HTMLS5 Graphing and Data
Visualization Cookbook

Learn how to create interactive HTMLS charts and graphs with
canvas, JavaScript, and open source tools

Ben Fhala

PUBLISHING

HTMLS Graphing and
Data Visualization
Cookbook

Learn how to create interactive HTML5 charts and graphs
with canvas, JavaScript, and open source tools

Ben Fhala

PUBLISHING

BIRMINGHAM - MUMBAI

HTMLS Graphing and Data
Visualization Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1161112

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-370-7
www . packtpub.com

Cover Image by Ben Fhala (anx007@gmail . com)

Credits

Author
Ben Fhala

Reviewer
Chris Valleskey

Acquisition Editor
Joanna Finchen

Lead Technical Editor
Kedar Bhat

Technical Editors
Prasad Dalvi

Joyslita D'souza

Ankita Meshram

Copy Editors
Brandt D'Mello

Insiya Morbiwala
Aditya Nair
Alfida Paiva

Laxmi Subramanian

Project Coordinator
Michelle Quadros

Proofreader
Chris Smith

Indexer
Hemangini Bari

Graphics
Valentina Dsilva

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Ben Fhala discovered his passion for data visualization six years ago while he was
working at Parsons in New York, in their data visualization department PIIM. He is the
owner of the online video training school, 02geek.com, and an Adobe ACP. He enjoys
spending most of his time learning and teaching, and has a love for visual programming
and visualization in general.

Ben has had the honor of developing applications for US Congress members, Prime Ministers,
and Presidents around the world. He has built many interactive experiences for companies
such as Target, AT&T, Crayola, Marriott, Neutrogena, and Nokia. He has technically directed
many award-winning projects and has been a part of teams that have won three Agency of the
Year awards.

| want to thank my cats for supporting me mentally while | was closed down
and avoiding the world as | was trying to come up with good ideas for the
book. | can't thank my editors Joanna Finchen and Kedar Bhat enough for
the insight and help | got from them. For their kindness, support, and
mainly their patience with me when | was struggling to fit my ideas into

the recipe format.

A very big thanks to my technical reviewer, Chris Valleskey, for the detailed
insights and suggestions that made this book better and shaped this book
to be a really great one.

Thanks to Oren Ofer, which helped inspire the last recipe. To my students,
co-workers, and friends at 02geek.com. Mom, for helping me through the
creation of my first book. Nature and Earth for giving me a great place

to be in, and the ocean for the great view throughout the writing of this
book. Thanks to God for always opening up new doors to me in the most
unexpected ways.

And last but definitely not the least, thanks for buying / renting / lending /
reading this book.

About the Reviewer

Chris Valleskey is a young and creative thinker who currently lives in Chicago, lllinois.

He started freelancing at the age of 17 and continued this role throughout college until
graduating in 2011 with a Bachelor of Arts in Graphic Design and Philosophy. Although he
has a normal job in the city, he enjoys spending time with his close friends as a part owner in
their co-owned company. In his free time he enjoys playing Halo, drinking Mountain Dew, and
hanging out with his awesome wife.

I would like to thank my wife Krista for putting up with me, and my friends
and family for supporting and encouraging me in everything | do.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@] PACKT

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content
» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Drawing Shapes in Canvas 7
Introduction 7
Graphics with 2D canvas 8
Starting from basic shapes 14
Layering rectangles to create the flag of Greece 16
Creating shapes using paths 19
Creating complex shapes 24
Adding more vertices 31
Overlapping shapes to create other shapes 35
Chapter 2: Advanced Drawing in Canvas 37
Introduction 37
Drawing arcs 37
Drawing curves with a control point 40
Creating a Bezier curve 42
Integrating images into our art 46
Drawing with text 50
Understanding pixel manipulation 54
Chapter 3: Creating Cartesian-based Graphs 61
Introduction 61
Building a bar chart from scratch 62
Spreading data in a scatter chart 68
Building line charts 76
Creating the flying brick chart (waterfall chart) 84
Building a candlestick chart (stock chart) 92

Table of Contents

Chapter 4: Let's Curve Things Up 105
Introduction 105
Building a bubble chart 105
Creating a pie chart 114
Using a doughnut chart to show relationships 119
Leveraging a radar 123
Structuring a tree chart 129

Chapter 5: Getting Out of the Box 137
Introduction 137
Going through a funnel (a pyramid chart) 138
Revisiting lines: making the line chart interactive 145
Tree mapping and recursiveness 150
Adding user interaction into tree mapping 158
Making an interactive click meter 162

Chapter 6: Bringing Static Things to Life 167
Introduction 167
Stacking graphical layers 168
Moving to an OOP perspective 177
Animating independent layers 187
Adding an interactive legend 193
Creating a context-aware legend 198

Chapter 7: Depending on the Open Source Sphere 205
Introduction 205
Animating a gauge meter (jqPlot) 206
Creating an animated 3D chart (canvas3DGraph) 211
Charting over time (flotJS) 217
Building a clock with RaphaellS 222
Making a sunburst chart with InfoVis 229

Chapter 8: Playing with Google Charts 239
Introduction 239
Getting started with a pie chart 239
Creating charts using the ChartWrapper 245
Changing data source to Google Spreadsheet 248
Customizing the chart properties with an options object 252
Adding a dashboard to charts 254

Chapter 9: Using Google Maps 259
Introduction 259
Creating a geographic chart with Google Visualization API 260
Obtaining a Google API key 265

Table of Contents

Building a Google map 267
Adding markers and events 272
Customizing controls and overlapping maps 275
Redesigning maps using styles 280
Chapter 10: Maps in Action 287
Introduction 287
Connecting a Twitter feed to a Google map 288
Building an advanced interactive marker 293
Adding multiple tweets into an InfoWindow bubble 297
Customizing the look and feel of markers 303
Final project: building a live itinerary 310

Index 325

Preface

Today, the Web and the world are increasingly being defined by data. With the data revolution
of the Internet in the early nineties and until today, more and more data has been exposed
and aggregated, from government agencies, public sector information, financial information,
digital media and news, and social media to private sector information, user information, and
so on. With the overload of data on the Web it's easy to overlook information, as it's much
harder to read and analyze in data format. That's where we come in. Our goal in this book is
to open up the door to you to data visualization. With step-by-step guides that will take you
from the basic creation of visual charts all the way through to complex geographical location
information driven by Google Maps and Google Docs (Drive).

HTML5 and JavaScript are leading the new paths for data visualization and are moving us
away from traditional client-side graph creation in Adobe Flash or server-side generated
images. With the maturing of browsers, they are becoming more capable and solid

than ever before. This is a perfect time to start transitioning the creation of graphs to
HTML/JavaScript. But where do you start, and what is the best way to create the specific
graph/map your project needs?

With that said, our goal in this book is to run through, showcase, and teach all the critical
skills needed in the HTML5/JavaScript age of data visualization. Our goal is to help you make
the right choice when you need to build a custom graphic or graph/chart and to help you
choose the right way between creating it on your own or using third-party, small/large tools to
create the graphic your task needs.

Although this is a cookbook, I've painstakingly organized it topic by topic in a very linear

way, making it a great read from start to end. As such, | personally recommend that you sit
back and actually read it from start to finish, and if you do so, you will learn in the process
everything you ever needed to know about the two-dimensional Canvas API, how to create
shapes, interaction, and various graphs/charts, and how to create them from scratch in
HTML5 Canvas. You will learn how to work with and modify third-party tools, working with the
Google Visualization API, Google Maps, and Google Docs. Woven throughout the book are
various data formats from basic strings, external files, XML, and Google Docs to Twitter search
results. As such, you will get an extra practice in loading, modifying, and working with data

in JavaScript.

Preface

By the end of this book, you will have a strong working foundation in data visualization,
graphing, data strategy, and HTML5 Canvas.

What this book covers

Chapter 1, Drawing Shapes in Canvas, introduces you to working with canvas. We will spend
the majority of our time working with canvas when creating our charts. In this chapter, we will
focus on getting to know how canvas works and how to create custom shapes with the
two-dimensional canvas API.

Chapter 2, Advanced Drawing in Canvas, continues where we left off in Chapter 1 as we
master our skills in canvas by adding to our tool belt various functions. We will be working with
curves, images, text, and even pixel manipulation.

Chapter 3, Creating Cartesian-based Graphs, presents our first cluster of charts under the
microscope, Cartesian-based graphs. Altogether this graph style is relatively simple; it

opens the door to amazingly creative ways of exploring data. In this chapter, we will lay

down the foundations to building charts, and with them, will continue and expand our overall
canvas knowledge.

Chapter 4, Let's Curve Things Up, leverages the capability of creating non-linear charts to
represent multidimensional data. In this chapter we will create Bubble, Pie, Doughnut, Radar,
and Tree charts.

Chapter 5, Getting Out of the Box, progresses into more out-of-the-box, less commonly used
charts and revisits some of our old charts to incorporate into them dynamic data or change
their layout. In this chapter, we will create a funnel chart, add interactivity to our charts,
create a recursive tree chart, add user interaction, and finish up with creating an interactive
click meter.

Chapter 6, Bringing Static Things to Life, introduces JavaScript object-oriented programming,
creating from scratch an animation library, adding multiple layers of canvas, and finishing up
with creating a legend that is aware of its surrounding. This chapter will break us into a few
new habits by first making everything dynamic followed by creating a more object-oriented
program so it's easier for us to differentiate between tasks and reduce our code footprint.

Chapter 7, Depending on the Open Source Sphere, introduces you to the various libraries. The
open source data visualization community is extremely rich and detailed with so many options
and some really amazing libraries. Each library has its strong points and its disadvantages.
Some are standalone code, while others depend on other platforms. Our goal in this chapter
is both to showcase what we think are the best, most creative options online, and with it, to
also learn the new skill of customizing third-party tools and expanding their features beyond
their available documentation.

Chapter 8, Playing with Google Charts, explores the Google visualization API, task by task. We
will look at the steps involved to create a chart and integrate it with the charting API. In the
process, we will create new graphs and explore the core capabilities of this library.

—21

Preface

Chapter 9, Using Google Maps, explores some of the features available on Google Maps to
get us ready to work with mapping in general. Mapping on its own isn't data visualization,
but after we establish our base understanding of how to work with maps, we will have a very
stable background that will enable us to create many cutting-edge, cool projects integrating
data and data visualization.

Chapter 10, Maps in Action, ties in more deeply to our topic of data visualization and
mapping. One of the most popular ways to visualize data these days is by using maps.
In this chapter, we will explore a few ideas on how to integrate data into maps using the
Google Maps platform.

Appendix, Picking Your Graphics Technology, will explore other alternative options not covered
in this book. The goal of this appendix is to set the environment up and enable you to have a
better understanding of other graphing options. The appendix is not present in the book but is
available as a free download at the following link:

http://www.packtpub.com/sites/default/files/downloads/37070T
Appendix Final.pdf

What you need for this book

You will need to have some basic background knowledge of HTML and JavaScript or a
comparable programming language.

Who this book is for

This is not a beginner's book but is intended for JavaScript developers who want to expand
their skills into graphing, canvas, object-oriented programming in practice, third-party
modification, and overall data strategy and data visualization.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Set up our grayStyle Styling Object to be our
default style:"

A block of code is set as follows:

var aGray = [

{

!
1;

stylers: [{saturation: -100}]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

map.mapTypes.set ('grayStyle', grayStyle);
map .setMapTypeld ('grayStyle') ;

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Select the Services option
from the left-hand side menu:"

% Warnings or important notes appear in a
o box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to have the files e-mailed
directly to you.

The code files are also available at http://02geek.com/books/html5-graphics-and-
data-visualization-cookbook.html.

—a1

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http: //www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Drawing Shapes
in Canvas

In this chapter we will cover:

» Graphics with 2D canvas

» Starting from basic shapes

» Layering rectangles to create the flag of Greece
» Creating shapes using paths

» Creating complex shapes

» Adding more vertices

» Overlapping shapes to create other shapes

Introduction

This chapter's main focus is to make a breakthrough into working in canvas. We will spend the
majority of our time working with canvas when creating our charts.

In this chapter, we will master the basic shapes and styles of drawing with the canvas API.
This chapter will be the graphic's backbone to the rest of the book, so if at any stage you feel
you need a refresher you could come back to this chapter. Drawing lines can be... well not very
thrilling. What better way to make it more dramatic than to integrate a theme into this chapter
as a subtopic: creating flags!

Drawing Shapes in Canvas

Graphics with 2D canvas

Canvas is the primary and most thrilling addition to HTML. It's the buzz of the industry, so let's
start there. We will revisit canvas again in the later chapters. In this recipe, we will learn how
to draw dynamically using canvas, and create an array of colorful circles that will update once
every second.

¥y y y v yrwyw

h g
RS OaRe
+4440 4444

444 «

)0 @ T

How to do it...

We will be creating two files (an HTML5 file and a JS file). Let's start by creating a new
HTML5 document:

1. The first step is to create an empty HTML5 document:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Canvas Example</title>
</head>
<body>
</body>
</html>

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your accountat http://www.

.\' PacktPub. com. If you purchased this book elsewhere, you
canvisithttp://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

The code files are also available at http://02geek.
com/books/html5-graphics-and-data-
visualization-cookbook.html.

2. Create a new canvas element. We give our canvas element an ID of myCanvas:

<body>
<canvas id="myCanvas"> </canvas>
</body>

Chapter 1

Import the JavaScript file 01.01.canvas. js into the HTML document (we will
create this file in step 5):

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<script src="01.0l.canvas.js"></script>
<title>Canvas Example</title>
</head>

Add an onLoad listener and trigger the function init when the document loads:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<script src="01.0l.canvas.js"></scripts>
<title>Canvas Example</title>

</head>
<body onLoad="init () ;" style="margin:Opx">
<canvas id="myCanvas" />
</body>
</html>

Create the 01.01.canvas. js file.

In the JavaScript file, create the function init and call the function updateCanvas
within it:
function init () {

updateCanvas () ;

}

Create the function updateCanvas:

function updateCanvas () {
//rest of the code in the next steps will go in here

}

In the updateCanvas function (for the rest of the steps all the code will be added in
this function) create two variables that will store your desired width and height. In our
case we will grab the width of our window:

function updateCanvas () {
var width = window.innerWidth;
var height = 100;

Drawing Shapes in Canvas

9. Access the canvas layer in the HTML document and change its width and height:

var myCanvas = document.getElementById ("myCanvas") ;
myCanvas.width = width;
myCanvas.height = height;

10. Get the 2D context of the canvas:

var context = myCanvas.getContext ("2d") ;

11. Create a rectangle to fill the full visible area of the canvas:

context.fillStyle = "#FCEABS8";
context.fillRect (0, 0,width, height) ;

12. Let's create a few helper variables to help us establish the color, size, and count of
elements to be drawn:

var circleSize=10;

var gaps= circleSize+10;

var widthCount = parselnt (width/gaps) ;

var heightCount = parselnt (height/gaps) ;

var aColors=["#43A9D1", "#EFAG63B", "#EF7625", "#5E4130"] ;
var aColorsLength = aColors.length;

13. Create a nested loop and create a grid of circles in random colors:

for (var x=0; x<widthCount;x++) {
for (var y=0; y<heightCount;y++) {

context.fillStyle = aColors[parselnt
(Math.random() *aColorsLength)];

context .beginPath() ;

context.arc(circleSize+gaps*x,circleSize+ gaps*y,
circleSize, 0, Math.PI*2, true);

context.closePath() ;

context.f£fil1() ;

}
}
}

Woah! That was a lot of steps! If you followed all the steps, you will find a lot of circles in your
browser when you run the application.

Before we jump right into the JavaScript portion of this application, we need to trigger the
onLoad event to call our init function. We do that by adding the onLoad property into our
HTML body tag:

<body onLoad="init () ;">

]

Chapter 1

Let's break down the JavaScript portion and understand the reason behind doing this. The
first step is to create the init function:

function init () {
updateCanvas () ;

}

Our init function immediately calls the updateCanvas function. This is done so that later
we can refresh and call updateCanvas again.

In the updateCanvas function, we start by getting the current width of the browser and set a
hardcoded value for the height of our drawing area:

var width = window.innerWidth;
var height = 100;

Our next step is to get our canvas using its ID, and then set its new width and height based on
the previous variables:

var myCanvas = document.getElementById ("myCanvas") ;
myCanvas.width = width;
myCanvas.height = height;

It's time for us to start drawing. To do that, we need to ask our canvas to return its context.
There are a few types of contexts such as 2D and 3D. In our case we will focus on the 2D
context as follows:

var context = myCanvas.getContext ("2d");

Now that we have the context, we have all that we need to start exploring and manipulating
our canvas. In the next few steps, we define the canvas background color by setting the
fillstyle color using a hex value and by drawing a rectangle that would fit within the entire
area of our canvas:

var context = myCanvas.getContext ("2d");
context.fillStyle = "#FCEAB8";
context.fillRect (0,0,width, height);

The £il1lRect method takes four parameters. The first two are the (x,y) locations of the
rectangle, in our case we wanted to start from (0,0), and the following parameters are the
width and height of our new rectangle.

Let's draw our circles. To do so we will need to define the radius of our circle and the space
between circles. Let's not space out the circles at all, and create circles with a radius of 10 px.

var rad=10;
var gaps= rad*2;

Drawing Shapes in Canvas

The first line assigns the radius for our circles, while the second line captures the gap between
the centres of each circle we create, or in our case the diameter of our circle. By setting it up
as two times the radius we space out our circles exactly one after the other.

var widthCount = parselnt (width/gaps) ;

var heightCount = parselnt (height/gaps) ;

var aColors=["#43A9D1", "#EFA63B", "#EF7625", "#5E4130"] ;
var aColorsLength = aColors.length;

Using our new gaps variable, we discover how many circles we can create in the width and
height of our canvas component. We create an array that stores a few color options for our
circles and set a variable aColorsLength as the length of aColors. We do this to cut down
the processing time, as variables are easier to fetch than properties as we are about to call
this element many times in our for loop:

for (var x=0; x<widthCount;x++) {
for (var y=0; y<heightCount;y++){
context.fillStyle = aColors[parselnt
(Math.random() *aColorsLength)];
context.beginPath() ;
context.arc(rad+gaps*x, rad+ gaps*y, rad, 0, Math.PI*2, true);
context.closePath() ;
context.£fil1() ;

}

Our nested for loops enable us to create our circles to the width and height of our canvas.
The first for loop focuses on upgrading the width value while the second for loop is in
charge of running through every column.

context.fillStyle =
aColors [parseInt (Math.random() *aColorsLength)] ;

Using Math.random, we randomly select a color from aColors to be used as the color of our
new circle.

context.beginPath() ;
context.arc(rad+gaps*x, rad+ gaps*y, rad, 0, Math.PI*2, true);
context.closePath() ;

The first and last lines in the previous block of code declare the creation of a new shape. The
beginPath method defines the start of the shape and the closePath method defines the
end of it, while context . arc creates the actual circle. The arc property takes the following
format of values:

context.arc(x,y,radius, startPoint,endPoint, isCounterClock) ;

Sk

Chapter 1

The x and y properties define the center point of the arc (in our case a full circle). In our for
loops we need to add a buffer of an extra radius to push our content into the screen. We need
to do this as only one fourth of our first circle would be visible if we didn't push it to the left
and to the bottom by an extra radius.

context.fil11 () ;

Last but not least, we need to call the £111 () method to fill our newly-created shape with
its color.

Let's make our element refresh once a second; to do that all we need to do is add two more
lines. The first one will trigger a new call to the updateCanvas function once every second
using setInterval.

function init () {
setInterval (updateCanvas,1000) ;
updateCanvas () ;

}

If you refresh your browser you will find that our sample is working. If you try really hard to
find issues with it you will not, but we have a problem with it. It's not a major problem but a
great opportunity for us to learn about another useful functionality of the canvas. At any
stage we can clear the canvas or parts of it. Instead of drawing on top of the current canvas,
let's clear it before we redraw. In the updateCanvas function, we will add the following
highlighted code:

var context = myCanvas.getContext ("2d") ;
context.clearRect (0,0,width, height) ;

As soon as we get the context we can clear the data that was already present by using the
clearRect method.

» The Starting from basic shapes recipe

[}

Drawing Shapes in Canvas

Starting from basic shapes

At this stage you know how to create a new canvas area and even create a few basic shapes.
Let's expand our skill and start creating flags.

Getting ready

Well, we won't start from the most basic flag as that would just be a green rectangle. If you
wanted to learn how to create a green flag you wouldn't need me, so let's move up to a tad
more complex flag.

If you followed the Graphics with 2D canvas recipe you already know how to do it. This one is
dedicated to our Palauan readers and to the perfect arc (also known as circle).

In this recipe we will ignore the HTML part, so if you need a refresher on how to create a
canvas with an ID, please go back to the first recipe in this chapter and set up your HTML
document. Don't forget to create the canvas with the right ID. You could also download our
sample HTML files.

Chapter 1

How to do it...

Add the following code block:

var cnvPalau = document.getElementById("palau") ;
var wid = cnvPalau.width;
var hei = cnvPalau.height;

var context = cnvPalau.getContext ("2d") ;
context.fillStyle = "#4AADD6";
context.fillRect (0, 0,wid, hei) ;

context.fillStyle = "#FFDEOOQO";
context.arc(wid/2.3, hei/2, 40, 0, 2 * Math.PI, false);
context.f111 () ;

That's it, you've just created a perfect arc, and with it your first flag that has a shape within it.

A big chunk of this code should look very familiar at this stage. So I'll focus on the new lines
compared to the ones used in the first recipe in this chapter.

var wid = cnvPalau.width;
var hei = cnvPalau.height;

In these lines, we extract the width and height of our canvas. We have two goals here: to
shorten our lines of code and to reduce the number of times we make an API call when not
needed. As we are using it more than one time, we first fetch the values and store them in
wid and hei.

Now that we know our canvas width and height, it's time for us to draw our circle. Before we
start drawing, we will call the £i11Style method to define a background color to be used
in the canvas, and then we will create the arc followed by triggering the £111 method when
complete.

context.fillStyle = "#FFDEOOQO";
context.arc(wid/2.3, hei/2, 40, 0, 2 * Math.PI, false);
context.f111 () ;

We then create our first perfect circle using the arc method. It's important to note that we can
change the colors at any point, such as in this case, where we change our color just before we
create a new circle.

Drawing Shapes in Canvas

Let's take a deeper look at how the arc method works. We start by defining the center of our
circle with the x and y positions. The canvas tag follows the standard Cartesian coordinates:
(0, O) is at the top-left (x grows to the right and y grows towards the bottom).

context.arc(x, y, radius, startingAngle, endingAngle, ccw) ;

In our example, we decided to position the circle slightly to the left of the center by dividing
the width of the canvas by 2. 3, and we positioned the y in the exact center of the canvas.
The next parameter is the radius of our circle, It is followed by two parameters that define the
starting and ending position of our stroke. As we want to create a full circle we start from 0
and end at two times Math . PI, a complete circle (Math.PI is equivalent to 180 degrees).
The last parameter is the direction of our arc. In our case as we are creating a full circle, it
doesn't matter what we set here (ccw = counterclockwise).

context.fi11() ;

Last but not least, we call the £i111 function to fill and color the shape we created earlier.
Contrary to the £i11Rect function that both creates and fills the shape, the arc method
doesn't. The arc method only defines the bounds of a shape to be filled. You can use this
method (and others) to create more complex shapes before actually drawing them onto the
stage. We will explore this more deeply in the following recipes of this chapter.

Layering rectangles to create the flag

of Greece

We learned as we created the flag for Palau that when we create a circle using the arc
method, we have to trigger a request separately to fill the shape. This is true for all shapes
that we create from scratch, and it is true for creating lines as well. Let's move to a slightly
more complex flag: the flag of Greece.

Chapter 1

Getting ready

As in the previous recipe, we will be skipping the HTML part and will jump right into the
JavaScript portion of drawing in the canvas. For a detailed explanation of the steps involved in
the creation of the canvas element, please refer to the first recipe of this chapter.

Before you start coding, look at the flag closely and try to come up with an attack plan on the
steps you would need to perform to create this flag.

How to do it...

