Analysing Mode Confusion:
An Approach Using FDR2

Bettina Buth!»2

1 BISS, Bremen Institute for Safe Systems
bbltzi.de
2 EADS SPACE Transportation, Bremen

Abstract. Mode confusion situations or more general automation sur-
prises can arise in the context of sophisticated control systems which
require the interaction with human operators as for example flight mon-
itoring systems in airplanes. A “mode” is defined by a subset of system
variables the values of which determine distinguishable forms of system
behaviour. Critical situations can arise if the operator interacts with the
system assuming a wrong mode. The identification and analysis of such
situations needs to take into account both the system design and the op-
erators mental model of the system. Recent research showed that model-
checking techniques are useful for identifying mode-confusion situations.
Two different approaches can be found: the first tries to identify mode
confusion potential in system design, the second analyses actual mode
confusion situations to identify the discrepancies between the mental
model of operators and the system design. This paper reports an experi-
ment in using the model-checker FDR2 for comparing system and mental
models based on CSP refinement. In contrast to earlier attempts using
model-checkers for this task, this approach allows a direct comparison of
the two models which can be easily derived from a rule-based description.

1 Introduction

The ever-increasing complexity of computer-based systems has lead to a changed
role of human operators, especially in safety-critical applications such as air-craft
and train control, chemical and nuclear plants, medical equipment, or automo-
bile components. The use of computers in such systems has a high potential
for automation as well as extended functionality, but also requires sophisticated
control and monitoring mechanisms due to the inherent complexity. These them-
selves can be implemented as computer-based processes which allow to take away
the strain from human operators who would otherwise have to cope with a mul-
titude of information and a higher demand on reaction times required for the
interaction with such systems.

Nonetheless, in many applications a total automation of the system control
is not accepted or (not yet) possible. Human operators are often the ultimate
instance for dealing with emergencies or have to provide necessary information
not directly available to the computer-based kernel systems. Research activities

M. Heisel et al. (Eds.): SAFECOMP 2004, LNCS 3219, pp. 101114}, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

102 B. Buth

in the Human Factors community focus on human-computer interfaces based
on psychological as well as design-oriented considerations. As Sarter, Woods
and Billings [I] and Leveson et.al. [2] point out, technology-centred automation
potentially leads to designs which are problematic for the human interaction.

One area which has found attention during the last years is the investigation
of so called automation surprises, particularly mode confusion. This paper dis-
cusses the use of model-checking for the comparison of abstract system models
and mental models with the objective to analyse mode confusion situations. The
emphasis is on the specification and model-checking aspects rather than on the
socio-technological perspective. The remainder of the introduction provides the
background for the approach as well as an informal description of the example, a
kill-the-capture scenario. Section 2ldescribes one possible approach to the analy-
sis of this example using FDR2. Section Bl summarizes the experiences and tries
to generalize the results.

1.1 Mode Confusion Analysis — Background

Modes are identifiable and distinguishable states of a system which differ with
regard to the effect of interactions. The complexity of a system is reflected in a
large number of different modes and complex rules for mode transitions as well
as functionality in a mode. Mode confusion scenarios or in general automation
surprises describe situations where the operator’s assumption about the system
mode differs from the actual mode of the system and actions performed under
this assumption result in critical situations. In order to detect and eliminate
mode confusion, a thorough analysis of the system design and functionality as
well as the human-computer interface is required.

Techniques from the formal methods field prove to be useful for mode con-
fusion analysis. Several approaches based on abstract models of the system are
documented; see e.g. Leveson et.al. [2], Miller and Potts [3], or Liittgen and
Carrefio [4]. These experiments focus on the identification of situations that po-
tentially lead to mode confusion, particularly the identification of categories of
indicators for mode-confusion situation and use an abstract model of the system
as starting point. Rushby [5I6] suggests a complementary use of model-checking
based on two different models of the system. The actual model is an abstract
model of the actual system behaviour; the second reflects the mental model of
the operator which may be a reduced version of the full model or even may
contain wrong assumptions about the system.

