(2) *2-C(1) * C(3)
delP = (-B(1) * C(2) + B(0) * C(3)) / denom
delQ = (-C(2) * B(0) + C(1) * B(1)) / denom
P =P +delP
Q=Q+delQ
Next IT

S1=P*2+4*Q
if St <0 Then
'Handle imaginary roots
Root(M, 0) = P / 2: Root(M, 1) = Sqr(-S1) / 2
Root(M -1, 0) = P/ 2: Root(M - 1, 1) = -8qr(-S1) / 2
Else
'Handle real roots
Root(M, 0) = (P + Sqr(S1))/ 2
Root(M-1,0) = (P - Sqr(S1))/2
End If
For|l=MTo 0 Step -1: A(l) = B(I + 2): Next
M=M-2
Wend
End Sub
e i e SR e e
Sub Sort(Root, N)
'SORT ROOTS IN ASCENDING ORDER
Dim | As Integer, J As Integer
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Dim temp0O As Double, temp1 As Double

Forl=1ToN
ForJ=1ToN
if Root(l, 0) > Root(J, 0) Then
temp0 = Root(l, 0): temp1 = Root(l, 1)
Root(l, 0) = Root(J, 0): Root(l, 1) = Root(J, 1)
Root(J, 0) = temp0: Root(J, 1) = temp1
End If
Next J
Next |
End Sub

Figure 8-28. VBA code for the Bairstow custom function.
(folder 'Chapter 08 Examples', workbook 'Bairstow', module 'BairstowFn')

The syntax of the Bairstow function is
Bairstow(equation,reference)

Equation is a reference to a cell that contains the formula of the function,
reference is the cell reference of the argument to be varied (the x value of Fx)).

The Bairstow function is an array function. To return the roots of a
polynomial of order N, you must select a range of cells 2 columns by N rows,
enter the function and then press CONTROL+SHIFT+ENTER.

Figure 8-29 shows a chart of the polynomial
y=x"=0.0031x"+2.3 x 10% + 5 x 10°

6.0E-09 T

-0.002 0.002 0.004
-1.0E-09 T

-2.0E-09 -

Ls

Figure 8-29. A regular polynomial with one real root and two imaginary roots.
(folder 'Chapter 08 Examples', workbook 'Bairstow', sheet 'Example')
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The function has one real root and a pair of imaginary roots. Figure 8-30
shows a portion of the spreadsheet in which the Bairstow custom function is used
to obtain the roots of the function.

% | Rosts
26 ;Reel part  Imaginary part
27 |-0.001090 0

28 | 0.002095 -0.000447311
29| 0.002095 0.000447311

Figure 8-30. Calculation of all roots (real and imaginary) of a regular polynomial
by the Bairstow custom function.
(folder 'Chapter 08 Examples', workbook 'Bairstow', sheet 'Example 2')

The formula
=A2/3-0.0031*A2/2+0.000000023*A2+0.000000005

was entered in cell B2 and the Bairstow custom function
{=Bairstow(B2,A2)}

in cells A27:B29. The real part of the root is in the left cell and the imaginary
part in the right cell. Note that, since the custom function handles only
polynomials with real coefficients, the complex roots (if any) occur in conjugate
pairs.

Finding Values Other than Zeroes
of a Function

Many of the preceding methods can be modified so as to find the x of a
function for a y value other than zero. In this way you can find, for example, the
point of intersection of two curves (the x value where the y value of one function
equals the y value of another function). Some examples follow.

Using Goal Seek...
to Find the Point of Intersection of Two Lines

It is a simple matter to use Goal Seek... to find the intersection of two lines,
as illustrated in Figure 8-31
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120
100 |

80 |

20

Figure 8-31. Finding the intersection of two lines in a chart.
(folder 'Chapter 08 Examples', workbook ‘Intersecting Lines', sheet 'Two Straight Lines")

In the spreadsheet cells shown in Figure 8-32, the formula in cell B24 is
=slope1*A24+int1

and the formula in cell C24 is
=slope2*A24+int2
Both formulas use A24 as input. The formula in cell D24 (the target cell) is
=B24-C24

Now use Goal Seek... to vary A24 to make the target cell, D24, equal to
zero. The result is shown in Figure 8-32.

| LI (] 1 LT TR
22 Table for intersection
2 X yl y2 y1-y2
24| 12 86 86 a

Figure 8-32. Using Goal Seek to find the intersection of two lines.
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet "Two Straight Lines')
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This approach is very simple, but it has one major drawback—you must run
Goal Seek... each time you want to find the point of intersection. A much more
satisfactory approach is to use the Newton-Raphson technique to find the
intersection point, as illustrated in the following section.

The "drop line" in Figure 8-31 was added to the chart to emphasize the
intersection point. The line was added to the chart in the following way: cell A25
contains the formula =A24 and cell B25 contains the value 0. The highlighted
cells A24:B25 were copied and pasted in the chart to create a new series, as
follows: Copy A24:B2S, activate the chart, choose Paste Special from the Edit
menu, check the boxes for Add Cells As New Series and X Values In First
Column, press OK. Figure 8-33 shows the portion of the worksheet where the
drop line is specified.

HENS S R I O T
| 22| Table for intersection & for drop line
[23F % y1 y2 y1-y2

| 24 | 12 86 86 0
- I

Figure 8-33. Adding a "drop line" from the intersection of two lines.
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet "Two Straight Lines")

Using the Newton-Raphson Method
to Find the Point of Intersection of Two Curves

The Newton-Raphson method can be modified to find the x value that makes
a function have a specified value, instead of the zero value that was used in a
previous section. Equation 8-5 becomes

X = (mx; =y +y)im (8-38)

You can set up the calculation in the same way that was used for the Newton-
Raphson method with intentional circular reference. In the following example
we will find the intersection of a straight line and a curve (Figure 8-34).
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300 |
250
200

150

Figure 8-34. Finding the intersection of two lines in a chart.
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference')

A portion of the data table that generated the two lines is shown in Figure 8-
3s.

! A B §-
| 4 y1 ¥2
5 0 100 -10
| 6 1 108 -3
7 2 116 6
B 3 124 17
2 4 132 30
1 10 5 140 45

Figure 8-35. Portion of the data table for Figure 8-32.
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference')

The formula in cell B5 is
=slope*A5+int
and in cell C5
=aa*Ads"2+bb*Ab5+cc
Using the same method as in the preceding section, y; is the function for

which the slope is calculated, and y, is the value used as the "constant." Of
course, both y; and y, change as the value of x changes.
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a1 B 1 c | D [ E [ _F ] G

| 36 Using modified Newton-Raphson approach to find intersection

| 37 X yi y2 x+*Ax yl+Ay slope new x
138 | 11.536 192.285(192.285 11.536 192.285 29.07130865 11.536

138 11.536 0

Figure 8-36. Using the Newton-Raphson method to find the intersection of two lines.
(folder ‘Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference')

Figure 8-36 shows the cells where the Newton-Raphson calculation is
performed, using an intentional circular reference (refer to the section "The
Newton-Raphson Method Using Circular Reference and Iteration" earlier in this
chapter if the method of calculation is not apparent). The formula in cell G38 is

=(C38+F38*A38-B38)/F38

The advantage of using the Newton-Raphson method with circular
references, compared to using Goal Seek..., is that calculation of the x, y
coordinates of the intersection occurs automatically, "in the background." If you
change one or more of the parameters (for example, if you change the slope of
the straight line), the new intersection point and new drop line will be calculated
and displayed on the chart.

Using the Newton-Raphson Method
to Find Multiple Intersections
of a Straight Line and a Curve
The preceding technique can be easily extended to find multiple intersections
of two curves. The following figure illustrates how to find the two intersections

of a horizontal straight line with a parabola, but many other types of curve can be
handled.
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-30 -20 -10 0 10 20 30

Figure 8-37. Two intersections of a straight line and a curve, calculated by using the
Newton-Raphson method with intentional circular references.
(folder 'Chapter 08 Examples’, workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)")

It is merely necessary to use two identical Newton-Raphson formulas and
provide two different start values that will result in convergence to the two
different "roots." Figure 8-38 illustrates the set-up of the table. Cells C66 and

C67 contain the formula

=$I$5

(pointing to the cell that contains a constant). Guided by Figure 8-37, initial x
values of 10 and —10 were chosen. Figure 8-38 shows the cell values before the
intentional circular references have been created.

| 64 | Table set-up before establishing circular references
[B5) X y1 y2 x+Ax yl+Ay slope newx

(66| 10000 1500 3000 1000 150 27.00 15.5556
(67| 10000 2100 3000 | -1000/ 210 -33.00 -12.727

Figure 8-38. Calculating two intersections of a line and a curve
by the Newton—Raphson method (before creating intentional circular references).
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)")

Once the formulas have been entered, replace the initial x values in cells A66
and A67 by the formulas =G66 and =G67, respectively, to create the two circular
references. The "Cannot resolve circular references" message will be displayed
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and the two cells will display zero values. Now choose Options... from the
Tools menu and choose the Calculation tab. Check the Iteration box and press
OK. Figure 8-39 shows the final values in the table, after circular reference
iteration is complete.

B4 ~ Table after establishing circular references

b5 | yi y2 x+Ax yl+Ay slope newx
B6 | 14.454 300.0f 300.0 14.45 300 40.36' 14.4536
67 | -12.454  300.0) 3000 = -12.45 300 -40.36 -12.454

Figure 8-39. Calculating two intersections of a line and a curve
by the Newton-Raphson method (after creating intentional circular references).
(folder 'Chapter 08 Examples', workbook 'Intersecting Lines', sheet 'Using Circular Reference (2)')

A Goal Seek Custom Function

The Newton-Raphson custom function described in a previous section was
modified to create a custom function that performs goal seeking. This custom
function can be used in the same way as Excel's built-in Goal Seek tool — to
find the value of x (the changing cell) that makes the function y (the target cell)
have a specified value. The VBA code is shown in Figure 8-40.

Option Explicit

Function GoalSeek(target_cell, changing_cell, objective_value, Optional _
initial_value) As Double

'Finds value of X to make Y have a desired value

"This is a modified version of NewtRaph

Dim tolerance As Double, incr As Double

Dim XRef As String, FormulaString As String

Dim | As Integer

Dim X1 As Double, Y1 As Double, X2 As Double, Y2 As Double
Dim m As Double

If IsMissing(initial_value) Then initial_value = changing_cell
If initial_value =™ Then initial_value = changing_cell

tolerance = 0.0000000001
incr = 0.00000001

XRef = changing_cell. Address

FormulaString = target_cell. Formula

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute)
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X1 = initial_value

Forl=1To 100

Y1 = Evaluate(Application.Substitute(FormulaString, XRef, X1))
If X1 =0 Then X1 =incr

X2 =X1+ X1 *incr

Y2 = Evaluate(Application.Substitute(FormulaString, XRef, X2))
m=(Y2-Y1) /(X2 -X1)

X2 ={(m* X1 -Y1+ objective_value) / m

'Exit here if a root is found

If Abs((X2 - X1) / X2) < tolerance Then GoalSeek = X2: Exit Function
X1 =X2

Next |

'Exit here with error value if no root found

GoalSeek = CVErr(xIErrNA): Exit Function

End Function

End Sub

Figure 8-40. VBA code for the GoalSeek custom function.
(folder 'Chapter 08 Examples', workbook 'GoalSeek Fn', module 'Modulel")

This custom function can be used in the same way as Excel's built-in Goal
Seek... tool to find the value of x (the changing cell) that makes the function y
(the target cell) have a specified value.

The syntax of the function is
GoalSeek(target_cell, changing_cell, objective_value, initial_value)

The argument tfarget_cell is a reference to a cell containing a formula F(x).
The argument changing_cell is a cell reference corresponding to x, the
independent variable. (The formula in target cell must depend on
changing_cell.) These two arguments correspond exactly to the Goal Seek tool's
inputs Set Cell and By Changing Cell. The argument objective_value (Goal
Seek's To Value input) is the value you want target_cell to attain. The optional
argument initial_value is used, in cases where more that one value of x can result
in the function F(x) having the desired value, to control the value of x that is
returned.

Note that when using the Goal Seek tool, To Value can only be a fixed
value, not a cell reference, whereas when using the GoalSeek custom function,
the argument can be a cell reference. Thus, when objective_value is changed, the
GoalSeek return value updates automatically.

As an illustration, we will use the GoalSeek custom function to find the
value of x that makes the function y = x* + 6x —10 have a specified value, namely
y = 210. In the spreadsheet shown in Figure 8-41 the table in $A$5:$B20
provides the x, y values of the function that are plotted in Figure 8-42. The
adjustable parameters of the function are in $E$5:3E37. The adjustable value of
the intersection point H is in cell E10. Cell D14 contains the formula
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=goalseek(B5,A5,E10)

Note that the GoalSeek function does not modify the value of the changing
cell (in this example cell A5) nor does it result in a change in the cell containing
the function (in this example cell B5). These values are merely copied and used
as inputs for the VBA code. The final value of the changing cell is returned by
the GoalSeek function (in this example in cell D14). As a check, the target cell
formula was entered in cell E14 so as to calculate F(x) using the value of x
returned by GoalSeek.

Some functions have more than one value of x that can satisfy the
relationship F(x) = objective_value; in these cases the user must use the optional
argument initial_value to control the value of x that is returned.

__________________ Al B G kB
1 Intersecting Lines in a Chart
I(Using GoalSeek custom function to find the intersection
2 | of curve y and horizontal H)
3 y =aax"+hbx+cc
% ¥ Parameters ofy
0 -10 aa 1
1 -3 hh B
2 6 cc -10
3 17
4 30 Value of H
5 45 210
B 62
7 81 Using GoalSeek Fn
8 102 X y
g 125 121327 210
10 150
11 177
12 206
13 237
14 270
15 305

Figure 8-41. Using the GoalSeek custom function to find the value of x
that makes the function y = x> + 6x — 10 have a specified value (here, y = 210).
(folder 'Chapter 08 Examples', workbook 'GoalSeek Fn', sheet 'Intersection of line with h (2)')

If you change the values of aa, bb, cc, or H, the function value will update to
find the new intersection value. In contrast, if you use the Goal Seek... tool, you
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must repeat the action of goal-seeking each time you change any of the
parameters.

A limitation of the GoalSeek custom function is that target_cell must contain
the complete expression dependent on changing cell. Only the instances of
changing_cell that appear in the formula in target _cell will be used in the
Newton-Raphson calculation.

350
300
250
200
> 150
100

Figure 8-42. The value of x that makes the function y = x* + 6x — 10 have the value 210.
(folder 'Chapter 08 Examples', workbook 'GoalSeek Fn', sheet 'Intersection of line with h (2)")

The CD contains an example of the use of the GoalSeek function to find
approximately 180 intersection points of lines with a curve in a chart (see folder
'Chapter 08 Examples', workbook 'Diatomic Molecule', sheet 'Vibrational Energy
Levels"). The resulting chart is shown in Figure 8-43. The chart contains two
data series. The first data series shows the continuous function of energy as a
function of distance . The second data series shows the approximately 90
horizontal vibrational energy levels.
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Internuclear distance, A

Figure 8-43. Using the GoalSeek custom function
to find multiple intersections of lines in a chart.

(folder 'Chapter 08 Examples', workbook 'Diatomic Molecule', sheet 'Sheet1')
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Problems

4.

Answers to the following problems are found in the folder "Ch. 08 (Roots of
Equations)" in the "Problems & Solutions" folder on the CD.

A circuit consisting of a source, a resistor and a load, has a current i that
oscillates as a function of time ¢ according to the following:

i=2.5 sin(%)e-”’ +2.5sin(2.5¢ — %)

Find the first time after t = 0 when the current reaches zero.)

In pipe flow problems the relationship
aD* +bD+c=0
is encountered. Solve for D, if a= 700, b=-2.9, ¢ =-300.

When the sparingly soluble sait BaCO; is dissolved in water, the following
simultaneous equilibria apply:

BaCO; = Ba*" + CO,™ K, = [Ba*][CO*]=5.1 x 107
CO;* + H,0 = HCO; + OH™ K, =[OH ][ HCO;)/[ COs*1=2.1 x 107*

Employing mass- and charge-balance equations, the following relationship
can be obtained for a saturated solution of BaCQ; in water:

Find the concentration of free Ba®" in the saturated solution.

A solution of 0.10 M nitric acid (HNO;) is saturated with silver acetate
(AgAc), a sparingly soluble salt. The system of mass- and charge-balance
equations describing the system is

[NO;]1=0.10 (mass balance)
[Ag =S (mass balance)
[AcT] + [HAc] =S (mass balance)
[Ag']+ [H]=[Ac] + [NO;] (charge balance)
[Ag')[Ac]=4.0x 107 K,

[H')[Ac)/[HAc] =1.8 x 107 K,
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where S is the mol/L of silver acetate that dissolve. Using the preceding
relationships, the following expression is obtained for the solubility S of

silver acetate:
2 K
K, S iles=22 4010
K S

sp

Find the solubility S.

5. Find the two sets of coordinates of the intersection of the straight line y = mx
+ b, where m = 5 and b = 50, with the parabola y = ax> + bx + ¢, where a =
1.1, b = 2.3 and ¢ = -30.5. Make a chart of the two series to show the
intersections.

6. Find the two sets of coordinates of the intersection of the straight line with y
= h and the circle of radius 7 (the equation of a circle is x* + y* = r; thus

y=+1-x2). For example, use » = 1 and 4 = some value between 0 and 1.
The intersections will be at x, y = k and —x, y = A. Make a chart to show the

circle (values of x from —~1 to 1 and calculated values of y, also same values
of x and —y).

7. Having solved problem #8, and having created the chart, use the values of the
intersections to create a chart series that shows the circumscribed rectangle
(four sets of coordinates: x, y = h; —x, y = h; x, y = —h; —x, y = —h). Use any
suitable method to find the coordinates of the circumscribed square.

8. For the chemical reaction
2A=B+2C
the equilibrium constant expression is

x < LBICY
[4]°

For this reaction, the value of the equilibrium constant K at a certain
temperature is 0.288 mol L™'.

A reaction mixture is prepared in which the initial concentrations are [A] =1,
[B] = 0, [C] = 0 molL™". From mass balance and stoichiometry, the
concentrations at equilibrium are [A] = 1 — 2x, [B] = x, [C] = 2x mol L',

. . . 4x3 .
from which the expression for K is — X Find the value of x that
1—4x—4x2
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10.

11.

12.

makes the expression have a value of 0.288, and calculate the concentrations
of A, B and C at equilibrium.

For the gas-phase chemical reaction

A+B=C+2D
the equilibrium constant expression for reaction is
2
K _LCDE 15.9 atm at 400°C.

[A][B]
A reaction mixture is prepared in which the initial concentrations are [A] =1
atm, [B} = 2 atm, [C] =0, [D] = 0. From mass balance and stoichiometry,
the concentrations at equilibrium are [A]=1-x, [B]=2-x, [C]=x, [D] =

3
2x, from which the expression for K is——ix— . Find the value of x that
x?2 -3x+2

makes the expression have a value of 15.9, and calculate the partial pressures
of A, B, C and D at equilibrium.

The Reynolds number is a dimensionless quantity used in calculations of
fluid flow in pipes. The Reynolds number is defined as

DYV,
NRe :,_,0
U

where D, is the inside diameter of the pipe, V is the average velocity of the
fluid in the pipe, p is the fluid density and u is the absolute viscosity of the
fluid. For flow in pipes, a Reynolds number of less than 2000 indicates that
the flow is laminar, while a value of greater than 10,000 indicates that the
flow is turbulent. For a pipe diameter of 5 cm, and fluid of density 1 g/cm’
and viscosity of 1 centipoise, find the minimum velocity that results in
turbulent flow.

Find the value of the (1,1) element of the following matrix that gives a
determinant value of zero.

0.75 0.5 025
05 1 05
025 0.5 0.75

Which elements in the matrix cannot be changed in order to give a
determinant of zero?

Use the Bairstow custom function to find all of the roots of the polynomial
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% — 10x* + 30%° — 20x% - 31x + 30

13. Use the Bairstow custom function to find all of the roots of the polynomial
16200000x" — 64800000x” + 97199996x> — 64800000x + 16200000



Chapter 9

Systems of
Simultaneous Equations

Sometimes a scientific or engineering problem can be represented by a set of
n linear equations in » unknowns, for example

x+2y=15
3x+ 8y=157
or, in the general case

anpxy; tapxy tapxs + - tax, = ¢

anxytapx tapx;t - tax,=c

amxl + apxy + apxs + -+ @ux, = cy
where x|, x3, x3,..., X, are the experimental unknowns, ¢ is the experimentally
measured quantity, and the a; are known coefficients. The equations must be
linearly independent; in other words, no equation is simply a multiple of another
equation, or the sum of other equations.

A familiar example is the spectrophotometric determination of the
concentrations of a mixture of » components by absorbance measurements at »
different wavelengths. The coefficients a, are the €, the molar absorptivities of
the components at different wavelengths (for simplicity, the cell path length,
usually 1.00 cm, has been omitted from these equations). For example, for a
mixture of three species P, Q and R, where absorbance measurements are made
at A1, A7 and A3, the equations are

g5 [P+ [Q]+&f [R]=4,,
g1, [P1+&f,[Q] +&f [R] =4,
e1, [P1+¢%,[Ql + ez, [R =4,

This chapter describes direct methods (involving the use of matrices) and
indirect (iterative) methods for the solution of such systems. The chapter begins

189
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by describing methods for the solution of systems of linear equations, and
concludes by describing a method for handling nonlinear systems of equations.

Cramer's Rule

According to Cramer's rule, a system of simultaneous linear equations has a
unique solution if the determinant D of the coefficients is nonzero. To obtain the
solution, each unknown is expressed as a quotient of two determinants: the
denominator is D and the numerator is obtained from D by replacing the column
in the determinant corresponding to the desired unknown with the column of
constants.

Thus, for example, for the set of equations
2x+y—-2z=0
x—y+tz=6
x+2y+z=3

the determinant is
2 1 -1
D=1 -1 1
1 2 1
The coefficients and constants lend themselves readily to spreadsheet

solution, as illustrated in Figure 9-1. Using the formula =MDETERM(A2:C4), the
value of the determinant is found to be -9, indicating that the system is soluble.

SN o8 sy SR S A ]
1 Coefficients Constants
= 2 1 -1 0
31 1 -1 1 6
4 | 1 2 1 3

Figure 9-1. Spreadsheet data for three equations in three unknowns.
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns I', sheet ‘Cramer’s Rule')

A0 R S e 0 v
_______ 8 | 0 1
9| 3 1 1
10 3 2 1

Figure 9-2. The determinant for obtaining x.
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns I', sheet 'Cramer's Rule')
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The x values that comprise the solution of the set of equations can be
calculated in the following manner: x; is given by a quotient in which the
denominator is D and the numerator is obtained from D by replacing the k**
column of coefficients by the constants ¢;, ¢,, .... The unknowns are obtained
readily by copying the coefficients and constants to appropriate columns in
another location in the sheet. For example, to obtain x, the determinant is shown
in Figure 9-2, and x = 2 is obtained from the formula

=MDETERM(A8:C10)/MDETERM(A2:C4)

y=-1 and z =3 are obtained from appropriate forms of the same formula.

Cramer's method is very inefficient and should be used only for systems of
only a few equations.

Solving Simultaneous Equations
by Matrix Inversion
Simultaneous equations can be represented in matrix notation by
AX=C 9-1)
where A is the matrix of coefficients, B the matrix of unknowns, and C the
matrix of constants. Multiplying both sides of equation 9-1 by A™ yields
X=A"C (9-2)
In other words, the solution matrix is obtained by multiplying the matrix of

constants by the inverse matrix of the coefficients. To return the solution values
shown in Figure 9-3, the array formula

{=MMULT(MINVERSE(A2:C4),D2:D4)}

was entered in cells E2:E4.

i RSGE SRS LS AT RRLTL D, vUhbe Lk AR SO
1 Coefficients Constants Solution
e 2 LI 0 2
31 1 A 1 B | -
4 | 1 2 1 3 3

Figure 9-3. Solving a set of simultaneous equations by means of matrix methods.
(folder ‘Chapter 09 Simultaneous Equations', workbook 'Simult Eqns I', sheet 'Matrix Inversion")

Solving Simultaneous Equations
by Gaussian Elimination
A system of linear equations such as
x+2y=15
3x+8y=57
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can be solved by successive substitution and elimination of variables. For
example, you can multiply the first equation by 3, so that the coefficient of x is
the same as in the second equation, and then subtract it from the second equation,
thus

3x + 8y=157
—3x + 6y = 45
2y =12

to produce a single equation in one unknown from which y = 6. Using the value
of y, you can now calculate x.

To extend this procedure to a system of n equations in » unknowns requires
that one work in a systematic fashion. The solution process is equivalent to
converting the » x n matrix above into a triangular matrix, such as the upper
triangular matrix

anxy tapx; Fapxs o Fagx, = b
anXs t anxs+ -+ apx, = by

axz + -+ agx, = bs

QX = by
which corresponds to a system of equations in which one of the equations
contains only one unknown, and successive equations contain only one additional
unknown. A similar solution process can be carried out using a lower triangular
matrix.

There are several methods for the solution of systems of equations that
involve a triangular matrix. The Gaussian elimination process reduces a system
of linear equations to an upper triangular matrix. In the example at the beginning
of this chapter, we used the first equation to eliminate x; from the other equation.
To eliminate x, in a system of n equations:

anx) +apx; + apxs + o aexa = by

ayxy +apx; + apx; + -+ apx, = by

azx) T anxy + azxz + 0+ asx, = bs
etc.

we multiply equation 1 by the factors a,i/a;1, asi/ap, ..., ay/a;; and subtract from
equations 2, 3, ..., n. This eliminates x; from equations 2...n. Equation 1 is
termed the pivot equation, and the coefficient of x, the pivor.

We then use equation 2 as the pivot equation, the coefficient of x, as the
pivot, and eliminate x, from equations 3, ..., n.
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If the pivot equation is normalized by dividing it by the coefficient of x;, the
coefficient of x; is 1 and the calculations are simplified somewhat.

It will be instructive to show the progress of the calculations with a simple
example, such as the following:

Sxitxy+x3+xs= 685
2X1— Xy —x3+x4= 165
3xy—xy +2x3—2x4 = 256
5x1—4xy + 3x3 — 2x4 = 361
The Gaussian elimination method operates on an n x n matrix of coefficients,

augmented by the vector of constants. In our example this matrix willbea 4 x 5
matrix, as shown:

5 1 1 1 685
2 -1 -1 1 165
3 -1 2 -2 256
5 -4 3 -2 361

First, row 1 is normalized:
1 02 02 02 137
2 -1 -1 1 165
3 -1 2 -2 256
5 -4 3 -2 36l
The x; terms are eliminated from column 1 of rows 2, 3 and 4 by subtracting:
1 02 02 02 137
0 -14 -14 06 -109
0 -1.6 14 -2.6 -155
0 -5 2 -3 =324

Row 2 is normalized:

I 02 02 0.2 137
0 1 1 —-0.4286 77.857
0 -16 14 -26 155
0 -5 2 -3 =324

The x, terms are eliminated from column 2 of rows 3 and 4:
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1 02 02 0.2 137
0 1 1 -0.4286 77.857
0 0 3 -3.2857 -30.429
0 0 7 -51429 65286

Row 3 is normalized and the x; terms are eliminated from column 3 of row 4:
1 02 02 0.2 137 ]
0 1 1 -0.4286 77.857
0 0 1 -1.0952 -10.143
0 0 0 25238 136.29]

L
Row 4 is normalized:
[1 02 02 0.2 137
0 1 1 -04286 77.857
0 0 1 -1.0952 —10.143
0 0 0 1 54

As you can see, the coefficients matrix is now an upper triangular matrix,
with the diagonal elements equal to one. The results are obtained by successive
substitution, beginning with the last row. The last row corresponds to x; = 154,
the third row corresponds to x3 — 0.272727x, = 107, from which x; = 149, and so
on. The results, x;, x,, x3 and x4 are 106, 52, 49, 54, respectively. You can see
the steps in Gaussian elimination calculation by using the demo program
provided on the CD (folder 'Chapter 09 Simultaneous Equations', workbook
'Simult Lin Eqns', sheet 'Gaussian Elimination Demo").

The Gaussian elimination method can also be performed by using the VBA
custom function GaussElim. The VBA code is shown in Figure 9-4.

The syntax of the function is GaussElim(coeff_matrix,const_vector). The
function returns the results vector; since the function is an array function, you

must select an appropriately sized range of cells and press CTRL+SHIFT+ENTER
(Windows) or COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh).



CHAPTER 9 SYSTEMS OF SIMULTANEOUS EQUATIONS 195

Option Base 1
Option Explicit
Function GaussElim(coeff_matrix, const_vector)

Dim AugMatrix() As Double, ResultVector() As Double

Dim NormFactor As Double

Dim temp As Double, term As Double, ElimFactor As Double
Dim | As Integer, J As Integer, K As Integer

Dim C As Integer, R As Integer

Dim N As Integer

N = coeff_matrix. Rows.Count
ReDim AugMatrix(N, N + 1), ResultVector(N)

'‘Create augmented matrix with dimensions N x (N+1)
Forl=1ToN
ForJ=1ToN
AugMatrix(l, J) = coeff_matrix(l, J)
Next J, |
ForJ=1ToN
AugMatrix(J, N + 1) = const_vector(J)
Next

ForK=1ToN
'Normalize each row, from column K to right.
'If normalization factor zero, swap rows
NormFactor = AugMatrix(K, K)
If NormFactor = 0 Then
ForJ=1ToN+1
temp = AugMatrix(K, J)
AugMatrix(K, J) = AugMatrix(K + 1, J)
AugMatrix(K + 1, J) = temp
Next J
NormFactor = AugMatrix(K, K)
End If
ForC=KToN+1
AugMatrix(K, C) = AugMatrix(K, C) / NormFactor
Next C

‘Eliminate
ForR=K+1ToN
ElimFactor = AugMatrix(R, K)
ForC=KToN+1
AugMatrix(R, C) = AugMatrix(R, C} - AugMatrix(K, C) * ElimFactor
Next C
Next R

Next K
'Calculate and return the coefficients.

‘Selected range can be either horizontal or vertical.
For K=N To 1 Step -1
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ResultVector(K) = AugMatrix(K, N + 1)
term =0
ForC=NTo K + 1 Step -1
term = term + AugMatrix(K, C) * ResultVector(C)
Next C
ResultVector(K) = AugMatrix(K, N + 1) - term
Next K
If Range(Application.Caller.Address).Rows.Count > 1 Then
GaussElim = Application. Transpose(ResultVector)
Else
GaussElim = ResultVector
End If
End Function

Figure 9-4. VBA code for the Gaussian Elimination custom function.
(folder ‘Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussianElimFunction')

The calculation proceeds essentially as described in the example. First, the
elements of the working matrix AugMatrix are populated by reading in the values
from the coeff_matrix and const_vector arguments. Then, in a loop, each row is
normalized by dividing by the appropriate diagonal element, and Gaussian
elimination is performed on the following rows. When all rows have been done,
the results are calculated, beginning with the last row of the upper diagonal
matrix.

The custom function GaussElim contains some features not discussed in the
worked-out example. As you can see from the example, the diagonal elements of
the coefficients matrix are the pivots and are used to normalize the matrix. If the
process of elimination results in a zero diagonal element, subsequent
normalization using that pivot value will result in a divide-by-zero error. Thus it
is necessary to check that the pivot value is not zero before normalizing. If the
pivot is zero, one can swap this row with one below it before normalizing and
proceeding with the elimination step. However, if we have reached the last row
of the matrix, we swap the last and first rows, but in this case we must swap rows
in the original matrix and start over from the beginning.

The Gauss-Jordan Method

The Gauss-Jordan method utilizes the same augmented matrix [A|C] as was
used in the Gaussian elimination method. In the Gaussian elimination method,
only matrix elements below the pivot row were eliminated; in the Gauss-Jordan
method, elements both above and below the pivot row are eliminated, resulting in
a unit coefficient matrix:
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1 0 0 0 116
0100 72
0 0 1 0 149
0 0 0 1 154

The advantage of this method is that the calculation of the vector of results is
simplified.

The VBA custom function GaussJordan1, shown in Figure 9-5 incorporates
partial pivoting. Two versions are provided on the CD that accompanies this
book: the first version, GaussJordani, has the syntax
GaussJordani{coeff_matrix, const _vector, value_index). The value_index
argument specifies the element of the results vector to be returned. The second
version, GaussJordan2, has the syntax GaussJordan2(coeff _matrix,
const_vector), and returns the vector of results. You must select an
appropriately sized range of cells and press CTRL+SHIFT+ENTER (Windows) or
COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh).

Option Base 1

Option Explicit

'Solving systems of linear equations by the Gauss-Jordan elimination method
B m I o e L o
Function GaussJordan1(coeff_matrix, const_vector, value_index)

' This version returns a single element of the solution vector,

' specified by value_index.

Dim X() As Double, AugMatrix() As Double, PivotRow() As Integer
Dim PivotLogical() As Boolean

Dim | As Integer, J As Integer

Dim R As Integer, C As Integer, P As Integer

Dim N As Integer

Dim TempMax As Double, factor As Double

N = coeff_matrix. Rows.Count
ReDim X(N), AugMatrix(N, N + 1), PivotRow(N), PivotLogical(N)

'Create augmented matrix (A|B) with dimensions N x (N+1)
Forl=1ToN
Ford=1ToN
AugMatrix(l, J) = coeff_matrix(l, J)

Next J, |
FordJ=1ToN

AugMatrix(J, N + 1) = const_vector(J)
Next J

'Initialize pivot elements for each row
For J = 1 To N: PivotLogical(J) = False: Next
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'Do the elimination by columns.
ForC=1ToN

'Find maximum value in column

TempMax =0

ForR=1To N

If Abs(AugMatrix(R, C)) <= TempMax Then GoTo LoopEnd
If PivotLogical(R) = True Then GoTo LoopEnd
PivotRow(C) = R

TempMax = Abs(AugMatrix(R, C))

LoopEnd: Next R

"Test the coefficient matrix for singularity.
If TempMax < 1E-100 Then
GaussJordan1 = CVErr{xIErrDiv0)

Exit Function

End If

'Matrix element(P,C) is pivot eiement.
P = PivotRow(C)
PivotLogical(P) = True
ForJ=1ToN
If J <> P Then
factor = AugMatrix(J, C) / AugMatrix(P, C)
ForR=C+1ToN+1
AugMatrix(d, R) = AugMatrix(J, R) - factor * AugMatrix(P, R)
Next R
End If
Next J
Next C

'Calculate the solution vector and return the specified element.
ForC=1ToN
P = PivotRow(C)
X(C) = AugMatrix(P, N + 1) / AugMatrix(P, C)
Next C
GaussJordan1 = X(value_index)
End Function

Figure 9-5. VBA code for the Gauss-Jordan custom function.
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussJordanFunction")

Figures 9-6 and 9-7 illustrate the use of the GaussElim and GaussJordan
functions to solve systems of simultaneous equations, in this case the
spectrophotometric determination of the concentrations of a mixture of n
components by absorbance measurements at » different wavelengths, as
described in the beginning of this chapter. The absorbance of a six-component
mixture was measured at six wavelengths; in Figure 9-3 the sample absorbances
are in column H and the known molar absorptivities of the six components are in
B5:G10.
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_ A LB L DB B G
g rmolar absorptivities of species 1-6
4 | wavelength, nm €4 B Eg B4 Eg @ Bg eabsorbance
5 | 400 192 191 518 159 32 011 0.3548
6 | 450 175 190 535 B3 66 00 04805
and 500 35 559 157 205 127 019 05185
8 550 26 7.9 159 223 279 079 05075
9 600 083 14 31 382 218 13 0.2598
10 | 650 019 016 015 159 105 080 0.1167

Figure 9-6. Data table for use with the GaussElim or GaussJordan functions.
(folder 'Chapter 09 Simultaneous Equations’, workbook 'Simult Eqns II', sheet 'Elimination Fns')

Figure 9-7 shows the results returned by the GaussElim and GaussJordan2
functions. The results vector is the vector of concentrations of the six
components in the mixture. The percentage error figures in columns L and N are
the errors between the known concentrations and the concentrations returned by
the functions.

As the number of simultaneous equations becomes larger, the errors can
increase drastically. In this system of equations, the values of the first through
fifth variables can be obtained with good precision, since each has a maximum
where the other species do not absorb strongly. The concentration of the sixth
species is subject to significant error. And if the absorbance measurements are
changed randomly by just £1 in the last figure (Figure 9-8), the errors increase
significantly.

Ly Results

4 Concs used  GaussEm % error GaussJdordan % error
5 | 0001043 0001043 = 002 0001043 | 002
B | 0001711 0001711 | 002 0001711 = 0.02
7 | 0002239 0.002239 . 003 0002233 0.3
B | 0001935 0001935 | 002 0001935 002
9 | 0000789 0000788 | 005 0000788  0.05
10| 0002825 0.002925 | 9.6 0002925 96

Figure 9-7. Results from the GaussElim or GaussJordan functions.
(folder ‘Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Elimination Fns")
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Resulis

Concs used GaussElim % error GaussJordan % error
| 0001043 0001044 006 0.001044 0.06
0.0017711  0.001711 0.03 0.001711 _ 0.03
0.002239 0.002233  0.03 0.002239 0.03
0.001935 0001936 0.08 0001936  0.09
| 0000789 0000792 025 0000792 025
| 0.002825  0.002364 44 0.002364 44|

Siwjoi~imio) s jw

Figure 9-8. Results from the GaussElim or GaussJordan functions
when small changes are made in the coefficients (compare Figure 9-7),
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Elimination Fns')

Solving Linear Systems by Iteration

The equations shown at the beginning of this chapter for a system of n
equations in » unknowns can be rearranged so as to give a set of equations for the
n variables

x1 = (€1 — aipxy — ay3xs ... — ApX)an

Xy = (€2 — a23X3 ...~ QX — AN X1)/ A2
and so on.

The variables can be evaluated by means of an iterative procedure: with
initial guesses of the x; ... x, values, new values of the variables are calculated,
using the above equations. These values are used in successive cycles of
iteration until the value of each of the variables has converged, based on a
specified tolerance.

Compared to the direct methods that have been described, iterative methods
are particularly efficient for the solution of sparse matrices. Sparse matrices are
ones in which most of the elements are zero. Physical systems in which the
equations involve only a few of the variables are described by sparse matrices.

The following sections describe two iterative methods: the Jacobi method
and the Gauss-Seidel method.

The Jacobi Method
Implemented on a Worksheet

In the Jacobi method, new values for all the # variables are calculated in each
iteration cycle, and these values replace the previous values only when the
iteration cycle is complete. The Jacobi method is sometimes called the method of
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simultaneous replacement. Improvement in one of the variables does not have an
effect until the next cycle of iteration. For this reason it does not converge as
rapidly as the Gauss-Seidel method, to be described in the following section.

To illustrate, consider a system of order 3,
apx) + apxy + apx; = ¢
anx; + anxy + axnx; =
a3ixy + anx;  azx; = ¢
These equations can be rearranged to give

_ €1 —a1aXy - a13%3

xl =
apy
_Ca —dy1X) ~Ay3X3
x2 =
ax
_ €3 ~4a31¥x ~ 43Xy
X3 =

ass

Begin with initial estimates for x,, x, and x;; in the following example, initial
estimates of zero were used. Then solve for each unknown value; thus

Cl —0—0

X =—
an

c,-0-0

.xz -_——2
ax

C3 —0—0

X3 =
as3

In the second iteration,

C1 - QX - dy3X3

X1

ap
and so on.

The Jacobi method is shown implemented on a spreadsheet. Figure 9-9
shows the table of coefficients and constants.
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B i C | D E
3 coeflicients matrix constants
L 3 ! 1 L 181.05
51 .1 v SFLIUR LA, -1 | 10835
B 1 1 5 142.55

Figure 9-9. Data table for use with the Jacobi method.
(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns IT', sheet 'Jacobi Method')

Figure 9-10 illustrates the portion of the spreadsheet where the Jacobi
method is implemented. Row 9 contains suitable initial values.

Figure 9-10. Satisfactory convergence is reached with the Jacobi method

(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', sheet 'Jacobi Method")

after 23 iteration cycles.

B L C D LB
8 x1 x2 x3 % error (x1)
o 0 0 0 |
10 60, 54 29 7350
11 51.8 383 56 1205
12 495 311 105 3533
13| 535 347 124 - 49.0]
14 529 33.6 109 8.0,
15 52.8. 33.2 11.2 23.6
16 53.03 33.39 1133, 33
17 52.99 33.32 11.22) 0.5
18] 52.98 33.29 11.25 16
19 53.002 33.306 11256 02
20| 53.000 33.301 11.248 0.04
21 52.999 33.299 11.250 0.1
22| 53,0001 33.3004  11.2503 0.015
23| 530000 333001  11.2499 2.38E-03
24 529999  33.3000 11.2500 6.98E-03
| 25| 53000010 33.300027 11.250023 9.68E-04
26| 52999998  33.300007 11.249993 1.59E-04
27| 52999995 33299997  11.249999  4.B5E-04
28| 53.0000006/ 333000018 11.2500015 6.45E-05
29 | 529999939 333000004 11.2499895 1.06E-05
30| 52.9999997 33.2999998 11.2499989  3.10E-05
31 53.00000004 33.30000012 11.25000010  4.30E-06
32 53 33.3 11 7.05E-07)
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Cells B10, C10 and D10 contain, respectively, the formulas
=($E$4-$C$4*C9O-3D$4*D9)/$B%4

=($E$5-$B$5"B9-$D$5*D9)/$C$5
=($E$6-$B$6*B9-$C$6*C9)/$D$6

When these formulas are filled down into successive rows, as shown in
Figure 9-10, the values of the variables x;, x; and x; converge. Convergence to a
suitable level is observed visually. In this particular example, twenty-three
iteration cycles were required to get below the 10™° percent error level (here, the
percentage error in the variable x, is shown).

The Gauss-Seidel Method
Implemented on a Worksheet

In the Gauss-Seidel method, an improved value of one of the variables is
used in the iteration cycle as soon as it has been calculated. The Gauss-Seidel
method is sometimes called the method of successive replacement.

To illustrate, consider the same system of order 3 that was used previously to
illustrate the Jacobi method. Again, begin with initial estimates of zero for x;, x;
and x;. Now solve for each unknown value in turn, using the latest values of the
variables as they are calculated; thus

CI—O“O
x1=—
an
Cy —Qyi1x; -0
X, = 2 21%1

a

_ 53 -931% —d3X%)

*3
asy

In the second iteration,

_ €1 -dpXy -dizxs

X1
ar

and so on.

Using the same constants and coefficients that were used in the preceding
example (Figure 9-10), the spreadsheet formulas in Figure 9-11 can be modified
to implement the Gauss-Seidel method, in which the value of a variable is used
as soon as it is calculated. The formulas in cells B14, C14 and D14 are,
respectively,
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=($E$8-$C$8*C13-3D$8*D13)/$B3$8
=($E$9-$B$9*B14-3D$9*D13)/$C$9
=($E$10-$B$10*B14-$C$10*C14)/$D$10

and, as can be seen in Figure 9-11, the formulas converge more rapidly to the
specified level of precision.

- VIBUE (B340 < UVTL AW EEVIOTE Ao . ILICE) DIt Al
:'12 ﬂeratmn %1 %2 %3 % error (X1
155_2nd T ee2 se
47 an s 332§
18 ' \._5_“1_. l....530 333
" ‘ T mal
B 33 30_ :
_ _33 30
33.300

53000 33300 11250
53000 33300 11250
63.0000 333000 11.2500  0.000)

_____________ 530000 33.3000|  11.2500) 1.03E-06
530000 33 smuclI 11.2500 1.83E-07|
| 53.000000 33.300000| 11.260000 4,08E-08|

| 53.000000 33. 300000? 11.260000 7. 7’95‘?_.‘?'?‘__‘

Figure 9-11. Satisfactory convergence is reached with the Gauss-Seidel method
after 15 iteration cycles.
(folder 'Chapter 09 Simultaneous Equations’, workbook 'Simult Eqns II', sheet 'Gauss-Seidel 1')

You may wish to experiment with changing the values of the coefficients. In
particular, see the effect of making the diagonal elements large, or off-diagonal
elements large.

The Gauss-Seidel Method
Implemented on a Worksheet
Using Circular References

The worksheet in the preceding section can be easily modified to use
intentional circular references, as follows. After entering the starting values in
row 13 and the formulas in row 14 as before (Figure 9-11), change the cell
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references in the formulas in cells B14 and C14 from references to row 13 to
references to row 14. The formulas in cells B14, C14 and D14 are now,
respectively,

=($E$8-3C38*C14-$D$8*D14)/$B3$8
=($E$9-$B$9*B14-$D$9"D14)/$C$9
=($E$10-$B$10*B14-$C$10*C14)/$D$10

This produces the "Cannot resolve circular references" error message. Then
choose Tools—+Options..., choose the Calculation tab, check the Iteration box
and change the Maximum Change parameter to a suitable small value, such as
1E-10 or even zero. When you press OK, the final values of the variables are
returned, as shown in Figure 9-12. Cell A14 contains the formula =A14+1, and
shows that, in this example, one hundred cycles of iteration (the default value in
Tools—Options—Calculation) were performed.

EAE AR RBR Tl ! P T R
12 | iteration #1 X2 X3 % error (X1)
13 | j : :

14] 100 |53.000000/33.300000 11.250000] 0.00E+00

Figure 9-12. The Gauss-Seidel method using intentional circular references.
(folder 'Chapter 09 Simultaneous Equations’, workbook 'Simult Eqns II', sheet 'Gauss-Seidel 2")

A Custom Function Procedure
for the Gauss-Seidel Method

The Gauss-Jacobi and the Gauss-Seidel methods can easily be implemented
as a custom function. Since the Gauss-Seidel method is more efficient, only the
Gauss-Seidel custom function is presented here. The VBA code is shown in
Figure 9-13.

If any of the diagonal elements of the coefficients matrix are zero, a divide-
by-zero error will be produced. Thus it is necessary either to ensure that the
coefficients matrix does not contain any zero diagonal terms before beginning the
solution, or to incorporate code to swap rows if a zero diagonal element is
encountered. The GaussSeidel2 procedure (not shown) includes swapping if a
diagonal element = 0.
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Option Base 1

Option Explicit

L o o
Function GaussSeidel(coeff_matrix, const_vector, Optional init_values)
' Solving systems of linear equations by the GaussSeidel method.

' Coefficients matrix cannot have zero diagonal element.

Dim ResultVector() As Double

Dim i As Integer, J As Integer, K As Integer
Dim N As Integer, Nlterations As Integer
Dim R As Integer, C As Integer

Dim ConvergeFlag As Boolean

Dim result As Double, sum As Double

N = coeff_matrix.Rows.Count

If coeff_matrix.Columns.Count <> N Or const_vector.Rows.Count _
<> N Then GaussSeidel = CVErr(xIErrRef): Exit Function

ReDim ResultVector(N)

' Following shows code for either fixed or adjustable iteration parameters.

' MaxChange and Maxiterations are set in the Tools/Options/Calculation menu.
tolerance = 0.00000001

Niterations = 100

' User can specify optional initial values for the calculation.
' This may be helpful for large arrays.
If Not (IsMissing(init_values)) Then
' Test if init_values is a Range.
If Not (IsError(init_values.Address)) Then
If init_values.Rows.Count = 1 Then
K = init_values.Columns.Count
Else
K = init_values.Rows.Count
End If
Else
' init_values must be an expression.
K = UBound(init_values)
End If
Fori=1ToK
ResultVector(l) = init_values(l)
Next |
End If

' Begin the iteration process.
For J =1 To Nlterations
' Flag will be set to false if any of the result values has not yet converged.
ConvergeFlag = True
' Do each row in the matrix.
ForR=1ToN
sum =0
* Sum each term in the row, but skip term on the diagonal.
ForC=1ToN
sum = sum + coeff_matrix(R, C) * ResultVector(C)
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Next C
sum = sum - coeff_matrix(R, R) * ResultVector(R)
' Calculate the current result value
result = (const_vector(R) - sum) / coeff_matrix(R, R)
' If result exceeds previous value by more than tolerance,set flag to false.
If Abs(ResultVector(R) - result) > tolerance Then ConvergeFlag = False
' Save the current vaiue.
ResultVector(R) = result
Next R
‘ When all terms are done in this loop, exit if all have converged.
If ConvergeFlag = True Then GaussSeidel = _
Application.Transpose(ResultVector): Exit Function
Next J
' Did not converge, so send back an error value.
GaussSeidel = CVErr(xIErrNA)
End Function

Figure 9-13. VBA code for the Gauss-Seidel method.

(folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module ‘GaussSeidelFunction’)

Solving Nonlinear Systems
by Iteration

Systems of nonlinear equations, as exemplified by

w+2x* +3y—4z= —2.580
wx—xy+yx= -3.919

w?+2wx +x* = 1.000

wtx+y—z= -3.663

or

2sinx+3cosy= 04119

28°+3Iny= 3.427

can only be solved by iterative methods. Newton's iteration method is the most
commonly used method for solving systems of nonlinear equations.

