
M. Heisel et al. (Eds.): SAFECOMP 2004, LNCS 3219, pp. 195–209, 2004.
© Springer-Verlag Berlin Heidelberg 2004

State-Event-Fault-Trees – A Safety Analysis Model
for Software Controlled Systems

Bernhard Kaiser and Catharina Gramlich

Hasso-Plattner-Institute for Software Systems Engineering, Department of Software-
Engineering and Quality Management, Prof.-Dr.-Helmert-Str. 2-3, Potsdam, Germany
{bernhard.kaiser,catharina.gramlich}@hpi.uni-potsdam.de

Abstract. Safety models for software-controlled systems should be intuitive,
compositional and have the expressive power to model both software and hard-
ware behaviour. Moreover, they should provide quantitative results for failure
or hazard probabilities. Fault Trees are an accepted and intuitive model for
safety analysis, but they are incapable of expressing state dependencies or tem-
poral order of events. We propose to enrich Fault Trees with State/Event se-
mantics. We use a graphical notation that is similar to Statecharts. Our model
subsumes deterministic state machines that are suited to describe software be-
haviour and Markov Chains that model probabilistic failures. We allow
exponentially distributed probabilistic events, deterministic delays and triggered
events. The model is compositional and joins components by ports. Quantitative
evaluation is achieved by translating the component models to Deterministic
and Stochastic Petri Nets (DSPNs) and using an existing tool for analysis. We
introduce the model and the analysis procedure and provide a small case study
of a fire alarm system, completed by an outlook on our tool project ESSaRel.

1 Introduction

In technical systems, more and more mechanical and electrical components are re-
placed with software-controlled components. This includes safety critical domains
such as avionics, automotive or industrial control. In these application fields safety
and reliability analysis is a mandatory part of the development and must be supported
by appropriate models and tools. Fault Tree Analysis (FTA) is one of the most widely
used techniques in this context. Fault Trees (FTs) are intuitive for practitioners due to
their hierarchical structure and the familiar logical symbols. They provide a set of
qualitative and quantitative analyses. They have been used for several decades in the
context of mechanical or electrical systems and are gaining importance in the context
of software-controlled systems.

Nevertheless, some fundamental differences between Fault Trees and the models
commonly used for embedded system design are obvious: Models for complex sys-
tems must be compositional. Modularisation of FTs, however, is only defined in a
restricted way. Safety is principally a matter of behaviour and, in contrast to the state-
space models used in systems design, FTs are not suitable for modelling behaviour.
FTs are a combinatorial model that cannot capture sequences of actions and state
history. The two-state abstraction (working or failed) of Fault Trees is not adequate
for systems with complex state spaces.

196 B. Kaiser and C. Gramlich

These differences not only hamper the application of FTA to software-controlled
systems, but also obstruct the integration of state-based submodels into an FTA. This
integration would be desirable for two reasons: first the reuse of state-based models
from the design phase for safety analysis and second the integration of Markov
Chains, which are an important state based safety and reliability model.

Existing approaches to overcome the semantic weaknesses of FTs often rely on
formal methods that are not familiar to practitioners and do not offer visual integra-
tion for FTs and state based models.

We take a different approach by adding a notion of states and events to FTA:
States describe conditions that last over a period of time whereas events are sudden
phenomena, including state transitions. We call this extended model State-Event-
Fault-Trees (SEFTs). States and events are depicted by different symbols. We propose
typed FT gates for states and events (e.g. an OR gate with two event inputs and an-
other OR gate with two states inputs). Regarding the AND gate that joins two events
we distinguish a History-AND that remembers events that have occurred in the past
and a Sequential-AND that remembers also if they have occurred in a given order
(also known as Priority-AND gate). State-Event-Fault-Trees are partitioned into com-
ponents which are interconnected by ports. Other kinds of state based models such as
Markov Chains or state diagrams from CASE tools can be integrated.

SEFTs are well suited for industrial use since they unite familiar graphical nota-
tions; nevertheless, their semantics allows quantitative analysis. The analysis is per-
formed by component-wise translation of the SEFT models into Deterministic and
Stochastic Petri Nets (DSPNs) [6], a class of Petri Nets for which analysis tools exist
(e.g. the tool TimeNET [19]). In the Petri Net domain the component models are
merged to one flat model that is passed to an existing analysis tool.

