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Abstract. Safety models for software-controlled systems should be intuitive, 
compositional and have the expressive power to model both software and hard-
ware behaviour. Moreover, they should provide quantitative results for failure 
or hazard probabilities. Fault Trees are an accepted and intuitive model for 
safety analysis, but they are incapable of expressing state dependencies or tem-
poral order of events. We propose to enrich Fault Trees with State/Event se-
mantics. We use a graphical notation that is similar to Statecharts. Our model 
subsumes deterministic state machines that are suited to describe software be-
haviour and Markov Chains that model probabilistic failures. We allow 
exponentially distributed probabilistic events, deterministic delays and triggered 
events. The model is compositional and joins components by ports. Quantitative 
evaluation is achieved by translating the component models to Deterministic 
and Stochastic Petri Nets (DSPNs) and using an existing tool for analysis. We 
introduce the model and the analysis procedure and provide a small case study 
of a fire alarm system, completed by an outlook on our tool project ESSaRel.  

1   Introduction 

In technical systems, more and more mechanical and electrical components are re-
placed with software-controlled components. This includes safety critical domains 
such as avionics, automotive or industrial control. In these application fields safety 
and reliability analysis is a mandatory part of the development and must be supported 
by appropriate models and tools. Fault Tree Analysis (FTA) is one of the most widely 
used techniques in this context. Fault Trees (FTs) are intuitive for practitioners due to 
their hierarchical structure and the familiar logical symbols. They provide a set of 
qualitative and quantitative analyses. They have been used for several decades in the 
context of mechanical or electrical systems and are gaining importance in the context 
of software-controlled systems.  

Nevertheless, some fundamental differences between Fault Trees and the models 
commonly used for embedded system design are obvious: Models for complex sys-
tems must be compositional. Modularisation of FTs, however, is only defined in a 
restricted way. Safety is principally a matter of behaviour and, in contrast to the state-
space models used in systems design, FTs are not suitable for modelling behaviour. 
FTs are a combinatorial model that cannot capture sequences of actions and state 
history. The two-state abstraction (working or failed) of Fault Trees is not adequate 
for systems with complex state spaces. 
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These differences not only hamper the application of FTA to software-controlled 
systems, but also obstruct the integration of state-based submodels into an FTA. This 
integration would be desirable for two reasons: first the reuse of state-based models 
from the design phase for safety analysis and second the integration of Markov 
Chains, which are an important state based safety and reliability model. 

Existing approaches to overcome the semantic weaknesses of FTs often rely on 
formal methods that are not familiar to practitioners and do not offer visual integra-
tion for FTs and state based models. 

We take a different approach by adding a notion of states and events to FTA: 
States describe conditions that last over a period of time whereas events are sudden 
phenomena, including state transitions. We call this extended model State-Event-
Fault-Trees (SEFTs). States and events are depicted by different symbols. We propose 
typed FT gates for states and events (e.g. an OR gate with two event inputs and an-
other OR gate with two states inputs). Regarding the AND gate that joins two events 
we distinguish a History-AND that remembers events that have occurred in the past 
and a Sequential-AND that remembers also if they have occurred in a given order 
(also known as Priority-AND gate). State-Event-Fault-Trees are partitioned into com-
ponents which are interconnected by ports. Other kinds of state based models such as 
Markov Chains or state diagrams from CASE tools can be integrated. 

SEFTs are well suited for industrial use since they unite familiar graphical nota-
tions; nevertheless, their semantics allows quantitative analysis. The analysis is per-
formed by component-wise translation of the SEFT models into Deterministic and 
Stochastic Petri Nets (DSPNs) [6], a class of Petri Nets for which analysis tools exist 
(e.g. the tool TimeNET [19]). In the Petri Net domain the component models are 
merged to one flat model that is passed to an existing analysis tool. 

In this paper we explain the application of SEFTs and the steps necessary for their 
translation to DSPNs. To illustrate the procedure we refer to a small case study of a 
fire alarm system. The rest of the paper is organised as follows: In Section 2 we give a 
short overview over FTA and previous adaptations to software-controlled systems. In 
Section 3 we introduce the modelling elements of SEFTs in summary and explain the 
analysis by translation to DSPNs. In Section 4 we introduce the case study and show 
how SEFT analysis is applied in practice. Section 5 concludes the paper and gives 
some pointers to ongoing and future research steps, in particular the implementation 
of the algorithm into our research tool ESSaRel (Embedded Systems Safety and Reli-
ability Analyser [7], which is a successor of our current FTA tool UWG3. 