Newton's Iteration Method

In a manner similar to that in Chapter 6, we can express each of the n
simultaneous equations:

Fixy, x, .. %) = ¢y

Fy(x1, %2, .., X)) = ¢

Fn(.x1, b % xn) =Cn
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as a Taylor series expansion, e.g.,

a1 =Fia+Ax, o X, Axy)

JF; AF, .
= Fi(x), X3, - Xg) + Ax; —L + -+ + Ax,—L + higher-order terms
dcl n
where the Ax; values are the corrections to the initial estimates of the x; values,
for example, x; = x| + Ax,.

As before, we can obtain a good approximation to the a’}c_l terms by
J
calculating AFi/Ax; (see Chapter 6, "Differentiation™).
The problem has thus been reduced to a linear system

ﬁ ﬂ ﬂ Axl 4]
dcl 5x2 @cn i ‘
ﬁ;‘n %Wf'l

@Cl @Cn A.xn ch

that can be solved by methods that have already been described in this chapter.
The solution process is as follows: with initial estimates of the x; values, we

obtain the —* values by numerical differentiation. We set up the matrix of

J
partial derivatives augmented by the vector of constants and solve for the Ax;
variables. We then use these to calculate improved estimates of the x; values,

oF; .
calculate new values of the —- terms and solve for the Ax; variables. We repeat
J
the process until the magnitude of the Ax; variables is smaller than a specified
tolerance.

The VBA code for the SimultEqNL function is shown in Figure 9-14. The
syntax of the function is SimultEgNL(equations,variables,constants).

The arguments have the same meaning as for the preceding GaussElim,
GaussJordan, or GaussSeidel functions. The function returns the results vector;
since the function is an array function, you must select an appropriately sized
range of cells and press CTRL+SHIFT+ENTER (Windows) or
COMMAND+RETURN or CTRL+SHIFT+RETURN (Macintosh).
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Option Explicit

Option Base 1
o o L R e RIS
Function SimultEgNL(equations, variables, constants)

'Newton iteration method to find roots of nonlinear simuitaneous equations

Dim | As Integer, J As Integer, K As Integer, N As Integer
Dim Nlterations As Integer

Dim R As Integer, C As Integer

Dim VarAddr() As String, FormulaString() As String

Dim con() As Double, A() As Double, B() As Double

Dim V() As Double

Dim Y1 As Double, Y2 As Double

Dim tolerance As Double, incr As Double

N = equations.Rows.Count

K = variables.Rows.Count

If K= 1 Then K = variables.Columns.Count

If K <> N Then SimultEqNL = CVErr(xIErrRef): Exit Function
ReDim VarAddr(N), FormulaString(N), V(N), con(N)

ReDim A(N, N + 1), B(N, N + 1)

tolerance = 0.000000000001 'Convergence criterion.
incr = 0.0000000001 ‘Increment for numerical differentiation.
Niterations = 50

Forl=1ToN
VarAddr(l) = variables(l).Address
Next

"Initial values

Forl=1ToN

con(l) = constants(l).Value

V(ly = variables(l).Value: If V(I) = 0 Then V() = 1
Next

For J = 1 To Nlterations
'Create N x N matrix of partial derivatives.
ForR=1ToN
ForC=1ToN
' FormulaString is formula in which all but one variable in each equation
' is replaced by current values.
FormulaString(R) = Application.ConvertFormula(equations(R).Formula, _
xIA1, xIA1, xlAbsolute)
Forl=1ToN
If | <> C Then FormulaString(R) = Application.Substitute( _
FormulaString(R), VarAddr(l), V(}))
Next |
‘Calculate partial derivative (central differences).
Y2 = Evaluate(Application.Substitute(FormuiaString(R), VarAddr(C), _
V(C) * (1 +incr)))
Y1 = Evaluate(Application.Substitute(FormulaString(R), VarAddr(C), _
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V(C) * (1 - incr)))
AR, C)=(Y2-Y1) /(2 *incr*V(C))
Next C
Next R

'Augment matrix of derivatives with vector of constants.
ForR=1ToN
FormulaString(R) = Application.ConvertFormula{equations(R).Formula,
xlA1, xIA1, xlAbsolute)
ForC=1ToN
FormulaString(R) = Application.Substitute(FormulaString(R), VarAddr(C), _
V(C))
Next C
A(R, N + 1) = con(R) - Evaluate(FormulaString(R))
Next R

Forl=1To N

If Abs((A(l, N + 1)) / V(I)) > tolerance Then GoTo Refine
Next |

SimultEqNL = Application.Transpose(V)

Exit Function

Refine: Call GaussJordan3(N, A, B)
'Update V values

Forl=1ToN

V)=V +A(, N+ 1)

Next |

Next J

' Exit here if no convergence after 50 cycles of iteration

SimultEqNL = CVErr(xIErrNA)

End Function
2 2o a2 T B L e o M M O
Sub GaussJordan3(N, AugMatrix, TempMatrix)

Dim | As Integer, J As Integer, K As Integer, L As Integer, P As Integer

Dim pivot As Double, temp As Double

ForK=1To N

' Locate largest matrix element, use as pivot.

pivot = AugMatrix(K, K): P =K

ForL=K+1ToN

If Abs(AugMatrix(L, K})) < Abs(pivot) Then GoTo EndOfLoop
pivot = AugMatrix(L, K)

P=L

EndOfLoop: Next L

' Swap rows

ForJ=1ToN+1

temp = AugMatrix(K, J)
AugMatrix(K, J) = AugMatrix(P, J)
AugMatrix(P, J) = temp

Next J
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' Normalize pivot row

ForJ=1ToN+1

TempMatrix(K, J) = AugMatrix(K, J) / pivot
Next J

' Do the Gauss elimination.

Fori=1ToN

If | = K Then GoTo EndOfl.oop2
ForJ=1ToN+1

TempMatrix(l, J) = AugMatrix(l, J) - AugMatrix(l, K) * TempMatrix(K, J}
Next J

EndOfLoop2: Next |

Fort=1ToN

ForJ=1To N +1

AugMatrix(l, J) = TempMatrix(l, J)
Next J

Next |

Next K
End Sub

Figure 9-14. VBA code for the SimultEqnNL function procedure.

(folder 'Chapter 09 Simultaneous Equations’, workbook 'NonLinNewton', module 'NewtonlterationlFunction')

As an example of the use of the SimultEgNL function, consider the following

set of four equations:
w' 2w +3w+4= 12.828
wx +xy+yz= -3919
Wi+ 2wx +xP = t
wH+x+y—z= -3.663

The corresponding Excel formulas were entered in E11:E14 of Figure 9-15,

as follows:
=A11°3+2*A11/2+3*A11+4
=A11*B11+B11*C11+C11*D11
=A1172+2*A11*B11+B11/2
=A11+B11+C11-D11

The constants were entered in cells F11:F14 and trial values of the unknowns

in cells A11:D11.
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1 A [ B | C J 0 Lo B G F | G

9 Variables

10 W X y Z Eguations|Constants] Results
11 1 1 1] -1 10000 12828] 1.250
12 | '~ 1.000] -3919] -0.250]
3] il ] 4000|1000 -3.330
14 ke e % ... 40000 -3663]  1.333]

Figure 9-15. A custom function for the Newton method for nonlinear equations.
(folder 'Chapter 09 Simultaneous Equations’, workbook NonLinNewton', sheet 'Figure 9-16")

The custom function was entered in cells G11:G14 as an array formula:
{=SimultEgNL(E11:E14,A11:D11,F11:F14)}

and returned the values of the variables w, x, y and z shown in Figure 9-15. You
can confirm for yourself that this set of results satisfies the set of equations by
entering the results in the four variables cells and see that the values in the
"Equations" cells agree with the values in the "Constants" cells.

The custom function can be entered in the "Variables" cells so that the
"Results" appear there. This creates a circular reference, so you must check the
iteration box in Tools—»Options—+Calculation.

Again, be aware that attempting to solve large systems of equations, or even
small sets of ill-conditioned equations, can lead to erroneous results.
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Problems

Answers to the following problems are found in the folder "Ch. 09 (Simultaneous
Equations)" in the "Problems & Solutions" folder on the CD.

1. Solve the following system of four simultaneous equations:
3+ 1.1x;—2x3 —1.8x4= 11
3.2x; +2.1x; +3.2x3+2.2x,= 0
34x,+23x, +4.1x3+32x,= 6
1.6x;+ 1.1x, —3.2x3+2.4x4 = -5

2. Current flow in a circuit is described by Kirchhoff's laws. A particular
circuit network yielded the following three simultaneous linear equations:

I]+I2—I3= 0
211+513= 7
2h-4L=2

Find the currents /; [, and I in the circuit network.

3. Solve the following system of four simultaneous equations:
2.829x; —2.253x, + 6.777x3 + 3.970x4 = 6.235
1.212x; + 1.995x; + 2.265x; + 8.008x, = 7.319
4.553x; +5.681x; + 8.850x; + 1.302x4 = 5.730
5.808x; — 5.030x; + 0.098x; + 7.832x, =9.574



214 EXCEL: NUMERICAL METHODS

4. The UV-visible spectra of aqueous solutions of CoCl,, NiCl, and CuCl, are
shown in Figure 9-16.
1.0
0.9
0.8
0.7
06
0.5
04
0.3
0.2
0.1
0.0

Absorbance

1 1

350 450 550 650 750
Wavelength, nm

Figure 9-16. UV-visible spectra of cobalt, nickel and copper solutions.

Three wavelengths were chosen at which the absorbance of the three species,
Co®*, Ni** and Cu*, differed significantly. The molar absorptivities of the
three species at the three wavelengths are shown in Table 9-1.

Table 9- 1. Molar Absorptivity &, M'cm™

A/nm Co* Ni* Cu**
394 0.995 6.868 0.188
510 6.450 0.215 0.198
808 0.469 1.179 15.052

A mixture of the three metal ions gave the following absorbance readings at
the three wavelengths: 394 nm, 0.845; 510 nm, 0.388; 808 nm, 1.696, when
measured using a cell with a 1.00-cm path length. Calculate the
concentration of the three metal ions in the mixture, using Beer's Law: 4 =
gbc (4 = absorbance, ¢ = molar absorptivity, b = cell path length in cm, ¢ =
concentration in mol/L).
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5. The following sets of simultaneous equations may or may not be solvable by
the Gaussian Elimination method. For each case, explain why. If solvable,

solve.

(a) x+y+3z=5
2x+2y+2z=14
3x+3y+9z=15
2 -1 17]4

b) 1 3 2|12
3 2 3}416

(©) 2x—y+z=0
x+3y+2z=0
3x +2y+3z=0

(d) X1+X2+X3—X4=2

X]—Xy—X3+tXx4= 0
2x1 +JC2—X3+ZX4= 9
3x1+x2+2x3——x4= 7

6. Solve the following system of six simultaneous equations:

(297 075 123 208 126 0 | [ 793 ]
234 238 123 123 194 2.07 9.79
123 052 0 3.66 018 0.51| | 26.19
1.84 1.89 2.64 265 0.51 0.38 5.10
1.48 040 288 146 0 2.65 8.43
1294 1.55 171 1.06 246 2.97] |-15.74]

7. Solve the following system of nonlinear equations:
2HyP=1
¥-y'=0
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8. Solve the following system of nonlinear equations:
xyz =72
X+ +422=9
2%+ +6z=4



Chapter 10

Numerical Integration of
Ordinary Differential Equations
Part I: Initial Conditions

A differential equation is an equation that involves one or more derivatives.
Many physical problems, when formulated mathematically, lead to differential
equations. For example, the equation (k> 0)

d-)/
= = 10-1
" ky (10-1)

describing the decrease in y as a function of time, occurs in the fields of reaction
kinetics, radiochemistry or electrical engineering (where y represents
concentration of a chemical species, or atoms of a radioactive element, or
electrical charge, respectively) as well as in many other fields. Of course, a
differential equation can be more complicated that the one shown in equation 10-
1; another example from electrical engineering is shown in equation 10-2,

L% Ri-E (10-2)
dt

where R is the resistance in a circuit, L is the inductance, E is the applied
potential, i is the current and ¢ is time.

If a differential equation contains derivatives of a single independent
variable, it is termed an ordinary differential equation (ODE), while an equation
containing derivatives of more than one independent variable is called a partial
differential equation (PDE). Partial differential equations are discussed in a
subsequent chapter.

The general form of an ordinary differential equation is

% = F(x,) (10-3)
X

217
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and although writing the differential equation, such as the above, may be simple,
solving the problem is not. By "solving," we mean that we want to be able to
calculate the value of y for any value of x. Some differential equations, such as
10-1, are solvable by symbolic integration (the integrated equation is In y = —kzt +
const), but many others may not be amenable to solution by the "pencil-and-
paper" approach.  Numerical methods, however, can always be employed to
find the value of the function at various values of £. Although we haven't found
an expression for the function F(x, y), but simply obtained a table of y values as a
function of x, the process is often referred to as "integration."

You may remember from your freshman calculus class that when an
expression is integrated, an arbitrary constant of integration is always part of the
solution. For example, when equation 10-1 is integrated, the result is In y = —kz +
In y,, or y, = yoe"“. A similar situation pertains when numerical methods are
employed: to solve the problem, one or more values of the dependent variable
and/or its derivative must be known at specific values of the independent
variable. If these are given at the zero value of the independent variable, the
problem is said to be an initial-value problem; if they are given at some other
values of the independent variable, the problem is a boundary-value problem.
This chapter deals with initial-value problems, while the following chapter deals
with boundary-value problems.

Solving a Single
First-Order Differential Equation

This section describes methods for solving first-order differential equations
with initial conditions (the order of a differential equation is determined by the
order of the highest derivative in the equation). Two methods will be described:
Euler's method and the Runge-Kutta method. Euler's method is simple in
concept, but not of sufficient accuracy to be useful; it is included here because it
illustrates the basic method of calculation and can be modified to yield methods
of higher accuracy. The Runge-Kutta method, of which there are several
variants, is the usual method of choice. A third method, the predictor-corrector
method, will be described later in this chapter.

Euler's Method

Let us use in our first calculation an example of equation 10-1: the first-order
kinetic process A — B with initial concentration Cyp = 0.2000 mol/LL and rate
constant k = 5 x 107 s'. We'll simulate the change in concentration of the
species A vs. time over the interval from # = 0 to # = 600 seconds, in increments

of 20 seconds.
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The differential equation for the change in concentration of the species A as a
function of time is

d[A)dt = -k A] (10-4)

Expressing this in terms of finite differences, the change in concentration
A[A] that occurs during the time interval from =0 to r = At is

A[A] = —k[A], At (10-5)
Thus, if the concentration of A at £ =0 is 0.2000 M, then the concentration at

t= (0 + A7) is [A] = 0.2000 — (5 x 107)(0.2000)(20) = 0.1800 M. The calculation,
known as Euler's method, is illustrated in Figure 10-1. The formula in cell B7 is

=B6-k*B6*DX.

The concentrations at subsequent time intervals are calculated in the same
way. In general, the formula is

i

Zioee~Noo himfmf-—r;
o

Ynal = Yn "'hF(me’n) (10'6)
where 7= x, .1 — x,,.
LSRRI ORI BT R (RIS
sl_l_n_l_l_l_z_mqn of ﬂrsl order Icmelics by Eulel s Melhnd
rate constant=  50E-03 | (k)
tlme increment = 20 (22

U GEWen | Gexad
' 02000 | 02000 |

20 | 01800 | 0.1810
40 01620 | 01637
ey 04312 | o134
_______ to0 o8 01213
12| 120 0.1083 01098

Figure 10-1. Simulation of first-order kinetics by Euler's method.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Euler)

The advantage of Euler's method is that it can be easily expanded to handle
systems of any complexity. It is not particularly useful, however, since the error
introduced by the approximation d[A)/dt = A[A)/At is compounded with each
additional calculation. Compare the Euler's method result in column B of Figure
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10-1 with the analytical expression for the concentration, [A], = [Aloe™, in
column C. At the end of approximately one half-life (seven cycles of calculation
in this example), the error has already increased to 3.6%. Accuracy can be
increased by decreasing the size of Az, but only at the expense of increased
computation. A much more efficient way of increasing the accuracy is by means
of a series expansion. The Runge—Kutta methods, which are described next,
comprise the most commonly used approach.

The Fourth-Order Runge-Kutta Method

The Runge—Kutta methods for numerical solution of the differential equation
dyldx = F(x, y) involve, in effect, the evaluation of the differential function at
intermediate points between x, and x,.;. The value of y,., is obtained by
appropriate summation of the intermediate terms in a single equation. The most
widely used Runge—Kutta formula involves terms evaluated at x,, X,.as; and
Xp+ar. The fourth-order Runge—Kutta equations for dy/dx = F(x, y) are

I, + 2T, + 215 + T, Ax

Yne1 =Vn + 6 (10-7)
where Ty = F (Xn, V) (10-8)
T = Flr+ 2%, + 0y (10-9)
2 2
Ty = F+ 2 5+ 1y (10-10)
2 2
Ty = F(x, tAx,y,+ T5) (10-11)

If more than one variable appears in the expression, then each is corrected by
using its own set of T to T} terms.

Fourth-Order Runge-Kutta Method
Implemented on a Worksheet

The spreadsheet in Figure 10-2 illustrates the use of the RK method to
simulate the first-order kinetic process A — B, again using initial concentration
[A]o = 0.2000 and rate constant k = 5 x 107, The differential equation is, again,
equation 10-4. This equation is of the simple form dy/dx = F(y), and thus only
the y; terms of 77 to T4 need to be evaluated. The RK terms (note that T is the
Euler method term) are shown in equations 10-12 through 10-15.
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Ty = —k[A], Ax (10-12)
T, = —k([A], + T\/2) Ax (10-13)
Ty = —k([A], + T/2) Ax (10-14)
Ty = —k([A]: +T3) Ax (10-15)

R IR T R R R S R R

| Runge-Kutta simulation of first order kinetics

R rate constant= 5.0E-03 | (k)

time inc:rernent= 20 {B)9]

 TA1  TA2 TA3 TA4  RK  exact
o I 02000 02000
| 20 -0.0200 -0.0190 -0.0191 -0.0181 0.1810 | 0.1810
| 40 -0.0181 -00172 -0.0172 -0.0164 0.1637 0.1637 |
9 | 60 -0.0164 -0.0156 -0.0156 -0.0148 0.1482 | 0.1482
10 80 -0.0148 -0.0141) -0.0141) -0.0134 01341 | 0.1341
111100 -0.0134 -0.0127 -0.0128 -0.0121 01213 01213
2 120 -0.0121 -0.0115 -0.0116 -0.0110] 0.1098 = 0.1098

13140 -0.0110 -0.0104  -0.0105 -0.0099  0.0993 ' 0.0993 |

oo~ oo s win=
-

Figure 10-2. Simulation of first-order kinetics by the Runge—Kutta method.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'RK1")

The RK equations in cells B7, C7, D7, E7 and F7, respectively, are (only part
of the spreadsheet is shown; the formulas extend down to row 74):

=-k*F6*DX

=-k*(F6+TA1/2)*DX
=-k*(F6+TA2/2)*DX
=-k*(F6+TA3)*DX
=F6+(TA1+2*TA2+2*TA3+TA4)/6.

If you use the names TAl, ..., TA4 you can use AutoFill to generate the
column labels TA1, ..., TA4. These names are accepted by Excel, whereas T1 is
not a valid name. As well, the nomenclature is expandable to systems requiring
more than one set of Runge—Kutta terms (e.g., TB1, ..., TB4, etc.).

Compare the RK result in column F of Figure 10-2 with the analytical
expression for the concentration, [A]: = [A)se™, in column G. After one half-life
(row 13) the RK calculation differs from the analytical expression by only
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0.00006%. (Compare this with the 3.6% error in the Euler method calculation at
the same point.) Even after 10 half-lives (not shown), the RK error is only
0.0006%.

In essence, the fourth-order Runge—Kutta method performs four calculation
steps for every time interval. The percent error after one half-life (+ = 140) is
only 6 x 10°%. In contrast, in the solution by Euler's method, decreasing the
time increment to 5 seconds to perform four times as many calculation steps still
only reduces the error to 0.9% after 1 half-life.

If the spreadsheet is constructed as shown in Figure 10-2, you can't use a
formula in which a name is assigned to the values of the calculated concentration
in column F (the range $F$7:3F$74). This is because the formula in B7, for
example, will use the concentration in F7; this is called an implicit intersection.
An alternative arrangement that permits using a name for the concentration [A],
is shown in Figure 10-3. Each row contains the concentration at the beginning
and at the end of the time interval. The name C_t can now be assigned to the
array of values in column Bj; the former formulas (now in cells $C$7:3G$74)
contain C_t in place of F6 and cell B7 contains the formula =G6.

e e G T R
' _Runge-Kutta simulation of first order kinetics
rate constant= 5.0E-03 | (¥ :

' time increment = 20 OX

1t & TAM1 | TA2  TA3 | TA4  RK  exact

0 -0.0191 -0.0181 0.1810  0.1810
|20 01810 -0.0181 -0.0172 -00172 -0.0164| 0.1637 | 0.1637
8 40 01837 -0.0164 -0.0156 -0.0156 -0.0148 01482  0.1482
9 [__a_u_ 01482  -0.0148 -0.0141 -0.0141 -0.0134] 0.1341 | 0.1341

10| 80 01341 -0.0134 -0.0127 -0.0128 -0.0121 01213 01213
11100 01213 -0.0121 -0.0115 -0.0116 -0.0110 01098 01098

| 0 02000 -0.02000 -0.0190

omi~o ;s win

12 120 01098 -0.0110 -0.0104 -0.0105 -0.0089 0.0993 0.0993

13 /140 00993 -0.0099 -0.0094 -0.0095 -0.0090 0.0899  0.0899

14/160 00899  -0.0090 -0.0085 -0.0086 -0.0081 0.0813 0.0813

Figure 10-3. Alternative spreadsheet layout for the Runge-Kutta method.
(folder 'Chapter 10 Examples', workbook 'ODE Examples’, worksheet 'RK2'")

The RK equations in cells C6, D6, EB, F6 and G6, respectively, are
=-k*C_t*DX

=-k*(C_t+TA1/2)*DX

=-k*(C_t+TA2/2)*DX
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=k*(C_t+TA3)*DX
=C_t+(TA1+2*TA2+2*TA3+TA4)/6

and cell B7 contains the formula =G6.

Fourth-Order Runge-Kutta Method
Applied to a Differential Equation
Involving Both x and y

In the preceding examples, the differential equation involved only the
dependent variable y. In the general case, the differential equation can be a
function of both x and y. The following example illustrates the use of the Runge-
Kutta method for dy/dx = F(x, y).

A function is described by the differential equation
dyldx = 2x* + 2y (10-16)
and the function has the value y = 0.5 at x = 0. We want to find the value of the
function over the range x = 0 to x = 1. Figure 10-4 illustrates the use of the RK

method to model the function. The formulas for the 71—T, terms, in cells B11 to
E11 are, respectively,

=2*A10"2+2*F10
=2*(A10+deltax/2)*2+2*(F10+B11*deltax/2)
=2*(A10+deltax/2)*2+2*(F10+C11*deltax/2)

Al B C D E [ F G

7 Formula for TAZ: F(x+AX2, y+T1*A42)

g Formula for Y.y + (T1+2*T2+2*T3+T4)*AX/6

9 | R TA1 A2 TA3 TA4 Y Y{exact) % error
0.0 0.5000 | 0.5000

>y

| 01 1000 1105 1116 1243 06114 ' 06114 1.8E-08
2 02 1243 1392 1407 1584 07518 07518 4.0E-06
13 03 1584 1787 1807 2045 09321 09321 6.6E-06
14 04 2044 2314 2341 2652 1.1655 11655 O.3E-06
15/05 2651 3001 3036 3438 14683 | 14683 1.2E-05
|16, 06 3437 3885 3930 4.443 1.8601  1.8601 1.5E-05
|17 07 4440 5009 5066 5713 23652 | 2.3652 1.7E-05
' 18/08 5710 6426 6498 7.310 3.0130 | 3.0130 2.0E-05
19109 7306 8202 8291 9304 38396 3.8396 2.2E-05
|20 10 9299 10414 10526 11784 48889 | 4.8891 2.4E-05

Figure 10-4. The fourth-order Runge—Kutta method applied to ' = 2x742y.
(folder 'Chapter 10 Examples’, workbook 'ODE Examples', worksheet '‘Both x and y (Formulas)')
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=2*(A10+deltax)*2+2*(F10+D11*deltax)
and the formula for y,+1, in cell F11, is
=F10+(B11+2*C11+2*D11+E11)*deltax/6

Figure 10-4 shows the agreement between the RK values and the exact
values (the unknown function is y = e — x* —x—0.5). The errors are small and
increase only slowly with increasing x.

Fourth-Order Runge-Kutta Custom Function
for a Single Differential Equation

with the Derivative Expression

Coded in the Procedure

The Runge-Kutta formulas can be implemented in the form of a VBA custom
function. The VBA code is shown in Figure 10-5.

This first version can handle a single first-order ordinary differential
equation; the expression for the derivative must be "hard-wired" in the VBA
code. The syntax of the function is Runge(x_variable, y_variable, interval).
The function returns the value of y (the dependent variable) at x + Ax, based on
the values of x (the independent variable), y and a differential equation. The
arguments x_variable and y_variable are references to cells containing the values
of x and y in the derivative expression coded in the subroutine. The argument
interval is a value or cell reference or formula that specifies the interval of x over
which the Runge-Kutta integration is to be calculated.

Option Explicit

Function Runge(x_variable, y_variable, interval)

‘Runge-Kutta method to solve a single first-order ODE.
‘Expression for derivative must be coded in subroutine.

Dim T1 As Double, T2 As Double, T3 As Double, T4 As Double
' Calculate the RK terms

T1 = interval * deriv(x_variable, y_variable)

T2 = intervai * deriv(x_variable + interval / 2, y_variable + T1/2)
T3 = interval ® deriv(x_variable + interval / 2, y_variable + T2/ 2)
T4 = interval ® deriv(x_variable + interval, y_variable + T3)

Runge =y variable + (T1+2*T2+2*T3+T4)/6

End Function

R I et o o L A N En L e ey
Function deriv(X, Y)

‘Code the derivative here.

deriv=2*X"2+2*Y

End Function

Figure 10-5. Simple custom function for Runge-Kutta calculation.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', module 'SimpleRungeKutta')
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Figure 10-6 illustrates the use of the custom function. The formula in cell C9
is

=Runge(A8,C8,A9-A8)

T A e A R R TR
73 X Y(exach) Y(Runge) % error
8| 00 050000 050000 @
9| 01 061140 061140  1.8E-06
0] 02 | 075182 075182 = 4.0E-06
A1) 03 093212 083211 6.6E-06
12| 04 | 118554 116563  9.3E-06
13| 05 | 148828 146826 12605
14 06 186012 186008  1.5E-05
16| 07 | 238520 | 2.36516 1.7E-05
16, 08 301303  3.01297 2.0E-05
17/ 08 383965  3.83956  2.2E-05
18] 1.0 488908 488884 = 24E-05

Figure 10-6. The fourth-order Runge-Kutta method applied to y' = 2x*+2y
by using a user-defined function.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet ‘Both x and y (Simple RK function)’)

In following sections, procedures will be provided to handle systems of
simultaneous differential equations. In addition, the VBA code will be modified
so that the expression for the derivative is passed to the function as an argument.

Fourth-Order Runge-Kutta Custom Function
for a Single Differential Equation

with the Derivative Expression Passed

as an Argument

The custom function Runge described in the preceding section simplifies the
solution of an ordinary differential equation, but the VBA code must be modified
for each case. The custom function to be described next permits the user to enter
the expression for the derivative as an Excel formula in a worksheet cell and pass
the expression to the custom function as an argument. This custom function uses
the method employed in previous chapters: the Formula property is used to
obtain the formula of (in this case) the derivative, the SUBSTITUTE function to
replace a cell reference in the formula with a value, and the Evaluate method to
calculate the value of the function. The VBA code is shown in Figure 10-7. The
syntax of the function is Runge1(x_variable, y_variable, deriv_formula,
interval). The arguments x_variable (the independent variable), y_variable (the
dependent variable) and interval are as described in the previous section; the
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argument deriv_formula is a reference to a cell containing the derivative in the
form of worksheet formula.

A more advanced version that handles multiple differential equations will be
presented later.

Option Explicit

Function Runge1(x_variable, y_variable, deriv_formula, interval)
'Runge-Kutta method to solve ordinary differential equations.
'Solves problems involving a single first-order differential equation.
‘Derivative expression passed as an argument.

Dim FormulaText As String

Dim XAddress As String, YAddress As String
Dim X As Double, Y As Double

Dim H As Doubile, result As Double

'GET THE FORMULA AND REFERENCE ARGUMENTS

FormulaText = deriv_formula.Formula

'Make all references absolute

FormulaText = Application.ConvertFormula(FormulaText, xIA1, x1A1, _
xlAbsolute)

XAddress = x_variable.Address ‘absolute is default

X = x_variable.Value

YAddress = y_variable.Address ‘absolute is default

Y =y_variable.Value

Runge1 = RK1{XAddress, YAddress, X, Y, interval, FormulaText)

End Function

L m e Em e S S e et o
Private Function RK1(XAddress, YAddress, X, Y, H, FormulaText)

' Calculate the RK terms

Dim T1 As Double, T2 As Double, T3 As Double, T4 As Double
Dim result As Double

Call eval(XAddress, YAddress, X, Y, FormulaText, result)

T1 =result*H

Call eval(XAddress, YAddress, X + H/2,Y + T1/ 2, FormulaText, result)
T2 =result* H

Call eval(XAddress, YAddress, X + H/2,Y + T2/ 2, FormulaText, result)
T3 =result*H

Call eval(XAddress, YAddress, X + H, Y + T3, FormulaText, result)

T4 =result * H

RK1=Y+(T1+2*T2+2*T3+T4)/6

End Function

B e e o o o T N et
Sub eval(XRef, YRef, XValue, YValue, FormulaText, result)

‘Evaluates the derivative formula. Replaces each instance of, e.g., $A%2 in
formula with number value, e.g., 0.20, then evaluates.

‘Must do this replacement from end of formula to beginning.

‘Modified 03/08/06 to handle possible un-intended replacement of e.g., $A$2 in
$A%22.

'Method: replace $A$2 with value & " "

'so that $A$22 becomes "0.20 2" and this formula evaluates to an error.
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Dim T As String, temp As String
Dim NRep! As Integer, J As Integer
Dim dummy As Double

T = FormulaText
'First, do substitution of all instances of x address with value
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ""))) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, XValue & " ", J)
On Error GoTo ErrorHandler1
dummy = Evaluate(temp)
T=temp
pt1: Next J
'"Then do substitution of all instances of y address with value
NRepl = (Len(T) - Len(Application.Substitute(T, YRef, ""))) / Len(YRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, YRef, YValue & " ", J)
On Error GoTo ErrorHandler2
dummy = Evaluate(temp)
T=temp
pt2: Next J
result = Evaluate(T)
Exit Sub

'ERROR HANDLER ROUTINES.
ErrorHandler1:
"Trappable error number 13 (Type mismatch) is expected.
If Err.Number = 13 Then
On Error GoTo 0  'Disable the error handler.
Resume pt1  'and continue execution.
Else
End 'Some other error, so quit completely
End If
ErrorHandler2;
If Err.Number = 13 Then
On Error GoTo 0
Resume pt2
Else
End
End If
End Sub

Figure 10-7. Custom function for Runge-Kutta calculation.
(folder 'Chapter 10 Examples', workbook 'ODE Examples’, module 'RungeKuttal’)

In Figure 10-8, the custom function is applied to the same first-order reaction
kinetics problem that was calculated on a worksheet in the preceding sections.
The formulas in cells C6 and D7 are, respectively,

=-k*D6
and =Runge1(A6,D6,C6,A7-AB)
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3 N - B el SRR R B s
1 | First- Q_r_(lt_al_ _R_e;:_{_:i_ip_n _{__A ->B) Ust_ RH Custom Function
2 rate constant= | 5.00E-03 (K
a . Cinitial = | 10.2000 (C)
4 ucn:n =-kC |
51 t  Cyexach : _cfmunnen % Error
B D 0. 2000_00 5 . 0.200000
4.1 20 0.180967 -9 DSE 04 | 0180968 9.06E-06

B | 40 0163746 -8.19E-04 | 0163746 1.81E-05
9 | 60 @ 0148164 -7.41E-04 0.148164  272E-05

(10| 80 = 0.134064 -6.70E-04 0.134064  3.62E-05
11] 100 | 0.121306 -6.07E-04 | 0.121306 & 453E-05
12| 120 0109762  -549E-04 | 0109762 | 5.44E-05
13| 140 | 0099317| -4.97E-04 | 0099317 | B.34E-05
14| 180 | 0.089866 | 0.089866 | 7.25E-05
15| 180 | 0.081314) 0081314  815E-05
18] 200  0.073576) -3.68E-04 0073576 9.0BE-05
17| 220 0066574 -3.33E-04 0.066574 9.96E-05
18| 240  0.060239 -3.01E-04 0.060238 1.09E-04
19| 260  0.054506| -2.73E-04 = 0.054506 1.18E-04
20| 280  0.049319 -247E-04 | 0.049319 1.27E-04

21| 300 | 0044626  -2.23E-04 | 0.044626 = 1.36E-04

Figure 10-8. Simulation of first-order kinetics by using a Runge-Kutta custom function.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'First Order')

If you compare Figure 10-8 with Figure 10-3, you can see that the
spreadsheet calculations are simplified considerably.

Systems of First-Order Differential
Equations

Sometimes a system is described by several differential equations. For
example, the coupled reaction scheme

ki ks
A=B=C
results in the simultaneous equations

d[A4
—Q=—k1[1‘1]z +k, [B], (10-17)

dt

d(B]

== k[ 4], -k, [B], —k3[B], +k4[C], (10-18)

dt
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diC]
———=k3[B], —k,[C], (10-19)

dt
The Runge-Kutta formulas can be used to solve systems of simultaneous
differential equations, such as equations 10-17, 10-18 and 10-19. For a system
with independent variable x, N dependent variables y; and N differential equations

dyfdx = F{x,y1,¥2 .-, JN) (10-20)
the relationships are

T]i = Fi(x,yl,yz,...,yN)Ax (10-21)

Iy =Fi(x+Ax/2, y1 + T2, y2 + T12/2,..., yn + T1N2) Ax ~ (10-22)

etc., and
Ay, = (Ty; + 2Ty + 215 + Ty)/6 (10-23)

Systems of simultaneous differential equations, such as equations 10-17, 10-
18 and 10-19, can be solved by using worksheet formulas, but it is much more
convenient to use a custom worksheet formula, described in the following
section.

Fourth-Order Runge-Kutta Custom Function
for Systems of Differential Equations

The simple Runge-Kutta custom function of Figure 10-4 was expanded so as
to handle multiple differential equations, by using equations 10-21 through 10-
23. The VBA code is shown in Figure 10-9.

The syntax of the custom function is
Runge3(x_variable, y_variables, deriv_formulas, interval, index).

The argument x_variable is a reference to the cell containing the independent
variable, the argument y_variables is a reference to the range containing the
values of the N dependent variables, and the argument deriv_formulas is a
reference to the range containing the formulas of the N derivatives, in the same
order as y_variables. For y_variables and deriv_formulas, the user can enter a
range of cells or make a nonadjacent selection. The argument increment is the
Ax used in the calculation. The optional argument index specifies the dependent
variable to return; if omitted, the function returns the complete array of
dependent variables. In this case the user must select a range of cells in a row,
enter the formula and then press CONTROL+SHIFT+ENTER. Since the function
always calculates the complete array, this can save calculation time if several
dependent variables are being returned.
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Option Explicit

Option Base 1

L N B N TR S By S A S e e E R e
Function Runge3(x_variable, y_variables, deriv_formulas, interval, Optional _
index)

'Runge-Kutta method to solve ordinary differential equations.

'Solves problems involving simultaneous first-order differential equations.

'x_variable is a reference to the independent variable x.

'y_variables is a reference to the dependent variables y(1) ... y(N).
‘deriv_formulas is a reference to the derivatives dy(i)/dx, in same order.
"interval is a reference to delta x

‘index specifies the y(i) to be returned. If omitted, returns the array.

Dim FormulaText() As String, XAddr As String, YAddr() As String
Dim J As Integer, N As Integer

N = y_variables.Columns.Count
If N =1 Then N = y_variables.Rows.Count
ReDim FormulaText(N), YAddr(N)

'GET THE X REFERENCE, Y REFERENCE AND DERIVATIVE FORMULA
XAddr = x_variable.Address
ForJ=1ToN

YAddr(J) = y_variables(J).Address

FormulaText(J) = Application.ConvertFormula(deriv_formulas(J).Formula, _
xIA1, xIA1, xlAbsolute)
Next J

If IsMissing(index) Then

Runge3 = RK3(N, FormulaText, XAddr, YAddr, x_variable, y_variables,
interval)
Else

Runge3d = RK3(N, FormulaText, XAddr, YAddr, x_variable, y_variables, _
interval) (index)
End If
End Function
B o o o N o o Rt b E L Lt o
Private Function RK3(N, FormulaText, XAddr, YAddr, x_variable, y_variables, _
H)
Dim X As Double, Y() As Double, term() As Double
Dim J As Integer, K As Integer
ReDim term(4, N), Y(N)

K =1: X = x_variable.Value
For J=1To N: Y(J) = y_variables(J).Value: Next J
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term)
K =2: X =x_variable.Value + H/ 2
ForJ=1To N: Y(J) = y_variables(J).Value + term(1, J) / 2: Next J
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term)
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K = 3: X = x_variable.Value + H/ 2
For J =1 To N: Y(J) = y_variables(J).Value + term(2, J) / 2: Next J
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term)

K = 4: X = x_variable.Value + H
For J = 1 To N: Y(J) = y_variables(J).Value + term(3, J): Next J
Call eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term)

ForJ=1ToN

Y(J) = y_variables(J).Value+(term(1, J)+2*term(2, J)+2*term(3, J)+term(4, J)) /6
Next J

RK3=Y

End Function

B L i b Bt
Sub eval3(N, FormulaText, XAddr, YAddr, X, Y, H, K, term)

Dim | As Integer, J As Integer

Dim T As String

ForJ=1ToN
T = FormulaText(J)
Call SubstituteInString(T, XAddr, X)

Fort=1To N
Call SubstituteInString(T, YAddr(!), Y(1))
Next |
term(K, J) = H * Evaluate(T)
Next J
End Sub

I i L B T o R R o
Sub SubstituteInString(T, Ref, Value)

‘Replaces each instance of e.g., $A$2 in formula with number value, e.g., 0.20,
then evaluates.

'Must do this replacement from end of formula to beginning.

‘Modified 03/08/06 to handle possible un-intended replacement of e.g., $A%$2 in
$A$22.

'Method: replace $A$2 with value & " "

'so that $A$22 becomes "0.20 2" and this formula evaluates to an error.

Dim temp As String
Dim NReplacements As Integer, J As Integer
Dim dummy As Double

'Substitute all instances of address with value
NReplacements = (Len(T) - Len(Application.Substitute(T, Ref, ""))) / Len(Ref)
For J = NReplacements To 1 Step -1
temp = Application.Substitute(T, Ref, Value & " ", J)
On Error GoTo ErrorHandler
dummy = Evaluate(temp)
T =temp
pt1: Next J
Exit Sub

ErrorHandler:
‘Trappable error number 13 (Type mismatch) is expected.
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If Err.Number = 13 Then
On Error GoTo 0  'Disable the error handler.
Resume pt1  'and continue execution.
Else
End 'Some other error, so quit completely
End If
End Sub

Figure 10-9. Fourth-order Runge-Kutta custom function
for systems of differential equations.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', module 'RungeKutta3')

Figures 10-10, 10-11 and 10-12 illustrate the use of Runge3 to simulate some
complex chemical reaction schemes. Figure 10-10 shows concentration vs. time
for the consecutive first-order reaction scheme

A—>B->C

for which the differential equations are

d[A],
Al __pra 10-24
o 1[AL ( )
d[B
B _ kg 1a), - Ky B, (10-25)
dt
d[C],
A kB 10-26
dt 3[ ]t ( )
0.005 ¢
-d
S 0.004
E
§ 0003
£
S
=
§ 0002
S
0.001
0.000 1 :

0 2 4 6 8 10
time, seconds

Figure 10-10. Runge-Kutta simulation of consecutive firstjorder reactions.
(folder 'Chapter 10 Examples’, workbook 'ODE Examples’, worksheet 'A->B->C")
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The parameters used in the simulation were [A], = 5.00 x 102 mol L™, &k, =
05s andk, =045

Part of the spreadsheet is shown in Figure 10-11. The formulas for the
derivatives, in cells G10, H10 and 110, are

=-k_1*J10
=k_1*J10-k_2*K10
=k_2*K10

and the formulas in cells J11, K11 and L11 are
=Runge3(A10,J10:L10,G10:i10,A11-A10,1)
=Runge3(A10,J10:L10,G10:110,A11-A10,2)
=Runge3(A10,J10:L10,G10:110,A11-A10,3)

B | time Using Runge-Kutta custom function
9 | | (sec)  d[Aldt  d[Blidt  d[Clidt (Al [B) [Ch

10 00 -250E-03 2.50E-03 0.00E+00 5.00E-03 0.00E+00|0.00E+00
11 0.2 -0.00226 000208 1.83E-04 4.52E-03 457E-04 1.88E-05
12 06 -1.85E-03 1.39E-03 4.58E-04 3.70E-03 1.15E-03 1.51E-04
13 1.0 -1.52E-03 8.78E-04 6.38E-04 3.03E-03 1.59E-03 3.73E-04
14| 1.4 [-1.24E-03 4.95E-04 7.4BE-04 248E-03 1.87E-03 6.52E-04
15 1.8 -1.02E-03 2.15E-04 8.02E-04 2.03E-03 2.00E-03 | 9.63E-04
16| 2.2 |-8.32E-04 1.31E-05 B.18E-04 1.66E-03 2.05E-03 1.29E-03
17| 26 -6.81E-04 -1.28E-04 8.09E-04 1.36E-03 2.02E-03 1.61E-03
18 30 |-558E-04 -2.23E-04 7.81E-04 1.12E-03 195E-03 1.93E-03
19| 40 -3.38E-04 -3.27E-04 6.65E-04 B6.77E-04 1.66E-03 2.66E-03
120 5.0 _-2_,usE_ -04 -3.27E-04 5.32E-04 4.11E-04 1.33E-03 3.26E-03
21| 60 |-1.25E-04 -2.84E-04 4.09E-04 2.49E-04 1.02E-03 3.73E-03
22 7.0 -7.56E-05-2.30E-04 3.06E-04 1.51E-04 7B5E-04 4.08E-03
23| 80 -459E-05-1.78E-04 2.24E-04  9.18E-05 561E-04 4.35E-03
124 9.0 |-2.78E-05 -1.34E-04 1.62E-04 557E-05 4.05E-04 4.54E-03

(25 100 |-1.69E-05 -8.89E-05 1.16E-04 3.38E-05 289E-04 4.68E-03

Figure 10-11. Spreadsheet for the Runge-Kutta simulation
of consecutive first-order reactions.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'A->B->C")
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The arguments of the function can be entered in other ways. Two of these
are illustrated in rows 12 and 13 of the spreadsheet. If the derivatives are located
in non-adjacent cells, the deriv_formulas argument can be entered as a non-
adjacent selection, as illustrated by the formula in cell J12:

=Runge3(A11,(J11,K11,L11),G11:111,A12-A11,1)

The cell references must be enclosed in parentheses and separated by commas.
The function can also be entered as an array formula, as in cells J13:L13

{=Runge3(A12,J12:L12,G12:112 A13-A12)}

In this simulation, the largest errors are about 0.05%.

Figure 10-12 shows a second example, concentration vs. time for a second-
order autocatalytic reaction scheme. An autocatalytic reaction is one in which a
product acts as a catalyst for the reaction. The reaction has two pathways: an

uncatalyzed path (A-—>B) and an autocatalytic path (A + B — 2B). The rate law
(the differential equation) is

—d[A)/dt = dBl/dt = ko[A], + ki[A][B], (10-27)

The parameters used in the calculation were: &k, = 1.00 x 107 s & = 0.50
M s, C=0.0200 M. The spreadsheet can be examined on the CD-ROM.

0.020

0.010 +

concentration, mol/L

0000 & L ! 1 L 1 I

0 200 400 600 800 1000 1200
time, seconds

Figure 10-12. Runge-Kutta simulation of second-order autocatalytic reaction.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Autocatalytic')
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Predictor-Corrector Methods

The methods in the preceding sections are one-step methods. They need only
the value of the preceding point to calculate the value of the new point. Thus
they are self-starting methods. Predictor-corrector methods, on the other hand,
use the values of two or more previous points to calculate the value of the new
point. They are not self-starting; two or more known initial values are needed.
Often a Runge-Kutta calculation is used to provide the needed values.

Predictor-corrector methods use two formulas, the predictor equation and the
corrector equation. There are many forms of predictor and corrector equations,
but all operate according to the same principle: calculate an approximate value of
the function using a predictor equation, then use a corrector equation to correct
the value.

A Simple Predictor-Corrector Method

To illustrate the method we will modify the simple Euler method, equation
10-6, as follows. The predictor equation is

Y1l = Yn-l +2hF(xn,yn) (10'28)

which requires values at x,; and x, to calculate y,.;. Once we have an
approximate value for y,.;, we use the corrector equation

F'(xnayn)'*‘F'(anaynH)j
2

Ynel =¥n + h[ (10-29)

to get an improved value of y,.;. The corrector equation is used iteratively: the
value of y,.; is used to obtain an improved value of y,.,; and the process is
continued until a specified level of convergence is obtained. Two starting values
are required, and generally only a single value at x, is provided as part of the
statement of the problem; the fourth-order Runge-Kutta method can be used to
obtain the other starting value.

The worksheet shown in Figure 10-13 illustrates the application of this
simple predictor-corrector formula. Again we use as an example the simulation
of the first-order kinetic process A — B with initial concentration Cy = 0.2000
mol/L and rate constant £ = 5 x 10~ s™'. Again, we use a time increment of 20

seconds.
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S SRR R R T S LS TR
Simulating First-Order Reaction
‘Using Two-point Predictor-Corrector Method

1

2 (Yalues in bold are inttial values)

3 t Pred Corrl Comn2 Con3 Corrd
4_ 0 | 0.2000 Differance betweeh successive values (row 11)
5120 04810 | -35-05 | 2606 | -8£-08 | 4£-09
5 |
7

B8

9

I T SR

| 40 016381 016373 016373 016373 0.16373
60 | 014821 014821 014821 014821 | 014821
| 80 | 013417 013408 013409 | 013409 | 0.13409
| 100 012137 012139 012139 012138 | 012139
| 120 010989 010981  0.10881 | 0.10981 | 0.10981
111140 009840 | 008943 | 008842 | 009942 | 009942
12/ 160 | 0.09001 008992 008993 008993 | 0.08993
113180 008139 008144 008144 008144 | 008144 °
14| 200 | 007373 007364 007364 = 007364  0.07364

Figure 10-13. Decreasing error in the Euler method

by a simple predictor-corrector method.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Predictor-Corrector Method")

The predictor formula was entered in column B. The first two values, shown
in bold, are the starting values; the predictor formula, in cell B6, corresponds
exactly to equation 10-28 and is

=B4+2*DX*-k*B5

The corrector formula, in cell C8, corresponds exactly to equation 10-29 and

=$B5+DX*(-k*$B5-k*B6)/2

The preceding formula is used iteratively. The formula (note the use of
relative and mixed references) was Filled Right to perform the iterations. The
formulas in row 5 were added to display the difference between a corrected value
and the preceding one (for example, the formula in cell C5 is

=B11-C11

and shows how the corrector formula converges).

A Simple Predictor-Corrector Method
Utilizing an Intentional Circular Reference

An intentional circular reference can be used in the corrector formula to
eliminate the need to Fill Right the corrector formula in order to perform the
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iterations. The corrector formula in cell C6 is changed from the formula shown
above to

=$B5+DX*(-k*$B5-k*C6)/2

which creates a circular reference, since cell C6 refers to itself. A circular
reference is usually an error; Excel displays the "Cannot resolve circular
references” error message and puts a zero in the cell. In this case, however, the
circular reference is intentional. We can make Excel recalculate the value in
each cell, using the result of the previous iteration. To "turn on" iteration, choose
Tools —+ Options - Calculation and check the Iteration box. Unless you change
the default settings for iteration, Microsoft Excel stops calculating after 100
iterations or after the circular reference value changes by less than 0.001 between
iterations, whichever comes first. Enter 1E-9 in the Maximum Change box.
When you press OK the iterative circular reference calculation will begin. You
can Fill Down the formula into the remaining cells in column C. The
calculations in columns D-F are no longer needed and can be deleted. The
spreadsheet is shown in Figure 10-14.

The value displayed in cell C6 is identical to the value that would be
obtained by extending the corrector formula to, in this case, the tenth iteration
(these calculations can be seen in columns G-L in the spreadsheet of Figure 10-
13).