If we look at the flag, it's easy to figure out how to plan this out. There are many ways to do
this but the following is our attempt:
1. We will first start our app and create a blank blue canvas:

var canvas = document.getElementById("greece") ;
var wid = canvas.width;

var hei = canvas.height;
var context = canvas.getContext ("2d");
context.fillStyle = "#000080";

context.fillRect (0,0,wid, hei) ;

2. |If you take a look at the previous figure, there are four white strips and five blue strips
that will be part of the background. Let's divide the total height of our canvas by 9, so
we can find out the right size for our lines:

var lineHeight = hei/9;

3. So far we created shapes using built-in tools, such as arc and £fil1lRect. Now we
are going to draw our lines manually, and to do so we will set the 1ineWidth and
strokeStyle values, so we can draw lines on the canvas:

context.lineWidth = lineHeight;
context.strokeStyle = "HEfEffff";

4. Now, let's loop through and create four times a line that goes from the right-hand side
to the left-hand side, as follows:

var offset = lineHeight/2;

for(var i=1; i<8; i+=2){
context.moveTo (0,i*1lineHeight + offset);
context.lineTo(wid, i*lineHeight+offset) ;

[}

Drawing Shapes in Canvas

That's it, we got it. Reload your HTML page and you will find the flag of Greece in all its glory.
Well not in all its glory yet, but just about enough to guess it's the flag of Greece. Before we
move on let's look deeper into how this works.

Notice the addition of an offset. This is done because 1ineWidth grows in both directions
from the actual point in the center of the line. In other words, a line with the width of 20 pixels
that is drawn from (O, 0) to (0, height) would only have 10 pixels visible as the range of the
thickness of the line would be between (-10 to 10). As such, we need to take into account that
our first line needs to be pushed down by half its width so that it's in the right location.

The moveTo function takes in two parameters moveTo (x,y) . The 1ineTo function also
takes two parameters. | believe you must have guessed the difference between them. One
will shift the virtual point without drawing anything while the other will create a line between
the points.

If you run your HTML file, you will find that our lines were not revealed. Don't worry, you didn't
make any mistake (At least, that's what | think ;)). For the lines to become visible, we need to
tell the browser that we are ready, just like we called the £111 () method when we used arc.
In this case, as we are creating lines we will call the stroke () method right after we are
done defining our lines, as follows:

var offset = lineHeight/2;

for(var i=1; i<8; i+=2){
context.moveTo (0,i*lineHeight + offset);
context.lineTo(wid, i*lineHeight+offset) ;

}

context.stroke() ;

If you refresh the screen now you will see we are getting much closer. It's time for us to add
that rectangle on the top-left area of the screen. To do that, we will reuse our 1ineHeight
variable. The size of our rectangle is five times the length of 1ineHeight:

context.fillRect (0,0, lineHeight*5,lineHeight*5) ;
It is now time to create the cross in the flag:

context.moveTo (0, lineHeight*2.5);

context.lineTo(lineHeight*5,1lineHeight*2.5) ;

context.lineTo(lineHeight*2.5,1ineHeight*5+1) ;

(
(
context .moveTo (lineHeight*2.5,0) ;
(
context.stroke (

)i

Chapter 1

If you run the application now you will be really disappointed. We did exactly what we learned
previously but it's not working as expected.

The lines are all mixed up! OK fear not, it means it's time for us to learn something new.

BeginPath method and closePath method

Our flag didn't pan out that well because it got confused by all the lines we created earlier. To
avoid this, we should tell the canvas when we are starting a new drawing and when we are
ending it. To do so we can call the beginPath and closePath methods to let the canvas
know that we are done with something or are starting with something new. In our case by
adding the method beginPath we can fix our flag issue.

context.fillRect (0,0,lineHeight*5,1lineHeight*5) ;
context.beginPath() ;

context.moveTo (0, lineHeight*2.5);
context.lineTo(lineHeight*5, lineHeight*2.5) ;
lineHeight*2.5,0) ;
lineHeight*2.5,1lineHeight*5+1) ;
)i

(
context .moveTo (
context.lineTo (
context.stroke (
Congratulations! You just created your first two flags, and in the process learned a lot about
how the canvas APl works. This is enough to be able to create 53 country flags out of the 196
flags out there. That's a great start already; 25 percent of the world is in your hands.

The most complex flag you should be able to do right now is the flag of the United Kingdom. If
you feel like exploring, give it a go. If you're really proud of it drop me a line at ben@02geek .
com, | would love to see it.

Creating shapes using paths

We ended the last recipe learning how to create one fourth of the flags of the world, but
that can't be the end of it, can it? This recipe will be dedicated to using paths to create
more complex shapes. We will start by creating a triangle and progress from there to more
complicated shapes.

[}

Drawing Shapes in Canvas

Getting ready

Let's start from the simplest shape that isn't included in the basic shapes library: a triangle.
So if you're ready let's get started...

How to do it...

Let's start with creating our first shape, a triangle:

context.fillStyle = color;
context .beginPath() ;
context .moveTo (x1,y1l) ;
context.lineTo (x2,y2) ;
context.lineTo (x3,y3) ;
context.lineTo (x1,vy1) ;
context.closePath () ;
context.fill () ;

The code here with points x1, y1 through x3, y3 is pseudocode. You would need to pick your
own points to create a triangle.

Most of the elements here aren't new. The most important change here is that we are creating
the shape from scratch using the elements we worked with before. When we create a shape
we always start by declaring it using the beginPath () method. We then create the shape and
end the creation with the closePath () method. We will still not have anything visible on the
screen until we decide what we want to do with the shape we created, such as show its fill or
show its strokes. In this case as we are trying to create a triangle we will call the £i11 function.

Let's see this in action in a live flag sample. This time we will visit Mount Roraima in Guyana.

=]

Chapter 1

OK, so you get the idea of the triangle. Let's see this in action. I've extracted this code and put
it into a function. To create this flag, we will need to create four triangles.

var canvas = document.getElementById("guyana") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");
context.fillStyle = "#009E49";
context.fillRect (0,0,wid, hei) ;

fillTriangle (context, 0,0,
wid,hei/2,
0,hei, "H#ffffff");
fillTriangle (context, 0,10,
wid-25,hei/2,
0,hei-10, "#FCD11l6");
fillTriangle (context, 0,0,
wid/2,hei/2,
0,hei, "#000000");
fillTriangle (context, 0,10,
wid/2-16,hei/2,
0,hei-10, "#CEl11l26");

function fillTriangle(context,xl,yl,xz,y2,x3,y3,color){
context.fillStyle = color;
context.beginPath() ;
context .moveTo (x1,yl

I

I

context.lineTo (x2,y2

I

context.lineTo (x3,y3

I

)
)
)
context.lineTo(x1,y1)

context.closePath() ;
context.fi11() ;

}

By creating the £i11Triangle () function we can now quickly and effectively create
triangles just as we created rectangles. This function makes it a breeze to create a flag with
such a rich numbers of triangles. Now, with the help of the £111Triangle method we can
create any flag in the world that has triangles in it.

Drawing Shapes in Canvas

There's more...

Don't let triangles be your most complex shape, as you can create any number of pointed
shapes. Let's create a more complex zigzag pattern. To do so, we will fly over to the Kingdom
of Bahrain.

Try to locate the new logic before we break it down and explain it.

var canvas = document.getElementById ("bahrain") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");
context.fillStyle = "#CE1l1l26";
context.fillRect (0,0,wid, hei) ;
var baseX = wid*.25;
context.fillStyle = "#ff£ffff";
context .beginPath() ;
context.lineTo (baseX, 0) ;

var zagHeight = hei/5;

for(var i=0; i<5; i++){
context.lineTo(baseX +25 , (i+.5)*zagHeight) ;
context.lineTo(baseX , (i+1)*zagHeight) ;

}

context.lineTo (0, hei) ;
context.lineTo (0,0) ;
context.closePath() ;
context.fi11 () ;

addBoarder (context,wid, hei) ;

=

Chapter 1

Let's break down this zigzag and understand what's going on here. After starting up with our
normal setting up of a canvas element, we jump right into creating our shape. We start by
drawing a red background, leaving us to create a shape that will have the white area. It's very
much like a rectangle except that it has zigzags in it.

In this code, we start by creating a rectangle but our goal will be to change the highlighted
code line with zigzags:

var baseX = wid*.25;
context.fillStyle = "#ffffff";
context.beginPath() ;
context.lineTo (baseX, 0) ;
context.lineTo (wid*.25,hei) ;
context.lineTo (0, hei) ;
context.lineTo(0,0) ;
context.closePath() ;
context.fill () ;

In this code we set the fill color to white, we set our beginPath and then 1ineTo (starting
at the point (0, 0), the default starting point) and create a rectangle that fills 25 percent of
the width of the canvas. I've highlighted the horizontal line as this is the one we want to make
zigzags with. By looking at the flag we can see that we are going to create five triangles going
across the screen, so let's switch this line with a for loop:

context.lineTo (baseX, 0) ;

var zagHeight = hei/5;

for (var i=0; i<5; i++){
context.lineTo(baseX +25 , (i+.5) *zagHeight);
context.lineTo(baseX , (i+l)*zagHeight);

context.lineTo (0, hei) ;

So our first step before we can run through the loop is to decide how tall each triangle will be:
var zagHeight = hei/5;

We take the total height of the canvas and divide it by five to give us the height for
each triangle.

s

Drawing Shapes in Canvas

We draw the zigzags in the for loop itself. To do so we need to use the following two lines of
code in each round:

context.lineTo(baseX +25 , (i+.5)*zagHeight) ;
context.lineTo(baseX , (i+1l)*zagHeight) ;

In the first line we step away from the current position and expand the line out half way
through the height of the triangle, and to the extreme point on the right; and then on the
second line we return back to the starting x point and update our y to the starting point of the
next line segment. By the way, the addition of baseX +25 is totally arbitrary. | just played with
it until it looked good, but if you want you could use ratios instead (that way if you expand the
canvas it would still look good).

The most amazing part of all of this is just knowing how to create some zigzags, triangles,
rectangles, and circles. You can create an even larger number of flags but we are not done
yet. Our quest to know how to create all the flags of the world continues.

If you are new to drawing via code or feel you can use some extra practice, just look at the
map of the world and challenge yourself to create flags based on the skills we built already.

Creating complex shapes

It's time to take everything we learned and integrate it into the most complex shape we have
seen so far, the Star of David. This star is part of the flag of Israel (one of my favorite flags in
the world ;)). We need to take a roundabout before we can create it by visiting the magical
world of sine and cosine.

a1 -:.‘b
& ADJACENT '(:*

=

Chapter 1

You got to love it, right? | know many people fear cosines and sines but actually they are really
easy and fun to work with. Let's break them down here in a more programming-for-drawing
type of way. The most basic idea is that you have a triangle that has a 90 degree angle.

You have some information about this triangle, and that's all you need to be able to start
working with sine and cosine. Once you know that you have a 90 degree angle and know the
sine/cosine, you have all the information you need and with it you can discover any missing
information. In our case we know all the angles and we know the length of the hypotenuse
(it's our radius; take a look at the image with the circle to see it in action). In JavaScript, the
methods Math.cos () and Math.sin () are both representing a circle with a radius of one
located on the (0,0) point on the screen. If we input the angle we are looking for into the sin
function, it would return the x value (in this case the length of the adjacent) and the cos
function would return the length of the opposite, in our case the required value y.

I've made a nice video which goes deeper into the logic. You can check it out at
http://02geek.com/courses/video/58/467/Using-Cos-and-Sin-to-animate.
html.

Getting ready

The easiest way to understand how sine/cosine work is by a live example, and in our case we
will use it to help us figure out how to create the Star of David in the flag of Israel. We will take
a step back and learn how we figured out the points on the screen to create the shapes. Again
we will be skipping the creation of the HTML file and will go right into the JavaScript code. For
an overview of how to get your HTML set, please review the Graphics with 2D canvas recipe.

=]

Drawing Shapes in Canvas

How to do it...

After creating the JavaScript file add the following code in your init function.

1. Create our basic canvas variables:

var canvas = document.getElementById("israel");
var wid = canvas.width;

var hei = canvas.height;

var context = canvas.getContext ("2d");

2. Define one degree in radians. We do that since Math.cos and Math.sin expect a
radian value and not a degree value (radian is one degree measured in radians):

var radian = Math.PI/180;
3. Create a tilt variable. This variable will define the tilt of the triangle that will be

created. Imagine the triangle is in a circle and we are rotating the circle with this
tilt variable:

var tilt = radian*180;

4. Define the center point of the canvas:

var baseX = wid / 2;
var baseY = hei / 2;

5. Set the radius of the invisible bounding circle of the Star of David:

var radius = 24;

6. Define the height of the strips in the flag:
var stripHeight = 14;

7. Define a line width:
context.lineWidth=5;

8. Create two triangles (one tilted and one not):

createTrinagle (context,
baseX+ Math.sin(0) * radius,
baseY + Math.cos(0) * radius,
baseX+ Math.sin(radian*120) * radius,
baseY + Math.cos (radian*120) * radius,
baseX+ Math.sin(radian*240) * radius,
baseY + Math.cos (radian*240) * radius,
null, "#0040C0") ;

createTrinagle (context,
baseX+ Math.sin(tilt) * radius,
baseY + Math.cos (tilt) * radius,
baseX+ Math.sin(radian*120+tilt) * radius,
baseY + Math.cos (radian*120+tilt) * radius,

=]

Chapter 1

baseX+ Math.sin(radian*240+tilt) * radius,
baseY + Math.cos (radian*240+tilt) * radius,

null, "#0040C0") ;

9. Draw flag strips:

context.lineWidth=stripHeight;
context .beginPath() ;

context .moveTo (0, stripHeight) ;
context.lineTo(wid, stripHeight) ;
context.moveTo (0,hei- stripHeight) ;
context.lineTo(wid, hei- stripHeight) ;
context.closePath() ;
context.stroke () ;

10. Create the createTriangle function:

function createTriangle (context,x1l,yl,x2,y2,x3,y3,fillColor, stroke
Color) {
context .beginPath () ;
context .moveTo (x1,y1l) ;
context.lineTo (x2,y2) ;
context.lineTo (x3,y3) ;
context.lineTo (x1,y1) ;
context.closePath() ;
if (fillcolor) {
context.fillStyle = fillColor;
context.fill () ;

}

if (strokeColor) {
context.strokeStyle = strokeColor;
context.stroke () ;

}
}

You are done. Run your application and you will find the flag of Israel with the Star of David in
the center of the flag.

Before we dig into the creation of the flag and how it was done, we need to understand how
we locate points in a circle. To do so let's look at a simpler example:

var rad = Math.PI/180;

context.fillStyle = "#FFDEOO";

context.arc(wid / 2, hei / 2, 30, 0, 2 * Math.PI, false);
context.fi111 () ;

e

Drawing Shapes in Canvas

context .beginPath() ;

context.strokeStyle = "#££f0000";

context.lineWidth=6;

context.moveTo (Math.sin(0) * 30 + wid / 2,
Math.cos (0) * 30 + hei/2);

context.lineTo (Math.sin(rad*120) * 30 + wid / 2,
Math.cos (rad*120) * 30 + hei/2);

context.stroke () ;

The following is the output the code will generate:

Although a circle, in our human-friendly head, is a shape that has 360 degrees, it's actually
best represented in most programming languages in radians.

Radians are just like degrees, only instead of being human-friendly numbers between O

and 360 these are numbers between O and two times Pi. You might be wondering what Pi is,
so a bit more on Pi. Pi is in essence the value that is created when you take the circumference
of any circle and divide it by the diameter of the same circle. The result that would come back
would be Pi or about 3.14159. It is a magical number and the good news is you don't need to
know much more about it if you don't want to. All you need to know is that 3.142 is equal to
half of a circle. With that fact we can now divide Pi by 180 to get a value in radian that equals
one degree:

var rad = Math.PI/180;

We then create a circle with a radius of 30 in the center of the screen, to help us visualize
this, and move on to start creating a line that will start at angle 0 of our circle and end at
angle 120 (as we want to create a triangle 360/3).

context.strokeStyle = "#££0000";

context.lineWidth=6;

context .moveTo (Math.sin(0) * 30 + wid / 2,
Math.cos(0) * 30 + hei/2);

context.lineTo (Math.sin(rad*120) * 30 + wid / 2,
Math.cos (rad*120) * 30 + hei/2);

context.stroke () ;

=]

Chapter 1

Let's break down the most complex line:

context.lineTo (Math.sin(rad*120) * 30 + wid / 2,
Math.cos (rad*120) * 30 + hei/2);

As Math.sin and Math. cos return a value for a radius of 1, we will multiply any value
returned by the radius of our circle (in this case 30). In the parameters of Math.sin and
Math.cos, we will provide the exact same values; in this example 120 radians. As our circle
would be centered at the top left-hand side of the canvas we want to shift the circle to start
from the center of the screen by adding to our values wid/2 and hei/2.

At this stage, you should know how to find points on a circle, and with that how to draw lines
between two points. Let's go back to our flag of Israel and take a deeper look into the new
function createTriangle. It was based on the function £i11Triangle created in the
Creating shapes using paths recipe.

function
createTriangle (context,xl,yl,x2,y2,x3,y3,fillColor, strokeColor) {

if (fillColor)
context.fillStyle = fillColor;
context.fill () ;

}

if (stokeColor) {
context.strokeStyle = fillColor;
context.stroke() ;

}

I've highlighted the new components of this function compared to the function
fillTriangle. The two new parameters £illColor and strokeColor define if
we should fill or stroke the triangle. Notice that we moved the strokeStyle and
fillstyle methods to the bottom of our function to reduce our code footprint.
Great! We now have a modern triangle creator that could deal with the Star of David.

Drawing Shapes in Canvas

OK, time to connect the dots (literally speaking) and create the flag of Israel. Looking back at
our original code we find ourselves using the createTriangle function twice to create the
full Star of David shape. Let's take a deeper look at the logic here by looking at the second
triangle (the one that is turned upside down):

createTriangle (context,
baseX+ Math.sin(tilt) * radius,
baseY + Math.cos (tilt) * radius,
baseX+ Math.sin(radian*120+tilt) * radius,
baseY + Math.cos(radian*120+tilt) * radius,
baseX+ Math.sin(radian*240+tilt) * radius,
baseY + Math.cos (radian*240+tilt) * radius,
null, "#0040C0") ;

We are sending in three points on the virtual circle to create a triangle. We split our virtual
circle to three equal parts and find the point values at the 0, 120, and 240 degrees. This way
if we drew a line between these points we would get a perfect triangle in which all of the sides
were equal.

Let's take a deeper look at one of the points sent to the createTriangle function:

baseX + Math.sin(radian*120+tilt) * radius,
baseY + Math.cos(radian*120+tilt) * radius

We start from baseX and baseY (the center of the screen) as the center point of our circle
before we figure out the actual point gap from that base starting point. We then add to it
the value that we get from Math.sin and Math. cos respectively. In this example, we are
trying to get 120 degrees plus the tilt value. In other words, 120 degrees plus 180 degrees
(or 300 degrees).

To make it easier to comprehend, in pseudocode it would look similar to the following
code shippet:

startingPositionX + Math.sin(wantedDegree) * Radius
startingPositionY + Math.cin(wantedDegree) * Radius

Not much more to say besides congrats. We just finished creating another flag and in the
process, learned how to create complex shapes, use math to help us figure out points on the
screen, and mix together different shapes to create more advanced shapes.

NED

Chapter 1

Adding more vertices

There are many flags that contain stars that just cannot be created by overlapping triangles. In
this recipe, we will figure out how to create a star that contains an arbitrary number of points
We will use the same key concept we discovered in the previous recipe by taking advantage
of a virtual circle to calculate positions, this time with only two virtual circles. In this recipe, we
will create the flag of Somalia and in the process figure out how to create a function that will
enable us to create stars.

Getting ready

Please continue working on the sample from the previous recipe. If you haven't worked on

it yet, | strongly encourage you to do so as this recipe is the next logical step of the previous
recipe. As in the previous recipe, we will be skipping the HTML portion of this sample. Please
review the first recipe in the book to refresh on the required HTML code.

How to do it...

Let's jump right in and create the flag of Somalia.

1. Create the canvas standard logic:

var canvas = document.getElementById("somalia") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");

Drawing Shapes in Canvas

2. Fill the background color of canvas:

context.fillStyle = "#4189DD";
context.fillRect (0,0,wid, hei) ;

3. Draw the star by calling the createStar function:
createStar (context,wid/2,hei/2,7,20,5, "#££££££",null,0) ;

4. Create the createStart function:

function createStar (context,baseX, baseY,
innerRadius, outerRadius,
points,fillColor,
strokeColor, tilt) {

// all the rest of the code in here

}

5. From this point on we will be working within the createStart function. Add a few
helper variables:
function createStar (context,baseX,baseY, innerRadius,outerRadius,
points,fillColor, strokeColor, tilt)
var radian = Math.PI/180;
var radianStepper = radian * (360/points) /2;
var currentRadian =0;
var radianTilt = tilt*radian;

6. Callthe beginPath method before starting to draw any shape:

context.beginPath() ;

7. Move the drawing pointer to the angle 0 in the internal circle:
context .moveTo (baseX+ Math.sin (currentRadian +

radianTilt) * innerRadius,baseY+
Math.cos (currentRadian + radianTilt) * innerRadius) ;

8. Loop through the total points of the star and draw a line back and forth between the
outer circle and inner circle to create a star:

for(var i=0; i<points; i++)

currentRadian += radianStepper;

context.lineTo (baseX+ Math.sin(currentRadian +
radianTilt) * outerRadius,baseY+
Math.cos (currentRadian + radianTilt) * outerRadius) ;

currentRadian += radianStepper;

context.lineTo (baseX+ Math.sin(currentRadian +
radianTilt) * innerRadius,baseY+
Math.cos (currentRadian + radianTilt) * innerRadius) ;

=

Chapter 1

9. Close the path of the drawing and fill or stroke according to the function parameters:

context.closePath() ;

if (fillcolor) {
context.fillStyle = fillColor;
context.fil11 () ;

if (strokeColor)
context.strokeStyle = strokeColor;
context.stroke () ;

}

When you run your HTML wrapper, you will find your first star and with it another flag will be
under your belt.

Let's start by understanding what the function we are going to create expects. The idea is
simple, to create a star we want to have a virtual inner circle and a virtual outer circle. We can
then draw lines between the circles back and forth to create the star. To do so, we need some
basic parameters.

function createStar (context,baseX, baseY,
innerRadius, outerRaduis,points,fillColor,
strokeColor, tilt) {

Our regular context, baseX and baseY don't need further introductions. The virtual
innerRadius and outerRadius are there to help define the length of the line segments
that create a star and their positions. We want to know how many points our star will have.
We do so by adding in the points parameters. We want to know the £ill1Color and/or
strokeColor so we can define the actual colors of the star. We top it with a tilt value (it
can be useful as we've seen when creating the Star of David for the flag of Israel).

var radian = Math.PI/180;

var radianStepper = radian * (360/points) / 2;
var currentRadian =0;

var radianTilt = tilt*radian;

Drawing Shapes in Canvas

We then move on to configure our facilitator variables for our star. It's not the first time we see
the radian variable, but it is our first radianStepper. The goal of the radian stepper is to
simplify calculations in our loop. We divided 360 degrees by the number of points our triangle
will have. We divided the value by 2, as we will have two times the number of points as lines.
Last but not least, we want to convert this value into radians so we are duplicating the full
results by our radian variable. We then create a simple currentRadian variable to store the
current step we are in and finish off by converting the ti1t value to be a radian value, so we
can add it into all our lines without extra calculations within the loop.

As always, we start and complete our shapes with the beginPath and closePath methods.
Let's take a deeper look at the starting position for our soon-to-be shape:

context .moveTo (baseX+ Math.sin(currentRadian + radianTilt) *
innerRadius,baseY+ Math.cos (currentRadian + radianTilt) *
innerRadius) ;

Although at first glance this probably looks a bit scary, it's actually very similar to how we
created the Star of David. We are starting at currentRadian (that is currently 0) using
innerRadius as our start point.

In our loop, our goal will be to weave back and forth between the inner and external circles.
To do so we will need to progress the currentRadian value each time the loop cycles by
a radianStepper:

for(var i=0; i<points; i++)

currentRadian += radianStepper;

context.lineTo (baseX+ Math.sin (currentRadian + radianTilt) *
outerRadius,baseY+ Math.cos (currentRadian + radianTilt) *
outerRadius) ;

currentRadian += radianStepper;

context.lineTo (baseX+ Math.sin (currentRadian + radianTilt) *
innerRadius,baseY+ Math.cos (currentRadian + radianTilt) *
innerRadius) ;

}

We start a loop based on the number of points in our parameter. In this loop, we go back and
forth between the external radius and the internal one each time we draw two lines between
the inner circle and the external one. Our step size is defined by the number of points (the
value we configured with the radianStepper variable).

