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Abstract. In this paper, we extend Moss and Parikh’s topo-logical view
of knowledge. We incorporate a further modality, denoted P, into the
original system. This operator describes the increase of sets. Regarding
the usual logic of knowledge, P corresponds to no learning of agents. In
the context of ‘topologic’, however, P represents the reverse effort oper-
ator and is related to the past therefore. It is our objective to prove nice
properties of the accompanying logic like soundness and completeness
with respect to the intended class of structures, or decidability. To this
end, we take up a hybrid logic point of view, among other things. This
not only yields the desired results, but also has some interesting conse-
quences with regard to applications.
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1 Introduction

In the paper [1], Moss and Parikh presented a certain bi-modal logic of knowledge
and effort. On the one hand, the language underlying that logic makes possible a
qualitative description of procedures gaining knowledge, and on the other hand
some expressive power concerning spatial concepts is provided. In fact, since
knowledge is represented through knowledge states, which are the sets of states
an agent in question considers possible at a time, knowledge acquisition appears
as a shrinking procedure regarding the space of all such sets. Thus ideas from
topology like closeness or neighbourhood turn up together with knowledge in a
natural way.

Moss and Parikh suggestively called their system topologic, and we adopt this
naming here. In the following, we briefly recall the basics of the language of
topologic. As it has just been indicated, formulas may contain two one-place
operators: a modality K describing the knowledge of an agent and another one,
�, describing (e.g., computational) effort. The domains for evaluating formu-
las are subset spaces (X, O, V ) consisting of a non-empty set X of states, a set
O of subsets of X representing the knowledge states of the agent, and a val-
uation V determining the states where the atomic propositions are true. The
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operator K then quantifies across any U ∈ O, whereas � quantifies ‘down-
ward’ across O since shrinking and acquiring knowledge correspond to each
other.

After [1] was published, several classes of subset spaces, including the ordi-
nary topological ones, could be characterized within the framework of topologic;
cf [2,3,4,5]. Actually, the topological language proved to be quite suitable for
dealing with ‘local’ properties of points and sets (whereas more expressive power
is needed to capture ‘non-local’ notions); see the corresponding chapter of the
handbook [6] for more details regarding this and an overview of the current state
of the art.

In the present paper, we are less interested in spatial aspects than in those
related to time. Note that a temporal dimension already inheres in the effort
modality � since � quantifies across future knowledge states; this was made
more explicit, e.g., in the paper [7]. The new operator we consider, P, is the
converse of �. Thus P refers to properties in the past by quantifying ‘upward’
across O, i.e., over all knowledge states that contain the actual one. We shall,
therefore, call P the past operator more often than not, and only sometimes
emphasize its connection with the increase of sets.1

The epistemic relevance of P (in case this operator is regarded independent of
�) is worth mentioning. While the effort operator is associated with no forgetting
of agents (also called perfect recall in the literature), the increase operator P
comes along with no learning; cf [10].

Integrating the past operator into topologic seems to be very natural. The
reader might wonder why this has not been done up to now. However, sometimes
this modality turns out to be temperamental, and we must use methods going
beyond ordinary modal logic for taming it. But it is worth doing this since we
really get a useful means of expression; e.g., the overlap operator studied in the
paper [11] will be definable then. This was the main motivation for us to examine
the properties of P. In retrospect, the promising results we obtained justify our
approach.

The subsequent technical part of the paper is organized as follows. In the
next section we recapitulate the language of topologic from [12] (which is the
journal version of [1]), and we define the semantics of the past operator at the
same time. We then give some examples of valid formulas of the extended lan-
guage. Moreover, we touch on the question of the expressiveness of P. In Section
3, we present a list of axioms for topologic including the past operator. Unfor-
tunately, we do not have a corresponding completeness theorem. However, as
the first of the main issues of this paper we prove that the resulting logic is
at least decidable. In Section 4, we deal with a certain hybridization of topo-
logic including the past. Concerning the concepts from basic hybrid logic we
need for that, see, e.g., [13], Sec. 7.3. In this case we actually obtain the desired

1 It should be noted that a related modality was examined in the paper [8] with regard
to certain systems of linear time. However, the framework here is much more general,
and the technical details are completely different from those there. – For a treatment
of the past in temporal logic of concurrency, see the paper [9].
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meta-theorems for the arising logic, i.e., soundness and completeness with respect
to subset spaces, and decidability. Furthermore, we point to a nice application of
that system. Finally, we give a brief summary of the paper and mention future
research.