The errors obtained by using the modified Euler method are significantly less
than with the simple Euler method, but greater than with the fourth-order Runge-
Kutta method.

bt A8 SEEGAH <IN RN PoIARGRRN IO D TR FOEPIL S Bl
Simulating First-Order Reaction
Using Two-point Predictor-Corrector Method
A éihgle corrector formula employing a circular reference)

t Pred Corr
| 0 0.2000
| 20 | 0.1810

| 40 | 016381 | 0.16373
| 60 | 014821  0.14821

80 | 013417 0.13409

9 (100 | 012137 012139
10 120 | 010989 | 0.10981

11| 140 | 0.09940 | 0.09942
12| 160 | 0.09001 = 0.08993 |
13| 180 | 0.08139 | 0.08144 |
14]200| 007373 | 007384 | [ ]
Figure 10-14. A simple predictor-corrector method utilizing a circular reference.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet 'Predictor-Corrector Method (2))

~loolelwiol— |

o
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Higher-Order Differential Equations

Differential equations of higher order can also be solved using the methods
described in this chapter, since a differential equation of order » can be converted
into a set of n first-order differential equations. For example, consider the
following second-order differential equation (equation 10-30) that describes the
damped vibration of a mass m connected to a rigid support by a linear spring with
coefficient &, and a vibration damper with coefficient k,, illustrated in Figure 10-

7

m

Figure 10-15. A damped vibration system.

d?x dx
——tk,—+k.x=0 10-30

Equation 10-30 can be rearranged to

dzx kd dx ks
2 r_d= s 10-30
a? md m * ( 2)

The values of the mass, spring coefficient and damper coefficient are shown
in Figure 10-16. We want to calculate the position x of the mass at time intervals

from ¢ = 0, when the mass has been given an initial displacement of 10 cm from
its rest position,

= TR 1 T e
‘_ 3 | mass, kg ] coefficient of spring, Nfiem  coefficient of damper, Nicm
5 | Tl iy 0.33

l 9 (m) | (ks) ' (kd)

Figure 10-16. Parameters used in the damped vibration calculation in Figure 10-17.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet '2nd Order ODE')
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We define x as the displacement of the mass from its rest position at any time
t, and x' = dx/dt. Then, since d*x/dt* =d/dt(dx/dt), equation 10-30 can be
written as the two equations

dx

—=x 10-31

7 ( )
ax'_ ke ks (10-32)
dr m m

You can now use the methods described previously for systems of first-order
differential equations to solve the problem.

Figure 10-17 shows part of a spreadsheet describing the displacement x of
the damped system as a function of time. The formula for the second derivative,
in cell EB, is

=(-kd*C6-ks*B6)/(m*0.01)
(The mass m is multiplied by 0.01 to convert it from kg to N s> em™, in order to
obtain the displacement in cm.) The custom function Runge3 is used in columns

B and C to calculate x (in column B) and x' (in column C); the array formula
entered in cells B7 and C7 is

{=Runge3(A6,B6:C6,D6:E6,A7-AB)}

The value of x' is in both columns C and D, since the same value is both the x
value (in column C) and the derivative (in column D); the formula in cell D6 is =C6.

A b B i _ D oo
5 t ¥ % }'=dxdt x" = duidt
6| 0000 | 5 | 0 [ 0000 | 500
7 | 0025 4853 @ -11.404 @ -11.404 ' -410
W 0050 | 4.450 . 20419 -20.419 -310
9 0.075 ~3.853 . -26.893 | -26.893 -208
BN 0100 | 3.126 . -30841 @ -30.841 -109
¥ 0125 2331 | 32421 @ -32.421 -19
12 0.150 1623 @ -31.903 : -31.903 58
13| 0175 0750 | -29634  -29634 121
14 0200 @ 0052 @ -26013 -26.013 166
15| 0.225 -0.542 21451 -21 457 196
16/ 0250 @ -1.016 -16.353 -16.353 209
17 - 0.275 : -1.389 -11.094 -11.094 209
18| 0300 = 1572 599 | 5998 197

Figure 10-17, Portion of the spreadsheet for damped vibration calculation.
The initial values for the calculation are in bold.
(folder 'Chapter 10 Examples', workbook 'ODE Examples’, worksheet '2nd Order ODE')
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The displacement as a function of time, from 0 to 1 second, is shown in
Figure 10-18.

displacement (x), cm

0.0 0.2 04 06 08 1.0

time (t), seconds

Figure 10-18. Damped vibration.
(folder 'Chapter 10 Examples', workbook 'ODE Examples', worksheet '2nd Order ODE")
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Problems

Answers to the following problems are found in the folder "Ch. 10 (ODE)" in the
"Problems & Solutions” folder on the CD.

1. A function is described by the differential equation dy/ dt=1- t%/; .
Calculate y for £ = 0 to £ =5, in increments of 0.1.

2. A function is described by the differential equation
dy 1-2x2/(1+x2)
dx 1+ x2
Calculate y forx=0to x = 6.

3. A function is described by the differential equation

dy 1

— = -~10[ y —arctan(x) +

dx (y ) 1+x2)

Calculate y for x = 0 to x = 2.5. Adjust the magnitude of Ax for different
parts of the calculation, as appropriate.

4, Trajectory I. Consider the motion of a projectile that is fired from a cannon.
The initial velocity of the projectile is v, and the angle of elevation of the
cannon is @ degrees. If air resistance is neglected, the velocity component of
the projectile in the x direction (x) is vy cos 8 and the component in the y
direction is v sin @—gt. Use Euler's method to calculate the trajectory of the
projectile. For the calculation, assume that the projectile is a shell from a
122-mm field howitzer, for which the muzzle velocity is 560 m/s. (Getting
started: create five columns, as follows: ¢, x', y/, x, y. Calculate x and y, the
coordinates of distance traveled, from, e.g., x.; = x; + x,;At.) Verify that the

maximum range attainable with a given muzzle velocity occurs when 6 =
45°,

5. Trajectory II. Without air resistance, the projectile should strike the earth
with the same j' that it had when it left the muzzle of the cannon. Because of
accumulated errors when using the Euler method, you will find that this is
not true. Repeat the calculation of problem number 1 using RK4.

6. Trajectory III. To produce a more accurate estimate of a trajectory, air drag
should be taken into account. For speeds of objects such as baseballs or
cannonballs, air drag can be taken to be proportional to the square of the
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velocity, f = Dv?. The proportionality constant D = 0.5pCA, where p is the
density of air, 4 is the cross-sectional area of the projectile and C, the drag
coefficient, is a dimensionless quantity that depends on the shape of the
projectile. The forces acting on a projectile in flight are illustrated in the
following figure.

Combining the above equation for the air drag and the relationship between
force and acceleration, f = ma, we get, for the "deceleration" in the x-
direction, x" = —Dv,*/m; y" = —Dv,"/m-g.

Calculate the trajectory of a baseball hit at angle = 30° with initial velocity
50 m/s. The parameters of the baseball are: mass 145 g, circumference 23
cm (from Rules of Baseball, Major League Baseball Enterprises, 1998). For
air resistance, use p= 1.2 kg/m” and the drag coefficient C = 0.5,

(Getting started: create eight columns, as follows: ¢, x", ", x', ', v, x, y. Att
= 0, x' and )" are calculated as in the previous problem, but for subsequent ¢
values, they are calculated by the Euler method, using the previous values of
x" and y". Calculate x and y, the coordinates of distance traveled, using, e.g.,
X1 = X+ X/ AL+ Vax, (A1)

7. Pendulum Motion I. The motion of a simple pendulum, consisting of a
mass M at the end of a rod of length L, is described by the following first-
order differential equation:

sing

do _-g
de L
where @ = angular velocity (rad/s)
6= angle of displacement from equilibrium position
g=9.81 m/s®
L=10m
Calculate the angular velocity of the pendulum beginning with the initial
conditions = 10°, @ = 0.3.

w
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8.

10.

11.

12.

Pendulum Motion II. The motion of a simple pendulum as a function of
time is described by the following second-order differential equation:

2
7o +£9-0
dar* L
where the terms in the equation are as defined in the preceding problem.

Generate a table of angle of displacement as a function of time from 7= 0to ¢
=2 seconds, with #=10°and ddt=0atr=0 .

Liquid Flow. A cylindrical tank of diameter D is filled with water to a
height . Water is allowed to flow out of the tank through a hole of diameter
d in the bottom of the tank. The differential equation describing the height of
water in the tank as a function of time is

dh__d*

d  D?
where g is the acceleration due to gravity. Produce a plot of height of water
in the tank as a function of time for D = 10 ft, d = 6 in and A, = 30 ft.

Compare your results with the analytical solution 2= (\/ZO_ ~ kt/ 2)2, where
k=(d*/D%)2g .

Chemical Kinetics I. Calculate concentrations as a function of time for the
second-order reaction

2gh

k
A+B > C

for which —d[A)/dt = —d[BY/dt = d[C)/dt = k[A][B]. Use [A], = 0.02000,
[B]o = 0.02000, k = 0.050 s™. Calculate concentrations over the time range
from 0 to 500 seconds.

Chemical Kinetics II. Use the Runge custom function to calculate [A], [B]
and [C] for the coupled reaction scheme

ki ks
AsB=C
ky ks

using [Alp=0.1,[Blo=0,[Clo=0mol L, k;=1s" kb =15, ks=0.1 5"
and k; = 0.01 s™', over the range 0-100 s.

Clllemical Kinetics ITI. Repeat #8, using [A]o =0, [B]o = 0.1, [C]o = 0 mol
L
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13. Chemical Kinetics IV. Repeat #8, using [A]; =0, [B]o =0, [C]o = 0.1 mol
L



Chapter 11

Numerical Integration of
Ordinary Differential Equations
Part II: Boundary Conditions

In the preceding chapter, we saw that a differential equation of order » could
be converted into a set of » first-order differential equations. For example, if the
problem to be solved is a second-order differential equation, it is converted into
two first-order differential equations; two "known" values of the function or its
derivative will be needed in order to solve the problem. In the second-order
differential equation example illustrated in Figure 10-16, the value of the
function and its first derivative were both known at x = 0. The problem was then
solved using the standard methods described in Chapter 10.

If information about a second-order differential equation is known at two or
more different values of the independent variable, then the problem is known as a
boundary-value problem (BVP). The points where the function is known are
usually (but not always) the limits of the domain of interest — hence the term
boundary-value problem. Problems of this type must be solved by different
methods than those we applied to initial-value problems.

Two approaches are commonly used to solve boundary-value problems: the
"shooting" method and the finite-difference method. This chapter shows how to
apply these methods to differential equations of order two; fortunately, most
important physical systems are described by differential equations of order no
higher than two.

The Shooting Method

The shooting method is a trial-and-error method. To solve a problem where
the values of y are known at x; and x,, the boundaries of the interval of interest,
we set up the problem as though it were an initial-value problem, with two
"knowns" given at the same boundary — for example, at x,. (See Figure 10-17
for an example of an initial-value problem of this type: the two knowns, shown in
bold, are the value of y at x, and a trial value of y' at x,.) Using the trial value of

245
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', we calculate y for a suitable range of x values from x, to x,,, and compare the
calculated value of y at x,, with the known value. If the calculated value does not
agree with the known value, we repeat the calculations with a different trial value
of ¥, until we calculate a value of y at the other boundary, x,, that agrees with the
boundary value, hence the name "shooting method."

An Example: Deflection of a Simply Supported Beam

A simply supported beam (a beam supported at the ends) is bent downwards
by the applied load, consisting of the weight of the beam itself plus any other
loads.

A A

Figure 11-1. Diagram of a simply supported beam.

The simply supported steel beam shown in Figure 11-1 supports a uniformly
distributed load of 2000 1b/ft. The length L of the span is 30 feet. The deflection
(downward bending displacement) y of the beam as a function of distance x along
the span of the beam is given by the second-order differential equation 11-1,
known as the general equation of the elastic curve of a deflected beam.

dly M

tr_ 11-1

dx? EI ( )

M, the bending moment at distance x, is given by equation 11-2
M= (wLx/2) — (wx*/2) (11-2)

where L is the length of the beam and w is the weight of the beam per unit length.
E is the modulus of elasticity of the beam material; for carbon steel, E=2.9 x 10’
psi, and 7 is the moment of inertia of the cross section of the beam, given by
equation 11-3.

I=bR/12 (11-3)
where b is the width and % the height of the beam cross section. In this example,
for a beam 6 in wide x 16 in deep, I = 2048 in".

Equation 11-1 can be transformed into the two equations

dy

— =z 11-4

— (11-4)
ans £=M (11-5)

dx EI

where z is the slope of the beam.
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We want to calculate the amount of deflection of the beam at the center of
the span. Since the deflection is known to be zero at either end of the beam (y =
0 atx =0 and y = 0 at x = 30), this is a boundary value problem. We will solve it
by using the shooting method. We set up the problem as though it were an
initial-value problem, with two "knowns" given at the same boundary, x = 0 in
this example. The two known values are the value of y at x = 0 and a trial value
of zatx=0.

The spreadsheet used to solve the problem is shown in Figure 11-2. To
ensure consistency in units, all dimensions have been converted to inches. The
values of y along the beam were calculated at increments of 2 inches (rows 13—
182 are hidden). For simplicity, the values of deflection y and slope z in rows 6
through 185 were calculated by using Euler's method; the formulas in cells B6
and C6 are, respectively,

=B5+C5*(A6-A5)

=C5+E5*(AB-A5)

jre gt B I e T DR R B L
| | Beam Deflection Calculated by Using the Shooting Method
2 {Calculations Performed by Using Euler Methodl)
3' fall quantities must he in inches)

| Distance  Deflection

' % y Slope Bending
4 | (in) {in) Z=dy/dx momentM  dz/di=M/EI
5 | 0 0.0000  0.00000 ol 0
6 | 2 0.0000 0.00000 59667 | 1.00E-06
2 4 0.0000  0.00000 118667 | 2.00E-06
B 6 00000 000001 177000 @ 2.98E-06
9 | 8 00000 000001 234667  3.95E-06
10 10 | 0.0000 0.00002 | 291667 = 4.91E-08
11| 12 0.0001 0.00003 @ 348000 . 5.8BE-06
12 | 14 0.0001 0.00004 - 403667 = 6.80E-06
183 356 1.8984 0.01000 118667  2.00E-06
184| 358 18202 001081 59667 | 1.00E-06
185 360 1.9420 0.01091 0 0

Figure 11-2. Simulation of beam deflection by the shooting method. The boundary
values of the deflection and the initial trial value of the slope are in bold.
Note that the rows between 12 and 183 have been hidden.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler))
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G H | |
5 Trial Fi ¥
6 1 0 1.9420198
7 | 2 -0.1 -34.05798
8 3! -0.0053945 .0

Figure 11-3. Calculating the boundary condition by linear interpolation.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)’)

With a trial value of z = 0, the value of y calculated at x = 360 1is not zero, but
1.9420. We will now proceed to vary z in order to make y = 0. One method that
can be used to find the correct value of z is to calculate two values of y at the
upper boundary (x = 360), using two trial values of z at the lower boundary (x =
0), and then calculate an improved value of z by using linear interpolation to find
the value that makes y = 0. Here, the trial values of z (the slope of the beam) that
were used were zero and —0.1. These values of z were entered in cell C5; the
resulting values of y that were obtained at x = 360 (in cell B185) are shown in
Figure 11-3,

| A B £ D | I
- § Beam Deflection Calculated by Using the Shooting Metho«
o (Calculations Performed by Using Euler Method)
3 | (all quantities must be in inches)

| Distance  Deflection

% y slope Bending

4 (n (it z=dy/dx  momentM  dzdi=MEI
0 | 0 0.0000  -0.00539 _ 0! 0
6 | 2 -00108  -0.00539 59667 = 1.00E-06
7 | 4 -0.0216  -0.00539 118667 = 2.00E-06
g 6 -0.0324 = -0.00539 177000 | 2.98E-06
g 8 | -0.0431 -0.00538 234667  3.95E-06
1EI 10 -0.0539 -0.00537 291667  4.91E-06
(| 2 -0.0647 -0.00536 348000 5.86E-06
12| 14 = -0.0754 = -0.00535 403667 = 6.80E-06
183? 356 -0.0220 0.00551 118667 | 2.00E-06
184 358 | - -0.0110 0.00551 59667 1.00E-06
185 360 0.0000 0.00552 o 0

Figure 11-4. Simulation of beam deflection by the shooting method.
The final boundary values and the final value of the slope are shown in bold.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)')
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The calculated value of z for the required boundary value is shown in the
third row of the table. The formula in cell H8 is

=H6-16*(H7-H6)/(17-16)

If the problem is linear, the interpolated value of z obtained in this way will
be the desired solution. The spreadsheet with final values is shown in Figure 11-
4. A similar spreadsheet in which the y values were calculated using the Runge
custom function can be seen on the CD-ROM.

This "shooting" procedure was performed manually—that is, successive trial
values were entered into the spreadsheet, and the resulting values copied and
pasted into the cells shown in Figure 11-3, in order to use interpolation to find the
final value. You can obtain the same final resuit essentially in one step by using
Goal Seek. After entering a trial value, z = 0, in cell C6, use Goal Seek to change
cell C6 to make the target cell, B185, attain a value of zero.

The final results are shown in Figures 11-4 and 11-5. The maximum
deflection, at the midpoint of the beam, is 0.6138 in, within the allowable
deflection limit of 1/360 of the span. For comparison, the analytical expression
for the deflection at the midpoint of the span, SwL*/384EI, yields 0.6137 in.

0.0

Deflection, in

_08 L L L I L

0 60 120 180 240 300 360
Distance, in

Figure 11-5. Beam deflection calculated by the shooting method.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Beam deflection (Euler)')

Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and Euler's Method
Consider an unknown function y = F(x) that obeys the second-order

differential equation y" — y = 0 and that is known to have boundary values of y =
Oatx=0and y=3.63 atx=2.
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To solve the second-order differential equation
d’y
———y=0 (11-6)
dx?
we express it as two first-order differential equations:
dz
fz_ o 11-7
P y (11-7)
and
Y_,
dx

The initial calculation, using a trial value of z = 0, is shown in Figure 11-6.

(11-8)

- " = i | _D " = . R
X tZde=y AZ Z=dyridx Ay y
0.0 1.000 | 0.0000

041 0100 0000 1000 0.100 0.1000
0.2 0200 0010 1.010 0.100 0.2000
0.3 0301 0020 1.030 0101 03010
0.4 0404 0030 1060 0103 0.4040
05 0510 0040 1101 0106 05100
06 0620 0051 1152 0110 0.6201
24| 18 2705 0244 2855 0261 27049
25| 18 | 2990 0270 3125 0286 28904
26| 20 3303 0293 3425 0313 3.3030

G:‘jamm-qr_v_.m

Figure 11-6. Preparing to solve the differential equation y" -y =0
by the shooting method. The initial boundary values
and the initial trial value of the derivative are in bold.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'y"-y=0 (Euler)")

As before, we will use Euler's method to develop an inaccurate but simple
solution to the problem, then obtain a more accurate result by using the RK
method. Euler's method formulas were used to calculate the values of y and z.
The formulas used in cells C7 and D7 are, respectively

=B6*(A7-AB)
and
=D6+C7
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The Euler's method calculation was performed in two steps in these two cells
so as to make it convenient to convert to the RK calculation, as will be described
in the following section.

Using an initial estimate of 1 for dy/dx, the boundary value at x = 2.0, in cell
F34, is 3.3030. Goal Seek was used to find the value of z that produced the
desired boundary value, y = 3.63. The final calculations are shown in Figure 11-
7, together with the values calculated from the exact expression, y = sinh x, and
the percentage error.

P g T I s = s
5 X dzidi=y AZ Z=thyfdx Ay W viexach % error
6 0.0 1.099 0.0000 0.0000

01 0110 0000 1.099 | 0110 01093 01002 97
8 02 0220 0011 1410 0110 02198 02013 9.2
9 03 0331 0022 1132 04111 03308 03045 86
10, 04 ' 0444 0033 1165 04113 04440 04108 8.1
11/ 05 0561 0044 1208 0117 05605 05211 7.6
12 06 0681 0056 1266 0121 06815 06367 7.0
241 18 2973 0269 | 3138 0287 20727 29422 1.0
25, 19 3287 0297 | 3435 0314 32865 3.2682 06
26| 20 3630 0329 3764 0343 3.6300 3.6263 0.1

Figure 11-7. Final values for the solution of the differential equation y" —y =0
by the shooting method, using Euler's method to calculate ' and y.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP"', worksheet 'y"-y=0 (Euler)")

In this example, the errors resulting from the use of Euler's method to
perform the calculations are rather large, in some cases as large as 10%. A
convenient way to reduce the level of error in the calculations is to use Euler's
method with a smaller Ax. For the preceding problem, when a Ax value of 0.01 is
used instead of 0.1 (281 rows of calculation instead of 29), the maximum error is
1% instead of the 10% seen in Figure 11-7.

Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and the RK Method

Using the Runge-Kutta method should produce much smaller errors than
does Euler's method. Figure 11-8 shows the application of the RK method to the
preceding problem, the solution of the differential equation " — y = 0. Four
columns, B:F, were inserted and labeled TZ1...TZ4, for the four RK terms used
to calculate z. Similarly, four columns were inserted for the calculation of y. As
in Figure 11-7, the values in bold are the two boundary values (in cells G6 and
L6) and the target value (cell L34). Columns B through G contain the series of
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RK formulas to calculate z, columns H through M a similar series to calculate y.
The RK formulas in cells C7 through G7 are, respectively

=B6*(A7-A6)
=(B6+C7/2)*(A7-AB)
=(B6+D7/2)*(A7-AB)
=(B6+E7)*(A7-AB)
=G6+(C7+2*D7+2*ET+F7)/6

As expected, application of the RK method reduces the errors significantly.
The results from the more precise calculation are shown in Figure 11-9. Every
fifth data point has been plotted.

Even better accuracy can be obtained by using the RK method with a smalier
Ax. When a Ax value of 0.01 is used instead of 0.1, the maximum error is 0.25%

10

X

Figure 11-9. Solution of the differential equation y"" —y =0 by the shooting method,
using the RK method to calculate y' and y. Maximum error is ca. 1%.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP", worksheet 'y"-y=0 (RK)"
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Finite-Difference Methods

As described in the following, approximating the derivative of a function by
a finite difference quotient will allow us to reduce a boundary-value problem to a
system of simultaneous equations that can be solved by methods that have been
discussed in Chapter 9. Problems that are difficult or impossible to solve by the
shooting method may sometimes be solved by the finite-difference method.

Consider a two-point boundary value problem, where y is known at the ends
of the range and the expression for the second derivative " is given. For a
differential equation of the general form

Y+ay=bx+c (11-9)

where a = F(x), we can replace the second derivative y" by the central difference
formula

i = 2y; + Yin

2 (11-10)
where 7 = Ax (equation 11-10 assumes equally spaced x values) to obtain
2y 4y,
Yisl h);'+y’—1+ayi=bxi+c 11-11)

where x; and y; represent the point at which the derivative is calculated.
Rearranging equation 11-11 yields
Vi + (Fa=2)y+ yi1= W (bx, + c) (11-12)

We now divide the interval between the two boundary values into n equal parts to
yield » simultaneous equations obtained from equation 11-12. The procedure is
best illustrated by an example.

Solving a Second-Order Ordinary Differential Equation
by the Finite-Difference Method

We wish to solve the boundary value problem
X
"l0.15- " ly=x 11-13
y ( 23 ]y ( )

with boundary values y =2 at x =1 and y =—1 at x = 3. The differential equation
is of the general form of equation 11-9 with a = «(0.15—x/2.3), b= 1 and ¢ = 0.
For this simple example, we will subdivide the x interval, x = 1 to x = 3, into ten
subintervals; thus # = 0.2 and the x values defining the subintervals (sometimes
called the mesh points) are x; = 1.0, x, =12, ..., x;; = 3.0. We can now write an
equation of the form
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Vi + ((0.2)2(— 0.15 + 21'-3—) - 2jyi + Y =(0.2)2x, (11-14)

for each subinterval. Since y is known at the ends of the interval, we need to
write only nine simultaneous equations (e.g., at x; = 1.2):

1+ ((0.2)2(= 0.15 + x2/2.3) = 2)y, + 3= (0.2)*x, (11-15)
2 —1.985y, +y; =0.048 (11-15a)
1.985y, + y3=—-1.952 (11-15b)
atx;=1.4:
Y2 — (2 = (0.15 = x3/2.3)0.2)2)ys + ys = (0.2)’x3 (11-16)
y2 — 1.982y; + y, = 0.056 (11-16a)
and at x0=2.8:
Yo — (2 = (0.15 - x40 /2.3)(0.2))y10 + y11 = (0.2)*x10 (11-17)
Y9—1.957y10-1=0.112 (11-17a)
o —1.95Typ=1.112 (11-17b)

These simultaneous equations can be expressed in matrix form:

[-1985 1 0 0 0 0 0 0 0 x; [-1.952 ]
1 -1982 1 0 0 0 0 0 0 x3 0.056
0 1 -1978 1 0 0 0 0 0 x4 0.064
0 0 1 -1975 1 0 0 0 0 x5 0.072
0 0 0 1 -1971 1 0 0 0 x | =|0.080
0 0 0 0 1 -1968 1 0 0 X7 0.088
0 0 0 0 0 1 -1964 1 0 xg 0.096
0 0 0 0 0 0 1 -1961 1 Xg 0.104
0 0 0 0 0 0 0 1 1957 [x0| |1.112 ]

and can be solved by any of the methods described in Chapter 9.

The elements of the coefficients matrix and the constants vector can be
generated easily by means of the spreadsheet layout illustrated in Figure 11-10.
The formulas in cells C9 and F9 are, respectively,

=-(p-x/q)
=-(2-a*h"2)



256 EXCEL: NUMERICAL METHODS

It is important to remember that the formulas for the first and last terms of
the constants vector are different. The formula in cells G10:G16 is

=h"2*bb*x+h"2*cc

while the formulas in cells G9 and G17 are, respectively,
=h"2*bb*x+h"2*cc-B8

and
=h"2*bb*x+h"*2*cc-B16.

Be careful not to Fill Down the wrong formula when constructing a worksheet.

AT Bl G R R G
1 BVP by Finite-Difference Method
2 | General formula: y" + ay = bx + ¢
3] _Example:y"- (0.15-%2.3)y = x
4 Te= ] 018
Bl q= | 23 h= 0.2

Matrix  Constant

B X ¥ a b C terms S
m10) 2 1 | i RECH N TR
8 12 | 03717 1 0 -1.985 = -1.952
9 14 0.4587 1 0 | -1.982 0.056
1101 1.8 | 05457 1 0 1978  0.064
(11] 18 | 06326 1 0 @ -1875 0.072
121 20 {  107198] 1 0 -1.971 0.080
. 2.2 | 0.8065 1 0 -1.968 0.088
14| 24 | 0.8935 1 0 -1.964  0.096
15| 26 | 0.9804 1 0 -1.961 0.104
16| 28 | 1.0674 1 0 -1.957 | 1112
17| 30 -1 '

Figure 11-10. Portion of the spreadsheet to solve the second-order differential equation
y" —(0.15 - x/2.3)y = x by using the finite-difference method.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 1Y)

The coefficients matrix (Figure 11-11) was assembled from the values in
columns F and G by entering the formula

=IF(ROW()-top=COLUMN()-left INDIRECT("F"&ROW()),IF(ABS((ROW()-top)
-(COLUMNY()-left))=1,1,0))

in cell 19 and filling the formula into the 9 x 9 matrix of cells 18:Q16 to produce
the matrix shown in Figure 11-11. The cell 19 was assigned the name TopCell
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and the following named formulas were entered by using Insert-Name— Define...
left: =COLUMN(TopCell)

top: =ROW(TopCell)
| J K L M M 0 = Q

B Cofficients matrix

8 1085 1 0 ) AT T R 0
9 1 -1.982 (I | | R | 0
10 0 1-1.978 1) 0 0] 0 0 0
11 0 0 1. -1975 11 0| 0l 0 0
12 0 0 0 1-1.971] 1} 0 0 0
13 0 0l D: 0 1 -1.968/ 1] 0 0
14 0 0 0 0 0 1 -1.964 1 0
15 1] 0 0 0 0 0 1 -1.961 1
16 0 0 0 0 1} 0 0 1 -1.957

Figure 11-11. Coefficients matrix to solve the second-order differential equation
y" —(0.15 — x/2.3)y = x by using the finite-difference method. The matrix is generated
from the matrix terms in column F of Figure 11-10, then Fill Right.

(folder ‘Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 1Y)

The solution vector was produced by the array formula
{=MMULT(MINVERSE(19:Q17),G9:G17)}

R

6 Results

7 2.0]
8 | 1.360
9 | 0.748
10 0.178]
11 -0.332
12| -0.762
13 -1.089
14 | -1.294
15 | -1.358
16 | -1.261|
171 -1.0!

Figure 11-12. Results vector for the second-order differential equation
y" —(0.15 — x/2.3)y = x solved by using the finite-difference method.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP’, worksheet 'Finite Difference 1')
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Solving a Second-Order Ordinary Differential Equation

by the Finite-Difference Method:

Another Example

In preceding sections, we used Euler's method and the Runge-Kutta method
to solve the second-order differential equation y" — y = 0 by the shooting method.
This differential equation can be solved readily by using the finite-difference

method.

By comparison with equation 11-9, we see that a= -1, b =0, ¢ = 0. The
elements of the coefficients matrix and the constants vector, calculated as before,

are shown in Figure 11-13.

’ A B c

K

| 7

| 4 :
|5 h=] 03

B |kt y a
71 01 | 01002 |
8| 04 [
9| 07 L
10] 1.0 | | -1
111 1.3 P
12| 16 -1
131 19 -1
14| 2.2 P
15| 25 | ]
161 28 Lo

117 ] 31 [ 11.0765

0

y"-y=0

a3

(o B o T o B o B o B o B o B o B

. B
BVP by Finite-Difference Method
General formula: y" + ay=bx + ¢

(o]

OO0 0O0O0O00 00

F

Exacty= sinh()

Matrix
terms

. -2.08

-2.08
-2.08
-2.08
-2.08
-2.08
-2.09
-2.09
-2.09

Constants

-0.1002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-11.0765

Figure 11-13. Portion of the spreadsheet to solve the second-order differential equation
y" —y = 0 by using the finite-difference method.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2')

The errors in the finite-difference method are proportional to 1/4% so
decreasing the interval from # = 03 to 2 = 0.1 reduces the errors by

approximately one order of magnitude.
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In order to simplify the construction of the coefficients matrix, you can use
the spreadsheet layout shown in Figure 11-14. The formula in cell 17, which has
been assigned the name top, is

=IF(ROW()-ROW(top)=COLUMN()-COLUMN(top),INDIRECT("F"&ROW()),
IF(ABS((ROW()-ROW(top))-(COLUMN()-COLUMN(top)))=1,1,0))

Eerb o] kKIctImMInNToTPTQ
K:

8 209 1 0o o o 0 0 0 0
| 9 1,209 1/ o of o o o o
{10 0 1,209 1 00 0 0 © 0
L1 0 9. Ap-208) 1) O 0 .9 .9
[12 0 o o 1209 1 0o o 0
113 of o o o 1]-208 1 ol o
14 00 o 0o 0 0 1 -209 0
15 ol o o ol .o o0 1 208/ 1
116 | of of o o o 0

0 0 1. -2.09

Figure 11-14. Coefficients matrix to solve the second-order differential equation
y'-y=0.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP"', worksheet 'Finite Difference 2')

To create the spreadsheet, do the following:

» Enter the desired range of x values in column A. This is best done by
inserting rows within the range of x values, so as to preserve the formulas in
the last row.

»  Enter the boundary values of y in the first and last rows.

* Enter values or expressions for the coefficients a, b and ¢ in cells C13, D13
and E13, and Fill Down.

s Select cell 17 and Fill Down, then Fill Right, to create the coefficients
matrix.

*  Select the cell containing the formula for the results vector and Fill Down.
Enter the formula by pressing CONTROL+SHIFT+ENTER.

The results vector is shown in Figure 11-15 and a plot of the results in Figure
11-16.



260

EXCEL: NUMERICAL METHODS

~n

0o

g

11
12
13
14
15
16
17

10

R

Results

01002

0.4133
0.7637

1.16828

1.7083

23876 2
3.2817

4.4712

6.0632.

§.2008
11.0765

S

y(exact) _
01002 |

0.4108

07586 |

11.0765

T
% error

06

Figure 11-15. Results vector from the solution of the differential equation
3" —y = 0 by the finite-difference method.
(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2')

12

10

Figure 11-16. Solution of the differential equation y" —y =10

by the finite-difference method.

(folder 'Chapter 11 Examples', workbook 'ODE-BVP', worksheet 'Finite Difference 2')
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A Limitation on the Finite-Difference Method

As with other methods, decreasing the size of the x increment will increase
the accuracy of the calculations. But be aware that there are size limitations for
Excel's MMULT and MINVERSE matrix functions: the size of the array must not
exceed 52 columns by 52 rows.
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Problems

Answers to the following problems are found in the folder "Ch. 11 (BVP)" in the
"Problems & Solutions" folder on the CD.

1. Repeat the beam deflection example at the beginning of this chapter, using
the Runge-Kutta method instead of Euler's method. Use Goal Seek... to
solve the problem. What is the maximum beam deflection?

2. Modify the beam deflection example at the beginning of this chapter, so that
200 rows of calculation are performed, and the length of the beam L is a
variable. Use Goal Seek... to solve the problem. What is the maximum
beam deflection for a 400-in beam, the other parameters (w, E, I) remaining
constant?

3. Use the shooting method and Goal Seek... to solve

y'=x+(1x")y
where (1) = 2 and y(3) = 0. Use the Runge-Kutta method to calculate y.

4. Use the shooting method and Goal Seek... to solve
2" —-xy'+3y=3
where (0) = 1 and 3(1) =—6. Use the Euler method to calculate y and y'.

5. Use the shooting method and Goal Seek... to solve
Y'=xy+3y=0
where (0) = 1 and »(10) = 257. Use the Euler method to calculate y and y'.

6. Use the shooting method and Geal Seek... to solve
Yi+xy=3y=0
where y(-3) = -9 and y(7) = 91. Use the Euler method to calculate y and y'.

7. Repeat problem 3 using the Runge-Kutta method to calculate y and y'.



Chapter 12

Partial
Differential Equations

For a function F(x,y) that depends on more than one independent variable,
the partial derivative of the function with respect to a particular variable is the
derivative of the function with respect to that variable while holding the other
variables constant. For a function of two independent variables x and y, the
partial derivatives are JF(x,y)/& (y held constant) and AF(x,y)/& (x held
constant). There are three second-order partial derivatives for the function
F(x,y): F(x,y) &, 8*F(x,y)/ &y and FF(x,y) & .

Many physical systems are described by equations involving partial
differential equations (PDEs). In this chapter, discussion will be limited to linear
second-order partial differential equations in two independent variables. Typical
examples include the variation of a property in two spatial dimensions, or the
variation of a property as a function of time and distance.

Elliptic, Parabolic and Hyperbolic
Partial Differential Equations

A general form of the partial differential equation (up to the second order) is

2 2 2
(ry) , OF(y) | 0(uy) L OFCu)) | OFG)
Ox? Ox0y oy? ox dy

/=0

(12-1)
where the coefficients a ... fare functions of x and y. Of course, a particular
differential equation may be much simpler than equation 12-1. Depending on the
values of the coefficients a, b and c, a partial differential equation is classified as
elliptic, parabolic, or hyperbolic. A partial differential equation is elliptic if b -
4ac < 0, parabolic if b* — 4ac = 0, hyperbolic if b* — 4ac > 0.

263
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In many physical models, x represents space and y represents time. The
partial differential equation known as Laplace's equation (equation 12-2) is an
example of an elliptic partial differential equation.

02F(x,y)  O?F(xy) _
Ox2 oy?

Elliptic equations are often used to describe the steady-state value of a function
in two dimensions. Parabolic partial differential equations are often used to
describe how a quantity varies with respect to both distance and time. The one-

dimensional thermal diffusion equation
ar 0T
— T J ——n
dt Ox?
describing the temperature 7" = F(x,) at position x and time ¢ in a material with
thermal diffusion coefficient x is an example of a parabolic equation (a=5b=0, ¢

= i, thus b’ — 4ac = 0). A similar equation, Fick's Second Law, describes the
diffusion of molecules or ions in solution, diffusion of dopant atoms into a
semiconductor, and so on.

0 (12-2)

(12-3)

Hyperbolic partial differential equations, involving the second derivative
with respect to time, are used to describe oscillatory systems. The wave equation
in one dimension,

0%y k 0%y

ot? Ox?
describes the vibration of a violin string. Equation 12-4 is an example of a
hyperbolic partial differential equation (@ = —k, b =0, ¢ = 1, thus b* — 4ac = 4k).
Other applications include the vibration of structural members or the
transmission of sound waves.

(12-4)

In the previous chapter, some general methods were described that could be
applied to any system of ordinary differential equations. In contrast, different
methods of solution are required in order to solve partial differential equations of
these three different types. The following sections will illustrate the different
methods for solving elliptic, parabolic and hyperbolic partial differential
equations.

Elliptic Partial Differential Equations

Elliptic equations describe the value of a function in two spatial dimensions.
Elliptic partial differential equations have boundary conditions which are
specified around a closed boundary, while hyperbolic and parabolic partial
differential equations have at least one open boundary. Since the values are
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specified around a closed boundary, the equation describes a steady-state
condition.

Solving Elliptic Partial Differential Equations:
Replacing Derivatives with Finite Differences
In Chapter 6 we used the following approximation for a derivative
dF(x) F(x+h)-F(x)
dx h

where /# was a suitably small value. Equation 12-5 is the forward difference
equation. The corresponding backward difference equation is
dF(x) F(x)-F(x—h)
dx h
For a partial derivative involving two independent variables, the finite
difference equation will involve suitable small differences in both x and y. We

will use /4 and k to represent these differences. The forward and backward
difference equations corresponding to 12-5 and 12-6 are

dF (x,y) _FGx+hy)-F(xy)

(12-5)

(12-6)

dx h (12-7)
dF(x,y) _ F(iy)=F(x=h,) (12:8)
dx h
and, for the partial derivative
dF(x+h,y) dF(x,y)
O2F(x,y) _ dx o (12-9)
Ox? h

Since we have used the forward difference equation 12-9 to calculate the partial
derivative, we can use backward differences for dF/dx in order to eliminate bias.
The result is

O2F(x,y) _F(x+hy)-2F(x,y)+ F(x—hy)

e W (12-10)
and in a similar fashion,
82F(x,y):F(x,y+k)—2F(x,y)+F(x,y-k) (12-11)
oy? k2
and
02F(x,y) :F(x+h,y+k)—2F(x,y)+F(x—h,y—k) (12-12)

Ox0y hk
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Thus, for example, Laplace's equation (12-2) is rewritten as
Fx+h y)-2F, )+ FGx-hy) Fy+k)-2F(,p)+ FOny—k) _
h2 k2 -

0

(12-13)
Our approach for solving these problems will be to subdivide the region of
interest into a lattice of mesh size 4 x k and write the difference equations that

correspond to the lattice points, to obtain values of the function at each lattice
point. For the general lattice point x;, y; the derivative expression is

F(xi+1:J’i)—ZF(qu’i)'*'F(xi-lsyi)+F(xi:J’i+1)_ZF(xiayi)+F(xia)’i—1) -

h? k? °
(12-14)
If h = k, equation 12-14 simplifies to
F(xi: )+ F(x,y00) = 4F (x, ) + F(xp p0) + F(x,9) =0
(12-15)
from which we obtain equation 12-16
F(x,y)= F(x,.+1,y,-)+F(x,-,y,-+1)+F(x,-,y,-_,)+F(x,-_1,y,-) (12-16)

4

For the case where A # k&, an expression for F(x,y) can readily be obtained
from equation 12-14.

Note that four lattice points are involved in the calculation of F(x,y) by
equation 12-16, as represented in Figure 12-1. This representation is sometimes
referred to as the stencil of the method.

1 »
Yiow 0 -

-1 »
-1 0 1

Xi

Figure 12-1. Stencil of the finite difference method for the solution of an
elliptic PDE. The points shown as solid squares represent previously calculated
values of the function; the open square represents the value to be calculated.
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Methods for the solution of equation 12-16 can best be illustrated by
reference to a concrete example.

An Example: Temperature Distribution in a Heated
Metal Plate

A typical example of an elliptic partial differential equation involves the
solution of a steady-state heat-flow problem. For example, if a thin steel plate,
10 x 10 cm, has one of the edges held at 100°C and the other three edges at 0°C,
what are the steady-state temperatures within the plate? For simplicity, we
assume that heat is not lost through the faces of the plate.

We subdivide the plate by means of a grid with # = k= 0.5 cm, thus creating
a lattice of size 20 x 20. At equilibrium, heat flows in the x-axis direction into a
lattice element at a rate proportional to the temperature of the adjoining element
in the x-axis, and flows out of the element at a rate proportional to the
temperature of the element. The same is true in the y-axis direction. This model
gives rise to an elliptic partial differential equation of the form of equation 12-2.
The time and the thermal conductivity & of the material do not enter into the
equation.

We will use equation 12-16 to calculate the temperature at each lattice point;
the temperature at a lattice point is the average of the temperatures of the four
surrounding lattice points. Thus we have generated a system of 400
simultaneous linear equations in 400 unknowns. Although most of the terms in a
given equation are zero, the problem is still unmanageable. However, we can
solve the system by an iterative method, as described below.

Figure 12-2 shows part of the spreadsheet used to solve the system; each cell
of the 20 x 20 array corresponds to a lattice point. The formula in cell B6 is

=(B5+A6+C6+B7)/4

You can Fill Down the formula into 20 rows and then Fill Right into 20 columns
to create the 20 x 20 array.

Since cell B6 refers to cell B7 and B7 similarly refers to B6, we have created
a circular reference, a formula that refers to itself, either directly or indirectly. In
fact, the spreadsheet contains a large number of circular references. A circular
reference is usually an error; Excel displays the "Cannot resolve circular
references" error message and puts a zero in the cell. In this case, however, the
circular reference is intentional. We can make Excel recalculate the value in
each cell, using the result of the previous iteration.
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TATBICIDIE[FIGIAITIJIKILIM[N[O[P
5 SR B TR TR R RO R T T T TR R B
6 0 025049(072094 11 13 14 2 2 2 2 2 2 14 13
¢ 18050/ 1015 2/ 2/ 3 3/ 3 3 3 3 3 3 3 3
Bl0 o077 2 2 3 3 4 4 5 5 5 5 5 5 4 4
90 11 2 3 4 5 5 6 7 7 7 7 7 7 B 5
0o 14 3 4 5 6 7 8 8 9 9 9 9 8 8 7
110 2/ 3 5 6 8 9 10 10 11 11 11! 11 10/ 10/ 9
12/l0 2 4 & 8 9 13 14 14 13 13 12 11
SRR 3 5| 7 9 11 16 16 16 16 15 14 13
4/ 0 3 6 9/ 11 14 190 20 20 19 18 17 16
15] 0 4 7 10 13 16 23| 23 23| 23 22 20 18
16/0 4 9 12 18 19 26 27 27 26 25 24 22
e s 10 15 19] 23: 331 31 3 30 28 26
1810 6 12 18 22 27 36 37 37 36 35 33 30
198 8l 15 | 7 3} 42 42 42 42 40 38 35
2000 9 18 25 32 37 48 49 49 48 46 44 41
2110 12 22 31 38 44 55 56 56 55 54 51 48
210 15 28 38 46 52 63 B4 64 63 B2 59 56
23, 0 20 36 48 56 62 71 72 72 71 70 68 66
241 0 30 49 61 88 73 81 81 81 81 80 78 76
25 0 50 69 78 B3 86 68 69 90 90 90 90 90 90 B89 686
26 | 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Figure 12-2. Solving an elliptic PDE using intentional circular references.
The worksheet shows part of the 20 x 20 array of lattice points representing the
temperature distribution in a metal plate; the gray cells represent the temperature
at the edges of the plate.

(folder 'Chapter 12 (PDE) Examples, workbook 'Elliptic PDE', sheet 'Temp in a Plate')

To "turn on" iteration, choose Tools—Options—Calculation and check the
iteration box. Unless you change the default settings for iteration, Microsoft
Excel stops calculating after 100 iterations or after all values in the circular
reference change by less than 0.001 between iterations, whichever comes first.
When you press OK the iterative circular reference calculations will begin.
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Temperature Distribution in a Metal Plate

& 90-100
@ 80-90
@ 70-80
0 60-70
0 50-60
u . 0 40-50
0 30-40
0 20-30
@ 10-20
00-10

Figure 12-3. Temperature distribution in a metal plate.
(folder 'Chapter 12 (PDE) Examples, workbook 'Elliptic PDE/, sheet "Temp in a Plate')

Parabolic Partial Differential Equations

The previous example showed the steady-state distribution of temperature
within a metal plate. We will now examine how temperature changes with time.
This so-called heat equation is an example of a parabolic partial differential
equation.

Consider the flow of heat within a metal rod of length L, one end of which is
held at a known high temperature, the other end at a lower temperature. Heat
will flow from the hot end to the cooler end. We want to calculate the
temperature along the length of the rod as a function of time. We'll assume that
the rod is perfectly insulated, so that heat loss through the sides can be neglected.

Consider a small element dx along the length of the rod. Heat is flowing
from the hot end (x = 0) to the cooler end (x = L). The rate of heat flow into the
element at the point x is given by

Y (12-17)

where « is the coefficient of thermal conductivity (cal s' cm™ deg"), 4 is the
cross-sectional area of the rod (cm?) and d77dx is the temperature gradient. The
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minus sign is required because temperature gradients are negative (heat flows
from a higher temperature to a lower). The material of which the rod is made has

heat capacity ¢ (cal g"' deg™) and density o (g cm™).
The heat flow (cal s™") out of the volume element, at point x + dx, is given by
~ KA £+—i ar dx (12-18)
dx dx\ dx

The rate of increase of heat stored in the element Adx is given by
cp(Adx) i]—f (12-19)

From equations 12-17 and 12-18, the rate of increase of heat stored in the
element Adx is H,, — H,,, and this is equal to the expression in 12-19

- KAﬁ’Z % ar + i(iT—)dx = cp(Adx)g—Y: (12-20)
dx dx dx\ dx dt
which can be simplified to
82T dT
—|=cp— 12-21
K( ox? j v dt ( )
or
2
’T _cpdl _, (12-21a)
ox2 Kk dt

an example of a parabolic partial differential equation.

There are several methods for the solution of parabolic partial differential
equations. Two common methods are the explicit method and the Crank-
Nicholson method. In either method, we will replace partial derivatives by finite
differences, as we did in the example of the parabolic partial differential
equation.

Solving Parabolic Partial Differential Equations:
The Explicit Method

Using equation 12-21 as an example and writing it in the form
0*F  dF

+k—=
Ox2 dy

we can replace derivatives by finite differences, using the central difference
formula for FF/&*

0 (12-22)
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2 F.,,,-2F . +F_,;
OF i, jy = mitbd — =0y T 0y (12-23)
ox2 (Ax)?
and the forward difference formula for dF/dy
F.. ., -F .
I i jy = (12-24)
dy Ay

When these are substituted into equation 12-22, we obtain equation 12-25,

where » = Ay/(k(Ax)*). (Using forward and central differences simplifies the
expression.)

Fopn=rF, +Fop+(-r)F, (12-25)
Or, when i represents distance x and j represents time f,
Fopn =r(Feny + Fa )+ (=r)F,, (12-25a)

Equation 12-25a permits us to calculate the value of the function at time ¢,
based on values at time ¢. This is illustrated graphically by the stencil of the
method.

1 J—
tow ]
-1 x
-1 0 1
X

Figure 12-4. Stencil of the explicit method for the solution of a parabolic PDE.
The points shown as solid squares represent previously calculated values
of the function; the open square represents the value to be calculated.

An alternative to the use of equation 12-25 is to choose Ax and Ay such that »

= 0.5 (e.g., for a given value of Ax, Ay = K(Ax)?/2), so that equation 12-25 is
simplified to

Fi+ '+E— j
Fjn ==t (12-26)
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An Example: Heat Conduction in a Brass Rod

Consider an insulated 10-cm brass rod, initially at a temperature of 0°C. One
end of the rod is heated to 100°C. Equation 12-20 describes the heat flow in the
rod as a function of time. (For simplicity, we assume that there is no heat loss
through the sides of the rod.) For brass, the coefficient of thermal conductivity &
is 0.26 cal s™ cm‘l deg™, the heat capacity c is 0.094 cal g' deg™ and the density
Yo 1s 8.4 g cm™. From these values, the coefficient k in equation 12-22 is 3.04 s
cm™ Flgure 12-5 shows part of the spreadsheet used to calculate the

temperature along the rod, in 1-second and 1-cm intervals. The table extends to ¢
= 100 seconds (row 113).

