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Abstract. A detection and tracking approach is proposed for line
scratch removal in a digital film restoration process. Unlike random im-
pulsive distortions such as dirt spots, line scratch artifacts persist across
several frames. Hence, motion compensated methods will fail, as well as
single-frame methods if scratches are unsteady or fragmented.
The proposed method uses as input projections of each image of the in-
put sequence. First, a 1D-extrema detector provides candidates. Next,
a MHT (Multiple Hypothesis Tracker) uses these candidates to create
and keep multiple hypothesis. As the tracking goes further through the
sequence, each hypothesis gains or looses evidence. To avoid a combina-
torial explosion, the hypothesis tree is sequentially pruned, preserving
a list of the best ones. An energy function (quality of the candidates,
comparison to a model) is used for the path hypothesis sorting. As hy-
pothesis are set up at each iteration, even if no information is available, a
tracked path might cross gaps (missed detection or speckled scratches).
At last, the tracking stage feeds the correction process. Since this con-
tribution focus on the detection stage, only tracking results are given.

1 Introduction

Despite of fast-growing use of digital media, the photochemical film is still the
storage base in the motion picture industry and several million reels are stored
at film archives. Film is a good medium for long term storage, but future mass-
migration to digital media is ineluctable and digital processing at this step
could ensure the removal of the various, typical film-related damages, see fig-
ure 1. Though traditional restoration techniques are necessary (the film should
be able to withstand mechanically the digitisation step), digital restoration lets
us expect results beyond today’s limitations (automated processing, correction
of previously photographed artifacts, etc.).

Digital restoration has only very recently been explored [1,2,3]. The main
visual defects are dust spots, hairs and dirt, instabilities (both exposition and
position) and scratches, some of them are now easily detected and removed,
especially if the defect appears only in a single frame. This is not the case for
scratches. Scratches are mainly vertical (parallel to the film transport direction),
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Fig. 1. Film structure and film damage

caused by slippage and abrasion during fast starts, stops and rewinding. Because
the scratch is spread over many frames, and appears at the same location during
projection, this damage is readily seen by the viewer, and also difficult to detect
and correct using image processing.1

Early work about digital line scratch removal can be related to Anil C.
Kokaram’s research activities [4,5,6]. His detection scheme, based on vertical
mean, is still used today. Other approaches use vertical projections and local
maxima or minima detection. Bretschneider et Al [7,8] suggest a wavelet decom-
position using the low frequency image and the vertical components for a fast
detection. Some recent work [9,10] improve Kokaram’s approach, but most of
the techniques are intraframe methods, neglecting the scratch tracking [11].

In our approach, we consider a large number of test sequences (old footage
and new shoots). We state that a tracking mechanism considerably increases the
detection quality because line scratches can be very unsteady. The x-position of
the line scratch can move sideways up to 10 % of the image width (see figure 2).
Consequently, the intra-frame shape of the scratch is not perfectly vertical and
the corresponding slope might reach 5 degrees. All the methods based on full
frame projection or vertical mean fail in this case.

A tracking improves the detection as well, essentially in noisy images. The
localisation of the scratch detection is better and therefore its correction as
well. At last, since a line scratch has a continuous life over many frames, our
method allows an inter-frame tracking in order to assign a unique identifier to
the detected scratch for its entire lifetime. This is important for our user interface
(selection on a per-scratch basis instead of a per-frame basis).

The present work deals essentially with persistent line scratches (several con-
secutive frames). Other methods based on motion compensation and temporal
discontinuity in image brightness are more suitable for short line scratches (ap-

1 Proper film digitisation requires a wet gate process, which dramatically reduces
visible scratches. In a wet gate, a liquid (perchloroethylene) fills the gaps, and most
of fine scratches are no longer visible. But the wet gate process requires the use of
chemicals and is not very compatible with a high digitalisation throughput



266 B. Besserer and C. Thiré

Fig. 2. Image exhibiting a notably slanted scratch, from the “marée noire, colère rouge”
documentary and tracked path over 9 consecutive frames. Shown image is the 2nd one.

pearing randomly on a single frame only), as well as dust spots. Those methods
fail with persistent scratches, present on the previous/next frame at nearly the
same position and consequently matched and labelled as part of the scene.

