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Preface

Organization of the Book

The book has four parts. Part I discusses the fundamentals of privacy-
preserving data publishing. Part IT presents anonymization methods for pre-
serving information utility for some specific data mining tasks. The data pub-
lishing scenarios discussed in Part I and Part II assume publishing a single
data release from one data holder. In real-life data publishing, the scenario
is more complicated. For example, the same data may be published several
times. Each time, the data is anonymized differently for different purposes,
or the data is published incrementally as new data are collected. Part III
discusses the privacy issues, privacy models, and anonymization methods for
these more realistic, yet more challenging, data publishing scenarios. All works
discussed in the first three parts focus on anonymizing relational data. What
about other types of data? Recent studies have shown that publishing trans-
action data, trajectory data, social networks data, and textual data may also
result in privacy threats and sensitive information leakages. Part IV studies
the privacy threats, privacy models, and anonymization methods for these
complex data.

Part I: The Fundamentals

Chapter 1 provides an introduction to privacy-preserving data publishing.
Motivated by the advancement of data collection and information sharing
technologies, there is a clear demand for information sharing and data pub-
lication without compromising the individual privacy in the published data.
This leads to the development of the research topic, privacy-preserving data
publishing, discussed in this book. We define some desirable requirements and
properties of privacy-preserving data publishing, followed by a general discus-
sion on other closely related research topics.

Chapter 2 explains various types of attacks that can be performed on the
published data, and the corresponding privacy models proposed for prevent-
ing such attacks. The privacy models are systematically grouped by their
attack models. Industrial practitioners can use the privacy models discussed
in the chapter to estimate the degree of privacy risks on their shared data.
Researchers in the field of privacy protection may find this chapter as a handy
reference.

xxiii
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Chapter 3 discusses the anonymization operations employed to achieve the
privacy models discussed in Chapter 2. The chapter compares the pros and
cons of different anonymization operations.

Chapter 4 studies various types of information metrics that capture dif-
ferent information needs for different data analysis and data mining tasks.
Data can be anonymized in different ways to serve different information needs.
These “needs” are captured by an information metric that aims at maximizing
the preservation of certain type of information in the anonymization process.

Chapter 5 studies some representative anonymization algorithms for achiev-
ing the privacy models presented in Chapter 2 and systematically classifies
them by their addressed privacy attacks without considering any specific data
mining tasks. In contrast, the anonymization algorithms discussed in Part II
are designed for preserving some specific types of data mining information in
the anonymous data.

Part II: Anonymization for Data Mining

Chapter 6 uses the Red Cross Blood Transfusion Service as a real-life case
study to illustrate the requirements and challenges of the anonymization prob-
lem for classification analysis. We present a privacy model to overcome the
challenges of anonymizing high-dimensional relational data without signifi-
cantly compromising the data quality, followed by an efficient anonymiza-
tion algorithm for achieving the privacy model with two different information
needs. The first information need maximizes the information preserved for
classification analysis; the second information need minimizes the distortion
on the anonymous data for general data analysis. The chapter also stud-
ies other anonymization algorithms that address the anonymization problem
for classification analysis, and presents a methodology to evaluate the data
quality of the anonymized data with respect to the information needs. Re-
searchers and industrial practitioners may adopt the methodology to evaluate
their anonymized data.

Chapter 7 studies the anonymization problem for cluster analysis and
presents a framework to tackle the problem. The framework transforms the
anonymization problem for cluster analysis to the anonymization problem
for classification analysis discussed in Chapter 6. The framework includes an
evaluation phase that allows the data holder to evaluate the quality of their
anonymized data with respect to the information need on cluster analysis.

Part III: Extended Data Publishing Scenarios

Chapter 8 studies the scenario of multiple views publishing in which each
data release is a view of an underlying data table serving different information
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needs. Even if each release is individually anonymized, an adversary may be
able to crack the anonymity by comparing different anonymized views. Often,
additional statistics are published together with the anonymized data. This
chapter also studies the privacy threats caused by the published data together
with the additional statistical information.

Chapter 9 studies the scenario of sequential data publishing in which each
data release is a vertical partition of the underlying raw data table and may
contain some new attributes. Since the releases could be overlapping, an ad-
versary may be able to crack the anonymity by comparing multiple releases.
This chapter provides a detailed analysis on the privacy threats in this sce-
nario and presents an anonymization method to thwart the potential privacy
threats.

Chapter 10 studies two scenarios of incremental data publishing. The first
scenario is called continuous data publishing in which each data release in-
cludes new data records together with all previously published data records.
In other words, each data release is a history of all previously occurred events.
We illustrate the potential privacy threats in this data publishing model, suc-
cinctly model the privacy attacks, and present an anonymization algorithm
to thwart them. The second scenario is called dynamic data republishing in
which each data release is a snapshot of the current database. The privacy
model for dynamic data republishing takes both record insertions and dele-
tions into the consideration of potential privacy threats.

Chapter 11 studies the scenario of collaborative data publishing in which
multiple data holders want to integrate their data together and publish their
integrated data to each other or to a third party without disclosing specific
details of their data to each other. We study the problem of collaborative
anonymization for vertically partitioned data in the context of data mashup
application, and present a web service architecture together with a secure pro-
tocol to achieve the privacy and information utility requirements agreed by
all participating data holders.

Chapter 12 studies a similar scenario of collaborative data publishing but in
the problem of collaborative anonymization for horizontally partitioned data.
Each data holder owns different sets of data records on the same data schema,
and would like to integrate their data together to achieve some common data
mining task.

Part IV: Anonymizing Complex Data
Chapter 13 defines the anonymization problem for transaction data, dis-

cusses the challenges, and presents various anonymization methods for ad-
dressing the challenges. Transaction data can be found in many daily ap-



XXVi Preface

plications. Examples of transaction data include supermarket data, credit
card data, and medical history, etc. The major challenge of transaction data
anonymization is to overcome the problem of high dimensionality. The high
dimensionality of transaction data comes from the fact that most transaction
databases, for example a supermarket database, contain many distinct items.
Every distinct item constitutes a dimension in the transaction data.

Chapter 14 defines the anonymization problem for trajectory data, and
presents various privacy models and anonymization methods to address the
problem. In addition to the challenge of high dimensionality discussed above,
anonymizing trajectory is even more complicated due to the presence of se-
quences. The chapter also discusses how to preserve and evaluate the infor-
mation utility in the anonymized trajectory data.

Chapter 15 discusses different data models and attack models on social net-
works data. Social network application is one the fastest growing web applica-
tions. In social network applications, e.g., Facebook and LinkedIn, participants
share their personal information, preferences, and opinion with their friends
and in their participated social groups. This valuable information precisely
captures the lifestyle of individuals as well as the trends in some particular
social groups. This chapter concerns the privacy threats and information util-
ity if such data are shared with a third party for data mining.

Chapter 16 studies some sanitization methods on textual data. Textual data
can be found everywhere, from text documents on the Web to patients’ med-
ical history written by doctors. Sanitization on textual data refers to the
procedure of removing personal identifiable and/or sensitive information from
the text. Unlike the structural relational data and transaction data discussed
earlier, textual data is unstructural, making the anonymization problem much
more complicated because the anonymization method has to first determine
the identifiable and/or sensitive information from the textual data and then
apply the anonymization. This research topic is still in its infancy stage. This
chapter discusses two recently proposed methods.

Chapter 17 briefly discusses other privacy-preserving techniques that are
orthogonal to privacy-preserving data publishing, and concludes the book with
future trends in privacy-preserving data publishing.

To the Instructor

This book is designed to provide a detailed overview of the field of privacy-
preserving data publishing. The materials presented are suitable for an ad-
vanced undergraduate course or a graduate course. Alternatively, privacy-
preserving data publishing can be one of the topics in a database security or
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a data mining course. This book can serve as a textbook or a supplementary
reference for these types of courses.

If you intend to use this book to teach an introductory course in privacy-
preserving data publishing, you should start from Part I, which contains the
essential information of privacy-preserving data publishing. Students with
some data mining knowledge will probably find Part II interesting because
the anonymization problems are motivated by a real-life case study, and the
chapter presents both data mining and privacy requirements in the context of
the case study.

Part IIT covers more advanced topics in privacy-preserving data publishing.
For an undergraduate course, you may want to skip this part. For a graduate
course, you may consider covering some of the selected chapters in this part.
For this part, the students are expected to have some basic knowledge of
database operations, such as selection, projection, and join. Chapters in this
part are standalone, so you may selectively skip some chapters and sections,
or change the order.

Part IV covers some recent works on addressing the anonymization problem
for different types of data. The data models and challenges are explained in
detail. The materials are suitable for a graduate course.

To the Student

This book is a good entry point to the research field of privacy-preserving
data publishing. If you have some basic knowledge in computer science and
information technology, then you should have no problem understanding the
materials in Part I, which contains the essential information of the research
topic. It will be beneficial if you already have some basic knowledge of data
mining, such as classification analysis, cluster analysis, and association rules
mining, before proceeding to Part IT and Part IV. Han and Kamber [109] have
written an excellent textbook on data mining. Alternatively, you can easily
find lots of introductory information on these general data mining topics on
the Web. In order to understand the materials in Part III, you should have
some basic knowledge of database operations.

To the Researcher

If you are a beginner in the field of privacy-preserving data publishing, then
this book will provide you a broad yet detailed overview of the research topic.
If you are already a researcher in the field, then you may find Part I a good
reference, and proceed directly to the more advanced topics in subsequent
parts. Despite a lot of effort by the research community spent on this topic,
there are many challenging problems remaining to be solved. We hope this
book will spark some new research problems and ideas for the field.
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To the Industrial Practitioner

Information sharing has become the daily operation of many businesses in
today’s information age. This book is suitable for industrial IT practitioners,
such as database administrators, database architects, information engineers,
and chief information officers, who manage a large volume of person-specific
sensitive data and are looking for methods to share the data with business
partners or to the public without compromising the privacy of their clients.
Some chapters present the privacy-preserving data publishing problems in
the context of the industrial collaborative projects and reflect the authors’
experience in these projects.

You are recommended to start from Part I to gain some basic knowledge of
privacy-preserving data publishing. If you intend to publish the data for some
specific data mining tasks, you may find Part II useful. Chapter 6 describes
a data publishing scenario in the healthcare sector. Though the data mining
task and the sector may not directly be relevant to yours, the materials are
easy to generalize to be adopted for other data mining tasks in other sectors.
If you intend to make multiple releases of your continuously evolving data,
then some of the data publishing scenarios described in Part III may match
yours. Part IV describes the privacy models and anonymization algorithms
for different types of data. Due to the complexity of real-life data, you may
need to employ different anonymization methods depending on the types of
data you have at hand.

The book not only discusses the privacy and information utility issues, but
also the efficiency and scalability issues in privacy-preserving data publishing.
In many chapters, we highlight the efficient and scalable methods and provide
an analytical discussion to compare the strengths and weaknesses of differ-
ent solutions. We would be glad to listen to your stories if you have applied
privacy-preserving data publishing methods in real-life projects. Our e-mail
address is bfung@Qieee.org.
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Chapter 1

Introduction

Data mining is the process of extracting useful, interesting, and previously
unknown information from large data sets. The success of data mining relies
on the availability of high quality data and effective information sharing. The
collection of digital information by governments, corporations, and individ-
uals has created an environment that facilitates large-scale data mining and
data analysis. Moreover, driven by mutual benefits, or by regulations that re-
quire certain data to be published, there is a demand for sharing data among
various parties. For example, licensed hospitals in California are required to
submit specific demographic data on every patient discharged from their fa-
cility [43]. In June 2004, the Information Technology Advisory Committee
released a report entitled Revolutionizing Health Care Through Information
Technology [190]. One key point was to establish a nationwide system of elec-
tronic medical records that encourages sharing of medical knowledge through
computer-assisted clinical decision support. Data publishing is equally ubiqg-
uitous in other domains. For example, Netflix, a popular online movie rental
service, recently published a data set containing movie ratings of 500,000 sub-
scribers, in a drive to improve the accuracy of movie recommendations based
on personal preferences (New York Times, Oct. 2, 2006); AOL published a
release of query logs but quickly removed it due to the re-identification of a
searcher [27].

Information sharing has a long history in information technology. Tradi-
tional information sharing refers to exchanges of data between a data holder
and a data recipient. For example, the Electronic Data Interchange (EDI)
is a successful implementation of electronic data transmission between orga-
nizations with the emphasis on the commercial sector. The development of
EDI began in the late 1970s and remains in use today. Nowadays, the terms
“information sharing” and “data publishing” not only refer to the traditional
one-to-one model, but also the more general models with multiple data holders
and data recipients. Recent standardization of information sharing protocols,
such as eXtensible Markup Language (XML), Simple Object Access Protocol
(SOAP), and Web Services Description Language (WSDL) are catalysts for
the recent development of information sharing technology.

The standardization enables different electronic devices to communicate
with each other, sometimes even without interference of the device owner.
For example, the so-called intelligent fridge is capable to detect the RFID-
tagged food items inside, display the ingredients and nutritional data, suggest
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recipes, retrieve the latest information of the product from the producers,
and allow users to browse the web for further information. The advancement
of information technology has improved our standard of living. Though not
everyone agrees that an intelligent fridge is useful, having such a fridge will
at least make the kitchen more fun. Yet, detailed data in its original form
often contain sensitive information about individuals, and sharing such data
could potentially violate individual privacy. For example, one may not want to
share her web browsing history and the information of items in her intelligent
fridge to a third party. The data recipient having access to such information
could potentially infer the fridge owner’s current health status and predict her
future status. The general public expresses serious concerns on their privacy
and the consequences of sharing their person-specific information.

The current privacy protection practice primarily relies on policies and
guidelines to restrict the types of publishable data, and agreements on the
use and storage of sensitive data. The limitation of this approach is that it ei-
ther distorts data excessively or requires a trust level that is impractically high
in many data-sharing scenarios. Also, policies and guidelines cannot prevent
adversaries who do not follow rules in the first place. Contracts and agree-
ments cannot guarantee that sensitive data will not be carelessly misplaced
and end up in the wrong hands. For example, in 2007, two computer disks
containing names, addresses, birth dates, and national insurance numbers for
25 million people went missing while being sent from one British government
department to another.

A task of the utmost importance is to develop methods and tools for pub-
lishing data in a hostile environment so that the published data remain prac-
tically useful while individual privacy is preserved. This undertaking is called
privacy-preserving data publishing (PPDP), which can be viewed as a techni-
cal response to complement the privacy policies. In the past few years, research
communities have responded to this challenge and proposed many approaches.
While the research field is still rapidly developing, it is a good time to discuss
the assumptions and desirable properties for PPDP, clarify the differences
and requirements that distinguish PPDP from other related problems, and
systematically summarize and evaluate different approaches to PPDP. This
book aims to achieve these goals.

1.1 Data Collection and Data Publishing

A typical scenario of data collection and publishing is described in Fig-
ure 1.1. In the data collection phase, the data holder collects data from record
owners (e.g., Alice and Bob). In the data publishing phase, the data holder
releases the collected data to a data miner or the public, called the data recip-
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>
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>

Data Publisher

[ \ \ \
| Alice | Bob || Cathy | Doug |

Data Collection Data Publishing

FIGURE 1.1: Data collection and data publishing ([92])

tent, who will then conduct data mining on the published data. In this book,
data mining has a broad sense, not necessarily restricted to pattern mining
or model building. For example, a hospital collects data from patients and
publishes the patient records to an external medical center. In this example,
the hospital is the data holder, patients are record owners, and the medical
center is the data recipient. The data mining conducted at the medical center
could be any analysis task from a simple count of the number of men with
diabetes to a sophisticated cluster analysis.

There are two models of data holders [99]. In the untrusted model, the data
holder is not trusted and may attempt to identify sensitive information from
record owners. Various cryptographic solutions [258], anonymous communica-
tions [45, 126], and statistical methods [242] were proposed to collect records
anonymously from their owners without revealing the owners’ identity. In the
trusted model, the data holder is trustworthy and record owners are willing to
provide their personal information to the data holder; however, the trust is not
transitive to the data recipient. In this book, we assume the trusted model of
data holders and consider privacy issues in the data publishing phase. Every
data publishing scenario in practice has its own assumptions and requirements
on the data holder, the data recipients, and the data publishing purpose. The
following are different assumptions and properties that may be adopted in
practical data publishing depending on the application:

The non-expert data holder. The data holder is not required to have the
knowledge to perform data mining on behalf of the data recipient. Any
data mining activities have to be performed by the data recipient after
receiving the data from the data holder. Sometimes, the data holder
does not even know who the recipients are at the time of publication, or
has no interest in data mining. For example, the hospitals in California
publish patient records on the web [43]. The hospitals do not know who
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the recipients are and how the recipients will use the data. The hospital
publishes patient records because it is required by regulations [43], or
because it supports general medical research, not because the hospital
needs the result of data mining. Therefore, it is not reasonable to expect
the data holder to do more than anonymizing the data for publication
in such a scenario.

In other scenarios, the data holder is interested in the data mining result,
but lacks the in-house expertise to conduct the analysis and, therefore,
outsources the data mining activities to some external data miners. In
this case, the data mining task performed by the recipient is known
in advance. In the effort to improve the quality of the data mining
result, the data holder could release a customized data set that preserves
specific types of patterns for such a data mining task. Still, the actual
data mining activities are performed by the data recipient, not by the
data holder.

The data recipient could be an adversary. In PPDP, one assumption is
that the data recipient could also be an adversary. For example, the
data recipient, say a drug research company, is a trustworthy entity;
however, it is difficult to guarantee every staff in the company to be
trustworthy as well. This assumption makes the PPDP problems and
solutions to be very different from the encryption and cryptographic
approaches, in which only authorized and trustworthy recipients are
given the private key for accessing the cleartext. A major challenge in
PPDP is to simultaneously preserve both the privacy and information
utility in the anonymous data.

Publish data, not data mining results. PPDP emphasizes publishing
data records about individuals (i.e., micro data). This requirement is
more stringent than publishing data mining results, such as classifiers,
association rules, or statistics about groups of individuals. For example,
in the case of the Netflix data release, useful information may be some
type of associations of movie ratings. Netflix decided to publish data
records instead of publishing such associations because the participants,
with data records, have greater flexibility to perform required analy-
sis and data exploration, such as mining patterns in one partition but
not in other partitions, visualizing the transactions containing a spe-
cific pattern, trying different modeling methods and parameters, and so
forth. The assumption of publishing data, not data mining results, is
also closely related to the assumption of a non-expert data holder.

Truthfulness at the record level. In some data publishing scenarios, it is
important that each published record corresponds to an existing indi-
vidual in real life. Consider the example of patient records. The pharma-
ceutical researcher (the data recipient) may need to examine the actual
patient records to discover some previously unknown side effects of the
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tested drug [79]. If a published record does not correspond to an exist-
ing patient in real life, it is difficult to deploy data mining results in the
real world. Randomized and synthetic data do not meet this require-
ment. Also, randomized and synthetic data become meaningless to data
recipients who may want to manually interpret individual data records.

Encryption is another commonly employed technique for privacy pro-
tection. Although an encrypted record corresponds to a real life patient,
the encryption hides the semantics required for acting on the represented
patient. Encryption aims to prevent an unauthorized party from access-
ing the data, but enable an authorized party to have full access to the
data. In PPDP, it is the authorized party who may also play the role of
the adversary with the goal of inferring sensitive information from the
data received. Thus, encryption may not be directly applicable to some
PPDP problems.

1.2 What Is Privacy-Preserving Data Publishing?

In the most basic form of privacy-preserving data publishing (PPDP), the
data holder has a table of the form

D(Explicit_Identifier, Quasi_Identifier, Sensitive_Attributes,
Non-Sensitive_Attributes),

where Explicit_Identifier is a set of attributes, such as name and social security
number (SSN), containing information that explicitly identifies record owners;
Quasi_Identifier is a set of attributes that could potentially identify record
owners; Sensitive_Attributes consist of sensitive person-specific information
such as disease, salary, and disability status; and Non-Sensitive_Attributes
contains all attributes that do not fall into the previous three categories [40].
Most works assume that the four sets of attributes are disjoint. Most works
assume that each record in the table represents a distinct record owner.
Anonymization [52, 56] refers to the PPDP approach that seeks to hide
the identity and/or the sensitive data of record owners, assuming that sen-
sitive data must be retained for data analysis. Clearly, explicit identifiers of
record owners must be removed. Even with all explicit identifiers removed,
Sweeney [216] shows a real-life privacy threat on William Weld, former gov-
ernor of the state of Massachusetts. In Sweeney’s example, an individual’s
name in a public voter list was linked with his record in a published med-
ical database through the combination of zip code, date of birth, and sex,
as shown in Figure 1.2. Each of these attributes does not uniquely identify
a record owner, but their combination, called the quasi-identifier [56], often
singles out a unique or a small number of record owners. Research showed
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FIGURE 1.2: Linking to re-identify record owner ([217] (©2002 World Scien-
tific Publishing)

that 87% of the U.S. population had reported characteristics that made them
unique based on only such quasi-identifiers [216].

In the above example, the owner of a record is re-identified by linking his
quasi-identifier. To perform such linking attacks, the adversary needs two
pieces of prior knowledge: the victim’s record in the released data and the
quasi-identifier of the victim. Such knowledge can be obtained by observa-
tions. For example, the adversary noticed that his boss was hospitalized,
therefore, knew that his boss’s medical record would appear in the released
patient database. Also, it is not difficult for an adversary to obtain his boss’s
zip code, date of birth, and sex, which could serve as the quasi-identifier in
linking attacks.

To prevent linking attacks, the data holder publishes an anonymous table

T(QID’, Sensitive_Attributes, Non-Sensitive_Attributes),

QID’ is an anonymous version of the original QID obtained by applying
anonymization operations to the attributes in QID in the original table D.
Anonymization operations hide some detailed information so that mulitple
records become indistinguishable with respect to QID’. Consequently, if a
person is linked to a record through QID’, the person is also linked to all
other records that have the same value for QID’, making the linking am-
biguous. Alternatively, anonymization operations could generate a synthetic
data table T based on the statistical properties of the original table D, or
add noise to the original table D. The anonymization problem is to produce
an anonymous 7' that satisfies a given privacy requirement determined by the
chosen privacy model and to retain as much data utility as possible. An in-
formation metric is used to measure the utility of an anonymous table. Note,
the Non-Sensitive_Attributes are published if they are important to the data
mining task.
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1.3 Related Research Areas

Several polls [41, 144] show that the public has an increased sense of privacy
loss. Since data mining is often a key component of information systems, home-
land security systems [208], and monitoring and surveillance systems [88], it
gives a wrong impression that data mining is a technique for privacy intrusion.
This lack of trust has become an obstacle to the benefit of the technology. For
example, the potentially beneficial data mining research project, Terrorism
Information Awareness (TIA), was terminated by the U.S. Congress due to
its controversial procedures of collecting, sharing, and analyzing the trails left
by individuals [208].

Motivated by the privacy concerns on data mining tools, a research area
called privacy-preserving data mining (PPDM) emerged in 2000 [19, 50]. The
initial idea of PPDM was to extend traditional data mining techniques to
work with the data modified to mask sensitive information. The key issues
were how to modify the data and how to recover the data mining result
from the modified data. The solutions were often tightly coupled with the
data mining algorithms under consideration. In contrast, privacy-preserving
data publishing (PPDP) may not necessarily tie to a specific data mining
task, and the data mining task is sometimes unknown at the time of data
publishing. Furthermore, some PPDP solutions emphasize preserving the data
truthfulness at the record level as discussed earlier, but PPDM solutions often
do not preserve such property.

PPDP differs from PPDM in several major ways.

1. PPDP focuses on techniques for publishing data, not techniques for data
mining. In fact, it is expected that standard data mining techniques are
applied on the published data. In contrast, the data holder in PPDM
needs to randomize the data in such a way that data mining results can
be recovered from the randomized data. To do so, the data holder must
understand the data mining tasks and algorithms involved. This level of
involvement is not expected of the data holder in PPDP who usually is
not an expert in data mining.

2. Both randomization and encryption do not preserve the truthfulness
of values at the record level; therefore, the released data are basically
meaningless to the recipients. In such a case, the data holder in PPDM
may consider releasing the data mining results rather than the scrambled
data.

3. PPDP primarily “anonymizes” the data by hiding the identity of record
owners, whereas PPDM seeks to directly hide the sensitive data. Excel-
lent surveys and books in randomization [3, 19, 21, 81, 158, 212, 232]
and cryptographic techniques [50, 187, 230] for PPDM can be found in
the existing literature. In this book, we focus on techniques for PPDP.
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A family of research work [69, 71, 89, 133, 134, 228, 229, 259] called privacy-
preserving distributed data mining (PPDDM) [50] aims at performing some
data mining task on a set of private databases owned by different parties. It
follows the principle of Secure Multiparty Computation (SMC') [260, 261], and
prohibits any data sharing other than the final data mining result. Clifton
et al. [50] present a suite of SMC operations, like secure sum, secure set
union, secure size of set intersection, and scalar product, that are useful for
many data mining tasks. In contrast, PPDP does not perform the actual
data mining task, but concerns with how to publish the data so that the
anonymous data are useful for data mining. We can say that PPDP protects
privacy at the data level while PPDDM protects privacy at the process level.
They address different privacy models and data mining scenarios. PPDDM is
briefly discussed in Chapter 17.3. Refer to [50, 187, 232] for more discussions
on PPDDM.

In the field of statistical disclosure control (SDC') [3, 36], the research works
focus on privacy-preserving publishing methods for statistical tables. SDC
focuses on three types of disclosures, namely identity disclosure, attribute
disclosure, and inferential disclosure [51]. Identity disclosure occurs if an ad-
versary can identify a respondent from the published data. Revealing that
an individual is a respondent of a data collection may or may not violate
confidentiality requirements. Attribute disclosure occurs when confidential in-
formation about a respondent is revealed and can be attributed to the respon-
dent. Attribute disclosure is the primary concern of most statistical agencies
in deciding whether to publish tabular data [51]. Inferential disclosure oc-
curs when individual information can be inferred with high confidence from
statistical information of the published data.

Some other works of SDC focus on the study of the non-interactive query
model, in which the data recipients can submit one query to the system.
This type of non-interactive query model may not fully address the informa-
tion needs of data recipients because, in some cases, it is very difficult for
a data recipient to accurately construct a query for a data mining task in
one shot. Consequently, there are a series of studies on the interactive query
model [32, 62, 76], in which the data recipients, including adversaries, can
submit a sequence of queries based on previously received query results. The
database server is responsible to keep track of all queries of each user and de-
termine whether or not the currently received query has violated the privacy
requirement with respect to all previous queries.

One limitation of any interactive privacy-preserving query system is that it
can only answer a sublinear number of queries in total; otherwise, an adver-
sary (or a group of corrupted data recipients) will be able to reconstruct all
but 1 — o(1) fraction of the original data [33], which is a very strong violation
of privacy. When the maximum number of queries is reached, the query ser-
vice must be closed to avoid privacy leak. In the case of the non-interactive
query model, the adversary can issue only one query and, therefore, the non-
interactive query model cannot achieve the same degree of privacy defined by
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the interactive model. One may consider that privacy-preserving data pub-
lishing is a special case of the non-interactive query model. The interactive
query model will be briefly discussed in Chapter 17.1.

In this book, we review recent works on privacy-preserving data publishing
(PPDP) and provide our insights into this topic. There are several fundamen-
tal differences between the recent works on PPDP and the previous works
proposed by the statistics community. Recent works on PPDP consider back-
ground attacks, inference of sensitive attributes, generalization, and various
notions of information metrics, but the works in statistics community do not.
The term “privacy-preserving data publishing” has been widely adopted by
the computer science community to refer to the recent works discussed in this
book. SDC is an important topic for releasing statistics on person-specific
sensitive information. In this book, we do not intend to provide a detailed
coverage on the statistics methods because there are already many decent
surveys [3, 63, 173, 267] on that topic.



Chapter 2

Attack Models and Privacy Models

What is privacy preservation? In 1977, Dalenius [55] provided a very stringent
definition:

access to the published data should not enable the adversary to learn
anything extra about any target victim compared to no access to the database,
even with the presence of any adversary’s background knowledge obtained
from other sources.

In real-life application, such absolute privacy protection is impossible due
to the presence of the adversary’s background knowledge [74]. Suppose the
age of an individual is sensitive information. Assume an adversary knows that
Alice’s age is 5 years younger than the average age of American women, but
does not know the average age of American women. If the adversary has access
to a statistical database that discloses the average age of American women,
then Alice’s privacy is considered to be compromised according to Dalenius’
definition, regardless of the presence of Alice’s record in the database. Most
literature on privacy-preserving data publishing considers a more relaxed,
more practical notion of privacy protection by assuming the adversary has
limited background knowledge. Below, the term “victim” refers to the record
owner targeted by the adversary. We can broadly classify privacy models to
two categories based on their attack principles.

The first category considers that a privacy threat occurs when an adversary
is able to link a record owner to a record in a published data table, to a sensi-
tive attribute in a published data table, or to the published data table itself.
We call these record linkage, attribute linkage, and table linkage, respectively.
In all three types of linkages, we assume that the adversary knows the QI D of
the victim. In record and attribute linkages, we further assume that the adver-
sary knows the victim’s record is in the released table, and seeks to identify the
victim’s record and/or sensitive information from the table. In table linkage,
the attack seeks to determine the presence or absence of the victim’s record in
the released table. A data table is considered to be privacy-preserving if it can
effectively prevent the adversary from successfully performing these linkages.
Chapters 2.1-2.3 study this category of privacy models.

The second category aims at achieving the uninformative principle [160]:
The published table should provide the adversary with little additional in-
formation beyond the background knowledge. If the adversary has a large

13
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Table 2.1: Privacy models

Attack Model
Privacy Model Record | Attribute | Table | Probabilistic
linkage | linkage | linkage attack

k-Anonymity [201, 217
MultiR k-Anonymity [178]
{-Diversity [162]
Confidence Bounding [237]
(o, k)-Anonymity [246]
(X,Y)-Privacy [236]

(k, e)-Anonymity [269]

(e, m)-Anonymity [152]
Personalized Privacy [250]
t-Closeness [153]
0-Presence [176]

(¢, t)-Isolation [46] v
e-Differential Privacy [74]
(d,~)-Privacy [193]
Distributional Privacy [33]
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variation between the prior and posterior beliefs, we call it the probabilistic
attack. Many privacy models in this family do not explicitly classify attributes
in a data table into QID and Sensitive_Attributes, but some of them could
also thwart the sensitive linkages in the first category, so the two categories
overlap. Chapter 2.4 studies this family of privacy models. Table 2.1 summa-
rizes the attack models addressed by the privacy models.

2.1 Record Linkage Model

In the attack of record linkage, some value gid on QID identifies a small
number of records in the released table T, called a group. If the victim’s QI D
matches the value gid, the victim is vulnerable to being linked to the small
number of records in the group. In this case, the adversary faces only a small
number of possibilities for the victim’s record, and with the help of additional
knowledge, there is a chance that the adversary could uniquely identify the
victim’s record from the group.

Example 2.1

Suppose that a hospital wants to publish patients’ records in Table 2.2 to a
research center. Suppose that the research center has access to the external
table Table 2.3 and knows that every person with a record in Table 2.3 has a
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Table 2.2: Original patient data

Job Sex | Age | Disease
Engineer | Male 35 | Hepatitis
Engineer | Male 38 | Hepatitis

Lawyer Male 38 HIV
Writer | Female | 30 Flu
Writer | Female | 30 HIV
Dancer | Female | 30 HIV
Dancer | Female | 30 HIV

Table 2.3: External data

Name Job Sex | Age
Alice Writer | Female | 30
Bob | Engineer | Male 35
Cathy | Writer | Female | 30
Doug | Lawyer Male 38
Emily | Dancer | Female | 30
Fred | Engineer | Male 38
Gladys | Dancer | Female | 30
Henry | Lawyer Male 39
Irene Dancer | Female | 32

record in Table 2.2. Joining the two tables on the common attributes Job, Sex,
and Age may link the identity of a person to his/her Disease. For example,
Doug, a male lawyer at 38 years old, is identified as an HIV patient by
qid = (Lawyer, Male, 38) after the join.

2.1.1 k-Anonymity

To prevent record linkage through QID, Samarati and Sweeney [201, 202,
203, 217] propose the notion of k-anonymity: If one record in the table has
some value qid, at least k — 1 other records also have the value ¢id. In other
words, the minimum equivalence group size on QID is at least k. A table
satisfying this requirement is called k-anonymous. In a k-anonymous table,
each record is indistinguishable from at least £ — 1 other records with respect
to QID. Consequently, the probability of linking a victim to a specific record
through QID is at most 1/k.

k-anonymity cannot be replaced by the privacy models in attribute link-
age discussed in Chapter 2.2. Consider a table T that contains no sensitive
attributes (such as the voter list in Figure 1.2). An adversary could possibly
use the QID in T to link to the sensitive information in an external source. A
k-anonymous T can still effectively prevent this type of record linkage with-
out considering the sensitive information. In contrast, the privacy models in
attribute linkage assume the existence of sensitive attributes in 7.
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Table 2.4: 3-anonymous patient data

Job Sex Age | Disease
Professional | Male || ) | Hepatitis
Professional | Male | | ) | Hepatitis
Professional | Male | | ) HIV
Artist Female | [30-35) Flu

[30-35)
[30-35)
[30-35)

Artist Female HIV
Artist Female HIV
Artist Female HIV

Table 2.5: 4-anonymous external data

Name Job Sex Age
Alice Artist Female 30-35)
Bob Professional Male 35-40)
Cathy Artist Female 30-35)
Doug Professional Male 35-40)
Emily Artist Female 30-35)
Fred Professional Male 35-40)
Gladys Artist Female 30-35)
Henry Professional Male 35-40)
Irene Artist Female [30-35)

Example 2.2

Table 2.4 shows a 3-anonymous table by generalizing QI D = {Job, Sex, Age}
from Table 2.2 using the taxonomy trees in Figure 2.1. It has two dis-
tinct groups on QID, namely (Professional, Male, [35-40)) and (Artist,
Female, [30-85)). Since each group contains at least 3 records, the table is
3-anonymous. If we link the records in Table 2.3 to the records in Table 2.4
through QID, each record is linked to either no record or at least 3 records
in Table 2.4.

The k-anonymity model assumes that QID is known to the data holder.
Most works consider a single QID containing all attributes that can be po-
tentially used in the quasi-identifier. The more attributes included in QID,
the more protection k-anonymity would provide. On the other hand, this also
implies more distortion is needed to achieve k-anonymity because the records
in a group have to agree on more attributes. To address this issue, Fung et
al. [95, 96] allow the specification of multiple QI Ds, assuming that the data
holder knows the potential QI Ds for record linkage. The following example
illustrates the use of this specification.

Example 2.3
The data holder wants to publish a table T(A, B,C, D, S), where S is the
sensitive attribute, and knows that the data recipient has access to previously
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Job Sex Age
ANY ANY [30-40)
| |
Professional Artist  Male Female  [30-35) [35-40)
Engineer Lawyer Dancer Writer [30-33) [33-35)

FIGURE 2.1: Taxonomy trees for Job, Sex, Age

published tables T1(A, B, X) and T2(C, D,Y), where X and Y are attributes
not in T'. To prevent linking the records in 7" to the information on X or Y, the
data holder can specify k-anonymity on QID; = {4, B} and QIDy = {C, D}
for T. This means that each record in T is indistinguishable from a group
of at least k records with respect to QID; and is indistinguishable from a
group of at least k records with respect to QID>. The two groups are not
necessarily the same. Clearly, this requirement is implied by k-anonymity on
QID = {A, B,C, D}, but having k-anonymity on both QI D, and QIDy does
not imply k-anonymity on QID.

The second scenario is that there are two adversaries, one has access to T'1
and one has access to T2. Since none of them has access of all of A, B, C,
and D in a table, considering a single QID = {A, B,C, D} would result in
over-protection and, therefore, over data distortion. [J

Specifying multiple QI Ds is practical only if the data holder knows how the
adversary might perform the linking. Nevertheless, the data holder often does
not have such information. A wrong decision may cause higher privacy risks
or higher information loss. Later, we discuss the dilemma and implications of
choosing attributes in QID. In the presence of multiple QIDs, some QIDs
may be redundant and can be removed by the following subset property:

Observation 2.1.1 (Subset property) Let QID’ C QID. If a table T is
k-anonymous on QID, then T is also k-anonymous on QID’. In other words,
QID' is covered by QID, so QID’ can be removed from the privacy require-
ment [95, 96, 148]. =

The k-anonymity model assumes that each record represents a distinct in-
dividual. If several records in a table represent the same record owner, a group
of k records may represent fewer than k record owners, and the record owner
may be underprotected. The following example illustrates this point.

Example 2.4
A record in the table Inpatient(Pid, Job, Sex, Age, Disease) represents that
a patient identified by Pid has Job, Sex, Age, and Disease. A patient may



18 Introduction to Privacy-Preserving Data Publishing

have several records, one for each disease. In this case, QID = {Job, Sex, Age}
is not a key and k-anonymity on QI D fails to ensure that each group on QI D
contains at least k (distinct) patients. For example, if each patient has at least
3 diseases, a group of k records will involve no more than k/3 patients. UJ

2.1.2 (X,Y)-Anonymity

To address the shortcoming of k-anonymity discussed in Example 2.4, Wang
and Fung [236] propose the notion of (X,Y)-anonymity, where X and Y are
disjoint sets of attributes. For a table T, II(T') and o(T") denote the projection
and selection over T, att(T') denotes the set of attributes in T', and |T'| denotes
the number of distinct records in 7.

DEFINITION 2.1 (X,Y)-anonymity  [256] Let = be a value on X.
The anonymity of x with respect to Y, denoted by ay (z), is the number of
distinct values on Y that co-occur with z, i.e., [Ilyo,(T)]. If Y is a key in T,
ay (z), also written as a(x), is equal to the number of records containing x.
Let Ay (X) = min{ay(x) | x € X}. A table T satisfies the (X,Y)-anonymity
for some specified integer k if Ay (X) > k. m

(X,Y)-anonymity specifies that each value on X is linked to at least k
distinct values on Y. The k-anonymity is the special case where X is the
QID and Y is a key in T that uniquely identifies record owners. (X,Y)-
anonymity provides a uniform and flexible way to specify different types of
privacy requirements. If each value on X describes a group of record owners
(e.g., X = {Job, Sex, Age}) and Y represents the sensitive attribute (e.g.,
Y = {Disease}), this means that each group is associated with a diverse
set of sensitive values, making it difficult to infer a specific sensitive value.
The next example shows the usefulness of (X, Y)-anonymity for modeling k-
anonymity in the case that several records may represent the same record
owner.

Example 2.5

Continue from Example 2.4. With (X, Y')-anonymity, we specify k-anonymity
with respect to patients by letting X = {Job, Sex, Age} and Y = {Pid}.
That is, each X group is linked to at least k distinct patient IDs, therefore, k
distinct patients.

2.1.3 Dilemma on Choosing QID

One challenge faced by a data holder is how to classify the attributes in
a data table into three disjoint sets: QID, Sensitive_Attributes, and Non-
Sensitive_Attributes. QI D in principle should contain an attribute A if the ad-
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versary could potentially obtain A from other external sources. After the QID
is determined, remaining attributes are grouped into Sensitive_Attributes and
Non-Sensitive_Attributes based on their sensitivity. There is no definite an-
swer for the question of how a data holder can determine whether or not an
adversary can obtain an attribute A from some external sources, but it is
important to understand the implications of a misclassification: misclassify-
ing an attribute A into Sensitive_Attributes or Non-Sensitive_Attributes may
compromise another sensitive attribute S because an adversary may obtain A
from other sources and then use A to perform record linkage or attribute link-
age on S. On the other hand, misclassifying a sensitive attribute S into Q1D
may directly compromise sensitive attribute S of some target victim because
an adversary may use attributes in QI D — S to perform attribute linkage on .S.
Furthermore, incorrectly including S in QID causes unnecessary information
loss due to the curse of dimensionality [6].

Motwani and Xu [174] present a method to determine the minimal set of
quasi-identifiers for a data table T". The intuition is to identify a minimal set of
attributes from 7' that has the ability to (almost) distinctly identify a record
and the ability to separate two data records. Nonetheless, the minimal set of
QID does not imply the most appropriate privacy protection setting because
the method does not consider what attributes the adversary could potentially
have. If the adversary can obtain a bit more information about the target
victim beyond the minimal set, then he may be able to conduct a successful
linking attack. The choice of QI D remains an open issue.

k-anonymity and (X,Y)-anonymity prevent record linkage by hiding the
record of a victim in a large group of records with the same QID. However,
if most records in a group have similar values on a sensitive attribute, the
adversary can still associate the victim to her sensitive value without hav-
ing to identify her record. This situation is illustrated in Table 2.4, which
is 3-anonymous. For a victim matching qid = (Artist, Female, [30-35)), the
confidence of inferring that the victim has HIV is 75% because 3 out of the
4 records in the group have HIV. Though (X, Y )-anonymity requires that
each X group is linked to at least k distinct Y values, if some Y values oc-
cur more frequently than others, there is a higher confidence of inferring the
more frequent values. This leads us to the next family of privacy models for
preventing this type of attribute linkage.

2.2 Attribute Linkage Model

In the attack of attribute linkage, the adversary may not precisely identify
the record of the target victim, but could infer his/her sensitive values from
the published data T, based on the set of sensitive values associated to the
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group that the victim belongs to. In case some sensitive values predominate
in a group, a successful inference becomes relatively easy even if k-anonymity
is satisfied.

Example 2.6

Consider the 3-anonymous data in Table 2.4. Suppose the adversary knows
that the target victim Emily is a female dancer at age 30 and owns a record in
the table. The adversary may infer that Emily has HIV with 75% confidence
because 3 out of the 4 female artists with age [30-35) have HIV. Regardless
of the correctness of the inference, Emily’s privacy has been compromised.D

Clifton [49] suggests eliminating attribute linkages by limiting the released
data size. Limiting data size may not be desirable if data records, such as HI'V
patients’ data, are valuable data and are difficult to obtain. Below we discuss
several other approaches proposed to address this type of threat. The gen-
eral idea is to diminish the correlation between QI D attributes and sensitive
attributes.

2.2.1 ¢-Diversity

Machanavajjhala et al. [160, 162] propose the diversity principle, called ¢-
diversity, to prevent attribute linkage. The ¢-diversity requires every gid group
to contain at least ¢ “well-represented” sensitive values. A similar idea was
previously discussed in [181]. There are several instantiations of this princi-
ple, which differ in what it means by being well-represented. The simplest
understanding of “well-represented” is to ensure that there are at least ¢ dis-
tinct values for the sensitive attribute in each q¢id group, where gid group
is the set of records having the value qid on QID. This distinct {-diversity
privacy model (also known as p-sensitive k-anonymity [226]) automatically
satisfies k-anonymity, where k = £, because each gid group contains at least
¢ records. Distinct ¢-diversity cannot prevent probabilistic inference attacks
because some sensitive values are naturally more frequent than others in a
group, enabling an adversary to conclude that a record in the group is very
likely to have those values. For example, Flu is more common than HIV.
This motivates the following two stronger notions of /-diversity.

A table is entropy £-diverse if for every gid group

- Z P(qid, s)log(P(qid, s)) > log({) (2.1)
sesS

where S is a sensitive attribute, P(qid, s) is the fraction of records in a gid
group having the sensitive value s. The left-hand side, called the entropy of
the sensitive attribute, has the property that more evenly distributed sensitive
values in a gid group produce a larger value. Therefore, a large threshold value
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¢ implies less certainty of inferring a particular sensitive value in a group. Note
that the inequality does not depend on the choice of the log base.

Example 2.7
Consider Table 2.4. For the first group (Professional, Male, [35-40)),

fglogg - %log% =log(1.9),
and for the second group (Artist, Female, [30-35)),

—3log3 — Liogt = log(1.8).

So the table satisfies entropy ¢-diversity where ¢ < 1.8. ]

To achieve entropy ¢-diversity, the table as a whole must be at least log(l)
since the entropy of a gid group is always greater than or equal to the minimum
entropy of its subgroups {qidy,...,qid,} where qid = qid; U - -- U qid,,, that
is,

entropy(qid) > min(entropy(qidy), . . ., entropy(qidy,)).

This requirement is hard to achieve, especially if some sensitive value fre-
quently occurs in S.

One limitation of entropy ¢-diversity is that it does not provide a
probability-based risk measure, which tends to be more intuitive to the human
data holder. For example in Table 2.4, being entropy 1.8-diverse in Exam-
ple 2.7 does not convey the risk level that the adversary has 75% probability
of success to infer HIV where 3 out of the 4 record owners in the gid group
have HIV. Also, it is difficult to specify different protection levels based on
varied sensitivity and frequency of sensitive values.

It is interesting to note that entropy was also used to measure the anonymity
of senders in an anonymous communication system [61, 209] where an adver-
sary employs techniques such as traffic analysis to identify the potential sender
(or receiver) of a message. The goal of anonymous communication is to hide
the identity of senders during data transfer by using techniques such as miz
network [45] and crowds [197]. The general idea is to blend the senders into
a large and characteristically diverse crowd of senders; the crowd collectively
sends messages on behalf of its members. Diaz et al. [61], and Serjantov and
Danezis [209] employ entropy to measure the diversity of a crowd.

DEFINITION 2.2 recursive (c,{)-diverse  [162] Let ¢ > 0 be a con-
stant. Let S be a sensitive attribute. Let s1, ..., s, be the values of S that ap-
pear in the gid group. Let f1,..., fi, be their corresponding frequency counts
in gid. Let f(1),..., fan) be those counts sorted in non-increasing order. A
table is recursive (c, £)-diverse if every qid group satisfies f1y < ¢32", f(;)
for some constant c. m
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The recursive (c, £)-diversity makes sure that the most frequent value does
not appear too frequently, and the less frequent values do not appear too
rarely. A gid group is recursive (c,f)-diverse if the frequency of the most
frequent sensitive value is less than the sum of the frequencies of the m —
£ + 1 least frequent sensitive values multiplying by some publisher-specified
constant ¢, i.e., f1) < ¢ 1", f;). The intuition is that even if the adversary
excludes some possible sensitive values of a victim by applying background
knowledge, the inequality remains to hold for the remaining values; therefore,
the remaining ones remain hard to infer. A table is considered to have recursive
(¢, £)-diversity if all of its groups have recursive (e, £)-diversity.

This instantiation is less restrictive than the entropy /-diversity because
a larger ¢, which is a parameter independent of the frequencies of sensitive
values, can relax the restrictiveness. However, if a sensitive value occurs very
frequently in S, this requirement is still hard to satisfy. For example, if p%
of the records in the table contains the most frequent sensitive value s, then
at least one ¢id group will have |qid A s|/|qid| > p% where |¢id| denotes the
number of records containing the gid value, and |gid A s| denotes the number
of records containing both the ¢id and s values. This gid group could easily
violate the recursive (c, £)-diversity if ¢ is small.

Machanavajjhala et al. [160, 162] also present two other instantia-
tions, called positive disclosure-recursive (c,f)-diversity and negative/positive
disclosure-recursive (c,f)-diversity to capture the adversary’s background
knowledge. Suppose a victim is in a gi¢d group that contains three different
sensitive values {Flu, Cancer, HIV}, and suppose the adversary knows that
the victim has no symptom of having a flu. Given this piece of background
knowledge, the adversary can eliminate Flu from the set of candidate sensitive
values of the victim. Martin et al. [165] propose a language to capture this
type of background knowledge and to represent the knowledge as k units of
information. Furthermore, the language could capture the type of implication
knowledge. For example, given that Alice, Bob, and Cathy have flu, the adver-
sary infers that Doug is very likely to have flu, too, because all four of them
live together. This implication is considered to be one unit of information.
Given an anonymous table T and k units of background knowledge, Martin et
al. [165] estimate the maximum disclosure risk of T', which is the probability
of the most likely predicted sensitive value assignment of any record owner in
T.

{-diversity has the limitation of implicitly assuming that each sensitive at-
tribute takes values uniformly over its domain. In case the frequencies of
sensitive values are not similar, achieving ¢-diversity may cause a large data
utility loss. Consider a data table containing data of 1000 patients on some
QID attributes and a single sensitive attribute Disease with two possible
values, HIV or Flu. Assume that there are only 5 patients with HIV in the
table. To achieve 2-diversity, at least one patient with HIV is needed in each
qid group; therefore, at most 5 groups can be formed [66], resulting in high
information loss in this case.
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A common view in the literature is that ¢-diversity should replace k-
anonymity. In fact, it depends on the data publishing scenario. Usually linking
attack involves data from two sources, one table T7 containing names and iden-
tity of individuals (e.g., voter list), and one table T» containing sensitive at-
tributes (e.g., medical data), and both containing QI D attribute. k-anonymity
is suitable for anonymizing 77 and ¢-diversity is suitable for anonymizing T5.
In this sense, these two privacy notions are not competitors, but rather are
different tools to be used under different scenarios.

2.2.2 Confidence Bounding

Wang et al. [237] consider bounding the confidence of inferring a sensitive
value from a qid group by specifying one or more privacy templates of the
form, (QID — s, h). s is a sensitive value, QID is a quasi-identifier, and h is
a threshold. Let Conf(QID — s) be max{conf(qid — s)} over all gid groups
on QID, where conf(qid — s) denotes the percentage of records containing
s in the gid group. A table satisfies (QID — s,h) if Conf(QID — s) < h. In
other words, (QID — s, h) bounds the adversary’s confidence of inferring the
sensitive value s in any group on QID to the maximum h. Note, confidence
bounding is also known as ¢T-diversity in [157].

For example, with QID = {Job, Sex, Age}, (QID — HIV,10%) states
that the confidence of inferring HIV from any group on QID is no more than
10%. For the data in Table 2.4, this privacy template is violated because the
confidence of inferring HIV is 75% in the group {Artist, Female, [30 — 35)}.

The confidence measure has two advantages over recursive (c, £)-diversity
and entropy ¢-diversity. First, the confidence measure is more intuitive because
the risk is measured by the probability of inferring a sensitive value. The data
holder relies on this intuition to specify the acceptable maximum confidence
threshold. Second, it allows the flexibility for the data holder to specify a
different threshold h for each combination of QID and s according to the
perceived sensitivity of inferring s from a group on QID. The recursive (¢, £)-
diversity cannot be used to bound the frequency of sensitive values that are
not the most frequent. For example, if Flu has frequency of 90% and HIV
has 5%, and others have 3% and 2%, it is difficult to satisfy (c,!)-diversity.
Even if it is satisfied, it does not protect the less frequent HIV which needs a
much stronger (¢, 1)-diversity than Flu. Confidence bounding provides greater
flexibility than ¢-diversity in this aspect. However, recursive (¢, £)-diversity can
still prevent attribute linkages even in the presence of background knowledge
as discussed earlier. Confidence bounding does not share the same merit.

2.2.3 (X,Y)-Linkability

(X,Y)-anonymity in Chapter 2.1.2 states that each group on X has at least
k distinct values on Y (e.g., diseases). However, being linked to k persons
does not imply that the probability of being linked to any of them is 1/k. If
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some Y values occur more frequently than others, the probability of inferring
a particular Y value can be higher than 1/k. The (X,Y)-linkability below
addresses this issue.

DEFINITION 2.3 (X,Y)-linkability = [236] Let = be a value on X
and y be a value on Y. The linkability of = to y, denoted by [,(z), is the
percentage of the records that contain both x and y among those that contain
z, ie., a(y,z)/a(x), where a(z) denotes the number of records containing
x and a(y,z) is number of records containing both y and z. Let L,(X) =
max{ly(z) | x € X} and Ly(X) = maz{Ly(X) | y € Y}. We say that T
satisfies the (X,Y)-linkability for some specified real 0 < k < 1if Ly (X) < h.
L]

In words, (X,Y)-linkability limits the confidence of inferring a value on
Y from a value on X. With X and Y describing individuals and sensitive
properties, any such inference with a high confidence is a privacy breach.
Often, not all but some values y on Y are sensitive, in which case Y can
be replaced with a subset of y; values on Y, written ¥ = {yi1,...,9p}, and
a different threshold h can be specified for each y;. More generally, we can
allow multiple Y;, each representing a subset of values on a different set of
attributes, with Y being the union of all ;. For example, Y1 = {HIV} on
Test and Yy = {Banker} on Job. Such a “value-level” specification provides
a great flexibility essential for minimizing the data distortion.

2.2.4 (X,Y)-Privacy

Wang and Fung [236] propose a general privacy model, called (X,Y)-
privacy, which combines both (X, Y )-anonymity and (X,Y)-linkability. The
general idea is to require each group x on X to contain at least k records
and the confidence of inferring any y € Y from any x € X is limited to a
maximum confidence threshold h. Note, the notion of (X, Y )-privacy is not
only applicable to a single table, but is also applicable to the scenario of mul-
tiple releases. Chapter 9 discusses (X, Y )-privacy in the context of sequential
anonymization in details.

2.2.5 (o, k)-Anonymity

Wong et al. [246] propose a similar integrated privacy model called (a, k)-
anonymity, requiring every qid in a Table T to be shared by at least k
records and conf(gid — s) < « for any sensitive value s, where k and a are
data holder-specified thresholds. Nonetheless, both (X, Y)-Privacy and («, k)-
anonymity may result in high distortion if the sensitive values are skewed.
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2.2.6 LKC-Privacy

In most previously studied record and attribute linkage model, the usual
approach is to generalize the records into equivalence groups so that each
group contains at least k records with respect to some QI D attributes, and the
sensitive values in each qid group are diversified enough to disorient confident
inferences. However, Aggarwal [6] has shown that when the number of QI D
attributes is large, that is, when the dimensionality of data is high, most of
the data have to be suppressed in order to achieve k-anonymity. Applying k-
anonymity on the high-dimensional patient data would significantly degrade
the data quality. This problem is known as the curse of high-dimensionality
on k-anonymity [6].

To overcome this problem, Mohammed et al. [171] exploit the limited prior
knowledge of adversary: in real-life privacy attacks, it is very difficult for an
adversary to acquire all the information in QID of a target victim because
it requires non-trivial effort to gather each piece of prior knowledge from so
many possible values. Thus, it is reasonable to assume that the adversary’s
prior knowledge is bounded by at most L values of the QI D attributes of the
target victim. Based on this assumption, Mohammed et al. [171] propose a
privacy model called LK C-privacy, which will be further discussed in a real-
life application in Chapter 6, for anonymizing high-dimensional data. The
assumption of limited adversary’s knowledge has also been previously applied
for anonymizing high-dimensional transaction data [255, 256], which will be
discussed in Chapter 13.

The general intuition of LK C-privacy is to ensure that every combination of
values in QID; C Q1D with maximum length L in the data table T is shared
by at least K records, and the confidence of inferring any sensitive values in S
is not greater than C', where L, K, C' are thresholds and S is a set of sensitive
values specified by the data holder (the hospital). LK C-privacy bounds the
probability of a successful record linkage to be < 1/K and the probability of
a successful attribute linkage to be < C, provided that the adversary’s prior
knowledge does not exceed L values.

DEFINITION 2.4 LKC-privacy Let L be the maximum number of
values of the prior knowledge. Let S be a set of sensitive values. A data table
T satisfies LK C-privacy if and only if for any gid with |gid| < L,

1. |T[gid]| > K, where K > 0 is an integer anonymity threshold, where
T'[qid] denotes the set of records containing ¢id in T', and

2. conf(qid — s) < C for any s € S, where 0 < C' < 1 is a real number
confidence threshold. m

The data holder specifies the thresholds L, K, and C. The maximum length
L reflects the assumption of the adversary’s power. LK C-privacy guarantees
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the probability of a successful record linkage to be < 1/K and the probability
of a successful attribute linkage to be < C. LKC-privacy has several nice
properties that make it suitable for anonymizing high-dimensional data.

e LK (C-privacy requires only a subset of QID attributes to be shared
by at least K records. This is a major relaxation from traditional k-
anonymity, based on a very reasonable assumption that the adversary
has limited power.

e LK(C-privacy generalizes several traditional privacy models. k-
anonymity is a special case of LK C-privacy with L = |QID|, K = k,
and C = 100%, where |QID] is the number of QID attributes in the
data table. Confidence bounding is also a special case of LK C-privacy
with L = |QID]| and K = 1. («, k)-anonymity is also a special case of
LKC-privacy with L = |QID|, K = k, and C = «. (-diversity is also
a special case of LK C-privacy with L = |QID|, K =1, and C = 1/¢.
Thus, the hospital can still achieve the traditional models if needed.

e LK (C-privacy is flexible to adjust the trade-off between data privacy
and data utility. Increasing L and K, or decreasing C' would improve
the privacy in the expense of data utility loss.

e LK (C-privacy is a general privacy model that thwarts both record
linkage and attribute linkage, i.e., the privacy model is applicable to
anonymize data with or without sensitive attributes.

2.2.7 (k,e)-Anonymity

Most works on k-anonymity and its extensions assume categorical sensi-
tive attributes. Zhang et al. [269] propose the notion of (k,e)-anonymity to
address numerical sensitive attributes such as salary. The general idea is to
partition the records into groups so that each group contains at least k dif-
ferent sensitive values with a range of at least e. However, (k, e)-anonymity
ignores the distribution of sensitive values within the range \. If some sensi-
tive values occur frequently within a subrange of A, then the adversary could
still confidently infer the subrange in a group. This type of attribute linkage
attack is called the prozimity attack [152]. Consider a gid group of 10 data
records with 7 different sensitive values, where 9 records have sensitive values
between 30 and 35, and 1 record has value 80. As shown in Table 2.6, the
group is (7,50)-anonymous because 80 — 30 = 50. Still, the adversary can
infer that a victim inside the group has a sensitive value falling into [30-35]
with 90% confidence because 9 out of the 10 records contain values in the
sensitive range. Li et al. [152] propose an alternative privacy model, called
(e,m)-anonymity. Given any numerical sensitive value s in T, this privacy
model bounds the probability of inferring [s — €, s + €] to be at most 1/m.
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Table 2.6: (7,50)-anonymous group

Quasi-identifier | Sensitive Comment
Job Sex Salary

Artist | Female 30 sensitive
Artist | Female 31 sensitive
Artist | Female 30 sensitive
Artist | Female 32 sensitive
Artist | Female 35 sensitive
Artist | Female 34 sensitive
Artist | Female 33 sensitive
Artist | Female 32 sensitive
Artist | Female 35 sensitive
Artist | Female 80 not sensitive

2.2.8 t-Closeness

In a spirit similar to the uninformative principle discussed earlier, Li et
al. [153] observe that when the overall distribution of a sensitive attribute
is skewed, /-diversity does not prevent attribute linkage attacks. Consider a
patient table where 95% of records have Flu and 5% of records have HIV.
Suppose that a gid group has 50% of Flu and 50% of HIV and, therefore,
satisfies 2-diversity. However, this group presents a serious privacy threat be-
cause any record owner in the group could be inferred as having HIV with
50% confidence, compared to 5% in the overall table.

To prevent skewness attack, Li et al. [153] propose a privacy model, called ¢-
Closeness, which requires the distribution of a sensitive attribute in any group
on QID to be close to the distribution of the attribute in the overall table.
t-closeness uses the Farth Mover Distance (EM D) function to measure the
closeness between two distributions of sensitive values, and requires the close-
ness to be within ¢. t-closeness has several limitations and weaknesses. First, it
lacks the flexibility of specifying different protection levels for different sensi-
tive values. Second, the EM D function is not suitable for preventing attribute
linkage on numerical sensitive attributes [152]. Third, enforcing ¢-closeness
would greatly degrade the data utility because it requires the distribution
of sensitive values to be the same in all gid groups. This would significantly
damage the correlation between QID and sensitive attributes. One way to
decrease the damage is to relax the requirement by adjusting the thresholds
with the increased risk of skewness attack [66], or to employ the probabilistic
privacy models in Chapter 2.4.

2.2.9 Personalized Privacy

Xiao and Tao [250] propose the notion of personalized privacy to allow each
record owner to specify her own privacy level. This model assumes that each
sensitive attribute has a taxonomy tree and that each record owner specifies
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a guarding node in this tree. The record owner’s privacy is violated if an
adversary is able to infer any domain sensitive value within the subtree of
her guarding node with a probability, called breach probability, greater than
a certain threshold. For example, suppose HIV and SARS are child nodes
of Infectious Disease in the taxonomy tree. An HIV patient Alice can set
the guarding node to Infectious Disease, meaning that she allows people
to infer that she has some infectious diseases, but not any specific type of
infectious disease. Another HIV patient, Bob, does not mind disclosing his
medical information, so he does not set any guarding node for this sensitive
attribute.

Although both confidence bounding and personalized privacy take an ap-
proach to bound the confidence or probability of inferring a sensitive value
from a gid group, they have differences. In the confidence bounding approach,
the data holder imposes a universal privacy requirement on the entire data
set, so the minimum level of privacy protection is the same for every record
owner. In the personalized privacy approach, a guarding node is specified for
each record by its owner. The advantage is that each record owner may specify
a guarding node according to her own tolerance on sensitivity. Experiments
show that this personalized privacy requirement could result in lower informa-
tion loss than the universal privacy requirement [250]. In practice, however, it
is unclear how individual record owners would set their guarding node. Often,
a reasonable guarding node depends on the distribution of sensitive values in
the whole table or in a group. For example, knowing that her disease is very
common, a record owner may set a more special (lower privacy protected)
guarding node for her record. Nonetheless, the record owners usually have no
access to the distribution of sensitive values in their gid group or in the whole
table before the data is published. Without such information, the tendency
is to play safe by setting a more general (higher privacy protected) guarding
node, which may negatively affect the utility of data.

2.2.10 FF-Anonymity

Most previously discussed works assume that the data table can be divided
into quasi-identifying (QID) attributes and sensitive attributes. Yet, this as-
sumption does not hold when an attribute contains both sensitive values and
quasi-identifying values. Wong et al. [238] identify a class of freeform attacks
of the form X — s, where s and the values in X can be any values of any at-
tributes in the table T'. X — s is a privacy breach if any record in 7" matching
X can infer a sensitive value s with a high probability. The privacy model,
F F-anonymity, bounds the probability of all potential privacy breaches in the
form X — s to be below a given threshold.

The key idea of FF-anonymity is that it distinguish between observable
values and sensitive values at the value level, instead of at the attribute level.
Every attribute potentially contains both types of values. For example, some
diseases are sensitive and some are not. Thus, non-sensitive diseases become
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observable to an adversary and may be used in X for linking attacks. There
is no notion of a fixed QID as in the other works.

2.3 Table Linkage Model

Both record linkage and attribute linkage assume that the adversary already
knows the victim’s record is in the released table T. However, in some cases,
the presence (or the absence) of the victim’s record in T already reveals the
victim’s sensitive information. Suppose a hospital releases a data table with
a particular type of disease. Identifying the presence of the victim’s record
in the table is already damaging. A table linkage occurs if an adversary can
confidently infer the presence or the absence of the victim’s record in the
released table. The following example illustrates the privacy threat of a table
linkage.

Example 2.8

Suppose the data holder has released a 3-anonymous patient table T (Ta-
ble 2.4). To launch a table linkage on a target victim, for instance, Alice, on
T, the adversary is presumed to also have access to an external public table
E (Table 2.5) where T C E. The probability that Alice is present in T is
2 = 0.8 because there are 4 records in 7' (Table 2.4) and 5 records in E (Ta-
ble 2.5) containing (Artist, Female, [30-35)). Similarly, the probability that
Bob is present in 7' is 2 = 0.75.

0-Presence

To prevent table linkage, Ercan Nergiz et al. [176] propose to bound the
probability of inferring the presence of any potential victim’s record within
a specified range § = (0min, Omaz). Formally, given an external public ta-
ble E and a private table T', where T' C E, a generalized table T’ satisfies
(Omins Omaz )-presence if dpmin < P(t € T|T') < dmay for all t € E. §-presence
can indirectly prevent record and attribute linkages because if the adversary
has at most 6% of confidence that the target victim’s record is present in the
released table, then the probability of a successful linkage to her record and
sensitive attribute is at most 0%. Though d-presence is a relatively “safe” pri-
vacy model, it assumes that the data holder has access to the same external
table E as the adversary does. This may not be a practical assumption in
some situations.
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2.4 Probabilistic Model

There is another family of privacy models that does not focus on exactly
what records, attribute values, and tables the adversary can link to a target
victim, but focuses on how the adversary would change his/her probabilistic
belief on the sensitive information of a victim after accessing the published
data. In general, this group of privacy models aims at achieving the uninfor-
mative principle [160], whose goal is to ensure that the difference between the
prior and posterior beliefs is small.

2.4.1 (c,t)-Isolation

Chawla et al. [46] suggest that having access to the published anonymous
data table should not enhance an adversary’s power of isolating any record
owner. Consequently, they proposed a privacy model to prevent (c, t)-isolation
in a statistical database. Suppose p is a data point of a target victim v in a data
table, and ¢ is the adversary’s inferred data point of v by using the published
data and the background information. Let §, be the distance between p and
g. We say that point ¢ (c, t)-isolates point p if B(q, ¢d,) contains fewer than ¢
points in the table, where B(q, ¢dp) is a ball of radius ¢, centered at point g.
Preventing (c, t)-isolation can be viewed as preventing record linkages. Their
model considers distances among data records and, therefore, is more suitable
for numerical attributes in statistical databases.

2.4.2 e-Differential Privacy

Dwork [74] proposes an insightful privacy notion: the risk to the record
owner’s privacy should not substantially increase as a result of participating
in a statistical database. Instead of comparing the prior probability and the
posterior probability before and after accessing the published data, Dwork [74]
proposes to compare the risk with and without the record owner’s data in the
published data. Consequently, the privacy model called e-differential privacy
ensures that the removal or addition of a single database record does not sig-
nificantly affect the outcome of any analysis. It follows that no risk is incurred
by joining different databases. Based on the same intuition, if a record owner
does not provide his/her actual information to the data holder, it will not
make much difference in the result of the anonymization algorithm.

The following is a more formal definition of e-differential privacy [74]: A
randomized function F' ensures e-differential privacy if for all data sets T7 and
Ts differing on at most one record,

< (2.2)



Attack Models and Privacy Models 31

forall S € Range(F), where Range(F') is the set of possible outputs of the ran-
domized function F'. Although e-differential privacy does not prevent record
and attribute linkages studied in earlier chapters, it assures record owners
that they may submit their personal information to the database securely in
the knowledge that nothing, or almost nothing, can be discovered from the
database with their information that could not have been discovered without
their information. Dwork [74] formally proves that e-differential privacy can
provide a guarantee against adversaries with arbitrary background knowledge.
This strong guarantee is achieved by comparison with and without the record
owner’s data in the published data. Dwork [75] proves that if the number of
queries is sub-linear in n, the noise to achieve differential privacy is bounded
by o(y/n), where n is the number of records in the database. Dwork [76] further
shows that the notion of differential privacy is applicable to both interactive
and non-interactive query models, discussed in Chapters 1.2 and 17.1. Refer
to [76] for a survey on differential privacy.

2.4.3 (d,v)-Privacy

Rastogi et al. [193] present a probabilistic privacy definition (d,~)-privacy.
Let P(r) and P(r|T) be the prior probability and the posterior probability
of the presence of a victim’s record in the data table T before and after
examining the published table T'. (d,~)-privacy bounds the difference of the
prior and posterior probabilities and provides a provable guarantee on privacy
and information utility, while most previous work lacks such formal guarantee.
Rastogi et al. [193] show that a reasonable trade-off between privacy and
utility can be achieved only when the prior belief is small. Nonetheless, (d, 7v)-
privacy is designed to protect only against attacks that are d-independent: an
attack is d-independent if the prior belief P(r) satisfies the conditions P(r) = 1
or P(r) < d for all records r, where P(r) = 1 means that the adversary
already knows that r is in T" and no protection on r is needed. However, this
d-independence assumption may not hold in some real-life applications [161].
Differential privacy in comparison does not have to assume that records are
independent or that an adversary has a prior belief bounded by a probability
distribution.

2.4.4 Distributional Privacy

Motivated by the learning theory, Blum et al. [33] present a privacy model
called distributional privacy for a non-interactive query model. The key idea
is that when a data table is drawn from a distribution, the table should re-
veal only information about the underlying distribution, and nothing else.
Distributional privacy is a strictly stronger privacy notion than differential
privacy, and can answer all queries over a discretized domain in a concept
class of polynomial VC-dimension, where Vapnik-Chervonenkis (VC) dimen-
sion is a measure of the capacity of a statistical classification algorithm. Yet,
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the algorithm has high computational cost. Blum et al. [33] present an effi-
cient algorithm specifically for simple interval queries with limited constraints.
The problems of developing efficient algorithms for more complicated queries
remain open.

2.5 Modeling Adversary’s Background Knowledge

Most privacy models, such as k-anonymity, ¢-diversity, confidence bounding,
(o, k)-anonymity, and ¢-closeness, assume the adversary has only very limited
background knowledge. Specifically, they assume that the adversary’s back-
ground knowledge is limited to knowing the quasi-identifier. Yet, recent work
has shown the importance of integrating an adversary’s background knowl-
edge in privacy quantification. A robust privacy notion has to take background
knowledge into consideration. Since an adversary can easily learn background
knowledge from various sources, such as common sense, demographic statis-
tic data, social networks, and other individual-level information, a common
challenge faced by all research on integrating background knowledge is to
determine what and how much knowledge should be considered.

2.5.1 Skyline Privacy

Chen et al. [48] argue that since it is infeasible for a data publisher to
anticipate the background knowledge possessed by an adversary, the inter-
esting research direction is to consider only the background knowledge that
arises naturally in practice and can be efficiently handled. In particular, three
types of background knowledge, known as three-dimensional knowledge, are
considered in [48]:

e knowledge about the target victim,
e knowledge about other record owners in the published data, and

e knowledge about the group of record owners having the same sensitive
value as that of the target victim.

Background knowledge is expressed by conjunctions of literals that are in
the form of either s € t[S] or s ¢ ¢[S], denoting that the individual ¢ has a
sensitive value s or does not have a sensitive value s respectively. The three-
dimensional knowledge is quantified as a (¢, k, m) triplet, which indicates that
an adversary knows:

1. ¢ sensitive values that the target victim ¢ does not have,

2. the sensitive values of other k individuals, and
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3. m individuals having the same sensitive value as that of ¢.

Then, the authors propose skyline privacy criterion, which allows the data
publisher to specify a set of incomparable (¢,k,m) triplets, called a skyline,
along with a set of confidence thresholds for a sensitive value ¢ in order to
provide more precise and flexible privacy quantification. Under the definition
of skyline privacy criterion, an anonymized data set is safe if and only if for
all triplets in the skyline, the adversary’s maximum confidence of inferring
the sensitive value o is less than the corresponding threshold specified by the
data publisher.

2.5.2 Privacy-MaxEnt

The expressive power of background knowledge in [48] is limited. For ex-
ample, it fails to express probabilistic background knowledge. Du et al. [70]
specifically address the background knowledge in the form of probabilities, for
example, P(Ovarian Cancer|Male) = 0. The primary privacy risks in PPDP
come from the linkages between the sensitive attributes (S) and the quasi-
identifiers (QID). Quantifying privacy is, therefore, to derive P(S|QID) for
any instance of S and QI D with the probabilistic background knowledge. Du
et al. [70] formulate the derivation of P(S|QID) as a non-linear program-
ming problem. P(s|gid) is considered as a variable for each combination of
s € S and qid € QID. To assign probability values to these variables, both
background knowledge and the anonymized data set are integrated as con-
straints guiding the assignment. The meaning of each variable is actually the
inference on P(s|qgid). The authors deem that such inference should be as un-
biased as possible. This thought leads to the utilization of maximum entropy
principle, which states that when the entropy of these variables is maximized,
the inference is the most unbiased [70]. Thus, the problem is re-formulated as
finding the maximum-entropy assignment for the variables while satisfying the
constraints. Since it is impossible for a data publisher to enumerate all proba-
bilistic background knowledge, a bound of knowledge is used instead. In [70],
the bound is specified by both the Top-K positive association rules and the
Top-K mnegative association rules derived from the published data set. Cur-
rently, the paper is limited in handling only equality background knowledge
constraints.

2.5.3 Skyline (B,t)-Privacy

Since both [48] and [70] are unaware of exact background knowledge pos-
sessed by an adversary, Li and Li [154] propose a generic framework to sys-
tematically model different types of background knowledge an adversary may
possess. Yet, the paper narrows its scope to background knowledge that is
consistent with the original data set T. Modeling background knowledge is
to estimate the adversary’s prior belief of the sensitive attribute values over
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all possible QID values. This can be achieved by identifying the underlying
prior belief function P,,; that best fits T" using a kernel regression estimation
method. One of the components of kernel estimation, the bandwidth B, is used
to measure how much background knowledge an adversary has. Based on the
background knowledge and the anonymized data set, the paper proposes an
approximate inference method called 2-estimate to efficiently calculate the
adversary’s posterior belief of the sensitive values. Consequently, the skyline
(B, t)-privacy principle is defined based on the adversary’s prior and posterior
beliefs. Given a skyline {(Bi,t1), (B2,t2),...,(Bn,ts)}, an anonymized data
set satisfies the skyline (B,t)-privacy principle if and only if for i = 1 to n,
the maximum difference between the adversary’s prior and posterior beliefs
for all tuples in the data set is at most ¢;. Li and Li [154] point out that slight
changes of B do not incur significant changes of the corresponding privacy
risks. Thus, the data publisher only needs to specify a set of well-chosen B
values to protect the privacy against all adversaries.



Chapter 3

Anonymization Operations

The raw data table usually does not satisfy a specified privacy requirement
and the table must be modified before being published. The modification
is done by applying a sequence of anonymization operations to the table.
An anonymization operation comes in several flavors: generalization, suppres-
sion, anatomization, permutation, and perturbation. Generalization and sup-
pression replace values of specific description, typically the QID attributes,
with less specific description. Anatomization and permutation de-associate
the correlation between QI D and sensitive attributes by grouping and shuf-
fling sensitive values in a qid group. Perturbation distorts the data by adding
noise, aggregating values, swapping values, or generating synthetic data based
on some statistical properties of the original data. Below, we discuss these
anonymization operations in detail.

