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Abstract. Wherever we see life, we see different kinds of complex net-
works, reason why they are studied across various fields of science. Ran-
dom Boolean Networks (RBNs) form a special class in which the links
between the nodes and the boolean functions are specified at random.
Whereas synchronous RBNs were investigated in detail, there has little
been done around their asynchronous counterpart, although there is evi-
dence that most living systems are governed by asynchronous updating.
Derrida’s annealed approximation predicts a critical connectivity value
of K = 2 for synchronous RBNs. We present a similar and original ap-
proach for asynchronous RBNs and show that they do not possess such a
critical connectivity value. The asynchronous and nondeterministic up-
dating scheme introduces perturbations that reach about 25% of the
nodes and thus prevents the networks to become stable. Further, our nu-
merical simulations show that asynchronous RBN tend to amplify small
and to reduce big perturbations.

1 Introduction

Wherever we see life, we see different kinds of complex networks, reason why
they are studied across various fields of science. Many of the natural networks
such as ecological food webs, genetic networks, social networks, neural networks,
and even the World Wide Web share common and global statistical features and
motifs [20,18,14].

Among the different kinds of networks, Random Boolean Networks (RBNs)
(sometimes also called Kauffman nets or model) form a special class in which the
links between the nodes and the node’s boolean transfer functions are specified
at random. They are often specified by two parameters: N , the number of nodes
and K, the number of incoming links per node (sometimes, K indicates the
average number of links). Synchronous RBNs have been seriously investigated
by Kauffman [12,13], Weisbuch [22], and many others as models for biological
phenomena such as genetic regulatory networks and embryonic development.

Indeed, randomly connected networks with various kinds of nodes have been
analyzed much earlier. The first persons to mention randomly connected net-
works were Ashby [3] and Allanson [1] who investigated in 1956 networks of
dynamical systems. Rozonoér [16] analyzed the properties of networks consist-
ing of elements whose properties depend on parameters chosen at random. In
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1971, Amari [2] published a paper on the characteristics of randomly connected
threshold-element networks with the intention of understanding some aspects
of information processing in nervous systems. He showed that two statistical
parameters are sufficient to determine the characteristics of such networks.

Whereas synchronous RBNs as abstract models of specific biological systems
were investigated in detail, there has little been done around their asynchronous
counterpart, although there is evidence that most living systems are governed
by asynchronous updating. Harvey and Bossomaier note, that “[...] for many
biological phenomena asynchronous versions are more plausible” [9]. Observed
global synchronous behavior in Nature usually simply arises from the local asyn-
chronous behavior.

This paper principally addresses the question whether asynchronous RBNs
have a similar phase transition and critical value for K like synchronous RBNs.
In particular, we use a similar approach to asynchronous RBNs as Derrida used
to find the critical connectivity for synchronous RBNs. Our results are then
verified by numerical simulations.

The reminder of the paper is as following: Section 2 introduces the princi-
pal characteristics of synchronous and asynchronous RBNs. Section 3 gives an
overview on Derrida’s annealed approximation that predicts K = 2 for syn-
chronous RBNs. Our approach for asynchronous RBNs is presented in Section 4
and the numerical results in Section 5. Section 6 concludes the paper.

2 Synchronous versus Asynchronous Random Boolean
Networks

Random boolean networks (RBNs) are usually considered as a more general
case of classical cellular automata (CA). In the synchronous version, both are
examples of discrete deterministic dynamical systems made up from simple com-
ponents that process data in parallel. The RBN architecture is in many ways
similar to weightless neural networks [21]. Kauffman’s studies [13] have revealed
surprisingly ordered structures in randomly constructed networks. In particu-
lar, the most highly organized behavior appeared to occur in networks where
each node receives inputs from two other nodes (K = 2). It turned out that the
networks exhibit three major regimes of behavior: ordered (“solid”), complex
(“liquid”), and chaotic (“gas”). The most complex and interesting dynamics
correspond to the liquid interface, the boundary between order and chaos. In
the ordered regime, little computation can occur. In the chaotic phase, dynam-
ics are too disordered to be useful. The most important and dominant results
of Kauffman’s numerical simulations can be summarized as follows [13]: (1) The
expected median state cycle length is about

√
N . (2) Most networks have short

state cycles, while a few have very long ones. (3) The number of state cycle at-
tractors is about

√
N . (4) The most interesting dynamics appear with an average

connectivity of K = 2 (the boundary between order and chaos).
Very few work has been done around asynchronous random boolean networks

(ARBN), although the updating scheme in discrete systems plays a crucial role
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for its properties. Moreover, for many physical and biological phenomena, the
assumption of asynchrony seems more plausible. Harvey and Bossomaier [9] have
shown that ARBNs behave radically different from the deterministic synchronous
version. Di Paolo [15] provided further analysis and mainly investigated rhythmic
and non-rhythmic attractors. Although ARBNs cannot exhibit strictly cyclic
behavior (due to their random updating scheme), he has shown that they can
all the same model rhythmic phenomenon. Recently, Gershenson [7] provided a
first classification of the different types of RBNs. The study also revealed that
the RBNs point attractors are independent of the updating scheme and that
they are more different depending on their determinism rather than depending
on their synchronicity.

