
Weighted Distributed Systems and Their Logics

Benedikt Bollig1 and Ingmar Meinecke2

1 LSV, CNRS UMR 8643 & ENS de Cachan
61 Av. du Président Wilson, F-94235 Cachan Cedex, France

bollig@lsv.ens-cachan.fr
2 Institut für Informatik, Universität Leipzig

Johannisgasse 26, D-04103 Leipzig, Germany
meinecke@informatik.uni-leipzig.de

Abstract. We provide a model of weighted distributed systems and give a logical
characterization thereof. Distributed systems are represented as weighted asyn-
chronous cellular automata. Running over directed acyclic graphs, Mazurkiewicz
traces, or (lossy) message sequence charts, they allow for modeling several com-
munication paradigms in a unifying framework, among them probabilistic shared-
variable and probabilistic lossy-channel systems. We show that any such system
can be described by a weighted existential MSO formula and, vice versa, any
formula gives rise to a weighted asynchronous cellular automaton.

1 Introduction

Classical automata theory has become an indispensable tool in many modern areas of
computer science, supporting, for example, programming languages and specification
and verification techniques. In some applications, automata need to cope with quantita-
tive phenomena. Then, taking a transition in an automaton is accompanied by measuring
its cost or weight. For example, a system might provide a counter tracking the number of
occurrences of a given pattern; or its behavior might depend on probability laws so that
the outcome of a transition is generally uncertain and depends on a probability distri-
bution. Actually, automata with weights enjoy manifold applications in numerous areas
such as speech recognition [18], probabilistic systems [12,1], and image compression
[4].

Formally, the behavior of a weighted automaton is no longer characterized by the
pure existence of an accepting run. Rather, a weighted automaton comes up with a
formal power series assigning to any possible execution sequence a value from a semi-
ring. More precisely, the values collected along an automaton execution are multiplied,
whereas nondeterminism is resolved by summation therewith generalizing the two op-
erations of the two-valued Boolean algebra, cf. [13].

For a long time, the correspondence of automata and logic has been a captivating
research direction in computer science. The probably most famous result goes back to
Büchi and Elgot, who discovered a precise correspondence between finite automata and
the logical formalism of monadic second-order (MSO) formulas [3,11]. In particular,
any system description formalized in the MSO language comes up with an implementa-
tion in terms of a finite automaton. Concerning weighted automata, most results estab-
lish Kleene-like theorems stating that a formal power series is described by a weighted

S. Artemov and A. Nerode (Eds.): LFCS 2007, LNCS 4514, pp. 54–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Weighted Distributed Systems and Their Logics 55

automaton iff it is rational [21,6,15]. A logical characterization of weighted automata
has been achieved only recently: Droste and Gastin opened a new research direction by
providing a weighted MSO logic to define formal power series over words [7]. Their
achievements have been extended, among others, to automata on infinite words [9],
trees [10], pictures [16], and traces [17].

In this paper, we deal with a model for weighted distributed systems that unifies
many communication paradigms such as shared-memory systems, (lossy) channel sys-
tems, etc. It is constituted by asynchronous cellular automata (ACAs) [8] running on
directed acyclic graphs (dags) without auto-concurrency. Unlike finite automata, which
process their input words in a sequential fashion, ACAs are appropriate to concurrent
executions. Accordingly, the assignment of weights does not depend on the order in
which independent events are executed. ACAs have already been equipped with weights
by Kuske to recognize formal power series over traces [15]. Generalizing results by
Ochmański [19] and Droste and Gastin [6], he showed that a series is regular iff it is
recognized by some weighted ACA. Actually, we provide an even more general model
subsuming Kuske’s automata. Running over dags rather than traces, our weighted ACA
can cope with many common domains for concurrency, not only traces but also message
sequence charts which play a prominent role in telecommunication. As we will dis-
cuss in the course of this paper, the latter domain allows an embedding of probabilistic
lossy-channel systems. Our main result states that weighted ACAs recognize precisely
the formal power series that are definable in an existential fragment of a weighted MSO
logic over dags. This result cannot be obtained by a translation of the word setting as
it was done for traces [17]. On the other hand, a lot of technical difficulties arise in
our setting compared to this of words. Especially, we have to prove an unambiguity re-
sult for first-order definable languages before establishing the main theorem. For words
such an unambiguity result is for free since deterministic devices suffice to recognize
all regular languages. Moreover, the construction of a weighted formula from a given
weighted asynchronous cellular automaton is much more tricky than for words.

The paper is structured as follows: in Section 2, we introduce our notion of a dag over
a distributed alphabet. Hereby, a distributed alphabet constitutes the system architecture
by assigning to any process its supply of actions. Section 3 introduces ACAs first in
their classical, then in their weighted form. The behavior of a weighted ACA will be
described in terms of a formal power series over (a subset of) the class of dags. Having
introduced weighted MSO logic over dags in Section 4, Sections 5 and 6 derive our
main result, the precise correspondence between weighted ACAs and the existential
fragment of weighted MSO logic.

2 Dags over Distributed Alphabets

We fix a nonempty finite set Ag of agents, a distributed alphabet ˜Σ, which is a tuple
(Σi)i∈Ag of (not necessarily disjoint) alphabets Σi, and an alphabet C. Elements from
Σi are understood to be actions that are performed by agent i. Let Σ =

⋃

i∈Ag Σi

denote the set of all the actions. The actions will label the nodes of a graph, which
we will later refer to as events. Elements from C label edges of a graph to provide
a kind of control information. For example, they might reflect the type of a message

56 B. Bollig and I. Meinecke

represented by an edge between communicating events. A (directed) graph over (Σ, C)
is a structure (V, {��}�∈C, λ) where V is its finite set of nodes, �� ⊆ V ×V are disjoint
binary relations on V , and λ : V → Σ is the labeling function. We call � :=

⋃

�∈C ��

the edge relation and set ≤ = �∗ and < = �+. For u, v ∈ V , we define the cover
relation u � v of ≤ by u < v and, for any w ∈ V , u < w ≤ v implies w = v. A
directed acyclic graph (dag) over (Σ, C) is a graph (V, {��}�∈C , λ) over (Σ, C) such
that � is irreflexive and ≤ is a partial order. The set of all those dags is denoted by
���(Σ, C). For a ∈ Σ, we put loc(a) := {i ∈ Ag | a ∈ Σi}. Then, a and b are
independent, writing a I

�Σ b, if loc(a) ∩ loc(b) = Ø. Otherwise, we say a and b are
dependent, writing a D

�Σ b.
We now introduce the models representing the behavior of a system of communicat-

ing agents. In doing so, we combine and extend the models from [8,14,2].