[ TAIBTCIOJEIFIGIHI T TJ[KILIM[N
£ Time-dependent Temperature Distribution in a Brass Rod
[2 | {Temperature ualues in DDl[I are conslan‘t} _

d | length, cm S RS | SO
4 | heat capacfty of brass cal:’g)’deg B 01 (hcapj
5 | thermal conductivity of brass,calﬁsec?cmideg IJB (k)
6 | \denstty of brass, gicm3 8.4 (rho)
17 | ‘Coefficiert e in general PDE, =ki(hcap*rho) 03 (e) |
8 | A | ] 1 (%)
9| LA _ L] 1 (OH
10 | f=e*Dti(Dx"2) L 0.3 (f)
1 : Distance x (¢cm)

12 | G2 g g 8 08 R B 8 10
3. 0 10 o o o o0 o0 '0 0 0 0 o0
14 | 1 1400 329 00 00 00 00 00 00 00/00 0
15 2 100 442108 00 00 00 00 00 00 00 o
1’6’@ 3 100 516182 36 00 00 00 00 00 00 0
17 % 4 100 565/244 72 12 00 00 00 00 00 0
189 5 100 603 293109 28 04 00 00 00 00 ®
19';.; 6§ 100 632 334143 47 10 01 00 00 00 O
20 7 100 855369174 66 19 04 00 00 00 0
211 8 100 675399203 86 30 08 01 00 00 0
220 9 100 69.1 425229106 41 13 03 01 00 0
23, 10 100 705448 253125 53 19 05 01 00 9

Figure 12-5. Calculation of heat flow in a brass rod.
The text in cells M4:M10 are the names assigned to the cells L4:L10.
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet "Temp distribution')
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Cells K3:K9 contain constants used in the calculations; these cells were

assigned the names shown in parentheses in column M. The formulas in cells
KB, K7, K8 and K9 are, respectively

=k/(hcap*rho) (coefficient k in general PDE, equation 12-22)

=D12-C12 (Ax)

=B14-B13 (At)

=e*Dt/(Dx"2) ®

[In the spreadsheet, the range name f was used for the parameter » in equation

12-26, since r can't be used as a name in Excel.]

The values in cells on the edges of the table of temperatures (column C and
column M) are the constant temperature values at the ends of the rod; the values
in row 13 are the initial temperature of the interior of the rod. The formula in the

remaining cells in the body of the temperature table (D14:L113) is based on
equation 12-22. For example, the formula in cell D14 is

=f*(C13+E13)+(1-2*f)*D13

Experience has shown that the factor f must be less than 1/2 in order to avoid
instability in the calculations. For a given problem, this requires adjustment of
both Ax and At.

50
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o
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o
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Temperature at x =5 cm

Temoerature, °C

10

L L 3 i

0 20 40 60 80 100
Time, seconds

Figure 12-6. Temperature vs. time in a brass rod.
(folder 'Chapter 12 (PDE) Examples, workbook ‘Parabolic PDE', sheet 'Temp distribution’)
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Solving Parabolic Partial Differential Equations:
The Crank-Nicholson or Implicit Method

In the explicit method, we used a central difference formula for the second
derivative and a forward difference formula for the first derivative (equations 12-
24 and 12-25). A variant of equation 12-26 that makes the approximations to
both derivatives central differences is known as the Crank-Nicholson formula

—PF g + QA 2F, g —rFy = rF Q- 20)F, 4 rF
(12-27)
or, if i represents distance x and j represents time ¢,
—PF e ¥ Q+2r)F,  —F g =T (2- 2")Fx,x +rF 0,
(12-27a)

where r = Ay/(k(Ax)*). Choosing specific values for » and Ax determines the
increment Ay. For r =1, equation 12-27a simplifies to equation 12-28.

- Fx—l,l+1 + 4Fx,1+1 -F Fx_l,; + Fx+1,, (12-28)

x+1+41 T
Equation 12-27a or 12-28 shows that F,,; is a function of yet-to-be-
calculated values at t.; (¥y ;1 and Fy. ) in addition to known values at time ¢
(the quantities on the right-hand side of the equation). This is illustrated by the
stencil of the method shown in Figure 12-7. Equation 12-27a results in a set of
simultaneous equations at each time step. Again, the solution procedure is best
illustrated by means of an example.

10 o —0
t o *
-1 :
-1 0 1
X

Figure 12-7. Stencil of the implicit method for the solution of a parabolic PDE.
The points shown as solid squares represent previously calculated values
of the function; the open circles represent unknown values in adjacent positions;
the open square represents the value to be calculated.
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An Example: Vapor Diffusion in a Tube

An air-filled tube 20 cm long allows water vapor to diffuse from a source
(liquid water) to a drying chamber, where the vapors are dissipated. Initially the
tube is capped so that the vapor cannot escape. The temperature of the tube is
held at 30°C. The equilibrium vapor pressure of water at this temperature is 31.8
mm Hg; thus the vapor pressure inside the tube is 31.8 mm Hg. When the cap is
removed, the vapor will diffuse toward the drying chamber, where the water
vapor pressure is zero. We wish to model the vapor pressure along the length of
the tube as a function of time.

The diffusion equation is
@ _potr
dt Ox?
where p is the vapor pressure and D is the diffusion coefficient in units of em’ s
For water vapor, D =0.115 cm? s at 30°C.

We subdivide the length of the tube into uniform subintervals and calculate
the value of the function (here the vapor pressure p) at each interior point.
Choosing Ax = 4 yields four x values where the function value needs to be
evaluated (at x = 4, 8, 12 and 16 cm) and two boundary values where it is known
(atx = 0 and 20). Also, using Ax =4 and r = 1 sets Az =139 seconds.

Using equation 12-28 yields four simultaneous equations in four unknowns,
thus:

(12-29)

for x =4, t=139: —Poiz t 4psize — Psize = Poo Tt Pso
—31.8 + 4psi1zs — psize = 31.8+ 31.8
0 + 4psize — psize = 954
forx =38, r=139: —Pa13o + 4pPsi3e ~ P21z = Pao T P2
—Paizo + 4ps1zo — Pz = 63.6
forx=12,2=139: —pgizs t 4p1z139— Pi6139 = Pso + Pieo

—Psi3o t 4pi21zs— Pisie = 63.6
forx=16,=139: —piyi30+ 4pis130— P13 = Pizo + Paoyo
— Pzt 4peazo— 0 = 31.8+ 0
—Ppiza3t 4pisaze— 0 = 318
For r = 1, the values of the coefficients for the four simultaneous equations
are shown in the spreadsheet in Figure 12-8. They are designated c1, c2, c¢3 and
c4 in the table. These coefficients will have different values if a different value

of r is chosen. The constants (the values of the right-hand side of the four
equations) are also shown in Figure 12-8. The formulas in cells 115:L15 are
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=C15+E15+C15
=D15+F15
=E15+G15
=F15+H15+H15

_|AlBJC|DJEJFIGIHIIJJ]IK]|L]
_ % Time-Dependent Diffusion of Water Vapor
(calculated by the Crank-Nicholson method)
Vapor pressure of water at 30°C = 31.8 mm Hy
Diffusion coefficient at 30°C, cm/sec2 0115 (D)
Dx, cm 4 (D)
Dt=Dx"2/D 1391 (D)
& ML 1 (h
B8 | coefficients: ©1 2 ¢3 c4

Distance x (cm)

Ot ndh g e 20 constants

= 0 31.8 31.8 31.8 31.8 31.8 0.0 954 636 636 318
g 139 31.8 315 306 272148 0.0 942 587 453 27.2
E 278 31.8 304 276 21.3/121 0.0 912 517 397 213

| = 417 31.8 290 248 186 100 0.0 884 477 348 186
557 31.8 279 231 167 88 0.0 867 445 319 167
596 31.8 271 216 154 80 0.0 854 425 298 154
835 31.8 266 2089 145 75 0.0 845 411 284 145
974 31.8 262 203 140 71 0.0 839 402 274 140
1113 31.8 260 199 136 69 0.0

Figure 12-8. A convenient spreadsheet layout for solving a parabolic PDE by
the Crank-Nicholson method. The coefficients matrix is aligned directly above

the table of values and the table of constants directly to the right.
(folder 'Chapter 12 (PDE) Examples, workbook ‘Parabolic PDE!, sheet 'Crank-Nicholson 1Y)

The set of simultaneous equations can be solved by methods described in
Chapter 9. In this case the solution was found by the matrix inversion method;
the array formula in cells D19:G19 is

{=MMULT(15:L15,MINVERSE($D$9:$G$12))}
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Figure 12-9. Chart of the results produced by the spreadsheet in Figure 12-8.
(folder ‘Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 1)

A plot of the results, shown in Figure 12-9, indicates that a smaller increment
of t is required.

In the preceding example, the parameter r was set equal to 1, which
simplifies the equations but also determines the values of ¢ that were used in the
calculations. In most cases it will probably be desirable to solve the system at

specified values of 7. Choosing specific values for Ax and Ar determines the
value of r. The following example, using the same data as Example 12-3,
illustrates this.

Vapor Diffusion in a Tube Revisited

This example uses formulas that permit the construction of a more general
model. In Figure 12-10, the following cells or ranges were defined: D: $G$4; Dx:
$G3$5; Dt: $G%6; f $G$7; coefficients: $D$9:$G$12; constants: $J$15:3M$26;
values: $C$15:3H$27. The formulas in cells G5:G7 are, respectively,

=D14-C14
=B16-B15
=(D*Dt)/Dx2
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AlB|] ¢ | D] E] F | G | H |
1 Time-Dependent Diffusion of Water Vapor{(2)
2 (calculated by the Crank-Nicholson method)
ER _ : |
4 ‘Diffusion coefficient st 30°C, cm/sec” 0.115
5 Dx, cm 4
B | Dt=Dx"2D 50
7] it _ 0.3594
8 cl c2 o3 c4
9 coefficients 27188 -0.3594 0.0000 0.0000
10 -0.3594 27188 -0.3594 0.0000
11 ! 0.0000 -0.3594 27188 -0.3594
12 00000 00000 -0.3594 27188
13 Distance x (cm)
14 0 4 8 12 16 20
[15. 0 318 318 318 318 318 0.0
16 50 31.8 318 316 306 23.2 0.0

17 10 M8 37 34 283 187 0.0
18 150 3.8 314 302 260 160 0.0

19 _ 200 318 34 291 | 241 142 0.0
20 § 250 3.8 306 280 225 128 0.0
1= 300 3.8 301 270 214 118 0.0

nnnnnnnn

22 350 3.8 296 260 | 200 110 0.0

(23 7 400 M8 291 252 190 103 0.0
(24| 450 318 287 244 182 98 0.0
25| 500 31.8 283 238 | 175 @ 93 0.0
26 0 M8 279 232 | 168 89 . 0.0
(27| 600 3.8 276 226 | 163 86 0.0

Figure 12-10. A convenient spreadsheet layout for solving a parabolic PDE by
the Crank-Nicholson method. The coefficients matrix is aligned directly above
the table of values and the table of constants is directly to the right.

(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', sheet 'Crank-Nicholson 2)

In the coefficients table, the formulas =2+2*f, =-f or 0, were entered in the
appropriate cells to create the table.

The constants table employs a single formula:

=f*TableValue1+(2-2*f)*TabieValue2+f*TableValue3+IF(COLUMN()=
MinCol,f*TableValue1,0)+IF(COLUMN()=MaxCol,f*TableValue3,0)

where TableValue1, TableValue2 and TableValue3 correspond to the function
values on the right-hand side of the general equation 12-27a; the IF function
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terms add the appropriate boundary value terms to the first and last constant
terms (see the four simultaneous equations following equation 12-29). The
preceding Excel formula uses the following named formulas (they can be
examined by choosing Insert -~ Name — Define):

ValuesTableCol =COLUMN()-7

TableValue1 =INDIRECT("RC"& ValuesTableCol,0)
TableValue2 =INDIRECT("RC"& ValuesTableCol +1,0)
TableValue3 =INDIRECT("RC"& ValuesTableCol +2,0)
MaxCol =MAX(COLUMN(constants))

MinCol =MIN(COLUMN(constants})

For readers unfamiliar with the INDIRECT function, INDIRECT(ref_text, a7)
returns a reference specified by a text string. The optional argument a1 specifies
what reference style is used: if a1 is TRUE or omitted, the reference is in Al-
style; if a1 is FALSE the reference is in R1C1-style.

The ValuesTableCol formula returns the column number of the values table
that corresponds to the column in the constants table. This column number is
used in the TableValue1, TableValue2 and TableValue3 formulas to return the
appropriate value from the table of values. (The number 7 in the formula might
have to be changed if columns in the spreadsheet were rearranged.) The MaxCol
and MinCol formulas are used in the IF function in the formula in the constants
table so as to add the boundary value terms to the first and last constant terms.

Vapor Diffusion in a Tube (Again)

This example, using the same data, illustrates the use of a smaller grid size.
The spreadsheet ('Crank-Nicholson 3'), not shown here, can be examined on the
accompanying CD-ROM. The x-increment is 2 cm, thus creating a table of
values that is 11 columns wide, including the boundary values, and requiring a 9
x 9 matrix of coefficients.

The spreadsheet employs a single formula for all cells of the coefficients
table:

=IF(CoeffTableRow=CoeffTableCol,2+2*f IF(ABS(CoeffTableRow-
CoeffTableCol)=1,-,0))

The formula uses the following named formulas
CoeffTableCol =COLUMN()-MIN(COLUMN(coefficients))

CoeffTableRow =ROW()-MIN(ROW(coefficients))
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Thus a Crank-Nicholson calculation can be set up on a spreadsheet using a
single formula to create the coefficients table, a (different) single formula to
create the constants table, and a single formula for the values table.

The results using the smaller grid size are shown in the following chart.

35
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Figure 12-11. Chart of the results produced by the spreadsheet shown in Figure 12-10.
(folder 'Chapter 12 (PDE) Examples, workbook "Parabolic PDE', sheet 'Crank-Nicholson 3')

A Crank-Nicholson Custom Function

Using a smaller increment for At improves the accuracy of the calculations.
It may be desirable to employ a variable value for Az, so as to use smaller At near
the beginning and use larger At where the function is not changing rapidly. This

obviously can't be done with the spreadsheets in the preceding examples, since At
determines the value of r and thus the values in the coefficients matrix. The
following VBA code implements the Crank-Nicholson method. The partial
differential equation must be of the form shown in equation 12-29, that is,
ad?2C/ox?2 —8C /0y =0. The syntax of the function is CrankNicholson(coeff,

delta_x, delta_t, prev_values). Coeff is the coefficient a in the above partial
differential equation. Delta_x is the size of the x-increment, which must be
constant. Delta_y is the size of the y-increment, which can vary. Prev_values is
the range of function values, including the endpoint values, in the preceding row.
The function returns an array of values in a row; the user must select the
appropriate range of cells for the results, then press CTRL+SHIFT+ENTER
{Windows) or CONTROL+SHIFT+RETURN (Macintosh) to enter the formula
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Option Explicit

Option Base 1

Function CrankNicholson(coeff, delta_x, delta_t, prev_values)
'Solves a parabolic PDE by the Crank-Nichotson method.

Dim | As Integer, J As Integer, N As Integer
Dim F As Double
Dim CoeffMatrix() As Double, ConstantsVector() As Double

N = prev_values.Count
ReDim CoeffMatrix(N - 2, N - 2), ConstantsVector(N - 2, 1)
F = coeff * delta_t / delta_x * 2

'Create coefficients matrix. This is an N x N matrix.
Fori=1ToN-2
ForJ=1ToN-2
Select Case J
Case |
CoeffMatrix(l, Jy=2+2°F
Case | -1
CoeffMatrix(l, J) = -F
Casel+1
CoeffMatrix(l, J) = -F
Case Else
CoeffMatrix(l, J) = 0
End Select
Next J, |

'Create constants vector. This is a COLUMN vector.
ForJ=1ToN-2
ConstantsVector(J, 1) = F * prev_values(J) + (2 -2 * F) * prev_values(J + 1) + F * _
prev_values(J + 2)
Next J
ConstantsVector(1, 1) = ConstantsVector(1, 1) + F * _ prev_values(1)
ConstantsVector(N - 2, 1) = ConstantsVector(N - 2, 1) + F * prev_values(N)

'‘Return results as an array in a row, thus use Transpose.
CrankNicholson = Application.Transpose(Application. _
MMult(Application.Minverse(CoeffMatrix),ConstantsVector))

End Function

Figure 12-12. VBA function procedure to evaluate a PDE
by the Crank-Nicholson method.
(folder 'Chapter 12 (PDE) Examples, workbook 'Parabolic PDE', module 'Modulel')
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Vapor Diffusion in a Tube
Solved by Using a Custom Function

This example, using the same data as the preceding one, illustrates the use of
the custom function. The spreadsheet, not shown here, can be examined on the
accompanying CD-ROM.  Unlike the preceding spreadsheets, tables of
coefficients and constants are not required. The x-increment is 2 cm, thus
creating a table of values that is 11 columns wide, including the boundary values.
The function returns values identical to those shown in Figure 12-11.

Hyperbolic Partial Differential Equations

Hyperbolic second-order differential equations result from problems
involving vibration processes, and are of the form

OF 0%y
Z =g = 12-30
P95 ( )
For example, the wave equation in one dimension
2 2
o'y _Igd’y (12-31)
o2 w ox?

describes the vibration (i.e., the lateral displacement y) of a string of length L,
weight W, tension T and weight/unit length w = W/L, as a function of distance x
along the length of the string.

Solving Hyperbolic Partial Differential Equations:
Replacing Derivatives with Finite Differences

Once again, we can solve the problem by replacing derivatives by finite
differences.

Fx,l+1 _2Fx,l +Fx,t—1 =Z'g Fx+l,l _2Fx,t +Fx—l,t (12_32)
(An? w (Ax)?
which, when rearranged, yields
Tg (Ar)? Tg (Ar)?
x4+l = %E{(Fxﬂ,t + Fx—l,t)_ Fx,t—l + 2[1 _7 (Ax)2 Fx,t (12'33)

If we set Tg(Afy/w(Ax)’ = 1, equation 12-33 is simplified to equation 12-34.
Interestingly, this simplified expression also yields the most accurate results.

Fopg=Fo, +Fo, —F,,, (12-34)

x,t+1 x+1,t
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When employing the simplified equation, the value of Az is determined by
the expression

Ar=—2X (12-35)

NTg/w

Equation 12-34 calculates the value of the function at time £, from values at
tand ¢;. Figure 12-13 shows the stencil of the method.

1 o
t; On . ]
-1 -
-1 0 1
Xj

Figure 12-13. Stencil of the method for the solution of a hyperbolic PDE. The
solid squares represent previously calculated values of the function; the open
square represents the value to be calculated.

To begin the calculations (i.e., to calculate the value of the function at #),
equation 12-34 requires values of the function at #, = 0 and also a value at ¢,.
We can get a value for the function at 7, by making use of the fact that the
function is periodic. If the initial value of the function is zero, we can use the
expression 12-36 for the first row of the calculation, and 12-34 afterwards.

F +F,
Fyy = 220 = L0 (12-36)

If the value of the function is not zero at ¢ = 0, a different method of
beginning the solution must be used.

An Example: Vibration of a String

A string 50 cm long and weighing 0.5 g is under a tension of 33 kg. Initially
the mid-point of the string is displaced 0.5 cm from its equilibrium position and
released. We want to calculate the displacement as a function of time at 5 cm
intervals along the length of the string, using equation 12-34. From equation 12-

35 the Af must be 8.8 x 107> seconds.
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The spreadsheet shown in Figure 12-14 illustrates the solution of the

vibrating string problem. Column B contains time in increments of A¢ from zero
to 2.8 x 107 seconds (only part of the spreadsheet is shown). The first row of
displacement values (row 12, values shown in bold on the spreadsheet) are the
initial conditions. The values in the second row (row 13, values in italics) are
calculated according to equation 12-36; the formula in cell D13 is

=(C12+E12)/2

Values in subsequent rows (rows 14-27 in Figure 12-14; rows 14-44 on the
CD-ROM) are calculated according to equation 12-34; the formula in cell D14 is

=C13+E13-D12

Al B [CIDJEJF[GIH]I]J[K[LIM]

1 The Wave Equation:Vibration of a String
2 length, cm | ' B _ _ 50
3 | ‘tension, g S R © 33000

| 4 | weightg i 05

| 5 | weight per unit length, giom 0.01
6 | gravitational constant, cmisec2 980
7 Dx - : | 5
8 ot | 8.79E-05
101 distance x, em
11 0 5 10 15 20 25 30 35 40
12 0 0 01 02 03 04 05 04 03 0.2
13| BBEO5 0 01 02 03 04 04 04 03 0.2
14| 18E04 0 ;01 02 03 03 03 03 03 02
15 2BE-04 0 01 02 0202 0202 02 02
16/ 35604 0 01 01 01 01 01,04 01 0.1
17| 44E04 0 00/00 00 00 00 00 00 00
18 § 5304 0 -01 -01-01 -01-01-01-01 -04
19 |« B2E04 0 -01-02-02-02-02-02-02-02
20 ,-E 7OE04 0 -01-02-03-03-03-03-03-02
211 7904 0 -01 -02-03-04-04-04-03-02
22| BBE04 0 -01-02-03-04-05-04-03-02
23| 97E04 0 -01-02-03 04-04-04-03-02
24| 141E03 0 -01/-02-03 -03-03-03-03-02
25 14E03 0 [-01/.02-02-02-02-02/-02 .02
26| 12803 0 [-01 -01 -01 -01-01 -01/-01 -0.1

0

27 1.3E-03 00 00 00 00 00 00 00 0O

45

0.1
01
01

101

0o

=041

01
01
01!
01

-01

01

-041

<01

00

w
m
)

(w) |
(@)
(©x)

5D
01 0

o o @ 2 o @ o o o o e 9@ 9 9 9o 9

Figure 12-14. A spreadsheet layout for solving a hyperbolic PDE.
(folder 'Chapter 12 (PDE) Examples, workbook 'Hyperbolic PDE', sheet 'Sheet1')
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If you examine the values in the table, you will see that 20 time increments
constitute a complete cycle of vibration. This vibration time, 0.001758 seconds,
corresponds to a frequency of 569 s, and agrees exactly with the value
calculated by the formula

S =-2—IZJTg/w (12-37)

The above procedure can be expanded to model vibrations in two space
dimensions.

2 2 2
o F:a(a F 9 FJ (12:38)

+
o2 ox2  oy?
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Problems

Data for, and answers to, the following problems are found in the folder "Ch. 12
(Partial Differential Equations) problems" in the "Problems & Solutions" folder on
the CD.

1. Repeat the example of temperature distribution in a metal plate, where two
adjacent edges are at 0°C and where the temperatures of the other two edges
increase from zero, in increments of 10°C, to 200°C at the corner diagonally
opposite the two edges at zero.

2. Revise the example of temperature distribution in a metal plate to model the
temperature in a conduit where the outside edges of the 20 x 20 matrix are at

0°C and the interior channel (a 10 x 10 matrix centered inside the 20 x 20
matrix) is at 200°C.



Chapter 13

Linear Regression
and Curve Fitting

"Curve fitting" is frequently used in scientific or engineering applications to
obtain the coefficients of a mathematical model that describes experimental data.
In Chapter 5 we saw how to obtain the equation of a curve that passes exactly
through a set of data points. This is the process of interpolation and requires (for
example) four coefficients to describe a curve that passes through four data
points. But what if, instead of four data points, we have 4000 data points? It
would be ludicrous to try to find the 4000-parameter equation that describes the
curve that passes through all the data points. Instead, we would like to find a
relatively simple mathematical relationship that does not necessarily pass through
data points but is a good fit to the data set as a whole. The "best fit" of a curve to
a set of data points is considered to be found when the sum of squares of the
deviations of the experimental points from the calculated curve is a minimum.
This procedure is known as least-squares curve fitting or, more generally, as
regression analysis.  Excel provides several ways to obtain regression
coefficients; these are described in the following sections.

Linear Regression

Linear regression is not limited to the case of finding the least-squares slope
and intercept of a straight line. Linear regression methods can be applied to any
function that is linear in the coefficients’. Many functions that produce curved x—
y plots are linear in the coefficients, including power series, for example,

y=a+bx+cx’ +dx’ (13-1)

and some functions containing exponentials, such as

* Mathematically, a function that is linear in the coefficients is one for which the partial

derivatives of the function with respect to the coefficients do not contain coefficients. For

example, for the power series equation y = a + bx + cx°, dy/da = 1, 8y/6b = x and dy/dc =
2

b

287
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y=ae (13-2)

Least-Squares Fit to a Straight Line

Although it is relatively easy to draw a straight line with ruler and pencil
through a series of points if they all fall on or near the line, it becomes more and
more a matter of judgment if the data are scattered. The least-squares line of best
fit minimizes the sum of the squares of the y deviations of individual points from
the line. This statistical technique is called regression analysis. Regression
analysis in the simplest form assumes that all deviations from the line are the
result of error in the measurement of the dependent variable y.

Regression analysis uses the quantities defined below, where there are N
measurements of x;, y; data pairs.

S = Zx72 — (Zx)¥N (13-3)
S,, = Zy? — (Zy)¥N (13-4)
Syy = Zxy;— LxZyy/N (13-5)

For a straight line y = mx + b, the least-squares slope and intercept are given
by equations (13-6) and (13-7).
m = Sy (13-6)

b=(Sy,~m3x) /N (13-7)

The correlation coefficient, R, is a measure of the correlation between x and
y. If x and y are perfectly correlated (i.e., a perfect straight line), then R=1. An
R value of zero means that there is no correlation between x and y, and an R value
of —1 means that there is a perfect negative correlation.

More commonly, R, the square of the correlation coefficient, given by

equation (13-8), is used as the measure of correlation; it ranges from 0 (no
correlation) to 1 (perfect correlation).

R = 23" /(Sxx Syy) (13-8)

R? can be used as a measure of the goodness of fit of data to (in this case) a
straight line. A value of R? of less than 0.9 corresponds to a rather poor fit of
data to a straight line.

Excel provides worksheet functions to calculate the least-squares slope,
intercept and R of the straight line y = mx + b.
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Least-Squares Fit to a Straight Line
Using the Worksheet Functions
SLOPE, INTERCEPT and RSQ

Figure 13-1 shows the phase diagram of methane hydrate, one of a class of
compounds known as clathrate hydrates. Methane hydrate, an ice-like solid,
consists of methane molecules trapped in a crystalline lattice of water molecules;
each unit cell of the crystal lattice contains 46 water molecules and up to 8 gas
molecules. The figure shows that the solid phase forms under conditions of high
pressure and relatively low temperature. Previously, information about the
formation of methane hydrate was important in the natural gas transmission
business because the solid can clog valves. More recently, the discovery of
methane hydrate deposits on the ocean floor has led to estimates that they contain
enough natural gas to provide an energy source for the next several hundred
years, if they can be accessed.

The data of Figure 13-1 conforms to an exponential curve. It can be shown
that the vapor pressure varies with the absolute temperature according to the
Clausius-Clapeyron equation (13-9):

1nP=—A-;—+B (13-9)

4000

3000

P, atm

2000

1000

Figure 13-1. Methane hydrate phase diagram.
The line is the least-squares fit to the data points.
(folder 'Chapter 13 Examples', workbook ‘Methane Hydrate', sheet 'Finished chart')
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Al Bl c bl E [ F |
Methane Hydrate Data for Clausius-
1 Phase Diagram Data Clapeyron Plot
2 T, K 1.1 P, atm 117 inP
3| 2737 05 27 000385 331

4| 2800 77 58 0.00356 4.06
5] 2859 127 97 0.00350 = 457
6 | 2865 133 105 0.00349 465
7 | 2867 135 107 0.00349 467
8| 2902 170 157 000345 506
g
10
11

) | 2057 225 335 000338 582
301.0 278 640 0.00332  6.46
_____________ 3016 284 645 000332 647
12] 3020 288 765 000331 6.64
(13] 3151 419 2344 0.00317 7.76
14| 3201 469 3918 000312 827

Figure 13-2. Portion of spreadsheet for Clausius-Clapeyron plot for methane hydrate.
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data')

When the data of Figure 13-2 is plotted in the form In P vs. 1/T where T is in
Kelvin, Figure 13-3 is obtained. The line is the least-squares best-fit line,
obtained as follows.

InpP

3 L —_ L
0.0030 0.0032 0.0034 0.0036
1T, K*

Figure 13-3. Clausius-Clapeyron plot (In P vs. 1/7) for methane hydrate.
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data’)
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The SLOPE, INTERCEPT and RSQ worksheet functions were used to obtain
the least-squares best fit coefficients of the data, plus R’, the coefficient of
determination. The syntax of the SLOPE function is SLOPE(known_y's,
known_x's); the arguments of INTERCEPT and RSQ are the same as for the
SLOPE function. The values are shown in Figure 13-4.

R BRI ) W e
16| slope= -9705
17 | intercept= 38.61
18| R*= 0.9959

Figure 13-4. Slope, intercept and R” of the plot of In P vs. 1/T for methane hydrate.
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data')

The formulas in cells F16, F17 and F18 are
=SLOPE(F3:F14,E3:E14)

=INTERCEPT(F3:F14,E3:E14)
=RSQ(F3:F14,E3:E14).

The least-squares line shown in Figure 13-1 was calculated using the
regression coefficients 4 and B found for equation 13-9.

Multiple Linear Regression

Multiple linear regression fits data to a model that defines y as a function of
two or more independent x variables. For example, you might want to fit the
yield of a biological fermentation product as a function of temperature (7),
pressure of CO, gas (P) in the fermenter and fermentation time (), for example,

y=aT+bP+ct+d (13-10)

using data from a series of fermentation runs with different conditions of
temperature, pressure and time. Or the dependent variable y could be a function
of several independent variables, each of which is a function of a single original
independent variable, for example,

y=a[H'P +b[H' +c[H']+d (13-11)

Although equation 13-11 is a nonlinear function (a cubic equation), it is
linear in the coefficients and therefore linear regression can be used to obtain the
regression coefficients a, b, ¢ and d of an equation such as 13-11. Excel provides
at least three ways to perform linear regression: by adding a Trendline to a chart,
by using the Regression tool in the Analysis ToolPak, or by using the worksheet
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function LINEST. LINEST (for linear estimation) is the most versatile of the
three, so we will begin with it.

The worksheet function LINEST returns the coefficients of multiple linear
regression. As a first illustration, we will use LINEST to obtain the slope and
intercept of the least-squares straight line through the data points of Figure 13-2.

Least-Squares Fit to a Straight Line
Using LINEST

Although you may find LINEST a bit confusing at first (the help description
for most functions occupies a page or less, while the printed help for LINEST is
seven pages), you will soon "get the hang of it" and will find that it is much to be
preferred over the other methods that Excel provides for doing least-squares
curve fitting.

The general form of the linear equation that can be handled by LINEST is

(13-12)

LINEST returns the array of regression coefficients my, ..., my, my, b. The
syntax is LINEST(known_ys, known_xs, const_logical, stats_logical). If
const_logical is TRUE or omitted, the regression coefficients include an intercept
b; if const_logical is FALSE, the fit does not include the intercept b. If
stats_logical is TRUE, LINEST returns an array of regression statistics in addition
to the regression coefficients m,, ..., m;, and b. The layout of the array of
returned values is shown in Figure 13-5. A one-, two-, three-, four-, or five-row
array may be selected.

Y =mx; +myx; +mgxs + oo+ b

m(n) m(n-1) m(2) m(1) b
std.dev(n) std.dev(n-1) std.dev(2) std.dev(1) std.dev(b)
2 std.dev(y)
F daf
SS(regression) SS(resid)

Figure 13-5. Layout of regression results and statistics returned by LINEST.

LINEST is an array function; to use it, you must do the following:

* Select a range of cells of appropriate dimensions for the results. For this
example we will select a range two columns wide and five rows deep. The
selection is two columns wide because we are returning two regression
coefficients, m and b, and five rows deep because that's the number of rows
of statistical information returned by LINEST. You don't need to always
select five rows for the results; often three rows are sufficient, in order to
obtain the coefficients, their standard deviations, and the R? value.
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e Type the LINEST formula with its arguments, in this example
=LINEST(F3:F14,E3:E14, TRUE,TRUE). You can use the following
"shorthand" for the logical arguments const and stats: FALSE can be
represented by 0 and TRUE by any nonzero value, as in the formula
=LINEST(F3:F14,E3:E14,1,1).

* Enter the formula by using CONTROL+SHIFT+ENTER.

When you "array-enter" a formula, Excel puts braces around the formula, as

shown below:

{=LINEST(F3:F14,E3:E14,1,1)}

: R IO
| 2 Deta from LINEST
3 m b
4 -9705 38.6
5 196 0.7
' b | 09959 0.1011
7 2454 10
| 8 | 251 | 0.1021

Figure 13-6. Regression results and statistics returned by LINEST
for the methane hydrate phase diagram data.
(folder 'Chapter 13 Examples', workbook 'Methane Hydrate', sheet 'Phase diagram data’)

You do not type the braces; if you did, the result would not be recognized by
Excel as a formula.

When the LINEST function is applied to the data in columns E and F of
Figure 13-2, the results shown in Figure 13-6 are obtained.

As you can see, LINEST returns a large amount of useful statistical
information simply by entering a single formula: the regression coefficients, their
standard deviations, the R* value, plus several other statistical quantities. You
must, however, be familiar with the layout of regression results and statistics
shown in Figure 13-5 (also shown in Excel's On-Line Help for the LINEST
worksheet function) in order to know what value each cell contains.

Multiple Linear Regression Using LINEST

Now that we've gained some familiarity with LINEST, let's apply it to an
example of multiple linear regression. The data table in Figure 13-7 lists the
freezing points of solutions of ethylene glycol. We want to be able to obtain the
freezing point of a solution of ethylene glycol with wt% that is intermediate
between the data values given in the table.
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Adig o8

| W%
| Ethylene Freezing
[ 1 | Glycal Point, °F
| 2 0.0 320
| 3 | 50 29.4
41 100 262
51 150 222
6 200 179
L7 250 127
|8 300 6.7
91| 350 -02
10/ 400 81
11| 450 75
12|  so0 289
13| 550 -420
| 14| 600 -54.9

Figure 13-7. Freezing point of ethylene glycol-water solutions.
(folder 'Chapter 13 Examples', workbook 'Dowtherm data’, sheet 'Using Trendline')

Instead of using one of the interpolation techniques described in Chapter 5,
we would like to have a single fitting function that handles the whole range of
data. In the previous example, theory (the Clausius-Clapeyron equation)
demanded that the data be fitted to the function In P = —4/T + B, but in the
present case we are free to choose any empirical fitting function that works.

Figure 13-8 shows that a plot of the freezing point as a function of wt%
ethylene glycol is not a straight line, so the equation y = a + bx will not be a good
choice. What about the next higher power series: y = a + bx + cx*? This is the
equation of a parabola, and we can see that the curve in Figure 13-8 doesn't
behave like a parabola. What about a cubic equation: y = a + bx + cx’ x + dx’? A
cubic fitting function probably will do a good job. We'll fit our freezing point
data to a cubic equation:

T=aW+bW +cW+d (13-13)

One of the requirements of LINEST when fitting the dependent variable y to
multiple independent variables x;, x,, ... is that there must be a separate column
of values for each independent variable (in our case W, #* and #?). So the first

thing we must do is insert two columns to the right of column A and enter
formulas to calculate #2 and W2 as shown in Figure 13-9.
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Figure 13-8. Fitting freezing point of ethylene glycol-water solutions by a power series.
The line through the data points was calculated using the power-series coefficients in Table 13-10.
(folder 'Chapter 13 Examples', workbook ‘Dowtherm data’, sheet 'Using LINEST")

Second, select a block of cells appropriate for the results that will be returned
by LINEST. Since we are fitting the data to a cubic equation (a + bx + ex x +
dx*), we need to select a range four columns wide (one column for each of the

A
%

. Ethylens
Glycol
0.0
50
100
150
200
250
300
350
400
450
500
550
60.0

Sy P o T i |
L_.mwa,___,mmw.mmhwm—\

Tl

e
0.0
250
100.0
2250
400.0
6250
900.0
12250
1600.0
20250
25000
30250
3600.0

C

Wy
0.0
1250
1000.0
33750
8000.0
15625.0
27000.0
428750
64000.0
911250
1_ 250000
166375.0
216000.0

D

Freezing
Pairt, °F

320
294
262
222
179
127
6.7
02
-8.1
175
-28.9
-42.0
-54.9

E

=
(calc)
321
293
260
223
18.0
128
68
-0.2
-8.4
179
-28.8
-41.2
-55.3

B ]

diff
g
01
a1
0.2
01
01
01
01
0.0
03
0.4
01
08
0.4

Figure 13-9. Fitting freezing point of ethylene glycol-water solutions by a power series.
The values in column D were calculated using the regression coefficients in Table 13-10.
(folder 'Chapter 13 Examples’, workbook 'Dowtherm data', sheet 'Using LINEST")



296 EXCEL: NUMERICAIL METHODS

four regression coefficients) and up to five rows deep (LINEST can return five
rows of regression statistics, as illustrated in Figure 13-5). If you want to see the
curve-fitting coefficients, their standard deviations and the R? value, you need
only select a range that is three rows deep.

Third, enter the LINEST formula with its arguments:
=LINEST(D2:D14,A2:C14,1,1)

Finally, enter the array function by pressing CONTROL+SHIFT+ENTER
(Windows) or CONTROL+SHIFT+RETURN (Macintosh).

The results returned by LINEST are shown in Figure 13-10. At first you may
find them a little confusing, since they aren't labeled. Refer to the layout of the
results shown in Figure 13-5 to understand what value is contained in each cell.
The first row contains the regression coefficients, the second row contains their
standard deviations, and the third row contains the R’ value in cell A20 and the
SE(y) value (the standard error of the y-estimate, sometimes referred to as the
RMSD, root-mean-square deviation) in cell B20.

One feature of the LINEST results that can initially be confusing is that, as
shown in Figure 13-5, the regression coefficients b, m,, m,, ms,... progress from
right to left (in cells D18 C18, B18, A18 in Figure 13-10) while the
corresponding independent variables x;, x,, X3, ... progress from left to right (in
columns A, B and C of Figure 13-9). Nonetheless, it's my opinion that using
LINEST is by far the best way to do linear regression in Excel.

......... I

A L GHR R D
| 18| -0.00017 -0.00495 -0.538589 32.09863
19 2.01E-05 0.001834 004619 0.307011

20 | 0999878 0.359817  #NIA #NIA
21 | 24656.24 3 #NA #NIA
22| 9576627 1185217  #N/A #NIA

Figure 13-10. Least-squares coefficients of a power series
for freezing point of ethylene glycol-water solutions.
(folder 'Chapter 13 Examples', workbook 'Dowtherm data', sheet 'Using LINEST")

Once you've obtained the regression coefficients by using LINEST, it's a
simple matter to calculate the freezing point of a solution of any wt% ethylene
glycol. Assigning the names aa, bb, cc, dd for the regression coefficients in cells
A18:D18 and W for the wt% ethylene glycol values in column A, respectively, is
a good idea. The formula

=aa*W"3+bb*W*2+cc*W+dd

was used to calculate the values in column E of Figure 13-9.
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Handling Noncontiguous Ranges
of known_x's in LINEST

One of the few limitations of LINEST is that the range of known_x's must be
a contiguous selection (e.g., $A$2:$C$13 in Figure 13-9). Occasionally, you may
wish to perform multiple linear regression where the known_x's are not in
adjacent rows, and it may not be convenient to rearrange the spreadsheet so as to
obtain a contiguous range of known_x's. You can use the custom function Arr to
combine separate ranges into a single array. For example, if the ranges of
independent variables x;, x; and x; were in the ranges A2:A13, C2:C13 and
E2:E13, respectively, and the dependent variable y in F2:F13, the LINEST
expression would be

=LINEST(F2:F13, Arr(A2:A13, C2:C13,E2:E13),1,1)

A LINEST Shortcut

Here's a shortcut that eliminates the need to create the columns of #? and W*
in Figure 13-10. If you've read Chapter 4, "Number Series," and understand
array constants, you'll understand how the formula

{=LINEST(D2:D14,A2:A14M1,2,3},1,1)}

creates an array of the values of the independent variable W raised to the first,
second and third powers. Unlike the braces that are automatically placed around
an array formula when you enter it by using CONTROL+SHIFT+ENTER, you must
type the braces around the values of the array constant.

You can examine that part of the formula by highlighting A2:A14*{1,2,3} in
the formula bar and pressing F9; you'll see the result displayed in the formula bar
(only a portion of it is shown here):

{0,0,0,5,25,125;10,100,1000;15,225,3375;20,400,8000;...}
Note that successive array elements in a row are separated by commas, and
rows of elements are separated by semicolons.

The formula, which must be entered by using CONTROL+SHIFT+ENTER,
returns the same values that are shown in Figure 13-10.

LINEST's Regression Statistics

Additional regression statistics are returned by LINEST in rows 3, 4 and 5 of
the array. The mathematical relationships between the regression statistics are
given in equations 13-14 to 13-19 (¥ = number of data points, £ = number of
regression coefficients to be determined):

df (degrees of freedom)=N—-k (13-14)
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SSregre.\'sion = Z(ymean - Y calc)2 ( 13-15 )
SSresiduaLs = Z(yobsd -y calc)2 ( 1 3 -1 6)
SS,..i
R =1 ot (13-17)
SS regression
S S regression
F=——— (13-18)
SSresid / df
SE(y) = S5 s (13-19)
N-k

The coefficient of determination, R (or the correlation coefficient, R), is a
measure of the goodness of fit of the data to (in this case) a straight line. If x and
y are perfectly correlated (i.e., the difference between yopsd and yealc is zero),
then R = 1. In contrast, an R® value of zero means that there is no correlation

between x and y. A value of R? of less than 0.9 corresponds to a rather poor fit of
data to a straight line.

The SE(y) parameter, the standard error of the y estimate, is sometimes
referred to as the RMSD (root-mean-square deviation).

The F-statistic is used to determine whether the proposed relationship is
significant (that is, whether y does in fact vary with respect to x). For most
relationships observed in chemistry, a relationship will unquestionably exist. If it
is necessary to determine whether the variation of y with x is statistically
significant, or merely occurs by chance, you can consult a book on statistics.

Linear Regression Using Trendline

You can also fit a least-squares line to data points such as those shown in
Figure 13-9 by adding a trendline to a chart. You can choose from a menu of
mathematical functions—Ilinear, logarithmic, polynomial, power, exponential—
as curve-fitting functions.

To add a trendline, select the chart by clicking on it, then choose Add
Trendline... from the Chart menu.



CHAPTER 13 LINEAR REGRESSION AND CURVE FITTING 299
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“ype 1| options |
Trend/Regression type
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Based on series:
oK Cancel J

Figure 13-11. The Type tab of the Trendline dialog box.

If the chart has several data series, either select the desired data series before
choosing Add Trendline... or choose the desired data series from the Based On
Series box.

Choose the Type tab and then choose the appropriate fitting function from
the gallery of functional forms. (Depending on the data in the series, the
exponential, power or logarithmic choices may not be available.) If you choose
the polynomial form, you can select the order of the polynomial by using the
spinner. If you choose 3, for example, Excel will fit a polynomial of order three
(i.e., a cubic equation) to the data points. The maximum order is a polynomial of
order six.

Now choose the Options tab (Figure 13-12).

Check the boxes for Display Equation On Chart and Display R-squared
Value On Chart; then press OK. Excel displays the trendline on the chart as a
heavy solid line and the equation (with the least-squares coefficients) and R’
value as text on the chart, as shown in Figure 13-13. You can change the
appearance of the trendline by clicking on the trendline, then choosing Selected
Trendline... from the Format menu.
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Type Options

Trendline name
(¢ putomatic:  Linear (Series1)

(" Custam: |

Forecast
| Eorward: 0 <4 Units
| Backward: 0 <24 Units

[ Setintercept = [

IV Display equation on chart

IV Display R-squared value on chart} i

| oK j Cancel |

d

If you want to use the coefficients for calculations, you’ll have to copy them
from the chart and paste them into worksheet cells. Usually the coefficients as
displayed in the chart are not precise enough for calculations, but you can apply
number formatting to the text to display more significant figures before copying
the coefficients. Click once on the Trendline text to select it (a box indicates that
the complete text has been selected), then choose Selected Data Labels... from
the Format menu and choose the Number tab. Choose an appropriate number
format (Scientific, for example), then press OK.

Alternatively, click on the Trendline text to select it and use the Increase
Decimal toolbutton to display more figures.

Now Copy the individual coefficients of the Trendline equation and Paste
them into spreadsheet cells.
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Figure 13-13. Least-squares coefficients of a power series
for freezing point of ethylene glycol-water solutions, obtained by using Trendline.
(folder 'Chapter 13 Examples', workbook 'Dowtherm data’, sheet 'Using Trendline")

Limitations of Trendline

The Trendline dialog box offers only a limited menu of mathematical fitting
functions: linear, polynomial, exponential, etc. And, in addition, the independent
variables used in the regression must be mathematical functions of a single
independent variable: x, %%, x°, etc. LINEST, on the other hand, can perform
multiple linear regression with several different independent variables. For
example, in a study of the yield of a biomolecule produced by fermentation,
regression analysis using LINEST, on data produced by a number of experiments,
could provide a relationship that relates the yield of product (the dependent
variable) as a function of: fermentation time, temperature and pressure of CO,
gas (the independent variables). In addition, only limited mathematical functions
of the single x variable are available; you can fit a curve to a polynomial of the
second degree (y = ax’ + bx + ¢) for example, but not to the function y = ax* + c.

The most serious limitation of using Trendline to perform multiple linear
regression is that the result is simply some text on a chart. You must then
transfer the values of the regression coefficients from the chart to worksheet cells
before you can use them, either by highlighting and copying individual sections
of the trendline equation and pasting into the worksheet, o—horrors—manually
typing the values.
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After formatting to show a few more decimal places, for example,
y = -1.72727E-04x3 - 4.94605E-03x2 - 5.38589E-01x + 3.20986E+01
you are now ready to copy the values and paste them into your spreadsheet.

Importing Trendline Coefficients into a Spreadsheet
by Using Worksheet Formulas

The following are the various Trendline fitting functions that are displayed in
the Add Trendline dialog box directly into worksheet cells:

linear y=ax+b
logarithmic y=aln(x)+b
polynomial (e.g., order 3) y=ax’+bx*+ex+d
power y=ax’

exponential y=ae™

The linear, logarithmic and polynomial expressions are linear in the
coefficients and can be handled by Excel's built-in linear regression code.
Trendline uses linear transformation of the power and exponential functions to
obtain the coefficients: the exponential expression is transformed to In(y) = bx +
In(a) and the power expression to In(y) = b In(x) + In(a).

The following formulas allow you to get the coefficients of the various
Trendline fitting functions directly into worksheet cells. The formulas use the
results returned by LINEST, so there's really no reason not to use LINEST
directly. But for those die-hards who insist on using Trendline, here are the
relationships (in each formula, replace the arguments y_values and x_values with
the appropriate range references):

linear a =INDEX(LINEST(y_values, x_values,1,0),1)
b =INDEX(LINEST(y_values,x_values,1,0),2)

logarithmic a =INDEX(LINEST(y_values,LN(x_values),1,0),1)
b =INDEX(LINEST(y_values LN(x_values),1,0),2)

a =INDEX(LINEST(y_values,x_values”{1,2,3},1,0),1)
b =INDEX(LINEST(y_values,x_values®{1,2,3},1,0),2)
¢ =INDEX(LINEST(y_values,x_values™{1,2,3},1,0),3)
d =INDEX(LINEST(y_values,x_values”{1,2,3},1,0),4)

polynomial
(e.g., order 3)
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power a =EXP(INDEX(LINEST(LN(y_ values),LN(x_values),1,0),2))
b =INDEX(LINEST(LN(y_values),LN(x_values),1,0),1)

exponential a =EXP(INDEX(LINEST(LN(y_values),x_values,1,0),2))
b =INDEX(LINEST(LN(y_values),x_values,1,0),1)

The formulas for polynomials of other orders should be apparent from the
example given.

Even though LINEST is an array function and must be entered using
CTRLA+SHIFT+ENTER, you do not need to "array-enter" these formulas.

Note that the formulas for the regression coefficients a and b for linear,
logarithmic and polynomial equations differ only in the value of the last
argument (the row_num argument of INDEX). The formulas for power and
exponential are not identical.

The formula for RSQ for the linear equation is
=INDEX(LINEST(y_values,x_values,1,1),3,1)

and there are similar formulas for the other fitting functions.

Using the Regression Tool in Analysis Tools

Linear regression can also be performed using the Add-In package called the
Analysis ToolPak. If the Analysis ToolPak Add-In is installed, the Data
Analysis... command will be present at the bottom of the Tools menu; if the
Data Analysis... command is not present in the Tools menu, choose Add-Ins...
from the Tools menu and check the box for Analysis ToolPak or Analysis
ToolPak (VBA) to install it. Now when you click on the Tools menu you will
see the Data Analysis... command.

2 Statistics
moothing PRSI |
ample for Variances
Fourier &n:
Histogram
Moving Average

Random Number Generation
Rank and Peri

Figure 13-14. The Data Analysis dialog box.
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Figure 13-15. The Regression dialog box.

After you choose Data Analysis... from the Tools menu, choose Regression
from the Analysis Tools list box. The Regression dialog box (Figure 13-15) will
prompt you to enter the range of dependent variable (y) values and the range of
independent variable (x) values, as well as whether the constant is zero, whether
the first cell in each range is a label, and the confidence level desired in the
output summary. Then select a range for the summary table. You need select
only a single cell for this range; it will be the upper left corner of the range. You
can also request a table of residuals and a normal probability plot. If you select a
cell or range such that the summary table would over-write cells containing
values, you will get a warning message.