In this paper we explain the application of SEFTs and the steps necessary for their
translation to DSPNs. To illustrate the procedure we refer to a small case study of a
fire alarm system. The rest of the paper is organised as follows: In Section 2 we give a
short overview over FTA and previous adaptations to software-controlled systems. In
Section 3 we introduce the modelling elements of SEFTs in summary and explain the
analysis by translation to DSPNs. In Section 4 we introduce the case study and show
how SEFT analysis is applied in practice. Section 5 concludes the paper and gives
some pointers to ongoing and future research steps, in particular the implementation
of the algorithm into our research tool ESSaRel (Embedded Systems Safety and Reli-
ability Analyser [7], which is a successor of our current FTA tool UWG3.

2 Foundations and Previous Work

2.1 Introduction to Fault Tree Analysis

FTs [18] are a widely accepted model that graphically shows how influence factors
(in general component failures) contribute to some given hazard or accident. They
provide logical connectives (called gates) that allow decomposing the system-level
hazard recursively. The AND gate indicates that all influence factors must apply to-
gether to cause the hazard and the OR gate indicates that any of the influences causes
the hazard alone. The logical structure is usually depicted as an upside-down tree with
the hazard to be examined (called top-event) at its root and the lowest-level influence

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 197

factors (called basic events) as the leaves. Note that in the context of FTA the term
"event" is applied in its probability theory meaning: an event is not necessarily some
sudden phenomenon, but can be any proposition that is true with a certain probability.

The analyses to be performed on FTs can be qualitative or quantitative. Qualitative
analyses list, for instance, all combinations of failures that must occur together to
cause the top-level failure. Quantitative analysis calculates the probability of the top-
event from the given probabilities of the basic events. Combinatorial formulas indi-
cate for each type of gate how to calculate the output probability from the given input
probabilities. These probabilities are either probabilities that an event occurs at all
over a given mission time or they are understood with respect to a given point in time.
The evolution of a system over time or any dependencies between the present system
behaviour and the history cannot be modelled. An important assumption to obtain
correct results is the stochastic independence of the basic events, which is hard to
achieve in complex networked systems. Most current FTA tools use the efficient
representation of Boolean terms as Binary Decision Diagrams (BDDs) to compute the
quantitative results.

2.2 Fault Tree Analysis for Software-Controlled Systems

Like many safety and reliability analysis models, FTs were originally designed for
non-programmable systems. When more and more technical systems became soft-
ware-controlled, the need to adapt FTs to this application field grew.

There have been several attempts to adapt FTA to software or embedded systems,
to derive FTs from software models and to enhance the expressive power of FTs. [16]
integrate FTs with formal program specifications and use Interval Temporal Logic to
give a formal semantics to Fault Trees. Formal methods are also used in [2] and [10].
Other approaches to model dynamic behaviour and multi-state components map FTs
to Markov Chains [2] or different variants of Petri Nets [4][5][11][14]. Some re-
searchers [10][2] proposed additional Fault Tree gates, for instance describing condi-
tional probability, sequence enforcing or various spare usage situations (hot, cold and
warm spare) in order to model special cases of dependencies.

For an efficient and sound development process different modelling techniques
from system design and safety / reliability analysis should smoothly integrate with
each other. Research projects aiming at the integration of different models can in-
creasingly be observed during the last years [8][3]. Many of them consider FTs, but
often they are applied in a rather informal or qualitative way.

2.3 Component Fault Trees

Models for complex technical systems must be compositional in order to be manage-
able. Traditional FTs have this property only in the sense that independent subtrees
(called modules) can be cut off and handled separately. Technical components, how-
ever, are often influenced by other components and thus cannot be modelled by inde-
pendent subtrees. To allow for a suitable modularisation in these cases, we recently
proposed a more advanced component concept [15]. It allows cutting arbitrary parts
out off a fault tree so that they can be modelled and stored independently. This allows
a modularisation that reflects the actual technical components. The model is inte-

198 B. Kaiser and C. Gramlich

grated and flattened during analysis. We call this enhanced model Component Fault
Trees (CFTs). We introduced input and output ports that serve as interfaces to put the
components together. Subcomponents are represented as black boxes with the ports
visible at the edges.

From semantics point of view CFTs are ordinary FTs with the mentioned restric-
tions. However, apart from the better compositionality, the CFT concept prepared the
ground for the use of ports to achieve integration of other models. We later refined
our ports into State Ports and Event Ports, as will be explained in detail in the follow-
ing. When we started to integrate components that are described by Markov Chains or
Statecharts as subcomponents into CFTs, we found that the lack of semantic precision
of FTs made it hard to connect states or events consistently to a FT. In response we
took the approach of enhancing FTs by a State/Event distinction to allow the combi-
nation of different modelling elements techniques.

