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Abstract. Graphs with labeled vertices and edges play an important
role in various applications, including chemistry. A model of learning
from positive and negative examples, naturally described in terms of For-
mal Concept Analysis (FCA), is used here to generate hypotheses about
biological activity of chemical compounds. A standard FCA technique
is used to reduce labeled graphs to object-attribute representation. The
major challenge is the construction of the context, which can involve ten
thousands attributes. The method is tested against a standard dataset
from an ongoing international competition called Predictive Toxicology
Challenge (PTC).

1 Introduction

In [1] we introduced a general construction based on a semilattice of object
description, which we called pattern structure. An example that we used was
related to a lattice on sets of labeled graphs. In general, pattern structures are
naturally reduced to formal contexts. In this paper we present a practical data
mining approach which uses JSM or concept-based hypotheses. On the data side
we use a standard FCA technique, called ordinal scaling [2] for the reduction of
labeled graphs to formal contexts. We consider a chemical application in Predic-
tive Toxicology and compare the results to those obtained with the same learning
model, but different representation language which used predefined descriptors
(attributes) for describing chemical compounds.

2 A Learning Model

2.1 Pattern Structures

In [1] we showed how such an approach is linked to the general FCA frame-
work [2]. In [3] and in [4] we showed how this approach is related to standard
machine learning models such as version spaces and decision trees.

Let G be some set, let (D,�) be a meet-semilattice and let δ : G → D be a
mapping. Then (G,D, δ) with D = (D,�) is called a pattern structure, provided
that the set

δ(G) := {δ(g) | g ∈ G}

K.E. Wolff et al. (Eds.): ICCS 2004, LNAI 3127, pp. 94–108, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Concept-Based Data Mining with Scaled Labeled Graphs 95

generates a complete subsemilattice (Dδ,�) of (D,�) (e.g., when (D,�) is com-
plete, or when G is finite), i.e., every subset X of δ(G) has an infimum �X in
(D,�) and Dδ is the set of these infima.

If (G,D, δ) is a pattern structure, the derivation operators are defined as

A� := �g∈A δ(g) for A ⊆ G

and
d� := {g ∈ G | d � δ(g)} for d ∈ D.

The elements of D are called patterns. The natural order on them is given, as
usual, by

c � d : ⇐⇒ c � d = c,

and is called the subsumption order.
The operators (.)� obviously make a Galois connection between the power

set of G and (D,�). The pairs (A, d) satisfying

A ⊆ G, d ∈ D, A� = d, and A = d�

are called the pattern concepts of (G,D, δ), with extent A and pattern intent
d. For a, b ∈ D the pattern implication a → b holds if a� ⊆ b�. Similarly, for
C,D ⊆ G the object implication C → D holds if C� � D�.

Since (Dδ,�) is complete, there is a (unique) operation � such that (Dδ,�,�)
is a complete lattice. It is given by

�X := �{c ∈ Dδ | ∀x∈X x � c}.

A subset M of D is �-dense for (Dδ,�) if every element of Dδ is of the form
�X for some X ⊆ M . If this is the case, then with

↓ d := {e ∈ D | e � d}

we get
c = �(↓ c ∩M) for every c ∈ Dδ.

Of course, M := Dδ is always an example of a �-dense set.
If M is �-dense in (Dδ,�), then the formal context (G,M, I) with I given

as gIm: ⇔ m � δ(g) is called a representation context for (G,D, δ).
In [1] we proved that for any A ⊆ G, B ⊆ M and d ∈ D the following two

conditions are equivalent:

1. (A, d) is a pattern concept of (G,D, δ) and B =↓ d ∩M .
2. (A,B) is a formal concept of (G,M, I) and d =

⊔
B.

Thus, the pattern concepts of (G,D, δ) are in 1-1-correspondence with the
formal concepts of (G,M, I). Corresponding concepts have the same first com-
ponents (called extents). These extents form a closure system on G and thus a
complete lattice, which is isomorphic to the concept lattice of (G,M, I).
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2.2 Hypotheses in Pattern Structures

In [5,6,7] we considered a learning model from [8] in terms of Formal Concept
Analysis. This model assumes that the cause of a target property resides in com-
mon attributes of objects that have this property.