Definition 2.1. A (˜Σ, C)-dag is a dag (V, {��}�∈C , λ) ∈ ���(Σ, C) where

– for any i ∈ Ag , λ−1(Σi) is totally ordered by ≤ and
– for any � ∈ C and (u, v), (u′, v′) ∈ �� with λ(u)D

�Σλ(u′) and λ(v)D
�Σλ(v′), we

have u ≤ u′ iff v ≤ v′.

The set of all (˜Σ, C)-dags is denoted by ���(˜Σ, C).

The first condition reflects that a single agent is considered to operate sequentially. Es-
pecially, there is no auto-concurrency. The second condition ensures a FIFO architec-
ture of communicating systems. Messages (u, v) and (u′, v′) of the same type between
the same agents are received in the same order as they have been sent. Because of the
FIFO-architecture and the absence of auto-concurrency, we conclude that, in a (˜Σ, C)-
dag (V, {��}�∈C , λ), for any u ∈ V , � ∈ C, and a ∈ Σ, there is at most one vertex
v ∈ V such that both u �� v (or v �� u) and λ(v) = a.1 If C is a singleton, we actually
deal with structures (V, �, λ) and we speak of ˜Σ-dags.

The automaton model as introduced in the next section monitors for every node
u ∈ V of a (˜Σ, C)-dag (V, {��}�∈C, λ) the direct neighborhood of u. Therefore, we
introduce the following abbreviations: For u ∈ V , we denote by Read(u) := {(a, �) ∈
Σ × C | ∃v ∈ V : v �� u ∧ λ(v) = a} the read domain of u and, given (a, �) ∈
Read(u), let (a, �)-pred(u) be the unique vertex v such that both v �� u and λ(v) = a.
Similarly, let Write(u) := {(a, �) ∈ Σ × C | ∃v ∈ V : u �� v ∧ λ(v) = a} be the
write domain of u and, for (a, �) ∈ Write(u), (a, �)-succ(u) denote the unique vertex
v such that both u �� v and λ(v) = a. For i ∈ Ag and Vi = {u ∈ V | λ(u) ∈ Σi},
sequential progress of an agent i ∈ Ag is reflected by �i := � ∩ (Vi × Vi) and the
total order ≤i := ≤ ∩ (Vi × Vi) (do not mistake relation �i of agent i for edge relation
�� for � ∈ C). For u ∈ V and i ∈ Ag , u is Σi-maximal if u ∈ Vi and there is no v ∈ Vi

such that u < v. Obviously, there is at most one Σi-maximal vertex.
Dags over distributed alphabets subsume popular domains of concurrency:

Example 2.1 (Mazurkiewicz Traces [5]). We consider distributed systems where an ac-
tion a ∈ Σ is executed simultaneously by any component i ∈ loc(a). The behavior of

1 As a consequence, the underlying graph has bounded degree. This property is essential in
establishing the coincidence between recognizability and logical definability [2].

Weighted Distributed Systems and Their Logics 57

such a “shared-memory” system is described naturally by a set of traces. Commonly,
traces are defined as congruence classes of words or as dependence graphs. In our set-
ting, we model a trace as the union of the Hasse diagrams of the total orders of the
different agents. Moreover, the labeling of an edge between two nodes u and v provides
information about which agents execute u and v consecutively. In detail, a trace over
˜Σ is a dag (V, {��}�∈2Ag , λ) from ���(˜Σ, 2Ag) such that both � =

⋃

i∈Ag �i and,
for any (u, v) ∈ � and � ∈ 2Ag , u �� v iff � = {i ∈ Ag | u �i v} (recall that
�i is the cover relation of ≤i). This modeling of a trace will turn out to be tremen-
dously helpful when simulating shared-memory systems in terms of asynchronous cel-
lular automata, as the edge relation will be used to access, for any event u and any agent
i ∈ loc(λ(u)), the current state of i ∈ Ag right before executing u. A sample trace over
˜Σ = ({a, b, c}, {a, b, d}, {a, b}) (with Ag = {1, 2, 3}) is depicted in Fig. 1(a).

Example 2.2 ((Lossy) Message Sequence Charts). Another communication paradigm
is that of channel systems: several components i ∈ Ag communicate by sending and
receiving messages through channels. So let Ch = (Ag × Ag) \ idAg be the set of
channels. To model the behavior of such a system, we need to fix supplies of send and
receive actions: for i ∈ Ag , let Γi denote {i!j | (i, j) ∈ Ch} ∪ {i?j | (i, j) ∈ Ch}, the
set of (communication) actions of agent i. Action i!j reads as “i sends a message to j”.
Accordingly, j?i is the complementary receive action. Let ˜Γ be the distributed alphabet
(Γi)i∈Ag . A message sequence chart (MSC) over Ag is a ˜Γ -dag (V, �, λ) such that,
for any i ∈ Ag , �i is the cover relation of ≤i, for any (u, v) ∈ � with λ(u) I

�Γ λ(v),
λ(u) = i!j and λ(v) = j?i for some i, j, and, for any u ∈ V , there is v ∈ V satisfying
both λ(u) I

�Γ λ(v) and either u � v or v � u. Observe that, due to the general definition

of a ˜Γ -dag, we deal with a model for FIFO communication. If we do not require a send
event to be followed by a corresponding receive event, we deal with a lossy MSC. More
precisely, the last condition in the definition of an MSC is weakened as follows: for any
v ∈ V with λ(v) a receive action, there is u ∈ V satisfying λ(u) I

�Γ λ(v) and u � v.
Figure 1(b) depicts an MSC over {1, 2}, whereas the structure from Fig. 1(c) is not an
MSC but a lossy MSC.

{1}

{2}

{2}

{1, 3}

{2}

c

a

d

d

b

(a)

1!2

1?2

1!2

2!1

2?1

2?1

(b)

1!2

1!2

1!2

2?1

2?1

(c)

Fig. 1. A trace over ({a, b, c}, {a, b, d}, {a, b}), an MSC over {1, 2}, and a lossy MSC over
{1, 2} that is not an MSC

58 B. Bollig and I. Meinecke

3 Weighted Asynchronous Cellular Automata

First we provide the unweighted model of an asynchronous cellular automaton, similar
to the one proposed in [2]. Actually, we deal with asynchronous cellular automata with
types (ACATs) over (˜Σ, C)-dags, which have limited access to the future. To express
“communication requests”, a type function associates with any action a and any state q
the set of actions that henceforth “communicate” with a, provided executing a results in
state q. Regarding lossy MSCs, for example, we might require an event labeled with a
send action 1!2 to be followed by the suitable receive event, which is then labeled with
the communication action 2?1. For some classes the expressive power of ACAs with
and without types coincide. But in general, omitting the type function severely restricts
the expressive power of ACATs [2].