2   Foundations and Previous Work 

2.1   Introduction to Fault Tree Analysis 

FTs [18] are a widely accepted model that graphically shows how influence factors 
(in general component failures) contribute to some given hazard or accident. They 
provide logical connectives (called gates) that allow decomposing the system-level 
hazard recursively. The AND gate indicates that all influence factors must apply to-
gether to cause the hazard and the OR gate indicates that any of the influences causes 
the hazard alone. The logical structure is usually depicted as an upside-down tree with 
the hazard to be examined (called top-event) at its root and the lowest-level influence 
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factors (called basic events) as the leaves. Note that in the context of FTA the term 
"event" is applied in its probability theory meaning: an event is not necessarily some 
sudden phenomenon, but can be any proposition that is true with a certain probability. 

The analyses to be performed on FTs can be qualitative or quantitative. Qualitative 
analyses list, for instance, all combinations of failures that must occur together to 
cause the top-level failure. Quantitative analysis calculates the probability of the top-
event from the given probabilities of the basic events. Combinatorial formulas indi-
cate for each type of gate how to calculate the output probability from the given input 
probabilities. These probabilities are either probabilities that an event occurs at all 
over a given mission time or they are understood with respect to a given point in time. 
The evolution of a system over time or any dependencies between the present system 
behaviour and the history cannot be modelled. An important assumption to obtain 
correct results is the stochastic independence of the basic events, which is hard to 
achieve in complex networked systems. Most current FTA tools use the efficient 
representation of Boolean terms as Binary Decision Diagrams (BDDs) to compute the 
quantitative results. 

2.2   Fault Tree Analysis for Software-Controlled Systems 

Like many safety and reliability analysis models, FTs were originally designed for 
non-programmable systems. When more and more technical systems became soft-
ware-controlled, the need to adapt FTs to this application field grew. 

There have been several attempts to adapt FTA to software or embedded systems, 
to derive FTs from software models and to enhance the expressive power of FTs. [16] 
integrate FTs with formal program specifications and use Interval Temporal Logic to 
give a formal semantics to Fault Trees. Formal methods are also used in [2] and [10]. 
Other approaches to model dynamic behaviour and multi-state components map FTs 
to Markov Chains [2] or different variants of Petri Nets [4][5][11][14]. Some re-
searchers [10][2] proposed additional Fault Tree gates, for instance describing condi-
tional probability, sequence enforcing or various spare usage situations (hot, cold and 
warm spare) in order to model special cases of dependencies.  

For an efficient and sound development process different modelling techniques 
from system design and safety / reliability analysis should smoothly integrate with 
each other. Research projects aiming at the integration of different models can in-
creasingly be observed during the last years [8][3]. Many of them consider FTs, but 
often they are applied in a rather informal or qualitative way.  

2.3   Component Fault Trees 

Models for complex technical systems must be compositional in order to be manage-
able. Traditional FTs have this property only in the sense that independent subtrees 
(called modules) can be cut off and handled separately. Technical components, how-
ever, are often influenced by other components and thus cannot be modelled by inde-
pendent subtrees. To allow for a suitable modularisation in these cases, we recently 
proposed a more advanced component concept [15]. It allows cutting arbitrary parts 
out off a fault tree so that they can be modelled and stored independently. This allows 
a modularisation that reflects the actual technical components. The model is inte-
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grated and flattened during analysis. We call this enhanced model Component Fault 
Trees (CFTs). We introduced input and output ports that serve as interfaces to put the 
components together. Subcomponents are represented as black boxes with the ports 
visible at the edges. 

From semantics point of view CFTs are ordinary FTs with the mentioned restric-
tions. However, apart from the better compositionality, the CFT concept prepared the 
ground for the use of ports to achieve integration of other models. We later refined 
our ports into State Ports and Event Ports, as will be explained in detail in the follow-
ing. When we started to integrate components that are described by Markov Chains or 
Statecharts as subcomponents into CFTs, we found that the lack of semantic precision 
of FTs made it hard to connect states or events consistently to a FT. In response we 
took the approach of enhancing FTs by a State/Event distinction to allow the combi-
nation of different modelling elements techniques. 