3.1 Generalization and Suppression

Each generalization or suppression operation hides some details in QI D. For
a categorical attribute, a specific value can be replaced with a general value
according to a given taxonomy. In Figure 3.1, the parent node Professional
is more general than the child nodes Engineer and Lawyer. The root node,
ANY _Job, represents the most general value in Job. For a numerical attribute,
exact values can be replaced with an interval that covers exact values. If a tax-
onomy of intervals is given, the situation is similar to categorical attributes.
More often, however, no pre-determined taxonomy is given for a numerical
attribute. Different classes of anonymization operations have different impli-
cations on privacy protection, data utility, and search space. But they all
result in a less precise but consistent representation of original data.

A generalization replaces some values with a parent value in the taxonomy
of an attribute. The reverse operation of generalization is called specialization.
A suppression replaces some values with a special value, indicating that the
replaced values are not disclosed. The reverse operation of suppression is called
disclosure. Below, we summarize five generalization schemes.

Full-domain generalization scheme [148, 201, 217]. In this scheme, all
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Job Sex Age
ANY ANY [30-40)
| |
Professional Artist  Male Female  [30-35) [35-40)
Engineer Lawyer Dancer Writer [30-33) [33-35)

FIGURE 3.1: Taxonomy trees for Job, Sex, Age

values in an attribute are generalized to the same level of the taxonomy
tree. For example, in Figure 3.1, if Lawyer and Engineer are generalized
to Professional, then it also requires generalizing Dancer and Writer
to Artist. The search space for this scheme is much smaller than the
search space for other schemes below, but the data distortion is the
largest because of the same granularity level requirement on all paths of
a taxonomy tree.

Subtree generalization scheme [29, 95, 96, 123, 148]. In this scheme, at

a non-leaf node, either all child values or none are generalized. For ex-
ample, in Figure 3.1, if Engineer is generalized to Professional, this
scheme also requires the other child node, Lawyer, to be generalized to
Professional, but Dancer and Writer, which are child nodes of Artist,
can remain ungeneralized. Intuitively, a generalized attribute has values
that form a “cut” through its taxonomy tree. A cut of a tree is a subset
of values in the tree that contains exactly one value on each root-to-leaf
path.

Sibling generalization scheme [148]. This scheme is similar to the subtree

generalization, except that some siblings may remain ungeneralized. A
parent value is then interpreted as representing all missing child values.
For example, in Figure 3.1, if Engineer is generalized to Professional,
and Lawyer remains ungeneralized, Professional is interpreted as all
jobs covered by Professional except for Lawyer. This scheme produces
less distortion than subtree generalization schemes because it only needs
to generalize the child nodes that violate the specified threshold.

Cell generalization scheme [148, 246, 254]. In all of the above schemes,

if a value is generalized, all its instances are generalized. Such schemes
are called global recoding. In cell generalization, also known as local re-
coding, some instances of a value may remain ungeneralized while other
instances are generalized. For example, in Table 2.2 the Engineer in the
first record is generalized to Professional, while the Engineer in the
second record can remain ungeneralized. Compared with global recoding
schemes, this scheme is more flexible; therefore, it produces a smaller



Anonymization Operations 37

data distortion. Nonetheless, it is important to note that the utility of
data is adversely affected by this flexibility, which causes a data explo-
ration problem: most standard data mining methods treat Engineer and
Professional as two independent values, but, in fact, they are not. For
example, building a decision tree from such a generalized table may re-
sult in two branches, Professional — class2 and Engineer — classl.
It is unclear which branch should be used to classify a new engineer.
Though very important, this aspect of data utility has been ignored by
all works that employed the local recoding scheme. Data produced by
global recoding does not suffer from this data exploration problem.

Multidimensional generalization [149, 150]. Let D; be the domain of an
attribute A;. A single-dimensional generalization, such as full-domain
generalization and subtree generalization, is defined by a function f; :
D4, — D' for each attribute A; in QID. In contrast, a multidimensional
generalization is defined by a single function f: Da, X ---x Dy, — D',
which is used to generalize gid = (v1,...,v,) to qid = {(u1,...,Un)
where for every v;, either v; = u; or v; is a child node of wu; in the tax-
onomy of A;. This scheme flexibly allows two gid groups, even having
the same value on some v; and u;, to be independently generalized into
different parent groups. For example (Engineer, Male) can be general-
ized to (Engineer, ANY _Sex) while (Engineer, Female) can be gener-
alized to (Professional, Female). The generalized table contains both
Engineer and Professional. This scheme produces less distortion than
the full-domain and subtree generalization schemes because it needs
to generalize only the ¢id groups that violate the specified threshold.
Note, in this multidimensional scheme, all records in a qid are gen-
eralized to the same g¢id’, but cell generalization does not have such
constraint. Both schemes suffer from the data exploration problem dis-
cussed above though. Ercan Nergiz and Clifton [177] further evaluate
a family of clustering-based algorithms that even attempts to improve
data utility by ignoring the restrictions of the given taxonomies.

There are also different suppression schemes. Record suppression [29, 123,
148, 201] refers to suppressing an entire record. Value suppression [237] refers
to suppressing every instance of a given value in a table. Cell suppression (or
local suppression) [52, 168] refers to suppressing some instances of a given
value in a table.

In summary, the choice of generalization and suppression operations has
an implication on the search space of anonymous tables and data distortion.
The full-domain generalization has the smallest search space but the largest
distortion, and the local recoding scheme has the largest search space but
the least distortion. For a categorical attribute with a taxonomy tree H, the
number of possible cuts in subtree generalization, denoted by C(H), is equal
to C(Hy) x -+- x C(Hy) + 1 where Hq, ..., H, are the subtrees rooted at the
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children of the root of H, and 1 is for the trivial cut at the root of H. The
number of potential modified tables is equal to the product of such numbers for
all the attributes in QI D. The corresponding number is much larger if a local
recoding scheme is adopted because any subset of values can be generalized
while the rest remains ungeneralized for each attribute in QID.

A table is minimally anonymous if it satisfies the given privacy requirement
and its sequence of anonymization operations cannot be reduced without vi-
olating the requirement. A table is optimally anonymous if it satisfies the
given privacy requirement and contains most information according to the
chosen information metric among all satisfying tables. See Chapter 4 for dif-
ferent types of information metrics. Various works have shown that finding
the optimal anonymization is NP-hard: Samarati [201] shows that the opti-
mal k-anonymity by full-domain generalization is very costly. Meyerson and
Williams [168] and Aggarwal et al. [12] prove that the optimal k-anonymity by
cell suppression, value suppression, and cell generalization is NP-hard. Wong
et al. [246] prove that the optimal («, k)-anonymity by cell generalization is
NP-hard. In most cases, finding a minimally anonymous table is a reasonable
solution and can be done efficiently.

3.2 Anatomization and Permutation

Unlike generalization and suppression, anatomization (a.k.a. bucketiza-
tion) [249] does not modify the quasi-identifier or the sensitive attribute, but
de-associates the relationship between the two. Precisely, the method releases
the data on QID and the data on the sensitive attribute in two separate
tables: a quasi-identifier table (QIT) contains the QID attributes, a sensi-
tive table (ST) contains the sensitive attributes, and both QIT and ST have
one common attribute, GroupID. All records in the same group will have
the same value on GroupID in both tables and, therefore, are linked to the
sensitive values in the group in the exact same way. If a group has ¢ distinct
sensitive values and each distinct value occurs exactly once in the group, then
the probability of linking a record to a sensitive value by GroupID is 1/¢.
The attribute linkage attack can be distorted by increasing ¢.

Example 3.1

Suppose that the data holder wants to release the patient data in Table 3.1,
where Disease is a sensitive attribute and QID = {Age, Sex}. First, partition
(or generalize) the original records into gid groups so that, in each group, at
most 1/¢ of the records contain the same Disease value. This intermediate
Table 3.2 contains two gid groups: ([30-35), Male) and ([35-40), Female).
Next, create QIT (Table 3.3) to contain all records from the original Table 3.1,
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Table 3.1:

Anatomy: original

patient data

Age Sex Disease
(sensitive)
30 Male Hepatitis
30 Male Hepatitis
30 Male HIV
32 Male Hepatitis
32 Male HIV
32 Male HIV
36 Female Flu
38 Female Flu
38 Female Heart
38 Female Heart

Table 3.2:

Anatomy: intermediate

QI D-grouped table

Age Sex Disease
(sensitive)
30 — 35) Male Hepatitis
30 — 35) Male Hepatitis
30 — 35) Male HIV
30 — 35) Male Hepatitis
30 — 35) Male HIV
30 — 35) Male HIV
35 —40) Female Flu
35 — 40) Female Flu
35 —40) Female Heart
35 —40) Female Heart

39

but replace the sensitive values by the GrouplDs, and create ST (Table 3.4)
to contain the count of each Disease for each gid group. QIT and ST satisfy
the privacy requirement with ¢ < 2 because each gid group in QIT infers any
associated Disease in ST with probability at most 1/ =1/2 = 50%.

The major advantage of anatomy is that the data in both QIT and ST are
unmodified. Xiao and Tao [249] show that the anatomized tables can more
accurately answer aggregate queries involving domain values of the QID and
sensitive attributes than the generalization approach. The intuition is that in
a generalized table domain values are lost and, without additional knowledge,
the uniform distribution assumption is the best that can be used to answer
a query about domain values. In contrast, all domain values are retained in
the anatomized tables, which give the exact distribution of domain values.
For instance, suppose that the data recipient wants to count the number of
patients of age 38 having heart disease. The correct count from the origi-
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Table 3.3: Anatomy: quasi-identifier
table (QIT) for release

Age Sex GrouplD
30 Male 1
30 Male 1
30 Male 1
32 Male 1
32 Male 1
32 Male 1
36 Female 2
38 Female 2
38 Female 2
38 Female 2

Table 3.4: Anatomy: sensitive
table (ST) for release

GrouplID | Disease | Count
(sensitive)
Hepatitis
HIV
Flu
Heart

NN = =
DN DO W W

nal Table 3.1 is 2. The expected count from the anatomized Table 3.3 and
Table 3.4 is 3 x % = 1.5 since 2 out of the 4 records in GroupID = 2 in
Table 3.4 have heart disease. This count is more accurate than the expected
count 2 x % = 0.4, from the generalized Table 3.2, where the % comes from
the fact that the 2 patients with heart disease have an equal chance to be at
age {35,36,37,38,39}.

Yet, with the data published in two tables, it is unclear how standard data
mining tools, such as classification, clustering, and association mining tools,
can be applied to the published data, and new tools and algorithms need to
be designed. Also, anatomy is not suitable for incremental data publishing,
which will be further discussed in Chapter 10. The generalization approach
does not suffer from the same problem because all attributes are released in
the same table.

Sharing the same spirit of anatomization, Zhang et al. [269] propose an
approach called permutation. The idea is to de-associate the relationship be-
tween a quasi-identifier and a numerical sensitive attribute by partitioning a

set of data records into groups and shuffling their sensitive values within each
group.



Anonymization Operations 41

3.3 Random Perturbation

Random perturbation has a long history in statistical disclosure con-
trol [3, 242, 252] due to its simplicity, efficiency, and ability to preserve statis-
tical information. The general idea is to replace the original data values with
some synthetic data values so that the statistical information computed from
the perturbed data does not differ significantly from the statistical information
computed from the original data. Depending on the degree of randomization,
the perturbed data records may or may not correspond to real-world record
owners, so the adversary cannot perform the sensitive linkage attacks or re-
cover sensitive information from the published data with high confidence.

Compared to the other anonymization operations discussed earlier, one lim-
itation of the random perturbation approach is that the published records are
“synthetic” in that they do not correspond to the real world entities repre-
sented by the original data; therefore, individual records in the perturbed data
are basically meaningless to the human recipients. Randomized data, however,
can still be very useful if aggregate properties (such as frequency distribution
of disease) are the target of data analysis. In fact, one can accurately recon-
struct such distribution if the prob used for perturbation is known. Yet, the
one may argue that, in such a case, the data holder may consider releasing the
statistical information or the data mining results rather than the perturbed
data [64].

In contrast, generalization and suppression make the data less precise than,
but semantically consistent with, the raw data, therefore, preserve the truth-
fulness of data. For example, after analyzing the statistical properties of a
collection of perturbed patient records, a drug company wants to focus on a
small number of patients for further analysis. This stage requires the truthful
record information instead of perturbed record information. However, the gen-
eralized or suppressed data may not be able to preserve the desired statistical
information. Below, we discuss several commonly used random perturbation
methods, including additive noise, data swapping, and synthetic data gener-
ation.

3.3.1 Additive Noise

Additive noise is a widely used privacy protection method in statistical
disclosure control [3, 36]. It is often used for hiding sensitive numerical data
(e.g., salary). The general idea is to replace the original sensitive value s with
s + r where r is a random value drawn from some distribution. Privacy was
measured by how closely the original values of a modified attribute can be
estimated [16]. Fuller [90] and Kim and Winkler [140] show that some sim-
ple statistical information, like means and correlations, can be preserved by
adding random noise. Experiments in [19, 72, 84] further suggest that some
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data mining information can be preserved in the randomized data. However,
Kargupta et al. [136] point out that some reasonably close sensitive values
can be recovered from the randomized data when the correlation among at-
tributes is high, but the noise is not. Huang et al. [118] present an improved
randomization method to limit this type of privacy breach. Some represen-
tative privacy models and statistical disclosure control methods that employ
additive noise are discussed in Chapters 2.4 and 5.4.

3.3.2 Data Swapping

The general idea of data swapping is to anonymize a data table by ex-
changing values of sensitive attributes among individual records while the
swaps maintain the low-order frequency counts or marginals for statistical
analysis. It can be used to protect numerical attributes [196] and categori-
cal attributes [195]. An alternative swapping method is rank swapping: First
rank the values of an attribute A in ascending order. Then for each value
v € A, swap v with another value u € A, where u is randomly chosen within
a restricted range p% of v. Rank swapping can better preserve statistical
information than the ordinary data swapping [65].

3.3.3 Synthetic Data Generation

Many statistical disclosure control methods use synthetic data generation to
preserve record owners’ privacy and retain useful statistical information [200].
The general idea is to build a statistical model from the data and then to
sample points from the model. These sampled points form the synthetic data
for data publication instead of the original data. An alternative synthetic
data generation approach is condensation [9, 10]. The idea is to first condense
the records into multiple groups. For each group, extract some statistical in-
formation, such as sum and covariance, that suffices to preserve the mean
and correlations across the different attributes. Then, based on the statisti-
cal information, for publication generate points for each group following the
statistical characteristics of the group.
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Information Metrics

Privacy preservation is one side of anonymization. The other side is retaining
information so that the published data remains practically useful. There are
broad categories of information metrics for measuring the data usefulness. A
data metric measures the data quality in the entire anonymous table with
respect to the data quality in the original table. A search metric guides each
step of an anonymization (search) algorithm to identify an anonymous table
with maximum information or minimum distortion. Often, this is achieved
by ranking a set of possible anonymization operations and then greedily per-
forming the “best” one at each step in the search. Since the anonymous table
produced by a search metric is eventually evaluated by a data metric, the two
types of metrics usually share the same principle of measuring data quality.

Alternatively, an information metric can be categorized by their informa-
tion purposes including general purpose, special purpose, or trade-off purpose.
Below, we discuss some commonly used data and search metrics by their pur-
poses.

4.1 General Purpose Metrics

In many cases, the data holder does not know how the published data will
be analyzed by the recipient. This is very different from privacy-preserving
data mining (PPDM), which assumes that the data mining task is known. In
PPDP, for example, the data may be published on the web and a recipient
may analyze the data according to her own purpose. An information metric
good for one recipient may not be good for another recipient. In such sce-
narios, a reasonable information metric is to measure “similarity” between
the original data and the anonymous data, which underpins the principle of
minimal distortion [201, 215, 217).

4.1.1 Minimal Distortion

In the minimal distortion metric or M D, a penalty is charged to each in-
stance of a value generalized or suppressed. For example, generalizing 10 in-
stances of Engineer to Professional causes 10 units of distortion, and further
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generalizing these instances to ANY _Job causes another 10 units of distor-
tion. This metric is a single attribute measure, and it was previously used in
[201, 216, 217, 236] as a data metric and search metric.

4.1.2 ILoss

ILoss is a data metric proposed in [250] to capture the information loss of
. . . _ lvgl—1
generalizing a specific value to a general value v,: ILoss(vg) = i JQDAI
|vg| is the number of domain values that are descendants of vy, and |D 4] is the
number of domain values in the attribute A of vy. This data metric requires
all original data values to be at the leaves in the taxonomy. ILoss(vg) = 0
if v, is an original data value in the table. In words, I Loss(v,) measures the
fraction of domain values generalized by v,. For example, generalizing one
instance of Dancer to Artist in Figure 3.1 has ILoss(Artist) = 2 = 0.25.
The loss of a generalized record r is given by:

where

ILoss(r) = z:(wZ x ILoss(vg)), (4.1)

vgET

where w; is a positive constant specifying the penalty weight of attribute A;
of vg. The overall loss of a generalized table 7' is given by:

ILoss(T) = Z ILoss(r). (4.2)

reT

4.1.3 Discernibility Metric

The discernibility metric or DM [213] addresses the notion of loss by charg-
ing a penalty to each record for being indistinguishable from other records with
respect to QID. If a record belongs to a gid group of size |T'[¢qid]|, the penalty
for the record will be |T'[¢id]|. Thus, the penalty on a group is |T[gid]|>. The
overall penalty cost of generalized table T is given by

DM(T) = 3 [Tlgid, )P 43)
qud;

over all gid;. This data metric, used in [29, 149, 160, 162, 234, 254], works
exactly against k-anonymization that seeks to make records indistinguishable
with respect to QID.

Another version of DM is to use as a search metric to guide the search of
an anonymization algorithm. For example, a bottom-up generalization (or a
top-down specialization) anonymization algorithm chooses the generalization
child(v) — v (or the specialization v — child(v)) that minimizes (maximizes)
the value of

DM@) = ¥ [Tlgid,)? (4.4)
qidy
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over all ¢qid, containing v.

Let us compare DM and M D. M D charges a penalty for generalizing a
value in a record independently of other records. For example, in M D, gener-
alizing 99 instances of Engineer and 1 instance of Lawyer to Professional
has the same penalty as generalizing 50 instances of Dancer and 50 instances
of Writer to Artist. In both cases, 100 instances are made indistinguishable;
therefore, the costs of both generalizations are the same. The difference is
that before the generalization, 99 instances are already indistinguishable in
the first case, whereas only 50 instances are indistinguishable in the second
case. Therefore, the second case makes more originally distinguishable records
become indistinguishable. In contrast, DM can differentiate the two cases:

DM (Professional) = 99% + 12 = 9802
DM (Artist) = 50% + 502 = 5000

DM can determine that generalizing Dancer and Writer to Artist costs less
than generalizing Engineer and Lawyer to Professional.

4.1.4 Distinctive Attribute

A simple search metric, called distinctive attribute or DA, was employed
in [215] to guide the search for a minimally anonymous table in a full-domain
generalization scheme. The heuristic selects the attribute having the most
number of distinctive values in the data for generalization. Note, this type of
simple heuristic only serves the purpose of guiding the search, but does not
quantify the utility of an anonymous table.

4.2 Special Purpose Metrics

If the purpose of the data is known at the time of publication, the purpose
can be taken into account during anonymization to better retain information.
For example, if the data is published for modeling the classification of a target
attribute in the table, then it is important not to generalize the values whose
distinctions are essential for discriminating the class labels in the target at-
tribute. A frequently asked question is [177]: if the purpose of data is known,
why not extract and publish a data mining result for that purpose (such as
a classifier) instead of the data? The answer is that publishing a data mining
result is a commitment at the algorithmic level, which is neither practical for
the non-expert data holder nor desirable for the data recipient. In practice,
there are many ways to mine the data even for a given purpose, and typically
it is unknown which one is the best until the data is received and different
ways are tried. A real life example is the release of the Netflix data (New York
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Times, Oct. 2, 2006) discussed in Chapter 1. Netflix wanted to provide the
participants the greatest flexibility to perform their desired analysis, instead
of limiting them to a specific type of analysis.

For concreteness, let us consider the classification problem where the goal
is to classify future cases into some pre-determined classes, drawn from the
same underlying population as the training cases in the published data. The
training cases contain both the useful classification information that can im-
prove the classification model, and the useless noise that can degrade the
classification model. Specifically, the useful classification information is the
information that can differentiate the target classes, and holds not only on
training cases, but also on future cases. In contrast, the useless noise holds
only on training cases. Clearly, only the useful classification information that
helps classification should be retained. For example, a patient’s birth year is
likely to be part of the information for classifying Lung Cancer if the disease
occurs more frequently among elderly people, but the exact birth date is likely
to be noise. In this case, generalizing birth date to birth year in fact helps
classification because it eliminates the noise. This example shows that sim-
ply minimizing the distortion to the data, as adopted by all general purpose
metrics and optimal k-anonymization, is not addressing the right problem.

To address the classification goal, the distortion should be measured by the
classification error on future cases. Since future data is not available in most
scenarios, most developed methods [95, 96, 123] measure the accuracy on the
training data. Research results in [95, 96] suggest that the useful classification
knowledge is captured by different combinations of attributes. Generalization
and suppression may destroy some of these useful “classification structures,”
but other useful structures may emerge to help. In some cases, generalization
and suppression may even improve the classification accuracy because some
noise has been removed.

Iyengar [123] presents the first work on PPDP for classification. He proposed
the classification metric or C'M to measure the classification error on the
training data. The idea is to charge a penalty for each record suppressed or
generalized to a group in which the record’s class is not the majority class.
The intuition is that a record having a non-majority class in a group will be
classified as the majority class, which is an error because it disagrees with the
record’s original class. The classification metric CM is defined as follows:

ZT,eTpenalty(r)
7| ’

where r is a record in data table T', and

CM =

(4.5)

1 if r is suppressed
penalty(r) = < 1 if class(r) # majority(G(r)) (4.6)

0 otherwise



Information Metrics 47

where class(r) is the class value of record r, G(r) is the gid group containing
r, and majority(G(r)) is the majority class in G(r).

CM is a data metric and, thus, penalizes modification to the training data.
This does not quite address the classification goal, which is actually better
off generalizing useless noise into useful classification information. For classi-
fication, a more relevant approach is searching for a “good” anonymization
according to some heuristics. In other words, instead of optimizing a data met-
ric, this approach employs a search metric to rank anonymization operations
at each step in the search. An anonymization operation is ranked high if it
retains useful classification information. The search metric could be adopted
by different anonymization algorithms. For example, a greedy algorithm or
a hill climbing optimization algorithm can be used to identify a minimal se-
quence of anonymization operations for a given search metric. We will discuss
anonymization algorithms in Chapter 5.

Neither a data metric nor a search metric guarantees a good classifica-
tion on future cases. It is essential to experimentally evaluate the impact of
anonymization by building a classifier from the anonymous data and seeing
how it performs on testing cases. Few works [95, 96, 123, 150, 239] have ac-
tually conducted such experiments, although many such as [29] adopt C'M in
an attempt to address the classification problem.

4.3 Trade-Off Metrics

The special purpose information metrics aim at preserving data usefulness
for a given data mining task. The catch is that the anonymization opera-
tion that gains maximum information may also lose so much privacy that no
other anonymization operation can be performed. The idea of trade-off met-
rics is to consider both the privacy and information requirements at every
anonymization operation and to determine an optimal trade-off between the
two requirements.

Fung et al. [95, 96] propose a search metric based on the principle of in-
formation/privacy trade-off. Suppose that the anonymous table is searched
by iteratively specializing a general value into child values. Each specializa-
tion operation splits each group containing the general value into a number of
groups, one for each child value. Each specialization operation s gains some
information, denoted by IG(s), and loses some privacy, denoted by PL(s).
This search metric prefers the specialization s that maximizes the informa-
tion gained per each loss of privacy:

IG(s)

(4.7)

The choice of IG(s) and PL(s) depends on the information metric and privacy
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model. For example in classification analysis, IG(s) could be the information
gain InfoGain(v) [191] defined as the decrease of the class entropy [210]
after specializing a general group into several specialized groups. In foGain(v)
measures the goodness of a specialization on v.

InfoGain(v): Let T[z] denote the set of records in T generalized to the
value z. Let freq(T|z],cls) denote the number of records in T'[z] having the
class cls. Note that |T'[v]| = > |T[c]|, where ¢ € child(v).

7]
oy BT, (4.8)

where E(T[z]) is the entropy of T[z] [191, 210]:

InfoGain(v) = E(T[v]) — Z

BT = -3 1 Tqu[[j]}" 45) 1o

cls

freq(T[x], cls)
P

(4.9)

Intuitively, E(T'[z]) measures the entropy, or the impurity, of classes for the
records in T'[z] by estimating the average minimum number of bits required
to encode a string of symbols. The more dominating the majority class in T[]
is, the smaller E(T[x]) is, due to less entropy in E(T'[z])). InfoGain(v) is the
reduction of the impurity by specializing v into ¢ € child(v). InfoGain(v) is
non-negative.

Alternatively, IG(s) could be the decrease of distortion measured by M D,
described in Chapter 4.1, after performing s. For k-anonymity, Fung et al. [95,
96] measure the privacy loss PL(s) by the average decrease of anonymity over
all @ID; that contain the attribute of s, that is,

PL(s) = avg{ A(QID;) — As(QID;)}, (4.10)

where A(QID;) and A;(QID;) denote the anonymity of QID; before and
after the specialization. One variant is to maximize the gain of information by
setting PL(s) to zero. The catch is that the specialization that gains maximum
information may also lose so much privacy that no other specializations can
be performed. Note that the principle of information/privacy trade-off can
also be used to select a generalization g, in which case it will minimize

_ 1L(g)
PG(g)

ILPG(g) (4.11)

where IL(g) denotes the information loss and PG(g) denotes the privacy gain
by performing g.



Chapter 5

Anonymization Algorithms

In this chapter, we examine some representative anonymization algorithms.
Refer to Tables 5.1, 5.2, 5.3, and 5.4 for a characterization based on privacy
model (Chapter 2), anonymization operation (Chapter 3), and information
metric (Chapter 4). Our presentation of algorithms is organized according to
linkage models. Finally, we discuss the potential privacy threats even though
a data table has been anonymized.

5.1 Algorithms for the Record Linkage Model

We broadly classify record linkage anonymization algorithms into three fam-
ilies: the first two, optimal anonymization and minimal anonymization, use
generalization and suppression methods; the third family uses perturbation
methods.

5.1.1 Optimal Anonymization

The first family finds an optimal k-anonymization, for a given data metric,
by limiting to full-domain generalization and record suppression. Since the
search space for the full-domain generalization scheme is much smaller than
other schemes, finding an optimal solution is feasible for small data sets. This
type of exhaustive search, however, is not scalable to large data sets, especially
if a more flexible anonymization scheme is employed.

5.1.1.1 MinGen

Sweeney [217)’s MinGen algorithm exhaustively examines all potential full-
domain generalizations to identify the optimal generalization, measured in
M D. Sweeney acknowledged that this exhaustive search is impractical even for
the modest sized data sets, motivating the second family of k-anonymization
algorithms to be discussed later. Samarati [201] proposes a binary search al-
gorithm that first identifies all minimal generalizations, and then finds the
optimal generalization measured in M D. Enumerating all minimal general-
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Table 5.1: Anonymization algorithms for record linkage

Algorithm Operation | Metric | Optimality
Binary Search [201] FG,RS MD yes
MinGen [217] FG,RS MD yes
Incognito [148] FG,RS MD yes
K-Optimize [29] SG,RS DM, CM yes
p-argus [120] SG,CS MD no
Datafly [215] FG,RS DA no
Genetic Algorithm [123] SG,RS CM no
Bottom-Up Generalization [239] SG 1LPG no
Top-Down Specialization SG,VS IGPL no
(TDS) [95, 96]

TDS for Cluster Analysis [94] SG,VS IGPL no
Mondrian Multidimensional [149] MG DM no
Bottom-Up & Top-Down CG DM no
Greedy [254]

TDS for 2-Party [172] SG IGPL no
Condensation [9, 10] CD heuristics no
r-Gather Clustering [13] CL heuristics no

FG=Full-domain Generalization, SG=Subtree Generalization,
CG=Cell Generalization, MG=Multidimensional Generalization,
RS=Record Suppression, VS=Value Suppression, CS=Cell Suppression,
CD=Condensation, CL=Clustering

izations is an expensive operation and, therefore, not scalable for large data
sets.

5.1.1.2 Incognito

LeFevre et al. [148] present a suite of optimal bottom-up generalization
algorithms, called Incognito, to generate all possible k-anonymous full-domain
generalizations. The algorithms exploit the rollup property for computing the
size of qid groups.

Observation 5.1.1 (Rollup property) If g¢id is a generalization of
{qidy, ..., qid.}, then |qid| = Y ;_, |qid;|. m

The rollup property states that the parent group size |gid| can be directly
computed from the sum of all child group sizes |qid;|, implying that the group
size |qid| of all possible generalizations can be incrementally computed in a
bottom-up manner. This property not only allows efficient computation of
group sizes, but also provides a terminating condition for further generaliza-
tions, leading to the generalization property:
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Observation 5.1.2 (Generalization property) Let 7’ be a table not
more specific than table T on all attributes in QID. If T is k-anonymous
on QID, then T’ is also k-anonymous on QID. =

The generalization property provides the basis for effectively pruning the
search space of generalized tables. This property is essential for efficiently
determining an optimal k-anonymization [148, 201]. Consider a ¢id in a table
T. If gid' is a generalization of ¢id and |qid| > k, then |gid’'| > k. Thus, if T
is k-anonymous, there is no need to further generalize T' because any further
generalizations of T' must also be k-anonymous but with higher distortion and,
therefore, not optimal according to, for example, the minimal distortion metric
MD. Although Incognito significantly outperforms the binary search [201]
in efficiency, the complexity of all three algorithms, namely MinGen, binary
search, and Incognito, increases exponentially with the size of QID.

5.1.1.3 K-Optimize

Another algorithm called K-Optimize [29] effectively prunes non-optimal
anonymous tables by modeling the search space using a set enumeration tree.
Each node represents a k-anonymous solution. The algorithm assumes a to-
tally ordered set of attribute values, and examines the tree in a top-down
manner starting from the most general table and prunes a node in the tree
when none of its descendants could be a global optimal solution based on
discernibility metric DM and classification metric CM. Unlike the above al-
gorithms, K-Optimize employs the subtree generalization and record suppres-
sion schemes. It is the only efficient optimal algorithm that uses the flexible
subtree generalization.

5.1.2 Locally Minimal Anonymization

The second family of algorithms produces a minimal k-anonymous table
by employing a greedy search guided by a search metric. Being heuristic in
nature, these algorithms may not find the optimal anonymous solution, but
are more scalable than the previous family. Since the privacy guarantee is not
compromisable, the algorithms typically preserve the required privacy but
may not reach optimal utility in the anonymization. Often local minimality
in data distortion is achieved when a greedy search stops at a point within a
local search space where no further distortion is required or where any further
distortion may compromise the privacy. We sometimes refer to such locally
minimal anonymization simply as minimal anonymization.

5.1.2.1 p-argus

The p-argus algorithm [120] computes the frequency of all 3-value combina-
tions of domain values, then greedily applies subtree generalizations and cell
suppressions to achieve k-anonymity. Since the method limits the size of at-
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tribute combination, the resulting data may not be k-anonymous when more
than 3 attributes are considered.

5.1.2.2 Datafly

Sweeney [215)’s Datafly system is the first k-anonymization algorithm scal-
able to handle real-life large data sets. It achieves k-anonymization by gener-
ating an array of qid group sizes and greedily generalizing those combinations
with less than k occurrences based on a heuristic search metric D A that selects
the attribute having the largest number of distinct values. Datafly employs
full-domain generalization and record suppression schemes.

5.1.2.3 Genetic Algorithm

Iyengar [123] is among the first researchers who aims at preserving classi-
fication information in k-anonymous data by employing a genetic algorithm
with an incomplete stochastic search based on classification metric CM and
a subtree generalization scheme. The idea is to encode each state of general-
ization as a “chromosome” and encode data distortion by a fitness function.
The search process is a genetic evolution that converges to the fittest chro-
mosome. Iyengar’s experiments suggest that, by considering the classification
purpose, a classifier built from the anonymous data generated with a clas-
sification purpose produces a lower classification error when compared to a
classifier built from anonymous data generated with a general purpose. How-
ever, experiments also showed that this genetic algorithm is inefficient for
large data sets.

5.1.2.4 Bottom-Up Generalization

To address the efficiency issue in k-anonymization, a bottom-up generaliza-
tion algorithm was proposed in [239] for finding a minimal k-anonymization
for classification. The algorithm starts from the original data that violates
k-anonymity, and greedily selects a generalization operation at each step ac-
cording to a search metric similar to ILPG in Equation 4.11. Each operation
increases the group size according to the rollup property in Observation 5.1.1.
The generalization process is terminated as soon as all groups have the mini-
mum size k. To select a generalization operation, it first considers those that
will increase the minimum group size, called critical generalizations, with the
intuition that a loss of information should trade for some gain on privacy.
When there are no critical generalizations, it considers other generalizations.
Wang et al. [239] show that this heuristic significantly reduces the search
space. Chapter 6.5 discusses this method in details.

5.1.2.5 Top-Down Specialization

Instead of bottom-up, the top-down specialization (TDS) method [95, 96]
generalizes a table by specializing it from the most general state in which all
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values are generalized to the most general values of their taxonomy trees. At
each step, TDS selects the specialization according to the search metric IGPL
in Equation 4.7. The specialization process terminates if no specialization
can be performed without violating k-anonymity. The data on termination
is a minimal k-anonymization according to the generalization property in
Observation 5.1.2. TDS handles both categorical attributes and numerical
attributes in a uniform way, except that the taxonomy tree for a numerical
attribute is grown on the fly as specializations are searched at each step.

Fung et al. [94] further extend the k-anonymization algorithm to preserve
the information for cluster analysis. The major challenge of anonymizing data
for cluster analysis is the lack of class labels that could be used to guide the
anonymization process. Their solution is to first partition the original data into
clusters on the original data, convert the problem into the counterpart problem
for classification analysis where class labels encode the cluster information in
the data, and then apply TDS to preserve k-anonymity and the encoded
cluster information.

In contrast to the bottom-up approach [148, 201, 239], the top-down ap-
proach has several advantages. First, the user can stop the specialization pro-
cess at any time and have a k-anonymous table. In fact, every step in the
specialization process produces a k-anonymous solution. Second, TDS han-
dles multiple QIDs, which is essential for avoiding the excessive distortion
suffered by a single high-dimensional QI D. Third, the top-down approach is
more efficient by going from the most generalized table to a more specific
table. Once a group cannot be further specialized, all data records in the
group can be discarded. In contrast, the bottom-up approach has to keep all
data records until the end of computation. However, data holders employing
TDS may encounter the dilemma of choosing (multiple) QID discussed in
Chapter 2.1.1.

In terms of efficiency, TDS is an order of magnitude faster than the Genetic
Algorithm [123]. For instance, TDS required only 7 seconds to anonymize the
benchmark Adult data set [179], whereas the genetic algorithm required 18
hours for the same data using the same parameter k. They produce compa-
rable classification quality [95, 96].

5.1.2.6 Mondrian Multidimensional

LeFevre et al. [149] present a greedy top-down specialization algorithm for
finding a minimal k-anonymization in the case of the multidimensional gen-
eralization scheme. This algorithm is very similar to TDS. Both algorithms
perform a specialization on a value v one at a time. The major difference is
that TDS specializes in all gid groups containing v. In other words, a spe-
cialization is performed only if each specialized gid group contains at least k
records. In contrast, Mondrian performs a specialization on one qid group if
each of its specialized gid groups contains at least k records. Due to such a
relaxed constraint, the resulting anonymous data in multidimensional general-
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ization usually has a better quality than in single generalization. The trade-off
is that multidimensional generalization is less scalable than other schemes due
to the increased search space. Xu et al. [254] show that employing cell general-
ization could further improve the data quality. Though the multidimensional
and cell generalization schemes cause less information loss, they suffer from
the data exploration problem discussed in Chapter 3.1.

5.1.3 Perturbation Algorithms

This family of anonymization methods employs perturbation to de-associate
the linkages between a target victim and a record while preserving some sta-
tistical information.

5.1.3.1 Condensation

Aggarwal and Yu [8, 9, 10] present a condensation method to thwart
record linkages. The method first assigns records into multiple non-overlapping
groups in which each group has a size of at least k records. For each group,
extract some statistical information, such as sum and covariance, that suffices
to preserve the mean and correlations across the different attributes. Then,
for publishing, based on the statistical information, generate points for each
group following the statistical characteristics of the group. This method does
not require the use of taxonomy trees and can be effectively used in situa-
tions with dynamic data updates as in the case of data streams. As each new
data record is received, it is added to the nearest group, as determined by
the distance to each group centroid. As soon as the number of data records
in the group equals 2k, the corresponding group needs to be split into two
groups of k records each. The statistical information of the new group is then
incrementally computed from the original group.

5.1.3.2 r-Gather Clustering

In a similar spirit, Aggarwal et al. [13] propose a perturbation method called
r-gather clustering for anonymizing numerical data. This method partitions
records into several clusters such that each cluster contains at least r data
points (i.e., records). Instead of generalizing individual records, this approach
releases the cluster centers, together with their size, radius, and a set of as-
sociated sensitive values. To eliminate the impact of outliers, they relaxed
this requirement to (r, €)-gather clustering so that at most e fraction of data
records in the data set can be treated as outliers for removal from the released
data.

5.1.3.3 Cross-Training Round Sanitization

Recall from Chapter 2.4.1 that a point ¢ (c, t)-isolates a point p if B(q, cp)
contains fewer than ¢ points in the table, where B(q, ¢d,) is a ball of radius ¢d,
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centered at point g. Chawla et al. [46] propose two sanitization (anonymiza-
tion) techniques, recursive histogram sanitization and density-based perturba-
tion, to prevent (c,t)-isolation.

Recursive histogram sanitization recursively divides original data into a set
of subcubes according to local data density until all the subcubes have no more
than 2t data points. The method outputs the boundaries of the subcubes and
the number of points in each subcube. However, this method cannot handle
high-dimensional spheres and balls. Chawla et al. [47] propose an extension to
handle high-dimensionality. Density-based perturbation, a variant of the one
proposed by Agrawal and Srikant [19], in which the magnitude of the added
noise is relatively fixed, takes into consideration the local data density near
the point that needs to be perturbed. Points in dense areas are perturbed
much less than points in sparse areas. Although the privacy of the perturbed
points are protected, the privacy of the points in the ¢t-neighborhood of the
perturbed points could be compromised because the sanitization radius itself
could leak information about these points. To prevent such privacy leakage
from t-neighborhood points, Chawla et al. [46] further suggest a cross-training
round sanitization method by combining recursive histogram sanitization and
density-based perturbation. In cross-training round sanitization, a data set
is randomly divided into two subsets, A and B. B is sanitized using only
recursive histogram sanitization, while A is perturbed by adding Gaussian
noise generated according to the histogram of B.

5.2 Algorithms for the Attribute Linkage Model

The following algorithms anonymize the data to prevent attribute linkages.
They use the privacy models discussed in Chapter 2.2. Though their privacy
models are different from those of record linkage, many algorithms for at-
tribute linkage are simple extensions from algorithms for record linkage.

5.2.1 (-Diversity Incognito and ¢/*-Optimize

Machanavajjhala et al. [160, 162] modify the bottom-up Incognito [148] to
identify an optimal ¢-diverse table. Recall that ¢-diversity requires every gid
group to contain at least ¢ “well-represented” sensitive values. The ¢-Diversity
Incognito operates based on the generalization property, similar to Observa-
tion 5.1.2, that ¢-diversity is non-decreasing with respect to generalization. In
other words, generalizations help to achieve ¢-diversity, just as generalizations
help achieve k-anonymity. Therefore, k-anonymization algorithms that employ
full-domain and subtree generalization can also be extended into ¢-diversity
algorithms.
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Table 5.2: Anonymization algorithms for attribute linkage

Algorithm Operation Metric Optimality
¢-Diversity Incognito [162] FG,RS MD,DM yes
InfoGain Mondrian [150] MG 1G no
Top-Down Disclosure [237] VS IGPL no
¢T-Optimize [157] VS MD,DM,CM yes
Anatomize [249] AM heuristics no
(k, e)-Anonymity PM min. error yes
Permutation [269)

Greedy Personalized [250] SG,CG ILoss no
Progressive Local CG MD no
Recoding [246]

t-Closeness Incognito [153] FG,RS DM yes

FG=Full-domain Generalization, SG=Subtree Generalization,
CG=Cell Generalization, MG=Multidimensional Generalization,
RS=Record Suppression, VS=Value Suppression, AM=Anatomization

Most works discussed in this Chapter 5.2 employ some heuristic to achieve
minimal anonymization. Recently, Liu and Wang [157] present a subtree gen-
eralization algorithm, called ¢T-optimize, to achieve optimal anonymization
for £T-diversity, which is the same as confidence bounding studied in Chap-
ter 2.2.2. ¢T-optimize organizes all possible cuts into a cut enumeration tree
such that the nodes are ranked by a cost function that measures the in-
formation loss. Consequently, the optimal solution is obtained by effectively
pruning the non-optimal nodes (subtrees) that have higher cost than the cur-
rently examined candidate. The efficiency of the optimal algorithm relies on
the monotonic property of the cost function. It is a scalable method for finding
an optimal ¢-diversity solution by pruning large search space.

5.2.2 InfoGain Mondrian

LeFevre et al. [150] propose a suite of greedy algorithms to identify a min-
imally anonymous table satisfying k-anonymity and/or entropy ¢-diversity
with the consideration of a specific data analysis task such as classifica-
tion modeling multiple target attributes, regression analysis on numerical
attributes, and query answering with minimal imprecision. Their top-down
algorithms are similar to TDS [95], but LeFevre et al. [150] employ multidi-
mensional generalization.

5.2.3 Top-Down Disclosure

Recall that a privacy template has the form (QID — s, h) and states that
the confidence of inferring the sensitive value s from any group on QID is
no more than h. Wang et al. [237] propose an efficient algorithm to mini-
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mally suppress a table to satisfy a set of privacy templates. Their algorithm,
called Top-Down Disclosure (TDD), iteratively discloses domain values start-
ing from the table in which all domain values are suppressed. In each iteration,
it discloses the suppressed domain value that maximizes the search metric
IGPL in Equation 4.7, and terminates the iterative process when a further
disclosure leads to a violation of some privacy templates. This approach is
based on the following key observation.

Observation 5.2.1 (Disclosure property) Consider a privacy template
(QID — s,h). If a table violates the privacy template, so does any table
obtained by disclosing a suppressed value. [237] =

This property ensures that the algorithm finds a locally minimal sup-
pressed table. This property and, therefore, the algorithm, is extendable to
full-domain, subtree, and sibling generalization schemes, with the disclosure
operation being replaced with the specialization operation. The basic obser-
vation is that the confidence in at least one of the specialized groups will be
as large as the confidence in the general group. Based on a similar idea, Wong
et al. [246] employ the cell generalization scheme and proposed some greedy
top-down and bottom-up methods to identify a locally minimal anonymous
solution that satisfies (o, k)-anonymity.

5.2.4 Anatomize

Anatomization (also known as bucketization) provides an alternative way to
achieve (-diversity. Refer to Chapter 3.2 for the notion of anatomization. The
problem can be described as follows: given a person-specific data table T and
a parameter £, we want to obtain a quasi-identifier table (QIT) and a sensitive
table (ST) such that an adversary can correctly infer the sensitive value of any
individual with probability at most 1/¢. The Anatomize algorithm [249] first
partitions the data table into buckets and then separates the quasi-identifiers
with the sensitive attribute by randomly permuting the sensitive attribute
values in each bucket. The anonymized data consists of a set of buckets with
permuted sensitive attribute values.

Anatomize starts by initiating an empty QIT and ST. Then, it hashes the
records of T" into buckets by the sensitive values, so that each bucket includes
the records with the same sensitive value. The subsequent execution involves
a group-creation step and a residue-assignment step.

The group-creation step iteratively yields a new gid group as follows. First,
Anatomize obtains a set S consisting of the ¢ hash buckets that currently have
the largest number of records. Then, a record is randomly chosen from each
bucket in S and is added to the new gid group. As a result, the ¢id group
contains ¢ records with distinct sensitive values. Repeat this group creation
step while there are at least ¢ non-empty buckets. The term residue record
refers to a record remaining in a bucket, at the end of the group-creation
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phase. There are at most £ — 1 of residue records. For each residue record r,
the residue assignment step collects a set S” of ¢id groups produced from the
previous step, where no record has the same sensitive value as r. Then, the
record r is assigned to an arbitrary group in S’.

5.2.5 (k,e)-Anonymity Permutation

To achieve (k, e)-anonymity, Zhang et al. [269] propose an optimal permu-
tation method to assign data records into groups together so that the sum of
error E is minimized, where F, for example, could be measured by the range
of sensitive values in each group. The optimal algorithm has time and space
complexity in O(n?) where n is the number of data records. (k, €)-anonymity
is also closely related to range coding technique, which is used in both process
control [199] and statistics [113]. In process control, range coding (also known
as coarse coding) permits generalization by allowing the whole numerical area
to be mapped to a set of groups defined by a set of boundaries, which is sim-
ilar to the idea of grouping data records by ranges and keeping boundaries
of each group for fast computation in (k,e)-anonymity. Hegland et al. [113]
also suggest handling large data sets, as population census data, by dividing
them into generalized groups (blocks) and applying a computational model
to each group. Any aggregate computation can hence be performed based
on manipulation of individual groups. Similarly, (k, e)-anonymity exploits the
group boundaries to efficiently answer aggregate queries.

5.2.6 Personalized Privacy

Refer to the requirement of personalized privacy discussed in Chapter 2.2.9.
Xiao and Tao [250] propose a greedy algorithm to achieve every record owner’s
privacy requirement in terms of a guarding node as follows: initially, all Q1D
attributes are generalized to the most general values, and the sensitive at-
tributes remain ungeneralized. At each iteration, the algorithm performs a
top-down specialization on a QI D attribute and, for each gid group, performs
cell generalization on the sensitive attribute to satisfy the personalized privacy
requirement; the breach probability of inferring any domain sensitive values
within the subtree of guarding nodes is below certain threshold. Since the
breach probability is non-increasing with respect to generalization on the sen-
sitive attribute, and the sensitive values could possibly be generalized to the
most general values, the generalized table found at every iteration is publish-
able without violating the privacy requirement, although a table with lower
information loss ILoss, measured by Equation 4.2, is preferable. When no
better solution with lower ILoss is found, the greedy algorithm terminates
and outputs a locally minimal anonymization. Since this approach general-
izes the sensitive attribute, I Loss is measured on both QID and sensitive
attributes.
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Table 5.3: Anonymization algorithms for table

linkage
Algorithm Operation | Metric | Optimality
SPALM [176] FG DM yes
MPALM [176] MG heuristics no

FG=Full-domain Generalization, MG=Multidimensional Generalization

5.3 Algorithms for the Table Linkage Model

The following algorithm aims at preventing table linkages, that is, to prevent
adversaries from determining the presence or the absence of a target victim’s
record in a released table.

5.3.1 J-Presence Algorithms SPALM and MPALM

Recall that a generalized table T" satisfies (d,nin, Omaz )-presence (or simply
d-presence) with respect to an external table E if 6,5, < P(t € T|T") < dpnax
for all t € E. To achieve d-presence, Ercan Nergiz et al. [176] present two
anonymization algorithms, SPALM and MPALM. SPALM is an optimal al-
gorithm that employs a full-domain single-dimensional generalization scheme.
Ercan Nergiz et al. [176] prove the anti-monotonicity property of d-presence
with respect to full-domain generalization; if table T is d-present, then a gen-
eralized version of T” is also d-present. SPALM is a top-down specialization
approach and exploits the anti-monotonicity property of §-presence to prune
the search space effectively. MPALM is a heuristic algorithm that employs a
multi-dimensional generalization scheme, with complexity O(|C||E|logz|E|),
where |C| is the number of attributes in private table T' and | E| is the number
of records in the external table E. Their experiments showed that MPALM
usually results in much lower information loss than SPALM because MPALM
employs a more flexible generalization scheme.

5.4 Algorithms for the Probabilistic Attack Model

Many algorithms for achieving the probabilistic privacy models studied in
Chapter 2.4 employ random perturbation methods, so they do not suffer from
the problem of minimality attacks. The random perturbation algorithms are
non-deterministic; therefore, the anonymization operations are non-reversible.
The random perturbation algorithms for the probabilistic attack model can
be divided into two groups. The first group is local perturbation [21], which
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Table 5.4: Anonymization algorithms for probabilistic attack

Algorithm Operation | Metric

Cross-Training Round Sanitization [46] AN statistical
e-Differential Privacy Additive Noise [74] AN statistical
af Algorithm [193] AN,SP statistical

AN=Additive Noise, SP=Sampling

assumes that a record owner does not trust anyone except himself and perturbs
his own data record by adding noise before submission to the untrusted data
holder. The second group is to perturb all records together by a trusted data
holder, which is the data publishing scenario studied in this book. Although
the methods in the first group are also applicable to the second by adding noise
to each individual record, Rastogi et al. [193] and Dwork [75] demonstrate
that the information utility can be improved with a stronger lower bounds by
assuming a trusted data holder who has the capability to access all records and
exploit the overall distribution to perturb the data, rather than perturbing
the records individually.

A number of PPDP methods [19, 268] have been proposed for preserv-
ing classification information with randomization. Agrawal and Srikant [19]
present a randomization method for decision tree classification with the use of
the aggregate distributions reconstructed from the randomized distribution.
The general idea is to construct the distribution separately from the differ-
ent classes. Then, a special decision tree algorithm is developed to determine
the splitting conditions based on the relative presence of the different classes,
derived from the aggregate distributions. Zhang et al. [268] present a ran-
domization method for naive Bayes classifier. The major shortcoming of this
approach is that ordinary classification algorithms will not work on this ran-
domized data. There is a large family of works in randomization perturbation
for data mining and data publishing [20, 21, 72, 83, 119, 193, 198].

The statistics community conducts substantial research in the disclosure
control of statistical information and aggregate query results [46, 52, 73, 166,
184]. The goal is to prevent adversaries from obtaining sensitive information by
correlating different published statistics. Cox [52] propose the k%-dominance
rule which suppresses a sensitive cell if the values of two or three entities in
the cell contribute more than k% of the corresponding SUM statistic. The
proposed mechanisms include query size and query overlap control, aggrega-
tion, data perturbation, and data swapping. Nevertheless, such techniques are
often complex and difficult to implement [87], or address privacy threats that
are unlikely to occur. There are some decent surveys [3, 63, 173, 267] in the
statistics community.
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5.4.1 e-Differential Additive Noise

One representative work to thwart probabilistic attack is differential pri-
vacy [74]; its definition can be found in Chapter 2.4. Dwork [74] proposes
an additive noise method to achieve e-differential privacy. The added noise
is chosen over a scaled symmetric exponential distribution with variance o2
in each component, and o > ¢/Af, where Af is the maximum difference of
outputs of a query f caused by the removal or addition of a single data record.
Machanavajjhala et al. [161] propose a revised version of differential privacy
called probabilistic differential privacy that yields a practical privacy guaran-
tee for synthetic data generation. The idea is to first build a model from the
original data, then sample points from the model to substitute original data.
The key idea is to filter unrepresentative data and shrink the domain. Other
algorithms [32, 62, 77, 78] have been proposed to achieve differential privacy.
Refer to [76] for a decent survey on the recent developments in this line of
privacy model.

5.4.2 of Algorithm

Recall that (d,y)-privacy in Chapter 2.4.3 bounds the difference of P(r) and
P(r|T), where P(r) and P(r|T) are the prior probability and the posterior
probability respectively of the presence of a victim’s record in the data table
T before and after examining the published table T'. To achieve (d, y)-Privacy,
Rastogi et al. [193] propose a perturbation method called a8 algorithm con-
sisting of two steps. The first step is to select a subset of records from the
original table D with probability @ + # and insert them to the data table
T, which is to be published. The second step is to generate some counterfeit
records from the domain of all attributes. If the counterfeit records are not in
the original table D, then insert them into 7" with probability 5. Hence, the
resulting perturbed table T consists of both records randomly selected from
the original table and counterfeit records from the domain. The number of
records in the perturbed data could be larger than the original data table, in
comparison with FRAPP [21] which has a fixed table size. The drawback of
inserting counterfeits is that the released data could no longer preserve the
truthfulness of the original data at the record level, which is important in
some applications, as explained in Chapter 1.1.

5.5 Attacks on Anonymous Data
5.5.1 Minimality Attack

Most privacy models assume that the adversary knows the QI D of a target
victim and/or the presence of the victim’s record in the published data. In
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addition to this background knowledge, the adversary can possibly determine
the privacy requirement (e.g., 10-anonymity or 5-diversity), the anonymiza-
tion operations (e.g., subtree generalization scheme) to achieve the privacy
requirement, and the detailed mechanism of an anonymization algorithm. The
adversary can possibly determine the privacy requirement and anonymization
operations by examining the published data, or its documentation, and learn
the mechanism of the anonymization algorithm by, for example, reading re-
search papers. Wong et al. [245] point out that such additional background
knowledge can lead to extra information that facilitates an attack to compro-
mise data privacy. This is called the mintmality attack.

Many anonymization algorithms discussed in this chapter follow an implicit
minimality principle. For example, when a table is generalized from bottom-up
to achieve k-anonymity, the table is not further generalized once it minimally
meets the k-anonymity requirement. Minimality attack exploits this mini-
mality principle to reverse the anonymization operations and filter out the
impossible versions of original table [245]. The following example illustrates
minimality attack on confidence bounding [237].

Example 5.1

Consider the original patient Table 5.5, the anonymous Table 5.6, and an ex-
ternal Table 5.7 in which each record has a corresponding original record
in Table 5.5. Suppose the adversary knows that the confidence bounding
requirement is ({Job, Sex} — HIV,60%). With the minimality principle,
the adversary can infer that Andy and Bob have HIV based on the fol-
lowing reason: From Table 5.5, gid = (Lawyer, Male) has 5 records, and
qid = (Engineer, Male) has 2 records. Thus, (Lawyer, Male) in the orig-
inal table must already satisfy ({Job, Sex} — HIV,60%) because even if
both records with HIV have (Lawyer, Male), the confidence for inferring
HIV is only 2/5 = 40%. Since a subtree generalization has been per-
formed, (Engineer, Male) must be the gid that has violated the 60% con-
fidence requirement on HIV, and that is possible only if both records with
(Engineer, M ale) have a disease value of HIV.

Table 5.5: Minimality attack:
original patient data

Job Sex Disease
Engineer Male HIV
Engineer Male HIV

Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu
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Table 5.6: Minimality attack:
published anonymous data

Job Sex Disease
Professional Male HIV
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male HIV

Table 5.7: Minimality attack:
external data
Name Job Sex

Andy Engineer Male
Calvin Lawyer Male

Bob Engineer Male
Doug Lawyer Male
Eddy Lawyer Male
Fred Lawyer Male

Gabriel Lawyer Male

To thwart minimality attack, Wong et al. [245] propose a privacy model
called m-confidentiality that limits the probability of the linkage from any
record owner to any sensitive value set in the sensitive attribute. Minimal-
ity attack is applicable to both optimal and minimal anonymization algo-
rithms that employ generalization, suppression, anatomization, or permuta-
tion to achieve privacy models including, but not limited to, ¢-diversity [162],
(a, k)-anonymity [246], (k,e)-anonymity [269], personalized privacy [250],
anatomy [249], t-closeness [153], m-invariance [251], and (X, Y")-privacy [236].
To avoid minimality attack on ¢-diversity, Wong et al. [245] propose to first
k-anonymize the table. Then, for each gid group in the k-anonymous table
that violates f-diversity, their method distorts the sensitive values to satisfy
{-diversity.

5.5.2 deFinetti Attack

Kifer [138] presents a noble attack on partition-based anonymous data that
are obtained by generalization, suppression, or anatomization. Though the
general methodology of the attack is applicable to any partition-based algo-
rithm, we illustrate a specific attack against Anatomy (Chapter 3.2), which is
one kind of partition-based algorithm. Refer to [138] for details on how this
algorithm can be modified to attack other partition-based algorithms such as
generalization. We illustrate the attack by the following example.
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Table 5.8: deFinetti attack:
quasi-identifier table (QIT)

Rec# Smoker? GrouplD
1 Y 1
2 Y 1
3 N 2
4 N 2
5 Y 3
6 N 3
7 Y 4
8 Y 4
9 N 5
10 N 5
11 Y 6
12 N 6

Source: [138] ©2009 Association for Computing
Machinery, Inc. Reprinted by permission.

Example 5.2

Tables 5.8 and 5.9 show a pair of anatomized tables, where the quasi-identifer
(Smoker?) and the sensitive attribute (Disease) are de-associated by the
GrouplD. Each group has size 2. Let’s assume an adversary wants to predict
the disease of Rec#11. According to the random worlds model (which is the
way the adversary reasons), the probability of Rec#11 to have cancer is 50%
because group 6 contains two records and one of them has cancer disease.
However, Kifer claims that it is appropriate to model the adversary using
random worlds model. By observing the anonymized data, an adversary can
learn that whenever a group contains a smoker (groups 1, 3, 4, and 6), the
group also contains a cancer. Also, a group with no smoker (groups 2 and 5)
has no cancer. Given the correlation between smoker and cancer in the tables,
the probability that Rec#12 has cancer should be less than 0.5, therefore,
Rec#11 is more likely to have cancer. The probability of Rec#12 having can-
cer and Rec#11 having no disease is approximately 0.16, which is significantly
lower than the random worlds estimate.

Kifer calls this class of attack as deFinetti attack because the attacking
algorithm is based on the deFinetti’s representation theorem to predict the
sensitive attribute of a victim.

5.5.3 Corruption Attack

Many previously discussed privacy models that thwart record linkages and
attribute linkages in Chapters 5.1 and 5.2 assume that the background knowl-
edge of an adversary is limited to the QI D attributes, and the adversary uses
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Anonymization Algorithms

Table 5.9:
table (ST)

deFinetti attack: sensitive

GrouplID

Disease

Cancer
Flu

Flu
No Disease

Cancer
No Disease

Cancer
No Disease

Flu
No Disease

SO O U W W= W N+~

Cancer
No Disease

Source: [138] ©2009 Association for Computing

Machinery, Inc. Reprinted by permission.

Corruption attack: 2-diverse table

Job Sex Disease
Engineer Male HIV
Engineer Male Flu

Lawyer Female Diabetes
Lawyer Female Flu

65

such background knowledge to link the sensitive attribute of a target victim.
What if an adversary has additional background knowledge? For example, an
adversary may acquire additional knowledge by colluding with a record owner
(a patient) or corrupting a data holder (an employee of a hospital). By using
the sensitive values of some records, an adversary may be able to compromise
the privacy of other record owners in the anonymous data.

Example 5.3

Suppose an adversary knows that Bob is a male engineer appearing in Ta-
ble 5.10, therefore, Bob has either HIV or Flu. We further suppose that the
adversary “colludes” with another patient John who is also a male engineer
appearing the table, and John discloses to the adversary that he has Flu.
Due to this additional knowledge, the adversary is now certain that Bob has
HIV. Note, John has not done anything wrong because he has just disclosed
his own disease. O

To guarantee privacy against this kind of additional knowledge of the ad-
versary, Tao et al. [218] propose an anonymization algorithm that integrates
generalization with perturbation and stratified sampling. The proposed per-
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turbed generalization algorithm provides strong privacy guarantee even if the
adversary has corrupted an arbitrary number of record owners in the table. In
general, the randomization-based approaches are less vulnerable to the above
types of attacks due to the random nature, compared to the deterministic
partition-based approaches.
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Anonymization for Data
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Chapter 6

Anonymization for Classification
Analysis: A Case Study on the Red
Cross

6.1 Introduction

This chapter uses the Red Cross Blood Transfusion Service (BTS) as a
case study to illustrate how the components studied in previous chapters
work together to solve a real-life privacy-preserving data publishing prob-
lem. Chapter 2 studies the privacy threats caused by data publishing and
the privacy models that thwart the privacy threats. Chapter 3 discusses some
commonly employed anonymization operations for achieving the privacy mod-
els. Chapter 4 studies various types of information metrics that can guide the
anonymization operations for preserving the required information depending
on the purpose of the data publishing. Chapter 5 provides an overview of dif-
ferent anonymization algorithms for achieving the privacy requirements and
preserving the information utility.

Gaining access to high-quality health data is a vital requirement to informed
decision making for medical practitioners and pharmaceutical researchers.
Driven by mutual benefits and regulations, there is a demand for healthcare
institutes to share patient data with various parties for research purposes.
However, health data in its raw form often contains sensitive information
about individuals, and publishing such data will violate their privacy.

Health Level 7 (HL7) is a not-for-profit organization involved in develop-
ment of international healthcare standards. Based on an extended data schema
from the HL7 framework, this chapter exploits a real-life information sharing
scenario in the Hong Kong Red Cross BTS to bring out the challenges of
preserving both individual privacy and data mining quality in the context of
healthcare information systems. This chapter employs the information system
of Red Cross BTS as a use case to motivate the problem and to illustrate the
essential steps of the anonymization methods for classification analysis. The
next chapter presents a unified privacy-preserving data publishing framework
for cluster analysis.

Figure 6.1 illustrates an overview of different parties in the Red Cross BTS
system. After collecting and examining the blood collected from donors, the

69
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FIGURE 6.1: Overview of the Red Cross BTS ([171] ©2009 Association for
Computing Machinery, Inc. Reprinted by permission.)

BTS distributes the blood to different public hospitals. The hospitals collect
and maintain the health records of their patients and transfuse the blood
to the patients if necessary. The blood transfusion information, such as the
patient data, type of surgery, names of medical practitioners in charge, and
reason for transfusion, is clearly documented and is stored in the database
owned by each individual hospital.

The public hospitals are required to submit the blood usage data, together
with the patient-specific surgery data, to the Government Health Agency.
Periodically, the Government Health Agency submits the data to the BTS
for the purpose of data analysis and auditing. The objectives of the data
mining and auditing procedures are to improve the estimated future blood
consumption in different hospitals and to make recommendation on the blood
usage in future medical cases. In the final step, the BTS submits a report
to the Government Health Agency. Referring to the privacy regulations, such
reports have the property of keeping patients’ privacy protected, although
useful patterns and structures have to be preserved. Figure 6.2 provides a
more detailed illustration of the information flow among the hospitals, the
Government Health Agency, and the Red Cross BTS.

The focus of this chapter is to study a data anonymizer in the privacy-
preserving healthcare data publishing service so that both information shar-
ing and privacy protection requirements can be satisfied. This BTS case illus-
trates a typical dilemma in information sharing and privacy protection faced
by many health institutes. For example, licensed hospitals in California are
also required to submit specific demographic data on every discharged pa-
tient [43]. The solution studied in this chapter, designed for the BTS case,
will also benefit other health institutes that face similar challenges in infor-
mation sharing. We summarize the concerns and challenges of the BTS case
as follows.

Privacy concern: Giving the Red Cross BTS access to blood transfusion
data for data analysis is clearly legitimate. However, it raises some concerns
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FIGURE 6.2: Data flow in the Red Cross BTS

on patients’ privacy. The patients are willing to submit their data to a hospital
because they consider the hospital to be a trustworthy entity. Yet, the trust to
the hospital may not necessarily be transitive to a third party. Many agencies
and institutes consider that the released data is privacy-preserved if explicit
identifying information, such as name, social security number, address, and
telephone number, is removed. However, as discussed at the beginning of this
book, substantial research has shown that simply removing explicit identifying
information is insufficient for privacy protection. Sweeney [216] shows that
an individual can be re-identified by simply matching other attributes, called
quasi-identifiers (QID), such as gender, date of birth, and postal code. Below,
we illustrate the privacy threats by a simplified Red Cross example.

Example 6.1

Consider the raw patient data in Table 6.1, where each record represents a
surgery case with the patient-specific information. Job, Sex, and Age are
quasi-identifying attributes. The hospital wants to release Table 6.1 to the
Red Cross for the purpose of classification analysis on the class attribute,
Transfuse, which has two values, Y and N, indicating whether or not the
patient has received blood transfusion. Without loss of generality, we as-
sume that the only sensitive value in Surgery is Transgender. The Gov-
ernment Health Agency and hospitals express concern on the privacy threats
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Table 6.1: Raw patient data

Quasi-identifier (QID) Class Sensitive
ID Job Sex | Age | Transfuse Surgery
1 Janitor M 34 Y Transgender
2 Doctor M 58 N Plastic
3 Mover M 34 Y Transgender
4 Lawyer M 24 N Vascular
5 Mover M 58 N Urology
6 Janitor M 44 Y Plastic
7 Doctor M 24 N Urology
8 Lawyer F 58 N Plastic
9 Doctor F 44 N Vascular
10 | Carpenter | F 63 Y Vascular
11 | Technician | F 63 Y Plastic

Table 6.2: Anonymous data (L =2, K =2, C = 50%)

Quasi-identifier (QID) Class Sensitive
ID Job Sex Age Transfuse | Surgery
1 | Non-Technical | M | [30 — 60) Y Transgender
2 Professional | M | [30 — 60) N Plastic
3 | Non-Technical | M | [30 — 60) Y Transgender
4 | Professional | M [ [1—30) N Vascular
5 | Non-Technical | M | [30 — 60) N Urology
6 | Non-Technical | M | [30 — 60) Y Plastic
7 | Professional | M | [1 —30) N Urology
8 | Professional F |[30—60) N Plastic
9 Professional F 30 — 60) N Vascular
10 Technical F |60 —99) Y Vascular
11 Technical F []60—99) Y Plastic

caused by record linkages and attributes linkages discussed in Chapter 2.1
and Chapter 2.2, respectively. For instance, the hospital wants to avoid
record linkage to record #3 via ¢qid = (Mover,34) and attribute linkage
(M, 34) — Transgender.

Patient data is usually high-dimensional, i.e., containing many attributes.
Applying traditional privacy models, such as k-anonymity, ¢-diversity, and
confidence bounding, suffers from the curse of high-dimensionality problem
and often results in useless data. To overcome this problem, Mohammed et
al. [171] employ the LK C-privacy model discussed in Chapter 2.2.6 in this
Red Cross BTS problem. Recall that the general intuition of LK C-privacy is
to ensure that every combination of values in QID; C QID with maximum
length L in the data table T is shared by at least K records, and the confidence
of inferring any sensitive values in S is not greater than C, where L, K, C are
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FIGURE 6.3: Taxonomy trees and QIDs

thresholds and S is a set of sensitive values specified by the data holder (the
hospital). LK C-privacy bounds the probability of a successful record linkage
to be < 1/K and the probability of a successful attribute linkage to be < C,
provided that the adversary’s prior knowledge does not exceed L values.

Example 6.2

Table 6.2 shows an example of an anonymous table that satisfies (2,2,50%)-
privacy, where L = 2, K = 2, and C = 50%, by generalizing all the values from
Table 6.1 according to the taxonomies in Figure 6.3 (ignore the dashed curve
for now). Every possible value of QID; with maximum length 2 in Table 6.2
(namely, QI D1, QIDs, and QI D5 in Figure 6.3) is shared by at least 2 records,
and the confidence of inferring the sensitive value Transgender is not greater
than 50%. In contrast, enforcing traditional 2-anonymity will require fur-
ther generalization. For example, in order to make (Professional, M, [30-60))
to satisfy traditional 2-anonymity, we need to further generalize [I-30) and
[30-60) to [1-60), resulting in much higher utility loss.

Information needs: The Red Cross BTS wants to perform two types
of data analysis on the blood transfusion data collected from the hospitals.
First, it wants to employ the surgery information as training data for building
a classification model on blood transfusion. Second, it wants to obtain some
general count statistics.

One frequently raised question is: To avoid the privacy concern, why does
not the hospital simply release a classifier or some statistical information to
the Red Cross? The Red Cross wants to have access to the blood transfusion
data, not only the statistics, from the hospitals for several reasons. First, the
practitioners in hospitals and the Government Health Agency have no exper-
tise and interest in doing the data mining. They simply want to share the
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patient data with the Red Cross, who needs the health data for legitimate
reasons. Second, having access to the data, the Red Cross has much better
flexibility to perform the required data analysis. It is impractical to continu-
ously request practitioners in a hospital to produce different types of statistical
information and fine-tune the data mining results for research purposes.

The rest of the chapter is organized as follows.

e In Chapter 6.2, we present the anonymization problem for classification
analysis with the privacy and information requirements.

e In Chapter 6.3, we study an efficient anonymization algorithm, called
High-Dimensional Top-Down Specialization (HDTDS) [171], for achiev-
ing LK C-privacy with two different information needs. The first in-
formation need maximizes the information preserved for classification
analysis; the second information need minimizes the distortion on the
anonymous data for general data analysis. Minimizing distortion is use-
ful when the particular information requirement is unknown during in-
formation sharing or the shared data is used for various kinds of data
mining tasks.

e In Chapters 6.4, 6.5, 6.6, we study three methods that also address the
anonymization problem for classification analysis, but with the privacy
model of k-anonymity instead of LK C-privacy. Yet, they can be easily
modified to achieve LK C-privacy.

e In Chapter 6.7, we present an evaluation methodology for measuring
the data quality of the anonymous data with respect to the information
needs. Experiments on real-life data suggest that the HDTDS algorithm
is flexible and scalable enough to handle large volumes of data that
include both categorical and numerical attributes. Scalability is a ba-
sic requirement specified by the Red Cross due to the large volume of
records.

6.2 Anonymization Problems for Red Cross BTS

We first describe the privacy and information requirements of the Red Cross
Blood Transfusion Service (BTS), followed by a problem statement.

6.2.1 Privacy Model
Suppose a health agency wants to publish a health data table

T(ID,Ds,...,Dy, Class, Sens) (e.g., Table 6.1)
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to some recipient (e.g., Red Cross) for data analysis. The ID number is an
explicit identifier and it should be removed before publication. Each D; is
either a categorical or a numerical attribute. Sens is a sensitive attribute. A
record has the form (v1,...,vm,cls, s), where v; is a domain value of D;, cls
is a class value of Class, and s is a sensitive value of Sens. The data holder
wants to protect against linking an individual to a record or some sensitive
value in T through some subset of attributes called a quasi-identifier or QID,
where QID C {D,...,D,,}.

One recipient, who is an adversary, seeks to identify the record or sensitive
values of some target victim patient V' in T. We assume that the adversary
knows at most L values of QID attributes of the victim patient. We use gid
to denote such prior known values, where |gid| < L. Based on the prior knowl-
edge ¢id, the adversary could identify a group of records, denoted by T'[qid],
that contains qid. |T'[qid]| denotes the number of records in T'[¢id]. Suppose
qid = (Janitor, M). T[qid] = {ID#1,6} and |T'[gid]| = 2 in Table 6.1. The
adversary could launch two types of privacy attacks, namely record linkages
and attribute linkages, based on such prior knowledge.

To thwart the record and attribute linkages on any patient in the table T,
every ¢id with a maximum length L in the anonymous table is required to
be shared by at least a certain number of records, and the ratio of sensitive
value(s) in any group cannot be too high. The LK C-privacy model discussed
in Chapter 2.2.6 reflects this intuition.

6.2.2 Information Metrics

The measure of data utility varies depending on the data analysis task to
be performed on the published data. Based on the information requirements
specified by the Red Cross, two information metrics are defined. The first
information metric is to preserve the maximal information for classification
analysis. The second information metric is to minimize the overall data dis-
tortion when the data analysis task is unknown.

In this Red Cross project, a top-down specialization algorithm called
HDTDS is proposed to achieve LK C-privacy on high-dimensional data by
subtree generalization (Chapter 3.1). The general idea is to anonymize a ta-
ble by a sequence of specializations starting from the topmost general state
in which each attribute has the topmost value of its taxonomy tree [95, 96].
We assume that a taxonomy tree is specified for each categorical attribute in
QID. A leaf node represents a domain value and a parent node represents a
less specific value. For a numerical attribute in QI D, a taxonomy tree can be
grown at runtime, where each node represents an interval, and each non-leaf
node has two child nodes representing some optimal binary split of the parent
interval. Figure 6.3 shows a dynamically grown taxonomy tree for Age.

Suppose a domain value d has been generalized to a value v in a record. A
specialization on v, written v — child(v), where child(v) denotes the set of
child values of v, replaces the parent value v with the child value that gener-
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FIGURE 6.4: Taxonomy trees for Tables 6.3-6.7

alizes the domain value d. A specialization is valid if the specialization results
in a table satisfying the LK C-privacy requirement after the specialization. A
specialization is performed only if it is valid. The specialization process can
be viewed as pushing the “cut” of each taxonomy tree downwards. A cut of
the taxonomy tree for an attribute D;, denoted by Cut;, contains exactly one
value on each root-to-leaf path. Figure 6.3 shows a solution cut indicated by
the dashed curve representing the anonymous Table 6.2. The specialization
starts from the topmost cut and pushes down the cut iteratively by specializing
some value in the current cut until violating the LK C-privacy requirement.
In other words, the specialization process pushes the cut downwards until no
valid specialization is possible. Each specialization tends to increase data util-
ity and decrease privacy because records are more distinguishable by specific
values. Two information metrics are defined depending on the information
requirement to evaluate the “goodness” of a specialization.

Case 1: Score for Classification Analysis

For the requirement of classification analysis, information gain, denoted by
InfoGain(v), can be used to measure the goodness of a specialization on
v. One possible information metric, Score(v) is to favor the specialization
v — child(v) that has the maximum InfoGain(v) [210]:

Score(v) = InfoGain(v) = E(T[v]) — Z ;{c] E(T[q)), (6.1)

Tv]]

where E(T'[z]) is the entropy of T[x]. Refer to Equation 4.8 in Chapter 4.3
for more details on InfoGain(v).

