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Abstract. Given a ring of size n and a set K of traffic demands, the
ring loading problem with demand splitting (RLPW) is to determine a
routing to minimize the maximum load on the edges. In the problem,
a demand between two nodes can be split into two flows and then be
routed along the ring in different directions. If the two flows obtained
by splitting a demand are restricted to integers, this restricted version is
called the ring loading problem with integer demand splitting (RLPWI).
In this paper, efficient algorithms are proposed for the RLPW and the
RLPWI. Both the proposed algorithms require O(|K| + ts) time, where
ts is the time for sorting |K| nodes. If |K| ≥ nε for some small constant
ε > 0, integer sort can be applied and thus ts = O(|K|); otherwise,
ts = O(|K| log |K|). The proposed algorithms improve the previous
upper bounds from O(n|K|) for both problems.

Keywords: Optical networks, rings, routing, algorithms, disjoint-set
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1 Introduction

Let R be a ring network of size n, in which the node-set is {1, 2, . . . , n} and
the edge-set is E={(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. Let K be a set of
traffic demands, each of which is described by an origin-destination pair of nodes
together with an integer specifying the amount of traffic requirement. The ring
is undirected. Each demand can be routed along the ring in any of the two
directions, clockwise and counterclockwise. A demand between two nodes i and
j, where i < j, is routed in the clockwise direction if it passes through the node
sequence (i, i + 1, . . . , j ), and is routed in the counterclockwise direction if it
passes through the node sequence (i, i − 1, . . . , 1, n, n − 1, . . . , j ). The load
of an edge is the total traffic flow passing through it. Given the ring-size n and
the demand-set K, the ring loading problem (RLP) is to determine a routing to
minimize the maximum load of the edges.

There are two kinds of RLP. If each demand in K must be routed entirely in
either of the directions, the problem is called the ring loading problem without
demand splitting (RLPWO). Otherwise, the problem is called the ring loading
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problem with demand splitting (RLPW ), in which each demand may be split
between both directions. In RLPW, it is allowed to split a demand into two
fractional flows. If the two flows obtained by splitting a demand are restricted
to integers, this restricted version is called the ring loading problem with integer
demand splitting (RLPWI ).

The RLP arose in the planning of optical communication networks that use
bi-directional SONET (Synchronous Optical Network) rings [2,7,8]. Because of
its practical significance, many researchers have turned their attention to this
problem. Cosares and Saniee [2] showed that the RLPWO is NP-hard if more
than one demand is allowed between the same origin-destination pair and the
demands can be routed in different directions. Two approximation algorithms
had been presented for the RLPWO. One was presented by Schrijver, Seymour,
and Winkler [7], which has a performance guarantee of 3/2. The other was
presented by Amico, Labbe, and Maffioli [1], which has a performance guarantee
of 2. For the RLPW, Schrijver, Seymour, and Winkler [7] had an O(n2|K|)-time
algorithm, Vachani, Shulman, and Kubat [8] had an O(n3)-time algorithm, and
Myung, Kim, and Tcha [5] had an O(n|K|)-time algorithm. For the RLPWI,
Lee and Chang [4] had an approximation algorithm, Schrijver, Seymour, and
Winkler [7] had an pseudo-polynomial algorithm, and Vachani, Shulman, and
Kubat [8] had an O(n3)-time algorithm. Very recently, Myung [6] gave some
interesting properties for the RLPWI and proposed an O(n|K|)-time algorithm.

In this paper, efficient algorithms are proposed for the RLPW and the
RLPWI. Both the proposed algorithms require O(|K| + ts) time, where ts is
the time for sorting |K| nodes. If |K| ≥ nε for some small constant ε > 0, integer
sort can be applied and thus ts = O(|K|); otherwise, ts = O(|K| log |K|). For
the real world application mentioned above, |K| is usually not smaller than n
and thus our algorithms achieve linear time. We remark that the problem size
is |K| + 1 instead of |K| + n, since a ring can be simply specified by its size n.
The proposed algorithms improve the previous upper bounds from O(n|K|) for
both problems. They are modified versions of the algorithms in [5,6].