3   State-Event-Fault-Trees 

3.1   Introduction to the SEFT Notation Elements 

State-Event-Fault-Trees (SEFTs) are a model that combines elements from FTA and 
from Statecharts [13], ROOMcharts [17] or similar notations. We deal with a finite 
state space for each component, an abstraction that is sufficient for safety and reliabil-
ity considerations. Each component is in exactly one state at each instant of time, 
called the active state (we leave out state hierarchy for now). We denote states by 
rounded rectangles, as in Statecharts. For safety analysis we consider states as condi-
tions that remain valid for a non-empty interval of time. We call a propositional term 
over states a state term (e.g. “Component C1 is in state S1 or in state S2”). Note that 
more than one state term can be true at the same time. For each point of time we as-
sign a value 0 or 1, representing the Boolean values false and true, to any state term. 
For probabilistic analysis the annotation domain is extended to a real value p with 
0≤p≤1 that represents the probability that the component is in this state at the given 
instant of time. In this case the meaning of AND and OR transfers from the proposi-
tional meaning to the meaning “probability, that state 1 AND / OR state 2 are active at 
the same time”. 

Event is the term we use for atomic phenomena that do not take time to occur (this 
is in contrast to the standard FT definition). In particular, state transitions are events, 
but there may be independent events as well, e.g. spontaneous actions that occur in 
the environment (e.g. “Tube breaks”). For quantitative analysis a probability density 
must be assigned to events. If an event is a transition from one state to another we call 
these states predecessor and successor state. We distinguish the event (denoting a 
class of similar phenomena that can happen at different times) from the occurrence, 
which is associated with an instant of time. Since we refer to a continuous time scale 
for our model we assume that any two independent events cannot occur at exactly the 
same time. 

We mark events by solid bars. The resemblance to Petri Net transitions is not coin-
cidental: we later translate events to Petri Net transitions for analysis. In our model 
events occur in one of three ways: either they are triggered by other events, or they 
occur after a deterministic delay t upon entry of their predecessor state, or they occur  
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Fig. 1. a) Exponentially Distributed Transition b) Deterministic Delayed Transition c) Trig-
gered Transition 

after an exponentially distributed probabilistic delay. Thus, the expressive power of 
SEFTs subsumes both Statecharts that appropriately describe software behaviour and 
Markov Chains that are a customary state-based model for hardware failures. Fig. 1 
shows all of these variants.  

The example of the triggered transition is simplified for explanation purpose; it ig-
nores the fact that the states and event belong to different components. Note that the 
two different kinds of directed edges: Those with light arrowheads mark the predeces-
sor-successor relation between states and events (temporal edges) and those with bold 
arrowheads mark the triggering relation (causal edges). Causal edges between two 
events have the semantics that each time the source event occurs, the target event 
occurs as well, provided that it is enabled. Enabled means that the component the 
target event belongs to is in one of the predecessor states of the target event. If the 
source event happens at an instant t, then the target event occurs at t+, so triggering 
does not encompass any delay. If, however, the modeller wants to introduce some 
explicit deterministic or probabilistic delay between source and target event, SEFTs 
offer a DELAY gate.  

Causal edges can also have states as their source. States cannot trigger other states 
or events, but state terms can serve as guards for events, meaning that the event can 
only occur if the state term evaluates to true. 

As in FTA, gates add logical connectors 
to the causal paths. Consequently the edges 
that connect gates are called causal edges as 
well. The most important gates are AND, 
OR and NOT in their different variants. 
SEFT gates are typed in the sense that they 
have different semantics depending on 
whether they are applied to state terms or to 
event triggering relations. For instance, the 
fragment in Fig. 2 has the semantics that the 
event "Pressure exceeds critical level" trig-
gers the event "Boiler explodes" only if the 
state term "Safety Valve is defective" or the 
term "Pressure Sensor is defective" is true. 
In a complete example these unspecified 
state terms (drawn as dotted state symbols) 
could be states of two other components 
"Valve" and "Sensor".  