We covered the rest of the functions when we created the createTriangle function in
an earlier recipe. There you have it! You can now run the app and find our seventh flag. With
this new complex function, we can create all solid stars and all non-solid stars that are
hollow within.

OK | hope you are sitting down... with the newly-acquired star powers, you can now create at
least 109 flags including the United States of America and all the other countries that have
stars in their flag (57 percent of the countries in the world and counting!).

S E

Chapter 1

Overlapping shapes to create other shapes

There are many flags and many shapes in general that can be created by combining the
shapes we created so far. One of the most popular shapes in 82 flags we don't know how to
create is the crescent shape like the one in the flag of Turkey. With it we learn a new skill of
using subtraction to create more in-depth shapes.

Getting ready

The previous recipe is our starting point in this recipe. From here, we will continue working to
create more advanced shapes that are built out of two shapes when combined. As such, we
will be using the code created in the last recipe located in 01.02.flags.js.

How to do it...

Let's jump right into our code and see it in action.

1. Gain access to the context and save the width and height of the canvas into variables:

var canvas = document.getElementById ("turkey") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");

s

Drawing Shapes in Canvas

2. Fill the rectangle canvas area:

context.fillStyle = "#E30A17";
context.fillRect (0,0,wid, hei) ;

3. Create a full circle:

context.fillStyle = "#ff£ffff";

context .beginPath() ;

context.arc(wid / 2 - 23, hei / 2, 23, 0, 2 *
Math.PI, false);

context.closePath() ;

context.f£ill () ;

4. Change the color of canvas fill. Fill a circle within its bound with another circle that
hides part of the last circle that was created. This effect creates a shape that looks
like a crescent moon:

context.fillStyle = "#E30A17";

context .beginPath() ;

context.arc(wid / 2 - 18, hei / 2, 19, 0, 2 *
Math.PI, false);

context.closePath() ;

context.f£ill () ;

5. Reuse createStart from the previous recipe to add the Turkish star:

createStar (context,wid/2 +
13,hei/2,5,16,5,"#ff£f£££f",null, 15);

There you go! You've just created a shape that is not possible without masking one shape
with another.

The catch here is we are using two circles, one overlaps the other to create a crescent shape.
By the way, notice how we are tilting the star as well so that one of its points will point
to the middle of the circle.

We've gone through a lot in the last few examples and at this stage you should be very
comfortable creating many shapes and elements in the canvas. There is still much to explore
before we can say we have mastered canvas, but we can definitely say we have mastered
creating most of the flags of the world and that's very cool. | would love to see your flags.
Drop me a line when you create one not in the book! :)

>

>

Advanced Drawing
in Canvas

Drawing arcs

Drawing curves with a control point
Creating a Bezier curve

Integrating images into our art
Drawing with text

Understanding pixel manipulation

Introduction

This is the last chapter where we will dig deep into canvas as the remaining chapters will
focus on building charts and interactivity.

In this chapter, we will continue to master our skills with canvas by adding curves, images,
text, and even pixel manipulation to our tool belt.

Drawing arcs

There are three types of curves we can create in canvas—using the arc, quadratic curves, and
Bezier curves. Let's get started.

Advanced Drawing in Canvas

Getting ready

If you recall in Chapter 1, Drawing Shapes in Canvas, in our first recipe we used the arc
method to create perfect circles. The arc method is much more than just that. We can actually
create any partial curve in a circular shape. If you don't recall drawing circles, | strongly
encourage you to scan through Chapter 1, Drawing Shapes in Canvas again, and while you are
there, you will find the template for creating the HTML documents as well. We are exclusively
going to focus on the JavaScript code in this recipe.

How to do it...

Let's jump into it and create our first noncircle that has curves:

1.

Access the pacman canvas element and fetch its width and height by using the
following code snippet:

var canvas = document.getElementById("pacman") ;
var wid = canvas.width;
var hei = canvas.height;

Create a radian variable (one degree in radians):
var radian = Math.PI/180;

Get the canvas context and fill its background in black by using the following code
snippet:

var context = canvas.getContext ("2d");
context.fillStyle = "#000000";
context.fillRect (0,0,wid, hei) ;

Begin a new path before starting to draw:

context .beginPath () ;

Change fill style color:
context.fillStyle = "#F3F100";

Move the pointer to the center of the screen:

context .moveTo (wid/2,hei/2) ;

Draw a curve that starts at 40 degrees and ends at 320 degrees (with a radius of 40)
in the center of the screen:

context.arc(wid / 2, hei / 2, 40, 40*radian, 320*radian,
false) ;

NED

Chapter 2

8. Close the shape by drawing a line back to the starting point of our shape:
context.lineTo(wid/2,hei/2) ;

9. Close the path and fill the shape:

context.closePath() ;
context.fi11 () ;

You have just created a PacMan.

How to do it...

For the first time, we take advantage and create a pie-type shape, known as PacMan
(you can see how this can be very useful when we get into creating the pie graph).
Very simple—again we connect to that idea of radians:

context.arc(wid / 2, hei / 2, 40, 40*radian, 320*radian, false);

Notice how our 4th and 5th parameters—instead of being a complete circle by starting from
0 and ending at 2*Math . PI—are setting the angle to start the arc at radian 40 and end at
radian 320 (leaving 80 degrees open to create the mouth of a PacMan). All that is left is to
start drawing from the center of the circle:

context .moveTo (wid/2,hei/2) ;
context.arc(wid / 2, hei / 2, 40, 40*radian, 320*radian, false);
context.lineTo(wid/2,hei/2) ;

We start by moving our pointer to the center of our circle. We then create the arc. As our arc
isn't a complete shape it's continuing where we left off—drawing a line from the center of the
arc to the starting point (40 degrees). We complete the action by drawing a line back to the
center of the arc to complete the shape. Now we are ready to fill it and complete our work.

Now that we have got arcs out of the way, you can see how useful this will be for creating
pie charts.

s

Advanced Drawing in Canvas

Drawing curves with a control point

If the world was just two points with a perfect arc this would be the end of the book, but alas

or lucky for us, there are still many more complex shapes to learn and explore. There are many
curves that are not perfectly aligned curves. Till now all the curves that we created were part of
a perfect circle, but not any more. In this recipe, we will explore quadratic curves. The quadratic
curves enable us to create curves that are not circular, by adding a third point—a controller to
control the curve. You can easily understand this by looking at the following diagram:

control point

point A point B

A quadratic curve is a curve that has one control point. Consider the case when creating a
line, we draw it between two points (A and B in this illustration). When we want to create a
quadratic curve, we use an external gravity controller that defines the direction of the curve
while the middle line (the dotted line) defines how far will the curve reach.

Getting ready

As done in previous recipes, we are skipping the HTML part here too—not that it's not needed,
it just repeats itself in every recipe and if you need to refresh yourself on how to get the

HTML setup, please take a look at the Graphics with 2D Canvas recipe in Chapter 1, Drawing
Shapes in Canvas.

How to do it...

In this example, we will create a closed shape that looks like a very basic eye.
Let's get started:

1. We always need to start with extracting our canvas element, setting up our width and
height variables, and defining a radian (as we find it useful to have one around):

var canvas = document.getElementById("eye") ;
var wid = canvas.width;
var hei = canvas.height;
var radian = Math.PI/180;

Chapter 2

2. Next, fill our canvas with a solid color and after that begin a new shape by triggering
the beginPath method:

var context = canvas.getContext ("2d");
context.fillStyle = "#dfdfdf";
context.fillRect (0,0,wid, hei) ;
context .beginPath() ;

3. Define the line width and stroke color for our eye shape:

context.lineWidth = 1;
context.strokeStyle = "#000000"; // line color
context.fillStyle = "#ffffff";

4. Move our drawing pointer to the left-centered point as we will need to draw a line
from left to right in the center of the screen and back (only with a curve):
context .moveTo (0,hei/2) ;
5. Draw two quadratic curves from our initial point to the other side of the canvas and

back to the initial point by using an anchor point, which is in the extreme top followed
by the extreme bottom of the canvas area:

context.quadraticCurveTo(wid / 2, 0, wid,hei/2);
context.quadraticCurveTo(wid / 2, hei, 0,hei/2);

6. Close the path. Fill the shape and use the stroke method on the shape (£111 for
filling the content and stroke for outlines):

context.closePath() ;
context.stroke () ;
context.fi11() ;

Great job! You have just created your first shape by using the quadraticCurveTo method.

Let's look at this method closely:
context.quadraticCurveTo(wid / 2, 0, wid,hei/2);

As we are already at the origin point (point A), we input two other points—the control point
and point B.

context.quadraticCurveTo (controlX, controlY, pointB X, pointB_Y);

@l

Advanced Drawing in Canvas

In our sample, we create a contained shape—the starting point to create an eye. Play with the
controller to see how it affects the direction and size of the curve. The thumb rule is that the
closer to the vertical line the less steep the curve will be, and the further away it is from the
center point the more curved shape would be to the offset.

Creating a Bezier curve

We've just learned that with the quadratic curve we have one control point. Although we

can do many things with one control point, we don't really have full control over the curve.
So let's take it one step further by adding one more control point. Adding a second control
point actually adds the relationship between these two points as well making it three control
factors. If we include the actual anchor points (we have got two of them), we end up with five
points that control the shape of the curve. That does sound complicated; it's because the
more control we get the more complicated it is to actually understand how it works. It's really
not easy to figure out complicated curves by code alone and as such we actually use other
tools to help us figure out the right curves.

To prove the preceding point, we can find a very complex shape and start with that one (don't
worry, later on in this recipe, we will practice on a very simple shape to make the concept
clear). We will pick to draw the flag of Canada and mainly the maple leaf.

=
E ==

=

Getting ready

Chapter 2

This recipe is difficult to understand, but we will break it down into details in the following How
it works... section. So if you are new to curves, | strongly encourage you to start learning from

this How it works... section before implementing it.

How to do it...

Let's create the flag of Canada. Let's jump right into the JavaScript code:

1. Create the canvas and context:

var canvas = document.getElementById("canada") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");

2. Fill the background to match the background of the Canadian flag:

context.fillStyle="#FF0000";
context.fillRect (0,0,50,100) ;
context.fillRect (wid-50,0,50,100) ;

3. Begin a new path and move the pointer to 84, 19:

context .beginPath() ;
context .moveTo (84,19) ;

4. Draw curves and lines to create the maple leaf:

context.bezierCurveTo(90,24,92,24,99,8);
context .bezierCurveTo(106,23,107,23,113,19) ;
context.bezierCurveTo(108,43,110,44,121,31) ;
context.bezierCurveTo(122,37,124,38,135,35) ;
context .bezierCurveTo(130,48,131,50,136,51) ;
context.bezierCurveTo(117,66,116,67,118,73) ;
context.bezierCurveTo (100,71,99,72,100,93);
context.lineTo(97,93) ;
context .bezierCurveTo(97,72,97,71,79,74)
context .bezierCurveTo(81,67,80,66,62,51) ;
context .bezierCurveTo(67,49,67,48,63,35);
)
)

7

7

context.bezierCurveTo(74,38,75,37,77,31
context.bezierCurveTo(88,44,89,43,84,19

7

Advanced Drawing in Canvas

5. Close the path and fill the shape:

context.closePath() ;
context.fi11() ;

Now, you have created the flag of Canada. | don't know if you already know why it works or
how we got to the apparently random numbers that we put into our curves to create the flag,
but you've created the flag of Canada! Don't worry, we are about to decrypt the magic of
curves right away in the next section.

Before we can explain the details of how the Canadian flag works, we should take a step back
and create a simpler example. In this short example, we will create an oval shape by using the
bezierCurveTo method.

context .moveTo (2,hei/2) ;
context .bezierCurveTo (0, 0,wid, 0, wid-2,hei/2);
context .bezierCurveTo (wid, hei,0,hei, 2,hei/2);
context.closePath() ;
context.stroke () ;
context.fill () ;

That's it. The following is the outcome you get out of this:

If you get this, you are in great shape. We will now explain how this works and then move into
how we figured out all the points for the Canadian flag. We are taking advantage of the full
canvas again and we are keeping our controllers under control by setting two of our controllers
to be the corners of the canvas:

context .bezierCurveTo (controlPointX1l, controlPointYl, controlPointX2,
controlPointY2, pointBX, pointBY) ;

Play around with the controllers to see how much more control you get by using two dots—this
is very useful when you need more detailed control over a curve.

=

Chapter 2

This is the heart of the full example of our full flag. | strongly encourage you to explore
the effects of changing the values of the control points to get a better understanding and
sensitivity to it. It's time for us to get back to our flag and see how we structured it.

It's time to take our most complex drawing style—Bezier curves—and put them to action with
something a bit more interesting than an oval. | have a confession: when | decided to create
the flag of Canada from scratch | got scared. | was thinking "How am | going to get this done?
This is going to take me hours," and then it hit me... it was clear that this flag needs to be
created with a lot of Bezier points but how would | know where the points should be? So for
a shape this advanced, | opened up my graphics editor (in my case, Flash Editor) and added
pivot points to the maple shape:

If you closely look at the previous diagram, | basically traced the flag of Canada and placed a
black dot on every sharp corner. Then | created a canvas and drew lines to see if the base shape
| got was in the right overall position (by the way, | got the dots just by selecting the dots in Flash
to see if their (X, y) coordinates as Flash and canvas coordinate systems are the same).

var context = canvas.getContext ("2d");

context
context

context

context.
context.
.lineTo

context

context.
context.
context.
context.
context.
context.
context.
context.

context.
context.

.beginPath() ;

.moveTo (84,19) ;
context.
.1lineTo

lineTo (99, 8) ;
113,19

’

lineTo
lineTo (135
136

lineTo (118

lineTo (97,
79,
62,

lineTo
lineTo
lineTo
lineTo

121,31

)
)i
,35);
).
)
)

’

, 51
, 73
, 93
93) ;
74
51

’

’

7

7

77,31
84,19

7

7

(
(
(
(
(
(
lineTo (100
(
(
(
(
(
(

)

)
63,35) ;

)

lineTo)

closePath() ;
stroke () ;

=]

Advanced Drawing in Canvas

| got a shape that was far from what | was looking for. But now | knew that my shape was
getting formed in the right direction. What were missing were the curves to connect between
the dots. If you look at the preceding diagram again, you will notice that I've placed two blue
points between each sharp corner to define where the curves would be and how sharp or soft
they would be. | then moved back into canvas and then updated the values to have the two
control points. | added all the curves and switched from creating strokes to creating a fill.

var context = canvas.getContext ("2d") ;
context.fillStyle="#FF0000";
context.fillRect(0,0,50,100);
context.fillRect(wid-50,0,50,100) ;

context.beginPath() ;

context.moveTo (84,19) ;
context.bezierCurveTo(90,24,92,24,99,8);
context.bezierCurveTo(106,23,107,23,113,19);
context.bezierCurveTo(108,43,110,44,121,31);
context.bezierCurveTo(122,37,124,38,135,35);
context.bezierCurveTo(130,48,131,50,136,51);
context.bezierCurveTo(117,66,116,67,118,73);
context.bezierCurveTo(100,71,99,72,100,93);
context.lineTo(97,93);
context.bezierCurveTo(97,72,97,71,79,74);
context.bezierCurveTo(81,67,80,66,62,51);
context.bezierCurveTo(67,49,67,48,63,35);
context.bezierCurveTo(74,38,75,37,77,31);
context.bezierCurveTo (88,44,89,43,84,19);
context.closePath() ;

context.fill () ;

Bingo! | just got an almost perfect flag and | feel this is enough for this sample.

Don't try to create very complex shapes on your own just yet. Maybe there are a few people
out there who can do that, but for the rest of us the best way to do it is to trace the elements
by using a visual editor of some sort. We can then grab the graphic information and update
the values in canvas as I've done with the Canadian flag example.

At this stage, we have covered the most complex shapes that we can cover in canvas.
The rest of the chapter is dedicated to other ways of manipulating content on the screen.

Integrating images into our art

Lucky for us, we don't need to start from scratch always and we can leave the more complex
art for external images. Let's figure out how we can integrate images into our canvas.

=)

Chapter 2

Getting ready

We've been in a flag theme in this chapter and getting another flag under our belt sounds
real good to me right now. So let's turn our heads to Haiti and get their flag up and running.
To create this flag, we need to have the image of the symbol that is placed in the center

of the flag.

In the source files, you will find an image of the center graphic (at img/haiti.png). By the
way, when integrating art into canvas it's always best to avoid resizing the image whenever
possible via code to preserve the image quality.

How to do it...

We will prepare the background to match the flag and then put the entire image above it in
the center of the canvas/flag:

1. Follow the basic steps that we need to access the canvas. Set the width, height, and
the actual context:

var canvas = document.getElementById("haiti");
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");

2. Draw the background elements:

context.fillStyle="#00209F";
context.fillRect (0,0,wid, hei/2) ;
context.fillStyle="#D21034";
context.fillRect (0,hei/2,wid, hei/2) ;

3. Create a new Image object:

var oIMG = new Image() ;

@1

Advanced Drawing in Canvas

4. Create an onLoad function (that will be called when the image is loaded):

oIMG.onload = function() {
context.drawImage (this, (wid-this.width) /2, (hei-this.height)/2);

Vi

5. Set the source of the image:

oIMG.src = "img/haiti.png";

Yes, it's that easy to add images into canvas, but let's review more deeply what we have
just done.

The steps involved in creating an image are downloading its data and then creating a new
image container in the same way as it is done in canvas:

var oIMG = new Image() ;

The next step is to create a listener that will be triggered when the image is loaded and ready
to be used:

oIMG.onload = thelListenerFunctionHere;

The last step in the loading process is to tell canvas what image should be loaded. In our case
we are loading img/haiti.png:

oIMG.src = "img/haiti.png";

Loading an image and having it ready to be used is only the first step. If we ran our
application without actually telling canvas what to do with it, nothing would happen
beyond the loading of the image.

In our case, when our listener is triggered, we add the image as it is to the center
of the screen:

context.drawImage (this, (wid-this.width) /2, (hei-this.height)/2);

That is all it takes to integrate an image into a canvas project.

There are more operations that we can do with images in canvas beyond using them as
backgrounds. We can define exactly what parts of the image we want (scaling). We can resize
and manipulate the full image (scaling). We can even pixel manipulate our images. There are
many things that we can do with images, but in the next few topics we will cover some of the
more often used ones.

=

Chapter 2

Scaling images
We can scale the image by adding two more parameters to the drawImage function, which
sets the width and height of our image. Try the following;:

context.drawImage (this, (wid-this.width) /2, (hei-this.height)/2 , 100,
120) ;

In the previous sample, we are loading the same image but we are forcing a resized image
(note that the positions are not going to be in the actual center of the stage).

Adding even more control

You can control many aspects of an image. If you need more control than the preceding
sample, you would need to input the full number of possible coordinates:

context.drawImage (this, sourceX, sourceY, sourceWidth, sourceHeight,
destX, destY, destWidth, destHeight) ;

In this case, the order has changed (notice that!). Now, the first two parameters after this
are the local x and y coordinates of the image followed by the width and height (creating the
crop that we were talking about) followed by the position on the canvas and its controlling
information (x, y, width, and height).

In our case:
context.drawImage (this, 25,25,20,20,0,0,50,50);

The preceding code line means we want to take the image from its internal position of (25,25)
and we want to slice a 20 x 20 rectangle out of there. We then want to position this new
cropped image at (0,0) that is, the top corner of the canvas and we want that output to be a
50 x 50 rectangle.

Using images as a fill
We can use our loaded image as a way to fill up objects as well:

var oIMG = new Image() ;
oIMG.onload = function() {
var pattern = context.createPattern(this, "repeat");
createStar (context,wid/2,hei/2,20,50,20,pattern, "#££££££",20) ;
}i

oIMG.src = "img/haiti.png";

After the image is loaded (always after the image is loaded, you start manipulating it), we
create a pattern that repeats based on our image:

var pattern = context.createPattern(this, "repeat");

@]

Advanced Drawing in Canvas

We can then use this pattern as our fill. So in this case, we are calling the createStar
that we created in an earlier task—drawing a star in the center of the screen—by using the
following pattern:

createStar (context,wid/2,hei/2,20,50,20,pattern, "#EEE£EEE", 20) ;

This ends our flag obsession to move on to shapes that just don't appear in flags. By the way,
at this stage you should be able to create all the flags in the world and take advantage of
integrating images when it's just not fun to draw it yourself from scratch—such as detailed
country logos.

Drawing with text

| agree, we've been working on some complicated things. Now, its time for us to lay back, kick
off the shoes, and do something a bit easier.

Getting ready

The good news is, if you are on this page, you should already know the basics of getting a
canvas up and running. So there isn't much more that you need to do besides picking the font,
size, and position of your text.

Here, we aren't covering how you can embed fonts that aren't created
within JavaScript, but instead, via CSS, we will use a basic font and
e hope for the best in this sample.

SNED

Chapter 2

How to do it...

In this example, we are going to create a text field. In this process, we are going to use
gradients and shadows for the first time. Perform the following steps:

1. Gain access to the canvas 2D API:

var canvas = document.getElementById("textCanvas") ;
var wid = canvas.width;
var hei = canvas.height;

var context = canvas.getContext ("2d");

2. Create a gradient style and fill the background with it:

var grd = context.createLinearGradient (wid/2, hei/2, wid, hei);
grd.addColorStop (0, "#8ED6FF") ;
grd.addColorStop (1, "#004CB3")
context.fillStyle= grd;
context.fillRect (0, 0,wid, hei) ;

3. Create a gradient to be used by the text:

grd = context.createLinearGradient (100, hei/2, 200,
hei/2+110) ;

grd.addColorStop (0, "#ffffoo");

grd.addColorStop (1, "#aaaa44d");

4. Define the font to be used and set the style:

context.font = "50pt Verdana, sans-serif';
context.fillStyle = grd;

5. Add shadow details before drawing the text:

context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context .shadowBlur = 8;
context .shadowColor = 'rgba(255, 255, 255, 0.5)';

6. Use fillText to fill the shape and strokeText for outlines of the shape (notice
that | call the text a shape; this is because as soon as we draw it, it will just be a part
of our canvas and not live text):

context.fillText ("Hello World!", 100, hei/2);
context.strokeStyle = "H#ffffffr;
context.strokeText ("Hello World!", 100, hei/2);

That's it, we just integrated our first drawn text into canvas.

i

Advanced Drawing in Canvas

Until now, we were stuck with the solid colors. We will now break out of that and move to a
new world of gradient colors. Refer to the following code snippet:

var grd = context.createLinearGradient (wid/2, hei/2, wid, hei);
grd.addColorStop (0, "#8ED6FF") ;
grd.addColorStop (1, "#004CB3") ;

There are a few steps involved with creating a gradient. The first step is defining its scope:

var grd = context.createlinearGradient (x1, y1l, x2, y2);

Contrary to many other languages, it's really easy to define the rotation and size of a gradient
in canvas. If you have worked with Photoshop before, you will find this really easy (even if you
haven't, it will be easy).

All you need to do is define where you want the gradient to start and where you want it to end.
You can send two dots into the method createLinearGradient:

grd.addColorStop (0, "#8ED6FF") ;
grd.addColorStop (1, "#004CB3") ;

In this transition, we are using only two colors. Position them at a value between 0 and 1.
These values are ratios, so we are, in other words, requesting to spread the color transition
from the start of the gradient area all the way to the end. We could add more colors, but our
goal is to bind them all within the ratio O to 1. The more colors you add, the more playing
around you would need to do with the values sent into the first parameter.

You just completed creating a gradient. Time to use it:

context.fillStyle= grd;
context.fillRect (0,0,wid, hei) ;

In this part again, we will use the £111Style method and then create a rectangle.

Please note the importance of the range of values that you may send to the addColorStop
method. As you add more colors into your gradient, the more noticeable the importance of the
values sent here will be. The points are not counters but ratios of colors in our sample. The
transition is between the two colors' range from 0 to 1 or in other words they transition all the
way through from our first point that we send into the createLinearGradient method all
the to the last point. As we are working with two colors, this is the perfect ratio for us.

Although we are not getting into radial gradients, they should be really easy for you as we
have already learned a lot about radial shapes and gradients. The signature of this method
is as follows:

context.createRadialGradient (startX, startY, startR, endX,endY,endR) ;

=

Chapter 2

The only difference here is that our shape is a radial shape. We also want to add the starting
radius and ending radius into it. You might be wondering why we need two or even more radii.
So why can't we figure out the radius based on the distance between the two dots (start point
and end point)? | hope you are wondering about that and if you are not, wonder about it for a
second before reading the next paragraph.