For easy description, throughout the remainder of this paper, we assume that
2|K| ≥ n. In case this is not true, we transform in O(ts) time the given n and
K into another instance n’ and K ’ as follows. First, we sort the distinct nodes
in K into an increasing sequence S. Then, we set n′ = |S| and replace each node
in K by its rank in S to obtain K ’.

The remainder of this paper is organized as follows. In the next section, nota-
tion and preliminary results are presented. Then, in Sections 3 and 4, O(|K|+ts)-
time algorithms are presented for the RLPW and the RLPWI, respectively. Fi-
nally, in Section 5, concluding remarks are given.

2 Notation and Preliminaries

Let R = (V, E) be a ring of size n, where the node-set is V = {1, 2, . . . , n} and
the edge-set is E = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. For each i, 1 ≤ i ≤ n,
denote ei as the edge (i, (i mod n) +1). Let K be a set of demands. For easy
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description, throughout this paper, the k -th demand in K is simply denoted by k,
where 1 ≤ k ≤ |K|. For each k ∈ K, let o(k), d(k), and r(k) be, respectively, the
origin node, the destination node, and the amount of traffic requirement, where
o(k) < d(k). Assume that no two demands have the same origin-destination pair;
otherwise, we simply merge them into one. For each k ∈ K, let E+

k = {ei|o(k) ≤
i ≤ d(k)−1}, which is the set of edges in the clockwise direction path from o(k)
to d(k), and let E−

k = E\E+
k , which is the set of edges in the counterclockwise

direction path from o(k) to d(k). Let X = {(x(1), x(2), . . . , x(|K|))|x(k) is a
real number and 0 ≤ x(k) ≤ r(k) for each k ∈ K}. Each (x (1), x (2), . . . ,
x(|K|)) ∈ X defines a routing for K, in which for each k ∈ K the flow routed
clockwise is x (k) and the flow routed counterclockwise is r(k) − x(k). Given a
routing X=(x (1), x (2), . . . , x(|K|)), the load of each edge ei ∈ E is g(X, ei) =∑

k∈K,ei∈E+
k

x(k) +
∑

k∈K,ei∈E−
k

(r(k) − x(k)). The RLPW is to find a routing
X ∈ X that minimizes max1≤i≤n g(X, ei). The RLPWI is to find a routing
X ∈ X ∩ Z|K| that minimizes max1≤i≤n g(X, ei).

In the remainder of this section, some preliminary results are presented.

Lemma 1. Given a routing X = (x(1), x(2), . . . , x(|K|)), all g(X, ei), 1 ≤ i ≤
n, can be computed in O(|K|) time.

Proof. We transform the computation into the problem of computing the prefix
sums of a sequence of n numbers. First, we initialize a sequence (s(1), s(2), . . . ,
s(n))=(0, 0, . . . , 0). Next, for each k ∈ K, we add r(k) − x(k) to s(1), add
−r(k)+ 2x(k) to s(o(k)), and add r(k)− 2x(k) to s(d(k)). Then, for i = 1 to n,
we compute g(X, ei) as s(1) + s(2)+. . . +s(i). It is easy to check the correctness
of the above computation. The lemma holds. ��

Let A = (a(1), a(2), . . . , a(n)) be a sequence of n values. The maximum of A
is denoted by max (A). The suffix maximums of A are elements of the sequence
(c(1), c(2), . . . , c(n)) such that c(i) = max{a(i), a(i + 1), . . . , a(n)}. For each
i, 1 ≤ i ≤ n, we define the function π(A, i) to be the largest index j ≥ i such
that a(j) = max{a(i), a(i + 1), . . . , a(n)}. An element a(j ) is called a suffix-
maximum element of A if j = π(A, i) for some i ≤ j. Clearly, the values of
the suffix-maximum elements of A, from left to right, are strictly decreasing and
the first such element is max (A). Define Γ (A) to be the index-sequence of the
suffix-maximum elements of A. Let Γ (A)=(γ(1), γ(2), . . . , γ(q)). According to
the definitions of π and Γ , it is easy to see that π(A, i)=γ(j ) if and only if i
is in the interval [γ(j − 1) + 1, γ(j)], where 1 ≤ j ≤ q and γ(0)=0. According
to the definition of suffix-maximum elements, it is not difficult to conclude the
following two lemmas.

Lemma 2. Let S = (s(1), s(2), . . . , s(l)) and T = (t(1), t(2), . . . , t(m)). Let
Γ (S) = (α(1), α(2), . . . , α(g)) and Γ (T ) = (β(1), β(2), . . . , β(h)). Let S ⊕ T be
the sequence (s(1), s(2), . . . , s(l), t(1), t(2), . . . , t(m)). If s(α(1)) ≤ t(β(1)), let
p = 0; otherwise let p be the largest index such that s(α(p)) > t(β(1)). Then, the
sequence of suffix-maximum elements in S ⊕ T is (s(α(1)), s(α(2)), . . . , s(α(p)),
t(β(1)), t((2)), . . . , t(β(h))).
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Lemma 3. Let U = (u(1), u(2), . . . , u(n)) and Γ (U) = (γ(1), γ(2), . . . , γ(q)).
Let z be an integer, 1 ≤ z ≤ n, and y be any positive number. Let g be such
that γ(g) = π(U, z). Let W = (w(1), w(2), . . . , w(n)) be a sequence such that
w(i) ≤ w(γ(1)) for 1 ≤ i < γ(1), w(i) = u(i) − y for γ(1) ≤ i < z, and
w(i) = u(i) + y for z ≤ i ≤ n. If w(γ(1)) ≤ w(γ(g)), let p=0; otherwise, let
p be the largest index such that w(γ(p)) > w(γ(g)). Then, we have Γ (W ) =
(γ(1), γ(2), . . . , γ(p), γ(g), γ(g + 1), . . . , γ(q)).

3 Algorithm for the RLPW

Our algorithm is a modified version of Myung, Kim, and Tcha’s in
[5]. Thus, we begin by reviewing their algorithm. Assume that the de-
mands in K are pre-sorted as follows: if o(k1) < o(k2), then k1 < k2,
and if (o(k1) = o(k2) and d(k1) > d(k2)), then k1 < k2. Initially, set
X = (x(1), x(2), . . . , x(|K|)) = (r(1), r(2), . . . , r(|K|)), which indicates that
at the beginning all demands are routed in the clockwise direction. Then, for
each k ∈ K, the algorithm tries to reduce the maximum load by rerouting
all or part of k in the counterclockwise direction. To be more precise, if
max{g(X, ei)|ei ∈ E+

k } > max{g(X, ei)|ei ∈ E−
k }, the algorithm reroutes k

until either all the demand is routed in the counterclockwise direction or the
resulting X satisfies max{g(X, ei)|ei ∈ E+

k } = max{g(X, ei)|ei ∈ E−
k }. The

algorithm is formally expressed as follows.

Algorithm 1. RLPW-1
Input: an integer n and a set K of demands
Output: a routing X ∈ X that minimizes max1≤i≤n g(X, ei)
begin