Definition 3.1. An asynchronous cellular automaton with types (ACAT) over (˜Σ, C) is
a structure A = (Q, Δ, T, F) where

– Q is the nonempty finite set of states,
– Δ ⊆ Trans(�Σ,C)(Q) := (Q ·∪ {−})Σ×C × Σ × Q is the set of transitions,

– T : (Σ × Q) → 2Σ×C is the type function, and
– F ⊆ (Q ·∪ {ı})Ag is the set of global final states.

We often write (q, a, q) ∈ Δ with q ∈ (Q ·∪ {−})Σ×C as q −→ (a, q). Note that
q[(b, �)] = − means that there is no (b, �)-predecessor. Hence, we will sometimes write
q as an element from P(Σ × C × Q). The idea of a run of an asynchronous cellular
automaton A on a (˜Σ, C)-dag D = (V, {��}�∈C , λ) is an additional labeling of the
nodes u ∈ V with states q ∈ Q such that the local neighborhoods match the transitions,
after executing D the system is in a final state, and the requests of the type function are
satisfied.

First, let us consider the following example: A = (Q, Δ, T, F) running on lossy
MSCs over agents {1, 2}, cf. Example 2.2. We put Q = {q0, q1}. Now, the follow-
ing transitions are in Δ: Ø → (1!2, q0), (1!2, q0) → (1!2, q1), (1!2, q1) → (1!2, q0),

q0

q1

q0

q0

q1

1!2

1!2

1!2

2?1

2?1

(1!2, q0) → (2?1, q0), {(1!2, q0), (2?1, q0)} → (2?1, q1),
and {(1!2, q1), (2?1, q0)} → (2?1, q1). Moreover, we put
T (1!2, q0) = {2?1} and F = {(1, q0), (2, q1)}. Then the
picture on the left hand side depicts a successful run of A on
the lossy MSC from Figure 1(c). For every node, the node
itself together with its read domain is covered by a transi-
tion. Furthermore, agent 1 stops in q0 and agent 2 in q1. Last
but not least, every send event 1!2 in state q0 is followed by
a receive event 2?1 as imposed by the type function.

To be precise, let ρ : V → Q. We write (D, ρ) to denote the dag (V, {��}�∈C , (λ, ρ))
over (Σ × Q, C). For (D, ρ), let trans(D,ρ) : V → Trans(�Σ,C)(Q) describe the down-
ward local neighborhood, i.e., for any u ∈ V let trans(D,ρ)(u) = (q, λ(u), ρ(u))
where, for any (b, �) ∈ Σ × C,

q[(b, �)] =
{

− if (b, �)
∈ Read(u),
ρ((b, �)-pred(u)) if (b, �) ∈ Read(u).

Weighted Distributed Systems and Their Logics 59

Moreover, we define final (D,ρ) ∈ (Q ·∪ {ı})Ag by final (D,ρ)[i] = ı for any agent
i ∈ Ag with Vi = Ø. Otherwise, final (D,ρ)[i] = ρ(u) where u is Σi-maximal in V .
Thus, if the system starts in the global state (ı)i∈Ag and executes D, then it ends up in
the global state final (D,ρ). Now a run of A on D is a mapping ρ : V → Q such that,
for any u ∈ V , trans(D,ρ)(u) ∈ Δ. Moreover, ρ is accepting if both final(D,ρ) ∈ F
and, for any u ∈ V , we have T (λ(u), ρ(u)) ⊆ Write(u). The intuition behind the latter
condition is that we require Write(u) to contain at least the communication requests
imposed by the type function of the automaton. The language L(A) is the set of all D

such that there is at least one accepting run of A on D. We call A unambiguous if, for
any (˜Σ, C)-dag D and any two accepting runs ρ, ρ′ of A on D, we have ρ = ρ′.

A set L ⊆ ���(˜Σ, C) is called recognizable if L(A) = L for some ACAT A over
(˜Σ, C). Similarly, we say that L is unambiguously recognizable if L(A) = L for some
unambiguous ACAT A over (˜Σ, C).

A weighted automaton is no longer characterized by the set of accepted executions.
Rather, it assigns to any possible execution a value from a semiring. A semiring is a
structure � = (K, ⊕, ◦, �, �) with two binary operations, addition and multiplication,
and constants � and �, such that (K, ⊕, �) is a commutative monoid, (K, ◦, �) is a
monoid, multiplication distributes over addition, and � ◦ k = k ◦ � for any k ∈ K .
We say � is commutative if the multiplication ◦ is commutative. Sample semirings are
(IN, +, ·, 0, 1), the 2-valued Boolean algebra � = ({�, �}, ∨, ∧, �, �), and the proba-
bilistic semiring � = ([0, 1], max, ·, 0, 1). Throughout this paper, we fix a commutative
semiring � = (K, ⊕, ◦, �, �). Commutativity is needed for a proper definition of au-
tomata behavior and several closure properties.

Definition 3.2. A weighted asynchronous cellular automaton with types (wACAT) over
� and (˜Σ, C) is a structure (Q, μ, T, γ) where

– Q is the nonempty finite set of states,
– μ : Trans(�Σ,C)(Q) → � is the transition weight function,

– T : (Σ × Q) → 2Σ×C is the type function, and
– γ : (Q ·∪ {ı})Ag → � is the final weight function.

In a wACAT, the values of a semiring that are collected along an execution of the au-
tomaton are multiplied, whereas nondeterminism is resolved by summation. The behav-
ior of such an automaton will be a function S : ���(˜Σ, C) → �, also called a formal
power series. The collection of all these functions is denoted by �〈〈���(˜Σ, C)〉〉.

More precisely: let D = (V, {��}�∈C , λ) be a (˜Σ, C)-dag. In the weighted setting,
every mapping ρ : V → Q is referred to as a run. The weight of ρ is the product

weight(D, ρ) :=
(

∏

u∈V

μ(trans(D,ρ)(u))
)

◦ γ(final (D,ρ)) .

We call ρ successful if T (λ(u), ρ(u)) ⊆ Write(u) for any u ∈ V . We thus can assign
to A a formal power series ‖A‖ ∈ �〈〈���(˜Σ, C)〉〉 by

(‖A‖, D) :=
⊕

ρ:V →Q

ρ successful

weight(D, ρ)

60 B. Bollig and I. Meinecke

for any D = (V, {��}�∈C , λ) ∈ ���(˜Σ, C). Note that, in the context of formal power
series, (‖A‖, D) is a common notation for ‖A‖(D).