Equation 6.1 uses In foGain alone, that is, maximizing the information gain
produced by a specialization without considering the loss of anonymity. This
Score function may pick a candidate that has a large reduction in anonymity,
which may lead to a quick violation of the anonymity requirement, thereby
prohibiting refining the data to a lower granularity. A better information met-
ric is to maximize the information gain per unit of anonymity loss. The next
example compares the two Score functions and illustrates using InfoGain
alone may lead to quick violation.
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Table 6.3: Compress raw patient table

Education | Sex | Work_Hrs | Class | # of Recs.

10th M 40 20YON 20

10th M 30 0Y4N 4

9th M 30 0Y2N 2

9th F 30 0Y4N 4

9th F 40 0Y6N 6

8th F 30 0Y2N 2

8th F 40 0Y2N 2
Total: 20Y20N 40

Table 6.4: Statistics for the most masked table

Candidate | InfoGain | AnonyLoss Score
ANY _Edu 0.6100 40—-4=36 |0.6100/(36+ 1) = 0.0165
ANY _Sex 0.4934 |40 —14=26]0.4934/(26+ 1) = 0.0183
[1-99) 0.3958 |40 —12=280.3958/(28+ 1) = 0.0136

Example 6.3
Consider Table 6.3, the taxonomy trees in Figure 6.4, the 4-anonymity re-
quirement with QID = { Education, Sex, Work_Hrs}, the most masked table
containing one row (ANY _Edu, ANY _Sex, [1-99)) with the class frequency
20Y 20N, and three candidate specialization:

ANY _Edu — {8th, 9th, 10th},

ANY _Sex — {M, F}, and

[1-99) — {[1-40). [40-99)}.
The class frequency is:

Education: 0Y4N (8th), 0Y12N (9th), 20Y4AN (10th)

Sex: 20Y6N (M), 0Y14N (F)

Work_Hrs: 0Y12N ([1-40)), 20Y8N ([40-99))
Table 6.4 shows the calculated InfoGain, AnonyLoss, and Score of
the three candidate refinements. The following shows the calculations of
InfoGain(ANY _Edu), InfoGain(ANY _Sex), and InfoGain([1-99)):

(T[ANY _Edu)) = f% x loga2 — 20 x Jogy20 = 1
E(T[8th]) = =Y x logs§ — § % 10924 = O
E(T[9th]) = % X logzl% 22 x loga12 7, =0
E(T[10th]) = =39 x logz33 — 5= x loga 75 = 0.6500
InfoGam(ANY _Edu) = ( [ANY _Edu)) — (& x E(T[8th) + £ x
E(T[9th])

+ 23 x E(T[10th))) = 0.6100

E(T[ANY Sew]) 48 X logQE - E X l09240 =1
E(T[M]) = =53 x loga3e — 55 X logazs = 0.7793



78 Introduction to Privacy-Preserving Data Publishing
Table 6.5: Final masked table by InfoGain

Education Sex Work_Hrs | Class | # of Recs.
10th ANY Sex 1-99) 20Y4N 24
9th ANY _Sex 1-99) 0Y12N 12
8th ANY _Sex 1-99) 0Y4N 4

Table 6.6: Intermediate masked table by Score

TEducation | Sex | Work_Hrs | Class # of Recs.
ANY Edu | M 1-99) 20Y6N 26
ANY _Edu F 1-99) 0Y14N 14
E(T[F) = —& xloga% — 14 x loga13 =0
InfoGain(ANY Sex) ( [ANY Sew]) (40 XE(T[M])—i—i—g x E(T[F]))

= 0.4934

E(T[[1-99)]) = —23 x log233 — 22 x logy 22 =1
E(T{[1-40))) =~ x loga 1) — 1 x loga 1 — 0
E(T[[40-99)]) = 220 X logQ%—g — 55 X loga 25 = 0.8631
InfoGain([1-99)) = E(T/1-99)])- (¥ E(T[[1-40)))+ 55 < E(T[[40-99)]))
= 0.3958

According to the InfoGain criterion, ANY _Edu will be first specialized
because it has the highest InfoGain. The result is shown in Table 6.5 with
A(QID) = 4. After that, there is no further valid specialization because spe-
cializing either ANY _Sex or [1-99) will result in a violation of 4-anonymity.
Note that the first 24 records in the table fail to separate the 4N from the
other 20Y.

In contrast, according to the Score criterion, ANY _Sex will be first refined.
Below, we show the calculation of AnonyLoss of the three candidate refine-
ments:

AnonyLoss(ANY _Edu) = A(QID) — Aany _Edu(QID)

= a({ANY _Edu, ANY _Sex, [1-99))) — a({8th, ANY _Sezx, [1-99)))
=40 —4 = 36, and

AnonyLoss(ANY _Sex) = A(QID) — Aany _sex(QID)

= a({(ANY _Edu, ANY _Sex, [1-99))) — a({ANY _Edu, F, [1-99)))

=40 — 14 = 26, and

AnonyLoss([1-99)) = A(QID) — Af1.99)(QID)

= a({(ANY _Edu, ANY _Sex, [1-99)))—a({ANY _Edu, ANY _Sex, [1-40)))

=40—-12 = 28.
Table 6.4 shows the calculation of Score using In foGain and AnonyLoss. The
result is shown in Table 6.6, and A(QID) = 14. Subsequently, further refine-
ment on ANY _Edu is invalid because it will result in a({9th, M, [1-99))) =
2 < k, but the refinement on [1-99) is valid because it will result in
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Table 6.7: Final masked table by Score

Education | Sex | Work_Hrs | Class | # of Recs.
ANY Edu | M [40-99) 20YON 20
ANY_Edu | M [1-40) 0YG6N 6
ANY _Edu F [40-99) 0Y8N 8
ANY _Edu F [1-40) 0YG6N 6

A(QID) = 6 > k. The final masked table is shown in Table 6.7 where the
information for separating the two classes is preserved. Thus by considering
the information/anonymity trade-off, the Score criterion produces a more de-
sirable sequence of refinements for classification.

An alternative information metric is to heuristically maximize the informa-
tion gain, denoted by InfoGain(v), for the classification goal and minimize
the anonymity loss, denoted by AnonyLoss(v), for the privacy goal. v is a
good candidate for specialization if InfoGain(v) is large and AnonyLoss(v)
is small. This alternative information metric, Score(v) is choosing the can-
didate v, for the next specialization, that has the maximum information-
gain/anonymity-loss trade-off, defined as

Score(v) = IGPL(v), (6.2)

where IGPL(v) is defined in Equation 4.7 in Chapter 4.3. Each choice of
InfoGain(v) and AnonyLoss(v) gives a trade-off between classification and
anonymization.

AnonyLoss(v): This is the average loss of anonymity by specializing v over
all QID; that contain the attribute of v:

AnonyLoss(v) = avg{A(QID;) — A,(QID;)}, (6.3)

where A(QID;) and A,(QID;) represent the anonymity before and after
specializing v. Note that AnonyLoss(v) does not just depend on the at-
tribute of v; it depends on all QID; that contain the attribute of v. Hence,
avg{A(QID;) — A,(QID;)} is the average loss of all QID; that contain the
attribute of v.

For a numerical attribute, no prior taxonomy tree is given and the taxon-
omy tree has to be grown dynamically in the process of specialization. The
specialization of an interval refers to the optimal binary split that maximizes
information gain on the Class attribute. Initially, the interval that covers the
full range of the attribute forms the root. The specialization on an interval v,
written v — child(v), refers to the optimal split of v into two child intervals
child(v) that maximizes the information gain. The anonymity is not used for
finding a split good for classification. This is similar to defining a taxonomy
tree where the main consideration is how the taxonomy best describes the ap-
plication. Due to this extra step of identifying the optimal split of the parent
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Table 6.8: Compressed raw patient table for illustrating optimal
split on numerical attribute

Education Sex Work_Hrs Class # of Recs.
9th M 30 0Y3N 3
10th M 32 0Y4N 4
11th M 35 2Y3N 5
12th F 37 3Y1IN 4
Bachelors F 42 4Y2N 6
Bachelors F 44 4YON 4
Masters M 44 4YON 4
Masters F 44 3YON 3
Doctorate F 44 1YON 1
Total: 21Y13N 34
Working Hrs
ANY
[1-99)
[1-37) [37-99)

[1-35) [35-37)

FIGURE 6.5: Taxonomy tree for Work_Hrs

interval, numerical attributes have to be treated differently from categorical
attributes with taxonomy trees. The following example illustrates how to find
an optimal split on a numerical interval.

Example 6.4

Consider the data in Table 6.8. The table has 34 records in total. Each row
represents one or more records with the Class column containing the class
frequency of the records represented, Y for “income >50K” and NN for “income
<50K.” For example, the third row represents 5 records having Fducation =
11th, Sex = Male and Work_Hrs = 35. The value 2Y 3N in the Class column
conveys that 2 records have the class Y and 3 records have the class N.
Semantically, this compressed table is equivalent to the table containing 34
rows with each row representing one record.

For the numerical attribute Work_Hrs, the top most value is the full range
interval of domain values, [1-99). To determine the split point of [1-99), we
evaluate the information gain for the five possible split points for the values 30,
32, 35, 37, 42, and 44. The following is the calculation for the split point at 37:
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InfoGain(87) = E(T[[1-99)]) — (12 x E(T[[1-37)]) + 2 x E(T[[37-99)]))
= 0.9597 — (£ x 0.6500 + 22 x 0.5746) = 0.3584.

As InfoGain(37) is highest, we grow the taxonomy tree for Work_Hrs by
adding two child intervals, [1-37) and [37-99), under the interval [1-99). The
taxonomy tree is illustrated in Figure 6.5. O

Case 2: Score for General Data Analysis

Sometimes, the data is shared without a specific task. In this case of general
data analysis, we use discernibility cost [213] to measure the data distortion
in the anonymous data table. The discernibility cost charges a penalty to each
record for being indistinguishable from other records. For each record in an
equivalence group ¢id, the penalty is |T[gid]|. Thus, the penalty on a group
is |T'[qid]|>. To minimize the discernibility cost, we choose the specialization
v — child(v) that maximizes the value of Score(v) = }_ ;4 |T'[gid.] |2 over all
qid, containing v. The Discernibility Metric (DM) is discussed in Equation 4.4
in Chapter 4.1. Example 6.6 shows the computation of Score(v).

6.2.3 Problem Statement

The goal in this Red Cross problem is to transform a given data set T into
an anonymous version 7" that satisfies a given LK C-privacy requirement and
preserves as much information as possible for the intended data analysis task.
Based on the information requirements specified by the Red Cross, we define
the problems as follows.

DEFINITION 6.1 Anonymization for data analysis  Given a data
table T', a LK C-privacy requirement, and a taxonomy tree for each categori-
cal attribute contained in QID, the anonymization problem for classification
analysis is to generalize T on the attributes QID to satisfy the LK C-privacy
requirement while preserving as much information as possible for the classifi-
cation analysis. The anonymization problem for gemeral analysis is to gener-
alize T on the attributes QID to satisfy the LK C-privacy requirement while
minimizing the overall discernibility cost. m

Computing the optimal LK C-privacy solution is NP-hard. Given a QID,
there are (lQiD |) combinations of decomposed QID; with maximum size L.
For any value of K and C, each combination of QID; in LK C-privacy is an
instance of the («, k)-anonymity problem with o = C' and k¥ = K. Wong et
al. [246] have proven that computing the optimal («, k)-anonymous solution is
NP-hard; therefore, computing optimal LK C-privacy is also NP-hard. Below,
we provide a greedy approach to efficiently identify a sub-optimal solution.
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Algorithm 6.3.1 High-Dimensional Top-Down Specialization (HDTDS)

1: Initialize every value in T to the topmost value;
2: Initialize Cut; to include the topmost value;

3: while some candidate v € UCut; is valid do

4:  Find the Best specialization from UCut;;

5:  Perform Best on T and update UCut;;

6:  Update Score(x) and validity for € UCut;;
7: end while;
8 Output T and UCut;.;

6.3 High-Dimensional Top-Down Specialization
(HDTDS)

Algorithm 6.3.1 provides an overview of the High-Dimensional Top-Down
Specialization (HDTDS) algorithm [171] for achieving LK C-privacy.! Ini-
tially, all values in QI D are generalized to the topmost value in their taxonomy
trees, and C'ut; contains the topmost value for each attribute D;. At each iter-
ation, HD'TDS performs the Best specialization, which has the highest Score
among the candidates that are valid specializations in UCut; (Line 4). Then,
apply Best to T and update UCut; (Line 5). Finally, update the Score of the
affected candidates due to the specialization (Line 6). The algorithm termi-
nates when there are no more valid candidates in UCut;. In other words, the
algorithm terminates if any further specialization would lead to a violation of
the LK C-privacy requirement. An important property of HDTDS is that the
LK C-privacy is anti-monotone with respect to a specialization: if a general-
ized table violates LK C-privacy before a specialization, it remains violated
after the specialization because a specialization never increases the |T[gid]|
and never decreases the maximum P(s|gid). This anti-monotonic property
guarantees that the final solution cut is a sub-optimal solution. HDTDS is a
modified version of TDS [96].

Example 6.5
Consider Table 6.1 with L = 2, K = 2, C = 50%, and QI D = {Job, Sex, Age}.
The QID; with maximum size 2 are:

(QIDy = {Job}),
(QIDy = {Sex}),
<QID3 = {Age}>a

1The source code and the executable program is available on the web:
http://www.ciise.concordia.ca/~fung/pub/RedCrossKk DD09/
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(QID, = {Job, Sex}),
(QIDs5 = {Job, Age}),
(QID = {Sex, Agel).

Initially, all data records are generalized to (ANY _Job, ANY _Sex, [1-99)),
and UCut; = {ANY _Job, ANY _Sex, [1-99)}. To find the Best special-
ization among the candidates in UCut;, we compute Score (AN Y_Job&|
Score(ANY _Sex), and Score([1-99)).

A simple yet inefficient implementation of Lines 4-6 is to scan all data
records and recompute Score(z) for all candidates in UCut;. The key to the
efficiency of the algorithm is having direct access to the data records to be
specialized, and updating Score(z) based on some statistics maintained for
candidates in UCut;, instead of scanning all data records. In the rest of this
Chapter 6.3, we explain a scalable implementation and data structures in
detail.

6.3.1 Find the Best Specialization

Initially, the algorithm computes the Score for all candidates x in UCut;.
For each subsequent iteration, information needed to calculate Score comes
from the update of the previous iteration (Line 7). Finding the best specializa-
tion Best involves at most | U Cut;| computations of Score without accessing
data records. The procedure for updating Score will be discussed in Chapter
6.3.3.

Example 6.6
Continue from Example 6.5. We show the computation of Score(ANY _Job)
for the specialization

ANY _Job — {Blue-collar, White-collar}.

For general data analysis, Score(ANY _Job) = 62+ 52 = 61. For classification
analysis,

E(T[ANY _Job]) = =& x loga — 2 x loga & = 0.994
E(T[Blue-collar]) = — x logag — 2 X loga 2 = 0.6499
E(T[White-collar]) = —2 X loga2 — 2 x logag = 0.0

InfoGain(ANY _Job) = E(T[ANY _Job]) — (£ x E(T|Blue-collar])
+ & x E(T[White-collar])) = 0.6396

Score(ANY _Job) = InfoGain(ANY _Job) = 0.6396.
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Job Sex Age [#of Recs.
ANY Job ANY Sex [+-99) 11
Head of Link.qo) ANY_Job —»{ White-collar, Blue-collar }
Head of Linkgp.gg)
o
. [ White-collar [ ANY Sex [[1-99)[ 5 ] [ Blue-collar T ANY Sex [ [1-99) [ 6 ] \
~
~ < ,
S~ [1-99)—»-{[1-60), B0-99)
Sa
[ White-collar TANY Sex | [160)[ 5] [ Blue-collar [ANY Sex] [160) [ 4 | [Blue-collar ] ANY Sex [[60-99)] 2 |
N —_— e ——7
Linkﬂ_s(])

FIGURE 6.6: The TIPS data structure

6.3.2 Perform the Best Specialization

Consider a specialization Best — child(Best), where Best € D, and
D; € QID. First, we replace Best with child(Best) in UCut;. Then, we
need to retrieve T'[Best], the set of data records generalized to Best, to tell
the child value in child(Best) for individual data records. A data structure,
called Tazonomy Indexed PartitionS (TIPS) [96], is employed to facilitate
this operation. This data structure is also crucial for updating Score(z) for
candidates z. The general idea is to group data records according to their
generalized records on QID.

DEFINITION 6.2 TIPS Taxonomy Indexed PartitionS (TIPS) is a tree

structure with each node representing a generalized record over QID, and
each child node representing a specialization of the parent node on exactly
one attribute. Stored with each leaf node is the set of data records having
the same generalized record, called a leaf partition. For each x in UCut;,
P, denotes a leaf partition whose generalized record contains z, and Link,
denotes the link of all P,, with the head of Link, stored with z. =

At any time, the generalized data is represented by the leaf partitions of
TIPS, but the original data records remain unchanged. Link, provides a di-
rect access to T'[x], the set of data records generalized to the value z. Initially,
TIPS has only one leaf partition containing all data records, generalized to
the topmost value on every attribute in QID. In each iteration, we perform
the best specialization Best by refining the leaf partitions on Linkpgest-

Updating TIPS: The algorithm refines each leaf partition Ppes found on
Linkpes: as follows. For each value ¢ in child(Best), a child partition P, is
created under Ppg.s;, and data records in Ppes are split among the child
partitions: P, contains a data record in Pp.g; if ¢ generalizes the correspond-
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[ Job ] Sex [ Age [#ofRecs |
[ANY Job [ ANY Sex [ [1-99) [ 11 |

ANY_Job —»{ White-collar, Blue-collar }

[ White-collar ] ANY Sex [[1-99)] 5 ] [ Blue-collar T ANY Sex [ [1-99) [ 6 ]
[1-99)—{1-60), [60-99)}
— e ___ —_——
- < Linkany sor
[ White-collar [ ANY Sex [[+-60)] 5 | [ Blue-collar JANY Sex | [1-60) [ 4 | [Blue-collar | ANY Sex [[60-99) 2 ]
Ny ~_~ > Lkowor N~/
LinkWh\(ewHar\ > S — / \
~ < Linkany sex \ / Linkany_sex ,
/ / ~ ~ \ \/ \Llnk{so.gg)
Linkgiye coltar / \
/ Job \ Sx Uian :3\9( \
ANY L ANY -f \ [199) \
......... Blug-Collar+++++++++++++++ White-collar «+*"
| \ ‘ ‘ \ ‘ Male Female Teee [1-60)eeeneeeens [60-99)-+
Non-Technical ~ Technical--- Manager  Professional
| | |
\ \ \ \ \ \
Janitor Mover Carpenter Technician Accountant Lawyer [1-30) [30-60)

FIGURE 6.7: A complete TIPS data structure

ing domain value in the record. An empty P, is removed. Link, is created
to link up all P.’s for the same c. Also, link P, to every Link, to which
Ppest was previously linked, except for Linkpess. This is the only operation
in the whole algorithm that requires accessing data records. The overhead of
maintaining Link, is small. For each attribute in UQID; and each leaf par-
tition on Linkpest, there are at most |child(Best)| “relinkings,” or at most
|[UQID,| X |Linkpest| x |child(Best)| “relinkings” in total for applying Best.

Example 6.7

Initially, TIPS has only one leaf partition containing all data records and rep-
resenting the generalized record (ANY_Job, ANY_Sex, [1-99)). Let the best
specialization be ANY_Job — { White-collar, Blue-collar} on Job. Two child
partitions

(White-collar, ANY_Sez, [1-99))
(Blue-collar, ANY_Sex, [1-99))

are created under the root partition as in Figure 6.6, and split data records be-
tween them. Both child partitions are on Linkany._ser and Lz’nk[l_gg). UCut;
is updated into { White-collar, Blue-collar, ANY_Sex, [1-99)}. Suppose that
the next best specialization is [1-99) — {/[1-60),[60-99)}, which specializes
the two leaf partitions on Link;_gg), resulting in three child partitions
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(White-collar, ANY_Sez, [1-60))
(Blue-collar, ANY_Sezx, [1-60))
(Blue-collar, ANY_Sex, [60-99))

as shown in Figure 6.6.

Figure 6.7 shows a complete TIPS data structure with the corresponding
UCut; = {Blue-collar, White-collar, ANY _Sex, [1-60), [60-99)},
where Linkpe-coilar links up

(Blue-collar, ANY_Sezx, [1-60))
(Blue-collar, ANY_Sex, [60-99)),

and Linkwhite-coilar links up
(White-collar, ANY_Sez, [1-60)),
and Linkany_ses links up

(White-collar, ANY_Sez, [1-60))
(Blue-collar, ANY_Sex, [1-60))
(Blue-collar, ANY_Sex, [60-99))

and Link;_g9) links up

( White-collar, ANY_Sez, [1-60))
(Blue-collar, ANY_Sex, [1-60)),

and Links¢.99) links up
(Blue-collar, ANY_Sex, [60-99)).
J

A scalable feature of the algorithm is maintaining some statistical informa-
tion for each candidate z in UCut; for updating Score(x) without accessing
data records. For each new value ¢ in child(Best) added to UCut; in the
current iteration, we collect the following count statistics of ¢ while scanning
data records in Ppgest for updating TIPS: (1) |T'[c]|, |T[d]|, freq(T|c], cls), and
freq(T[d],cls), where d € child(c) and cls is a class label. (2) |P;|, where P,
is a child partition under P, as if c is specialized, kept together with the leaf
node for P,. This information will be used in Chapter 6.3.3.

TIPS has several useful properties. First, all data records in the same leaf
partition have the same generalized record although they may have different
raw values. Second, every data record appears in exactly one leaf partition.
Third, each leaf partition P, has exactly one generalized gid on QID and
contributes the count | P, | towards |T[gid]|. Later, the algorithm uses the last
property to extract |T'[gid]| from TIPS.
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6.3.3 Update Score and Validity

This step updates Score(x) and validity for candidates z in UCut; to re-
flect the impact of the Best specialization. The key to the scalability of the
algorithm is updating Score(z) using the count statistics maintained in Chap-
ter 6.3.2 without accessing raw records again.

6.3.3.1 Updating Score

The procedure for updating Score is different depending on the information
requirement.

Case 1 classification analysis: An observation is that InfoGain(x) is not
affected by Best — child(Best), except that we need to compute
InfoGain(c) for each newly added value ¢ in child(Best). InfoGain(c)
can be computed from the count statistics for ¢ collected in Chap-
ter 6.3.2.

Case 2 general data analysis: Each leaf partition P, keeps the count
|T(gid.]|. By following Link, from TIPS, we can compute 3, |T'[gid.] |2
for all the ¢id. on Link..

6.3.3.2 Validity Check

A specialization Best — child(Best) may change the validity status of
other candidates x € UCut; if Best and x are contained in the same gid with
size not greater than L. Thus, in order to check the validity, we need to keep
track of the count of every gid with |gid| = L. Note, we can ignore ¢id with
size less than L because if a table satisfies LK C-privacy, then it must also
satisfy L' K C-privacy where L' < L.

We explain an efficient method for checking the validity of a candidate.
First, given a QID in T, we identify all QID; C QID with size L. Then, for
each QID;, we use a data structure, called QI DT'ree;, to index all gid; on
QID;. QIDTree; is a tree, where each level represents one attribute in QID;.
Each root-to-leaf path represents an existing gid; on QID; in the generalized
data, with |T'[qid;]| and |T'[gid; A s]| for every s € S stored at the leaf node. A
candidate x € UCut; is valid if, for every ¢ € child(z), every gid; containing
¢ has |T[qid;]| > K and P(s|qid;) < C for any s € S. If z is invalid, remove
it from UCut;.

6.3.4 Discussion

Let T[Best] denote the set of records containing value Best in a generalized
table. Each iteration involves two types of work. The first type accesses data
records in T'[Best| for updating TIPS and count statistics in Chapter 6.3.2.
If Best is an interval, an extra step is required for determining the optimal
split for each child interval ¢ in child(Best). This requires making a scan on
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records in T'[¢], which is a subset of T'[Best]. To determine a split, T'[c| has to
be sorted, which can be an expensive operation. Fortunately, resorting T'[c] is
unnecessary for each iteration because its superset T'[Best] is already sorted.
Thus, this type of work involves one scan of the records being specialized in
each iteration.

The second type computes Score(x) for the candidates x in UCut; without
accessing data records in Chapter 6.3.3. For a table with m attributes and
each taxonomy tree with at most p nodes, the number of such z is at most
m x p. This computation makes use of the maintained count statistics, rather
than accessing data records. In other words, each iteration accesses only the
records being specialized. Since m X p is a small constant, independent of the
table size, the HDTDS algorithm is linear in the table size. This feature makes
the approach scalable.

The current implementation of HDTDS [171] assumes that the data table
fits in memory. Often, this assumption is valid because the gid groups are
much smaller than the original table. If gid groups do not fit in the memory,
we can store leaf partitions of TIPS on disk if necessary. Favorably, the mem-
ory is used to keep only leaf partitions that are smaller than the page size
to avoid fragmentation of disk pages. A nice property of HDTDS is that leaf
partitions that cannot be further specialized (i.e., on which there is no candi-
date specialization) can be discarded, and only some statistics for them need
to be kept. This likely applies to small partitions in memory and, therefore,
the memory demand is unlikely to build up.

Compared to iteratively generalizing the data bottom-up starting from do-
main values, the top-down specialization is more natural and efficient for
handling numerical attributes. To produce a small number of intervals for a
numerical attribute, the top-down approach needs only a small number of in-
terval splitting, whereas the bottom-up approach needs many interval merging
starting from many domain values. In addition, the top-down approach can
discard data records that cannot be further specialized, whereas the bottom-
up approach has to keep all data records until the end of computation.

Experimental results on the real-life data sets suggest that HDTDS [171]
can effectively preserve both privacy and data utility in the anonymous data
for a wide range of LK C-privacy requirements. There is a trade-off between
data privacy and data utility with respect to K and L, but the trend is
less obvious on C' because eliminating record linkages is the primary driving
force for generalization. The LK C-privacy model clearly retains more infor-
mation than the traditional k-anonymity model and provides the flexibility to
adjust privacy requirements according to the assumption of the adversary’s
background knowledge. Finally, HDTDS is highly scalable for large data sets.
These characteristics make HDTDS a promising component in the Red Cross
blood transfusion information system.
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6.4 Workload-Aware Mondrian

LeFevre et al. [150] present a suite of greedy algorithms to address the k-
anonymization problem for various data analysis tasks, including classification
analysis on single/multiple categorical target attribute(s) and regression anal-
ysis on single/multiple numerical target attribute(s). The greedy algorithms
recursively partition the QI D domain space. The Mondrian method is flex-
ible to adopt the k-anonymity (Chapter 2.1.1), ¢-diversity (Chapter 2.2.1),
and squared-error diversity [150]. The general idea of the anonymization is
somewhat similar to the top-down specialization approaches, such as HDTDS
(Chapter 6.3). One major difference is that LeFevre et al. [150] employ a mul-
tidimensional generalization scheme, which is more flexible than the subtree
generalization scheme used in HDTDS. Although Mondrian is designed for
achieving k-anonymity, it can be easily modified to adopt the LK C-privacy
model in order to accommodate the high-dimensional data.

In the rest of this Chapter 6.4, we briefly discuss Workload-Aware Mondrian
on different classification and regression analysis tasks.

6.4.1 Single Categorical Target Attribute

Recall the description of single-dimensional and multidimensional general-
ization schemes from Chapter 3.1: Let D; be the domain of an attribute A;.
A single-dimensional generalization, such as full-domain generalization and
subtree generalization, is defined by a function f; : D4, — D’ for each at-
tribute A; in QID. In contrast, a multidimensional generalization is defined
by a single function f : Da, X --- x Dy, — D', which is used to generalize
qid = (v1,...,vy) to qid' = (uq,...,u,) where for every v;, either v; = u; or
v; is a child node of u; in the taxonomy of A;. This scheme flexibly allows two
qid groups, even having the same value v, to be independently generalized
into different parent groups.

Every single-dimensional generalized table can be achieved by a sequence
of multidimensional generalization operations. Yet, a multidimensional gen-
eralized table cannot be achieved by a sequence of single-dimensional gener-
alization operations because the possible generalization space in the single-
dimensional generalization scheme is a subset of the possible generaliza-
tion space in the multidimensional scheme. Figure 6.8 visualizes this point
with respect to classification analysis. Consider a data table with two quasi-
identifying attributes, Age and Job and two classes Y and N. Suppose the
data holder wants to release a 3-anonymous table for classification analysis.
Using single-dimensional cannot clearly separate the class labels due to the
privacy constraint as two Y's are misclassified in the wrong group. In contrast,
using multidimensional can clearly separate the classes.

Suppose there is only one categorical target attribute for classification mod-
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Job Job
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Y Y|IY Y Y Y|IY Y
Age Age
N N|[Y|Y N N|IY|Y
N N|N|N N NIN|N
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Single-dimensional Multidimensional

FIGURE 6.8: Illustrate the flexibility of multidimensional generalization
scheme

eling. To preserve the information utility for classification analysis, we can
employ the InfoGain Mondrian, which is a modified version of the Mondrian
algorithm [149] but with a different information metric [150]:

’|

where P and P’ denote the partitions before and after the Best specialization,
p(c|P") is the percentage of records in P’ with class label c.

> —plelP) log p(elP'),  (6:4)

cEAc

Entropy(P,C) = Z

partitions P’

6.4.2 Single Numerical Target Attribute

Most methods that address the anonymization problem for classification
analysis, e.g., TDR [95, 96], TDD (Chapter 5.2.3), HDTDS (Chapter 6.3),
and Genetic Algorithm (Chapter 5.1.2.3), assume the target attribute is a
categorical attribute. What method should be used if the target attribute is a
numerical attribute? In other words, the data holder would like to release an
anonymous table for regression analysis. Inspired by the CART algorithm for
regression trees, which recursively select the split that minimizes the weighted
sum of the means squared errors (MSE) over the set of resulting partitions,
LeFevre et al. [150] propose the Least Squared Deviance (LSD) Mondrian
algorithm that minimizes the following information metric. The general idea
of MSE is to measure the impurity of target numerical attribute Z within a
candidate partition P’.

Error*(P,Z) = Z Z (v; — B(P"))?, (6.5)

Partitions P’ i€P’

where v; denotes a record value and o(P’) denotes the mean value of Z in P'.
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6.4.3 Multiple Target Attributes

In some privacy-preserving data publisher scenarios, a data holder may want
to release an anonymous table for classification and/or regression analysis on
multiple target attributes.

For classification analysis on multiple categorical attributes, LeFevre et
al. [150] discuss two possible extensions. In the first approach, the data recip-
ient could build a single classifier to predict the combination of class labels
(C1,...,Cp), which has domain D¢, X - -+ X D¢, . The data holder can trans-
form this multi-target attributes problem into a single-target attribute prob-
lem and employ the information metric presented in Chapter 6.4.1 to greedily
minimize the entropy. The catch is that the domain grows exponentially with
the number of target attributes, resulting in a large combination of classes
and, thereby, poor classification result.

The second approach is to simplify the problem by assuming independence
among target attributes, we can employ a greedy information metric that
minimizes the sum of weighted entropies [150]:

i=1

Z Entropy(P, C;). (6.6)

m

For regression analysis on multiple numerical attributes, we can treat the set
of target attributes independently and greedily minimize the sum of squared
error [150]:

i=1

Z Error*(P, Z;). (6.7)

6.4.4 Discussion

The suite of Mondrian algorithms studied above provides a very flexible
framework for anonymizing different attributes with respect to multiple and
different types of target attributes. Compared to the single-dimensional gen-
eralization scheme, the employed multidimensional generalization scheme can
help reduce information loss with respect to classification analysis and regres-
sion analysis. Yet, multidimensional generalization also implies higher com-
putational cost and suffers from the data exploration problem discussed in
Chapter 3.1. The data exploration problem may make the classifier built from
the anonymous data become unusable. Furthermore, the Mondrian algorithms
do not handle multiple QIDs and they cannot achieve LK C-privacy. Enforc-
ing traditional k-anonymity and ¢-diversity may result in high information
loss due to the curse of high dimensionality [6].
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Algorithm 6.5.2 Bottom-Up Generalization
1: while T does not satisfy a given k-anonymity requirement do
2 for all generalization g do
3 compute ILPG(g);

4:  end for

5

6

find the Best generalization;
generalize T by Best;

7: end while

8: output T

6.5 Bottom-Up Generalization

Wang et al. [239] present an effective bottom-up generalization approach
to achieve k-anonymity. They employed the subtree generalization scheme
(Chapter 3.1). A generalization ¢ : child(v) — wv, replaces all instances of
every child value ¢ in child(v) with the parent value v. Although this method
is designed for achieving k-anonymity, it can be easily modified to adopt the
LK C-privacy model in order to accommodate the high-dimensional data.

6.5.1 The Anonymization Algorithm

Algorithm 6.5.2 presents the general idea of their bottom-up generalization
method. It begins the generalization from the raw data table T'. At each iter-
ation, the algorithm greedily selects the Best generalization g that minimizes
the information loss and maximizes the privacy gain. This intuition is cap-
tured by the information metric ILPG(g) = IL(g)/PG(g), which has been
discussed in Chapter 4.3. Then, the algorithm performs the generalization
child(Best) — Best on the table T, and repeats the iteration until the table
T satisfies the given k-anonymity requirement.

Let A(QID) and Ay,(QID) be the minimum anonymity counts in T before
and after the generalization g. Given a data table T', there are many possible
generalizations that can be performed. Yet, most generalizations ¢ in fact
do not affect the minimum anonymity count. In other words, A(QID) =
Ay(QID). Thus, to facilitate efficiently choosing a generalization g, there is
no need to consider all generalizations. Indeed, we can focus only on the
“critical generalizations.”

DEFINITION 6.3 A generalization g is critical if A,(QID) > A(QID).m

Wang et al. [239] make several observations to optimize the efficiency of
Algorithm 6.5.2: A critical generalization g has a positive PG(g) and a finite
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Algorithm 6.5.3 Bottom-Up Generalization
1: while T does not satisfy a given k-anonymity requirement do
2 for all critical generalization g do
3 compute Ay4(QID);

4:  end for

5

6

find the Best generalization;
generalize T by Best;

7: end while

8: output T

ILPG(g), whereas a non-critical generalization g has PG(g) = 0 and infinite
ILPG(g). Therefore, if at least one generalization is critical, all non-critical
generalizations will be ignored by the ILPG(g) information metric. If all
generalizations are non-critical, the ILPG(g) metric will select the one with
minimum IL(g). In both cases, Az(QID) is not needed for a non-critical
generalization g. Based on this observation, Lines 2-3 in Algorithm 6.5.2 can
be optimized as illustrated in Algorithm 6.5.3.

6.5.2 Data Structure

To further improve the efficiency of the generalization operation, Wang
et al. [239] propose a data structure, called Tazonomy Encoded Anonymity
(TEA) index for QID = Dy,...,D,,. TEA is a tree of m levels. The i‘"
level represents the current value for D;. Each root-to-leaf path represents a
qid value in the current data table, with a(gid) stored at the leaf node. In
addition, the TEA index links up the qids according to the generalizations
that generalize them. When a generalization ¢ is applied, the TEA index is
updated by adjusting the qids linked to the generalization of g. The purpose
of this index is to prune the number of candidate generalizations to no more
than |QID| at each iteration, where |QID| is the number of attributes in
QID. For a generalization g : child(v) — v, a segment of g is a maximal set
of sibling nodes, {s1,...,s¢}, such that {s1,...,s:} C child(v), where ¢ is the
size of the segment. All segments of g are linked up. A ¢id is generalized by a
segment if the gid contains a value in the segment.

A segment of g represents a set of sibling nodes in the TEA index that
will be merged by applying g. To apply generalization g, we follow the link
of the segments of g and merge the nodes in each segment of g. The merging
of sibling nodes implies inserting the new node into a proper segment and
recursively merging the child nodes having the same value if their parents are
merged. The merging of leaf nodes requires adding up a(gid) stored at such
leaf nodes. The cost is proportional to the number of qids generalized by g.



94 Introduction to Privacy-Preserving Data Publishing
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FIGURE 6.9: The TEA structure for QID =
{Relationship, Race, Workclass} ([239] (©2004 IEEE)

Example 6.8
Figure 6.9 depicts three taxonomy trees for QID attributes {Relationship,
Race, Workclass} and the TEA index for qids:

A rectangle represents a segment, and a dashed line links up the segments
of the same generalization. For example, the left-most path represents the
qid = {(c1,ba,as3), and a({c1,b2,a3)) = 4. {c1,d1} at level 1 is a segment of f;
because it forms a maximal set of siblings that will be merged by f1. {c1ca}
and {dyca,d1ds} at level 2 are two segments of fa. {c1bacs, c1bads} at level 3
is a segment of f3. (dy,da,e3) and (d1, c2, e3), in bold face, are the anonymity
qids.

Consider applying {cz,d2} — fa2. The first segment of f5 contains only one
sibling node {c1c2}, we simply relabel the sibling by fo. This creates new
qids {c1, f2,as) and (c1, fa, bs). The second segment of fo contains two sibling
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nodes {dicz2,d1da}. We merge them into a new node labeled by f2, and merge
their child nodes having the same label. This creates new qids (ds, f2, b3) and
(di, f2,e3), with a((d1, f2,b3)) = 7 and a((d1, f2, e3)) = 4.

6.5.3 Discussion

Bottom-Up Generalization is an efficient k-anonymization method. Exper-
imental results [239] suggest that it can effectively identify a k-anonymous
solution that preserves information utility for classification analysis. Yet, it
has several limitations, making it not applicable to the anonymization problem
in the Red Cross BTS.

1. Enforcing traditional k-anonymity on the Red Cross BTS data would
result in high utility loss due to the problem of high dimensionality,
making the data not useful in practice.

2. The data structure TEA proposed in [239] can handle only a single QI D.
A new structure is required if the data holder wants to achieve LK C-
privacy using the Bottom-Up Generalization method because LKC-

privacy in effect is equivalent to breaking a single QID into multiple
QID; C QID, where |QID;| < L.

3. Bottom-Up Generalization can handle categorical attributes only. Com-
pared to iteratively masking the data bottom-up starting from domain
values, the top-down specialization is more natural and efficient for han-
dling numerical attributes. To produce a small number of intervals for
a numerical attribute, the top-down approach needs only a small num-
ber of interval splitting, whereas the bottom-up approach needs much
interval merging starting from many domain values.

4. The initial step of Bottom-Up Generalization has to identify all com-
binations of ¢id values in the raw data table T and keep track of their
anonymity counts a(gid). In case T is large, the number of distinct com-
binations could be huge. Keeping all these combinations and counts in
memory may not be feasible. In contrast, the top-down approach can
discard data records that cannot be further specialized, whereas the
bottom-up approach has to keep all data records until the end of com-
putation.

6.6 Genetic Algorithm

Iyengar [123] is the pioneer to address the anonymization problem for clas-
sification analysis and proposed a genetic algorithmic solution to achieve the
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traditional k-anonymity with the goal of preserving the data utility.

6.6.1 The Anonymization Algorithm

Iyengar [123] modifies the genetic algorithm from [243]. The algorithm has
two parts: choosing an attribute for subtree generalization and choosing a
record for entire record suppression. The chromosome in the genetic algorithm
framework is a bit string that represents the chosen generalizations. The al-
gorithm uses the classification metric CM in Equation 4.5 (Chapter 4.2) to
determine the goodness of a k-anonymous solution. Intuitively, the metric
charges a penalty for each record suppressed or generalized to a group in
which the record’s class is not the majority class. It is based on the idea that
a record having a non-majority class in a group will be classified as the major-
ity class, which is an error because it disagrees with the record’s original class.
The general idea is to encode each state of generalization as a “chromosome”
and data distortion into the fitness function. Then the algorithm employs the
genetic evolution to converge to the fittest chromosome.

6.6.2 Discussion

Iyegnar [123] identifies a new direction for privacy-preserving data publish-
ing. Yet, his proposed solution has several limitations. Similar to Mondrian
and Bottom-Up Generalization, the Genetic Algorithm presented in [123] can
achieve only k-anonymity. It does not address the privacy threats caused by
attribute linkages and does not address the high-dimensionality problem.

The major drawback of the Genetic Algorithm is its inefficiency. It requires
18 hours to transform 30K records [123]. In contrast, the TDD algorithm
(Chapter 5.2.3) takes only 7 seconds to produce a comparable accuracy on
the same data. The HDTDS algorithm (Chapter 6.3) takes only 30 seconds to
produce even better results than the Genetic Algorithm. For large databases,
Iyengar suggested running his algorithm on a sample. However, a small sam-
pling error could mean failed protection on the entire data. The other meth-
ods presented in this chapter do not suffer from this efficiency and scalability
problem.

6.7 Evaluation Methodology

In Part I, we have studied the four major components in privacy-preserving
data publishing, namely privacy models, anonymization operations, informa-
tion metrics, and anonymization algorithms. After choosing the appropriate
components to address a specific privacy-preserving data publishing problem,
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the data holder often would like to know the impact on the data quality. The
objective of this section is to present an evaluation methodology for measur-
ing the impact of imposing a privacy requirement on the data quality with
respect to some data analysis tasks. Data holders can employ this evalua-
tion methodology to objectively measure the data quality with respect to the
privacy protection level before publishing the data. Current or prospective re-
searchers may also find this evaluation methodology beneficial to their future
works on privacy-preserving data publishing.

We use the LK C-privacy model (Chapter 6.3) and the anonymization algo-
rithm HDTDS (Chapter 6.3) as examples to illustrate the evaluation method-
ology. Specifically, we study the impact of enforcing various LK C-privacy
requirements on the data quality in terms of classification error and discerni-
bility cost, and to evaluate the efficiency and scalability of HDTDS by varying
the thresholds of maximum adversary’s knowledge L, minimum anonymity K,
and maximum confidence C.

Two real-life data sets, Blood and Adult are employed. Blood is a real-life
blood transfusion data set owned by an anonymous health institute. Blood
contains 10,000 blood transfusion records in 2008. Each record represents one
incident of blood transfusion. Blood has 62 attributes after removing explicit
identifiers; 41 of them are QID attributes. Blood Group represents the Class
attribute with 8 possible values. Diagnosis Codes, representing 15 categories of
diagnosis, is considered to be the sensitive attribute. The remaining attributes
are neither quasi-identifiers nor sensitive.

The publicly available Adult data set [179] is a de facto benchmark for test-
ing anonymization algorithms [29, 96, 123, 162, 172, 236, 237] in the research
area of privacy-preserving data publishing. Adult has 45,222 census records on
6 numerical attributes, 8 categorical attributes, and a binary Class column
representing two income levels, <50K or >50K. Table 6.9 describes the at-
tributes of Adult. Divorced and Separated in the attribute Marital-status are
considered as sensitive attribute, and the remaining 13 attributes are consid-
ered as QID. All experiments were conducted on an Intel Core2 Quad Q6600
2.4GHz PC with 2GB RAM.

6.7.1 Data Utility

To evaluate the impact on classification quality (Case 1 in Chapter 6.2.2), all
records are used for generalization, build a classifier on 2/3 of the generalized
records as the training set, and measure the classification error (CE) on 1/3
of the generalized records as the testing set. Alternatively, one can employ
the 10-fold cross validation method to measure the classification error. For
classification models, the experiments use the well-known C4.5 classifier [191].
To better visualize the cost and benefit of the approach, we measure additional
errors: Baseline Error (BE) is the error measured on the raw data without
generalization. BE — C'E represents the cost in terms of classification quality
for achieving a given LK C-privacy requirement. A naive method to avoid
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Table 6.9: Attributes for the Adult data set

Attribute Type Numerical Range
# of Leaves | # of Levels
Age (A) numerical | 17 - 90
Capital-gain (Cg) numerical | 0 - 99999
Capital-loss (Cl) numerical | 0 - 4356

Education-num (En) | numerical | 1- 16
Final-weight (Fw) numerical | 13492 - 1490400
Hours-per-week (H) | numerical |1 - 99

Education (E) categorical | 16 5
Marital-status (M) | categorical | 7 4
Native-country (N) categorical | 40 5
Occupation (O) categorical | 14 3
Race (Ra) categorical | b 3
Relationship (Re) categorical | 6 3
Sex (S) categorical | 2 2
Work-class (W) categorical | 8 5

record and attributes linkages is to simply remove all QI D attributes. Thus,
we also measure upper bound error (UE), which is the error on the raw data
with all QID attributes removed. UE — C'E represents the benefit of the
method over the naive approach.

To evaluate the impact on general analysis quality (Case 2 in Chapter 6.2.2),
we use all records for generalization and measure the discernibility ratio (DR)
on the final anonymous data.

Zqid |T[gid)|?
T

DR is the normalized discernibility cost, with 0 < DR < 1. Lower DR
means higher data quality.

DR = (6.8)

6.7.1.1 The Blood Data Set

Figure 6.10 depicts the classification error C'E with adversary’s knowledge
L =2,4,6, anonymity threshold 20 < K < 100, and confidence threshold C =
20% on the Blood data set. This setting allows us to measure the performance
of the algorithm against record linkages for a fixed C. CFE generally increases
as K or L increases. However, the increase is not monotonic. For example,
the error drops slightly when K increases from 20 to 40 for L = 4. This is
due to the fact that generalization has removed some noise from the data,
resulting in a better classification structure in a more general state. For the
same reason, some test cases on L = 2 and L = 4 have CE < BE, implying
that generalization not only achieves the given LK C-privacy requirement but
sometimes may also improve the classification quality. BE = 22.1% and UE =
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FIGURE 6.10: Classification error on the Blood data set (C' = 20%)
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FIGURE 6.12: Classification error on the Adult data set (C' = 20%)

44.1%. For L = 2 and L = 4, CE — BE spans from -2.9% to 5.2% and
UE — CFE spans from 16.8% to 24.9%, suggesting that the cost for achieving
LK C-privacy is small, but the benefit is large when L is not large. However,
as L increases to 6, CE quickly increases to about 40%, the cost increases
to about 17%, and the benefit decreases to 5%. For a greater value of L, the
difference between LK C-privacy and k-anonymity is very small in terms of
classification error since more generalized data does not necessarily worsen the
classification error. This result confirms that the assumption of an adversary’s
prior knowledge has a significant impact on the classification quality. It also
indirectly confirms the curse of high dimensionality [6].

Figure 6.11 depicts the discernibility ratio DR with adversary’s knowledge
L =2,4,6, anonymity threshold 20 < K < 100, and a fixed confidence thresh-
old C = 20%. DR generally increases as K increases, so it exhibits some trade-
off between data privacy and data utility. As L increases, D R increases quickly
because more generalization is required to ensure each equivalence group has
at least K records. To illustrate the benefit of the proposed LK C-privacy
model over the traditional k-anonymity model, we measure the discernibility
ratio, denoted by D Rr,qdk, on traditional K-anonymous solutions produced
by the TDR method in [96]. DRrqax — DR, representing the benefit of the
model, spans from 0.1 to 0.45. This indicates a significant improvement on
data quality by making a reasonable assumption on limiting the adversary’s
knowledge within L known values. Note, the solutions produced by TDR do
not prevent attribute linkages although they have higher discernibility ratio.

6.7.1.2 The Adult Data set

Figure 6.12 depicts the classification error CE with adversary’s knowledge
L = 2,4,6, anonymity threshold 20 < K < 100, and confidence threshold
C = 20% on the Adult data set. BE = 14.7% and UE = 24.5%. For L = 2,
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FIGURE 6.13: Classification error on the Adult data set (K = 100)
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FIGURE 6.14: Discernibility ratio on the Adult data set (C' = 20%)

CFE — BE is less than 1% and UE — CE spans from 8.9% to 9.5%. For L = 4
and L = 6, CE — BE spans from 1.1% to 4.1%, and UFE — C'E spans from
5.8% to 8.8%. These results suggest that the cost for achieving LK C-privacy
is small, while the benefit of the LK C-privacy anonymization method over
the naive method is large.

Figure 6.13 depicts the CF with adversary’s knowledge L = 2,4, 6, confi-
dence threshold 5% < C < 30%, and anonymity threshold K = 100. This
setting allows us to measure the performance of the algorithm against at-
tribute linkages for a fixed K. The result suggests that C'F is insensitive to
the change of confidence threshold C. C'E slightly increases as the adversary’s
knowledge L increases.

Figure 6.14 depicts the discernibility ratio DR with adversary’s knowledge
L = 2,4,6, anonymity threshold 20 < K < 100, and confidence threshold
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FIGURE 6.15: Discernibility ratio on the Adult data set (K = 100)

C = 20%. DR sometimes has a drop when K increases. This is due to the fact
that the presented greedy algorithm identifies only the sub-optimal solution.
DR is insensitive to the increase of K and stays close to 0 for L = 2. As
L increases to 4, DR increases significantly and finally equals traditional k-
anonymity when L = 6 because the number of attributes in Adult is relatively
smaller than in Blood. Yet, k-anonymity does not prevent attribute linkages,
while LK C-privacy provides this additional privacy guarantee.

Figure 6.15 depicts the DR with adversary’s knowledge L = 2,4,6, con-
fidence threshold 5% < C < 30%, and anonymity threshold K = 100. In
general, DR increases as L increases due to a more restrictive privacy require-
ment. Similar to Figure 6.13, the DR is insensitive to the change of confidence
threshold C. It implies that the primary driving forces for generalization are
L and K, not C.

6.7.2 Efficiency and Scalability

High-Dimensional Top-Down Specialization (HDTDS) is an efficient and
scalable algorithm for achieving LK C-privacy on high-dimensional relational
data. Every previous test case can finish the entire anonymization process
within 30 seconds. We further evaluate the scalability of HDTDS with respect
to data volume by blowing up the size of the Adult data set. First, we combined
the training and testing sets, giving 45,222 records. For each original record
r in the combined set, we created o« — 1 “variations” of r, where a > 1 is
the blowup scale. Together with all original records, the enlarged data set has
a x 45,222 records. In order to provide a more precise evaluation, the runtime
reported below excludes the time for loading data records from disk and the
time for writing the generalized data to disk.

Figure 6.16 depicts the runtime from 200,000 to 1 million records for L = 4,
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FIGURE 6.16: Scalability (L =4, K = 20,C = 100%)

K =20, C = 100%. The total runtime for anonymizing 1 million records is
107s, where 50s are spent on reading raw data, 33s are spent on anonymizing,
and 24s are spent on writing the anonymous data. The algorithm is scalable
due to the fact that the algorithm uses the count statistics to update the
Score, and thus it only takes one scan of data per iteration to anonymize the
data. As the number of records increases, the total runtime increases linearly.

6.8 Summary and Lesson Learned

This chapter uses the Red Cross Blood Transfusion Service (BTS) as a real-
life example to motivate the anonymization problem for classification analy-
sis. We have studied the challenge of anonymizing high-dimensional data and
presented the LK C-privacy model [171] for addressing the challenge. Fur-
thermore, we have studied four privacy-preserving data publishing methods
to address the anonymization problem for classification analysis.

The High-Dimensional Top-Down Specialization (HDTDS) algorithm [171]
is extended from TDS [95, 96]. HDTDS is flexible to adopt different informa-
tion metrics in order to accommodate the two different information require-
ments specified by BTS, namely classification analysis and general counting.
The experimental results on the two real-life data sets suggest the followings.

e HDTDS can effectively preserve both privacy and data utility in the
anonymous data for a wide range of LK C-privacy requirements. There
is a trade-off between data privacy and data utility with respect to K
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and L, but the trend is less obvious on C.

e The proposed LK C-privacy model retains more information than the
traditional k-anonymity model and provides the flexibility to adjust
privacy requirements according to the assumption of adversary’s back-
ground knowledge.

e HDTDS and its predecessor TDS [95, 96] is highly scalable for large
data sets.

These characteristics make HDTDS a promising component for anonymiz-
ing high-dimensional relational data. The proposed solution could serve as a
model for data sharing in the healthcare sector.

We have also studied three other solutions, namely, Workload-Aware Mon-
drian, Bottom-Up Generalization, and Genetic Algorithm. All these methods
aim at achieving traditional k-anonymity and/or ¢-diversity with an infor-
mation metric that guides the anonymization to preserve the data utility for
classification analysis. Yet, these methods cannot directly apply to the Red
Cross BTS problem, which involves high-dimensional data, because applying
k-anonymity on high-dimensional data would suffer from high information
loss.

The presented solutions in this chapter are very different from privacy-
preserving data mining (PPDM), which the goal is to share the data mining
result. In contrast, the goal of privacy-preserving data publishing (PPDP) is
to share the data. This is an essential requirement for the Red Cross since
they require the flexibility to perform various data analysis tasks.

Health data are complex, often a combination of relational data, transaction
data, and textual data. Some recent works [97, 101, 220, 256] that will be
discussed in Chapters 13 and 16 are applicable to solve the privacy problem
on transaction and textual data in the Red Cross case. Besides the technical
issue, it is equally important to educate health institute management and
medical practitioners about the latest privacy-preserving technology. When
management encounters the problem of privacy-preserving data publishing as
presented in this chapter, their initial response is often to set up a traditional
role-based secure access model. In fact, alternative techniques, such as privacy-
preserving data mining and data publishing [11, 92], are available to them
provided that the data mining quality does not significantly degrade.



Chapter 7

Anonymization for Cluster Analysis

7.1 Introduction

Substantial research has been conducted on k-anonymization and its ex-
tensions as discussed in Chapter 2, but only few prior works have considered
releasing data for some specific purpose of data mining, which is also known as
the workload-aware anonymization [150]. Chapter 6 presents a practical data
publishing framework for generating an anonymized version of data that pre-
serves both individual privacy and information utility for classification analy-
sis. This chapter aims at preserving the information utility for cluster analysis.
Experiments on real-life data suggest that by focusing on preserving cluster
structure in the anonymization process, the cluster quality is significantly bet-
ter than the cluster quality of the anonymized data without such focus [94].
The major challenge of anonymizing data for cluster analysis is the lack of class
labels that could be used to guide the anonymization process. The approach
presented in this chapter converts the problem into the counterpart problem
for classification analysis, wherein class labels encode the cluster structure
in the data, and presents a framework to evaluate the cluster quality on the
anonymized data.

This chapter is organized as follows. Chapter 7.2 presents the anonymiza-
tion framework that addresses the anonymization problem for cluster analysis.
Chapter 7.3 discusses an alternative solution in a different data model. Chap-
ter 7.4 discusses some privacy topics that are orthogonal to the anonymization
problem of cluster analysis studied in this chapter. Chapter 7.5 summarizes
the chapter.

7.2 Anonymization Framework for Cluster Analysis

Fung et al. [94] define the data publishing scenario as follows. Counsider a
person-specific data table T' with patients’ information on Zip code, Birthplace,
Gender, and Disease. The data holder wants to publish T to some recipient
for cluster analysis. However, if a set of attributes, called a Quasi-Identifier
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or a QID, on {Zip code, Birthplace, Gender} is so specific that few people
match it, publishing the table will lead to linking a unique or small number
of individuals with the sensitive information on Disease. Even if the currently
published table T" does not contain sensitive information, individuals in T can
be linked to the sensitive information in some external source by a join on the
common attributes [201, 216]. These types of privacy attacks are known as
record linkage and attribute linkage, which have been extensively discussed in
Chapter 2. The problem studied in this chapter is to generate an anonymized
version of T' that satisfies both the anonymity requirement and the clustering
requirement.

Anonymity Requirement: To thwart privacy threats caused by
record and attribute linkages, instead of publishing the raw table
T(QID, Sensitive_attribute), the data holder publishes an anonymized ta-
ble T, where QID is a set of quasi-identifying attributes masked to some
general concept. Note, we use the term “mask” to refer to the operation of
“generalization” or “suppression.” In general, the anonymity requirement can
be any privacy models that can thwart record linkages (Chapter 2.1) and
attribute linkages (Chapter 2.2).

Clustering Requirement: The data holder wants to publish a masked
version of T to a recipient for the purpose of cluster analysis. The goal of
cluster analysis is to group similar objects into the same cluster and group dis-
similar objects into different clusters. We assume that the Sensitive_attribute
is important for the task of cluster analysis; otherwise, it should be removed.
The recipient may or may not be known at the time of data publication.

We study the anonymization problem for cluster analysis: For a given
anonymity requirement and a raw data table 7', a data holder wants to gener-
ate an anonymous version of T', denoted by T”, that preserves as much of the
information as possible for cluster analysis, and then publish 77 to a data re-
cipient. The data holder, for example, could be a hospital that wants to share
its patients’ information with a drug company for pharmaceutical research.

There are many possible masked versions of 7" that satisfy the anonymity
requirement. The challenge is how to identify the appropriate one for cluster
analysis. An inappropriately masked version could put originally dissimilar
objects into the same cluster, or put originally similar objects into different
clusters because other masked objects become more similar to each other.
Therefore, a quality-guided masking process is crucial. Unlike the anonymiza-
tion problem for classification analysis studied in Chapter 6, the anonymiza-
tion problem for cluster analysis does not have class labels to guide the mask-
ing. Another challenge is that it is not even clear what “information for cluster
analysis” means, nor how to evaluate the cluster quality of generalized data.
In this chapter, we define the anonymization problem for cluster analysis and
present a solution framework to address the challenges in the problem. This
chapter answers the following key questions:

1. Can a masked table simultaneously satisfy both privacy and clustering
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requirements? The insight is that the two requirements are indeed deal-
ing with two types of information: The anonymity requirement aims at
masking identifying information that specifically describes individuals;
the clustering requirement aims at extracting general structures that
capture patterns. Sensitive information tends to be overly specific, thus
of less utility, to clustering. Even if masking sensitive information elim-
inates some useful structures, alternative structures in the data emerge
to help. If masking is carefully performed, identifying information can
be masked while still preserving the patterns for cluster analysis. Ex-
perimental results [94] on real-life data sets support this insight.

. What information should be preserved for cluster analysis in the masked
data? This chapter presents a framework to convert the anonymization
problem for cluster analysis to the counterpart problem for classification
analysis. The idea is to extract the cluster structure from the raw data,
encode it in the form of class labels, and preserve such class labels while
masking the data. The framework also permits the data holder to evalu-
ate the cluster quality of the anonymized data by comparing the cluster
structures before and after the masking. This evaluation process is im-
portant for data publishing in practice, but very limited study has been
conducted in the context of privacy preservation and cluster analysis.

. Can cluster-quality guided anonymization improve the cluster quality in
anonymous data? A naive solution to the studied privacy problem is
to ignore the clustering requirement and employ some general purpose
anonymization algorithms, e.g., Incognito [148], to mask data for cluster
analysis. Extensive experiments [94] suggest that by focusing on preserv-
ing cluster structure in the masking process, the cluster quality outper-
forms the cluster quality on masked data without such focus. In gen-
eral, the cluster quality on the masked data degrades as the anonymity
threshold k increases.

. Can the specification of multiple quasi-identifiers improve the cluster
quality in anonymous data? The classic notion of k-anonymity assumes
that a single united QID contains all quasi-identifying attributes, but
research shows that it often leads to substantial loss of data quality as
the QID size increases [6]. The insight is that, in practice, an adversary
is unlikely to know all identifying attributes of a target victim (the per-
son being identified), so the data is over-protected by a single QID. The
studied method allows the specification of multiple QI Ds, each of which
has a smaller size, and therefore, avoids over-masking and improves the
cluster quality. The idea of having multiple QI Ds is similar to the no-
tion of assuming an adversary’s background is limited to length L in
LK C-privacy studied in Chapter 6

. Can we efficiently mask different types of attributes in real-life
databases? Typical relational databases contain both categorical and
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numerical attributes. Taxonomy trees like the ones shown in Figure 7.1
are pre-specified for some attributes. The taxonomy trees are part of
the domain knowledge that allows the data holder to specify a gener-
alization path so that a data value can be masked to a less specific
description. However, taxonomy trees may or may not be available in
real-life databases. The anonymization algorithm studied in this chapter
can effectively mask all these variations of attributes by generalizing cat-
egorical attributes with pre-specified taxonomy trees, suppressing cate-
gorical attributes without taxonomy trees, and dynamically discretizing
numerical attributes.

Given that the clustering task is known in advance, one may ask why not
publish the analysis result instead of the data records? Unlike classification
trees and association rules, publishing the cluster statistics (e.g., cluster cen-
ters, together with their size and radius) usually cannot fulfil the information
needs for cluster analysis. Often, data recipients want to browse into the clus-
tered records to gain more knowledge. For example, a medical researcher may
browse into some clusters of patients and examine their common characteris-
tics. Publishing data records not only fulfills the vital requirement for cluster
analysis, but also increases the availability of information for the recipients.

We first formally define the anonymization problem for cluster analysis,
followed by a solution framework.

7.2.1 Anonymization Problem for Cluster Analysis

A labelled table discussed in Chapter 6 has the form T'(Ds, ..., D,,, Class)
and contains a set of records of the form (v1,..., v, cls), where v;, for 1 <
Jj < m, is a domain value of attribute D;, and cls is a class label of the
Class attribute. Each D; is either a categorical or a numerical attribute. An
unlabelled table has the same form as a labelled table but without the Class
attribute.

7.2.1.1 Privacy Model

In order to provide a concrete explanation on the problem and solution of
the anonymity for cluster analysis, we specify the privacy model to be the
k-anonymity with multiple QIDs in the rest of this chapter. The problem,
as well as the solution, can be generalized to achieve other privacy models
discussed in Chapter 2.

DEFINITION 7.1 Anonymity requirement  Consider p quasi-
identifiers QID;,...,QID, onT’, where QID; C {D,..., Dy} for1 <i<p.
a(qid;) denotes the number of data records in 7" that share the value gid; on
QID;. The anonymity of QID;, denoted by A(QID;), is the minimum a(gid;)
for any value gid; on QID;. A table T satisfies the anonymity requirement
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Table 7.1: The labelled table

Rec ID | Education | Gender | Age | ... Class Count
1-3 9th M 30 0CT 3C, 3
4-7 10th M 32 0CT 4C, 4
8-12 11th M 35 2C7 30, 5

13-16 12th F 37 3CT 10, 4
17-22 Bachelors F 42 4C7 20y 6
23-26 Bachelors F 44 4C1 0Cy 4
27-30 Masters M 44 4C7 0Cy 4
31-33 Masters F 44 3CT 00, 3
34 Doctorate F 44 1C7 00, 1
Total: | 21C; 13Cy 34

{QIDy,h1), ..., {(QIDp, hy)} if A(QID;) > h; for 1 < i < p, where QID;
and the anonymity thresholds h; are specified by the data holder. m

If some QID; could be “covered” by another QID;, then QID; can be re-
moved from the anonymity requirement. This observation is stated as follows:

Observation 7.2.1 (Cover) Suppose QID; C QID; and h; < h; where
Jj#i. If A(QID;) > h;, then A(QID;) > h;. We say that QID; is covered by
QID;; therefore, QID; is redundant and can be removed. m

Example 7.1

Consider the data in Table 7.1 and taxonomy trees in Figure 7.1. Ignore
the dashed line in Figure 7.1 for now. The table has 34 records, with each
row representing one or more raw records that agree on (FEducation, Gender,
Age). The Class column stores a count for each class label. The anonymity
requirement

{{QID; = {Education, Gender},4),{(QI Dy = { Gender},4)}

states that every existing ¢idy; and gids in the table must be shared by at
least 4 records. Therefore, (9th, M), (Masters, F), (Doctorate, F) violate this
requirement. To make the “female doctor” less unique, we can generalize Mas-
ters and Doctorate to Grad School. As a result, “she” becomes less identifiable
by being one of the four females who have a graduate degree in the masked
table T”. Note, QID> is covered by QID1, so QID5 can be removed.

Definition 7.1 generalizes the classic notion of k-anonymity [202] by allow-
ing multiple QI Ds with different anonymity thresholds. The specification of
multiple QI Ds is based on an assumption that the data holder knows exactly
what external information source is available for sensitive record linkage. The
assumption is realistic in some data publishing scenarios. Suppose that the
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Education Gender Age
ANY ANY [1-99)
Secondary University
oMalgeesrernnans Female:+++  [1-37) [37-99)
++++Junior Sec. Senior Sec. Bachelors::+ Grad School-+
., "
9th 10th *11th---12th’ Masters Doctorate [1-35) [35-37)

FIGURE 7.1: Taxonomy trees

data holder wants to release a table T'(A, B,C, D, S), where A, B, C, D are
identifying attributes and .S is a sensitive attribute, and knows that the recip-
ient has access to previously released tables T1*(A4, B, X) and T2*(C,D,Y),
where X and Y are attributes not in 7'. To prevent linking the records in T’
to X or Y, the data holder only has to specify the anonymity requirement
on QID; = {A,B} and QID2 = {C, D}. In this case, enforcing anonymity
on QID = {A,B,C,D} will distort the data more than is necessary. The
experimental results in [94] confirm that the specification of multiple QIDs
can reduce masking and, therefore, improve the data quality.

7.2.1.2 Masking Operations

To transform a table T to satisfy an anonymity requirement, one can ap-
ply the following three types of masking operations on every attribute D;
in UQID;: If D; is a categorical attribute with pre-specified taxonomy tree,
then we generalize D;. Specifying taxonomy trees, however, requires expert
knowledge of the data. In case the data holder lacks such knowledge or, for any
reason, does not specify a taxonomy tree for the categorical attribute D;, then
we suppress D;. If D; is a numerical attribute without a pre-discretized tax-
onomy tree, then we discretize D;j.' These three types of masking operations
are formally described as follows:

1. Generalize D; if it is a categorical attribute with a taxonomy tree speci-
fied by the data holder. Figure 7.1 shows the taxonomy trees for categor-
ical attributes Fducation and Gender. A leaf node represents a domain
value and a parent node represents a less specific value. A generalized
D; can be viewed as a “cut” through its taxonomy tree. A cut of a tree
is a subset of values in the tree, denoted by Cut;, that contains exactly
one value on each root-to-leaf path. Figure 7.1 shows a cut on Education
and Gender, indicated by the dash line. If a value v is generalized to
its parent, all siblings of v must also be generalized to its parent. This
property ensures that a value and its ancestor values will not coexist in

LA numerical attribute with a pre-discretized taxonomy tree is equivalent to a categorical
attribute with a pre-specified taxonomy tree.
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the generalized table T”. This subtree generalization scheme is discussed
in Chapter 3.1.

2. Suppress D; if it is a categorical attribute without a taxonomy tree.
Suppressing a value on D; means replacing all occurrences of the value
with the special value L;. All suppressed values on D; are represented
by the same value L ;. We use Sup; to denote the set of values suppressed
by ;. This type of suppression is performed at the value level, in that
Sup; in general contains a subset of the values in the attribute D;. A
clustering algorithm treats L ; as a new value. Suppression can be viewed
as a special case of sibling generalization by considering L; to be the
root of a taxonomy tree and child(L;) to contain all domain values
of D;. Refer to Chapter 3.1 for a detailed discussion on the sibling
generalization scheme. In this suppression scheme, we could selectively
suppress some values in child(L;) to L; while some other values in
child(L;) remain intact.

3. Discretize Dj if it is a numerical attribute. Discretizing a value v on
D; means replacing all occurrences of v with an interval containing the
value. The presented algorithm dynamically grows a taxonomy tree for
intervals at runtime. Each node represents an interval. Each non-leaf
node has two child nodes representing some optimal binary split of the
parent interval. Figure 7.1 shows such a dynamically grown taxonomy
tree for Age, where [1-99) is split into [1-37) and [37-99). More details
will be discussed in Chapter 7.2.3.1. A discretized D; can be represented
by the set of intervals, denoted by Int;, corresponding to the leaf nodes
in the dynamically grown taxonomy tree of D).

A masked table T' can be represented by (UCut;,USup;,UInt;), where
Cutj, Sup;, Int; are defined above. If the masked table T satisfies the
anonymity requirement, then (UCut;, USup;,UInt;) is called a solution set.
Generalization, suppression, and discretization have their own merits and flex-
ibility; therefore, the unified framework presented in this chapter employs all
of them.

7.2.1.3 Problem Statement

What kind of information should be preserved for cluster analysis? Un-
like classification analysis, wherein the information utility of attributes can
be measured by their power of identifying class labels [29, 95, 123, 150], no
class labels are available for cluster analysis. One natural approach is to pre-
serve the cluster structure in the raw data. Any loss of structure due to the
anonymization is measured relative to such “raw cluster structure.” We de-
fine the anonymization problem for cluster analysis as follows to reflect this
natural choice of approach.
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DEFINITION 7.2 Anonymization problem for cluster analysis
Given an unlabelled table T, an anonymity requirement {(QID1,hq),...,
(QIDy, hy)}, and an optional taxonomy tree for each categorical attribute
in UQID;, the anonymization problem for cluster analysis is to mask T on
the attributes UQID; such that the masked table T’ satisfies the anonymity
requirement and has a cluster structure as similar as possible to the cluster
structure in the raw table 7. m

Intuitively, two cluster structures, before and after masking, are similar if
the following two conditions are generally satisfied:

1. two objects that belong to the same cluster before masking remain in
the same cluster after masking, and

2. two objects that belong to different clusters before masking remain in
different clusters after masking.

A formal measure for the similarity of two structures will be discussed in
Chapter 7.2.4.

7.2.2 Overview of Solution Framework

Now we explain an algorithmic framework to generate a masked table T”,
represented by a solution set (UCwut;, USup;,UInt;) that satisfies a given
anonymity requirement and preserves as much as possible the raw cluster
structure.

Figure 7.2 provides an overview of the proposed framework. First, we gen-
erate the cluster structure in the raw table 7" and label each record in T' by
a class label. This labelled table, denoted by T}, has a Class attribute that
contains a class label for each record. Essentially, preserving the raw clus-
ter structure is to preserve the power of identifying such class labels during
masking. Masking that diminishes the difference among records belonging to
different clusters (classes) is penalized. As the requirement is the same as
the anonymization problem for classification analysis, one can apply existing
anonymization algorithms for classification analysis (Chapter 6) to achieve
the anonymity, although none of them in practice can perform all of the three
types of masking operations discussed in Chapter 7.2.1. We explain each step
in Figure 7.2 as follows.

1. Convert T to a labelled table T;. Apply a clustering algorithm to T’
to identify the raw cluster structure, and label each record in T by its
class (cluster) label. The resulting labelled table T; has a Class attribute
containing the labels.

2. Mask the labelled table T;. Employ an anonymization algorithm for
classification analysis to mask 7;. The masked T}* satisfies the given
anonymity requirement.
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FIGURE 7.2: The framework

3. Clustering on the masked 7;". Remove the labels from the masked
T} and then apply a clustering algorithm to the masked T}*, where the
number of clusters is the same as in Step 1. By default, the clustering
algorithm in this step is the same as the clustering algorithm in Step
1, but can be replaced with the recipient’s choice if this information is
available. See more discussion below.

4. Evaluate the masked 7;*. Compute the similarity between the cluster
structure found in Step 3 and the raw cluster structure found in Step 1.
The similarity measures the loss of cluster quality due to masking. If the
evaluation is unsatisfactory, the data holder may repeat Steps 1-4 with
different specification of taxonomy trees, choice of clustering algorithms,
masking operations, number of clusters, and anonymity thresholds if
possible.

5. Release the masked T}*. If the evaluation in Step 4 is satisfactory, the
data holder can release the masked T;* together with some optional sup-
plementary information: all the taxonomy trees (including those gener-
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ated at runtime for numerical attributes), the solution set, the similarity
score computed in Step 4, and the class labels generated in Step 1.

In some data publishing scenarios, the data holder does not even know who
the prospective recipients are and, therefore, does not know how the recipients
will cluster the published data. For example, when the Census Bureau releases
data on the World Wide Web, how should the bureau set the parameters, such
as the number of clusters, for the clustering algorithm in Step 17 In this case,
we suggest releasing one version for each reasonable cluster number so that the
recipient can make the choice based on her desired number of clusters, but this
will cause a potential privacy breach because an adversary can further narrow
down a victim’s record by comparing different releases. A remedy is to employ
the multiple views publishing and incremental data publishing methods, which
guarantee the privacy even in the presence of multiple releases. Chapters 8
and 10 discuss these extended publishing scenarios in details.

7.2.3 Anonymization for Classification Analysis

To effectively mask both categorical and numerical attributes, we present
an anonymization algorithm called top-down refinement (TDR) [96] that can
perform all three types of masking operations in a unified fashion. TDR shares
a similar HDTDS discussed in Chapter 6.3, but HDTDS cannot perform sup-
pression and, therefore, cannot handle categorical attributes without taxon-
omy trees.

TDR takes a labelled table and an anonymity requirement as inputs. The
main idea of TDR is to perform maskings that preserve the information for
identifying the class labels. The next example illustrates this point.

Example 7.2

Suppose that the raw cluster structure produced by Step 1 has the class
(cluster) labels given in the Class attribute in Table 7.1. In Example 7.1 we
generalize Masters and Doctorate into Grad School to make linking through
(Education,Gender) more difficult. No information is lost in this generalization
because the class label C; does not depend on the distinction of Masters
and Doctorate. However, further generalizing Bachelors and Grad School to
University makes it harder to separate the two class labels involved.

Instead of masking a labelled table 7} starting from the most specific do-
main values, TDR masked T}* by a sequence of refinements starting from the
most masked state in which each attribute is generalized to the topmost value,
suppressed to the special value L, or represented by a single interval. TDR
iteratively refines a masked value selected from the current set of cuts, sup-
pressed values, and intervals, and stops if any further refinement would violate
the anonymity requirement. A refinement is valid (with respect to 1}*) if T}
satisfies the anonymity requirement after the refinement.
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We formally describe different types of refinements in Chapter 7.2.3.1, define
the information metric for a single refinement in Chapter 7.2.3.2, and provide
the anonymization algorithm TDR in Chapter 7.2.3.3.

7.2.3.1 Refinement

¢ Refinement for generalization. Consider a categorical attribute D;
with a pre-specified taxonomy tree. Let T}*[v] denote the set of general-
ized records that currently contains a generalized value v in the table T}".
Let child(v) be the set of child values of v in a pre-specified taxonomy
tree of D;. A refinement, denoted by v — child(v), replaces the parent
value v in all records in 7}*[v] with the child value ¢ € child(v), where ¢
is either a domain value d in the raw record or ¢ is a generalized value of
d. For example, a raw data record r contains a value Masters and the
value has been generalized to University in a masked table 7}". A refine-
ment University — {Bachelors, Grad School} replaces University in r
by Grad School because Grad School is a generalized value of Masters.