We have a separate control over the radius, mainly to enable us to separate the radius and
to enable us to move the focal point within the drawing without changing the actual art or
recalculating the ratios of colors. A really great way to see this in use is when drawing the
moon. The moon's gradients over time will change or more accurately the radius of the
colors and position of the radius would change over time depending on the moon's position
compared to the sun.

We are not done yet. We just mastered everything that we need to know about gradients and
it's time for us to integrate some text into it.

context.font = "50pt Verdana, sans-serif';
context.fillText ("Hello World!", 100, hei/2);

We set the global font value and then create a new text element. The £111Text method gets
three parameters; the first is the text to be used while the other two are the x and y positions
of the new element.

context.strokeStyle = "HEEEffE";
context .strokeText ("Hello World!", 100, hei/2);

In our example, we are giving our text drawing both a fill and an outline. The two functions are
called separately. The £i11Text method is used to fill the content of the shape while the
strokeText method is called to outline the text. We can use any one of them or both of the
methods and they can get the exactly same parameters.

There's more...

There are some more options that you can explore.

Using gradients in your text

If you can do anything to any graphical element in canvas, you can do it to text as well—for
example, in our sample we are using a gradient for our text.

grd = context.createlLinearGradient (100, hei/2, 200, hei/2+110) ;
grd.addColorStop (0, "#ffffoo");
grd.addColorStop (1, "#aaaa44");

context.font = "50pt Verdana, sans-serif';
context.fillStyle = grd;

-

Advanced Drawing in Canvas

Notice that we are updating our gradient. Our last gradient was too big for such a small text
area. As such, we are drawing a line from around the start of our text going horizontally for
110 pixels.

Adding shadows and glows
You can add a shadow/glow to any filled element:

context.shadowOffsetX = 0;
context.shadowOffsetY = 0;

context.shadowBlur = 8;
context.shadowColor = 'rgba (255, 255, 255, 0.5)';
context.fillText ("Hello World!", 100, hei/2);

You can control the position of the offset of the shadow. In our case, we want it to be

a glow, so we placed our shadow exactly under our element. When setting the blur values
to a shadow, try using values that are powers of 2 for efficiency (its easier to render values
that are powers of 2).

Notice that when we defined our shadow color, we opted to use an RGBA as we wanted to set
that alpha value to 50 percent.

Understanding pixel manipulation

Now that you have mastered drawing in canvas, it's time for us to turn to a new aspect of
working with canvas. In canvas, you can manipulate pixels. It's not only a vector drawing tool,
but a very smart pixel editor (raster).

Getting ready

Now that we are about to start reading data that is present on the canvas, we need to
understand how security works when it comes to pixels. In an effort to protect content that
isn't yours, there are security issues involved in working with data that isn't hosted on the
same host as yours. We will not cover these security issues in this section and will be always
working with images in the same domain as our code (or all locally).

Your first step is to find an image that you wish to work with (I've added an old image of my
own into the source files). In this sample, we will recreate a pixel fade-out animation—really
cool and useful for slides.

=

How to do it...

Chapter 2

Let's get our code working and then break it down to see how it works. Perform the
following steps:

1.

Create a few helper global variables:

var
var
var
var
var

var

context;

imageData;

pixelData;

pixellLen;
currentLocation=0;
fadeOutImagelnterval;

Create an init function (for the rest of the steps, all code will be in this function):

function init ()

//all the rest of the code will go in here

}

Create a context variable for the 2D Canvas API:

function init ()

var canvas = document.getElementById("textCanvas");
var wid = canvas.width;

var hei = canvas.height;

context = canvas.getContext ("2d");

Advanced Drawing in Canvas

4. Create a new image:

var oIMG = new Image() ;

5. Add the onload listener logic:

oIMG.onload = function()
context.drawImage (this,
0,0,this.width,this.height,0,0,wid, hei) ;
imageData = context.getImageData (0, 0, wid, hei);
pixelData = imageData.data;
pixellLen = pixelData.length;
fadeOutImageInterval = setInterval (fadeOutImage, 25);

Vi

6. Define the image source:
oIMG.src = "img/slide2.jpg";

} //end of init function

7. Create a new function called fadeOut Image. This image will transition our image in:

function fadeOutImage () {
var pixelsChanged=0;
for (var i = 0; i < pixelLen; i +=4) {
if (pixelData[i]) {
pixelData[i] = pixelDatal[il-1; // red
pixelsChanged++;
}
if (pixelDatali + 1]){
pixelData[i + 1] = pixelDatal[i+1]-1; // green
pixelsChanged++;
}
if (pixelDatali + 2]){
pixelDatal[i + 2] = pixelDatal[i+2]-1; // green
pixelsChanged++;

}

context .putImageData (imageData, 0, 0);

if (pixelsChanged==0) {
clearInterval (fadeOutImageInterval) ;
alert ("we are done fading out");

Chapter 2

Your outcome should look something like the following screenshot:

We will skip explaining things that we have already covered in earlier samples such as how to
load images and how to work with the drawImage method (covered in the Integrating images
into our art recipe discussed earlier in this chapter).

var context;

var imageData;

var pixelData;

var pixellen;

var currentLocation=0;
var fadeOutImagelInterval;

We will see the usage of these variables in our code, but all these variables have been saved
as global variables so there is no need to redefine them in our functions. By defining these
variables once, we improve the efficiency of our application.

The real new logic starts within the onLoad listener. Right after we draw our image onto the
canvas, our new logic is added. It is highlighted in the following code snippet:

var oIMG = new Image() ;
oIMG.onload = function() {
context.drawImage (this,
0,0,this.width,this.height,0,0,wid, hei) ;
imageData = context.getImageData (0, 0, wid, hei);
pixelData = imageData.data;

7}

Advanced Drawing in Canvas

pixellLen = pixelData.length;
fadeOutImageInterval = setInterval (fadeOutImage, 25);
}i

oIMG.src = "img/slide2.jpg";

We are now taking advantage of storing information in our canvas area and storing it globally.
The first variable we are storing is imageData. This variable contains all the information of
our canvas. We get this variable by calling the context .getImageData method.

context.getImageData (x, y, width, height) ;

The get ImageData function returns every single pixel for a rectangular area. We need to set
it by defining the area we want. In our case, we want the full canvas area as our image is set
in the full canvas area.

The returned object (imageData) stores the direct access to the pixel data information

in its data property (imageData.data) and this is our main focus while working directly
with pixels. This object contains all the color information for each pixel in our canvas. The
information is stored in four cells (red, green, blue, and alpha). In other words, if there are
100 pixels in total in our application, we would expect our array to contain 400 cells in the
imageData.data array.

The last thing left to do before finishing the logic in our onLoad listener is to trigger our
animation that will transition our image; to do that we will add an interval as follows:

fadeOutImageInterval = setInterval (fadeOutImage, 25);

Our animation is triggered after every 25 milliseconds until it's completed. The logic that
fades our view happens within our fadeOut Image function.

Now that we have got all the prep work done, it's time to delve into the fadeoutImage
function. Here, we will be doing the actual pixel manipulation logic. The first step in this
function is to create a variable that will count how many changes our imageData.data
array has made. When we hit the required number of changes, we terminate our interval
(or in a real application maybe animate the next image):

var pixelsChanged=0;
We now start to run through all the pixels by using a for loop:

for (var i = 0; i < pixelLen; i +=4) {
//pixel level logic will go in here

}

Each pixel stores RGBA values, thus, every pixel gets four positions in our array and as such
we are jumping four steps at a time to move between pixels.

context.putImageData (imageData, 0, 0);

NED

Chapter 2

When we are done with manipulating our data, it's time for us to update our canvas.
To do that we just need to send our new data back into our context. The second and third
parameters are for the x and y starting point.

if (pixelsChanged==0) {
clearInterval (fadeOutImageInterval) ;
alert ("we are done fading out");

}

When we have no more changes (you can adjust that to fit your wishes such as when there
are less than 100 pixels changed), we terminate the interval and trigger an alert.

In our for loop, we will lower the values of red, green, and blue until they get to O. In our case,
as we are counting changes we also add the counter into the loop:

for (var i = 0; i < pixelLen; i +=4) {
if (pixelData[i]) {
pixelDatal[i] = pixelDatalil-1; // red
pixelsChanged++;

!

if (pixelDatali + 1]){
pixelData[i + 1] = pixelDatal[i+1]-1; // green
pixelsChanged++;

if (pixelDatali + 2]){
pixelData[i + 2] = pixelDatali+2]-1; // blue
pixelsChanged++;

}
}

Earlier we mentioned that each pixel gets four cells of information in the array. The first three
cells store the RGB values, while the fourth stores the alpha channel. As such | thought it
would be important to notice that we are skipping position i+3 as we don't want the alpha
channel to get affected. Every element in the pixelData array is a value between 0 and 255.
In other words, if that pixel's value was #ffffff (white), all three RGB cells would be equal
to 255. By the way, it would take 255 calls to our function to get the values down to 0 as the
value in the cells would start from 255 and go down by 1 each time.

We always skip the position i+3, as we don't want to change anything in our array. Our values
are between 255 and 0; in other words, if our image has a value #f££££ £ (totally white pixel),
it would go down 255 times for our function to get 0.

s

Advanced Drawing in Canvas

Making an image grayscale

To make an image or our canvas grayscale, we need to take all of our colors (red, green, blue)
into account and mix them together. After mixing them together, get to a brightness value,
which we can then apply to all the pixels. Let's see it in action:

function grayScaleImage () {
for (var i = 0; i < pixelLen; i += 4) {
var brightness = 0.33 * pixelData([i] + 0.33 * pixelDatal[i + 1]
+ 0.34 * pixelDatali + 2];
pixelDatal[i] = brightness; // red
pixelDatal[i + 1] = brightness; // green
pixelDatal[i + 2] = brightness; // blue

}

context .putImageData (imageData, 0, 0);

}

In this case, we are taking the red (pixelDatal[i]), green (pixelData [i+1]), and
blue (pixelData [i+2]), and using a one third of each to combine together to get
one color and then we are assigning them all with this new averaged value.

Try only changing two out of the three values and see what comes out.

Pixel reversing

Color reversing an image is very easy as all we need to do is flip its value pixel by pixel by
taking the maximum possible value (255) and subtracting the current value from it:

function colorReverseImage(){
for (var i 0; i < pixelLen; i += 4) {

pixelData[i] = 255-pixelDatalil];

255-pixelData [i+1] ;

255-pixelData [i+2] ;

[
pixelData[i + 1]
pixelData[i + 2]

}

context .putImageData (imageData, 0, 0);

}

There you go! We visited a few options of pixel manipulation, but the limit is really just up to
your imagination. Experiment, you never know what might come out of it!

Creating Cartesian-
based Graphs

In this chapter, we will cover the following topics:

» Building a bar chart from scratch

» Spreading data in a scatter chart

» Building line charts

» Creating the flying brick chart (waterfall chart)

» Building a candlestick chart (stock chart)

Introduction

Our first graph/chart under the microscope is the most popular and simplest one to create.
We can classify them all roughly under Cartesian-based graphs. Altogether this graph style
is relatively simple; it opens the door to creating amazingly creative ways of exploring data.
In this chapter we will lay down the foundations to building charts in general and hopefully
motivate you to come up with your own ideas on how to create engaging data visualizations.

Creating Cartesian-based Graphs

Building a bar chart from scratch

The simplest chart around is the one that holds only one dimensional data (only one value per
type). There are many ways to showcase this type of data but the most popular, logical, and
simple way is by creating a simple bar chart. The steps involved in creating this bar chart will
be very similar even in very complex charts. The ideal usage of this type of chart is when the
main goal is to showcase simple data, as follows:

Getting ready

Create a basic HTML file that contains a canvas and an onLoad event that will trigger the
init function. Load the 03.01.bar. js script. We will create the content of the JavaScript
file in our recipe as follows:

<!DOCTYPE html>
<html>
<head>
<title>Bar Chart</titles>
<meta charset="utf-8" />
<script src="03.0l.bar.js"></script>
</head>
<body onLoad="init () ;" style="background:#fafafa">
<hl>How many cats do they have?</hl>
<canvas id="bar" width="550" height="400"> </canvas>
</body>
</html>

&

Chapter 3

Creating a graph in general has three steps: defining the work area, defining the data sources,

and then drawing in

the data.

How to do it...

In our first case, we will compare a group of friends and how many cats they each own. We will
be performing the following steps:

1. Define your

var data

For this exa

data set:

= [{label:"David",
value:3,
style:"rgba (241, 178, 225, 0.5)"},
{label:"Ben",
value:2,
style:"#B1DDF3"},
{label:"Oren",
value:9,

style: "#FFDE89"},
{label:"Barbera",
value:6,
style:"#E3675C"},
{label:"Belann",
value:10,
style:"#C2D985"}] ;

mple I've created an array that can contain an unlimited number of

elements. Each element contains three values: a label, a value, and a style for

its fill color.

2. Define your

graph outlines.

Now that we have a data source, it's time to create our basic canvas information,
which we create in each sample:

var can =

document .getElementById ("bar") ;

var wid = can.width;

var hei = can.height;

var context = can.getContext ("2d") ;
context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,wid, hei) ;

Creating Cartesian-based Graphs

3. The next step is to define our chart outlines:
var CHART PADDING = 20;

context.font = "12pt Verdana, sans-serif';
context.fillStyle = "#999999";

context .moveTo (CHART PADDING, CHART PADDING) ;
context.lineTo (CHART PADDING, hei-CHART PADDING) ;
context.lineTo (wid-CHART PADDING, hei-CHART PADDING) ;

var stepSize = (hei - CHART PADDING*2)/10;
for(var i=0; i<10; i++)({
context.moveTo (CHART_PADDING, CHART_PADDING + i* stepSize);
context.lineTo (CHART PADDING*1.3,CHART PADDING + i%*
stepSize) ; B B
context.fillText (10-i, CHART PADDING*1.5, CHART PADDING + i¥*
stepSize + 6); B B

}

context.stroke () ;
4. Our next and final step is to create the actual data bars:

var elementWidth =(wid-CHART_ PADDING*2)/ data.length;
context.textAlign = "center";
for(i=0; i<data.length; i++){
context.fillStyle = datali].style;
context.fillRect (CHART PADDING +elementWidth*i ,hei-
CHART PADDING - data[i].vaIue*stepSize,elementwidth,data[i].
value:stepsize);
context.fillStyle = "rgba (255, 255, 225, 0.8)";
context.fillText (data[i] .label, CHART PADDING
+elementWidth* (i+.5), hei—CHART_PADDING*lTS) ;

}

That's it. Now, if you run the application in your browser, you will find a bar chart rendered.

I've created a variable called CHART PADDING that is used throughout the code to help me
position elements (the variable is in uppercase because | want it to be a constant; so it's to
remind myself that this is not a value that will change in the lifetime of the application).

Chapter 3

Let's delve deeper into the sample we created starting from our outline area:

context .moveTo (CHART PADDING, CHART PADDING) ;
context.lineTo (CHART PADDING, hei-CHART PADDING) ;
context.lineTo (wid-CHART PADDING, hei-CHART PADDING) ;

In these lines we are creating the L-shaped frame for our data; this is just to help and provide
a visual aid.

The next step is to define the number of steps that we will use to represent the numeric
data visually.

var stepSize = (hei - CHART_ PADDING*2)/10;

In our sample we are hardcoding all of the data. So in the step size we are finding the total
height of our chart (the height of our canvas minus our padding at the top and bottom), which
we then divide by the number of the steps that will be used in the following for loop:

for(var i=0; i<10; i++)({
context.moveTo (CHART_PADDING, CHART_PADDING + i* stepSize);
context.lineTo (CHART_PADDING*1.3,CHART_PADDING + i* stepSize);
context.fillText (10-i, CHART PADDING*1.5, CHART PADDING + i¥*
stepSize + 6); B B

}

We loop through 10 times going through each step to draw a short line. We then add numeric
information using the £111Text method.

Notice that we are sending in the value 10-1i. This value works well for us as we want the top
value to be 10. We are starting at the top value of the chart; we want the displayed value to
be 10 and as the value of i increases, we want our value to get smaller as we move down the
vertical line in each step of the loop.

Next we want to define the width of each bar. In our case, we want the bars to touch each
other and to do that we will take the total space available, and divide it by the number of
data elements.

var elementWidth =(wid-CHART PADDING*2)/ data.length;

At this stage we are ready to draw the bar but before we do that, we should calculate the
width of the bars.

We then loop through all the data we have and create the bars:

context.fillStyle = datali] .style;

context.fillRect (CHART PADDING +elementWidth*i ,hei-CHART PADDING -
data[i] .value*stepSize,elementWidth,datal[i] .value*stepSize) ;
context.fillStyle = "rgba (255, 255, 225, 0.8)";
context.fillText (data[i] .label, CHART_PADDING +elementWidth* (i+.5),
hei-CHART PADDING*1.5) ;

]

Creating Cartesian-based Graphs

Notice that we are resetting the style twice each time the loop runs. If we didn't, we wouldn't
get the colors we are hoping to get. We then place our text in the middle of the bar that
was created.

context.textAlign = "center";

In our example, we created a non-flexible bar chart, and if this is the way we create charts we
will need to recreate them from scratch each time. Let's revisit our code and tweak it to make
it more reusable.

Revisiting the code

Although everything is working exactly as we want it to work, if we played around with the
values, it would stop working. For example, what if | only wanted to have five steps; if we go
back to our code, we will locate the following lines:

var stepSize = (hei - CHART PADDING*2)/10;
for(var i=0; i<10; i++)({

We can tweak it to handle five steps:

var stepSize = (hei - CHART PADDING*2)5;
for(var i=0; i<5; i++)

We would very quickly find out that our application is not working as expected.

To solve this problem let's create a new function that will deal with creating the outlines of the
chart. Before we do that, let's extract the data object and create a new object that will contain
the steps. Let's move the data and format it in an accessible format:

var data = [...];

var chartYData = [{label:"10 cats", value:1l},
{label:"5 cats", value:.5},
{label:"3 cats", value:.3}];

var range = {min:0, max:10};

var CHART_PADDING = 20;
var wid;

var hei;

function init () {

(&)

Chapter 3

Take a deep look into chartYData object as it enables us to put in as many steps as we
want without a defined spacing rule and the range object that will store the minimum and
maximum values of the overall graph. Before creating the new functions, let's add them into
our init function (changes marked in bold).

function init () {
var can = document.getElementById("bar") ;
wid = can.width;
hei = can.height;
var context = can.getContext ("2d") ;
context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,wid, hei) ;

context.font = "12pt Verdana, sans-serif';
context.fillStyle = "#999999";

Context.moveTo(CHART_PADDING,CHART_PADDING);
Context.lineTo(CHART_PADDING,hei—CHART_PADDING);
Context.lineTo(wid—CHART_PADDING,hei—CHART_PADDING);
fillChart (context,chart¥Data) ;

createBars (context,data) ;

}

All we did in this code is to extract the creation of the chart and its bars into two separate
functions. Now that we have an external data source both for the chart data and the content,
we can build up their logic.

Using the fillChart function

The fillcChart function's main goal is to create the foundation of the chart. We are
integrating our new stepData object information and building up the chart based on its
information.

function fillChart (context, stepsData) {
var steps = stepsData.length;
var startY = CHART PADDING;
var endY = hei-CHART PADDING;
var chartHeight = endY-starty;
var currentY;
var rangelength = range.max-range.min;
for(var i=0; i<steps; i++){
currentY = startY + (1-(stepsDatalil.value/rangelLength)) *
chartHeight;
context .moveTo (CHART PADDING, currentY);

Creating Cartesian-based Graphs

context.lineTo (CHART PADDING*1.3,currentY) ;

context.fillText (stepsData[i] .label, CHART PADDING*1.5,
currentY+6) ;

}

context.stroke () ;

}

Our changes were not many, but with them we turned our function to be much more dynamic
than it was before. This time around we are basing the positions on the stepsData objects
and the range length that is based on that.

Using the createBars function

Our next step is to revisit the createBars area and update the information so it can be
created dynamically using external objects.

function createBars(context,data){
var elementWidth =(wid-CHART PADDING*2)/ data.length;
var startY = CHART PADDING;
var endY = hei-CHART PADDING;
var chartHeight = endY-startyY;
var rangelength = range.max-range.min;
var stepSize = chartHeight/rangeLength;
context.textAlign = "center";
for(i=0; i<data.length; i++){
context.fillStyle = datali] .style;

context.fillRect (CHART PADDING +elementWidth*i ,hei-CHART PADDING
- datal[i] .value*stepSize,elementWidth,datal[i] .value*stepSize) ;

context.fillStyle = "rgba (255, 255, 225, 0.8)";

context.fillText (data[i] .label, CHART PADDING
+elementWidth* (i+.5), hei-CHART PADDING*1.5) ;

}
}

Almost nothing changed here apart from a few changes in the way we positioned the data
and extracted hardcoded values. Compare the two samples in our source code and find the
differences between them.

Spreading data in a scatter chart

The scatter chart is a very powerful chart and is mainly used to get a bird's-eye view while
comparing two data sets. For example, comparing the scores in an English class and the
scores in a Math class to find a correlative relationship. This style of visual comparison can
help find surprising relationships between unexpected data sets.

&)

This is ideal when the goal is to show a lot of details in a very visual way.

Chapter 3

Getting ready

If you haven't had a chance yet to scan through the logic of our first recipe in this chapter,
| recommend you take a peek at it as we are going to base a lot of our work on that while

expanding and making it a bit more complex to accommodate two data sets.

The regular HTML start-up code can be found in the code bundle or go through Chapter 1,

Drawing Shapes in Canvas, for more information on creating the HTML document.

I've revisited our data source from the previous recipe and modified it to store three variables

of students' exam scores in Math, English, and Art.

var data = [{label:"David",
math:50,
english:80,
art:92,
style:"rgba (241, 178, 225, 0.5)"},
{label:"Ben",
math:80,
english:60,
art:43,

[}

Creating Cartesian-based Graphs

style:"#B1DDF3"},
{label:"Oren",
math:70,
english:20,
art:92,
style:"#FFDE89"},
{label:"Barbera",
math:90,
english:55,
art:81,
style:"#E3675C"},
{label:"Belann",
math:50,
english:50,
art:50,
style:"#C2D985"}] ;

Notice that this data is totally random so we can't learn anything from the data itself; but
we can learn a lot about how to get our chart ready for real data. We removed the value
attribute and instead replaced it with math, english, and art attributes.

How to do it...

Let's dive right into the JavaScript file and the changes we want to make:

1. Define the y space and x space. To do that, we will create a helper object that will
store the required information:

var chartInfo= { y:{min:40, max:100, steps:5,label:"math"},
x:{min:40, max:100, steps:4,label:"english"}

Vi
2. It's time for us to set up our other global variables and start up our init function:

var CHART PADDING = 30;
var wid;

var hei;

function init () {

var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;

var context = can.getContext ("2d");
context.fillStyle = "#eceeee";
context.strokeStyle = "#999999";

[

Chapter 3

context.fillRect (0,0,wid, hei) ;

context.font = "10pt Verdana, sans-serif';
context.fillStyle = "#999999";

context .moveTo (CHART PADDING, CHART PADDING) ;
context.lineTo (CHART PADDING, hei-CHART PADDING) ;
context.lineTo (wid-CHART PADDING, hei-CHART PADDING) ;

fillChart (context,chartInfo);
createDots (context,data) ;

}

Not much is new here. The major changes are highlighted. Let's get on and start
creating our £i11Chart and createDots functions.