2 The Extended Modal Language

In this section, we first define the modal language, including the past operator,
for subset spaces. Second, we give some examples of valid formulas. Finally, the
expressive power of the new language is compared to that of a previous extension
of topologic.

Let PROP = {A, B, . . .} be a denumerable set of symbols. The elements
of PROP are called proposition letters. We define the set WFF of well-formed
formulas over PROP by the rule

α ::= A | ¬α | α ∧ β | Kα | �α | Pα.

The operators K and � represent knowledge and effort, respectively, as it is com-
mon for topologic. The operator P is the counterpart of �. Since P is, therefore,
related to the past we call this modality the past operator. The duals of K, �
and P are denoted L, � and 〈P〉, respectively. The missing boolean connectives
�, ⊥, ∨, →, ↔ are treated as abbreviations, as needed.

We now turn to semantics. First, we define the domains for interpreting for-
mulas. Given a set X , let P(X) be the powerset of X .

Definition 1 (Subset frames and subset spaces)

1. Let X �= ∅ be a set and O ⊆ P(X) a set of subsets of X. Then, F := (X, O)
is called a (general) subset frame.

2. A subset frame F = (X, O) satisfying {∅, X} ⊆ O is called special.
3. Let F = (X, O) be a subset frame. The set NF of neighbourhood situations of

F is defined by NF := {(x, U) | x ∈ U and U ∈ O} . (Mostly, neighbourhood
situations are written without brackets later on.)

4. Let F be a subset frame. A mapping V : PROP −→ P(X) is called an
F–valuation.

5. A subset space is a triple M := (X, O, V ) , where F = (X, O) is a subset
frame and V an F–valuation; M is called based on F .

The requirement ‘{∅, X} ⊆ O’ from item 2 of this definition is convenient, but
in a sense insignificant for topologic because of the forward looking nature of the
effort operator; cf [12], Sec. 1.1. This is no longer true for the extended system,
as one will see later on. Nevertheless, we continue to deal with special subset
frames in this paper as long as it is possible.

The next definition concerns the relation of satisfaction, which is defined with
regard to subset spaces now.
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Definition 2 (Satisfaction and validity). Let M = (X, O, V ) be a subset
space.

1. Let x, U be a neighbourhood situation of F = (X, O) . Then

x, U |=M A : ⇐⇒ x ∈ V (A)
x, U |=M ¬α : ⇐⇒ x, U �|=M α

x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β

x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α

x, U |=M �α : ⇐⇒ ∀ U ′ ∈ O : (x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α)
x, U |=M Pα : ⇐⇒ ∀ U ′ ∈ O : (U ′ ⊇ U ⇒ x, U ′ |=M α) ,

where A ∈ PROP and α, β ∈ WFF. In case x, U |=M α is true we say that
α holds in M at the neighbourhood situation x, U .

2. A formula α is called valid in M (written ‘M |= α’), iff it holds in M at
every neighbourhood situation of the frame M is based on.

Note that the meaning of proposition letters is independent of neighbourhoods
by definition, thus ‘stable’ with respect to � and P. This fact is reflected by a
special axiom below; see Section 3.

We now look for the formulas which are valid in all subset spaces. It is a
known fact that the schema

K�α → �Kα

is a typical validity of topologic. This schema was called the Cross Axiom in the
paper [12] and plays a key role in the completeness and the decidability proof for
that logic. The Cross Axiom describes the basic interaction between knowledge
and effort. It is not very surprising that there is a complementary schema for P.

Proposition 1. Let M be any subset space. Then, for all α ∈ WFF we have
that

M |= PKα → KPα.

