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1 Introduction

In this chapter, we address the problem of optimal Traffic Engineering (TE) in com-
puter networks; i.e., determining an optimal traffic allocation in the presence of both
multiple paths and multiple Classes of Service (CoSs). More precisely, we aim at
designing data rate adaptation laws that maximize the utilization of the network re-
sources (as measured by a given utility function) subject to link capacity constraints
and call service requirements.

This problem, as it is formulated here, is an “easy” problem; i.e., the problem
of optimal traffic allocation can be stated as maximizing a concave function sub-
ject to linear constraints. Hence, if global information is available, one could use
well-known algorithms, such as gradient descent, to determine the optimal traffic
allocation.

However, in most computer networks, it is not possible to obtain an accurate
measure of the network status. Even if this is possible, there would be a delay in the
propagation of the information. Furthermore, obtaining such information would re-
quire the propagation of large amounts of data in the network, leading to a significant
increase in the network traffic and, hence, a decrease on the resources available for
user utilization. Given this, the objective of the work presented in this chapter is to
develop decentralized adaptation laws that converge to the optimal traffic allocation
using the least possible amount of feedback from the network. The algorithms pre-
sented here allow for the distribution of the traffic among several paths. Furthermore,
they allow for multiple CoSs.

To accomplish these objectives, we use results from nonlinear control theory to
design control laws that endow the network with the “right” dynamic behavior. More
precisely, by treating calls as flows, we develop data rate adaptation algorithms that
result in an asymptotically stable system whose equilibrium points are optimal traffic
allocations. In other words, we endow the network with the necessary dynamics to
“solve” the optimal traffic engineering problem mentioned above.
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Central to the results presented here is Sliding Mode theory and its use in math-
ematical programming; e.g., see [14]. A first motivation for the use of the approach
presented here is the fact that currently used Transport Control Protocol (TCP) con-
gestion control algorithms can be thought of, in their essence, as sliding mode con-
trol laws. More precisely, in the TCP congestion avoidance phase, the data rate is
increased linearly if no congestion is detected and decreased exponentially when
congestion occurs. In other words, one has a congestion control law which is discon-
tinuous along the surface that represents the “congestion barrier”. Using tools other
than sliding modes, it has been proven that the TCP congestion control law is optimal
in the single path case ([2, 11]). However, this work does not extend to the multiple
path case.

The realization that currently used adaptation laws can be studied using nonlinear
control theory provides the motivation for the approach taken in this chapter. We
show that one can use sliding mode theory to develop rate control laws for a class of
service enabled network where several paths are available for each call. Moreover,
we show that this can be done with minimal feedback from the network.

1.1 Literature Background

There is extensive literature on distributed traffic control. It includes both empirical
algorithms (for example, see [4, 5]) and algorithms based on control theory; e.g.,
see [1, 2, 12]. These algorithms are designed for single path rate adaptation and the
approach taken is not optimization-based.

Recently, several methodologies have been proposed which address the optimiza-
tion-based rate adaptation problem using nonlinear optimization techniques. Their
starting point is similar to the one in this chapter; i.e., maximization (minimization)
of a utility (cost) function, subject to network resource constraints, where the con-
straints represent the interaction between different types of traffic; i.e., traffic with
different ingress/egress nodes and/or different service requirements.

In the paper by Golestani, et al. [6], instead of using link resource constraints, a
link congestion cost is incorporated into the overall utility function. The optimization
problem was then solved using a gradient type algorithm. Iterative algorithms were
proposed where individual sources periodically adjust their sending rates based on
the congestion cost information periodically fed back from each of the links along
the flow forwarding paths.

Kelly, et al. [7] use a Lagrangian multiplier technique to solve the optimization
problem at hand. This results in a separation between the rate control executed at
individual sources and the calculation of a “price” for each link in the network. The
rate control at individual sources is based on the “prices” fed back from all the links
in the data paths. The computation of the “price” is in turn based on the sending rate
information fed back from all the sources using this link. Since only a relaxation
of the original optimization problem is solved, it is not proven that the algorithm
converges to the optimal traffic allocation. The same formulation is used in the work
by La, et al. [8] where the algorithm provided is proven to converge to the optimum
rate allocation in the single congested link case (low traffic networks).
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Low [10] uses a technique which converts a constrained problem into a non-
constrained dual problem. This reformulation results in a similar distributed control
scheme to the one presented in [7]. Iterative algorithms were also proposed and their
convergence is proven for the single-path case. A similar approach is taken by Sarkar,
et al. [13] to address the optimization-based multi-rate multicast. A distributed con-
trol scheme is proposed and it degenerates to the one in [10] when there is only one
path in the multicast tree.

2 Notation and Assumptions

In our model, the traffic flows are assumed to be described by a fluid flow model and
the only resource considered is link bandwidth. In the remainder of this chapter we
will use the terms call, session and flow interchangeably.

Consider a computer network where calls with different service requirements are
present. We divide these calls into types. Types are aggregate of calls that, from the
point a view of the traffic engineering algorithm, can be treated as a unit; i.e., these
are calls with the same ingress and egress nodes and the service requirements are
to be applied to the aggregate, not the individual calls. One can have call types with
just one call. Moreover, one can have different call types with the same ingress/egress
node pair. We assume that each call type can have several paths available. The objec-
tive is to find the allocation of the resources that leads to the maximization of a given
utility function subject to the network resource constraints and CoS requirements.

More precisely, consider a computer network whose set of links is denoted by L,
with cardinality card(L). Let cl be the capacity of link l ∈ L, n be the number of
types of calls, ni be the number of paths available for calls of type i and Li, j be the
set of links used by calls of type i taking path j. Given calls of type i, let xi, j be the
total data rate of calls of type i using path j. Also, let

xi
.= [xi,1,xi,2, . . . ,xi,ni ]

T ∈ Rni

denote the vector containing the data rates allocated to the different paths taken by
calls of type i and

x .=
[
xT

1 ,xT
2 , . . . ,xT

n

]T ∈ Rn1+n2+···+nn

the vector containing all the data rates allocated to different call types and respective
paths. Now, a link l ∈ L is said to be congested if the aggregated data rate of the
calls using the link reaches its capacity cl . Given this, define bi, j(x) as the number of
congested links along the j-th path of calls of type i. Finally, let u(x) be the unit step
function; i.e., u(x) = 1 if x ≥ 0 and u(x) = 0 otherwise.