2 Pre-processing : Image Projection

Though we cannot assume line scratches to be vertical over all an image, this
hypothesis is locally true for a few consecutive horizontal lines in the original
image I. We consider that scratch abscissa is locally constant over a band of H
lines of I. Several advantages direct us to work with an image P , the vertically
sub-sampled projection of the original image I. Each line of P is the vertical
mean value of H lines of I (we call H the projection height) :

P (x, y) =
H−1∑

i=0

I(x, y × H + i)
H

. (1)

– The amount of data (and processing time) is reduced by a factor of H.
– Noise is reduced by

√
(H) if gaussian.

– Line scratches intensity remains unaltered (assumed constant over H lines).

This simple method gives very good results, though more complex projection
schemes may be used, for example overlapping bands or a weighted mean. Let
us emphase that the H parameter is of primary importance, because it will im-
pact all the remaining processing steps and determine the maximum detectable
scratch slope q. Above this maximum slope, scratches become attenuated after
projection. H can be determined with respect to q by the following relation :
H = 1

tan(q) ; for q=5 degrees, we have H=12 pixels. According to image size, we
use H=8, H=12 or H=16 (exact divisors). Figure 3 illustrates the projection
transform.
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Fig. 3. Image from the “lost world” movie and projected image P (x, y) for 7 consecutive
frames. The projection height H is 16. The scratches (dark one on the left side, bright
one and dark one in the middle) are still visible.

3 Line Scratch Candidates Selection

The next step is the extraction of candidates which are used as input in the
tracking process. The typical spatial signature for a scratch is a local extremum
of the intensity curve along the x axis. So pixels candidate should be local max-
ima or minima horizontally, to find bright or dark scratches respectively. Many
different methods exist in the literature to achieve this detection, and we ex-
perimented several ones [12]. For this work, we want our candidate extractor to
meet the following requirements :

– Generate signed output : positive for bright scratches, negative for dark ones.
– Give a quality measure for each candidate, not only a simple binary output.
– Normalise quality measure between some known bounds, typically {−1, +1}.

The method we use relies on greyscale morphology [13,14]. Candidates for a
line scratch are extracted by computing the difference between the original im-
age and its opening or closing with a structuring element Bw. The opening will
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Fig. 4. The image P(x,y) (left side) is computed from a 36 frames (1.5 second) sequence.
The output Q(x,y) (right side) is here shown as greyscale image ; real output values
are signed so the tracker cannot confuse bright scratch candidates and dark ones.

remove thin structures brighter than the background, while closing will remove
thin structures darker than the background. This way, to extract bright candi-
dates, we subtract from P its opening with Bw, and symmetrically candidates
for dark scratches are defined as the difference between the pixel values in P and
their closing with Bw:

D+(x, y) = P (x, y) − ((P (x, y) � Bw) ⊕ Bw) . (2)
D−(x, y) = ((P (x, y) ⊕ Bw) � Bw) − P (x, y) . (3)

– D±(x, y) is the difference between the greyscale pixel value being considered,
and a spatial neighbourhood of width w.

– ⊕ stands for morphological dilatation, � for morphological erosion and Bw

is an unconstrained 1-D structuring element, of width w.

Because line scratches can be poorly contrasted relatively to their back-
ground, whereas natural image structures generally show a much stronger re-
sponse, we locally normalise the result, to consider the significance of the ex-
tremum with respect to its spatial neighbourhood, using the following formula :
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if (((P (x, y) ⊕ Bw) − (P (x, y) � Bw)) > s)

Q(x, y) = A × D+(x, y) − D−(x, y)
(P (x, y) ⊕ Bw) − (P (x, y) � Bw)

else Q(x, y) = 0

– Q(x, y) stands for the output image of this detector. This image is signed ;
positive values standing for local maxima and negative values for local min-
ima. The tracking stage will use this image as input.