In contrast to the approaches of Leveson and Miller and Potts, Rushby‘s
approach aims at identifying critical discrepancies between the models rather
than investigating the mode confusion potential of the actual model. Such dif-
ferences reflect deviations in the observed behaviour of the models which can
point to potential mode confusion situations. Rushby formalizes the models in
the Mur¢ [7] model-checker notation and employs Mur¢ to perform a full state
exploration. The system not only uncovers the flaw already known from the
analysis by Leveson, but also detects several other problems of the suggested

Analysing Mode Confusion: An Approach Using FDR2 103

corrections. The model can also be enhanced by incorporating a more specific
operator behaviour.

Since Mur¢ is not able to compare two models directly, a usual trick is used:
both models are merged into one by renaming the relevant state components
such that these have disjoint names. The Mur¢ rules then are used to describe
the effect of inputs or events to the full set of state variables.

This is slightly unsatisfactory, since an untrained person will not be able to
determine such a specification from the distinct views of the actual and mental
models respectively, even if the Mur¢ rules can be easily understood with a
basic knowledge of state transition machines or simple automata. Similarly, the
formalization of invariants as criteria for the absence of mode confusion will in
general require some explanation or even a manual analysis of the models (which
may very well uncover the problems in the models). Rushby himself [5l6] suggests
to employ a different type of model-checker, namely the CSP-based tool FDR2
as an alternative, since FDR2 allows to compare models in a more direct way. In
the following, this suggested approach is investigated, taking the Mur¢ model
as a starting point.

1.2 The Example

The example in Rushby’s papers [5I6/8] is taken from an article by Palmer [9],
which reports two cases of altitude deviation scenarios. These cases and three
others were observed in a NASA study in which several crews flew realistic
missions in DC-9 and MD-88 aircraft simulators. This example has previously
been investigated by Leveson [10].

In the following, the scenario description as stated by Rushby [5l6] is pre-
sented, which is the starting point for the Mur¢ model. In order to follow the
scenario it is necessary to explain some features beforehand. The PITCH mode is
a control element for the autopilot which determines the climbing behaviour of
the aircraft. The modes are

VERT SPD vertical speed; climb at a specified rate (feet per minute)

IAS indicated air speed; climb at a rate which is consistent with

holding the air speed (knots)

ALT HLD altitude hold; hold current altitude

ALT CAP altitude capture; provide smooth levelling off when reaching

desired altitude

The second relevant component is the ALT capture mode (one of several possible
capture modes) indicates that the aircraft should climb to the the desired altitude
and then hold that altitude. For the example it suffices to imagine this mode as
a binary value which reflects whether the mode is set (armed) or not.

The interaction between the modes is of particular interest:

— if ALT capture is armed and the desired altitude is reached, the pitch mode
is set to ALT HLD.

104 B. Buth

— the ALT CAP pitch mode is entered automatically when the aircraft gets near
the desired altitude under the condition that ALT is armed; it switches off
the ALT capture mode

— if ALT CAP pitch mode is set and the desired altitude is reached, the aircraft
levels off and pitch mode is changed to ALT HLD.

The scenario as reported by Palmer [9] describes a potentially critical sit-
uation where an aircraft leaves its assigned flight corridor and enters a flight
altitude which could be assigned to other aircrafts. The cause for this situation
is obviously that the ALT capture was switched off without the Captain noticing
it (the only information provided is that the ARM window switches to blank).
Analysis of the situation shows that the interaction between pitch modes and
ALT capture mode is more complex than first assumed.

Leveson and Palmer [I0] present the essential information of this incident
as presented in Fig. [l Note that the information presented is only part of the
overall interface of the pilot, especially the control instruments for setting speed
and target altitude are placed on a separate panel (the Mode Control Panel)
which also presents some of the information available from the FMA.