For pattern structures this can be formalized as follows. Let (G,D, δ) be a
pattern structure together with an external target property ω. As in the case
of standard contexts, the set G of all objects is partitioned into three disjoint
sets w.r.t. ω: the sets G+, G−, Gτ of positive, negative, and undetermined ex-
amples, respectively. For positive examples it is known that they have property
ω, for negative examples it is known that they do not have property ω, and
for undetermined examples it is not known whether they have or do not have
ω. This gives three pattern substructures of (G,D, δ): (G+, D, δ+), (G−, D, δ−),
(Gτ , D, δτ ), where δε for ε ∈ {+,−, τ} are restrictions of δ to the corresponding
sets of examples. For brevity sake, we shall write just δ instead of δε.

A positive hypothesis h is defined as a pattern intent of (G+, D, δ) that is not
subsumed by any pattern from δ(G−) (for short: not subsumed by any negative
example). Formally: h ∈ D is a positive hypothesis iff

h� ∩G− = ∅ and ∃A ⊆ G+ : A� = h.

A negative hypothesis is defined accordingly. A hypothesis in the sense of [9,8,7]
is obtained as a special case of this definition when (D,�) = (2M ,∩) for some
set M then we have a standard context (object-attribute) representation.

Hypotheses can be used for classification of undetermined examples as intro-
duced in [8] in the following way. If g ∈ Gτ is an undetermined example, then a
hypothesis h with h � δ(g) is for the positive classification of g if h is positive
and for the negative classification of g if it is a negative hypothesis.

An example g ∈ Gτ is classified positively if there is a hypothesis for its posi-
tive classification and no hypothesis for the negative classification. g is classified
negatively in the opposite case. If there are hypotheses for both positive and
negative classification, then some other methods (based on standard statistical
techniques) may be applied.

2.3 An Example with Labeled Graphs

Consider a pattern structure based on a given ordered set G of graphs (V,E)
with vertex- and edge-labels from the sets (LV ,�) and (LE ,�). Each labeled
graph Γ from G is a quadruple of the form ((V, l), (E, b)), where V is a set of
vertices, E is a set of edges, l:V → LV is a function assigning labels to vertices,
and b:E → LE is a function assigning labels to edges. We do not distinguish
isomorphic graphs with identical labelings.

The order is defined as follows: For two graphs Γ1 := ((V1, l1), (E1, b1)) and
Γ2 := ((V2, l2), (E2, b2)) from G we say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or
Γ2 is a subgraph of Γ1) if there exists a one-to-one mapping ϕ : V2 → V1 such
that it
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– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), (v, w) ∈ E2 ⇒ b2(v, w) � b1(ϕ(v), ϕ(w)).

Two small examples are given in Figure 1.
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Fig. 1. With LV = {C, NH2, CH3, OH, x} we have subgraphs as shown in the diagrams
above. In all subsequent examples the label value x will not be admitted and unordered
vertex labels will be used

A pattern structure for these graphs then is defined as (G,D, δ), where the
semilatticeD := (D,�) consists of all sets of subgraphs of graphs from G (“graph
sets”), and the meet operation � on graph sets is defined as follows: For two
graphs X and Y from G

{X} � {Y } := {Z | Zy ≤ X,Y, ∀Z∗ ≤ X,Y Z∗ �≥ Z},
i.e., {X} � {Y } is the set of all maximal common subgraphs of X and Y . The
meet of non-singleton sets of graphs is defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(�i,j({Xi} � {Yj}))

for details see [10,6,1]. Here is an example of applying � defined above:
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To get an example of such a pattern structure, let G := G+ ∪G−, Where G+
consists of the first four graphs Γ1, Γ2, Γ3, Γ4 of Figure 2 and G− := {Γ5, Γ6, Γ7}.

The pattern concept lattice of the positive pattern structure (G+, D, δ) is
given in Figure 3.