– (P (x, y) ⊕ Bw) − (P (x, y) � Bw) is the local contrast.
– s is a threshold (see below).
– A is a scaling factor, which determines output values range [−A... + A]. We

typically use A = 127, to store Q(x, y) as an 8-bit greyscale image

The major tuning parameters are w and s. w defines the maximum scratch
width, and the size of the neighbourhood used to normalise output. It strongly
depends on the input image resolution. We obtained satisfactory results with
5 ≤ w ≤ 9 at video resolution (720 × 576), and 9 ≤ w ≤ 13 at high resolution
(2048×1536). The threshold s has two goals : reduce the amount of false alarms,
and inhibit candidate extraction in smooth areas. It controls the sensitivity and is
usually set to some low value, but still required to eliminate spurious candidates.
Figure 4 shows a result of a candidate detection.

4 Tracking Problem Formulation

4.1 General Background

After the pre-processing and detection stage, we still have to track the scratch
candidates over the sequence. A human observer will easily locate the most
visible scratches in figure 4, but the visual localisation of incomplete ones requires
more concentration. An automated tracking system should be fooled by false
alarms too, especially if vertical structures are present in the image.

The proposed tracking scheme should be able to distinguish real scratches
from false alarms, to close the gaps caused by detection failures or discontinu-
ous scratches, to find the optimum path through candidates and also uniquely
identify the scratches (the detection process will assign an unique ID to each
scratch, ranging from the frame where it appears to the frame where it vanishes.

The input of our tracking scheme is the image Q(x, y). The lines are read
sequentially, from the top to the bottom, so that the temporal axis matches
the y axis of this image. Each line is a data set Zt for the tracker (observa-
tion). In fact, such a representation (figure 4, right side) is very similar to a
radar (or sonar) plot (echoes vs. time). Tracking schemes for such applications
are common in the literature, and several approaches exist : Kalman filtering,
AR methods, probabilistic data association filter (PDAF), multiple hypothesis
trackers (MHT), Monte-Carlo and particle filters, . . . ; see an overview in [15].
Our problem is even simpler, since only one parameter should be estimated :
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Fig. 5. Basis structure of trellis diagram built for each track. Since the representation
space is matched against the state space, the possible transitions from state Xt−1 to
Xt are linked to a one-pixel deviation from the x position attached to state Xt−1.

the scratch localisation on the x-axis. Therefore, the state space and the world
model (or representation space) are tightly matched.

Kalman filtering or PDAF approaches combine the different hypothesis at
each step, while the MHT multiple hypothesis scheme keeps multiples hypothesis
alive [16]. The idea is that by getting more observations Zt, received at time t,
and matching these to the hypotheses, the hypothesis corresponding to a real
scratch path will gain more evidence, making it distinguishable from false ones.
Besides, the hypothesis for a not perfectly continuous scratch will not disappear
too quickly. Another advantage of such an approach is to unify in one concept
path initialisation, path tracking and path decay.

Of course, the challenge is to maintain a reasonable number of hypothesis,
according to available memory and computing power. Rejecting unprobable hy-
pothesis or keeping the best one at each stage are possible approaches. Since the
whole sequence could be digitised prior to the processing, an exhaustive search
of the optimum path for each scratch is also possible (although not reasonable) ;
but our implementation heads to process data on the fly and therefore can be
used in near-real time systems, gathering the images as outputted by a telecine.