Thrust Arm _ Roll Pitch Thrust Arm _ Roll Pitch
SPD VOR | ALT e. approaching SPD VOR |VERT
a.level at 2100 ft. | 4gq CAP | HLD 4000 ft. 256 | ALT [1Rk [sPD
SPD VOR | ALT VOR
b.enter5000ft | Joe | ALT | cap | wib f. push IAS CLMP| ALT | o | 1aS
SPD VOR | VERT . SPD VOR | ALT
g. Automatic
c.set VERT/SPD | 155 | ALT | cap | sPD altitude capture | 256 TRK | CAP
SPD VOR | VERT h. adjust vertical | SPD VOR |VERT
d. enter 256 256 | ALT | cap | spD speed 256 TRK | SPD

Fig. 1. FMA Displays for the Example Incident

Rushby [§] also derives a state machine representation of the abstract be-
haviour of the autopilot with regard to pitch mode and altitude capture mode.
This model takes into account the relevant modes and the inputs of both the
plane crew and the events from the environment. This model, which is shown
in Fig. 2l abstracts from the general status of the plane, as for example altitude,
speed, motion or similar and from related values the pilot could enter. What
remains is an abstraction of the behaviour focused on pitch mode and capture
mode restricted to ALT. Similarly, Rushby provides a state machine representa-
tion of the mental model as derived from the case study. This is shown in Fig. B

The obvious difference between the two models is the number of states. The
mental model does not contain an explicit state for ALT CAP, the pitch mode
which is entered automatically without pilot interaction. This omission models
the fact that the pilot was not aware of this particular mode and the related

Analysing Mode Confusion: An Approach Using FDR2 105

IAS/VSPD IAS/VSPD

capture altitude capture
not active hold not active

IAS/VSPD ALT_CAPTURE

altitude
hold

pitch mode
is alt_cap

ALT_CAPTURE capture
active

ALT_CAPTURE ALT_CAPTURE

HLD/arrivec HLDr/arrivec

capture
armed

IAS/VSPD IAS/VSPD

Fig. 2. State Machine for Actual Model Fig. 3. State Machine for Mental Model

changes to the ALT capture mode. A formal analysis of these automata models
with regard to their language equivalence will also reveal deviations in the pos-
sible mode transitions, but further analysis is required to examine whether these
differences are indeed critical.

2 FDR2 Formalization and Analysis

This section presents an approach of employing FDR2 [TT] for the investigation
of the mode confusion situation reported by Palmer [9]. The Mur¢ specification
described by Rushby provided the starting point. The main objective of the
experiment is to evaluate the benefits of FDR2 with regard to its ability to
compare two models.

For this purpose several alternative approaches were investigated, which in-
volved both rule-based and automata-based models, where the latter is based in
the automata for actual and mental model as presented in Fig. 2land Bl For the
experiment the error situations uncovered by FDR2 were compared to the prob-
lems found using the Mur¢ system. In the following, the rule-based description
of separate actual and mental model are presented and analysed. A full report
of this and the other approaches can be found in Buth [I2].

2.1 Actual and Mental Model — A Rule-Based Specification

The objective of this subsection is to investigate the possibilities of checking men-
tal and actual model by comparing them with regard to refinement properties
of CSP models.

The specification language employed by FDR2 is CSPy;, a machine-readable
version of CSP. The core concepts of these specifications are processes which
communicate over synchronous channels. State spaces in form of global variables
are not directly available in CSP, but CSPy; allows the parametrized specifica-
tion of processes.

106 B. Buth

The first definitions of the specification introduce the data type pitch-mode
similar to the type in the Mur¢ specification and a set of channels, which in
this case represent the possible events from the environment (pilot input and
external events). The event names are chosen to correspond to the rule names
in the Mur¢ specification.

datatype pitchmodes = vert_speed | ias | alt_cap | althld
channel ALT_CAPTURE, HLD, IAS, VSPD, near, arrived
channel obs : pitch_modes.Bool

The additional channel obs of observables is introduce to make the mode transi-
tions visible in the model traces. It is required in addition to the usual observable
event traces over the channels to monitor the progress of the system. The motiva-
tion is that the information about the state transitions is essential for identifying
the causes for error situations in the check.

Two distinct processes ASYS and MSYS are specified for the actual and the
mental model, respectively. The state spaces of both models are determined by
the pitch-mode and the capture-mode, which are stated as parameters of the
processes. Note that the changes of these two state components are observed
via the above mentioned channel obs. The initial value is a non-deterministic
selection from the set of pitch-modes without the alt_cap mode for the pitch-
mode and false for the capture-mode.