The easy proof of Proposition 1 is omitted here. – Quite recently, a modal oper-
ator O was considered which describes overlapping of sets within the framework
of topologic; cf [11]. With the aid of O, it is possible to access also points that
are distant from the actual one. The precise semantics of O in subset spaces
M = (X, O, V ) at neighbourhood situations is as follows:

x, U |=M Oα : ⇐⇒ ∀ U ′ ∈ O : if x ∈ U ′, then x, U ′ |=M α

where α ∈ WFF. Compared to the semantics of the effort operator, the condition
U ′ ⊆ U obviously was left out; cf Definition 2. Thus shrinking appears as a special
case of overlapping. It turned out that O is rather strong. In fact, with the aid
of O even the global modality A (cf [13], Sec. 7.1) is definable in subset spaces
based on special subset frames, actually through

Aα :≡ OK�α.
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Note that this is true since X ∈ O. But now the overlap operator itself can be
defined with regard to such subset spaces. The defining clause reads

Oα :≡ P�α.

Consequently, the approach from [11] is subsumed under the present one in a
sense. (For a fair comparison, however, one should take into account the issues
of the next section as well.)

3 A Decidable Fragment of the Logic

Our starting point to this section is the system of axioms for topologic from [12].
We then add several schemata involving the new modality. After that we derive
some auxiliary theorems of the resulting logic, topP, which are used for the proof
of the decidability of topP. This proof makes up the main part of Section 3.

Unless otherwise noted, all subset spaces occurring in this section are based
on special subset frames.

The complete list of axioms for topologic reads as follows:

1. All instances of propositional tautologies.
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. � (α → β) → (�α → �β)
6. (A → �A) ∧ (�A → A)
7. �α → (α ∧ ��α)
8. K�α → �Kα,

where A ∈ PROP and α, β ∈ WFF. In this way, it is expressed that for every
Kripke model M validating these axioms

– the accessibility relation K−→ of M belonging to the knowledge operator is
an equivalence,

– the accessibility relation �−→ of M belonging to the effort operator is reflexive
and transitive,

– the composite relation �−→ ◦ K−→ is contained in K−→ ◦ �−→ (this is usually
called the cross property), and

– the valuation of M is constant along every �−→ –path, for all propositional
letters.

We now turn to the axioms in which P occurs:

9. P(α → β) → (Pα → Pβ)
10. α → �〈P〉α
11. α → P�α
12. 〈P〉Pα → P〈P〉Lα,
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where A and α, β are as above. – Some comments on these axioms seem to be
appropriate. Item 9 contains the usual distribution schema being valid for every
normal modality. The schemata 10 and 11 say that the accessibility relations
belonging to � and P, respectively, are inverse to each other. Note that the latter
relation is reflexive and transitive, which follows logically from the respective
property of the former one. All this is well-known from usual tense logic; cf, e.g.,
[14], § 6. The final schema is to capture the property ‘X ∈ O’ of subset spaces
axiomatically; cf the remark following Definition 1.

We obtain a logical system by adding the standard proof rules of modal logic,
i.e., modus ponens and necessitation with respect to each modality. We call this
system topP, indicating both topologic and the past operator.

Definition 3 (The logic). Let topP be the smallest set of formulas which con-
tains the axiom schemata 1 – 12 and is closed under the application of the
following rule schemata:

(modus ponens)

α → β, α

β
(Δ–necessitation)

α

Δα
,

where α, β ∈ WFF and Δ ∈ {K, �, P}. Then we let � denote topP–derivability.

Some useful derivations are contained in the following lemma.

Lemma 1. For all A ∈ PROP and α ∈ WFF, we have that

1. � (A → PA) ∧ (〈P〉A → A)
2. � LPα → PLα
3. � PKα → KPα.

Proof. 1. From the second conjunct of Axiom 6 we get � P�A → PA with
the aid of P–necessitation, Axiom 9 and propositional reasoning. Axiom 11
yields � A → P�A. This gives us the first conjunct of the desired schema.
From the first conjunct of Axiom 6 we infer � 〈P〉A → 〈P〉�A. The dual
of Axiom 11 and propositional reasoning then imply that � 〈P〉A → A, as
desired.

2. The formula LPα → P�LPα is an instance of Axiom 11. By using, among
other things, the dual of Axiom 8 we get � P�LPα → PL�Pα. As a conse-
quence of the dual of Axiom 10, we have that � PL�Pα → PLα. Proposi-
tional reasoning now yields � LPα → PLα.