For L ⊆ ���(˜Σ, C), the characteristic series �L : ���(˜Σ, C) → � is given by
(�L, D) = � if D ∈ L and (�L, D) = � if D
∈ L. We say that S ∈ �〈〈���(˜Σ, C)〉〉 is
recognizable if there is a wACAT A with ‖A‖ = S.

Example 3.1 (Probabilistic Lossy-Channel Systems [20]). A probabilistic lossy-channel
system is a tuple P = ((Qi, δi)i∈Ag , qin , (rij(q))(i,j)∈Ch ,q∈Qi

): with any agent i, we
associate a sequential process, which is composed of a finite state space Qi and a tran-
sition relation δi ⊆ Qi × Γi × Qi. Recall that Γi comprises the set of communication
actions executed by agent i, i.e., actions of the form i!j or i?j with i
= j. We shall
assume δi to be deterministic, i.e., for any q ∈ Qi and σ ∈ Γi, there is at most one
q′ ∈ Qi such that (q, σ, q′) ∈ δi. Moreover, the system is equipped with a global initial
state qin ∈

∏

i∈Ag Qi. There is an unreliable channel in between any two agents i and j
with i
= j, i.e., depending on a state q ∈ Qi in which a message is sent, a channel (i, j)
has a reliability rij(q) ∈ [0, 1]. Thus, the message arrives at agent j with probability
rij(q) and is lost with probability 1 − rij(q).

We will give the probabilistic lossy-channel system P a semantics in terms of a
wACAT AP = (Q, μ, T, γ) over � = ([0, 1], max, ·, 0, 1) and ˜Γ reading lossy MSCs
where Q = (

⋃

i∈Ag Qi) × {success, failure, rec}. Here, we give just the idea of the
construction. Roughly speaking, we shift the reliabilities of the channels to the sequen-
tial processes. Then a state with second component success is assigned to a send event
that succeeds in delivering a message, which is guaranteed by the type function, i.e.,
T maps a pair of the form (i!j, (q, success)) to {j?i} and any other pair to the empty
set. Such a success-state is entered with the probability that the transmission succeeds.
In contrast, a send event that is equipped with a state that carries the attribute failure is
entered with the probability that the transmission fails. Thus, it cannot be followed by
a corresponding receive. Any other event will carry rec to indicate that we deal with a
receive event. As we do not explicitly deal with final states, γ maps any possible final
configuration to 1. For a lossy MSC M, (‖AP ‖, M) ∈ [0, 1] might now be interpreted
to be the probability of acceptance of M by P .

Example 3.2 (Probabilistic Asynchronous Automata [12]). The model of asynchronous
automata [22] over Mazurkiewicz traces represents shared-memory systems rather than
channel systems. In an asynchronous automaton running on traces, any action a has to
be executed simultaneously by any component i ∈ loc(a). Probabilistic asynchronous
automata have been introduced by Jesi, Pighizzini, and Sabadini [12]. In a probabilistic
asynchronous automaton, the outcome of a transition depends on a probability distri-
bution on the set of global states of the system. Formally, a probabilistic asynchronous
automaton over ˜Σ is a structure B = ((Si)i∈Ag , (Pa)a∈Σ , q0, η) where

– for each i ∈ Ag , Si is a nonempty finite set of (i-)local states,
– for each a ∈ Σ, Pa is a mapping Sa × Sa → [0, 1] such that, for any s ∈ Sa,

Pa(s, .) is a probability distribution on Sa where Sa := {s ∈
∏

i∈Ag(Si ·∪ {∗}) |
for any i ∈ Ag, s[i] = ∗ iff i
∈ loc(a)},

– q0 ∈
∏

i∈Ag Si is the global initial state, and
– η :

∏

i∈Ag Si → {0, 1} assigns a weight to any possible final configuration.

Weighted Distributed Systems and Their Logics 61

A probability distribution Pa(s) reflects that, in a global configuration from
∏

i∈Ag Si

that coincides with s with respect to the locations from loc(a), executing an a will alter
at most the local states s of agents from loc(a).

We provide the reader with a rather intuitive semantics of B and refer to [12] for
details. Roughly speaking, B assigns to any trace a probability of acceptance. To de-
termine the acceptance probability of a trace T = (V, {��}�∈2Ag , λ) over ˜Σ (see Ex-
ample 2.1), B will fix an arbitrary linear extension w = (V, ≤′, λ) of T, i.e., ≤′ is a
total-order relation containing ≤. As usual, w can be seen as a word a1 . . . an ∈ Σ∗

with n = |V |. Then, starting in the global initial state q0, B reads w letter by letter and
assigns to any position k = 1, . . . , n a global state qk ∈

∏

i∈Ag Si such that going from
qk−1 to qk changes at most the components from loc(ak), i.e., qk−1[i] = qk[i] for any
i
∈ loc(ak). A step from qk−1 to qk uniquely determines a pair (sk−1, sk) ∈ Sak

×Sak

with sk−1[i] = sk[i] = ∗ for any i
∈ loc(ak) and sk−1[i] = qk−1[i] and sk[i] = qk[i]
for any other i. The sequence q0, . . . , qn might be called a run of B on w. The weight
of this particular run is the product

∏

k=1,...,n Pak
(sk−1, s

′
k) · η(qn) (if n = 0, then

we set its weight to be η(q0)). Summing up the weights of all possible runs of B on w
determines the value PB(T) ∈ [0, 1], the probability that T is accepted by B.

Lemma 3.1. There is a wACAT A = (Q, μ, T, γ) over (≥0, +, ·, 0, 1) and (˜Σ, 2Ag)
such that |Q| ≤ |Σ| × |

∏

i∈Ag Si| and (‖A‖, T) = PB(T) for any trace T.2

Proof. Let Q =
⋃

a∈Σ Sa and T (a, s) = Ø for any (a, s) ∈ Σ × Q.

– Suppose t = {((a1, s1), �1), . . . , ((an, sn), �n)} −→ (a, s) ∈ Trans(�Σ,2Ag)(Q). If

sk ∈ Sak
, k = 1, . . . , n, s ∈ Sa, and the sets �k ∈ 2Ag are pairwise disjoint, then

μ(t) is set to be Pa(s′, s) where s′ is determined as follows: for any i ∈ loc(a),
s′[i] = q0[i] if i
∈

⋃

k=1,...,n �k, and, otherwise, s′[i] = sk[i] for the unique k ∈
{1, . . . , n} with i ∈ �k. Any other transition is mapped to 0.