¢ Refinement for suppression. For a categorical attribute D; without
a taxonomy tree, a refinement 1; — {v, L;} refers to disclosing one
value v from the set of suppressed values Sup;. Let T;*[.L;] denote the
set of suppressed records that currently contain L; in the table T}".
Disclosing v means replacing 1; with v in all records in T}"[L;] that
originally contain v.

e Refinement for discretization. For a numerical attribute, refinement
is similar to that for generalization except that no prior taxonomy tree
is given and the taxonomy tree has to be grown dynamically in the
process of refinement. Initially, the interval that covers the full range of
the attribute forms the root. The refinement on an interval v, written
v — child(v), refers to the optimal split of v into two child intervals
child(v), which maximizes the information gain. Suppose there are i
distinct values in an interval. Then, there are ¢ — 1 number of possible
splits. The optimal split can be efficiently identified by computing the
information gain of each possible split in one scan of data records con-
taining such an interval of values. See Chapter 7.2.3.2 for the definition
of information gain. Due to this extra step of identifying the optimal
split of the parent interval, we treat numerical attributes separately
from categorical attributes with taxonomy trees.

7.2.3.2 Information Metric

Each refinement increases information utility and decreases anonymity of
the table because records are more distinguishable by refined values. The key
is selecting the best refinement at each step with both impacts considered. At
each iteration, TDR greedily selects the refinement on value v that has the
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Algorithm 7.2.4 Top-Down Refinement (TDR)

1: initialize every value of D; to the topmost value or suppress every value
of D; to L; or include every continuous value of D; into the full range
interval, where D; € UQID;.

2: initialize Cut; of D; to include the topmost value, Sup; of D; to include

all domain values of D;, and Int; of D; to include the full range interval,

where D; € UQID;.

while some candidate v in (UCut;, USup;, UInt;) is valid do
find the Best refinement from (UCut;, USup;, UInt;).
perform Best on T}* and update (UCut;, USup;, UInt;).
update Score(z) and validity for x € (UCut;,USup;,Ulnt;).

end while

return masked 7} and (UCut;, USup;, Ulnt;).

highest score, in terms of the information gain per unit of anonymity loss:
Score(v) = IGPL(v). (7.1)

which has been discussed in Chapter 4.1. Refer to Equation 4.7 for a detailed
discussion on InfoGain(v), AnonyLoss(v), and Score(v) if D; is a numerical
attribute or a categorical attribute with taxonomy tree.

If D; is a categorical attribute without taxonomy tree, the refinement 1; —
{v, 1;} means refining T’[ L ;] into T"[v] and T* [ ;], where T"[ ;] denotes the
set of records containing L; before the refinement, T'[v] and T* [L;] denote
the set of records containing v and L; after the refinement, respectively. We
employ the same Score(v) function to measure the goodness of the refinement
1; — {v, L;}, except that InfoGain(v) is now defined as:

T[]

) NN 0
L E T D~ )

E(TY[L,). (7.2)

InfoGain(v) = E(T'[L;])

7.2.3.3 The Anonymization Algorithm (TDR)

Algorithm 7.2.4 summarizes the conceptual algorithm. All attributes not
in UQID; are removed from 7}, and duplicates are collapsed into a single
row with the Class column storing the count for each class label. Initially,
C'ut; contains only the topmost value for a categorical attribute D; with a
taxonomy tree, Sup; contains all domain values of a categorical attribute
D; without a taxonomy tree, and Int; contains the full range interval for
a numerical attribute D;. The valid refinements in (UCut;, USup;, UInt;)
form the set of candidates. At each iteration, we find the candidate of the
highest Score, denoted by Best (Line 4), apply Best to T’ and update
(UCut;,USup;,UInt;) (Line 5), and update Score and the validity of the
candidates in (UCut;, USup;, UInt;) (Line 6). The algorithm terminates when
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there is no more candidate in (UCut;, USup;, UInt;), in which case it returns
the masked table together with the solution set (UCwut;, USup;, UInt;).

The following example illustrates how to achieve a given anonymity require-
ment by performing a sequence of refinements, starting from the most masked
table.

Example 7.3
Consider the labelled table in Table 7.1, where Education and Gender have
pre-specified taxonomy trees and the anonymity requirement:

{{QID;, = {Education, Gender},4), (QI Dy = { Gender, Age},11)}.
Initially, all data records are masked to

(ANY _Edu, ANY _Gender, [1-99)),
and

UCut; = {ANY _Edu, ANY _Gender, [1-99)}.

To find the next refinement, we compute the Score for each of ANY _Fdu,
ANY _Gender, and [1-99). Table 7.2 shows the masked data after performing
the following refinements in order:

[1-99) — {[1-37), [37-99)}

ANY _Edu — {Secondary, University}
Secondary — {JuniorSec., Senior Sec.}
Senior Sec. — {11th, 12th}

University — {Bachelors, Grad School}.

After performing the refinements, the a(gid;) counts in the masked table are:

a({Junior Sec., ANY_Gender)) =7

a((11th, ANY_Gender)) =5

a({12th, ANY_Gender)) =4

a({Bachelors, ANY_Gender)) = 10

a({Grad School, ANY_Gender)) = 8
a({(ANY_Gender, [1-37))) =T+ 5 =12
a((ANY_Gender, [37-99))) =4+ 10+ 8 =22 .

The solution set UCwut; is:

{JuniorSec., 11th, 12th, Bachelors, GradSchool, ANY _Gender, [1-37),
[37-99)}.



118 Introduction to Privacy-Preserving Data Publishing

Table 7.2: The masked table, satisfying
{{QIDy,4),(QID2,11)}

Rec ID | Education | Gender | Age |... [ Count
1-7 Junior Sec. ANY 1-37) ... 7
8-12 11th ANY 1-37) | ... )
13-16 12th ANY 37-99) | ... 4
17-26 Bachelors ANY 37-99) | ... 10
27-34 | Grad School | ANY 37-99) | ... 8
Total: | ... 34

7.2.4 Evaluation

This step compares the raw cluster structure found in Step 1 in Chap-
ter 7.2.2, denoted by C, with the cluster structure found in the masked data
in Step 3, denoted by C4. Both C and C, are extracted from the same set of
records, so we can evaluate their similarity by comparing their record group-
ings. We present two evaluation methods: F-measure [231] and match point.

7.2.4.1 F-measure

F-measure [231] is a well-known evaluation method for cluster analysis with
known cluster labels. The idea is to treat each cluster in C as the relevant set
of records for a query, and treat each cluster in C4 as the result of a query. The
clusters in C are called “natural clusters,” and those in C, are called “query
clusters.”

For a natural cluster C; in C and a query cluster K, in C4, let |C;| and
|K;| denote the number of records in C; and K respectively, let n;; denote
the number of records contained in both C; and Kj, let |T'| denote the total
number of records in 7”. The recall, precision, and F-measure for C; and K;
are calculated as follows:

Recall(C, Kj) = |ng| (7.3)
1

read as the fraction of relevant records retrieved by the query.

Precision(C;, K;) = |7;(”‘ (7.4)
J

read as the fraction of relevant records among the records retrieved by the

query.
2 x Recall(C;, K;) x Precision(C;, K;)

F(C; K;) = -
(G Ky) Recall(C;, Kj) + Precision(C;, K;)

(7.5)

F(C;, K;) measures the quality of query cluster K in describing the natural
cluster C;, by the harmonic mean of Recall and Precision.
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Table 7.3: The masked labelled table for evaluation

Rec ID | Education | Gender | Age |... | Class [ Count
1-7 Junior Sec. ANY 1-37) | ... | K 7
8-12 11th ANY 1-37) | ... K )
13-16 12th ANY 37-99) | ... Ko 4
17-26 Bachelors ANY 37-99) | ... | K 10
27-34 | Grad School | ANY 37-99) | ... | Ki 8
Total: 34

Table 7.4: The similarity of two
cluster structures

Clusters in | Clusters in Table 7.3
Table 7.1 K1 K2

&) 2 19

(@) 10 3

The success of preserving a natural cluster C; is measured by the “best”
query cluster K for Cj, i.e., K; maximizes F'(C;, K;). We measure the quality
of C4 using the weighted sum of such maximum F-measures for all natural
clusters. This measure is called the overall F-measure of C4, denoted by F(C,):

F(Cy) =) @maijecg{F(Ci, Kj)}. (7.6)

bece 1Tl
i

Note that F(Cy) is in the range [0,1]. A larger value indicates a higher
similarity between the two cluster structures generated from the raw data
and the masked data, i.e., better preserved cluster quality.

Example 7.4

Table 7.3 shows a cluster structure with & = 2 produced from the masked
Table 7.2. The first 12 records are grouped into K7, and the rest are grouped
into K5. By comparing with the raw cluster structure in Table 7.1, we can
see that, among the 21 records in C7, 19 remain in the same cluster K5 and
only 2 are sent to a different cluster. Cs has a similar pattern. Table 7.4 shows
the comparison between the clusters of the two structures. The calculations
of Recall(C;, K;), Precision(C;, K;), and F(C;, K;) are illustrated below.

Recall(Cy, K1) = 2/21 = 0.10
Precision(Ch, K1) =2/12 =0.17

_ 2XRecall(C1,K1)x Precision(C1,K1) _ 2x0.10x0.17 __
F(C1, K1) = Recall(C1,K1) X Precision(C1,K1)  0.10x0.17 0.12

Recall(Cy, K) = 19/21 = 0.90
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Table 7.5: The F-measure

computed from Table 7.4

F(Cl, KJ) K Ky
Ch 0.12 0.88
Co 0.8 0.17

Precision(Cy, K3) = 19/22 = 0.86
(C1, Ky) = 2x Recall(C1,Kp) x Precision(C1,K2) _ 2x0.90x0.86 _ () g8

Recall(C1,K2)x Precision(C1,K2) 0.90%0.86

Recall(Co, K1) =10/13 =0.77
Precision(C2, K1) = 10/12 = 0.83
(Co, K1) = 2x Recall(Cy, K1) X Precision(Cy, K1) _ 2x0.77x0.83 _ () g

Recall(C2,K1)x Precision(C2,K1) 0.77%0.83

Recall(Cq, K2) = 3/13=10.23
Precision(Cz, K3) = 3/22 =0.14
(02,K2) _ 2X Recall(Ca,K2) X Precision(C2,K2) _ 2x0.23x0.14 —-0.17

Recall(C2,K2)x Precision(C2,K2) 0.23x0.14
Table 7.5 shows the F-measure. The overall F-measure is:

F(C = |le| XFCl,K2)+ ‘\T\ XF(CQ,Kl)
><088+ ><08—O.85.

JJ

F-measure is an efficient evaluation method, but it considers only the best
query cluster K; for each natural cluster Cj; therefore, it does not capture
the quality of other query clusters and may not provide a full picture of the
similarity between two cluster structures. An alternative evaluation method,
called match point, can directly measure the preserved cluster structure.

7.2.4.2 Match Point

Intuitively, two cluster structures C and C, are similar if two objects that
belong to the same cluster in C remain in the same cluster in Cy, and if two
objects that belong to different clusters in C remain in different clusters in C,.
To reflect the intuition, the method builds two square matrices Matriz(C) and
Matrixz(Cg4) to represent the grouping of records in cluster structures C and Cg,
respectively. The square matrices are |T|-by-|T"|, where |T| is the total number
of records in table T. The (i, )" element in Matriz(C) (or Matriz(Cy))
has value 1 if the i*" record and the j** record in the raw table T (or the
masked table T') are in the same cluster; 0 otherwise. Then, match point is
the percentage of matched values between Matriz(C) and Matriz(Cy):

Zlgi,jS\T\ M;;

e G

Match Point(Matriz(C), Matriz(Cy)) =
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Table 7.6: Matriz(C) of clusters
{1,2,3} and {4,5}

1 2 3 4 5
1 1 1 1 0 0
2 1 1 1 0 0
3 1 1 1 0 0
4 0 0 0 1 1
5 0 0 0 1 1

Table 7.7:  Matriz(Cy) of clusters {1,2}

and {3,4,5}
1 2 3 4 5
1 1 1 0 0 0
2 1 1 0 0 0
3 0 0 1 1 1
4 0 0 1 1 1
5 0 0 1 1 1

Table 7.8: Match Point table for
Matriz(C) and Matriz(Cy)

1 2 3 4 5
1 1 0 1 1
2 1 1 0 1 1
3 0 0 1 0 0
4 1 1 0 1 1
5 1 1 0 1 1

where M;; is 1 if the (i, j)!" element in Matriz(C) and Matriz(Cy) have the
same value; 0 otherwise. Note that match point is in the range of [0,1]. A
larger value indicates a higher similarity between the two cluster structures
generated from the raw data and the masked data, i.e., better preserved cluster
quality.

Example 7.5

Let C = {{1,2,3},{4,5}} be the clusters before anonymization. Let C, =
{{1,2},{3,4,5}} be the clusters after anonymization. C and C, are plotted
in Table 7.6 and Table 7.7, respectively. Table 7.8 is the Match Point table,
which has a value 1 in a cell if the corresponding cells in Table 7.6 and Table 7.7
have the same value. Match Point = 17/5% = 0.68.

7.2.5 Discussion

We discuss some open issues and possible improvements in the studied
privacy framework for cluster analysis.
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7.2.5.1 Recipient Oriented vs. Structure Oriented

Refer to Figure 7.2. One open issue is the choice of clustering algorithms
employed by the data holder in Step 1. Each clustering algorithm has its
own search bias or preference. Experimental results in [94] suggest that if
the same clustering algorithm is employed in Step 1 and Step 3, then the
cluster structure from the masked data is very similar to the raw cluster
structure; otherwise, the cluster structure in the masked data could not even
be extracted. There are two methods for choosing clustering algorithms.

Recipient oriented. This approach minimizes the difference generated if
the recipient had applied her clustering algorithm to both the raw data and
the masked data. It requires the clustering algorithm in Step 1 to be the same,
or to use the same bias, as the recipient’s algorithm. One can implement this
approach in a similar way as for determining the cluster number: either the
recipient provides her clustering algorithm information, or the data holder
releases one version of masked data for each popular clustering algorithm,
leaving the choice to the recipient. Refer to Chapter 10 for handling potential
privacy breaches caused by multiple releases.

Structure oriented. This approach focuses on preserving the “true” clus-
ter structure in the data instead of matching the recipient’s choice of algo-
rithms. Indeed, if the recipient chooses a bad clustering algorithm, matching
her choice may minimize the difference but is not helpful for cluster analysis.
This approach aims at preserving the “truthful” cluster structure by employ-
ing a robust clustering algorithm in Step 1 and Step 3. Dave and Krishna-
puram [57] specify a list of requirements in order for a clustering algorithm
to be robust. The principle is that “the performance of a robust clustering
algorithm should not be affected significantly by small deviations from the
assumed model and it should not deteriorate drastically due to noise and
outliers.” If the recipient employs a less robust clustering algorithm, it may
not find the “true” cluster structure. This approach is suitable for the case
in which the recipient’s preference is unknown at the time of data release,
and the data holder wants to publish only one or a small number of versions.
Optionally, the data holder may release the class labels in Step 1 as a sample
clustering solution.

7.2.5.2 Summary of Empirical Study

Experiments on real-life data [94] have verified the claim that the proposed
approach of converting the anonymity problem for cluster analysis to the coun-
terpart problem for classification analysis is effective. This is demonstrated by
the preservation of most of the cluster structure in the raw data after masking
identifying information for a broad range of anonymity requirements. The ex-
perimental results also suggest that the cluster quality-guided anonymization
can preserve better cluster structure than the general purpose anonymization.

The experiments demonstrate the cluster quality with respect to the vari-
ation of anonymity thresholds, QI D size, and number of clusters. In general,
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the cluster quality degrades as the anonymity threshold increases. This trend
is more obvious if the data set size is small or if anonymity threshold is large.
The cluster quality degrades as the QI D size increases. The cluster quality ex-
hibits no obvious trend with respect to the number of clusters, as the natural
number of clusters is data dependent.

The experiments confirm that the specification of the multi-QI D anonymity
requirement helps avoid unnecessary masking and, therefore, preserves more
of the cluster structure. However, if the data recipient and the data holder
employ different clustering algorithms, then there is no guarantee that the
encoded raw cluster structure can be extracted. Thus, in practice, it is impor-
tant for the data holder to validate the cluster quality, using the evaluation
methods proposed in the framework, before releasing the data. Finally, exper-
iments suggest that the proposed anonymization approach is highly efficient
and scalable for single QI D, but less efficient for multi-QID.

7.2.5.3 Extensions

Chapter 7.2 presents a flexible framework that makes use of existing solu-
tions as “plug-in” components. These include the cluster analysis in Steps 1
and 3, the anonymization in Step 2, and the evaluation in Step 4. For example,
instead of using the proposed TDR algorithm, the data holder has the option
to perform the anonymization by employing any one of the anonymization
methods discussed in Chapter 6 with some modification.

The solution presented above focuses on preventing the privacy threats
caused by record linkages, but the framework is extendable to thwart attribute
linkages by adopting different anonymization algorithms and achieving other
privacy models, such as /-diversity and confidence bounding, discussed in
Chapter 2. The extension requires modification of the Score or cost functions
in these algorithms to bias on refinements or maskings that can distinguish
class labels. The framework can also adopt other evaluation methods, such as
entropy [210], or any ad-hoc methods defined by the data holder.

The study in TDR focuses mainly on single-dimensional global recoding.
Alternative masking operations, such as local recoding and multidimensional
recoding, for achieving k-anonymity and its extended privacy notions are also
applicable to the problem. Nonetheless, it is important to note that local
recoding and multidimensional recoding may suffer from the data exploration
problem discussed in Chapter 3.1.

One useful extension of privacy-preserving data publishing for cluster anal-
ysis is to building a visualization tool to allow the data holder to adjust the
parameters, such as the number of clusters and anonymity thresholds, and
visualize their influence on the clusters interactively.
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7.3 Dimensionality Reduction-Based Transformation

Oliveira and Zaiane [182] introduce an alternative data anonymization ap-
proach, called Dimensionality Reduction-Based Transformation (DRBT), to
address the problem of privacy-preserving clustering (PPC') defined as follows.

DEFINITION 7.3 Problem of privacy-preserving clustering (PPC)
Let T be a relational database and C' be a set of clusters generated from T'.
The goal is to transform T into 7" so that the following restrictions hold:

e The transformed T’ conceals the values of the sensitive attributes.

e The similarity between records in 7" has to be approximately the same
as that one in T'. The clusters in T and T should be as close as possible.

The general principle of the PPC problem [182] is similar to the anonymiza-
tion problem for cluster analysis discussed in Definition 7.2. The major differ-
ences are on the privacy model. First, the problem of PPC aim at anonymizing
the sensitive attributes while most of the k-anonymization related methods
alm at anonymizing the quasi-identifying attributes. Second, PPC assumes
that all the attributes to be transformed are numerical. The general idea
of DRBT is to transform m-dimensional objects into r-dimensional objects,
where r is much smaller than m. The privacy is guaranteed by ensuring that
the transformation is non-invertible.

7.3.1 Dimensionality Reduction

DRBT assumes that the data records are represented as points (vectors) in
a multidimensional space. Each dimension represents a distinct attribute of
the individual. The database is represented as an n X m matrix with n records
and m columns. The goal of the methods for dimensionality reduction is to
map n-dimensional records into r-dimensional records, where r < m [145].
Dimensionality reduction methods map each object to a point a r-dimensional
space with the goal of minimizing the stress function, which measures the
average relative error that the distances in r — n space suffer from:

Zi,j (Cjij - dij)2
23

where d;; is the dissimilarity measure between records ¢ and j in a r-

stress = (7.8)

dimensional space, and ciu is the dissimilarity measure between records ¢ and
j in a m-dimensional space [182].

Random projection is a linear transformation represented by a m X r matrix
R. The transformation is achieved by first setting each entry of the matrix
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to a value drawn from an independent and identically distributed N(0,1)

distribution with 0 mean and 1 unit of variance, and then normalizing the

columns to unit length. Given a m-dimensional data set represented as an
n x m matrix T, the mapping 7' X R results in reduced-dimension data set:

Tylzxrr = TnXmRer~ (79)

In the reduced space, the distance between two m-dimensional records X;

and X; can be approximated by the scaled down Euclidean distance of these

records as down in Equation
/m
7||Xi—XjH. (7.10)

where the scaling term \/TE takes the decrease in the dimensionality of the
data into consideration [182]. The key point in this method is to choose a
random matrix R. DRBT employs the following simple distribution [2] for
each element e;; in R:

+1 with probability 1/6
eij =V3x {0  with probability 2/3 (7.11)
—1 with probability 1/6

7.3.2 The DRBT Method

The DRBT method addresses the problem privacy-preserving clustering in
three steps [182].

1. Attributes suppression: Suppress the attributes that are irrelevant to the
clustering task.

2. Dimensions reduction: Transform the original data set T into the
anonymized data set T’ using random projection. We apply Equation 7.9
to reduce the dimension of T with m dimensions to 7”7 with r dimen-
sions. The random matrix R is computed by first setting each entry of
the matrix to a value drawn from an independent and identically dis-
tributed N (0, 1) distribution and then normalizing the columns to unit
length. Alternatively, each element e;; in matrix R can be computed by
using Equation 7.11.

3. Cluster evaluation: Evaluate the cluster quality of the anonymized data
set T" with respect to the original data set T using the stress function
in 7.8.
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7.4 Related Topics

We discuss some privacy works that are orthogonal to the anonymiza-
tion problem of cluster analysis studied in this chapter. There is a family
of anonymization methods [8, 9, 10, 13] that achieves privacy by clustering
similar data records together. Their objective is very different from the studied
problem in this chapter, which is publishing data for cluster analysis. Aggar-
wal and Yu [8] propose an anonymization approach, called condensation, to
first condense the records into multiple non-overlapping groups in which each
group has a size of at least h records. Then, for each group, the method ex-
tracts some statistical information, such as sum and covariance, that suffices
to preserve the mean and correlation across different attributes. Finally, based
on the statistical information, the method generates synthetic data records for
each group. Refer to Chapter 5.1.3.1 for more details on condensation.

In a similar spirit, r-gather clustering [13] partitions records into several
clusters such that each cluster contains at least r data points. Then the clus-
ter centers, together with their size, radius, and a set of associated sensitive
values, are released. Compared to the masking approach, one limitation of the
clustering approach is that the published records are “synthetic” in that they
may not correspond to the real world entities represented by the raw data. As
a result, the analysis result is difficult to justify if, for example, a police officer
wants to determine the common characteristics of some criminals from the
data records. Refer to Chapter 5.1.3.2 for more details on r-gather clustering.

Many secure protocols have been proposed for distributed computation
among multiple parties. For example, Vaidya and Clifton [229] and Inan et
al. [121] present secure protocols to generate a clustering solution from ver-
tically and horizontally partitioned data owned by multiple parties. In their
model, accessing data held by other parties is prohibited, and only the final
cluster solution is shared among participating parties. We consider a com-
pletely different problem, of which the goal is to share data that is immunized
against privacy attacks.

7.5 Summary

We have studied the problem of releasing person-specific data for cluster
analysis while protecting privacy. The top-down-specialization solution dis-
cussed in Chapter 7.2 is to mask unnecessarily specific information into a less
specific but semantically consistent version, so that person-specific identifying
information is masked but essential cluster structure remains [94]. The major
challenge is the lack of class labels that could be used to guide the mask-
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ing process. This chapter illustrates a general framework for converting this
problem into the counterpart problem for classification analysis so that the
masking process can be properly guided. The key idea is to encode the original
cluster structure into the class label of data records and subsequently preserve
the class labels for the corresponding classification problem. The experimental
results verified the effectiveness of this approach.

We also studied several practical issues arising from applying this approach
in a real-life data publishing scenario. These include how the choices of clus-
tering algorithms, number of clusters, anonymity threshold, and size and type
of quasi-identifiers can affect the effectiveness of this approach, and how to
evaluate the effectiveness in terms of cluster quality. These studies lead to the
recommendation of two strategies for choosing the clustering algorithm in the
masking process, each having a different focus. The materials provide a useful
framework of secure data sharing for the purpose of cluster analysis.

In Chapter 7.3, we have studied an efficient anonymization algorithm called
Dimensionality Reduction-Based Transformation (DRBT) [182]. The general
idea is to consider the raw data table as a m dimensional matrix and reduce
it to a r dimensional matrix by using random projection. The data model
considered in DRBT has several limitations. First, the distortion is applied
on the sensitive attribute, which could be important for the task of cluster
analysis. If the sensitive attributes are not important for cluster analysis,
they should be removed first. Second, the DRBT method is applicable only
on numerical attributes. Yet, real-life databases often contain both categorical
and numerical attributes.
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Chapter 8

Multiple Views Publishing

8.1 Introduction

So far, we have considered the simplest case where the data is published to a
single recipient. In practice, the data is often published to multiple recipients
and different data recipients may be interested in different attributes. Suppose
there is a person-specific data table T'(Job, Sex, Age, Race, Disease, Salary).
A data recipient (for example, a pharmaceutical company) is interested
in classification modeling the target attribute Disease with attributes
{Job, Sex, Age}. Another data recipient (such as a social service department)
is interested in clustering analysis on {Job, Age, Race}.

One approach is to publish a single view on {Job, Sex, Age, Race} for both
purposes. A drawback is that information is unnecessarily released in that
neither of the two purposes needs all four attributes; it is more vulnerable to
attacks. Moreover, if the information needed in the two cases is different, the
data anonymized in a single view may not be good for either of the two cases.
A better approach is to anonymize and publish a tailored view for each data
mining purpose; each view is anonymized to best address the specific need of
that purpose.

Suppose a data holder has released multiple views of the same underlying
raw data data. Even if the data holder releases one view to each data recipient
based on their information needs, it is difficult to prevent them from colluding
with each other behind the scene. Thus, some recipient may have access to
multiple or even all views. In particular, an adversary can combine attributes
from the two views to form a sharper QI D that contains attributes from both
views. The following example illustrates the join attack in multiple views.

Example 8.1

Consider the data in Table 8.1 and Table 8.2. Suppose that the data holder
releases one projection view 77 to one data recipient and releases another
projection view T, to another data recipient. Both views are from the same
underlying patient table. Further suppose that the data holder does not want
{Age, Birthplace} to be linked to Disease. When T7 and Tb are examined
separately, the Age = 40 group and the Birthplace = France group have

131
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Table 8.1: Multiple views
publishing: T

Age Job Class
30 Lawyer cl
30 Lawyer cl
40 Carpenter c2
40 Electrician c3
50 Engineer c4
50 Clerk c4

Table 8.2: Multiple views publishing: T5

Job Birthplace Disease
Lawyer US Cancer
Lawyer US Cancer

Carpenter France HIV
Electrician UK Cancer
Engineer France HIV

Clerk US HIV

Table 8.3: Multiple views publishing: the join of T and Tb

Age Job Birthplace Disease Class
30 Lawyer US Cancer cl
30 Lawyer US Cancer cl
40 Carpenter France HIV c2
40 Electrician UK Cancer c3
50 Engineer France HIV cd
50 Clerk US HIV c4
30 Lawyer US Cancer cl
30 Lawyer US Cancer cl

size 2. However, by joining T7 and T using T7.Job = T.Job (see Table 8.3), an
adversary can uniquely identify the record owner in the {40, France} group,
thus linking {Age, Birthplace} to Disease without difficulty. Moreover, the
join reveals the inference {30,US} — Cancer with 100% confidence for the
record owners in the {30,US} group. Such inference cannot be made when T;
and T, are examined separately [236].

In this chapter, we study several works that measure information disclosure
arising from linking two or more views. Chapter 8.2 studies Yao et al. [262]’s
method for detecting k-anonymity violation on a set of views, each view ob-
tained from a projection and selection query. Kifer and Gehrke [139] propose
to increase the utility of published data by releasing additional marginals that
are essentially duplicate preserving projection views. Chapter 8.3 studies the



Multiple Views Publishing 133

privacy threats caused by the marginals and a detection method to check the
violations of some given k-anonymity and ¢-diversity requirements.

8.2 Checking Violations of k-Anonymity on Multiple
Views

We first illustrate violations of k-anonymity in the data publishing scenario
where data in a raw data table T are being released in the form of a view
set. A view set is a pair (V,v), where V' is a list of selection-projection queries
(q1,---,qn) on T, and v is a list of relations (rq1,...,r,) without duplicate
records [262]. Then, we also consider the privacy threats caused by functional
dependency as prior knowledge, followed by a discussion on the violations
detection methods. For a data table T', II(T') and o(T") denote the projection
and selection over T'.

8.2.1 Violations by Multiple Selection-Project Views

Yao et al. [262] assume that privacy violation takes the form of linkages,
that is, pairs of values appearing in the same data record. For example, nei-
ther C'alvin nor HIV in Table 8.4 alone is sensitive, but the linkage of the
two values is. Instead of publishing the raw data table that contains sensitive
linkages, Yao et al. consider publishing the materialized views. For exam-
ple, given raw data table T in Table 8.4, sensitive linkages can be defined by
I Ngme, Disease (T'), while the published data are two views, Vi = IIname,J06(T)
and Vo = Ijop, Disease(T). Given V4 and V; as shown in Table 8.5 and Ta-
ble 8.6, an adversary can easily deduce that Calvin has HIV because Calvin
is a lawyer in V) and the lawyer in Vo has HIV, assuming that the adversary
has the knowledge that Vi and V5 are projects of the same underlying raw
data table.

Checking k-anonymity on multiple views could be a complicated task if
the views are generated based on some selection conditions. The following
example illustrates this point.

Example 8.2

Tables 8.7-8.9 show three views that are generated based on different pro-
jection and selection conditions of Table 8.4. By performing an intersection
between V3 and Vy, an adversary knows that Bob is the only person in the
raw table T" who has an age between 45 and 55. By further observing Vs, the
adversary can induce that Bob has Diabetes because the selection condition
of V5 satisfies the selection condition of the intersection of V3 and Vj.
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Table 8.4: Raw data table T

Name | Job | Age | Disease
Alice Cook 40 Flu
Bob Cook 50 | Diabetes

Calvin | Lawyer | 60 HIV

Table 8.5: View Vi = Hname,sob(T)

Name Job
Alice Cook
Bob Cook

Calvin Lawyer

Table 8.6: View Vo = ILj0b Disease(T)

Job Disease
Cook SARS
Cook Diabetes

Lawyer HIV

Example 8.2 illustrates that an adversary may be able to infer the sensitive
value of a target victim from multiple selection-project views. Yao et al. [262]
present a comprehensive study to detect violations of k-anonymity on multiple
views. The following example shows the intuition of the detection method.
Refer to [262] for details of the violations detection algorithm.

Example 8.3
Consider views V3, V4, and V5 in Table 8.7, Table 8.8, and Table 8.9, respec-
tively. We use

Table 8.7: View V3 = UyameTagesas(T)

Name
Bob
Calvin

Table 8.8: View Vi = HUyameTage<ss(T)

Name
Alice
Bob

Table 8.9: View V5 = HNameU4(]<Age<55 (T)

Disease
Diabetes
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(*,* 45<Age<55, Diabetes) (Bob, *, Age>45, *) (Calvin, *, Age>45, *) (*, %, Age<=45,%)
(Alice, *, Age<55, *) Empty Empty Empty
(Bob, *,
(Bob, *, Age<55, *) 45<Age<55, Empty Empty
Diabetes)
(*,*, Age>=55, %) Empty Empty Empty
Va
A
1= T 77
) 4 /
(Alice, *, Age<55, *f |
4 /

A 1

l I
(Bob, *, Ag(=]<55, *) |
I

(*, ", Ages<ss, *) (Bob, *, (Calvin,*, | (-,
| Age>45, *) Age>45, "), Age<=45.1)
T T 7> Vs
(¥, *, 45<Age<55, Diabetes) I/
| |/
________ —

(*, *, Age<=45 or Age>=55, *)
Vs

FIGURE 8.1: Views V3, V4, and V;

(Name, Job, Age, Disease)

to denote the set of records matching the selection conditions. For example,
(Alice, x, Age < 55,%) denotes the set of records that have Name = Alice,
Age < 55, Job and Disease can be any values. A complement record sets of
(Alice, x, Age < 55, %) is (x, *, Age > 55, %).

The general idea of the k-anonymity violation detection algorithm is to in-
tersect the views that are generated based on the selection conditions, and
to check whether or not every non-empty intersection contains at least k
records. In Figure 8.1, we plot the three sets of record sets of V3, V4, and
V5, and the complement record sets. In the upper portion of Figure 8.1,
we illustrate a record set for the projection fact of Diabetes in Vs, which
is (Bob, *,45 < Age < 55, Diabetes). Since the record set represented by the
intersection contains only one record, the three views violate 2-anonymity.
Figure 8.2 further illustrates the intersection of two sets of record sets of V3
and Vj. UJ
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Vs
(Bob, *, Age>45, *) (Calvin, *, Age>45, *) (*, *, Age<=45, *)
Vs
- . (Alice, *,
(Alice, *, Age<55, *) Empty Empty Age<=45, )

(Bob, *, (Bob, *,

(Bob, *, Age<55, *) 45<Age<55, %) Empty Age <=45, *)
. % P (Bob, *, (Calvin, *,
(*, *, Age>=55, *) Age>=55, *) Age>=55, *) Empty

FIGURE 8.2: Views V3 and V,

8.2.2 Violations by Functional Dependencies

Another type of violation is caused by the presence of functional dependen-
cies as adversary’s background knowledge. A functional dependency (FD) is
a constraint between two sets of attributes in a table from a database. Given
a data table T, a set of attributes X in T is said to functionally determine
another attribute Y, also in T, denoted by (X — Y), if and only if each X
value is associated with precisely one Y value. Even though the data holder
does not release such functional dependencies to the data recipients, the data
recipients often can obtain such knowledge by interpreting the semantics of
the attributes. For example, the functional dependency Name — Age can
be derived by common sense. Thus, it is quite possible that the adversary
could use functional dependencies as background knowledge. The following
examples illustrate the privacy threats caused by functional dependency.

Example 8.4

Consider the raw data R in Table 8.10, and two projection views Vi and V7 in
Table 8.11 and Table 8.12, respectively. Every record in Vi has a corresponding
record in V7. Suppose an adversary knows there is a functional dependency
Name — Disease, meaning that every patient has only one disease. The
adversary then can infer that Alice has Cancer because Alice has two records
in V5 and HIV is the only value appearing twice in V7.

8.2.3 Discussion

Yao et al. [262] present a comprehensive study on k-anonymity with multiple
views. First, they proposed a violation detection algorithm for k-anonymity
without functional dependencies. The data complexity of the detection algo-
rithm is polynomial, O((maz(|V;|)"V), where |V;] is the size of the view V; and
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Table 8.10:

Raw data table R for illustrating
privacy threats caused by functional dependency
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Name Doctor Disease
Alice Smith Cancer
Alice Thomson Cancer
Brian Smith Flu
Cathy Thomson Diabetes

Table 8-11: View ‘/6 = HN(L77L5,DOCtO'V'<R)

Name Doctor
Alice Smith
Alice Thomson
Brian Smith
Cathy Thomson
Table 8.12: View V? = HDoctor,Disease (R)
Doctor Disease
Smith Cancer
Thomson Cancer
Smith Flu
Thomson Diabetes

N is the number of dimensions. Second, the knowledge of functional depen-
dency is available to the adversary. Yao et al. [262] suggest a conservative
checking algorithm that always catches k-anonymity violation, but it may
make mistakes when a view set actually does not violate k-anonymity.

In summary, the k-anonymity violation detection algorithm presented
in [262] has several limitations. First, it does not consider the case that dif-
ferent views could have been generalized to different levels according to some
taxonomy trees, which is very common in multiple views publishing. Second,
it does not consider attribute linkages with confidence as discussed in Chap-
ter 2.2. Third, Yao et al. [262] present algorithms only for detecting violations,
not anonymizing the views for achieving k-anonymity. Subsequent chapters in
Part IIT address these limitations.

8.3 Checking Violations with Marginals

In addition to the anonymous base table, Kifer and Gehrke [139] propose to
increase the utility of published data by releasing several anonymous marginals
that are essentially duplicate preserving projection views. For example,
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Table 8.13: Raw patient table

quasi-identifier sensitive
Zip Code Salary Disease
25961 43K HIV
25964 36K Anthrax
25964 32K Giardiasis
25964 42K Cholera
25961 58K Flu
25961 57K Heart
25961 56K Flu
25964 63K Cholera
25964 61K Heart
24174 34K Flu
24174 48K Cholera
24179 48K Cholera
24179 40K Heart

Table 8.15 is the Salary marginal, Table 8.16 is the Zip/Disease marginal,
and Table 8.17 is the Zip/Salary marginal for the (2, 3)-diverse base Ta-
ble 8.14. The availability of additional marginals (views) provides additional
information for data mining, but also poses new privacy threats. For ex-
ample, if an adversary knows that a patient who lives in 25961 and has
salary under 50K is in the raw patient Table 8.13, then the adversary can
join Table 8.14 and Table 8.16 to infer that the patient has HIV because
{Anthraz, Cholera, Giardiasis, HIV'} N {Flu, Heart, HIV} = HIV. Kifer
and Gehrke [139] extend k-anonymity and ¢-diversity for marginals and pre-

Table 8.14: (2,3)-diverse patient table

quasi-identifier sensitive
Zip Code Salary Disease
2596* <50K Anthrax
2596* <50K Cholera
2596* <50K Giardiasis
2596* <50K HIV
2596%* >50K Cholera
2596* >50K Flu
2596* >50K Flu
2596* >50K Heart
2596* >50K Heart
2417* <50K Cholera
2417* <50K Cholera
2417* <50K Flu
2417* <50K Heart
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Table 8.15: Salary marginal

Salary Count
31K-35K 2
36K-40K
41K-45K
46K-50K
51K-55K
56K-60K
61K-65K

DN | O DN DO N

Table 8.16: Zip code/disease marginal

Zip Code Disease Count
25961 Flu 2
25961 Heart 1
25961 HIV 1
25964 Cholera 2
25964 Heart 1
25964 Anthrax 1
25964 Giardiasis 1
24174 Flu 1
24174 Cholera 1
24179 Cholera 1
24179 Heart 1

sented a method to check whether published marginals violate the privacy
requirement on the anonymous base table.

Barak et al. [26] also study the privacy threats caused by marginals along
the line of differential privacy [74] studied in Chapter 2.4.2. Their primary con-
tribution is to provide a formal guarantee to preserve all of privacy, accuracy,
and consistency in the published marginals. Accuracy bounds the difference
between the original marginals and published marginals. Consistency ensures
that there exists a contingency table whose marginals equal to the published
marginals. Instead of adding noise to the original data records at the cost
of accuracy, or adding noise to the published marginals at the cost of con-
sistency, they have proposed to transform the original data into the Fourier
domain, apply differential privacy to the transformed data by perturbation,
and employ linear programming to obtain a non-negative contingency table
based on the given Fourier coefficients.



140 Introduction to Privacy-Preserving Data Publishing
Table 8.17: Zip code/salary marginal

Zip Code Salary Count
25961 41K-50K 1
25961 51K-60K 3
25964 31K-40K 2
25964 41K-50K 1
25964 61K-70K 2
24174 31K-40K 1
24174 41K-50K 1
24179 31K-40K 1
24179 41K-50K 1

8.4 MultiRelational k-Anonymity

Most works on k-anonymity focus on anonymizing a single data table. Ercan
Nergiz et al. [178] propose a privacy model called MultiR k-anonymity to
ensure k-anonymity on multiple relational tables. Their model assumes that
a relational database contains a person-specific table PT and a set of tables
Ti,...,T,, where PT contains a person identifier Pid and some sensitive
attributes, and T;, for 1 <14 < n, contains some foreign keys, some attributes
in QID, and sensitive attributes. The general privacy notion is to ensure that
for each record owner o contained in the join of all tables PT X Ty X --- X T,
there exists at least k— 1 other record owners who share the same QI D with o.
It is important to emphasize that the k-anonymization is applied at the record
owner level, not at the record level in traditional k-anonymity. This idea is
similar to (X, Y)-anonymity discussed in Chapter 2.1.2, where X = QID and
Y = {Pid}.

8.5 Multi-Level Perturbation

Recently, Xiao et al. [252] study the problem of multi-level perturbation
whose objective is to publish multiple anonymous versions of the same un-
derlying raw data set. Each version can be anonymized at different privacy
levels depending on the trustability levels of the data recipients. The major
challenge is that data recipients may collude and share their data to infer sen-
sitive information beyond their permitted levels. Xiao et al.’s randomization
method overcomes the challenge by ensuring that the colluding data recipi-
ents cannot learn any information that is more than the information known
by the most trustworthy data recipient alone. Another major strength of the
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randomization approach is that each data recipient can utilize the received
data for privacy-preserving data mining as the output of conventional uniform
randomization. Similar to other randomization approaches, this method does
not preserve the data truthfulness at the record level.

8.6 Summary

In this chapter, we have studied several methods for detecting violations of
privacy requirements on multiple views. These detection methods are applica-
ble for detecting violations on data views publishing and database queries that
violate privacy requirements. What can we do if some combinations of views
or database queries violate the privacy requirement? A simple yet non-user
friendly solution is to reject the queries, or not to release the views. Obviously,
this approach defeats the goal of data publishing and answering database
queries. Thus, simply detecting violations is insufficient. The recent work on
MultiR k-anonymity (Chapter 8.4) and multi-level perturbation (Chapter 8.5)
present effective methods for anonymizing multiple relational databases and
views at different privacy protection levels for different recipients.

The works on multiple views publishing share a common assumption: the
entire raw data set is static and is available to the data provider at time of
anonymization and publication. Yet, in practice, this assumption may not hold
as new data arrive and a new release has to be published subsequently together
with some previously published data. The adversary may combine multiple
releases to sharpen the identification of a record owner and his sensitive in-
formation. In Chapters 9 and 10, we study several methods that anonymize
multiple data releases and views without compromising the desirable property
of preserving data truthfulness.



Chapter 9

Anonymizing Sequential Releases
with New Attributes

9.1 Introduction

An organization makes a new release as new information becomes available,
releases a tailored view for each data request, or releases sensitive informa-
tion and identifying information separately. The availability of related releases
sharpens the identification of individuals by a global quasi-identifier consist-
ing of attributes from related releases. Since it is not an option to anonymize
previously released data, the current release must be anonymized to ensure
that a global quasi-identifier is not effective for identification.

In multiple views publishing studied in Chapter 8, several tables, for differ-
ent purposes, are published at one time. In other words, a data holder already
has all the raw data when the views are published. Since all the data are
known, the data holder has the flexibility to anonymize different views in or-
der to achieve the given privacy and information requirements on the views.
In this chapter, we will study a more general data publishing scenario called
sequential anonymization [236], in which the data holder knows only part of
the raw data when a release is published, and has to ensure that subsequent
releases do not violate a privacy requirement even an adversary has access to
all releases. A key question is how to anonymize the current release so that
it cannot be linked to previous releases yet remains useful for its own release
purpose. We will study an anonymization method [236] for this sequential
releases scenario. The general idea is to employ the lossy join, a negative
property in relational database design, as a way to hide the join relationship
among releases.

9.1.1 Motivations

k-anonymity addresses the problem of reducing the risk of record linkages in
a person-specific table. Refer to Chapter 2.1.1 for details of k-anonymity and
the notion of quasi-identifier. In case of single release, the notion of QID is
restricted to the current table, and the database is made anonymous to itself.
In many scenarios, however, related data were released previously: an orga-
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Table 9.1: Raw data table T}

Ty
Pid Job Disease
1 Banker Cancer
2 Banker Cancer
3 Clerk HIV
4 Driver Cancer
5 Engineer HIV

Table 9.2: Raw data table T5

15
Name Job Class
Alice Banker cl
Alice | Banker cl
Bob Clerk c2
Bob Driver c3
Cathy | Engineer | c4

G o o —| 9
ol

nization makes a new release as new information becomes available, releases
a separate view for each data sharing purpose (such as classifying a different
target variable as studied in the Red Cross case in Chapter 6), or makes sep-
arate releases for personally-identifiable data (e.g., names) and sensitive data
(e.g., DNA sequences) [164]. In such scenarios, the QI D can be a combination
of attributes from several releases, and the database must be made anonymous
to the combination of all releases thus far.

The next example illustrates a scenario of sequential release: To was un-
known when T was released, and T7, once released, cannot be modified when
T5 is considered for release. This scenario is different from the scenario mul-
tiple views publishing studied in Chapter 8, where both T} and T3 are parts
of a view and can be modified before the release, which means more “rooms”
to satisfy a privacy and information requirement. In the sequential release,
each release has its own information need and the join that enables a global
identifier should be prevented. In the view release, however, all data in the
views may serve the information need collectively, possibly through the join
of all tables.

Example 9.1

Consider the data in Tables 9.1-9.3. Pid is the person identifier and is included
only for discussion, not for release. Suppose the data holder has previously
released T7 and now wants to release 15 for classification analysis of the Class
column. Essentially T} and T5 are two projection views of the patient records.
T5.Job is a discriminator of Class but this may not be known to the data
holder. The data holder does not want Name to be linked to Disease in the
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Table 9.3: The join of T} and T}

The join on T7.Job = T5.Job
Pid Name Job Disease Class
1 Alice Banker Cancer cl
2 Alice Banker Cancer cl
3 Bob Clerk HIV c2
4 Bob Driver Cancer c3
5 Cathy Engineer HIV cd
- Alice Banker Cancer cl
- Alice Banker Cancer cl

join of the two releases; in other words, the join should be k-anonymous on
{Name, Disease}. Below are several observations that motivate the approach
presented in this chapter.

1. Join sharpens identification: after the natural join (based on equal-
ity on all common attributes), the adversary can uniquely identify
the individuals in the {Bob, HIV} group through the combination
{Name, Disease} because this group has size 1. When T and T» are
examined separately, both Bob group and HIV group have size 2. Thus,
the join may increase the risk of record linkages.

2. Join weakens identification: after the natural join, the { Alice, Cancer}
group has size 4 because the records for different persons are matched
(i.e., the last two records in the join table). When 7) and T5 are ex-
amined separately, both Alice group and Cancer group have smaller
size. In the database terminology, the join is lossy. Since the join attack
depends on matching the records for the same person, a lossy join can
be used to combat the join attack. Thus, the join may decrease the risk
of record linkages. Note, the ambiguity caused by the lossy join is not
considered information loss here because the problem is to weaken the
linkages of records among the releases.

3. Join enables inferences across tables: the natural join reveals the
inference Alice — Cancer with 100% confidence for the individuals
in the Alice group. Thus, the join may increase the risk of attribute
linkages.

[

This sequential anonymization problem was briefly discussed in some pio-
neering works on k-anonymity, but they did not provide a practical solution.
For example, Samarati and Sweeney [203] suggest to k-anonymize all poten-
tial join attributes as the QID in the next release T},. Sweeney [216] suggests
to generalize T}, based on the previous releases T1,...,7T,_1 to ensure that all
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values in 7T}, are not more specific than in any 77, ..., T,_1. Both solutions suf-
fer from monotonically distorting the data in a later release: as more and more
releases are published, a later release is more and more constrained due to the
previous releases, thus are more and more distorted. The third solution is to
release a “complete” cohort in which all potential releases are anonymized at
one time, after which no additional mechanism is required. This requires pre-
dicting future releases. The “under-prediction” means no room for additional
releases and the “over-prediction” means unnecessary data distortion. Also,
this solution does not accommodate the new data added at a later time.

The problem of sequential anonymization considers three motivating sce-
narios:

1. make new release when new attributes arrive,
2. release some selected attributes for each data request, and

3. make separate releases for personally-identifiable attributes and sensi-
tive attributes.

The objective is to anonymize the current release T5 in the presence of a previ-
ous release T1, assuming that 77 and T5 are projections of the same underlying
table. The release of T5 must satisfy a given information requirement and pri-
vacy requirement. The information requirement could include such criteria
as minimum classification error (Chapter 4.3) and minimum data distortion
(Chapter 4.1). The privacy requirement states that, even if the adversary
joins T7 with Ts, he/she will not succeed in linking individuals to sensitive
properties. This requirement is formalized to be limiting the linking between
two attribute sets X and Y over the join of T} and T5. The privacy notion
(X,Y)-privacy (Chapter 2.2.4) generalizes k-anonymity (Chapter 2.1.1) and
confidence bounding (Chapter 2.2.2).

The basic idea is generalizing the current release T so that the join with
the previous release T7 becomes lossy enough to disorient the adversary. Es-
sentially, a lossy join hides the true join relationship to cripple a global quasi-
identifier. In Chapter 9.1.2, we first formally define the problem, and show
that the sequential anonymization subsumes the k-anonymization, thus the
optimal solution is NP-hard. Then, we study a greedy method for finding a
minimally generalized T7. To ensure the minimal generalization, the lossy join
responds dynamically to each generalization step. Therefore, one challenge is
checking the privacy violation over such dynamic join because a lossy join
can be extremely large. Another challenge is pruning, as early as possible,
unpromising generalization steps that lead to privacy violation. To address
these challenges, we will study a top-down approach, introduced by Wang
and Fung [236], to progressively specialize T} starting from the most gener-
alized state in Chapter 9.3. It checks the privacy violation without executing
the join and prunes unpromising specialization based on a proven monotonic-
ity of (X,Y)-privacy in Chapter 9.2. Finally, the extension to more than one
previous release is discussed in Chapter 9.4.
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9.1.2 Anonymization Problem for Sequential Releases

For a table T, II(T) and o(T') denote the projection and selection over
T, att(T) denotes the set of attributes in T, and |T'| denotes the number of
distinct records in 7.

9.1.2.1 Privacy Model

In this problem, X and Y are assumed to be disjoint sets of attributes
that describe individuals and sensitive properties in any order. An example
is X = {Name, Job} and Y = {Disease}. There are two ways to limit the
linking between X and Y: record linkage and attribute linkage.

To thwart record linkages, sequential anonymization employs the notion of
(X, Y)-anonymity. Recall from Chapter 2.1.2, (X,Y )-anonymity states that
each value on X is linked to at least k distinct values on Y. k-anonymity is
the special case where X serves QID and Y is a key in T'. The next example
shows the usefulness of (X,Y)-anonymity where Y is not a key in 7" and
k-anonymity fails to provide the required anonymity.

Example 9.2
Consider the data table

Inpatient(Pid, Job, Zip, PoB, Test).

A record in the table represents that a patient identified by Pid has Job,
Zip, PoB (place of birth), and Test. In general, a patient can have several
tests, thus several records. Since QID = {Job, Zip, PoB} is not a key in the
table, the k-anonymity on QID fails to ensure that each value on QID is
linked to at least k (distinct) patients. For example, if each patient has at
least 3 tests, it is possible that the k records matching a value on QID may
involve no more than k/3 patients. With (X,Y)-anonymity, we can specify
the anonymity with respect to patients by letting X = {Job, Zip, PoB} and
Y = Pid, that is, each X group must be linked to at least k distinct values
on Pid. If X = {Job, Zip, PoB} and Y = Test, each X group is required to
be linked to at least k distinct tests.

Being linked to k persons or tests does not imply that the probability of
being linked to any of them is 1/k if some person or test occurs more frequently
than others. Thus, a large k does not necessarily limit the linking probability.
The (X, Y)-linkability addresses this issue. Recall from Chapter 2.2.3, (X,Y)-
linkability limits the confidence of inferring a value on Y from a value on
X. With X and Y describing individuals and sensitive properties, any such
inference with a high confidence is a privacy breach.

Example 9.3
Suppose that (j,z,p) on X = {Job, Zip, PoB} occurs with the HIV test in
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Table 9.4: The
patient data (T%)

PoB Sex Zip
UK M 73
UK M 73
UK F 75
FR F 75
FR M 73
FR M 73
US M 73

9 records and occurs with the Diabetes test in 1 record. The confidence of
(J, z,p) — HIV is 90%. With Y = Test, the (X,Y)-linkability states that no
test can be inferred from a value on X with a confidence higher than a given
threshold.

Often, not all but some values y on Y are sensitive, in which case Y can
be replaced with a subset of y; values on Y, written Y = {y1,...,y,}, and a
different threshold k can be specified for each y;. More generally, the problem
of sequential anonymization allows multiple Y;, each representing a subset of
values on a different set of attributes, with Y being the union of all Y;. For
example, Y1 = {HIV} on Test and Yo = {Banker} on Job. Such a “value-
level” specification provides a great flexibility essential for minimizing the
data distortion.

Example 9.4

Consider the medical test data and the patient data in Table 9.5 and Table 9.4.
Suppose the data holder wants to release Table 9.5 for classification analysis
on the Class attribute. Europeans (i.e., UK and FR) have the class label Yes
and US has the class label No. Suppose that the data holder has previously
released the patient data (77) and now wants to release the medical test data
(Ts) for classification analysis on Class, but wants to prevent any inference
of the value HIV in T using the combination {Job, PoB, Zip} in the join of
Ty and T5. This requirement is specified as the (X, Y)-linkability, where

X ={Job, PoB, Zip} and Y = {y = HIV}.

Here PoB in X refers to {T1.PoB, T>.PoB} since PoB is a common attribute.
In the join, the linkability from X to HIV is L,(X) = 100% because all 4
joined records containing {Banker,UK, Z3} contain the value HIV. If the
data holder can tolerate at most 90% linkability, Table 9.5 (T%) without mod-
ification is not safe for release. 0
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Table 9.5: The medical test data (T3)

The medical test data

Test Job PoB Sex Class

HIV Banker UK M Yes

HIV Banker UK M Yes

Eye Banker UK F Yes

Eye Clerk FR F Yes
Allergy Driver US M No
Allergy Engineer US M No
Allergy Engineer FR M Yes
Allergy Engineer FR M Yes

When no distinction is necessary, we use the term (X,Y)-privacy to refer
to either (X,Y)-anonymity or (X,Y)-linkability. The following corollary can
be easily verified.

COROLLARY 9.1
Assume that X C X’ and Y’ C Y. For the same threshold k, if (X', Y”)-
privacy is satisfied, (X,Y)-privacy is satisfied. m

9.1.2.2 Generalization and Specialization

One way to look at a (X,Y)-privacy is that Y serves the “reference point”
with respect to which the privacy is measured and X is a set of “grouping
attributes.” For example, with Y = Test each test in Y serves a reference
point, and Ay (X) measures the minimum number of tests associated with a
group value on X, and Ly (X) measures the maximum confidence of inferring
a test from X. To satisfy a (X,Y)-privacy, Wang and Fung [236] employ
the subtree generalization scheme to generalize X while fixing the reference
point Y. The purpose is to increase Ay (X) or decrease Ly (X) as a test
from X becomes more general. Such subtree generalization scheme is more
general than the full-domain generalization where all generalized values must
be on the same level of the taxonomy tree. Refer to Chapter 3.1 for different
generalization schemes.

A generalized table can be obtained by a sequence of specializations
starting from the most generalized table. Each specialization is denoted by
v — {v1,...,0.}, where v is the parent value and vy,..., v, are the child val-
ues of v. It replaces the value v in every record containing v with the child
value v; that is consistent with the original domain value in the record. A
specialization for a numerical attribute has the form v — {v1, v}, where vy
and v are two sub-intervals of the larger interval v. Instead of being pre-
determined, the splitting point of the two sub-intervals is chosen on-the-fly to
maximize information utility. Refer to Example 6.4 in Chapter 6.2.2 for the
technique on dynamically growing a taxonomy tree for a numerical attribute.
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9.1.2.3 Sequential Releases

Consider a previously released table T and the current table T5, where T}
and T» are projections of the same underlying table and contain some common
attributes. 71 may have been generalized. The problem is to generalize T» to
satisfy a given (X,Y)-privacy. To preserve information, T5’s generalization is
not necessarily based on T7, that is, 75 may contain values more specific than
in Ty. Given T} and 75, the adversary may apply prior knowledge to match
the records in 77 and T5,. Entity matching has been studied in database, data
mining, Al and web communities for information integration, natural language
processing, and Semantic Web. See [211] for a list of works. We cannot con-
sider a priori every possible way of matching. Thus, the problem of sequential
anonymization primarily considers the matching based on the following prior
knowledge available to both the data holder and the adversary: the schema
information of T7 and T3, the taxonomies for categorical attributes, and the
following inclusion-exclusion principle for matching the records. Assume that
t1 € T7 and to € T5.

e (Consistency Predicate: for every common categorical attribute A, t1.A4
matches t5. A if they are on the same generalization path in the taxonomy
tree for A. Intuitively, this says that ¢;.A and ¢3.A can possibly be
generalized from the same domain value. For example, Male matches
Single_Male. This predicate is implicit in the taxonomies for categorical
attributes.

e Inconsistency Predicate: for two distinct categorical attributes 7T7.A and
T5.B, t1.A matches t5.B only if ¢t1.A and ¢5.B are not semantically in-
consistent according to the “common sense.” This predicate excludes
impossible matches. If not specified, “not semantically inconsistent” is
assumed. If two values are semantically inconsistent, so are their spe-
cialized values. For example, Male and Pregnant are semantically in-
consistent, so are Married_Male and 6_Month_Pregnant.

Numerical attributes are not considered in the predicates of the join at-
tributes because their taxonomies may be generated differently for 77 and T5.
Both the data holder and the adversary use these predicates to match records
from 77 and T». The data holder can “catch up with” the adversary by in-
corporating the adversary’s knowledge into such “common sense.” We assume
that a match function tests whether (t1,t2) is a match. (t1,¢2) is a match if
both consistency predicate and inconsistency predicate hold. The join of T
and Ty is a table on att(Th) U att(T:) that contains all matches (t1,t2). The
join attributes refer to all attributes that occur in either predicates. Note that
every common attribute A has two columns 77.4 and T5.A in the join. The
following observation says that generalizing the join attributes produces more
matches, thereby making the join more lossy. The approach presented in this
chapter exploits this property to hide the original matches.
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Observation 9.1.1 (Join preserving) If (t1,t2) is a match and if ¢} is a gen-
eralization of ¢, (t},t2) is a match. (Join relazing) If (t1,t2) is not a match
and if t] is a generalization of ¢; on some join attribute A, (t},%2) is a match
if and only if ¢].A and 2.4 are on the same generalization path and ¢}.4 is
not semantically inconsistent with any value in ¢5. =

Consider a (X,Y)-privacy. We generalize T3 on the attributes X N att(Ts),
called the generalization attributes. Corollary 9.1 implies that including more
attributes in X makes the privacy requirement stronger. Observation 9.1.1
implies that including more join attributes in X (for generalization) makes the
join more lossy. Therefore, from the privacy point of view it is a good practice
to include all join attributes in X for generalization. Moreover, if X contains
a common attribute A from 77 and 75, under the matching predicate, one
of T1.A and T5.A could be more specific (so reveal more information) than
the other. To ensure privacy, X should contain both T7.A and T5.A in the
(X,Y)-privacy specification, so that they can be generalized.

DEFINITION 9.1 Sequential anonymization The data holder has
previously released a table T7 and wants to release the next table T5, where T}
and T are projections of the same underlying table and contain some common
attributes. The data holder wants to ensure a (X,Y)-privacy on the join of
Ty and Ty. The sequential anonymization is to generalize Ty on X N att(T2)
so that the join of T} and Th satisfies the (X, Y)-privacy requirement and T
remains as useful as possible. m

THEOREM 9.1
The sequential anonymization is at least as hard as the k-anonymization prob-
lem.

PROOF The k-anonymization of T7 on QID is the special case of se-
quential anonymization with (X,Y")-anonymity, where X is QID and Y is a
common key of 77 and T3 and the only join attribute. In this case, the join
trivially appends the attributes of T} to 7% according to the common key,
after which the appended attributes are ignored.

9.2 Monotonicity of Privacy

To generalize Ts, the anonymization algorithm presented in [236] specializes
Ty starting from the most generalized state. A main reason for this approach
is the following anti-monotonicity of (X,Y)-privacy with respect to special-
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ization: if (X, Y)-privacy is violated, it remains violated after a specialization.
Therefore, the anonymization algorithm can stop further specialization when-
ever the (X, Y)-privacy is violated for the first time. This is a highly desirable
property for pruning unpromising specialization. We first show this property
for a single table.

THEOREM 9.2
On a single table, the (X,Y)-privacy is anti-monotone with respect to spe-
cialization on X.

PROOF  Sec [236] 0

However, on the join of T and 75, in general, (X,Y)-anonymity is not
anti-monotone with respect to a specialization on X N att(T3). To see this,
let T1 (D, Y) = {d3y3, d3y2, d1y1} and TQ(C, D) = {Cldg, ng}, where C;, diayi
are domain values and d is a generalized value of d; and dy. Ay (X) is the
minimum number of value Y associated with a group value on X. The join
based on D contains 3 matches (c1ds,dsys2), (c1ds,dsys), (ced,dyy1), and
Ay(X) = Ay(caddy) = 1, where X = {C,T1.D,T2.D}. After specializing
the record cod in T into cads, the join contains only two matches (c1ds, dsy2)
and (c1ds,dsys), and Ay (X) = ay(c1dsds) = 2. Thus, Ay (X) increases after
the specialization.

The above situation arises because the specialized record cods matches no
record in T or becomes dangling. However, this situation does not arise for
the T1 and T» encountered in the sequential anonymization. Two tables are
population-related if every record in each table has at least one matching
record in the other table. Essentially, this property says that 77 and T» are
about the same “population” and there is no dangling record. Clearly, if T}
and T3 are projections of the same underlying table, as assumed in the problem
setting of sequential anonymization, T and T, are population-related. Obser-
vation 9.1.1 implies that generalizing T5 preserves the population-relatedness.

Observation 9.2.1 If 77 and T, are population-related, so are they after
generalizing T5. =

LEMMA 9.1
If 71 and Ty are population-related, Ay (X) does not increase after a spe-
cialization of T» on X N att(Ty).

Now, we consider (X,Y)-linkability on the join of 71 and T%. It is not im-
mediately clear how a specialization on X Natt(T3) will affect Ly (X) because
the specialization will reduce the matches, therefore, both a(y, z) and a(z) in
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ly(z) = a(y,x)/a(x). The next lemma shows that Ly (X) does not decrease
after a specialization on X N att(Tz).

LEMMA 9.2
If Y contains attributes from Tj or Ts, but not from both, Ly (X) does not
decrease after a specialization of T5 on the attributes X N att(7%).

COROLLARY 9.2
The (X, Y)-anonymity on the join of T} and T is anti-monotone with respect
to a specialization of To on X N att(Tz). Assume that Y contains attributes
from either Ty or Ts, but not both. The (X,Y)-linkability on the join of T}
and T5 is anti-monotone with respect to a specialization of T5 on X Natt(Ts).
=

COROLLARY 9.3
Let T1, T and (X, Y)-privacy be as in Corollary 9.2. There exists a generalized
T, that satisfies the (X, Y')-privacy if and only if the most generalized T5 does.
n

Remarks. Lemma 9.1 and Lemma 9.2 can be extended to multiple previous
releases. Thus, the anti-monotonicity of (X, Y)-privacy holds for one or more
previous releases. The extension in Chapter 9.4 makes use of this observation.

9.3 Anonymization Algorithm for Sequential Releases

We explain the algorithm for generalizing T to satisfy the given (X,Y)-
privacy on the join of 77 and Ts. Corollary 9.3 is first applied to test if there
exists a solution. In the rest of Chapter 9.3, we assume a solution exists. Let
X; denote X Natt(T;), Y; denote Y Natt(T;), and J; denote the join attributes
in T;, where ¢ = 1, 2.

9.3.1 Overview of the Anonymization Algorithm

The algorithm, called Top-Down Specialization for Sequential Anonymiza-
tion (TDS4SA), is given in Algorithm 9.3.5. The input consists of T3, T, the
(X,Y)-privacy requirement, and the taxonomy tree for each categorical at-
tribute in X5s. Starting from the most generalized T3, the algorithm iteratively
specializes the attributes A; in X,. T5 contains the current set of generalized
records and Cut; contains the current set of generalized values for A;. In
each iteration, if some C'ut; contains a “valid” candidate for specialization, it
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Algorithm 9.3.5 Top-Down Specialization for Sequential Anonymization
(TDS4SA)

Input: Ty, T, a (X,Y)-privacy requirement, a taxonomy tree for each
categorical attribute in X7.

Output: a generalized T satisfying the privacy requirement.

generalize every value of A; to ANY; where A; € Xo;
while there is a valid candidate in UCut; do
find the winner w of highest Score(w) from UCut;;
specialize w on T, and remove w from UCut;;
update Score(v) and the valid status for all v in UCut;;
end while
output the generalized Ty and UCut;;

chooses the winner w that maximizes Score. A candidate is valid if the join

specialized by the candidate does not violate the privacy requirement. The al-

gorithm then updates Score(v) and status for the candidates v in UCut;. This

process is repeated until there is no more valid candidate. On termination,

Corollary 9.2 implies that a further specialization produces no solution, so 75

is a maximally specialized state satisfying the given privacy requirement.
Below, we focus on the three key steps in Lines 3 to 5.

9.3.2 Information Metrics

TDS4SA employs the information metric Score(v) = IGPL(v) presented
in Chapter 4.2 to evaluate the “goodness” of a specialization v for preserv-
ing privacy and information. Each specialization gains some “information,”
InfoGain(v), and loses some “privacy,” PrivLoss(v). TDS4SA chooses the
specialization that maximizes the trade-off between the gain of information
and the loss of privacy, which has been studied in Chapter 6.2.2.

InfoGain(v) is measured on T, whereas PrivLoss(v) is measured on the
join of T} and T». Consider a specialization v — {v1,...,v.}. For a numerical
attribute, ¢ = 2, and v; and vy represent the binary split of the interval v
that maximizes InfoGain(v). Before the specialization, To[v] denotes the set
of generalized records in T, that contain v. After the specialization, Th[v;]
denotes the set of records in 75 that contain v;, 1 < i < c.

The choice of InfoGain(v) and PrivLoss(v) depends on the information
requirement and privacy requirement. If T, is released for classification on
a specified class column, InfoGain(v) could be the reduction of the class
entropy defined by Equation 4.8 in Chapter 4.3. The computation depends
only on the class frequency and some count statistics of v and v; in T [v] and
Tsv1] U -+ U Tz[ve]. Another choice of InfoGain(v) could be the notion of
minimal distortion M D or ILoss discussed in Chapter 4.1. If generalizing a
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child value v; to the parent value v costs one unit of distortion, the information
gained by the specialization: InfoGain(v) = |T3[v]|. The third choice can be
the discernibility (DM) in Chapter 4.1.

The above choices are by no means exhaustive. As far as TDS4SA is con-
cerned, what is important is that InfoGain(v) depends on the single column
att(v), and its class frequency, and the specialization of v only affects the
records in T»[v] and the column att(v). We will exploit this property to main-
tain Score(v) efficiently for all candidates.

For (X,Y)-privacy, PrivLoss(v) is measured by the decrease of Ay (X)
or the increase of Ly (X) due to the specialization of v: Ay (X) — Ay (X,)
for (X,Y)-anonymity, and Ly (X,) — Ly (X) for (X,Y)-linkability, where X
and X, represent the attributes before and after specializing v respectively.
Computing PrivLoss(v) involves the count statistics about X and Y over
the join of T1 and T5, before and after the specialization of v, which can be
expensive. The data holder may choose to ignore the privacy aspect by letting
PrivLoss(v) = 0 in Score(v).

Challenges. Though Algorithm 9.3.5 has a simple high level structure,
several computational challenges must be resolved for an efficient implemen-
tation. First, each specialization of the winner w affects the matching of join,
hence, the checking of the privacy requirement (i.e., the status on Line 5). Tt is
extremely expensive to rejoin the two tables for each specialization performed.
Second, it is inefficient to “perform” every candidate specialization v just to
update Score(v) on Line 5 (note that Ay (X,) and Ly (X,) are defined for the
join assuming the specialization of v is performed). Moreover, materializing
the join is impractical because a lossy join can be very large. A key contribu-
tion of Wang and Fung’s work [236] is an efficient solution that incrementally
maintains some count statistics without executing the join. We consider the
two types of privacy separately.

9.3.3 (X,Y)-Linkability

Two expensive operations on performing the winner specialization w are
accessing the records in T5 containing w and matching the records in T with
the records in T37. To support these operations efficiently, we organize the
records in T3 and T into two tree structures. Recall that X7 = X N att(T1)
and X = X Natt(Tz), and J; and J2 denote the join attributes in Ty and 5.

Treel and Tree2. In Tree2, we partition the T5 records by the attributes
Xs and Jy — X5 in that order, one level per attribute. Each root-to-leaf path
represents a generalized record on X5 U Jy, with the partition of the original
records generalized being stored at the leaf node. For each generalized value v
in Cut;, Link[v] links up all nodes for v at the attribute level of v. Therefore,
Link[v] provides a direct access to all T partitions generalized to v. Tree2
is updated upon performing the winner specialization w in each iteration. In
Treel, we partition the T} records by the attributes J; and X; — Jj in that
order. No specialization is performed on 77, so Treel is static. Some count
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FIGURE 9.1: The static Treel

statistics are stored for each partition in Treel and Tree2 to facilitate efficient
computation of Score(v).

Specialize w (Line 4). This step performs the winner specialization w —
{w1,...,w.}, similar to the TDS algorithm for a single release in Chapter 6.3.
It follows Link[w] to specialize the partitions containing w. For each partition
P, on the link, TDS4SA performs two steps:

1. Refine P, into the specialized partitions for w;, link them into Link[w;].
The specialized partitions remain on the other links of P». The step will
scan the raw records in P, and collect some count statistics to facilitate
the computation of Score(v) in subsequent iterations.

2. Probe the matching partitions in Treel. Match the last |J2| attributes in
P, with the first |.J7| attributes in Treel. For each matching node at the
level |J1| in Treel, scan all partitions P; below the node. If z is the value
on X represented by the pair (Pi, P), increment a(z) by |Pi| x |Pzl,
increment a(x,y) by |Pi[y]| X |P2| if Y is in To, or by |Py| x |Pi[y]| f YV is
in T1, where y is a value on Y. We employ an “X-tree” to keep a(x) and
a(x,y) for the values z on X. In the X -tree, the x values are partitioned
by the attributes X, one level per attribute, and are represented by
leaf nodes. a(z) and a(x,y) are kept at the leaf node for z. Note that
ly(xz) = a(z,y)/a(z) and Ly(X) = maz{l,(z)} over all the leaf nodes x
in the X-tree.

Remarks. This step (Line 4) is the only time that raw records are accessed
in the algorithm.

Update Score(v) (Line 5). After specializing w, for each candidate v
in UCut;, the new InfoGain(v) is obtained from the count statistics stored
together with the partitions on Link[v]. Ly (X) is updated to Ly (X,,) that
was computed in the previous iteration. If Ly (X,) < k, mark v as valid.

Refer to [236] for the details of each step.

Example 9.5
Continue with Example 9.4. Recall that T} denotes the patient data, 75 de-
notes the medical test data, X = {Job, PoB, Zip}, Y = {y = HIV} and the
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After Specialization
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FIGURE 9.2: Evolution of Tree2 (y = HIV)
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FIGURE 9.3: Evolution of X-tree

join attributes J = { PoB, Sex}. X1 = {PoB, Zip} and X3 = {Job, PoB}. Ini-
tially, all values for X, are generalized to ANY ., and ANYpyp, and UCut;
contains these values. To find the winner w, we compute Score(v) for ev-
ery v in UCut;. Figure 9.2 shows (static) Treel for T3, grouped by X; U J,
and Figure 9.2 shows on the left the initial Tree2 for the most generalized
Ty, grouped by X5 U J. For example, in Tree2 the partition generalized to
{ANY o, ANYpop, M} on X7 has 6 records, and 2 of them have the value
HIV.

Figure 9.3 shows the initial X-tree on the left. a(x) and a(z,y) in the X-tree
are computed from Treel and Tree2. For example,

a(ANY]Ob,ANYpOB, UK, Z3) =6x2= 12,
a(ANY]Ob,ANYpOB,UK, Z?),HIV) =2x2= 4,

where the x2 comes from matching the left-most path in Tree2 with the left-
most path in Treel on the join attribute J. In this initial X-tree, L,(X) =
4/12 = 33%.

On specializing ANYp,p — {Europe, US}, three partitions are created in
Tree2 as depicted in Figure 9.2 on the right. The X-tree is updated accord-
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ingly as depicted in Figure 9.3 on the right. To compute a(x) and a(z,y) for
these updated x’s, we access all partitions in one scan of Link[Europe] and
Link[US] in Tree2 and match with the partitions in Treel , e.g.,

a(ANYjop, Europe, UK, Z3) = 4 x 2 =8,
a(ANYjop, Burope, UK, Z3, HIV) =2 x 2 = 4.

In the updated X-tree, L, (X) =4/8 = 50%. 0

We provide an analysis on this algorithm:

1. The records in T7 and 75 are stored only once in Treel and Tree2. For
the static Treel, once it is created, data records can be discarded.

2. On specializing the winner w, Link[w] provides a direct access to the
records involved in T and Treel provides a direct access to the matching
partitions in 77. Since the matching is performed at the partition level,
not the record level, it scales up with the size of tables.

3. The cost of each iteration has two parts. The first part involves scan-
ning the affected partitions on Link[w] for specializing w in Tree2 and
maintaining the count statistics. This is the only operation that accesses
records. The second part involves using the count statistics to update
the score and status of candidates.

4. In the whole computation, each record in T» is accessed at most | X N
att(T)| x h times because a record is accessed only if it is specialized
on some attribute from X N att(T3), where h is the maximum height of
the taxonomies for the attributes in X N att(T3).