An attractor in a dynamical system is an equilibrium state. Following Hope-
field [10], the attractors of networks represent a sort of content addressable
memory. Each attractor is encompassed by a basin (domain) of attraction. A de-
terministic complex dynamical system with a finite number of states ultimately
“settles down” in an attractor after a finite time. If the state vector comes to
rest completely, it is called a fixed point. If the state vector settles into a periodic
motion, it is called a limited cycle. Due to their indeterminism, asynchronous
RBNs do not have cyclic attractors but only point and loose attractors. Similar
to the synchronous version, the number of point attractors is independent of K
[9].

Note that there is also a growing interest in asynchronous cellular automata
in various problem domains (see for example [4,5,17,19]).

3 Derrida’s Annealed Approach to Synchronous RBNs

As stated above, the average connectivity of K = 2 presents a critical connec-
tivity for classical synchronous RBNs. This value is obtained by numerical sim-
ulations as well as by several theoretical methods. In 1986, Derrida and Pomeau
[6] proposed the annealed approximation which allowed to predict K = 2 as the
critical value of K. This section shall briefly recall the basic ideas of Derrida’s
approach that we then apply in a similar manner in Section 4 to asynchronous
RBNs.

Assume that we have a network made up of N nodes, each being randomly
connected to K other nodes. Each node can be in one out of two possible states,
0 or 1, and the node’s state after the next update is defined by a randomly
chosen boolean function that takes the K incoming links as inputs. The network
state at time t is defined as the vector of node states at time t, which we write
as st.

The network states st for t � 1 are correlated to the network wiring and
the node’s boolean functions. Derrida noticed that this is somehow difficult to
formalize, which lead him to the correct assumption that, since everything (i.e.,
wiring, transfer functions) is random in RBNs, randomly generating a new net-
work after each update should not fundamentally affect the overall dynamics of
the system. In order to find out the critical value for K, he compared the dy-
namics of two identically connected networks with state vectors st

1 and st
2. Let
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st
2 be a perturbed (i.e., changing the state of a random number of nodes) copy

of st
1 and let us define dt as being the normalized Hamming distance between st

1
and st

2. The main question is then as follows: which value of K allows dt → 0
when t → +∞?

To answer this question, let at be the probability for a node to have the same
value in both networks at time t. Let us then make two subsets of nodes called
A and B. A contains all nodes that have equal states in st

1 and in st
2, B contains

nodes with unequal states. Obviously, the probability for a node to belong to A
at time t is at. Moreover, for each node two possibilities arise: (1) all of its input
nodes belong to A, and (2) at least one of the input nodes belongs to B. Hence,
in the first case, the node’s input will be the same in both networks since each
input node belongs to A. This does not hold in the second case as at least one of
the input nodes belongs to B. For a given node, the probability of having all of
its inputs in A is therefore (at)K , and

(
1 − (at)K

)
otherwise. Consequently, the

node’s probability of being in the same state in st
1 as in st

2 at time t + 1 is 1 in
the first case and 1/2 in the second as we suppose that states 0 and 1 are equally
distributed. Indeed, if a node has the same input in both networks, it will surely
have the same output and consequently be in the same state in both networks
at the next time step. In the second case, inputs are different and outputs will
thus be equal with probability 1/2.

We can therefore describe the evolution of at as a function of t by means of
the following recursive equation:

at+1 = (at)K +
1
2

(
1 − (at)K

)
=

1 + (at)K

2
.

By taking into account that dt = 1 − at, we get:

dt+1 =
1 − (1 − dt)K

2
which describes the evolution of dt as a function of time t. Figure 1 plots dt+1
as a function of dt for K = 1, 2, 3, 4, 10. One can easily see that K ∈ {1, 2} are
the two only values that allow dt → 0 when t → +∞. Geometrically speaking,
the plots for K = 1 and K = 2 lie below the identity function dt = dt+1 which
implies that dt+1 tends toward 0 as time increases.