3 State-Event-Fault-Trees

3.1 Introduction to the SEFT Notation Elements

State-Event-Fault-Trees (SEFTs) are a model that combines elements from FTA and
from Statecharts [13], ROOMcharts [17] or similar notations. We deal with a finite
state space for each component, an abstraction that is sufficient for safety and reliabil-
ity considerations. Each component is in exactly one state at each instant of time,
called the active state (we leave out state hierarchy for now). We denote states by
rounded rectangles, as in Statecharts. For safety analysis we consider states as condi-
tions that remain valid for a non-empty interval of time. We call a propositional term
over states a state term (e.g. “Component C1 is in state S1 or in state S2”). Note that
more than one state term can be true at the same time. For each point of time we as-
sign a value 0 or 1, representing the Boolean values false and true, to any state term.
For probabilistic analysis the annotation domain is extended to a real value p with
0≤p≤1 that represents the probability that the component is in this state at the given
instant of time. In this case the meaning of AND and OR transfers from the proposi-
tional meaning to the meaning “probability, that state 1 AND / OR state 2 are active at
the same time”.

Event is the term we use for atomic phenomena that do not take time to occur (this
is in contrast to the standard FT definition). In particular, state transitions are events,
but there may be independent events as well, e.g. spontaneous actions that occur in
the environment (e.g. “Tube breaks”). For quantitative analysis a probability density
must be assigned to events. If an event is a transition from one state to another we call
these states predecessor and successor state. We distinguish the event (denoting a
class of similar phenomena that can happen at different times) from the occurrence,
which is associated with an instant of time. Since we refer to a continuous time scale
for our model we assume that any two independent events cannot occur at exactly the
same time.

We mark events by solid bars. The resemblance to Petri Net transitions is not coin-
cidental: we later translate events to Petri Net transitions for analysis. In our model
events occur in one of three ways: either they are triggered by other events, or they
occur after a deterministic delay t upon entry of their predecessor state, or they occur

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 199

C 2 . S 1 C 2 .S 2

C2.E1

C 1 . S 1 C 1 .S 2

λ

C1.E1

S 1 S 2

e1

S 1 S 2

e1

t=10s

λ

a)

b)

c)

Fig. 1. a) Exponentially Distributed Transition b) Deterministic Delayed Transition c) Trig-
gered Transition

after an exponentially distributed probabilistic delay. Thus, the expressive power of
SEFTs subsumes both Statecharts that appropriately describe software behaviour and
Markov Chains that are a customary state-based model for hardware failures. Fig. 1
shows all of these variants.

The example of the triggered transition is simplified for explanation purpose; it ig-
nores the fact that the states and event belong to different components. Note that the
two different kinds of directed edges: Those with light arrowheads mark the predeces-
sor-successor relation between states and events (temporal edges) and those with bold
arrowheads mark the triggering relation (causal edges). Causal edges between two
events have the semantics that each time the source event occurs, the target event
occurs as well, provided that it is enabled. Enabled means that the component the
target event belongs to is in one of the predecessor states of the target event. If the
source event happens at an instant t, then the target event occurs at t+, so triggering
does not encompass any delay. If, however, the modeller wants to introduce some
explicit deterministic or probabilistic delay between source and target event, SEFTs
offer a DELAY gate.

Causal edges can also have states as their source. States cannot trigger other states
or events, but state terms can serve as guards for events, meaning that the event can
only occur if the state term evaluates to true.

As in FTA, gates add logical connectors
to the causal paths. Consequently the edges
that connect gates are called causal edges as
well. The most important gates are AND,
OR and NOT in their different variants.
SEFT gates are typed in the sense that they
have different semantics depending on
whether they are applied to state terms or to
event triggering relations. For instance, the
fragment in Fig. 2 has the semantics that the
event "Pressure exceeds critical level" trig-
gers the event "Boiler explodes" only if the
state term "Safety Valve is defective" or the
term "Pressure Sensor is defective" is true.
In a complete example these unspecified
state terms (drawn as dotted state symbols)
could be states of two other components
"Valve" and "Sensor".

Pressure
exceeds
critical
level

Safety Valve is
defective

Boiler explodes

&

> = 1

Pressure
Sensor is
defective

Fig. 2. SEFT Fragment

200 B. Kaiser and C. Gramlich

SEFTs allow the extension of Fault Trees to Directed Acyclic Graphs (the same
cause triggers multiple effects) and deal with repeated events or states correctly.
Causal cycles without explicit delay are not allowed, because this would raise some
semantic problems during analysis.