– Suppose q ∈ (Q ·∪ {ı})Ag . If there is q′ ∈
∏

i∈Ag Si such that, for any i ∈ Ag ,
q[i] = ı implies q′[i] = q0[i] and q[i] ∈ Q implies q′[i] = q[i][i], then set γ(q) to
be η(q′). Otherwise, set γ(q) to be 0. �

Note that (weighted) ACATs relative to traces can actually do without types. By
Lemma 3.1 and Theorem 4.2, we will give, as a byproduct, a weighted formula defining
the behavior of a probabilistic asynchronous automaton B.

We collect some closure properties of recognizable series needed to show that definable
series are recognizable. Let S, S′ ∈ �〈〈���(˜Σ, C)〉〉. Then, we define k ◦ S for k ∈ �,
S + S′, and S � S′ by (k ◦ S, D) = k ◦ (S, D), (S + S′, D) = (S, D) ⊕ (S′, D), and
(S � S′, D) = (S, D) ◦ (S′, D) for any D ∈ ���(˜Σ, C).

Proposition 3.1. Let S, S′ : ���(˜Σ, C) → � be recognizable and k ∈ �. Then, k ◦S,
S + S′, and S � S′ are recognizable.

2 Note that we calculate values in the interval [0, 1] only. But unfortunately, ([0, 1], +, ·, 0, 1) is
not a semiring. Therefore, we turn to (�≥0, +, ·, 0, 1).

62 B. Bollig and I. Meinecke

Now let Σi, Γi be arbitrary alphabets for i ∈ Ag with Σ =
⋃

i∈Ag Σi and Γ =
⋃

i∈Ag Γi. Moreover, let πv : Σ → Γ such that πv(Σi) ⊆ Γi for all i ∈ Ag and

(a, b) ∈ D
�Σ iff (πv(a), πv(b)) ∈ D

�Γ . Then, we call π : ���(˜Σ, C) → ���(˜Γ , C)
with π(D) = (V, {�l}l∈C , πv ◦ λ) for D = (V, {�l}l∈C , λ) ∈ ���(˜Σ, C) a projec-
tion from ���(˜Σ, C) to ���(˜Γ , C). Note that π(D) is indeed a (˜Γ , C)-dag because
of the properties of πv . For S ∈ �〈〈���(˜Σ, C)〉〉, let π(S) be the series defined for
every D′ ∈ ���(˜Γ, C) by (π(S), D′) =

⊕

D∈π−1(D′)(S, D).

Proposition 3.2. Let S ∈ �〈〈���(˜Σ, C)〉〉 and π : ���(˜Σ, C) → ���(˜Γ , C) be a
projection. If S is recognizable, then π(S) ∈ �〈〈���(˜Γ , C)〉〉 is recognizable.

Proposition 3.3. Let L ⊆ ���(˜Σ, C) be an unambiguously recognizable language.
Then, the characteristic series �L over � is recognizable.

4 Weighted Monadic Second-Order Logic

We fix sets Var = {x, y, . . .} of first-order and VAR = {X, Y, . . .} of second-order
variables. Still, we assume the semiring � being commutative.

Definition 4.1. The set wMSO(�, (˜Σ, C)) of weighted monadic second-order (wMSO)
formulas over � and (˜Σ, C) is given by (let k ∈ K , a ∈ Σ, and � ∈ C):

ϕ ::=k | λ(x) = a | ¬(λ(x) = a) | x �� y | ¬(x �� y) | x = y | ¬(x = y) |
x ∈ X | ¬(x ∈ X) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

The formulas k, λ(x) = a, x �� y, x = y and x ∈ X are called atomic. Negation
of k has no reasonable semantics for general semirings. Thus, to obtain an intuitive
interpretation of negation in terms of � and �, it is pushed to the atomic level, omitting k.
In exchange, we have to enrich the syntax by conjunction and universal quantification,
cf. [7]. Let Free(ϕ) be the set of free variables of ϕ and V ∈ 2Var∪VAR a finite set of
variables. We say that D = (V, {��}�∈C , (λ, ρ)) with ρ : V → {0, 1}V is valid if, for
any first-order variable x ∈ V , there is a unique node u ∈ V such that ρ(u)[x] = 1.
In that case, ρ(x) shall refer to u. Given x ∈ V and u ∈ V , we define the update
ρ[x/u] = ρ′ : V → {0, 1}V such that ρ′(u)[x] = 1, ρ′(v)[x] = 0 for any v ∈ V \ {u},
and ρ′(v)[x] = ρ(v)[x] for any v ∈ V and x ∈ V \ {x}. Similarly, ρ[X/V ′] is defined
for X ∈ V and V ′ ⊆ V .

Note that, given a set V of variables, (weighted) ACATs can be extended to run on
dags over (Σ × {0, 1}V, C): We define a distributed alphabet ˜ΣV = (˜ΣV

i)i∈Ag by
˜ΣV

i = Σi × {0, 1}V .

Definition 4.2. Suppose ϕ ∈ wMSO(�, (˜Σ, C)) and suppose V ∈ 2Var∪VAR is finite
with Free(ϕ) ⊆ V . The semantics of ϕ wrt. V is a series �ϕ�V ∈ �〈〈���(˜ΣV , C)〉〉,
given as follows: if D = (V, {��}�∈C , (λ, ρ)) ∈ ���(˜ΣV , C) is not valid, we set
�ϕ�V (D) = �. Otherwise, �ϕ�V (D) is determined inductively as shown in Table 1.