ASYS = |7| p: diff (pitch.modes, alt_cap) @ ASYS1 (p, false)
ASYS1 (pitch mode, capture_armed) =

obs!pitch mode.capture_armed ->

(

ALT_CAPTURE -> ASYS1 (pitch_mode, not capture_armed)
1

HLD -> ASYS1 (alt.hld, capture_armed)

(]

IAS -> ASYS1 (ias, capture_armed)

1

VSPD -> ASYS1 (vert._speed, capture_armed)

1

(capture_armed) & near -> ASYS1 (alt_cap, false)

(]

((pitch.mode == alt_cap) or capture_armed) & arrived

-> (let pm = if ((pitch.mode == alt_cap) or capture_armed)
then alt_hld
else pitch mode
within
ASYS1 (pm, false)
)
)

Note the way the boolean guards are used to express that certain transitions are
not possible under all circumstances. Here, additional constraints as derived from

Analysing Mode Confusion: An Approach Using FDR2 107

the automata model in Fig. Plhave been used to provide a more complete model.
The event near only has effect if the capture-mode is active. Similarly arrived
is regarded if the capture-mode is active or the pitch-mode already is alt_cap.

The mental model works with a reduced set of pitch-modes, which does not
include the alt_cap mode; here a subset of the full set of pitch-modes is defined.
The process MSYS then is defined analogously to the process ASYS, omitting the
near event and the behaviour in the ignored alt_cap pitch-mode.

pm_ideal = {pm | pm <- pitchmodes, pm != alt_cap}
MSYS = |~| p: pm_ideal @ MSYS1 (p, false)

MSYS1 (pitch.mode, ideal_capture) =
obs!pitch_mode.ideal_capture ->

(

ALT_CAPTURE -> MSYS1 (pitch_mode, not ideal_capture)
1

HLD -> MSYS1 (alt_hld, ideal_capture)

1

IAS -> MSYS1 (ias, ideal_capture)

1

VSPD -> MSYS1 (vert_speed, ideal_capture)

1

(ideal_capture) & arrived
-> MSYS1 (alt_hld, false)
)

This specification of the mental model could easily have been derived from a set
of rules or an automata representation such as the one in Fig. B In particular,
it can be derived without information about the actual model. Note that for the
analysis of the mode-confusion situation such a rule-based or automata model
will originally needs to be derived from the understanding of the operator rather
than other material. For this study, the mental model was taken from the Mur¢
example.

In order to prove that the models are equivalent, it is necessary to map them
to a common set of observable events. This means that the event near which
is not visible in the mental model as well as the artificial events related to the
invisible pitch-mode alt_cap need to be hidden from the interface of the actual
model. This is done using the hiding construct in CSPy;:

Mental Model
Actual Model

MSYS
ASYS \ {Inear, obs.alt_capl}

Now it is possible to specify the desired equivalence. Since FDR2 only allows to
check refinement in any of the three models (traces, failures or failure-divergence;
see [T3I1T] for details), it is necessary to prove the two directions of the equiva-
lence separately. Furthermore, it is of interest to prove equivalence both in the
trace as well as the failures model. Trace equivalence which is checked as mutual

108 B. Buth

trace refinement ([T=) in FDR2, only ensures that both systems are able to per-
form the same sequences of events. For the given example this ensures that both
systems are able to react to external inputs in the same way and that the state
changes are performed accordingly (by observing the obs events). In addition, it
is of interest to know whether at any point in time one of the models could refuse
an event which can not be refused by the other. This is not of direct interest
for the artificial state events, but could point to a problem with the inputs and
external system events. Refusal properties are checked using failures refinement
([F=) in FDR2. The following checks were performed in the example:

assert Actual Model [T= Mental_Model
assert Mental Model [T= Actual_Model
assert Actual_Model [F= Mental_Model
assert Mental Model [F= Actual_Model

Of these checks, the first and third succeed, while the second and fourth fail.
FDR2 reports the following error scenarios, which are the same for the two
failing checks. The process the behaviour of which is reported in the following
is the process ASYS. The behaviour of MSYS is not explicitely reported for these
errors, which shows that MSYS is able to perform the same traces except for the
last event. Note that the traces of Actual _Model are subtraces of these traces,
namely those where the hidden events are removed.