Just as Component Fault Trees, SEFTs are organized by components. Components
are prototypes and must be instantiated. Components can be referenced as subcompo-
nents of another component, forming a component hierarchy. The component on top
of the hierarchy is the system to be examined. Each instance of a component defines a
separate name space and all internal states and events are distinct from the state and
events of other instances and hidden from the environment.

Ports achieve the connection of components across hierarchy levels. We distin-
guish input ports from output ports and state ports from event ports. Subcomponents
appear as black boxes where only the ports are visible. Examples can be found in the
case study in Section 4. Event ports allow triggering relations from one component to
another: The information that some event occurs is transferred from the source com-
ponent (the component where the output port belongs to) to the destination compo-
nent (the component possessing the input port). There it can provoke some effect,
provided that the destination component is ready to accept it. Otherwise, the event in
the source component is neither blocked nor stored, but just discarded. The semantics
of a state port is that the destination component has access to the information whether
or not the state term in the source component is active, without having any means to
influence that state.

3.2 Application of SEFTs

SEFTs are constructed like traditional FTs. Starting with some undesired system state
(hazard) or event (accident), the analyst traces back its influences and finds out which
system states or events play a role in initiating, propagating or inhibiting the fatal
behaviour. The richer variety and semantic precision of gates allows better capturing
chains of embedded systems behaviour. The basic events of standard FTA correspond
to solitary exponentially distributed events in SEFTs. The project is structured hierar-
chically using the component concept.

Models that explain the relevant behaviour of subcomponents can be plugged in
where necessary. For stochastic failures Markov Chains are appropriate. They have
traditionally been used for hardware wear-and-tear, but there can also be stochastic
models for software failures. To model software and control aspects of the system,
Statecharts or similar models can be reused from the design phase, e.g. by importing
them from a CASE tool. The visible difference is that the transitions, which are origi-
nally represented by labelled edges, now appear as explicit transition symbols. Soft-
ware models can serve to check the reaction of the correct software on rare or unfore-
seen events from the environment or probabilistically model software failures.

3.3 Analysis by Translation to DSPNs

A model should not only be a graphical notation, but also provide analysis for rele-
vant properties, supported by usable tools. Computer based analysis requires a formal
semantics. Defining a formal semantics for a human-centred notation is a difficult

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 201

task, as various attempts to formalise Statecharts or FTs show. A second issue is that
being state-based models, SEFTs cannot be evaluated by the traditional combinatorial
FTA algorithms. To tackle both issues at the same time we propose to translate SEFTs
into an accepted formal notation where known analysis algorithms exist.

Petri Nets (PNs) are a model for discrete state systems that supports the concur-
rency we have to deal with in component based systems and provides stochastic vari-
ants. We chose Deterministic and Stochastic Petri Nets (DSPNs) [1] since they pos-
sess all kinds of transitions we need and provide analysis techniques for the properties
we are interested in (in particular the probability of a place to be marked). They are an
extension of Genaralized Stochastic Petri Nets (GSPNs) that lack deterministic delay
that often has to be considered in software behaviour. Assuming some basic knowl-
edge about Petri Nets we briefly point out the main features of DSPNs: DSPNs are a
timed variant of Petri Nets, i.e. the (possibly probabilistic) time that a transition waits
before it fires after becoming enabled is specified in the model. In particular, DSPN
transitions fire in one of three ways: immediately on activation, after a constant delay
(specified by an annotated time parameter) or after an exponentially distributed ran-
dom delay (specified by an annotated rate parameter). Firing of transitions is atomic
and takes no time. In the graphical representation, black bars depict immediate transi-
tions, empty rectangles depict transitions with exponentially distributed firing time,
and black filled rectangles depict transitions with constant delay unequal to zero.
Transitions are joined to places by input arcs, output arcs or inhibitor arcs. The latter
forbid firing as long as the corresponding place is marked. Priorities can be attached
to immediate transitions to resolve conflicts. Places can have a capacity of more then
one token and arcs can have a multiplicity of greater than one, but we currently do not
exploit this property. The underlying time scale is continuous.

Analysis of DSPNs has been described in [6][9] and several tools are available. We
are currently carrying out some experiments using TimeNET [19] that require manual
translation, but we are working on an automated integration of both tools.