2.1 Classes of Service

Each call in the network is associated to some service requirement or Class of Service
(CoS). We assume that five categories of CoSs share the network: Calls of type i,
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i = 1,2, . . . ,s1 , are assumed, without loss of generality, to be of Assured Service (AS)
CoS category. By AS we mean that a target rate for the call should be guaranteed in
average sense. More precisely, assuming that the target rate for xi is Λi, the objective
is to allocate the data rates in such a way that

ni

∑
j=1

xi, j = Λi,

for all i = 1,2, . . . ,s1. Calls of type i, i = s1 + 1,s1 + 2, . . . ,s2 , are assumed to be of
the Minimum Rate Guaranteed Service category (MRGS). More precisely, this type
of calls should satisfy the following requirement

ni

∑
j=1

xi, j ≥ θi,

for some θi > 0 and all i = s1 + 1,s1 + 2, . . . ,s2.
Calls of type i, i = s2 + 1,s2 + 2, . . . ,s3 , belong to the Upper Bounded Rate Ser-

vice (UBRS) category; i.e., there is an upper bound on the maximum bandwidth that
can be used. More precisely, traffic should be allocated in such a way that calls of
type i satisfy

ni

∑
j=1

xi, j ≤ Θi,

for some Θi > 0 and all i = s2 + 1,s2 + 2, . . . ,s3.
Next, calls of type i, i = s3 +1,s3+2, . . . ,s4 , are defined to be of the CoS category

consisting traffic with both a Minimum Service Guarantee and an Upper Bounded
Rate (MRGUBS); i.e., traffic should be allocated so that

θi ≤
ni

∑
j=1

xi, j ≤ Θi,

for some θi > 0, Θi > 0 and all i = s3 + 1,s3 + 2, . . . ,s4.
Finally, calls of type i, i = s4 +1,s4 +2, . . . ,n are assumed to be of the Best Effort

(BE) class. Calls of this class do not have any service requirements.

3 The Network Optimization Problem

The results in this chapter aim at solving the problem of maximizing utility functions
of the form

U(x) .=
n

∑
i=1

fi(xi)
.=

n

∑
i=1

fi (xi,1,xi,2, . . . ,xi,ni) ,

subject to the network constraints and CoS requirements, where fi(·), i = 1,2, . . . ,n ,
are differentiable increasing concave functions.

Given this, the problem of optimal resource allocation can be formulated as the
following optimization problem:
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max
x

U(x)

subject to the network capacity constraints

∑
i, j : l∈Li, j

xi, j − cl ≤ 0; l ∈ L,

the AS requirements
ni

∑
j=1

xi, j = Λi; i = 1,2, . . . ,s1,

the MRGS requirements

ni

∑
j=1

xi, j ≥ θi; i = s1 + 1,s1 + 2, . . . ,s2,

the UBRS requirements

ni

∑
j=1

xi, j ≤ Θi; i = s2 + 1,s2 + 2, . . . ,s3,

the MRGUBS requirements

θi ≤
ni

∑
j=1

xi, j ≤ Θi; i = s3 + 1,s3 + 2, . . . ,s4

and all data rates are non-negative xi, j ≥ 0, for i = 1,2, . . . ,n and j = 1,2, . . . ,ni.
Obviously, the optimization problem above is a convex problem; i.e., maximiz-

ing a concave function over a convex set. Algorithms such as gradient descent could
be used to solve it provided global information is available. However, this is not gen-
erally the case. The objective of this work is then to provide decentralized adaptation
laws that converge to the solution of the problem stated above.

4 Sliding Mode Control Laws

In this section the proposed solution to the optimization problem above is presented.
This solution consists of a family of Sliding Mode control laws that achieve optimal
utilization of network resources.

4.1 A Family of Optimal Control Laws

Define the following family of control laws: For i = 1,2, . . . ,s1 (AS calls), let

ẋi, j = zi, j
(
t,xi(t),bi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αbi, j(x)−βiri(xi)+ ξi, ju(−xi, j)

]
,
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where

ri(xi) =




1 if
ni

∑
j=1

xi, j > Λi

−1 if
ni

∑
j=1

xi, j < Λi

.

For i = s1 + 1,s1 + 2, . . . ,s2 (MRGS calls), let

ẋi, j = zi, j
(
t,xi(t),bi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αbi, j(x)+ βm
i rm

i (xi)+ ξi, ju(−xi, j)

]
,

where

rm
i (xi) =




0 if
ni

∑
j=1

xi, j > θi

1 if
ni

∑
j=1

xi, j < θi

.

For i = s2 + 1,s2 + 2, . . . ,s3 (UBRS calls), let

ẋi, j = zi, j
(
t,xi(t),bi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αbi, j(x)−βM
i rM

i (xi)+ ξi, ju(−xi, j)

]
,

where

rM
i (xi) =




1 if
ni

∑
j=1

xi, j > Θi

0 if
ni

∑
j=1

xi, j < Θi

.

For i = s3 + 1,s3 + 2, . . . ,s4 (MRGUBS calls), let

ẋi, j = zi, j
(
t,xi(t),bi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αbi, j(x)+ βm
i rm

i (xi)−βM
i rM

i (xi)+ ξi, ju(−xi, j)

]
,

where

rm
i (xi) =




0 if
ni

∑
j=1

xi, j > θi

1 if
ni

∑
j=1

xi, j < θi

and rM
i (xi) =




1 if
ni

∑
j=1

xi, j > Θi

0 if
ni

∑
j=1

xi, j < Θi

.

For i = s4 + 1,s4 + 2, . . . ,n (BE calls), let

ẋi, j = zi, j
(
t,xi(t),bi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αbi, j(x)+ ξi, ju(−xi, j)

]
.
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In the equations above zi, j(·), α, βi, βm
i , βM

i and ξi, j are design parameters and bi, j is
the number of congested links encountered by calls of type i taking path j.

We now formally establish the optimality of these control laws; i.e., the control
laws presented above converge to the optimal traffic allocation for the problem at
hand. The proof of this result is presented in Section 10.1.

Theorem 1 (Optimal Control Laws). Assume that all data rates are bounded; i.e.,
there exists an ρ ∈ R such that the data rate vector x always belongs to the set

X
.=
{

x ∈ Rn1+n2+···+nn : xi, j ≤ ρ; l ∈ Li, j; j = 1,2, . . . ,ni; i = 1,2, . . . ,n
}
.

Also, assume that at the optimal traffic allocation, each congested link has at least
one non-binding class of service or a BE call with a nonzero data rate. Furthermore,
assume that the components of the gradient of the utility function; i.e., ∇U(x), are
bounded in X.

Let ζ > 0 be a given (arbitrarily small) constant and let zi, j
(
t,xi(t),bi, j(t)

)
be

scalar functions continuous in t for all choices of xi(t) ∈ X and bi, j(t) ∈ {0,1},
satisfying zi, j

(
t,xi(t),bi, j(t)

)
> ζ, for all t > 0. Moreover, let α > αmin, βi > βmin,

βm
i > βmin, βM

i > βmin and ξi, j > ξmin be positive constants, with

αmin
.= max

i, j,x∈X

∂U(x)
∂xi, j

, βmin
.= αmin max

i, j
Bi, j, ξi, j,min

.= αBi, j + βi,

where β ∈ {βi,βm
i ,βM

i } and Bi, j is the number of links used by calls of type i taking
path j.