1. X ← (r(1), r(2), . . . , r(|K|))
2. F ← (f(1), f(2), . . . , f(n)), where f(i) = g(X, ei)
3. for k ← 1 to |K| do
4. begin
5. m(E+

k )← max{f(i)|ei ∈ E+
k }

6. m(E−
k )← max{f(i)|ei ∈ E−

k }
7. if m(E+

k ) > m(E−
k ) then yk ← min{(m(E+

k )−m(E−
k ))/2, r(k)}

8. else yk ← 0
9. x(k)← r(k)− yk /* Reroute yk units in counterclockwise direction. */
10. Update F by adding yk to each f(i) with ei ∈ E−

k and subtracting yk

from each f(i) with ei ∈ E+
k

11. end
12. return (X)

end

The bottleneck of Algorithm 1 is the computation of m(E+
k ) and m(E−

k )
for each k ∈ K. In order to obtain a linear time solution, some properties of
Algorithm 1 are discussed in the following. Let X0 = (r(1), r(2), . . . , r(|K|))
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and Xk be the X obtained after the rerouting step is performed for k ∈ K.
For 0 ≤ k ≤ |K|, let Fk = (fk(1), fk(2), . . . , fk(n)), where fk(i) = g(Xk, ei).
According to the execution of Algorithm 1, once an edge becomes a maximum
load edge at some iteration, it remains as such in the remaining iterations. Let
Mk = {ei|fk(i) = max(Fk), 1 ≤ i ≤ n}, which is the set of the maximum load
edges with respect to Xk. We have the following.

Lemma 4. [5] For each k ∈ K, Mk−1 ⊆Mk.

Since m(E+
k ) > m(E−

k ) if and only if m(E+
k ) = max(Fk−1) and m(E−

k ) 
=
max(Fk−1), we have the following lemma.

Lemma 5. [5] For each k ∈ K, yk > 0 if and only if E+
k ⊇Mk−1.

Consider the computation of m(E+
k ) in Algorithm 1. If m(E+

k ) = max(Fk−1),
yk is computed as min{(max(Fk−1)−m(E−

k ))/2, r(k)}. Assume that m(E+
k ) 
=

max(Fk−1). In this case, we must have m(E−
k ) = max(Fk−1). Thus, m(E+

k ) <
m(E−

k ) and yk should be computed as 0, which is irrelevant to the value of
m(E+

k ). Since m(E−
k ) = max(Fk−1), in this case, we can also compute yk as

min{(max(Fk−1) −m(E−
k ))/2, r(k)}. Therefore, to determine yk, it is not nec-

essary for us to compute m(E+
k ). What we need is the value of max(Fk−1). The

value of max(F0) can be computed in O(n) time. According to Lemma 4 and
Line 10 of Algorithm 1, after yk has been determined we can compute max(Fk)
as max(Fk−1)− yk.

Next, consider the computation of m(E−
k ). In order to compute all m(E−

k )
efficiently, we partition E−

k into two subsets Ak and Bk, where Ak = {ei|1 ≤
i < o(k)} and Bk = {ei|d(k) ≤ i ≤ n}. For each k ∈ K, we define m(Ak) =
max{fk−1(i)|ei ∈ Ak} and m(Bk) = max{fk−1(i)|ei ∈ Bk}. Then, m(E−

k ) =
max{m(Ak), m(Bk)}. We have the following.

Lemma 6. Let k ∈ K. If there is an iteration i < k such that yi > 0 and
o(k) > d(i), then yj = 0 for all j ≥ k.

Proof. Assume that there exists a such i. Since yi > 0, by Lemma 5 we have
E+

i ⊇Mi−1. Consider a fixed j ≥ k. Since o(j) ≥ o(k) > d(i), E+
j cannot include

Mi−1. Furthermore, since by Lemma 4 Mj−1 ⊇Mi−1, E+
j cannot include Mj−1.

Consequently, by Lemma 5, we have yj = 0. Therefore, the lemma holds. ��
According to Lemma 6, we may maintain in Algorithm 1 a variable dmin to

record the current smallest d(i) with yi > 0. Then, at each iteration k ∈ K, we
check whether o(k) > dmin and once the condition is true, we skip the rerouting
for all j ≥ k. Based upon the above discussion, we present a modified version of
Algorithm 1 as follows.