The translation of SEFT states and events to DSPN places and transitions is
straightforward: each state is mapped to a place and each event to a transition. SEFT
gates are translated as a whole by looking up the corresponding DSPN structure in a
dictionary. A part of this dictionary, containing different kinds of AND, OR and NOT
gates can be found in Fig. 3. The dashed places or transitions signify import places /
transitions, which are references to other places / transitions (marked with "export") in
other component DSPNs. During flattening (integration of the partial nets), the import
elements will be merged with the corresponding export output. The semantics of the
gates is best understood by playing the “token game”. For instance, the export place
Pout of the AND (State x State) gate net is marked if and only if someone puts tokens
to both import Places Pin1 and Pin2. The situation is different with the Sequential-AND
(Event x Event) gate: here the left input transition must fire first and then the right
input transition to make the output transition fire.

Our semantics that lies in the composition by state ports and event ports cannot be
translated directly to a composition in the Petri Net domain, so special patterns are
necessary when translating SEFT ports to DSPNs. The reasons are that ports must not
introduce any backward influences and events are not stored as tokens are.

To translate an event port an additional place is added where the triggering transi-
tion puts a token when firing. Triggering only occurs if the triggered transition is
feasible at the same instant of time and there is no storage of events. To capture this,

202 B. Kaiser and C. Gramlich

Sequential-AND (Event x Event)

AND (State x State) OR (State x State)

NOT (State)

History-AND (Event x Event)

Tin1

Prio=1

Prio=2

Prio=1

Prio=2
Tout

Tin2

Pin

Pout

Prio=1Tin1

Prio=2

Tout

Prio=1

Prio=2

Tin2

Pin1

Pout

Pin2 Pin1

Pout

Pin2

Tin1

Tout

Tin2

OR (Event x Event)

Pin.state

Prio=1

Tin.event

Prio=2

Tout

AND (State x Event)

Fig. 3. Gate Translation Dictionary (Excerpt)

we add an artificial immediate transi-
tion with lower priority than the trig-
gered transition so that it consumes the
token in those cases when it is not im-
mediately used. The event port (or
trigger) pattern can be seen in Fig. 4,
before and after flattening. Note that n
DSPNs priority 2 takes precedence over
priority 1.

Regarding state ports, it is important
that the target component must not
backward modify the source component

Prio=1

Tin

C1.
S1

C1.
S2

C1.E1

Prio=2

C2.
S1

C2.
S2

C2.E1

Prio=1

C1.
S1

C1.
S2

C1.E1

Prio=2

C2.
S1

C2.
S2

C2.E1

Fig. 4. Trigger / Event Port Pattern

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 203

state (and thus the
DSPN marking). For
this purpose we enrich
the target component by
a state machine with
two states, reflecting
whether or not the
source component is in
the relevant state.
DSPN inhibitor arcs
(depicted with a small
circle at the end) are a

useful means to sense that a place is not marked without reverse influence, because
inhibitor arcs never consume a token. Unfortunately they have no positive counterpart
that senses if a token is present without removing it. A way out is to accompany each
arc that removes a token by a complementary arc that puts it back immediately after.
As an example we show how in Fig. 5 a NOT-Gate (see dictionary) is merged to an
export state (state connected to an output port) of some state machine. Notice how the
inhibit edge and the pair of normal edges are connected in a way that excludes back-
ward influences. We call this constellation the state port pattern.

3.4 The Translation Algorithm

The translation and preparation comprises the following steps:

Preconditions:
1. The component model to be analysed and all nested subcomponent models (re-

cursively) are available at analysis time and are valid SEFT models
2. The component nesting hierarchy is free from cycles (a component must not refer

directly or indirectly to itself as a subcomponent)
3. All component input ports are connected on the higher hierarchy level
4. All causal paths are free from cycles (this must be checked across component

borders and hierarchy levels)

1st Step: Component-wise translation (creates a DSPN for each component)
For each component
� Prefix the IDs of all modelling elements by the IDs of the component in-

stance they belong to (to avoid name conflicts)
� Represent each SEFT state by a DSPN place

� If the state is the initial state, mark it by a token
� Represent each deterministic or exponential event by a deterministic or ex-

ponential DSPN transition and transfer the parameter
� If a transition is solitary (no predecessor and successor state mod-

elled) then add one marked DSPN place which is both predecessor
and successor place

� Represent each triggered event or event with zero delay by an immediate
transition

� Transform each causal edge joining two events to the trigger pattern
� Represent each temporal edge from SEFT by a DSPN edge