4.2 Path Hypothesis Generation

The path hypothesis generation consists in building a trellis diagram in the state
space. In this trellis diagram, we find possible states Xt at time t, and branches
representing transitions from one state at time t to the next at time t + 1.
The tracking process can follow simultaneously multiple scratches, but to keep
the algorithm simple we will use a different trellis for each track, and consider
simultaneous tracks as independent (accordingly, track merging is impossible).
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A particular path hypothesis through the trellis is defined as a set of sequen-
tial states Xt0, Xt1, ..., Xt−1, Xt, t0 being the starting time (initialisation) for
the track we consider. Sequentially, as shown on figure 5, each state at time t is
linked with only 3 states at time t − 1, and conversely. This is due to the fact
that we tolerate only, after projection, a horizontal displacement of one pixel
between two consecutive lines for a track. As a consequence, the total number
of possible paths for a particular track, at time t, is t3.

A new trellis for a new track (holding one state Xt0 = x and one path
hypothesis) is generated if, for a given data set Zt (a line taken from the image
Q(x, y)), an unmatched, isolated but relevant candidate is found.

4.3 Path Hypothesis Update

As stated earlier, the challenge is to prune the hypothesis tree, which grows up
even if the new data set does not contain high detection values. Since the path
hypothesis are represented as a trellis diagram in the state space, a practicable
approach consist in weighting each transition from a state at stage m − 1 to a
state at stage m. The well-known Viterbi algorithm can be used to sequentially
prune the paths. All paths kept at the previous state are extended to the possible
states at the next stage, and the best path leading to each state is selected. Other
paths are eliminated after further consideration. The Viterbi algorithm can be
used in its standard form when the transition costs between states depend only
of the previous state and the current measurements. If this condition is not met
(non-markovian) then the kept path might be sub-optimum.

Fig. 6. These figures illustrate a possible path trough the state space, and therefore
the representation space Q(x, y) (see text). Each line of Q(x, y) is used as observation
Zt for the tracker. To prune the paths and keep the L-best ones, the likelihood of a
track is measured by a cost or energy function, based on both the quality of candidates
(left figure) and closeness to an estimated path using short term history for parameter
estimation (dotted line in the right figure). The cost computation is done for each path
in the L-list, and for each possible new state.
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To overcome this behaviour, we use the list-Viterbi algorithm (L-Viterbi)
keeping a list of the L most valuable paths at each state and for each stage [17,
18] We will sequentially prune paths which are unlikely, and choose L so that no
valid path is eliminated. The risk that an optimum path is rejected is alleviated
as L increases. Like in the Viterbi algorithm, a value is computed along a path
(cost function if the value should be minimised, else energy function). While the
real Viterbi algorithm use plausibility value to score the transitions from state
to state, we give below details on our implementation.

The set of possible paths at time t is noted Ct, with Ct,i the ith possible path
at this time. At each branch in the trellis, we assign an cost or energy function
Et,i which depends on the path Ct,i being considered, and for each path Ct,i we
defined E(Ct,i) as the cumulative energy of its path branches :

E(Ct,i) =
t∑

n=0

En,i . (4)

Our tracking problem can now be summarized as finding the L-optimal paths
through this trellis, maximising the energy function E. For the path Ct,i the
energy assigned to the branch linking the state Xt−1,i to Xt,i is :

Et,i = |Q(Xt,i)| − W ∗ (Xt,i − X̂t,i)2 . (5)

The first term Q(Xt,i) is the quality criteria of the candidate associated with
the state Xt,i. Using it as part of the cost function is quite obvious, since a line
scratch is defined as set of sequential local extrema (candidates) extracted from
P (x, y). So a path should maximise the amount of candidates helding a strong
quality criteria. The sign of Q(x, y) is used as toggle to prevent mixing “bright”
candidates and “dark” candidates, but |Q(x, y)| is used in the energy function.