In contrast to the results returned by LINEST, the output is clearly labeled,
and additional statistical data are provided.
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SUMMARY OUTPUT

._ Regression Statistics
4 Muttiple R 0.999939169

5 R Square 0.993878342
5 Adjusted R Square  0.999837789

Standard Error 0.359817436
& | Observations 13
10 ANOVA
11 of S§ Ms F
12 |Regression 3 9576 62709 3192209 24656.244
|3 Residual 9 1165217283 0.1294686
14 Total 12 9577 .792308
16 Coefficients Standard Ervor t Stat Pvalue
17 Intercept 3209862637 0.307011363 10455192 3.4E-15
10 X wariable 1 -0.53858891 0.046189683 -11.660373 9.83E-07
19 X Variable 2 -0.00494605° 0001833799 -26971619 0.0245073
20 X variable 3 -0.00017273  2.00596E-05 -8.6106907 1.224E-05

Figure 13-16. Regression statistics returned by the Regression tool.
(folder 'Chapter 13 Examples', workbook 'Dowtherm data’, sheet 'Using Regression')

Limitations of the Regression Tool

Unlike Trendline, the Regression tool in Data Analysis... (the Analysis
Toolpak) provides the coefficients and statistical parameters of linear regression
as values in cells, ready to be used in calculations. And, they are presented in a
nicely formatted table. The major limitation of the regression tool is that, unlike
LINEST, it is not a function. With LINEST, the returned values are dynamically
linked to the original data and are updated if the raw data is changed. If you use
the Regression tool, the values are calculated from the raw data and entered into
worksheet cells; they do not change if you change the input data.

Importing the Trendline Equation
from a Chart into a Worksheet

Scientists and engineers often use Excel's Trendline feature to obtain a least-
squares fit to data in a chart. Trendline provides a limited gallery of
mathematical fitting functions, including regular polynomials up to order six.
The disadvantage of Trendline is that the trendline equation is merely a caption
in the chart; to use it in the worksheet, the coefficients must be transferred
manually by typing, or copying and pasting. The utility TrendlineToCell
provided on the CD-ROM converts the Trendline equation to an Excel formula
and transfers the formula to a selected cell on a worksheet. Figure 13-17 shows
the VBA code.
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Sub TrendlineToCell()
Tranfers Trendline text to cell as formula.

'REMEMBER LOCATION OF CHART

If TypeName(ActiveSheet) = "Chart" Then
ChartSheetName = ActiveSheet.Name

Else
pointer = Application.Find("Chart", ActiveChart.Name)
ChartObjectName = Mid(ActiveChart.Name, pointer, 100}

End If

'MAKE SURE A TRENDLINE IS SELECTED.

On Error GoTo BadSelection

'Selection.Name e.g., "Text S3T1"

If Selection.Name Like "Text S*T*" Then
pointer = Application.Find("T", Selection.Name, 3)
SeriesNum = Val(Mid(Selection.Name, 7, pointer - 7))
TrendlineNum = Val(Mid(Selection.Name, pointer + 1, 3))

Eise

BadSelection: MsgBox "You must select a Trendline label.”

Exit Sub

End If

On Error GoTo 0

'CHANGE NUMBER FORMAT TEMPORARILY TO GET SUFFICIENT PRECISION
TLNumberFormat = Selection.NumberFormat
Selection.NumberFormat = "0.0000000000E+00"

‘CONVERT TRENDLINE TEXT TO AN EXCEL FORMULA
'First, strip off y and R parts

TLText = Selection.Characters.Text

pointer = Application.Find("=", TLText)

TLText = Mid(TLText, pointer, 1024)

If Not (IsError(Application.Find("R", TLText))) Then
pointer = Application.Find("R", TLText)

TLText = Left(TLText, pointer - 2)

End If

'CONVERT DIFFERENT TYPES OF TRENDLINE EQUATION
Select Case ActiveChart.SeriesCollection(SeriesNum) _
.Trendlines(TrendlineNum).Type
Case -4132 'Linear
TLText = Application.Substitute(TLText, "x", "*x")
Case -4133 'Logarithmic
TLText = Application.Substitute(TLText, "L", "*L")
Case 3 'Polynomial
TLText = Application.Substitute(TLText, "x", "*x"})
TLText = Application.Substitute(TLText, "x* ", "x ")
Case 4 'Power
TLText = Application.Substitute(TLText, "x", "*x")
Case 5 'Exponential
TLText = TLText & )"
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TLText = Application.Substitute(TLText, "e", "*EXP(")
TLText = Application.Substitute(TLText, "x", "*x")
End Select

'INPUT REFERENCES FOR FORMULA AND X

On Error GoTo CancelWasPressed

Set YAddress = Application.inputBox(prompt:= _
"Select destination cell for formula.", Title:= _
"COPY TRENDLINE TO CELL - STEP 1 OF 2", Type:=8)
Y = YAddress.Address(external:=True)

Set XAddress = Application.InputBox{prompt:= _
“Select cell for independent variable x.", Title:= _
"COPY TRENDLINE TO CELL - STEP 2 OF 2", Type:=8)
X = XAddress.Address
X = Application.Substitute(X, "$", ")
TLText = Application.Substitute(TLText, "x", X)
Range(Y).Formula = TLText
CancelWasPressed: On Error GoTo 0

'RETURN TO TRENDLINE TEXT TO RESTORE ORIGINAL NUMBER FORMAT

If ChartSheetName <> "" Then
Charts(ChartSheetName).Activate
Charts(ChartSheetName).ChartArea.Select

Else
ActiveSheet.ChartObjects(ChartObjectName).Activate

End If

ActiveChart.SeriesCollection(SeriesNum) _
.Trendlines(TrendlineNum).Datal.abel.Select

Selection.NumberFormat = TLNumberFormat

End Sub

Figure 13-17. VBA code for theTrendlineToCell utility.

The procedure is an Auto_Open macro; when you open the document, the
procedure installs a new menu command, Copy Trendline to Cell..., in the

Tools menu of the Chart menu bar (see Figure 13-18), then hides itself.
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Chart i Window Help

Chart Type..,

Source Data.,.
Chart Options...
Location...

| addData...
Add Trendline. ..

Copy Trendline to Cell,..

Figure 13-18. The new menu command in the Chart menu.

To use the utility, you first must select a Trendline equation in a chart. Then
choose the Copy Trendline to Cell... command. Two dialog boxes direct you
to, first, select the destination cell for the formula, and second, select the cell for
the independent variable x. The utility converts a trendline equation such as

y = 3x° +2.5%% - 5x - 11

into the corresponding Excel formula
= 3*A973 + 2. 5*A9"2 - 5*A9 - 11

The utility can handle linear, logarithmic, polynomial, power and exponential
Trendline equations.
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Problems

Data for, and answers to, the following problems are found in the folder "Ch. 13
(Linear Regression)" in the "Problems & Solutions" folder on the CD.

1. The calibration curve data in Table 13-1 shows readings taken on a series of
sodium standards, using a CIBA-Corning Model 410 flame photometer. The
calibration line is noticeably curved.

X, ppm y, reading
0 0
5 62
10 115
15 160
20 200
25 233

Table 13-1. Data for flame photometry calibration curve.

Fit the data to a cubic equation, y = ax’ + bx* + cx + d.

2. If any of the coefficients found in problem 13-1 have unacceptably large
standard errors, repeat the analysis using a different fitting function.

3. Fit the data In Table 13-2 (also available on the CD) to a power series
function, y = ax’, using (a) Trendline and (b) LINEST.

x Y X y

01 | 1.346 8 5.315
02 | 1.264 9 4.981
2253 | 10 | 5.730
2865 | 11 | 5416
3.034 | 12 | 5577
3740 | 13 | 6.123
3973 | 14 | 5.843
4073 | 15 | 5837
4367 | 16 | 6.524
4515

Table 13-2. Data to be fitted with a power series.

\IO‘JU'IAOON—-\g




310 EXCEL: NUMERICAL METHODS

4, Fit the data for freezing point of ethylene glycol by wt% shown in the
following table (also found in the problems for Chapter 5) to a cubic fitting
function and estimate the freezing points of 33.3 wt% and 42.3 wt% ethylene
glycol.

Wt% Ethylene Freezing Point, °F
Glycol

0.0 32.0
5.0 294
10.0 26.2
15.0 222
20.0 17.9
25.0 12.7
30.0 6.7

35.0 -0.2
40.0 -8.1

45.0 -17.6
50.0 -28.9
55.0 -42.0
60.0 -54.9

Table 13-3. Heat transfer fluid freezing point data.

5. Table 13-4 (also found on the CD) gives the specific heat of water at various
temperatures from 0°C to 100°C. Using LINEST, fit the data to a
polynomial of order 5.

T,°C cp,Jdilg | T,°C cp, Jig
0 4.21588 50 4.17890
5 4.20040 55 4.18061
10 4.19040 60 4.18262
15 4.18400 65 4.18500
20 4.18011 70 4.18781
25 4.17781 75 4.19099
30 417672 80 4.19459
35 4.17639 85 4.19869
40 4.17680 90 4.20329
45 4.17768 95 4.20852

100 421417

Table 13-4. Specific heat of water at various temperatures.

6. Power output (P) from a gas turbine engine was measured at several different
throttle settings (7) and output shaft speeds (S). The data are shown in Table
13-5 and are also found on the CD-ROM. Use linear regression to obtain
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the coefficients of a single equation P = F(7,S) so that a controller can be
programmed to command a load on the engine based on speed and throttle
setting.

A[B BT T A O
Output Power (hp) as a Function of Shaft Speed and Throttle Setting
Speed, rpm

(ay

m

7 500 600 700 800 900 1000
8 0 60 83 123 149 184 237
3 1 75 105 140 193 237 305
10 b v i 123 166 218 289 368 482

(118 3 184 275 380 499 648 806
(1212 3 307 429 596 789 1016 1244
s - 447 640 876 1157 1472 1823
114 B 613 894 1227 1621 2059 2541
115 7 824 1192 1630 2147 2734 3400

Table 13-5. Power output of a gas turbine engine
as a function of throttle setting and shaft speed.
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Chapter 14

Nonlinear Regression
Using the Solver

If you have read the preceding chapter on linear regression and are familiar
with the use of LINEST, you should have no trouble recognizing a function that is
linear in the coefficients. Some examples of functions that are linear in the
coefficients are y = a + bx + cx’ +dx’ or y = ae”.

However, if the function is one such as

y=¢t (14-1)
it is not linear in the coefficients. It should be obvious that it's not possible to
apply LINEST to this equation; given a column of x values, you can't create a
column of ¢** ™ when a and b are the "unknowns" you're trying to find.

Some nonlinear equations can be transformed into a linear form. Equation
14-1, for example, can be transformed by taking the logarithm to the base e of
each side, to yield the equation

Iny=a+bx (14-2)

which is linear in the coefficients.

Some equations cannot be converted into a linear form and are said to be
intrinsically nonlinear. Consider this example from the field of chemical reaction
kinetics: a system of two consecutive first-order reactions (the reaction scheme
A—B—C) where k, and k; are the rate constants for the reaction of species A to
form the intermediate B and B to form the final product C, respectively. The
equations for the concentrations of the species {A],, [B], and [C]; in a reaction
sequence of two consecutive first-order reactions can be found in almost any
kinetics text. The expression for [B], is

(B, =[Aly L —(e~h — b (143)
27 M

and a typical plot of [B], vs. ¢ looks like the one in Figure 14-1. Equation 14-3 is
a classic example of an equation that is intrinsically nonlinear.

313
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Nonlinear Least-Squares Curve Fitting

Unlike for linear regression, there are no analytical expressions to obtain the
set of regression coefficients for a fitting function that is nonlinear in its
coefficients. To perform nonlinear regression, we must essentially use trial-and-
error to find the set of coefficients that minimize the sum of squares of
differences between yg,. and yosq. For data such as in Figure 14-1, we could
proceed in the following manner: using reasonable guesses for k; and &k,
calculate [B] at each time data point, then calculate the sum of squares of
residuals, SSiesiquats = 2{[Bleale — [B]expt)z. Our goal is to minimize this error-
square sum.

We could do this in a true "trial-and-error" fashion, attempting to guess at a
better set of k; and k&, values, then repeating the calculation process to get a new
(and hopefully smaller) value for the SSiegiquaiss Or we could attempt to be more
systematic. Starting with our initial guesses for k; and &,, we could create a two-
dimensional array of starting values that bracket our guesses, as in Figure 14-2.
(The initial guesses for k; and &, were 0.30 and 0.80, respectively and the array of
starting values are 70%, 80%, 90%, 100%, 110%, 120% and 130% of the
respective initial estimates.) Then, for each set of k; and k; values, we calculate
the SSesiauats. The kj and k, values with the smallest error-square sum (k; = 0.27,

0.025

0.020

Best fit

0.015

[B]

0.010

0.005

0.000 L L : L

Time

Figure 14-1. A typical plot of the concentration of species B for a system of two
consecutive first-order reactions (the reaction scheme A—-B-C)
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k; = 0.64 in Figure 14-2) become the new initial estimates and the process is
repeated, using smaller bracketing values. Years ago this procedure, called "pit-
mapping," was performed on early digital computers.

In essence we are mapping out the error surface, in a sort of topographic
way, searching for the minimum. A typical error surface is shown in Figure 14-3
(the logarithm of the SSi.auas has been plotted to make the minimum in the
surface more obvious in the chart).

Trial values of ky

0.21 024 0.27 0.30 0.33 0.36 0,39

056
064
072
0.80
0.88
0886
1.04

Trial values of k

1.5E-11
2.0E-11
3.4E-11
5.2E-11

72611
9.3E-11

14E10

6.5E-12
6.7E-12
1.7E-11
3.3E-11
5.2E-11
7 2E-11
9.2E-11

55E-12 1.1E-11
71.2E-13 1.0E12

7.8E-12 4.6E-12
(24E-11 1.6E-11
'39E-11 3.1E-11
57E-11 4.8E-11
| 77E-11 B.7E-11

21E11 3.5E-11

'B.4E-12 1.6E-11

6.3E-12 1.2E-11

1.5E-11 1.8E-11
(28E-11 29E-1

4 4E-11 4 3E-11
61E-11 5.9E-11

1 5.3E-11

2 9E-11
21E-11
2.4E-11
3.36-11
4 5€-11
6.0E-11

Figure 14-2. The error-square sums for an array of initial estimates.
The minimum SSg4ua1s value is in bold.

log 3 (residual?)

Figure 14-3. An error surface
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A more efficient process, the method of steepest descent, starts with a single
set of initial estimate values (a point on the error surface), determines the
direction of downward curvature of the surface, and progresses down the surface
in that direction until the minimum is reached (a modern implementation of this
method is called the Marquardt-Levenberg algorithm). Fortunately, Excel
provides a tool, the Solver, that can be used to perform this kind of minimization
and thus makes nonlinear least-squares curve fitting a simple task.

Introducing the Solver

Like Goal Seek, the Solver can vary a changing cell to make a rarget cell
have a certain value. But unlike Goal Seek, which can vary only a single
changing cell, the Solver can vary the values of a number of changing cells.

The Solver is a general-purpose optimization package that can find a
maximum, minimum or specified value of the target cell. The Solver code is a
product of Frontline Systems Inc. (P.O. Box 4288, Incline Village, NV 89450;
www.frontsys.com).

Microsoft's documentation makes no mention of the use of the Solver to
perform least-squares curve fitting, but it is immediately obvious to almost any
scientist that the Solver can be used to minimize the sum of squares of residuals
(differences between yopsa and yeac) and thus perform least-squares curve fitting.
The Solver can be used to perform either linear or nonlinear least-squares curve
fitting.

How the Solver Works

The Solver uses the Generalized Reduced Gradient (GRG2) nonlinear
optimization code developed by Leon Lasdon, University of Texas at Austin, and
Allan Waren, Cleveland State University .

For each of the changing cells, the Solver evaluates the partial derivative of
the objective function F (the target cell) with respect to the changing cell g;, by
means of the finite-difference method. The procedure works something like this:
the Solver reads the value of each changing cell g; in turn, modifies the value by
a perturbation factor (the perturbation factor is approximately 10™®), and writes
the new value back to the worksheet cell. This causes the spreadsheet to
recalculate, producing a new value of the objective. The Solver calculates the

* For linear and integer problems, the Solver uses the simplex method and branch-and-
bound method, but these methods need not be discussed here. You can read more about
the design and operation of the Solver in the following article (available online): "Design
and Use of the Microsoft Excel Solver," Daniel Fylstra, Leon Lasdon, John Watson and
Allan Waren, Interfaces 28, September 1998, pp. 29-55.
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partial derivative OF/0Oa; according to equation 14-4 and then restores the
changing cell to its original value and perturbs the next changing cell. The same
method was used earlier in this book to calculate the first derivative of a function
(see "Derivative of a Worksheet Formula Using the Finite-Difference Method" in
Chapter 6).

OF AF _ F(a;+Aa;) - F(a)
Oa; Aa; Aa;

i 1

(14-4)

The Solver uses a matrix of the partial derivatives to determine the gradient
of the response surface, and thus how to change the values of the changing cells
in order to approach the desired solution.

The use of finite differences to obtain the partial derivatives means that the
Excel spreadsheet performs all of the intermediate calculations leading to the
evaluation of the derivatives. Thus all of Excel's built-in worksheet functions, as
well as any user-defined functions, are supported. The alternative, obtaining the
derivatives analytically by symbolic differentiation of the spreadsheet formulas,
would have been an impossible task.

Loading the Solver Add-In
The Solver is an Excel Add-in, a software program that is loaded only when
needed. You'll find the Solver in the Tools menu; if it's not there, choose Add-

Ins... from the Tools menu to display the Add-Ins dialog box, shown in Figure
14-4, check the box for Solver Add-In, then press OK.

Why Use the Solver for Nonlinear Regression?

A number of commercial statistical packages provide the capability to
perform nonlinear least-squares curve fitting, so why use the Solver?

First, the Solver is used within the familiar Excel environment, so that you
don't have to learn new commands and procedures.

Secondly, with commercial statistical packages you are generally restricted
to using an equation chosen from a library of fitting functions provided within
the program, whereas with the Solver you can fit data to any model (that is, any
Veale formula) you choose.

Finally, the Solver is part of Excel. It's free, so why not use it?
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7§ x|

Add-Ins available
| Analysis ToolPak [ O
| Analysis ToolPak - VBA
[~ Conditional Sum Wizard Cancel |
|  Euro Currency Tools il
[ Internet Assistant YBA Reilite ‘
[ Lookup Wizard e

Aytomation. .. j

¥

Solver Add-in

Tool For optimization and equation solving

Figure 14-4. The Add-Ins dialog box.

Nonlinear Regression Using the Solver: An Example

To perform nonlinear least-squares curve fitting using the Solver, your
spreadsheet model must contain a column of known y values and a column of
calculated y values, so that the sum of squares of residuals can be calculated.
The calculated y values must be spreadsheet formulas that depend on the curve
fitting coefficients that will be varied by the Solver.

To illustrate the use of the Solver for nonlinear least-squares curve fitting,
we'll use as an example the system of two consecutive first-order reactions (the
reaction scheme A—B-—C) where the species B is the observed variable.
Equation 14-3 gives the expression for the concentration of species B as a
function of time; as we have seen, [B], depends on two rate constants, k; and k,.
In the experimental results that follow, species B was monitored by
spectrophotometry (light absorption) and the relationship between the light
absorbed (the absorbance) and the concentration of B is given by Beer's Law:

A = g x (path length of light through the sample) x [B]
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where &3 is the molar absorptivity (a constant dependent on the chemical species
and the wavelength, and thus a third unknown quantity in this example).
Therefore three curve-fitting coefficients (k, k; and &) must be varied in this
example. If two variable coefficients produce an error surface in three
dimensions, as illustrated in Figure 14-3, then varying three coefficients requires
that we work in four dimensions!

Figure 14-5 shows the spreadsheet that was used to produce the result shown
in Figure 14-1. The experimental values of the dependent variable, 4,4, are in
column B, the concentration [B]; in column C, A . in column D and the square
of the residual in column E.

H AN S M RO SRR T I S -
1ﬂ i Consecutive First-Order Reactions (A - B - ()
2 | [Blt = [Aloky (EXP (ko )- EXP (—ky h)i(ki—ko)
3 .Only B absorbs ||gl"rt at the rnunﬁnrlng wavelength (243 nrn) Palﬁ Iengthﬂ 4cm

. Absorbance = molar absurph\rltyx path Iength ¥ concentration
4 | A=gpx0.4x[B]
B _“Canc (rmoliL) 4. 00E-05 (C_A) Rate constants:
6 | £ (cm Umol) 0 Cky(sec™ | 0500 (k_1)
7 lg(cmUmol 3.00E+03 (E_B) | ke(sec™ 0300 |(k_2)
8 |& (om Umob, o | L
9 | tsec Ajobsd)  [Bl | Afcal) & |
10 0.0 0.0000  0.00E+00 | 0.0000 | 0.0E+00 |
11 0.2 | 00047 @ 369E-06 00044  7.2E-08 |
12 0.6 . 0.0129  945E-06  0.0113  25E-06 |
113, 1.0 | 0.0163  1.34E-05 | 0.0161  34E-08
14 1.4 . 0.0188  1.B0E-05 0.0193  21E-07
15 1.8 . 0.0201  1.76E-05  0.0211 | 1.1E-06 |
1B 2.2 | 0.0208 @ 1.84E-05 00221 | 16E-06
17 26 . 0.0208 « 1.8BE-05 0.0223 | 2.3E-06 |
18 3.0 | 0.0205 | 1.83E-05 | 0.0220 | 2.3E-06
(19 4.0 00178  1.6BE-05 | 0.0199  4.4E-06
20 5.0 | 0.0149 | 1.41E-05 00169  4.1E-06
21 6.0 . 00118  1.1BE-05 ' 00139 = 42E-06
22 7.0 . 0.0090  923E-06 00111 | 43E-06
23 | 8.0 ~ 0.0070 7.24E-06 00087  29E-06 i
24 | 9.0 0.0052 561E-06 0.0067 | 2.3E-06 |
25 10.0 0.0038  4.30E-06 00052 | 1.9E-06 |
26 | (target) | 3.42E-05

Figure 14-5. The spreadsheet before optimization of coefficients by the Solver. The
initial values of the three coefficients (the changing cells) and the current value of the
objective (the target cell) are in bold.
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The formulas in cells C10, D10 and E10 are, respectively,
=C_A*K_1*(EXP(-k_2*t)-EXP(-k_1*t))/(k_1-k_2)
=E_B*0.4*C10

=(B10-D10)*2

Range names were used in these formulas; the names assigned to cells are
shown in parentheses in the cell to the right of each named cell.

The three changing cells ($E$6, $E$7 and $B$7) and the target cell ($E$26)
are in bold. The initial values are guesses based on the appearance of the data in
Figure 14-1. More specifically, the guesses were based on the rise time, decay
time and maximum of the data, but if you experiment with the Solver you will
see that much poorer guesses will almost always lead to the correct answer.

(A good way to get initial values for the changing cells is to create a chart of
the data, then vary the coefficients in order to get an approximate fit of the
calculated curve to the experimental data points.)

When the spreadsheet model has been set up, choose Solver... from the
Tools menu. The Solver Parameters dialog box (Figure 14-6) will be displayed.

Set Target Cell: |$E$26 '—“:?:

Equal To: (" Max (" Min " yalue of: E Clace |
By Changing Cells: S | 1I
[ - i
|$E$6:$E47, 4847 Al |
Subject to the Constraints: Options
| 2l B ]

Change ;

e Reset All |

| Delete | TEPCLERTTINIEaT

Badl {Lphoonl bty Help

Figure 14-6. The Solver Parameters dialog box.

In the Set Target Cell box, type E26, or select cell E26 with the mouse. We
want to minimize the sum of squares, so press the Min button. In the By
Changing Cells box, enter E6:E7 and B7.
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Solver Options

Max Time: seconds | OK |
Iterations: 100 Cancel l
Precision: W Load Model... l
Tolgrance: |-5——_-% Save Model... I
Conyergence: W_UT_— Help |
[ Assume Linear Model I~ Use Automatic Scaling

I assume Non-Megative

Estimates ————— rDerivatives Searth—————
{*' Tangent ! ¢ Forward | €= Newton
" Quadratic i " Central i " Conjugate

I~ Show Iteration Results

LN o)

Figure 14-7. The Solver Options dialog box.

For reasons that will be explained in a subsequent section, press the Options
button to display the Solver Options dialog box (Figure 14-7) and check the Use

Automatic Scaling box.

Solver Results

S T T

Solver found a solution, All constraints and optimality

conditions are satisfied.

(¢ Keep Solver Solutior
" Restore Qriginal Values

l OK I Cancel

|

Save Scenario. ..

Reports

Answer
Sensitivity
Limits

|

Figure 14-8. The Solver Results dialog box.

Press OK to exit from Solver Options and return to the Solver Parameters

dialog box. Press the Solve button.
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When the Solver finds a solution, the Solver Results dialog box is displayed
(Figure 14-8). There are three reports that you can choose to print: Answer,
Sensitivity and Limits, but none of these reports contain any information that we
will use.

You have the option of accepting the Solver's solution or restoring the
original values. Press the Keep Solver Solution button. The spreadsheet will be
displayed with the final values of the changing and target cells (Figure 14-9).

A CHE R BRI R S T

ek Consecutive First-Order Reactions (A . B - C)

2 [BIt = [Alo ki (EXP (ko D-EXP (=K D) (ki—ko)

3 l'OnIy B absorbs light at the monltonng waveiength (243 nm) Psath length 0.4 cm.
' Absorhance = mo!ar absurptlvmtx path length x concentration

1| A= gy x0.4x[B]

5' iCunc (molfl) - 4.00E-05/(C_A) g Rale constants:

5 |ga(cm Umol) 0 | ki(sec™  0.639 (k_1)

_____ Is, (cm Umol) 2.53E+03 (E_B) | ke(sec™) 0285 (k_2)

8 & (om Limoh) g f

9 t,sec A{obsd) Bl | Afcale) &

_____ 10/ 00 00000 O0.00E+00  0.0000  0.0E+00 |

11 02 | 00047 | 4BBE-06 00047  85E-11

2] 08 00129  1.16E-05 00118  1.3E-06

13 10 0.0163  1.62E-05  0.0164 = 2.6E-09

14 14 00188  1.88E-05 00191  1.0E-07

15 18 00201 @ 204E-05 | 00206 @ 22E-07

16| 22 0.0208 209E-05 = 00211 | 7.6E-08 |

A7 26 0.0208 2.07E-05 | 00209  1.2E-08

8| 30 0.0205  2.01E-05 | 0.0203  46E-08

181 40 0.0178  1.75E-05 | 0.0177 | 21E-08 |

200 50 0.0149  1.44E-05 00145  1.3E-07

21| 60 0.0118 1.15E-05 00116 = 3.9E-08 |

2( 70 0.0090 898E-06 00091  57E-09

23 8.0 0.0070 6.94E-06 = 00070  8.7E-11

24| 90 00052 531E-06 0.0054  28E-08

25 100 0.0038  4.04E-06 | 00041  8.2E-08

26 | ~ (targe)  2.06E-06

Figure 14-9. The spreadsheet after optimization of coefficients by the Solver. The three
coefficients (the changing cells) and the objective (the target cell) are in bold.
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The Solver provides results that are essentially identical to those from
commercial software packages. Any slight differences (usually ca. 0.001% or
less) arise from the fact that, with all of these programs, the coefficients are
found by a search method; the "final" values will differ depending on the
convergence criteria used in each program. In fact, you would probably obtain
slightly different results using the same program and the same data, if you started
with different initial estimates of the coefficients.

Some Notes on Using the Solver

External References. The target cell and the changing cells must be on the
active sheet. However, your model can involve external references to values in
other worksheets or workbooks.

Discontinuous Functions. Discontinuous functions in your Solver model
may cause problems. They can be either discontinuous mathematical functions
such as TAN, which has a discontinuity at ®/2, or worksheet functions that are
inherently “discontinuous," such as IF, ABS, INT, ROUND, CHOOSE, LOOKUP,
HLOOKUP, or VLOOKUP.

Initial Estimates. Since the Solver operates by a search routine, it will find a
solution most rapidly and efficiently if the initial estimates that you provide are
close to the final values. As mentioned previously, it is often useful to create a
chart of the data that displays both ygsq and yeu, and then vary the parameters
manually in order to find a good set of initial parameter estimates.

Global Minimum. To ensure that the Solver has found a global minimum
rather than a local minimum, it's a good idea to obtain a solution using different
sets of initial estimates.

"Unable to find a solution” When There Are a Large Number of
Parameters. For a complicated model with a large number of adjustable
coefficients, the Solver may not be able to converge to a reasonable solution. In
such a case, it is sometimes helpful to perform initial Solver runs with subsets of
the coefficients. For example, to fit a UV-visible spectrum with five Gaussian
bands, and thus 15 adjustable coefficients, you could perform initial runs varying
the coefficients for two or three of the bands at a time. When a reasonable fit has
been found for the subsets, perform a final Solver run varying all of the
coefficients.

Some Notes on the Solver Parameters Dialog Box
There are some additional controls in the Solver Parameters dialog box:

By Changing Cells. You can use names instead of cell references for
individual cells or ranges in the By Changing Cells input box.
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For ease of editing an extensive series of references in the By Changing Cells
input box, press F2; you can then use the arrow keys to move within the box.

Constraints. With the Solver you can apply constraints to the solution. For
example, you can specify that a parameter must be greater than or equal to zero,
or that a parameter must be an integer. Although the ability to apply constraints
to a solution may be tempting, it can sometimes lead to an incorrect solution.
Don't introduce constraints (e.g., to force a parameter to be greater than or equal
to zero) if you're using the Solver to obtain the least-squares best fit. The
solution may not be the "global minimum" of the error-square sum, and the
regression coefficients may be seriously in error.

Add, Change, Delete. The Add, Change and Delete buttons are used to
apply constraints to the model. Since the use of constraints is to be avoided,
these buttons are not of much interest.

Guess. Pressing the Guess button will enter references to all cells that are
precedents of the target cell. In the example in Figure 14-9, pressing the Guess
button enters the cell references $A$10:38$25, $B$7, $B$5, SES6:3ES$7 (t values,
E_B, C_A, k_1, k_2, respectively) in the By Changing Cells box. Obviously,
some of these coefficients must not be allowed to vary. Avoid using the Guess
button.

Reset All. The current Solver model is automatically saved with the
worksheet. The Reset All button permits you to "erase" the current model and
begin again.

Some Notes on the Solver Options Dialog Box

The Options button in the Solver Parameters dialog box displays the Solver
Options dialog box (Figure 14-7) and allows you to control the way Solver
attempts to reach a solution. The default values of the options are shown in
Figure 14-7.

Max Time and Iterations. The Max Time and Iterations parameters
determine when the Solver will return a solution or halt. If either Max Time or
Iterations is exceeded before a solution has been reached, the Solver will pause
and ask if you want to continue. For most simple problems, the default limits
will not be exceeded. In any event, you don't need to adjust Max Time or
Iterations, since if either parameter is exceeded, the Solver will pause and issue a
"Continue anyway?" message.

Precision and Tolerance. Both the Precision and Tolerance options apply
only to problems with constraints. The Precision parameter determines the
amount by which a constraint can be violated. The Tolerance parameter is
similar to the Precision parameter, but applies only to problems with integer
solutions. Since adding constraints to a model that involves minimization of the
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error-square sum is not recommended, neither the Precision nor the Tolerance
parameter is of use in nonlinear regression analysis.

Convergence. The Convergence parameter corresponds to the Maximum
Change parameter in the Calculations tab of Excel's Options dialog box (see
Chapter 8, Figure 17), but unlike the Maximum Change parameter, which is an
absolute convergence limit, the Solver’s Convergence parameter is relative; the
Solver will stop iterating when the relative change in the target cell value is less
than the number in the Convergence box for the last five iterations. Thus you
don’t have to scale the convergence limit to fit the problem, as you do when
using Goal Seek....

Assume Linear Model. If the function is linear, checking the Assume
Linear Model box will speed up the solution process. If the Assume Linear
Model option is checked, the Solver performs a linearity test before proceeding;
if the model fails this linearity test, the Solver returns the message "The
conditions for Assume Linear Model are not satisfied."

Assume Non-Negative. Checking this box is equivalent to setting "greater
than or equal to zero" constraints for each of the coefficients.

Use Automatic Scaling. For some models the Solver may refuse to
converge satisfactorily. The Solver may fail to vary one or more changing cells
or vary them by only an insignificant amount. This can occur when there is a
large difference in magnitude between changing cells, for example, if you are
varying two parameters, an equilibrium constant K, with magnitude 1x10'® and
an NMR chemical shift 8, with magnitude 0.5, to fit data from an NMR
"titration" (chemical shift as a function of pH). In such cases the Use Automatic
Scaling option should be checked. In the example earlier in this chapter, you
were instructed to check the Use Automatic Scaling box because there was a
large difference between the parameters k_1 and k_2 (both on the order of 1) and
the parameter E_B (on the order of 10*). You may find it constructive to re-run
this example using the original estimates (0.5, 0.3 and 3E+03) but with the Use
Automatic Scaling box unchecked. You will find that the Solver varies k_1 and
k_2 but does not appear to change E_B. But if you examine the value of E_B you
will see that the value did change a very small amount. (When I ran this model,
the value changed from 3000 to 2999.99999714051.)

Show Iteration Results. If the Show Iteration Results box is checked, the
Solver will pause and display the result after each iteration. You may find it
interesting to try this option when you are first learning to use the Solver.

If you create a model with a large number of cells to recalculate at each
iteration, you may be able to observe the progress of the Solver in another way:
after each iteration, the iteration number and the value of the target cell are
displayed in the Status Bar at the bottom of the Excel worksheet. (The number
format of the target cell in the Status Bar is the same as its format on the
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worksheet, so be sure to display enough decimal places on the worksheet so that
you'll be able to see the progress of the iterations.) Also, for a large model that
takes a long time to calculate, you can press ESC at any time to halt the iteration
process and inspect the current results, and then continue.

Estimates, Derivatives and Search. These coefficients can be changed
to optimize the solution process. The Search parameter specifies which gradient
search method to use: the Newton method requires more memory but fewer
iterations, while the Conjugate method requires less memory but more iterations.
The Derivatives parameter specifies how the gradients for the search are
calculated: the Central derivatives method requires more calculations (and will
therefore be slower) but may be helpful if the Solver reports that it is unable to
find a solution. The Estimates parameter determines the method by which new
estimates of the coefficients are obtained from previous values; the Quadratic
method may improve results if the system is highly nonlinear. For the majority
of problems, you probably will not detect any difference in performance with any
of these options.

Save Model... and Load Model.... The current Solver model is
automatically saved with the worksheet. The Save Model... and Load Model...
buttons permit you to save multiple Solver models. An additional 512 bytes are
added to the workbook for each model that is saved.

When to Use Manual Scaling

The Use Automatic Scaling option is important for many problems, but so is
manual scaling. Even when Use Automatic Scaling is in effect, the Solver may
still be unable to find a solution. Automatic Scaling rescales the model based on
values at the initial point. Objective and changing cells are scaled so their scaled
values at the initial point are 1. But, if a value is less than 1E-05 at the initial
point, that value is not scaled. Thus, even though you have checked the Use
Automatic Scaling box, scaling may not be in effect. Therefore, you need to be
aware of the need for manual scaling.

To apply manual scaling to the changing cells, modify one or more formulas
so that the changing cells are all within three orders of magnitude or less of each
other. For example, in the NMR titration example described in the previous
paragraph, you could re-formulate the calculation so as to use log K instead of K.
(Note that you can't apply a scaling factor directly to a changing cell, since it
must be a number value that can be changed by the Solver; the scale factor must
be incorporated into the target cell formula or into one of the intermediate
formulas.)

In my experience, if the magnitude of the objective (the target cell) is very
small (e.g., 1E-09), the Solver may assume that convergence has been reached
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and may not attempt to improve the solution’. Since many scientific problems
can have values of the objective that are very small, manuval scaling of the
objective is extremely important. According to FrontLine Systems, "The user
should always be cautious when the final objective function is small and very
cautious when the objection function is less than 1E-5 in absolute value. The
best way to avoid scaling problems is to carefully choose the 'units' used in your
model so that changing cells and target cell are all within a few orders of
magnitude of each other, and preferably not less than 1 in absolute value."

You can apply a scale factor directly to the objective function. For example,
an objective function formula such as

=SUM(D4:D22)

that yields a sum-of-squares result with order of magnitude 1E-9 can simply be
changed to the formula

=1E09*SUM(D4:D22)

If you apply a scale factor to the objective, be sure to examine the objective
after minimization. You may need to increase the magnitude of the scale factor
and rerun the Solver.

Statistics of Nonlinear Regression

The only problem with the use of the Solver to perform least-squares
regression is that, although you get the regression coefficients readily, the results
aren't much use if you don't know their uncertainties as well. These aren't
available from the Solver. The following illustrates how to obtain the standard
deviations of the regression coefficients after obtaining the coefficients by using
the Solver.

The standard deviation of the regression parameter aj is given by equation
14-5.

oi = yr,* SE() (14-5)
where Pji~! is the ith diagonal element of the inverse of the Pj; matrix
N OF, oF,
P = = 14-6
Y HZ:‘ Oa; Oa ; ( )

* This can sometimes result in a situation where good initial estimates, which result in a
very small value of the objective, do not lead to a solution, while for the same model,
poorer initial estimates give a solution.
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OFy/0aij is the partial derivative of the function with respect to a; evaluated at
xp. The above expressions can be found in some texts on nonlinear regression .
SE(y) is as defined in equation 13-19.

It's possible to carry out these calculations using a spreadsheet, but it's
laborious and error-prone. A macro to perform the calculations is provided on
the CD that accompanies this book.

The Solver Statistics Macro

The SolvStat Add-In returns regression statistics for regression coefficients
obtained by using the Solver. The values returned are the standard deviations of
the regression coefficients, plus the R* and SE(y) statistics

The add-in installs a new menu command, Solver Statistics..., in the Tools
menu. If the Solver add-in has been loaded, the Solver Statistics... command
will appear directly under the Solver... command in the Tools menu; if Solver is
not installed, the Solver Statistics... command will appear at the bottom of the
menu. See "Loading the Solver Add-In" earlier in this chapter for instruction on
how to load the add-in. Both SolvStat.xls and SolvStat.xla versions are provided
on the CD.

The macro calculates the OFy/0Oa; terms for each data point by numerical

differentiation, in the same way as in Chapter 6 (see the worksheet "Derivs by
Sub Procedure"). This process is repeated for each of the k regression
coefficients. Then the cross-products (0F/0a;}(OF/0a;) are computed for each of
the N data points and the Z(0F/0a;)(OF/0Oa;) terms obtained. The P; matrix of
X(OF/0a;)(OF/0a;) terms is constructed and inverted. The terms along the main
diagonal of the inverse matrix are then used with equation 14-5 to calculate the
standard deviations of the coefficients. This method may be applied to either
linear or nonlinear systems.

When you choose the Solver Statistics... command, a sequence of four
dialog boxes will be displayed, and you will be asked to select four cell ranges:
(i) the yonsq data, (i) the y., data, (iii) the regression coefficients obtained by
using the Solver and (iv) a 3R x nC range of cells to receive the statistical
parameters. The Step 1 dialog box is shown in Figure 14-10. The yps¢ and yearc
values can be in row or column format. The Solver coefficients can be in non-
adjacent cells.

* For example, K. J. Johnson, Numerical Methods in Chemistry; Marcel Dekker, Inc.,
New York, 1980, p. 278.
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Select range of known v's.

{Can be a single row or colurmn, or a 2-D range.)

|$B$10:$B$25

| OK | Cancel

Figure 14-10. Step 1 of 4 of the Solver Statistics macro

The macro calculates the partial derivatives of the function, creates a matrix
of sums of cross products, inverts the matrix and uses the diagonal elements to
calculate the standard deviations.

If the SolvStat macro is used with the kinetics data of Figure 14-9, the
regression coefficients shown in Figure 14-11 are returned. The array of values
returned is in a format similar to that returned by LINEST: the regression
coefficients are in row 5, the standard errors of the coefficients are in row 6 and
the R? and SE(y) or RMSD parameter are in row 7.

5 106381972 0.2856394 2528.05913
6 | 0.0477662 0.0191613 138.954138
7 109972227 0.0003983 |

Figure 14-11. Regression statistics returned by the SolvStat macro.

The regression coefficients in row 5 are not calculated by the macro, but are
the values returned by the Solver; they are provided simply to indicate which
standard deviation is associated with which coefficient, since the Solver
coefficients can be in nonadjacent cells.

Be Cautious When Using Linearized Forms
of Nonlinear Equations

Some nonlinear relationships can be converted into a linear form, thus
allowing you to use LINEST for curve fitting rather than applying the Solver.
You should avoid this approach, because the curve fitting coefficients you obtain
can be incorrect. An example will illustrate the problem.
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In biochemistry, the reaction rate of an enzyme-catalyzed reaction of a
substrate as a function of the concentration of the substrate is described by the
Michaelis-Menten equation,

_ Vmax(S]

K, +[S] (147

where V is the reaction velocity (typical units mmol/s), K, is the Michaelis-
Menten constant (typical units mM), Vi is the maximum reaction velocity and
[S] is the substrate concentration. Some typical results are shown in Figure 14-
10.

50

30

20 |

v, mmol/sec

10

0 L I

0 5 10
[S], mM

Figure 14-10. Michaelis-Menten enzyme kinetics.
The curve is calculated using equation 14-9 with V,, =50, K,, = 0.5.

Before desktop computers were available, researchers transformed curved
relationships into straight-line relationships, so they could analyze their data with
linear regression, or by means of pencil, ruler and graph paper. The Michaelis-
Menten equation can be converted to a straight-line equation by taking the
reciprocals of each side, as shown in equation 14-8.

1_K, 1 1
Vo

max S Vmax

(14-8)

This treatment is called a double-reciprocal or Lineweaver-Burk plot. A
Lineweaver-Burk plot of the data in Figure 14-10 is shown in Figure 14-11.
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The parameters Vp,, and K,, can be obtained from the slope and intercept of
the straight line (Vnx = llintercept, K, = intercept/slope). However, the
transformation process improperly weights data points during the analysis (very
small values of V result in very large values of 1/V, for example) and leads to
incorrect values for the parameters. In addition, relationships dealing with the
propagation of error must be used to calculate the standard deviations of V. and
K, from the standard deviations of slope and intercept.

0.10 +
>
<= 9
0.05
0.00 L :
0 5 10
1/[S]

Figure 14-11. Double-reciprocal plot of enzyme kinetics.
The curve is calculated using equation 14-10 with Vi, = 50, K, = 0.5.

By contrast, when the Solver is used the data do not need to be transformed,
Yeale 18 calculated directly from equation 14-7, the Solver returns the coefficients
Vaax and K, and SolvStat returns the standard deviations of V., and K.
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Problems

Data for, and answers to, the following problems are found in the folder "Ch. 14 (Nonlinear
Regression)” in the "Problems & Solutions" folder on the CD.

1. First Order Reaction. The absorbance vs. time data in Table 14-1 was
recorded for a chemical reaction. The reaction was believed to follow a first-
order exponential decay:

Al = Aoe_kt

Table 14-1. Absorbance vs. time data.

t, sec Aocbsd t, sec Aobsd

0 0.002000 10 0.000077
1 0.001441 11 0.000051
2 0.001070 12 0.000036
3 0.000739 13 0.000026
4 0.000542 14 0.000021
5 0.000367 15 0.000014
6 0.000263 16 0.000010
7 0.000200 17 0.000007
8 0.000140 18 0.000005
9 0.000100

Determine the rate constant & using the Solver.

2. Logistic Curve I. The data in Table 14.2 can be described by a simple
logistic curve
1

y_1+e—"x

Determine the constant a using the Solver.
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Table 14-2. Data for simple logistic equation.

X y X y

-8 0.0150 1 0.6198
-7 0.0338 2 0.7292
-6 0.0468 3 0.8177
-5 0.0712 4 0.8843
-4 0.1152 5 0.9206
-3 0.1850 6 0.9547
-2 0.2716 7 0.9706
-1 0.3775 8 0.9863
0 0.4972 10 0.6198

3. Logistic Curve II. The logistic function

= —+
Y 1+ ebtex

takes into account offsets on the x-axis and the y-axis. Using the data in

Table 14-3, determine the constants a, b, ¢ and 4 using the Solver.

x y

5 9.99
-3 9.96
-1 10.06
0 10.08
1 10.29
2 10.48
3 10.73
4 10.84
5 11.00
7 11.00
9 11.03
10 11.05

Table 14-3. Data for logistic equation.
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4. Autocatalytic Reaction. The data in Table 14-4 describes the time course of
an autocatalytic reaction with two pathways: an uncatalyzed path (A —> B)

B
and an autocatalytic path (A —B). [A], = 0.0200 mol L™". The rate law
(the differential equation) is
—d[A)/dt = d[B)y/dt = ko[ Al + k1 [ALIBL:

Use any method from Chapter 10 to simulate the [B] = F(¢) data, then use
the Solver to obtain &, and k;.

Table 14-4. Rate data for an autocatalytic reaction.

t,sec | [B], molL" t, sec | [B], mol L™
0 0.0000 550 0.0149
50 0.0002 600 0.0161
100 0.0000 650 0.0175
150 0.0008 700 0.0190
200 0.0009 750 0.0188
250 0.0024 800 0.0196
300 0.0034 850 0.0198
350 0.0052 900 0.0201
400 0.0077 950 0.0199
450 0.0094 1000 0.0203
500 0.0127

5. van Deemter Equation.  Gas chromatography is an analytical technique
that permits the separation and quantitation of complex mixtures. The
mixture flows through a chromatographic column in a stream of carrier gas
(usually helium), where the components separate and are detected. In the
analysis of a sample of gasoline, for example, the components are separated
based on their volatility, the lowest-boiling emerging from the separation
column first. The degree of separation can be treated mathematically in the
same way as for fractional distillation: a column can be considered to have a
number of theoretical plates, just as a distillation tower in a refinery has
actual "plates" for the separation of different petroleum products (naphtha,
gasoline, diesel fuel, etc.). For gas chromatography, separation efficiency is
usually expressed in terms of HETP (Height Equivalent to a Theoretical
Plate), the column length divided by the number of theoretical plates.
Separation efficiency is a function of the carrier gas flow rate v, as shown in
the following figure. There is an optimum flow rate that provides the
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smallest HETP; too fast and there is not sufficient time for equilibration, too
slow and gaseous diffusion allows the components to re-mix.

The van Deemter Equation describes the relationship between HETP and
carrier gas flow rate:

HETP =4+ B/v+Cv
where v = carrier gas flow velocity. The data in Table 14-5 (also on the

CD) shows measurements of HETP for a gas chromatographic column, using
different flow rates.

Table 14-5. Gas chromatography data.

v, cmisec HETP,cm
0.9 0.64
1.5 0.51
3.0 0.42
4.2 0.47
5.6 0.55
7.0 0.63
8.0 0.69
9.0 0.75

Use the Solver to obtain the least-squares coefficients 4, B and C for the van
Deemter equation.

6. NMR Titration. The protonation constants K, and K, of a diprotic acid H,A
were determined by NMR titration. (Protonation constants, for example,

H +L s HL K,=[HL]/[H][L]
are used in this example because they simplify the equilibrium expressions
The chemical shift § of a hydrogen near the acidic sites was measured at a
number of pH values over the range pH 1 to pH 11. The data are shown in

the following Figure (data table and figure are on the CD that accompanies
this book).
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Figure 14-12. NMR titration.
At any pH value there are three acid-base species in solution: H A, HA™
and A”"; the observed chemical shift is given by the expression
Oeate = e0¢ + 0161 + @6,

where a; is the fraction of the species in the form containing ;j acidic
hydrogens and ¢; is the chemical shift of the species. The «a values can be

calculated using the expressions below:
_p,mrY

a;= 1/
xp,H7]
ﬂj=K1K2...Kj (fBo=1)
K\KyH']

e.g., o, =
s P+ K H )+ KK [H )
Use the Solver to determine K|, K5, &, o and 6.

7. 2-D Regression. Using the Power vs. Speed and Throttle setting data in
problem 13-6, find the coefficients for the polynomial fitting equation

P=(@T*+bT+c)S+(dT+e)S+f
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8. Deconvolution of a Spectrum I. Use the data in Table 14-6 (also found on
the CD in the worksheet "Deconvolution I") to deconvolute the spectrum.
Close examination of the spectrum will reveal that it consists of four bands.

Use a Gaussian band shape, i.e.,
— )2
Acalc = Amax exp(gx——lu_)—J
s2

where A... is the calculated absorbance at a given wavelength, 4., is the
absorbance at Ay, x is the wavelength or frequency (nm or cm™), M is the x
at Anax and s is an adjustable parameter related to, but not necessarily equal
to, the standard deviation of the Gaussian distribution or to the bandwidth at
half-height of the spectrum.

Table 14-6. Spectrum of a nickel complex.