BEHAVIQUR:
Performs <_tau, obs.ias.false, ALT_CAPTURE, obs.ias.true,
near, obs.alt_cap.false, IAS, obs.ias.false>

Analysis of this first error in connection with the specification of MSYS shows that
the event obs.ias.false is not a possible event since the capture-mode is still
true after ALT_CAPTURE, which is the last relevant event from the perspective
of MSYS. This means that FDR2 detects the same kind of error as was found be
Mur¢ and the combined specification. The advantage of this usage of FDR2 is
the documentation of other possible errors. The following two are but variants
of the first case, where the final state is related to the pitch-modes vert_speed
and alt_hld instead of ias.

The next three cases require further analysis of both actual and mental model.
The first such error trace of ASYS is reported as follows:

BEHAVIQUR:

Performs <_tau, obs.ias.false, ALT_CAPTURE, obs.ias.true,
near, obs.alt_cap.false, ALT_CAPTURE,
obs.alt_cap.true, IAS>

The other two traces vary in the initial state, where the different pitch-modes
are taken. All of them show the same sequence of external events, namely

<ALT_CAPTURE, near, ALT_CAPTURE, IAS>

Analysing Mode Confusion: An Approach Using FDR2 109

where IAS is the event which is refused by MSYS and thus Mental Model. Without
regarding the auxiliary obs events it is not possible to understand the underlying
problem. Thus it helps to have a look at the trace of Actual Model:

BEHAVIQUR:
Performs <_tau, obs.ias.false, ALT_CAPTURE, obs.ias.true,
_tau, _tau, ALT_CAPTURE, _tau, IAS>

This perspective reveals that Actual Model is able to perform the IAS event
directly after the ALT_CAPTURE event, without an intermediate obs event. This
is definitively not possible for MSYS respectively Mental Model. The essential
question here is how to interpret these error situations.

Obviously, the problem is connected to hiding the obs.alt_cap events, which
means that it is related to the problem that one of the pitch-modes is invisible.
Since the ALT_CAPTURE event only changes the capture-component of the state
space but does not lead to a state transition, the full effect is hidden. Investiga-
tion of the behaviour of MSYS shows that the second ALT_CAPTURE event leads to
the event obs.alt_hld.false in the mental model for the first error case and
similar for the other cases. Several things need to be considered here:

— the mode-confusion problem is not only related to the inconsistency in the
pitch-modes of the models; the different capture-modes pose a problem in
itself. Although the invariant used in the Mur¢ model would not be violated
if the pitch-modes were the same, a following IAS event would immediately
lead to an error trace as the first three reported above.

— what is the desired reaction to an ALT_CAPTURE during the alt_cap pitch-
mode? The Mur¢ model does allow changes of the capture-mode during the
approaching phase after near, but is that a suitable abstraction of the be-
haviour? Comparison with the models as described in Fig. Pl and Figure
does provide a hint that this abstraction could indeed be a problem. While
the mental model allows to switch between the “capture active” and “cap-
ture not active” state, this is not allowed for the “pitch mode is alt_cap”
state. This suggests that the second ALT_CAPTURE event should not have been
possible in ASYS. Actually, Rushby detects this problem in one of the later
versions of the Mur¢ model and assumes that ALT_CAPTURE should not be
possible in pitch-mode alt_cap. The FDR2 specification can be corrected in
a similar way:

(pitch_mode != alt_cap) & ALT_CAPTURE
-> ASYS1 (pitch_mode, not capture_armed)

By guarding the event ALT_CAPTURE in the actual model in this way, the
error cases can indeed be reduced to the original three which are directly
related to the mode confusion situation as related to the capture-modes.

— can the specification be modified in a way that allows to cope with such
missing events; more generally: is there a way to deal with hidden state

110 B. Buth
changes in the case where events lead to explicit state changes in the second
model? Up to now no general solution has been found for this problem.