Then, the control laws presented in Section 4.1 converge to the maximum of the
utility function

U(x) .=
n

∑
i=1

fi(xi)
.=

n

∑
i=1

fi (xi,1,xi,2, . . . ,xi,ni) , (1)

subject to the network link capacity constraints and AS, MRGS, UBRS, MRGUBS
and non-negativity requirements.

4.2 A Family of Quasi-Optimal Control Laws

It should be noted that the proposed algorithm might converge to a non-optimal equi-
librium if the true number of congested links is not known. Nevertheless, experiments
suggest that if a large value of α is used then the algorithm becomes more robust with
respect to this loss of information. However, there is a trade-off in doing so, since
larger values of α will result in larger oscillations.

To be more precise, let us consider the case of a single path per call type and
only BE service being provided. Furthermore, assume that all data rates are bounded
away from zero and that the utility function that one is trying to maximize is

U(x) =
n

∑
i=1

fi(xi).
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In the case of a single path, the control law proposed in this work becomes

ẋi = zi(t,x)
[
di(xi)−αbi(x)

]
,

where di(xi) = d fi
/

dxi. Assume that the only information available is whether the
path is congested or not in which case bi is either zero or one. Then, according to [11],
the control law converges to the maximum of the utility function

Ũ(x) =
n

∑
i=1

∫ xi

0
log

(
α

α− di(ui)

)
dui.

This result shows that we do not converge to the desired point. However, if α is large,
then the two utility functions are approximately the same.

Quasi-Optimal Laws

Given the results above, a new family of control laws is proposed that only uses
less feedback from the network. The only information required is whether a path is
congested or not, as opposed to the number of congested links in it. These laws are
only quasi-optimal. However, they require much less information and therefore, their
implementation is much simpler.

These control laws are similar to the optimal ones and are obtained by replacing
the quantity bi, j in the expressions of Section 4.1 by bini, j defined as

bini, j
.=

{
0 if no links are congested in the path

1 if at least one link in the path is congested
.

We now show that this relaxed version of the control laws converges to a small
neighborhood of the optimal solution to the problem at hand. This is formally stated
through the following theorem whose proof is presented in Section 10.2.

Theorem 2 (Quasi-Optimal Laws). Assume that the hypothesis in Theorem 1 are
satisfied. Furthermore, assume that a similar set of conditions are also satisfied when
replacing bi, j by bini, j .

Then, given any ε > 0 there exists α∗ > αmin such that for all α > α∗ satisfying
the conditions above, the control laws in Section 4.2 converge to an ε-neighborhood
of x∗, where x∗ achieves the maximum of the utility function (1) subject to the network
link capacity constraints, assured service requirements and non-negativity of all the
data rates.

5 Reducing Oscillation

The families of control laws presented in Section 4 can lead to excessive oscillation
when data optimal data rates are close to zero. The structure of the non-negativity
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constraints can be exploited to address this issue. More precisely, a simple truncation
procedure can be used to reduce oscillation and still preserve optimality.

The following Lemma introduces this improved control laws and establishes their
optimality properties. For a proof see the Appendix.

Lemma 1. Define the following family of control laws: For i = 1,2, . . . ,s; i.e., AS
calls, let

pi, j = zi, j
(
t,xi(t),cgi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αcgi, j(t)−βi(t)ri

]
,

where ri(t) is defined as before. For i = s+ 1,s+ 2, . . .,n; i.e., BE calls, let

pi, j = zi, j
(
t,xi(t),cgi, j(t)

)[ ∂ fi

∂xi, j

∣∣∣∣
xi

−αcgi, j(t)

]
.

The family of control laws is then given by

ẋi, j =

{
pi, j if xi, j > 0

max
{

0, pi, j
}

if xi, j = 0
.

Then under the same assumptions of Theorems 1 and 2, the control laws above
converge to the optimal (respectively the given ε-neighborhood of the optimal) traffic
allocation x∗.

Proof. See Section 1.

6 Discrete Time Control Laws and Oscillation Reduction

The implementation of the above control laws in this chapter has to be performed
in discrete time in a “real” network. Therefore, we now describe a discrete-time
approximation of the continuous-time control laws.

As is the case with any discrete time controller design, there are different ways
of obtaining difference state equations from the differential state equations. The ap-
proach used here is the forward rule approximation. This method avoids computa-
tional delays inherent to other discretization techniques such as trapezoidal or back-
ward rule approximation.

Let ẋi, j = gi, j(x, t) denote the continuous time control law described in Section 4.
The discrete approximation that we propose is

xd
i, j

[
(k + 1)td

]
= xd [ktd ]+ tdgi, j

(
x(ktd),ktd

)
; k = 0,1, . . .

where td is the sampling period. Obviously, since this is not a continuous time law,
Sliding Mode theory does not apply. However, one has the following result.
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Proposition 1. Let x(t) be the trajectory obtained using the control laws in Sec-
tion 4 and let xd(t) be the corresponding discrete time trajectory obtained using the
discretization algorithm above. Define the set Xas in Theorem 1.

Given any time interval [t0, t1] and constant ε > 0, there exists a δ > 0 such that
if tdzi, j(t,x) < δ, for all t > 0 and x ∈ X, then

∥∥x(t)− xd(t)
∥∥< ε for all t ∈ [t0, t1].

Proof. Direct application of result 2, page 95 of [3]. �

When implementing the control laws developed in this paper, one is faced with

several issues: First, one has to implement a discrete time version of the control algo-
rithms, such as the one described above. Second, usually one uses finite word length
which leads to a quantization of the possible data rate values. Finally, there is delay
in the propagation of the congestion information. All of these lead to a well known
phenomenon: Oscillation. Even in this case, the discretization of the control laws
presented in this paper is approximately optimal. We now state the precise result.

Proposition 2. Let x(t) be the trajectory obtained using the control laws in Sec-
tion 4 and let xr(t) be the corresponding discrete time trajectory obtained using the
discretization algorithm above and in the presence of delays in the propagation of
the congestion information. Let tr be an upper bound on the largest delay. Again,
define Xas in Theorem 1.

Given any time interval [t0, t1] and constant ε > 0, there exists a δ > 0 such
that if max{td, tr}zi, j(t,x) < δ, for all t > 0 and x ∈ X, then ‖x(t)− xr(t)‖ < ε for
all t ∈ [t0, t1].

Proof. Direct application of result 2, page 95 of [3]. �


6.1 Adaptive Oscillation Reduction

Although we do have approximate optimality, the performance might degrade if the
delays are too large and/or the value of zi, j(·) is too low. Therefore, we now provide a
method for choosing the functions zi, j(·) which reduces the amplitude of oscillation
of the data rates. The main idea is the following: Oscillation occurs when a link is
congested. Hence, when there is no congestion, one would like the rates to increase at
a reasonably fast rate. Once congestion is about to occur, one would like to decrease
the rate of change in order to reduce the amplitude of the oscillations.