If you worked on our previous recipe, you might notice that there are a lot of
similarities between the functions in the previous recipe and this function. I've
deliberately changed the way we create things just to make them more interesting.
We are now dealing with two data points as well, so many details have changed. Let's
review them:

function fillChart (context, chartInfo){

var yData = chartInfo.y;

var steps = yData.steps;

var startY = CHART PADDING;

var endY = hei-CHART PADDING;

var chartHeight = endY-startY;

var currentY;

var rangelLength = yData.max-yData.min;

var stepSize = rangelLength/steps;

context.textAlign = "left";

for(var i=0; i<steps; i++){
currentY = startY + (i/steps) * chartHeight;
context .moveTo (wid-CHART PADDING, currentY);
context.lineTo (CHART PADDING, currentY) ;
context.fillText (yData.min+stepSize* (steps-i), 0, currentY¥Y+4);

currentY = startY + chartHeight;
context .moveTo (CHART PADDING, currentY);
context.lineTo (CHART PADDING/2,currentY) ;
context.fillText (yData.min, 0, currentY-3);

7}

Creating Cartesian-based Graphs

var xData = chartInfo.x;

steps = xData.steps;

var startX = CHART PADDING;

var endX = wid-CHART PADDING;

var chartWidth = endX-startX;

var currentX;

rangeLength = xData.max-xData.min;
stepSize = rangeLength/steps;

context.textAlign = "left";
for(var i=0; i<steps; i++){
currentX = startX + (i/steps) * chartwidth;

context .moveTo (currentX, startY);

context.lineTo (currentX, endyY) ;

context.fillText (xData.min+stepSize* (i), currentX-6,
endY+CHART_PADDING/2);

}

currentX = startX + chartwidth;

context .moveTo (currentX, startY);

context.lineTo (currentX, endyY) ;

context.fillText (xData.max, currentX-3, endY+CHART PADDING/2);

context.stroke () ;

}

When you review this code you will notice that our logic is almost duplicated twice.
While in the first loop and first batch of variables we are figuring out the positions
of each element in the y space, we move on in the second half of this function to

calculate the layout for the x area. The y axis in canvas grows from top to bottom (top

lower, bottom higher) and as such we need to calculate the height of the full graph
and then subtract the value to find positions.

Our last function is to render the data points and to do that we create the
createDots function

function createDots(context,data){
var yDatalabel = chartInfo.y.label;

var xDataLabel = chartInfo.x.label;
var yDataRange = chartInfo.y.max-chartInfo.y.min;
var xDataRange = chartInfo.x.max-chartInfo.x.min;

var chartHeight = hei- CHART PADDING*2;
var chartWidth = wid- CHART PADDING*2;

var yPos;
var xXPos;

=

Chapter 3

for(var i=0; i<data.length;i++) {
xPos = CHART PADDING + (datal[i] [xDatalLabell] -chartInfo.x.min)/
xDataRange * chartWidth;

yPos = (hei - CHART_PADDING) - (datal[i] [yDataLabell] -
chartInfo.y.min) /yDataRange * chartHeight;

context.fillStyle = datali] .style;
context.fillRect (xPos-4 ,yPos-4,8,8);

}

Here we are figuring out the same details for each point—both the y position and the
x position—and then we draw a rectangle. Let's test our application now!

We start by creating a new chartInfo object:

var chartInfo= { y:{min:40, max:100, steps:5,label:"math"},
x:{min:40, max:100, steps:4,label:"english"}

}i

This very simple object encapsulates the rules that will define what our chart will actually
output. Looking closely you will see that we set an object named chartInfo that has
information on the y and x axes. We have a minimum value (min property), maximum value
(max property), and the number of steps we want to have in our chart (steps property), and
we define a label.

Let's look deeper into the way the £i11Chart function works. In essence we have two
numeric values; one is the actual space on the screen and the other is the value the space
represents. To match these values we need to know what our data range is and also what our
view range is, so we first start by finding our startY point and our endy point followed by
calculating the number of pixels between these two points:

var startY = CHART PADDING;
var endY = hei-CHART PADDING;
var chartHeight = endY-startY;

These values will be used when we try to figure out where to place the data from the
chartInfo object. As we are already speaking about that object, let's look at what we
do with it:

var yData = chartInfo.y;

var steps = yData.steps;

var rangelLength = yData.max-yData.min;
var stepSize = rangelLength/steps;

(75}

Creating Cartesian-based Graphs

As our focus right now is on the height, we are looking deeper into the y property and for the
sake of comfort we will call it yData. Now that we are focused on this object, it's time to figure
out what is the actual data range (rangeLength) of this value, which will be our converter
number. In other words we want to take a visual space between the points startyY and endy
and based on the the range, position it in this space. When we do so we can convert any data
into a range between 0-1 and then position them in a dynamic visible area.

Last but not least, as our new data object contains the number of steps we want to add into
the chart, we use that data to define the step value. In this example it would be 12. The way
we get to this value is by taking our rangeLength (100 - 40 = 60) value and then dividing it
by the number of steps (in our case 5). Now that we have got the critical variables out of the
way, it's time to loop through the data and draw our chart:

var currentY;
context.textAlign = "left";
for(var i=0; i<steps; i++){
currentY = startY + (i/steps) * chartHeight;
context .moveTo (wid-CHART PADDING, currentY);
context.lineTo (CHART PADDING, currentY) ;
context.fillText (yData.min+stepSize* (steps-i), 0, current¥Y+4);

}

This is where the magic comes to life. We run through the number of steps and then calculate
the new Y position again. If we break it down we will see:

currentY = startY + (i/steps) * chartHeight;

We start from the start position of our chart (upper area) and then we add to it the steps by
taking the current i position and dividing it by the total possible steps (0/5, 1/5, 2/5 and so
on). In our demo it's 5, but it can be any value and should be inserted into the chartInfo
steps attribute. We multiply the returned value by the height of our chart calculated earlier.

To compensate for the fact that we started from the top we need to reverse the actual text we
put into the text field:

yData.min+stepSize* (steps-1i)

This code takes our earlier variables and puts them to work. We start by taking the minimal
value possible and then add into it stepSize times the total number of steps subtracted by
the number of the current step.

Let's dig into the createDots function and see how it works. We start with our
setup variables:

var yDataLabel = chartInfo.y.label;
var xDatalLabel = chartInfo.x.label;

7

Chapter 3

This is one of my favorite parts of this recipe. We are grabbing the label from our chartInfo
object and using that as our ID; this ID will be used to grab information from our data

object. If you wish to change the values, all you need to do is switch the labels in the
chartInfo object.

Again it's time for us to figure out our ranges as we've done earlier in the £il11Chart
function. This time around we want to get the actual ranges for both the x and y axes and
the actual width and height of the area we have to work with:

var yDataRange = chartInfo.y.max-chartInfo.y.min;
var xDataRange = chartInfo.x.max-chartInfo.x.min;
var chartHeight = hei- CHART PADDING*2;

var chartWidth = wid- CHART_ PADDING*2;

We also need to get a few variables to help us keep track of our current x and y positions
within loops:

var yPos;
var xPos;

Let's go deeper into our loop, mainly into the highlighted code snippets:

for (var i=0; i<data.length;i++) {
xPos = CHART PADDING + (datal[i] [xDatalLabel]-chartInfo.x.min)/
xDataRange * chartWidth;

yPos = (hei - CHART PADDING) - (datal[i] [yDataLabel] -
chartInfo.y.min) /yDataRange * chartHeight;

context.fillStyle = datali].style;
context.fillRect (xPos-4 ,yPos-4,8,8);

}

The heart of everything here is discovering where our elements need to be. The logic is almost
identical for both the xPos and yPos variables with a few variations. The first thing we need
to do to calculate the xPos variable is:

(datali] [xDataLabel] -chartInfo.x.min)

In this part we are using the label, xDataLabel, we created earlier to get the current student
score in that subject. We then subtract from it the lowest possible score. As our chart doesn't
start from O, we don't want the values between 0 and our minimum value to affect the
position on the screen. For example, let's say we are focused on math and our student has a
score of 80; we subtract 40 out of that (80 - 40 = 40) and then apply the following formula:

(data[i] [xDataLabel] - chartInfo.x.min) / xDataRange

Creating Cartesian-based Graphs

We divide that value by our data range; in our case that would be (100 - 40)/60. The returned
result will always be between 0 and 1. We can use the returned number and multiply it by the
actual space in pixels to know exactly where to position our element on the screen. We do so
by multiplying the value we got, that is between 0 and 1, by the total available space (in this
case, width). Once we know where it needs to be located we add the starting point on our
chart (the padding):

xPos = CHART PADDING + (datal[i] [xDatalLabel]-chartInfo.x.min)/
xDataRange * chartWidth;

The yPos variable has the same logic as that of the xPos variable, but here we focus only on
the height.

Building line charts

The line charts are based on scatter charts. Contrary to scatter charts that show isolated
correlation between two variables, the line chart tells a story in many ways; we can go back
to our previous recipe, Spreading data in a scatter chart, and draw a line between the dots to
create the connection. This type of chart is usually used in website statistics, tracking things
over time, speed, age, and so on. Let's jump right into it and see it in action.

7@

Chapter 3

Getting ready

As usual get your HTML wrapper ready. In this recipe we actually are going to base our
changes on the previous recipe, Spreading data in a scatter chart.

In our case study for this example, we will create a chart that shows how many new members
joined my site, 02Geek . com, in 2011 and 2010. I've gathered the information month by
month and gathered it into two arrays:

var a2011 = [38,65,85,111,131,160,187,180,205,146,64,212];
var a2010 = [212,146,205,180,187,131,291,42,98,61,74,69];

Both arrays have a length of 12 (for 12 months of the year). I've deliberately created a new
data source that is totally different than the one we used earlier. | did that to render our old
map useless in this example. I've done it to add some extra value into this recipe (a good
lesson in manipulating data to fit even when it doesn't, instead of rebuilding things).

var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}

}i

For our chart information we are using the same object type and for the y position we will
assume a range from 0 to 300 (as | haven't had the privilege of having more than 300
members in one month, yet I'm hopeful). For our x position we are setting it to output values
from 1 through 12 (for the 12 months of the year).

OK, it's time to build it!

How to do it...

As always, our init function is going to look very similar to the one we used in the previous
recipe. Let's take a look at the modifications that have taken place in this recipe:

1. Update/create the global variables:

[38,65,85,111,131,160,187,180,205,146,64,212];
[212,146,205,180,187,131,291,42,98,61,74,691];

var a2011
var a2010

var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}

}i

var CHART PADDING = 20;
var wid;
var hei;

(77}

Creating Cartesian-based Graphs

2. Update the init function:

function init () {

}

var can = document.getElementById("bar") ;

wid = can.width;

hei = can.height;

var context = can.getContext ("2d");
context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,wid, hei) ;

context.font = "10pt Verdana, sans-serif';
context.fillStyle = "#999999";

Context.moveTo(CHART_PADDING,CHART_PADDING);
context.rect(CHART_PADDING,CHART_PADDING,wid—CHART_
PADDING*2,hei—CHART_PADDING*Z);

context.stroke() ;

context.strokeStyle = "#ccccece";

fillChart (context, chartInfo) ;

addLine (context, formatData(a2011, "/2011","#B1DDF3"), "#B1DDF3");
addLine (context, formatData(a2010, "/2010", "#FFDE89") , "#FFDE89") ;

3. Change the name of the function createDots to addLine and update the logic:

function addLine (context,data,style) {

var yDataLabel = chartInfo.y.label;

var xDataLabel = chartInfo.x.label;

var yDataRange = chartInfo.y.max-chartInfo.y.min;
var xDataRange = chartInfo.x.max-chartInfo.x.min;
var chartHeight = hei- CHART PADDING*2;

var chartWidth = wid- CHART PADDING*2;

var yPos;
var xPos;
context.strokeStyle = style;
context.beginPath() ;
context.lineWidth = 3;
for (var i=0; i<data.length;i++) {
XxPos = CHART_PADDING + (data[i] [xDatalabel] -chartInfo.x.min)/

xDataRange * chartWidth;

yPos = (hei - CHART_PADDING) - (datal[i] [yDataLabel] -

chartInfo.y.min) /yDataRange * chartHeight;

context.fillStyle = datali].style;
context.fillRect (xPos-4 ,yPos-4,8,8);

Chapter 3

i ? context.lineTo (xPos,yPos) :context.moveTo (xPos,yPos) ;

}

context.stroke() ;

}
4. Create the formatData function:

function formatData(data , labelCopy , style) {
newData = [];
for(var i=0; i<data.length;i++) {
newData.push({ label: (i+1)+labelCopy,
users:datal[i],
months:i+1,
style:style
3N
}

return newData;

}

That's it! We are done!

I've added a new method, rect, to our tool set for drawing; until now we worked with the
drawRect method. I've used the rect method as it just adds the outlines without drawing
anything, so | can perform the stroke or fill function separately and create an outline instead
of a fill.

The fillcChart function did not change at all, cool right? And I've renamed the function
createDots to addLine as it seemed more appropriate for our sample. A few additions
have been made into that function and a new function, formatData, is being used to format
the data to fit what the addLine function is expecting.

As you probably noticed we made a few small changes to our code to accommodate the needs
of this chart style. Let's dive in and see them in action:

addLine (context, formatData(a2011,"/2011", "#B1DDF3") , "#B1DDF3")

The biggest change we can visibly see in the way we are calling the addLine function is that
we are calling the formatData function to render a data source for us that will be acceptable
by the addLine function. You might be thinking right now, why didn't | just create the data the
way it needs to work for the addLine function. When we move to the real, live data sources
many times we will find data sources that just don't match our original work. That doesn't
mean we need to change our work, often a better solution is to create a converter method
that will modify the data and rebuild it to match our application structure so it is in the format
we expect.

(7]

Creating Cartesian-based Graphs

A reminder from our previous recipe: this is what our data source looked like:

var data = [{label:"David",
math:50,
english:80,
art:92
style:"rgba (241, 178, 225, 0.5)"},

1:
While currently our array is flat, we need to change that to work with our current system; it
expects two properties that will define the x and y values:

var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11l,label:"months"}

In other words the object we need to create needs to look something like the following:

var data = [{label: "01/2011",
users:200,
months:1,
style:"#££0000"} .. 1;

So let's make the function that will create this data format:

function formatData(data , labelCopy , style){
newData = [];
for (var i=0; i<data.length;i++)
newData.push ({ label: (i+1) +labelCopy,
users:datali],
months:1i+1,
style:style

3N

return newData;

}

Notice how we loop through our old array and restructure it to fit our expected data format
using both the array data and external data that was sent to our formatData functions. Even
though we aren't using all of the information in this recipe, | wanted to keep it up-to-date with
all the basics in case you want to expand this sample. We will do so in the future.

(&)

Chapter 3

This is one of the most powerful tricks in programing in the tool
set. I've met many developers, who change their code instead of
~ changing their data to fit their required application structure. There
Q is always a way to modify data to make it more easily consumed by
your application and it's much easier to dynamically modify data
than it is to change your architecture.

| didn't change anything in the core logic of this addLine function, but instead just added
drawing lines from one dot to the next one.

In case you're not familiar with the ternary operation, it is a shorthanded if statement:
condition ? ifStatement: elseStatement;

By the way, if you are worried about efficiency, you might want to change the for loop by
extracting the first instance out of the loop as that's the only occurrence where our ternary
operator would trigger the else value.

There's more...

Let's revisit our code and optimize it to be more adaptable. Our goal is to add more flexibility
to our chart to render in various modes.

My goal here is to enable our chart to render in three render modes: dot mode (as in the
previous sample), line mode (in this sample), and fill mode (new addition):

Creating Cartesian-based Graphs

Although, in the preceding screenshot, we have three chart elements and they're all with a fill,
with the new code you can pick, per line added, how you wish to treat it. So let's jump right in.

Enabling switching mode between dots and lines

All the work we added into the function doesn't need to go through a big overhaul as nothing
is visible until it's actually rendered. That is controlled in one line, where we create the stroke
in the addLine function. So let's add a new rule that if a style is not sent, it would mean we
don't want to create a line:

if (style)context.stroke() ;

In other words, only if we have style information will the line we just created be drawn; if not,
no line will be drawn.

Creating fill shapes

To create the fill shapes and for the sake of keeping our code simple, we will create an if. ..
else statement within our code, and if the user sends a new fourth parameter, we will render
it in the fill mode (the changes are highlighted in the following code snippet):

function addLine (context,data,style,isFill) {
var yDataLabel = chartInfo.y.label;
var xDataLabel = chartInfo.x.label;
var yDataRange = chartInfo.y.max-chartInfo.y.min;
var xDataRange = chartInfo.x.max-chartInfo.x.min;
var chartHeight = hei- CHART PADDING*2;
var chartWidth = wid- CHART PADDING*2;

var yPos;

var xPos;
context.strokeStyle = style;
context.beginPath() ;
context.lineWidth = 3;

if (1isFill){
for (var i=0; i<data.length;i++) {
XxPos = CHART_PADDING + (data[i] [xDatalabel] -chartInfo.x.min)/
xDataRange * chartWidth;
yPos = (hei - CHART_PADDING) - (datal[i] [yDataLabel] -
chartInfo.y.min) /yDataRange * chartHeight;

[

Chapter 3

context.fillStyle = datali] .style;
context.fillRect (xPos-4 ,yPos-4,8,8);

i==0? context.moveTo (xPos,yPos) :context.lineTo (xPos,yPos) ;

}

if (style) context.stroke () ;

lelse{
context.fillStyle = style;
context.globalAlpha = .6;

context.moveTo (CHART PADDING,hei - CHART PADDING)

for (var i=0; i<data.length;i++){
xPos = CHART PADDING + (datal[il [xDataLabel]-chartInfo.x.min)/
xDataRange * chartWidth;
yPos = (hei - CHART PADDING) - (datal[i] [yDataLabell] -
chartInfo.y.min) /yDataRange * chartHeight;

context.lineTo (xPos,yPos) ;

}

context.lineTo (CHART PADDING + chartWidth,
CHART_PADDING+chartHeighE};
context.closePath() ;

context.fill () ;

context.globalAlpha = 1;

}

The differences are not large in the new code. We just removed some of the code and added

a few new lines to create a complete shape. | superimposed the Alpha value as well. A smarter
way would be to revisit the values sent and put into them an Alpha value as needed; but that
is left for you to improve. Now our addLine function can add three types of visualization and
we can add multiple types at the same time to our chart (check out the source code to see
this in action).

&)

Creating Cartesian-based Graphs

Creating the flying brick chart

(waterfall chart)

In each recipe in this chapter we've been advancing the complexity of our code and so we are
going to revisit the bar chart and modernize it to fit our evolving charting platform. After we
complete this mini task, we will be ready to create our first waterfall chart breaking away from
the standard charts into more creative avenues.

The waterfall chart is a very useful chart to outline trends, such as monthly total changes
(positive and negative) while outlining the total value of the big picture. This type of chart
helps to outline total assets of a company while showing if they made profits or losses
throughout the month. This type of chart is ideal for data that shifts between positive/
negative values.

Getting ready

We will be taking advantage of the interface we created in the earlier recipes and as such we
will be integrating the creation of bars into our library of updated functions. To do that, we will
need to dig out our old createBars function created in 03.02.bar-revamp.js.

=

Chapter 3
The following is the code before implementing changes:

function createBars (context,data) {
var elementWidth =(wid-CHART PADDING*2)/ data.length;
var startY = CHART PADDING;
var endY = hei-CHART PADDING;
var chartHeight = endY-starty;
var rangelLength = range.max-range.min;
var stepSize = chartHeight/rangelLength;
context.textAlign = "center";
for(i=0; i<data.length; i++){
context.fillStyle = datali].style;
context.fillRect (CHART PADDING +elementWidth*i ,hei-CHART PADDING
- data[i].value*stepsize,eIementWidth,data[i].value*stepSize)?
context.fillStyle = "rgba (255, 255, 225, 0.8)";
context.fillText (datal[i] .label, CHART_ PADDING
+elementWidth* (1i+.5), hei—CHART_PADDING*l.S);

}

And the following is our newly updated function to fit into the new skills we developed in the
earlier recipes (changes are highlighted in the following code snippet).

function createBars (context,data) {

var range = chartInfo.x;

var elementWidth =(wid-CHART PADDING*2)/ data.length;

var startY = CHART PADDING;

var endY = hei-CHART PADDING;

var chartHeight = endY-starty;

var stepSize = chartHeight/ (chartInfo.y.max-chartInfo.y.min);

context.textAlign = "center";

for(i=0; i<data.length; i++){
context.fillStyle = datali].style;
context.fillRect (CHART PADDING +elementWidth*i ,endY

- datali] [chartInfo.y.label] *stepSize,elementWidth,datal[il]
[chartInfo.y.label] *stepSize) ;

context.fillStyle = "rgba (255, 255, 225, 0.8)";

context.fillText (data[i] .label, CHART PADDING
+elementWidth* (i+.5), hei-CHART PADDING*1.5);

&1

Creating Cartesian-based Graphs

These changes are more than cosmetic; we are leveraging our external data feeds that have
been used throughout a few of our previous samples. Now that our function is up-to-date and
working in our latest logic developed in the previous two recipes, it's time to start building our
waterfall chart.

How to do it...

The first step to create a waterfall chart is to copy, paste, and rename the function
createBars and then manipulate it and change the way the data is rendered (mainly where
and how we position elements). Notice what we change in this method before | dig deeper into
why and how it was done:

1.

Let's start with an updated data source:

var a2011 = [60,60,60,111,-31,-80,0,-43,-29,14,64,12];

var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}
Vi

var CHART_PADDING = 20;

var wid;

var hei;

In the init function we will update the following highlighted code snippets:

function init () {

context.strokeStyle = "#ccccece";
fillChart (context, chartInfo) ;
createWaterfall (context, formatData (a2011)) ;

}

Add a few helper variables:

function createWaterfall (context,data) {

var range = chartInfo.x;

var elementWidth =(wid-CHART_ PADDING*2)/ data.length;

var startY = CHART PADDING;

var endY = hei-CHART PADDING;

var chartHeight = endY-startY;

var stepSize = chartHeight/ (chartInfo.y.max-chartInfo.y.min) ;
var currentY¥= endY;

var elementValue ;

var total=0;

context.textAlign = "center";

Chapter 3

4. Inthe for loop logic, draw a rectangle if the value is not 0:
for(i=0; i<data.length; i++){
elementValue = datali] [chartInfo.y.labell];
total +=elementValue;
if (elementValue!=0) {
context.fillStyle = elementValue>0? "#C2D985" :"#E3675C" ;
currentY -=(elementValue*stepSize);

context.fillRect (CHART PADDING +elementWidth*i ,currentY,ele
mentWidth, elementValue*stepSize) ;

}

5. If the current data value is 0 then make it a total column:

else{
context.fillStyle = "#B1DDF3" ;

context.fillRect (CHART PADDING +elementWidth*i
,currentY, elementWidth, endY-currentyY) ;

elementValue = total; //hack so we see the right value

}

context.fillStyle = "rgba(255, 255, 255, .8)"

6. Add the changed value inside the element:

context.fillText (elementValue, CHART PADDING
+elementWidth* (i+.5), endY - (stepSize*total) +
(stepSize*elementValue/2) + 6);

}

There are a lot of changes here, but in essence these two functions do almost the same thing;
only our waterfall chart is smarter and more detailed.

The first step and the first problem when we start to think about how to create a waterfall
chart is that there is a relationship between each element. To simplify the logic we would want
to create a counter that would store the changes (the current summary value).

var elementValue ;
var total=0;

The first variable is just a helper variable to try to make our code more readable while the total
is all about keeping up with what is the current total.

7}

Creating Cartesian-based Graphs

It's time to jump into the for loop and see the big changes. Let's focus first on the types of
tasks we might need to do within a waterfall chart. There are three types (value goes up, value
goes down, and value remains unchanged). Before we start figuring out how to deal with these
cases, let's update our variables:

for(i=0; i<data.length; i++){
elementValue = datal[i] [chartInfo.y.label];
total +=elementValue;

The element value will give us the current numeric value (don't forget this does not
correspond to the size on screen; we would still need to duplicate this by the stepSize
number when we want to draw the element as this is the raw real number). Same is true
for our total variable; we are just keeping track of the current summary.

So as we stated earlier, we have three possible tasks and there is nothing wrong with creating
anif...else case as follows:

if (elementValue>0) {

//do the positive values
}else if (elementValue<0) {

//do the negative values
}else{

//do 0

}

This would capture all three options but would add some extra code that wouldn't be needed.
So, we will use the same if statement for both negative and positive values as their logic is
very close to each other. That way we can reuse our code and type less.

if (elementValue!=0) {

//do positive/negative values
}else{

// do 0

}
Perfecto! Now let's dig into the positive/negative task:

context.fillStyle = elementValue>0? "#C2D985" :"#E3675C"
currentY -=(elementValue*stepSize) ;

context.fillRect (CHART PADDING +elementWidth*i ,currentY,elementWidth,
elementValue*stepSize) ;

(e

Chapter 3

Notice that our first line of code in this block is the only difference between positive/negative
values. We are literally just changing a color based on whether we are in the positive or
negative range using a ternary operation. After figuring out our currenty position we

create a rectangle in the current position (this current position is after the value was added,
so this is our end point). The most important element to notice is the fourth parameter,
elementValue*stepSize. The fourth parameter captures the size of the rectangle. With it,
it captures if it's a negative or positive value. The elementVvalue variable can be positive or
negative. This is the trick we are using here as we would draw the bar upwards (if the value is
negative) or draw the bar downwards (if the value is positive). If we first created the drawing
before updating our currentY position, it would be much harder and probably require us

to create the three separate it cases. Cases like these are really what makes programming
so much fun to me; finding these hidden ways to take advantage of the same code to do
opposite things.

