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Abstract. We present a new functional magnetic resonance imaging (fMRI) 
analysis method that incorporates both spatial and temporal dynamics of blood-
oxygen-level dependent (BOLD) signals within a region of interest (ROI). 3D 
moment descriptors are used to characterize the spatial changes in BOLD 
signals over time. The method is tested on fMRI data collected from eight 
healthy subjects performing a bulb-squeezing motor task with their right-hand 
at various frequencies. Multiple brain regions including the left cerebellum, 
both primary motor cortices (M1), both supplementary motor areas (SMA), left 
prefrontal cortex (PFC), and left anterior cingulate cortex (ACC) demonstrate 
significant task-related changes. Furthermore, our method is able to 
discriminate differences in activation patterns at the various task frequencies, 
whereas using a traditional intensity based method, no significant activation 
difference is detected. This suggests that temporal dynamics of the spatial 
distribution of BOLD signal provide additional information regarding task-
related activation thus complementing conventional intensity-based approaches. 

Keywords: functional imaging, spatio-temporal fMRI analysis, region of 
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1   Introduction 

The most common application of functional magnetic resonance imaging (fMRI) is in 
mapping neural region(s) to particular function(s) by examining which brain areas 
activate when a certain task is performed. Most conventional analysis methods, such 
as statistical parametric mapping (SPM) [1], analyze each voxel’s timecourse 
independently and assign a statistics value to that voxel based on its probability of 
being activated. To make group inferences under this approach, spatial warping of 
each subject’s brain to a common exemplar shape is often performed to create a 
correspondence between voxels across subjects [2]. However, spatial normalization, 
which is typically followed by spatial smoothing, may inappropriately pool responses 
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from functionally dissimilar regions [3], thus degrading important spatial information. 
An alternative approach that involves drawing regions of interest (ROIs) individually 
for each subject, and examining the statistical properties of regional activation across 
subjects, has been shown to offer finer localization and increased sensitivity to  
task-related effects [3]. This subject-specific ROI-based approach is thus followed in  
this study. 

To determine whether an ROI is activated or not, a simple approach is to calculate 
the average intensity over an ROI at every time point, and determine if the resulting 
average time course significantly correlates with the stimulus [4]. This approach, 
however, ignores any spatial information of activity within an ROI and assumes that 
only signal amplitude is modulated by task. However, spatial information might be an 
important attribute of brain activity. Preliminary evidence supporting this idea of 
spatial characterization was first shown by Thickbroom et al. [5], where the spatial 
extent of activation, as opposed to response magnitude, was found to be modulated by 
different levels of force during a sustained finger flexion task. Their results were 
based on visual inspection and counting the number of activated voxels within an 
ROI. Recently, we presented a more elaborate study of the spatial patterns of activity 
within an ROI where quantitative measures of invariant spatial properties were used 
to discriminate task-related differences in brain activity [6]. Results demonstrated 
that, by examining changes in different spatial aspects of an activation distribution, 
sensitivity in detecting functional changes is enhanced as compared to using intensity 
means only.  

Previous analyses examining spatial patterns of activation, including that in [6], 
were performed on T-maps where the spatial information is collapsed over time, thus 
only considered the time-averaged spatial patterns of brain activity. In this paper, we 
extend our previously proposed spatial characterization approach to the temporal 
domain to explore whether the spatial distribution of the blood oxygenation level-
dependent (BOLD) signal itself is modulated in time by task performance. We note an 
important difference between our current and previous work [6] is that the generated 
spatial feature time courses can be used to infer ROI activation, as opposed to only 
comparing 2 groups of time-averaged activation statistical maps. To characterize the 
spatial changes, three dimensional (3D) moment descriptors were used as features and 
were calculated at each time point. The magnitudes of these features, however, are 
normally not comparable across subjects due to inter-subject variability in brain 
shapes and sizes, but are comparable for the same subject over time. Thus, any 
detected modulations of the spatial features over time for a given subject may in fact 
represent meaningful spatial changes in activation.  