Hence, we propose the following scheme for choosing the value of zi, j(·):
Let T > 0 be given. Initialize zi, j(0,x) = k, where k > 0 is a constant. If conges-
tion is detected at time t0 for calls of type i taking path j let

zi, j(t,x) = ω(t − t0) ; t0 ≤ t < t0 + T,

where ω : [0,T ] → [ζ,k] is a decreasing function and ζ is some positive constant.
Now, at t0 + T repeat the same reasoning. If there is no congestion, let zi, j(t,x) = k
until congestion is detected. Once congestion is detected let zi, j(t,x) be equal to a
shifted version of ω(t). Examples of such functions are provided in the next section
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congestion

no
congestion

zi, j(t,x)

TTT

0

k

Fig. 1. Example of a scaling function zi, j(·)

and the desired behavior is depicted in Fig. 1. Notice that the value zi, j(·) is con-
tinuously reset every T seconds. This ensures that the network is able to adapt to
changes in the traffic demand. Also, although we reduce the rate of change of xi, j

when congestion is detected, the algorithm still converges to the optimum. This is a
consequence of the fact that the functions zi, j(·) mentioned above satisfy the condi-
tions of Theorem 1.

Now, this choice for the functions zi, j(·) leaves one with three free parameters
that have to be selected. The period T of zi, j(·) should be chosen taking into account
the behavior of the demand on the network. More precisely, it should be equal to
the interval of time in between substantial changes in the demand. Resetting zi, j(·)
in this form will enable the network to more rapidly adapt to the demand. Now, the
parameters k and ζ of zi, j(·) should be inversely proportional to the round trip time
of the path j of calls of type i, which can be easily estimated. The reasoning behind
this particular choice has to do with the fact that the largest delay for the propagation
of the congestion information is the round trip time. Now, the exact value of these
parameters depends on how one would like the network to behave. If they are high,
then the network will quickly react to changes in the demand, but the oscillations will
be large and the network might be operating far away from the optimal behavior. If
the values k and ζ are low, then one will have small oscillations and a better steady
state operating point. However, there will be a much larger transient behavior.

7 Robust Load Sharing

In practice, in order to distribute traffic among the multiple paths available for a given
call, the utility function should reflect the fact be it is not important how traffic is
distributed among these paths, but only how much traffic of a given type the network
can handle. That is, the utility function should be of the form

U(x) =
n

∑
i=1

fi(xi,1 + xi,2 + · · ·+ xi,ni).

For this kind of utility functions, the control laws that are obtained in Section 4
provide a crucial added benefit: Robustness with respect to failures. In the case of
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a link failure, the algorithm tries to reroute the traffic to the other available paths
and provides an optimal traffic allocation for the new network configuration. In other
words, in the case of a link failure, the algorithm provides a systematic (optimal) way
of redistributing traffic.

8 Simulation Examples

In this Section, some simulation examples are presented that exemplify the behavior
of the control laws presented in this chapter. A brief discussion of the observed be-
havior and the tradeoffs incurred in the design of the parameters is also presented.
These simulations address the case of only AS and BE sharing the network, since
the other CoSs do not include any additional complexity from a mathematical stand-
point.

The model of the network used here is taken from [8] and is shown in Fig. 2,
where also all the links’ bandwidths and delays, as well as source and destination
nodes are shown. Here, however, several paths and CoSs are available. Overall, n = 8
types of calls are considered and the paths available are shown in Table 1. Recall that
ni indicates the number of paths available to calls of type i. Furthermore, calls of
types 3 and 5 are assumed to be of AS type with target rates Λ3 = Λ5 = 1Mbps.
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Fig. 2. Topology of the network

The utility function proposed belongs to the family presented in Section 4; i.e.,

U(x) .=
8

∑
i=1

log

(
0.5 +

ni

∑
j=1

xi, j

)
;

i = 1, . . . ,8

j = 1, . . . ,ni
.

Given the utility function and service requirement above, Theorems 1 and 2 are ap-
plied to obtain the following families of control laws: For i = 1,3 and j = 1, . . . ,ni;
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Table 1. Paths available for each type of calls

type 1 x1,1 : e2b2b8b4e4 type 5 x5,1 : e3b3b8b7b6e6
n1 = 4 x1,2 : e2b2b8b3b4e4 n5 = 2 x5,2 : e3b3b4b8b5b7b6e6

x1,3 : e2b2b7b8b3b4e4
x1,4 : e2b2b7b8b4e4

type 2 x2,1 : e2b2b8b5e5 type 6 x6,1 : e2b2b1b7b6e6
n2 = 3 x2,2 : e2b2b7b5e5 n6 = 3 x6,2 : e2b2b8b7b6e6

x2,3 : e2b2b1b7b5e5 x6,3 : e2b2b7b6e6
type 3 x3,1 : e1b1b7b8b4e4 type 7 x7,1 : e1b1b2e2
n3 = 2 x3,2 : e1b1b2b8b4e4 n7 = 3 x7,2 : e1b1b7b2e2

x7,3 : e1b1b7b8b2e2

type 4 x4,1 : e1b1b7b5e5 type 8 x8,1 : e3b3b4e4
n4 = 4 x4,2 : e1b1b7b8b5e5 n8 = 2 x8,2 : e3b3b8b4e4

x4,3 : e1b1b2b7b5e5
x4,4 : e1b1b2b8b5e5

i.e., AS calls

ẋi, j = zi, j(t,x)


 1

0.5 +
ni

∑
j=1

xi, j

−αcgi, j(x)−βiri(xi)+ ξi, ju(−xi, j)




and for i = 1,2,4,6,7,8 and j = 1, . . . ,ni; i.e., BE calls

ẋi, j = zi, j(t,x)


 1

0.5 +
ni

∑
j=1

xi, j

−αcgi, j(x)− ξi, ju(−xi, j)


 ,

where cgi, j denotes the congestion information used; i.e., bi, j for the optimal control
laws and bini, j for the quasi-optimal ones. The design parameters α, βi and ξi, j and
the functions zi, j(t,x) are chosen to satisfy the convergence conditions set forth by
Theorem 1. It is clear from the last equation, that the term 0.5 in the denominator
imposes an upper bound on the derivatives, that otherwise will tend to infinity as all
the data rates go to zero.

8.1 Ideal Conditions

As a first step and in order to have a starting point for comparison, the optimal control
laws are simulated for an almost ideal case where one has very small delays and
sampling intervals. The discrete time version of the control laws are obtained using
a sampling interval of td = 0.1ms, while all delays were chosen equal to 0.1ms. The
remaining parameters were taken as α = 4, β3 = β5 = 22 and ξi, j = Bi, jα + βi +
0.0001, while the oscillation reducing function was kept constant at 0.375.