3. From Axiom 3 we infer (∗) � Kα → α, for all α ∈ WFF. Thus � α → Lα,
for all formulas α. From that we get � PKα → LPKα since this formula is
an instance of the just derived schema. Axiom 4 implies � LPKα → KLPKα.
With the aid of item 2 of this lemma we obtain � KLPKα → KPLKα. The
dual of Axiom 4 gives us � KPLKα → KPKα, and (∗) finally implies �
KPKα → KPα. It follows that � PKα → KPα, as desired.

The schema from item 1 of this lemma is complementary to Axiom 6. Both
schemata together correspond to the stability condition mentioned in Section 2,
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right after Definition 2. The schema contained in item 3 is the one from Proposi-
tion 1 and will be called the Reverse Cross Axiom; see the discussion preceding
Proposition 1.

The next proposition is quite obvious.

Proposition 2 (Soundness). Let α ∈ WFF be formula. If α is topP–derivable,
then α is valid in all subset spaces.

A possible proof of completeness must use the canonical model of topP in some
way. We fix several notations concerning this model. Let C be the set of all
maximal topP–consistent sets of formulas. Furthermore, let K−→ , �−→ and P−→

be the accessibility relations on C induced by the modalities K, � and P,
respectively.

Three useful properties of the canonical model are listed in the subsequent
lemma.

Lemma 2. 1. For all Ψ, Γ, Θ ∈ C satisfying Ψ
K−→Γ

P−→Θ there exists Ξ ∈ C
such that Ψ

P−→Ξ
K−→Θ.

2. For all Ψ, Γ, Θ ∈ C satisfying Ψ
P−→Γ and Ψ

P−→Θ there exist Ξ, Φ ∈ C such

that Γ
P−→Ξ and Θ

P−→Φ
L−→Ξ.

3.
(

K−→∪ �−→∪ P−→
)∗

⊆ P−→◦ K−→◦ �−→ .

We only give some ideas, but not a detailed proof of Lemma 2 here. (The missing
details will be contained in the full version of this paper.) The condition stated in
item 1 follows from the Reverse Cross Axiom (see Lemma 1.3) and is, therefore,
called the reverse cross property. The condition from item 2 is, among other
things, a consequence of Axiom 12. Since a kind of confluence of the accessibility
relation P−→ is forced, we call item 2 the pseudo Church-Rosser property. Quite
some modal proof theory has to be applied in the proofs of items 1 and 2 of the
lemma. Item 3 ensues from an iterated application of the previous items and the
usual cross property, respectively.

Unfortunately, we do not have a proof of the completeness of topP with respect
to the class of all subset spaces based on special frames. An adaption to the new
system, including a suitable extension, of the corresponding proof for topologic
(cf [12], Sec. 2.2) does not work anyhow.2 This seems to be true even if the
speciality condition (item 2 of Definition 1) is weakened a little, in the following
way.

2 If we drop Axiom 12, then completeness for subset spaces based on general frames can
be proved in the just indicated way; cf [15]. The presence of that axiom, however, may
be viewed as an indication of incompleteness. This is due to the formal similarity of
Axiom 12 to the Weak Directedness Axiom for intersection spaces from [12], Sec. 2.4.
It is a known fact that the latter is incomplete. In particular, the question arises
whether all formulas of the form 〈P〉Pα → P〈P〉α, which are sound for special subset
spaces, are topP–derivable.
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Definition 4 (Past-directed subset frames). A (general) subset frame F =
(X, O) is called past-directed, iff for all U1, U2 ∈ O there exists some U ∈ O
such that U ⊇ U1 ∪ U2.

On the other hand, Lemma 2.2 suggests that completeness could hold for the
larger class of all spaces based on past-directed frames. We will refer to this class
of structures in the next section.

Contrasting those bad news, we at least can show that topP is decidable. This
is done in the following.

Since topologic does not satisfy the finite model property with respect to
subset spaces (cf [12], Sec. 1.3), topP too lacks this property. However, as in the
former case this deficiency can be circumvented by a detour via suitable Kripke
models.

Subsequently, let R and K, S and �, and T and P, respectively, correspond
to each other.