In this study, eight healthy subjects were recruited to perform a bulb-squeezing 
task at various frequencies. The cerebellum, primary motor cortex (M1), 
supplementary motor area (SMA), prefrontal cortex (PFC), and anterior cingulate 
cortex (ACC) were chosen as regions of interest. We demonstrate that our method can 
both detect activation within an ROI, as well as discriminate differences in activation 
patterns at the various task frequencies. This confirms previous findings of the value 
in incorporating spatial information into traditional intensity-based fMRI analyses. 
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2   Data Acquisition and Preprocessing 

In this study, after informed consent was obtained, fMRI data were collected from 8 
healthy subjects. Each subject was required to perform a right-handed motor task that 
involved squeezing a bulb with sufficient pressure such that an ‘inflatable ring’, 
shown as a black horizontal bar on a screen, was kept within an undulating pathway 
(Fig. 1-a). The pathway remains straight during rest periods and becomes sinusoidal 
at time of stimulus. Each run lasted 260 s, consisting of a 20 s rest period at the 
beginning and end, 6 stimuli of 20 s duration, and 20 s rest periods between the 
stimuli, as shown in Fig. 1-b. At time of stimulus, the subject was required to squeeze 
the bulb at 0.25, 0.5 or 0.75 Hz, corresponding to ‘Slow’, ‘Med’, and ‘Fast’ in Fig 1-
b. The data were collected as part of a larger experiment exploring the rate of change 
of force production in older subjects and subjects with Parkinson’s disease. 

 

 

(a) (b) 

Fig. 1. Experimental task and stimulus timing. (a) Subjects were required to keep the side of the 
black ring on the gray path (see text). (b) R = rest, Slow, Med, and Fast = stimulus at 0.25, 0.5, 
and 0.75 Hz, respectively. Each block is 20 s in duration. 

2.1   fMRI Data Acquisition 

Functional MRI was performed on a Philips Gyroscan Intera 3.0 T scanner (Philips, 
Best, Netherlands) equipped with a head-coil. We collected echo-planar (EPI) T2*-
weighted images with BOLD contrast. Scanning parameters were: repetition time 
1985 ms, echo time 3.7 ms, flip angle 90°, field of view (FOV) 216¥143¥240 mm, in 
plane resolution 128¥128 pixels, pixel size 1.9¥1.9 mm. Each functional run lasted 4 
minutes where 36 axial slices of 3 mm thickness were collected in each volume, with 
a gap thickness of 1 mm. We selected slices to cover the dorsal surface of the brain 
and included the cerebellum ventrally. A high resolution 3D T1-weighted image 
consisting of 170 axial slices was acquired of the whole brain to facilitate anatomical 
localization of activation for each subject. 

2.2   fMRI PreProcessing 

The fMRI data was preprocessed for each subject, using Brain Voyager’s (Brain 
Innovation B.V.) trilinear interpolation for 3D motion correction and sinc interpolation 
for slice time correction. Further motion correction was performed using motion 
corrected independent component analysis (MCICA) [7]. To handle temporal 
autocorrelations, a ‘coloring’ scheme was used [8], where the time series were high-pass 
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filtered at 0.02 Hz (task-frequency being 0.025 Hz) to remove the majority of the low 
frequency noise, and temporally smoothened with a Gaussian of width 2.8 s [8]. The 
first and last 20 s of the time series were truncated to mitigate transient effects. No 
spatial smoothing was performed. 

The Brain Extraction Tool (BET) in MRIcro [9] was used to strip the skull off of the 
anatomical and first functional image from each run to enable a more accurate 
alignment of the functional and anatomical scans. Custom scripts to co-register the 
anatomical and functional images were generated using the Amira software (Mercury 
Computer Systems, San Diego, USA).  

Ten specific ROIs were manually drawn on each unwarped structural scan using 
Amira. The following ROIs were drawn separately in each hemisphere, based upon 
anatomical landmarks and guided by a neurological atlas [10]: cerebellum, M1 
(Brodman Area 4), SMA (Brodman Area 6), PFC (Brodman Area 9 and 10), and 
ACC (Brodman Area 28 and 32). The labels on the segmented anatomical scans were 
resliced at the fMRI resolution. The raw time courses of the voxels within each ROI 
were then extracted for analysis as described in the next section. 