Pin

Pout

C1.
P1

C1.
P2

C1.T1

Pout

C1.
P1

C1.
P2

C1.T1

Fig. 5. State Port, exemplified by a NOT gate

204 B. Kaiser and C. Gramlich

� Replace each Fault Tree Gate by the DSPN structure indicated by the dic-
tionary

� For each port of the component and its subcomponents
� Create for each connected causal edge an entry in the connection

table (source and destination ID)
� If a state / event is the source of the causal edge leading to a port,

then label this state / transition as “export”
� If a state / event is the target of the causal edge, then apply the state

port / event port pattern and label the input state / transition of this
pattern as “import”

2nd step: Flattening (creates one DSPN out of the component DSPNs)
� Resolve the connection table to remove any ports except output ports of the

system
� Merge import with corresponding export places and transitions. The counter-

parts are found in the connection table
One exported place or transition can be merged with several counterparts. It is a

failure if port references cannot be resolved or if import places or transitions have no
export counterpart.

After the SEFT has been translated and flattened, the initial markings of the DSPN
places must be applied where missing and the place or transition connected to the
output port selected for analysis must be identified.

We intended to introduce a net simplification step before the flattening steps on
each hierarchy level to reduce the state space.

3.5 Performing the Analysis

To do the analysis, the requested measure (e.g. average probability of a state term that
is connected to an output port) must be translated into a measure that can be deter-
mined by the DSPN analysis tool (e.g. the marking probability for a place that corre-
sponds to the system state of interest). Then a suitable analysis procedure must be
started. The tool TimeNET that we are currently using offers both transient and
steady-state analysis for DSPNs plus simulation. Analysis is faster but due to the used
analysis algorithm it can only be applied in cases where at most one deterministic
transition is enabled in any marking. If this condition is violated, simulation is still
possible. At present state, we read back the results of the analysis manually. Our tool
ESSaRel that is currently under development will start the analyser via API or com-
mand line call and later read the calculated values from the TimeNET result file to
display them on its own GUI.

4 The Fire Alarm System

4.1 Description of the Example System

In this section we demonstrate the presented approach by the example of a fire alarm
system. The system consists of two redundant fire alarm units which may fail stochas-

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 205

tically. The hazard to be analysed is the situation when both alarm units are simulta-
neously in the state “failed”, since in this case a fire might break out without being
noticed. In order to restart a failed alarm unit a watchdog that periodically checks the
alarm units and restarts them if they are in failed state.

4.2 Constructing the SEFT

We start by modelling each of the units as independent components. The alarm units
are instances of the component “fire alarm unit” shown in Fig. 6a.

An alarm unit may be running properly or fail stochastically with a failure rate of
λ=1/10 hour-1. In order to restart a unit an external trigger is needed. Before running
normally, some initialization steps taking a deterministic time of 0.1 hours have to be
performed. In order to notice when a unit is out of work, a state output port (depicted
by the filled S-triangle) that senses if the unit is running is used in the model. For
externally triggering the initialization routine an event input port (the empty E-
triangle) is needed. The watchdog, as shown in Fig. 6b, is simply depicted as a com-
ponent with only one state. The triggering event is produced once every hour and can
be connected to other components via an event output port.

Now that the technical units are given, we combine the modelled units to form the
SEFT that describes the complete fire alarm system and explains the causal paths that
lead to the hazard situation. Figure 7 shows how the fire alarm system is modelled
using two instances of the “fire alarm unit” and an instance of the “watchdog” com-
ponent. The inner structure of the instances is omitted in this view. The watchdog is
connected to the event input ports of both alarm units so that it can trigger a restart of
a failed unit when necessary. Since the fire hazard is present when both of the redun-
dant alarm units are not working at the same time they are combined with a NOT gate
each, which in turn serve as inputs for a state AND gate. The output of the state AND
gate represents the hazard situation.

All preconditions for analyzing this model are fulfilled: There are no cycles in the
component hierarchy or in any causal relation and all state and event port have been
connected to their counterparts. The state output port of the AND gate does not need
to be connected since it represents the hazard situation to be analyzed.