2.4 Projections and Projected Hypotheses

Since for some pattern structures (e.g., for the pattern structure given by sets
of graphs with labeled vertices) even computing subsumption relation may be
NP-hard, in [1] we introduced projection operators to approximate pattern struc-
tures. A projection (kernel operator) is a mapping ψ:D → D which is
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Fig. 2. Seven labeled graphs for a pattern structure.

monotone: if x � y, then ψ(x) � ψ(y),
contractive: ψ(x) � x, and
idempotent: ψ(ψ(x)) = ψ(x).

Any projection of a complete semilattice (D,�) is �-preserving, i.e., for any
X,Y ∈ D

ψ(X � Y ) = ψ(X) � ψ(Y ),

which helps us to describe how the lattice of pattern concepts changes when we
replace (G,D, δ) by its approximation (G,D,ψ ◦ δ). First, we note that ψ(d) �
δ(g) ⇔ ψ(d) � ψ ◦ δ(g). Then, using the basic theorem of FCA (which, in
particular allows one to represent every lattice as a concept lattice), we showed
how the projected pattern lattice is represented by a context [1]:

Theorem 1 For pattern structures (G,D, δ1) and (G,D, δ2) the following state-
ments are equivalent:

1. δ2 = ψ ◦ δ1 for some projection ψ of D.
2. There is a representation context (G,M, I) of (G,D, δ1) and some N ⊆ M

such that (G,N, I ∩ (G×N)) is a representation context of (G,D, δ2).

The properties of projection allow one to relate hypotheses in the original
representation with those approximated by a projection. As in [1] we use the
term “hypothesis” to those obtained for (G,D, δ) and we refer to those obtained
for (G,D,ψ ◦ δ) as ψ-hypotheses. There is no guarantee that the ψ-image of a
hypothesis will be a ψ-hypothesis. In fact, our definition allows that ψ is the “null
projection” with ψ(d) = 0 for all d ∈ D (total abandoning of the data with no
interesting hypotheses). However, if ψ(d) is a (positive) hypothesis, then ψ(d) is
also a (positive) ψ-hypothesis. If we want to look the other way round, we have
the following: if ψ(d) is a (positive) ψ-hypothesis, then ψ(d)�� is a (positive)
hypothesis [1].
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Fig. 3. The pattern concept lattice of the positive pattern structure

The set of all hypothesis-based classifications does not shrink when we pass
from d to ψ(d). Formally, if d is a hypothesis for the positive classification of g
and ψ(d) is a positive ψ-hypothesis, then ψ(d) is for the positive classification
of g.

The above observations show that we can generate hypotheses starting from
projections. For example, we can select only those that can be seen in the pro-
jected data, which is suggested by the following theorem from [1]:

Theorem 2 For any projection ψ and any positive hypothesis d ∈ D the follow-
ing are equivalent:

1. ψ(d) is not subsumed by any negative example.
2. There is some positive ψ-hypothesis h such that h�� � d.

An example is shown in Figure 4). We have used the same data as in Figure 3,
but the set D of graph sets was restricted to graphs with less then four vertices.

3 Scaling Labeled Graphs and Their Projections

In this section we shall discuss an application of the learning model, introduced
in Section 2 to the problem of bioactivity prediction. In our experiments we will
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Fig. 4. The lattice of the projected positive pattern structure

use the data from the Predictive Toxicology Challenge (PTC), an ongoing inter-
national competition. First, we shall briefly describe the format of PTC (Sub-
section 3.1). Then we shall discuss k-projections of labeled undirected graphs as
a means of approximate representation of graph data.

3.1 Predictive Toxicology Challenge

The program of a workshop on Predictive Toxicology Challenge (PTC) [11], (at
the joint 12th European Conference on Machine Learning and the 5th Euro-
pean Conference on Principles of Knowledge Discovery in Databases) consisted
in a competition of machine learning programs for generation of hypothetical
causes of toxicity from positive and negative examples of toxicity. The organiz-
ers (Machine Learning groups of the Freiburg University, Oxford University, and
University of Wales) together with toxicology experts (US Environmental Pro-
tection Agency, US National Institute of Environmental and Health Standards)
provided participants with training and test datasets.