The results suggest that synchronous RBNs with a connectivity of K = 2
(the “edge between order and chaos”) are particularly resistant to perturbations.
This is mainly due to a phase transition in the number of frozen components
within a network (see also [13]). Naturally, the question arises whether such a
critical value exists in asynchronous RBNs. To the best of our knowledge, our
attempt is the first one to investigate this question.

4 Our Approach to Asynchronous RBNs

As mentioned in Section 1, Harvey and Bossomaier claimed that asynchronous
systems are biologically more plausible for many phenomena than their syn-
chronous counterpart. However, studying asynchronous RBNs is often all but a
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Fig. 1. dt+1 in function of dt for K = 1, 2, 3, 4, 10. For K = 1 and K = 2, dt+1 tends
toward 0 as time increases. For more information, see also Kauffman [13].

trivial task, mainly due to the nondeterminism introduced by the asynchronous
node updating scheme.

In this paper, we will only consider the following case of asynchrony: at each
time step, 1 to N nodes are randomly selected and synchronously updated. As
shown in the previous section, we consider two identically connected networks
with different state vectors st

1 and st
2. Again, consider st

2 as being a perturbed
copy of st

1. In the asynchronous case, three possibilities arise for each node: (1)
the node is updated in both networks, similarly to synchronous RBNs; (2) the
node is updated in only one of the networks; and (3) the node is not updated at
all. We therefore need to calculate the node’s probability of being updated. Let m
be the number of nodes updated at a given time t. Hence, the node’s probability
of being updated knowing m is m/N . As m ∈ [1, N ] and as we suppose that all
values are equally probable, the probability of being updated becomes:

P (being updated) =
1
N

N∑

m=1

m

N
=

N + 1
2N

.

Given this, we can now describe the probability of the three above-mentioned
situations:

p2 =
(

N + 1
2N

)2

, p1 = 2
(

N + 1
2N

) (
1 − N + 1

2N

)
and p0 =

(
1 − N + 1

2N

)2
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where pi describes the probability that the node is updated in i networks. Note
that p1 is counted twice because there are two possibilities of updating a node
in only one of both networks.

Nodes can now again be separated into two subsets A and B with the same
meaning as described in Section 3. Hence, if a node has all of its inputs in A and
is updated in both networks, it will surely hold the same value in st+1

1 as in st+1
2 .

If only one of both networks updates the node, there will be one chance out of
two to be in a different state. Finally, if none of the networks updates the node,
it will keep its current state at time t + 1 and thus hold the same value in both
networks if and only if the node belongs to subset A. After adding together all
these probabilities we get:

(at)K

[
N + 1
2N

+
(

N − 1
2N

)2

at

]

. (1)

This represents the contribution of the nodes having all of their input nodes in A
to the overall probability at+1 that a node has the same state in both networks
at time t + 1. To this term we must add the contribution of the nodes that
have at least one connection in B. Note that when a node is updated in both
networks, the probability of being in the same state at time t + 1 is not 1 but
1/2, similarly to the synchronous case. We therefore obtain:

(
1 − (at)K

)
[

3/2 · N2 + N − 1/2
4N2 +

(
N − 1
2N

)2

at

]

. (2)

And finally, the probability at+1 that a node has the same state in both networks
at time t+1 is obtained by adding 1 and 2 when N → +∞. Note that N → +∞
simplifies the writing of the forthcoming equations and is justified by the fact
that, as long as we consider probabilities over nodes, a “sufficient” number of
them is required. The resulting recursive equation for asynchronous RBNs is
thus as follows:

at+1 =
1
8

(at)K +
1
4

at +
3
8

.

As for synchronous RBNs, this leads to the equation that defines the evolution
of perturbations in asynchronous RBNs:

dt+1 =
5
8

− 1
8

(1 − dt)K − 1
4

(1 − dt). (3)

Figure 2 shows the plots of Equation 3 for K = 1, 2, 3, 4, 10. The following
observations can be made:

1. Critical values for K do not seem to exist as no plot is strictly below the
identity function dt+1 = dt.

2. Each plot starts from one and the same point, situated at dt+1 = 0.25. This
means that two networks with the same initial state will become different
on 25% of their nodes at the next time step. Hence, dt = 0 ⇒ dt+1 = 0 is no
longer valid.



Critical Values in Asynchronous Random Boolean Networks 373

�

���

���

���

���

�

� ��� ��� ��� ��� �

��

����
� � �

� � �

� � ��

���� � ��

Fig. 2. dt+1 in function of dt for K = 1, 2, 3, 4, 10. Note that no critical value of K
seems to exist.