Algorithm 2. RLPW-2
Input: an integer n and a set K of demands
Output: a routing X ∈ X that minimizes max1≤i≤n g(X, ei)
begin

1. X ← (r(1), r(2), ..., r(|K|))
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2. F0 ← (f0(1), f0(2), ..., f0(n)), where f0(i) = g(X, ei)
3. max(F0)← max{f0(i)|ei ∈ E}
4. dmin ←∞
5. for k ← 1 to |K| do
6. begin
7. if o(k) > dmin then return (X)
8. m(Ak)← max{fk−1(i)|ei ∈ Ak}
9. m(Bk)← max{fk−1(i)|ei ∈ Bk}
10. yk ← min{(max(Fk−1)−m(Ak))/2, (max(Fk−1)−m(Bk))/2, r(k)}
11. x(k)← r(k)− yk

12. max(Fk)← max(Fk−1)− yk

13. if yk > 0 and d(k) < dmin then dmin ← d(k)
14. end
15. return (X)

end

In the remainder of this section, we show that Algorithm 2 can be imple-
mented in linear time. The values of m(Ak), m(Bk), and yk are defined on the
values of Fk−1. In Line 2, we compute F0 in O(|K|) time. Before presenting
the details, we remark that our implementation does not compute the whole se-
quences of all Fk−1. Instead, we maintain only their information that is necessary
for determining m(Ak), m(Bk), and yk.

First, we describe the determination of m(Ak), which is mainly based upon
the following two lemmas.

Lemma 7. For each k ∈ K, if Algorithm 2 does not terminate at Line 7, then
fk−1(i) = f0(i)−

∑
1≤i≤k−1 yi for o(k − 1) ≤ i < o(k).

Proof. Let ei be an edge such that o(k− 1) ≤ i < o(k). We prove this lemma by
showing that ei ∈ E+

j for all j ≤ k−1 and yj > 0. Consider a fixed j ≤ k−1 with
yj > 0. Since o(j) ≤ o(k − 1) ≤ i, o(j) is on the left side of ei. Since Algorithm
2 does not terminate at Line 7, we have i < o(k) ≤ dmin ≤ d(j). Thus, d(j) is
on the right side of ei. Therefore, ei ∈ E+

j and the lemma holds. ��

Lemma 8. For each k ∈ K, if Algorithm 2 does not terminate at Line 7, then
m(Ak) = max{m(Ak−1) + yk−1, max{fk−1(i)|o(k − 1) ≤ i < o(k)}}, where
m(A0) = 0, y0 = 0, and o(0) = 1.

Proof. Recall that m(Ak) = max{fk−1(i)|1 ≤ i < o(k)}. For k = 1, since
m(A0) = 0, y0 = 0, and o(0) = 1, the lemma holds trivially. Assume that k ≥ 2.
In the following, we complete the proof by showing that m(Ak−1) + yk−1 =
max{fk−1(i)|1 ≤ i < o(k − 1)}. By induction, m(Ak−1) = max{fk−2(i)|1 ≤ i <
o(k−1)}. According to Line 10 of Algorithm 1, we have fk−1(i) = fk−2(i)+yk−1
for 1 ≤ i < o(k − 1). Thus, max{fk−1(i)|1 ≤ i < o(k − 1)} = max{fk−2(i) +
yk−1|1 ≤ i < o(k − 1)} = m(Ak−1) + yk−1. Therefore, the lemma holds. ��
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According to Lemmas 7 and 8, we compute each m(Ak) as follows. During
the execution of Algorithm 2, we maintain an additional variable y∗ such that
at the beginning of each iteration k, the value of y∗ is

∑
1≤i≤k−1 yi. Then, for

each k ∈ K, if Algorithm 2 does not terminate at Line 7, we compute m(Ak) =
max{m(Ak−1)+yk−1, max{f0(i)−y∗|o(k−1) ≤ i < o(k)}} in O(o(k)−o(k−1))
time by using m(Ak−1), yk−1, F0, and y∗. Since 2|K| ≥ n and the origins o(k)
are non-decreasing integers between 1 and n, the computation for all m(Ak)
takes O(|K|) time.