Weighted Distributed Systems and Their Logics 63

Table 1. The semantics of wMSO-formulas

�k�V(D) = k

�λ(x) = a�V(D) =
�
� if λ(ρ(x)) = a
� otherwise

�x �� y�V(D) =
�
� if ρ(x) �� ρ(y)
� otherwise

�x = y�V(D) =
�
� if ρ(x) = ρ(y)
� otherwise

�x ∈ X�V(D) =
�
� if ρ(x) ∈ ρ(X)
� otherwise

�¬ϕ�V(D) =
�
� if �ϕ�V(D) = �

� if �ϕ�V(D) = �

�ϕ1 ∨ ϕ2�V(D) = �ϕ1�V(D) ⊕ �ϕ2�V(D)

�ϕ1 ∧ ϕ2�V(D) = �ϕ1�V(D) ◦ �ϕ2�V(D)

�∃x.ϕ�V(D) =
�
u∈V

�ϕ�V(D[x/u]])

�∀x.ϕ�V(D) =
�
u∈V

�ϕ�V(D[x/u])

�∃X.ϕ�V(D) =
�

V ′⊆V

�ϕ�V(D[X/V ′])

�∀X.ϕ�V(D) =
�

V ′⊆V

�ϕ�V(D[X/V ′])

We abbreviate �ϕ�Free(ϕ) by �ϕ�. For� being the 2-valued Boolean algebra� = {�, �},

wMSO(�, (˜Σ, C)) reduces to the usual MSO logic. Accordingly, L ⊆ ���(˜Σ, C)
is FO-definable if its support is definable in FO(�, (˜Σ, C)), i.e., in the fragment of
wMSO(�, (˜Σ, C)) in which no second-order quantifier occurs. We say that the series
S ∈ �〈〈���(˜Σ, C)〉〉 is an FO-definable step function if S =

⊕n
i=1 ki ◦ �Li for some

n ∈ IN, ki ∈ K , and FO-definable languages Li. We call ϕ ∈ wMSO(�, (˜Σ, C))
restricted if it contains no universal second-order quantification and, for any subformula
∀x.ψ of ϕ, �ψ� is an FO-definable step function. We denote the set of restricted wMSO-
formulas over � and (˜Σ, C) by wRMSO(�, (˜Σ, C)). Finally, let wREMSO(�, (˜Σ, C))
be the existential fragment of wRMSO(�, (˜Σ, C)), which contains the formulas of the
form ∃X1 . . .∃Xn.ϕ where the kernel formula ϕ ∈ wRMSO(�, (˜Σ, C)) contains no
second-order quantifier.3

Even for words, wMSO has to be restricted because, otherwise, definability exceeds
recognizability. While, in their logic, Droste and Gastin [7] deal with recognizable step
functions exploiting the notion of determinism for finite automata, we have to cope with
FO-definable functions in the context of dags. Fortunately, we can show unambiguity of
�L for FO-definable L, which is a cornerstone in establishing a logical characterization
of wACATs.

Theorem 4.1. Any FO-definable set of (˜Σ, C)-dags is unambiguously recognizable.

Proof (Sketch). It is well-known that any first-order formula can be written as the
Boolean combination of statements “the pattern P occurs at least n times”. Here, P
is meant to be the (isomorphism type of the) environment of a node bounded by some
radius R ∈ IN, also called an R-sphere. In [2], an ACAT AR over dags detects the R-
environment of any node. To transform the formula into an equivalent ACAT, we need
to equip AR with a (deterministic) threshold counting procedure to count how often a
sphere is used in a run. However, AR from [2] is not unambiguous due to some coloring

3 It is not trivial to rewrite every wRMSO-formula into a wREMSO-formula. The problem is
that it is not clear if for an FO-definable language L (as used in an FO-definable step function)
the characteristic series �L is again wFO-definable (see also the discussion in Section 6).

64 B. Bollig and I. Meinecke

of spheres that is not unique. Such a coloring can be performed unambiguously so that
any first-order formula can be simulated by an unambiguous ACAT. �

Corollary 4.1. {D ∈ ���(˜ΣV , C) | D valid} is unambiguously recognizable.

Proof. It suffices to show FO-definability. In fact, it is easy to provide an FO formula
requiring that, for any first-order variable x, there is exactly one node whose labeling is
1 in the component that corresponds to x. �

Example 4.1. Consider the ring
 = (
, +, ·, 0, 1) and the class of lossy message se-
quence charts with Ag = {1, 2}, cf. Example 2.2. Then the formula

ϕ = (∃x.λ(x) = 1!2) ∨ (∃y. − 1 ∧ λ(y) = 2?1)

defines a series �ϕ� which maps every lossy MSC M to the number of messages from
process 1 to 2 that are lost.

The remainder of this paper is dedicated to the proof of our main theorem:

Theorem 4.2. Let � be a commutative semiring and S ∈ �〈〈���(˜Σ, C)〉〉. Then, the
following are equivalent:

1. S is recognizable,
2. S is wRMSO-definable, and
3. S is wREMSO-definable.

5 Definable Series Are Recognizable

In this section we show that series defined by restricted formulas are recognizable. Due
to Corollary 4.1 and Propositions 3.1 and 3.3, we can restrict to valid (˜Σ, C)-dags.

By the closure properties of wACATs as stated in Propositions 3.1 and 3.2, we get:

Proposition 5.1. Let ϕ, ψ ∈ wMSO(�, (˜Σ, C)).

(a) If ϕ is atomic or the negation of an atomic formula, then [[ϕ]] is recognizable.
(b) If [[ϕ]] and [[ψ]] are recognizable, then [[ϕ ∨ ψ]] and [[ϕ ∧ ψ]] are recognizable.
(c) If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable.

Proposition 5.2. Let ϕ ∈ wMSO(�, (˜Σ, C)) with [[ϕ]] =
∑n

i=1 ki ◦ �Li an FO-
definable step function. Then, [[∀x.ϕ]] is recognizable.

Proof (Sketch). Let W = free(ϕ) and V = free(∀x.ϕ) = W \ {x}. Furthermore,
[[ϕ]] =

∑n
i=1 ki�Li with ki ∈ � and Li ⊆ ���(˜ΣW , C) FO-definable languages for

i = 1, . . . , n. By Theorem 4.1, every Li is recognized by an unambiguous ACAT. FO-
definable languages are closed under union, complement and intersection. Therefore,
{Li | i = 1, . . . , n} can be assumed being a partition of ���(˜ΣW , C) with ki
= kj

for i
= j. First, let x ∈ W . We put Γ = Σ × {1, . . . , n} and consider (˜ΓV , C)-
dags ˜D = (V, {�l}l∈C , (λ, σ, ρ)) with λ : V → Σ, σ : V → {1, . . . , n}, and ρ :

Weighted Distributed Systems and Their Logics 65

V → {0, 1}V . Let ˜L ⊆ ���(˜ΓV , C) such that, for any ˜D ∈ ˜L, any v ∈ V , and any
i ∈ {1, . . . , n}, we have (σ(v) = i) ⇐⇒ (V, {�l}l∈C , (λ, ρ[x/v])) ∈ Li. Note that
ρ[x/v] : V → {0, 1}W .