A, nm | Absorbance | A, nm | Absorbance | A, nm { Absorbance
350 0.032 420 0.860 490 0.373
360 0.055 430 1.050 500 0.222
370 0.097 440 1.146 510 0.127
380 0.163 450 1.120 520 0.071
390 0.279 460 0.995 530 0.040
400 0.429 470 0.790 540 0.024
410 0.645 480 0.569 550 0.012

9. Deconvolution of a Spectrum II. Use the data in the worksheet
"Deconvolution II" to deconvolute the spectrum of K;[Mn(CN)] in 2M
KCN, shown in Figure 14-13. Use a Gaussian band shape. It should be clear
from the figure that the spectrum contains multiple bands, perhaps five or
more.
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1.8
1.6 Spectrum of K;[Mn(CN)g]
1.4 in 2M KCN
812
5 1.0
R
§ 0.8
< 06
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0.0 ' ' g
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Wavelength, nm
Figure 14-13. Spectrum of K;[Mn(CN)g].
10. Spectrum of a Mixture. The UV-visible spectra of pure solutions of

11.

cobalt®, nickel** and copper®* salts, and of a mixture of the three, are given
on the CD-ROM over the wavelength range 350—820 nm. Instead of using
absorbance readings at only three wavelengths to calculate the concentrations
of the three salts in the mixture (as was done in problem 9-4), use the data at
all 236 wavelength data points to calculate the three concentrations. Use the
relationship 4 = gbc, where & the molar absorptivity, is a dimensionless
constant for a particular species at a particular wavelength, b is the light path
length (1.00 cm in this experiment) and c is the molar concentration. For the
mixture, Aopss = EcoCco + &niCni + &cuCey at each wavelength.

Use the Solver Statistics macro to obtain the standard deviations of the three
concentrations.

Multiple-Wavelength Regression. Dissociation of the second hydrogen ion
of Tiron (1,2-dihydroxybenzene-3,5-disulfonate, H,L.) does not begin until
the pH is raised above 10. The pK,; of Tiron was determined
spectrophotometrically by recording the spectrum at constant Tiron
concentration and varying pH. The spectra are shown in the following
figure; the absorbance readings (from 226 nm to 360 nm in 2-nm increments)
at each pH value are tabulated on the CD that accompanies this text.
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Figure 14-14. Spectra of Tiron at pH values between 10 and 12.

The equilibrium reaction being measured is (charges omitted for clarity)
HL<sH +L K= [H'][L)/[HL]

The dissociation of H,L to HL™ is complete at pH values of 10 and higher,
and can be neglected. The concentrations of L and HL are given by the
following expressions:

[L]=Lr K, (K, + [H'])
[HL] = Ly [H+] (K, + [H'])

where Lt is the total concentration of Tiron in the solution. The absorbance
at a given wavelength is the sum of the contributions of the two species, that
is,

A =g [L] +eg[HL]

where € is the molar absorptivity of the species, a constant at a given
wavelength.

Calculate the K, value and the g, and gy, values at each wavelength, in one
global minimization. (Excel's Solver can handle up to 200 changing cells, so
we are pushing the limit here.) You will need to calculate the sum-of-
squares-of-residuals for each wavelength, and minimize the "grand total" for
all wavelengths. The Solver may have trouble "digesting" all this data. If so,
use the Solver with data at a single wavelength to get the values of X,, £ and
€uL, then use these as starting value for a global minimization.
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Chapter 15

Random Numbers and
the Monte Cario Method

The Monte Carlo method differs from the techniques we have considered in
preceding chapters: instead of applying quantitative mathematical expressions to
arrive at an answer, we approximate or simulate the process, repeat the
calculation a large number of times using randomly selected inputs chosen within
a suitable range, and then average the result or draw other statistical conclusions.
The method can be lengthy and provide only an approximate answer, but it may
be the only available way to arrive at an answer.

Monte Carlo methods have been used in economics, in nuclear physics and to
model traffic patterns. We will look at two main types of application: Monte
Carlo simulation and Monte Carlo integration.

Random Numbers in Excel

Since the Monte Carlo method involves the use of random numbers, we will
begin by examining how random numbers are produced and used within Excel.

How Excel Generates Random Numbers

In Excel 2003, an improved random number generator was implemented.
Earlier versions of Excel used a pseudo-random-number-generation algorithm
whose performance on standard tests of randomness was not sufficient to satisfy
the demand of power users who might require the generation of a million or more
random numbers. For the majority of users, the older pseudo-random-number
generator was satisfactory.

The earlier algorithm used the following iterative method to calculate
pseudo-random numbers:

The first random number:
r = fractional part of (9821 x s + 0.211327)

where s = 0.5, and successive random numbers:

341
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r = fractional part of (9821 x s+ 0.211327)

where s = the previous random number

In an effort to increase the "randomness," Microsoft later provided a patch
that caused r to be determined from the system clock (which added a further
degree of randomness to the numbers generated). But because these pseudo-
random numbers are produced by a mathematical algorithm, if a long sequence
of them is produced, eventually the sequence will repeat itself. Statistical tests
on series of random numbers produced by the earlier version of RAND revealed
that the cycle before numbers started repeating was unacceptably short, in the
vicinity of one million.

In the improved random number generator used in Excel 2003, three sets of
random numbers are generated. Three of these random numbers are summed,
and the fractional part of the sum is used as the random number. By this
procedure, it is stated that more than 10" numbers will be generated before the
repetition begins.

The random-number algorithm in Excel 2003 was developed by B. A.
Wichman and 1. D. Hill ("Algorithm AS 183: An Efficient and Portable Pseudo-
Random Number Generator," Applied Statistics, 31, 188—190, 1982; "Building a
Random-Number Generator," BYTE, pp. 127-128, March 1987). This random
number generator is also used in a software package that is provided by the U.S.
Department of Health and Human Services. It has been shown to pass tests
developed by NIST (National Institute of Standards and Technology).

Using Random Numbers in Excel

You can use random numbers in many ways, for example: to add "noise" to a
signal generated by a formula, to select items randomly from a list, or to perform
a simulation by using the Monte Carlo method. These and some other uses of
random numbers will be described in following sections.

Excel provides several ways to generate random numbers. The worksheet
function RAND returns a random real number greater than or equal to 0 and less
than 1. RAND is a volatile function; that is, a new random number is returned
every time the worksheet is calculated. You can test this, after entering =RAND()
in a cell, by pressing F9 (Calculate Now) or by typing anything (even a space
character) in a cell and pressing the Enter key. You will see that the value
returned by the RAND function changes.

The fact that random numbers are recalculated every time you do just about
anything on a spreadsheet can sometimes be problematic, especially if your
spreadsheet contains large ranges of such numbers. In the old days of 133-MHz
computers, there could be a delay of several seconds while the spreadsheet
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recalculated. Fortunately, that's not usually a problem with today's high-speed
computers.

But when a random number is used as input into a calculation and the
random number keeps changing, that can be a problem. If you want to use RAND
to generate a random number but don't want the number to change every time the
worksheet is calculated, you must convert the formula to its value. You can do
this by entering the formula =RAND() in a cell, copying the cell, and then use
Paste Special (Values). This will convert the contents of the cell from =RAND()
to a value (e.g., 0.743487098126025). Alternatively, you can type the formula
=RANDY) in the formula bar, then press F9, then Enter.

Instead of using the RAND worksheet function, you can use the
RANDBETWEEN function, one of the Engineering functions. If this function
does not appear in the list of functions in the Insert Function dialog box, or
returns the #NAME? error when you use it in a worksheet formula, you must load
the Analysis ToolPak add-in. After you load the Add-In, you will see a new
function category, Engineering functions, in the Insert Function dialog box. As
well as this new function category (which provide capabilities for working with
imaginary numbers, or for converting between binary, hexadecimal and decimal
number systems, among others), there are a number of new functions which are
dispersed in other function categories: the RANDBETWEEN function is located
in the Math & Trig category. The complete list of Engineering functions can be
found in Appendix 5.

If you load the older Add-In, Analysis ToolPak, the function appears in the
function list in uppercase (e.g., RANDBETWEEN). If you load the newer Add-In,
Analysis ToolPak-VBA, the function list contains both the older uppercase
function names and the newer function names, in lowercase. This helps to
distinguish between Excel's built-in worksheet functions, such as RAND, and the
Add-In names, such as Randbetween.

RANDBETWEEN(bottom,top) returns an integer random number. Bottom is
the smallest integer RANDBETWEEN will return, top is the largest. For example,
the expression RANDBETWEEN(0,100) returns (e.g., 74).

To generate a random number between bottom and top, without loading the
Analysis ToolPak, use

=RAND()*(top - bottom) + bottom.

For example, if botfom = 0 and fop = 5, the returned result could be for example,
4.04608661978098.

To generate a random integer between bottom and top, use
=ROUND(RAND()*(top - bottom) + bottom,0)

For example, if bottom = 0 and top = 50, the returned result could be 27.



344 EXCEL: NUMERICAL METHODS

Since all of the above formulas include the RAND function, the returned
result is volatile; that is, it changes each time the spreadsheet is modified.

Adding "Noise" to a Signal Generated by a Formula

One of the simplest uses for the RAND function is to add noise to a
theoretical curve generated by means of a formula, so as to simulate a real signal.
In other words, we want to modify our worksheet formula F(x) by adding a
random quantity 6. The & must be scaled to produce a noise term of suitable
magnitude and the & terms must be equally distributed between positive and
negative. Remember that RAND always returns a number greater than or equal to
0 and less than 1. There are several ways that you can add such a random
quantity, for example,

(original worksheet formula) + scale_factor*(RAND()-0.5)

to produce a noise term of constant magnitude (scale_factor determines the
magnitude of the noise term) or

(original worksheet formula)*(1 + scale_factor*(RAND()-0.5))

to produce a noise term of constant signal-to-noise ratio. Some people use the
expression RAND()-RAND() instead of RAND()-0.5 to produce equal probability
of positive or negative noise terms.

Figure 15-1 shows an example of a calculated curve with simulated
experimental data points.

0.02 W =

T
-
© .
% 0.01 | —— Theoretical
12 i m  Simulated experimental
0.00 == 1 — L
0 500 1000 1500
t, seconds

Figure 15-1. Experimental data simulated by using the RAND function.
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Selecting Items Randomly from a List

You can use RAND to rearrange the values in a table so as to put them in
random order, or to select a random sample from the table. There are two ways
you can do this: either manually, using the Sort command, or by means of a
formula. The former generates a randomized list that is "fixed"; that is, once
randomized, the values in the list do not change. The latter method generates a
list that will change each time the spreadsheet is recalculated. Clearly, there are
advantages and disadvantages of either method.

To randomize manually, use =RAND() to generate a column of random
numbers adjacent to (and most convenient, to the left of) the column of values to
be randomized as shown in Figure 15-2.

R BRI AL
1| random# Name
2 | 0.070428990 Agarwal, Brigitte
3 | 0.532482204 Ali,Le H
4 | 0.833901457 Alvarado, V
5 | 0.090748668 Amato, Andreas A
B | 0.357788105 Antoine, Amy Louise
o4 { 0.089596610 Atkinson, Sanya
8 | 0.801094843 Atwood, John
9 | 0.001795029 Barron, Johanna
10 | 0.210916288 Baumann, Carol
11! 0.936376433 Beaubrun, Jefirey
1_2§ 0.624696117 Beaudoin, Samir
13| 0.505254770 Belfiore, Danielle M
14 | 0599828277 Blee, Kangrok
15 ' 0.578697880 Bleeker, David M
16 | 0.796914834 Blute, Roxanne M

Figure 15-2. A list of names before randomizing. Only part of the list is shown.
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Hand")

Then select the two columns and use the Sort command to Sort By the
values in the column of random numbers. If the random number column is the

leftmost column, you can use the Sort Ascending toolbutton 31, The
randomized list is shown in Figure 15-3. To choose a random sample of N

elements from the table, simply select, for example, the first N elements from the
list.
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5 A B 1
; 1 random # Name

2 0.001795029 Barron,Johanna
3 | 0.002546605 Fournier,EliasT
i 4 | 0.005879847 O'Reilly, John
[ © | 0.008157058 Dimattia, Tracey Ann
} & | 0.013827644 Underkoffler, Anne E
| 7 0.017823817 Lillis, Soyon
. g 0.026750475 Ditolla, J Patrick
| 9 | 0.046036729 Eaton, Jennifer
| 10 | 0.056680621 Poon, Nicholas D

Figure 15-3. A list of names after randomizing. Only part of the list is shown.
(folder 'Chapter 15 Examples’, workbook 'Randomize’, worksheet 'By Hand')

To sort by means of a formula, begin with the two columns as in Figure 15-2.
The names random and Database were assigned to the ranges $A$:A139 and
$B$:B139, respectively; the range references can be used if desired. In cell C2,
enter the formula

=SMALL(random,ROW()-1)

to sort the random numbers in ascending order. The expression ROW()-1 would
have to be modified if the formula wasn't entered in row 2—for example, ROW()-
10 if the first row of the table were in row 11. In cell D2 enter the formula

=MATCH(C2,random,0)

to return the relative position of the returned random number in cell C2. In cell
E2 enter the formula

=INDEX(Database,D2)

to return the value at the same position in the array Database.

A B G D =
_ random # Database soted# pos Randomized
2 10.070428990 Aganwal, Brigitte 0.001795 8 Barron, Johanna
4 0.532482204 Ali,LeH 0.002547 50 Fournier, Elias T
4 0.833901457 Alvarado,V 0.00588 90 O'Reilly, John
5 10.090748668 Amato, Andreas A 0.009157 39 Dimattia, Tracey Ann
5 0357788105 Antoine, Amy Louise 0.013828 124 Underkoffler, Ahne E
/ 10.089596610 Atkinson, Sanya 0.0176824 78 Lillis, Soyon
o /0.801094843 Atwood, John 0.02675 40 Ditolla, J Patrick
9 1 0.001795029 Barron, Johanna 0.046037 45 Eaton, Jennifer
10 0.210916288 Baumann, Carol 0.056681 96 Poon, Nicholas D

Figure 15-4. A list of names randomized by using worksheet formulas.
(folder 'Chapter 15 Examples', workbook 'Randomize’, worksheet 'By Formula')
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The preceding formulas can be combined into a single "megaformula”
=INDEX(Database, MATCH(SMALL(random,ROW()-1),random,0))

to produce a more compact spreadsheet, as shown in Figure 15-5.

1 | random# Database Randomized :
__2___?0.0?0428990 Agarwal, Brigitte 'Barron, Johanna

) ;D.532482204 Ali,Le H Fournier, Elias T
4 10.833901457 Alvarado, ¥ O'Reilly, John

5 |0.090748668 Amato, Andreas A Dimattia, Tracey Ann
6 0.357788105 Antoine, Amy Louise Underkoffler, Anne E
7 10.089596610 Atkinson, Sanya Lillis, Soyon

5 10.801094843 Atwood, John Ditolla, J Patrick

9 _§U,IIIEI179_5029f83rr0n,J0hanna .Eaton, Jennifer

10 10.210916288 Baumann, Carol ‘Poon, Nicholas D

Figure 15-5. A list of names randomized by using a single "megaformula.”
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'By Formula')

Random Sampling by Using Analysis Tools

If you have loaded the Analysis ToolPak Add-In (see earlier in this chapter),
you will see that a command, Data Analysis..., appears at the bottom of the
Tools menu. If it's not there, choose Add-Ins... from the Tools menu and check

the box for Analysis ToolPak; this will install Data Analysis... in the Tools
menu.

Random Number Generation
Rank and Percentile

ReEression

t-Test: Paired Two Sample for Means

t-Test: Two-Sample Assuming Equal Variances

t-Test: Two-Sample Assuming Unequal Variances

z-Test: Two Sample For Means bt

Data Analysis - x|
Analysis Tools
= -OK
Histogram .:]
Moving Average Cancel I

Help

Figure 15-6. The Data Analysis dialog box.
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The Data Analysis add-in provides a toolbox of statistical analysis tools,
including Analysis of Variance, Correlation, Smoothing, Regression Analysis,
Sampling and others; part of the list of statistical tools is shown in Figure 15-6.

The Sampling tool allows you to do either periodic or random sampling from
a data array. To perform random sampling, choose Data Analysis from the Tools
menu, choose Sampling from the list of tools, and press OK to display the
Sampling dialog box.

The Sampling tool has one limitation: it will only accept numeric data. If
you want to sort non-numeric data, like the list of names in our previous
examples, you must add a column of integers 1, 2, 3... as shown in Figure 15-7.
The column does not have to be adjacent, but in Figure 15-8 they have been
entered in column A.

Then use the Sampling tool to perform random sampling on the values in this
column. The input values in the Sampling dialog box are shown in Figure 15-8.
In the example shown, the number of random samples is equal to the number of
values in the original list, to randomize the complete list, but you could return a
random sample of only 20, for example, if you wished.

e B R s - £
2| 1 Agarwal, Brigitte 46 English, Katherine
3| 2 |AliLeH 87 Nhonguongsouthy, David
4 | 3 |Avarado,V 98 Prichard, Tammy N
5| 4 Amato, Andreas A 51 Freyinger, Rehan
] |51 5 Antoine, Amy Louise 24 Chan, Kevin M
| 7/ | 6 Atkinson, Sanya 33 Curtis, Cristine M
B 7 Atwood, John 51 Freyinger, Rehan
glw 8 Barron, Johanna 72 Kyung, Jeffrey M
10| 9 Baumann, Carol 40 Ditolla, J Patrick
11| 10 Beaubrun, Jeffrey 60 MacNamara, Brad
12| 11 Beaudoin, Samir 5 Antoine, Amy Louise
13| 12 Belfiore, Danielle M 57 Habib, Farah
14 13 Blee, Kangrok 49 Forte, Joseph
15| 14 Bleeker, David M L Drozdowski, Dennis
16| 15 Blute, Roxanne M 110  Song, Mark A

Figure 15-7. A list of names randomized by using random sampling.
(folder 'Chapter 15 Examples', workbook 'Randomize', worksheet 'Sampling Tool'")
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Input Range:

| " Periodic
Period:

{¢' Random
MNumber of Samples: 138

;Output DDtiDl"IS T

| (% Output Range: |$C$2 _-."-.!

- {7 Mew Worksheet Ply: |
" New Workbook

Figure 15-8. The Sampling tool dialog box.

The randomly sampled integers, returned in column C, are then used with the
INDEX worksheet function to return the corresponding text value from column B;
the formula in cell D2 is

=INDEX(Name,C2)

Simulating a Normal Random Distribution
of a Variable

You can create a table of random values having a normal distribution by
using the NORMINV worksheet function. The syntax of the function is

NORMINV(probability,mean,standard_dev)

For example, to create a table of 10,000 random values having a normal
distribution with mean 0 and standard deviation 1, enter the formula
=NORMINV(RAND(), 0, 1) in a cell and Fill Down into 10,000 cells. Figure 15-
9 shows the distribution of these 10,000 values.
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900
800
700 |
600 |
500 |
400
300
200
100

Number

Figure 15-9. 10,000 random values with z =0 and ¢ =1,
created by using the NORMINV worksheet function.
The solid curve is the theoretical distribution.
(folder 'Chapter 15 Examples', workbook ‘Randomize’, worksheet 'Normal Distribution')

Monte Carlo Simulation

The Monte Carlo method is any technique of random sampling employed to
approximate solutions to quantitative problems. Often the system being
simulated is clearly one that involves random processes, as, for example the
Random Walk problem, sometimes described as the path a drunk takes as he
staggers away from a telephone pole. If he takes N steps, each of length /, and
each in a completely random direction, how far will he be from the telephone
pole after the N steps? The problem can be solved algebraically (the answer is

d~INN ), but it's apparent that a suitable answer can be obtained by using a
random number to obtain an angle (the direction of each step relative to the one
before), and thus the distance from the start point after each step. Figure 15-10
illustrates the result of such a calculation. Phenomena such as collisions of
molecules in a gas, or neutron shielding, can be modeled similarly.

In other examples, the simulation appears little more than a game or
diversion, but provides unexpected information. A classic example is the
problem called Buffon's Needle, first proposed in 1777. A needle of length [ is
dropped on a sheet of paper with parallel rulings of spacing D. What is the
probability of the needle crossing one of the lines? The surprising result is that
the answer provides an estimate of the value of .
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-20-

Figure 15-10. Random walk, 2000 steps of length 1.
The large diamond symbol is the position at the end of 2000 steps, a distance of 48.9
from the start point at 0,0. The "theoretical” distance l\/ﬁ =44.7.
(folder 'Chapter 15 Examples', workbook 'Random Walk', worksheet '"Random Walk")

We can solve the problem in the following way: (i) generate a random
number to calculate an angle 6, (ii) generate two more random numbers to obtain
the x and y coordinates of one end of the needle, (iii) from the coordinates of the
end, the length / of the needle and the angle 6, calculate the coordinates of the
other end of the needle, (iv) use these two pairs of coordinates to determine
whether either end of the needle crosses a gridline, (v) repeat the process N times,
counting the number of needles that cross a gridline. Figure 15-11 illustrates the
situation after 2000 needles of length / =2 have been dropped on a sheet of paper
with ruling spacing D = 2 (the calculation is simplified when / = D). According
to statistical theory, the ratio N/N, (N = total needles dropped, N, = number of
needles that cross a line) is equal to 7/2.
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Figure 15-11. The Buffon's Needle experiment.
(folder 'Chapter 15 Examples', workbook 'Buffon's Needle', worksheet 'Calculation')

Since only the y coordinate of the end of the needle is used to determine

whether the needle crosses a horizontal ruling, the spreadsheet shown in Figure
15-12 provides a simplified calculation.

assumed, at 0 and 1.

Only two horizontal rulings are
Two random numbers are generated: one to specify the

angle of the needle (0 < @ < 360), the other to specify the y coordinate of the
middle of the needle (0 <y < 1). Using these two values we calculate the y
coordinate of the ends of the needle and determine whether it crosses either of the
horizontal rulings. In the worksheet shown in Figure 15-12, the calculation was
performed 2000 times (rows 5 through 2004) and the values in column H were
summed.

in cell A5:
in cell B5:
in cell C5:
in cell D5:
in cell E5:
in cell F5:

in cell G5:

in cell H5:

The formulas used are

=360*RAND()
=RAND()
=0.5*SIN(PI()*A5/180)
=MIN(B5-C5,B5+C5)
=MAX(B5-C5,B5+C5)
=D5<=0

=E5>=1
=0OR(F5,G5)*1
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T TORE R TA0h RV SIS S S O RO B
vertical Y coord. Y coord.
. Y coord, Y of lower of upper crosses crosses
4 | angle,® of middle distance end end lower?  upper? Crossing

' 5| 3457 05477 | 01233 04244 06710  FALSE  FALSE 0
1 B | 1587 04928 01817 0.3110 06745 @ FALSE @ FALSE
7| 208 02276 04761 00514 04037 @ FALSE = FALSE
8 2017 04285 -0.1846 0.2439 06132 F_ALSE FALSE
, 9 228 0258 01934 0.0614 04482 @ FALSE FALSE

0 | 2870 03133 -04781  -01648 07914 TRUE = FALSE
! 540 06497 = 04044 0.2453 = 1.0541 FALSE TRUE
2 | 60.2 00564 | 04338 -0.3773 04902 TRUE = FALSE

= e - 00D 00

T [N PN

Figure 15-12. Portion of table to calculate n by Buffon's Needle method. There are
2000 rows of calculation in the spreadsheet.
(folder 'Chapter 15 Examples', workbook 'Buffon's Needle', worksheet 'Calculation”)

Figure 15-13 shows the result of recalculating the sheet 100 times, to provide
a total of 200,000 calculations. As you can see, the calculation does not
"converge" very efficiently. Compare the result with the evaluation of 7 by
evaluation of a series (Chapter 4) or by integration of a function (Chapter 7); both
methods are much more efficient.

3.16

3.15 +

314 |

313 t

342

3N

3.1

3.09 - . : .
0 50000 100000 150000 200000 250000

Number of trials

Figure 15-13. Approach of simulation result to the value n as the number of trials
increases.
(folder 'Chapter 15 Examples', workbook 'Buffon's Needle', worksheet ‘Many trials")
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Monte Carlo Integration

The Monte Carlo method can be used to integrate a function that is difficult
or impossible to evaluate by direct methods. Often the process of "integration" is
the determination of the area of a figure. We'll illustrate the technique by
determining the area of two figures: first, the area of a circle (from which we can
evaluate 1), and second, the area of an irregular figure.

The evaluation of ©t is a classic illustration of the determination of an area by
the Monte Carlo method. Two random numbers in the range —1 to +1 are used to
determine the coordinates of a point in the x, y plane. The number of points
inside the circle, defined by the equation x> + y* = 1, divided by the total number
of points, gives the ratio of the circle to the circumscribing square. Figure 15-14
illustrates such a calculation, using 4000 points.

__________________________

Figure 15-14. Estimation of 7 by using RAND.

This particular calculation gave 3.129 as the value of .

The Area of an Irregular Polygon

When the preceding method is used to estimate the area of an irregular
figure, we need a general method to determine whether a given point is inside or
outside the figure. In the following, the figure must be a polygon, that is, a figure
that can be described by a series of coordinates connected by straight lines.
Since in an Excel chart, a curve can be approximated by a number of straight line
segments, in theory a figure of any shape can be handled.
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The standard method to determine whether a point lies inside or outside the
figure is to draw a "ray" from the point extending out to infinity. In this example,
illustrated in Figure 15-15, a "ray" is drawn vertically upwards from the point. If
the ray crosses the boundary line(s) of the figure an odd number of times, the
point lies inside the figure.

35

30 +

25

20 +

15 |

10

Y coordinate of point

0 10 20 30 40 50
X coordinate of point

Figure 15-15. Determining whether a point lies inside or outside an irregular polygon.

The procedure to test whether a point x4, y4 lies within the figure is as
follows:

For each of the N edges that make up the figure:

(1) If the x coordinates of both ends of the edge lie to the left of x,, then go
to the next edge.

(2) If the x coordinates of both ends of the edge are to the right of x4, then go
to the next edge.

(3) If the y coordinates of both ends of the edge are below y,, then go to the
next edge.

(4) If none of the above is true, the y coordinates of one or both ends of the
edge are above the point. Determine the y coordinate of the "crossing
point” where the vertical ray and the edge cross, using the formula

Yp—J
Yo =y, +E—L(x, _xL)

R L

(5) If yc > ya, the ray crosses the edge of the polygon, so add one to the
number of crossings found, and go to the next edge.
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(6) When all N edges have been evaluated, if the number of crossings is odd,
the point lies inside the figure.

This "inside or outside" calculation can be done either with worksheet
formulas or with a VBA custom function. The following portion of a spreadsheet
(Figure 15-16) illustrates the calculation using worksheet formulas.

5L RS TS 25 e D [ E [
1 4 | Does segment have...

5 Both x Both x Both y Ye-Ya
15 | % ¥ toleft?  toright?  below?  postive?
| 6 27 31

BB 9 28  TRUE

18| = 1 TRUE

ER 3 2. TRUE

E 10 | 44 17 FALSE FALSE FALSE FALSE
{111 28 20 FALSE FALSE FALSE TRUE
{12 36 22 FALSE FALSE FALSE TRUE
113] 35 31 FALSE TRUE

114 | 27 31  FALSE FALSE FALSE TRUE

: 15 E[_C.aujrds in row above echo the first set of coords)

| 16 |

17 | Enter coords here  Inside?

| 18 X vs  [(by formula)

| 19 32 15 TRUE

20|

Figure 15-16. Inside/outside determined by using worksheet formulas.
(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Single Point Diagram')

Note that, in the table of coordinates of the line segments that describe the
figure (A6:B14 in Figure 15-16), the coordinates of the initial point are repeated
in line 15 so as to complete the figure. (This of course is also necessary to create
a chart of the figure.) Thus the nine rows of points shown in Figure 15-16
describe eight line segments. That's why there are formulas in rows 7 through
14, but not in row 6. (It would be equally suitable to have formulas in rows 6
through 13 and not in row 14.)

The formulas in row 7 are:

in cell C7: =AND($A$19>A6,3A$19>A7)

in cell D7: =IF(C7=TRUE,"™ AND(3A$19<A6,$A$19<A7))

in cell E7: =IF(OR(D7=TRUE,D7=""),"" AND($B$19>B6,$B$19>B7))
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in cell F7: =IF(E7=FALSE,(B6+(B7-B6)*($A$19-A6)/(A7-A6)-$B$19)>0,"")
and the formula in cell C19 (an array formula) is
{=MOD(SUM((F6:F14=TRUE)*1),2)<>0}

The following VBA code illustrates how to perform the "inside or outside"
calculation by means of a custom function. The function takes four arguments:
the range of x values describing the figure, the corresponding range of y values,
the x coordinate of the point to be tested and the y coordinate of the point. The
function returns TRUE if the point is inside the figure, otherwise FALSE.

Function Inside(x_values, y_values, x_point, y_point) As Boolean

Dim N As Integer, J As Integer, C As Integer
Dim YC As Double

N = x_values.Count

'Does figure have closure?

If x_values(1) <> x_values(N) Or y_values(1) <> y_values(N) Then Inside = _
CVErr(xIErrValue): Exit Function

ForJ=1ToN-1

If x_values(J).Formula = "" Or y_values(J).Formula =" Then Inside = _
CVErr(xIErrValue): Exit Function 'Exit if cell is blank

‘Both ends of segment to left of point?

If x_point >= x_values(J} And x_point > x_values(J + 1) Then GoTo EOL

'Both ends of segment to right of point?

If x_point <= x_values(J) And x_point < x_values(J + 1) Then GoTo EOL

'Both ends of segment below point ?

If y_point >=y_values(J) And y_point > y_values(J + 1) Then GoTo EOL

‘If came here, one or both ends of the segment are above the point.

'Calculate the y coordinate where the "ray" crosses the segment.

YC =y_values(J + 1) + (y_values(J) - y_values(J + 1)) _
* (x_point - x_values(J + 1)) / (x_values(J) - x_values(J + 1))

'if the crossing is above the point then add one to the count

FYC-y point>0ThenC=C +1

EOL: Next J

Inside = C Mod 2

End Function

Figure 15-17. VBA code to determine inside/outside.
(folder 'Chapter 15 Examples', workbook ‘Inside or Outside Figure', module ‘Modulel")

Figure 15-19 illustrates the use of the custom function to estimate the area of
an irregular polygon such as the one shown in Figure 15-18. The values in cells
$A$6:9B%14 specify the vertices of the polygon. The formulas in cells A17 and
B17 use the RAND function to specify the x and y coordinates of a point within
the area bounded by x = 0 to x = 50 and y = 0 to y = 35; the formulas are,
respectively,
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=50*"RAND()

and
=35*RAND()

and the formula in C17 contains the custom function
=Inside($A%$6:5A$14,$B$6:$B$14,A17,B17)

The formulas were filled down to fill 2000 cells. The formulas to calculate
the area are:
incell D7: =COUNTA($C$17:3C$2016) (total number of points)

incell E7: {=SUM(($C$17:$C$2016)*1)} (number of points inside polygon)

in cell E9: =E7/D7 (fraction of points inside)
in cell D11: =35*50 (area of the "box")
in cell E11: =E9*D11 (area of polygon)

To plot only the points that lie within the polygon, the formula
=IF($C17,A17,")

in cell D17 and the formula
=IF($C17,B17,™)

in cell E17 would seem to be suitable. These formulas, when filled down, yield
the spreadsheet shown in Figure 15-19. But null-string values are plotted as
zeros in a chart, so the chart doesn't turn out the way we want. Instead we use
the NA() worksheet function; cells containing #NA! values are not plotted.

=IF($C17,A17,NA())
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Figure 15-18. Estimating the area of an irregular polygon.

5 | X Y Calculation of area
b 27 18 # points # inside
# 9 28 2000 623
8 5 11 fraction

9 31 6 03115

10 | 44 27 total ares ares
Rl 28 20 1750 5451

12 36 305

13 22 305
14 27 18 (This row echoes the first set of coords)
‘|5 4.{2000 random points between x = 0 and x = 50, y = 0 and y = 35)
16  Xa Ya Insicle? ¥ and ¥ for plotting point
____j_}:_.[ 3154968765 19.50260778  TRUE  31.54968765 19.50260778

18 | 4310121712| 16.55383516.  FALSE
19 [ 3267162151 1980326911  TRUE 3267162151 19.80326911
20 | 36.71470616 1593267943, TRUE 3671470616 1593267943
21| 3690754745 1647652055  TRUE | 36.90754745 16.47652055
22 | 4432583965 27.69863231 FALSE
23| 7.71297725 24.09107738  FALSE
24 | 2796293313 1755974824  TRUE  27.96293313 17.55974824
25| 25192141 3128774952 FALSE

Figure 15-19

. Spreadsheet to estimate the area of the irregular polygon of Figure 15-18.
There are 2000 rows of inside/outside calculation in the spreadsheet.

(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function')
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Now the blank cells, pleasing to the eye in the table but disastrous when used
in a chart, are replaced by #NA! values, unpleasing in the table but perfect when
used in a chart. To make the #NA! values "disappear," you can use Conditional
Formatting. The conditional formatting formula applied to the cells in column D,
beginning in cell D17, is =ISERROR(D17), which, when TRUE, sets the font
color of the text in the cell to white, thus making the #NA! value invisible. A
similar format was applied to the values in column E, beginning in cell E17. You
can see the error values if you select the range of cells, as shown in Figure 15-20.

The data in $D$17:$E$2016, when added to the chart as a new series, shows
the inside points, as illustrated in Figure 15-21.

5 | X ¥ Caleulation of ares
6 | 27 18 # points # insicle
7' 9 28 2000 623
8 | 5 11 fraction
9 | 3 6 0.3115
_____ 10 | 44 27 total area area
11 28 20 1750 545.1
12| 3 205
113] 22 305
(14 27 18 (This row echoes the first set of coords)
15 _?12000 random points between x =0 and x = 50, y = 0 and y = 35)
16| Xa Ya Insicle? ¥ and \Y for plotting point
17 | 3154968765 19.50260778 TRUE 31.54968765 | 18.50260778
18 | 4310121712 16.55383516  FALSE
19 | 3267162151 19.80326911 TRUE 3267162151 19.80326911
20 | 36.71470616 | 15.93267943 TRUE 36.71470616 1593267943
21 | 36.90754745 16.47652055 TRUE 36.90754745 16.47652055
22 | 4432583965 2769863231  FALSE
23| 771297725/ 2409107738  FALSE

Figure 15-20. Spreadsheet layout to estimate the area of an irregular polygon and to plot
the random points within the polygon.
(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function')
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0 10 20 30 40 50
X coordinate
Figure 15-21. Estimating the area of an irregular polygon, with, the "inside" random

points shown.
(folder 'Chapter 15 Examples', workbook 'Inside or Outside Figure', sheet 'Area by Custom Function')
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Problems

Data for, and answers to, the following problems are found in the folder "Ch. 15
(Random Numbers & Monte Carlo)" in the "Problems & Solutions" folder on the
CD.

1. Estimation of m. The equation of a circle is x* + y* = /2. Evaluate n by
determining the area of a circle of radius r circumscribed by a square of side
2r. = is the ratio of the area of the circle to that of the square. Generate a
pair of random numbers to use as the x and y coordinates. If the distance of
the point from the origin is less than or equal to r, it is within the circle.
Repeat this N times, evaluating N, the number of points that fall within the
circle. The ratio N /N should be a reasonable estimate of .

2. Male Children. A king wishes to increase the number of males in his
kingdom. He decrees that all women in his kingdom may have as many
children as they wish, as long as they are boys. As soon as a woman has a
female baby, she must stop bearing children. If this decree is followed, what
will be the ratio of boys to girls in the kingdom?

3. Traffic Model. Create a simple model of traffic patterns at a stoplight. Use
one row of a spreadsheet to represent a unit of time, say 5 seconds. Use a
random number to decide whether a car arrives at the intersection in a
particular time unit. Vary the traffic density (probability) and traffic light
timing; observe the effect on congestion at the stoplight.

4. Traveling Salesman. Given a number of cities and the costs of traveling
from any city to any other city, what is the cheapest round-trip route that
visits each city?

5. Choose Once. Using spreadsheet formulas only, create a list of unique
integers (e.g., 1-15) in random order.

6. Deck of Cards. Using spreadsheet formulas only, simulate the shuffling of a
deck of 52 cards.

7. Frequency of QOccurrence of Digits. Create 1000 random numbers and
determine the frequency of occurrence of the numbers 0 through 9 in the first
digit.

8. Frequency of Occurrence of Digits II. Create two columns, each
containing 1000 random numbers, RN1 and RN2. Determine the frequency
of occurrence in the first significant digit of the numbers 1 through 9 in the
product RN1 x RN2. Repeat for the product RN1 x RN2 x RN3.
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Appendix 1
Selected VBA Keywords

This listing of VBA objects, properties, methods, functions and other
keywords will be useful when creating your own VBA procedures. The list is
not exhaustive, but contains mainly those keywords that are used in the
procedures shown in this book.

For each VBA keyword, the required syntax is given, along with some
comments on the required and optional arguments, one or more examples and a
list of related keywords. See Excel's On-Line Help for further information.

Abs Function
Returns the absolute value of a number.
Syntax: Abs(number)

Example: Abs(-7.3) returns 7.3
See also: Sgn

Activate Method

Activates an object.
Syntax: object.Activate

Object can be Chart, Worksheet or Window.

Example: Workbooks("BOOK1.XLS").Worksheets("Sheet1"). Activate
See also: Select

ActiveCell Property
Returns the active cell of the active window. Read-only.

Syntax: ActiveCell and Application.ActiveCell are equivalent.
See also: Activate, Select

ActiveSheet Property

Returns the active sheet of the active workbook. Read-only.
Syntax: object.ActiveSheet

Object can be Application, Window or Workbook.
Example: Application.ActiveSheet.Name returns the name of the active sheet of the

active workbook. Returns None if no sheet is active.
See also: Activate, Select

Address Property
Returns a reference, as text

Syntax: object.Address (rowAbsolute,columnAbsolute, referenceStyle, extemal,
relativeTo)

365
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All arguments are optional. If rowAbsolute or columnAbsolute are True or omitted,
returns that part of the address as an absolute reference. ReferenceStyle can be
xIA1 or xIR1C1. If external is True, returns an external reference. See On-Line

Help for information about the relativeTo argument.
See also: Offset

And Operator

Logical operator. (expression1 And expression2) evaluates to True if both
expression1 and expression2 are True. Also can be used to perform bitwise
comparison of two numerical values: (13 And 6) evaluates to 4. (13 = 00001101, 6 =

00000110, 4 = 00000100).
See also: Or, Not, Xor

Application Object
Represents the Microsoft Excel application.

Array Function

Returns a Variant containing an array.

Syntax: Array (arglist)

Example: Array (31,28,31,30,31,30,31,31,30,31,30,31)
See also: Dim

As Keyword
Used with Dim to specify the data type of a variable.

Asc Function

Returns the numeric code for the first character of text.
Syntax: Asc(character)

Example: Asc ("A") returns 65.
See also: Chr

Atn Function

Returns the angle corresponding to a tangent value.

Syntax: Atn(number)

Number can be in the range —oo to +oo. The returned angle is in radians, in the
range —-1/2 to +w/2 (-90° to 90°). To convert the result to degrees, multiply by
180/x.

Example: Atn(1) returns 0.785388573 or 45 degrees.

See also: Cos, Sin, Tan

Bold Property

Returns True if the font is Bold. Sets the Bold font. Read-write.
Syntax: object.Bold

Object must be Font.

Example: Range("A1:E1").Font.Bold = True makes the cells bold.
See also: Italic
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Boolean Data Type

Use to declare a variable's type as Boolean (True or False), either in a Dim
statement, or in a Sub or Function statement. Two bytes required per variable.
When number values are converted to Boolean values, 0 becomes False and all
other values become True. When Boolean values are converted to numbers, Faise
becomes 0 and True becomes —1.

See also: Dim, As, Double, Integer, String, Variant

Call Command

Transfers control to a Sub procedure.

Syntax: Call name (argument1, ...)

Name is the name of the procedure. Argument1, etc., are the names assigned to the
arguments passed to the procedure. Call is optional; if omitted, the parentheses

around the argument list must also be omitted.
Example: Call Task1(argument1,argument2)
See also: Sub, Function

Case Keyword
See: Select Case

Cells Method

Returns a single cell by specifying the row and column.
Syntax: object.Cells(row, column)

Object is optional; if not specified, Cells refers to the active sheet.

Example: Cells(2,1).Value = 5 enters the value 5 in cell A2,
See also: Range

Characters Object

Represents characters in any object containing text. Use the Characters object to
format characters within a text string.

Syntax: expression.Characters(start, fength)

Example: Selection.Characters(Start:=x, Length:=1).Font.Subscript = True

Clear Method

Clears formulas and formatting from a range of cells.

Syntax: object.Clear

Object can be Range (or ChartArea).

Example: Range("A1:C10").Clear

See also: ClearContents, ClearFormats in Excel's On-Line Help.

Close Method
Closes a window, workbook or workbooks.

Syntax: For workbooks, use object.Close. For a workbook or window, use
object.Close(SaveChangesLogical, FileName).

Object can be Window, Workbook or Workbooks. If SaveChangesLogical is False,
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does not save changes; if omitted, displays a "Save Changes?" dialog box.
Example: Workbooks("BOOK1.XLS").Close
See also: Open, Save, SaveAs

Column Property
Returns a number corresponding to the first column in the range. Read-only.
Syntax: object.Column

Object must be Range.
See also: Columns, Row, Rows
Columns Method

Returns a Range object that represents a single column or multiple columns
Syntax: object.Columns(index)

Object can be Worksheet or Range. Index is the name or number (column A = 1,
etc.) of the column.

Example: Selection.Columns.Count returns the number of columns in the selection.
See also: Range, Rows

ColumnWidth Property
Returns or sets the width of all columns in the range. If columns in the range
have different widths, returns Null.

Example: Worksheets("Sheet1").Columns("C").ColumnWidth = 30
See also: RowHeight

ConvertFormula Method

Converts cell references between Al-style and R1C1-style, and between absolute
and relative. On-Line Help states that Formula must begin with an equal sign, but
references in a string that does not begin with an equal sign are also converted.
Syntax: expression.ConvertFormula(Formula, FromReferenceStyle,
ToReferenceStyle, ToAbsolute, RelativeTo)

Example:

FormulaString = Application.ConvertFormuta(FormulaString, xIA1, xIA1, xlAbsolute)
See also: Address

Copy Method

Copies the selected object to the Clipboard or to another location.

Syntax: object.Copy(destination)

Object can be Range, Worksheet, Chart and many other objects. Destination specifies
the range where the copy will be pasted. If omitted, copy goes to the Clipboard.

Example: Worksheets("Sheet1”).Range("A1:C50").Copy
See also: Cut, Paste

Cos Function

Returns the cosine of an angle.

Syntax: Cos(number)

Number is the angle in radians; it can be in the range —oo to +e0. To convert an angle

in degrees to one in radians, multiply by 7/180. Returns a value between —1 and 1.
See also: Atn, Sin, Tan
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Count Property

Returns the number of items in the collection. Read-only.
Syntax: object.Count

Object can be any collection.
Example: The statement N = array.Count counts the number of values in the range
array.

Cut Method

Cuts the selected object and pastes to the Clipboard or to another location.
Syntax: object.Cut(destination)

Object can be Range, Worksheet, Chart or one of many other objects. Destination
specifies the range where the copy will be pasted. If omitted, copy goes to the
Clipboard.

Example: Worksheets("Sheet1").Range("A1:C50").Cut
See also: Copy, Paste

CVErr Function

Returns a Variant containing an error value specified by the user.

Syntax:  CVErr(number)

CVErr can return either Excel's built-in worksheet error values, or a user-defined
error value. The values of number for built-in worksheet error values are

xIErrDiv0, xIErrNA, xIErrName, xIErrNull, xIErrNum, xIErrRef, xIErrValue.
See also: IsError

Delete Method

Deletes the selected object.

Syntax: object.Delete(SHIFT)

Object can be Range, Worksheet, Chart and many other objects. SHIFT specifies
how to SHIFT cells when a range is deleted from a worksheet (xIToLeft or xiUp).
Can also use SHIFT =1 or 2, respectively. If SHIFT is omitted, Excel moves
the cells without displaying the "SHIFT Cells?" dialog box.

Example: Worksheets("Sheet12").Range("A1:A10").Delete (xIToLeft) deletes the
indicated range and SHIFTs cells to left.

Dim Keyword

Declares an array and allocates storage for it.
Syntax: Dim variable (subscripts)

Variable is the name assigned to the array. Subscripts are the size dimensions of
the array; an array can have up to 60 size dimensions. Each size dimension has a
default lower value of zero; a single number for a size dimension is taken as the
upper limit. Use lower To upper to specify a range that does not begin at zero.
Use Dim with empty parentheses to specify an array whose size dimensions are
defined within a procedure by means of the ReDim statement.

Example: Dim Matrix (5,5) As Double creates a 6 x 6 array of double-precision

variables.
See also: ReDim
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Do...Loop Command

Delineates a block of statements to be repeated.

Syntax: The beginning of the loop is delineated by Do or Do Until condition or Do
While condition. The end of the loop is delineated by Loop or Loop Until condition
or Loop While condition. Condition must evaluate to True or False.

Example: See examples of Do...Loop structures in Chapter 2.
See also: Exit, For, Next, Wend, While

Double Data Type

Use to declare a variable's type as double-precision floating-point (15 significant
digits), either in a Dim statement, or in a Sub or Function statement. Eight bytes
required per variable.

Example: Dim tolerance As Double
See also: Dim, As, Boolean, Integer, String, Variant

Else Keyword
Optional part of If...Then structure.

Elself Keyword
Optional part of If...Then structure.

End Command

Terminates a procedure or block.

Syntax: End terminates a procedure. End Function is required to terminate a
Function procedure. End If is required to terminate a block If structure. End
Select is required to terminate a Select Case structure. End Sub is required to
terminate a Sub procedure. End With is required to terminate a With structure.

Example: See examples under Select Case.
See also: Exit, Function, If, Then, Else, Select Case, Sub, With

EndIf Keyword
Optional part of If...Then structure.

Err Function
Returns a run-time error number. Use in error-handling routine to determine the
error and take appropriate corrective action.
Example: If Err.Number = 13 Then
(code for corrective action here)
Resume pt1
End If
See also: Error, On Error, Resume

Evaluate Method

Converts a name or formula to a value.

Syntax: Evaluate(expression)

Expression must be a string, maximum length 255 characters. An initial equal
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sign is not necessary.
Example: F$="2*3"

MsgBox Evaluate(F$)
See also: Formula

Exit Command

Exits a Do..., For..., Function... or Sub... structure.

Syntax: Exit Do, Exit For, Exit Function, Exit Sub

From a Do or For loop, control is transferred to the statement following the Loop
or Next statement, or, in the case of nested loops, to the loop that is one level
above the loop containing the Exit statement. From a Function or Sub procedure,
control is transferred to the statement following the one that called the procedure.

Example: See examples of Exit procedures in Chapter 2.
See also: Do, For...Next, Function, Stop, Sub

Exp Function

Returns e raised to a power.

Syntax: Exp(number)

Returns the value of e raised to the power number.
See also: Log

False Keyword

Use the keywords True or False to assign the value True or False to Boolean
(logical) variables.

When other numeric data types are converted to Boolean values, 0 becomes False
while all other values become True. When Boolean values are converted to other

data types, False becomes 0 while True becomes —1.
Example; If SubFlag = False Then...
See also: True

FiliDown Method
Copies the contents and format(s) of the top cell(s) of a specified range into the

remaining rows.

Syntax: object.FillDown

Object must be Range.

Example: Worksheets("Sheet12").Range("A1:A10").FillDown
See also: FillLeft, FillRight, FillUp in Excel's On-Line Help.

FillRight Method

Copies the contents and format(s) of the leftmost cell(s) of a specified range into
the remaining columns.

Syntax: object.FillDown

Object must be Range.

Example: Worksheets("Sheet12").Range("A1:A10").FiliRight

See also: FillDown, FillLeft, FillUp in Excel's On-Line Help.
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Fix Function

Truncates a number to an integer.

Syntax: Fix(number)

If number is negative, Fix returns the first negative integer greater than or equal to
number.

Example: Fix(-2.5) returns —2.

See also: Int

Font Property
Returns the font of the object. Read-only.
Syntax: object.Font

Example: ActiveCell.Font.Bold = True makes the characters in the active cell bold.
See also: FontStyle

FontStyle Property

Returns or sets the font of the object. Read-write.
Syntax: object.FontStyle

Example: Range("A1:E1").Font.FontStyle = "Bold"
See also: Font

For...Next Command

Delineates a block of statements to be repeated.
Syntax: For counter = start To end Step increment
(statements)
Next counter

Step increment is optional; if not included, the default value 1 is used. Increment
can be negative, in which case start should be greater than end.

Example: See examples of For...Next procedures in Chapter 2.
See also: Do...Loop, Exit, For Each...Next, While...Wend

For Each...Next Command
Delineates a block of statements to be repeated.
Syntax: For Each element In group

(statements)
Next element

Group must be a collection or array. Element is the name assigned to the variable
used to step through the collection or array. Group must be a collection or array.

Example: See examples of For Each...Next procedures in Chapter 2.
See also: Do...Loop, Exit, For...Next, While...Wend

Format Function

Formats a value according to a formatting code expression.
Syntax: Format(expression,formattext)

Expression is usually a number, although strings can also be formatted. Formattext
is a built-in or custom format. Additional information can be found in Microsofi
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Excel/Visual Basic Reference, or VBA On-Line Help.
Example: Format(TelNumber,"(###) #i#t-##HH") formats the value TelNumber in the
form of a telephone number.

Formula Property
Returns or sets the formula in a cell.
If a cell contains a value, returns the value; if the cell contains the formula,

returns the formula as a string.
See also: Text, Value

Function Keyword

Marks the beginning of a Function procedure.
Syntax: Function name argument1, ...