It's time for us to visit the else case:

}else{
context.fillStyle = "#B1DDF3"

context.fillRect (CHART PADDING +elementWidth*i
,currentY, elementWidth, endY-currentyY) ;
elementValue = total; //hack so we see the right value

}

In the else case we want to draw the full length of the bar followed by a small hack. We are
assigning the value of our current total into the elementVvalue variable (this will not change
our original data as we are doing this as the last thing after we have no more use for the
elementValue variable). We are doing this to avoid another if. . .else statement when
adding the text into the bars. Only if the value is 0, we want the total to be displayed instead of
the current change and that's what this hack captures.

Leaving us the last part of creating a bar for our waterfall chart, which is to get the value of
the bar in the center of the element we just created:

context.fillStyle = "rgba (255, 255, 255, .8)";
context.fillText (elementValue, CHART PADDING +elementWidth* (i+.5),
endY - (stepSize*total) + (stepSize*elementValue/2) + 6);

Take a deep look at the positioning of the text element; it took a bit of tinkering until | figured it
out. What I'm doing here mainly in the last parameter (the y position of our new text) is taking
the bottom area of our chart, subtracting the current total that would give us exactly the tip of
the bar. But that wouldn't work well as for positive values as it would be above the bar while
for negative elements it would place it within the bottom area of the bar. Here comes the
creative thinking; instead of creating a few cases, how about we position our text exactly in

the middle of our element. To do that, we can take advantage of our elementVvalue variable
again (as it's positive or negative) and if we take half its size and add it to our total, we will

be in the center of the bar leaving only one last tweak adding 6 to our value (as our text is 12
pixels in height).

]

Creating Cartesian-based Graphs

There you go! You have just created your first waterfall chart. Let's test it; remove any data
visualization function calls from our init function (such as createBars or addLine) and
instead replace them with our new function:

createWaterfall (context, formatData (a2011)) ;

Note that | am using the formatData object as I'm just reusing
p our array from an earlier sample. | just updated the values so they
don't step out of a total of 300:
’ var a2011 = [60,60,60,111,-31,-80,0,-43, -
29,14,64,12];

There's more...

Where we ended, leads us to the issue that we can't control the data and the more we ask of
the end user/developer to adjust, the longer the learning curve is. It's great that we have our
chartInfo object that stores most of our helper information, but what if someone doesn't
fill out the attributes? Should our application fail or should we do our best to figure out new
default values for the user? So let's say in this example the user does not fill out the max and
min attributes of the y object:

var chartInfo= { y:{steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}

Vi

The user indicates how many steps they want, but they do not provide any information on the
smallest and largest values the chart should output. To solve this issue we need to revisit the
way we are creating our charts. So far we created the chart in two totally separate steps (the
last two lines in our init function):

fillChart (context, chartInfo) ;
createWaterfall (context, formatData (a2011)) ;

First we usually create the background and then draw the items, but in this case we have a
much clearer relationship between the £illchart function and the createWaterfall
function. As we are trying to reduce the user's code footprint we wouldn't want to add a bunch
of logic for each sample that would be unique for each bar type. So instead we will revisit all the
graphic functions we created (addLine, createBars, and createWaterfall)and move
the fillchart function call to be the first thing in the functions. This will enable us to create
custom tweaks before calling the £111Chart function that would be invisible to the end user
of our functions (such as you in a few months, so you don't need to remember how everything
works). Everything should work the same for now but only our createWaterfall function will
know how to deal with missing information (I'll leave it up to you to update the other functions).

function createWaterfall (context,data) {
fillChart (context, chartInfo) ;

5]

Chapter 3

//all the rest the same
//do to all 3 functions

Now that we have our £illChart function and everything is working, let's add some
extra logic just before we call the £111Chart function to help add the min/max
values dynamically:

function createWaterfall(context,data){
if (IchartInfo.y.min || !chartInfo.y.max)
updateCumulativeChartInfo (chartInfo,data);
fillChart (context, chartInfo) ;

Notice that we are checking to see if the min or max values are missing and if so, we are
calling the updateCumulativeChartInfo function to update or add the values.

Let's create the updateCumulativeChartInfo function:

function updateCumulativeChartInfo(chartInfo,data){
var aTotal=[];
var total = 0;
aTotal.push(total) ;
for(i=0; i<data.length; i++){
total +=datali] [chartInfo.y.labell
aTotal.push(total) ;

}

chartInfo.y.min = Math.min.apply(this,aTotal) ;
chartInfo.y.max = Math.max.apply(this,aTotal) ;

}

We are using two variables: aTotal and total. The aTotal variable stores the total in each
loop. After we have the value of our total variable throughout all phases of our chart within
the aTotal array, it's time to figure out what the minimum and maximum value will be. We
have a problem here. The Math.min method can take in an unlimited number of parameters
but we have an array that isn't compatible with the requirements of the Math.min method.
To determine the values we can use a fun hack by using the apply method. Every function
has an apply method. What the apply method does is enable you to change the scope of a
function and send the parameters as an array.

For more info on the apply method check the video at the

following website:
o

http://02geek.com/catagory/favorites/apply.html

Now that our data has been dynamically created everything should work. When we run the
application we will see we are getting some numbers that are too detailed (such as 3.33333).
The next step is to do some format tweaking.

i

Creating Cartesian-based Graphs

Cleaning the format of numbers

To solve the problem of our numeric values being very ugly, we can create a formatting
function and just call it each time we output dynamically created values. So let's first create
the function:

function formatNumber(num,lead){
for(var i=0;i<lead;i++) num*=10;
num = parselnt (num) ;
for(var i=0;i<lead;i++) num/=10;
return num;

}

The function parameters are the values to be formatted (num) and the number of places we
want after the decimal point. In the function, we are multiplying the value by ten; the number
of times is based on the value of the 1ead variable. We then convert the number into an
integer and divide the number again.

Last but not least, let's track down where we are adding the text; we will find it in the
fillchart function. All that is left for us is to find the right text that is affected and update it
to use our new formatting function:

context.fillText (formatNumber (yData.min+stepSize* (steps-i),2), O,
currentY+4) ;

Our format will look much better. And yes, you probably should leave these details to be
configurable in the external chartInfo object, but we will leave that to you to make our
library even smarter.

Other tasks I've left open

Our new waterfall has one assumption that we always start from zero. In our sample we won't
change that, but we will revisit this idea in the next recipe when working with the candlestick
chart. If you're bold, try to figure out a solution.

Building a candlestick chart (stock chart)

We are just about to make a super leap. Until now we worked with charts that had one data
point, two data points, and a few variations on them, and now we are moving into a new world
of four data points in every bar. The stock chart is a way to showcase changes in the market in
a given time frame (in our example this is one day). Each day stock prices change many times,
but the most important factors are the low and high values of the day and the opening and
closing prices. A stock analyst needs to be able to see the information quickly and understand
overall trends. We are skipping three data points elements, but we will be back to them in the
recipe Building a bubble chart in Chapter 4, Let's Curve Things Up.

[

Chapter 3

The worst thing you can do is to assume that the only usage of four dimensions of data is in
the stock market. This is where you can come up with the next big thing. Visualizing data in a
clean and quick way and converting data into logic is one of the most fun things about charts.
With that said let's start creating our stock chart.

Getting ready

Our first step is going to be a bit different in this recipe. I've created a sample CSV file called
DJI.txt;you can find it in our source files. The format is the standard CSV format and the
first line names all the data columns:

DATE, CLOSE, HIGH, LOW, OPEN, VOLUME
And all future lines contain the data (daily data in our case):
1309752000000,12479.88,12506.22,12446.05,12505.99,128662688

So the steps we will need to go through are loading the file, converting the data to fit our
standard data set, and then build the new chart type (and then fixing things as we discover
issues; agile development).

55}

Creating Cartesian-based Graphs

How to do it...

We are going to base our work starting from where we left in the previous recipe. We will start
the modifications right in the JavaScript file:

1. Let's update our global variables:

var chartInfo= { y:{min:11500, max:12900,steps:5,label:"close"},
x:{min:1, max:12, steps:11,label:"date"}
Vi

var stockData;

var CHART PADDING = 20;

var wid;

var hei

2. Before we start our internal logic, we need to load our new external CSV file. We will
rename the init function and call it startUp and then create a new init function:

function init () {

var client = new XMLHttpRequest () ;
client.open('GET', 'data/DJI.txt');

client.onreadystatechange = function (e) {
if (e.target.readyState==4) {

var aStockInfo = e.target.responseText.split("\n");
stockData = translateCSV(aStockInfo,7);

startUp ()

client.send () ;

}

function startUp() {
//old init function

}

3. The data we get back from the CSV file needs to be formatted to a structure we can
work with. For that we create the translateCsvV function that takes in the raw CSV
data and converts it into an object that matches our architecture needs:

function translateCSV(data,startIndex){
startIndex|=1; //if nothing set set to 1
var newData = [];
var aCurrent;

=

Chapter 3

var dataDate;
for (var i=startIndex; i<data.1ength;i++){
aCurrent = datalil] .split(",");
dataDate = aCurrent [0] .charAt (0)=="a"?parselnt (aCurrent[0] .sli
ce(1l)) :parselnt (aCurrent [0]) ;
newData.push({ date:dataDate,
close:parseFloat (aCurrent [1]),
high:parseFloat (aCurrent [2]),
low:parseFloat (aCurrent [3]),
open:parseFloat (aCurrent [4]),
volume:parseFloat (aCurrent [5])

3N

return newData;

}

4. Our startUp function, formally known as init, will remain the same besides
changing the createWaterfall method to call addStock

function startUp () {

addStock (context, stockData) ;

!
5. ltis time to create the addStock function:

function addStock(context,data){
fillChart (context, chartInfo) ;
var elementWidth =(wid-CHART PADDING*2)/ data.length;
var startY = CHART PADDING;
var endY = hei-CHART PADDING;
var chartHeight = endY-startY;
var stepSize = chartHeight/ (chartInfo.y.max-chartInfo.y.min) ;
var openY;
var closeYOffset;

var highy;

var lowY;

var currentX;

context.strokeStyle = "#000000";

for(i=0; i<data.length; i++){
openY = (datali] .open-chartInfo.y.min) *stepSize;
closeYOffset = (datali] .open-datali] .close) *stepSize;
highY = (datal[i] .high-chartInfo.y.min)*stepSize;

lowY =(datali] .low-chartInfo.y.min) *stepSize;
context .beginPath() ;

currentX = CHART PADDING +elementWidth* (i+.5);
context .moveTo (currentX, endY-highv) ;

Creating Cartesian-based Graphs

context.lineTo (currentX, endY-lowY) ;

context.rect (CHART PADDING +elementWidth*i ,endY-openY,element
Width, closeYOffset) ;

context.stroke () ;
context.fillStyle = closeYOffset<0? "#C2D985" :"#E3675C"

context.fillRect (CHART PADDING +elementWidth*i ,endY-openY,ele
mentWidth, closeYOffset) ;

}
}

All these steps are required to create a new candlestick chart.

Let's review the steps to load our external file. If you are working with open source tools such
as jQuery you will be better off using them to load external files but, to avoid using other
libraries, we will work with the XMLHt tpRequest object as it's supported in all modern
browsers that support HTML5.

We start with creating a new XMLHt tpRequest object:

var client = new XMLHttpRequest () ;
client.open('GET', 'data/DJI.txt');

The next step is to set what we want to do (GET/POST) and the name of the file, followed by
creating a handler function for the onreadystatechange callback and sending our request.

client.onreadystatechange = function(e) {
if (e.target.readyState==4) {
var aStockInfo = e.target.responseText.split("\n");
stockData = translateCSV(aStockInfo,1);
startUp ()

}
}

client.send () ;

The event handler onreadystatechange gets called a few times throughout the loading
process of a file. We only want to listen in and act once the file is loaded and ready to be
played with; to do that we will check whether the readyState variable is equal to four
(ready and loaded). When the file is loaded, we want to split our file into an array based

on line breaks.

5]

Chapter 3

Note that the file was created on a Mac. The \n does the
. trick, but when you create your own files or download files, you
% might need to use \ r or a combination \n\r or \n\r. Always
e confirm that you made the right selection by outputting the
length of your array and validating its right size (then test to
see if its content is what you expect it to be).

After our array is ready we want to format it to the user-friendly format followed by starting up
the old init function that is now known as startUp.

Let's quickly review the translateCsv formatting function. We are literally looping through
our data array that was created earlier and replacing each line with a formatted object that
will work for our needs. Notice that we have an optional parameter startIndex. If nothing or
zero is set then on the first line we are assigning it the value of 1:

startIndex||=1; //if nothing set set to 1
The former is a shorthand way of writing:
startIndex = startIndex || 1;

If the start Index parameter has a value that is equivalent to true then it would remain as it
was; if not, it would be converted to 1.

By the way, if you don't know how to work with these shortcuts, | really recommend getting
familiar with them; they are really fun and save time and typing. If you want to learn more on
this check the following links:

» http://www.jquerydu.com/javascript/shorthand-javascript-
techniques/

» http://02geek.com/javascript/objects-and-arrays.html
Great! Now we have a data source that is formatted in the style we've been using so far.

We will hardcode our chartInfo object. It will work out well for our y values but not that well
for our date requirements (in the x values). We will revisit that issue later after we get our
chart running. We created a dynamic range generator in an earlier exercise, so if you want to
keep up with that then review it and add that type of logic into this chart as well, but for our
needs we will keep it hardcoded for now.

Ok, so let's dig deeper into the addStock function. By the way, notice that as we are working
with the same format and overall tools, we can mix charts together with ease. But before we
do that, let's understand what the addstock function actually does. Let's start with our base
variables:

fillChart (context, chartInfo) ;
var elementWidth =(wid-CHART PADDING*2)/ data.length;

Creating Cartesian-based Graphs

var startY = CHART PADDING;

var endY = hei-CHART PADDING;

var chartHeight = endY-startyY;

var stepSize = chartHeight/ (chartInfo.y.max-chartInfo.y.min) ;

We are gathering information that will make it easier to work in our loop when creating the
bars from the width of elements (elementWidth to the ratio between our values and the
height of our chart). All these variables have been covered in earlier recipes in this chapter.

var openyY;

var closeYOffset;

var highy;

var lowY;

var currentX;
context.strokeStyle = "#000000";

These variables are going to be our helper variables (updated after every round of our loop) to
establish the position of the high, low, open, and close offsets (as we are drawing a rectangle,
it expects the height and not a second y value).

The first thing we do in each round of our loop is to find out the values for these variables:

for(i=0; i<data.length; i++){

openY = (datali] .open-chartInfo.y.min) *stepSize;
closeYOffset = (datali] .open-datali] .close) *stepSize;
highY = (datal[i] .high-chartInfo.y.min)*stepSize;

lowY =(datali] .low-chartInfo.y.min) *stepSize;

You will notice that the logic is almost the same in all of the variables. We are just subtracting
the minimum from the value (as our chart doesn't cover values under our minimum value),
and then multiplying it by our stepSi ze ratio to have the value fit within our chart dimensions
(this way even if we change our chart size everything should continue working). Note that only
the closeYOf fset variable doesn't subtract the min property but instead it subtracts the
close property.

The next step is to draw our candlestick chart starting with a line from the low to the high
of the day:

context .beginPath() ;

currentX = CHART PADDING +elementWidth* (i+.5);
context .moveTo (currentX, endY-highv) ;
context.lineTo (currentX, endY-lowY) ;

This will be followed by the rectangle that represents the full open and close values:

context.rect (CHART PADDING +elementWidth*i ,endY-openY,elementWidt
h,closeYOffset) ;

context.stroke () ;

5]

Chapter 3

context.fillStyle = closeYOffset<0? "#C2D985" :"#E3675C"
context.fillRect (CHART PADDING +elementWidth*i ,endY-openY,element
Width, closeYOffset) ;

}

After this, we will create a fill to this rectangle and set the style color based on the value of the
closeYOf fset variable. At this stage we have a running application, although it can use a
few more tweaks to make it work better.

There's more...

It's time to fix our x coordinate values:

var chartInfo= { y:{min:11500, max:12900,steps:5,label:"close"},
x:{min:1, max:12, steps:11,label:"date"}

}i

We didn't change this variable before as until now there was a clear separation between

the outline and our content (the chart itself); but at this stage as our x outline content isn't

a linear number anymore but a date; we need to somehow introduce into the £illChart
method external data that is related to the content of the chart. The biggest challenge here is
that we don't want to introduce into this method something that is only relevant to our chart
as this is a globally used function. Instead we want to put our unique data in an external
function and send that function in as a formatter. So let's get started:

var chartInfo= { y:{min:11500, max:12900,steps:5,label:"close"},
x:{label:"date", formatter:weeklyCapture}

}i

Our x space in a stock chart represents time and as such our previous usage based on linear
data does not apply (the properties such as min, max, and steps have no meaning in this
case). We will remove them in favor of a new property formatter that will take a function

as its value. We will use this formatter function instead of the default function. If this
function is set we will let an external function define the rules. We will see more on this when
we describe the weeklyCapture function. This method of coding is called plugin coding.

Its name is derived out of the idea of enabling us to create replaceable functions without
reworking our core logic in the future. Before we create the weeklyCapture function, let's
tweak the chartInfo object so we have the right range and number of steps:

function addStock(context,data){
if (IchartInfo.x.max) {
chartInfo.x.min = 0;
chartInfo.x.max = data.length;
chartInfo.x.steps = data.length;

}

fillChart (context, chartInfo) ;

Creating Cartesian-based Graphs

What we are doing here is, before we call the £i11Chart function in our addStock function,
we are checking to see if the max value is set; if it isn't set, we are going to reset all the
values, setting the min to 0 and the max and steps to the length of our data array. We are
doing this as we want to travel through all of our data elements to test and see if there is a
new weekday.

Now we integrate our weeklyCapture function into the £illcChart function.

function fillChart (context, chartInfo) {
/] .
var output;
for(var i=0; i<steps; i++){
output = chartInfo.x.formatter && chartInfo.x.formatter(i);
if (output || !chartInfo.x.formatter)
currentX = startX + (i/steps) * chartWidth;
context .moveTo (currentX, startY);
context.lineTo (currentX, endyY) ;
context.fillText (output?output:xData.min+stepSize* (i),
currentX-6, endY+CHART PADDING/2) ;
}
}

if (!chartInfo.x.formatter) {
currentX = startX +chartWidth;
context.moveTo (currentX, startY);
context.lineTo (currentX, endY) ;
context.fillText (xData.max, currentX-3, endY+CHART PADDING/2) ;

}

context.stroke () ;

}
In our first step, we are going to fetch the value that comes back from our formatter function.

output = chartInfo.x.formatter && chartInfo.x.formatter (i) ;

The logic is simple, we are checking to see if the formatter function exists and if it does we
are calling it and sending the current value of i (as we are in the loop).

The next step is if our output isn't empty (negative or has a value equivalent to false) or if our
output is empty but our formatter isn't active then render the data:

if (output || !chartInfo.x.formatter)

currentX = startX + (i/steps) * chartWidth;

context .moveTo (currentX, startY);

context.lineTo (currentX, endyY) ;

context.fillText (output?output:xData.min+stepSize* (i), currentX-6,
endY+CHART PADDING/2) ;

}

100

Chapter 3

Only if we have an output from the formatter function and/or if the formatter function
does not exist we don't need to do anything. As such we need the if statement to capture
both the scenarios, if we do not have the if statement, then our output will not conform

to our earlier recipes. The only content we are changing within this block of code is the
fillText method. If we are working with our output, we want to use that for the text. If not,
we want to keep the logic that was there before the same:

if (output || !chartInfo.x.formatter)

currentX = startX + (i/steps) * chartWidth;

context .moveTo (currentX, startY);

context.lineTo (currentX, endyY) ;

context.fillText (output?output:xData.min+stepSize* (i), currentX-6,
endY+CHART PADDING/2) ;

}

We have one last thing we need to cover before we can run our application and see it in action
and that is to create our weeklyCapture function. So let's create it now:

var DAY = 1000*60*60*24;
function weeklyCapture (i) {

var d;
if (i==0) {
d = new Date(stockDatal[i] .date) ;
}Jelse if (i>1 && stockDatal[i] .date != stockData[i-1].date+1) {

d = new Date(stockDatal[i] .date + DAY*stockDatal[i] .date);

return d? d.getMonth()+1+"/"+d.getDate () :false;

}

We start by creating a helper variable called DAY that will store how many milliseconds there
are in a day:

var DAY = 1000*60*60*24;

If you take a peek at our external data, you will see that only on day 0 we have an actual date
(formatted in milliseconds since 1970). All we need to do is send that to the date object to
create a date:

var d;
if (i==0) {
d = new Date(stockDatal[i] .date) ;

Creating Cartesian-based Graphs

While all other data lines contain only a number that represents how many days passed since
that original date, we want to test and see if the current date is only one day after the last day.
Only if the date change is greater than one day, we will create a new date format for it:

}Jelse if (i>1 && stockDatal[i] .date != stockData[i-1].date+1) {
d = new Date(stockData[0] .date + DAY*stockDatal[i] .date);

}

Note that to create the date object we need to take our current original date from row 0
and then add to it the total days in milliseconds (multiplying our DAY variable with the current
day value).

With this method all that is left to check is if we have a valid date. Let's format it and send it
back, and if not, we will send back false:

return d? d.getMonth()+1+"/"+d.getDate () :false;

Congratulations! Now our sample is a fully fledged integrated candlestick chart with live
dynamic dates.

Adding other render options to our stock chart

Although the candlestick chart is a very popular option, there is another popular technical
chart view. One that is used when there are no colors to use. Instead of the usage of colors,
on the left-hand side we draw a line to define the opening price, and on the right-hand side we
capture the closing price. Let's integrate that logic into our chart as an optional render mode.
We will add a new parameter to the addStock function:

function addStock (context,data,isCandle) {

We are now going to adjust our internal for loop to change the render depending on the
value of this variable:

for(i=0; i<data.length; i++){

openY = (datal[i] .open-chartInfo.y.min) *stepSize;
closeYOffset = (datal[i] .open-datal[i] .close) *stepSize;
highY = (datal[i] .high-chartInfo.y.min)*stepSize;

lowY =(datali] .low-chartInfo.y.min) *stepSize;

context.beginPath() ;

currentX = CHART PADDING +elementWidth* (i+.5);

context.moveTo (currentX, endY-highy) ;

context.lineTo (currentX, endY-lowY) ;

if (!isCandle) {
context.moveTo (currentX, endY-openY) ;
context.lineTo (CHART PADDING +elementWidth* (i+.25),endY-openY);
context.moveTo (currentX, endY-openY+closeYOffset) ;

context.lineTo (CHART PADDING +elementWidth* (i+.75),endY-
openY+closeYOffset) ;

102

Chapter 3

context.stroke() ;
}else{

context.rect (CHART PADDING +elementWidth*i ,endY-openY,elementWi
dth,closeYOffset) ;

context.stroke() ;
context.fillStyle = closeYOffset<0? "#C2D985" :"#E3675C" ;

context.fillRect (CHART PADDING +elementWidth*i ,endY-openY,eleme
ntWidth, closeYOffset);

}

There we go. We set the default to be false for our isCandle Boolean variable. If we run
our application again, we will find it rendering in the new format. To change that, all we need
to do is provide that third parameter as t rue when calling the addStock function:

1
T

.. HHHHHHL | J

This chapter has been self-contained and really the hub of all the charts if you need to
strengthen your chart building skills. | recommend you to revisit some of the earlier recipes
in this chapter.

Let's Curve Things Up

In this chapter we will cover:

» Building a bubble chart

» Creating a pie chart

» Using a doughnut chart to show relationships
» Leveraging a radar

» Structuring a tree chart

Introduction

In the last chapter, we built a component for linear graphs ranging through dots, lines, and
bars. Most of the data we worked with was two-dimensional, while we ended our lesson with a
four-dimensional chart. It was still represented using linear art. In this chapter, we will
leverage the capability of creating non-linear data to represent data.

Building a bubble chart

Although many items in our chart will have correlations with earlier charts that we created in
Chapter 3, Creating Cartesian-based Graphs, we will start from scratch. Our goal is to create
a chart that has bubbles in it—the bubbles enable us to showcase data with three data points
(x, y, and the size of the bubble). This type of chart is really ideal when animated as it can
showcase changes over time (it could showcase many years in a few seconds).