Fig. 3 shows that, under these ideal conditions, the utility function converges
to the optimal value. The plots of the data rates show a clear sliding motion and
demonstrate that the AS requirements are being met.
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Fig. 3. Ideal Conditions: small delays and td

8.2 Non-ideal Conditions

The existence of delays in the propagation of information as well as the discretiza-
tion of the continuous time laws introduce undesired oscillations in the trajectories
of the data rates. This phenomenon can be explained using Sliding Modes theory.
Indeed, Sliding Modes can be derived as a limiting procedure of the motion in a
boundary layer around the discontinuity surfaces. These boundary layers can occur
due to non-ideal switching caused by delays, hysteresis, etc. It is then only natural
to observe an oscillatory behavior in this case. Moreover, the larger the magnitude
of the derivatives, the larger the boundary layer will be. Hence, the effects of α and
the parameters of the oscillation reduction function k, ζ and T can all be explained
in a similar way and the simulations all show the same type of behavior. For more
thorough simulation examples than the ones presented in this chapter, the reader is
referred to [9].

Fig. 4 shows the effect of larger delays and sampling interval on the utility func-
tion for both the cases of constant and time-varying zi, j . It can be seen that under
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(a) Constant zi, j(t,x) (b) Time varying zi, j(t,x)

Fig. 4. Oscillation reduction on the utility functions for larger delays and td

these conditions the control laws converge to a value close to the optimal one and
not to the optimal itself. Moreover, with a constant zi, j (Fig. 4(a)) there is excessive
oscillation as opposed to the case of varying zi, j (Fig. 4(b)) where oscillations are
milder.
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However, the use of this oscillation reduction scheme introduces further unde-
sired effects. Namely, the speed of convergence may be reduced and, as a conse-
quence, a slower reaction to changing conditions can result. On the other hand, by
having milder oscillations the network spends less time working above link capacity
with the effect that less packets are dropped and fewer retransmissions are needed.
Finally, Fig. 5 shows the trajectories obtained for the case of varying zi, j, where the
AS requirements are met.
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Fig. 5. Data rates for time-varying zi, j(t,x) with larger delays and td

8.3 Robustness

One of the most important features of the control laws presented in this chapter is
the following: They endow the network with robustness against link and/or node
failures. We claim that since the data rates are being updated adaptively, as soon
as link failure is detected, the control law will reroute all the traffic away from the
paths using this link. The control laws running at the sending nodes can handle this
situation by treating link failure as congestion; i.e., the adaptation laws are oblivious
to the failure. Instead, they simply reduce the sending rates because congestion is
detected along the paths that include the broken link.

In order to test this feature, the link connecting nodes b7-b8 was opened at time
t = 120s. This link is particularly problematic because both type 3 and 5 (the AS
calls) lose one of the two paths available to them. Furthermore, the path that remains
for type 5 shares links with almost every other type, making it necessary for the
other call types to also reroute some of their traffic and reduce their aggregated data
rates. Finally, all the variables involved were set to their nominal values; i.e., α = 4,
β3 = β5 = 22, T = 10s and delays from Fig. 2.

The simulations in Fig. 6 show that the control laws excel at this task: The net-
work reacts almost immediately to the failure. Furthermore, the utility function con-
verges to its new optimal value, while satisfying the AS requirements. The link fail-
ure forces the network to reroute the AS traffic to the available paths. This means
transferring the AS traffic to alternative paths that were almost unused by these types
of traffic. This, in turn, forces the network to substantially reduce the resources allo-
cated to BE traffic. For example, in Fig. 6 we see that data rates of BE traffic of type
2 had to be greatly reduced to make sure that AS traffic requirements were met. In
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Fig. 6. Response to a link failure

other words, the control laws presented here endow the network with the capacity to
quickly react to failures, always enforcing the AS requirements and distributing both
the AS traffic and BE traffic among the available paths in such a way as to maximize
the utilization of the network resources.

8.4 Quasi-optimal Control Laws

In this Section, simulations of the quasi-optimal control laws are presented. These
laws become more relevant in light of the fact that under non-ideal conditions, the
optimal laws converge only to a neighborhood of the optimal; i.e., the optimality
obtained by using more information is lost but the complexity is not.

These quasi-optimal laws are also used to show an improved version that exploits
the form of the non-negativity constraints on the data rates to further reduce oscil-
lations around zero. Indeed, by removing the term ξi, j in the adaptation laws and
truncating the data rates, these exhibit much less oscillation. It can be seen in Fig. 7,
that both control laws (with and without ξ) converge to a value close to the optimal
one. However, the ones without ξ do so with a less oscillatory behavior.

If one compares the behavior of these control laws against the optimal ones in
the previous sections, one sees that they provide comparable performance. The quasi-
optimal ones however, require much less information that allows for a much simpler
implementation.

9 Conclusions

In this chapter, a unified framework for traffic engineering is presented. The approach
presented enables one to address the problem of rate adaptation and load balancing
in computer networks. Moreover, the algorithms presented can be applied to the case
where several CoS are to be provided to network users and several paths are available
between each pair of source/destination nodes. Furthermore, the algorithms endow
the network with the ability of optimally adjust to changing conditions such as link
or node failures. The issue of oscillation mitigation is also addressed. Namely, an
adaptive scheme is provided that reduces oscillation while keeping the ability to react



A Sliding Mode Approach to Traffic Engineering in Computer Networks 127

Utility function with ξ

time - s

Optimum

Optimum

0 40 80 120 160 200 240

4

2

0

−2

−4

−6

Type 3 calls - AS, with ξ (Mbps)

time - s
0 40 80 120 160 200 240

0.8

0.6

0.4

0.2

0

Type 2 calls - BE (Mbps)

x2,1

x2,2
x2,3

0 40 80 120 160 200 240

1.2

1

0.8

0.6

0.4

0.2

0

(a) (c) (e)

Utility function without ξ

time - s

Optimum

Optimum

0 40 80 120 160 200 240

4

2

0

−2

−4

−6

Type 3 calls - AS, without ξ (Mbps)

time - s
0 40 80 120 160 200 240

0.8

0.6

0.4

0.2

0

Type 5 calls - AS (Mbps)

time - s

Target rate

0 40 80 120 160 200 240

1

0.8

0.6

0.4

0.2

0

(b) (d) (f)

Fig. 7 (a,b) Utility function ( d) Oscillc, ation of data rates close to zero (e) Example of Best. , ,
Effort calls without ξ (f) Assured service calls without ξ, .

to cha in dem ndnges a and/or network configuration. To the best of our knowledge,
this is the first c rehen iomp s ve solution to this roblem.p

Effort is now being put on the implementation and further development of rate
control laws The proposed laws have several free parameters and different choices.
can lead to ve differy rent transient behaviors Hence we are now developing rules. ,
for determining these parameters when one is to deploy the proposed algorithms

“in a real” network. Furthermore we aim at modifying the rate ada tation lp aws so,
that one achieves tim lop a traffic allocation with less feedback from the network and,
hence with less traffic overhead.,

10 Proof of the Main Results

In this Section the proof of the main results in this chapter are presented but fi, rst
s relimina ieome p r s including additional notation is resented that will enablep us t, o
p

,
resent them in a more intuitive way.