From the point of view of the above presented theoretical analysis, it follows
that asynchronous RBNs do not seem to be as tolerant to perturbations as
synchronous RBNs. In fact when dt is lower than 0.5, dt+1 is always bigger than
dt, independently of K. This implies that, instead of reducing perturbations,
asynchronous RBNs create new ones.

Remember that Derrida allowed his networks to change at each time step.
This simplification has proved to be correct for synchronous networks, i.e., not
affecting the overall network dynamics, however, one might ask whether this
hypothesis is correct for asynchronous RBNs too. The next section shall address
this question by means of numerical simulations.

5 Numerical Results

Figure 3 shows numerical results for K = 1, 2, 3, 4, 10 obtained with networks of
N = 200 nodes. For each value of dt between 1 and 200, 200 randomly generated
pairs of network states were tested during t = 600 time steps. Then, for each
value of dt, the mean value of dt+1 was computed.

Compared to Figure 2, Figure 3 shows mainly two differences. The plot ob-
tained for K = 1 lies very close to the identity function dt+1 = dt. Hence, the
theoretical results do not correspond to the numerical simulations for that case.
A possible explanation is that K = 1 networks are highly ordered (“solid”) and
that they possess a large number of short attractors. Indeed, two identical net-
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Fig. 3. Numerical results obtained for K = 1, 2, 3, 4, 10 with asynchronous RBNs made
up of 200 nodes.

works with their state vectors at distance dt will very quickly end up into different
attractors that are separated approximately by the same distance. Remember,
however, that our theoretical model is rewired constantly and that therefore no
attractors are possible, hence the difference between the simulations and reality.

The second important difference is that our theoretical model also partly
fails to predict the behavior of the K = 2 plot for dt ∈ [0.2, 0.7]. The numerical
results show that networks with two incoming connections per node can also
be very stable within this interval as the plot lies rather close to the identity
function.

Finally, the mean error between the theoretical model and the numerical
simulations is about 3.3% for K = 2, 1.6% for K = 3 and falls below 1% for
K > 3. Hence, the bigger K becomes, the better the model fits to reality.

6 Conclusion and Future Work

We have investigated the dynamic behavior of asynchronous RBNs by means
of a method inspired by Derrida’s annealed approximation. The main question
was whether there is a similar phase transition and critical value for K in asyn-
chronous as in synchronous RBNs.

Our original theoretical approach and numerical simulations revealed that
asynchronous RBNs do not have a critical connectivity value similar to syn-
chronous RBNs for K. The asynchronous and nondeterministic updating scheme
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introduces perturbations that reach about 25% of the nodes and thus prevents
the networks to become stable. Although there were some small discrepancies
between the theoretical model and the numerical simulations, we can say that
our approach to asynchronous RBNs predicts the most important character-
istics of their overall dynamics. From the numerical simulations we can con-
clude that asynchronous RBNs tend to amplify small perturbations, to reduce
big ones and to keep them constant when they are located in a region around
dt = 0.5. Furthermore, our findings confirm what Harvey and Bossomaier [9]
have shown: asynchronous RBNs behave radically different from the determin-
istic synchronous version.

Synchronous RBNs have mainly been used as abstract models of specific
biological systems, however, some other applications exist. In an interesting at-
tempt, for example, Hurford [11] used synchronous RBNs to cast several essen-
tial properties of natural languages. He modeled a language as an attractor of
a boolean network. To the best of our knowledge no useful and practical appli-
cations seems to exist for asynchronous RBNs and one might question whether
they are really biologically plausible models. Synchronous updating as used in
synchronous RBNs is not usually seen in Nature, although synchronous behavior
might arise from the synchronization of asynchronous elements (e.g., [8]). Strict
synchrony as well as nondeterministic asynchrony present two extremes—neither
is usually observed in Nature. Biological networks do not make use of any global
clock (i.e., synchronizing) signal, but usually immediately react to perturbations.
In genetic regulatory networks, for example, a change in a gene’s activation state
may instantly imply other state changes in a deterministic way elsewhere in the
network. From this point of view, synchronous RBNs are closer to reality than
the asynchronous RBNs studied in this paper. Based on our results, we seri-
ously doubt whether purely asynchronous RBNs are of any interest in modeling
biological systems. There exist, however, many variants of asynchronous, de-
terministic, and lossless information transfer methods (e.g., asynchronous logic
based on Muller-C elements) that do not even make use of local clock signals.
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Science Foundation under grant 20-63711.00, by the Leenaards Foundation, Lau-
sanne, Switzerland, and by the Villa Reuge, Ste-Croix, Switzerland.
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