Next, we describe the determination of m(Bk) and yk, which is the most
complicated part of our algorithm. By definition, m(Bk) = max{fk−1(i)|d(k) ≤
i ≤ n} = fk−1(π(Fk−1, d(k))). Thus, maintaining the function π for Fk−1 is
useful for computing m(Bk). Let Γ (Fk−1) = (γ(1), γ(2), . . . , γ(q)). For each j,
1 ≤ j ≤ q, we have π(Fk−1, i) = γ(j) for every i in the interval [γ(j−1)+1, γ(j)],
where γ(0) = 0. Thus, we call [γ(j − 1) + 1, γ(j)] the domain-interval of γ(j).
Let Uk−1 be the sequence of domain-intervals of the elements in Γ (Fk−1). The
following lemma, which can be obtained from Lemma 3, shows that Uk can be
obtained from Uk−1 by simply merging the domain-intervals of some consecutive
elements in Γ (Fk−1).

Lemma 9. Let Γ (Fk−1) = (γ(1), γ(2), . . . , γ(q)). Let g be such that γ(g) =
π(Fk−1, d(k)). If fk−1(γ(1))− yk = fk−1(γ(g)) + yk, let p=0; otherwise, let p be
the largest index such that fk−1(γ(p)) − yk > fk−1(γ(g)) + yk. Then, we have
Γ (Fk) = (γ(1), γ(2), . . . , γ(p), γ(g), γ(g + 1), . . . , γ(q)).

Based upon Lemma 9, we maintain Uk−1 by using an interval union-find data
structure, which is defined as follows. Let In be the interval [1, n]. Two intervals
in In are adjacent if they can be obtained by splitting an interval. A partition of
In is a sequence of disjoint intervals whose union is In. An interval union-find
data structure is one that initially represents some partition of In and supports
a sequence of two operations: FIND(i), which returns the representative of the
interval containing i, and UNION(i, j), which unites the two adjacent intervals
containing i and j, respectively, into one. The representative of an interval may
be any integer contained in it. Gabow and Tarjan had the following result.

Lemma 10. [3] A sequence of m FIND and at most n − 1 UNION operations
on any partition of In can be done in O(n + m) time.

Let Γ (Fk−1) = (γ(1), γ(2), . . . , γ(q)). For convenience, we let each γ(i) be the
representative of its domain-interval such that π(Fk−1, d(k)) can be determined
by simply performing FIND(d(k)). By Lemma 9, Uk can be obtained from Uk−1
by performing a sequence of UNION operations. In order to obtain Uk in such
a way, we need the representatives γ(p + 1), . . . , and γ(g − 1). Therefore, we
maintain an additional linked list Lk−1 to chain all representatives in Uk−1
together such that for any given γ(i), we can find γ(i− 1) in O(1) time.

Now, we can determine π(Fk−1, d(k)) efficiently. However, since m(Bk) =
fk−1(π(Fk−1, d(k))), what we really need is the value of fk−1(π(Fk−1, d(k))). At
this writing, the author is not aware of any efficient way to compute the values



524 B.-F. Wang, Y.-H. Hsieh, and L.-P. Yeh

for all k ∈ K. Fortunately, in some case, it is not necessary to compute the
value. Since yk = min{(max(Fk−1)−m(Ak))/2, (max(Fk−1)−m(Bk))/2, r(k)},
the value is needed only when max(Fk−1) − m(Bk) < min{max(Fk−1) −
m(Ak), 2r(k)}. Therefore, we maintain further information about Fk−1 such
that whether max (Fk−1) − m(Bk) < min{max(Fk−1) − m(Ak), 2r(k)} can
be determined and in case it is true, the value of m(Bk) can be computed.
Let Γ (Fk−1) = (γ(1), γ(2), . . . , γ(q)). We associate with each representative
γ(i) in Lk−1 a value δ(i), where δ(i) is 0 if i=1 and otherwise δ(i) is the
difference fk−1(γ(i − 1)) − fk−1(γ(i)). Define ∆(Fk−1) to be the sequence
(δ(1), δ(2), . . . , δ(q)). Clearly, for any i < j, the difference between fk−1(γ(i))
and fk−1(γ(j)) is