The problem at hand can be represented in the following standard form

maxU(x)
x

subject to the inequality and equality constraints of the form

h (x) ≤ 0; k 1 2 m nd h x k L= a ( ) = 0; = m+ 1k k, , . . . , , . . . , ,

where U(x) is a concave differentiable increasing function and h (k x) are affine func-
tions for all k The inequality constraints correspond to the link capacity constraints. ,
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the restriction that the data rates have to be nonnegative and MRGS, UBRS and MR-
GUBS CoS constraints. On the other hand, the equality constraints correspond to the
AS requirements. Now, define the matrix

Z(t,x) .= diag
(
z1,1(t,x), . . . ,z1,n1(t,x), . . . ,zn,1(t,x), . . . ,zn,nn(t,x)

)
.

Note that, given the special form of the constraints it is easy to see that the adaptation
laws presented in Section 4.1 can be represented in the following form

ẋ = Z(t,x)
[
∇U(x)−H(x)v(x)

]
,

where ∇U(·) denotes the gradient of the function U(·), H(·) is the following matrix

H(·) .=
[
∇h1(·) ∇h2(·) · · · ∇hL(·)]

and v(·) =
[
v1(·),v2(·), . . . ,vL(·)]T

is an L-dimensional vector whose entries are of
the form

vk(x) =

{
γk if hk(x) > 0

0 if hk(x) < 0,

for k = 1,2, . . . ,m, where γk = α for the constraints associated with link capacity;
i.e., k = 1,2, . . . ,card(L), γk = ξi, j for the constraints associated with non-negativity
of xi, j, γk = βM

i for the maximum allowed rate constraints on calls of type i and
γi = βm

i for the minimum service guarantee constraints on calls of type i. Also,

vk(x) =

{
ξk if hk(x) > 0

−ξk if hk(x) < 0

for k = m + 1,m + 2, . . . ,L, where ξk = βi for the AS constraint k associated with
calls of type i. Also, let the admissible domain be the set

D
.=
{

x ∈ R∑n
i=1 ni : hk(x) ≤ 0 for k = 1,2, . . . ,m;hk(x) = 0 for k = m+ 1, . . . ,L

}
.

Essentially, the proof requires 4 steps. First, we prove that the adaptation law con-
verges to the maximum of the function

Û(x) .= U(x)−Ξ(x),

where Ξ(x) .=
[
h1(x),h2(x), . . . ,hL(x)

]
v(x). Second, we provide necessary and suf-

ficient conditions for the maximum of Û(x) to coincide with the maximum of U(x).
Third, we show that under this conditions this procedure converges to the solution
of the optimization problem at hand. The final step is the realization that, under the
conditions of Theorem 1, the necessary and sufficient conditions mentioned above
are satisfied.

Lemma 2. The function Û(x) does not decrease along the trajectories.
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Proof. If a sliding mode does not occur then

dÛ
dt

=
[
∇U −H(x)v(x)

]T
ẋ =

[
∇U −H(x)v(x)

]T
Z(t,x)

[
∇U −H(x)v(x)

]≥ 0

since the matrix Z(t,x) is positive definite.
Now, assume that a sliding mode occurs in the intersection of the surfaces

hk(x) = 0, k ∈ I. Let H1(x) be the matrix whose columns are ∇hk(x) for k ∈ I (and
in the same order as in H(x)). Also, let H2(x) be the matrix with columns ∇hk(x) for
k /∈ I(again in the same order as in H(x)). Then, given that a sliding mode occurs in
the intersection of the surfaces hk(x) = 0, k ∈ I, we have

H1(x)T Z(t,x)
[
∇U −H1(x)v1(x)−H2(x)v2(x)

]
= 0

where v1(x) is the vector containing vk(x), for k ∈ I and v2(x) is the vector con-
taining vk(x), for k /∈I. Now, assume that det

[
H1(x)T Z(t,x)H1(x)

] �= 0 (a reasoning
similar to the one in [14] can be done to address the case where this does not hap-
pen). From now on, to simplify the exposition, we drop the dependency on x. Then,
the equivalent control is

v1,eq =
(
HT

1 ZH1
)−1(

HT
1 Z∇U −HT

1 ZH2v2
)

and replacing in the expression for ẋ, the resulting sliding motion is

ẋ =
√

ZP
√

Z
(
∇U −H2v2

)
,

where
√

Z is well defined since Z > 0 and P is given by

P
.= I −

√
ZH1

(
HT

1

√
Z
√

ZH1
)−1

HT
1

√
Z.

Now, let Ξ1 be the elements hk of Ξ with k ∈ I (in the same order as in Ξ). Also,
let Ξ2 be the elements hk of Ξ with k /∈ I (again in the same order as in Ξ). Since a
sliding mode occurs, during this motion we have

Û = U −Ξ2v2.

Now, since U and Ξ2 are continuously differentiable and along this sliding motion v2

is constant, we have
dÛ
dt

=
(
∇U −H2v2

)T ẋ.

Now, notice that P = PT = P2. Hence,

dÛ
dt

=
(
∇U −H2v2

)T√
ZP

√
Z
(
∇U −H2v2

)
=
∥∥∥P

√
Z
(
∇U −H2v2

)∥∥∥2 ≥ 0.

�

̂ ˙Lemma 3 The time derivative of U is zero onl hen. y w x 0= .
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Proof. If a sliding mode does not occur we have dÛ
/

dt =
[
∇U −Hv

]T
Z
[
∇U −Hv

]
and since Z is positive definite

dÛ
dt

= 0 ⇒ ∇U −Hv = 0 ⇒ Z
[
∇U −Hv

]
= 0 ⇒ ẋ = 0.

Now assume that a sliding mode occurs in the intersection of the surfaces hk(x) = 0,
k ∈ I. In this case,

dÛ
dt

=
∥∥∥P

√
Z
(
∇U −H2v2

)∥∥∥2
.

Hence,

dÛ
dt

= 0 ⇒ P
√

Z
(
∇U −H2v2

)
= 0 ⇒

√
ZP

√
Z
(
∇U −H2v2

)
= 0 ⇒ ẋ = 0.

�

Lemma 4. The stationary points of Û are the maximum points of Û .

Proof. Let x0 be a stationary point on the intersection of surfaces given by H1 = 0.
In this case, we have

∇U(x0)−H1(x0)v1,eq(x0)−H2(x0)v2(x0) = 0.

Now, consider the function Û∗(x) =U(x)−H1(x)v1,eq(x0)−H2(x)v2(x). Given that
the components of the equivalent control satisfy

0 ≤ v1,eq,k(x0) ≤ γk for 1 ≤ k ≤ m and

−ξk ≤ v1,eq,k(x0) ≤ ξk for m < k ≤ L,

it holds that H1(x)v1,eq(x0)≤H1(x)v1(x) and, as a consequence Û∗(x)≥ Û(x). Now,
since U is a concave function, hk are convex functions for 1 ≤ k ≤ m and hk are linear
functions for m+ 1 ≤ k ≤ L then Û∗ is a concave function and hence it has a unique
maximum. Furthermore, Û∗ is continuously differentiable and

∇Û∗(x0) = 0.