3   Methods 

The main goal of the proposed method is to demonstrate that temporal dynamics of 
the spatial distribution in BOLD signals can be used to infer whether an ROI is 
activated, as well as to discriminate differences in activation patterns at various task 
frequencies. Details of feature time course extraction, activation detection, and 
activation pattern discrimination are discussed below. 

3.1   Feature Time Course Extraction 

The spatial feature descriptors used in this paper are based on centralized 3D 
moments, defined as:  
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where n = p + q + r is the order of the moment, (x,y,z) are the coordinates of a voxel, 
ρ(x,y,z,t) is the intensity of a voxel located at (x,y,z) inside a given ROI at time t, and 
x , y , and z  are the centroid coordinates of ρ(x,y,z,t). To untangle the effect of 

amplitude changes, ρ(x,y,z,t) is normalized such that the intensity values of the voxels 
within the ROI sums up to one at every time point t. This step ensures that the mean 
ROI intensity does not change with time. Thus, any detected modulations in the 
spatial feature will be purely due to spatial changes in the BOLD signal. To ease 
interpretation of the results and since higher order moments are less robust to noise 
[11], only 2nd and 3rd order 3D moment descriptors characterizing spatial variance 
[12] and skewness, respectively, were used: 
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To compare with the results obtained using the proposed spatial feature time courses, 
the traditionally used mean intensity time course, I(t), for each ROI of a given subject 
is calculated by averaging the intensity over the ROI at every time point. 

3.2   Activation Detection 

To make group inference as to whether a given ROI is activated, each subject’s ROI 
feature time courses (spatial or mean intensity) are first correlated with a box-car that 
is time-locked to stimulus with a delay of 4 s [13]. We did not convolve the box-car 
with a haemodynamic response function since spatial changes, as governed by the 
different onsets of the active voxels, may exhibit a different temporal profile than that 
of the haemodynamic response. For each subject, this results in thirty correlation 
values, one per combination of feature and ROI (e.g. J1(t), left M1). Each correlation 
value is then converted into a T-value (4):  
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where r is the correlation value and N is the number of samples used in generating r. 
The set of T-values of a particular combination of feature and ROI from all subjects is 
then tested against 1.96 using a T-test to determine the probability (p-value) that the 
T-values are lower than 1.96 (i.e. the probability that ROI is not activated). The 
critical p-value was chosen at 0.05.  

3.3   Activation Pattern Discrimination 

To discriminate the differences in activation pattern at the various task frequencies, 
each subject’s ROI feature time courses (spatial or mean intensity) are first segmented 
according to Fig. 2. Except for the first and last segments, each segment consists of a 
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Fig. 2. Feature time course segmentation. The box-car curve corresponds to timing of the 
stimulus delayed by 4 s. The solid line is a sample feature time course (spatial variance, J1(t), of 
the left M1 averaged over subjects with its temporal mean removed and divided by its standard 
deviation). The dotted lines show how the feature time courses are parsed into 6 segments. 
Slow, Med, and Fast correspond to the task frequencies of 0.25, 0.5, and 0.75 Hz, respectively. 
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10 s rest before and after the 20 s stimulus. Segments of the same task frequency are 
concatenated and correlated with the corresponding segments of the shifted reference 
signal (see Fig. 2). This results in ninety correlation values per subject, one for each 
combination of frequency, feature, and ROI (e.g. slow, J1(t), left M1). Each 
correlation value is then converted into a T-value using (4).  

For each combination of feature and ROI, the set of T-values of a particular 
frequency from all subjects are tested pair-wise against the other two frequencies (i.e. 
fast versus slow, fast versus medium, medium versus slow). This is performed using a 
T-test to determine the probability (p-value) that the sets of T-values from the two 
task frequencies are the same (i.e. the probability that activation patterns at the two 
frequencies are the same). The critical p-value was chosen at 0.05. 

4   Results and Discussion 

Table 1 summarizes the activation detection results generated by extracting the spatial 
and intensity features from real fMRI data as described in Section 3.2, and correlating 
the resulting feature time courses with the reference signal. 