E

o k

f a i l e d

λ=1/10 per hour δ = 0.1 hours

S

i n i t i a -
l i s in g

initialises

fails starts

E

triggers

δ = 1 hour

FireAlarmUnit Watchdog

Fig. 6. a) Fire alarm component b) Watchdog component

206 B. Kaiser and C. Gramlich

FireScenario

&

= 1 = 1

Watchdog

S Fire hazard

E

FireAlarmUnit 1
S

E

FireAlarmUnit 2
S

E

Fig. 7. The fire alarm system

4.3 Translation into DSPN

Before performing the analysis the model has to be translated into a DSPN. For the
NOT and AND gates the corresponding DSPNs have already been shown in Fig. 3.
The “alarm unit” and “watchdog” components can be translated step by step. Each
state is mapped onto a DSPN place, the events that occur stochastically onto exponen-
tial transitions, the events occurring after a certain time onto deterministic transitions
and externally triggered events onto immediate transitions respectively. The resulting
parts have to be combined with the gate nets to form the complete flattened DSPN
shown in Fig. 8. The dotted rectangles show the DSPN parts representing the compo-
nents. The markings were set in a way so that the initial state of the alarm system is
conceived: the alarm units are working properly and there is no fire hazard. Note the
applied trigger pattern for combining the watchdog and the externally triggered events
in the alarm units.

4.4 Analysis of the Flattened DSPN

The DSPN can now be examined using TimeNET. This step as well as the translation
into DSPNs must currently be done manually but an export filter to the TimeNET file
format will be integrated in our tool ESSaRel. The hazard situation is represented by
the place marked with POut which was mapped on the output of the state AND gate.
The probability that one token lies in place POut denotes the probability that both
alarm units are out of work simultaneously. The corresponding expression in Time-
NET is P{#POut=1}.

TimeNET cannot accomplish an analysis of the net, since more than one determi-
nistic transition might be enabled at the same time. A steady-state simulation (con-

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 207

tinuous time) with the parameters given in Fig. 8 and a maximum relative error of 1%
(a parameter TimeNET uses to specify the desired accuracy of the simulation) returns
a resulting probability for the fire hazard as 0.003975. In about 0.4% of the time, both
alarm units are not working so that a fire hazard persists.

POut

d=1

Prio=1 Prio=1

Prio=2 Prio=2

d=0.1 d=0.1d=10 d=10

FireAlarmUnit1 FireAlarmUnit2

Watchdog

Fig. 8. DSPN of the fire alarm system after flattening

5 Conclusion and Further Research

We have proposed State-Event-Fault Trees as an extension to the FT concept that
allows distinguishing states and events. This enables us to integrate finite state models
with FTA. In particular we can integrate Statecharts and Markov Chains. This in-
creases expressive power and allows the reuse of design models for safety analysis.
We adapt the traditional set of FT gates by introducing typed gates for states and

208 B. Kaiser and C. Gramlich

events. Phenomena like temporal order of events that were not expressible by FTs
before can be expressed by SEFTs, because additional gates such as History-AND or
Sequential-AND exist. The component concept allows partitioning SEFTs in accor-
dance with the actual technical component structure and to handle complex projects.
In summary, the established top-down analysis search for hazard causes provided by
FTA can now be combined with powerful and reusable description of embedded sys-
tem behaviour brought in by the integration of state-based models.

For quantitative probabilistic analysis of SEFTs we translate them component-wise
into DSPNs, apply simplifications on component level and merge them to one flat net.
Existing Petri Net analysis tools, for instance TimeNET, calculate the measures that
correspond to the hazard probabilities in the original SEFT. We have shown the ap-
plicability of our method by the example of a fire alarm system. We carried out other
small studies to validate the model; larger studies with industrial partners are under
preparation.

SEFTs allow a more formal modelling of some gates that are part of standard FTA
or later extensions, for instance inhibit, functional dependency, and different kinds of
spare gates. We aim at developing new kinds of gates that match frequent structures
of safety-critical systems, such as History-AND with a Reset input (for Repair / Re-
start situations) or History / Sequential-AND with a time parameter that indicates how
close both events must occur to each other. We work towards a closer integration of
state-based and combinatorial analysis approaches to obtain better analysis perform-
ance for subcomponents that can be described by a combinatorial model, similar to
the approaches given in [12]. We also plan to do some simplification on component
level before integration, exploiting the fact that only a few of the functional states of
each component are relevant for safety or reliability considerations.

The ongoing integration of SEFTs into a usable tool is part of our research project
ESSaRel. The platform for this integration is the existing CFT tool UWG3 which has
been developed in cooperation with Siemens. We have defined the translation and
flattening algorithm and are now implementing the export filter TimeNET and an
import filter to read models from the CASE tool Rational RoseRT that are mainly
based on ROOMcharts. In the end we are working towards an integrated tool chain
for safety and reliability analysis of embedded systems.