The training dataset consisted of descriptions of 185 molecular graphs of 409
chemical compounds with indication of whether a compound is toxic or not for a
particular sex/species group out of four possible groups: male mice, female mice,
male rats and female rats. For each group there were about 120 to 150 positive
examples and 190 to 230 negative examples of toxicity. The test dataset consisted
of 185 substances for which forecasts of toxicity should be made. Twelve research
groups (world-wide) participated in PTC, each with up to 4 prediction models
for every sex/species group.
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3.2 Representation Contexts for Graph Data

The source data of the PTC datasets are molecular graphs. These are graphs in
the sense of Subsection 2.3 above, with labeled Vertices and edges. We cant there-
fore apply the methods from Section 2. Another view is the following (working
directly with a representation context): Think of the source data as a many-
valued context with a single many-valued attribute “graph”, assigning to each
compound its molecular graph. This many-valued context is (ordinaly) scaled
one, such that the attributes of the derived context are all (connected) sub-
graphs of the graphs under consideration and each graph has its subgraps as
attributes.

However, generating this context is a rather time-consuming process. The
difficulty of generating all subgraphs is due to costly isomorphism and subgraph
isomorphism testing (the latter is an NP-complete problem). There are several
well-known algorithms for these problems, e.g., that of B. D. McKay [12] for
isomorphism testing and the algorithm of J. R. Ullmann [13] for testing subgraph
isomorphism. Since the generation of all subgraphs for an arbitrary labeled graph
is a computationally hard task, we use k-projections of initial graphs. The notion
of projection introduced in Section 2 for general semilattices can be specified for
the lattice on graph sets, e.g., as follows.
Definition 1. Let Γ = ((V, l), (E, b)) be a labeled graph. The set SΓ = {Γ∗ =
((V∗, l∗), (E∗, b∗)) | Γ∗ is connected, Γ∗ ≤ Γ, |V∗| ≤ k} is called a k-projection
of Γ .

Thus, k-projection of a labeled graph Γ is a set of all subgraphs (up to
isomorphism) of Γ with up to k-size set of vertices. Obviously, k-projection
satisfies the properties of the kernel operator. When we use k-projections of
graphs, then in the corresponding representation context (G,M, I), the set of
objects G is a set of chemical compound names, M is a set of subgraphs of
molecular graphs with k or less vertices and gIm means that the graph m ∈ M
is a subgraph of the molecular graph of the compound g ∈ G.

So far, we have generated these contexts for the values of k from 1 up to 8.
With the growth of k, the number of attributes in the resulting scaled context
becomes very large (thousands of attributes), but reduction of attributes (a stan-
dard FCA technique) reduces the size of contexts in several times, see Figure 5.

projection size 1 2 3 4 5 6 7 8
# attributes in full context 22 95 329 1066 3275 9814 28025 76358
# attributes in reduced context 22 72 153 373 812 1548 2637 3981
reducing time (in sec.) 1 1 2 5 16 57 219 883

Fig. 5. PTC dataset: number of attributes in representation contexts before and after
attribute reduction
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4 QuDA: Qualitative Data Analysis

After the preprocessing step described above, we had 8 datasets. Each of these
datasets was an encoding of the original PTC data by means of 1- to 8-
projections, respectively. Our goal was to test whether hypotheses obtained for
these encodings can be better than those obtained for other encoding schemes
proposed by the PTC participants [11]. To do that we have used the QuDA
software [14,15].