Therefore, maxx Û∗(x) = Û∗(x0). Now, since Û∗(x) ≥ Û(x) and Û∗(x0) = Û(x0),
we conclude that Û(x) reaches its maximum at x0. Therefore, any stationary point
of the optimization procedure is a maximum of Û(x). Now, assume that a maximum
point x∗ of Û(x) is not a stationary point. Then, we have dÛ(x∗)

/
dt > 0 and so Û

will increase along the trajectory which contradicts the fact that x∗ is a maximum
point of Û(x). �

Lemma 5. If the set of all maximum points is bounded (which is our case) then x
will converge to this set from any initial condition.

Proof. The proof is very similar to the one in [14], Chapter 15, Section 3. It makes
use of the results from Lemmas 2, 3 and 4. Therefore, we refer the reader to it. �




A Sliding Mode Approach to Traffic Engineering in Computer Networks 131

Theorem 3. Let v0 be a vector whose entries are of the form

0 ≤ vk ≤ γk ; k = 1,2, . . . ,m

−ξk ≤ vk ≤ ξk ; k = m+ 1,m+ 2, . . .,L ,

where vk = 0 for non-binding constraints. Then, the maximum of Û(x) coincides with
the optimal U(x∗) if and only if there exists x∗ such that ∇U(x∗) = H(x∗)v0.

Proof. See [14], Chapter 15, Section 4. �

Theorem 4. The control laws presented above converge to the set of maximum points
of the utility function U(x) if this set is bounded, the condition of Theorem 3 is sat-
isfied and vector v0 is an inner point of the set defined in Theorem 3, except for the
non-binding constraints.

Proof. See [14], Chapter 15, Section 4. The proof follows by using Theorem 3 and
Lemma 5. �

Remark 1. The components of vector v0 are the Lagrange multipliers of the opti-
mization problem at hand.

10.1 Proof of Theorem 1

The conditions on the parameters α, βi, βm
I , βM

i and ξi, j imposed in Theorem 1 imply
that the necessary and sufficient conditions of Theorem 3 are satisfied for the opti-
mization problem at hand. Indeed, if each congested link is used by a non-binding
CoS or a BE call, then in ∇U(x∗) = H(x∗)v0 the components of v0 associated with
capacity constraints; i.e., v0

k for k = 1,2, . . . ,card(L), appear in a set of equations
decoupled from the remaining components of v0. Then, the worst case (larger) value
of v0

k , k = 1,2, . . . ,card(L) is

v0
k,max = max

i, j,x∈X

∂U(x)
∂xi, j

Now, using this information in the remaining equations, it is possible to solve for
v0

k,max, k = m+ 1, . . . .L. Since, U(x) is an increasing function in all its variables xi, j,

the worst case for v0
k associated with CoS constraints is

v0
k,max = ∑

κ∈K⊆{1,2,...,card(L)}
v0

κ,max = max
i, j

Bi, j max
i, j,x∈X

∂U(x)
∂xi, j

.= αmin max
i, j

Bi, j.

Once these are determined, all that remains is to pick the worst case value v0
k,max

associated with non-negativity constraints. Since each one of these appears in a single
equation, where all the other multipliers are already determined, the worst case value
is given by

v0
k,max = αmin max

i, j
Bi, j + β, β ∈ {βi,βm

i ,βm
i }.
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Hence, in order to satisfy the conditions in Theorem 3

vk ≤ v0
k,max < γk , k = 1,2, . . . ,m

|vk| ≤
∣∣v0

k,max

∣∣< ξk , k = m+ 1, . . . ,L .

Therefore, the family of adaptation laws proposed in this paper converge to the max-
imum of the utility function U(x) subject to x ∈ D. In other words, they converge to
the optimum of our optimization problem. �


10.2 Proof of Theorem 2

In this section we present the proof for Theorem 2, but first we set the stage by
introducing some notation that is needed.

The control laws presented in Section 4.2 can be written in terms of a modified
control as follows: Let Ii, j and Ii be the set of indices k ∈ {1,2, . . . ,L} such that
the inequality, respectively equality, constraints hk(x) involve the data rate xi, j. Fur-

thermore, let Ii, j be classified into Iα
i, j and I

ξ
i, j for the capacity and non-negativity

constraints respectively. Note that each of the sets I
ξ

i, j and Ii consist of a single point.
Now, define the modified control uk as

uk =




0 if hk > 0

uk,eq if hk = 0

1 if hk < 0

k ∈ {1,2, . . . ,m}

uk =

{
(1− ri) if hk �= 0

uk,eq if hk = 0
k ∈ {m+ 1, . . . ,L}∩Ii,

where uk,eq applies when a sliding mode occurs in the surface hk(x) = 0 and is de-
fined as the convex combination of the maximum (uk) and minimum (uk) values of
uk; i.e., uk,eq

.= λuk +(1−λ)uk, with λ ∈ [0,1]. Finally, to simplify the notation let
zi, j denote

zi, j

(
t,xi(t),{uk}k∈Iα

i, j

)
.

Then, the following modified control laws are equivalent to the ones in Section 4.2:
For i = 1,2, . . . ,s; i.e, AS calls, let

ẋi, j = zi, j

[
∂ fi

∂xi, j

∣∣∣∣
xi

−α
(

1−∏
k∈Iα

i, j

uk

)
−βi(1− ul)+ ξi, j(1− up)

]
,

where l ∈ Ii and p ∈ I
ξ

i, j . For i = s+ 1,s+ 2, . . . ,n; i.e., BE calls, let

ẋi, j = zi, j

[
∂ fi

∂xi, j

∣∣∣∣
xi

−α
(

1−∏
k∈Iα

i, j

uk

)
+ ξi, j(1− up)

]
.
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Remark 2. There are as many parameters uk as there are constraints in the optimiza-
tion problem at hand, as opposed to one parameter ri per type of calls and one pa-
rameter bini, j and ξi, j per path.

In a similar manner, the convergent control laws presented in Section 4.2 can also be
recast as a modified control form: For i = 1,2, . . . ,s; i.e, AS calls, let

ẋint
i, j = zi, j

[
∂ fi

∂xi, j

∣∣∣∣
xi

−α ∑
k∈Iα

i, j

(1− uint
k )−βi(1− ul)+ ξi, j(1− up)

]
,

where l ∈ Ii and p ∈ I
ξ

i, j . For i = s+ 1,s+ 2, . . . ,n; i.e., BE calls, let

ẋint
i, j = zi, j

[
∂ fi

∂xi, j

∣∣∣∣
xi

−α∑
k∈Iα

i, j

(1− uint
k )+ ξi, j(1− up)

]
.