Name is the name of the variable whose value is passed back to the caller.
Argument1, etc., are the names assigned to the arguments passed from the caller to
the procedure.

Example: See examples of Function procedures in Chapter 2.
See also: Call, Sub
GoTo Command

Unconditional branch within a procedure.
Syntax: GoTo label

Label can be a name or a line number.

If...Then...Else...End If Command
Delineates a block of conditional statements.
Syntax: if condition Then ... Else ... End If

The statement can be all on one line (e.g., If condition Then statement). Alternatively,
a block If structure can be used, in which case the first line consists of If condition
Then; the end of the structure is delineated by End If. Condition must evaluate to
True or False. The ellipsis following Then and Else can represent a single
statement or several statements separated by colons; these are executed if
condition is True or False, respectively.

Examples: If Char ="." Then GoTo 2000
If (Char >="0" And Char <= "9") Then
(statements)
End If

See also: Elself, End

InputBox Function

Displays an input dialog box and waits for user input.

Syntax: InputBox(prompt title, default xpos, ypos, helpfile, context)

See Microsoft Excel/Visual Basic Reference or On-Line Help for details.
See also: InputBox Method, MsgBox
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InputBox Method

Displays an input dialog box and waits for user input.

Syntax: object.InputBox(prompt,title, default left,top, helpfile,context, type)

Object must be Application. The InputBox method has the additional type
argument that allows the input of a reference. See Microsoft Excel/Visual Basic
Reference or On-Line Help for details.

See also: InputBox Function, MsgBox

Insert Method

Inserts a range of cells in a worksheet.

Syntax: objectInsert(SHIFT)

Object is a Range object. SHIFT specifies how to SHIFT cells when a range is
inserted in a worksheet (xIToRight or xIDown). Can also use SHIFT =1 or 2,
respectively. If SHIFT is omitted, the "SHIFT Cells?" dialog box is not
displayed. )
Examples: Worksheets("Sheet12").Range("A1:A10").Insert (1) inserts the indicated
range and SHIFTs cells to right.

Worksheets("Sheet1").Columns(4).Insert inserts a new column to the left of column

D.
See also: Delete

Instr Function

Returns a number specifying the position of the first occurrence of one string
within another. Returns zero if the search string is not found.

Syntax: InStr(start, string_to_search, string_to_look_for, compare)

Optional start specifies the start position for the search. If omitted, search begins
at position 1. Optional compare determines the type of comparison. See On-Line
Help for details.

Example: InStr(1,NameText,"!") finds the first occurrence of the "!" character within
the string contained in the variable NameText.

Int Function

Rounds a number to an integer.
Syntax: Int(number)

If number is negative, Int returns the first negative integer less than or equal to
number.

Example: Int(-2.5) returns —3.
See also: Fix

Integer Data Type
Use to declare a variable's type as Integer, either in a Dim statement, or in a Sub
or Function statement. Two bytes required per variable.

Example: Dim J As Integer
See also: Dim, As, Boolean, Double, String, Variant
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Intersect Method

Returns a Range object that represents the intersection of two ranges.
Syntax: Intersect (range1, range2)
See also: Union, Areas, Caller

IsArray Function

Returns True if the variable is an array.
Syntax: IsArray(name)

See also: other Is functions

IsDate Function

Returns True if the expression can be converted to a date.
Syntax: IsDate(expression)

See also: other Is functions

IsEmpty Function

Returns True if the variable has been initialized.
Syntax: IsEmpty(expression)

See also: other Is functions

IsMissing Function

Returns True if an optional argument has not been passed to a procedure.
Syntax: IsMissing(name)

See also: other Is functions

IsNull Function

Returns True if the expression is null (i.e., contains no valid data).
Syntax: IsNull(expression)

See also: other Is functions

IsNumerie Function

Returns True if the expression can be evaluated to a number.
Syntax: IsNumeric(expression)

See also: other Is functions

Italic Property

Returns True if the font is Italic. Sets the Italic font. Read-write.
Syntax: object.Italic

Object must be Font.

Example: Range("A1:E1").Font.ltalic = True makes the cells italic.
See also: Bold

LBound Function

Returns the lower limit of an array dimension.

Syntax: LBound(array,dimension)

Array is the name of the array. Dimension is an integer (1, 2, 3, etc.) specifying the
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dimension to be returned; if omitted, the value 1 is used.
Example: If the array table was dimensioned using the statement Dim table (1 To 3,

1000), LBound(table,1) returns 1, LBound(table,2) returns 0.
See also: Dim, UBound

LCase Function

Converts a string into lowercase letters.
Syntax: LCase(string)

See also: UCase

LTrim Function

Returns a string without leading spaces.
Syntax: LTrim(string)

See also: RTrim

Left Function

Returns the leftmost characters of a string.

Syntax: Left(string,number)

If number is zero, a null string is returned. If number is greater than the number of
characters in string, the entire string is returned.

Example: Left("CHEMISTRY" 4) returns CHEM
See also: Len, Mid, Right

Len Function

Returns the length (number of characters) in a string.
Syntax: Len(string)

Example: Len("CHEMISTRY") returns 9.

See also: Left, Mid, Right

Log Function

Returns the natural (base-e) logarithm of a number.

Syntax: Log(number)

Number must be a value or expression greater than zero. VBA does not provide

base-10 logarithms; use Log(value)/Log(10).
See also: Exp

MacroOptions Method

Sets options in the Macro Options dialog box.

Syntax: Application.MacroOptions(macro, description, hasMenu, menuText,
hasShortcutKey, shortcutKey, category, statusbar, helpContext, helpFile)

macro is the name of the macro. description is the description that appears in the
dialog box. category is the function category that the macro appears in: Financial, 1;
Date & Time, 2; Math & Trig, 3; Statistical, 4; Lookup & Reference, 5;
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Database, 6; Text, 7; Logical, 8; Information, 9; User Defined, 14; Engineering,
15.

Example: Application.MacroOptions macro:="FtoC", Description:= "Converts
Fahrenheit temperature to Celsius", Category:=3

provides a description for the macro FtoC and assigns it to the Math & Trig
category.

Mid Function

Returns the specified number of characters from a text string, beginning at the
specified position.

Syntax: Mid(string, start,number)

If start is greater than the number of characters in string, returns a null string. If
number is omitted, all characters from start to the end of the string are returned.
Example: Mid("H2S04" 2,1) returns 2.

See also: Left, Len, Right

Mod Operator

Returns the remainder resulting from the division of two numbers.
Syntax: result = number1 Mod number2

MsgBox Function
Displays a message box.
Syntax: MsgBox(prompt,buttons, title, helpfile,context)

See Microsoft Excel/Visual Basic Reference or On-Line Help for details.
See also: InputBox

Name Property
Returns or sets the name of an object.
Example: SeriesName = Selection.Name assigns the name of the selected chart

series to the variable SeriesName.
See also: NamelLocal, Names

Next Keyword

Delineates the end of a For...Next or For Each...Next block of statements.
Not Operator

Logical operator. Performs logical negation: True becomes False, False becomes
True.
See also: And, Or

Now Function

Returns the current date and time.
Syntax: Now

See also: other date and time functions.
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NumberFormat Property

Returns or sets the number format code of a cell.

Example: Range("A1:A10").NumberFormat= "0.00" sets the number format of the
specified range of cells.

See also: GoSub, GoTo, Return, Select Case

On...GoTo Command

Branches to one of several specified lines, depending on the value of an
expression.

Syntax: On expression GoTo label1, ...

See explanation under On...GoSub command.

Example: See examples of On...GoTo procedures in Chapter 2.

See also: GoSub, GoTo, Return, Select Case

On Error GoTo Command

Enables an error-handling routine and specifies the action to be taken in event of

an error.

Examples: On Error GoTo line (enables the error-handling routine at the specified
location in the procedure)
On Error Resume Next (execution resumes with the statement
immediately following the statement that caused the error)
On Error GoTo 0 (disables any enabled error handler in the current
procedure)

Open Method

Opens a workbook.
Syntax: object.Open(filename, ...)

Object must be Workbooks. Filename is required. See On-Line Help for the
remaining arguments.

Example: Workbooks.Open("SOLVSTAT.XLS")
See also: Close, Save, SaveAs

Option Base Keyword
Use at module level to declare lower bound for an array.
Can be Option Base 0 or 1. The statement can appear only once in a module and

must precede all Dim or equivalent declaration.
See also: Dim, LBound, ReDim

Option Explicit Statement
Use at module level to force explicit declaration of all variables in that module.
See also: Option Base, Option Compare

Optional Keyword
Indicates that an argument in a function is not required. All arguments following
the Optional keyword must be optional. All optional arguments are Variant.
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Syntax: Function name(argument1,... Optional argument)
See also: Function, ParamArray

Or Operator

Logical operator. (expression1 Or expression2) evaluates to True if either
expression1 or expression2 is True. Also can be used to perform bitwise
comparison of two numerical values: (13 Or 6) evaluates to 15. (13 = 00001101, 6 =

00000110, 15 = 00001111).
See also: Or, Not, Xor

ParamArray Keyword

Allows the use of an indefinite number of arguments for a function. The
argument becomes an array of Variant elements. The array has lower array index
of zero, even if Option Base 1 is declared.

Syntax: Function name(argument1,... ParamArray argument() As Variant)

Example: Function test (ParamArray rng() As Variant)
See also: Dim, Function, Variant

Paste Method

Pastes the contents of the Clipboard onto a worksheet.

Syntax: object.Paste(destination)

Object must be Worksheet. There are other Paste methods, with different syntax,
for Chart and many other objects. Destination specifies the range where the copy
will be pasted. If omitted, copy is pasted to the current selection.

Example: Worksheets("Sheet1").Range("A1:C50").Copy

ActiveSheet.Paste
See also: Copy, Cut

Preserve Command
Preserves data in an existing array when using ReDim.

Private Command
Indicates that the procedure is available only to procedures in the same module.

Public Command
Indicates that the procedure is available to all other procedures.

Quit Method

Quits Microsoft Excel.

Syntax: object.Quit

Object must be Application.

Example: Application.Quit

See also: Close, Save

Range Method

Returns a Range object that represents a cell or range of cells.
Syntax: object.Range(reference)

Object is required if it is Worksheet. Reference must be an Al-style reference, in
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quotes, or the name of the reference.
Example: Worksheets("Sheet12").Range("A1").Value = 5
See also: Cells

ReDim Keyword
Allocates or re-allocates dynamic array storage.
Syntax: ReDim variable (subscripts)
For discussion of vanable and subscripts, see comments under the entry for Dim.
You can use ReDim repeatedly to change the number of elements in an array, or
the number or dimensions.
Example: Dim Matrix()
(statements)
ReDim Matrix (5,5)
(statements)
ReDim Matrix (15,25)
See also: Dim

Resume Command

Resumes execution after an error-handling routine is finished.

Examples: Resume 0
Resume Next (execution resumes with the statement immediately
following the statement that caused the error)
Resume /abel (Execution resumes at the specified location in the

procedure)
See also: On Error GoTo

Return Command
Delineates the end of a subroutine within a procedure.

Right Function

Returns the rightmost characters of a string.

Syntax: Right(string,number)

If number is zero, a null string is returned. If number is greater than the number of
characters in string, the entire string is returned.

Example: Right(303585842,4) returns 5842.
See also: Left, Len, Mid

Rnd Function

Returns a random number between 0 and 1.
Syntax: Rnd

Row Propenrty
Returns a number corresponding to the first row in the range. Read-only.
Syntax: object.Row

Object must be Range.
Example: If ActiveCell.Row = 10 Then ActiveCell.Interior.Colorindex = 27
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changes the interior color of the active cell to yellow if it is in row 10.
See also: Column, Columns, Rows

RowHeight Property

Returns or sets the height of all rows in the range.
Example: Worksheets("Sheet1").Rows(1).RowHeight = 15
See also: ColumnWidth

Rows Method

Returns a Range object that represents a single row or multiple rows.
Syntax: object.Rows(index)

Object can be Worksheet or Range. Index is the name or number of the row.
Example: Selection.Rows.Count returns the number of rows in the selection.
See also: Columns, Range

RTrim Function

Returns a string without trailing spaces.
Syntax: RTrim(string)

See also: LTrim, Trim

Save Method
Saves changes to active workbook.
Syntax: object.Save(filename)

Object must be Workbook. If filename is omitted, uses a default name.
Example: ActiveWorkbook.Save
See also: Close, Open, SaveAs

SaveAs Method

Saves changes to active workbook or other document with a different filename.
Syntax: object.SaveAs(filename, ...)

Object can be Worksheet, Workbook, Chart or other document types. See
Microsoft Excel/Visual Basic Reference or On-Line Help for details.

Example: NewChart.SaveAs("New Chart")
See also: Close, Open, Save

Select Method
Selects an object.
Syntax: object.Select

Object can be Chart, Worksheet or one of many other objects.
Example: Range("A1:C50").Select
See also: Activate

Select Case Command
Executes one of several blocks of statements, depending on the value of an
expression.

Syntax: Select Case expression
Case expression1



382 EXCEL: NUMERICAL METHODS

(statements)
Case expression2
(statements)

End Select

You can also use the To keyword in expression, e.g., Case "A" To "M". Expression
can also be a logical expression. Use Case Else (not required) to handle all cases
not covered by the preceding Case statements.

Example: See examples of Select Case procedures in Chapter 2.
See also: If...Then...Else, On...GoSub, On...GoTo

Selection Property

Returns the selected object. The object returned depends on the type of selection.
See also: Activate, ActiveCell, Select

Set Command

Assigns an object reference to a variable.
See also: Dim, ReDim

Sgn Function

Returns the sign of a number.

Syntax: Sgn(number)

Returns 1, 0 or —1 if number is positive, zero or negative, respectively.
Example: Sgn(-7.3) returns —1.

See also: Abs

Sin Function

Returns the sine of an angle.

Syntax: Sin(number)

Number is the angle in radians; it can be in the range —o to +cc. To convert an angle
in degrees to one in radians, multiply by 7/180. Returns a value between —1 and 1.
See also: Atn, Cos, Tan

Sort Method

Sorts a range of cells.

Syntax: object.Sort(sortkey1,order1,sortkey2,order2, ...)

Object must be Range. See Microsoft Excel/Visual Basic Reference or On-Line
Help for details.

Sqr Function

Returns the square root of a number.

Syntax: Sqr(number)

Number must be greater than or equal to zero.

Step Keyword

Stops execution, but does not close files or clear variables.
See also: End
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Stop Command

Stops execution, but does not close files or clear variables.
See also: End
Str Function

Converts a number to a string.
Syntax: Str(number)

A leading space is reserved for the sign of the number; if the number is positive,
the string will contain a leading space.
See also: Format

String Data Type
Use to declare a variable's type as String, either in a Dim statement, or in a Sub or

Function statement. One byte/character required per variable.
Example: Dim J As Integer
See also: Dim, As, Boolean, Double, String, Variant

Sub Keyword

Marks the beginning of a Sub procedure.

Syntax: Sub name (argument1, ...)

Name is the name of the procedure. Argument1, etc., are the names assigned to the
arguments passed from the caller to the procedure. The end of the procedure is
delineated by End Sub

Example: See examples of Sub procedures in Chapter 2.
See also: Call, Function

Tan Function

Returns the tangent of an angle.
Syntax: Tan(number)

Number is the angle in radians; it can be in the range —oo to +c0. To convert an angle
in degrees to one in radians, multiply by 7/180. Returns a value between —o and
+00,

See also: Atn, Cos, Sin

Text Property

Returns or sets the text associated with an object.

The text can be associated with a chart, button, textbox, control or range. For all
except range, this property is read-write, but for a range, it is read-only.

Example: Worksheets("Sheet1").Buttons(1).Text = "Undo"

See also: Formula, Value

Trim Function

Returns a string without leading or trailing spaces.
Syntax: Trim(string)

See also: LTrim, RTrim
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True Keyword

Use the keywords True or False to assign the value True or False to Boolean
(logical) variables.

When other numeric data types are converted to Boolean values, 0 becomes False
while all other values become True. When Boolean values are converted to other

data types, False becomes 0 while True becomes —1.
Example: If FirstFlag = True Then GoTo 2000

UBound Function

Returns the upper limit of an array dimension.

Syntax: UBound(array, dimension)

Array is the name of the array. Dimension is an integer (1, 2, 3, etc.) specifying the
dimension to be returned; if omitted, the value 1 is used.

Example: If the array table was dimensioned using the statement Dim table (1

To 3, 1000), UBound(table,3) returns 1, UBound(table,2) returns 1000.
See also: Dim, LBound

UCase Function

Converts a string into upper case letters.
Syntax: UCase(string)

See also: LCase

Union Method

Returns a Range object that represents the union of two or more ranges, i.e.,
performs the same function as the comma character in the worksheet expression
SUM(A1, B2, C3).

Syntax: Union (range1, range2)

See also: Intersect, Areas, Caller

Until Command
Optional part of Do...Loop structure.
Syntax: See explanation under Do...Loop.

Val Function

Converts a string to a number,

Syntax: Val(stning)

Val stops at the first non-numeric character other than the period.

Example: Val("21 Lawrence Avenue") returns 21.
See also: Str

Value Property

Returns the value of an object.

Syntax: object.Value

If object is Range, returns or sets the value(s) of the cell(s). Read-write.
If Range contains more than one cell, returns an array of values.
Example: Worksheets("Sheet12").Range("A1").Value = "Volume, mL"
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Variant Data Type

Use to declare a variable's type as Variant, either in a Dim statement, or in a Sub
or Function statement. Variant is the default data type, so usually not required. It
is required when using the ParamArray keyword. Sixteen bytes + one
byte/character required per variable.

Example: Function test (ParamArray rng() As Variant)

See also: Dim, As, Boolean, Double, Integer, String

Wend Command
Delineates the end of a While...Wend procedure.

Syntax: See explanation under Do...Loop.
See also: Do...Loop, While...Wend

While...Wend Command
Executes a series of statements as long as a specified condition is true.

Syntax: See explanation under Do...Loop.
See also: Do...Loop, Wend

With...End With command
Delineates a block of statements to be executed on a single object.
Syntax: With object
(statements)
End With
See also: Do...Loop, While...Wend

XOr Operator
Exclusive Or operator.
Use to perform bitwise comparison of two numerical values: (13 XOr 6) evaluates

to 11. (13 =00001101, 6 = 00000110, 11 = 00001011).
See also: Or, Not, Or
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Appendix 2

Shortcut Keys for VBA

Shortcut keys for running and debugging code

Halt execution
Run

Step through code
Toggle breakpoint

Toggle between Visual Basic Editor and Excel

Step into

Step over

Run to cursor

Clear all breakpoints

Display Quick Watch window

ESC

F5

F8

F9

ALT+F11

F8

SHIFT+F8
CTRL+F8

CTRL +SHIFT+F9
SHIFT+F9

Shortcut keys for working in the code window

View Code window

Jump to beginning of module

Jump to end of module
Undo

Delete current line
Indent

Remove tab indent
Print

Paste

Delete

Find

Find Next

F7

CTRL +HOME
CTRL +END
CTRL +Z
CTRL +Y
TAB
SHIFT+TAB
CTRL +P
CTRL +V
DEL or DELETE
CTRL +F
SHIFT+F4
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Find Previous SHIFT+F3
Replace CTRL +H
Display Project Explorer window CTRL +R
Display Properties window F4

List Properties/Methods CTRL +J

List Constants CTRL +SHIFT+]
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Custom Functions
Help File

MIndex

Returns a horizontal 2-element array containing the row and column numbers of a
specified value in an array.

Syntax
MIndex(/ookup_value, array_, match_type)

lookup_value the value you use to find the value you want in array_

array._ a contiguous range of cells containing possible lookup values

match_type the number -1, 0, or 1, that specifies the value found in array_

Remarks

e The arguments lookup_value, array_ and match_type can be either references or
names.

e If match_type is O or omitted, returns the position of the value that is exactly equal
to lookup_value, or #N/A.

e If match_type is 1, returns the position of the largest value that is less than or
equal to lookup_value.

e If match_type is ~1, returns the position of the smallest value that is greater than
or equal to lookup_value.

e array_ must contain only numbers. If any cells contain text or error values, MIndex
returns the #VALUE! error value. Empty cells are treated as zero.

e The MIndex function is an array function. To return the array, you must select a
horizontal range of two cells, enter the function and then press
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

Example

If the range A contains the values {13,0,-1;5,12,22;-5,0,1}, the expression
MIndex(MAX(A),A) returns the values {2,3}; the expression Mindex(7,A) returns the
values {#N/A,#N/A}.

If the range B contains the values {2,11,~1;4,-1,7;-3,1,13)}, the expression
MIndex(MIN(B),B) returns the values {3,1}; the expression MIndex(0,B-1) returns the
values {3,2}.

389
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MIdent
Creates an identity matrix of a specified size.

Syntax
MIdent(size)

size optional argument specifying the size of the matrix to be created

Remarks
e The function can be used in a formula or used to fill a selection.

e  When used to fill a selection, the size argument is not required. If selection is not
square, returns #REF! error.

¢ The Mldent function is an array function. To return the array that results when a
range of N rows by N columns is selected, enter =MIdent() and then press

CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

Example
The expression MIdent(4) returns {1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,13}.

Arr
Combines individual 1-D arrays into a 2-D array.

Syntax
Arr(rangel, range?2...)

rangel, range?2... 1 to 29 ranges that you want to combine into a single array

Remarks

e The arguments rangel, range2,... can be either references to ranges of cells or
named ranges.

e All individual arrays must be "vertical" and must have same number of rows.

¢ The Arr function is an array function. To return the array that results when
individual ranges with a total combined width of N columns, each with M rows, you
must select a range of cells N columns by M rows, enter the function and then press

CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

Example

The expression Arr(A4:A13,C4:D13) returns an array three columns wide and ten rows
deep.
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InterplL

Performs linear interpolation in a table of x- and y-values. Returns the interpolated y-
value corresponding to a specified x-value.

Syntax
Interpl.(Jookup_value, known_x’s, known_y ’s)

lookup_value the x-value for which you want to find the interpolated y-value

known_x's the range of x-values in the table (independent variable)
known_y's the range of y-values in the table (dependent variable)
Remarks

e The argument Jookup_value can be either a number or a reference to a cell that
contains a number.

e The arguments known_x's and known_y's can be either a reference to a range of
cells or a named range.

 The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of lookup values.

e The table of x- and y-values must be arranged in ascending order of x-values.
e The table of x- and y-values can be either either horizontal or vertical.

e The function cannot be used for extrapolation. A lookup value that is either greater
than or less than the range of x-values returns #REF!.

e The linear interpolation formula is:

(x = xp)
(x —xo)
where x is the lookup value and xp and x; are the values in the table that bracket

the lookup value; xo is the value in the table that is equal to or less than
lookup_value.

Ye=Yo+ 1= x0)

Example

The expression InterplL(33.3,$A%$3:$A%$47,$B$3:$B$47) where $A$3:$A$47 is the range
containing the independent or x-values and $B$3:$B$47 is the range containing the
dependent or y-values.

See Also
InterpC, InterpC2
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InterpC

Performs cubic interpolation in a table of x- and y-values, using the LaGrange 4th-order
polynomial. Returns the interpolated y-value corresponding to a specified x-value.

Syntax
InterpC(/lookup_value, known_x s, known_y ’s)

lookup_value the x-value for which you want to find the corresponding y-value by
cubic interpolation

known_x's the range of x-values in the table (independent variable)

known_y's the range of y-values in the table (dependent variable)

Remarks

o Jookup_value can be either a number or a reference to a cell that contains a
number.

+ The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of lookup values.

¢ The values in the table of x- and y-values must be numbers.
« The table of x- and y-values must be arranged in ascending order of x-values.
» The table of x- and y-vaiues can be either either horizontal or vertical.

» The function cannot be used for extrapolation. A lookup value that is either greater
than or less than the range of x-values returns #REF!.

*  Cubic interpolation uses the values of four adjacent table entries, e.g., at xq, X1, X2
and xs, to interpolate between x; and x,. The interpolated value is calculated using
the LaGrange 4th-order polynomial:

(3= X )(x = x3)(x = x4) + (x=x )(x—x3)(x—x4)

Y G —m ) — 3 —x0) T (e~ B0 — % (e - xg)
(x—x )(x —xa )x - x4) (x =3 )(x = X )(* ~ x3) y
(x3 = )(x3 —x3)(x3 — x4) (xq =X )xgq = X3 X(x4 — x3) 4

where x is the lookup value and xi1, xs3, X3 and x, are the four values from the table
that bracket /ookup_value (see Chapter 5 for further details).

Example

=InterpC(33.3,$A$3:$A%$47,$B$3:$B$47) where $A$3:$A%$47 is the range containing the
independent or x-values and $B$3:$B%$47 is the range containing the dependent or y-
values.

See Also
InterpL, InterpC2
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InterpC2

Performs cubic interpolation in a 2-way table of x-, y- and z-values. x and y are the
independent variable, z is the dependent variable. Returns the interpolated z-value
corresponding to a specified x-value.

Syntax:
InterpC2 (x_lookup, y_lookup, known_x s, known_y's, known_z’s)

x_lookup the x-value for which you want to find the interpolated z-value

y_lookup the y-value for which you want to find the interpolated z-value

known_x's the set of x-values in the table (independent values)

known_y's the set of y-values in the table (independent values)

known_z's the set of z-values in the table (dependent values)

Remarks

s x_lookup and y_lookup can be either numbers or references to a cell that contains a
number,

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of lookup values.

¢ The values in the table of x- , y- and z-values must be numbers.
+ The table must be arranged in ascending order of both x-values and y-values.

¢ The function cannot be used for extrapolation. An x_/ookup value that is either
greater than or less than the range of x-values, or a y_J/ookup value that is either
greater than or less than the range of y-values returns #REF!.

¢ The function uses the LaGrange 4th-order polynomial. See InterpC for details.

Example

= InterpC2(K7,L7,$A$4:$A$29,$B$3:$1$3,$B$4:$1$29) where K7 is a reference to the
x_lookup value, L7 is a reference to the y_lookup value, $A$4:$A$29 is the range
containing the independent x-values, $B$3:$1$3 is the range containing the independent
y-values and $B$4:$1$29 is the range containing the dependent or z-values.

See Also
InterpC, InterpL
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dydx

Returns the first derivative of a function y = F(x), represented by a formula in a cell, at
a specified value of x. Returns #DIV/0! error value if x = 0, in which case use the
optional argument scale_factor.

Syntax

dydx(expression, variable, scale_factor)

expression reference to a cell containing a formula (the function F(x)to be
differentiated)

variable cell reference corresponding to the independent variable x in the
function F(x)

scale_factor optional argument to be used when x is zero

Remarks

e The argument expression can be either a reference to a cell that contains a formuia,

or a name.

e The argument reference can be either a reference to a cell, or a name.

e Use the optional argument scale_factor to specify a suitable value of x to be used to
calculate Ax. For example, if the function requires values of x in the range -1 x 10°
to 1 x 10°, use 1E-S for scale_factor.

e The optional argument scale_factor can be either a number or a formula, or a
reference to a cell that contains a number or formula, or a name.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

e The workbook can be set to either R1C1- or Al-style.

Limitations

o None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

If cell C2 contains the formula =SIN(B2) and cell B2 contains the value 1, the formula
=dydx(C2,B2) returns the value 0.5403023062. The correct value is cos (1) =
0.5403023059 (5.8 x 1078 % error).

See Also
d2ydx2
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d2ydx2

Returns the second derivative of a function y = F(x), represented by a formula in a cell,
at a specified value of x. Returns #DIV/0! error value if x = 0, in which case use the
optional argument scale_factor.

Syntax

d2ydx2(expression, variable, scale_factor)

expression reference to a cell containing a formula (the function F(x)to be
differentiated)

variable cell reference corresponding to the independent variable x in the
function F(x)

scale_factor optional argument to be used when x is zero

Remarks

e The argument expression can be either a reference to a cell that contains a formula,

or a name.

e The argument variable can be either a reference to a cell, or a name.

e Use the optional argument scale_factor to specify a suitable vaiue of x to be used to
calculate Ax. For example, if the function requires values of x in the range -1 x 10°
to 1 x 10°, use 1E-5 for scale_factor.

e The optional argument scale_factor can be either a number or a formula, or a
reference to a cell that contains a number or formula, or a name.

e The workbook can be set to either R1C1- or Al-style.

e  Errors (difference between returned value and correct value, when the latter can be
calculated using a calculus formula) are typically of the order of 1075 to 1078,

Limitations

* None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

If cell C2 contains the formula =SIN(B2) and cell B2 contains the value 1, the formula
=d2ydx2(C2,B2) returns the value -0.841470981782962. The correct value is cos
(1+n/2) = -0.841470984807897 (3.6 x 1077 % error).

See Also
dydx



396 EXCEL: NUMERICAL METHODS

CurvArea
Returns the area under a curve defined by a table of x- and y-values.

Syntax

CurvArea(x_values, y_values)

x_values the range of x-values in the table (independent variable)
y_values the range of y-values in the table (dependent variable)
Remarks

e The arguments x_values and y_values can be either a reference to a range of cells
or a named range.

e  Errors (difference between returned value and correct value, when the latter can be
calculated using a formuia) will depend on the number of "panels” in the table.

Example

CurvArea($A$5:$A$30,$C$5:$C$30) where the ranges $A$5:$A$30 and $C$5:$C$30
refer to a table of x- and y-values, respectively, defining a curve.

See Also
Integrate, IntegrateS, IntegrateT
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IntegrateT

Returns the integral (the area under the curve) of an expression between specified
limits. The area is calculated by using the trapezoidal approximation.

Syntax

IntegrateT(expression, variable, from_Jlower, to_upper)

expression reference to a cell containing a formula (the integrand, the function

F(x)to be integrated)

variable cell reference corresponding to x, the variable of integration

from_lower the lower limit of integration

to_upper the upper limit of integration

Remarks

e The argument expression can be either a reference to a cell that contains a formula,
or a name.

e The argument variable can be either a reference to a cell, or a name.

e The arguments from_lower and to_upper can be either a number, a reference to a
cell containing a number, a formula or a name.

e  Errors (difference between returned value and correct value, when the latter can be
calculated using a calculus formula) are variable and depend on the expression
being integrated.

s The area under the curve is divided into N "panels" of equal width H. The area of
each panel is approximated as the area of a trapezoid of width H and heights F(x)
and F(x+H). The formula for the trapezoidal approximation is

A H{F(x)+ 127(“ H)}

Example

The formula =IntegrateT(C3,83,D3,E3), where C3 contains =B3/3, the expression to be
integrated, B3 is the variable of integration, D3 contains the value 0 and E3 the value 1,
returns the area under the curve of y = x® between the limits 0 and 1.

Limitations

¢ None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

See Also
CurvArea, Integrate, IntegrateS
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IntegrateS

Returns the integral (the area under the curve) of an expression between specified
limits. The area is calculated by using Simpson's 1/3 method.

Syntax

IntegrateS(expression, variable, from_Jlower, to_upper)

expression reference to a cell containing a formula (the integrand, the function

F(x)to be integrated)

variable cell reference corresponding to x, the variable of integration.

from_lower the lower limit of integration

to_upper the upper limit of integration

Remarks

e The argument expression can be either a reference to a cell that contains a formula,
or a name.,

e The argument variable can be either a reference to a cell, or a name.

e The arguments from_Jlower and to_upper can be either a number, a reference to a
cell containing a number, a formula or a name.

e Errors (difference between returned value and correct value, when the latter can be
calculated using a calculus formula) are variable and depend on the expression
being integrated.

e The area under the curve is divided into N "panels" of equal width H. The formula
for the area of each panel by Simpson's 1/3 rule is:

F(x)+4F(x + %) + F(x+H)
3

Limitations

* None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

The formula =IntegrateS(C3,B3,D3,E3), where C3 contains =B34 3, the expression to be
integrated, B3 is the variable of integration, D3 contains the value 0 and E3 the value 1,
returns the area under the curve of y = x> between the limits 0 and 1.

See Also
CurvArea, Integrate, IntegrateT
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Integrate

Returns the integrai (the area under the curve) of an expression between specified
limits. The area is calculated by using a tenth-order LeGendre polynomial.

Syntax

Integrate(expression, variable, from_Jlower, to_upper)

expression reference to a cell containing a formula (the integrand, the function

F(x)to be integrated)

variable cell reference corresponding to x, the variable of integration

from_Jlower the lower limit of integration

to_upper the upper limit of integration

Remarks

o The argument expression can be either a reference to a cell that contains a formula,
or a name.

e The argument variable can be either a reference to a cell, or a name.

e The arguments from_Jlower and to_upper can be either a number, a reference to a
cell containing a number, a formula or a name.

e  Errors (difference between returned value and correct value, when the latter can be
calculated using a calculus formula) are variable and depend on the expression
being integrated.

Limitations

¢ None of the precedent cells of the argument expression may contain references to
the argument reference.

¢ The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

=Integrate (C3,B3,D3,E3), where C3 contains the expression to be integrated, B3 is the
variable of integration, D3 contains the value 0 and E3 the value 1, returns the area
under the curve between the limits 0 and 1.

See Also
CurvArea, IntegrateS, IntegrateT



400 EXCEL: NUMERICAL METHODS

NewtRaph

Returns the value of the independent variable contained in variable necessary to make
the formula contained in expression have the value zero.

Syntax

NewtRaph(expression, variable, initial_value)

Expression reference to a cell containing a formula F(x)

Variable cell reference corresponding to x, the variable to be changed

initial_value optional argument specifying the initial estimate to be used in the
Newton-Raphson procedure

Remarks

e The argument expression can be either a reference to a cell that contains a formula,
or a name. The formula must depend on variable.

e The argument variable must be a reference to a cefl.

e The argument initial_value can be either a number, a reference to a cell containing
a number, a reference to a cell containing a formula, or a name.

e The workbook can be set to either R1C1- or Al-style.

e Use the optional argument initial_value for functions that have more than one root,
to control the value of the root that is returned. For example, a cubic equation can
have three real roots, i.e., three different x-values that make y = 0. The root that
NewtRaph returns will depend on the trial value that you begin with.

Limitations

¢ None of the precedent cells of the argument expression may contain references to
the argument reference.

e  The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

=NewtRaph(B3,A3), where B3 contains the worksheet formula
=A372-0.000001*SQRT(A3)-0.0000000051 and A3, the independent variable, contains
the value 1.2E-04, returns 0.00012814, a root of the function.

See Also
Bairstow, GoalSeek
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Bairstow

Returns an array of the roots, both real and imaginary, of a regular polynomial of
maximum order six. A regular polynomial is one that contains only integer powers of x.

Syntax

BairStow(equation, variable)

equation reference to a cell containing the formula F(x) of a regular polynomial

variable cell reference corresponding to x, the independent variable

Remarks

e The argument equation can be either a reference to a cell that contains a formula,
or a name.

e The argument variable must be a reference to a cell.
e The workbook can be set to either R1C1- or Al-style.

e The Bairstow function is an array function. To return the roots of a polynomial of
order N, you must select a range of cells 2 columns by N rows, enter the function

and then press CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

e The table of results contains the real part of the root in the first column, the
imaginary part in the second column.

Limitations

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

See Also
NewtRaph, GoalSeek
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GoalSeek

Returns the value of the independent variable x necessary to make the formula F(x)
have a specified value. The function uses the Newton-Raphson method.

Syntax
GoalSeek(target_cell, changing_cell, objective_value, initial_value)
target_cell reference to a cell containing a formula F(x).

changing_cell cell reference corresponding to x, the variable to be changed.
objective_value the value to be returned by target_cell.

initial _value optional argument specifying the initial estimate to be used in the
Newton-Raphson procedure

Remarks

* The argument target _cell can be either a reference to a cell that contains a formula,
or a name. The formula must depend on changing_cell.

¢ The argument changing_cell must be a reference to a cell.

e The argument objective_value can be either a number, a reference to a cell
containing a number, a reference to a cell containing a formula, or a name.

« The argument initial_value can be either a humber, a reference to a cell containing
a number, a reference to a cell containing a formula, or a name. Use initial_value
for functions that have more than one value of x that satisfies the relationship F(x)
= objective value, to control the value of x that is returned.

e The workbook can be set to either R1C1- or Al-style.

s Microsoft does not provide a goal-seeking function, only Goal Seek... in the Tools
menu. The Goal Seek... tool accepts only a fixed value as the objective, not a
reference to a cell. In contrast, the GoalSeek function allows the user to use a cell
reference as the objective. The cell can contain either a number or a formula. In
addition, Goal Seek... is a Sub procedure that must be run each time the formula
in the target cell or the objective value is changed. The GoalSeek function updates
automatically when either the formula or the objective is changed.

* Note that, unlike Goal Seek..., the custom function does not change the value of
changing_cell on which the cell containing target_cell depends. If you think that
there is a possibility that an incorrect value could be returned, you should enter a
copy of the formula in another cell, and make the formula depend on the value
returned by GoalSeek, to confirm that the desired objective was found.

Limitations

e None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

Example

If cell BS contains the formula = A5722+8*A5-10 and cell AS contains the value 0, the
expression GoalSeek(B5,A5,210) returns 12.1327, a value of the independent variable
that makes the formula have the value 210. Since the formula describes a parabola,
there are two values of the independent variable that cause the formula to return the
value 210. The expression GoalSeek(B5,A5,H,-20) returns -18.1327, the other value.

See Also
Bairstow, NewtRaph
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Rungel

Performs fourth-order Runge-Kutta integration of an ordinary differential equation.
Returns the value of the independent variable y at x + Ax, based on specified values of x
and y at x, and a differential equation.

Syntax

Rungel(x_variable, y_variable, deriv_formula, interval)

X_variable the value of x

y_variable the value of y at x

deriv_formula the differential equation dy/dx = F(x_variable, y_variable)
interval Ax, the interval for the calculation

Remarks

e The argument x_variable can be a value, or a reference to a cell containing a value
or a formula.

e The argument y_variable can be a value, or a reference to a cell containing a value
or a formuia.

e The argument deriv_formula can be a value, or a reference to a cell containing a
value or a formula.

e The argument interval can be a value or a formula, or a reference to a cell
containing a value or a formula.

¢ The workbook can be set to either R1C1- or Al-style.

Limitations

* None of the precedent cells of the argument expression may contain references to
the argument reference.

e The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

See Also
Runge, Runge3
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Runge3

Performs fourth-order Runge-Kutta integration of a system of N ordinary differential
equations. Returns the values of the N independent variables y at x + Ax, based on
specified values of x and the N independent variables y at x, and N differential
equations.

Syntax

Runge3(x_variable, y_variables, deriv_formulas, interval, index)
x_variable the value of x

y_variables the array of y values at x

deriv_formulas the array of differential equations dy/dx = F(x_variable, y_variable), in
the same order as y_variables

interval Ax, the interval for the calculation

index an optional argument specifying which one of the array of y_variables
to be returned; if omitted, returns the complete array

Remarks
e The argument x_variable can be a value, or a reference to a cell containing a value
or a formula.

» The argument y_variables can be an array of values, or of references to cells
containing values or formulas.

s The argument deriv_s is an array of references to cells containing values or
formuias. The array must be in the in the same order as y_variables.

* The argument interval can be a value or a formula, or a reference to a cell
containing a value or a formula.

« The optional argument index can be a value or a formula, or a reference to a cell
containing a value or a formula.

o The workbook can be set to either R1C1- or Al-style.

¢ The Runge3 function is an array function. If you omit the optional argument index,
you must select a horizontal range of cells, enter the function and then press

CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

Limitations

. None of the precedent cells of the argument expression may contain references to
the argument reference.

¢ The function cannot handle implicit references; that is, a name or range reference
cannot be used for a range of values.

See Also
Runge, Rungel
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GaussElim

Solves a set of N linear equations in N unknowns by the Gaussian Elimination method.
Returns the array of N unknowns, in either a row or a column, depending on the range
selected by the user.

Syntax
GaussElim(coeff_matrix,const_vector)
coeff_matrix a reference to an N row x N column array of coefficients

const_vector a reference to an N row x 1 column array of constants

Remarks
o The coeff_matrix and the const_vector tables can contain values or formulas.

¢ The GaussElim function is an array function. You can select either a 1 row x N
column horizontal range of cells or an N row x 1 column vertical range of cells,

enter the function and then press CONTROL+SHIFT+ENTER (Windows) or
COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh).

See Also
GaussJordani, Gausslordan2, GaussSeidel, SimultEgNL
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GaussJordan2

Solves a set of N linear equations in N unknowns by the Gaussian-Jordan method.
Returns the array of N unknowns, in column format only.

Syntax
Gausslordan2(coeff_matrix,const_vector)
coeff_matrix a reference to an N row x N column array of coefficients

const_vector a reference to an N row x 1 column array of constants

Remarks
e The coeff_matrix and the const_vector tables can contain values or formulas.

¢ The Gausslordan2 function is an array function. You must select an N row x 1
column vertical range of cells, enter the function and then press
CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

See Also

GaussElim, GaussJordanl, GaussSeidel, SimultEqNL

GaussJordan1l
Identical to GauddJordan2 except returns a single specified element of the results array.

Syntax

GaussJordani(coeff_matrix,const_vector, value_index)
coeff_matrix a reference to an N row x N column array of coefficients
const_vector a reference to an N row x 1 column array of constants
value_index a value or a reference to a cell containing a value
Remarks

e The coeff_matrix and the const_vector tables can contain values or formulas.

e The Gausslordani function is an array function. You must select an Nrow x 1
column vertical range of cells, enter the function and then press

CONTROL+SHIFT+ENTER (Windows) or COMMAND+RETURN or
CONTROL+SHIFT+RETURN (Macintosh).

See Also
GaussElim, GaussJordan2, GaussSeidel, SimultEqNL



APPENDIX 3 CUSTOM FUNCTIONS HELP FILE 407

GaussSeidel

Solves a set of N linear equations in N unknowns by the Gaussian-Seide!l method.
Returns the array of N unknowns, in column format only.

Syntax

GaussSeidel(coeff_matrix,const_vector, init_values)

coeff_matrix a reference to an N row x N column array of coefficients
const_vector a reference to an N row x 1 column array of constants
init_values a reference to an N row x 1 column array of initial values
Remarks

e The coeff_matrix, const_vector and init_values tables can contain values or
formulas.

e The optional init_values may be helpful for large arrays.

e The GaussSeidel function is an array function. You must select an N row x 1 column
vertical range of cells, enter the function and then press CONTROL+SHIFT+ENTER
(Windows) or COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh).

See Also
GaussElim, Gausslordanl, Gausslordan2, SimultEqNL

SimultEqNL

Solves a set of N non-linear equations in N unknowns by Newton's iteration method.
Returns the array of N unknowns, in column format only.

Syntax

SimultEqNL(equations, variables, constants)

equations a reference to an N row x N column array of coefficients
variables a reference to an N row x 1 column array of constants
constants a reference to an N row x 1 column array of initial values
Remarks

e The coeff_matrix, const_vector and init_values tables can contain values or
formulas.

e The optional init_values may be helpful for large arrays.

e The SimultEgNL function is an array function. You must select an N row x 1 column
vertical range of cells, enter the function and then press CONTROL+SHIFT+ENTER
(Windows) or COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh).

See Also
GaussElim, Gausslordanl, GaussJordan2
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Appendix 4

Some Equations
for Curve Fitting

This appendix describes a number of equation types that can be used for
curve fitting. Some of the equation types can be handled by Excel's Trendline
utility for charts; these cases are noted below.

Multiple Regression. Multiple regression fits data to a model that defines y
as a function of two or more independent x variables. For example, you might
want to fit the yield of a biological fermentation product as a function of
temperature (7), pressure of CO; gas (P) in the fermenter and fermentation time
(0

y=aT+bP+ct+d (A4-1)
using data from a series of fermentation experiments with different conditions of
temperature, pressure and time.

Since you can't create a chart with three x-axes (e.g., 7, P and ¢), you can't
use Trendline for multiple regression.

Polynomial Regression. Polynomial regression fits data to a power series
such as equation A4-2:

y=a+bx+ex* +d’ + - (A4-2)

409
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40 -

30 +

20 +

X

Figure A4-1. Polynomial of order 3.
The curve follows equation A4-2 witha=5,b=-1,c=-5andd=1.

The Trendline type is Polynomial. The highest-order polynomial that
Trendline can use as a fitting function is a regular polynomial of order six, i.e.,
y=ax®+bx’ +ex* + d’ +ex + fx + g.

LINEST is not limited to order six, and LINEST can also fit data using other
polynomials such as y = ax® + bx*? + cx + dx'? + e.

Exponential Decrease.
012 ¢

0.10

0.08

> 0.06

0.04

0.02

0.00

Figure A4-2. Exponential decrease to zero.
The curve follows equation A4-3 with a=0.1 and b =-0.5.
The Trendline equation is shown on the chart.

Data with the behavior shown in Figure A4-2 can be fitted by the exponential
equation
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y=aeb (A4-3)

The sign of b is often negative (as in radioactive decay), giving rise to the
decreasing behavior shown in Figure A4-2.

The linearized form of the equation is In y = bx + In a; the Trendline type is
Exponential.

Exponential Growth. If the sign of b in equation A4-3 is positive, the
curvature is upwards, as in Figure A4-3.

10 -

8 -

Figure A4-3. Exponential increase.
The curve follows equation A4-3 with a=0.1 and 5=0.5.
The Trendline equation is shown on the chart.

Exponential Decrease or Increase Between Limits. If the curve
decreases exponentially to a nonzero limit, or rises exponentially to a limiting
value as in Figure A4-4, the form of the equation is
y=aeb +¢ (A4-4)
Excel's Trendline cannot handle data of this type.
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10

Figure A4-4. Exponential increase to a limit.
The curve follows equation A4-4 withga=-1,b=-0.5and c= 1.

The linearized form of the equationisIn (y —¢c)=bx +Ina.

Double Exponential Decay to Zero. The sum of two exponentials
(equation A4-5) gives rise to behavior similar to that shown in Figure A4-5. This
type of behavior is observed, for example, in the radioactive decay of a mixture
of two nuclides with different half-lives, one short-lived and the other relatively
longer-lived.

y:ae-bt + ce-dt (A4-5)
25 ¢
2
1.5
>
1L
05 +
0 - : S
0 2 4 6 8 10
X

Figure A4-5. Double exponential decay.
The curve follows equation A4-5 witha=1,b=-2,c=1and d=-0.2.

If the second term is subtracted rather than added, a variety of curve shapes
are possible. Figures A4-6 and A4-7 illustrate two of the possible behaviors.
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05 |
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q L

Figure A4-6. Double exponential decay.
The curve follows equation A4-5 witha=1,b=-0.2,c=-2 and d=-2.

0 2 4 6 8 10
0 ; - -
-0.2
>
-04 L
-0.6
-08 L X

Figure A4-7. Double exponential decay.
The curve follows equation A4-5 witha=1,b=-2,c¢=-1and d=-0.2.

Equation A4-5 is intrinsically nonlinear (cannot be converted into a linear
form).

Power. Data with the behavior shown in Figure A4-8 can be fitted by equation
Ad-6.

<
I
8

(A4-6)
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3
2
>
1
O 1 1 1 1 J
0 2 4 6 8 10

Figure A4-8. Power curve.

The curve follows equation A4-6 witha= 1.1, 5=-0.5.
The Trendline equation is shown on the chart.

The linearized form of equation A4-6 is In y = b In x + In ag; the Trendline
form is Power.

Logarithmic.

y=2Ln(x) + 1

Figure A4-9. Logarithmic function.
The curve follows equation A4-7 witha=2,b=1.

Data with the behavior shown in Figure A4-9 can be fitted by the logarithmic
equation A4-7.

y=alnx+bd (A4-7)
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The Trendline type is Logarithmic.

"Plateau” Curve. A relationship of the form
_oax
Y b+x
exhibits the behavior shown in Figure A4-10.

(A4-8)

1 +

Figure A4-10. Plateau curve.
The curve follows equation A4-8 witha=1,b=1.

In biochemistry, this type of curve is encountered in a plot of reaction rate of
an enzyme-catalyzed reaction of a substrate as a function of the concentration of
the substrate, as in Figure A4-10. The behavior is described by the Michaelis-
Menten equation,

_ Vmax[S]

= X, +[S] (A4-9)

where V is the reaction velocity (typical units mmol/s), K, is the Michaelis-
Menten constant (typical units mM), V. is the maximum reaction velocity and

[S] is the substrate concentration. Some typical results are shown in Figure A4-
11.
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Figure A4-11. Michaelis-Menten enzyme kinetics.
The curve follows equation A4-9 with V,,,, = 50, K, = 0.5.

Double Reciprocal Plot. The Michaelis-Menten equation can be converted
to a straight line equation by taking the reciprocals of each side. This treatment
is called a Lineweaver-Burk plot, a plot of the reciprocal of the enzymatic
reaction velocity (1/V) versus the reciprocal of the substrate concentration

(1/S]).
1_Ky 1, 1
vV v...S ¥V

max max

(A4-10)

A double-reciprocal plot of the data of Figure A4-11 is shown in Figure A4-
12. The parameters V. and K, can be obtained from the slope and intercept of
the straight line (Vo = llintercept, K,, = intercept/slope).  However,
relationships dealing with the propagation of error must be used to calculate the
standard deviations of Vi, and K, from the standard deviations of slope and
intercept. By contrast, when the Solver is used the expression does not need to
be rearranged, y... is calculated directly from equation A4-19, the Solver returns
the coefficients V.« and K,,, and SolvStat.xls returns the standard deviations of
Vaax and K.
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Figure A4-12. Double-reciprocal plot of enzyme kinetics.
The curve follows equation A4-10 with V,,., = 50, K, = 0.5.