Definition 5 (topP–model). Let M := (W, {R, S, T }, V ) be a trimodal model,
i.e., R, S, T ⊆ W × W are binary relations and V is a valuation in the usual
sense. Then, M is called a topP–model iff the following conditions are satisfied:

1. R is an equivalence relation, and S is reflexive and transitive,
2. S and T are inverse to each other,
3. S ◦ R ⊆ R ◦ S,
4. M satisfies the pseudo Church-Rosser property with respect to T and R,
5. for all w, w′ ∈ W and A ∈ PROP : if w S w′, then w ∈ V (A) iff w′ ∈ V (A).

It is easy to see that all the axioms considered above are sound with respect
to the class of all topP–models. Furthermore, the canonical model of topP is an
example of a topP–model. (As to item 4 from Definition 5, cf Lemma 2.2). This
gives us the following theorem.

Theorem 1 (Kripke completeness). The logic topP is sound and complete
with respect to the class of all topP–models.

We now use the method of filtration for proving the finite model property of
topP with respect to topP–models. The proceeding here follows the one from
[12], Sec. 3.3, to a large degree. Thus we may be brief regarding this and stress
the new aspects only.

For a given topP–consistent formula α ∈ WFF, we define a filter set Σ ⊆ WFF
as follows. We first let

Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)},

where sf(α) denotes the set of all subformulas of α. Second, we form the closure
of Σ0 under finite conjunctions of pairwise distinct elements of Σ0. Third, we
close under single applications of the operator L. And finally, we form the set of
all subformulas of the formulas obtained up to now.3 Let Σ denote the resulting
set. Then Σ is finite and subformula closed.
3 Note that this step is really necessary since L is an abbreviation.
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We consider the respective smallest filtrations of the accessibility relations
K−→ , �−→ , and P−→ , of the canonical model of topP; cf [14], § 4. Let

M := (W, {R, S, T }, V )

be the corresponding filtration of a suitably generated submodel M ′ of that
model in which the valuation V assigns the empty set to all proposition letters
not occurring in Σ. Then we have the following lemma.

Lemma 3. The structure M is a finite topP–model of which the size depends
computably on the length of α.

Proof. Most of it is clear from the definitions and the proof of [12], Theorem
2.11. In particular, the finiteness of W follows from the finiteness of Σ. Only
items 2 and 4 of Definition 5 have to be checked yet.

For item 2, let Γ, Θ be two points of the canonical model such that [Γ ] S [Θ],
where the brackets [. . .] indicate the respective classes. Due to the definition of

the minimal filtration there are Γ ′ ∈ [Γ ] and Θ′ ∈ [Θ] such that Γ ′ �−→Θ′. Since

Θ′ P−→ Γ ′ then holds because of the dual of Axiom 10, we conclude [Θ] T [Γ ]
from that with the aid of the first filtration condition (marked (F1) in [14],
§ 4). This shows S−1 ⊆ T . By interchanging the roles of S and T , the property
T−1 ⊆ S can be established in a similar manner. Now, the condition stated in
item 2 of Definition 5 easily follows.

Item 4 is a bit harder to prove. We make use of the following property (∗) of
the intermediate model M ′ introduced above:

(∗) For every finite set {Γ1, . . . , Γn} of points of M ′ there exists a point Γ

of M ′ such that (Γ, Γi) ∈ K−→◦ �−→ for all i = 1, . . . , n (where n ≥ 1).

This is consequence of Lemma 2.3 and the fact that M ′ is generated. Now, it is
clear from the first filtration condition again that the property

(Ψ, Θ) ∈ K−→◦ �−→

passes down to the filtration (where Ψ, Θ are any maximal topP–consistent sets).
Thus M is generated in the following sense. For all classes [Φ] ∈ W we have that

([Γ ], [Φ]) ∈ R ◦ S,

where Γ is obtained according to (∗) after arbitrary representatives of the finitely
many classes contained in W have been chosen. From that, the properties of R,
and item 2, the validity of the pseudo Church-Rosser property for M is clear.

Since the topP–model M from Lemma 3 realizes α, the claimed decidability
result follows readily.

Theorem 2 (Decidability). The set of all topP–derivable formulas is decidable.