∑
i+1≤z≤j δ(z). And, since fk−1(γ(1)) = max(Fk−1), the dif-

ference between max(Fk−1) and fk−1(γ(i)) is
∑

2≤z≤i δ(z). The maintainance
of ∆(Fk−1) can be done easily by using the following lemma.

Lemma 11. Let Γ (Fk−1) = (γ(1), γ(2), . . . , γ(q)) and ∆(Fk−1) =
(δ(1), δ(2), . . . , δ(q)). Let g and p be defined as in Lemma 9. Then, we
have ∆(Fk) = (δ(1), δ(2), . . . , δ(p), δ′, δ(g + 1), δ(g + 2), . . . , δ(q)), where
δ′ = δ(p + 1) + δ(p + 2) + . . . + δ(g)− 2yk.

Proof. By Lemma 9, we have Γ (Fk) = (γ(1), γ(2), . . . , γ(p), γ(g), γ(g +
1), . . . , γ(q)). Since fk(γ(p))− fk(γ(g)) = (fk−1(γ(p))− yk)− (fk−1(γ(g)) + yk),
we have fk(γ(p))− fk(γ(g)) = δ(p + 1) + δ(p + 2) + . . . + δ(g)− 2yk. Clearly, we
have fk(γ(i − 1)) − fk(γ(i)) = fk−1(γ(i − 1)) − fk−1(γ(i)) for both 2 ≤ i ≤ p
and g < i ≤ q. By combining these two statements, we obtain ∆(Fk) =
(δ(1), δ(2), . . . , δ(p), δ(p + 1) + δ(p + 2) + . . . + δ(g) − 2yk, δ(g + 1), δ(g + 2),
. . . , δ(q)). Thus, the lemma holds. ��

Now, we are ready to describe the detailed computation of yk, which is done
by using m(Ak), max(Fk−1), r(k), Uk−1, Lk−1, and ∆(Fk−1). First, we per-
form FIND(d(k)) to get γ(g) = π(Fk−1, d(k)). Next, by traveling along the list
Lk−1, starting at γ(g), we compute the largest p such that δ(p + 1) + δ(p + 2) +
. . . + δ(g) > min{max(Fk−1)−m(Ak), 2r(k)}. In case δ(1) + δ(2) + . . . + δ(g) ≤
min{max(Fk−1) −m(Ak), 2r(k)}, p is computed as 0. Then, if p > 0, we con-
clude that max(Fk−1)−m(Bk) = max(Fk−1)−fk−1(γ(g)) > min{max(Fk−1)−
m(Ak), 2r(k)} and thus yk is computed as min{(max(Fk−1)−m(Ak))/2, r(k)};
otherwise, we compute m(Bk) = fk−1(γ(g)) = max(Fk−1) − (δ(1) + δ(2) +
. . . + δ(g)) and then compute yk as (max(Fk−1)−m(Bk))/2. Since g − p− 1 =
|Γ (Fk−1)| − |Γ (Fk)|, the above computation takes tf + O(|Γ (Fk−1)| − |Γ (Fk)|)
time, where tf is the time for performing a FIND operation. After yk is
computed, we obtain Uk, Lk, and ∆(Fk) from Uk−1, Lk−1, and ∆(Fk−1) in
O(|Γ (Fk−1)| − |Γ (Fk)|) + (|Γ (Fk−1)| − |Γ (Fk)|)× tu time according to Lemmas
9 and 11, where tu is the time for performing an UNION operation.