4.1 A Brief Description of QuDA

History and motivation. QuDA, a data miners’ discovery environment was
developed at the Intellectics group of the Darmstadt University of Technology
in 2001-2003. The authors are P. Grigoriev and S. Yevtushenko. This project
was started as a “companion” data mining system for the DaMiT tutorial [16]
by initiative of the authors.
Usage. QuDA can serve as a personal data mining environment for analyzing
mid-sized datasets (up to ten thousands of records). Most of its functionality
is also accessible from external applications thus allowing the use of it in inte-
grated solutions. QuDA has an open architecture; it supports scripting and has
import/export capabilities for the most commonly used data/model formats.
Functionality. QuDA implements various data mining techniques, including as-
sociation rule mining, decision tree induction, JSM-reasoning1, Bayesian learn-
ing, and interesting subgroup discovery. It provides also several preprocessing
and postprocessing utilities, including data cleaning tools, visualization of at-
tribute distributions, dynamic Hasse diagrams, and a ruleset navigator.
Implementation. QuDA is implemented entirely in Java. The system consists
of approximately 1700 classes; the source codes take approximately 3.5Mb.
Availability. QuDA is freeware. It is available for download at the DaMiT
tutorial site (http://damit.dfki.de) as well as at its own site at the Intellectics
group (http://ki-www2.intellektik.informatik.tu-darmtadt.de/˜jsm/QDA).

4.2 Using QuDA for Bioactivity Prediction: Sequential Covering

QuDA implements several variants of the learning model described in Section 2.
In our experiments we used the strategy of sequential covering with structural
similarities. This procedure does not generate the set of all hypotheses, but
generates a subset of it, sufficient to explain every of the examples in the training
set.

Briefly, this strategy can be described as follows:

1. objects in G+ are sorted according to some fixed linear order (e.g., in the
order they appear in the dataset);

1 This name stands for a group of lattice-based machine learning methods, including
the model described in Section 2.
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2. the set of hypotheses H is initialized with an empty set;
3. first object g+ in G+, which is not covered by any hypothesis inH is selected;
4. a hypotheses h, covering g+ is found by generalizing its description with

descriptions of other objects in G+ uncovered so far by H;
5. the new-found hypothesis h is added to H and the procedure continues from

the step 3 until every object in G+ is covered by at least one hypothesis in
H.

A pseudocode for the main loop of this procedure is given in Figure 6. Figure
7 provides pseudocode for the step 4: finding a hypothesis that explains a partic-
ular example, uncovered so far. We provide only the pseudocode for generating
positive hypotheses. Generating negative hypotheses is organized dually.

function SequentialCovering()
{

H := ∅;

UnexplainedExamples := G+;

for each g in G+

{
if g ∈ UnexplainedExamples
{

explanation := findExplanation(g, UnexplainedExamples);
UnexplainedExamples := UnexplainedExamples \ explanation�;
H := H ∪ {explanation};

}
}
return H;

}

Fig. 6. Sequential covering: the main loop

Although the sequential covering strategy has a number of obvious drawbacks
(most notably – its dependence on the selected order of objects), we decided to
use this strategy instead of generating all hypotheses for several reasons:

– it has attractive computational complexity: linear in the number of attributes
in the representation context (see Section 2), linear in the number of negative
examples (G−), and quadratic in the number of positive examples (G+);

– in practical experiments on a number of real-world datasets [15] it has shown
classification accuracy and recall comparable to those of the strategy where
all hypotheses are generated.
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function findExplanation(g, P)
{

explanation := δ(g);

for each g+ in P
{

candidate := explanation � δ(g+)
if candidate� ∩ G− = ∅

explanation := candidate;
}
return explanation;

}

Fig. 7. Sequential covering: findExplanation procedure

We conclude this section with a final remark, which aims at making our
results reproducible. The sequential covering strategy naturally depends on the
order on objects. This order is used in the main loop to select the next object
to find an explanation for; at the same time this order determines the sequence
in which objects are used for generalization in the findExplanation procedure.
In our experiments we have used the order in which objects were presented in
the source dataset.