Table 1. p-values of ROI activation. CER = cerebellum, J1(t) = spatial variance, S(t) = 
skewness, )(tI = mean intensity, L = left, R = right, * = statically significant at α = 0.05 

Feature )(1 tJ  )(tS  )(tI  

LCER 0.002* 0.077 0.469 
RCER 0.220 0.066 0.042* 
LM1 0.002* 0.051 0.162 
RM1 0.157 0.047* 0.164 

LSMA 0.027* 0.034* 0.021* 
RSMA 0.044* 0.035* 0.034* 
LPFC 0.036* 0.020* 0.034* 
RPFC 0.341 0.185 0.058 
LACC 0.001* 0.301 0.023* 
RACC 0.056 0.112 0.045* 

Using spatial variance, J1(t), the left cerebellum, left M1, both SMAs, left PFC, and 
left ACC were detected as active. We expected the left M1 to be activated, as 
typically observed for right-handed motor tasks. It is worth noting that the left M1’s 
BOLD signal distribution shown reduced spatial variance (i.e. focuses) during the 
time of stimulus (see Fig. 2). Skewness, S(t), additionally detected activation in the 
right M1. These results demonstrate that the spatial distribution of BOLD signals is, 
in fact, modulated by stimulus, which supports our hypothesis that spatial changes in 
BOLD signals are task-related and can be used to infer activation within an ROI. 

Using the traditional mean intensity measure, the right cerebellum, both SMAs, 
left PFC, and both ACCs were detected as active. Comparing to the results generated 
with the proposed spatial features, some consistencies are shown. In fact, based on the 
results in Table 1, activation within an ROI appears to modulate both in amplitude 
and in space. 
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Segmenting the feature time courses according to task frequencies and using the 
proposed spatial features, significant frequency-related activation differences were 
detected in the right cerebellum and right M1 when comparing fast versus slow 
frequencies (Table 2). These results matched our expectations since the modulation of 
movement speed is known to involve a complex network of brain areas, including the 
right cerebellum and right M1 [14]. Also, significant activation differences were 
found in the right PFC and right ACC using the proposed spatial features. In contrast, 
no significant activation differences were found using mean intensity. Also, no 
significant activation differences were detected when comparing fast versus medium 
frequencies and medium versus slow frequencies for any of the features, thus these 
results were excluded in Table 2. 

Table 2. p-values of activation differences comparing fast versus slow frequencies. CER = 
cerebellum, J1(t) = spatial variance, S(t) = skewness, )(tI = mean intensity, L = left, R = right, 

*statically significant at α = 0.05. 

Feature )(1 tJ  )(tS  )(tI  

LCER 0.1834 0.1931 0.1528 
RCER 0.9993 0.0096* 0.2757 
LM1 0.2932 0.4017 0.4190 
RM1 0.0442* 0.3223 0.1524 

LSMA 0.6872 0.2499 0.1836 
RSMA 0.7887 0.9066 0.0579 
LPFC 0.5981 0.3059 0.2760 
RPFC 0.0398* 0.3668 0.7416 
LACC 0.2551 0.4029 0.2126 
RACC 0.0311* 0.1028 0.3248 

Examining the results in Table 2, spatial changes appear to provide greater 
sensitivity in detecting subtle activation differences as compared to intensity. 

5   Conclusions 

In this paper, we proposed using 3D moment-based spatial descriptors to characterize 
the temporal dynamics of spatial activation distribution within an ROI for fMRI 
analysis. We demonstrated with real fMRI data that certain spatial aspects of 
activation, as opposed to just amplitude, are modulated by stimulus - a result that 
appeared consistent across subjects. Furthermore, we showed that our method was 
able to better discriminate frequency-related differences in activation patterns during 
motor task performance when compared to using mean intensity only. These results 
suggest that spatial characterization of BOLD signal can complement traditional 
intensity-based fMRI analysis. A direct extension of the proposed method would be to 
examine functional connectivity and phase relations between ROIs using spatial 
feature time courses, an approach currently being pursued. 
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