Pressure 
exceeds 
critical 
level 

Safety Valve is 
defective

Boiler explodes

&

> = 1

Pressure 
Sensor is 
defective

Fig. 2. SEFT Fragment 
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SEFTs allow the extension of Fault Trees to Directed Acyclic Graphs (the same 
cause triggers multiple effects) and deal with repeated events or states correctly. 
Causal cycles without explicit delay are not allowed, because this would raise some 
semantic problems during analysis. 

Just as Component Fault Trees, SEFTs are organized by components. Components 
are prototypes and must be instantiated. Components can be referenced as subcompo-
nents of another component, forming a component hierarchy. The component on top 
of the hierarchy is the system to be examined. Each instance of a component defines a 
separate name space and all internal states and events are distinct from the state and 
events of other instances and hidden from the environment. 

Ports achieve the connection of components across hierarchy levels. We distin-
guish input ports from output ports and state ports from event ports. Subcomponents 
appear as black boxes where only the ports are visible. Examples can be found in the 
case study in Section 4. Event ports allow triggering relations from one component to 
another: The information that some event occurs is transferred from the source com-
ponent (the component where the output port belongs to) to the destination compo-
nent (the component possessing the input port). There it can provoke some effect, 
provided that the destination component is ready to accept it. Otherwise, the event in 
the source component is neither blocked nor stored, but just discarded. The semantics 
of a state port is that the destination component has access to the information whether 
or not the state term in the source component is active, without having any means to 
influence that state.  

3.2   Application of SEFTs 

SEFTs are constructed like traditional FTs. Starting with some undesired system state 
(hazard) or event (accident), the analyst traces back its influences and finds out which 
system states or events play a role in initiating, propagating or inhibiting the fatal 
behaviour. The richer variety and semantic precision of gates allows better capturing 
chains of embedded systems behaviour. The basic events of standard FTA correspond 
to solitary exponentially distributed events in SEFTs. The project is structured hierar-
chically using the component concept.  

Models that explain the relevant behaviour of subcomponents can be plugged in 
where necessary. For stochastic failures Markov Chains are appropriate. They have 
traditionally been used for hardware wear-and-tear, but there can also be stochastic 
models for software failures. To model software and control aspects of the system, 
Statecharts or similar models can be reused from the design phase, e.g. by importing 
them from a CASE tool. The visible difference is that the transitions, which are origi-
nally represented by labelled edges, now appear as explicit transition symbols. Soft-
ware models can serve to check the reaction of the correct software on rare or unfore-
seen events from the environment or probabilistically model software failures. 

3.3   Analysis by Translation to DSPNs 

A model should not only be a graphical notation, but also provide analysis for rele-
vant properties, supported by usable tools. Computer based analysis requires a formal 
semantics. Defining a formal semantics for a human-centred notation is a difficult 
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task, as various attempts to formalise Statecharts or FTs show. A second issue is that 
being state-based models, SEFTs cannot be evaluated by the traditional combinatorial 
FTA algorithms. To tackle both issues at the same time we propose to translate SEFTs 
into an accepted formal notation where known analysis algorithms exist. 

Petri Nets (PNs) are a model for discrete state systems that supports the concur-
rency we have to deal with in component based systems and provides stochastic vari-
ants. We chose Deterministic and Stochastic Petri Nets (DSPNs) [1] since they pos-
sess all kinds of transitions we need and provide analysis techniques for the properties 
we are interested in (in particular the probability of a place to be marked). They are an 
extension of Genaralized Stochastic Petri Nets (GSPNs) that lack deterministic delay 
that often has to be considered in software behaviour. Assuming some basic knowl-
edge about Petri Nets we briefly point out the main features of DSPNs: DSPNs are a 
timed variant of Petri Nets, i.e. the (possibly probabilistic) time that a transition waits 
before it fires after becoming enabled is specified in the model. In particular, DSPN 
transitions fire in one of three ways: immediately on activation, after a constant delay 
(specified by an annotated time parameter) or after an exponentially distributed ran-
dom delay (specified by an annotated rate parameter). Firing of transitions is atomic 
and takes no time. In the graphical representation, black bars depict immediate transi-
tions, empty rectangles depict transitions with exponentially distributed firing time, 
and black filled rectangles depict transitions with constant delay unequal to zero. 
Transitions are joined to places by input arcs, output arcs or inhibitor arcs. The latter 
forbid firing as long as the corresponding place is marked. Priorities can be attached 
to immediate transitions to resolve conflicts. Places can have a capacity of more then 
one token and arcs can have a multiplicity of greater than one, but we currently do not 
exploit this property. The underlying time scale is continuous.  