Finally, let ord(α−1) and Ord(α−1) denote terms of the order of α−1 in the sense

lim
α→∞

αord(α−1) = 0 and lim
α→∞

αOrd(α−1) = cte.

Proof. The following proof stems from the fact that the control laws in Section 4.2
provide convergence in finite time to the admissible region C, where

C =
{

x ∈ Rn1+···+nn : hk(x) ≤ 0, k = 1,2, . . . ,m
}
.

Given the assumptions on the utility function U(x), the conditions on α, βi and ξi, j

can be satisfied. Therefore, the derivatives xi, j are bounded away from 0 for all x /∈ C
and convergence to C in finite time is guaranteed.

For simplicity, the case where zi, j(·) = 1 is shown here. However, a straightfor-
ward modification can be done to address the case of a general zi, j(·).

Let x∗ denote the optimal solution to the problem posed in Section 3 and let xeq

denote any equilibrium point of the laws above that might exist.
Without loss of generality, let a sliding mode occur in the admissible region along

the intersection of a set of surfaces hk(x) = 0, k ∈ I. Since a sliding mode occurs
along these surfaces it follows that ḣk(x) = 0, for all k ∈ I and all α. Hence, given
the specific linear dependence of the previous expression on xi, j, the term

α
(

1− ∏
k∈I∩Iα

i, j

uk,eq

)

is bounded for all i, j and α. Moreover, as α → ∞, it holds that uk,eq → 1, ∀k ∈ I.
Therefore, for all i, j, the following Taylor expansion holds around uk = 1, ∀k ∈ I

α
(

1− ∏
k∈I∩Iα

i, j

uk,eq

)
= α∑

k∈I∩Iα
i, j

(
(1− uk,eq)+ Ord

(
(1− uk,eq)2)).
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Since the left hand side is bounded for every α it holds that

lim
α→∞

α ∑
k∈I∩Iα

i, j

Ord
(
(1− uk,eq)2)= 0, and α ∑

k∈I∩Iα
i, j

(
1− uk,eq

)
< M M ∈ R

Equivalently we can write,

1− ∏
k∈I∩Iα

i, j

uk,eq = ∑
k∈I∩Iα

i, j

(1− uk,eq)+ ord(α−1).

Now, using the expression for the equivalent control (10)
(
HT

1 H1
)
(v1,eq) =

(
HT

1 ∇U + HT
1 H2v2

)
(
HT

1 H1
)(

vbin
1,eq + ord(α−1)

)
=
(
HT

1 ∇U + HT
1 H2vbin

2

)
,

where v̇2 = v̇bin
2 = 0 and v2 = vbin

2 . Subtracting these,
(
v1,eq − vbin

1,eq

)
= ord(α−1),

where ord(α−1) is a vector whose components are of the form ordk(α−1). Hence,

ẋi, j = ẋint
i, j + αord(α−1).

Furthermore, since U̇(x) = ∇U(x)T ẋ,

U̇(x) = ∇U(x)T ẋint + ∇U(x)αord(α−1) = U̇ int(x)+ Ord(α−1).

Now, given ε > 0 define Bε(x∗) to be an open neighborhood of radius ε around the
optimal x∗.

Therefore, since dUint(x)/dt > 0 for all x �= x∗, and the set R is dense; there
exists α∗ such that for all α > α∗, and all x /∈ Bε(x∗), it holds that U̇(x) > 0. Hence,
there are no stationary points of the control law outside Bε(x∗) and since for every
trajectory U(·) is strictly increasing outside this neighborhood, then x → Bε(x∗).

Finally, since the choice of ε is arbitrary, it holds that for all ε > 0 there exists α∗,
such that the above control laws converge to Bε(x∗), for all α > α∗. �


10.3 Sketch of the Proof of Lemma 1

The proof essentially requires two steps. First, we show that a sliding motion on
the surfaces xi, j = 0 is obtained. Second, we show that the utility function does not
decrease along these trajectories, in essence the same reasoning used in Section 10.1.

Since the proposed laws reduce to the ones in Theorem 1 for the case xi, j > 0,
we concentrate without loss of generality, on the case xi, j = 0.

Let xi, j = 0 at time t = t0, for some i, j. If at t0, pi, j > 0, then the adaptation laws
reduce to the ones in Theorem 1 and convergence is guaranteed.

On the other hand, if pi, j < 0, a sliding mode will occur on the surface xi, j = 0,
with ẋi, j = 0. Indeed, since the constraints of the optimization problem at hand are
affine, by forcing ẋi, j = 0 a sliding mode on the aforementioned surface occurs, as
is the case with the laws in Theorem 1. Furthermore, the equivalent control is also



A Sliding Mode Approach to Traffic Engineering in Computer Networks 135

the same. This is the case because the equivalent control has the effect of keeping the
trajectories tangent to the sliding surface with ẋi, j = 0. Moreover, all other derivatives
ẋk,l such that xk,l �= 0 at time t0 are the same.

Therefore using the same reasoning as in Section 10.1, the utility function does
not decrease along the trajectories generated by the above control laws and a near-
optimum is achieved. �
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[11] Laurent Massoulié and James Roberts. Bandwidth sharing: Objectives and al-
gorithms. In Proc. IEEE INFOCOM ’99, pages 1395–1403, March 1999.

[12] Gopalakrishnan Ramamurthy and Aleksandar Kolarov. Application of control
theory for the design of closed loop rate control for ABR service. In Proc. Int.
Test Conf.,ITC, pages 751–760, Washington, USA, 1997.

[13] Saswati Sarkar and Leandros Tassiulas. Distributed algorithms for computa-
tion of fair rates in multirate multicast trees. In Proc. IEEE INFOCOM’2000,
volume 1, pages 52–61, Tel Aviv, Israel, March 2000.



136 Bernardo A. Movsichoff, Constantino M. Lagoa, and Hao Che

[14] Vadim I. Utkin. Sliding Modes in Control and Optimization, volume 66 of
Communications and Control Engineering Series. Spriger-Verlag, Berlin, Hei-
delberg, 1992.


	1 Introduction
	1.1 Literature Background

	2 Notation and Assumptions
	2.1 Classes of Service

	3 The Network Optimization Problem
	4 Sliding Mode Control Laws
	4.1 A Family of Optimal Control Laws
	4.2 A Family of Quasi-Optimal Control Laws

	5 Reducing Oscillation
	6 Discrete Time Control Laws and Oscillation Reduction
	6.1 Adaptive Oscillation Reduction

	7 Robust Load Sharing
	8 Simulation Examples
	8.1 Ideal Conditions
	8.2 Non-ideal Conditions
	8.3 Robustness
	8.4 Quasi-optimal Control Laws

	9 Conclusions
	10 Proof of the Main Results
	10.1 Proof of Theorem 1
	10.2 Proof of Theorem 2
	10.3 Sketch of the Proof of Lemma 1

	References