Since the Li are FO-definable, one can build an FO-formula ϕ̃ defining ˜L (we omit
the details). As ϕ̃ is an FO-formula, the language ˜L = L(ϕ̃) is recognizable by an
unambiguous ACAT ˜A = (Q, Δ, T, F) by Theorem 4.1. Let t = (q, (a, σt, ρt), q) ∈
Trans(�Γ V ,C)(Q) with a ∈ Σ, σt ∈ {1, . . . , n}, and ρt ∈ {0, 1}V . We transform ˜A =
(Q, Δ, T, F) into a wACAT A = (Q, μ, T, γ) by adding weights as follows: set μ(t)
to be ki if t ∈ Δ and σt = i. Otherwise, μ(t) = �. Moreover, γ(q1, . . . , q|Ag|) = � if

(q1, . . . , q|Ag|) ∈ F , and γ(q1, . . . , q|Ag|) = � otherwise. Since ˜A is unambiguous and

recognizes ˜L, the weight of an extended dag ˜D ∈ ˜L in A is
∏

1≤i≤n k
|σ−1(i)|
i and for

˜D /∈ ˜L we have (‖A‖, ˜D) = �. Now we consider the projection h : ���(˜ΓV , C) →
���(˜ΣV , C) mapping ˜D = (V, {�l}l∈C , (λ, σ, ρ)) to D = (V, {�l}l∈C , (λ, ρ)). Note
that for D ∈ ���(˜ΣV , C) there is a unique ˜D ∈ ˜L with h(˜D) = D. Hence, we have

(

h(‖A‖), D
)

=
⊕

�D∈h−1(D)∩�L

(

‖A‖, ˜D
)

=
(

‖A‖, ˜D
)

=
∏

1≤i≤n

k
|σ−1(i)|
i

=
∏

v∈V

(

[[ϕ]], (D, ρ[x/v])
)

=
(

[[∀x.ϕ]], D
)

.

By Proposition 3.2, [[∀x.ϕ]] is recognizable. The case x /∈ W is derived easily. �

By Propositions 5.1 and 5.2, we have immediately:

Theorem 5.1. Let � be a commutative semiring and let S ∈ �〈〈���(˜Σ, C)〉〉. If S is
wRMSO-definable, then S is also recognizable.

6 Recognizable Series Are Definable

For S ∈ �〈〈���(˜Σ, C)〉〉, let Supp(S) = {D ∈ ���(˜Σ, C) | (S, D)
= �}. We adopt
the notion of an unambiguous FO(�, (˜Σ, C))-formula [7]:

– All atomic formulas apart from k and their negations are unambiguous.
– If ϕ and ψ are unambiguous, then so are ϕ ∧ ψ, ∀x.ϕ, and ∀X.ϕ.
– If ϕ and ψ are unambiguous and Supp(�ϕ�) ∩ Supp(�ψ�) = Ø, then ϕ ∨ ψ is

unambiguous.
– If, finally, ϕ is unambiguous and, for any (D, ρ) with ρ : V → {0, 1}Free(ϕ), there

is at most one vertex u of D such that �ϕ�Free(ϕ)∪{x}(D, ρ[x/u])
= �, then ∃x.ϕ
is unambiguous.

Observe that, though, syntactically, we deal with ordinary MSO formulas, an unam-
biguous formula is primarily a weighted formula, as unambiguousness is defined in
terms of its series. Let ϕ ∈ FO(�, (˜Σ, C)). If ϕ is unambiguous, then �ϕ� is an FO-
definable step function. We know from [7] that certain simple formulas can be made
unambiguous:

66 B. Bollig and I. Meinecke

Proposition 6.1 ([7]). Let ϕ ∈ FO(�, (˜Σ, C)) be a (positive) Boolean combination
of atomic formulas apart from k and their negations. Then, there is an unambiguous
formula ϕ+ ∈ FO(�, (˜Σ, C)) such that �ϕ+� = �ϕ�.

Proof. We proceed by induction and simultaneously define formulas ϕ+ and ϕ−. If
ϕ ∈ FO(�, (Σ, C)) is atomic or the negation of an atomic formula, we set ϕ+ = ϕ and
ϕ− = ¬ϕ (where ¬¬ψ is reduced to ψ). Moreover, we let

– (ϕ ∨ ψ)+ = ϕ+ ∨ (ϕ− ∧ ψ+),
– (ϕ ∨ ψ)− = ϕ− ∧ ψ−,
– (ϕ ∧ ψ)− = ϕ− ∨ (ϕ+ ∧ ψ−), and
– (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+. �

In the context of words and an (E)MSO logic that employs the predicate ≤ instead of the
direct successor relation, Droste and Gastin need to transform an ordinary MSO formula
ϕ into an unambiguous weighted MSO formula ϕ′ such that �ϕ′� is the characteristic
series of the language of ϕ [7]. To this aim, they identify the unique least position
of a word (wrt. ≤) that satisfies a given property. In our logic, such an identification
is no longer feasible. Nevertheless, we can transform any wACAT into an equivalent
weighted formula.

Theorem 6.1. Let A be a wACAT over commutative � and (˜Σ, C). There is a sentence
ψ from wREMSO(�, (˜Σ, C)) such that �ψ� = ‖A‖.

Proof. Let A = (Q, μ, T, γ) be a wACAT over � and (˜Σ, C). In the following, t and t′

will range over Trans(�Σ,C)(Q). Set X to be a collection (Xt) of second-order variables
and suppose Ag = {1, . . . , N} for some N ∈ IN. The construction of a wREMSO
sentence from A follows the route of transforming a finite automaton into a formula
where an interpretation of second-order variables reflects an assignment of vertices to
transitions. We first provide some building blocks of the desired wREMSO formula.

The unambiguous formula

Partition(X) := ∀x.
∨

t

(x ∈ Xt ∧
∧

t′ 	=t

¬(x ∈ Xt′))

claims that X actually represents a run, i.e., an assignment of vertices to transitions.
Given a ∈ Σ and q ∈ Q, ϕ+

(a,q)(x) (ϕ−
(a,q)(x)) shall denote the disjunction (conjunc-

tion) of formulas x ∈ Xt (¬(x ∈ Xt)) such that t = (q, a, q) for some q, respectively.
Now let t = {((a1, q1), �1), . . . , ((am, qm), �m)} −→ (a, q). To ensure that x is

contained in Xt only if the transition taken at x corresponds to t, we use

Transt(x, X) := x ∈ Xt ∧ λ(x) = a ∧
∧

k∈{1,...,m}
∃y.

[

y ��k
x ∧ ϕ+

(ak,qk)(y)
]+

∧ ∀y.
[

∧

�∈C

¬(y �� x) ∨
∨

k∈{1,...,m}

(

y ��k
x ∧ λ(y) = ak

)]+
.