Analysis of DSPNs has been described in [6][9] and several tools are available. We 
are currently carrying out some experiments using TimeNET [19] that require manual 
translation, but we are working on an automated integration of both tools.  

The translation of SEFT states and events to DSPN places and transitions is 
straightforward: each state is mapped to a place and each event to a transition. SEFT 
gates are translated as a whole by looking up the corresponding DSPN structure in a 
dictionary. A part of this dictionary, containing different kinds of AND, OR and NOT 
gates can be found in Fig. 3. The dashed places or transitions signify import places / 
transitions, which are references to other places / transitions (marked with "export") in 
other component DSPNs. During flattening (integration of the partial nets), the import 
elements will be merged with the corresponding export output. The semantics of the 
gates is best understood by playing the “token game”. For instance, the export place 
Pout of the AND (State x State) gate net is marked if and only if someone puts tokens 
to both import Places Pin1 and Pin2. The situation is different with the Sequential-AND 
(Event x Event) gate: here the left input transition must fire first and then the right 
input transition to make the output transition fire. 

Our semantics that lies in the composition by state ports and event ports cannot be 
translated directly to a composition in the Petri Net domain, so special patterns are 
necessary when translating SEFT ports to DSPNs. The reasons are that ports must not 
introduce any backward influences and events are not stored as tokens are. 

To translate an event port an additional place is added where the triggering transi-
tion puts a token when firing. Triggering only occurs if the triggered transition is 
feasible at the same instant of time and there is no storage of events. To capture this,  
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Fig. 3. Gate Translation Dictionary (Excerpt) 

we add an artificial immediate transi-
tion with lower priority than the trig-
gered transition so that it consumes the 
token in those cases when it is not im-
mediately used. The event port (or 
trigger) pattern can be seen in Fig. 4, 
before and after flattening. Note that n 
DSPNs priority 2 takes precedence over 
priority 1. 

Regarding state ports, it is important 
that the target component must not 
backward modify the source component 
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state (and thus the 
DSPN marking). For 
this purpose we enrich 
the target component by 
a state machine with 
two states, reflecting 
whether or not the 
source component is in 
the relevant state. 
DSPN inhibitor arcs 
(depicted with a small 
circle at the end) are a 

useful means to sense that a place is not marked without reverse influence, because 
inhibitor arcs never consume a token. Unfortunately they have no positive counterpart 
that senses if a token is present without removing it. A way out is to accompany each 
arc that removes a token by a complementary arc that puts it back immediately after. 
As an example we show how in Fig. 5 a NOT-Gate (see dictionary) is merged to an 
export state (state connected to an output port) of some state machine. Notice how the 
inhibit edge and the pair of normal edges are connected in a way that excludes back-
ward influences. We call this constellation the state port pattern. 

3.4   The Translation Algorithm 

The translation and preparation comprises the following steps: 

Preconditions: 
1. The component model to be analysed and all nested subcomponent models (re-

cursively) are available at analysis time and are valid SEFT models 
2. The component nesting hierarchy is free from cycles (a component must not refer 

directly or indirectly to itself as a subcomponent) 
3. All component input ports are connected on the higher hierarchy level 
4. All causal paths are free from cycles (this must be checked across component 

borders and hierarchy levels) 

1st Step: Component-wise translation (creates a DSPN for each component) 
For each component 
� Prefix the IDs of all modelling elements by the IDs of the component in-

stance they belong to (to avoid name conflicts) 
� Represent each SEFT state by a DSPN place 

� If the state is the initial state, mark it by a token 
� Represent each deterministic or exponential event by a deterministic or ex-

ponential DSPN transition and transfer the parameter 
� If a transition is solitary (no predecessor and successor state mod-

elled) then add one marked DSPN place which is both predecessor 
and successor place 

� Represent each triggered event or event with zero delay by an immediate 
transition 

� Transform each causal edge joining two events to the trigger pattern 
� Represent each temporal edge from SEFT by a DSPN edge 

Pin

Pout

C1.
P1

C1.
P2

C1.T1

Pout

C1.
P1

C1.
P2

C1.T1

Fig. 5. State Port, exemplified by a NOT gate 
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� Replace each Fault Tree Gate by the DSPN structure indicated by the dic-
tionary  