After performing the corrections analogously to the suggestions for the Mur¢
model, the resulting specification still shows an error, a refusal error for the check

Mental Model [F= Actual_Model

Checking the traces and refusals reveals that while the actual model could
engage in any external event but ALT_CAPTURE or near, the mental model could
also engage in ALT_CAPTURE. Further analysis of this situation in comparison with
the error-free Mur¢ model reveals a flaw in that model: rule ¢ “ALT CAPTURE in
the Mur¢ specification reads as follows:

rule "ALT CAPTURE" pitch_mode != alt_cap ==>
begin
capture_armed := !capture_armed;
ideal_capture := !ideal_capture;
end;

But this means that the behaviour of the mental model, namely the changes
to state variable ideal_capture are influenced by the value of pitch_mode,
which is not part of the mental model. The FDR2 error shows the effect of the
change to the actual model alone and reveals a new error situation. This error-
situation is due to the the change with regard to the error found above: guarding
ALT_CAPTURE in the actual model prevents a second such event in pitch-mode
alt_cap, but in the mental model such a change is allowed. Thus the corrections
still do not capture the problems arising from the hidden state properly.

3 Lessons Learned

The previous section discusses one possible approach to the analysis of the case
study presented by Palmer [9] using CSP specifications and FDR2 for checking
them. The specifications are based on the idea of Rushby [BI6/8] to compare
abstract formalizations of actual system and mental model. This section tries to
summarize and generalize the experiences using FDR2 the suitability of model-
checking for mode-confusion analysis in general and the exploitation of mode-
confusion analysis for system design.

3.1 Evaluating the FDR2 Approach

The essential difference between the Mur¢ and the CSPy; specification is the way
in which the models are compared. The FDR2 specifications allow a separate
specification of actual and mental model, while the Mur¢ specification presents
a view of the combined models with a partially shared state space.

For both approaches it is necessary to determine how mode confusion situ-
ations can be identified, which parts of the specifications need to be observed

Analysing Mode Confusion: An Approach Using FDR2 111

to detect such a critical situation. The study presented Buth [12] contains three
different variants for the example: the first directly corresponding to the Mur¢
version, a second separating the actual and mental model but still using the
rule-based description as basis, and a third directly derived from the automata
representation as given in Figures 2 and Bl

The overall experience with modelling these versions in FDR2 is quite en-
couraging: each of the models requires little effort for a CSP expert or even
someone with a general specification background. Similarly, the evaluation of
error scenarios reported by FDR2 does not pose any particular obstacles as-
suming a basic understanding of the overall system functionality. The following
paragraphs summarize the experience with the different models.

The combined as the original Mur¢ model requires the formalization of an
invariant. The definition of such invariant properties already requires some form
of analysis in order to correlate the state spaces of the two models. The approach
of specifying two independent models seems to provide a more direct way for
the comparison. It is not necessary to define the invariant explicitely; the models
can be compared with regard to their external behaviour or - as shown above
- additionally with regard to the values of their state components. The general
assumption for this approach is that a critical situation only arises if the models
react in a different way to their environment. The errors found are essentially the
same as by Mur¢. The interesting error from the point of view of the comparison
is the one not found by Mur¢. This error can not be detected in the Mur¢ model
due to the introduction of a dependency between the state transitions of mental
and actual model in rule ALT CAPTURE of the combined model. The dependency
does not exist in reality where the models can not influences each other. This
modelling error can not occur in a model using two separate processes, since the
state spaces of the processes are not directly related.

The difference of the automata model to the rule-based FDR2 specifications
and the Mur¢ model is the handling of states. The automata model does not
work with the full state-space as defined by the cross-product of the possible
values of the modes, but starts from a more realistic view where similar states
are combined into one state and labelled according to their meaning. The speci-
fication of such models from given automata models is straightforward and could
even be done automatically provided a suitable presentation of the automata is
available.