5. The algorithm can be terminated any time with a generalized T, satis-
fying the given privacy requirement.

9.3.4 (X,Y)-Anonymity

Like for (X,Y)-linkability, we use Treel and Tree2 to find the matching
partitions (Pi, Py), and performing the winner specialization and updating
Score(v) is similar to Chapter 9.3.3. But now, we use the X-tree to update
ay (z) for the values z on X, and there is one important difference in the
update of ay (z). Recall that ay(x) is the number of distinct values y on
Y associated with the value z. Since the same (z,y) value may be found in
more than one matching (P;, P») pair, we cannot simply sum up the count
extracted from all pairs. Instead, we need to keep track of distinct Y values for
each x value to update ay (x). In general, this is a time-consuming operation,
e.g., requiring sorting/hashing/scanning. Refer to [236] for the cases in which
ay (x) can be updated efficiently.
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9.4 Extensions

TDS4SA can be extended to anonymize the current release 7}, with the
presence of multiple previous releases 17, . .., T,—1. One solution is first joining
all previous releases T1,...,T,—1 into one “history table” and then applying
the proposed method for two releases. This history table is likely extremely
large because all T1,...,T,_1 are some generalized versions and there may
be no join attributes between them. A preferred solution should deal with all
releases at their original size. As remarked at the end of Chapter 9.2, Lemma
9.1-9.2 can be extended to this general case. Below, we briefly describe the
modified problem definition. Refer to [236] for the modification required for
the TDS4SA in Chapter 9.3.

Let ¢; be a record in T;. The Consistency Predicate states that, for all
releases T; that have a common attribute A, ¢;.A’s are on the same general-
ization path in the taxonomy tree for A. The Inconsistency Predicate states
that for distinct attributes 7;.A4 and T;.B, t;.A and t;.B are not semantically
inconsistent according the “common sense.” (¢1,ta,...,t,) is a match if it sat-
isfies both predicates. The join of T4,T5,...,T, is a table that contains all
matches (t1,%2,...,t,). For a (X,Y)-privacy on the join, X and Y are dis-
joint subsets of att(T1) U att(Tz) U - - - Uatt(T,) and if X contains a common
attribute A, X contains all T;.A such that T; contains A.

DEFINITION 9.2 Sequential anonymization Suppose that tables
T1,...,Tp—1 were previously released. The data holder wants to release a table
T,, but wants to ensure a (X,Y)-privacy on the join of T1,T5,...,T,. The
sequential anonymization is to generalize T, on the attributes in X N att(T),)
such that the join satisfies the privacy requirement and 7} remains as useful
as possible. m

9.5 Summary

Previous discussions on k-anonymization focused on a single release of
data. In reality, data is not released in one-shot, but released continuously to
serve various information purposes. The availability of related releases enables
sharper identification attacks through a global quasi-identifier made up of the
attributes across releases. In this chapter, we have studied the anonymiza-
tion problem of the current release under this assumption, called sequential
anonymization [236]. The privacy notion, (X,Y)-privacy has been extended
to address the privacy issues in this case. We have also studied the notion of
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lossy join as a way to hide the join relationship among releases and a scalable
anonymization solution to the sequential anonymization problem.

There is an empirical study in [236] thats shows extensive experiments on
TDS4SA to evaluate the impact of achieving (X, Y)-privacy on the data qual-
ity in terms of classification error and distortion per record. Experimental
results on real-life data suggest that it requires only a small data penalty to
achieve a wide range of (X, Y')-privacy requirements in the scenario of sequen-
tial releases. The method is superior to several obvious solution candidates,
such as k-anonymizing the current release, removing the join attributes, and
removing the sensitive attributes. All these alternative solutions do not re-
spond dynamically to the (X,Y)-privacy specification and the generalization
of join. The experiments show that the dynamical response to the generaliza-
tion of join helps achieve the specified privacy with less data distortion. The
index structure presented in Figures 9.1-9.3 is highly scalable for anonymizing
large data sets.



Chapter 10

Anonymizing Incrementally Updated
Data Records

10.1 Introduction

k-anonymization has been primarily studied for a single static release of
data in Parts I and II. In practice, however, new data arrives continuously
and up-to-date data has to be published to researchers in a timely manner.
In the model of incremental data publishing, the data holder has previously
published T1,...,T,—1 and now wants to publish T},, where T; is an updated
release of T;_1 with record insertions and/or deletions. The problem assumes
that all records for the same individual remain the same in all releases. Unlike
the sequential anonymization problem studied in Chapter 9 which assumes
all releases are projections of the same underlying data table, this problem
assumes all releases share the same database schema.

The problem of incremental data publishing has two challenges. (1) Even
though each release T1, ..., T}, is individually anonymous, the privacy require-
ment could be compromised by comparing different releases and eliminating
some possible sensitive values for a victim. (2) One approach to solve the prob-
lem of incremental data publishing is to anonymize and publish new records
separately each time they arrive. This naive approach suffers from severe data
distortion because small increments are anonymized independently. Moreover,
it is difficult to analyze a collection of independently anonymized data sets.
For example, if the country name (e.g., Canada) is used in the release for
first month records and if the city name (e.g., Toronto) is used in the re-
lease for second month records, counting the total number of persons born in
Toronto is not possible. Another approach is to enforce the later release to
be no more specialized than the previous releases [217]. The major drawback
is that each subsequent release gets increasingly distorted, even if more new
data are available.

The incremental data anonymization problem assumes that the adversary
knows the timestamp and QI D of the victim, so the adversary knows exactly
which releases contain the victim’s data record. The following example shows
the privacy threats caused by record insertions and deletions.

161
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Table 10.1: Continuous data publishing:
2-diverse T}

Job Sex Disease
Professional Female Cancer
Professional Female Diabetes

Artist Male Fever
Artist Male Cancer

Table 10.2: Continuous data publishing:
2-diverse T after an insertion to 7;

Job Sex Disease
Professional Female Cancer
Professional Female Diabetes
Professional Female HIV

Artist Male Fever
Artist Male Cancer

Example 10.1

Let Table 10.1 be the first release T;. Let Table 10.2 be the second release
Ty after inserting a new record to T7. Both 77 and T3 satisfy 2-diversity
independently. Suppose the adversary knows that a female lawyer, Alice, has
a record in Ty but not in 77, based on the timestamp that Alice was admitted
to a hospital. From T5, the adversary can infer that Alice must have contracted
either Cancer, Diabetes, or HIV. By comparing T5 with 77, the adversary
can identify that the first two records in 75 must be old records from T} and,
thus, infer that Alice must have contracted HIV.

Example 10.2

Let Table 10.1 be the first release 1. Let Table 10.3 be the second release
T, after deleting the record (Professional, Female, Diabetes) from and in-
serting a new record (Professional, Female, Fever) to Ty. Both Ty and T
satisfy 2-diversity independently. Suppose the adversary knows that a female
engineer, Beth, must be in both T and T5. From 77, the adversary can infer
that Beth must have contracted either Cancer or Diabetes. Since Ty contains
no Diabetes, the adversary can infer that Beth must have contracted Cancer.

[

Byun et al. [42] are the pioneers who propose an anonymization tech-
nique that enables privacy-preserving incremental data publishing after new
records have been inserted. Specifically, it guarantees every release to satisfy
{-diversity, which requires each gid group to contain at least ¢ distinct sensitive
values. Since this instantiation of ¢-diversity does not consider the frequencies
of sensitive values, an adversary could still confidently infer a sensitive value of
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Table 10.3: Continuous data
publishing: 2-diverse T5 after a deletion
from and an insertion to T}

Job Sex Disease
Professional Female Cancer
Professional Female Fever

Artist Male Fever
Artist Male Cancer

a victim if the value occurs frequently in a gid group. Thus, the instantiation
employed by Byun et al. [42] cannot prevent attribute linkage attacks.

Byun et al. [42] attempt to address the privacy threats caused by record
insertions but not deletions, so the current release 7}, contains all records in
previous releases. The algorithm inserts new records into the current release
T, only if two privacy requirements remain satisfied after the insertion: (1)
T, is (-diverse. (2) Given any previous release T; and the current release T),
together, there are at least ¢ distinct sensitive values in the remaining records
that could potentially be the victim’s record. This requirement can be verified
by comparing the difference and intersection of the sensitive values in any two
“comparable” gid groups in T; and T},. The algorithm prefers to specialize T},
as much as possible to improve the data quality, provided that the two privacy
requirements are satisfied. If the insertion of some new records would violate
any of the privacy requirements, even after generalization, the insertions are
delayed until later releases. Nonetheless, this strategy sometimes may run into
a situation in which no new data could be released. Also, it requires a very
large memory buffer to store the delayed data records.

In this chapter, we study two scenarios of privacy-preserving incremental
data publishing: continuous data publishing [93] in Chapter 10.2 and dynamic
data republishing [251] in Chapter 10.3. In continuous data publishing, every
release is an “accumulated” version of data at each time instance, which con-
tains all records collected so far. Thus, every data release publishes the “his-
tory,” i.e., the events that happened up to time of the new release. The model
captures the scenario that once a record is collected, it cannot be deleted. In
contrast, dynamic data republishing assumes the raw data of any previously
records can be inserted, deleted, and updated. A new release contains some
new records and some updated records. Every release is the data collected
at each time instance. In both cases, the adversary has access to all releases
published at each time instance.

Some works misinterpret that Fung et al.’s work [93] allows only records
insertion but not records deletion. In fact, 77 and T can be arbitrary sets
of records, not necessarily the result of inserting or deleting records from the
other table. The difference is that the work in [93] anonymizes (71 U T3) as
one release to allow the data analysis on the whole data set. In contrast, all
other works [251] anonymize each T; independently, so the publishing model
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in [251] does not benefit from new data because each T; is small, resulting in
large distortion.

10.2 Continuous Data Publishing

k-anonymization is an important privacy protection mechanism in data
publishing. While there has been a great deal of work in recent years, almost
all considered a single static release. Such mechanisms only protect the data
up to the first release or first recipient. In practical applications, data is pub-
lished continuously as new data arrive; the same data may be anonymized
differently for a different purpose or a different recipient. In such scenarios,
even when all releases are properly k-anonymized, the anonymity of an indi-
vidual may be unintentionally compromised if the recipient cross-examines all
the releases received or colludes with other recipients. Preventing such attacks,
called correspondence attacks, faces major challenges.

Fung et al. [93] show a method to systematically quantify the exact num-
ber of records that can be “cracked” by comparing all k-anonymous releases.
A record in a k-anonymous release is “cracked” if it is impossible to be a
candidate record of the target victim. After excluding the cracked records
from a release, a table may no longer be k-anonymous. In some cases, data
records, with sensitive information of some victims, can even be uniquely
identified from the releases. Fung et al. [93] propose a privacy requirement,
called BCF-anonymity, to measure the true anonymity in a release after ex-
cluding the cracked records, and present a generalization method to achieve
BCF-anonymity without delaying record publication or inserting counterfeit
records. Note, the traditional k-anonymity does not consider the sensitive
values, but BCF-anonymity relies on the sensitive values to determine the
cracked records. In Chapter 10.2, we study the correspondence attacks and
the BCF-anonymity in details.

10.2.1 Data Model

Suppose that the data holder previously collected a set of records 7} times-
tamped t;, and published a k-anonymized version of 77, denoted by release
Ri. Then the data holder collects a new set of records 15 timestamped to
and wants to publish a k-anonymized version of all records collected so far,
T1 UT5, denoted by release Ro. Note, T; contains the “events” that happened
at time ¢;. An event, once occurred, becomes part of the history, therefore,
cannot be deleted. This publishing scenario is different from update scenario
in standard data management where deletion of records can occur. R; simply
publishes the “history,” i.e., the events that happened up to time ¢;. A real-life
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example can be found in California where the hospitals are required to submit
specific demographic data of all discharged patients every six months.! The
above publishing model directly serves the following scenarios.

Continuous data publishing. Publishing the release Ry for T UT, would
permit an analysis on the data over the combined time period of ¢; and ts.
It also takes the advantage of data abundance over a longer period of time to
reduce data distortion required by anonymization.

Multi-purpose publishing. With 75 being empty, R; and Rs can be two
releases of T anonymized differently to serve different information needs, such
as correlation analysis vs. clustering analysis, or different recipients, such as a
medical research team vs. a health insurance company. These recipients may
collude together by sharing their received data.

We first describe the publishing model with two releases and then show the
extension beyond two releases and beyond k-anonymity in Chapter 10.2.6.
Following the convention of k-anonymity [201, 217], we assume that each
individual has at most one record in 77 UT5. This assumption holds in many
real-life databases. For example, in a normalized customer data table, each
customer has only one profile. In the case that an individual has a record in
both T7 and T5, there will be two duplicates in T3 U T5 and one of them can
be removed in a preprocessing.

10.2.2 Correspondence Attacks

We use the following example to illustrate the idea of correspondence attack
and show that the traditional k-anonymization is insufficient for preventing
correspondence attacks.

Example 10.3

Consider Tables 10.4-10.5 with taxonomy trees in Figure 10.1, where QID
is [Birthplace,Job] and the sensitive attribute is Disease. The data holder
(e.g., a hospital) published the 5-anonymized R; for 5 records a;-as collected
in the previous month (i.e., timestamp ¢1). The anonymization was done by
generalizing UK and France into Europe; the original values in the brackets
are not released. In the current month (i.e., timestamp ¢2), the data holder
collects 5 new records (i.e., bg-b1p) and publishes the 5-anonymized Rs for all
10 records collected so far. Records are shuffled to prevent mapping between
R1 and Rs by their order. The recipients know that every record in R; has a
“corresponding record” in Ry because Rs is a release for T3 UT5. Suppose that
one recipient, the adversary, tries to identify his neighbor Alice’s record from
Ry or Ry, knowing that Alice was admitted to the hospital, as well as Alice’s
QID and timestamp. Consider the following scenarios with Figure 10.2.

Thttp://www.oshpd.ca.gov/HQAD /PatientLevel /
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Table 10.4: 5-anonymized R;

RID Birthplace Job Disease
(a1) | Europe (UK) | Lawyer | Flu
as Europe (UK) Lawyer Flu

Europe (France) | Lawyer | HIV

)

a3) | Europe (UK) | Lawyer | Flu
)
) | Europe (France) | Lawyer | HIV

Table 10.5: 5-anonymized Ry

RID | Birthplace Job Disease
(b1) UK Professional (Lawyer) | Flu
(b2) UK Professional (Lawyer) | Flu
(b3) UK Professional (Lawyer) | Flu
(by) France | Professional (Lawyer) [ HIV
(bs) France | Professional (Lawyer) [ HIV
(bg) France | Professional (Lawyer) | HIV
(b7) France | Professional (Doctor) Flu
(bg) France | Professional (Doctor) Flu
(bg) UK Professional (Doctor) | HIV
(b10) UK Professional (Lawyer) | HIV

Scenario I. Alice has QI D=[France, Lawyer] and timestamp ¢;. The ad-
versary seeks to identify Alice’s record in R;. Examining R; alone, Alice’s
QID matches all 5 records in R;. However, examining R; and Rs together,
the adversary learns that the records a,as,a3 cannot all originate from Al-
ice’s QID; otherwise Ry would have contained at least 3 records of [France,
Professional, Flu] since every record in Ry has a corresponding record in Rs.
Consequently, the adversary excludes one of a1,as2,a3 as possibility; the choice
among ai,a2,a3 does not matter as they are identical. The crossed out record
as in Figure 10.2 represents the excluded record.

Scenario ITI. Alice has QI D=[France, Lawyer] and timestamp ¢;. Knowing
that Ry contains all records at t; and t2, the adversary seeks to identify Alice’s
record in Ry. The adversary infers that, among the matching records by-bg
in Ry, at least one of b4,bs,bg must have timestamp to; otherwise by,bs,bg
would have timestamp t¢;, in which case there would have been at least 3
(corresponding) records of the form [Europe, Lawyer, HIV] in R;. In this case,
the adversary excludes at least one of by4,bs,bg since Alice has timestamp t;.

Europe Professional
UK France Lawyer Doctor

FIGURE 10.1: Taxonomy trees for Birthplace and Job
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Scenario I: F-attack Scenario II: C-attack Scenario IIl: B-attack F1y (b, )
Exclude a, Exclude b Excludeb,  p1y 1y

(al) Flu HIV (b4) (al) Flu HIV (b4) (al) Flu Flu (b3)
+a—Fie HIV (bs) | (a;) Flu HIV (bs) | (a;) Flu Flu (br)
(as) Flu HIV (bg) | (as) Flu HV—be | (a3) Flu —>Fly (by)
(ay) HIV Flu (by) | (ay) HIV Flu (by) | (&) HIV—>HIV (b))
(as) HIV Flu (bg) | (as) HIV Flu (bg) | (as) HIV—» 41V (byy)

FIGURE 10.2: Correspondence attacks

The crossed out record bg in Figure 10.2 represents the excluded record.

Scenario III. Alice has QID=[UK, Lawyer] and timestamp ¢ and the
adversary seeks to identify Alice’s record in Rs. The adversary infers that,
among the matching records by ,b2,b3,b9,b19 in R, at least one of by,b2,b3 must
have timestamp t1; otherwise one of aj,a2,a3 would have no corresponding
record in Ry. In this case, at least one of by,bs,b3 is excluded since Alice has
timestamp t5. The crossed out record bs in Figure 10.2 represents the excluded
record.

In each scenario, at least one matching record is excluded, so the 5-
anonymity of Alice is compromised.

All these attacks “crack” some matching records in R; or Rs by inferring
that they either do not originate from Alice’s QID or do not have Alice’s
timestamp. Such cracked records are not related to Alice, thus, excluding them
allows the adversary to focus on a smaller set of candidates. Since cracked
records are identified by cross-examining Ry and Ry and by exploiting the
knowledge that every record in R; has a “corresponding record” in Rag, such
attacks are called correspondence attacks.

Having access to only R; and Rs, not 77 and 75, cracking a record is
not straightforward. For example, to crack a record in R; for Alice having
QID=[France, Lawyer|, the adversary must show that the original birthplace
in the record is not France, whereas the published Europe may or may not
originate from France. Similarly, it is not straightforward to infer the time-
stamp of a record in Rs. For example, any three of by,b2,b3,b7,bs can be the
corresponding records of a1,as,a3, so none of them must have timestamp ¢ .
In fact, observing only the published records, there are many possible as-
signments of corresponding records between R; and Rs. For example, one
assignment is

(ah bl)a (a27 b2)7 (CLg, b3)7 (CL4, b4)7 (CL5, 65)7
where the original record represented by (a1,b1) is [UK, Lawyer, Flu|. An-
other assignment is



168 Introduction to Privacy-Preserving Data Publishing

(ah b7)7 (a27 b2)7 (CLg, bS)a (CL4, bﬁ)a (CL5, b9)
In this assignment, the original record represented by (a1,b7) is [France,
Lawyer, Flu]. All such assignments are possible to the adversary because they
all produce the same “view,” i.e., R; and Rs. Detecting correspondence at-
tacks assuming this view of the adversary is non-trivial.

In Chapter 10.2, we formalize the notion of correspondence attacks and
present an approach to prevent such attacks. We focus on answering several
key questions:

e Given that there are many possible ways of assigning corresponding
pairs, and each may lead to a different inference, what should the adver-
sary assume while cracking a record? We present a model of correspon-
dence attacks to address this issue and show that the continuous data
publishing problem subsumes the case with multiple colluding recipients
(Chapter 10.2.3).

o What are exactly the records that can be cracked based on Ry and Ro?
We systematically characterize the set of cracked records by correspon-
dence attacks and propose the notion of BCF-anonymity to measure
anonymity assuming this power of the adversary (Chapter 10.2.4).

o Can Ry be anonymized such that Ry satisfies BCF-anonymity yet re-
mains useful? We show that the optimal BCF-anonymization is NP-
hard. Then, we develop a practically efficient algorithm to determine
a BCF-anonymized Ry (Chapter 10.2.5), and extend the proposed ap-
proach to deal with more than two releases (Chapter 10.2.6).

10.2.3 Anonymization Problem for Continuous Publishing

To generalize a table, Fung et al. [93] employ the subtree generalization
scheme discussed in Chapter 3.1. A generalized attribute A; can be repre-
sented by a “cut” through its taxonomy tree. Ry and R, in Tables 10.4-10.5
are examples. There are some other generalization schemes, such as multi-
dimensional and local recoding, that cause less data distortion, but these
schemes make data analysis difficult and suffer from the data exploration
problem discussed in Chapter 3.1.

In a k-anonymized table, records are partitioned into equivalence classes of
size (i.e., the number of records) at least k. Each equivalence class contains all
records having the same value on QID. gid denotes both a value on QI D and
the corresponding equivalence class. |gid| denotes the size of the equivalence
class. A group ¢ in an equivalence class ¢id consists of the records in qid
that have the same value on the sensitive attribute. In other words, a group
contains all records in the table that are indistinguishable with respect to
QID and the sensitive attribute. Note that this group notion is different from
that of QID groups in the literature, which require only being identical on
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QID. A person matches a (generalized) record in a table if her QID is either
equal to or more specific than the record on every attribute in QID.

The data holder previously collected some data Tj timestamped ¢; and
published a k-anonymized version of T, called release Ry. Then the data
holder collects new data 75 timestamped to and publishes a k-anonymized
version of T3 UT5, called release Ra. An adversary, one of the recipients of R;
and R,, attempts to identify the record of some target person, denoted by P,
from R; or Ry. The problem assumes that the adversary is aware of P’s QID
and timestamp. In addition, the adversary has the following correspondence
knowledge:

1. Every record timestamped ¢; (i.e., from T1) has a record in R; and a
record in Rs, called corresponding records.

2. Every record timestamped t5 (i.e., from T%) has a record in Rz, but not
in R;. Below is an intuition of the three possible attacks based on such
knowledge.

Forward-attack, denoted by F-attack(R;, R2). P has timestamp t¢; and
the adversary tries to identify P’s record in the cracking release R; using the
background release Ro. Since P has a record in Ry and a record in Ry, if a
matching record r; in R; represents P, there must be a corresponding record
in Ry that matches P’s QID and agrees with 1 on the sensitive attribute. If
r1 fails to have such a corresponding record in Ro, then r; does not originate
from P’s QID, and therefore, r; can be excluded from the possibility of P’s
record. Scenario I is an example.

Cross-attack, denoted by C-attack(Ry, Rz). P has timestamp ¢; and the
adversary tries to identify P’s record in the cracking release Ro using the
background release R;. Similar to F-attack, if a matching record ro in Ro
represents P, there must be a corresponding record in R; that matches P’s
QID and agrees with 7o on the sensitive attribute. If ro fails to have such
a corresponding record in Rj, then ro either has timestamp t5 or does not
originate from P’s QID, and therefore, ro can be excluded from the possibility
of P’s record. Scenario II is an example.

Backward-attack, denoted by B-attack(R1, R2). P has timestamp to and
the adversary tries to identify P’s record in the cracking release Ro using
the background release Ry. In this case, P has a record in Rs, but not in
R;y. Therefore, if a matching record ro in R has to be the corresponding
record of some record in Ry, then ro has timestamp t;, and therefore, ro can
be excluded from the possibility of P’s record. Scenario III is an example.
Note that it is impossible to single out the matching records in Ry that have
timestamp t2 but do not originate from P’s QID since all records at to have
no corresponding record in R;.

Table 10.6 summarizes all four possible combinations of cracking release
(Ry or Ry) and target P’s timestamp (t; or ¢2). Note that if a target P has
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Table 10.6: Types of correspondence attacks

Target P’s | Cracking | Background
timestamp | release release
F-attack t 1 Rl R2
C-attack t 1 R2 R 1
B-attack to Ry Ry
No attack to R, Ro

timestamp t2, P does not have a record in Ry, so it is impossible to crack P’s
record in R; in such a case and there are only three types of attacks.

All these attacks are based on making some inferences about corresponding
records. There are many possible assignments of corresponding records that
are consistent with the published view R; and R, and the adversary’s knowl-
edge. Each assignment implies a possibly different underlying data (D}, D5),
not necessarily the actual underlying data (T1,7T2) collected by the data
holder. Since all such underlying data (D7, Dj) generate the same published
R1 and R», they are all possible to the adversary who knows about the data
only through the published R; and R,. This observation suggests that we
should consider only the inferences that do not depend on a particular choice
of a candidate (D7, D}). First, let us define the space of such candidates un-
derlying data for the published R; and Rs.

Consider a record r in Ry or Rs. An instantiation of r is a raw record that
agrees with r on the sensitive attribute and specializes r or agrees with r on
QID. A generator of (Ry, Rg) is an assignment, denoted by I, from the records
in R; U R5 to their instantiations such that: for each record r; in Ry, there is a
distinct record 73 in Ry such that I(ry) = I(r2); (r1,72) is called buddies under
I. Duplicate records are treated as distinct records. The buddy relationship
is injective: no two records have the same buddy. Every record in R; has a
buddy in Rs and exactly |R1| records in Ry have a buddy in R;. If 7o in Ry
has a buddy in Ry, I(r2) has timestamp ¢1; otherwise I(r2) has timestamp ¢s.
Intuitively, a generator represents an underlying data for (Ry, R2) and each
pair of buddies represent corresponding records in the generator.

Example 10.4
Refer to R; and Ry in Table 10.4 and Table 10.5. One generator has the
buddies:

ay,by), assigned to [UK, Lawyer, Flu]
as, by), assigned to [UK, Lawyer, Flu]
3), assigned to [UK, Lawyer, Flu]
) [
) [

o~~~ ~ ~

as, b
a4,by), assigned to [France, Lawyer, HIV]
as, bs), assigned to [France, Lawyer, HIV]

I(b1)-I(bs) have timestamp t;. bg-b1o can be assigned to any instantiation.
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Another generator has the buddies:

(a1, br), assigned to [France, Lawyer, Fluy]
(ag, bg) assigned to [UK, Lawyer, Flu]
(a3, bg), assigned to [France, Lawyer, Flu]
(a4, by), assigned to [UK, Lawyer, HIV]
(a5, b10), assigned to [UK, Lawyer, HIV]

I(bg), I(b7)-I(b1o) have timestamp ¢;.

Another generator has the buddies:

(a1, br), assigned to [France, Lawyer, Fluy]
(az2,b2), assigned to [UK, Lawyer, Flu]
(a3, bg), assigned to [France, Lawyer, Flu]
(a4, be), assigned to [France, Lawyer, HIV]
(as, bg), assigned to [UK, Lawyer, HIV]

I(bs), I(bg)-I1(by) have timestamp ¢1. Note that these generators give different
underlying data.

Consider a record r in Ry or Ry. Suppose that for some generator I, the
instantiation I(r) matches P’s QID and timestamp. In this case, excluding
r means information loss for the purpose of attack because there is some
underlying data for (Ry, R2) (given by I) in which r is P’s record. On the
other hand, suppose that for no generator I the instantiation I(r) can match
P’s QID and timestamp. Then r definitely cannot be P’s record, so excluding
r losses no information to the adversary. The attack model presented in [93]
is based on excluding such non-representing records.

For a target P with timestamp ¢1, if P has a record in R;, P must match
some qid; in Ry and some qids in Rs. Therefore, we assume such a matching
pair (qids, qids) for P. Recall that a group g; in an equivalence class gid; con-
sists of the records in gid; that agree on the sensitive attribute. For a generator
I, I(g;) denotes the set of records {I(r;) | r; € gi}. Below, we present the for-
mal definition for each type of attacks. r;, g;, gid; refer to records, groups, and
equivalence classes from R;, ¢ = 1,2.

10.2.3.1 F-attack

The F-attack seeks to identify as many as possible records in an equivalence
class gidy that do not represent P in any choice of the generator. Such cracked
records definitely cannot be P’s record, and therefore can be excluded. Since
all records in a group are identical, the choice of cracked records in a group
does not make a difference and determining the number of cracked records
(i.e., the crack size) is sufficient to define the attack.
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DEFINITION 10.1 Crack size Assume that a target P has timestamp
t; and matches (gidy, gids). A group g1 in gid; has crack size ¢ with respect
to P if ¢ is maximal such that for every generator I, at least ¢ records in I(g1)
do not match P’s QID. m

If g1 has crack size ¢, at least ¢ records in g; can be excluded from the
possibility of P’s record. On the other hand, with ¢ being maximal, excluding
more than ¢ records will result in excluding some record that can possibly be
P’s record. Therefore, the crack size is both the minimum and the maximum
number of records that can be excluded from g; without any information loss
for the purpose of attack.

Example 10.5
Consider Scenario I in Example 10.3. Alice has QI D=[France, Lawyer| and
matches (qids, gids), where

qid; = [Europe, Lawyer| = {a1, az, a3, a4, a5}
qids = [France, Professional] = {by, b5, bs, b7, bs}.

gidy has two groups: g1 = {a1, a2, a3} for Flu and g = {a4, a5} for HIV. g; has
crack size 1 with respect to Alice because, for any generator I, at least one of
I(a1),I(a2),I(as) does not match Alice’s QID: if all of I(a1),I(a2),I(as) match
Alice’s QID, Ry would have contained three buddies of the form [France, Pro-
fessional, Flu]. The crack size is maximal since the second generator I in Ex-
ample 10.4 shows that only one of I(ay),I(az2),I(a3) (e.g., I(az) in Figure 10.2£I
does not match Alice’s QID.

Definition 10.1 does not explain how to effectively determine the crack size,
which is the topic in Chapter 10.2.4. For now, assuming that the crack size
is known, we want to measure the anonymity after excluding the cracked
records from each equivalence class. The F-anonymity below measures the
minimum size of an equivalence class in R; after excluding all records cracked
by F-attack.

DEFINITION 10.2 F-anonymity Let F(P,qidy, qids) be the sum of the

crack sizes for all groups in gid; with respect to P. F(qidy, gid2) denotes the
maximum F(P, gidy, qids) for any target P that matches (qgidy, gidz). F(qgidy)
denotes the maximum F(gidy, qids) for all gids in Re. The F-anonymity of
(R1, R2), denoted by FA(Ry, Rz) or FA, is the minimum (|qid;| — F(qid1))
for all gid; in R;. =
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10.2.3.2 C-attack

DEFINITION 10.3 Crack size  Assume that a target P has timestamp
t; and matches (qidy, gide). A group gs in gids has crack size ¢ with respect
to P if ¢ is maximal such that for every generator I, at least ¢ records in I(g2)
do not match either P’s timestamp or P’s QID.w

Example 10.6
Consider Scenario IT in Example 10.3. Alice has QI D=[France, Lawyer| and
matches (qidy,qidz) where

qidy, = [Europe, Lawyer] = {a1, a2, a3, a4, a5}
qids = [France, Professional] = {by, b5, bs, b7, bs}.

gids has two groups: go = {bz,bsg} for Flu, and g5 = {bs,bs5,b} for HIV.
g% has crack size 1 with respect to Alice since, for any generator I at least
one of I(by),I(bs),I(bg) does not match Alice’s timestamp or QID; otherwise,
R; would have contained three buddies of the form [Europe, Lawyer, HIV].
The crack size is maximal since the first generator I in Example 10.4 shows
that I(by) and I(bs) match Alice’s timestamp and QID. bg is excluded in
Figure 10.2.

DEFINITION 10.4 C-anonymity Let C(P,qidy,qids) be the sum of
crack sizes of all groups in ¢idy with respect to P. C(qidy, gide) denotes the
maximum C(P, gidy, qids) for any target P that matches (qidy, gidz). C(gidz)
denotes the maximum C(qidy, qids) for all gidy in R;. The C-anonymity of
(R1, R2), denoted by CA(Ry, Rz) or CA, is the minimum (|gidz| — C(qidz))
for all gids in Ro. m

10.2.3.3 B-attack

A target P for B-attack has timestamp to, thus, does not have to match
any qid; in R;.

DEFINITION 10.5 Crack size Assume that a target P has timestamp
to and matches qids in Ro. A group g in qids has crack size ¢ with respect to
P if ¢ is maximal such that for every generator I, at least ¢ records in I(gs)
have timestamp ;.

Example 10.7

Consider Scenario ITI in Example 10.3. Alice has timestamp t2 and QI D=[UK,
Lawyer]. gido=[UK, Professional] consists of go = {b1,b2,b3} for Flu and
g5 = {bg,b1p} for HIV. gy has crack size 1 with respect to Alice. For every



174 Introduction to Privacy-Preserving Data Publishing

generator I, at least one of I(b1),I(b2),I(bs) has timestamp ¢1; otherwise, one
of ay,a2,a3 would have no buddy in Rs. The crack size is maximal since the
second generator I in Example 10.4 shows that only I(b2) in Figure 10.2,
among 1(by),I(b2),I(b3), has timestamp ¢;.

DEFINITION 10.6 B-anonymity Let B(P,qids) be the sum of the
crack sizes of all groups in gids with respect to P. B(gids) denotes the max-
imum B(P,qids) for any target P that matches gids. The B-anonymity of
(R1, R2), denoted by BA(R;, R2) or BA, is the minimum (|gidz| — B(qidz))
for all ¢gids in Rs.

10.2.3.4 Detection and Anonymization Problems

A BCF-anonymity requirement states that all of BA, CA and FA are
equal to or larger than some data-holder-specified threshold. We study two
problems. The first problem checks whether a BCF-anonymity requirement is
satisfied, assuming the input (i.e., R; and Ry) as viewed by the adversary.

DEFINITION 10.7 Detection Given Ry and Rs, as described above,
the BCF-detection problem is to determine whether a BCF-anonymity re-
quirement is satisfied. m

The second problem is to produce a generalized Ro that satisfies a given
BCF-anonymity requirement and remains useful. This problem assumes the
input as viewed by the data holder, that is, R1,T} and T5, and uses an infor-
mation metric to measure the usefulness of the generalized R,. Examples are
discernibility cost [213] and data distortion [203].

DEFINITION 10.8 Anonymization Given Ry, T} and 75, as described

above, the BCF-anonymization problem is to generalize Ry = T UT5 so that
Ry satisfies a given BCF-anonymity requirement and remains as useful as
possible with respect to a specified information metric. m

In the special case of empty 77, F-attack and C-attack do not happen and
B-anonymity coincides with k-anonymity of Ry for T5. Since the optimal k-
anonymization is NP-hard [168], the optimal BCF-anonymization is NP-hard.

So far, the problem assumes that both R; and Ry are received by one recip-
ient. In the special case of empty T», Ry and Rs are two different generalized
versions of the same data T} to serve different information requirements or dif-
ferent recipients. In this case, there are potentially multiple adversaries. What
happens if the adversaries collude together? The collusion problem may seem
to be very different. Indeed, Definitions 10.7-10.8 subsume the collusion prob-
lem. Consider the worst-case collusion scenario in which all recipients collude
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together by sharing all of their received data. This scenario is equivalent to
publishing all releases to one adversary.

10.2.4 Detection of Correspondence Attacks

The key to the BCF-detection problem is computing the crack size in Def-
initions 10.1, 10.3, 10.5. Fung et al. [93] present a method for computing the
crack size of a group. Their insight is that if a record r represents the target
P for some generator, its buddy in the other release (i.e., the corresponding
record) must satisfy some conditions. If such conditions fail, » does not repre-
sent P for that generator. One of the conditions is the following “comparable”
relationship.

DEFINITION 10.9 For qidy in Ry and gids in Ry, (qidy, gids) are com-
parable if for every attribute A in QID, gidy[A] and qid2[A] are on the same
path in the taxonomy of A. For a record in 7 (or a group) in gid; and a
record 1o (or a group) in gida, (r1,72) are comparable if they agree on the sen-
sitive attribute and (gids, gid2) are comparable. For comparable (gidy, gids),
CG(qidy, qids) denotes the set of group pairs {(g1,92)}, where g; and g are
groups in qid; and gids for the same sensitive value and there is one pair
(91, g2) for each sensitive value (unless both g; and g, are empty). =

Essentially, being comparable means sharing a common instantiation. For
example, gid; = [Europe, Lawyer| and gids = [UK, Professional] are com-
parable, but gid; = [Europe, Lawyer| and ¢ids = [Canada, Professional] are
not. It is easy to see that if a target P matches (gidy, qids), (qidy, gids) are
comparable; if (r1,r2) are buddies (for some generator), (r1,r2) are compara-
ble; comparable (r1,72) can be assigned to be buddies (because of sharing a
common instantiation). The following fact can be verified:

THEOREM 10.1
Suppose that P matches (qid1, gids) and that (rq1,72) are buddies for a gen-
erator 1. If I(ry) and I(re) match P’s QID, then r; is in g; if and only if 7o
is in ga, where (g1, g2) is in CG(qidy, qids). m

Theorem 10.1 follows because buddies agree on the sensitive attribute and
I(r1) and I(re) matching P’s QID implies that 7 is in ¢id; and ro is in gids.
The next two lemmas are used to derive an upper bound on crack size. The
first states some transitivity of the “comparable” relationship, which will be
used to construct a required generator in the upper bound proof.

LEMMA 10.1 3-hop transitivity
Let 1,7} be in Ry and rg, 75 be in Ry. If each of (r],r2), (re,71), and (r1,75)
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is comparable, (r],r%) is comparable.

PROOF  See [93]. ]

The following is the key lemma for proving the upper bound of crack size.

LEMMA 10.2
Let (g1,92) be in CG(qidy, gids). There exists a generator in which exactly
min(|gi], |g2]) records in g1 have a buddy in gs.

PROOF  See [93]. 0

Below, we show how to determine the crack size for F-attack. For C-attack
and B-attack, we use examples to illustrate the general. Refer to [93] for the
details for determining the crack sizes of C-attack and B-attack.

10.2.4.1 F-attack

Assume that P matches (qidy,gid2). Consider a group pair (g1,g2) in
CG(qidy, qids). Since the buddy relationship is injective, if g; contains more
records than go, i.e., |g1] > min(|g1], |g2]), at least |g1| —min(|g1], |g2|) records
in g1 do not have a buddy in gs for any generator. According to Theorem 10.1,
these records do not originate from P’s QI D for any generator. Thus the crack
size of g1 is at least |g1| — min(|g1], |g2]) (i-e., a lower bound). On the other
hand, according to Lemma 10.2, there exists some generator in which ezactly
lg1| —min(|g1], |g2]) records in g1 do not have a buddy in g2; according to The-
orem 10.1, these records do not originate from P’s QID for any generator.
By Definition 10.1, |g1| — min(|g1], |gz|) is the crack size of g;.

THEOREM 10.2
Suppose that a target P matches (gidy, gidz). Let (g1, g2) be in CG(qidy, gids).
(1) g1 has crack size ¢ with respect to P, where ¢ = |g1] — min(|¢1],|g2|). (2)
F(qidy, qide) = > ¢, where > is over (g1, 92) in CG(qid1,qids) and g1 has
the crack size ¢ determined in (1).

Remarks. F(P,qidy,qidz) is the same for all targets P that match
(qidy, gids), i.e., F(qid1,qids) computed by Theorem 10.2. To compute F'A,
we compute F'(qidy, qids) for all comparable (gidy, gide). This requires par-
titioning the records into equivalence classes and groups, which can be
done by sorting the records on all attributes. The F-attack happens when
lg1| > min(|g1], |g2|), that is, g1 contains too many records for their buddies
to be contained in go. This could be the case if Rs has less generalization due
to additional records at timestamp ts.
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Example 10.8

Continue with Example 10.5. Alice matches gid;=[Europe, Lawyer| and
qido=[France, Professional]. gid; consists of g1 = {a1, ag, as} for Flu and g] =
{aq,a5} for HIV. gidy consists of g5 = {br,bs} for Flu and ¢} = {b4, b5, bs}
for HIV. CG(gidy, gid2) = {(91,92), (91, 92)}- [91] = 3, |g2| = 2, |g1| = 2 and
|g5] = 3. So, g1 has crack size 1 and g} has crack size 0. 0

10.2.4.2 C-attack

By a similar argument, at least |ga| — min(|g1],|g2|) records in go do not
have a buddy in g1 in any generator, so the crack size of g is at least |g2| —

min(|g1l,1gz|)-

THEOREM 10.3
Suppose that a target P matches (gidy, qids). Let (g1, g2) be in CG(qidy, qids).
(1) g2 has crack size ¢ with respect to P, where ¢ = |ga| — min(|g1], |g2]). (2)
C(qidy,qide) = Y ¢, where Y is over (g1, g2) in CG(qidy,gid2) and g2 has
the crack size ¢ determined in (1).

Example 10.9

Continue with Example 10.6. Alice matches gidi=[Europe, Lawyer| and
gido=[France, Professional]. ¢id; consists of g1 = {a1,a2,a3} and ¢f =
{aq,as5}. qids consists of go = {br,bs} and gh = {bg, b5,b6}. CG(qidy, gidz)
= {(91.92). (91, 95))- lgal = 2, |ga] = 3, 94| = 3 and |gf| = 2. Thus g, has
crack size 0 and g} has crack size 1. 0

10.2.4.3 B-attack

Suppose that P matches some gids in Rs. Let go be a group in gids. The
crack size of go is related to the number of records in g that have a buddy in
R; (thus timestamp ¢1). Let G denote the set of records in R; comparable to
g2. So (G contains all the records in R; that can have a buddy in go. Let Go
denote the set of records in Re comparable to some record in (Gy. The next
lemma implies that all records in G can have a buddy in G — g».

LEMMA 10.3
Every record in G is comparable to all records in G; and only those records
in G1 .

From Lemma 10.3, all records in G; and only those records in G; can have
a buddy in G,. Each record in G; has its buddy either in g5 or in G — g2,
but not in both. If |G1| > |G2| — |g2|, the remaining ¢ = |G1| — (|G2| — |g2])
records in G; must have their buddies in g2, or equivalently, ¢ records in g
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must have their buddies in Ry (therefore, timestamp ¢;). The next theorem
follows from this observation.

THEOREM 10.4
Suppose that a target P has timestamp to and matches gids in Rs. Let g in
qidy. (1) If |G2| < |g2], g2 has crack size 0 with respect to P. (2) If |G2| > |g2],
g2 has crack size ¢, where ¢ = maz(0, |G1| — (|G2| — |92])). (3) B(qid2) = > ¢,
where > is over g5 in gids and go has the crack size ¢ determined in (1) and

2).

Example 10.10
Continue with Example 10.7. Alice has [UK, Lawyer] and timestamp ts. gida =
[UK, Professional] has go for Flu and ¢} for HIV:

g2 = {b17b27b3}

G1 = {a1,a2,a3}

G2 = {b1,b2,b3,b7,bs}

|G1] = (IG2| = |g2]) =3 - (5-3) =1

g5 = {bo, b10}

G| = {a4,a5}

G2 = {b4, b, bg, bg, b1}

|G1| = (IG2| = |ga]) =2 - (5—2) = -1

Thus g2 has crack size 1 and g4 has crack size 0. ]

10.2.4.4 Equivalence of F-attack and C-attack

F-attack and C-attack are motivated under different scenarios and have a
different characterization of crack size. Despite such differences, we show that
these attacks are not independent of each other at all; in fact, FA = CA.
Refer to [93] for a formal proof.

10.2.5 Anonymization Algorithm for Correspondence At-
tacks

An algorithm called BCF-anonymizer for anonymizing Ry to satisfy all of
FA>k,CA>k,BA >k can be found in [93]. BCF-anonymizer iteratively
specializes Ry starting from the most generalized state of Rs. In the most
generalized state, all values for each attribute A; € QID are generalized to
the top most value in the taxonomy. Each specialization, for some attribute in
QID, replaces a parent value with an appropriate child value in every record
containing the parent value. The top-down specialization approach relies on
the anti-monotonicity property of BCF-anonymity: FFA, C'A, and BA are non-
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Algorithm 10.2.6 BCF-Anonymizer
Input: Ry, Ry =11 U1, k, taxonomy for each A; € QID.
Output: a BCF-anonymized R.
generalize every value for A; € QID in Ry to ANYj;
let candidate list = UC'ut2; containing all ANY;
sort candidate list by Score in descending order;
while the candidate list is not empty do
if the first candidate w in candidate list is valid then
specialize w into wy, ..., w, in Ra;
compute Score for all w;;
remove w from UCut2; and the candidate list;
add wq,...,w, to UCut2; and the candidate list;
sort the candidate list by Score in descending order;
else
remove w from the candidate list;
13:  end if
14: end while
15: output Ry and UCut2;;

== =
M H @

increasing in this specialization process. Therefore, all further specializations
can be pruned once any of the above requirements are violated.

THEOREM 10.5
Each of FA, CA and BA is non-increasing with respect to a specialization on
Rs.

According to Theorem 10.5, if the most generalized Ry does not satisfy
FA >k, CA>k,and BA > k, no generalized Ro does. Therefore, we can
first check if the most generalized Ro satisfies this requirement before searching
for a less generalized Ry satisfying the requirement.

COROLLARY 10.1
For a given requirement on BCF-anonymity, there exists a generalized Ro that
satisfies the requirement if and only if the most generalized Ry does. m

Below, we study the general idea of an efficient algorithm for producing a
locally maximal specialized Rs.

Finding an optimal BCF-anonymized Rs is NP-hard. BCF-anonymizer,
summarized in Algorithm 10.2.6, aims at producing a maximally specialized
(suboptimal) BCF-anonymized R which any further specialization leads to
a violation. It starts with the most generalized Ry. At any time, Ry contains
the generalized records of 71 U Ty and C'ut2; gives the generalization cut for
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A; € QID. Each equivalence class gidz in Rj is associated with a set of groups
g2 with stored |go|. Each group gs is associated with the set of raw records
in T3 U Ty generalized to the group. R is represented similarly with |qid;]
and |g1| stored, except that no raw record is kept for g1. Cutl; contains the
generalization cut A; € QID in R;. Cutl; never change once created.

Initially, UCut2; and the candidate list contain the most general value
ANY; for every A; € QID (Lines 1-3). In each iteration, BCF-anonymizer
examines the first valid candidate specialization ranked by a criterion Score.
If the candidate w is walid, that is, not violating the BCF-anonymity after
its specialization, we specialize w on Ry (Lines 6-10); otherwise, we remove
w from the candidate list (Line 12). This iteration is repeated until there is
no more candidate. From Theorem 10.5, the returned Rs is maximal (subop-
timal). Similar to the top-down specialization approaches studied in previous
chapters, Score ranks the candidates by their “information worth.” We em-
ploy the discernibility cost DM (Chapter 4.1) which charges a penalty to each
record for being indistinguishable from other records.

In general, Lines 5-7 require scanning all pairs (gids, gids) and all records
in Ra, which is highly inefficient for a large data set. Fung et al. [93] present
an incremental computation of FFA, CA, and BA that examines only compa-
rable pairs (gidy, gidz) and raw records in Ry that are involved in the current
specialization.

10.2.6 Beyond Two Releases

Fung et al. [93] also extend the two-release case to the general case involving
more than two releases. Consider the raw data T7,...,T, collected at times-
tamp tq,...,t,. Let R; denote the release for Ty U ---UT;, 1 < i < n. All
records in R; have the special timestamp, denoted by T, that matches any
timestamp from tq,...,t;. The correspondence knowledge now has the form
that every record in R; (except the last one) has a corresponding record in
all releases R; such that j > ¢. The notion of “generators” can take this into
account. Given more releases, the adversary can conduct two additional types
of correspondence attacks described below.

Optimal micro attacks: The general idea is to choose the “best” back-
ground release, yielding the largest possible crack size, individually to crack
each group.

Composition of micro attacks: Another type of attack is to “compose”
multiple micro attacks together (apply one after another) in order to increase
the crack size of a group. Composition is possible only if all the micro at-
tacks in the composition assume the same timestamp for the target and the
correspondence knowledge required for the next attack holds after applying
previous attacks.

The anonymization algorithm can be extended as follows to handle multiple
releases.
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1. The notion of BCF-anonymity should be defined based on the optimal
crack size of a group with respect to micro attacks as well as composed
attacks on the group.

2. Each time we anonymize the next release R,, for Ty U- - -UT,,, we assume
that Ry, ..., R,—1 satisfy BCF-anonymity. Hence, the anonymization of
R,, only needs to ensure that BCF-anonymity is not violated by any
attack that involves R,,.

3. The anti-monotonicity of BCF-anonymity, in the spirit of Theorem 10.5,
remains valid in this general case. These observations are crucial for
maintaining the efficiency.

As the number of releases increases, the constraints imposed on the next
release R, become increasingly restrictive. However, this does not necessar-
ily require more distortion because the new records 7, may help reduce the
need of distortion. In case the distortion becomes too severe, the data holder
may consider starting a new chain of releases without including previously
published records.

10.2.7 Beyond Anonymity

The presented detection and anonymization methods can be extended to
thwart attribute linkages by incorporating with other privacy models, such as
entropy (-diversity and (c,f)-diversity in Chapter 2.2.1, confidence bounding
in Chapter 2.2.2, and (a,k)-anonymity in Chapter 2.2.5. The first modifi-
cation is to take the privacy requirements into account to the exclusion of
cracked records. In this case, the crack size of each group gives all the infor-
mation needed to exclude sensitive values from an equivalence class. For the
extension of the anonymization algorithm, anonymity is a necessary privacy
property because identifying the exact record of an individual from a small
set of records is too easy. Thus, BCF-anonymity is required even if other
privacy requirements are desired. Under this assumption, the proposed ap-
proach is still applicable to prune unpromising specializations based on the
anti-monotonicity of BCF-anonymity.

10.3 Dynamic Data Republishing

Xiao and Tao [251] study the privacy issues in the dynamic data republish-
ing model, in which both record insertions and deletions may be performed
before every release. They also present a privacy model and an anonymization
method for the dynamic data republishing model. The following example [251]
illustrates the privacy threats in this scenario.
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Table 10.7: Raw data T}
Not release | Quasi-identifier (QID) | Sensitive

Rec ID | Age Salary Surgery
1 31 22K Transgender
2 32 24K Plastic
3 34 28K Vascular
4 33 35K Urology
5 51 30K Vascular
6 46 37K Urology
7 47 43K Transgender
8 50 45K Vascular
9 53 36K Urology
10 62 43K Transgender
11 66 44K Urology

Table 10.8: 2-anonymous and 2-diverse R,
Not release | Quasi-identifier (QID) | Sensitive

Rec ID Age Salary Surgery
1 31-32 22K-24K Transgender
2 31-32 22K-24K Plastic
3 33-34 28K-35K Vascular
4 33-34 28K-35K Urology
5 46-51 30K-37K Vascular
6 46-51 30K-37K Urology
7 47-53 36K-45K Transgender
8 47-53 36K-45K Vascular
9 47-53 36K-45K Urology
10 62-66 43K-44K Transgender
11 62-66 43K-44K Urology

10.3.1 Privacy Threats

Example 10.11

A hospital wants to periodically, say every three months, publish the current
patient’s records. Let Ty (Table 10.7) be the raw data of the first release. Rec
ID is for discussion only, not for release. QID = {Age, Salary} and Surgery
is sensitive. The hospital generalizes T7 and publishes Ry (Table 10.8). Then,
during the next three months, records # 2, 3, 6, 8, and 10 are deleted, and
new records # 12-16 are added. The updated raw data table T5 is shown in
Table 10.9, where the new records are bolded. The hospital then generalizes
T and publishes a new release Ry (Table 10.10). Though both R; and Ry are
individually 2-anonymous and 2-diverse, an adversary can still identify the
sensitive value of some patients.
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Suppose an adversary has targeted a victim, Annie, and knows that An-
nie is 31 years old and has salary 22K as background knowledge. Based on
generalized R;, the adversary can determine that Annie’s received surgery is
either Transgender or Plastic because records # 1 and 2 are the only records
matching the background knowledge. Based on the generalized R, the ad-
versary can determine that Annie’s received surgery is either Transgender or
Urology. Thus, by combining the aforementioned knowledge, the adversary
can correctly infer that Annie’s received surgery is Transgender. ]

The above illustrated privacy threats cannot be resolved by generalizations
because the value Plastic is absent in Ts; therefore, the adversary can infer
that Annie’s received surgery is Transgender no matter how 75 is generalized.
This problem is called critical absence [251].

One naive solution to tackle the problem of critical absence is to let the
deleted records remain in the subsequent releases and use them to disorient
the inferences by the adversary. Yet, this strategy implies that the number
of records increases monotonically in every release while many records are no
longer relevant for that period of time. Also, keeping the deleted records may
not necessarily provide the privacy guarantee as expected if an adversary is
aware of the records’ deletion timestamps [251].

10.3.2 m-~invariance

To address both record insertions and deletions in this dynamic data re-
publishing model, Xiao and Tao [251] propose a privacy model called m-
invariance. A sequence of releases Ry, ..., R, is m-invariant if (1) every ¢id
group in any R; contains at least m records and all records in gid have differ-
ent sensitive values, and (2) for any record r with published lifespan [z, y]
where 1 < z,y < p, qidg,...,qid, have the same set of sensitive values
where qidy, . .., qidy are the generalized gid groups containing r in R, ..., R,.
The rationale of m-invariance is that, if a record r has been published in
R.,..., Ry, then all gid groups containing r must have the same set of sensi-
tive values. This will ensure that the intersection of sensitive values over all
such qid groups does not reduce the set of sensitive values compared to each
qid group. Thus, the above mentioned critical absence does not occur.

Note, (2) does not guarantee the privacy if the life span is “broken,” not
continuous. In this case, the two broken lifespan is never checked for privacy
guarantee. In other words, the model assumes that a record cannot reappear
after its first lifespan; however, this assumption may not be realistic. For
example, a patient got some diseases over several releases and recovered, and
later on got other diseases again. Consequently, his records will appear in
multiple, broken time intervals.

Given a sequence of m-invariant Ry, ..., Ry_1, Xiao and Tao [251] main-
tain a sequence of m-invariant R;,..., R, by minimally adding counterfeit
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Table 10.9: Raw data Tb

Not release | Quasi-identifier (QID) Sensitive
Rec ID | Age Salary Surgery
1 31 22K Transgender
4 33 35K Urology
12 25 31K Vascular
7 47 43K Transgender
9 53 36K Urology
5 51 30K Vascular
13 56 40K Urology
14 64 41K Transgender
11 66 44K Urology
15 70 54K Urology
16 75 46K Vascular

Table 10.10: 2-anonymous and 2-diverse Rs

Not release | Quasi-identifier (QID) |  Sensitive
Rec ID Age Salary Surgery
1 31-33 22K-35K Transgender
4 31-33 22K-35K Urology
12 35-53 31K-43K Vascular
7 35-53 31K-43K Transgender
9 35-53 31K-43K Urology
5 51-56 30K-40K Vascular
13 51-56 30K-40K Urology
14 64-66 41K-44K Transgender
11 64-66 41K-44K Urology
15 70-75 46K-54K Urology
16 70-75 46K-54K Vascular

data records and generalizing the current release R,. The following example
illustrates the general idea of counterfeited generalization.

Example 10.12

Let us revisit Example 10.11, where the hospital has published R; (Table 10.8)
and wants to anonymize T for the second release Rs. Following the method
of counterfeited generalization [251], Ry contains two tables:

1. The generalized data table (Table 10.11) with 2 counterfeits ¢; and ca.
An adversary cannot tell whether a record is counterfeit or real.

2. The auxiliary table (Table 10.12), indicating the gid group ( [31-32],
[22K-2/K] ) contains 1 counterfeit, and the gid group ( [47-53], [36K-
43K] ) contains 1 counterfeit. The objective of providing such additional
information is to improve the effectiveness of data analysis.
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Table 10.11: R, by counterfeited generalization

Not release | Quasi-identifier (QID) |  Sensitive
Rec ID Age Salary Surgery
1 31-32 22K-24K Transgender
c1 31-32 22K-24K Plastic
4 33-35 31K-35K Urology
12 33-35 31K-35K Vascular
7 47-53 36K-43K Transgender
co 47-53 36K-43K Vascular
9 47-53 36K-43K Urology
5 51-56 30K-40K Vascular
13 51-56 30K-40K Urology
14 64-66 41K-44K Transgender
11 64-66 41K-44K Urology
15 70-75 46K-54K Urology
16 70-75 46K-54K Vascular

Table 10.12: Auxiliary table

qid group Number of counterfeits
([31-32], [22K-24K]) 1
([47-53], [36K-43K]) 1

Now, suppose the adversary has a target victim, Annie, with background
knowledge Age = 31 and Salary = 22K. By observing R; in Table 10.8 and
Ry with counterfeits in Table 10.11, the adversary can use the background
knowledge to identify the gid groups ( [31-32], [22K-2/K] ) in both releases.
Since the gid groups in both releases share the same set of sensitive values
{ Transgender, Plastic}, the adversary can only conclude that Annie’s received
surgery is either Transgender or Plastic, with 50% of chance on each. Note,
the auxiliary information in Table 10.12 does not provide any additional in-
formation to the adversary to crack Annie’s sensitive value.

From the above example, we notice that the key to privacy-preserving dy-
namic data re-publication is to ensure certain “invariance” in all ¢id groups
that record is generalized to in different releases [251]. The privacy model
m-invariance captures this notion.

10.4 HD-Composition

With m-invariance, we assume that the QID attribute values and the sensi-
tive attribute values of each individual does not change over time. However, in
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Table 10.13: Voter
registration list (RL)

PID Age Zip

p1 23 16355
Do 22 15500

D3 21 12900

D1 26 18310

D5 25 25000

Do 20 29000

= 24| 33000
PlRL] 31 31000

RL,

T PID | Age | Zip
P 23 16355

Do 22 15500

D3 21 12900

D1 26 18310

D5 25 25000

Do 20 29000

= 24| 33000
PIEL) 31 31000

RL:

T PID | Age Zip
p1 23 16355

Do 22 15500

D3 21 12900

pi 26 18310

D5 25 75000

Do 20 29000

= 24 33000
PIEL) 31 31000

RL3
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realistic applications, both the QID value and sensitive value of an individual
can change over time, while some special sensitive values should remain un-
changed. For example, after a move, the postal code of an individual changes.
That is, the external table such as a voter registration list can have multiple
releases and changes from time to time. Also, a patient may recover from
one disease but develop another disease, meaning that the sensitive value can
change over time. Bu et al. [42] propose a method called HD-composition to
deal with this scenario.

The motivating example described by [42] and [251] is that the adversary
may notice a neighbor being sent to hospital, from which s/he knows that a
record for the neighbor must exist in two or more consecutive releases. They
further assume that the disease attribute of the neighbor must remain the
same in these releases. However, the presence of the neighbor in multiple data
releases does not imply that the records for the neighbor will remain the same
in terms of the sensitive value.

At the same time, some sensitive values that once linked to a record owner
can never be unlinked. For instance, in medical records, sensitive diseases such
as HIV, diabetes, and cancers are to this date incurable, and therefore they
are expected to persist. These are the permanent sensitive values. Permanent
sensitive values can be found in many domains of interest. Some examples are
“having a pilot’s qualification” and “having a criminal record.”

Let us illustrate the problem with an example. In Table 10.13, RLq, RLo,
and R L3 are snapshots of a voter registration list at times 1, 2, and 3, respec-
tively. The raw data in Tables 10.14 T}, T5, and T3 are to be anonymized at
times 1, 2, and 3, respectively. In Table 10.15, three tables T}, T, and T3
are published serially at times 1, 2, and 3, respectively. It is easy to see that
Ty, Ty, and T3 satisfy 3-invariance. This is because in any release, for each
individual, the set of 3 distinct sensitive values that the individual is linked to
in the corresponding gid group remains unchanged. Note that HIV is a perma-
nent disease but Flu and Fever are transient diseases. Furthermore, assume
that from the registration lists, one can determine that pi,ps,...,ps are the
only individuals who satisfy the QID conditions for the groups with GID = 1
and GID = 2 in all the three tables of T}, T5, and T%3. Then surprisingly, the
adversary can determine that py has HIV with 100% probability. The reason
is based on possible world exclusion from all published releases.

It can be shown that p; and pg cannot be linked to HIV. Suppose that pq
suffers from HIV. In T}, since p1,p2, and p3 form a gid group containing one
HIV value, we deduce that both py and p3 are not linked to HIV. Similarly,
in T¥, since p1, p4, and ps form a gid group containing one HIV value, ps and
ps are non-HIV carriers. Similarly, from 73, we deduce that ps and pg are not
linked to HIV. Then, we conclude that ps, ps3, p4, ps, and pg do not contract
HIV. However, in each of the releases 17, T3, and T35, we know that there are
two HIV values. This leads to a contradiction. Thus, p; cannot be linked to
HIV. Similarly, by the same inductions, pg cannot be an HIV carrier. Finally,
from the gid group with GID = 2 in Ty, we figure out that ps must be an
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Table 10.14:
Raw data (T)

PID | Disease

P1 Flu

P2 HIV

P3 Fever

Pa HIV

D5 Flu

e Fever
Ty

PID | Disease

P1 Flu

P2 HIV

Ps3 Flu

Pa HIV

s Fever

e Fever
Ty

PID | Disease

P1 Flu

P2 HIV

P3 Flu

Pa HIV

s Fever

e Fever
T

HIV carrier!

No matter how large m is, this kind of possible world exclusion can ap-
pear after several publishing rounds. Note that even if the registration list
remains unchanged, the same problem can occur since the six individuals
can be grouped in the same way as in 77, Ty, and T3 at 3 different times,
according to the algorithm proposed by [251].

The anonymization mechanism for serial publishing should provide
individual-based protection. Yet, Byun et al. [42] and Xiao and Tao [251] focus
on record-based protection. In m-invariance, each record is associated with a
lifespan of contiguous releases and a signature which is an invariant set of
sensitive values linking to r; in the published table. If a record r; for individ-
ual p; appears at time j, disappears at time j + 1 (e.g., p; may discontinue
treatment or may switch to another hospital), and reappears at time j + 2,



Anonymizing Incrementally Updated Data Records 189

Table 10.15: Published tables T* satisfying

3-invariance

PID GID Age Zip Disease
P1 1 21, 23 12k, 17k Flu
P2 1 21, 23 12k, 17k HIV
P3 1 21, 23 12k, 17k Fever
D4 2 20, 26 18k, 29k HIV
s 2 20, 26 18k, 29k Flu
Pe 2 20, 26 18k, 29k Fever

First Publication T7*

PID GID Age Zip Disease
D2 1 20, 22 12k, 29k HIV
D3 1 20, 22 12k, 29k Flu
D6 1 20, 22 12k, 29k Fever
P1 2 23, 26 16k, 25k Flu
D4 2 23, 26 16k, 25k HIV
D5 2 23, 26 16k, 25k Fever

Second Publication T3

PID GID Age Zip Disease
D2 1 21, 25 12k, 16k HIV
3 1 21, 25 12k, 16k Flu
5 1 21, 25 12k, 16k Fever
p1 2 20, 26 16k, 29k Flu
D4 2 20, 26 16k, 29k HIV
D6 2 20, 26 16k, 29k Fever

Third Publication 75

the appearance at j + 2 is treated as a new record r;12 in the anonymiza-
tion process adopted by [251]. There is no memory of the previous signature
for r;, and a new signature is created for r;;o. Let us take a look at 77 in
Table 10.15. From T}, we can find that by 3-invariance, the signature of the
records for p; and ps in Ty is {Flu, HIV, Fever}. If p; and ps3 recover from
Flu and Fever at time 2 (not in T3), and reappears due to other disease at
time 3(in 7T3), the reappearance of p; and p3 in Tj is treated as new records
r1,r5 and by m-invariance, there is no constraint for their signature. Thus, at
time 3, if the signatures for 7{ and 7} do not contain HIV, p; and p3 will be
excluded from HIV. Consequently, po will be found to have HIV!

To handle the above challenges, Bu et al. [38] propose an anonymization
method called HD-composition which protects individual privacy for perma-
nent sensitive values. The method involves two major roles, namely holder
and decoy. The objective is to bound the probability of linkage between any
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individual and any permanent sensitive value by a given threshold, e.g., 1/¢.
Suppose an individual p; has a permanent sensitive value s in the microdata.
One major technique used for anonymizing static data is to form a gid group
mixing p; and other individuals whose sensitive values are not s. Merely hav-
ing the published qid groups, the adversary cannot establish strong linkage
from p; to s. The anonymization also follows this basic principle, where the
individual to be protected is named as a holder and some other individuals
for protection are named as decoys.

There are two major principles for partitioning: role-based partition and
cohort-based partition. By role-based partition, in every gid group of the pub-
lished data, for each holder of a permanent sensitive value s, £ — 1 decoys
which are not linked to s can be found. Thus, each holder is masked by ¢ — 1
decoys. By cohort-based partition, for each permanent sensitive value s, the
proposed method constructs ¢ cohorts, one for holders and the other £ — 1 for
decoys, and disallows decoys from the same cohort to be placed in the same
partition. The objective is to imitate the properties of the true holders.

10.5 Summary

In this chapter, we have studied two scenarios of incremental data pub-
lishing. In Chapter 10.2, we have discussed the anonymization problem for a
scenario where the data are continuously collected and published. Each release
contains the new data as well as previously collected data. Even if each re-
lease is k-anonymized, the anonymity of an individual can be compromised by
cross-examining multiple releases. We formalized this notion of attacks and
presented a detection method and an anonymization algorithm to prevent
such attacks. Finally, we showed that both the detection and the anonymiza-
tion methods are extendable to deal with multiple releases and other privacy
requirements.

Recall that the anatomy approach discussed in Chapter 3.2 publishes the
exact QID and the sensitive attribute in two separate tables, QIT and ST,
linked by a common GroupID. In this continuous data publishing scenario,
however, publishing the exact QID allows the adversary to isolate the new
records added in later release by comparing the difference between the old
(QIT,ST) and the new (QIT,ST). Once new records are isolated, the attack
can focus on the usually small increment, which increases the re-identification
risk. Thus, anatomy is not suitable for continuous data publishing.

In Chapter 10.3, we have studied the privacy threats caused by dynamic
data republishing, in which both record insertions and deletions may be per-
formed before every release, and discussed a privacy model called m-invariance
to ensure the invariance of sensitive values in the intersection of gid groups
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across all releases. m-invariance is achieved by adding counterfeit records and
generalizations. Adding counterfeits is necessary in order to address the prob-
lem of critical absence. However, a table with counterfeit records could no
longer preserve the data truthfulness at the record level, which is important
in some applications, as explained in Chapter 1.1. Bu et al. [38] further relax
the PPDP scenario and assume that the QI D and sensitive values of a record
owner could change in subsequent releases.

With m-invariance, we assume that the QID attribute values and the sen-
sitive attribute values of each individual does not change over time. This as-
sumption, however, may not hold in real-life data publishing. In Chapter 10.4,
we have studied another approach that addresses these issues. Pei et al. [186]
also consider privacy threats in the incremental data publishing scenario that
the Case-ID of records must be published. Case-ID are unique identifiers as-
sociated with an entity, e.g., a patient. Most works on incremental data pub-
lishing consider the scenario that the data holder has removed the Case-ID of
records, so the attack based on Case-ID does not occur. Publishing Case-1D
gives the adversary the very powerful knowledge of locating the corresponding
published records in two releases. This additional threat can be removed by
not publishing Case-ID. In fact, most aggregate data analysis (such as count
queries) does not depend on the Case-ID. Iwuchukwu and Naughton [122] pro-
pose an efficient index structure to incrementally k-anonymize each individual
release, but it does not address the attack models studied in this chapter.



Chapter 11

Collaborative Anonymization for
Vertically Partitioned Data

11.1 Introduction

Nowadays, one-stop service has been a trend followed by many competitive
business sectors, where a single location provides multiple related services. For
example, financial institutions often provide all of daily banking, mortgage,
investment, insurance in one location. Behind the scene, this usually involves
information sharing among multiple companies. However, a company cannot
indiscriminately open up the database to other companies because privacy
policies [221] place a limit on information sharing. Consequently, there is a
dual demand on information sharing and information protection, driven by
trends such as one-stop service, end-to-end integration, outsourcing, simulta-
neous competition and cooperation, privacy and security.

A typical scenario is that two parties wish to integrate their private
databases to achieve a common goal beneficial to both, provided that their
privacy requirements are satisfied. In this chapter, we consider the goal of
achieving some common data mining tasks over the integrated data while sat-
isfying the k-anonymity privacy requirement. The k-anonymity requirement
states that domain values are generalized so that each value of some specified
attributes identifies at least k& records. The generalization process must not
leak more specific information other than the final integrated data. In this
chapter, we study some solutions to this problem.

So far, we have considered only a single data holder. In real-life data
publishing, a single organization often does not hold the complete data.
Organizations need to share data for mutual benefits or for publishing to
a third party. For example, two credit card companies want to integrate
their customer data for developing a fraud detection system, or for pub-
lishing to a bank. However, the credit card companies do not want to in-
discriminately disclose their data to each other or to the bank for reasons
such as privacy protection and business competitiveness. Figure 11.1 de-
picts this scenario, called collaborative anonymization for vertically parti-
tioned data [172]: several data holders own different sets of attributes on
the same set of records and want to publish the integrated data on all at-
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FIGURE 11.1: Collaborative anonymization for vertically partitioned data

tributes. Say, publisher 1 owns {RecID, Job, Sex, Age} and publisher 2 owns
{RecID, Salary, Disease}, where RecID, such as the SSN, is the record
identifier shared by all data holders. They want to publish an integrated k-
anonymous table on all attributes. Also, no data holder should learn more
specific information, owned by the other data holders, than the information
appears in the final integrated table.

In Chapter 11.2, we study the problem of collaborative anonymization for
vertically partitioned data in the context of a data mashup application and use
a real-life scenario to motivate the information and privacy requirements as
well as the solution. In Chapter 11.3, we study the cryptographic approaches
to the collaborative anonymization problem.

11.2 Privacy-Preserving Data Mashup

The problem of collaborative anonymization for vertically partitioned data
has been applied to the scenario of a distributed data mashup applica-
tion [172]. In this Chapter 11.2, we use this real-life data mashup application
to illustrate the problem and the solution.

Mashup is a web technology that combines information and services from
more than one source into a single web application. It was first discussed in a
2005 issue of Business Week [117] on the topic of integrating real estate infor-
mation into Google Maps. Since then, web giants like Amazon, Yahoo!, and
Google have been actively developing mashup applications. Mashup has cre-
ated a new horizon for service providers to integrate their data and expertise
to deliver highly customizable services to their customers.

Data mashup is a special type of mashup application that aims at integrat-
ing data from multiple data holders depending on the user’s service request.
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FIGURE 11.2: Architecture of privacy-preserving data mashup

Figure 11.2 illustrates a typical architecture of the data mashup technology.
A service request could be a general data exploration or a sophisticated data
mining task such as classification analysis. Upon receiving a service request,
the data mashup web application dynamically determines the data holders,
collects information from them through their web service application program-
ming interface (API),! and then integrates the collected information to fulfill
the service request. Further computation and visualization can be performed
at the user’s site (e.g., a browser or an applet). This is very different from
the traditional web portal which simply divides a web page or a website into
independent sections for displaying information from different sources.

A typical application of data mashup is to implement the concept of one-
stop service. For example, a single health mashup application could provide
a patient all of her health history, doctor’s information, test results, appoint-
ment bookings, insurance, and health reports. This concept involves informa-
tion sharing among multiple parties, e.g., hospital, drug store, and insurance
company.

To service providers, data mashup provides a low-cost solution to integrate
their services with their partners and broaden their market. To users, data
mashup provides a flexible interface to obtain information from different ser-
vice providers. However, to adversaries, data mashup could be a valuable tool
for identifying sensitive information. A data mashup application can help or-
dinary users explore new knowledge. Nevertheless, it could also be misused by
adversaries to reveal sensitive information that was not available before the
data integration.

In this chapter, we study the privacy threats caused by data mashup and
discuss a privacy-preserving data mashup (PPMashup) algorithm to securely

I Authentication may be required to ensure that the user has access rights to the requested
data.
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integrate person-specific sensitive data from different data holders, whereas
the integrated data still retains the essential information for supporting gen-
eral data exploration or a specific data mining task, such as classification
analysis. The following real-life scenario illustrates the simultaneous need of
information sharing and privacy preservation in the financial industry.

This data mashup problem was discovered in a collaborative project [172]
with a provider of unsecured loans in Sweden. Their problem can be gener-
alized as follows: A loan company A and a bank B observe different sets of
attributes about the same set of individuals identified by the common key
SSN,2 e.g., Ta(SSN, Age, Balance) and Tg(SSN, Job, Salary). These com-
panies want to implement a data mashup application that integrates their
data to support better decision making such as loan or credit limit approval,
which is basically a data mining task on classification analysis. In addition
to companies A and B, their partnered credit card company C also have ac-
cess to the data mashup application, so all three companies A, B, and C are
data recipients of the final integrated data. Companies A and B have two
privacy concerns. First, simply joining T4 and T would reveal the sensitive
information to the other party. Second, even if T4 and Tz individually do not
contain person specific or sensitive information, the integrated data can in-
crease the possibility of identifying the record of an individual. Their privacy
concerns are reasonable because Sweden has a population of only 9 million
people. Thus, it is possible to identify the record of an individual by collecting
information from other data sources. The next example illustrates this point.

Example 11.1

Consider the data in Table 11.1 and taxonomy trees in Figure 11.3. Party A
(the loan company) and Party B (the bank) own T4 (SSN, Sex, ..., Class)
and T(SSN, Job, Salary, ..., Class), respectively. Each row represents one
or more raw records and Class contains the distribution of class labels Y and
N, representing whether or not the loan has been approved. After integrating
the two tables (by matching the SSN field), the female lawyer on (Sex, Job)
becomes unique, therefore, vulnerable to be linked to sensitive information
such as Salary. In other words, record linkage is possible on the fields Sex
and Job. To prevent such linkage, we can generalize Accountant and Lawyer to
Professional so that this individual becomes one of many female professionals.
No information is lost as far as classification is concerned because Class does
not depend on the distinction of Accountant and Lawyer. ]

The privacy-preserving data mashup problem is defined as follows. Given
multiple private tables for the same set of records on different sets of attributes
(i.e., vertically partitioned tables), we want to efficiently produce an integrated
table on all attributes for releasing it to to both parties or even to a third

285N is called “personnummer” in Sweden.
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Table 11.1: Raw tables

Shared Party A Party B
SSN | Class | Sex | ... Job Salary
1-3 | OY3N [ Male Janitor 30K
4-7 | OY4N | Male Mover 32K
8-12 | 2Y3N [ Male Carpenter 35K
13-16 | 3YIN | Female Technician 37K
17-22 | 4Y2N || Female Manager 42K
23-25 | 3YON | Female Manager 44K
26-28 | 3YON | Male Accountant | 44K
29-31 | 3YON | Female Accountant | 44K
32-33 | 2YON | Male Lawyer 44K
34 1YON | Female Lawyer 44K
Job Salary
ANY
ANY [1-99)
Blue-'collar White!collar
[1-37) [37-99)
Non-Tef:hnicaI Tech|nica| Manager Professional

| 1 | 1
Janitor Mover Carpenter Technician Accountant Lawyer [1-35) [35-37)

Sex
ANY

<QID, = {Sex, Job}, 4>
<QID, = {Sex, Salary}, 11>

Male Female

FIGURE 11.3: Taxonomy trees and QIDs

party. The integrated table must satisfy both the following anonymity and
information requirements:

Anonymity Requirement: The integrated table has to satisfy k-
anonymity as discussed in previous chapters: A data table T satisfies k-
anonymity if every combination of values on QID is shared by at least k
records in T, where the quasi-identifier (QID) is a set of attributes in T that
could potentially identify an individual in 7', and k is a user-specified thresh-
old. k-anonymity can be satisfied by generalizing domain values into higher
level concepts. In addition, at any time in the procedure of generalization,
no party should learn more detailed information about the other party other
than those in the final integrated table. For example, Lawyer is more detailed
than Professional. In other words, the generalization process must not leak
more specific information other than the final integrated data.
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Information Requirement: The generalized data should be as useful as
possible to classification analysis. Generally speaking, the privacy goal requires
masking sensitive information that is specific enough to identify individuals,
whereas the classification goal requires extracting trends and patterns that are
general enough to predict new cases. If generalization is carefully performed,
it is possible to mask identifying information while preserving patterns useful
for classification.