� For each port of the component and its subcomponents 
� Create for each connected causal edge an entry in the connection 

table (source and destination ID) 
� If a state / event is the source of the causal edge leading to a port, 

then label this state / transition as “export” 
� If a state / event is the target of the causal edge, then apply the state 

port / event port pattern and label the input state / transition of this 
pattern as “import” 

2nd step: Flattening (creates one DSPN out of the component DSPNs) 
� Resolve the connection table to remove any ports except output ports of the 

system 
� Merge import with corresponding export places and transitions. The counter-

parts are found in the connection table 
One exported place or transition can be merged with several counterparts. It is a 

failure if port references cannot be resolved or if import places or transitions have no 
export counterpart. 

After the SEFT has been translated and flattened, the initial markings of the DSPN 
places must be applied where missing and the place or transition connected to the 
output port selected for analysis must be identified. 

We intended to introduce a net simplification step before the flattening steps on 
each hierarchy level to reduce the state space.  

3.5   Performing the Analysis 

To do the analysis, the requested measure (e.g. average probability of a state term that 
is connected to an output port) must be translated into a measure that can be deter-
mined by the DSPN analysis tool (e.g. the marking probability for a place that corre-
sponds to the system state of interest). Then a suitable analysis procedure must be 
started. The tool TimeNET that we are currently using offers both transient and 
steady-state analysis for DSPNs plus simulation. Analysis is faster but due to the used 
analysis algorithm it can only be applied in cases where at most one deterministic 
transition is enabled in any marking. If this condition is violated, simulation is still 
possible. At present state, we read back the results of the analysis manually. Our tool 
ESSaRel that is currently under development will start the analyser via API or com-
mand line call and later read the calculated values from the TimeNET result file to 
display them on its own GUI. 

4   The Fire Alarm System 

4.1   Description of the Example System 

In this section we demonstrate the presented approach by the example of a fire alarm 
system. The system consists of two redundant fire alarm units which may fail stochas-
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tically. The hazard to be analysed is the situation when both alarm units are simulta-
neously in the state “failed”, since in this case a fire might break out without being 
noticed. In order to restart a failed alarm unit a watchdog that periodically checks the 
alarm units and restarts them if they are in failed state.  

4.2   Constructing the SEFT 

We start by modelling each of the units as independent components. The alarm units 
are instances of the component “fire alarm unit” shown in Fig. 6a.  

An alarm unit may be running properly or fail stochastically with a failure rate of 
λ=1/10 hour-1. In order to restart a unit an external trigger is needed. Before running 
normally, some initialization steps taking a deterministic time of 0.1 hours have to be 
performed. In order to notice when a unit is out of work, a state output port (depicted 
by the filled S-triangle) that senses if the unit is running is used in the model. For 
externally triggering the initialization routine an event input port (the empty E-
triangle) is needed. The watchdog, as shown in Fig. 6b, is simply depicted as a com-
ponent with only one state. The triggering event is produced once every hour and can 
be connected to other components via an event output port.  

Now that the technical units are given, we combine the modelled units to form the 
SEFT that describes the complete fire alarm system and explains the causal paths that 
lead to the hazard situation. Figure 7 shows how the fire alarm system is modelled 
using two instances of the “fire alarm unit” and an instance of the “watchdog” com-
ponent. The inner structure of the instances is omitted in this view. The watchdog is 
connected to the event input ports of both alarm units so that it can trigger a restart of 
a failed unit when necessary. Since the fire hazard is present when both of the redun-
dant alarm units are not working at the same time they are combined with a NOT gate 
each, which in turn serve as inputs for a state AND gate. The output of the state AND 
gate represents the hazard situation.  