Let’s Curve Things Up

A great demo of the powers of bubble charts can be seen in a TED presentation by Hans
Rosling (http://blog.everythingfla.com/2012/05/hans-rosling-data-vis.
html).

. math

|:|n')gran'1ing|s;I

Getting ready

We will start up our project with a canvas setup and skip the HTML end. If you have forgotten
how to create it please refer to the Graphics with 2D Canvas recipe in Chapter 1, Drawing
Shapes in Canvas.

There are three major steps:

» Creating the data source
» Creating the background
» Adding the chart data info into the chart

How to do it...

Let's list the steps required to create a bubble chart:

1. The next data object should look familiar in an array that has objects within it with
student scores in English, Math, and programming. Build the data object:

var students2001 = [{name:"Ben",
math:30,
english:60,
programing:30},
{name: "Joen",
math:40,

106

Chapter 4

english:60,
programing:40},
{name: "Danny",
math:50,
english:90,
programing:50},
{name: "Mary",
math:60,
english:60,
programing:60},
{name:"Jgim",
math:80,
english:20,
programing:80}] ;

Create our chart information; contrary to previous charts, this chart has a third
parameter for our bubble information. Define our chart rules:

var chartInfo= { y:{min:0, max:100,steps:5,label:"math"},
x:{min:0, max:100,steps:5,label:"programing"},
bubble:{min:0, max:100, minRaduis:3,
maxRaduis:20,label:"english"}

}i

The last data object will contain all the styling information that we might want
to change in the future. Add a styling object:

var styling = { outlinePadding:4,
barSize:16,
font:"12pt Verdana, sans-serif",
background: "eeeeee",
bar:"ccccece",
text:"605050"

}i

We create an event callback when the document is ready to trigger init,
so let's create the init function:

var wid;
var hei;
function init () {
var can = document.getElementById ("bar") ;

wid = can.width;
hei = can.height;

var context = can.getContext ("2d");

createOutline (context, chartInfo) ;

Let’s Curve Things Up

addDots (context, chartInfo, students2001,
["math", "programing", "english"], "name") ;

}

5. We start creating our outline when we create our style object. Now it's time to draw
everything into our canvas. So we start by setting up our base canvas style:

function createOutline(context,chartInfo){
var s = styling;
var pad = s.outlinePadding;
var barSize = s.barSize;
context.fillStyle = s.background;
context.fillRect (0, 0,wid, hei) ;
context.fillStyle = s.bar;
context.fillRect (pad, pad,barSize, hei-pad*2) ;
context.font = s.font;
context.fillStyle = s.text;

6. We need to save our current, canvas-based graphic layout information, change it to
make it easier to position elements and then return it back to its original state:

context.save() ;

context.translate (17, hei/2);
context.rotate (-Math.PI/2) ;
context.textAlign = "center";
context.fillText (chartInfo.y.label, 0, 0);
context.restore () ;

context.fillStyle = s.bar;
context.fillRect (pad+barSize, hei-pad-barSize,wid-pad*2-
barSize,barSize) ;

context.font = s.font;

context.fillStyle = s.text;

context.fillText (chartInfo.x.label, (wid-pad*2-barSize) /2, hei-
pad*2) ;

context.translate (pad+barSize, hei-pad-barSize) ;
context.scale(1l, -1);

//SET UP CONSTANTS - NEVER CHANGE AFTER CREATED
styling.CHART HEIGHT = hei-pad*2-barSize;
styling.CHART WIDTH = wid-pad*2-barSize;

7. Now it is time to draw the outlines with the help of our chartInfo object:

var steps = chartInfo.y.steps;

var ratio;

chartInfo.y.range = chartInfo.y.max-chartInfo.y.min;
var scope = chartInfo.y.range;

108

context.strokeStyle

s.text;

var fontStyle = s.font.split("pt");

var pointSize = fontStyle([0]/2;

fontStyle[0] =pointSize;

fontStyle

= fontStyle.join("pt") ;

Chapter 4

context.font = fontStyle; // making 1/2 original size of bars

for(var i=1; i<=steps; i++){

ratio

context.
context.
context.

= i/steps;

moveTo (0, ratio*styling.CHART HEIGHT-1) ;
lineTo(pad*2,ratio*styling.CHART HEIGHT-1) ;
scale(1,-1);

context.fillText (chartInfo.y.min +
(scope/steps) *i, 0, (ratio*styling.CHART HEIGHT-3 -
pointSize) *-1) ;

context.scale(1,-1);

steps =

chartInfo.

chartInfo.x.range

scope =
context.
for (var

ratio

context.
context.
context.
context.

chartInfo.
textAlign

X

X.

.steps;

chartInfo.x.max-chartInfo.x.min;
max-chartInfo.x.min;
"right";

i=1; i<=steps; i++){

= i/steps;

moveTo (ratio*styling.CHART WIDTH-1,0) ;
lineTo(ratio*styling.CHART WIDTH-1,pad*2);
scale(1,-1);

fillText (chartInfo.x.min +

(scope/steps) *i,ratio*styling.CHART WIDTH-pad, -

pad/2)

I

context.scale(1,-1);

context.stroke () ;

}

Now it is time to add the data into our chart by creating the addDots method. The
function addDot s will take in the data with the definition of rules (keys) to be used,
contrary to what we did in the earlier recipes.

function addDots(context,chartInfo,data,keys,1abe1){

var rangeX = chartInfo.y.range;

var _y;

Let’s Curve Things Up

var _x;

var xoffset=0;
var _yoffset=0;

if (chartInfo.bubble) {

var range = chartInfo.bubble.max-
chartInfo.bubble.min;

var radRange = chartInfo.bubble.maxRadius-
chartInfo.bubble.minRadius;

context.textAlign = "left";

for(var i=0; i<data.length; i++){
_x = ((datali] [keys[0]] - chartInfo.x.min)/
chartInfo.x.range) * styling.CHART WIDTH;

vy = ((datali] [keys[1]] - chartInfo.y.min)/
chartInfo.y.range) * styling.CHART HEIGHT;
context.fillStyle = "#44ff44";

if (datali] [keys[2]11){
_xoffset = chartInfo.bubble.minRadius +

(datali] [keys[2]]-chartInfo.bubble.min) /range
*radRange;

_yoffset = -3;

context .beginPath() ;

context.arc(x, y, xoffset , 0, Math.PI*2, true);
context.closePath() ;

context.fill () ;

_xoffset+=styling.outlinePadding;
}else{
context.fillRect (_x, y,10,10);

}

if (label) {
_x+=_xoffset;
_y+=_yoffset;
context.fillStyle = styling.text;
context.save () ;
context.translate(x, y);
context.scale(1l,-1);
context.fillText ("Bluping",0,0) ;

Chapter 4

context.restore() ;

}
}
}

This block of code, although redone from scratch, bears a lot of resemblance to the
Spreading data in a scatter chart recipe in Chapter 3, Creating Cartesian-based Graphs,
with modifications to enable the third level of data and the new charting format.

That's it. You should have a running bubble chart. Now when you run the application, you will
see that the x parameter is showcasing the math score, the y parameter is showcasing the
programming score, while the size of our bubble showcases the student's score in English.

Let's start with the createOutline function. In this method, apart from the regular
canvas drawing methods that we grow to love, we introduce a new style of coding where we
manipulate the actual canvas to help us define our code in an easier way. The two important
key methods here are as follows:

context.save () ;
context.restore() ;

We will be leveraging both the methods a few times. The save method saves the current view
of the canvas while the restore method returns users to the last saved canvas:

context.save() ;

context.translate (17, hei/2);
context.rotate (-Math.PI/2) ;
context.textAlign = "center";
context.fillText (chartInfo.y.label, 0, 0);
context.restore() ;

In the first use of this style, we are using it to draw our text by rotating it to the right. The
translate method moves the 0, 0 coordinates of the canvas while the rotate method
rotates the text using radians.

After drawing the external bars, it's time for us to use this new capability to our advantage.
Most charts rely on a y coordinate that grows upwards, but this canvas has the y values
growing from the top to the bottom of the canvas area. We can flip this relationship by adding
some code before we loop through to add the range values.

context.translate (pad+barSize, hei-pad-barSize) ;
context.scale(1l, -1);

Let’s Curve Things Up

In the preceding lines, we are first moving the 0, 0 coordinates of our canvas to be exactly at
the bottom-right range of our chart, and then we are flipping our canvas by switching the scale
value. Note that from now on if we try to add text to the canvas, it will be upside down. Keep
that in mind as we are now drawing in a canvas that is flipped upside down.

One thing to note in our first loop when we try to type in new text is that when we want to add
text, we first undo our scale and then return back our canvas for it to be flipped:

context.scale(1l,-1);
context.fillText (chartInfo.y.min + (scope/steps)*i,0, (ratio*styling.
CHART HEIGHT-3 -pointSize) *-1) ;

context.scale(1,-1);

Note that we are multiplying our y coordinate by *-1. We are doing this because we actually
want the value of our y coordinate to be negative as we have just flipped the screen.

The work around the x bar text is very similar; notice the main differences related to finding
the x and y value calculations.

It's time to dig into the addDots function. The function will again look familiar if you've been
following Chapter 3, Creating Cartesian-based Graphs, but this time we are working with a
modified canvas.

We start with a few helper variables:

var rangeX = chartInfo.y.range;
var _y;

var _X;

var _xoffset=0;

var _yoffset=0;

We are adding the bubble effect dynamically, which means that this method can work even
if there are only two points of information and not three. We continue by testing to see if our
data object contains the bubble information:

if (chartInfo.bubble) {
var range = chartInfo.bubble.max-chartInfo.bubble.min;

var radRange = chartInfo.bubble.maxRaduis-
chartInfo.bubble.minRaduis;

context.textAlign = "left";

}

If so, we add a few more variables and align our text to the left as we are going to use it
in this example.

Chapter 4

It's time for us to look through our data object and propagate the data on the chart.

for(var i=0; i<data.length; i++){
_x = ((datali] [keys[0]] - chartInfo.x.min)/ chartInfo.x.range)
* styling.CHART WIDTH;
_y = ((datali] [keys[1]] - chartInfo.y.min)/ chartInfo.y.range)
* styling.CHART HEIGHT;
context.fillStyle = "#44£ff44";

For each loop, we recalculate the _x and _y coordinates based on the current values.

If we have a third element, we are ready to develop a bubble. If we do not have it, we need to
create a simple dot.

if (datali] [keys[2]11) {
_xoffset = chartInfo.bubble.minRaduis + (datali] [keys[2]]-
chartInfo.bubble.min) /range *radRange;
_yoffset = -3;
context.beginPath() ;
context.arc(x, y, xoffset , 0, Math.PI*2, true);
context.closePath() ;
context.f£fil1() ;
_xoffset+=styling.outlinePadding;
}else{
context.fillRect (_x, vy,10,10);
}

At this stage, we should have an active bubble/dot method. All that is left is for us to integrate
our overlay copy.

Before we add a label, let's take a peek at the function signature:
function addDots (context,chartInfo,data,keys, label) {}

The context and chartInfo parameters are already a standard in our samples. The idea of
keys was to enable us to switch what data will be tested dynamically. The keys' values are the
array positions 0 and 1 that are correlated to the x and y coordinates, and position 2 is used
for bubbles, as we've seen earlier. The 1abel parameter enables us to send in a key value for
the label. In this way, if the label is there we will add a label and if it is not there we will not.

if (label) {
_x+=_xoffset;
_y+=_yoffset;
context.fillStyle = styling.text;
context.save () ;
context.translate(x, y);
context.scale(1,-1);
context.fillText (data[i] [label], 0,0);
context.restore() ;

Let’s Curve Things Up

Then we add the preceding i f statement. If our label is set, we position the style and create
the text of the label.

Creating a pie chart

The steps to create a pie chart are relatively easy and short. Pie charts are ideal for showcasing
a closed amount of data that we want to easily compare between data fields such as, in our
example, dividing the number of people in the world into groups based on their region:

Europe
B03MMON[12 88%)

Adfnica Latin Amernca and Can
B39Mllon(13.46%) 539Millon(8.65%)

North America
320Mllon(5.13"

Mear East
17anMilkoni(z.8
Ocaania
FZMillon{0.51

/

Asla
35 18Millon(56.46%)

Getting ready

The first step will be to update our canvas size in the HTML area to be a rectangular area.
In our sample, we will update the values to 400 x 400. That's about it; let's start building it.

How to do it...

In the following steps we will create our first pie chart. Let's get started:

1. Set up our data source and our global variables:
var data= [{label:"Asia", value:3518000000,style:"#B1DDF3"},
{label :"Africa", value:839000000,style:"#FFDE89" } s
{label:"Europe", value:803000000,style:"#E3675C"},
{labelz"Latin America and Caribbean", value:

Chapter 4

539000000, style:"#C2D985" } ,
{label:"North America",
value:320000000,sty1e:"#eeeeee"},
{label:"Near East", value:179000000,style:"#aaaaaa"},
{label:"Oceania", value:32000000,style: "#444444"}
1;

var wid;

var hei;

var radius = 100;

2. Prepare our canvas (from here on we are delving into the init function):

function init () {
var can = document.getElementById ("bar") ;

wid = can.width;
hei = can.height;
var context = can.getContext ("2d");

3. Count the total data (world population):

var total=0;
for(var i=0; i<data.length; i++) total+=datali] .value;

4. Set up 360 degrees in radians and move our pivot pointto 0, 0:

var rad360 = Math.PI*2;
context.translate (wid/2,hei/2) ;

5. Draw the pie chart by using the following code snippet:

var currentTotal=0;
for(i=0; i<data.length; i++){
context .beginPath() ;
context .moveTo (0, 0) ;
context.fillStyle = datali] .style;
context.arc(0,0,radius, currentTotal/total*rad360,
(currentTotal+data[i] .value) /total*rad360, false) ;
context.lineTo(0,0) ;
context.closePath() ;
context.fi111 () ;

currentTotal+=datal[i] .value;

}
}

That's it; we have just created a basic pie chart—I told you it would be easy!

Let’s Curve Things Up

Our pie chart, as its name indicates, uses pies and always showcases 100 percent of data. As
our arc method works based on radians, we need to convert these data points from percentile
to radians.

After figuring out what the total of all the values is and the total radians in a circle (2*PI), we
are ready to loop through and draw the slices.

var currentTotal=0;
for(i=0; i<data.length; i++) {
context .beginPath() ;
context .moveTo (0, 0) ;
context.fillStyle = datal[i] .style;

The logic is relatively simple; we loop through all the data elements, change the fill style based
on the data object, and move our pointer to 0, 0 (to the center of our screen as we have
changed the pivot point of our canvas).

context.arc(0,0,radius,currentTotal/total*rad360, (currentTotal+data
[1] .value) /total*rad360, false) ;

context.lineTo(0,0) ;

context.closePath() ;

context.fill () ;

currentTotal+=datali] .value;

Now we draw the arc. Pay attention to the highlighted text; we start with where we left off our
current total and through that we calculate the angle in radians:

currentTotal/total*rad360

We can turn this value into a percentage value that we can duplicate against the total radian
of our circle. Our second parameter is very close, so we just add into it the current value of the
current region we are in:

(currentTotal+data[i] .value) /total*rad360

And the last point to note here is that we are setting the arc's last parameter to false
(counter clockwise) as that works best for our calculations.

Last but not least, we update our currentTotal value to encompass the newly added
region as that will be our starting point in the next round of our for loop.

Chapter 4

There's more...

A pie chart without any information on its content is probably not going to work as well as a
chart with information, but we can figure out the locations... well worry not; we are going to
revisit our old friends cos and sin to help us locate the dots on our circle, to enable us to add
textual information on our newly created pie.

Revisiting Math.cos() and Math.sin()

We will start with adding a new global variable to store the color of our lines and then we will
call it copysStyle:

var copyStyle = "#0000000000";

Now that we are right back into our init function, let's add it into our for loop just before
the last line:

currentTotal+=datal[i] .value;
As expected, we will first set our new copyStyle variable as our fill and stroke value:
context.strokeStype = context.fillStyle = copyStyle;

Our next step is to locate where in our pie we would like to draw a line out so that we can add
the text:

midRadian = (currentTotal+datal[i] .value/2)/total*rad360;

To accomplish this, we will use a new variable that will store the mid-value between the last
total and the new value (the center of the new slice). So far so good. Now we need to figure
out how to get the x and y positions of that point. Lucky for us, there is a very easy way of
doing it in a circle by using the Math. cos (for the x) and Math. sin (for our y) functions:

context .beginPath() ;

context .moveTo (Math.cos (midRadian) *radius,Math.sin (midRadian) *radius) ;
context.lineTo (Math.cos (midRadian) * (radius+20) ,Math.

sin (midRadian) * (radius+20)) ;

context.stroke () ;

Armed with our midRadian variable, we will get the value for a circle with a radius of 1, so all
that is left for us to do is duplicate that value by our real radius to find our starting point. As
we want to draw a line in the same direction to the arc externally, we will find the points of an
imaginary circle that is larger; so for that we are going to use the same formula, but instead
upgrade our radius values by 20, creating a diagonal line that is correlative to the arc.

Let’s Curve Things Up

All that is left for us to do is figure out what text we would want to have within our chart, using
the same arc point with a larger circle size:

context.fillText (data[i] .label,Math.cos (midRadian) * (radius+40) ,Math.
sin (midRadian) * (radius+40)) ;

Looks good... The only problem is that we don't have our values; let's add them and figure out
the challenges involved with them.

Improving our bubbles’ text format

In a real-world example, we would probably want to use a rollover if this was a live application
(we will visit that idea in a later chapter), but let's try to figure out a way to create the chart
capable of containing all the information. We stopped in our preceding line of code with a
really large exterior circle (radius+40). Well that's because we wanted to slip in a new line
of text right under, so let's do it:

context.fillText (formatToMillions (data[i] .value) +
" (" +formatToPercent (data[i] .value/total) + ")" ,Math.
cos (midRadian) * (radius+40) ,Math.sin (midRadian) * (radius+40) + 12);

It's a bit of a mouthful, but it's basically the same as the preceding line with a new line of
text and an extra change, as we are shifting the y value by 12 pixels to account for the first
line of text on the same area. To get this working, we are using two helper functions that
format our text:

function formatToPercent (val) {
val*=10000;
val = parselnt(val);
val/=100;
return val + "%"

}

function formatToMillions(val){
val/=1000000;
return val + "Million";

}

If you run the application in its current format, you will find that the text just doesn't look good
on the page, and that is where the artist within you needs to sort things out. I've continued the
sample in our source files until it felt right, so check it out or create your own variations from
here on.

Chapter 4

Using a doughnut chart to show

relationships

The doughnut chart is a fancy pie chart. So if you haven't created a pie chart yet, | strongly
encourage you to revisit the previous recipe, Creating a pie chart. A doughnut chart is a

layered pie chart. This chart is ideal for condensing the comparable data between data types
that would fit into a pie chart:

. BE9%

B.46%

56.76%

Getting ready

We are going to grab our code from the last example and adjust it to fit our needs. So we will
start with the same HTML file and the same code from the last example.

Let’s Curve Things Up

How to do it...

Perform the following steps:

1. Let's update our data with some dummy data (we will create two data objects):

var datal= [{1abe1:"Asia", value:3518000000,sty1e:"#BlDDF3"},
{label:"Africa", value:839000000,style: "#FFDE89"},
{label:"Europe", value:803000000,style:"#E3675C"},

{labelz"Latin America and Caribbean", value:
539000OOO,Style:"#C2D985"},

{label:"North America",
value:32000OOOO,sty1e:"#999999"},

apel: ear as , Value: , Style:
label:"N East" 1 179000000, styl "H666666"
1;

var data2= [{label:"Asia", value:151000,style:"#B1DDF3"},
{label:"Africa", value:232000,style:"#FFDE89"},
{label:"Europe", value:842000,style:"#E3675C"},

{labelz"Latin America and Caribbean", value:
538100,Style:"#C2D985"},

{label:"North America", value:3200,style:"#999999"},
{label:"Near East", value:17900,style:"#666666"}
1;

2. Modify the init function by extracting all the pie-creating lines to a separate function
and adding a new function createHole (for our doughnut):

function init () {
var can = document.getElementById("bar") ;

wid = can.width;

hei = can.height;

var context = can.getContext ("2d");
context.translate (wid/2,hei/2) ;

createPie (context,datal,190) ;
createPie (context,data2,150) ;
createHole (context,100) ;

}

3. Modify the pie creation to change the text layout to fit into a pie chart:

function createPie(context,data,radius){
var total=0;
for(var i=0; i<data.length;i++) total+=datali] .value;

120

var rad360 = Math.PI*2;

var currentTotal=0;

var midRadian;

var offset=0;

for(i=0; i<data.length; i++){
context .beginPath() ;
context .moveTo (0, 0) ;
context.fillStyle = datali] .style;

context.arc(0,0,radius, currentTotal/total*rad360,
(currentTotal+data[i] .value) /total*rad360, false) ;

context.lineTo(0,0) ;
context.closePath() ;
context.fill () ;

context.strokeStype = context.fillStyle =
midRadian =

(currentTotal+data[i] .value/2) /total*rad360;

context.textAlign = "center";

context.fillText (formatToPercent (data[i] .value/total)

,Math.cos (midRadian) * (radius-
20) ,Math.sin (midRadian) * (radius-20)) ;

currentTotal+=datal[i] .value;

}

4. We need to create the method createHole (actually a simple circle):

function createHole(context,radius){
context .beginPath() ;
context .moveTo (0, 0) ;
context.fillStyle = "#ffffff";
context.arc(0,0,radius,0,Math.PI*2, false) ;
context.closePath() ;
context.fi111 () ;

}

copyStyle;

Chapter 4

That's it! We can now create an endless doughnut with as many layers as we would like by

changing the radius, making it smaller each time we add a new layer.

Let’s Curve Things Up

The core logic of the doughnut chart is the same as that of the pie chart. Our main focus is
really about reformatting and rewiring the content to be outlined at the visual level. As such,
part of our work is to delete the things that are not relevant and to make the needed updates:

context.fillText (formatToPercent (data[i] .value/total) , Math.
cos (midRadian) * (radius-20) ,Math.sin (midRadian) * (radius-20)) ;

The main thing to note is that we are hardcoding a value that is 20 less than the current
radius. If we wanted our sample to work for every possible option, we would need to figure out
a smarter way of generating this data as ideally we would want the text to be in between the
doughnut area and rotated, but we have done things of that nature before so I'll leave that for
you to explore.

There's more...

Although our doughnut is created and ready, it would help if we add some more information to it,
such as outlines and a legend, as we extracted the majority of the text from the last example.

Adding an outline

We will use shadows to create a glow around our shapes. The easiest and quickest way to do
it is to revisit the init function and add into it the shadow information to create this effect:

function init () {
var can = document.getElementById ("bar") ;

wid = can.width;

hei = can.height;

var context = can.getContext ("2d");
context.translate (wid/2,hei/2) ;

context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context.shadowBlur = 8;
context.shadowColor = 'rgba(0, 0, 0, 0.5)"';

createPie (context,datal,190) ;
createPie (context,data2,150) ;
createHole (context,100) ;

122

Chapter 4

The key here is that we are setting our offset on both the x and y values to be 0, and as such
our shadow is being used as a glow. Every element that will be drawn from here on will have a
shadow, and that works perfectly for us.

Creating a legend

Hey, since we have a huge hole in our doughnut, how about we put our legend right in the
middle of everything? As sometimes the middle isn't exactly the best-looking thing, it will
probably be best to manually figure out what is the perfect position after we create the legend.

context .shadowColor = 'rgba(0, 0, 0, 0)';
context.translate(-35,-55);
createlegend (context,datal) ;

We start by removing our shadow, by setting its alpha to 0 and moving our pivot point. (I
tweaked these numbers after the legend was created until | was happy.)

OK, we are ready to create our legend with the createLegend function:

function createLegend (context,data) {
context.textAlign="1left";
for(var i=0;i<data.length;i++) {
context.fillStyle=datali] .style;
context.fillRect (0,i*20,10,10) ;
context.fillText (data[i] .label,20,1*20+8) ;
}
}

We have completed a fully fledged doughnut chart with a legend.

» The Creating a pie chart recipe

Leveraging a radar

Radars are very misunderstood charts but are really amazing. A radar enables us to showcase
a really large amount of comparable data in a very condensed way. The radar chart is known
as a spider chart as well.