In addition to the privacy and information requirements, the data mashup
application is an online web application. The user dynamically specifies their
requirement and the system is expected to be efficient and scalable to handle
high volumes of data.

There are two obvious yet incorrect approaches. The first one is “integrate-
then-generalize”: first integrate the two tables and then generalize the in-
tegrated table using some single table anonymization methods discussed
in Chapters 5 and 6, such as K-Optimize [29], Top-Down Specialization
(TDS) [95, 96], HDTDS [171], Genetic Algorithm [123], and InfoGain Mon-
drian [150]. Unfortunately, these approaches do not preserve privacy in the
studied scenario because any party holding the integrated table will imme-
diately know all private information of both parties. The second approach is
“generalize-then-integrate”: first generalize each table locally and then in-
tegrate the generalized tables. This approach does not work for a quasi-
identifier that spans multiple tables. In the above example, the k-anonymity
on (Sex,Job) cannot be achieved by the k-anonymity on each of Sex and Job
separately.

The rest of this Chapter 11.2 is organized as follows. In Chapter 11.2.1,
we illustrate a real-life privacy problem in the financial industry and gen-
eralize their requirements to formulate the privacy-preserving data mashup
problem. The goal is to allow data sharing for classification analysis in the
presence of privacy concern. This problem is very different from cryptographic
approach [128, 259], which will be discussed in Chapter 11.3, that allows “re-
sult sharing” (e.g., the classifier in this case) but completely prohibits data
sharing. In some applications, data sharing gives greater flexibility than result
sharing because data recipients can perform their required analysis and data
exploration, such as, mine patterns in a specific group of records, visualize
the transactions containing a specific pattern, try different modeling methods
and parameters.

In Chapter 11.2.3, we illustrate a service-oriented architecture for the prob-
lem privacy-preserving data mashup. The architecture defines communication
paths of all participating parties, and defines the role of the mashup coordi-
nator who is responsible to initialize the protocol execution and present the
final integrated data set to the user. The architecture does not require the
mashup coordinator to be a trusted entity.

In Chapters 11.2.4-11.2.5, we discuss two algorithms to securely integrate
private data from multiple parties for two different adversary models. The first
algorithm assumes that parties are semi-honest. In the semi-honest adversarial
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model, it is assumed that parties do follow protocol but may try to deduce
additional information. This is the common security definition adopted in the
Secure Multiparty Computation (SMC) literature [128]. The second algorithm
further addresses the data integration model with malicious parties. We show
that a party may deviate from the protocol for its own benefit. To overcome the
malicious problem, we discuss a game-theoretic approach to combine incentive
compatible strategies with the anonymization technique.

The studied algorithm, PPMashup, can effectively achieve an anonymity
requirement without compromising the useful data for classification, and the
methods are scalable to handle large data sets. The algorithm for the semi-
honest model produces the same final anonymous table as the integrate-then-
generalize approach, and only reveals local data that has satisfied a given
k-anonymity requirement. Moreover, the algorithm for the malicious model
provides additional security by ensuring fair participation of the data holders.

In Chapter 11.2.4.4, we discuss the possible extensions to thwart attribute
linkages by achieving other privacy requirements, such as ¢-diversity [162],
(o, k)-anonymity [246], and confidence bounding [237].

11.2.1 Anonymization Problem for Data Mashup

To ease explanation, we assume the privacy requirement to be the
anonymity requirement, QID;,...,QID,, discussed in Definition 7.1, which
is in effect k-anonymity with multiple QIDs. Yet, the privacy requirement is
not limited to k-anonymity and can be other privacy models in practice.

Example 11.2
(QID;y = {Sex, Job}, 4) states that every qid on QID; in T must be shared
by at least 4 records in 7. In Table 11.1, the following qids violate this re-
quirement:

(Male, Janitor),

(Male, Accountant),

(Female, Accountant),

(Male, Lawyer),

(Female, Lawyer).
The example in Figure 11.3 specifies the anonymity requirement with two
QIDs.

Consider n data holders {Party 1,..., Party n}, where each Party y owns
a private table T,(ID, Attribs,, Class) over the same set of records. ID
and Class are shared attributes among all parties. Attribs, is a set of pri-
vate attributes. Attribs, N Attribs, = () for any 1 < y,z < n. These par-
ties agree to release “minimal information” to form an integrated table T
(by matching the ID) for conducting a joint classification analysis. The no-
tion of minimal information is specified by the joint anonymity requirement
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{{QID1,k1),...,{QIDy, kp)} on the integrated table. QID; is local if it con-
tains only attributes from one party, and global otherwise.

DEFINITION 11.1 Privacy-preserving data mashup Given multiple

private tables T1y,...,T,, a joint anonymity requirement {(QID1, k1), ...,
(QID,, ky)}, and a taxonomy tree for each categorical attribute in UQID;,
the problem of privacy-preserving data mashup is to efficiently produce a
generalized integrated table T such that

1. T satisfies the joint anonymity requirement,
2. contains as much information as possible for classification, and

3. each party learns nothing about the other party more specific than what
is in the final generalized T'. We assume that the data holders are semi-
honest, meaning that they will follow the protocol but may attempt to
derive sensitive information from the received data. m

The problem requires achieving anonymity in the final integrated table as
well as in any intermediate table. For example, if a record in the final T has
values Female and Professional on Sex and Job, and if Party A learns that
Professional in this record comes from Lawyer, condition (3) is violated.

11.2.1.1 Challenges

In case all QIDs are locals, we can generalize each table T4 and Tp in-
dependently, and join the generalized tables to produce the integrated data.
However, if there are global QIDs, global QIDs are ignored in this approach.
Further generalizing the integrated table using global QIDs does not work be-
cause the requirement (3) is violated by the intermediate table that contains
more specific information than the final table.

It may seem that local QIDs can be generalized beforehand. However, if a
local QID; shares some attributes with a global QID,, the local generaliza-
tion ignores the chance of getting a better result by generalizing QID, first,
which leads to a sub-optimal solution. A better strategy is generalizing shared
attributes in the presence of both QID; and QID,. Similarly, the generaliza-
tion of shared attributes will affect the generalization of other attributes in
QID, thus, affect other local QIDs that share an attribute with QID;. As a
result, all local QIDs reachable by a path of shared attributes from a global
QID should be considered in the presence of the global QID.

11.2.1.2 General Join

So far, we have assumed that the join between T4 and T is through the
common key ID. If the join attributes are not keys in T4 or Tz, a preprocess-
ing step is required to convert the problem to that defined in Definition 11.1.
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The two parties first perform a join on their join attributes, but not the person-
specific data, then assign a unique ID to each joint record, and use these joint
records to join the local table T4 or T. Both T4 and T now contain the
common key column ID. In the rest of this chapter, we consider only join of
T4 and T through the common key ID. Note, this model assumes that the
join attributes are not sensitive.

In this case, we have Ta(IDa,Ja, D1,...,D;) and Tg(IDp, Jg, Di11, . - .,
D,,), where ID 4 and I Dp are the record identifier in T4 and T's, and J4 and
Jp are join columns in Ty and Tg. The two parties first compute equijoin of
HIDA7JA(TA) and HIDB,JB (TB) based on J4 = Jg. Let HID,IDA,IDB be the
projection of the join onto ID4,IDpg, where ID is a new identifier for the
records on ID 4, IDp. Each party replaces ID4 and IDpg with ID.

11.2.2 Information Metrics

To generalize T', a taxonomy tree is specified for each categorical attribute
in UQID;. For a numerical attribute in UQID;, a taxonomy tree can be
grown at runtime, where each node represents an interval, and each non-leaf
node has two child nodes representing some optimal binary split of the parent
interval. The algorithm generalizes a table T by a sequence of specializations
starting from the top most general state in which each attribute has the top
most value of its taxonomy tree. A specialization, written v — child(v), where
child(v) denotes the set of child values of v, replaces the parent value v with
the child value that generalizes the domain value in a record. In other words,
the algorithms employ the subtree generalization scheme. Refer to Chapter 3.1
for the details of generalization and specialization.

A specialization is wvalid if the specialization results in a table satisfying the
anonymity requirement after the specialization. A specialization is beneficial
if more than one class are involved in the records containing v. If not then that
specialization does not provide any helpful information for classification. Thus,
a specialization is performed only if it is both valid and beneficial. The notions
of specialization, InfoGain(v), AnonyLoss(v), Score(v), and the procedure
of dynamically growing a taxonomy tree on numerical attributes have been
studied in Chapter 6.2.2.

Example 11.3

The specialization ANY_Job refines the 34 records into 16 records for Blue-
collar and 18 records for White-collar. Score(ANY_Job) is calculated as fol-
lows.

[ANY_Job]) = —2% x logy 2t — 18 x log, 18 — 0.9597

BE(T
E(T[Bluc'a—collar]) = 715—616>< loga %16— %QX loga %2: 0.8960
E(T[White-collar]) = —1g X loga1g — 15 X loga1g = 0.5033

InfoGain(ANY_Job) = E(T[ANY_Job]) — (é—g x E(T[Blue-collar])
+ 18 » BE(T[White-collar])) = 0.2716
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AnonyLoss(ANY_Job) = avg{ A(QID1) — Aany_iop(QID1)}
— (34— 16)/1 =18

Score(ANY_Job) = 01‘51116 = 0.0143.

0

In practice, the data holders can define their information metrics. The meth-
ods studied in this chapter are also applicable to achieve other information
requirements, not limited to classification analysis. Here, we assume the goal
of classification analysis in order to illustrate a concrete scenario.

11.2.3 Architecture and Protocol

In this Chapter 11.2.3, we discuss the technical architecture [225] shown in
Figure 11.4 with the communication paths of all participating parties followed
by a privacy-preserving data mashup protocol in Chapter 11.2.4. Referring to
the architecture, the mashup coordinator plays the central role in initializing
the protocol execution and presenting the final integrated data set to the user.
The architecture does not require the mashup coordinator to be a trusted
entity. This makes the architecture practical because a trusted party is often
not available in real-life scenarios.

The mashup coordinator of the communication protocol separates the archi-
tecture into two phases. In Phase I, the mashup coordinator receives requests
from users, establishes connections with the data holders who contribute their
data in a privacy-preserving manner. In Phase II, the mashup coordinator
manages the privacy-preserving data mashup algorithm (PPMashup) among
the data holders for a particular client request.

11.2.3.1 Phase I: Session Establishment

The objective of Phase I is to establish a common session context among
the contributing data holders and the user. An operational context is suc-
cessfully established by proceeding through the steps of user authentication,
contributing data holders identification, session initialization, and common
requirements negotiation.

Authenticate user: The mashup coordinator first authenticates a user to the
requested service, generates a session token for the current user interaction,
and then identifies the data holders accessible by the user. Some data holders
are public and are accessible by any users.

Identify contributing data holders: Next, the mashup coordinator queries
the data schema of the accessible data holders to identify the data holders
that can contribute data for the requested service. To facilitate more efficient
queries, the mashup coordinator could pre-fetch data schema from the data
holders (i.e., the pull model), or the data holders could update their data
schema periodically (i.e., the push model).
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FIGURE 11.4: Service-oriented architecture for privacy-preserving data
mashup

Initializing session context: Then, the mashup coordinator notifies all con-
tributing data holders with the session identifier. All prospective data holders
share a common session context, which represents a stateful presentation of
information related to a specific execution of privacy-preserving data mashup
algorithm PPMashup, which will be discussed in Chapter 11.2.3.2. Due to the
fact that multiple parties are involved and the flow of multiple protocol mes-
sages is needed in order to fulfill the data mashup, we can use a Web Service
Resource Framework (WSRF) to keep stateful information along an initial
service request. An established session context stored as a single web service
resource contains several attributes to identify a PPMashup process, which
are an unique session identifier (making use of end-point reference (EPR),
which is built from service address and identifiers of the resource in use), the
client address, the data holder addresses and their certificates, an authen-
tication token (containing the user certificate), as well as additional status
information.
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Negotiating privacy and information requirements: The mashup coordina-
tor is responsible to communicate the negotiation of privacy and information
requirements among the data holders and the user. Specifically, this step in-
volves negotiating the price, the anonymity requirement, and the expected
information quality. For example, in the case of classification analysis, infor-
mation quality can be estimated by classification error on some testing data.

11.2.3.2 Phase II: Initiating Privacy-Preserving Protocol

After a common session has been established among the data holders, the
mashup coordinator initiates PPMashup and stays back. Upon the comple-
tion of the protocol, the mashup coordinator will receive an integrated table
that satisfies both the information and anonymity requirements. There are
two advantages that the mashup coordinator does not have to participate in
the PPMashup protocol. First, the architecture does not require the mashup
coordinator to be a trusted entity. The mashup coordinator only has access to
the final integrated k-anonymous data. Second, this setup removes the compu-
tation burden from the mashup coordinator, and frees up the coordinator to
handle other requests. Chapter 11.2.4 and Chapter 11.2.5 discuss anonymiza-
tion algorithms for semi-honest model and for malicious model, respectively.

11.2.4 Anonymization Algorithm for Semi-Honest Model

In Chapter 6.3, we have studied a top-down specialization (TDS) [95, 96] ap-
proach to generalize a single table 7. One non-privacy-preserving approach
to the problem of data mashup is to first join the multiple private tables into
a single table T" and then generalize T to satisfy a k-anonymity requirement
using TDS. Though this approach does not satisfy the privacy requirement (3)
in Definition 11.1 (because the party that generalizes the joint table knows
all the details of the other parties), the integrated table produced satisfies
requirements (1) and (2). Therefore, it is helpful to first have an overview of
TDS: Initially, all values are generalized to the top most value in its taxon-
omy tree, and C'ut; contains the top most value for each attribute D;. At each
iteration, TDS performs the best specialization, which has the highest Score
among the candidates that are valid, beneficial specializations in UCut;, and
then updates the Score of the affected candidates. The algorithm terminates
when there is no more valid and beneficial candidate in UCut;. In other words,
the algorithm terminates if any further specialization would lead to a viola-
tion of the anonymity requirement. An important property of TDS is that the
anonymity requirement is anti-monotone with respect to a specialization: If it
is violated before a specialization, it remains violated after the specialization.
This is because a specialization never increases the anonymity count a(qid).

Now, we consider that the table T is given by two tables (n = 2) T4 and T
with a common key ID, where Party A holds T4 and Party B holds Tg. At
first glance, it seems that the change from one party to two parties is trivial
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Algorithm 11.2.7 PPMashup for Party A (Same as Party B) in Semi-Honest
Model

1: initialize T to include one record containing top most values;

2: initialize UCut; to include only top most values;

3: while some candidate v € UCut; is valid do

4:  find the local candidate z of highest Score(x);

5. communicate Score(x) with Party B to find the winner;
6 if the winner w is local then

7 specialize w on Ty;

8 instruct Party B to specialize w;

9: else

10: wait for the instruction from Party B;

11: specialize w on T using the instruction;

12:  end if

13:  replace w with child(w) in the local copy of UCut;;

14:  update Score(z) and beneficial/validity status for candidates x €
UCuty;

15: end while

16: return T, and UCut;;

because the change of Score due to specializing a single attribute depends
only on that attribute and Class, and each party knows about Class and
the attributes they have. This observation is wrong because the change of
Score involves the change of A(QID;) that depends on the combination of
the attributes in QID;. In PPMashup, each party keeps a copy of the current
UCut; and generalized T', denoted by T}, in addition to the private T4 or T.
The nature of the top-down approach implies that T}, is more general than the
final answer, therefore, does not violate the requirement (3) in Definition 11.1.
At each iteration, the two parties cooperate to perform the same specialization
as identified in TDS by communicating certain information in a way that
satisfies the requirement (3) in Definition 11.1. Algorithm 11.2.7 describes the
procedure at Party A (same for Party B).

First, Party A finds the local best candidate using the specialization criteria
presented in Chapter 11.2.2 and communicates with Party B to identify the
overall global winner candidate, say w. To protect the input score, the secure
multiparty maximum protocol [260] can be used. Suppose that w is local
to Party A (otherwise, the discussion below applies to Party B). Party A
performs w — child(w) on its copy of UCut; and T,. This means specializing
each record ¢t € T, containing w into those ¢}, ..., t, containing child values in
child(w). Similarly, Party B updates its UCut; and T,, and partitions T5[t]
into Tg[t}],...,Tg[t,]. Since Party B does not have the attribute for w, Party
A needs to instruct Party B how to partition these records in terms of IDs.
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Example 11.4
Consider Table 11.1 and the joint anonymity requirement:
{{QID;y = {Sex, Job},4), (QIDy = {Sex, Salary},11)}.
Initially,
T, = {(ANY_Sex, ANY_Job, [1-99))}
and
UCut; = {ANY_Sex, ANY_Job, [1-99)},
and all specializations in UCut; are candidates. To find the candidate, Party
A computes Score(ANY_Sex), and Party B computes Score(ANY_Job) and
Score([1-99)). 0

Algorithm 11.2.7 makes no claim on efficiency. In a straightforward method,
Lines 4, 7, and 11 require scanning all data records and recomputing Score for
all candidates in UCut;. The key to the efficiency of the algorithm is directly
accessing the data records to be specialized, and updating Score based on
some statistics maintained for candidates in UCut;, instead of accessing data
records. Below, we briefly describe the key steps: find the winner candidate
(Lines 4-5), perform the winning specialization (Lines 7-11), and update the
score and status of candidates (Line 14). For Party A (or Party B), a local
attribute refers to an attribute from T4 (or Tg), and a local specialization
refers to that of a local attribute. Refer to [172] for details.
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11.2.4.1 Find the Winner Candidate

Party A first finds the local candidate x of highest Score(z), by making use
of computed InfoGain(z), Az(QID,) and A(QID;), and then communicates
with Party B (using secure multiparty max algorithm in [260]) to find the win-
ner candidate. InfoGain(z), A, (QID;) and A(QID;) come from the update
done in the previous iteration or the initialization prior to the first iteration.
This step does not access data records. Updating InfoGain(x), Az(QID;)
and A(QID;) is considered in Chapter 11.2.4.3.

11.2.4.2 Perform the Winner Candidate

Suppose that the winner candidate w is local at Party A (otherwise, replace
Party A with Party B). For each record ¢ in T, containing w, Party A accesses
the raw records in T'4[t] to tell how to specialize ¢t. To facilitate this operation,
we represent Ty by the data structure called Tazonomy Indexed PartitionS
(TIPS), which has been discussed in Chapter 6.3.2.

With the TIPS, we can find all raw records generalized to « by following
Link, for a candidate = in UCut;. To ensure that each party has only access
to its own raw records, a leaf partition at Party A contains only raw records
from T4 and a leaf partition at Party B contains only raw records from 7.
Initially, the TIPS has only the root node representing the most generalized
record and all raw records. In each iteration, the two parties cooperate to
perform the specialization w by refining the leaf partitions P, on Link, in
their own TIPS.

Example 11.5

Continue with Example 11.4. Initially, TIPS has the root representing the
most generalized record (ANY_Sex, ANY_Job, [1-99)), Ta[root] = T4 and
Tg[root] = Tg. The root is on Linkany_sex; Linkany_jop, and Linkj_gg).
See the root in Figure 11.5. The shaded field contains the number of raw
records generalized by a node. Suppose that the winning candidate w is

[1-99) — {[1-87), [37-99)} (on Salary).

Party B first creates two child nodes under the root and partitions Tg[root]
between them. The root is deleted from all the Link,, the child nodes are
added to Linkj;.gy) and Linksygg), respectively, and both are added to
Linkany_jo» and Linkany._sez. Party B then sends the following instruction
to Party A:

IDs 1-12 go to the node for [1-37).
IDs 13-34 go to the node for [37-99).

On receiving this instruction, Party A creates the two child nodes under the
root in its copy of TIPS and partitions T4[root] similarly. Suppose that the
next winning candidate is
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ANY_Job — {Blue-collar, White-collar}.

Similarly the two parties cooperate to specialize each leaf node on
Link any._jop, resulting in the TIPS in Figure 11.6. UJ

We summarize the operations at the two parties, assuming that the winner
w is local at Party A.

Party A. Refine each leaf partition P, on Link, into child partitions P..
Link, is created to link up the new P,’s for the same c. Mark c as beneficial
if the records on Link. has more than one class. Also, add P, to every Link,
other than Link, to which P, was previously linked. While scanning the
records in P, Party A also collects the following information.

e Instruction for Party B. If a record in P, is specialized to a child value c,
collect the pair (id,c), where id is the ID of the record. This information
will be sent to B to refine the corresponding leaf partitions there.

e Count statistics. Some count statistics for computing the updating the
Score. See [172] for details.

Party B. On receiving the instruction from Party A, Party B creates child
partitions P, in its own TIPS. At Party B, P.’s contain raw records from Tz.
P_.’s are obtained by splitting P, among P.’s according to the (id,c) pairs
received.

Note, updating TIPS is the only operation that accesses raw records. Subse-
quently, updating Score(z) makes use of the count statistics without access-
ing raw records anymore. The overhead of maintaining Link, is small. For
each attribute in UQID; and each leaf partition on Link,, there are at most
|child(w)| “relinkings.” Therefore, there are at most | U QID,| x |Link,| x
|child(w)| “relinkings” for performing w.

11.2.4.3 Update the Score

The key to the scalability of PPMashup algorithm is updating Score(x)
using the maintained count statistics without accessing raw records again.
Score(z) depends on InfoGain(z), Az (QID;) and A(QID;). The updated
A(QID:;) is obtained from A,,(QID;), where w is the specialization just per-
formed.

11.2.4.4 Beyond k-Anonymity

k-anonymity is an effective privacy requirement that prevents record link-
ages. However, if some sensitive values occur very frequently within a qid
group, the adversary could still confidently infer the sensitive value of an indi-
vidual by his/her qid value. This type of attribute linkage attacks was studied
in Chapter 2.2. The proposed approach in this chapter can be extended to
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incorporate with other privacy models, such as ¢-diversity [162], confidence
bounding [237], and (a,k)-anonymity [246], to thwart attribute linkages.
To adopt these privacy requirements, we make three changes.

1. The notion of valid specialization has to be redefined depending on
the privacy requirement. The PPMashup algorithm guarantees that the
identified solution is local optimal if the privacy measure holds the (anti-
)monotonicity property with respect to specialization. ¢-diversity (Chap-
ter 2.2.1), confidence bounding (Chapter 2.2.2), and (a,k)-anonymity
(Chapter 2.2.5) hold such (anti-)monotonicity property.

2. The AnonyLoss(v) function in Chapter 11.2.2 has to be modified in
order to reflect the loss of privacy with respect to a specialization on
value v. We can, for example, adopt the PrivLoss(v) function in [237]
to capture the increase of confidence on inferring a sensitive value by a
qid.

3. To check the validity of a candidate, the party holding the sensitive
attributes has to first check the distribution of sensitive values in a
qid group before actually performing the specialization. Suppose Party
B holds a sensitive attribute Sp. Upon receiving a specialization in-
struction on value v from Party A, Party B has to first verify whether
specializing v would violate the privacy requirement. If there is a viola-
tion, Party B rejects the specialization request and both parties have to
redetermine the next candidate; otherwise, the algorithm proceeds the
specialization as in Algorithm 11.2.7.

11.2.4.5 Analysis

PPMashup in Algorithm 11.2.7 produces the same integrated table as the
single party algorithm TDS in Chapter 6.3 on a joint table, and ensures that
no party learns more detailed information about the other party other than
what they agree to share. This claim follows from the fact that PPMashup
performs exactly the same sequence of specializations as in TDS in a dis-
tributed manner where T4 and T’ are kept locally at the sources. The only
information revealed to each other is those in UCut; and T at each iteration.
However, such information is more general than the final integrated table that
the two parties agree to share.

PPMashup is extendable for multiple parties with minor changes: In Line 5,
each party should communicate with all the other parties for determining the
winner. Similarly, in Line 8, the party holding the winner candidate should
instruct all the other parties and in Line 10, a party should wait for instruction
from the winner party.

The cost of PPMashup can be summarized as follows. Each iteration in-
volves the following work:
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1. Scan the records in T4 [w] and Tp[w] for updating TIPS and maintaining
count statistics (Chapter 11.2.4.2).

2. Update QIDT'ree;, InfoGain(z) and A, (QID;) for affected candidates
x (Chapter 11.2.4.3).

3. Send “instruction” to the remote party. The instruction contains only
IDs of the records in Ty[w] or Tew] and child values ¢ in child(w),
therefore, is compact.

Only the work in (1) involves accessing data records; the work in (2) makes
use of the count statistics without accessing data records and is restricted to
only affected candidates. For the communication cost (3), each party commu-
nicates (Line 5 of Algorithm 11.2.7) with others to determine the global best
candidate. Thus, each party sends n — 1 messages, where n is the number
of parties. Then, the winner party (Line 8) sends instruction to other par-
ties. This communication process continues for at most s times, where s is
the number of valid specializations which is bounded by the number of dis-
tinct values in UQID;. Hence, for a given data set, the total communication
cost is s{n(n — 1) + (n — 1)} = s(n? — 1) = O(n?). If n = 2, then the total
communication cost is 3s.

In the special case that the anonymity requirement contains only local QIDs,
one can shrink down the TIPS to include only local attributes. Parties do not
have to pass around the specialization array because each party specializes
only local attributes. A party only has to keep track of QI DTree; only if QID;
is a local QID. The memory requirement and network traffic can be further
reduced and the efficiency can be further improved. In the special case that
there is only a single QID, each root-to-leaf path in TIPS has represented
a gid. One can store a(qid) directly at the leaf partitions in TIPS without
QIDTrees. A single QID is considered in where the QID contains all potentially
identifying attributes to be used for linking the table to an external source.
PPMashup can be more efficient in this special case.

PPMashup presented in Algorithm 11.2.7 is based on the assumption that
all the parties are semi-honest. An interesting extension is to consider the
presence of malicious and selfish parties [180]. In such scenario, the algorithm
has to be not only secure, but also incentive compatible to ensure fair contri-
butions. We study this scenario next.

11.2.5 Anonymization Algorithm for Malicious Model

The PPMashup algorithm presented in Algorithm 11.2.7 satisfies all the
conditions of Definition 11.1 only if all the parties follow the defined protocol.
However, a malicious party can easily cheat others by under declaring its
Score value, thus avoiding to share its data with others. Suppose Party A
is malicious. During the anonymization process, Party A can always send 0
as its Score value to Party B (Line 5 of Algorithm 11.2.7) for determining
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Table 11.2: Anonymous tables, illustrating a selfish

Party A
Shared Party A Party B
SSN | Class | Sex | ... Job Salary
1-7 | OY7N | ANY Non-Technical | [1-35)
8-16 | bY4N | ANY Technical 35-37)
17-25 | 7Y2N | ANY Manager 37-99)
26-34 | 9YON | ANY Professional | [37-99)

the global winner candidate. Hence, Party A indirectly forces Party B to
specialize its attributes in every round. This can continue as long as Party
B has a valid candidate. Thus, the malicious Party A successfully obtains
the locally anonymized data of Party B while sharing no data of its own.
Table 11.2 is an example of an integrated anonymous table, where Party A
does not participate in the anonymization process. Moreover, this gives Party
A a global data set, which is less anonymous than if it has cooperated with
Party B.

Next, we provide a solution to prevent parties from reporting fake Score
values. We assume that a party exhibits its malicious behavior only by re-
porting a fake Score value. It however does not provide wrong data to other
parties (Line 8 of Algorithm 11.2.7). Preventing malicious parties from shar-
ing fake data is difficult since data is a private information of a party, which
is not verifiable. Further investigation is needed to thwart this kind of mis-
behavior. In this regard, mechanism design theory [180] could be a potential
tool to motivate parties to share their real data.

11.2.5.1 Rational Participation

To generate the integrated anonymous table, each party specializes its own
attributes, which can be considered as a contribution. The contribution can
be measured by the attribute’s Score value. Thus, the total contribution of
Party A, denoted by pa, is the summation of all the Score values from its
attribute specializations. We use ¢4 to denote the contributions of all other
parties excluding Party A. This is the ultimate value that each party wants
to maximize from the integrated anonymous table.

The Score function in Equation 6.1 uses information gain (InfoGain) to
identify the next candidate for specialization. Yet, In foGain favors the candi-
date value that has a larger number of child values in the taxonomy tree [191].
If we compare p; across different parties, parties having values with a larger
number of child values tend to high Score, and thereby, resulting in unfair con-
tributions. To avoid this problem, a better Score function is to use Gain Ratio,
which normalizes the InfoGain by SplitInfo.

_ InfoGain(v)

Score(v) = GainRatio(v) = g 4o = 5

(11.1)
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FIGURE 11.7: Rational participation

where
Splitinfo(v) = — Zc: ;{g” X 1092%. (11.2)

Example 11.6
Consider the raw data in 11.1. Initially, UCut; = {ANY_Sex, ANY_Job, [1-99)}.

The specialization ANY_Job refines the 34 records into 16 records for Blue-
collar and 18 records for White-collar. Score(ANY_Job) is calculated as fol-

lows.

E(ANY_Job) = —2% x loga 31 — 33 X loga 2 = 0.960
E(Blue-collar) = — & x loga 2 — 1 x loga 1+ = 0.896
E(White-collar) = —% X 1092% — 12—8 X loggl2—8 = 0.503
InfoGain(ANY_Job) = E(ANY_Job) — (35 x E(Blue-collar)

+ 18 x E(White-collar)) = 0.272
SplitInfo(ANY_Job) = fé—ﬁ X logzg - % X ZOQQ§ = 0.998
GainRatio( ANY_Job) = 5512 = 0.272.

0

The value of ¢ for each party is a function of the anonymization process
participated by the different parties. Since all the parties are rational, their
actions are driven by self interest. Hence, they may want to deviate from the
algorithm to maximize their ¢ while minimizing 1 as much as possible. To
overcome this problem, the presented algorithm has to be such that

1. following the algorithm parties will reach a fair distribution of ¢

2. deviating from the algorithm will eventually decrease the value of .
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An anonymous integrated table can be achieved in two ways. Firstly, both
the parties (n = 2) can specialize their attributes. Certainly, there can be
many different choices for attribute selection. The heuristic function presented
in Equation 11.1 is one of them. The data holder may apply other heuristic
functions. Secondly, only one party can specialize its attributes (based on only
local QIDs), while the other party’s attributes are generalized to the top most
values. In this case, part of the table is locally anonymized and part of the
table is completely generalized to the top most values. As an example, consider
Party A and B, having the same number of local attributes and being equally
capable of contributing to the anonymization process. Let’s assume that the
integrated table cannot be more specialized after any s number of attribute
specializations. Each specialization has the same Score value and the sum
of the Score value is p. Figure 11.7 shows the possible values of ¢ for both
the parties. The line joining points (0, p) and (p,0) shows different choices of
o values. Both the extreme points represent the participation of one party,
while the points in between are the different levels of contributions from the
parties. Each party cannot increase its ¢ value without decreasing the other
party’s ¢. It is now easy to find the unique operating point from these possible
alternatives. Rationality suggests that the only point that can be accepted by
both the parties is (p/2,p/2). The proposed algorithm ensures that following
the algorithm parties will reach this rational participation point.

In reality, each party holds different attributes and some attributes are more
informative than others for classification analysis. Thus, all the parties are not
equally capable of contributing to the anonymization process. Based on the
contribution capability, we assume that parties are divided into y different
classes, where parties belonging to class 1 are able to contribute the most and
parties belonging to class y are the least capable ones. If there are different
numbers of parties from different classes then extending the concept of ratio-
nality, we can conclude that the interaction between them will be dominated
by the party of the least capable class. For example, if one party of class 1
and two parties of class 2 participate to form an integrated anonymous table,
then the party of class 1 will behave as if it belongs to class 2. It is because
by contributing more than the class 2 parties, the party of class 1 will not
receive any additional contribution from them.

The problem of ensuring honest participation falls into the framework of
non-cooperative game theory. To make the chapter self-contained, we provide
some background information on game theory below. A more general overview
of game theory can be found in [24, 183].

11.2.5.2 Game Theory

A game can be defined as an interaction model among players,* where each
player has its own strategies and possible payoffs. Game theory is the tool

3We use the word player to refer a party
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Player2 Cooperate Defect
Player 1
Cooperate (5,5) (-5, 10)
Defect (10,-9) (0,0)

FIGURE 11.8: Payoff matrix for prisoner’s dilemma

that studies this interaction which is established and broken in the course of
cooperation and competition between the players. Game theory can be clas-
sified into two categories: cooperative game theory and non-cooperative game
theory. Below we introduce a well known non-cooperative game with an ex-
ample and illustrate how this model can be used to derive a solution for the
aforementioned problem.

Basic Definitions

A normal game consists of a finite set of players P = {1,2,...,n}, a strategy
set s1, for each player and a set of outcomes, O. Figure 11.8 shows different
elements of a game where two players have two strategies each. The columns
represent the strategies of player 2 and the rows represent the strategies of
player 1. The intersections between the row and the column represent the
payoff of player 1 and 2. For example, the payoff of both the players are 5
when they both choose to “cooperate.”

Strategy: Each player can select his strategy from a strategy set s;. For
example, the strategy set for each player is S1 = So = {Cooperate, De fect}. A
strategy profile s = {s1, sa,. .., s, } is the vector of strategies. It is the set of all
the strategies chosen by the players, whereas s_; = {s1,...,8i—1,8i+1,- -+, 8n}
denotes the strategies of all the players except player i. Strategy profile is the
outcome, o(s) € O, of the game. For example, the possible outcomes of the
game are (Cooperate, Cooperate), (Cooperate, Defect), (Defect, Cooperate),
and (Defect, Defect). Each player chooses its strategy in such a way that its
preferred outcome occurs and the preference over the outcome of the game is
expressed by the utility function.

Utility Function: Each player has preferences over the outcomes of the game.
Preferences over outcomes are represented through a utility function, u;. Util-
ity function of a player ¢ can be considered as a transformation of the outcome
to a real number. It is expressed formally as:

u; : 0 — R (11.3)

A player prefers outcome 07 over outcome o9 if u;(01) > u;(02). A rational
player always wants to maximize its utility. Thus, it chooses a strategy which
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will increase its expected utility given the preferences of the outcomes, the
structure of the game and the belief of others’ strategies.

Solution Concepts: Game theory uses different techniques to determine the
outcome of the game. These outcomes are the stable or the equilibrium points
of the game. The most well known equilibrium concept is known as the Nash
equilibrium. It states that each player plays its best strategy to maximize the
utility, given the strategies of the other players.

DEFINITION 11.2 Nash Equilibrium A strategy profile
s*={s1,s5,...,85}

is a Nash equilibrium if this strategy profile maximizes the utility of every
player, i. Formally

Vi ui(o(s),s*;)) > ui(o(s;,s%,)), Vs (11.4)

Nash equilibrium is the point where no player can take advantage of the other
player’s strategy to improve his own position. m

For the given example, both the players will play the strategy “defect” since
that ensures better payoff regardless of what another player chooses.

Iterated Prisoner’s Dilemma

Prisoner’s Dilemma (PD) is a classical example of a non-cooperative game,
which can be used to describe the decision making process regarding contri-
bution of the rational parties. In PD, two players can choose to cooperate
or defect one another. If both the players cooperate, they receive some bene-
fits. If both defect, they receive punishments. If only exactly one cooperates,
then the cooperator gets the punishment while the other player receives ben-
efit. The payoff matrix of Figure 11.8 is a canonical example of the prisoner’s
dilemma.

Certainly, the mutual benefit of both the players is to cooperate. However,
from each player’s perspective, defect is the best strategy. For example, Player
1 notices that it always gets higher payoff by choosing defect than cooperate
irrespective of the strategy of Player 2. Thus, the Nash equilibrium of PD
given in Figure 11.8 is to defect for both the players. However, cooperation
can emerge as the Nash equilibrium, if this one shot game is played repeat-
edly. Such a repeated game is known as iterative prisoner’s dilemma. In an
iterated PD game, each player selects its strategy based on the strategy of
the other player in the previous games. This allows players to cooperate with
each other. Generous Tit for Tit (GTFT) is a well known strategy that en-
ables cooperation to emerge as the Nash equilibrium. In GTFT strategy, each
player behaves as the other player does. However, occasionally a player is
generous by cooperating even if its opponent defects. It has been proven that
GTFT strategy enforces all the players to cooperate in an iterative prisoner‘s
dilemma [24].
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11.2.5.3 Participation Strategy

The privacy-preserving data mashup problem can be modeled as an iterative
prisoner’s dilemma game. If both (n=2) parties cooperate, then they can form
a joint integrated table and, thus, both receive benefits. If both choose defect,
then it is not possible to form an integrated table, which can be considered as
a loss or punishment. However, if one cooperates (the party that contributes),
the cooperator gets no benefit, while the other receives more benefit.

To ensure that both the parties will contribute to form the joint integrated
table, we can employ a GTFT strategy and adopt it in the context of the
privacy-preserving data mashup problem. GTFT helps the parties to reach
towards the rational participating point and therefore rationality dictates to
follow the strategy. In the revised version of the PPMashup algorithm, each
party keeps track of p and ¢ values. These values indicate the contributions of
the parties. In each iteration, each party decides whether or not to contribute
based on these two variables. For two parties, the decision strategy works as
follows:

If (1 > ¢ + €) then Not-contribute else Contribute (11.5)

where € is a small positive number. The general intuition is that each party
participates in the anonymization process if it has not contributed more than
the other party. However, each party is a bit generous in a sense that it
contributes as long as the difference is small. In the case of multiple parties,
we can generalize decision strategy as follows:

If (> Ll + €) then Not-contribute else Contribute (11.6)
n—

where n is the number of parties.

We incorporate the decision strategy in Algorithm 11.2.7 and present Al-
gorithm 11.2.8 for integrating private tables from multiple malicious parties.
The extended algorithm has the following key differences. First, in Lines 5-6,
a party does not further contribute if its contributions are larger than the
contributions of other parties plus some generosity. Second, in Lines 7-9, the
algorithm terminates and returns the current generalized table if all other
parties also do not contribute. Finally, in Lines 16 and 20, every party keeps
track of its own contributions and other parties’ contributions.

11.2.5.4 Analysis

Algorithm 11.2.8 has some nice properties. First, each party only requires to
keep two extra variables disregarding the number of participating parties. This
makes the decision algorithm scalable. Second, each party decides whether or
not to contribute based on the locally generated information. Thus, a party
cannot be exploited by others in the decision making process. Third, although
the values of u are not exactly the same for all the parties when the algorithm
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Algorithm 11.2.8 PPMashup for Every Party in Malicious Model
1: initialize T to include one record containing top most values;
2: initialize UCut; to include only top most values;

3: while some candidate v € UCut; is valid do
4:  find the local candidate z of highest Score(x);

5. if > —£5 + € or the party has no valid candidate then
6: send Not-contribute;
7 if receive Not-contribute from every other party then
8: break;
9: end if
10: else
11: communicate Score(z) with all other parties to find the winner;
12:  end if
13:  if the winner w is local then
14: specialize w on Tg;
15: instruct all other to specialize w;
16: p = p+ Score(w);
17:  else
18: wait for the instruction from the party who owns w;
19: specialize w on Ty using the instruction;
20: ¢ = @ + Score(w);
21:  end if

22:  replace w with child(w) in the local copy of UCut;;

23:  update Score(x) and beneficial/validity status for candidates = €
UCuty;

24: end while

25: return T, and UCut;;

terminates, the algorithm progresses by ensuring an almost even contribution
from all the parties with a maximum different €. Since parties are unable to
determine the last iteration of the algorithm, they will cooperate until the
anonymization finishes. Finally, the computational and communication cost
of the algorithm remains to be the same as Algorithm 11.2.7 discussed in
Chapter 11.2.4.5.

11.2.6 Discussion

We have presented a service-oriented architecture for the privacy-preserving
data mashup algorithm. The architecture clearly separates the requesting con-
sumer of the mashup application from the backend process. Due to issues of
convenience and control, a mashup coordinator represents a static point of
connection between clients and providers with a high rate of availability. A
mashup coordinator would also be able to cache frequently requested data ta-
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bles during a period where they are valid. Requests are attached to a session
token identifying a kind of contract between a user and several data holders
and are maintained by the mashup coordinator, who can also be a generic
service provider. Another benefit is that the mashup coordinator is able to
handle and unify several service level agreements among different data hold-
ers and queues service requests according to the workload of individual data
holders.

In real-life collaborative anonymization problems, different parties agree to
share their data when they have mutual trust and benefits. However, if the par-
ties do not want to share their data more than others, then Algorithm 11.2.8
provides an appropriate solution. The participating data holders can decide
whether to employ Algorithm 11.2.7 or Algorithm 11.2.8.

Experiments on real-life data verified several claims about the PPMashup
algorithms [94]. First, data integration does lead to improved data analysis.
Second, PPMashup achieves a broad range of anonymity requirements with-
out sacrificing significantly the usefulness of data to classification. The data
quality is identical or comparable to the result produced by the single party
anonymization methods [95, 96, 123]. This study suggests that classification
analysis has a high tolerance towards data generalization, thereby, enabling
data mashup across multiple data holders even in a broad range of anonymity
requirements. Third, PPMashup is scalable for large data sets and different
single QID anonymity requirements. It provides a practical solution to data
mashup where there is the dual need for information sharing and privacy
protection.

11.3 Cryptographic Approach
11.3.1 Secure Multiparty Computation

Information integration has been an active area of database research [58,
244]. This literature typically assumes that all information in each database
can be freely shared [17]. Secure multiparty computation (SMC), on the other
hand, allows sharing of the computed result (e.g., a classifier), but completely
prohibits sharing of data [260], which is a primary goal of the problem studied
in this chapter. An example is the secure multiparty computation of classifiers
[50, 69, 71, 259).

Yang et al. [258] propose several cryptographic solutions to collect infor-
mation from a large number for data owners. Yang et al. [259] develop a
cryptographic approach to learn classification rules from a large number of
data owners while their sensitive attributes are protected. The problem can
be viewed as a horizontally partitioned data table in which each transaction
is owned by a different data owner. The model studied in this chapter can
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be viewed as a vertically partitioned data table, which is completely different
from [258, 259]. More importantly, the output of their method is a classifier,
but the output of PPMashup is an integrated anonymous data that supports
classification analysis. Having accessed the data, the data recipient has the
freedom to apply her own classifier and parameters.

Vaidya and Clifton [228, 229] propose techniques to mine association rules
and to compute k-means clustering in a distributed setting without sharing
data. Comparing to data mining results sharing, data sharing offers more
freedom to the data recipients to apply her own classifiers and parameters.
Refer to [227, 230] for more details on privacy-preserving distributed data
mining (PPDDM).

Jiang and Clifton [127, 128] propose a cryptographic approach. First, each
data holder determines a locally k-anonymous table. Then, the intersection
of RecID’s for the gid groups in the two locally k-anonymous tables is de-
termined. If the intersection size of each pair of gid group is at least k, then
the algorithm returns the join of the two locally k-anonymous tables that is
globally k-anonymous; otherwise, further generalization is performed on both
tables and the RecI D comparison procedure repeated. To prevent the other
data holder from learning more specific information than that appearing in the
final integrated table through RecI D, a commutative encryption scheme [189)
is employed to encrypt the RecID’s for comparison. This scheme ensures the
equality of two values encrypted in different order on the same set of keys,
ie., Exeyl(Frey2(RecID)) = Exey2(Exeyi (ReclD)).

Their methods, however, have several limitations. This model is limited to
only two parties, whereas the technique presented in this chapter is applicable
for multiple parties. This data model [128] assumes the participating parties
are semi-honest, meaning that the data holders follow the secure protocol but
may attempt to derive additional (sensitive) information from their collected
data. Their solution cannot guarantee the security and fair contributions in
the presence of malicious participants as discussed in Chapter 11.2.5. While
determining a locally k-anonymous table, each party does not communicate
with other parties. As a result, each generalizes the data according to a dif-
ferent set of QID attributes. The locally optimized anonymization may lead
to very different gid groups. Consequently, the second phase tends to produce
very small intersection of record IDs; therefore, the data will be excessively
generalized locally in order to have minimal intersection size k. In contrast,
the PPMashup always builds the same grouping across all parties by shar-
ing the grouping information. Thus, PPMashup does not generalize the data
excessively because of inconsistent groupings at different parties.

11.3.2 Minimal Information Sharing

Agrawal et al. [17] propose the notion of minimal information sharing for
computing queries spanning private databases. They considered computing
intersection, intersection size, equijoin and equijoin size, assuming that certain
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metadata such as the cardinality of databases can be shared to both parties.
Besides, there exists an extensive literature on inference control in multilevel
secure databases [87, 104, 115, 116, 125]. All these works prohibit the sharing
of databases.

11.4 Summary and Lesson Learned

We have studied the problem of collaborative anonymization for vertically
partitioned data, motivated the problem with a real-life scenario, and gener-
alized the privacy and information requirements from the financial industry
to the problem of privacy-preserving data mashup for the purpose of joint
classification analysis. This problem has been formalized as achieving the k-
anonymity on the integrated data without revealing more detailed information
in this process. We have studied several secure protocols for the semi-honest
and malicious models. Compared to classic secure multiparty computation, a
unique feature in collaborative anonymization is to allow data sharing instead
of only result sharing. This feature is especially important for data analysis
where the process is hardly performing an input/output black-box mapping
and user interaction and knowledge about the data often lead to superior re-
sults. Being able to share data records would permit such exploratory data
analysis and explanation of results.

In general, the financial sector prefers simple privacy requirement. Despite
some criticisms on k-anonymity as we have discussed in previous chapters, the
financial sector (and probably some other sectors) finds that k-anonymity is
an ideal privacy requirement due to its intuitiveness. Their primary concern
is whether they can still effectively perform the task of data analysis on the
anonymous data. Therefore, solutions that solely satisfy some privacy require-
ments are insufficient for them. They demand anonymization methods that
can preserve information for various data analysis tasks.



Chapter 12

Collaborative Anonymization for
Horizontally Partitioned Data

12.1 Introduction

In the previous chapter, we have studied the data publishing model where
multiple data holders want to collaboratively anonymize their vertically parti-
tioned data. In this chapter, we study the problem of collaborative anonymiza-
tion for horizontally partitioned data, where multiple data holders own sets of
person-specific data records on the same set of attributes. The model assumes
that the sets of records are disjoint, meaning that a record owner appears in
at most one record set. Often there is a strong urge to integrate scattered data
owned by different parties for greater benefits [131]. A good example is the
Shared Pathology Informatics Network (SPIN) initiated by National Cancer
Institute.! The objective is to create a virtual database combining data from
different healthcare institutions to facilitate research investigations. Though
the virtual database is an integration of different databases, however in reality
the data should remain physically in different locations under the complete
control of the local healthcare institutions.

There are several practical challenges in such a scenario. First, according
to the Health Insurance Portability and Accountability Act (HIPAA), it is
not allowed to share the patient’s records directly without de-identification.
Second, the institutions cannot share their patients’ record among themselves
due to the confidentiality of the data. Hence, similar to the problem of privacy-
preserving data mashup studied in Chapter 11.2, the data integration should
take place in such a way that the final integrated table should satisfy some
jointly agreed privacy requirements, such as k-anonymity and ¢-diversity, and
every data holder should not learn more detailed information other than those
in the final integrated table. This particular scenario can be generalized to the
problem of collaborative anonymization for horizontally partitioned data.

Different approaches can be taken to enable data anonymization for dis-
tributed databases. Let’s first try the same two naive approaches men-
tioned in the previous chapter: “generalize-then-integrate” and “integrate-

IShared Pathology Informatics Network. http://www.cancerdiagnosis.nci.nih.gov/spin/
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then-generalize.” In the “generalize-then-integrate” approach, each party first
locally anonymizes the data and then integrates. Unlike privacy-preserving
data mashup, this solution is correct since all the parties own the same set of
attributes. However, it suffers from over generalization because each party has
a smaller data set, therefore, losing data utility. On the other hand, “integrate-
then-generalize” approach is incorrect since the party holding the integrated
table has access to all the private data, therefore, violating the privacy require-
ment. An easy solution is to assume the existence of a trusted third party,
where all the data can be integrated before anonymization. Needless to men-
tion, this assumption is not practical since it is not always feasible to find such
a trusted third party. Moreover, a third party-based solution is risky because
any failure in the trusted third party will comprise the complete privacy of
all the participating parties.

In this chapter, we will describe a fully distributed solution proposed by Ju-
rezyk and Xiong in [131] for horizontally partitioned data.The privacy model
and proposed solution will be presented briefly followed by discussion.

12.2 Privacy Model

There are two different privacy requirements: privacy for record owners and
privacy for data holders.

1. Privacy for record owners requires that the integrated data should not
contain any identifiable information of any record owners. To protect
the privacy of the record owners, the final integrated table should sat-
isfy both k-anonymity (Chapter 2.1.1) and ¢-diversity (Chapter 2.2.1)
privacy models.

2. Privacy for data holders imposes that the data holder should not reveal
any extra information to others in the process of anonymization, nor the
ownership of the data.

The second goal of the privacy model is to protect the privacy of the data
holders. This requires that each data holder should not reveal any additional
information to other data holders than what is in the final integrated table.
This requirement is similar to the secure multiparty computation (SMC) pro-
tocols, where no participant learns more information than the outcome of
the function. To achieve this privacy, the data holders are considered to be
semi-honest. Refer to Chapter 11.2 for the definition of semi-honest.

The privacy model further requires that the ownership of a particular record
in the integrated table should also be concealed. For example, given a particu-
lar record, an adversary with some background knowledge should not identify
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that this record is from a particular hospital. To overcome this problem, ¢-
diversity privacy principle can be used considering location as sensitive infor-
mation. Thus, for each equivalent class, the records should be from ¢ different
locations. This privacy requirement is known as the ¢-site diversity.

12.3 Overview of the Solution

Initially, the data is located in L different locations, where L > 2. Thus,
the minimum number of data holders is three. Each data holder Party; owns
a private database d; over the same set of attributes. The integrated database
is the anonymous union of the local databases, denoted by d = Ui<i<rd;.
Note that the quasi-identifiers are uniform across all the local databases. Data
holders participate in the distributed protocol and produce a local anonymous
database which itself may not be k-anonymous and ¢-diverse, however, the
union of the local anonymous databases is guaranteed to be k-anonymous
and ¢-diverse. Note, the solution is not applicable to two parties (L = 2)
because the secure sum protocol, which will be discussed later, only works for
L>2.

The distributed anonymization algorithm is based on the top-down Mon-
drian algorithm [149]. It is worth mentioning that for distributed anonymiza-
tion, top-down approach is better than bottom-up anonymization algorithms
since anything revealed during the protocol execution has a more general view
than the final result. The original Mondrian algorithm was designed for single
party, however now it has to be decomposed and SMC protocols have to be
used to make a secure distributed algorithm. Refer to Chapter 5.1.2.6 for more
details on the Mondrian algorithm.

The distributed anonymization algorithm executes these three phases
among different parties securely with the help of SMC protocols. Initially,
the data holders are divided into leading and non-leading nodes. One node
among all the parties acts as a leading node and guides the anonymization
process. The leading node first determines the attribute to specialize. To do
this, it needs to calculate the range of all the candidates in d = Uj<;<rd;. A
secure k" element protocol can be used to securely compute the minimum
(k = 1) and maximum values of each attribute across the databases [14].

Once it determines the split attribute, it instructs other data holders to do
the specialization. After the partitioning, the leading node recursively checks
whether or not further specialization will violate the specified privacy require-
ments. In order to determine validity of a specialization, a secure sum proto-
col [207] is used to determine the number of tuples across the whole database.
This secure sum protocol is secure when there are more than two data hold-
ers with a leading node. The leading node is the only node that is able to
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Table 12.1: Node 0
Original data Generalized data
Rec ID | Age | Salary Rec ID | Age Salary
1 30 41K 1 30-36 | 41K-42K
2 33 | 42K 2 30-36 | 41K-42K
Table 12.2: Node 1
Original data Generalized data
Rec ID | Age | Salary Rec ID | Age Salary
3 45 55K 3 37-56 | 42K-55K
4 56 | 42K 4 37-56 | 42K-55K
Table 12.3: Node 2
Original data Generalized data
Rec ID | Age | Salary Rec ID | Age Salary
5 30 | 32K 5 30-36 | 32K-40K
6 53 | 32K 6 37-56 | 32K-41K
Table 12.4: Node 3
Original data Generalized data
Rec ID | Age | Salary Rec ID | Age Salary
7 38 | 41K 7 37-56 | 32K-41K
8 33 | 40K 8 30-36 | 32K-40K

determine the value of the summation. This imposes some limitations on the
proposed distributed algorithm which will be discussed in Chapter 12.4.

Example 12.1

Tables 12.1-12.4 show an example scenario of distribute anonymization. The
union of the generalized data in Table 12.5 satisfies 2-anonymity and 1-site-
diversity. Note that although the local anonymous data at nodes 2 and 3
are not 2-anonymous individually, the union of all the local generalized data
satisfies the 2-anonymity requirement. The union satisfies only 1-site-diversity
because the two records in gid = (30 — 36,41K — 42K) come from the same

node.

12.4 Discussion

The aforementioned distributed anonymization algorithm is simple, secure,
and privacy preserved. One of the advantages of the proposed model is its
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Table 12.5: Union of the
generalized data

Node ID | Rec ID | Age Salary
0 1 30-36 | 41K-42K
0 2 30-36 | 41K-42K
1 3 37-56 | 42K-55K
1 4 37-56 | 42K-55K
2 5 30-36 | 32K-40K
2 6 37-56 | 32K-41K
3 7 37-56 | 32K-41K
3 8 30-36 | 32K-40K

flexibility to adapt different anonymization algorithms. Though it is built on
the multi-dimensional top-down Mondrian algorithm, alternative top-down
anonymization algorithms, such as TDS, can also be used with little mod-
ification. The overall complexity of the distributed algorithm is O(nlog?n),
where n is the number of records of the integrated data table.

One weakness of the proposed method is that the distributed anonymization
algorithm can only be applied when there are more than two data holders. It
is due to the limitation of the secure sum protocol that is used to determine
whether any further split of a particular subgroup is possible or not. Besides,
though the proposed architecture is distributed, one node acts as a leading
node. This leading node controls the entire anonymization process and de-
cides which subgroup to split and when to stop the anonymization process.
This architecture works perfectly under the assumption of the semi-honest
adversary model; however, if the leading node turns out to be malicious, then
the privacy of both the data holders and the record owners are jeopardized.
Thus, further investigation is needed to devise an alternative technique of se-
cure sum protocol so that the architecture can be used for two data holders
without the need of a leading node.

The method guarantees the privacy of the integrated data to be k-
anonymous. However, a data holder can always identify its own data records
and remove them from the integrated data. The remaining data records are
no longer k-anonymous. This remains to be an issue for open discussion.
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Chapter 13

Anonymizing Transaction Data

13.1 Introduction

So far, we have considered relational data where all records have a fixed
set of attributes. In real life scenarios, there is often a need to publish un-
structured data. In this chapter, we examine anonymization techniques for
one type of unstructured data, transaction data. Like relational data, trans-
action data D consists of a set of records, t1,...,t,. Unlike relational data,
each record t;, called a transaction, is an arbitrary set of items drawn from a
universe . For example, a transaction can be a web query containing several
query terms, a basket of purchased items in a shopping transaction, a click
stream in an online session, an email or a text document containing several
text terms. Transaction data is a rich source for data mining [108]. Examples
are association rule mining [18], user behavior prediction [5], recommender
systems (www.amazon.com), information retrieval [53] and personalized web
search [68], and many other web based applications [253].

13.1.1 Motivations

Detailed transaction data concerning individuals often contain sensitive
personal information and publishing such data could lead to serious privacy
breaches. America Online (AOL) recently released a database of query logs
to the public for research purposes [28]. For privacy protection, all explicit
identifiers of searchers have been removed from the query logs. However, by
examining the query terms contained in a query, the searcher No. 4417749
was traced back to Thelma Arnold, a 62-year-old widow who lives in Lilburn.
Essentially, the re-identification of the searcher is made possible by matching
certain “background knowledge” about a searcher with query terms in a query.
According to [108], this scandal leads to not only the disclosure of private in-
formation for AOL users, but also damages to data publishers’ enthusiasm on
offering anonymized data to researchers.

The retailer example. To have a closer look at how background knowl-
edge is used in such attacks, let us consider a toy example. Suppose that a
web-based retailer released online shopping data to a marketing company for
customer behavior analysis. Albert, who works in the marketing company,

229
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learned that Jane, a colleague, purchased “printer,” “frame,” and “camera”
from this web site some days ago. Such background knowledge could be ac-
quired from an office conversion, for instance. Having the access to the trans-
action data, Albert matched these items against all transaction records and
surprisingly found only three transactions matched. Furthermore, out of these
three transactions, two contain “adult toy.” Albert then concluded, with 67%
certainty, that Jane bought “adult toy,” an item that Jane does not intend to
reveal to anybody.

13.1.2 The Transaction Publishing Problem

The problem we consider here, called privacy-preserving transaction publish-
ing, can be described as follows. We assume that a set of original transactions
D can be collected by a publisher, where each transaction corresponds to an
individual (a searcher, a patient, a customer, etc.). The publisher wants to
produce and publish an anonymized version D’ of D, such that (i) an adver-
sary with background knowledge on an individual cannot link the individual
to his transaction in D’ or to a sensitive item in his transaction, with a high
certainty, (ii) D’ retains as much information of D as possible for research. A
record linkage attack refers to linking an individual to a specific transaction,
and an attribute linkage attack refers to linking an individual to a specific
item. This problem has two emphases that distinguish it from previous works
on privacy-preserving data mining.

First, it emphasizes publishing the data, instead of data mining results.
There are several reasons why the researcher must receive the actual data,
instead of data mining results. First, the researcher wants to have the control
over how to mine the data. Indeed, there are many ways that the data can be
analyzed and the researcher may want to try more than one of them. Second,
data mining is exploratory in nature in that often it is hard to know exactly
what patterns will be searched in advance. Instead, the goal of search is refined
during the mining process as the data miner gets more and more knowledge
about the data. In such cases, publishing the data is essential.

Another emphasis is dealing with background knowledge of an adversary.
Background knowledge, also called external knowledge, refers to knowledge
that comes from a source other than the published data. In the above retailer
example, from an office conversion Albert acquired the background knowledge
that Jane purchased “printer,” “frame,” and “camera.” Typical background
knowledge includes geographical and demographic information and other not
so sensitive information such as items purchased and query terms in a web
query. Such knowledge may be acquired either from public sources (such as
voter registration lists) or from close interaction with the target individual.
Modeling such background knowledge and preventing linking it to a transac-
tion is the key.
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13.1.3 Previous Works on Privacy-Preserving Data Mining

Similar to the data publishing problem, privacy-preserving data mining
considers hiding certain sensitive information in transactions. Unlike the data
publishing problem, however, these works either do not consider publishing
the data, or do not consider background knowledge for linking attacks. In this
sense, these works are only loosely related to our data publishing problem,
therefore, we only briefly review these works. The details can be found in the
given references.

Several early works consider publishing data mining results, instead of pub-
lishing data, e.g., [233, 206, 35, 22]. As we discussed above, we consider the
scenario where publishing data is essential. Therefore, these works are not
directly applicable to our problem. The synthetic data approach [241] advo-
cates publishing synthetic data that has similar statistical characteristics but
no real semantics associated. A drawback of this approach is that the lack of
data semantics disables the use of human’s domain knowledge to guide the
search in the data mining process. There is a similar problem with the en-
cryption approach [146]. Verykios et al. [233] consider hiding a set of sensitive
association rules in a data set of transactions. The original transactions are
altered by adding or removing items, in such a way that the sensitive rules
do not have the minimum support or the minimum confidence. Note that this
approach uses a small support as a means of protection. The exact opposite is
true in our problem: a small support means that an individual will be linked
to a small number of transactions, which is a privacy breach.

Randomization [84] is another approach to control breaches that arise from
the published transactions. However, this approach does not attempt to con-
trol breaches that arise from background knowledge besides the transactions.
In addition, this approach considers the data collection scenario (instead of
the data publishing scenario). In the data collection scenario, there is one
server and many clients. Each client has a set of items. The clients want the
server to gather statistical information about associations among items. How-
ever, the clients do not want the server to know with certainty who has got
which items. When a client sends its set of items to the server, it modifies
the set according to some specific randomization operators. The server then
gathers statistical information from the modified sets of items (transactions)
and recovers from it the actual associations. For example, the server wants to
learn itemsets that occur frequently within transactions.

The intuition of randomization is that, in addition to replacing some of
the items, we shall insert so many “false” items into a transaction that one
is as likely to see a “false” itemset as a “true” one [84]. Take the select-a-
size randomization operator as an example. This operator has parameters
0 < p < 1 and probabilities {p[j]}72,. Given a transaction ¢, the operator
generates another transaction ¢’ in three steps:

1. The operator selects an integer j at random from the set {0,1,...,m}
so that P[j is chosen] = pl[j];
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2. It selects j items from ¢, uniformly at random (without replacement).
These items, and no other items of ¢, are placed into t;

3. It considers each item a ¢ ¢ in turn and tosses a coin with probability p
of “heads” and 1 — p of “tails.” All those items for which the coin faces
“heads” are added to t'.

p determines the amount of new items added, and {p[j]}}L, determines the
amount of original items deleted. Given p, one heuristic is to set the p[j]’s
so that many original items are made to the randomized transaction, i.e., to
maximize 7, j x p[j]. In [83], the authors consider pi-to-ps privacy: there
is a p1 — to — pa privacy breach with respect to property Q(t) if for some
randomized transaction ¢’, P[t] < p1 and Plt|t'] > pa, where 0 < p1 < p2 < 1.
In other words, a privacy breach occurs if the posterior P[¢t|t] has significantly
increased (compared to the prior P[t]). Evfimievski et al. [83] present a method
for finding the p[j]’s that maximizes the utility objective 327 j x p[j] while
eliminating all p;-to-ps privacy breaches.

13.1.4 Challenges and Requirements

At first glance, the transaction publishing problem is similar to the publish-
ing problem for relational data. However, the unstructured nature of trans-
action data presents some unique challenges in modeling and eliminating the
attacks. Below is a summary of these challenges.

High dimensionality. Since each transaction is an arbitrary set of items,
transaction data does not have a natural notion of “attributes,” thus, the
notion of quasi-identifier (QID), as found on relational data. Typically, the
item universe I is very large and a transaction contains a small fraction of
the items in I. In the above retailer example, I may have 10,000 items and a
transaction typically contains a tiny fraction (say 1% or less) of all items. In
the relational presentation, QID would contain one binary attribute for each
item in I, thus, has an extremely high dimensionality. Forming an equivalence
class on this QID means suppressing or generalizing mostly all items [6].

Itemset based background knowledge. Another implication of the high di-
mensionality of transaction data is that it is hard to know in advance what
sets of items might be used as background knowledge. In the above retailer
example, the subset {printer, frame,camera} is used as background knowl-
edge. In principle, any subset of items from I can be background knowledge
provided that it can be acquired by the adversary on an individual. On the
other hand, a “realistic” adversary is frequently limited by the effort required
to observe an item on an individual. For example, to find that Jane purchased
“printer,” “frame,” and “camera” from a particular place, Albert has to con-
duct some investigation. This requires effort and time on the adversary side
and is not always successful.

Ttemset based utility. Though it is often unknown exactly what data mining
tasks the data will be used for, certain elements in the data are generally use-
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ful for a wide range of data mining tasks, thus, should be preserved as much
as possible. One type of such elements is frequent itemsets [18], i.e., the items
that co-occur frequently in transactions. Co-occurrences of items potentially
represent interesting relationships among items, thus, are excellent candidates
for many data mining applications, including association rules mining [18],
classification or predication [156], correlation analysis [37], emerging patterns
[67], recommender systems (www.amazon.com), and many web based applica-
tions [253]. Existing utility metrics designed for relational data fail to capture
such itemset based utilities because they measure information loss for each
attribute independently.

Besides addressing the above challenges, several other considerations are
important for ensuring the practical usefulness of the anonymized data.

Limitation on background knowledge. An adversary uses her back-
ground knowledge on the individual to extract relevant transactions.
More background knowledge implies more accurate extraction. From
the privacy perspective, it is always safer to assume an adversary with
as much background knowledge as possible. However, this assumption
renders the data less useful. In practice, a “realistic” adversary is often
bounded by the amount of background knowledge that can be acquired.
Therefore, it makes sense to consider a bounded adversary that is limited
by the maximum number of items that can be acquired as background
knowledge in an attack. An unbounded adversary does not have this re-
striction and can obtain background knowledge on any subset of items.

Truthfulness of results. When the original data is modified to satisfy the
privacy constraint, it is essential that the analysis results obtained from
the modified data holds on the original data. For example, in the original
data, all customers who bought cream and meat have also bought a
pregnancy test with 100% certainty, but in the modified data only half
of all customers who bought cream and meat have bought a pregnancy
test. In this sense, the results derived from the modified data do not
hold on the original data. Such results can be misleading and hard to
use because the analyst cannot tell whether the 50% is the original
certainty or the modified one.

Permitting inferences. The /-diversity principle prevents linking attacks
by enforcing the certainty of sensitive inferences o — s (s being a sen-
sitive item) to no more than 1/I, where [ is typically 4-10. On the other
hand, with all inferences being modified to have a certainty below 1/1,
the data becomes less useful, because in most cases, such as predic-
tion and classification, it is the inferences with a high certainty that
are most interesting. For a bounded adversary, it is possible to retain
all inferences that require background knowledge beyond the power of
a bounded adversary. For example, if a bounded adversary can only
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acquire background knowledge on no more than 10 items, then an infer-
ence a — s with § containing more than 10 items cannot be exploited
by such adversaries. On the other hand, this inference can be used by
the researcher for predicting the disease s.

Value exclusiveness. A largely ignored utility aspect is value exclusiveness,
that is, the items retained in the modified data are exclusive of each
other. This property has a significant impact on data usefulness in prac-
tice. Unfortunately, the local recoding transformation [149] does not
have this property. Suppose that “Canada” and “USA” are two child
items of “North America.” Local recoding would allows to generalize
x out of y (x < y) occurrences of “Canada” and z’ out of ¢/ (' < y/)
occurrences of “USA,” leaving y —z “Canada,” y' —2’ “USA,” and z+y
“North America” in the modified data. Now the published count y — x
on “Canada” and y' — z’ on “USA” are misleading about the original
data. In fact, it is not possible to count the number of transactions con-
taining “Canada” (or “USA”) from the modified data. Although local
recoding has the flexibility of generalizing fewer occurrences of detailed
items than global recoding, this example shows that the retained de-
tailed items have little utility. In addition, most data mining algorithms
assume value exclusiveness and rely on counting queries. Global recod-
ing scores better in this aspect because it provides value exclusiveness,
which enables standard algorithms on the anonymized data.

The rest of this chapter focuses on several recent works on privacy-
preserving transaction publishing and query log publishing. The organiza-
tion is as follows. Chapters 13.2 and 13.3 present two approaches to prevent-
ing attribute linkage attacks, i.e., the coherence approach [256, 255] and the
band matrix approach [101]. Chapters 13.4 and 13.5 discuss two approaches
to preventing record linkage attacks, i.e., the k™-anonymity approach [220]
and the transactional k-anonymity approach [112]. Chapter 13.6 studies the
anonymization problem for query log. Chapter 13.7 summarizes the chapter.

13.2 Cohesion Approach

Xu et al. [256] present an approach called coherence for eliminating both
record linkage attacks and attribute linkage attacks. For any background
knowledge on a subset of items, this approach guarantees some minimum
number of transactions in the anonymized data such that (i) these trans-
actions match the subset and (ii) no sensitive information in the matching
transactions can be inferred with a high certainty. (i) ensures that no specific
transaction can be linked and (ii) ensures that no specific sensitive informa-
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tion can be linked. In this Chapter 13.2, we examine this approach in more
details.

One assumption in this approach is that the items in I are classified into
public items and private items. Public items correspond to potential infor-
mation on which background knowledge may be acquired by an adversary.
Private items correspond to sensitive information that should be protected.
For specialized applications such as health care, financial sectors, and insur-
ance industry, well defined guidelines for classifying public/private items often
exist.

To launch an attack on a target individual who has a transaction in D,
the adversary has the background knowledge that the transaction contains
some public items denoted by [ (called a public itemset below). An attack
is described by 8 — e, where e is a private item the adversary tries to infer
about the target individual. The adversary applies the background knowledge
3 to focus on the transactions that contain all the items in 3. Sup(8), called
the support of 3, denotes the number of such transactions.

P 0 -
is the probability that a transaction contains e given that it contains §. The
breach probability of B, denoted by Pyreach(8), is defined by the maximum
P(B — e) for any private item e, i.e., maz.{P(8 — e)|e is a private item}.

In the retailer example, the adversary has the background knowledge
8 = {“printer,” “ frame,” “camera” }, and finds that, out of the three trans-
actions that contain 3, two contains “adult toy.” So Sup(8) = 3, Sup(f —
adult_toy) = 2, P(8 — adult_toy) = 2/3. The adversary then infers that Jane
bought “adult toy” with the probability P(8 — adult_toy) = 2/3 = 67%.

13.2.1 Coherence

Given the large size of I, a realistic adversary is limited by a maximum
size || (the number of items in 3) of background knowledge 5. An adversary
has the power p if he/she can only acquire background knowledge of up to p
public items, i.e., |8 < p. For such g, if Sup(8) < k, the adversary is able
to link a target individual to a transaction with more than 1/k probability;
if Poreach(B8) > h, the adversary is able to link a target individual to a pri-
vate item with more than h probability. This motivates the following privacy
notion.

DEFINITION 13.1 Coherence A public itemset 8 with || < p and
Sup(B) > 0 is called a mole with respect to (h,k,p) if either Sup(B) < k
or Pyreach(8) > h. The data D is (h,k,p)-coherent if D contains no moles
with respect to (h,k,p), that is, for all public itemsets 8 with |5 < p and
Sup(B) >0, Sup(B) > k and Pyreacn(B) < h.m
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Table 13.1: D,k=2,p=2h=0.8

TID | Activities | Medical History
T a,c,d,f,g Diabetes
T, a,b,c,d Hepatitis
T3 b,d,f,x Hepatitis
T4 bvc7g7Y7Z HIV
Ts a,c,f,g HIV

Sup(B) < k and Pyreach(B) > h correspond to record linkage attacks and
attribute linkage attacks. A mole is any background knowledge (constrained by
the maximum size p) that can lead to a linking attack. The goal of coherence
is to eliminate all moles.

Example 13.1

Suppose that a healthcare provider publishes the data D in Table 13.1 for
research on life styles and illnesses. “Activities” refer to the activities a per-
son engages in (e.g., drinking, smoking) and are public. “Medical History”
refers to the person’s major illness and is considered private. Each person can
have a number of activities and illness chosen from a universe I. Consider
k=2,p=2h=280%. D violates (h, k, p)-coherence because only one trans-
action Ty contains ab (we use ab for {a,b}). So an adversary acquiring the
background knowledge ab can uniquely identify 75 as the transaction of the
target individual. For the background knowledge bf, transactions T and T3
contain bf. However, both transactions also contain “Hepatitis.” Therefore,
an adversary with the background knowledge bf can infer “Hepatitis” with
100% probability. [J

13.2.2 Item Suppression

A mole can be removed by suppressing any item in the mole. Global sup-
pression of an item refers to deleting the item from all transactions containing
it. Local suppression of an item refers to deleting the item from some trans-
actions containing it. Global suppression has two nice properties. First, it
guarantees to eliminate all moles containing the suppressed item. Second, it
leaves any remaining itemset with the support equal to the support in the
original data. The second property implies that any result derived from the
modified data also holds on the original data. Local suppression does not have
these properties. For this reason, we shall consider global suppression of items.

Example 13.2
Consider three transactions {a,b, HIV'}, {a,b,d, f, HIV'}, and {b,d, f, Diabetes}.
The global suppression of a and f transforms these transactions into {b, HIV'},
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{b,d, HIV}, and {b,d, Diabetes}. After the suppression, the remaining item-
sets bd and bdHIV have the support of 2 and 1, which is the same as in the
original data. Instead, the local suppression of b from only the transaction
{a,b,d, f, HIV} leaves the itemsets bd and bd HIV with the support of 1 and
0, which is different from the support in the original data.

Let IL(e) denote the information loss caused by suppressing an item e.
There are many metrics for information loss. A simple metric is a constant
penalty associated with each item e. Another metric is the number of occur-
rences of e suppressed, which is equal to Sup(e) under global suppression.
More sophisticatedly, IL(e) can be defined by the number of patterns, such
as frequent itemsets, eliminated by the suppression of e. We will consider this
metrics in Chapter 13.2.4. We assume that private items are important and
will not be suppressed. Suppose that D is transformed to D’ by suppress-
ing zero or more public items. We define IL(D,D’) = 3 _IL(e) to be the
information loss of the transformation, where e is an item suppressed.