References

1. Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially dis-
tributed firing times. European Workshop on Applications and Theory of Petri Nets 1986.
Lecture Notes in Computer Science, volume 266, pages 132-145. Springer 1987

2. Bechta Dugan J., Sullivan, K., Coppit, D.: Developing a low-cost high-quality software
tool for dynamic fault tree analysis. Transactions on Reliability, December 1999, pages 49-
59

3. Bloomfield, E., Cheng, J.H., Górski, J.: Towards A Common Safety Description Model,
Proceedings of the 10th International Conference on Computer Safety, Reliability and Se-
curity SAFECOMP'91 (Edited by J. F. Lindeberg), pp. 1-6, Pergamon Press, 1991

4. Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Exploiting Petri nets to support
fault tree based dependability analysis. In: Proc. 8th Int. Workshop on Petri Net and Per-
formance Models (PNPM'99), 8-10 October 1999, Zaragoza, Spain, pages 146-155. 1999

State-Event-Fault-Trees – A Safety Analysis Model for Software Controlled Systems 209

5. Buchacker, K.: Combining Fault Trees and Petri-Nets to Model Safety-critical Systems.
In: A. Tentner (Ed.): High Performance Computing 1999. The Society for Computer Simu-
lation International, 1999, pp. 439-444

6. Ciardo, G., Lindemann, C.: Analysis of deterministic and stochastic Petri nets. In Proc. of
the Fifth Int. Workshop on Petri Nets and Performance Models (PNPM93), Toulouse,
France, Oct. 1993

7. ESSaRel. Embedded Systems Safety and Reliability Analyser. http://www.essarel.de
8. Fenelon, P., McDermid, J.A.: An Integrated Toolset For Software Safety Analysis, Journal

of Systems and Software, 21(3), 1993, pp. 279-290
9. German. R., and Mitzlaff, J.: Transient analysis of deterministic and stochastic Petri nets

with TimeNET. in Proc. 8th Int. Conf. on Computer Performance Evaluation, Modelling
Techniques and Tools and MMB (LNCS 977), Heidelberg, Germany, 1995, pp. 209-223

10. Górski, J.: Extending Safety Analysis Techniques with Formal Semantics, In Technology
and Assessment of Safety Critical Systems (Edited by F.J. Redmill and T. Anderson),
Springer Verlag, 1994

11. Górski, J., Wardzinski, A.: Timing Aspects of Safety Analysis, in F. Redmill and T.
Anderson, Eds.: Safer Systems, Springer Verlag 1997, pp. 231-244

12. Gulati R., Bechta Dugan J.: A modular approach for analyzing static and dynamic fault
trees. In Proceedings of the Reliability and Maintainability Symposium, January 1997.

13. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3): 231--274, June 1987

14. Hura, G.S., Atwood, J.W.: The Use of Petri Nets to Analyze Coherent Fault Trees. In:
IEEE Trans. Reliab. (USA), Vol. 37, No. 5, pages 469-474. 1988

15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A New Component Concept for Fault Trees.
Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software
(SCS'03), P. Lindsay & T. Cant, Eds.

16. Schellhorn, G., Thums, A., Reif, W.: Formal Fault Tree Semantics. In: Proceedings of The
Sixth World Conference on Integrated Design & Process Technology , Pasadena, CA, July
2002

17. Selic, B., Gullekson, G., Ward P.T:. Real-Time Object-Oriented Modeling, John Wiley &
Sons, 1994

18. Vesely, W. E., Goldberg, F. F., Roberts, N. H., Haasl, D. F.: Fault Tree Handbook. U. S.
Nuclear Regulatory Commission, NUREG-0492, Washington DC, 1981

19. Zimmermann, A., German, R., Freiheit, J., Hommel, G.: TimeNET 3.0 Tool Description.
Int. Conf. on Petri Nets and Performance Models (PNPM'99), Zaragoza, Spain, 1999

	Introduction
	Foundations and Previous Work
	Introduction to Fault Tree Analysis
	Fault Tree Analysis for Software-Controlled Systems
	Component Fault Trees

	State-Event-Fault-Trees
	Introduction to the SEFT Notation Elements
	Application of SEFTs
	Analysis by Translation to DSPNs
	The Translation Algorithm
	Performing the Analysis

	The Fire Alarm System
	Description of the Example System
	Constructing the SEFT
	Translation into DSPN
	Analysis of the Flattened DSPN

	Conclusion and Further Research