The second term (Xt,i−X̂t,i)2 is the squared difference between Xt,i and X̂t,i,
an estimate using the state history on path Ct,i. This is a tension constraint, a
basic line scratch model, which will prevent paths which are not rigid enough
to be chosen. The physical behaviour (inertia) of line scratches is reflected by
this model. This constraint will prevent a path from locking on isolated extrema,
especially when no more valid candidates seems available. The model used for the
X̂(t, i) estimate is a 2-order polynomial, which is enough for our requirements :

x̂(t) =
2∑

i=0

(ait
i) . (6)

We estimate the polynomial coefficients using a least square method, on N
previous states : Xt−n,i, Xt−n+1,i, ..., Xt−1,i. N must be high enough to prevent
model divergence, and low enough to fit well the local trajectory. Kalman filter
was taken in consideration for this task in earlier work [19].

Finally, W is a scaling factor, used to control the respective influence of both
contributions (and so the rigidity of estimated tracks). It is strongly dependant
of the parameter A used in the pre-processing stage. We obtained good results
with W = 1

4A, and choosing N according to the projected image height.
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4.4 Track Ending Condition

As the update process handles the hypothesis tree pruning, the tracking mecha-
nism is kept running until the track’s ending condition is reached. If we introduce
predominant history-related factors in the ending condition computation, long
scratches will be kept alive while the ending condition is quickly reached for short
ones. So, only the quality values of candidates are used. The mean value of the
quality values Q(x, y) associated to the states Xt . . . Xt−N for the best path will
be computed. The tracking is suspended if this value falls below a threshold ; we
suppose the end of the scratch is reached. The path is stored in an intermediate
data file for the subsequent removal processing, and the trellis representation is
cleared from memory. This ending condition induces the tracking to overshoot
the real scratch end. It could be improved by searching the strongest negative
variation of Q(x, t) along the best path if the ending condition is met.

4.5 General Algorithm

for each observation Z_t
for each candidate in Z_t with non-zero quality value Q(x,y)

initialise a new track
end for
for each track

for each path hypothesis (from the L-list at t-1) related to this track
estimate model parameter using N states along this path
extend model for time t
for each new state X_t reachable from state X_t-1

compute cost for the transition X_t-1 to X_t
add new transition cost to overall path cost

end for
end for
sort and keep L-best paths, clear other paths from memory
if end condition for the best path is met

store track and clear memory
end if

end for
end for

5 Evaluation and Conclusion

Theis contribution is focused on the detection side of the scratch removal pro-
cess. The described detection and tracking scheme feeds the subsequent correc-
tion process with scratch trajectories ; this later process could rely on several
approaches : interpolation, in-painting, . . . . Showing a result for the complete
removal process on the basis of a single image is irrelevant in printed form, since
the restoration quality could only be assessed by dynamic rendering2. Generally,
we do not have film samples before degradation, and working with synthetic data
2 See video clips attached to the electronic version of this paper
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Fig. 7. Left : the image Q(x, y) for 27 consecutive frames. This sequence shows many
vertical structures (vertical curtain folds in the background of the scene) beside a real
scratch. middle : Tracking results. Right : Tracking result keeping the longest paths

is nonsense (simulated scratches : what model to use), so a objective efficiency
measurement is difficult. And because the goal of restoration is to improve the
visual quality of degraded film sequences, the appropriate evaluation method is
by subjective evaluation.

Even if we still find really weird images (for ex. with a lot of vertical struc-
tures, similar to the figure 7) overthrowing our algorithm, the overall efficiency
of this detection scheme has been proved, and performs better than the previ-
ous ones or other known methods, for jittering scratches as well as steady ones.
At present, we are improving the whole scratch removal process, especially the
correction step by limiting the repetitive over-corrections..

At last, this tracking concept is used in our restoration software suite called
RETOUCHE, used by the French post-production group Centrimage and by
the CNC (French national film archives). RETOUCHE has been used for the
digital restoration of 3 full-length features in 2K resolution and one video doc-
umentary (ca. 500000 frames) with convincing results. The algorithm and its
implementation are also fast (less than a second per frame for 2K images).

Acknowledgements. Images from “The Lost World” (1925) by courtesy of
Lobster Films, images from “Marée noire, colère rouge” (1978) by courtesy of
the Cinémathèque de Bretagne.