Weighted Distributed Systems and Their Logics 67

Another difficulty is to determine the weight of a global final state q with respect
to an extended dag. We would like to identify, for any agent i ∈ Ag with q[i]
= ı,
the Σi-maximal node. For this purpose, we demand the unique upwards-closed set of
nodes Y that contains a single minimal element x such that x is the only node executed
by agent i. Then, x is Σi-maximal and shall be contained in Xt for some transition
t = q −→ (a, q[i]). Therefore, we define maxi(x, Y)

maxi(x, Y) :=
[

∨

a∈Σi

λ(x) = a
]+

∧ x ∈ Y

∧ ∀y.∀z.
[

¬(y ∈ Y) ∨ ¬(y � z) ∨ z ∈ Y
]+

∧ ∀y.
[

¬(y ∈ Y) ∨
∧

a∈Σi

¬(λ(y) = a) ∨ y = x
]+

∧ ∀y.(¬ϕ1 ∨ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2 ∧ ϕ3))

where ϕ1 = (y ∈ Y), ϕ2 = (y = x), and ϕ3 = ∃z.(z ∈ Y ∧ [
∨

(a,�)∈Σ×C (z �� y ∧
λ(z) = a)]+). Hereby, the last conjunct ensures unambiguity of maxi(x, Y) by requir-
ing that x is the only minimal event in Y .

To collect the weights of global final states, we require, for any q ∈ (Q ·∪ {ı})Ag , a
formula Finalq(X, Y1, . . . , YN) :=

∧

i∈Ag
q[i]∈Q

∃x.
[

maxi(x, Yi) ∧
(

∨

a∈Σ

ϕ+
(a,q[i])(x)

)+]

∧
∧

i∈Ag
q[i]=ı

∀x.
∧

a∈Σi

¬(λ(x) = a) .

To simulate the type function T , we make use of the unambiguous formula Type(X) :=

∀x.
∧

(a,q)∈Σ×Q

[

ϕ−
(a,q)(x) ∨

(

[ϕ+
(a,q)(x)]+ ∧

∧

(b,�)∈T (a,q)

∃y.(x �� y ∧ λ(y) = b)
)]+

.

We are now prepared to specify the desired formula ψ. Namely, setting

ψ′(X) =∃Y1 . . . ∃YN .

Partition(X) ∧
∧

t

∀x.(¬(x ∈ Xt) ∨ Transt(x, X))

∧
∧

i∈Ag

(

∃x.maxi(x, Yi)
)

∨ ∀x.
(

¬(x ∈ Yi) ∧
∧

a∈Σi

¬(λ(x) = a)
)

∧
∧

t

∀x.(¬(x ∈ Xt) ∨ ((x ∈ Xt) ∧ μ(t)))

∧ Type(X) ∧
∨

q∈F

(

Finalq(X, Y1, . . . , YN) ∧ γ(q)
)

,

we finally let ψ = ∃X.ψ′ ∈ wREMSO(�, (˜Σ, C)). Observe that the subformula
¬(x ∈ Xt) ∨ ((x ∈ Xt) ∧ μ(t)) of ψ is an FO-definable step function.

In fact, for any D = (V, {��}�∈C , λ) ∈ ���(˜Σ, C), we have �ψ�(D) = (‖A‖, D).
Thus, we obtain �ψ� = ‖A‖. �

68 B. Bollig and I. Meinecke

References

1. C. Baier and M. Größer. Recognizing omega-regular languages with probabilistic automata.
In Proceedings of LICS 2005. IEEE Computer Society Press, 2005.

2. B. Bollig. On the expressiveness of asynchronous cellular automata. In Proceedings of FCT
2005, volume 3623 of Lecture Notes in Comp. Sc., pages 528–539. Springer, 2005.

3. J. Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

4. K. Culik and J. Kari. Image compression using weighted finite automata. Computer and
Graphics, 17(3):305–313, 1993.

5. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

6. M. Droste and P. Gastin. The Kleene-Schützenberger theorem for formal power series in
partially commuting variables. Inform. and Comp., 153:47–80, 1999.

7. M. Droste and P. Gastin. Weighted automata and weighted logics. In Proceedings of ICALP
2005, volume 3580 of Lecture Notes in Comp. Sc., pages 513–525. Springer, 2005.

8. M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets. Theoret.
Comp. Sc., 247(1-2):1–38, 2000.

9. M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In
10th Int. Conf. on Developments in Language Theory (DLT), volume 4036 of Lecture Notes
in Comp. Sc., pages 49–58. Springer, 2006.

10. M. Droste and H. Vogler. Weighted tree automata and weighted logics. Theoret. Comp. Sc.,
366:228–247, 2006.

11. C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–52, 1961.

12. S. Jesi, G. Pighizzini, and N. Sabadini. Probabilistic asynchronous automata. Mathematical
Systems Theory, 29(1):5–31, 1996.

13. W. Kuich. Semirings and Formal Power Series. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 9, pages 609–677. Springer, 1997.

14. D. Kuske. Emptiness is decidable for asynchronous cellular machines. In Proceedings of
CONCUR 2000, volume 1877 of Lecture Notes in Comp. Sc., pages 536–551. Springer, 2000.

15. D. Kuske. Weighted asynchronous cellular automata. In Proceedings of STACS 2006, volume
3884 of Lecture Notes in Comp. Sc., pages 685–696. Springer, 2006.

16. I. Mäurer. Weighted picture automata and weighted logics. In Proceedings of STACS 2006,
volume 3884 of Lecture Notes in Comp. Sc., pages 313–324. Springer, 2006.

17. I. Meinecke. Weighted logics for traces. In Proceedings of CSR 2006, volume 3967 of
Lecture Notes in Comp. Sc., pages 235–246. Springer, 2006.

18. M. Mohri. Finite-state transducers in language and speech processing. Computational Lin-
guistics, 23(2):269–311, 1997.

19. E. Ochmański. Regular behaviour of concurrent systems. Bulletin of the EATCS, 27:56–67,
1985.

20. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In Valid. of
Stochastic Systems, volume 2925 of Lecture Notes in Comp. Sc., pages 445–465. Springer,
2004.

21. M.P. Schützenberger. On the definition of a family of automata. Information and Control,
4:245–270, 1961.

22. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique
et Applications, 21, 1987.

	Introduction
	Dags over Distributed Alphabets
	Weighted Asynchronous Cellular Automata
	Weighted Monadic Second-Order Logic
	Definable Series Are Recognizable
	Recognizable Series Are Definable