Theorem 1. The RLPW can be solved in O(|K|+ ts) time, where ts is the time
for sorting |K| nodes.

Proof. We prove this theorem by showing that Algorithm 2 can be implemented
in O(|K|) time. Note that we had assumed 2|K| ≥ n. The time for compute X,
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F0, max(F0), and dmin in Lines 1∼4 is O(|K|). Before starting the rerouting, we
set y∗ = 0, m(A0) = 0, y0 = 0, and initialize U0, L0, and ∆(F0) in O(n) time.
Consider the rerouting in Lines 7∼13 for a fixed k ∈ K. In Line 8, by using
Lemmas 7 and 8, we compute m(Ak) by using m(Ak−1), yk−1, F0 and y∗ in
O(o(k)−o(k−1)) time. In Lines 9 and 10, we compute yk in tf +O(|Γ (Fk−1)|−
|Γ (Fk)|) time by using m(Ak), max(Fk−1), r(k), Uk−1, Lk−1, and ∆(Fk−1).
Lines 7, 11, 12, and 13 take O(1) time. Before starting the next iteration, we
add yk to y∗ and obtain Uk, Lk, and ∆(Fk) from Uk−1, Lk−1, and ∆(Fk−1) in
O(|Γ (Fk−1)|− |Γ (Fk)|)+(|Γ (Fk−1)|− |Γ (Fk)|)× tu time. In total, the rerouting
time for a fixed k ∈ K is tf + (|Γ (Fk−1)| − |Γ (Fk)|)× tu + O(o(k)− o(k − 1) +
|Γ (Fk−1)| − |Γ (Fk)|).

Since the origins o(k) are non-decreasing and the sizes of Γ (Fk−1) are non-
increasing,

∑
1≤i≤|K| O(o(k) − o(k − 1) + |Γ (Fk−1)| − |Γ (Fk)|) = O(|K|). At

most |K| FIND and n− 1 UNION operations may be performed. Therefore, the
overall time complexity of Algorithm 2 is O(|K| + |K| × tf + n × tu), which is
O(|K|) by applying Gabow and Tarjan’s result in Lemma 10. Consequently, the
theorem holds. ��

4 Algorithm for the RLPWI

The algorithm proposed by Myung for the RLPWI in [7] consists of two phases.
In the first phase, an optimal solution X for the RLPW is found. Then, if X /∈
X ⋂

Z|K|, the second phase is performed, in which demands are rerouted until all
x(k) become integers. The bottleneck of Myung’s algorithm is the computation
of X in the first phase and the computation of all g(X, ei) in the second phase.
By using Theorem 1 and Lemma 1, it is easy to implement Myung’s algorithm
in O(|K|+ ts) time.

Theorem 2. The RLPWI can be solved in O(|K| + ts) time, where ts is the
time for sorting |K| nodes.

5 Concluding Remarks

In this paper, an O(|K|+ ts)-time algorithm was firstly proposed for the RLPW.
Then, by applying it to Myung’s algorithm in [6], the RLPWI was solved in the
same time. The proposed algorithms take linear time when |K| ≥ nε for some
small constant ε > 0. They improved the previous upper bounds from O(n|K|)
for both problems.

Myung, Kim, and Tcha’s algorithm for the RLPW in [5] motivated studies on
the following interesting data structure. Let X = (x1, x2, . . . , xn) be a sequence
of n values. A range increase-decrease-maximum data structure is one that ini-
tially represents X and supports a sequence of three operations: INCREASE(i,
j, y), which adds y to every element in (xi, xi+1, . . . , xj), DECREASE(i, j, y),
which subtracts y from every element in (xi, xi+1, . . . , xj), and MAXIMUM(i, j),
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which returns the maximum in (xi, xi+1, . . . , xj). By using the well-known seg-
ment trees, it is not difficult to implement a data structure to support each of
the three operations in O(log n) time. To design a more efficient implementation
of such data structure is also worth of further study.
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