While the automata-based approach does not have any disadvantages with
regard to the errors found, the decision for the automata style does essentially
depend on the availability of such a model. Often, it will be easier to capture a
set of rules in the style of the rule-based FDR2 specification than to develop the
automata view if it is not already available. The capture of rules in this way has
the advantage of allowing incompleteness and non-determinism without explicit
consideration - at least for an initial version of the specification. A refinement
of the specifications in order to exclude unrealistic behaviour will in both cases
require the same kind of considerations.

112 B. Buth

Note that a combination of the rule-based and automata-based specification
styles is in general possible. This would allow to use an automata model for the
actual system, where such automata presentations may be available from the
system design documents, while specifying the mental model based on rules. In
general, the main problem for the comparison of models will be the definition
of the interrelation between the two systems; this includes the identification
which events must be hidden and which renaming should be used to facilitate a
comparison. But this is independent from a particular specification style.

3.2 Model-Checking for Mode Confusion Analysis

A first conclusion from the experiments with FDR2 is the confirmation of Rush-
bys résumé: model-checking provides a relatively easy approach to investigating
models with regard to mode confusion situations. One particular benefit is the
ease with which the models can be adapted and extended in order to check po-
tential corrections. At least with the given example the model-checker provides
almost immediate feedback on error situations.

Two essential questions need to be discussed with regard to the general usage
of model-checking for this kind of task:

— How can the specifications for mental and actual model be derived in a
systematic way and on basis of which input?

— How can the errors found by model-checking be related to situations in the
real system?

Both questions are strongly connected to the topic of suitable abstraction
for both the real system and the operators understanding of the system. With
regard to the application of a model-checking tool, the specifications should be
as abstract as possible, restricted to the minimal set of state and environment in-
formation. This is a prerequisite for a successful application of a model-checking
tool since too much information will in general lead to a state explosion and thus
to potential problems with the state-exploration approach.

A discussion of the questions concerning abstraction and error analysis in
relation to the adequacy of the models for the presented example can be found
in Buth [12]. The general conclusion is that the suitability of the abstraction
and form of specification depends on the concrete application and the knowledge
of the people involved; a systematic approach will only be possible when more
experiences with this use of formal methods in the framework of human-computer
interfaces are available.

3.3 Evaluating the Results from Mode Confusion Analysis

One essential topic not yet addressed is how the results of mode confusion anal-
ysis such as presented above could be used. This question is directly related to
the goals of such an analysis and these need to be correlated to the develop-
ment phase in which the analysis takes place. Essentially there are two possible
objectives:

Analysing Mode Confusion: An Approach Using FDR2 113

— using mode-confusion analysis during the design phase of a system to ensure
an adequate design without or at least with a minimum of mode-confusion
potential

— analyse critical situations encountered during the integration, acceptance or
operation phase of such a system.

A comparative approach as presented in this paper requires the existence of
two models. A mental model will not generally be available during the design
of a new system. It may be available for new developments in domains where
the user interfaces are standardized to a certain extent, as for example aircraft
instrument panels, automobile or train control elements. A mental model can also
be derived from training material of an existing system or from rules captured in
interviews. In most cases a mental model will be derived from discussions with
an operator, i.e. after deployment of the system under investigation.

If no such models are available during the design phase, two further alterna-
tives are possible. Model-checking can also be employed to check for mode con-
fusion indicators in an abstraction of the system design as suggested by Liittgen
and Carreno [4], an idea which is influenced by the approach of Leveson [2].
Alternatively, mode confusion analysis could also be used to derive a minimal
mode confusion free mental model of new or existing systems. The idea has al-
ready been presented by Rushby [5l6I8]. He outlines the use of such minimal
models for the evaluation of designs: if even the minimal mental model is very
complex this could be an indicator for the inadequacy of the system design from
the point of view of the human-computer interface.

In any case identified mode confusion situations should lead to changes in the
design; the objective is to prevent the introduction of mode confusion potential
in the implementation. For the necessary modifications of the interface, the de-
sign, or the operation procedures, results from the human-computer-interfaces
community should be taken into account.