5 Experiments with the PTC Dataset

One of the standard techniques used in machine learning for comparison of the
classification algorithms is the so-called ROC-analysis 2. Here, results obtained
by a learning model are represented by a point on (x, y)-plane, where x stays
for the relative number of false positive predictions and y stays for the relative
number of true positive predictions. The best (usually unattaianble) point is (0,1)
and the strait line from (0,0) to (1,1) corresponds to models that are equivalent to
random guess under uniform distribution. When the costs of correct classification
and misclassification are not known in advance, “best” models correspond to
points lying on the convex hull of leftmost points. ROC-diagrams were used in
the Predictive Toxicology Challenge to select the best learning models. Here we
also use ROC-diagrams to demonstrate the usage of projected pattern structures
for bioactivity prediction in comparison to other encoding schemes and/or other
learning models.

2 ROC is the abbreviation for Receiver Operating Characteristic, see [17]
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5.1 Projected Pattern Structures “On the ROC”

The results are shown in Figure 8. The following abbreviations are used:

– PR1, PR2, ..., PR8 – the results obtained using 1- to 8-Projection represen-
tations, respectively, in combination with sequential covering strategy;

– WAI1, GONZ, KWAI, LEU3 are other “best” models submitted to the Pre-
dictive Toxicology Challenge for this animal group.

Note, that the Figure 8 shows both the “old” ROC-curve (composed by
LEU3, KWAI, GONZ, and WAI1 models) and the “new” one (composed by
LEU3, PR7, PR5, and WAI1 models).

Fig. 8. Projected pattern structures “On the ROC”. Animal group: MR (male rats).

As one can “read” from the ROC-diagram in Figure 8:

– using 1-Projections does not lead to any classifications at all (false positive
rate and true positive rate equal zero);

– using 2-Projections results in rather bad classifications: the corresponding
point on the ROC-diagram is below the diagonal;
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Fig. 9. Projected pattern structures “On the ROC”. Animal group: FR (female rats).

Fig. 10. Projected pattern structures “On the ROC”. Animal groups: MM and FM
(male and female mice).



Concept-Based Data Mining with Scaled Labeled Graphs 107

– using 3-Projections results in better classifications: the corresponding point
on the ROC-diagram is above the diagonal;

– using 4-Projections results in even better classifications: the corresponding
point is above the “old” ROC-curve;

– using 5-Projections occurs to be one of the four “new” best strategies: it
results in making 8 true positive predictions with only 2 false positive ones;

– using 6-Projections, however, does not result in better classifications: the
number of true positives decreases to 6; the number of false positives remains
the same;

– using 7-Projections, with 4 true positives and 1 false positives again appears
on the “new” ROC-curve;

– using 8-Projections increases the number of true positives to 6, but also
increases the number of false positives to 2; this strategy is thus strictly
worse than using 5-Projections (assuming positive cost of making a true
positive classification);

For the FR group (female rats; see Figure 9) the strategies with 4-, 5-, 6-,
and 8-Projections occur above the “old” ROC-curve, without, however, making
any of the “old” best models (LEU3 and KWAI) lose their positions.

For the other two animal groups (MM and FM, male and female mice) our
strategy did not bring any good results (see Figure 10).

6 Conclusions and Further Work

Our practical result is: In two animal groups of the four the classification accu-
racy obtained with molecular graph projections and sequential covering strategy
appeared to be among the best known. In the other two groups, however, this was
not the case.

Somewhat more interesting, although expected result is the demonstrated
non-monotonicity of the classification accuracy by k-Projections with the growth
of k. At first glance, this result may seem strange, as increasing the size of projec-
tions we increase the amount of information available for the learning algorithm.
However, in practice this information growth often results in generating more
irrelevant hypotheses and thus, in the decrease of classification accuracy.

The most interesting directions of further research are as follows:

– check the proposed approach on other real-world datasets involving graph
representation; these include other datasets from the bioactivity prediction
domain as well as datasets from other domains, e.g. web structure mining,
ontology-based text mining, etc.;

– incorporate standard machine learning algorithms for feature selection
and/or develop specialized ones to overcome classification accuracy decrease
when growing the size of projections;

– in our experiments we have used a trivial conflict resolution technique: if a
certain object contained both positive and negative hypotheses it remained
undefined; other strategies, e.g. voting, may prove more appropriate.
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