DEFINITION 13.2 Let D’ be a transformation of D by suppressing
public items. D’ is a (h, k, p)-cohesion of D if D" is (h,k,p)-coherent. D’ is
an optimal (h,k,p)-cohesion of D if D' is a (h,k, p)-cohesion of D and for
every other (h, k, p)-cohesion D” of D, IL(D,D”) > IL(D, D’). The optimal
cohesion problem is to find an optimal (h, k, p)-cohesion of D. m

It can be shown that D has no (h,k, p)-cohesion if and only if the empty
itemset is a mole with respect to (h, k, p). We assume that the empty set is not
a mole. Xu et al. [256] show, by a reduction from the vertex cover problem,
that the optimal cohesion problem is NP-hard, even for the special case of
k=2,p=2,1L(e)=1.

13.2.3 A Heuristic Suppression Algorithm

Since the optimal cohesion problem is NP-hard, a heuristic solution was
proposed in [256]. The algorithm greedily suppresses the next item e with
the maximum Score(e) until all moles are removed. The algorithm focuses
on minimal moles, i.e., those moles that contain no proper subset as a mole,
as removing all such moles is sufficient for removing all moles. Let M M (e)
denote the set of minimal moles containing the public item e and |M M (e)|
denote the number of minimal moles in M M (e). The score

Score(e) = % (13.1)

measures the number of minimal moles eliminated per unit of information
loss. Algorithm 13.2.9 shows this greedy algorithm.
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Algorithm 13.2.9 The Greedy Algorithm

1: suppress all size-1 moles from D;

2: while there are minimal moles in D do

3:  suppress a remaining public item e with the maximum Score(e) from
D;

4: end while;

Two questions remain. The first question is how to tell whether there are
minimal moles in D at line 2. The second question is how to identify the public
item e with the maximum Score(e) at line 3. Recomputing all minimal moles
in each iteration is not scalable because the number of minimal moles is large.
Another approach is finding all minimal moles in a preprocessing step and
maintaining minimal moles in each iteration. Below, we describe the detail of
finding minimal moles and maintaining minimal moles.

13.2.3.1 Finding Minimal Moles

A minimal mole contains no subset as a minimal mole. Thus one strategy
for finding all minimal moles is examining i-itemsets in the increasing size @
until an itemset becomes a mole for the first time, at which time it must be
a minimal mole. If an examined i-itemset § is not a mole, we then extend (3
by one more item; such (3 is called an extendible non-mole. The benefit of this
strategy is that all examined candidates of size i + 1 can be constructed from
extendible non-moles of size i, so that we can limit the search to extendible
non-moles in each iteration.

Let M, denote the set of minimal moles of size 7 and let F; denote the
set of extendible non-moles of size i. For every 8 = (e1,...,€;-1,€;,€;41) in
M; 11 or in Fj41, by definition, no ¢-subset of § should be in M; and both of
(e1,...,€i-1,€;) and (ey,...,e;_1,€;41) should be in F;. In other words, each
B ={e1,...,ei—1,€i,€ir+1) in M;11 and F;;1 can be constructed from a pair
of (e1,...,€;-1,¢;) and (e1,...,€;-1,€;41) in F;. This computation is given in
Algorithm 13.2.10.

This algorithm shares some similarity with Apriori [18] for mining frequent
itemsets. Apriori exploits the subset property that every proper subset of a
frequent itemset is a frequent itemset. A minimal mole has the property that
every proper subset of a minimal mole (and an extendible non-mole) is an
extendible non-mole. To exploit the subset property, we have to construct
M;11 and Fj41 in parallel.

13.2.3.2 Maintaining Minimal Moles

After suppressing an item e in the current iteration in Algorithm 13.2.9, we
shall maintain the set of remaining minimal moles, M*, and Score(e’) for each
remaining public item ¢’. Note that IL(e’) defined by Sup(e’) is unaffected by
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Algorithm 13.2.10 Identifying Minimal Moles
1: find M7 and Fj in one scan of D;
2: while ¢ < p and Fj is not empty do
3:  generate the candidate set C;41 from F; as described above;

4:  scan D to count Sup(B) and Ppreacn(8) for all §in Ciiq;
5. for all #in C;4; do

6: if Sup(B) < k or Pyreach(8) > h then

7 add ﬂ to MiJrl;

8: else

9: add B to Fii1;

10: end if

11:  end for

120 i+ +;

13: end while

the suppression of e. |[M M (e')| will be decreased by the number of minimal
moles that contain e’e. To compute this number, we can store all minimal
moles in M* in the following MOLE-tree. The MOLE-tree contains the root
labeled “null” and a root-to-leaf path for each minimal mole in M*. Each
non-root node has three fields: label - the item at this node; mole-num - the
number of minimal moles that pass this node; node-link - the link pointing to
the next node with the same label. In addition, the Score table contains three
fields for each remaining public item e: |M M (e)|, IL(e), head-of-link(e) that
points to the first node on the node-link for e. On suppressing e, all minimal
moles containing e can be found and deleted by following the node-link for e.
The next example illustrates this update.

Example 13.3
Figure 13.1 shows the MOLE-tree for seven minimal moles

M* = {db,da,dg,dc,ba,bg,bf},

where items are arranged in the descending order of |MM(e)|. Assume
IL(e) = Sup(e). The node < b : 3 > indicates that 3 minimal moles pass
the node, i.e., ba,bg,bf. The entry < b : 4,3 > in the Score table indi-
cates that |MM(b)| = 4,IL(b) = 3. Since the item d has the maximum
Score = |[MM|/IL, we first suppress d by deleting all minimal moles passing
the (only) node for d. This is done by traversing the subtree at the node for d
and decreasing |M M| for b, a, g, and ¢ by 1, and decreasing |M M | for d by 4.
Now |M M (d)| and |M M (c)| become 0, so the entries for d and ¢ are deleted
from the Score table. The new MOLE-tree and Score table are shown in Fig-
ure 13.2. Next, the item b has the maximum |M M |/IL and is suppressed. At
this point, all remaining moles are deleted and now the Score table becomes
empty.
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Score Table (Item: [MM]|, IL) root
d: 4,2 T

b: 4,3
a: 2,3

223

c: 1,4

f: 1,4

FIGURE 13.1: MOLE-tree: k = 2,p = 2, h = 80%

Score Table (Item: [MM], IL)
root

b:3,3
a:1,3
21,3
f:1,4

FIGURE 13.2: MOLE-tree: k = 2,p = 2, h = 80%

The above approach has been evaluated on a variety of data sets in [256].
The main findings are that, for a dense data, it suffices to suppress a small
number of low support items and distortion is low (usually less than 10%). For
a sparse data, distortion is larger (usually 15%) because of the large number
of moles to eliminate. Also, the study shows that more public items and a
larger adversary’s power lead to more distortion.

13.2.4 Itemset-Based Utility

The aforementioned information loss I L(e) is measured by considering only
the item e itself (e.g., Sup(e)). In some applications, certain co-occurrences
of items are the source of utility. For example, frequent itemset mining [18] is
looking for the itemsets that have support no less than some threshold. If an
item e occurs in no frequent itemset, suppressing the item incurs no informa-
tion loss. On the other hand, if an item e occurs in many frequent itemsets,
suppressing the item incurs a large information loss because all frequent item-
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sets containing e are removed from the data.

To model the above itemset based utility, Xu et al. [255] consider an itemset
a to be a nugget with respect to (', p') if || < p’ and Sup(a) > k', where &’
and p’ are user-specified parameters. In other words, a nugget is an itemset
that has a large support and a size bounded by a maximum length. Let N (D)
denote the set of nuggets in D with respect to (k’,p’) and |N(D)| denote the
number of nuggets in D. Note that, for any D’ obtained from D by global
suppression of items, N(D') C N(D).

The goal is to find a (h, k, p)-cohesion D’ with the maximum |[N(D’)|. Let
M(e) and N(e) denote the set of moles and nuggets containing the item
e. To retain nuggets, we can suppress a remaining public item e with the
maximum Score(e) = |M(e)|/|N(e)|, which maximizes the number of moles
eliminated per nugget lost. For each remaining public item €', |M(e’)| and
|N(e)| will be decreased by the number of moles and nuggets containing
ee’. In Chapter 13.2.3.2, we maintain all minimal moles because eliminating
minimal moles is sufficient for eliminating all moles. This approach is not
applicable to nuggets because we must compute the actual count |N(e)| for
preserving nuggets. However, maintaining all nuggets is not an option because
the number of nuggets grows exponentially.

Xu et al. [255] propose a border approach for updating |M (e’)| and |[N(e')].
The observation is that M (D) can be represented by a border [U,L]: U is
the collection of minimal itemsets in M (D) (i.e., those that have no subset
in M (D)) and L is the collection of maximal itemsets in M (D) (i.e., those
that have no superset in M (D)). Similarly, N(D) can be represented by a
border. Xu et al. [255] present an algorithm for maintaining these borders
and a method for computing |M(e’)| and |N(e’)| using these borders. Since
borders are much smaller than the full sets of all itemsets that they represent,
maintaining borders requires much less space and time.

13.2.5 Discussion

Terrovitis et al. [220] propose the notion of k™-anonymity to prevent record
linkage attacks: D satisfies k™-anonymity if for any itemset 8 with |8 < m,
at least k transactions in D contain all the items in 5. We can show that k-
anonymity is a special case of (h, k, p)-coherence. To model k™-anonymity, we
consider all the items in I as public items and a new item universe I’ = T | J{e},
where e is a new item and is the only private item. We add the new item e to
every transaction in D. Now each attack under the coherence model has the
form B — e, where (3 is an itemset with items drawn from I and e is the new
item. By setting h = 100%, the condition Pyreqcn(8) < h always holds and
the (h, k, p)-coherence degenerates into the requirement that, for all itemsets
B drawn from I with |5 < p and Sup(3) > 0, Sup(8) > k. This requirement
is exactly the k™-anonymity with m = p.
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PROPOSITION 13.1
Let D and D’ be the transaction data defined above. D is k™-anonymous if
and only if D’ is (h, k, p)-coherent with h = 100% and p = m. =

Another interesting property of (h, k, p)-coherence is that it permits data
mining rules 5 — s for a private item s with [3] > p. In 13.1, for p =
1,k =2,h =80%, D is (h, k,p)-coherent, though bf — Hepatitis has 100%
probability. This means that, for a data recipient with the power p = 1, she will
be able to extract this rule for research purposes, but is not able to link this
rule to an individual. This property is particularly interesting as the research
in [156] shows that accurate rules 3 — s usually involve a long antecedent [3.
A long antecedent sets up a high bar for the adversary under our model but
enables data mining for a genuine researcher. In contrast, ¢-diversity forces
all rules B — s for a private item s to no more than 1/l certainty, where [
is usually 4 or larger, as required by privacy protection. Such rules are less
useful for data mining because the certainty is too low.

In Chapter 13.2.2, we discussed that total item suppression retains the
original support of remaining itemsets. This property guarantees that rules
extracted from the modified data hold on the original data. For example,
the usefulness of the association rule bd — HIV depends on the confi-
dence Sup(bdHIV)/Sup(bd). A small change in the support Sup(bdHIV)
or Sup(bd) could lead to a significant difference in the confidence, thus, un-
expected or even invalid data mining results. In Example 13.2, the global
suppression a and f leaves the rule bd — HIV with the same confidence as
in the original data, i.e., 50%, but the local suppression yields the confidence
of 0%, which does not hold on the original data. Unfortunately, this issue
has not received much attention in the literature. For example, local recoding
has a similar problem to local suppression, thus, does not retain the original
occurrence count of attribute/value combinations.

13.3 Band Matrix Method

Ghinita et al. [101] present another method called band matriz method be-
low for preventing attribute linkage attacks. Given a set of transactions D
containing items from I, this method determines a partitioning P of D into
anonymized groups with “privacy degree” at least p, such that the “recon-
struction error” using such groups is minimized. Like the coherence approach,
this method classifies the items in I into sensitive items (i.e., private items),
S, and non-sensitive items (i.e., public items), @ = I — S. We call such items
S-items and Q-items, respectively. A transaction containing no S-item is a
non-sensitive transaction, otherwise, a sensitive transaction. We explain the
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notion of privacy degree, reconstruction error, and the algorithm for grouping
transactions.

A transformation of transaction data D has privacy degree p if the prob-
ability of associating any transaction ¢ € D with a particular sensitive item
does not exceed 1/p. To enforce this privacy requirement, D is partitioned into
disjoint sets of transactions, called anonymized groups. Like Anatomy [249],
for each group G, it publishes the exact Q-items, together with a summary
of the frequencies of S-items contained in G. Let fi,..., f;, be the number of
occurrences for sensitive items si,..., S, in G. Then group G offers privacy
degree p¥ = min;=1 |G|/ fi.- The privacy degree of an entire partitioning P
of D is defined by the minimum p& for all groups G.

13.3.1 Band Matrix Representation

Another criterion for grouping transactions is to preserve the correlation
between items as much as possible. In other words, transactions that share
many items in common should be assigned to the same group. To identify
such transactions, D is represented by a band matriz [103, 194]. In a band
matrix, rows correspond to transactions ¢t and columns correspond to Q-items
i, with the 0/1 value in each entry (¢,4) indicating whether ¢ contains i. A
band matrix has the general form shown in Figure 13.3, where all entries of the
matrix are 0, except for the main diagonal dy, a number of U upper diagonals
(di,...,dv), and L lower diagonals (d_1,...,d_r). The objective of band
matrix is to minimize the total bandwidth B = U + L + 1, by rearranging the
order of rows and columns in the matrix, thus, bringing transactions that share
items in common close to each other. Finding an optimal band matrix, i.e.
with minimum B, is NP-complete. Multiple heuristics have been proposed to
obtain band matrices with low bandwidth. The most prominent is the Reverse
Cuthill-McKee algorithm, a variation of the Cuthill-McKee algorithm [54].

13.3.2 Constructing Anonymized Groups

Once the data is transformed to a band matrix with a narrow bandwidth,
the next step is to create anonymized groups of transactions. To satisfy the
privacy requirement, each sensitive transaction is grouped with non-sensitive
transactions or sensitive ones with different sensitive items. A greedy al-
gorithm called Correlation-aware Anonymization of High-dimensional Data
(CAHD) is presented in [101]. This algorithm adopts the “one-occurrence-
per-group” heuristic that allows only one occurrence of each sensitive item
in a group. It is shown that if solution to the anonymization problem with
privacy degree p exists, then such an heuristic will always find a solution.

CAHD works as follows: given a sensitive transaction tg, it forms a candidate
list (CL) by including all the non-conflicting transactions in a window centered
at to. A transaction is non-conflicting with ¢g if either it is non-sensitive or it
has a different sensitive S-item. The window contains 2ap — 1 non-conflicting
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FIGURE 13.3: A band matrix ([101] ©2008 IEEE)

transactions, where « is a system parameter. Then, out of the transactions in
CL(tg), the p—1 of them that have the largest number of Q-items in common
with £y are chosen to form the anonymized group with ¢¢. The intuition is that,
the more transactions share the same @Q-items, the smaller the reconstruction
error is (see the discussion below shortly). All selected transactions are then
removed from D, and the process continues with the next sensitive transaction
in the order.

It is important that at any time, forming a group will not yield a remaining
set of transactions that can not be anonymized (for instance, if all remaining
transactions share one common sensitive item). To ensure this, a histogram
with the number of remaining occurrences for each sensitive item is maintained
every time a new group is formed. If forming a group yields a remaining set of
transactions that violates the privacy requirement, the current group is rolled
back and a new group formation is attempted starting from the next sensitive
transaction in the sequence.

Example 13.4

Table 13.2 shows the original matrix with the sensitive items. Table 13.3 shows
the matrix after the rearrangement of rows and columns, where non-sensitive
items are more closely clustered around the main diagonal. Table 13.4 shows
two groups that have privacy degree 2. From the original data in Table 13.2,
we can infer that all customers who bought cream but not meat have also
bought a pregnancy test (with 100% certainty). From the anonymized data
in Table 13.4, the adversary can only infer that half of such customers have
bought a pregnancy test. This example is borrowed from [101]. ]



Anonymizing Transaction Data 245

Table 13.2: Example of band matrix: original data

Sensitive Items
Name | Wine | Meat | Cream | Strawberries | Pregnancy | Viagra
Test
Bob X X X
David X X
Claire X X X
Andrea X X
Ellen X X X

Source: [101] ©2008 IEEE

Table 13.3: Example of band matrix: re-organized data

Sensitive Items
Name | Wine | Meat | Cream | Strawberries | Pregnancy | Viagra
Test
Bob X X X
David X X
Ellen X X X
Andrea X X
Claire X X X

Source: [101] ©2008 IEEE

Table 13.4: Example of band matrix: anonymized data

Name | Wine | Meat | Cream | Strawberries | Sensitive Items
Bob X X

David X X Viagra: 1
Ellen X X X

Andrea X X Pregnancy
Claire X X Test: 1

Source: [101] ©2008 IEEE

13.3.3 Reconstruction Error

The information loss of anonymized groups is measured by the reconstruc-
tion error in terms of the KL-divergence of the distribution of S-items in the
result for answering a query. A query has the form

SELECT COUNT(*)
FROM D
WHERE (Sensitive Item s is present) AND Cell

Cell is a condition on Q-items q1, ..., g, of the form ¢; = vali A---Agq, = val,.
Such queries can be modeled using a probability distribution function (pdf) of
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a S-item s over the space defined by all cells for ¢y, ..., g-. The total number
of such cells is 2", corresponding to all combinations of presence and absence
of these @-items in a transaction. The actual pdf value of a S-item s for a cell
Cis

Occurrences of s in C'

Acty, = (13.2)

Total occurrences of s in D

In other words, Act¢ is the proportion of s in C.

When the query is applied to a group G, the query result for the cell C'on G
is estimated as follows. Denote the number of occurrences of S-item s in G by
a, and the number of transactions that match the Q-items selection predicate
in Cell of the query by b. Then the estimated result of the query for G is
aAb/|G|. Intuitively, b/|G| is the probability that a transaction matches the
Q-item selection predicate Cell for G. For the estimated pdf Est¢,, we replace
the numerator “Occurrences of s in C” of Equation 13.2 with aAb/|G| summed
over all groups G that intersect C. Then the utility of the anonymized data is
measured as the distance between Act, and Estf, over all cells C', measured

by the KL-divergence:
. Act?
Z Actilog ¢ S . (13.3)
c Estg,

13.3.4 Discussion

Since exact Q-items are published, the band matrix method cannot be used
to prevent record linkage attacks. Indeed, in this case, each anonymized group
is a set of original transactions, and publishing such groups leads to publishing
the exact original database.

Like ¢-diversity [160] and Anatomy [249], the anonymized data produced by
the band matrix method could yield untruthful analysis results, i.e., results
that do not hold on the original data. Example 13.4 illustrates this point. In
the original data, all customers who bought cream but not meat have also
bought a pregnancy test with 100% certainty; whereas in the anonymized
data, only half of all customers who bought cream but not meat have bought
a pregnancy test. The 50% certainty derived from the modified data does
not hold on the original data. Since the analyst cannot tell whether the 50%
certainty is the original certainty or the modified one, it is hard to use such
analysis results because it may or may not hold on the original data.

As dictated by the privacy degree p, all correlations involving S-items have
a low certainty, i.e., no more than 1/p. Typically, p is 4 or larger. With the
certainty being so low, such correlations are less useful for data mining. On
the other hand, this method loses no information on correlations involving
only @Q-items because exact @Q-items are published.
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13.4 k™-Anonymization

Now we turn to two methods that focus on record linkage attacks (note
that the coherence approach also handles record linkage attacks). We discuss
the k™-anonymity method proposed in [220], and in Chapter 13.5, we discuss
the k-anonymity method for transaction data proposed in [112]. Both meth-
ods assume that any subset of items can be used as background knowledge
and that an item taxonomy is available. Both remove record linkage attacks
by generalizing detailed items to general items according to the given item
taxonomy. They differ mainly in the notion of privacy.

13.4.1 k™-Anonymity

Like the coherence approach, the k™-anonymity approach assumes that an
adversary is limited by the maximum number m of items that can be acquired
as background knowledge in an attack.

DEFINITION 13.3 k™-anonymity A transaction database D is said to
be k™ -anonymous if no adversary that has background knowledge of up to m
items of a transaction ¢ € D can use these items to identify less than k trans-
actions from D. The k™-anonymization problem is to find a k™-anonymous
transformation D’ for D with minimum information loss. =

In other words, £™-anonymity means that for any subset of up to m items,
there are at least k transactions that contain all the items in the subset.
As discussed in Chapter 13.2, this privacy notion coincides with the special
case of (h, k,p)-coherence with A = 100% and p = m. In this case, a subset
of items that causes violation of £™-anonymity is exactly a mole under the
(h, k, p)-coherence model.

To transform D to a k™-anonymous D', Terrovitis et al. [220] employ an
item taxonomy to generalize precise items to general items, in contrast to the
suppression operation for coherence. Terrovitis et al. [220] adopt the global
recoding scheme: if any child node is generalized to the parent node, all its
sibling nodes are generalized to the parent node, and the generalization al-
ways applies to all transactions. Figure 13.4 shows a sample database and
the transformation using the generalization rule {a1,as — A}. Each possible
transformation under the global recoding scheme corresponds to a possible
horizontal cut of the taxonomy tree. The set of possible cuts also forms a hi-
erarchy lattice, based on the generalization relationship among cuts. A set of
possible cuts is shown in Figure 13.5 for the small taxonomy and the hierarchy
lattice for these cuts is shown in Figure 13.6.

The information loss of a cut can be measured in various ways. For con-
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FIGURE 13.4: Transformation using generalization rule {a1,a2} — A ([220])

creteness, consider the loss metric proposed in [123]. For each generalized item
1, this metric charges an information loss that is proportional to (i) the per-
centage of leaf nodes under i in the item taxonomy and (ii) the occurrences
of i in the generalized data. Therefore, if the cut ¢y is more general than the
cut ¢, both (i) and (ii) of ¢p will be larger than those of ¢, so ¢y has a higher
cost (information loss) than c.

The set of possible cuts satisfies the following monotonicity property. If the
hierarchy cut ¢ results in a k™-anonymous database, then all cuts cg, such that
co is more general than c¢, also result in a k™-anonymous database. Under the
above cost metric for information loss, based on this monotonicity property,
as soon as we find a cut c¢ that satisfies the £"-anonymity constraint, we do
not have to seek for a better cut in ¢’s ancestors.

13.4.2 Apriori Anonymization

Enumerating the entire cut lattice is not scalable. In addition, validating
a cut requires checking if any subset of up to m items causes a violation of
the anonymity requirement. The number of such subsets can be very large. A
greedy algorithm called Apriori anonymization (AA) is proposed in [220] to
find a good cut. This algorithm is based on the apriori principle: if a i-itemset
« causes anonymity violation, so does each superset of a. Thus it explores
the space of itemsets in an apriori, bottom-up fashion. It first identifies and
eliminates anonymity violations caused by (I — 1)-itemsets, before checking I-
itemsets, [ = 2,...,m. By operating in such a bottom-up fashion, the number
of itemsets that have to be checked at a higher level are greatly reduced, as
detailed items could have been generalized to more generalized ones. This
algorithm is given in Algorithm 13.4.11.
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Algorithm 13.4.11 Apriori-Based Anonymization
AA(D, k,m)

1: initialize GenRules to the empty set;

2: for all i:=1 to m do

3: initialize a new count-tree;

4 for allt € D do

5 extend t according to GenRules;

6 add all i-subsets of extended ¢ to count-tree;

7 run DA on count-tree for m = i and update GenRules;
8:  end for;

9: end for;

First, the algorithm initializes the set of generalization rules GenRules to
the empty set. In the ith iteration, a count-tree data structure is constructed
to keep track of all i-itemsets and their support. This structure is very similar
to the MOLE-tree used for counting moles in Chapter 13.2. Each root-to-
leaf path in the count-tree represents a i-itemset. Line 5 generalizes each
transaction ¢t in D according to the generalization rules GenRules. For each
generalized transaction ¢, line 6 adds all i-subsets of ¢t to a new count-tree
and increases the support of each i-subset. Line 7 identifies all i-subsets with
a support below k and finds a set of generalization rules to eliminate all
such i-subsets. This step runs Direct Anonymization (DA) on the count-tree,
another heuristic algorithm proposed in [220] that operates directly on i-
itemsets violating the anonymity requirement. After the mth iteration, all -
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subsets of items with support below k are removed, ¢ < m. The final GenRules
is the set of generalization rules that will transform D into k™-anonymity.

The benefit of this algorithm is that it exploits the generalizations per-
formed in iteration i, to reduce the search space in iteration ¢ + 1. This is
because earlier generalizations reduce the size of the taxonomy, pruning de-
tailed items, for later iterations. As the algorithm progresses to larger values
of i, the effect of pruned detailed items increases because (i) more general-
ization rules are expected to be in GenRules and (ii) the total number of
i-itemsets increases exponentially with ¢. Terrovitis et al. [220] also present
Optimal Anonymization (OA) that explores in a bottom-up fashion all pos-
sible cuts and picks the best one. Although optimal, OA cannot be applied
for realistic databases because it has very high computational cost due to the
exhaustive search nature.

13.4.3 Discussion

The k™-anonymity approach only handles record linkage attacks, not at-
tribute linkage attacks. For record linkage attacks, the privacy notion is the
same as the notion of coherence when all items are public items, as shown
in Proposition 13.1. Both models consider a bounded adversary having back-
ground knowledge limited by the maximum number of items. The main dif-
ference lies at the anonymization operator. The coherence approach uses total
item suppression, whereas the k™-anonymization approach uses global item
generalization. Another difference is that the coherence approach also handles
attribute linkage attacks, but the k-anonymity approach does not.

Item suppression and item generalization each have its own strengths and
weaknesses. Item suppression is effective in dealing with “outliers” that cause
violation of the privacy requirement, but may have a large information loss if
the data is sparse. In contrast, global generalization is vulnerable to “outlier”



Anonymizing Transaction Data 251

FIGURE 13.7: Outliers e and i cause generalization to top item T

items because the generalization of such items causes the generalization of
other items. We show this point in Figure 13.7. The dashed curve represents
a cut through the taxonomy, which corresponds to a solution by the general-
ization approach. Suppose that the items e and ¢ are contained in less than &
transactions, the global generalization will cause all items to be generalized to
the top level, even though the other items do not cause violation. In contrast,
suppressing the items e and i is all we need, which incurs less information loss.
In general, global generalization incurs high information loss for a “shallow”
and “wide” taxonomy because each generalization step tends to generalize
many items. Moreover, the generalization approach is applicable only when
an item taxonomy is available.

Fewer items will be generalized if local generalization is used instead of
global generalization because local generalization does not have to generalize
all occurrences of an item and all sibling items. However, like total item sup-
pression, global generalization preserves the truthfulness of analysis results,
i.e., the results derived from the generalized data also hold on the original
data. Partial generalization does not have this property, as discussed in Chap-
ter 13.2.5. For example, suppose that five transactions bought both “cream”
and “chicken,” which causes violation of 62-anonymity. Suppose that global
generalization removes this violation by generalizing “cream” (and all sib-
lings) to “dairy product.” Suppose now that ten transactions contain both
“dairy product” and “chicken,” so the violation is eliminated. The analysis
on the generalized data remains truthful of the original data. For example,
the count 10 of the itemest {“dairy product,” “chicken” } indicates that ten
transactions contain some items from the category “dairy product” and the
item “chicken,” which is true of the original data.
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13.5 Transactional k-Anonymity

A key assumption made in (h, k, p)-coherence and k™-anonymity is the max-
imum number of items that an adversary can acquire as background knowl-
edge, which is p for (h, k,p)-coherence and m for k™-anonymity. There are
scenarios where it may not be possible to determine this bound in advance.
If all background knowledge is limited to the presence of items, this case may
be addressed by setting p or m to the maximum transaction length in the
database since any subset of items that is more than this length does not
match any transaction. However, if background knowledge may be on the ab-
sence of items, the adversary may exclude transactions using this knowledge
and focus on fewer than k transactions. For example, an adversary may know
that Alice has purchased “milk,” “beer,” and “diapers,” but has not pur-
chased “snow tires.” Suppose that three transactions contain “milk,” “beer,”
and “diapers,” but only two of them contain “snow tires.” Then the adver-
sary could exclude the two transactions containing “snow tires” and link the
remaining transaction to Alice. In this example, k™ privacy with & = 2 and
m = 4 is violated, even m is the maximum transaction length.

13.5.1 k-Anonymity for Set Valued Data

One way to address these scenarios is to make each transaction indis-
tinguishable from k — 1 other transactions. The following transactional k-
anonymity, proposed in [112], is an adoption of the k-anonymity originally
proposed for relational data to set-valued data.

DEFINITION 13.4 Transactional k-anonymity A transaction
database D is k-anonymous if every transaction in D occurs at least k£ times.
A transaction database Dy with some instances of items generalized from D
using a taxonomy is a k-anonymization of D if Dy is k-anonymous.

Intuitively, a transaction database is k-anonymous if each transaction is
identical to at least k — 1 others in the database. This partitions transactions
into equivalence classes, where all transactions in the same equivalence class
are exactly identical. This model is different from the (h, k, p)-coherence and
k™-anonymity models, which states that, for any set of up to m (or p) items
(that occur in some transaction), there are at least k transactions that contain
these items, but these transactions are not required to be identical to each
other. Also, the k-anonymity model does not have the parameter m because
it requires all transactions in the same equivalence class to be identical.

It follows that every database D that satisfies k-anonymity also satisfies
k™-anonymity for all m. Indeed, if any n-itemset, where n < m, is contained
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Table 13.5: Original database
Owner | TID | Items Purchased

Alice T1 {(11, bl}
Bob | T, {az,b1,b2}
Chris T3 {al, as, bg}

Dan T4 {al,az,bl,bz}

Table 13.6: Generalized 2-anonymous database

Owner TID Items Purchased
Alice T1 {A, B}
Bob 15 {A, B}
Chris T3 {a1,aq, B}
Dan T4 {al,ag,B}

in some transaction t € D, the k-anonymity of D implies that there are at
least k — 1 other transactions identical to t, thus, this n-itemset has a support
of at least k. So D is k™-anonymous. The next example from [112] shows that
there exists a database D such that for any m, D satisfies k™-anonymity but
not k-anonymity.

Example 13.5

The original database D in Table 13.5 is not 2-anonymous, but satisfies 22-
anonymity. Assuming that the taxonomy in Figure 13.4 is used, Table 13.6
gives a possible 2-anonymization. To further illustrate that there exists a
database that satisfies k™-anonymity for any m but not k-anonymity, we add
an additional transaction 75 in Table 13.5 which is identical to 1. This new
database is 2™-anonymous for any m given the existence of Ty and T5, but
not 2-anonymous due to 11, Ts, and T3.

He and Naughton [112] present a generalization approach to transform D
into k-anonymization, assuming that a taxonomy of items is available. If sev-
eral items are generalized to the same item, only one occurrence of the gener-
alized item will be kept in the generalized transaction. Thus the information
loss now comes from two types: a detailed child item is replaced with a gen-
eral parent item, and duplicate general items are eliminated. To see the second
type, in the above example, from the generalized transaction, we know that
the transaction originally contains some items from the A category, but we will
not know the number of such items in the original transaction. As a result,
count queries pertaining to the number of items in an original transaction,
such as the average number of items per transaction, will not be supported by
this type of generalization. This second type of information loss was not mea-
sured by a usual information loss metric for relational data where no attribute
value will be eliminated by generalization.
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Algorithm 13.5.12 Top-Down, Local Partitioning Algorithm
Anonymize(partition)

1: if no further drill down possible for partition then

2:  return and put partition in global list of returned partitions;
3: else

4:  expandNode «— pickNode(partition);

5: end if

6: for all transaction ¢t in partition do

7 distribute ¢ to a proper subpartition induced by expandN ode;
8: end for

9: merge small subpartitions;

10: for all subpartition do

11:  Anonymize(subpartition);

12: end for

13.5.2 Top-Down Partitioning Anonymization

A greedy top-down partitioning algorithm, presented in [112], is described in
Algorithm 13.5.12. This algorithm is essentially Mondrian [149] but extended
to transaction data. It starts with the single partition containing all trans-
actions with all items generalized to the topmost item ALL. Since duplicate
items are removed, each transaction at this level contains the single item ALL.
Then it recursively splits a partition by specializing a node in the taxonomy
for all the transactions in the partition. For each partition, there is a choice
of which node to specialize. This choice is determined by the pick_node sub-
routine. Then all the transactions in the partition with the same specialized
item are distributed to the same subpartition. At the end of data distribution
phase, (small) subpartitions with fewer than k transactions are merged into
a special leftover subpartition, and if necessary, some large transactions with
over k transactions will be re-distributed to the leftover partition to make sure
that the leftover partition has at least k transactions. The partitioning stops
when violation of k-anonymity occurs. Since the specialization is determined
independently for each partition, the recoding for generalization is local.

13.5.3 Discussion

Like the k™-anonymity approach, the k-anonymity approach deals with only
record linkage attacks. He and Naughton [112] show that k-anonymization has
a small information loss. This is because local generalization is employed where
the partitioning decision is made independently for each partition without
forcing it in other partitions. This flexibility, however, creates the anonymized
data that does not have the value exclusiveness property discussed in Chapter
13.1.4. For example, it is possible to have two partitions such that one has
the item “North America” and the other has the item “Canada.” The first
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partition is obtained by expanding a node other than “North America” and
the second partition is produced by expanding the node for “North America.”
With the data containing both “North America” and “Canada” (in different
partitions), it is not possible to count the number of transactions containing
“Canada” because “North America” covers “Canada.” On the other hand,
the k™-anonymity approach and coherence approach preserve value exclusive-
ness, due to global recoding and total item suppression. In summary, which
anonymization scheme retains more data utility depends on the actual use of
the data and the data mining algorithms available.

13.6 Anonymizing Query Logs

As discussed in Chapter 13.1, query log anonymization is an important
problem and several recent works from the web community have studied this
problem. In many cases, these studies identify the attacks arising from pub-
lishing query logs and motivate the need for a solution. There is a lack of a
formal problem statement and privacy guarantee. One solution to this prob-
lem is to model a query log as a transaction database where each query is a
transaction and each query term is an item. Since each query is usually very
short, it makes sense to merge all queries by the same user into one transac-
tion. Now, each transaction corresponds to a user, instead of a query, and such
transactions can be used to analyze user’s behaviors. Then we can anonymize
query logs by applying the methods discussed previously. Below we discuss
several works on query log anonymization from the web community.

13.6.1 Token-Based Hashing

[146] is one of the first few works considering attacks on query logs. It
studied a natural anonymization technique called token based hashing and
shows that serious privacy leaks are possible in this technique. First, a query
log is anonymized by tokenizing each query term and securely hashing each
token to an identifier. It assumes that an unanonymized “reference” query log
has been released previously and is available to the adversary. The adversary
first employs the reference query log to extract statistical properties of query
terms in the log-file. The adversary then processes the anonymized log to
invert the hash function based on co-occurrences of tokens within queries.
Their study shows that serious leaks are possible in token-based hashing even
when the order of the underlying tokens is hidden. For example, suppose that
the term “Tom” has a frequency of 23% in the unanonymized reference log.
The adversary may find a small number of hashes in the anonymized log with
a frequency similar to 23%. If “Tom” also occurs in the anonymized log, the



256 Introduction to Privacy-Preserving Data Publishing

adversary can infer that one of these hashes corresponds to “Tom,” therefore,
inverting the hashing with a high probability. A more powerful attack can
make use of combinations of several terms. Their study focuses the accuracy
of such attacks. No prevention solution is proposed.

13.6.2 Secret Sharing

The standard logging system for enforcing k-anonymity requires buffering
all queries until there are k users for the same query, and anonymizes them in
less than real time. This means that the logs are being held as unencrypted
data for some period which may be undesirable for certain scenarios. To solve
this probelm, a secret sharing scheme is proposed in [4]. The main idea is to
split a query into k random shares and publish a new share for each distinct
user issuing the same query. Once all k shares for the same query are presented
in the published log, which happens when at least k distinct users have issued
the query, the query can be decoded by summing up all its k£ shares. This
technique ensures k-anonymity.

More specifically, a secret .S corresponding to a query is split into k£ random
shares using some predefined function. Each share is useless on its own, and all
the k shares are required to decode the secret. The scheme works essentially
by generating k -1 random numbers S, ..., Sk_1 in the range of 0 and m — 1.
A final secret, Sk, is generated as:

k-1
Sp=5— Z S; mod m. (13.4)

i=1

A query must appear k times (for k£ unique users) before S can be decoded

using
k

S = S; mod m. (13.5)
i=1

For each query ¢;, we need to keep track of the share S;; for the user j
issuing the query. To achieve this, k hash buckets are created and the user ID
is mapped to one of these buckets (e.g., UserID mod k). The bucket indicates
which secret share is to be used for the present user u;, and the query g; is
replaced with the appropriate share S;; and a query ID. Thus the string for
any given query, g;, by user u;, is replaced with Sj;, the secret for user j for

query i:

(uj, qi) = (uj, H(gi), Sji)-

Here H(gq;) is the hash that identifies a query. If all the shares of a particular
query are present in the log, they can be combined to form the exact query.
More precisely, to decode the query g;, we compute ) S;; over the entries
(uj, H(qi), Sji). At least k entries for the same H(g;) but different u; must be
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present. To avoid the need to remember all the previously generated shares Sj;
for a query ¢; and user wu;, it is possible to seed the random number generator
deterministically for ¢; and user u;. A disadvantage of this scheme is that it
is possible that initially more than k& unique users might be required to make
the query before it can be decoded. This is due to the fact that more than
one unique user might get hashed into the same bucket. One solution is to
keep a distinct hash bucket for each of the first k users of each query. Once we
have seen k users issuing the same query, the query will be decoded, therefore,
there is no need to retrieve the share for additional users of the same query.

An alternative scheme suggested in the same paper is the Threshold Scheme
in which the secret is split up into n pieces where any k of those pieces can
be combined to decode this secret. By choosing a sufficiently large n, the
probability of getting any k distinct secrets can be ensured to be very high,
thus, reducing the probability of the above disadvantages.

13.6.3 Split Personality

This technique, also proposed by Adar [4], splits the logs of each user on
the basis of “interests” so that the users become dissimilar to themselves,
thus reducing the possibility of reconstructing a full user trace (i.e., search
history of a user) and finding subsets of the data that can be used to identify
the user. Using a similarity measure, a number of profiles are built for each
of the users. Each user profile is then given a different user ID, so that two
profiles cannot be linked to the same individual. As an example, if a particular
user is interested in Tennis and Music, then two different profiles would be
created for him, one containing the queries concerning Tennis, and the other
containing queries related to Music. This reduces the probability of finding
the complete search history of an individual by an adversary, thus increasing
the privacy. The privacy gain by making it difficult for an adversary to relate
multiple profiles to the same person is exactly a utility loss because it limits us
to one specific facet of an individual. If a researcher is interested in correlating
different facets, they will not be able to use a data set encoded in this way.

13.6.4 Other Related Works

Finally, Jones et al. [129] use classifiers to map a sequence of queries into
demographic information and shows that candidate users can be identified
using query logs. Korolova [142] proposes the concept of minimizing the in-
crease in privacy risk as the result of using search engines. They propose to
add random noise and suppress sensitive information. Instead of privacy for
the users, Poblete et al. [188] deal with the privacy for the web sites, which
are being clicked using search engines, and whose URLs are mentioned in
the query logs. Xiong and Agichtein [253] put forward the need of query log
publishing and the challenges that need to be faced.



258 Introduction to Privacy-Preserving Data Publishing
Table 13.7: Summary of approaches
coherence | band matrix | k”*-anonymity | k-anonymity
[255, 250] [101] [220] [112]
Record linkage Yes No Yes Yes
Attribute linkage Yes Yes No No
Adversary type bounded | unbounded bounded unbounded
Truthfulness Yes No Yes No
Inferences Yes No N/A N/A
Ttemset utility Yes Yes No No
Value exclusiveness Yes Yes Yes No

13.7 Summary

We summarize the transaction anonymization works in Table 13.7. We char-
acterize them according to several properties discussed in Chapter 13.1.4:
type of attacks (record linkage or attribute linkage attacks), type of adversary
(bounded or unbounded background knowledge), truthfulness with respect to
the original data, whether permitting inferences on sensitive items, whether
modeling itemset based utility, whether guaranteeing value exclusiveness. A
detailed discussion of these properties can be found at the Discussion section
for each of these approaches. Among the approaches in Table 13.7, the co-
herence approach is the only approach that can be used to prevent record
linkage attacks as well as attribute linkage attacks, and is the only approach
that permits inferences on sensitive items. The coherence approach and k™-
anonymity approach guarantees truthful analysis with respect to the original
data.

On information loss, the item suppression of the coherence approach could
better deals with “outliers,” but may suffer a large information loss if the data
is too sparse. The item generalization of the k™-anonymization approach and
the transactional k-anonymity approach could work better if the data is sparse
and the taxonomy is “slim” and “tall,” but have a large information loss if
the taxonomy is “short” and “wide.” The local generalization of transactional
k-anonymity approach has a smaller information loss than global generaliza-
tion, however, the anonymized data does not have the value exclusiveness,
a property assumed by most existing data mining algorithms. This means
that either existing algorithms must be modified or new algorithms must be
designed to analyze such data.

The works on query log anonymization somewhat focus on features specific
to query logs, such as query history, temporal information like query time,
terms of certain types such as those on demographic information, “vanity”
queries [4], privacy of URL mentioned in queries, and reducing privacy risk
through search engines. Unlike the works on transaction anonymization, there
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is a lack of a formal notion of privacy and problem formulation in this body
of works. The difficulty comes from factors such as the lack of a generally
agreeable taxonomy, the extreme sparseness of the data, and the lack of prac-
tical utility notions. So far, the research from the two different communities
have taken different approaches, although the problems considered share much
similarity in structure. It would be interesting to see how these fields could
benefit by taking an integral approach.



Chapter 14

Anonymizing Trajectory Data

14.1 Introduction

Location-aware devices are used extensively in many network systems, such
as mass transportation, car navigation, and healthcare management. The col-
lected spatio-temporal data capture the detailed movement information of the
tagged objects, offering tremendous opportunities for mining useful knowl-
edge. Yet, publishing the raw data for data mining would reveal specific sen-
sitive information of the tagged objects or individuals. In this chapter, we
study the privacy threats in trajectory data publishing and show that tra-
ditional anonymization methods are not applicable for trajectory data due
to its challenging properties: high-dimensional, sparse, and sequential. In this
chapter, we study several trajectory data anonymization methods to address
the anonymization problem for trajectory data.

14.1.1 Motivations

In recent years, there has been an explosive growth of location-aware de-
vices such as RFID tags, GPS-based devices, cell phones, and PDAs. The use
of these devices facilitates new and exciting location-based applications that
consequently generate a huge collection of trajectory data. Recent research re-
veals that these trajectory data can be used for various data analysis purposes
to improve current systems, such as city traffic control, mobility management,
urban planning, and location-based service advertisements. Clearly, publica-
tion of these trajectory data threatens individuals’ privacy since these raw
trajectory data provide location information that identifies individuals and,
potentially, their sensitive information. Below, we present some real-life ap-
plications of publishing trajectory data.

e Transit company: Transit companies have started to use smart cards
for passengers, such as the Oyster Travel card in London. The company
says they do not associate journey data with named passengers, although
they do provide such data to government agencies on request [222].

e Hospital: Some hospitals have adopted Radio Frequency IDentification
(RFID) sensory system to track the positions of patients, doctors, and

261
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medical equipment inside the hospital with the goals of minimizing life-
threatening medical errors and improving the management of patients
and resources [240]. Analyzing trajectory data, however, is a non-trivial
task. Hospitals often do not have the expertise to perform the analysis
themselves but outsource this process and, therefore, require granting a
third party access to the patient-specific location and health data.

e LBS provider: Many companies provide location-based services (LBS)
for mobile devices. With the help of triangulation and GPS devices, the
location information of users can be precisely determined. Various data
mining tasks can be performed on these trajectory data for different
applications, such as traffic analysis and location-based advertisements.
However, these trajectory data contain people’s visited locations and
thus reveal identifiable sensitive information such as social customs, re-
ligious preferences, and sexual preferences.

In this chapter, we study privacy threats in the data publishing phase and
define a practical privacy model to accommodate the special challenges of
anonymizing trajectory data. We illustrate an anonymization algorithm in [91,
170] to transform the underlying raw data into a version that is immunized
against privacy attacks but still useful for effective data mining tasks. Data
“publishing” includes sharing the data with specific recipients and releasing
the data for public download; the recipient could potentially be an adversary
who attempts to associate sensitive information in the published data with a
target victim.

14.1.2 Attack Models on Trajectory Data

We use an example to illustrate the privacy threats and challenges of pub-
lishing trajectory data.

Example 14.1

A hospital wants to release the patient-specific trajectory and health data
(Table 14.1) to a data miner for research purposes. Each record contains
a path and some patient-specific information, where the path is a sequence
of pairs (loc;t;) indicating the patient’s visited location loc; at time ¢;. For
example, ID#2 has a path (f6 — ¢7 — e8), meaning that the patient has
visited locations f, ¢, and e at time 6, 7, and 8, respectively. Without loss of
generality, we assume that each record contains only one sensitive attribute,
namely, diagnosis, in this example. We address two types of privacy threats:

e Record linkage: If a path in the table is so specific that not many pa-
tients match it, releasing the trajectory data may lead to linking the
victim’s record and, therefore, her diagnosed disease. Suppose the ad-
versary knows that the data record of a target victim, Alice, is in Ta-
ble 14.1, and Alice has visited b2 and d3. Alice’s record, together with
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Table 14.1: Raw trajectory and health data

1 Path Diagnosis
1 (b2 — d3 — c4 — f6 — c7) | AIDS

2 | (f6—c7—e8) Flu

3 | (d3—c4— f6— e8) Fever

4 | (b2 — b — T — e8) Flu

5 | (d3 — 7 — e8) Fever

6 | (ch— f6— e8) Diabetes

7 | (b2 — f6 — 7T — e8) Diabetes

8 | (2 —cb— f6— cT) AIDS

Table 14.2: Traditional 2-anonymous data

EPC Path Disease
i 76 = o0 AIDS

2 (f6 — 7 — €8) Flu

3 (f6 — e8) Fever

4 (7 — e8) Flu

5 (7 — e8) Fever

6 (f6 — e8) Diabetes
7 (f6 — c7 — €8) Diabetes
8 (6 — ¢7) AIDS

her sensitive value (AIDS in this case), can be uniquely identified be-
cause I D+#1 is the only record that contains b2 and d3. Besides, the
adversary can also determine the other visited locations of Alice, such
as c4, f6, and c7.

Attribute linkage: If a sensitive value occurs frequently together with
some sequence of pairs, then the sensitive information can be inferred
from such sequence even though the exact record of the victim cannot
be identified. Suppose the adversary knows that Bob has visited b2 and
/6. Since two out of the three records (I D#1,7,8) containing b2 and f6
have sensitive value AIDS, the adversary can infer that Bob has AIDS
with 2/3 = 67% confidence.

0

Many privacy models, such as k-anonymity [201, 217] and its exten-
sions [162, 247, 250], have been proposed to thwart privacy threats caused
by record and attribute linkages in the context of relational databases. These
models are based on the notion of quasi-identifier (QID), which is a set of at-
tributes that may be used for linkages. The basic idea is to disorient potential
linkages by generalizing the records into equivalent groups that share values
on QID. These privacy models are effective for anonymizing relational data,
but they are not applicable to trajectory data due to two special challenges.
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Table 14.3: Anonymous data with
L=2 K=2 C=50%

Path Diagnosis
(d3 — f6 — cT7) | AIDS

f6 — 7 —e8) | Flu

d3 — f6 — e8) | Fever

(

(

(¢b — 7 — e8) | Flu
(d3 — ¢7 — e8) | Fever
(¢b — f6 — €8) | Diabetes
(f6 — ¢7 — e8) | Diabetes
( ) | AIDS

ch— f6 — T

1. High dimensionality: Consider a hospital with 200 rooms function-
ing 24 hours a day. There are 200 x 24 = 4800 possible combinations
(dimensions) of locations and timestamps. Each dimension could be a
potential QID attribute used for record and attribute linkages. Tradi-
tional k-anonymity would require every path to be shared by at least k
records. Due to the curse of high dimensionality [6], most of the data
have to be suppressed in order to achieve k-anonymity. For example,
to achieve 2-anonymity on the path data in Table 14.1, all instances of
{b2,d3, ¢4, c5} have to be suppressed as shown in Table 14.2 even though
k is small.

2. Data sparseness: Consider the patients in a hospital or the passen-
gers in a public transit system. They usually visit only a few loca-
tions compared to all available locations, so each trajectory path is
relatively short. Anonymizing these short, little-overlapping paths in
a high-dimensional space poses a significant challenge for traditional
anonymization techniques because it is difficult to identify and group the
paths together. Enforcing traditional k-anonymity on high-dimensional
and sparse data would render the data useless.

14.2 LKC-Privacy

Traditional k-anonymity and its extended privacy models assume that an
adversary could potentially use any or even all of the QID attributes as
background knowledge to perform record or attribute linkages. However, in
real-life privacy attacks, it is very difficult for an adversary to acquire all
the visited locations and timestamps of a victim because it requires non-
trivial effort to gather each piece of background knowledge from so many
possible locations at different times. Thus, it is reasonable to assume that the
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adversary’s background knowledge is bounded by at most L pairs of (loc;t;)
that the victim has visited.

Based on this assumption, we can employ the LK C-privacy model studied
in Chapter 6 for anonymizing high-dimensional and sparse spatio-temporal
data. The general intuition is to ensure that every sequence ¢ with maximum
length L of any path in a data table T is shared by at least K records in T,
and the confidence of inferring any sensitive value in S from ¢ is not greater
than C, where L and K are positive integer thresholds, C' is a positive real
number threshold, and S is a set of sensitive values specified by the data
holder. LK C-privacy bounds the probability of a successful record linkage to
be < 1/K and the probability of a successful attribute linkage to be < C.
Table 14.3 shows an example of an anonymous table that satisfies (2, 2,50%)-
privacy by suppressing b2 and c4 from Table 14.1. Every possible sequence
g with maximum length 2 in Table 14.3 is shared by at least 2 records and
the confidence of inferring the sensitive value AIDS from ¢ is not greater than
50%.

While protecting privacy is a critical element in data publishing, it is equally
important to preserve the utility of the published data because this is the pri-
mary reason for publication. In this chapter, we aim at preserving the mazimal
frequent sequences (MFS) because MFS often serves as the information basis
for different primitive data mining tasks on sequential data. MFS is useful for
trajectory pattern mining [102], workflow mining [105] and it also captures
the major paths of moving objects in the trajectory data [30].

In Chapter 14.2.1, we explain the special challenges of anonymizing high-
dimensional, sparse, and sequential trajectory data. In Chapter 14.2.2, we
present an efficient anonymization algorithm to achieve L K C-privacy on tra-
jectory data while preserving maximal frequent sequences in the anonymous
trajectory data.

14.2.1 Trajectory Anonymity for Maximal Frequent Se-
quences

We first describe the trajectory database and then formally define the pri-
vacy and utility requirements.
14.2.1.1 Trajectory Data

A trajectory data table T is a collection of records in the form
((locity) — ... — (locnty)) t $1,. -y Sp 1 diy ..oy dim,

where ((locity) — ... — (locyty)) is the path, s; € S; are the sensitive values,
and d; € D; are the quasi-identifying (QID) values of an object. A pair (loc;t;)
represents the visited location loc; of an object at time ¢;. An object may
revisit the same location at different times. At any time, an object can appear
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at only one location, so (al — bl) is not a valid sequence and timestamps in
a path increase monotonically.

The sensitive and QID values are the object-specific data in the form
of relational data. Record and attribute linkages via the QID attributes
can be avoided by applying existing anonymization methods for relational
data [96, 148, 151, 162, 237]. In this chapter, we focus on eliminating record
and attribute linkages via trajectory data as illustrated in Example 14.1.

14.2.1.2 Privacy Model

Suppose a data holder wants to publish the trajectory data table T (e.g.,
Table 14.1) to recipients for data mining. Explicit identifiers, e.g., name, and
SSN, are removed. (Note, we keep the ID in our examples for discussion pur-
pose only.)

We assume that the adversary knows at most L pairs of location and time-
stamp that V' has previously visited. We use ¢ to denote such an a priori known
sequence of pairs, where |g| < L. T'(¢) denotes a group of records that contains
q. A record in T contains q if q is a subsequence of the path in the record.
For example in Table 14.1, ID#1,2,7,8 contains ¢ = (f6 — c¢7), written
as T'(q) = {ID+#1,2,7,8}. Based on background knowledge ¢, the adversary
could launch record and attribute linkage attacks. To thwart the record and
attribute linkages, we require that every sequence with a maximum length L
in the trajectory data table has to be shared by at least a certain number of
records, and the ratio of sensitive value(s) in every group cannot be too high.
The presented privacy model, LK C-privacy [91, 170], reflects this intuition.

DEFINITION 14.1 LKC-privacy Let L be the maximum length of the
background knowledge. Let S be a set of sensitive values. A trajectory data
table T satisfies LK C-privacy if and only if for any sequence ¢ with |¢| < L,

1. |T(q)| > K, where K > 0 is an integer anonymity threshold, and

2. P(s|q) < C for any s € S, where 0 < C' <1 is a real number confidence
threshold. m

LK (C-privacy has several nice properties that make it suitable for anonymiz-
ing high-dimensional sparse trajectory data. First, it only requires subse-
quences of a path to be shared by at least K records. This is a major relaxation
from traditional k-anonymity based on a very reasonable assumption that
the adversary has limited power. Second, LK C-privacy generalizes several
traditional privacy models, such as k-anonymity (Chapter 2.1.1), confidence
bounding (Chapter 2.2.2), («, k)-anonymity (Chapter 2.2.5), and ¢-diversity
(Chapter 2.2.1). Refer to Chapter 6.2 for a discussion on the generalization of
these privacy models. Third, it is flexible to adjust the trade-off between data
privacy and data utility, and between an adversary’s power and data utility.
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Increasing L and K, or decreasing C, would improve the privacy at the ex-
pense of data utility. Finally, LK C-privacy is a general privacy model that
thwarts both identity linkage and attribute linkage, i.e., the privacy model is
applicable to anonymize trajectory data with or without sensitive attributes.

In the attack models studied in this chapter, we assume that the adversary
can acquire both the time and locations of a target victim as background
knowledge. In a real-life attack, it is possible that the adversary’s background
knowledge ¢’ contains only the location loc; or only the timestamp t;. This
type of attack is obviously weaker than the attack based on background knowl-
edge ¢ containing (loc;t;) because the identified group |T'(¢')| > |T(¢)|- Thus,
an LK C-privacy preserved table that can thwart linkages on ¢ can also thwart
linkages on ¢'.

14.2.1.3 Utility Measure

The measure of data utility varies depending on the data mining task to
be performed on the published data. In this chapter, we aim at preserving
the maximal frequent sequences. A sequence ¢ = ((locit1) — ... — (locpty))
is an ordered set of locations. A sequence q is frequent in a trajectory data
table T if |T'(q)| > K’, where T(q) is the set of records containing ¢ and
K’ is a minimum support threshold. Frequent sequences (FS) capture the
major paths of the moving objects [30], and often form the information basis
for different primitive data mining tasks on sequential data, e.g., association
rules mining. In the context of trajectories, association rules can be used to
determine the subsequent locations of the moving object given the previously
visited locations. This knowledge is important for traffic analysis.

There is no doubt that FS are useful. Yet, mining all F'S is a computationally
expensive operation. When the data volume is large and FS are long, it is
infeasible to identify all F'S because all subsequences of an F'S are also frequent.
Since trajectory data is high-dimensional and in large volume, a more feasible
solution is to preserve only the maximal frequent sequences (MFS).

DEFINITION 14.2 Maximal frequent sequence For a given min-
imum support threshold K’ > 0, a sequence x is mazimal frequent in a tra-
jectory data table T'if x is frequent and no super sequence of x is frequent in
T =

The set of MFS in T', denoted by U(T), is much smaller than the set of
FS in T given the same K’. MFS still contains the essential information for
different kinds of data analysis [155]. For example, MFS captures the longest
frequently visited paths. Any subsequence of an MFS is also a FS. Once all the
MFS have been determined, the support counts of any particular F'S can be
computed by scanning the data table once. The data utility goal is to preserve
as many MFS as possible, i.e., maximize |U(T)|, in the anonymous trajectory
data table.
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One frequently raised question is: why do we want to publish sensitive at-
tributes at all when the goal is to preserve maximal frequent sequences? It is
because some applications may require publishing the sensitive attributes for
data mining purpose, such as to find association rules between frequent se-
quences and sensitive attributes. However, if there is no such data mining pur-
pose, the sensitive attributes should be removed. LK C-privacy, together with
the anonymization algorithm presented in Chapter 14.2.2, is flexible enough
to handle trajectory data with or without sensitive attributes.

14.2.1.4 Problem Statement

LK (C-privacy can be achieved by performing a sequence of suppressions on
selected pairs from T'. In this chapter, we employ global suppression, meaning
that if a pair p is chosen to be suppressed, all instances of p in T are sup-
pressed. For example, Table 14.3 is the result of suppressing b2 and c4 from
Table 14.1. Global suppression offers several advantages over generalization
and local suppression. First, suppression does not require a predefined taxon-
omy tree for generalization, which often is unavailable in real-life databases.
Second, trajectory data could be extremely sparse. Enforcing global gener-
alization on trajectory data will result in generalizing many sibling location
or time values even if there is only a small number of outlier pairs, such as
c4 in Table 14.1. Suppression offers the flexibility of removing those outliers
without affecting the rest of the data. Note, we do not intend to claim that
global suppression is always better than other schemes. For example, LeFevre
et al. [148] present some local generalization schemes that may result in less
data loss depending on the utility measure. Third, global suppression retains
exactly the same support counts of the preserved MFS in the anonymous tra-
jectory data as there were in the raw data. In contrast, a local suppression
scheme may delete some instances of the chosen pair and, therefore, change
the support counts of the preserved MFS. The property of data truthfulness
is vital in some data analysis, such as traffic analysis.

DEFINITION 14.3 Trajectory anonymity for MF'S Given a trajec-
tory data table T', a LK C-privacy requirement, a minimum support threshold
K, a set of sensitive values S, the problem of trajectory anonymity for maz-
imal frequent sequences (MFS) is to identify a transformed version of T that
satisfies the L K C-privacy requirement while preserving the maximum number
of MFS with respect to K'. m

Theorem 14.2, given in Chapter 14.2.2.3, proves that finding an optimum
solution for LK C-privacy is NP-hard. Thus, we propose a greedy algorithm
to efficiently identify a reasonably “good” sub-optimal solution.
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14.2.2 Anonymization Algorithm for LKC-Privacy

Given a trajectory data table T', the first step is to identify all sequences
that violate the given LK C-privacy requirement. Chapter 14.2.2.1 describes
a method to identify violating sequences efficiently. Chapter 14.2.2.2 presents
a greedy algorithm to eliminate the violating sequences with the goal of pre-
serving as many maximal frequent sequences as possible.

14.2.2.1 Identifying Violating Sequences

An adversary may use any sequence with length not greater than L as back-
ground knowledge to launch a linkage attack. Thus, any non-empty sequence
g with |g| < L in T is a violating sequence if its group T'(q) does not satisfy
condition 1, condition 2, or both in LK C-privacy in Definition 14.1.

DEFINITION 14.4 Violating sequence Let g be a sequence of a path

in T with |¢| < L. ¢ is a violating sequence with respect to a LK C-privacy
requirement if (1) ¢ is non-empty, and (2) |T'(q)| < K or P(s|g) > C for any
sensitive value s € S. m

Example 14.2

Let L =2, K =2, C = 50%, and S = {AIDS}. In Table 14.1, a sequence
g1 = (b2 — c4) is a violating sequence because |T'(¢1)] = 1 < K. A sequence
g2 = (b2 — f6) is a violating sequence because P(AIDS|q) = 67% > C.
However, a sequence g3 = (b2 — ¢5 — f6 — ¢7) is not a violating sequence
even if [T'(¢gs)| = 1 < K and P(AIDS|q3) = 100% > C because |q3| > L. [

A trajectory data table satisfies a given LK C-privacy requirement, if all
violating sequences with respect to the privacy requirement are removed, be-
cause all possible channels for record and attribute linkages are eliminated.
A naive approach is to first enumerate all possible violating sequences and
then remove them. This approach is infeasible because of the huge number
of violating sequences. Consider a violating sequence ¢ with |T'(q)| < K. Any
super sequence of g, denoted by ¢”, in the data table T is also a violating
sequence because |T(¢")| < |T(q)| < K.

Another inefficient and incorrect approach to achieve LK C-privacy is to
ignore the sequences with size less than L and assume that if a table T" satisfies
LKC-privacy, then T satisfies L' KC-privacy where L’ < L. Unfortunately,
this monotonic property with respect to L does not hold in LC K-privacy.

THEOREM 14.1
LK (C-privacy is not monotonic with respect to adversary’s knowledge L.
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PROOF To prove that LK C-privacy is not monotonic with respect to L,
it is sufficient to prove that one of the conditions of LK C-privacy in Defini-
tion 14.1 is not monotonic.

Condition 1: Anonymity threshold K is monotonic with respect to L. If
L' < L and C = 100%, a data table T satisfying LK C-privacy must satisfy
L' K C-privacy because |T'(¢')| > |T(q)| > K, where ¢’ is subsequence of g.

Condition 2: Confidence threshold C' is not monotonic with respect to L. If
¢ is a non-violating sequence with P(s|q) < C and |T'(¢)| > K, its subsequence
¢ may or may not be a non-violating sequence. We use a counter example
to show that P(s|¢’) < P(s|g) < C does not always hold. In Table 14.4, the
sequence ¢ = (al — b2 — ¢3) satisfies P(AIDS|q) = 50% < C. However, its
subsequence ¢’ = (al — b2) does not satisfy P(AIDS|q") = 100% > C.

To satisfy condition 2 in Definition 14.1, it is insufficient to ensure that every
sequence ¢ with only length L in T satisfies P(s|q) < C'. Instead, we need to
ensure that every sequence ¢ with length not greater than L in T satisfies
P(s]g) < C. To overcome this bottleneck of violating sequence enumeration,
the insight is that there exists some “minimal” violating sequences among the
violating sequences, and it is sufficient to achieve LK C-privacy by removing
only the minimal violating sequences.

DEFINITION 14.5 Minimal violating sequence A violating sequence
q is a minimal violating sequence (MVS) if every proper subsequence of ¢ is
not a violating sequence. m

Example 14.3

In Table 14.1, given L = 3, K = 2, C = 50%, S = {AIDS}, the sequence
g = (b2 — d3) is a MVS because (b2) and (d3) are not violating sequences.
The sequence ¢ = (b2 — d3 — c4) is a violating sequence but not a MVS
because its subsequence (b2 — d3) is a violating sequence. ]

Every violating sequence is either a MVS or it contains a MVS. Thus, if T
contains no MVS, then T' contains no violating sequences.

Observation 14.2.1 A trajectory data table T satisfies LK C-privacy if and
only if T' contains no MVS. =

Table 14.4: Counter example for
monotonic property

ID | Path Diagnosis
T | (al = b2) ATDS
2 | {al - b2 — ¢3) | AIDS
3 | {al — b2 — ¢3) | Fever
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Algorithm 14.2.13 MVS Generator
Input: Raw trajectory data table T’
Input: Thresholds L, K, and C

Input: Sensitive values S

Output: Minimal violating sequence V(T")

1: X1 <« set of all distinct pairs in T';

2: 1 =1;

3: whilei < L or X; # () do

4:  Scan T to compute |T'(¢)| and P(sl|q), for Vq € X;, Vs € S;
5:  for Vq € X; where |T(¢q)| > 0 do

6: if |T'(¢)] < K or P(s|q) > C then

7 Add q to V;;

8: else

9: Add q to Wy;
10: end if

11: end for
12: Xig1 — Wi X W;;
13: for Vq € X;41 do

14: if ¢ is a super sequence of any v € V; then
15: Remove ¢ from Xj1;

16: end if

17: end for

18: i++;

19: end while
20: return V(T)=ViU---UV,_q;

Next, we present an algorithm to efficiently identify all MVS in T with
respect to a LK C-privacy requirement. Based on Definition 14.5, we generate
all MVS of size ¢ + 1, denoted by V;y1, by incrementally extending a non-
violating sequence of size ¢, denoted by W;, with an additional pair.

Algorithm 14.2.13 presents a method to efficiently generate all MVS. Line
1 puts all the size-1 sequences, i.e., all distinct pairs, as candidates X; of
MVS. Line 4 scans T once to compute |T(q)| and P(s|q) for each sequence
q € X; and for each sensitive value s € S. If the sequence q violates the LK C-
privacy requirement in Line 6, then we add ¢ to the MVS set V; (Line 7);
otherwise, add ¢ to the non-violating sequence set W; (Line 9) for generating
the next candidate set X; 1, which is a self-join of W; (Line 12). Two sequences
¢z = ((locit7) — ... — (loc¥t?)) and q, = ((loc{t]) — ... — (loc/tY)) in W;
can be joined only if the first ¢ — 1 pairs of ¢, and g, are identical and ¢ < t7.
The joined sequence is ((loc{t7) — ... — (locft¥) — (loc!t?)). Lines 13-17
remove a candidate ¢ from X, if ¢ is a super sequence of any sequence in
V; because any proper subsequence of a MVS cannot be a violating sequence.
The set of MVS, denoted by V(T), is the union of all V;.
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Example 14.4
Consider Table 14.1 with L =2, K =2, C = 50%, and S = {AIDS}.

X1 ={b2,d3,c4,c5, f6,c7,e8}.

After scanning T', we divide X7 into V7 = () and
Wy = {b2,d3, c4,c5, f6,cT, e8}.

Next, from W; we generate the candidate set

Xo = {b2d3, b2c4, b2c5, b2 6, b2cT, b2e8, d3cd, d3ch, d3f6, d3c7, d3e8, cdch,
cdf6, cdcT, cde8, c5f6, cbcT, che8, f6cT, f6e8, cTe8}.

We scan T again to determine
Vo = {b2d3, b2c4, b2f6, cAcT, c4e8}.

We do not further generate X3 because L = 2. ]

14.2.2.2 Eliminating Violating Sequences

We present a greedy algorithm to transform the raw trajectory data table T
to an anonymous table T” with respect to a given LK C-privacy requirement by
a sequence of suppressions. In each iteration, the algorithm selects a pair p for
suppression based on a greedy selection function. In general, a suppression on a
pair p in T increases privacy because it removes minimal violating sequences
(MVS), and decreases data utility because it eliminates maximal frequent
sequences (MFS) in T'. Therefore, we define the greedy function, Score(p), to
select a suppression on a pair p that maximizes the number of MVS removed
but minimizes the number of MFS removed in T'. Score(p) is defined as follows:

_ PrivGain(p)
~ UtilityLoss(p) + 1

Score(p) (14.1)
where PrivGain(p) and UtilityLoss(p) are the number of minimal violating
sequences (MVS) and the number of maximal frequent sequences (MFS) con-
taining the pair p, respectively. A pair p may not belong to any MF'S, resulting
in |UtilityLoss(p)| = 0. To avoid dividing by zero, we add 1 to the denomina-
tor. The pair p with the highest Score(p) is called the winner pair, denoted
by w.

Algorithm 14.2.14 summarizes the anonymization algorithm that removes
all MVS. Line 1 calls Algorithm 14.2.13 to identify all MVS, denoted by
V(T), and then builds a MVS-tree with a PG table that keeps track of the
PrivGain of all candidate pairs for suppressions. Line 2 calls a maximal fre-
quent sequence mining algorithm (see Chapter 14.2.2.3) to identify all MFS,
denoted by U(T), and then builds a MFS-tree with a UL table that keeps
track of the UtilityLoss of all candidate pairs. At each iteration in Lines 3-9,
the algorithm selects the winner pair w that has the highest Score(w) from
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Algorithm 14.2.14 Trajectory Data Anonymizer

Input: Raw trajectory data table T’

Input: Thresholds L, K, C, and K’

Input: Sensitive values S

Output: Anonymous 7" that satisfies LK C-privacy

: generate V(T) by Algorithm 14.2.13 and build MVS-tree;

. generate U(T') by MFS algorithm and build MFS-tree;

: while PG table is not empty do

select a pair w that has the highest Score to suppress;

delete all MVS and MFS containing w from MVS-tree and MFS-tree;
update the Score(p) if both w and p are contained in the same MVS or
MFS;

remove w from PG Table;

8  add w to Sup;

9: end while

10: for Yw € Sup, suppress all instances of w from T

11: return the suppressed T as T";

I

Table 14.5: Initial Score

b2 d3 c4 6 c7 e8
PrivGain 3 1 3 1 1 1
UtilityLoss (+1) 4 4 2 5 6 5
Score 0.75 0.25 1.5 0.2 0.16 0.2

the PG table, removes all the MVS and MFS that contain w, incrementally
updates the Score of the affected candidates, and adds w to the set of sup-
pressed values, denoted by Sup. Values in Sup are collectively suppressed in
Line 10 in one scan of T'. Finally, Algorithm 14.2.14 returns the anonymized
T as T'. The most expensive operations are identifying the MVS and MFS
containing w and updating the Score of the affected candidates. Below, we
propose two tree structures to efficiently perform these operations.

DEFINITION 14.6 MVS-tree  MVS-tree is a tree structure that rep-
resents each MVS as a tree path from root-to-leaf. Each node keeps track of
a count of MVS sharing the same prefix. The count at the root is the total
number of MVS. MVS-tree has a PG table that maintains every candidate
pair p for suppression, together with its PrivGain(p). Each candidate pair p
in the PG table has a link, denoted by Link,, that links up all the nodes in
an MVS-tree containing p. PrivGain(p) is the sum of the counts of MVS on
Link,. =
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FIGURE 14.2: MVS-tree and MFS-tree after suppressing c4

DEFINITION 14.7 MFS-tree MFS-tree is a tree structure that rep-
resents each MFS as a tree path from root-to-leaf. Each node keeps track of a
count of MF'S sharing the same prefix. The count at the root is the total num-
ber of MFS. MFS-tree has a UL table that keeps the Utility Loss(p) for every
candidate pair p. Each candidate pair p in the UL table has a link, denoted by
Link,, that links up all the nodes in MFS-tree containing p. UtilityLoss(p)
is the sum of the counts of MFS on Link,. =

Example 14.5
Figure 14.1 depicts both an MVS-tree and an MFS-tree generated from Ta-
ble 14.1, where

V(T) = {b2d3, b2c4, b2 6, cdcT, c4e8} and
U(T) = {b2cheT, b2f6¢7, b2cTe8, d3cdf6, f6cTe8, 516, cbe8, d3c7, d3e8}

with L =2, K =2, C = 50%, and K’ = 2. Each root-to-leaf path represents
one sequence of MVS or MFS. To find all the MVS (or MFS) containing c4,
follow Link.4 starting from the PG (or UL) table. For illustration purposes,
we show PG and UL as a single table.

Table 14.5 shows the initial Score(p) of every candidate in the PG table
in the MVS-tree. Identify the winner pair ¢4 from the PG table. Then tra-
verse Link.4 to identify all MVS and MFS containing ¢4 and delete them
from the MVS-tree and MFS-tree accordingly. These links are the key to ef-
ficient Score updates and suppressions. When a winner pair w is suppressed
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Table 14.6: Score after suppressing c4

b2 d3 6
PrivGain 2 1 1
UtilityLoss (+1) 4 3 4
Score 0.5 0.33 0.25

from the trees, the entire branch of w is trimmed. The trees provide an effi-
cient structure for updating the counts of MVS and MF'S. For example, when
c4 is suppressed, all its descendants are removed as well. The counts of c¢4’s
ancestor nodes are decremented by the counts of the deleted c4 node. If a
candidate pair p and the winner pair w are contained in some common MVS
or MFS, then UtilityLoss(p), PrivGain(p), and Score(p) have to be updated
by adding up the counts on Link,. A pair p is removed from the PG table
if PrivGain(p) = 0. The shaded blocks in Figure 14.1 represent the nodes
to be deleted after suppressing c4. The resulting MVS-tree and MFS-tree are
shown in Figure 14.2. Table 14.6 shows the updated Score of the remaining
candidate pairs. In the next iteration, b2 is suppressed and thus all the re-
maining MVS are removed. Table 14.3 shows the resulting anonymized table
T’ for (2,2,50%)-privacy.

14.2.2.3 Analysis

THEOREM 14.2
Given a trajectory data table T" and a LK C-privacy requirement, it is NP-
hard to find the optimum anonymous solution.

PROOF  The problem of finding the optimum anonymous solution can
be converted into the wertex cover problem. The vertex cover problem is a
well-known problem in which, given an undirected graph G = (V, E), it is
NP-hard to find the smallest set of vertices S such that each edge has at least
one endpoint in S. To reduce the problem into the vertex cover problem, we
consider the set of candidate pairs as the set of vertices V. The set of MVS,
denoted by V(T), is analogous to the set of edges E. Hence, the optimum
vertex cover, S, means finding the smallest set of candidate pairs that must
be suppressed to obtain the optimum anonymous data set T”. Given that it
is NP-hard to determine the smallest set of vertices S, it is also NP-hard to
find the optimum set of candidate pairs for suppression. ]

The presented trajectory anonymization method has two steps. In the first
step, we determine the set of MVS and the set of MFS. In the second step,
we build the MVS-tree and MFS-tree, and suppress the winner pairs itera-
tively according to their Score. We modified MAFIA [39], which is originally
designed for mining maximal frequent itemsets, to mine MFS. Any alterna-
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tive MFS algorithm can be used as a plug-in to the presented anonymization
method. The most expensive operation of the method is scanning the raw
trajectory data table T" once to compute |T'(q)| and P(s|q) for all sequence
¢ in the candidate set X;. This operation takes place during MVS genera-
tion. The cost of this operation is approximated as Cost = Zle m;t, where
m; = |X;|. Note that the searching cost depends on the value of L and size of
the candidate set. When ¢ = 1, the candidate set X; is the set of all distinct
pairs in T. Hence, the upper limit of m; = |d|, where |d| is the number of
dimensions. It is unlikely to have any single pair violating the LK C-privacy;
therefore, my = |d|(|d| — 1)/2. In practice, most of the candidate sets are of
size-2; therefore, the lower bound of the Cost < mj + 2mg = |d|?. Finally, in-
cluding the dependence on the data size, the time complexity of the presented
anonymization algorithm is O(|d|?n).