Logistic Function. The logistic equation or dose-response curve

y= 1 (A4-11)
1+e-o

produces an S-shaped curve like the one shown in Figure A4-13.

100% +
80% +
v 60%
40%f+
20% T

-10 -5 0 5 10
X

Figure A4-13. Simple logistic curve.
The curve follows equation A4-11 witha=1.
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In the dose-response form of the equation, the y-axis (the response) is
normalized to 100% and the x-axis (usually logarithmic) is normalized so that the
midpoint (the half-maximum response or ECsg) occurs at x = 0.

Logistic Curve with Variable Slope. In equation A4-11, the coefficient a
determines the slope of the rising part of the curve; in biochemistry a is referred
to as the Hill slope. Figure A4-14 illustrates the effect of varying Hill slope. At
the midpoint the slope is a/4.

,p @=2

-10 -5 0 5 10
X

Figure A4-14. Variable slopes of logistic curve.
The three curves have a= 0.5, 1 and 2, respectively.

Logistic Curve with Additional Parameters. Equation A4-12 is the
logistic equation with addition parameters that determine the height of the
"plateau” and the offset of the mid-point from x = 0.

y=—2> (A4-12)
c+ex

The height of the plateau is equal to b/c.
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012 +

Figure A4-15. Logistic curve with additional variables.
The curve follows equation A4-12 witha=1,b=0.5and c=5.

Logistic Curve with Offset on the y-Axis. The logistic equation

_ a
- 1+ eb+cx

(A4-13)

-10 -5 0 5 10 15 20
X

Figure A4-16. Logistic curve with offset on the y-axis.
The curve follows equation A4-13 witha=1,b=-2,c=1and d=-0.2.

This equation takes into account the value of the plateau maximum and
minimum (coefficients a and d, respectively), the offset on the x-axis, and the
Hill slope.
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Gaussian Curve. The Gaussian or normal error curve (equation A4-14)

_ expl-(x =) /20?]
ova2r

can be used to model UV-visible band shapes, usually in order to deconvolute a
spectrum consisting of two or more overlapping bands. When used for
deconvolution, a simplified form of the Gaussian formula can be used, for
example

(A4-14)

A=A, e (x=misP] (A4-15)

where A4 is absorbance, x is the independent variable, either wavelength (e.g.,
nm), or, more commonly, 1/wavelength (e.g., cm™), and m is the value of x at
Apa. The parameter s is related to the bandwidth at half-height.

10 ¢

Figure A4-17. Gaussian curve.
The curve follows equation A4-15 with A, =10, m=5and s = 1.5.

Log vs. Reciprocal. The function

y= exp(a - Ej (A4-16)
X

is often seen in the relationship of physical properties to temperature. The
linearized form is In y = -b/x + a.

This equation form is encountered in the Clausius-Clapeyron equation

- AH
mhP=——2%4C (A4-17)
RT
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which relates vapor pressure of a pure substance to temperature, and the
Arrhenius equation

Ink="L4 4in4 (A4-18)
RT

which relates rate constant k of a reaction to temperature.

Trigonometric Functions. Excel's trigonometric functions require angles in
radians. For an angle € in degrees, use n4/180.

The function represented by equation A4-19
y=asin(bx+c)+d (A4-19)

or its cosine equivalent produces a curve with the appearance of a "sine wave"
centered around the x-axis if 4 = 0, or offset from the x-axis if d = 0.

Functions of the form
y = sin ax + sin bx (A4-20)

and their cosine equivalents produce a "beat frequency" curve such as the one
shown in Figure A4-17.

| {/\AM/\/\,
| |

Figure A4-18. "Beat frequency" curve.
The curve follows equation A4-21 witha=1,5=0.9.

Equation A4-21 combines the parameters of equations A4-19 and A4-20.
y=asin(bx+c)+dsin(ex+f)+g (A4-21)
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Appendix 5

Engineering
and Other Functions

The following functions are available only if you have loaded the Analysis
ToolPak. Most are listed in the Engineering category in the Insert Function
dialog box.

BESSELI Returns the modified Bessel function fn(x)

BESSELJ Returns the Bessel function Jn(x)

BESSELK Returns the modified Bessel function Kn(x)

BESSELY Returns the Bessel function Yn(x)

BIN2DEC Converts a binary number to decimal

BIN2HEX Converts a binary number to hexadecimal

BIN20OCT Converts a binary number to octal

COMPLEX Converts real and imaginary coefficients into a complex
number

CONVERT Converts a number from one measurement system to
another

DEC2BIN Converts a decimal number to binary

DEC2HEX Converts a decimal number to hexadecimal

DEC20CT Converts a decimal number to octal

DELTA Tests whether two values are equal

EDATE' Returns the serial number of the date that is a specified
number of months before or after the specified start date.

EOMONTH' Returns the serial number of the last day of the month that
is a specified number of months before or after the
specified start date

ERF Returns the error function

ERFC Returns the complementary error function

423
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FACTDOUBLE® Returns the double factorial of a number. See On-Line
Help for more information.

Gep® Returns the greatest common divisor of 1 to 29 integers.

GESTEP Tests whether a number is greater than a threshold value

HEX2BIN Converts a hexadecimal number to binary

HEX2DEC Converts a hexadecimal number to decimal

HEX20CT Converts a hexadecimal number to octal

IMABS Returns the absolute value (modulus) of a complex number

IMAGINARY Returns the imaginary coefficient of a complex number

IMARGUMENT Returns the argument theta, an angle expressed in radians

IMCONJUGATE Returns the complex conjugate of a complex number

IMCOS Returns the cosine of a complex number in x + yi or x + yj
text format.

IMDIV Returns the quotient of two complex numbers

IMEXP Returns the exponential of a complex number

IMLN Returns the natural logarithm of a complex number

IMLOG10 Returns the base-10 logarithm of a complex number

IMLOG2 Returns the base-2 logarithm of a complex number

IMPOWER Returns a complex number raised to an integer power

IMPRODUCT Returns the product of 1 to 29 complex numbers

IMREAL Returns the real part of a complex number

IMSIN Returns the sine of a complex number

IMSQRT Returns the square root of a complex number

IMSUB Returns the difference of two complex numbers

IMSUM Returns the sum of 1 to 29 complex numbers

ISEVEN? Returns TRUE if number is even, or FALSE if number is
odd

ISODD? Returns TRUE if number is odd, or FALSE if number is
even

LCM® Returns the least common multiple of 1 to 29 integers.

MROUND? Returns a number rounded to the desired multiple.

MULTNOMIAL® Returns the ratio of the factorial of a sum of values to the
product of factorials.

OCT2BIN Converts an octal number to binary
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OCT2DEC
OCT2HEX
QUOTIENT®
RANDBETWEEN®

SERIESSUM?®

SQRTPI
WEEKNUM!
WORKDAY'

Converts an octal number to decimal
Converts an octal number to hexadecimal
Returns the integer portion of a division

Returns a random integer between specified lower and
upper limits

Returns the sum of a power series.
(See On-Line Help for more information)

Returns the square root of (number * 1)
Returns the week number (1-52) in the year

Returns the serial number of the date that is a specified
number of workdays before or after the specified start date

! Listed in Date & Time category

? Listed in Information category
? Listed in Math & Trig category
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Appendix 6
ASCII Codes

The following table lists the ASCII codes for some useful non-printing
keyboard characters (codes 8, 9, 10, 13, 27), the keyboard characters (codes 32—
127) and the "alternate character set" (codes 128-255). The alternate characters
can be printed by holding down the ALT key while typing 0###, e.g., for +, type
ALT+0177.

8 backspace 10 line feed 27 escape
9 horizontal tab 13 carriage return

32 (space) 64 @ 96

33 ! 65 A 97 a
34 " 66 B 98 b
35 # 67 C 99 ¢
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 71 G 103 ¢
40 ( 72 H 104 h
41 ) 73 I 105 i
42 * 74 ] 106 j
43  + 75 K 107 k
44 76 L 108 |
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 O 111 o
48 0 80 P 112 p
49 1 81 Q 113 g
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 V 118 v
5 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 vy
58 90 Z 122 2z
59 91 [ 123 {
60 < 92 \ 124 |
61 = 93 1 125 }
62 > 94 A 126 ~
63 ? 95 _ 127 (bksp)

427
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128 € 160 192 A 224 3
129 (NP)* 161 i 193 A 225 &
130 , 162 ¢ 194 A 226 &
131 f 163 £ 195 A 227 @
132, 164 x 196 A 228 &
133 .. 165 ¥ 197 A 229 3
134 t 166 | 198 A& 230 =
135 # 167 § 199 ¢ 231 ¢
136 ° 168 200 E 232 &
137 %o 169 © 201 E 233 ¢é
138 § 170 @ 202 E 234 &
139 « 171 « 203 E 235 é
140 & 172 - 204 i 236 |
141 (NP)* 173 - 205 | 237 i
142 7 174 ® 206 1 238 i
143 (NP)* 175 ~ 207 i 239 i
144 (NP)* 176 © 208 D 240 &
145 ° 177 + 209 N 241 @
146 178 2 210 O 242 5
147 179 3 211 O 243 6
148 180 212 O 244 6
149 o 181 213 O 245 &
150 - 182 ¢ 214 0O 246 6
151 — 183 - 215 x 247 +
152~ 184 216 @ 248 o
153 ™ 185 1 217 U 249 U
154 § 186 © 218 U 250 G
155 » 187 » 219 U 251 (@
156 ce 188 Ya 220 U 252 0
157 (NP)* 189 2 221 Y 253 vy
158 2 190 % 222 b 254 b
159 ¥ 191 ¢ 223 B 255
*non-

printing
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Appendix 8

Answers and Commments
for

End-of-Chapter Problems

Chapter 3 Matrices

. G 50N e AR
_ 2 | 010278 0.188889 -0.01944 B
L. (a)inverse: "3 g1ngs555 0022222 -0.06111 det=-360
4 | 0063889 -0.14444 0147222

R LS AL TR TR
) 2] 075 05 0.25 _
(b) inverse: 3 05 1 05 det=4
4 | 0.25 05 0.75
(c) Inverse: g f ; ? det =0.25
| 4 0 -1 2
(d) Inverse: ; 1 1 'HE'16; det=-1
i ] B |

2. (a) det=0. If A is a square matrix and two of its rows are proportional or
two of its columns are proportional, the determinant is zero.

(b) det=1.55431E-15 (c) det=6

431



432 EXCEL: NUMERICAL METHODS

Chapter 4 Number Series

1. (a) Sum of 24 terms =2 (b) Sum of 100 terms = 1.6349839.
(c) Sum of 24 terms = 1.71828182845899

2 0.632120558828558, one of the so-called incomplete gamma functions.
3. [It's interesting to experiment with different values for a and x.
4. Answer: 1.5 5. Answer: 0.5

6. Summing the first 100 terms, the series sum is © =3.133787 (0.2% error).

I5H |

H R A e
n By % error

';_85 65536  3.141581 1.2E-03

The formula in cell I8 is

{=2*PRODUCT((2*ROW(INDIRECT("1;"&H8)))*2/(2*ROW(INDIRECT("1:"&H
8))-1)/(2*ROW(INDIRECT("1:"&H8))+1))}

8. The spreadsheet answer also incorporates the formula for the initial estimate
(problem 9).

9. Here is one possible formula. The number is in cell C2; the initial estimate
formula is

=LEFT(C2,0.5*(LEN(C2)+1))

10. The series is described in Edward Kasner and James R. Newman,
Mathematics and the Imagination, Simon & Schuster, 1940; Harper & Row,
1989. The sum (10 terms) is © = 3.14159265359 (9 x 10™* % error).

Chapter 5 Interpolation

1. Interpolated values: 6.04, 0.59. The formula uses an external reference to
refer to the data table on a different worksheet.

2. This problem requires you to "lookup" to the left. You can either use a linear
interpolation formula using MATCH and INDEX, like the one illustrated in
Figure 5-3, or reorganize the data table so that the freezing point data is on
the left of the wt% data. The latter approach permits the use of cubic
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interpolation. If you use this approach, you must sort the data table so that
the x values are in ascending order. Answer: 34.9%.

Answers: 3.34231, 5.40473.
Answers: 1.52, 1.18.

Data from J. Research National Bureau of Standards, 68A, 489 (1964).
Answers: 1.50173, 1.48727, 1.52508, 1.53731, #VALUE!

Depending on the behavior of the data, these interpolation methods can give
values that are very close to the theoretical (if that is available) or values that
are not so close. This example is one of the latter.

X y(interp) y(exact) % error
1.81 | 4.512445 4.4887 0.53
311 | -21.81015 | -21.7016 -0.50

5.2 | -74.35316 | -75.2167 -1.156
54 | -29.73034 | -30.5699 -2.75

Chapter 6 Differentiation

1.

I used worksheet formulas, as illustrated in Figures 6-2 and 6-4. The value
of the first derivative is a maximum at V' =20.00 mL (ApH/AV = 61.949).

There are two end-points, one at V' = 7.16 mL and the second at V' = 15.44
mL. Since the data is real student data, there is some noise, which is
accentuated in the first derivative and even more so in the second derivative.

I used worksheet formulas to calculate the various derivative formulas. As
expected, the errors are smaller (several orders of magnitude, in this
example) when using the four-point central derivative formula, compared to
the two-point formula.

You can experiment with different coefficients for the cubic by changing the
values on the worksheet.

I used the custom function for this problem. The optional scale_factor was
required for the case where x = 0.
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6. (a) Fi(x)=0.11072atx=-4,0atx=0.
(b) F'(x)=9.0028E-07 at x = 4.
(c) Fix)=0atx=0,-05atx=1.
(d) F(x)=0atx=1,-0.01176 atx= 10
(e) F'(x)=0.00242 at x =90, 2E-10 at x = 100.

7. 1 used the custom function to calculate the first derivative. For a = 1, the
mid-point slope was 0.25.

8. 1 used the custom functions dydx and d2ydx2 to calculate the first and second
derivatives. Errors were all in the range 107 to 107

Chapter 7 Integration

1. Area=2.4105 (approx.).

2. (a) Answer: " ! (b) 0.746824133375978 (c) 2
+n
2 72
(@ T (e) s ) -6 () 0.287682

3. Answer given in a table: 1.3506.
4. Answer: 5.864 (approx.), 5.877 (exact).
5. Answer: 2.711 (approx.), 2.721 (exact).

6. I chose x-increments of 0.2 and calculated the two curves from -2 to +4.
Fortunately the two curves intersected at x = —1 and x = 3. The cells that
were summed to obtain the area are in blue. Area = 10.640.

7. As in the preceding problem, I used x-increments of 0.2. This time it was
necessary to use Goal Seek... to find the points where the two curves
crossed. After using Goal Seek, the target cell (Y1-Y2) was deleted. The
cells that were summed to obtain the area are in blue. Area =4.822.

8. As in the preceding problem, Goal Seek... was used to find the two
intersection points. Approximate answer 14900.
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10.

11.

12.

After evaluating the areas using a trial value of ¢, Goal Seek... was used to
set the relationship area bounded by y=4 — 2* area bounded by y = ¢ to
zero. The changing cell and the target cell are shown on the spreadsheet. ¢ =
2.528.

The same procedure was followed as in the preceding problem. ¢ = 8.68

Answer = 6.51413 (approx.), n*/15 = 6.493939 (exact).

(a) Answer: 1 b1 ()% —;-\/g (e) \/;

Chapter 8 Roots of Equations

To find the first time after # = 0 when the current reaches zero, you must
begin with a value of ¢ that will force Goal Seek to converge to the first i = 0
after t=0. Using #=1 is a good choice. #=1.576 seconds.

Use Goal Seek... D =0.756.

The spreadsheet shows a manual method, similar to the interval-halving
method, and also uses Goal Seek. [Ba’]=1.28 x 10° M.

The spreadsheet shows the graphical method and also uses Goal Seek. S =
0.13 mol/L.

Use Goal Seek with Y1-Y2 as target cell formula. Use two different initial
values of x to get the two different x-values. Formulas are under the chart.
Answer: x = -5.857 and x = 12.494,

Follow same procedure as in the preceding problem. For #=0.5, x = -0.87
and x = 0.87. If you use the Goal Seek custom function, you can change the
value of # and observe the intersections change.

This problem requires two successive uses of Goal Seek. The procedure is
described on the spreadsheet..

x=0.288, [A]=0.4858 mol L™".
x=0.8598, [A] = 0.1402 atm
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11. T'used Goal Seek... with the cell containing the formula MDETERM as the
target cell and the cell containing the (1,1) element of the matrix as the
changing cell. The cell value 0.25 gives a determinant value of zero. Two
elements of the matrix cannot be varied so as to give a zero value: the (1, 3)
element and the (3, 1) element.

Chapter 9 Simultaneous Equations

1. Using the GaussElim function, x; = 40.6752697, x, = ~77.86744959,
x3=3.111657335, x, = 10.63794438.

2. Using the GaussElim function, /1 =1,5=0,5=1.

3. Using the GaussElim function, x, = 0.621563612, x, =—5.5x10"%,
x; = 0.216058954, x, =0.758779009.

4. [Co™]=0.0533, [Ni®'] = 0.1125, [Cu®*'] = 0.1022 mol/L.

5. (a) Not solvable. Row 3 is a multiple of row 1.
(d) X, = 1,X2=0,X3=3,X4=2.

6. Using the GaussElim function, x; = 29.746, x, = 19.991, x; = -20.487,
x4 =—4.455, x5 =-48.369, x =-8.270.

7. Using the SimultEqNL custom function, x = 0.707, y = 0.707.

8. Using the SimultEqNL custom function, x=-1,y=2,z=-1

Chapter 10 ODEs with Initial Conditions

1. I used the Runge1 custom function. Set up the spreadsheet with three
columns: x, y, '

2. I used the Rungei custom function. Set up the spreadsheet with three
columns: x, y, y. The exact expression for y is given in the answer
spreadsheet.
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10.

11.

Set up the spreadsheet with three columns: x, y, y'. I used the Runge1 custom
function. The exact expression for y is given in the answer spreadsheet.

Set up the spreadsheet with five columns: ¢, x, y, x'y'. Plot x vs. y to visualize
the trajectory. I used Goal Seek to find the value of 7 that makes y = 0.

Make a copy of the spreadsheet of problem 4 and modify it (I used the
Rungel custom function). The projectile struck the ground at x = 31967 m.
Note that the velocity was identical to that when it left the muzzle.

It may be helpful to set up the problem using the Euler method first, without
air drag, and then modify the spreadsheet to include air drag. Set up the
spreadsheet with eight columns: ¢, x, y, x' ', x", y" and v.

If you experiment with different angles, it appears that an angle of about 30°
gives the longest drive when air resistance is taken into account.

For calculations and interesting discussion on Mickey Mantle's "tape
measure home run" of 565 feet, hit at Griffith Stadium on April 17, 1953, see
Grant R. Fowles and George L. Cassiday, Analytical Mechanics, T" ed.,
Brooks Cole.

Excel's SIN function requires angles in radians. It may be helpful to solve
the problem using the Euler method first.

The problem requires using two Runge-Kutta or Euler calculations. It may be
helpful to solve the problem using the Euler method first.

I used the Runge3 custom function to calculate the concentrations of A and
B. Note that the exact expressions fail if [A] = [B]; thus I made [B] very
slightly greater than [A].

I used names for the rate constants &y, k», k&3 and k4, to make the formulas

clearer; I used the Runge3 custom function to calculate the concentrations of
A,BandC.

Chapter 11 ODEs with Boundary Values

L.

2.

Set up the spreadsheet as in Figure 11-2. Use an initial value of zero for the
slope. Then use Goal Seek to get the value of the slope (changing cell) that
gives a value of zero for the deflection at the other end of the beam (target
cell). Maximum deflection: 0.6138 in.

Use procedure as in problem 1. Maximum deflection: 0.9353 in at 200 in.
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3. Set up spreadsheet as in Figure 10-17. This system is very sensitive to
changes in )"; sometimes Goal Seek fails to converge. You may have to
provide some manual guidance.

4, Set up spreadsheet as in problem 3.
5. Set up spreadsheet as in problem 3.

6. Set up spreadsheet as in problem 3.

Chapter 12 PDEs

1. Set up spreadsheet as in Figure 12-2.

2. Set up spreadsheet as in Figure 11-2, but with additional temperature
constants as described in the problem.

Chapter 13 Linear Regression

1. Insert columns for x? and x°, then use LINEST. Answer: a =0.00141 +
0.0005, 5=-0.193 £ 0.019,c=13.28 £ 0.19,d=0.079 £ 0.498, R =
0.999986.

2. The constant term d has a standard error much larger than its value; therefore
it should be eliminated from the model. Fitting the datatoy = ax’ + bx’ + cx
gives a slightly better R* value.

3. The answer spreadsheet shows the results from Trendline and also how to get
the regression parameters of a power function using LINEST.

4. The LINEST formula in this example uses an array constant to produce the
squared and cubed values of the known_x's. (Answers: 33.3 wt%, 2.3°F; 42.3
wt%, —12.6°F)

5. The LINEST formula in this example uses an array constant to produce the
values of known_x's raised to the required powers. (Answers: 33.3 wt%,
2.3°F; 42.3 wt%, —12.6°F)

6. 1 first made a 3-D plot of the data. The shape of the surface (smooth upward
curvature) suggested to me that the data vs. each independent variable could
be a simple function, perhaps exponential or polynomial. I created XY plots
of Power vs. Throttle and Power vs. Speed and experimented; quadratic or
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cubic (polynomials of 2nd or 3rd order) fitted the data quite well. Using that
information I used LINEST to find regression coefficients that fitted Power to
Speed (S) for each value of Throttle () (the fitting function was a-S> + b-S).
I then fitted the regression coefficients a and b individually vs. Throttle.
(From charts, it appeared that a could be fitted using a 3-term function, b
using a 2-term function.) The final fitting function was (c-T* + d-T + e)s® +
(fT + g)S. The g term had a large standard error and perhaps could be
eliminated or modified.
The final sheet in the workbook shows how the Solver (see following
chapter) can be applied to the same data. Both the preceding 5-term fitting
function and a 6-term fitting function, (c:T> + d'T + )$* + (fT+gS+h,
were tried.
The preceding fitting function can be written in the following form:

cTS+d TS +eS+fTS+gS+h

Chapter 14 Nonlinear Regression and the Solver

1.

Enter formula for Ay, (you'll need a cell for k, the changing cell). Enter
formula for (residual)® and sum the squares of residuals (this is the target
cell). Use the Solver to minimize the target. Answer: k= 0.3290.

Follow the same procedure as in problem 1. Answer: a =.0.5005.

Follow the same procedure as in problem 1, except that there are four
changing cells. Answer: a = 1.0644246, b = 1.8495246, ¢ = -0.8966248, d =
9.97124864.

The answer spreadsheet has been set up with headings for using the Runge3
custom function. The workbook contains a "Data for Problem" sheet and the
complete problem.

Follow the same procedure as in problem 1, except that there are three
changing cells. Answers I got were 4 = 0.10119, B = 5.1337, C =
0.0117922.

This example requires scaling. The data for the exercise and the answer
spreadsheet are in different workbooks.

The workbook contains a worksheet with the raw data, plus two worksheets
with solutions. You can compare the use of wavelength vs. wavenumber as
the independent variable in deconvoluting UV-visible spectra. Although it is
generally considered that an independent variable that is proportional to
energy (e.g., wavenumber) is the correct independent variable to use, in this
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example a better fit is found when using wavelength as the independent
variable.

On the sheet "Deconvolution using wavenumber," wavelength (nm, 1 x 107
m) is converted into wavenumber (cm™') by using the relationship
wavenumber = 10000/wavelength.

9. The data for the exercise and the answer spreadsheet are in different
workbooks. The spectrum contains a number of bands. I have not yet
obtained a satisfactory solution.

10. Using the spectra of the pure species, calculate the ¢ for each of the three
species, cobalt, nickel and copper, at each wavelength. Then, at each
wavelength, use the relationship

Aovsd = &coCeo + &nilni + ecuCeu
You now have 236 equations with only three unknowns. Use the Solver to

find the three unknowns. The answers are slightly different from the results
found in Chapter 9.

11. The equations in the problem lead to the following worksheet formula for the
absorbance:
=TL*(K*eL+H*eHL)/(K+H)
(Names were used for all cell references in this worksheet.) The changing
cells are the log K value and the g and ey, values, one pair for each column
of absorbance values at a particular wavelength.

Since the data table is large, it was most convenient to have the experimental
absorbance values on one sheet and the calculated values on another.

The SUMSQ worksheet function was used to calculate the sum of squares of
residuals for each column.

I used the Solver on the absorbance values at 260 nm first, to get a value of
logK (changing cells and target cell for this calculation are in red). I then
used these as starting values for the global refinement. Convergence was
very slow,

12. The five changing cells have very different magnitudes (values were
estimated from the data table and/or the chart); three were of magnitude 107
and two were of magnitude 1. Using the Solver in the usual way did not give
a reasonable solution (see the sheet "First Trial"). Checking the Use
Automatic Scaling box did not give a reasonable solution either (see "With
Automatic Scaling"). Manual scaling was done as described in the
worksheet "Manual+Automatic Scaling" and this led to an acceptable
solution.
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Chapter 15 Random Numbers and Monte Carlo

1.

The answer spreadsheet contains two examples. The first uses 32 points, and
is intended mainly to illustrate the method. Random number formulas are
used to generate a pair of x, y coordinates in columns A and B. The formula
in column C uses an IF statement to determine whether the point is inside the
circle; if inside, the formula returns the y coordinate, otherwise the cell is
blank.

The second example uses 4000 points and is used to create the chart. The
formula in column G returns the y coordinate if the point is inside the circle;
if not the cell returns #N/A. A cell containing #N/A is not plotted in a chart.

7 is the number of points within the circle divided by the total number of
points.

A random number is used to specify whether a child is male (>0.5) or female.
The simulation shown uses 100 mothers and a maximum of 10 children per
mother, The "series" is terminated when the first "F" is generated. (Very
occasionally 10 children is not sufficient to end the series.) It's fairly clear
from the results from 100 mothers that the proportion is 50:50, but a macro
button has been provided that sums the results of 100 recalculations.

When I first encountered this problem many years ago, I sat down and
derived an analytical expression for the result, but right now I can't reproduce
1t.

Constructing a spreadsheet to simulate the traffic pattern is left to the reader.

The Traveling Salesman problem is usually formulated as follows: a
salesman must travel to a number of cities, visiting each one only once and
finally returning to the city of origin. The problem is to minimize the
distance traveled. It's obvious that this problem has many real-world
applications, so an algorithm for a general solution would be very useful.
But this seemingly simple problem is actually essentially impossible to solve
for all but the simplest of cases.

The straightforward approach would be to determine the distance between
each city and to calculate the total distance of all possible routes. Thus, for
example, if only five cities are to be considered, there are five cities at which
to begin; having chosen one of the five, there are four possible destinations,
etc. The total number of possible routes is 5! = 120. But as N, the number of
cities increases, V!, the number of possible routes, quickly increases to a
number so large as to be make the solution impossible even with today's
computers. Obviously, an approach that will simplify the problem is
required. One strategy is to always travel to the city that is closest (of the
ones not yet visited, of course). Strategies such as this may not provide the
perfect solution but may at least provide a useful one. This method is
illustrated on the sheet "Method 1."
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Another approach has been to use the Monte Carlo method, illustrated on the
sheet "Method 2."

5. You can't use the expression 15*RAND(), since this has the possibility of

returning the same number more than once. The same is true of the
expression RANDBETWEEN(1,15). The same deficiency occurs with the
Sampling Tool in Tools—~Data Analysis.... If you specify, for example, five
random numbers from the list of integers 1, 2, 3, 4, 5 you could get the result
2,5,2,1,3.
The only way to do this (that I can think of) is to create a two-column table
with the integers 1-15 and 15 random numbers using RAND() and sort the
table manually in ascending or descending order, in the same was as the
example shown in Figure 15-2. You can also sort the list by using a formula,
as shown in Figure 15-5.

6. This problem is similar to the previous one (you could just create a list of the
integers 1-52 in random order), except that it opens up the possibility of
displaying the 52 values as numbers 1-13 in the four suits: clubs, diamonds,
hearts, spades. The workbook shows several ways to display the results.
The symbols for the four suits are in the Symbol font; Conditional
Formatting was used to provide the red color for the diamonds and hearts.

7. This workbook requires the RANDBETWEEN worksheet function. Some code
has been provided so that if the Analysis ToolPak is not loaded, a Sub
procedure in the sheet ThisWorkbook loads the Add-In.

8. The surprising result of this simulation shows that about 30% of ail numbers
obtained from real numerical data start with the digit 1. This has been
termed Benford's Law.

Newcomb (1881) observed that the first pages of tables of logarithms were
more worn and dirty than later pages, suggesting that numbers with a low
first digit occurred in calculations more often than ones with a high first
digit. (The counter-argument, of course, is that people start at the beginning
of the table and page through until they reach the page they need.)

Benford (1938) determined the distributions of leading digits in data sets
taken from a wide variety of sources, including molecular weights of
compounds, surface area of rivers, and street addresses. He found the
following distribution: 1, 30.6%; 2, 18.5%; 3, 12.4%; 4, 9.4%; 5, 8.0%; 6,
6.4%; 7,5.1%; 8, 4.9%; 9,4.7%

Hill (1996) showed that, for a variety of statistical data, the first digit is D
with the probability log;, (1+1/D).

Benford's law is more than a numerical curiosity; it has practical applications
for the design of computers and for detection of fraudulent data. Benford's
law was used as a plot device in the episode, "The Running Man" (2006), of
the CBS television crime drama NUMB3RS.
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C
calculating derivatives 100
cubic fitting function for 105
Calculation tab 205
Calculation tab, in Tools-Options
158, 162, 180
calibration curve (problem) 309
Call keyword 30
cell, reference to 35
Cells keyword 36, 37
central difference 99, 103
changing cells (Solver) 316, 326
ChartWizard method 35
CheckSpelling method 35
chemical kinetics 243
choice of Ax 123
circular reference 161, 212, 236, 267
Clausius-Clapeyron equation 289
Code window 1
code, stepping through 55
coefficient of determination 296
coefficients, linear in the 289
regression 287, 289, 292
collections of objects 31
COLUMN worksheet function 256,
259,278,279
command macros 4
comparison operators 17
computing derivatives, formulas for
104
constraints, in Solver model 324
Convergence (Solver options) 325
convergence, slow 153
convergent series 69
ConvertFormula method 117,118
correlation coefficient, R 288
Cramer's rule 169, 190
Crank-Nicholson 274,280
create an Add-In macro 53
critical points 100
cubic
equation 147

fitting datato 295
fitting function for calculating
derivatives 105
interpolating polynomial 129
interpolation 87
interpolation in a table 89
interpolation in a two-way table 91,
93
curve
areaundera 127, 129, 130, 131,
133
logistic 419, 420
normal error 421
plateau 416
slope ofa 155
curved path, distance traveled along a
141
curves, area between two 132
curves, intersection of 176
custom function 11, 49, 389
dydx 119, 120, 123
d2ydx2 120, 121, 123
Integrate 134
IntegrateS 136
IntegrateT 136
custom lookup formula 80
CVErr keyword 50

D
Data Analysis... 303, 347
debug toolbar (VBA) 57
Debug... 55
debugging 54
deck of cards (problem) 362
decrease, exponential 412
definite integral 127
derivative
calculating first and second 99, 104
cubic fitting function for calculating
105
first 99, 100
formulas for computing 104
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of a function 109
of a worksheet formula 110, 111,
112
partial 168
partial 287
second 99, 100, 120
determinant 57, 58, 60, 190
degrees of freedom 297
diagonal elements, in SolvStat macro
328
diagonal matrix 58
diatomic molecule (example) 183
difference formulas 103
difference, backward 99, 103
central 99
forward 103
differential equation 217
first-order 218
higher-order 238
ordinary 217
partial 217
second-order 245, 259
differential equations, systems of 229
systems of first-order 228
systems of simultaneous 229
digits, frequency of occurrence of
(problem) 362
Dim keyword 43, 44
dimensioning an array 43
discontinuous functions (Solver) 323
distance traveled along a curved path
141
Do While... loop 27
Double keyword 29
double exponential 413
double reciprocal plot 417
dynamic array 45

E
ellipse, area of 144

elliptic partial differential equation
263,264, 267

empirical fitting function 294
Engineering functions 343, 425
entering VBA code 9
equation, exponential 411
equation, Michaelis-Menten 416
equations, simultaneous 65
error surface 315
error value, returning 50
error, approximation 111
error-square sum 314
estimation of © 353, 354, 362
Euler's method 218, 219, 222, 247,
250, 258

Evaluate method 116, 117, 134, 225
evaluating series formulas 70
event-handler procedures 3
examining the values of variables 56
Exit keyword 28
exiting from a loop 28

from a procedure 28
explicit method 270
exponential

curve 289

decrease 412

double 413

equation 411

growth 412
external references (Solver) 323

F
F9 (function key) 71
Fick's second law 264
finite-difference method 254, 258
first and second derivatives 99
first derivative 99, 104, 155
of a specific worksheet formula
110
of a worksheet formula 111, 115
first-order differential equations 218
systems of 228
fitting function, empirical 294
fitting functions, Trendline 302
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For Each...Next loop 27
For...Next loop 26
Formula property 116, 133, 225
formulas for computing derivatives
104
forward difference 99, 103
fourth-order polynomial, Lagrange
87
fourth-order Runge-Kutta, see Runge-
Kutta
frequency of occurrence of digits
(problem) 362
Frontline Systems Inc 316
F-statistic 298
Function Arguments dialog box 13
function linear in the coefficients 287
function macro 11
Add-In 53
Function procedure, structure of a $
function 21
custom 11,49, 389
derivative ofa 109
engineering 425
logistic 418
naming 11
partial derivative of 287
shortcut to entera 13
trigonometric 422

G
GaussElim custom function 194, 196
Gaussian

curve 421

elimination 191, 192

quadrature 137, 138
Gauss-Jacobi method 200, 205
GaussJordan custom function 197,

198

Gauss-Jordan method 196
Gauss-Seidel custom function 205
Gauss-Seidel method 200, 203

Generalized Reduced Gradient
(Solver) 316

getting Trendline coefficients into a
spreadsheet 302

global minimum (Solver) 323, 324

Goal Seek... 156,159, 174, 175,
178, 251

GoalSeek custom function 180, 182,
183

graphical method 147

growth, exponential 412

Guess (Solver parameters) 324

H

heat conduction in a brass rod
(example) 272

hierarchy of objects 31

higher-order differential equations
238

Hill slope 419

HLOOKUP worksheet function 77

use of, in Solver models 323

hyperbolic partial differential equation

263,282

I

identity matrix 63

IF worksheet function 278, 279

if...Then statement 25

If...Then... Elself statement 25

If...Then...Else statement 25

implicit intersection 107

implicit method (PDE) 274

indefinite integral 127

indefinite number of arguments 51

INDEX worksheet function 80, 81,
84, 106, 346, 349

INDIRECT worksheet function 72,
107, 256, 259, 279

inflection point 100, 101

information functions, VBA 23

initial conditions 218
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initial estimates for Solver 323
InputBox function 41
InputBox method, syntax of the 42
insert a module sheet 2
Insert Function dialog box 12
Integer keyword 29
integral, definite 127
indefinite 127
Integrate custom function 134
integrateS custom function 136
IntegrateT custom function 136
integrating a function 133
integration, lower and upper limits of
134, 140, 142
symbolic 127
INTERCEPT worksheet function 289,
291
intercept, least-squares 288
InterpC custom function 88, 92
InterpC2 custom function 93, 95
InterpL custom function 86, 90
interpolation 77, 83
cubic 87
linear 83, 85, 86
Intersect method 37
intersection of two lines 174, 178
interval method with linear
interpolation 151
interval-halving method 149
intrinsically nonlinear 313
inverse matrix, in SolvStat macro 328
inverse of a matrix 60
ISERROR worksheet function 360
Iteration box 200, 205, 237

J
Jacobi method 200

K
Keep Solver Solution 322
keywords, VBA 365

L
Lagrange fourth-order polynomial 87
Laplace's equation 264, 266
LBound function 44
least squares
curve fitting 316
fit to a straight line 288, 289, 292,
294,316
intercept 288
slope 288
Legendre polynomials 137
limitations of the Regression tool 305
of Trendline 301
limits of integration, lower and upper
134, 140, 143
linear
equations, systems of 190
in the coefficients 287, 289
interpolation 83, 85, 86
interpolation in a two-way table 90
least squares curve fitting 316
regression 287,289
using Trendline 298
linearized forms of nonlinear
equations 329
line-continuation character 10
LINEST shortcut 297
LINEST worksheet function 65, 105,
292, 293,294, 296, 297
LINEST's regression statistics 297
Lineweaver-Burke 330, 417
liquid flow (problem) 243
local minimum 323
logarithmic 415
logical operators 17, 25
logistic curve 418, 419, 420
lookup functions 77
LOOKUP worksheet function 79
loop, exiting from 28
looping 26
loops, nested 28
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lower and upper limits of integration
134, 140, 141

M
Macro Name list box 15
macro, function 11
macros, Add-In 53
command 4
two kinds of 4
main diagonal 57
male children (problem) 362
manual scaling (Solver) 326
Marquardt-Levenberg algorithm 316
MATCH worksheet function 80, 84,
106, 107, 346
mathematical functions, VBA 21
matrices 57
matrix
addition 58
elements 57
functions, additional 63
inversion 60, 62, 191,276
mathematics 58
multiplication 59
subtraction 58
transposition 60
diagonal 58
identity 63
in SolvStat macro 328
square 57
symmetric 58
transpose of a 62
tridiagonal 58
unit 58
Max Time and Iterations (Solver
options) 324
MAX worksheet function 80, 279
Maximum Change parameter 159,
162, 205, 237
Maximum Change (Solver options)
325

MDETERM worksheet function 60,
63, 190, 191
megaformula 107, 347
methane hydrate 289
method of steepest descent 316
methods, VBA 18, 23, 33
Michaelis-Menten 330, 416
MIDENT worksheet function 63
MIN worksheet function 279
MINDEX worksheet function 64
MINVERSE worksheet function 60,
191, 257, 261, 276
MMULT worksheet function 62, 191,
257,261,276
Module from the Insert menu 11
module sheet, rename a 14
inserta 2
Monte Carlo method 342, 350, 354
MSCALE worksheet function 64
MsgBox
function 39
return values 41
buttons parameter of 40
multidimensional array 44
multiple linear regression 289, 293,
410
multiplication, matrix 59
scalar 59

N
named formulas 107
naming functions and arguments 11
variables or arguments 17
nested loops 28
Newton quotient 110
Newton-Raphson
custom function 163
method 154, 155, 161, 176, 178
Newton's iteration method 207
nodes, in Gaussian quadrature 137
noise 103, 342, 344
non-contiguous ranges 297
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nonlinear equations
linearized form of 329
systems of 207
nonlinear least squares curve fitting
using the Solver 314,316,317
nonlinear regression, statistics of 327
nonlinear, intrinsically 313
normal error curve 421
normal random distribution,
simulating 349, 421
NORMINV worksheet function 349
Not keyword 17, 25
number series 69
NumberFormat property 19
numerical differentiation 155

0
object browser 32
objective function (Solver) 316, 326
object-oriented programming language
18

objects 18,31

collections of 31

hierarchy of 31
obtaining values from a table 77
occurrence of digits, frequency of

(problem) 362

OFFSET worksheet function 106
On Error GoTo statement 119
one-dimensional array 48
operators 17

arithmetic 17

comparison 17

logical 17,25
optimization 316
Option Base 1 44,47, 51
Option Explicit 10
optional argument 50
Optional keyword 50
Or keyword 17, 25
ordinary differential equation 217
Orvis, William J. 88

P
m, estimation of 353, 354, 362
panel 127,140
parabolic partial differential equation
263,269,274
ParamArray keyword 51, 52, 66
parentheses, arguments with or
without 34
partial derivative 168, 265, 287, 328
in SolvStat macro 328
partial differential equation 217, 263
elliptic 263, 264, 267
hyperbolic 263, 282
parabolic 263, 269, 274
passing values 46
Pearson product moment correlation
coefficient 289
pendulum motion (problem) 242
Personal Macro Workbook 8
perturbation factor (Solver) 316
pH titration curve (example) 100
phase diagram 289
pit-mapping 315
plateau curve 416
polygon, area of 354
polynomial
cubic interpolating 129
Lagrange fourth-order 87
Legendre 137, 138
regression 410
roots of a regular 166
position of a value in an array 64
power series 69
Precision and Tolerance (Solver
options) 324
predictor-corrector methods 235
Preserve keyword 45
principal diagonal 57
Private 3!
procedure, exiting from 28
running a Sub §
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structure of a Function 5

structure of a Sub 5

Visual Basic 4
program control 24
Project Explorer window 1,2
properties 18, 19

Range object 20
Properties window 1,4, 14
Public 31

Q

quadratic interpolating polynomial
128

quadrature 127

Quick Watch... 57

R
R? 288,296,298
RAND worksheet function 342, 343,
345
RANDBETWEEN worksheet function
343
random
number generator 341
sampling 345, 347
Range keyword 37
range, reference to 35
read-only 19
Record Macro dialog box 7
Record New Macro... 6
Recorder, using the 6
ReDim keyword 45
reference
toacell 35
toarange 35
to the active cell 35
circular 212
refractive index of benzene (problem)
97
regression
analysis 287, 288
coefficients 287, 289, 292

linear 287, 289
multiple 410
multiple linear 289
parameters, standard deviation of
327
polynomial 410
statistics of nonlinear 327
regression statistics
from LINEST 297
mathematical relationships 297
Regression tool 289, 304
limitations of 305
using 303
Regula Falsi method 151, 153
regular polynomial, roots of 166
rename a macro 14
a module sheet 14
Reset All (Solver parameters) 324
result, array of values as 52
return statement 6
return values, MsgBox 41
returning an error value 50
RMSD (root-mean-square deviation)
296, 299
roots of a regular polynomial 166
ROUND worksheet function 343
roundoff error 111
ROW worksheet function 71, 107,
256, 259, 279, 347
RSQ worksheet function 289, 291
rules for naming variables or
arguments 17
Runge-Kutta custom functions 224,
225,229,234
Runge-Kutta method 218, 220, 222,
223,225, 235,237,251, 258
running a Sub procedure 8

S

Sampling tool 348
sampling, random 345, 347
scalar multiplication 59
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scale factor, in Solver model 326
scaling arrays 64
scoping a subroutine 30
secant method 160
second derivative 99, 102, 103, 106
of a worksheet formula 121
second-order differential equation
245,258,263, 282
Select Case statement 25
series
alternating 69
convergent 69
formulas, evaluating 70
power 69
sum ofa 69
Set Cell box (Goal Seek) 158, 181
Set keyword 32, 43, 47
Set Target Cell box 320
Sheets 32
shooting method 245
shortcut key, add 15
assigning 9
shortcut keys for VBA 15, 387
shortcut to enter a function 13
Show Iteration Results (Solver
options) 325
simply supported beam 246
Simpson's 1/3 rule 128
Simpson's 3/8 rule 129
Simpson's method 127, 128, 133,
134, 136
simulating a normal random
distribution 349
simultaneous differential equations,
systems of 229
simultaneous equations 65
SimultEgNL custom function 208
size of an array 44
slope 99
of acurve 155
least-squares 288

SLOPE worksheet function 289, 291

slow convergence 153
SMALL worksheet function 346
Solver Add-In 317
Solver Estimates, Derivatives and
Search 326
Solver Options 321, 324
Solver Parameters dialog box 320,
323
Solver perturbation factor 316
Solver Results dialog box 321, 322
Solver Statistics macro 115, 328
Solver
Add, Change, Delete 324
Assume Linear Model 325
Assume Non-Negative 325
By Changing Cell 323
changing cells 316, 326
constraints 324
Convergence 325
discontinuous functions 323
external references 323
global minimum 324
Guess 324
initial estimates for 323
manual scaling 326
Max Time and Iterations 324
Maximum Change 325
objective 316, 326
Precision and Tolerance 324
Reset All 324
Save Model... and Load Model...
326
scale factor 326
Show Iteration Results 325
target cell 316
Unable to Find a Solution 323
Use Automatic Scaling 325
use of HLOOKUP in models 323
use of VLOOKUP in models 323
Sort... 345
square matrix 57
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standard deviation of the regression
parameter 327
standard error of the y estimate 296,
298
statements, VBA 16
statistics of nonlinear regression 327
Status Bar 325
steepest descent, method of 316
stencil 266, 271, 283
Step mode 55, 58
stepping through code 55
Stop keyword 55, 56
Stop Recording toolbar 6, 7
straight line, least-squares fit to a
288,289
String keyword 29
structure of a Function procedure 5
of a Sub procedure 5
Sub procedure, running 8
Sub procedure, structure of S
subroutines 30 .
SUBSTITUTE worksheet function
116, 134, 225
subtraction, matrix 58
sum of a series 69
sum of the squares of deviations 288
surface, error 315
symbolic integration 127,218
symmetric matrix 58
syntax of the InputBox method 42
systems
of differential equations 229
of first-order differential equations
228
of linear equations 190
of nonlinear equations 207
of simultaneous differential
equations 229

T
table, obtaining values froma 77
target cell (Solver) 316

Taylor series 73, 103, 208
temperature distribution 267
tenth-order Legendre polynomial 138
testing 54
text functions, VBA 22
thermal diffusion equation 264
To Value box (Goal Seek) 158, 181
Toggle Breakpoint 55
traffic model (problem) 362
trajectory (problem) 241
transpose of a matrix 62
TRANSPOSE worksheet function 49
transposition, matrix 60
trapezoid method for integration 127,
134
traveling salesman (problem) 362
TREND worksheet function 85, 86,
90
Trendline 289, 298
fitting functions 302
limitations of 301
linear regression using 298
Trendline... ToCell utility 305
trial-and-error 314
tridiagonal matrix 58
trigonometric functions 422
two kinds of macros 4
two ways to specify arguments of
methods 34
two-way table 81
cubic interpolation in 91, 94
linear interpolation in

U

UBound function 44, 51

Unable to find a solution (Solver)
323

Union method 37

unit matrix 58, 196

Use Automatic Scaling (Solver
options) 325

user-defined functions 4
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using the Recorder 6

D
Value property 38,116
vapor diffusion in a tube (example)
275,277,279, 282
variable type of an array 44
variables 17
examining the values of 56
naming 17
Variant data type 29
VBA Add Watch dialog box 58
VBA data types 28, 29
VBA information functions 23
VBA keywords 365
Address 116
And 17,25
As 50
Boolean 29
Call 30
Cells 36,37
ChartWizard 35
CheckSpelling 35
ConvertFormula 117,118
CVErr 50
Dim 43,44
Double 29
Evaluate 116, 117, 134, 225
Exit 28
Formula 116, 133, 225
If..Then 25
If...Then... Elself 25
If...Then...Else 25
InputBox 41
Integer 29
Iintersect 37
LBound 44
MsgBox 39
Not 17,25
NumberFormat 19
On Error GoTo 119

Option Base 1 44, 47, 51

Option Explicit 10

Optional 50

Or 17,25

ParamArray 51, 52, 65

Preserve 45

Private 3]

Public 31

Range 37

ReDim 45

Select Case 25

Set 32,43,47

Sheets 32

Stop 55, 56

String 29

UBound 44,51

Union 37

Value 38,116
VBA mathematical functions 21

text functions 22
VBA, shortcut keys for 387
VBA Watches Pane 58
vector 57
vibration of a string 282,283
Visual Basic arrays 43
Visual Basic Editor 1,2, 7
Visual Basic procedures 4
Visual Basic statements 16
VLOOKUP worksheet function 77,

79, 80, 81
VLOOKUP, use of, in Solver models
323

w

wave equation 264

weights, in Gaussian quadrature 137

window, properties 1,5

work-around for the row-column
problem 49

worksheet formula, derivatives of a
110, 111, 112

first derivative of a 111, 115
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second derivative of 121
worksheet functions:

ABS 256,279

COLUMN 256,259,278, 279

HLOOKUP 77

IF 278,279

INDEX 80, 81, 84, 106, 346, 349

INDIRECT 72, 107, 279, 256, 259

INTERCEPT 289, 291

ISERROR 360

LINEST 65, 105, 292, 293,294, 296,

297

LOOKUP 79

MATCH 80, 84, 106, 107, 346

MAX 80,279

MDETERM 60, 63, 190, 191

MIDENT 63

MIN 279

Mindex 64

MINVERSE 60, 191, 257, 261, 276

MMULT 62, 191, 257, 261, 276

MSCALE 64

NORMINV 349

OFFSET 106

RAND 342, 343, 345

RANDBETWEEN 343

ROUND 343

ROW 71, 107, 256, 259, 279, 347

RSQ 289,291

SLOPE 289, 291

SMALL 346

SUBSTITUTE 116, 134, 225

TRANSPOSE 49

TREND 85, 86, 90

VLOOKUP 77,79, 80, 81
worksheet functions with VBA 23