3.4 Limits of the Model-Checking Approach

Although the results presented in this study are very exciting and point to a very
interesting direction of using model-checking and formal methods in general,
some remarks are due with regard to the applicability of this approach. The
example considered here as well as those discussed by the other authors, are
fairly small parts of larger and more complex systems. It requires more examples
to prove that the approach scales to realistic applications. This is essential for
many of the potential uses of the mode confusion analysis discussed above, but
particularly for the validation of designs.

References

1. Sarter, N., Woods, D., Billings, C.: Automation surprises. In Salvendy, G., ed.:
Handbook of Human Factors and Ergonomics. Second edition edn. John Wiley
and Sons (1997)

114

10.

11.

12.

13.

B. Buth

. Levevson, N.G., Pinnel, L.D., Sandys, S.D., Koga, S., Rees, J.D.: Analyzing soft-

ware specifications for mode confusion potential. In Johnson, C.W., ed.: Proceed-
ings of a Workshop on Human Error and System Development, Glasgow, Scot-
land. Glasgow Accident Analysis Group, Technical Report GAAG-TR-97-2 (March
1997) p. 132-146

Miller, S., Potts, J.: Detecting mode confusion through formal modeling and anal-
ysis. Technical Report NASA/CR-1999-208971, NASA Langley Research Center
(January 1999) available at
http://shemesh.larc.nasa.gov/fm/fm-pubs-larc.htmll

Liittgen, G., Carrefio, V.: Analyzing mode confusion via model checking. Technical
Report NASA /CR-1999-209332, ICASE Report No. 99-18 ICASE - NASA Langley
Research Center (May 1999) available at
http://shemesh.larc.nasa.gov/fm/fm-pubs-icase.html,

. Rushby, J.: Using model checking to help discover mode confusions and other

automation surprises. In Javaux, D., ed.: Proceedings of the 3rd Workshop on
Human Error, Safety, and System Development (HESSD’99), University of Liege,
Belgium (1999)

Rushby, J.: Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety 75 (2002) 167—
177 Available at http://www.csl.sri.com/users/rushby/abstracts/ress02.
Dill, D.: The Mur¢ verification system. In Alur, R., Henzinger, T'., eds.: Computer
Aided Verification, CAV’96. Volume 1102 of LNCS., Springer-Verlag (1996)
Rushby, J., Crow, J., Palmer, E.: An automated method to detect potential mode
confusions. In: 18th ATAA/IEEE Digital Avionics Systems Conference, St Louis,
MO (1999)

Palmer, E.: “Oops, it didn’t arm.” A case study of two automation surprises.
In Jensen, R.S., Rakovan, L.A., eds.: Proceedings of the Eightth International
Symposium on Aviation Psychology, Columbus, OH. The Aviation Psychology
Department of Aerospace Engineering, Ohio State University (April 1995) p.227—
232 available at http://human-factors.arc.nasa.gov/IHpersonnel/ev|
Leveson, N.G., Palmer, E.: Designing automation to reduce operator errors. In:
Proceedings of the IEEE Systems, Man, and Cybernetics Conference. (1997)
Formal Systems (Europe) Lts: FDR2 User Manual. (1997) Available under
http://www.formal.demon.co.uk/fdr2manual/index.html.

Buth, B.: Formal and Semi-Formal Methods for the Analysis of Industrial Control
Systems. Volume 15 of BISS Monographs. (2002) (Habilitationsschrift submitted
May 2001).

Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional (1998)

http://shemesh.larc.nasa.gov/fm/fm-pubs-larc.html
http://shemesh.larc.nasa.gov/fm/fm-pubs-icase.html
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://human-factors.arc.nasa.gov/IHpersonnel/ev
http://www.formal.demon.co.uk/fdr2manual/index.html

	Introduction
	Mode Confusion Analysis -- Background
	The Example

	unhbox voidb @x hbox {rm FDR2} Formalization and Analysis
	Actual and Mental Model -- A Rule-Based Specification

	Lessons Learned
	Evaluating the unhbox voidb @x hbox {rm FDR2} Approach
	Model-Checking for Mode Confusion Analysis
	Evaluating the Results from Mode Confusion Analysis
	Limits of the Model-Checking Approach