In the second step, we insert the MVS and MFS into the respective trees
and delete them iteratively afterward. This operation is proportional to the
number of MVS and thus in the order of O(|V(T)|). Due to MVS-tree and
MFS-tree data structures, the anonymization method can efficiently calculate
and update the the score of the candidate pairs.

14.2.3 Discussion
14.2.3.1 Applying LKC-Privacy on RFID Data

Radio Frequency IDentification (RFID) is a technology of automatic ob-
ject identification. Figure 14.3 illustrates a typical RFID information system,
which consists of a large number of tags and readers and an infrastructure
for handling a high volume of RFID data. A tag is a small device that can
be attached to a person or a manufactured object for the purpose of unique
identification. A reader is an electronic device that communicates with the
RFID tag. A reader broadcasts a radio signal to the tag, which then trans-
mits its information back to the reader [204]. Streams of RFID data records,
in the format of (EPC,loc,t), are then stored in an RFID database, where
EPC (Electronic Product Code) is a unique identifier of the tagged person
or object, loc is the location of the reader, and ¢ is the time of detection. The
path of an object, like the path defined in Chapter 14.2.1, is a sequence of
pairs that can be obtained by first grouping the RFID records by FPC and
then sorting the records in each group by timestamps. A data recipient (or a
data analysis module) could obtain the information on either specific tagged
objects or general workflow patterns [105] by submitting data requests to the
query engine. The query engine then responds to the requests by joining the
RFID data with some object-specific data.

Retailers and manufacturers have created compelling business cases for de-
ploying RFID in their supply chains, from reducing out-of-stocks at Wal-Mart
to up-selling consumers in Prada. Yet, the uniquely identifiable objects pose a
privacy threat to individuals, such as tracing a person’s movements, and pro-
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FIGURE 14.3: Data flow in RFID system

filing individuals becomes possible. Most previous work on privacy-preserving
RFID technology [204] focus on the threats caused by the physical RFID tags.
Techniques like EPC re-encryption and killing tags [130] have been proposed
to address the privacy issues in the data collection phase, but these techniques
cannot address the privacy threats in the data publishing phase, when a large
volume of RFID data is released to a third party.

Fung et al. [91] present the first work to study the privacy threats in the
data publishing phase and define a practical privacy model to accommodate
the special challenges of RFID data. Their privacy model, LK C-privacy which
is also studied in this chapter, ensures that every RFID moving paths with
length not greater than L is shared by least K —1 other moving paths, and the
confidence of inferring any pre-specified sensitive values is not greater than C.
Fung et al. [91] propose an anonymization algorithm for the query engine (see
Figure 14.3) to transform the underlying raw object-specific RFID data into
a version that is immunized against privacy attacks. The general assumption
is that the recipient could be an adversary, who attempts to associate some
target victim(s) to his/her sensitive information from the published data. The
general idea is very similar to the privacy model and anonymization method
studied in this chapter.
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14.2.3.2 Comparing with Anonymizing Transaction Data

Chapter 13 discusses some works on anonymizing high-dimensional transac-
tion data [101, 220, 255, 256]. Ghinita et al. [101] divide the transaction data
into public and private items. Then the public items are grouped together
based on similarity. Each group is then associated with a set of private items
such that probabilistically there are no linkages between the public and private
items. The idea is similar to the privacy model of Anatomy [249] in Chap-
ter 3.2, which disorients the linkages between QID and sensitive attributes by
putting them into two tables.

The methods presented in [220, 255, 256] model the adversary’s power by
a maximum number of known items as background knowledge. This assump-
tion is similar to LK C-privacy studied above, but with two major differences.
First, a transaction is a set of items, but a moving object’s path is a se-
quence of visited location-time pairs. Sequential data drastically increases the
computational complexity for counting the support counts as compared trans-
action data because (@ — b) is different from (b — a). Hence, their proposed
models are not applicable to spatio-temporal data studied in this chapter. Sec-
ond, the privacy and utility measures are different. Terrovitis et al.’s privacy
model [220] is based on only k-anonymity and does not consider attribute
linkages. Xu et al. [255, 256] measure their data utility in terms of preserved
item instances and frequent itemsets, respectively. In contrast, the method
studied in Chapter 14.2 aims at preserving frequent sequences.

14.3  (k,5)-Anonymity

Many mobile devices, such as GPS navigation device on cell phones, have
very limited energy. To reduce energy consumption, some methods [124] have
been developed to predict the location of a mobile device at a given time.
A mobile device has to report its new location only if its actual location
differs more than an uncertainty threshold ¢ from the predicted location [1].
Abul et al. [1] propose a new privacy model called (k,d)-anonymity that
exploits the inherent uncertainty of moving objects’ locations. The trajectory
can be considered as polylines in a cylindrical volume with some uncertainty;
therefore, the anonymity is achieved if k different trajectories co-exist within
the radius § of any trajectory, as depicted in Figure 14.4. ¢ could be the result
of inaccuracy in a positioning device.

14.3.1 Trajectory Anonymity for Minimal Distortion

Enforcing (k, d)-anonymity on a data set of paths D requires every path in
D to be (k,d)-anonymous; otherwise, we need to transform D into another
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FIGURE 14.4: Time and spatial trajectory volume ([1] ©2008 IEEE)

version D’ that satisfies the given (k,d)-anonymity requirement. Let 7 be
trajectory. Let (z,y,t) € T be the (z,y) position of T at time ¢. The problem
of (k,d)-anonymity is formally defined as follows.

DEFINITION 14.8 Co-localization Two trajectories 71 and 7 defined
in time interval [t1,t,] co-localize, written as Coloc‘[st1 tn](ﬁ, T9), with respect
to a uncertainty threshold § if and only if for each point (z1,y1,t) in 71 and

(x2,y2,t) in 72 with ¢ € [t1,t,], it holds that Dist((z1,y1), (z2,y2)) < d [1]. =

Dist can be any function that measures the distance between two points.
For example, Euclidean distance:

Dist((x1,91), (72, 92)) = /(21 — 22)> + (11 — 12)? (14.2)

Intuitively, a trajectory is anonymous if it shares a similar path with other
trajectories.

DEFINITION 14.9 Anonymity group of trajectories Given an
uncertainty threshold § and an anonymity threshold k, a group G of tra-
jectories is (k,d)-anonymous if and only if |G| > k, V7,7, € G, and
COZOC‘[Sthtn](TZ‘,Tj) [1]. m

The trajectory anonymity problem is to transform a data set such that
every group of trajectories is (k, §)-anonymous with minimal distortion.
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DEFINITION 14.10 Trajectory anonymity for minimal distortion
Given a data set of trajectory paths D, an uncertainty threshold §, and an
anonymity threshold k, the problem of trajectory anonymity for minimal dis-
tortion is to transform D into a (k,d)-anonymous data set D’, such that for
trajectory 7 € D’| there exists a (k, §)-anonymous group G C D', 7 € G, and
the distortion between D and D’ is minimized [1]. m

14.3.2 The Never Walk Alone Anonymization Algorithm

The Never Walk Alone (NWA) anonymization algorithm in [1] can be sum-
marized in three phases. The first phase, preprocessing, is to trim the starting
and ending portions of the trajectories to ensure that they share the same time
span. The second phase, clustering, is to group nearby trajectories together
into clusters. The third phase, space translation, is to “push” some locations
of a trajectory that fall outside cylindrical volume into the cluster. Each phase
is described in details below.

14.3.2.1 Preprocessing

In real-world moving object databases, trajectories are very unlikely to have
the same starting and ending points. Consider a city transport system. Many
passengers travel from their home in uptown area to their workplaces in down-
town area in the morning and go back home in the evening. Though they share
a similar path and direction during the same period of time, their homes and
workplaces are different. Enforcing (k, §)-anonymity on these scattered tra-
jectories will result in poor data quality. Thus, the first step of NWA is to
partition the input trajectories into groups of trajectories that have the same
starting time and the same ending time.

The preprocessing is controlled by an integer parameter 7: only one time-
stamp every 7 can be the starting or ending point of a trajectory [1]. For
example, if the original data was sampled at a frequency of one minute, and
7 = 60, all trajectories are preprocessed in such a way that their starting and
ending timestamps are mapped to full hours. We can first determine the start-
ing timestamp t; and the ending timestamp t. of each trajectory, and then all
the points of trajectory that do not fall between ¢ and ¢, are discarded. After
this preprocessing step, trajectories are partitioned into equivalence classes
with respect to their new starting and ending timestamps.

14.3.2.2 Clustering

Next, NWA clusters the trajectories into groups. First, NWA selects a se-
quence of pivot trajectories as cluster centers. The first pivot trajectory chosen
is the farthest one from the center of the entire data set D. Then, the next
pivot trajectory chosen is the farthest trajectory from the previous pivot. After
a pivot trajectory is determined, a cluster is formed by taking the (k — 1)-
nearest neighbor trajectories as its elements. Then, assign remaining trajec-
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tories to the closest pivot. Yet, NWA enforces an additional constraint: the
radius of every cluster must not be larger than a threshold max_radius. In
case a cluster cannot be formed on the pivot due to lack of nearby trajectories,
it will not be used as pivot but it can be used in the subsequent iterations
as member of some other cluster. The remaining trajectories that cannot be
added to any cluster without violating the max_radius constraint, such out-
lier trajectories are discarded. If there are too many outlier trajectories, NWA
restarts the clustering procedure by increasing maz _radius until not too many
trajectories are discarded.

14.3.2.3 Space Translation

Space translation is the last phase to achieve (k,d)-anonymity. This op-
eration involves moving some trajectory points from the original location to
another location. The objective is to achieve (k, §)-anonymity while minimiz-
ing the distortion on the original routes. For each cluster formed in the the
clustering phase, compute the cluster center, form a cylindrical volume based
on the cluster center, and move points lying outside of the cylindrical volume
onto the perimeter of the cylindrical volume, from the original location to-
wards the cluster center with minimal distortion. A natural choice of minimal
distortion on trajectories is the sum of point-wise distances between the origi-
nal and translated trajectories. The problem of space translation is to achieve
a given (k,d)-anonymity with the goal minimizing the total translation dis-
tortion cost defined below.

DEFINITION 14.11 Space translation distortion Let 7/ € D/ be
the translated version of raw trajectory 7 € Dp. The translation distortion
cost of 7 with respect to T is:

DistortCost(r,7") = Z Dist(r[t], 7'[t]) (14.3)
teT

where 7[t] is the location of 7 in the form of (z,y) at time ¢. The total trans-
lation distortion cost of the translated data set D/, with respect to the raw
data set D is:

Total DistortCost(Dy, Df) = Z DistortCost(r,7'). = (14.4)
TE€DT

14.3.3 Discussion

Abul et al. [1] present an interesting trajectory anonymization algorithm,
Never Walk Alone (NWA), by exploiting the inherent uncertainty of mobile
devices. Some new RFID devices, however, are highly accurate with error less
than a couple of centimeters. In that, the inherent uncertainty may not be
present. Also, NWA relies on the basic assumption that every trajectory is
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continuous. Though this assumption is valid for GPS-like devices where the
object can be traced all the time, it does not hold for RFID-based moving ob-
jects. For example, when a passenger uses his smart card in a subway station,
the smart card or RFID tag is detected once at the entrance. The system may
not know the next location of the passenger until hours later, so the time on
a RFID path may not be continuous.

The clustering approach employed in NWA has to restart again everytime
when too many trajectories are discarded as outliers. As a result, it is very diffi-
cult to predict when the algorithm will terminate. Furthermore, the anonymity
is achieved by space translation, which changes the actual location of an ob-
ject, resulting in the publication of untruthful data.

14.4 MOB k-Anonymity

In contrast to (k,d)-anonymity, which bypasses the fundamental concept
of QID and relies on the concept of co-localization to achieve k-anonymity,
Yarovoy et al. [263] present a novel notion of k-anonymity in the context
of moving object databases (MOD) based on the assumption that different
moving objects may have different QIDs.

14.4.1 Trajectory Anonymity for Minimal Information Loss

Unlike in relational data, where all tuples share the same set of quasi-
identifier (QIDs), Yarovoy et al. argue that in MOD there does not exist a fixed
set of QID attributes for all the MOBs. Hence it is of importance to model
the concept of quasi-identifier on an individual basis. Specifically, Yarovoy
et al. [263] consider timestamps as the QIDs with MOBs’ positions forming
their values. A group of moving objects with the same QID values is called an
anonymization group. In a MOD, the anonymization groups associated with
different moving objects may not be disjoint.

Example 14.6

Consider a raw moving object database (Table 14.7) with 4 moving objects,
in which the explicit identifiers (e.g. I, I, I3, I4) have been suppressed.
Each row represents the trajectory of a moving object. Suppose £ = 2 and
QID(0) = QID(O4) = {t1}, GID(02) = QID(O3) = {tz}. Cleanly the
best anonymization group for O; with respect to its QID{t1} is AS(O1) =
{01,035} as Os is closest to O; at time t;. Similarly, the best anonymization
group for Oy and Oz with respect to their QID{t2} is {O2,03}, and for
O, with respect to its QID{t1} is {Oz,04}. The anonymization groups are
illustrated in Figure 14.5 by dark rectangles. Obviously, the anonymization
groups of O and O3 as well as Os and Oy4 overlap. UJ
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FIGURE 14.5: Graphical representation of MOD D

Due to this fact, the most obvious but incorrect way of defining k-anonymity
is that an anonymous version D* of a MOD D satisfies k-anonymity provided
that YO € D and Vt € QID(O), there are at least k — 1 other distinct MOBs
in D* indistinguishable from O at time ¢. Under such definition, an adversary
is able to conduct a privacy attack based on an attack graph formalized below.

DEFINITION 14.12 Attack graph  [263] An attack graph associated
with a MOD D and its anonymous version D* is a bipartite graph that consists
of nodes for every individual I in D, called I-nodes, and nodes for every MOB
id O in D*, called O-nodes. If and only if Vt € QID(I)[D(O,t) E D*(O,t)],
there is an edge (I, O) in G, where C denotes spatial containment. m

Example 14.7

Table 14.8 provides an incorrect 2-anonymity release of the MOD D (Ta-
ble 14.7) based on space generalization. For example, all objects in AS(O;) =
{O1,03} are generalized to the smallest common region [(2, 1), (2, 2)] at
time ¢;. Figure 14.6 presents the corresponding attack graph. An adversary
can re-identify both I; and I; because there exist perfect matchings in the
attack graph, that is, there are some O-nodes with degree 1. As a result, the
adversary knows that O; must map to I; and O4 must map to I.

In some subtler cases, the adversary can iteratively identify and prune edges
that can not be part of any perfect matching to discover perfect matchings,
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Table 14.7: Raw moving
object database D

MOB t1 to

01 (2,1) | (6,2)
02 (3,6) (6,6)
O4 (4,5) (8,4)

Table 14.8: A 2-anonymity scheme of D
that is not safe

MOB tl t2

Ol [(27 1)7 (272)] (672)

02 [(37 5)7 (47 6)] [(67 6)7 (77 7)]
03 [<2a 1)7 <2a 2)] [<6a 6)? <7a 7)]
04 [(375)7 (476)] (874)

and finally intrude a record owner’s privacy. To avoid privacy attacks based on
the notion of attack graph, MOB k-anonymity is formally defined as follows.

DEFINITION 14.13 MOB k-anonymity [263] Let D be a MOD
and D* its anonymized version. Given a set of QIDs for the MOBs in D,
let G be the attack graph with respect to D and D*. D* satisfies the MOB
k-anonymity provided that: (i) every I-node in G has at least degree k; and
(ii) G is symmetric, i.e. whenever G contains an edge (I;, O;), it also contains
the edge (I;,0;). »

For MOB k-anonymity, the information loss is measured as the reduction
in the probability of accurately determining the position of an object over all
timestamps between the raw MOD D and its anonymous version D*. It is
formally defined as follows:

IL(D,D*) =Y > (1 -1/area(D*(0i,1))),

i=1 j=i

where area(D*(O;,t;)) denotes the area of the region D*(O;, t;). For example,
in Table 14.8, area(D*(O1,t1)) is 2 while area(D*(O2,1t2)) is 4.

14.4.2 Anonymization Algorithm for MOB k-Anonymity

The MOB anonymization algorithm in [263] is composed of two steps: iden-
tifying anonymization groups and generalizing the groups to common regions
according to the QIDs while achieving minimal information loss.
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FIGURE 14.6: Attack graph of the unsafe 2-anonymity scheme of D in
Table 14.8

14.4.2.1 Identifying anonymization groups

The first step of identifying anonymization groups is for each MOB O in a
given MOD D to find the top-K MOBs whose aggregate distance (e.g., sum of
distance, average distance) from O over all QID(O) timestamps is minimun.
The distance between two MOBs is measured by Hilbert index, which makes
sure that points close in the multi-dimensional space remain close in the linear
Hilbert ordering. Given a MOB O, its Hilbert index at time ¢ is denoted as
H(O). The list of MOBs and their Hilbert index at time ¢ is referred as the
Hilbert list of MOBs at time t, denoted by L;. The distance between two
MOBs, O and O’, can therefore be approximated as |H,(O) — H,(O")|. Thus,
the problem of finding the top-K MOBs with closest distance from O is to find
the top-K MOBs with the lowest overall score, 3, corp(oy [Hi(O) — Hi(O')].
Yarovoy et al. [263] adapt the Threshold Algorithm (TA) [85] by keeping the
list L; in ascending order of the Hilbert index. For every MOB O, we consider
the top-K MOBs as its anonymization group AG(O).

However, simply generalizing a moving object O with the MOBs in AG(O)
with respect to QID(O) may not ensure k-anonymity. Two algorithms, ex-
treme union and symmetric anonymization, are consequently proposed to ex-
pand the anonymization groups in order to ensure k-anonymity. In extreme
union, for every moving object O in D, we take the union of the QIDs of all
MOBs in AG(O) and then generalize all of them with respect to every time
point in this union in the later stage (Chapter 14.4.2.2). For example, in the
running example, AG(O;) with respect to QID(O;) = {t1} is {O1,03}. It is
insufficient to guarantee k-anonymity by generalizing only on ¢;. In contrast,
the extreme union will generalize O; and Os together with respect to the
union of their QIDs, {t1,¢2}. Since the distance between a moving object O
and another object O’ € AG(O) for the timestamps outside QID(O) but in
the timestamp union (e.g. O1 and Os at time ¢3) could be arbitrarily far, the
generalizations over such timestamps could incur significant information loss.
Table 14.9 shows the timestamp unions of the MOBs in Table 14.7.

An alternative approach, symmetric anonymization, keeps the timestamps
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Table 14.9: Extreme union over Table 14.7

MOB | QID | AG(O) | Timestamp Union
(o} 1 01,03 | t1,t2

02 to 02,03 | t2

Os ta 02,03 | t2

O, 31 02,04 | t1,t2

Table 14.10: Symmetric
anonymization over Table 14.7

MOB QID HS(O)
01 i 01,03

0o 12 02,03,04
O3 12 01,02,03
Oy tq 0,04

of an object O w.r.t. which all objects in AG(O) are generalized together fixed
to QID(O) only, instead of the union of the QIDs of all objects in AG(O). To
enforce symmetry, it controls the composition of the anonymization groups.
Thus, the anonymization groups generated by symmetric anonymization may
not be the same as the ones produced by top-K MOBs, and will be referred as
hiding sets (HS) for clarity. To compute the HS of a moving object O;, first, we
add O; itself to HS(O;); second, if the number of distinct objects in HS(O;) is
less than k, we add the top-(k—|HS(O;)|) MOBs to HS(O;); third, to enforce
the symmetry for each object O; in HS(O;), where ¢ # j, we further add O;
to HS(Oy). For example, assume we consider 2-anonymity in the MOD given
in Table 14.7. HS(Oy) is initialized to {O1}, then {O3} as the top-1 MOBs
with respect to O at time ¢; is added to HS(O1). To enforce symmetry, Oy
is added to HS(O3). Now both O; and O3 have 2 objects in their hiding sets,
so we can move to Oz and set HS(O2) = {O2,03}. Due to the symmetry
requirement, we need to add Oy to HS(Os) in spite of the fact that there
are already 2 objects in HS(O3). Finally, we compute HS(O4) = {O2, 04},
which requires to add O4 to HS(O2) due to the symmetry. Table 14.10 shows
the hiding sets of the MOBs in Table 14.7.

14.4.2.2 Generalizing anonymization groups

The last step of the anonymization algorithm is to perform the space gen-
eralization over either all objects in AG(O) together with respect to every
timestamp in its timestamp union for every object O in the MOD D (for
extreme union) or all objects in HS(O) together with respect to QID(O) for
every object O in D (for symmetric anonymization). The main challenge is
that overlapping anonymization groups can force us to revisit earlier general-
izations [263]. The concept of equivalence class is consequently proposed.
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Table 14.11: Equivalence classes produced by extreme union and
symmetric union over Table 14.7

t | £C; by Extreme Union | FC; by Symmetric Anonymization

tl {01703}7{02704} {01703}7{02704}
t2 {02703} {0170270?”04}

DEFINITION 14.14  Equivalence class Two MOBs O; and O; are equiv-

alent at time ¢, denoted by O; =; O;, if and only if:
1. t € QID(0;) and O; € 5(0;), or
2. t € QID(0;) and O; € S(0;), or

3. there exists a MOB Oy, # O;,0; such that O; =; Oy and Oy, = O;,
where S(O) is either AG(O) or HS(O) [263]. m

For all O; € D, let S(O;) be the anonymization group or the hiding set of
0;, let T(O;) be the set of timestamps associated with S(0;), and let QIT
be the union of all timestamps in D. The equivalence classes with respect
to time ¢, denoted by EC}, can be computed by going through every MOB
0O; with t € QID(0O;) and then adding S(O;) to the collection EC;. When
a new S(0;) is added to ECY, if it has overlaps with an existing set in ECY,
we merge it with the existing set, otherwise, we make a new set. Table 14.11
presents the equivalence classes produced by both extreme union and sym-
metric anonymization on Table 14.7. Achieving a k-anonymous D* of D is,
therefore, for each time t € QIT, for each equivalence class set C € EC; to
generalize the position of every MOB O € C' to the smallest common region
in order to minimize the information loss.

Though symmetric anonymization overcomes the aforementioned disadvan-
tage of extreme union, from Table 14.7 we can observe that its resulting equiv-
alence classes could be larger than those produced by extreme union, depend-
ing on the relative positions of the moving objects. Typically, the smaller
the classes, the less general the regions. Thus, theoretically extreme union
and symmetric anonymization are incomparable in terms of the information
loss they result in [263]. However, the experimental results in [263] indicate
that symmetric anonymization outperforms extreme union in terms of both
efficiency and efficacy.

14.4.2.3 Discussion

An underlying assumption of the MOB k-anonymity is that the data pub-
lisher must be aware of the QI Ds of all moving objects in the MOD to publish,
that is, all adversaries’ possible background knowledge. However, the paper
left the acquisition of QIDs for a data publisher unsolved. An attacker may
obtain a moving object’s QIDs from various sources beyond the data pub-
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lisher’s perception. Recall that usually data publishers are not experts, so the
fact may hinder the application of the MOB k-anonymity.

The approach proposed in [263] is limited to protection from only identity
linkage attacks (k-anonymity). However, in the context of MODs, there are
also requirements of protecting attribute linkage attacks (see Chapter 14.1.2),
thus the approach is not applicable to such scenarios. In addition, space gen-
eralization based on coordinates sometimes may impose additional efforts on
the data publisher. For example, a transit company needs preprocessing to
get all station’s coordinates.

14.5 Other Spatio-Temporal Anonymization Methods

Different solutions have been proposed to protect the privacy of location-
based service (LBS) users. The anonymity of a user in LBS is achieved by
mixing the user’s identity and request with other users. Example of such tech-
niques are Mix Zones [31], cloaking [106], and location-based k-anonymity [98].
The objective of these techniques is very different from the problem studied
in this chapter. First, their goal is to anonymize an individual user’s identity
resulting from a set of LBS requests, but the problem studied in this chapter
is to anonymize a high-dimensional trajectory data. Second, they deal with
small dynamic groups of users at a time, but we anonymize a large static
data set. Hence, their problem is very different from spatio-temporal data
publishing studied in this chapter.

The privacy model proposed by Terrovitis and Mamoulis [219] assumes that
different adversaries have different background knowledge about the trajec-
tories, and thus their objective is to prevent adversaries from gaining any
further information from the published data. They consider the locations in
a trajectory as sensitive information and assume that the data holder has the
background knowledge of all the adversaries. In reality, such information is
difficult to obtain.

Papadimitriou et al. [185] study the privacy issue on publishing time series
data and examined the trade-offs between time series compressibility and par-
tial information hiding and their fundamental implications on how one should
introduce uncertainty about individual values by perturbing them. The study
found that by making the perturbation “similar” to the original data, we can
both preserve the structure of the data better, while simultaneously making
breaches harder. However, as data become more compressible, a fraction of the
uncertainty can be removed if true values are leaked, revealing how they were
perturbed. Malin and Airoldi [163] study the privacy threats in location-based
data in the environment of hospitals.
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14.6 Summary

We have studied the problem of anonymizing high-dimensional trajectory
data and shown that traditional QID-based anonymization methods, such
as k-anonymity and its variants, are not suitable for anonymizing trajecto-
ries, due to the curse of high dimensionality. Applying k-anonymity on high-
dimensional data would result in a high utility loss. To overcome the problem,
we discuss the LK C-privacy model [91, 170], where privacy is ensured by as-
suming that an adversary has limited background knowledge about the victim.
We have also presented an efficient algorithm for achieving L K C-privacy with
the goal of preserving maximal frequent sequences, which serves as the basis
of many data mining tasks on sequential data.

The Never Walk Alone (NWA) [1] algorithm studied in Chapter 14.3 em-
ploys clustering and space translation to achieve the anonymity. The drawback
of the clustering phase in NWA is that it may have to restart a number of
times in order to find a suitable solution. Another drawback is that the space
translation produces untruthful data. In contrast, the L K C-privacy approach
presented in Chapter 14.2 does not require continuous data and employs sup-
pression for anonymity. Thus, the LK C-privacy approach preserves the data
truthfulness and maximal frequent sequences with true support counts. Pre-
serving data truthfulness is important if the data will be examined by human
users for the purposes of auditing and data interpretation. Moreover, NWA
does not address the privacy threats caused by attribute linkages. Yarovoy et
al. [263] consider time as a QID attribute. However, there is no fixed set of
time for all moving objects, or rather each trajectory has its own set of times
as its QID. It is unclear how the data holder can determine the QID attributes
for each trajectory.



Chapter 15

Anonymizing Social Networks

15.1 Introduction

In 2001, Enron Corporation filed for bankruptcy. With the related legal in-
vestigation in the accounting fraud and corruption, the Federal Energy Regu-
latory Commission has made public a large set of email messages concerning
the corporation. This data set is known as the Enron corpus, and contains
over 600,000 messages that belong to 158 users, mostly senior management
of Enron. After removing duplicates, there are about 200,000 messages. This
data set is valuable for researchers interested in how emails are used in an or-
ganization and better understanding of organization structure. If we represent
each user as a node, and create an edge between two nodes when there exists
sufficient email correspondence between the two corresponding individuals,
then we arrive at a data graph, or a social network.

It is natural that when such data are made public, the involved individuals
will be concerned about the disclosure of their personal information, which
should be kept private. This data set is quoted in [111] as a motivating example
for the study of privacy in social networks. Such a set of data can be visualized
as a graph as shown in Figure 15.1.

It is observed that social networks are abundant on the Internet, corporate
correspondences, networks of collaborating authors, etc. Social networking
websites such as Friendster, MySpace, Facebook, Cyworld, and others have
become very popular in recent years. The information in social networks be-
comes an important data source, and sometimes it is necessary or beneficial
to release such data to the public. Other than the above utilities of the Enron
email data set, there can be other kinds of utility for social network data.
Kumar et al. [147] study the structure and evolution of the network. Getor
and Diehl [100] prepare a survey on link mining for data sets that resemble
social networks. McCallum et al. [167] consider topic and role discovery in
social networks.

To this date, not many data sets have been made public because of the
associated privacy issues. It is obvious that no employee of Enron would like
his/her identity in the data set to be disclosed since it means that their mes-
sages to others, which were written only for the recipient(s), would be dis-
closed. Anonymous web browsing is an example where people want to conceal

291
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any behavior that is deemed unethical or disapproved by society. It becomes
important to ensure that any published data about the social networks would
not violate individual privacy. In this chapter we examine the related issues
and explore some of the existing mechanisms.

15.1.1 Data Models

Different models have been proposed with respect to social network data
that are published or made available to the public. The following are some of
such models

e A simple model: The data set is given by a graph G = (V, E), where V is
a set of nodes, and FE is a set of edges. Each node is an entity of interest.
In social networks, each node typically corresponds to an individual or
a group of individuals. An edge represents a relationship between two
individuals.

e Labeled nodes: In [271], the graph G = (V, E) is enriched with labels,
let L be a set of labels, there is a mapping function £ : V — L which
assigns to each node in V' a label from L. For example, the occupation of
an individual can be used as a label. Figure 15.2 shows a social network
with labeled nodes, where A, B, C' are the labels.

e Nodes with attached attributes or data: Each node typically is an indi-
vidual, so each node is associated with some personal information. In
the Enron data set, the emails sent or received by an individual can be
seen as attached data to the corresponding node.

o Sensitive edges: The data set is a multi-graph G = (V, Ey, Eo, ..., Es),
where V is a set of nodes, and F; are sets of edges. Es correspond to the
sensitive relationships. There can be different sets of edges where each
set belongs to a particular class. Edges can also be labeled with more
information about the relationships.

15.1.2 Attack Models

The anonymization problem of social networks depends on the background
knowledge of the adversary and the model of privacy attack, which can be
the identification of individuals in the network or the relationship among
individuals.

Li et al. [153] suggest that there are two types of privacy attacks on social
networks:

e identity disclosure: With a social network, this is to link the nodes in the
anonymized network to real world individuals or entities. Conceptually,
the system may choose a value of k, and make sure that in the released
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FIGURE 15.1: A social network

social network G’, which can be different from the original data G, no
node v in G’ can be re-identified with a probability of greater than 1/k,
based on the assumption of the adversary’s background knowledge. Most
existing mechanisms would try to ensure that at least k different nodes
are similar in terms of the adversary’s knowledge about the target of
attack, so that each of the k£ nodes has the same chance of being the
culprit.

o attribute disclosure: With a social network, each node represents an
individual or a group of individuals. There can be attributes attached
to each node, such as personal or group information. Sometimes, such
information can be considered sensitive or private to some individuals.

With graph data, another type of attack is identified:

e [ink re-identification: Links or edges in a social network can represent
sensitive relationships. In cases where the identity of nodes are released
to some user groups, some individuals may not want their relationship
to some other individuals to be discovered.

15.1.2.1 Passive Attacks

The terms passive versus active attacks are used to differentiate between
cases where the adversary only observes the data and does not tamper with
the data versus the cases where the adversary may change the data for attack
purposes.
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Basis of Attacks: Background Knowledge of Adversary

In a social network, an individual may be identified based on the attribute
values and also the relationships with other individuals [235]. Before we in-
troduce the kinds of adversary’s knowledge, we need some definitions.

DEFINITION 15.1 Induced subgraph Given a graph G = (V, E), with
node set V' and edge set E, let S be a set of nodes in V', the induced subgraph
of G on S is G(S) = (S, E’), where E' = {(u,v)|(u,v) e E;u e V,veV}.m

DEFINITION 15.2 1-neighborhood Given a graph, G = (V, E), if
(u,v) € E, then v and v are neighbors to each other. Suppose u € V, let
W be the set of neighbors of w. The I-neighborhood of u € V' is the induced
subgraph of G on {ufUW. =

‘H;: Neighborhood Knowledge

Hay et al. [111, 110] consider a class of queries, of increasing power, which
report on the local structure of the graph a target node. For example, Hay et
al. [111, 110] define that

e Hy(z) returns the label of a node z (in case of unlabeled social network,
the nodes are not labeled, Ho(z) = ¢),

e Hi(x) returns the degree of node x, and
e Hy(z) returns the multiset of the degrees of each neighbor of x.

For example, consider the node x1 in Figure 15.2.

Ho(l‘l) =A
H1($1) =2
Ha(21) = {2,4}

The queries can be defined iteratively, where H;(z) could return the mul-
tiset of values which are the result of evaluating H;_1(x) on the set of nodes
adjacent to x. For example,

o Hi(x) ={Hi—1(#1), Hi—1(22), ..., Hi—1(2m) },

where z1,..., 2z, are the neighbors of x.
Subgraph Knowledge

Hay et al. [110] suggest that other than H;, a stronger and more realistic
class of query is subgraph query, which asserts the existence of a subgraph
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FIGURE 15.2: A social network

around the target node. The descriptive power of the query is counted by the
number of edges in the subgraph. Note that this class of adversary’s knowl-
edge covers also the 1-neighborhood since the 1-neighborhood is one possible
subgraph around the target node.

In Figure 15.2, if the adversary knows that the target individual is at the
center of a star with 4 neighbors, then the adversary can pinpoint the node
2 in the network as the target, since x2 is the only node with 4 neighbors.
However, if the adversary knows only that the target is labeled A and has a
neighbor with label A, then nodes z1, 22, and x3 all qualify as the possible
node for the target, and the adversary cannot succeed in a sure attack.

Zhou and Lei [271] consider an adversary’s background knowledge of the
1-neighborhood of the target node. Backstrom et al. [25] describe a type of
passive attack, in which a small group of colluding social network users dis-
cover their nodes in the anonymized network by utilizing the knowledge of
the network structure around them. This attack is feasible, but only works on
a small scale because the colluding users can only compromise the privacy of
some of the users who are already their friends.

For link re-identification, Korolova et al. [143] assume that each user can
have the knowledge of the neighborhood within a distance ¢, and with this
knowledge, an adversary can try to bribe other nodes in the network to gain
information about a significant portion of the links in the network.

Recently, Zou et al. [272] propose a k-automorphism model that can prevent
any types of structural attacks. The intuition of the method is described as fol-
lows: Assume that there are k — 1 automorphic functions F,, for 1 <a < k-1
in the published network, and for each vertex v, Fy, (v) # Fu,(v) (az # ay).
Thus, for each vertex v in published network, there are always k — 1 other
symmetric vertices. This means that there are no structural differences be-
tween v and each of its k — 1 symmetric vertices. Thus, the adversary cannot
distinguish v from the other £ — 1 symmetric vertices using any structural in-
formation. Therefore, the target victim cannot be identified with a probability
higher than 1/k.
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15.1.2.2 Active Attacks

Backstrom et al. [25] study the problem of active attacks aiming for identity
disclosure and node re-identification with an assumption that the adversary
has the ability to modify the network prior to it release. The general idea is
first choose an arbitrary set of target victim users from the social network,
create a small number of new “sybil” social network user accounts and link
these new accounts with target victims, and create a pattern of links among
the new accounts such that they can be uniquely identified in the anonymized
social network structure. The attack involves creating O(logN) number of
sybil accounts, where N is the total number of users in the social network.

Alternatively, an adversary would find or create k£ nodes in the network
namely {z1,...,zr}, and next create the edge (z;, ;) independently with
probability 1/2. This produces a random graph H. The graph will be included
into the given social network forming a graph G. The first requirement of
H is such that there is no other subgraph S in G that is isomorphic to H
(meaning that H can result from S by relabeling the nodes). In this way H
can be uniquely identified in G. The second requirement of H is that there
is no automorphism, which is an isomorphism from H to itself. With H, the
adversary can link a target node w to a subset of nodes N in H so that once
H is located, w is also located. From results in random graph theory [34],
the chance of achieving the two requirements above is very high by using the
random graph generation method.

Fortunately, active attacks are not practical for large scale privacy attacks
due to three limitations suggested by Narayanan and Shmatikov [175].

1. Online social networks only: Active attacks are restricted to online so-
cial networks only because the adversary has to create a large number
fake user accounts in the social network before its release. Many social
network providers, such as Facebook, ensure that each social network
account associates with at least one e-mail account, making creation of
a large number of fake social network user accounts difficult.

2. Sybil accounts have low in-degree: The adversary may be able to plant
the fake user accounts and link the fake accounts to the target victims.
Yet, the adversary has little control to increase the in-degree of the fake
user accounts. As a result, sybil accounts may be identified with low in-
degree. Yu et al. [266] develop some techniques to identify sybil attacks
from social networks.

3. Mutual links: Many online social network providers consider two users
are linked only if both users mutually agree to be “friends.” For example,
in Facebook, user A initiates a friendship with user B. The friendship is
established only if B confirms the relationship. Due to the restriction of
mutual links, the target victims will not agree to link back to the fake
accounts, so the links are not established, thereby do not appear in the
released network.
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Note that since the attack is based on a subgraph in the network, it can
be defended in the same manner as for passive attack based on subgraph
knowledge.

15.1.3 Utility of the Published Data

For privacy-preserving data publishing, the other side of the coin is the
utility of the published data. Most of the utility measures for social networks
are related to graph properties. The following are some examples.

e Properties of interest in network data: Hay et al. [110] use the
following properties for the utility measure.

— Degree: distribution of degrees of all nodes in the graph

— Path length: distribution of the lengths of the shortest paths be-
tween 500 randomly sampled pairs of nodes in the network

— Transitivity: distributions of the size of the connected component
that a node belongs to.

— Network resilience: number of nodes in the largest connected com-
ponent of the graph as nodes are removed.

— Infectiousness: proportion of nodes infected by a hypothetical dis-
ease, first randomly pick a node for the first infection, and then
spread the disease with a specific rate.

e Aggregate query answering: Korolova et al. [143] consider queries
of the following form: for two labels l1, [, what is the average distance
from a node with label [; to its nearest node with label [5.

15.2 General Privacy-Preserving Strategies

In order to avoid privacy breach, there can be different strategies. The
first method, the most widely adopted approach is to publish an anonymized
network. In other cases, such as Facebook, the data holder may choose to allow
only subgraphs to be known to individual users. For example, the system may
let each user see one level of the neighbors of the node of the user. Another
approach is not to release the network, but to return an approximate answer
to any query that is issued about the network.

To preserve privacy, we can release a data set that deviates from the original
data set, but which still contains useful information for different usages of
the data. In this Chapter 15.2, we introduce two different approaches: graph
modification and equivalence class of nodes.
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FIGURE 15.3: Anonymization by addition and deletion of edges

15.2.1 Graph Modification

One way to anonymize a social network is to modify the network by adding
or deleting nodes, adding or deleting edges, and changing (generalize) the
labels of nodes. The network is release only after sufficient changes have been
made to satisfy certain privacy criteria.

In Figure 15.3, we show an anonymization of Figure 15.1 by adding and
deleting edges only. The aim is to resist attacks from adversaries with knowl-
edge of the 1-neighborhood of some target node. We would like the result-
ing graph to be 2-anonymous with respect to this neighborhood knowledge,
meaning that for any l-neighborhood N, there are at least 2 nodes with a
1-neighborhood of N. In the anonymization, one edge (22, x3) is added, while
4 edges are deleted, namely, (22, 24), (22, x5), (22, 26), (x3, 26). If the target
victim node is x1, which is labeled A and is connected to 2 neighbors also la-
beled A, we find that in the resulting graph in Figure 15.3, there are 3 nodes,
namely z1, £2, and x3 that have the same 1-neighborhood. If the target node
is 27, with label B, we find that both 27 and 26 have the same 1-neighborhood.
The graph is 2-anonymous with respect to attacks by 1-neighborhood.

15.2.2 Equivalence Classes of Nodes

With this method, clusters of nodes are formed and selected linkages can
be hidden, or the linkages among nodes for two different clusters can be “gen-
eralized” to links among the clusters instead. The clusters form equivalence
classes of nodes, so that within any cluster or equivalence class, the nodes are
indistinguishable from each other. For example, Figure 15.4 shows three clus-
ters formed from Figure 15.2. An earlier work that proposes such a method
is [270], the aim of this work is to protect the re-identification of the links.
Some links are classified as sensitive and they need to be protected.
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FIGURE 15.4: Anonymization by clustering nodes

15.3 Anonymization Methods for Social Networks

In the rest of the chapter, we will describe in more details some of the
existing anonymization methods.

15.3.1 Edge Insertion and Label Generalization

Zhou and Pei [271] consider the l-neighborhood of a node as a possi-
ble adversary’s background knowledge. The aim of protection is node re-
identification. Here graph changes by edge addition and change of labels are
allowed in the algorithm.

There are two main steps in the anonymization:

1. Find the 1-neighborhood of each node in the network.

2. Group the nodes by similarity and modify the neighborhoods of the
nodes with the goal of having at least k£ nodes with the same 1-
neighborhood in the anonymized graph.

The second step in the above faces the difficult problem of graph isomor-
phism, which is one of a very small number of known problems in NP with
uncertainty in NP-completeness, that is, there is no known polynomial algo-
rithm and also no known proof of NP-completeness. Hence only exponential
time algorithms are available. To solve this problem, Zhou and Pei [271] use
a minimum depth-first-search coding for each node, which is adopted from
[257].
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15.3.2 Clustering Nodes for k-Anonymity

Hay et al. [110] propose to form clusters or equivalent classes of nodes.
Clusters of nodes of size at least k are formed. The aim is to make the nodes
inside each cluster indistinguishable, so that node re-identification is not pos-
sible. This method can resist attacks based on different kinds of adversary’s
knowledge, including H;, neighboring subgraph, and 1-neighborhood.

In the terminology of [110], each cluster of nodes is called a supernode, and
an edge between two supernodes is called a superedge. The superedges include
self-loops and are labeled with a non-negative weight, which indicates the
density of edges within and across supernodes.

In the graph G = (V, E) in Figure 15.4, there are 3 supernodes, S1, 52, S3.
That is, V = {51,52,53}. The superedge between S1 and S2 has a weight
of 2, since there are 2 edges in the original graph of Figure 15.1 linking nodes
in S1 to nodes in S2. We say that d(S1,52) = 2. Similarly the weight of the
superedge between S1 and S3, given by d(S1,.53), is 2. Each node can have a
self-loop also. The self-loop of S1 has a weight of 2 since within S1, there are
two edges in the original graph among the nodes in S1. In a similar manner,
the self-loops for S2 and S3 are given weights of d(S2,53) = 1.

Since each supernode in Figure 15.4 has at least 2 nodes in the original
graph, and the nodes inside each supernode are indistinguishable from each
other, this graph is 2-anonymous.

In order to preserve the utility, we examine the likelihood of recovering
the original graph given the anonymized graph. If the graph G = (V, E) in
Figure 15.4 is published instead of that in Figure 15.1, there will be multiple
possibilities of the original graphs, each being a possible world. Let W(G) be
the set of all possible worlds. If we assume equal probability for all possible
worlds, then the probability of the original graph, which is one of the possible
worlds, is given by 1/|W(G)|. This probability should be high in order to
achieve high utility of the published data.

We can formulate |W(G)| by
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wen=T (“yxx ) JL () 050

Xev X,Yev

For example, in Figure 15.4,
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The algorithm in [110] follows a simulated annealing method to search for a
good solution. Starting with a graph with a single supernode which contains
all the original nodes, the algorithm repeatedly tries to find alternatives by
splitting a supernode, merging two supernodes, or moving an original node
from one supernode to another. If the above probability of 1/|W(G)| increases
with the newly form alternative, the alternative is accepted to be explored.
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The termination criterion is that fewer than 10% of the current alternatives
are accepted.

15.3.3 Supergraph Generation

In the model proposed by Liu and Terzi [159], the adversary attack is based
on the degree of the target node, that is the knowledge of the adversary is
given by H;. Both edge insertion and deletion are allowed to modify the given
graph to form an anonymized graph. Given a graph G = (V, E), if we sort
the degrees of each node, then the sorted list is a degree sequence for G.
Anonymization is based on the construction of a graph that follows a given
degree sequence.

DEFINITION 15.3 k-anonymous graph The degree sequence d of a
graph G is k-anonymous if and only if each degree value in d appears at least
k times in d. m

For example d = {5,5,3,3,2,2,2} is 2-anonymous, but not 3-anonymous.
The degree sequence of Figure 15.1 is given by {4,3,2,2,2,1}, which is not
k-anonymous for any k greater than 1.

In Figure 15.1, if we delete edge (22,26) and add edge (23,x7), then the
degree sequence of the modified graph becomes {3,3,2,2,2,2,2} and it is 2-
anonymous. Obviously, if an adversary only knows the degree of a target node,
then there are always at least 2 nodes that have the same degree and they are
not distinguishable.

To preserve the utility of the published data, we measure the distance of a
degree sequence d from the original sequence d by the following;:

Li(d—d) = Y 1dG) - dG) (15.2)
where d(i) refers to the i-th value in the list d.

There are two main steps in the anonymization:

1. Given a degree sequence d, construct a new degree sequence d that is
k-anonymous and such that the degree-anonymization cost

Da(d,d) = Ly(d — d) (15.3)
is minimized.

2. With d, try to construct a graph G(V, E) such that dp = dand ENE =
E.

A dynamic programming algorithm is proposed for Step 1, which solves
the problem in polynomial time. For the second step an algorithm Construct-
Graph is taken from [80] as the backbone, this algorithm constructs a graph
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given a degree sequence. After Step 1, we obtain a k-anonymous degree se-
quence d. This is input to the algorithm ConstructGraph. If the resulting
graph G1 is a supergraph of GG, then we can return G1. However, Step 2
may fail so that some edges in G are not in G1. The degree sequence can
be relaxed to increase the values of some degrees while maintaining the k-
anonymity. ConstructGraph is run again on the new sequence. If it is still not
successful, we consider deletion of edges that violate the supergraph condition.

15.3.4 Randomized Social Networks

In the report [111], an anonymization technique based on random edge
deletions and insertions is proposed, which can resist H; attacks. However,
the utility degradation from this anonymization is steep.

Ying and Wu [264] quantify the relationship between the amount of ran-
domization and the protection against link re-identification. A randomization
strategy is proposed that preserves the spectral properties of the graph. With
this method, the utility of the published graph is enhanced.

15.3.5 Releasing Subgraphs to Users: Link Recovery

Korolova et al. [143] consider link privacy: the goal of an adversary is to
find a fraction of the links in the network. The links represent the relationship
among users and it is deemed sensitive. Here the graph is not released, and
the owner of the network would like to hide the links. Each user can see its
neighborhood in the network. An adversary can bribe a number of users to
gain information about other linkages.

For example on Facebook, each user can determine if they allow their friends
to see his/her friend list, and also maybe allow the friends of friends to see it.

15.3.6 Not Releasing the Network

Rastogi et al. [192] propose a different scenario that does not publish the
social network. Instead, from the system point of view, the input is the net-
work I, and a query ¢ on I, the output is an approximation A(I,q) of the
query answer ¢(I). I is considered a relation database containing tuples. The
adversary can revise the estimate of any tuple in I given the values of A(I,q).
The aim is to resist the attack where the estimate becomes close to the actual
values.
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15.4 Data Sets

In almost all existing works, the proposed ideas or methods have been tested
on some data sets. It is important to show that the methods work on some
real data. Here we list some of the data sets that have been used.

In [111], three sets of real data are tested:

1. Hep-Th: data from the arXiv archive and the Stanford Linear Acceler-
ator Center SPRIES-HEP database. It describes papers and authors in
theoretical high-energy physics.

2. Enron: we have introduced this data set in the beginning of the chapter.

3. Net-trace: this data set is derived from an IP-level network trace col-
lected at a major university, with 201 internal address from a single
campus and over 400 external addresses. Another set Net-common is
derived from Net-trace with only the internal nodes.

Zhou and Pei [271] adopt a data set from the KDD cup 2003 on co-
authorship for a set of papers in high-energy physics. In the co-authorship
graphs, each node is an author and an edge between two authors represents
a co-authorship for one or more papers. There are over 57,000 nodes and
120,000 edges in the graph, with an average degree of about 4. There is in
fact no privacy issue with the above data set but it is a real social network
data set.

In addition to real data sets, synthetic data from R-MAT graph model has
been used which follows the power law [86] on node degree distribution and
the small-world characteristics [224].

15.5 Summary

We have seen a number of techniques for privacy-preserving publishing of
social networks in this chapter. The research is still at an early stage and
there are different issues to be investigated in the future; we list some such
directions in the following.

e Enhancing the utility of the published social networks

With known methods, privacy is achieved with trade off of the utility
of the published data. Since the problems are typically very hard and
an optimal solution is not possible, there is the possibility to find better
solutions that involve less information loss.
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e Multiple releases for updated social networks

Social networks typically evolve continuously and quickly, so that they
keep changing each day, with new nodes added, new edges added, or
old edges deleted. It would be interesting to consider how privacy may
be breached and how it can be protected when we release the social
networks more than once.

Privacy preservation on attributes of individuals

So far most of the existing works assume a simple network model, where
there are no attributes attached to a node. It is interesting to consider
the case where additional attributes are attached and when such at-
tributes can be sensitive.

k-anonymity is not sufficient to protect privacy in some cases. Suppose a
published network is k-anonymous so that there are k nodes that can be
the target node. However, if all of these k nodes have the same sensitive
property, then the adversary is still successful in breaching the privacy.

In conclusion, privacy-preserving publishing of social networks remains a
challenging problem, since graph problems are typically difficult and there
can be many different ways of adversary attacks. It is an important problem
and it will be interesting to look for new solutions to the open issues.



Chapter 16

Sanitizing Textual Data

16.1 Introduction

All works studied in previous chapters focused on anonymizing the struc-
tural relational and transaction data. What about the sensitive, person-
specific information in unstructural text documents?

Sanitization of text documents involves removing sensitive information and
potential linking information that can associate an individual person to the
sensitive information. Documents have to be sanitized for a variety of reasons.
For example, government agencies have to remove the sensitive information
and/or person-specific identifiable information from some classified documents
before making them available to the public so that the secrecy and privacy
are protected. Hospitals may need to sanitize some sensitive information in
patients’ medical reports before sharing them with other healthcare agencies,
such as government health department, drugs companies, and research insti-
tutes.

To guarantee that the privacy and secrecy requirements are met, the process
of document sanitization is still performed manually in most of the government
agencies and healthcare institutes. Automatic sanitization is still a research
area in its infancy stage. An earlier work called Scrub [214] finds and replaces
identifying information of individuals, identifying information such as name,
location, and medical terms with other terms of similar type, such as fake
names and locations. In this chapter, we focus on some recently developed
text sanitization techniques in privacy protection. We can broadly categorize
the literature in text sanitization into two categories:

1. Association with structural or semi-structural data. Textual data itself
is unstructural, but some of its information could be associated with
some structural or semi-structural data, such as, a relational database.
The database could keep track of a set of individuals or entities. The
general idea of document sanitization in this scenario is to remove some
terms in documents so that the adversary cannot link a document to an
entity in the structural data. This problem is studied in Chapter 16.2.

2. No association with structural or semi-structural data. This family of
sanitization methods rely on information extraction tool to identify en-
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tities, such as names, phone number, and diseases, etc., from the textual
documents. Then, suppress or generalize of the terms if they contain
identifiable or sensitive information. The reliability of the sanitization
and quality of the resulting documents pretty much depend on the qual-
ity of the information extraction modules. This problem is studied in
Chapter 16.3.

16.2 ERASE

Chakaravarthy et al. [44] introduce the FRASE system to sanitize docu-
ments with the goal of minimal distortion. External knowledge is required to
associate a database of entities with their context. FRASE prevents disclo-
sure of protected entities by removing certain terms of their context so that
no protected entity can be inferred from remaining document text. K -safety,
in the same spirit of k-anonymity, is thereafter defined. A set of terms is K-
safe if its intersection with every protected entity contains at least K entities.
Then the proposed problem is to find the maximum cardinality subset of a
document satisfying K-safety. Chakaravarthy et al. [44] propose and evaluate
both a global optimal algorithm and an efficient greedy algorithm to achieve
K-safety.

16.2.1 Sanitization Problem for Documents

Chakaravarthy et al. [44] model public knowledge as a database of entities,
denoted by FE, such as persons, products, and diseases, etc. Each entity e € F
is associated with a set of terms, which forms the context of e, denoted by
C(e). For instance, the context of a person entity could include his/her name,
age, city of birth, and job. The database can be in the form of structured
relational data or unstructured textual data, for example, an employee list
in a company or Wikipedia [44]. The database can be composed manually or
extracted automatically using an information extraction method [15].

16.2.2 Privacy Model: K-Safety

The data holder specifies some entities P C E to be protected. These are the
entities that need to be protected against identity linkage. For instance, in a
database of diseases, certain diseases, e.g., AIDS, can be marked as protected.
Let D be the input document to be sanitized. A document contains a set of
terms. We assume that D contains only the terms that are in the context of
some protected entity, i.e., D C UeepC(e). Any other terms in D but not in
UeerC(e) has no effect on privacy, therefore, need not be removed.
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Suppose a document D contains a set of terms S that appears in the context
of some protected entity e. S C D and S C C(e) for some e € P. The adversary
may use S to link the protected entity e with the document D. The likelihood
of a successful identity linkage depends on how many entities £ — e contain .S
in their context as well. Chakaravarthy et al.’s privacy model [44] assumes that
the adversary has no other external knowledge on the target victim, therefore,
the adversary cannot confirm whether or not the linkage is correct as long as
the number of entities in £ — e containing S in their context is large. The
intuition of K-safety is to ensure that there are at least K entities in F, other
than e, that can link to D, where K > 0 is an anonymity threshold specified
by the data holder.

DEFINITION 16.1 K-safety Let E be a set of entities. Let T C D be
a set of terms. Let P C F be a set of protected entities. For a protected entity
€ € P, let Ar(€) be the number of entities other than & that contain C(e)NT
in their context. The set of terms T is K -safe with respect to a protected
entity € if Ar(e) > K. This set T is said to be K-safe if T is K-safe with
respect to every protected entity [44]. m

16.2.3 Problem Statement

The sanitization problem for K-safety can be defined as follows.

DEFINITION 16.2 Sanitization problem for K-safety Given a set
of entities E, where each entity e € E is associated with a set of terms C(e),
a set of protected entities P € F, a document D, and an anonymity threshold
K, the sanitization problem for K -safety is to find the maximum cardinality
subset of D that is K-safe. m

The following example, borrowed from [44], illustrates this problem.

Example 16.1

Consider a set of entities F = {é1, €2, €3, e4, €5, €6, €7}, where P = {e1, &3, €3}
is a set of protected entities. Suppose their contexts contain the following
terms:

= {tzu tb7 tc}
= {tba td, tE? tf}

ta,tb,td,tg}
tcatmtf}

tbvtg}
ta,tb,tc,te,tf,tg}

=1
=1
=1
=1
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Suppose the data holder wants to achieve 2-safety on a document D =
{ta,ty,ta, te, ty, tg}. The subset Th = {ts,tq,t4} is not 2-safe because C(e2) N
Ty = tp,tq is contained in the context of only one other entity €1, and there-
fore, A, (82) = 1.

The subset Ty = {tq,te, tr, tq} is 2-safe because:

€1 : C(e1) N Ty =t, contained in é3, eq, €7
€ : C(e2) N Ty = t.,ty contained in es, ey
€3 : C(e3) N Ty = tq,ty contained in ey, e7

Since Ar,(&;) > 2 for every &; € P, Ty is 2-safe with respect to P. It can be
verified that for any T, D T is not 2-safe, so T5 is an optimal solution. ]

16.2.4 Sanitization Algorithms for K-Safety

Chakaravarthy et al. [44] present several sanitization algorithms to achieve
K-safety on a given document D.

16.2.4.1 Levelwise Algorithm

A set of terms T; is K-safe only if all its subsets are K-safe. The Levelwise
algorithm [44] exploits this Apriori-like property to enumerate the maximal
K-safe subsets of the given document, and find the maximum cardinality
K-safe subset. The algorithm proceeds in a level-wise manner starting with
safe subsets of cardinality » = 1. In each iteration, the algorithm generates
the candidate subsets of cardinality » + 1 based on the K-safe subsets of
cardinality r generated by the previous iteration. A subset of cardinality r+ 1
is a candidate only if all it subsets of cardinality r are K-safe. The algorithm
terminates when none of the subsets considered are K-safe, or after r = |D|.
The idea of the algorithm is very similar to the Apriori algorithm for mining
frequent itemsets [18].

This Apriori-like approach computes all the maximal K -safe subsets, which
is in fact unnecessary. For document sanitization, it is sufficient to find one
of the maximal safe subsets. Thus, Chapter 16.2.4.2 presents a more efficient
branch and bound strategy, called Best-First [44], that systematically prunes
many unnecessary choices and converges on an optimal solution quickly.

16.2.4.2 Best-First Algorithm

Consider a document D with n terms {¢,...,t,}. We can build a binary
tree of depth n such that each level represents a term and each root-to-leaf
represents a subset of D. The Best-First algorithm [44] performs a pruned-
search over this binary tree by expanding the most promising branch in each
iteration.

For ¢ < 5, we use D[i’j] to denote the substring t;t;41 ...¢;. The Best-First
algorithm maintains a collection C of K-safe subsets of the prefixes of D, where
each element in C is a pair (s,r) such that s C Dy, and r < n. A K-safe
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set T C D extends (s,r) if T N Dyy ) = s. For each pair (s,7), the algorithm
keeps track of the upperbound value UB({s,r)) on the largest K-safe subset
extending (s,r). The Best-First iteratively extend the maximum cardinality
C by choosing terms with the maximum UB((s, r}).

16.2.4.3 Greedy Algorithm

Chakaravarthy et al. [44] also suggest a greedy algorithm, called Fast-BTop,
to accommodate the requirement of sanitizing a large document. The heuristic
aims to ensure that only a minimum number of terms are removed from the
document, but may occasionally remove a larger number of terms. The general
idea is to iteratively delete terms from the document until it is K-safe. In each
iteration, the algorithm selects a term for deletion by estimating the amount
of progress made with respect to the K-safety goal. Refer to [44] for different
heuristic functions.

16.3 Health Information DE-identification (HIDE)

Gardner and Xiong [97] introduce a prototype system, called Health In-
formation DE-identification (HIDE), for removing the personal identifying
information from healthcare-related text documents. We first discuss their
employed privacy models, followed by the framework of HIDE.

16.3.1 De-Identification Models

According to the Health Insurance Portability and Accountability Act
(HIPAA) in the United States, identifiable information refers to data explic-
itly linked to a particular individual and the data that enables individual
identification. These notions correspond to the notion of explicit identifiers,
such as names and SSN, and the notion of quasi-identifiers, such as age, gen-
der, and postal code. The framework of HIDE [97] considers three types of
de-identification models:

o Full de-identification. According to HIPAA, information is consid-
ered fully de-identified if all the explicit (direct) identifiers and quasi-
(indirect-) identifiers have been removed. Enforcing full de-identification
often renders the data useless for most data mining tasks.

e Partial de-identification. According to HIPAA, information is considered
partially de-identified if all the explicit (direct) identifiers have been re-
moved. This model yields better data utility in the resulting anonymized
data.
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Attribute Attribute Identifier Anonymization —
Extraction Linking View Y

FIGURE 16.1: Health Information DE-identification (HIDE)

o Statistical de-identification. This type of de-identification model guaran-
tees the probability of identifying an individual from the released infor-
mation to be under certain probability while also aiming at preserving
as much information as possible for some data mining tasks.

16.3.2 The HIDE Framework

Figure 16.1 shows an overview of the HIDE framework in three phases:
attribute extraction, attribute linking, and anonymization.

Phase 1: Attribute extraction. Use a statistical learning approach for ex-
tracting and sensitive information from the text documents. To facilitate
the overall attribute extraction process, HIDE uses an iterative process
for classifying and retagging which allows the construction of a large
training data set. Specifically, this attribute extraction process consists
of four steps:

e User tags the identifying information and sensitive attributes for
building the training data set.

e Extract features from text documents for the classifier.

e (lassify terms extracted from the text documents into multiple
classes. Different types of identifiers and sensitive attributes could
be classified into different classes.

e Feed the classified data back to the tagging step for retagging and
corrections.

Phase 2: Attribute linking. Link the extracted identifying and sensitive
information to an individual. This step is challenging for text docu-
ments because, in most cases, there does not exist a unique identifier
that can link all the relevant information to an individual. To improve
the accuracy of linking relevant information to an individual, HIDE
employs an iterative two-step solution involving attribute linking and
attribute extraction. The extraction component (Phase 1) extracts rel-
evant attributes from the text and links or adds them to the existing
or new entities in the database. The linking component (Phase 2) links
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and merges the records based on the extracted attributes using existing
record linkage techniques [107].

Phase 3 Anonymization. After the first two phases, HIDE has trans-
formed the unstructured textual data into a structured identifier view,
which facilitates the application of privacy models for relational data,
such as k-anonymity [201, 217] and ¢-diversity, in this final phase. Refer
to Chapter 2 for details of different privacy models. Finally, the in-
formation in text documents is sanitized according to the anonymized
identifier view.

16.4 Summary

Text sanitization is a challenging problem due to its unstructural nature.
In this chapter, we have studied two major categories of text sanitization
methods.

The first model assumes that the information in text documents is associ-
ated with some entities in a structural or semi-structural database. The goal
is to sanitize some terms in the documents so that the adversary can no longer
accurately associate the documents to any entities in the associated database.

The second model does not associate with a database, and depends on some
information extraction methods to retrieve entities from the text documents,
and sanitize them accordingly. The second category has a more general ap-
plication because it does not assume the presence of an associated database,
but the sanitization reliability relies on the quality of the information extrac-
tion tools. In contrast, the sanitization reliability is more reliable in the first
model because the privacy guarantee can be measured based on number of
associated entities in a well-structured database.

There are several other sanitization methods illustrated on real-life med-
ical text documents. Kokkinakis and Thurin [141] implement a system for
automatically anonymizing hospital discharge letters by identifying and de-
liberately removing all phrases from clinical text that satisfy some pre-defined
types of sensitive entities. The identification phase is achieved by collaborating
with an underlying generic Named Entity Recognition (NER) system. Saygin
et al. [205] describe implicit and explicit privacy threats in text document
repositories.



Chapter 17

Other Privacy-Preserving
Techniques and Future Trends

17.1 Interactive Query Model

Closely related, but orthogonal to PPDP, is the extensive literature on in-
ference control in multilevel secure databases [87, 125]. Attribute linkages are
identified and eliminated either at the database design phase [104, 115, 116],
by modifying the schemes and meta-data, or during the interactive query
time [59, 223], by restricting and modifying queries. These techniques, which
focus on query database answering, are not readily applicable to PPDP, where
the data holder may not have sophisticated database management knowl-
edge, or does not want to provide an interface for database query. A data
holder, such as a hospital, has no intention to be a database server. An-
swering database queries is not part of its normal business. Therefore, query
answering is quite different from the PPDP scenarios studied in this book.
Here, we briefly discuss the interactive query model.

In the interactive query model, the user can submit a sequence of queries
based on previously received query results. Although this query model could
improve the satisfaction of the data recipients’ information needs [77], the
dynamic nature of queries makes the returned results even more vulnerable
to attacks, as illustrated in the following example. Refer to [32, 33, 76, 62] for
more privacy-preserving techniques on the interactive query model.

Example 17.1
Suppose that an examination center allows a data miner to access its database,
Table 17.1, for research purposes. The attribute Score is sensitive. An adver-
sary wants to identify the Score of a target victim, Bob, who is a student from
the computer science department at Illinois. The adversary can first submit
the query

Q1: COUNT (University = Illinois) AND (Department = C'S)
Since the count is 1, the adversary can determine Bob’s Score = 96 by the
following query

Q2: AVERAGE Score WHERE (University = Illinois) AND (Department
= C89).
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Table 17.1:

Interactive query model:

ID | University | Department | Score
1 Concordia CS 92
2 | Simon Fraser EE 91
3 Concordia CS 97
4 Illinois CS 96

Table 17.2: Interactive query model:
after adding one new record

ID | University | Department | Score
1 Concordia CS 92
2 | Simon Fraser EE 91
3 Concordia CS 97
4 Illinois CS 96
5 Illinois CS 99

Suppose that the data holder has inserted a new record as shown in Ta-
ble 17.2. Now, the adversary tries to identify another victim by re-submitting
query Q1. Since the answer is 2, the adversary knows another student from
the computer science department of Illinois took this exam and can then sub-
mit query

Q@3: SUM Score WHERE (University = Illinois) AND (Department =
CS)

Benefiting from this update, the adversary can learn the Score of the new
record by calculating Q3 — Q2 = 99.

Query auditing has a long history in statistical disclosure control. It can be
broadly divided into two categories: online auditing and offline auditing.

Online Auditing: The objective of online query auditing is to detect and
deny queries that violate privacy requirements. Miklau and Suciu [169] mea-
sure information disclosure of a view set V, with respect to a secret view
S. S is secure if publishing V' does not alter the probability of inferring the
answer to S. Deutsch and Papakonstantinou [60] study whether a new view
disclosed more information than the existing views with respect to a secret
view. To put the data publishing scenario considered in this book into their
terms, superficially the anonymous release can be considered as the “view”
and the underlying data can be considered as the “secret query.” However, the
two problems have two major differences: First, the anonymous release is ob-
tained by anonymization operations, not by conjunctive queries as in [60, 169].
Second, the publishing scenarios employ anonymity as the privacy measure,
whereas [169] and [60] adopt the perfect secrecy for the security measure. The
released data satisfies perfect secrecy if the probability that the adversary
finds the original data after observing the anonymous data is the same as
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the probability or difficulty of getting the original data before observing the
anonymous data.

Kenthapadi et al. [137] propose another privacy model called stimulatable
auditing for an interactive query model. If the adversary has access to all
previous query results, the method denies the new query if it leaks any infor-
mation beyond what the adversary has already known. Although this “detect
and deny” approach is practical, Kenthapadi et al. [137] point out that the
denials themselves may implicitly disclose sensitive information, making the
privacy protection problem even more complicated. This motivates the offline
query auditing.

Offline Auditing: In offline query auditing [82], the data recipients submit
their queries and receive their results. The auditor checks if a privacy re-
quirement has been violated after the queries have been executed. The data
recipients have no access to the audit results and, therefore, the audit results
do not trigger extra privacy threats as in the online mode. The objective of
offline query audition is to check for compliance of privacy requirement, not
to prevent the adversaries from accessing the sensitive information.

17.2 Privacy Threats Caused by Data Mining Results

The release of data mining results or patterns could pose privacy threats.
There are two broad research directions in this family.

The first direction is to anonymize the data so that sensitive data mining
patterns cannot be generated. Aggarwal et al. [7] point out that simply sup-
pressing the sensitive values chosen by individual record owners is insufficient
because an adversary can use association rules learnt from the data to esti-
mate the suppressed values. They proposed a heuristic algorithm to suppress
a minimal set of values to combat such attacks. Vassilios et al. [233] propose
algorithms for hiding sensitive association rules in a transaction database. The
general idea is to hide one rule at a time by either decreasing its support or its
confidence, achieved by removing items from transactions. Rules satisfying a
specified minimum support and minimum confidence are removed. However,
in the notion of anonymity, a rule applying to a small group of individuals
(i.e., low support) presents a more serious threat because record owners from
a small group are more identifiable.

The second direction is to directly anonymize the data mining patterns.
Atzori et al. [22] propose the insightful suggestion that if the goal is to re-
lease data mining results, such as frequent patterns, then it is sufficient to
anonymize the patterns rather than the data. Their study suggested that
anonymizing the patterns yields much better information utility than per-
forming data mining on anonymous data. This opens up a new research di-
rection for privacy-preserving patterns publishing. Kantarcioglu et al. [135]
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Table 17.3: 3-anonymous patient data

Job Sex Age | Disease
Professional | Male || ) | Hepatitis
Professional | Male | | ) | Hepatitis
Professional | Male | | ) HIV
Artist Female | [30-35) Flu

[30-35)
[30-35)
[30-35)

Artist Female HIV
Artist Female HIV
Artist Female HIV

define an evaluation method to measure the loss of privacy due to releasing
data mining results.

The classifier attack is a variant type of attribute linkage attack. Suppose
a data miner has released a classifier, not the data, that models a sensitive at-
tribute. An adversary can make use of the classifier to infer sensitive values of
individuals. This scenario presents a dilemma between privacy protection and
data mining because the target attribute to be modeled is also the sensitive
attribute to be protected. A naive solution is to suppress sensitive classifica-
tion rules, but it may defeat the data mining goal. Another possible solution
is to build a classifier from the anonymous data that has bounded confidence
or breach probability on some selected sensitive values. Alternatively, record
owners may specify some guarding nodes on their own records, as discussed
in Chapter 2.2.

Example 17.2
A data recipient has built a classifier on the target attribute Disease from
Table 17.3, and then released two classification rules:

(Professional, Male, [35-40)) — Hepatitis
(Artist, Female, [30-35)) — HIV

The adversary can use these rules to infer that Emily, who is a female artist
at age 30, has HIV. Even though the data recipient has not released any data,
the adversary can confidently make such inference if the adversary knows the
qid of Emily who comes from the same population where the classifier was
built from. Even though the inference may not be correct, the adversary can
make decision based on such inference.

17.3 Privacy-Preserving Distributed Data Mining

Privacy-preserving distributed data mining (PPDDM) is a cousin research
topic of privacy-preserving data publishing (PPDP). PPDDM assumes a sce-
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nario that multiple data holders want to collaboratively perform data min-
ing on the union of their data without revealing their sensitive information.
PPDDM usually employs cryptographic solutions. Although the ultimate goal
of both PPDDM and PPDP is to perform data mining, they have very dif-
ferent assumptions on data ownerships, attack models, privacy models, and
solutions, so PPDDM is out of the scope of this book. We refer readers inter-
ested in PPDDM to these works [50, 132, 187, 227, 248].

17.4 Future Directions

Information sharing has become part of the routine activities of many
individuals, companies, organizations, and government agencies. Privacy-
preserving data publishing is a promising approach to information sharing,
while preserving individual privacy and protecting sensitive information. In
this book, we reviewed the recent developments in the field. The general objec-
tive is to transform the original data into some anonymous form to prevent in-
ferring its record owners’ sensitive information. We presented our views on the
difference between privacy-preserving data publishing and privacy-preserving
data mining, and a list of desirable properties of a privacy-preserving data pub-
lishing method. We reviewed and compared existing methods in terms of pri-
vacy models, anonymization operations, information metrics, and anonymiza-
tion algorithms. Most of these approaches assumed a single release from a
single publisher, and thus only protected the data up to the first release or the
first recipient. We also reviewed several works on more challenging publishing
scenarios, including multiple release publishing, sequential release publishing,
continuous data publishing, and collaborative data publishing.

Privacy protection is a complex social issue, which involves policy making,
technology, psychology, and politics. Privacy protection research in computer
science can provide only technical solutions to the problem. Successful appli-
cation of privacy-preserving technology will rely on the cooperation of policy
makers in governments and decision makers in companies and organizations.
Unfortunately, while the deployment of privacy-threatening technology, such
as RFID and social networks, grows quickly, the implementation of privacy-
preserving technology in real-life applications is very limited. As the gap be-
comes larger, we foresee that the number of incidents and the scope of privacy
breach will increase in the near future. Below, we identify a few potential re-
search directions in privacy preservation, together with some desirable prop-
erties that could facilitate the general public, decision makers, and systems
engineers to adopt privacy-preserving technology.

e Privacy-preserving tools for individuals. Most previous privacy-
preserving techniques were proposed for data holders, but individual
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record owners should also have the rights and responsibilities to protect
their own private information. There is an urgent need for personalized
privacy-preserving tools, such as privacy-preserving web browser and
minimal information disclosure protocol for e-commerce activities. It is
important that the privacy-preserving notions and tools developed are
intuitive for novice users. Xiao and Tao’s work [250] on “Personalized
Privacy Preservation” provides a good start, but little work has been
conducted on this direction.

Privacy protection in emerging technologies. Emerging technologies, like
location-based services [23, 114, 265], RFID [240], bioinformatics, and
mashup web applications, enhance our quality of life. These new tech-
nologies allow corporations and individuals to have access to previously
unavailable information and knowledge; however, they also bring up
many new privacy issues. Nowadays, once a new technology has been
adopted by a small community, it can become very popular in a short
period of time. A typical example is the social network application Face-
book. Since its deployment in 2004, it has acquired 70 million active
users. Due to the massive number of users, the harm could be extensive
if the new technology is misused. One research direction is to customize
existing privacy-preserving models for emerging technologies.

Incorporating privacy protection in engineering process. The issue of pri-
vacy protection is often considered after the deployment of a new tech-
nology. Typical examples are the deployments of mobile devices with
location-based services [1, 23, 114, 265], sensor networks, and social net-
works. Preferably, the privacy issue should be considered as a primary
requirement in the engineering process of developing new technology.
This involves formal specification of privacy requirements and formal
verification tools to prove the correctness of a privacy-preserving sys-
tem.

Finally, we emphasize that privacy-preserving technology solves only one
side of the problem. It is equally important to identify and overcome the non-
technical difficulties faced by decision makers when they deploy a privacy-
preserving technology. Their typical concerns include the degradation of
data/service quality, loss of valuable information, increased costs, and in-
creased complexity. We believe that cross-disciplinary research is the key to
remove these obstacles, and urge computer scientists in the privacy protection
field to conduct cross-disciplinary research with social scientists in sociology,
psychology, and public policy studies. Having a better understanding of the
privacy problem from different perspectives can help realize successful appli-
cations of privacy-preserving technology.
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