Concerning the complexity of the topP–satisfiability problem, we only mention
that this problem is very likely hard for EXPTIME. This is due to the (implicit)
presence of the global modality (see Section 2); cf [16], Ch. 2.2.
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4 Hybridization

Concluding the technical part of the paper, we develop a hybrid logic version
of topP. This extension, HtopP, rectifies the shortcomings of the former sys-
tem to some extent and simultaneously generalizes previous hybridizations of
topologic (e.g., the one from [11]). By enriching the language once again we
first obtain much more expressive power concerning properties of relations, and
this can already be achieved by simply adding suitable sets of nominals to the
ground language; see the just cited paper for some examples. Second, HtopP
turns out to be sound and complete for subset spaces based on past-directed
frames. And finally, HtopP is decidable, too. We outline only the completeness
proof in this section.4 Actually, we will have ‘almost canonical’ completeness. As
an application, we show that the hybrid logic of directed spaces, cf [5], is finitely
axiomatizable and decidable.5 The first property is false for the modal fragment,
and the second one apparantly was unknown before the hybrid methods came
into play.

We now carry out all these things. For a start, we define the extended lan-
guage. As we already indicated above, we merely add two sets of nominals to
the language underlying topP. If the denotation of a nominal is non-empty, then
it should be either a unique state or a distinguished set of states. Let

Nstat = {i, j, . . .} and Nsets = {I, J, . . .}

be the corresponding sets of symbols, which we call names of states and names of
sets, respectively. We assume that PROP, Nstat and Nsets are mutually disjoint.

Definition 6 (Subset spaces with names)

1. Let F = (X, O) be a past-directed subset frame. A hybrid F–valuation is a
mapping

V : PROP ∪ Nstat ∪ Nsets −→ P(X)

such that
(a) V (i) is either ∅ or a singleton subset of X, for every i ∈ Nstat , and
(b) V (A) ∈ O for every A ∈ Nsets .

2. A subset space with names (or, in short, an SSN) is a triple (X, O, V ), where
F = (X, O) is a subset frame as in item 1 and V a hybrid F–valuation.

Note that nominals may have an empty denotation. This is appropriate for our
purposes since it simplifies the proof of the subsequent Theorem 3 a little, but
not common in standard hybrid logic.

4 In order to establish decidability, the techniques from the previous section have to
be tailored to the hybrid context. Due to space limitations we cannot give too many
details regarding this here.

5 A subset frame F = (X, O) is called directed, iff ∀U1, U2 ∈ O, ∀x ∈ X : if x ∈
U1 ∩ U2, then ∃U ∈ O : x ∈ U ⊆ U1 ∩ U2.
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Definition 7 (Satisfaction for nominals). Let M := (X, O, V ) be an SSN
and x, U a neighbourhood situation of the underlying frame. Then

x, U |=M i : ⇐⇒ x ∈ V (i)
x, U |=M I : ⇐⇒ V (I) = U,

for all i ∈ Nstat and I ∈ Nsets .

We now turn to the axioms for nominals. These axioms are divided into two
groups. The formulas of the first group provide for the right interpretation of
the names of states and sets, respectively, in the canonical model which is used
for the proof of completeness below.

13. i ∧ α → K(i → α)
14. I → KI
15. K� (I ∧ α → Lβ) ∨ K� (I ∧ β → Lα) ,

where i ∈ Nstat , I ∈ Nsets and α, β ∈ WFF.6 The schema 13 says that only
one point of any K−→ –equivalence class can be named by a fixed state name.
And the schema 14 guarantees that a set name of such a class is valid across the
whole class. Finally, Axiom 15 captures the property that every element of Nsets

denotes at most one K−→–class. Note the formal similarity of this schema to the
linearity schema L from classical modal logic (cf [14], p 22).

The following two axioms are responsible for the fact that really a structure
of subset space can be ensured with the aid of that model.

16. i ∧ I → � (�(i ∧ I) → i ∧ I)
17. K(�J → �I) ∧ L�J → � (I → L�J) ,

where i, j ∈ Nstat and I, J ∈ Nsets . Axiom 16 corresponds to the antisymmetry of
the relation �−→ on the canonical model we construct later on. The part Axiom
17 plays is less obvious. Roughly speaking, the inclusion relation of subsets is
arranged correctly by this axiom.

By fixing the hybrid proof rules we get to the logical system HtopP. The new
rules are called name and enrichment, respectively. We comment on these
rules right after the next definition.