All preconditions for analyzing this model are fulfilled: There are no cycles in the 
component hierarchy or in any causal relation and all state and event port have been 
connected to their counterparts. The state output port of the AND gate does not need 
to be connected since it represents the hazard situation to be analyzed. 
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Fig. 6. a) Fire alarm component b) Watchdog component 
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Fig. 7. The fire alarm system 

4.3   Translation into DSPN  

Before performing the analysis the model has to be translated into a DSPN. For the 
NOT and AND gates the corresponding DSPNs have already been shown in Fig. 3. 
The “alarm unit” and “watchdog” components can be translated step by step. Each 
state is mapped onto a DSPN place, the events that occur stochastically onto exponen-
tial transitions, the events occurring after a certain time onto deterministic transitions 
and externally triggered events onto immediate transitions respectively. The resulting 
parts have to be combined with the gate nets to form the complete flattened DSPN 
shown in Fig. 8. The dotted rectangles show the DSPN parts representing the compo-
nents. The markings were set in a way so that the initial state of the alarm system is 
conceived: the alarm units are working properly and there is no fire hazard. Note the 
applied trigger pattern for combining the watchdog and the externally triggered events 
in the alarm units. 

4.4   Analysis of the Flattened DSPN  

The DSPN can now be examined using TimeNET. This step as well as the translation 
into DSPNs must currently be done manually but an export filter to the TimeNET file 
format will be integrated in our tool ESSaRel. The hazard situation is represented by 
the place marked with POut which was mapped on the output of the state AND gate. 
The probability that one token lies in place POut denotes the probability that both 
alarm units are out of work simultaneously. The corresponding expression in Time-
NET is P{#POut=1}.  

TimeNET cannot accomplish an analysis of the net, since more than one determi-
nistic transition might be enabled at the same time. A steady-state simulation (con-
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tinuous time) with the parameters given in Fig. 8 and a maximum relative error of 1% 
(a parameter TimeNET uses to specify the desired accuracy of the simulation) returns 
a resulting probability for the fire hazard as 0.003975. In about 0.4% of the time, both 
alarm units are not working so that a fire hazard persists. 

POut

d=1 

Prio=1 Prio=1

Prio=2 Prio=2

d=0.1 d=0.1d=10 d=10

FireAlarmUnit1 FireAlarmUnit2

Watchdog

 

Fig. 8. DSPN of the fire alarm system after flattening 

5   Conclusion and Further Research 

We have proposed State-Event-Fault Trees as an extension to the FT concept that 
allows distinguishing states and events. This enables us to integrate finite state models 
with FTA. In particular we can integrate Statecharts and Markov Chains. This in-
creases expressive power and allows the reuse of design models for safety analysis. 
We adapt the traditional set of FT gates by introducing typed gates for states and 
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events. Phenomena like temporal order of events that were not expressible by FTs 
before can be expressed by SEFTs, because additional gates such as History-AND or 
Sequential-AND exist. The component concept allows partitioning SEFTs in accor-
dance with the actual technical component structure and to handle complex projects. 
In summary, the established top-down analysis search for hazard causes provided by 
FTA can now be combined with powerful and reusable description of embedded sys-
tem behaviour brought in by the integration of state-based models.  

For quantitative probabilistic analysis of SEFTs we translate them component-wise 
into DSPNs, apply simplifications on component level and merge them to one flat net. 
Existing Petri Net analysis tools, for instance TimeNET, calculate the measures that 
correspond to the hazard probabilities in the original SEFT. We have shown the ap-
plicability of our method by the example of a fire alarm system. We carried out other 
small studies to validate the model; larger studies with industrial partners are under 
preparation. 

SEFTs allow a more formal modelling of some gates that are part of standard FTA 
or later extensions, for instance inhibit, functional dependency, and different kinds of 
spare gates. We aim at developing new kinds of gates that match frequent structures 
of safety-critical systems, such as History-AND with a Reset input (for Repair / Re-
start situations) or History / Sequential-AND with a time parameter that indicates how 
close both events must occur to each other. We work towards a closer integration of 
state-based and combinatorial analysis approaches to obtain better analysis perform-
ance for subcomponents that can be described by a combinatorial model, similar to 
the approaches given in [12]. We also plan to do some simplification on component 
level before integration, exploiting the fact that only a few of the functional states of 
each component are relevant for safety or reliability considerations. 

The ongoing integration of SEFTs into a usable tool is part of our research project 
ESSaRel. The platform for this integration is the existing CFT tool UWG3 which has 
been developed in cooperation with Siemens. We have defined the translation and 
flattening algorithm and are now implementing the export filter TimeNET and an 
import filter to read models from the CASE tool Rational RoseRT that are mainly 
based on ROOMcharts. In the end we are working towards an integrated tool chain 
for safety and reliability analysis of embedded systems.  
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