Detection and Tracking Scheme for Line Scratch Removal 275

References

1. Decencière, E., Serra, J.: Detection of local defects in old motion pictures. In:
VII National Symposium on Pattern Recognition and Image Analysis, Barcelona,
Spain (1997) 145–150

2. Joyeux, L., Boukir, S., Besserer, B., Buisson, O.: Reconstruction of degraded image
sequences. application to film restoration. Image and Vision Computing 19 (2001)
503

3. Takahiro, S., Takashi, K., Toshiaki, O., Takamasa, S.: Image processing for restora-
tion of heavily-corrupted old film sequences. In Society, I.C., ed.: 15th. Interna-
tional Conference on Pattern Recognition (ICPR’00). Volume 3., Barcelona, Spain
(2000) 17–20

4. Kokaram, A., Morris, R., Fitzgerald, W., Rayner, P.: Detection of missing data in
image sequences. i3etip 4 (1995) 1496–1508

5. Kokaram, A.: Detection and removal of line scratches in degraded motion picture
sequences. In: Proceedings of EUSIPCO’96, Trieste, Italy (1996)

6. Kokaram, A.: Motion picture restoration. Springer-Verlag (1998)
7. Bretschneider, T., Kao, O.: Detection and removal of scratches in digitised film

sequences. In: International Conference on Imaging Science, Systems, and Tech-
nology. (2001) 393–399

8. Bretschneider, T., Miller, C., Kao, O.: Interpolation of scratches in motion picture
films. In: IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Volume 3. (2001) 1873 –1876

9. Vitulano, D., Bruni, V., Ciarlini, P.: Line scratch detection on digital images: An
energy based model. In: International Conference in Central Europe on Computer
Graphics and Visualization (WSCG). Volume 10. (2002) 477

10. Maddalena, L.: Efficient methods for scratch removal in image sequences. In: 11th
International Conference on Image Analysis and Processing (ICIAP2001), IEEE
Computer Society (2001) 547–552

11. Tegolo, D., Isgro, F.: Scratch detection and removal from static images using simple
statistics and genetic algorithms. In: International Conference on Image Analysis
and Processing. (2001) 507–511

12. Joyeux, L., Buisson, O., Besserer, B., Boukir, S.: Detection and removal of line
scratches in motion picture films. In: IEEE Int. Conf. on Computer Vision and
Pattern Recognition, Fort Collins, Colorado, USA (1999) 548–553

13. Serra, J.: Image Analysis and Mathematical Morphology. Volume 1. Academic
Press, London, England (1982)

14. Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances.
Volume 2. Academic Press, London, England (1988)

15. Cox, I.J.: A review of statistical data association techniques for motion correspon-
dence. International Journal of Computer Vision 10 (1993) 53–66

16. Cox, I.J., Hingorani, S.L.: An efficient implementation of reid’s multiple hypothesis
tracking algorithm and its evaluation for the purpose of visual tracking. In: IEEE
Trans. on PAMI. Volume 18. (1996) 138–150

17. Perry, R., Vaddiraju, A., Buckley, K.: Trellis structure approach to multitarget
tracking. In: Proc. Sixth Annual Workshop on ASAP. (1999)

18. Bradley, J., Buckley, K., Perry, R.: Time-recursive number-of-tracks estimation for
mht. In: Signal and Data Processing of Small Targets, Orlando, FL (2000)

19. Joyeux, L., Boukir, S., Besserer, B.: Tracking and map reconstruction of line
scratches in degraded motion pictures. Machine Vision and Applications Volume
13, Number 3 (2002) 119–128


	Introduction
	Pre-processing : Image Projection
	Line Scratch Candidates Selection
	Tracking Problem Formulation
	General Background
	Path Hypothesis Generation
	Path Hypothesis Update
	Track Ending Condition
	General Algorithm

	Evaluation and Conclusion