Definition 8 (The hybrid logic). Let HtopP be the smallest set of formulas
which contains the axiom schemata 1 – 17 and is closed under the application
of the standard modal rule schemata and the following ones:

(namestat)
j → β

β
(namesets)

J → β

β

(∇–enrichment)

〈P〉L� (i ∧ I ∧ ∇(j ∧ J ∧ α)) → β

〈P〉L� (i ∧ I ∧ ∇α) → β
,

where α, β ∈ WFF, i, j ∈ Nstat , I, J ∈ Nsets , ∇ ∈ {L, �, 〈P〉}, and j, J are new
each time, i.e., do not occur in any other syntactic building block of the respective
rule.
6 From now on, WFF denotes the set of formulas of the enriched language.
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For the reader being not familiar with these unorthodox proof rules a ‘contra-
pository’ reading is suggested; e.g., the rule (namestat) is to be read ‘if β is
satisfiable, then j ∧ β is satisfiable, too’ (provided that the nominal j does not
occur in β). The soundness of the hybrid rules should be apparent from that
now. Technically, the name and enrichment rules are used for establishing an
appropriate Lindenbaum Lemma, which makes up the first step in the proof of
the following theorem.

Theorem 3 (Hybrid completeness). HtopP is sound and complete with re-
spect to the class of all subset spaces with names.

Proof. The proof of Theorem 3 goes along the lines of the proof of Theorem 3.2
from [17], but some modifications are required during the construction of the
model refuting a given non-derivable formula α. We start off with the canonical
model of HtopP. Let us retain the designations C, K−→ , �−→ , and P−→ from the
previous section, and let Γ0 be a maximal consistent set containing ¬α. If Γ is
any element of C, then Γ is called

– named iff Γ contains some i ∈ Nstat and some I ∈ Nsets , and
– enriched iff, for every ∇ ∈ {L, �, 〈P〉}, whenever 〈P〉L� (i ∧ I ∧ ∇α) ∈ Γ ,

then there are j ∈ Nstat and J ∈ Nsets such that

〈P〉L� (i ∧ I ∧ ∇(j ∧ J ∧ α)) ∈ Γ.

Now, it is our first task to extend Γ0 to a named and enriched maximal con-
sistent set Γ ′ in the language to which enough new constants have been added.
This can be achieved in the usual way by means of the Lindenbaum Lemma
mentioned above.

Secondly, we consider the canonical model of HtopP which is formed with re-
spect to the latter language. Let M0 be the submodel generated by Γ ′ of this
model. We then have that the interpretation of the set names in M0 is uniquely
determined.7

Lemma 4. Let D be the domain of M0 and let I be a set name. Assume that
both of Γ, Γ ′ ∈ D contain I. Then Γ

K−→Γ ′.

Proof. Suppose on the contrary that there are two points Γ, Γ ′ ∈ D such that
I ∈ Γ ∩ Γ ′, but not Γ

K−→ Γ ′. Then there is some n ∈ N and a sequence
Γ0, Γ1, . . . , Γn of elements of D such that Γ0 = Γ , Γn = Γ ′, and Γi, Γi+1 are
connected by either K−→ , �−→ , or P−→ , for all i = 0 . . . n − 1. This is true since
M0 is generated. Now, Lemma 2.3 implies that there exist Ψ, Θ ∈ D such that

Γ
P−→Ψ

K−→Θ
�−→Γ ′.

The desired contradiction then follows with the aid of Axiom 15.
7 We exemplarily focus on this point of the completeness proof a little more detailedly.
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Let D′ be the set of all points of D that are named, and let M′ be the cor-
responding substructure of M0. M′ is the model we want to operate on. The
subsequent Existence Lemma is due to our special notion of enrichment.

Lemma 5. Assume that Γ ∈ D′ contains ∇α, where ∇ ∈ {L, �, 〈P〉} is the
respective dual of Δ ∈ {K, �, P}. Then there exists some Θ ∈ D′ satisfying
Γ

Δ−→Θ and α ∈ Θ.

The desired model falsifying α can be obtained as a certain space of partial
functions, X , over the model M′ now. The domain dom(h) of every such function
h ∈ X is a subset of the set

Q := {[Γ ] | Γ ∈ D′}

of all equivalence classes [Γ ] := {Γ ′ ∈ D′ | Γ
K−→Γ ′} of the accessibility relation

induced by the modality K. Actually, dom(h) is maximal in Q with regard to
the following two conditions:

1. h([Γ ]) ∈ [Γ ] for all [Γ ] ∈ dom(h), and

2. h([Γ ]) �−→h([Θ]) for all [Γ ], [Θ] ∈ dom(h) satisfying [Γ ] � [Θ];

the precedence relation � occurring in the second item is defined by

[Γ ] � [Θ] : ⇐⇒ ∃ Γ ′ ∈ [Γ ], Θ′ ∈ [Θ] : Γ ′ �−→Θ′,

for all points Γ, Θ ∈ D′.8 We write hΓ := h([Γ ]) in case h([Γ ]) exists. Further-
more, we let

– U[Γ ] := {h ∈ X | hΓ exists}, for all Γ ∈ D′,
– O := {U[Γ ] | Γ ∈ D′}, and
– V : PROP ∪ Nstat ∪ Nsets −→ P(X) be defined by

h ∈ V (c) : ⇐⇒ c ∈ hΓ for some Γ ∈ D′ for which hΓ exists,

for all c ∈ PROP ∪ Nstat ∪ Nsets .

We then get that M := (X, O, V ) is a past-directed subset space for which the
relevant Truth Lemma is valid. With that, the completeness of the system HtopP
with respect to the intended class of structures can be concluded in a standard
manner.

In addition, we obtain that the hybrid logic of past-directed subset spaces is
decidable.

Theorem 4 (Hybrid decidability). The set of all HtopP–derivable formulas
is decidable.
8 Note that again quite some proof theory has to be used for establishing that h is

well-defined.
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As aforementioned, we have to skip the proof of this theorem here. For getting an
idea of the proceeding the reader is referred to [17], proof of Theorem 4.4. But we
at least want to emphasize the point crucial to hybrid decidability. This concerns
the verification of the final group of axioms (16 and 17 above) with regard to a
filtration. Actually, it is not necessary to establish the corresponding property
on the filtrated model, but only to validate those instances of the schemata in
which nominals from the filter set occur. This can be achieved by modifying that
filter set appropriately.

At the end of this section, we revisit the ‘guarded jump’–operators investigated
in the paper [18]. For convenience, we remind the reader of the semantics of these
operators. Let M = (X, O, V ) be an SSN and x, U a neighbourhood situation
of the underlying frame. Then

x, U |=M [εI ]α : ⇐⇒ if x ∈ V (I), then x, V (I) |=M α,

for all I ∈ Nsets and α ∈ WFF. The ‘guarded jump’–operators are, therefore,
named variants of the overlap operator considered in Section 2. Thus it is hardly
surprising [εI ] can be defined as well:

[εI ]α :≡ P�(I → α),

for all α ∈ WFF. As a consequence, we get that all the results obtained in
the paper [18] can be inferred from the theorems of the present section. This
applies to the hybrid logic of directed SSNs9 and, in particular, the modal logic
of directed spaces; cf [18], Theorem 20 and Corollary 21, and the discussion in
the introduction to this section.

Theorem 5 (The logic of directed spaces)

1. The hybrid logic of directed SSNs is finitely axiomatizable and decidable.
2. The topo-logic of directed spaces is decidable.

More details concerning this application of the hybrid formalism will be con-
tained in the full version of this paper.

5 Concluding Remarks

In this paper, Moss and Parikh’s topologic was extended by a modality reversing
the effort operator. While this goes smoothly for general subset frames, some
complications arise if special frames form the semantic basis. In this case we
could identify a natural fragment, topP, of the accompanying logic and prove its
decidability. Incorporating concepts from hybrid logic then yielded more satis-
factory results. We established the soundness, completeness, and decidability, of
the hybrid logic of past-directed subset spaces. From that, the decidability of
the logic of directed spaces was obtained as a corollary.

It remains to solve the completeness problem for topP. Moreover, the com-
plexity of the logics must be determined each time. All this is postponed to
future research.
9 The axiom capturing directedness reads �I ∧ �J → �K (〈εI〉� ∧ 〈εJ 〉�) , where

I, J ∈ Nsets and 〈εI〉 denotes the dual of [εI ].
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