Let’s Curve Things Up

Warning

M You really need to be friendly with the Math.cos and Math. sin functions,
Q as we are going to use them plenty of times in this chart type. With that said,
if you don't feel comfortable with them yet, it would be a good idea to start
from the start of the chapter to refresh your memory on this.

Getting ready

As always, we are going to start with our base HTML page with an init callback.

Note
Al
~ A radar chart is really a line chart wrapped up into a circular shape with a
lot of different math involved; but it's the same idea—instead of spreading
our data horizontally, we are spreading our data around a center point.

BumwesBosd

U
/
\ 1

math

Chapter 4

How to do it...

Let's see what are the steps involved in creating a radar chart:

1.

Create/Organize the chart data and the actual data:
var data=[{1abe1:"Ben", style:"#E3675C", math:90,english:45, spanis
h:25,programing:90,bible:20,art:90},

{labelz"Sharon", style:"#C2D985", math:100,english:90, spanish:60
,programing:27,bible:80,art:20}];

var chartInfo= {steps:10, max:100, types:["math", "english", "spanis
h","programing","bible","art"]};

Add a few helper variables and an init function:

var wid;

var hei;

var copyStyle = "#0000000000";
var radius = 180;

var radianOffset = Math.PI/2

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
var context = can.getContext ("2d");

createSpider (context,chartInfo,data) ;

}

Now it is time to create the createSpider function:

function createSpider(context,chartlnfo,data){
drawWeb (context, chartInfo, radius) ;
drawDataWeb (context, chartInfo,data, radius) ;

}

We split the creation of the radar web into two stages. The first is the lines coming out
of the center of the web and the other is the actual webs that loop around this center
point. Let's start with the first step and continue to the next part in the second loop:

function drawWeb(context,chartInfo,radius){
chartInfo.stepSize = chartInfo.max/chartInfo.steps;
var hSteps = chartInfo.types.length;
var hStepSize = (Math.PI*2)/hSteps;
context.translate (wid/2,hei/2) ;

Let’s Curve Things Up

context.strokeStyle = "#000000";
for(var i=0; i<hSteps; i++){
context .moveTo (0, 0) ;

context.lineTo (Math.cos (hStepSize*i +
radianOffset) * (radius+20) ,Math.sin (hStepSize*i +
* (

radianOffset) * (radius+20)) ;
}
var stepSize = radius/chartInfo.steps;
var cRad;

for(var i=1; i<=chartInfo.steps; i++){
cRad = i*stepSize;
context .moveTo (Math.cos (radianOffset) *cRad,
Math.sin(radianOffset) *cRad) ;

for(var j=0;j<hSteps; j++){
context.lineTo (Math.cos (hStepSize*j +
radianOffset) *cRad,Math.sin (hStepSize*j +
radianOffset) *cRad) ;

}

context.lineTo (Math.cos (radianOffset) *cRad,

Math.sin(radianOffset) *cRad) ;

context.stroke () ;

}

5. Now it's time to integrate our data:

function drawDataWeb(context,chartInfo,data,radius){

var hSteps = chartInfo.types.length;

var hStepSize = (Math.PI*2)/hSteps;

for(i=0; i<data.length; i++){
context .beginPath() ;
context.strokeStyle = datalil] .style;
context.lineWidth=3;
cRad =
radius* (data[i] [chartInfo.types[0]]/chartInfo.max) ;
context .moveTo (Math.cos (radianOffset) *
cRad,Math.sin (radianOffset) *cRad) ;

for(var j=1;j<hSteps; j++){
cRad =
radius* (data[i] [chartInfo.types[j]l]/chartInfo.max) ;

126

Chapter 4

context.lineTo (Math.cos (hStepSize*j +
radianOffset) *cRad,Math.sin (hStepSize*j +
radianOffset) *cRad) ;

}
cRad =
radius* (data[i] [chartInfo.types[0]]/chartInfo.max) ;

context.lineTo (Math.cos (radianOffset) *
cRad,Math.sin (radianOffset) *cRad) ;

context.stroke () ;

}

Congratulations, you have just created a radar/spider chart.

The radar chart is one of our more complicated chart types. So far it uses a lot of cos/sin
functions, but the logic is very consistent and as such relatively simple.

Let's take a deeper look into the drawWeb method:

chartInfo.stepSize = chartInfo.max/chartInfo.steps;
var hSteps = chartInfo.types.length;

var hStepSize = (Math.PI*2)/hSteps;
context.translate (wid/2,hei/2) ;

context.strokeStyle = "#000000";

We start by creating a few helper variables and repositioning our pivot point to the center
of the screen to help us with our calculations.

for(var i=0; i<hSteps; i++) {
context .moveTo (0, 0) ;
context.lineTo (Math.cos (hStepSize*i +
radianOffset) * (radius+20) ,Math.sin (hStepSize*i +
radianOffset) * (radius+20)) ;

}

We then create our spikes based on the number of courses, as each course will be
represented with a spike.

It's time to create the interwebs of our spider web now that we have our core building
blocks (the spikes):

var stepSize = radius/chartInfo.steps;
var cRad;

Let’s Curve Things Up

for(var i=1; i<=chartInfo.steps; i++){
cRad = i*stepSize;
context .moveTo (Math.cos (radianOffset) *cRad,
Math.sin (radianOffset) *cRad) ;

for(var j=0;j<hSteps; j++){
context.lineTo (Math.cos (hStepSize*j +
radianOffset) *cRad,Math.sin (hStepSize*j +
radianOffset) *cRad) ;

}

context.lineTo (Math.cos (radianOffset) *cRad,
Math.sin (radianOffset) *cRad) ;

context.stroke () ;

In this multidimensional loop, we are running through step by step to draw lines from one
dot on a circle to the next (from one spike point to the next), growing our radius each time we
are done with creating a complete shape. Each shape we create here represents a growth by
10 in the students' score, as our students can only have scores between 0 and 100. We can
ignore extreme cases in this sample. (You might need to adjust this code if your data range
doesn't start at 0.)

While our drawDataWeb method changes, the radius based on the score assumes a range
of 0 to 100. (If your ranges are not the same, you will need to modify this code, or modify your
data sets to be between 0 and 100 when sent to the method.)

There's more...

Our radar isn't perfect as it could use a legend and some textual information around our radar
so that we know what each bar represents. We will let you sort out a legend as we've done in
the previous recipe Using a doughnut chart to show relationships.

Adding a rotated legend

To fix this issue and add our text, we will revisit our function drawWeb with our first loop in that
function, and instead of updating the cos/sin values to find the rotation, we will just rotate our
canvas and integrate our text at the edge each time:

function drawWeb(context,chartInfo,radius){
chartInfo.stepSize = chartInfo.max/chartInfo.steps;
var hSteps = chartInfo.types.length;
var hStepSize = (Math.PI*2)/hSteps;
context.translate (wid/2,hei/2) ;
context.strokeStyle = "#000000";

128

Chapter 4

context.textAlign="center";

for(var i=0; i<hSteps; i++){

context.moveTo(0,0); context.lineTo(Math.cos(
radianOffset) * (radius+20) ,Math.sin(radianOffset) * (radius+20)) ;

context.fillText (chartInfo.types[i] ,Math.cos(
radianOffset) * (radius+30) ,Math.sin(radianOffset) * (radius+30));

context.rotate (hStepSize) ;

}

The logic here is a bit simpler as we are just rotating our canvas each time and using the exact
same code over and over until the rotation comes to a full circle.

Structuring a tree chart

There are many types of trees in the virtual world, although the most intuitive one is a family
tree. A family tree is a bit more complex than a basic data tree such as a class inheritance
tree, as for the most part classes have only one parent while family trees usually have two.

We will build an inheritance tree for the display objects of ActionScript 3.0.

Getting ready

Please note that this sample is cutting edge in HTML5. One of the new features that no one
really knows whether will get adopted or not is E4X. It's been embraced by Firefox, but not all
browsers have implemented it (it is fully supported in Flash as well).

ECMAScript for XML (E4X) is a programming language extension that adds native XML
support to ECMAScript. It has replaced the DOM interface and is implemented as a primitive
(such as numbers and Booleans), making it faster and more optimized.

As we are mainly working locally, we are going to save our XML document directly in our
JavaScript to avoid sandbox security issues.

Let’s Curve Things Up

To help us space out our elements, we will make our canvas area much larger in this sample
(800 x 400). Alright, let's start implementing our tree sample created with E4X.

Display Object

m MorphShape “
ni.F‘mﬁaﬂzmm
——————————————————————
E@;

MaieClip MorieClp2

TesiChildrand

How to do it...

Perform the following steps:

1. We will start by creating our XML object that contains our class tree (please note
that this will only work on an up-to-date version of Firefox as at the time of this
book being written):

var xml = <node name ="Display Object"s>
<node name="AVMlMobie" />
<node name="Bitmap" />
<node name="InteractiveObject" >
<node name="DisplayObjectContainer"s
<node name="Loader" />
<node name="Sprite" >
<node name="MovieClip"/>
</node>
<node name="Stage" />
</node>
<node name="SimpleButton" />
<node name="TextField" />
</node>
<node name="MorphShape" />
<node name="Shape" />

130

Chapter 4

<node name="StaticText" />
<node name="Video" />
</nodes>;

Then create our standard helper and styling objects:

var wid;
var hei;

var style = {boxWidth:90,boxHeight:30, boxColor:"black",boxCopy:"w
hite", boxSpace:4, lines:"black",lineSpace:30 };

We will implement our init function and then call the drawTree function:

function init () {
var can = document.getElementById ("bar") ;
wid = can.width;
hei = can.height;

var context = can.getContext ("2d");
context.textAlign = "center";
context.font = "épt Arial";

drawTree (context,wid/2,20, xml);

}

Time to implement the drawTree function (our recursive function):

function drawTree(context,_x,_y,node){
context.fillStyle=style.boxColor;
context.fillRect (_x-style.boxWidth/2, y-
style.boxHeight/2,style.boxWidth, style.boxHeight) ;
context.fillStyle=style.boxCopy;
context.fillText (node.@name, x, y+8);

if (node.hasComplexContent ()) {
var nodes = node.node;

var totalWidthOfNewLayer = nodes.length() *
style.boxWidth;

if (nodes.length() >1) totalWidthOfNewLayer += (
nodes.length()-1)* style.boxSpace;

var startXPoint = x-totalWidthOfNewLayer/2 +
style.boxWidth/2;
var currentY = y+style.boxHeight/2;

context .beginPath() ;
context.strokeStyle ="#000000";
context.lineWidth=3;
context.moveTo (_x,currentY) ;
currentY+=style.lineSpace/2;
context.lineTo(x,currentY);

Let’s Curve Things Up

context .moveTo (startXPoint, currentY) ;

context.lineTo(startXPoint+totalWidthOfNewLayer-
style.boxWidth, currentyY) ;

context.stroke () ;

for(var i=0; i<nodes.length();i++)
drawTree (context, startXPoint + i* (style.boxWidth +
style.boxSpace) , y+50,nodes[i]) ;

}

Tah Dah! We just created our first tree.

For more information on how E4X works, | recommend checking out some online resources
such as http://goo.gl/jLWYd and http://goo.gl/dsHD4.

Let's take a deeper look at how our recursive drawTree works. The basic idea of createTree
is to create the current node in focus and to check if the node has children; if it does, to send
them to the drawTree and have them recursively continue until all the children are created
and done. One of the most critical things you need to worry about when creating a recursive
function (a function that calls itself) is to make sure that it doesn't end up being endless, and
as our scenario has a very defined end that is based on the XML structure, we are safe.

We start by creating the current node in focus, based on the point values that were sent over
in our function's parameters:

context.fillStyle=style.boxColor;

context.fillRect (_x-style.boxWidth/2, y-style.boxHeight/2,style.
boxWidth, style.boxHeight) ;

context.fillStyle=style.boxCopy;
context.fillText (node.@name, x, y+8);

Right after these lines is where it starts getting really interesting. If our node is complex, we
are going to assume that it has children, as that's our base rule in creating our XML object;
and if so, it's time for us to draw the children:

if (node.hasComplexContent ()) {

We start by drawing a visualizer bar to help us see what the children of the current element
are, and create a few helper variables in the process:

var nodes = node.node;
var totalWidthOfNewLayer = nodes.length()* style.boxWidth;
if (nodes.length() >1)

132

Chapter 4

totalWidthOfNewLayer += (nodes.length()-1)* style.boxSpace;
var startXPoint = x-totalWidthOfNewLayer/2 +
style.boxWidth/2;

var currentY = y+style.boxHeight/2;

context .beginPath() ;
context.strokeStyle ="#000000";
context.lineWidth=3;
context.moveTo (_ x,currentY) ;

currentY+=style.lineSpace/2;

context.lineTo(x,currentY) ;

context .moveTo (startXPoint, currentY) ;
context.lineTo(startXPoint+totalWidthOfNewLayer-

style.
context.

boxWidth, currenty) ;
stroke () ;

After creating our outline helper lines, it's time for us to loop through the children and send
them to drawTree with their new positions:

for (var

i=0; i<nodes.length() ;i++) {

drawTree (context, startXPoint + i* (style.boxWidth +

style.

}
}

boxSpace) , y+50,nodes[i]) ;

That covers all the logic. At this stage, the logic will start all over again for each element, one

at a time.

There's more...

In a perfect world our work with our tree would be done by now, but many a time in real-world
scenarios we would encounter issues. If we play with our current tree enough, we will discover
visual issues, such as if a child node has more than one child, its children will overlap the
other tree branches. For example, if we update our Loader class to have two new children
(two dummy classes just for the sake of our example):

var xml = <node name ="Display Object"s>
<node name="AVMlMobie" />
<node name="Bitmap" />
<node name="InteractiveObject" >
<node name="DisplayObjectContainer"s
<node name="Loader">
<node name="SlideLoader"/>
<node name="ImageLoader"/>
</node>

Let’s Curve Things Up

<node name="Sprite" >
<node name="MovieClip"/>
<node name="MovieClip2"/>
</node>
<node name="Stage" />
</node>
<node name="SimpleButton" />
<node name="TextField" />
</node>
<node name="MorphShape" />
<node name="Shape" />
<node name="StaticText" />
<node name="Video" />
</nodes>;

If you refresh your browser (currently only Firefox), you will see that our elements are
overlapping as we didn't take into account the option of children that have children. If we
review our code more deeply, we will see that in the current logic format there is no way to
solve the problem as the creation of the children is happening separately. We will need to
figure out a way to manage lines so that our elements will have a way to know that they are
about to overlap.

To solve this problem, we will need to make our recursive function more complex, as it will
need to keep track of its children's x position so that it can offset whenever there is an
overlap. Please review the modified code (changes marked in bold):

function drawTree(context,_x,_y,node,nextChildX){
context.fillStyle=style.boxColor;
context.fillRect (_x-style.boxWidth/2, y-
style.boxHeight/2, style.boxWidth, style.boxHeight) ;
context.fillStyle=style.boxCopy;
context.fillText (node.@name, x, y+8);

if (node.hasComplexContent ()) {
var nodes = node.node;
var totalWidthOfNewLayer = nodes.length()* style.boxWidth;

if (nodes.length() >1) totalWidthOfNewLayer += (nodes.length() -
1)* style.boxSpace;

var startXPoint = x-totalWidthOfNewLayer/2 +
style.boxWidth/2;

var currentY = y+style.boxHeight/2;

context .beginPath() ;
context.strokeStyle ="#000000";
context.lineWidth=3;
context.moveTo (_ x,currentY) ;

Chapter 4

if (nextChildXs>startXPoint) {
currentY+=style.lineSpace/4;
context.lineTo(x,currentY);
context.lineTo(x + (nextChildX-startXPoint), currentY);

currentY+=style.lineSpace/4;

context.lineTo(x + (nextChildX-startXPoint), currentY);

startXPoint = nextChildX; // offset correction value
lelse{

currentY+=style.lineSpace/2;

context.lineTo(x,currentY) ;

}

context .moveTo (startXPoint, currentY) ;

context.lineTo (startXPoint+totalWidthOfNewLayer-

style.boxWidth, currentyY) ;

context.stroke () ;

var returnedNextChildX=0;

for (var i=0; i<nodes.1ength();i++){
returnedNextChildX = drawTree (context,startXPoint +
i* (style.boxWidth + style.boxSpace)
,_y+50,nodes [i], returnedNextChildX) ;

}

return startXPoint + i*(style.boxWidth + style.boxSpace);

return 0;

}

Wow that looks complicated—it's because it is! So let's break the logic down.

The idea is simple, but as for every simple idea, sometimes it's harder to visualize after it's
implemented. The idea is that every time we create a new tree element, we will return 0 if

it has no children, and if it has children, we will send back the next free position for future
children. We added a fourth parameter to the function as well, and we sent that information
each time we looped through children. That way each child is aware of where the last child
left off. If an element's real position can't be worked out, we draw a redirect line as per the
amount of the offset and update startXPoint. Take a deeper look at this (so far my favorite
code in the cookbook), which was fun to figure out!

Getting Out of the Box

In this chapter we will cover:

» Going though a funnel (a pyramid chart)

» Revisiting lines: making the line chart interactive
» Tree mapping and recursiveness

» Adding user interaction into tree mapping

» Making an interactive click meter

Introduction

We have covered our bases with the majority of the standard charts. At this stage, it's time
for us to become more creative with our charts. From this chapter onwards, we will progress
into more out-of-the-box, less commonly used charts and revisit some of our old charts to
incorporate dynamic data into them or to change their layout.

Getting Out of the Box

Going through a funnel (a pyramid chart)

It's rare that you see a pyramid chart that is actually created dynamically. For the most part,
they're designed and fleshed out creatively and turn into a . jpg file when they reach the web,
and that's exactly why | wanted to start this chapter with this chart—it's not as complex as it

might sound.
A:Jjﬂm gted Chapier 5

Completed Chapter 4

-Cm e

Completed Chapter 2

Complated Chapter 1

A pyramid chart is in essence a way for us to visualize changes in data that are quantitative
by nature. They have a clear relationship between the lower layers and the higher layers. That
sounded very vague, so let's explain it through an example.

Imagine that X amount of people complete their eighth year of school in a given year, if we
follow the same group of people, how many of them would have completed their twelfth year
of education four years later? Fair enough! We can't know the answer to that, but one thing
we do know is that it can't be more than the initial X amount of people. The idea of a pyramid
chart is exactly that of a body of data, of which less and less goes through the funnel as time
or something else changes It's a really great chart to compare between levels of education,
finance, involvement in politics, and so on.

Getting ready

Just as always, set up our HTML file logic. For a refresher on how to start up the HTML
file, please go back to the Graphics with 2D canvas recipe in Chapter 1, Drawing Shapes
in Canvas.

138

How to do it...

Beyond our standard HTML preparation, we need to come up with the data sources that we
wish to showcase. Let's start building our pyramid. Go right into the JS file and let's start.

1.

Chapter 5

For our example, we will create a pyramid to find out how many people that read this
book from chapter one through chapter five actually reach chapter five (this data is
fake; | hope everyone that starts reading will get there!).

var

layers = [{label:"Completed Chapter 1", amount:23},

{label:"Completed Chapter 2", amount:15},

{
{
{

label:"Completed Chapter 3", amount:ll},
label:"Completed Chapter 4", amount:7},
label:"Completed Chapter 5", amount:3} 1;

Then, provide some charting and styling information.

var

var
b

chartInfo= {height:200, width:200};

s = { outlinePadding:4,
arSize:16,

font:"12pt Verdana, sans-serif",

b
s
t

ackground: "eeeeee",
troke:"ccccce",
ext:"605050"

Note that, for the first time, we are differentiating
. between what we want the size of our canvas to be
& and the actual size of our chart (funnel/triangle).
L Another important thing to note is that, for our sample
to work in its current format, our triangle height and
width (base) must be the same.

Defi

var
var
var
var
var
var

ne a few global helper variables.
wid;
hei;
totalPixels;
totalData=0;
pixelsPerData;
currentTriangleHeight = chartInfo.height;

Getting Out of the Box

4.

140

It's time for us to create our init function. This function will be doing most of the
heavy lifting with the help of another function.

function init () {
var can = document.getElementById("bar") ;

wid = can.width;

hei = can.height;

totalPixels = (chartInfo.height * chartInfo.width) / 2;
for(var i in layers) totalData +=layers[i] .amount;

pixelsPerData = totalPixels/totalData;

var context = can.getContext ("2d");
context.fillStyle = s.background;
context.strokeStyle = s.stroke;

context.translate (wid/2,hei/2 - chartInfo.height/2);

context.moveTo
context.lineTo
context.lineTo
context.lineTo

-chartInfo.width/2 , chartInfo.height) ;
chartInfo.width/2,chartInfo.height) ;
0,0);

-chartInfo.width/2 , chartInfo.height) ;

for(i=0; i+l<layers.length; i++) findLine (context,
layers[i] .amount) ;

context.stroke () ;

}

Our function performs the normal setup and executes the styling logic and then
it creates a triangle, after which it finds the right points (by using the £indLine
function) at which we should cut the triangle:

function findLine (context,val) {
var newHeight = currentTriangleHeight;
var pixels = pixelsPerData * val;
var lines = parselnt (pixels/newHeight); //rounded

pixels = lines*lines/2; //missing pixels
newHeight-=1ines;

lines += parselnt (pixels/newHeight) ;
currentTriangleHeight-=1ines;

context .moveTo (-currentTriangleHeight/2
currentTriangleHeight) ;
context.lineTo (currentTriangleHeight/2,
currentTriangleHeight) ;

’

Chapter 5

This function finds the dots on our triangle based on the data of the current line. That's it; now
its time to understand what we just did.

After setting the code for lines in the init function, we are ready to start thinking about our
triangle. First, we need to find out the total pixels that are within our triangle.

totalPixels = (chartInfo.height * chartInfo.width) / 2;

That is easy as we know our height and our width, so the formula is really simple. The next
data point that is critical is the total amount of data. We can create a relationship between the
pixels and the data.

for(var i in layers) totalData +=layers[i].amount;

As such, we loop through all the data layers and calculate the summary of all data points.
At this stage, we are ready to find out the actual number of pixels. Each data element is
equivalent to:

pixelsPerData = totalPixels/totalData;

After setting up the styles for our stroke and fill, we stop to think about the best translation
that would help us build our triangle. For our triangle, I've picked the top edge to be the 0, 0
point, after creating the triangle:

context.translate (wid/2,hei/2 - chartInfo.height/2) ;

context .moveTo (-chartInfo.width/2 , chartInfo.height) ;
chartInfo.width/2,chartInfo.height) ;
0,0);

-chartInfo.width/2 , chartInfo.height) ;

(
context.lineTo (
context.lineTo (
context.lineTo (

The last two lines of our init function call the £ indLine method for each element in our
layers array:

for(i=0; i+l<layers.length; i++) findLine(context, layers[i].amount) ;
context.stroke() ;

Time to dig into how the findLine function actually finds the points to create the lines.
The idea is very simple. The basic idea is to try to find out how many lines it would take to
complete the number of pixels in a triangle. As we are not building a math formula, we don't
care if it's 100 percent accurate, but it should be accurate enough to work visually.

Getting Out of the Box

There's more...

Let's start with introducing color into our pallet.

var layers = [{label:"Completed Chapter 1", amount:23,
style:"#B1DDF3"}, {label:"Completed Chapter 2", amount:15,
style: "#FFDE89" },

{label:"Completed Chapter 3", amount:11, style:"#E3675C"},
{label:"Completed Chapter 4", amount:7, style:"#C2D985"},
{label:"Completed Chapter 5", amount:3, style:"#999999"}];

OK, we are done with the easy part. Now, it's time to rework our logic.

Making findLine smarter

For us to be able to create a closed shape, we need to have a way to change the direction of
the line drawn from right to left or from left to right and not have it go in one direction always.
Beyond that, we are using moveTo right now and as such can never create a closed shape.
What we actually want is to move our point and draw a line:

function findLine(context,val,isMove){
var newHeight = currentTriangleHeight;
var pixels = pixelsPerData * wval;
var lines = parselnt (pixels/newHeight); //rounded

pixels = lines*lines/2; //missing pixels
newHeight-=1lines;

lines += parselnt (pixels/newHeight) ;
currentTriangleHeight-=1ines;

if (isMove) {
context.moveTo (currentTriangleHeight/2,
currentTriangleHeight) ;

context.lineTo (-currentTriangleHeight/2 ,
currentTriangleHeight) ;

lelse{

context.lineTo (-currentTriangleHeight/2 ,
currentTriangleHeight) ;

context.lineTo (currentTriangleHeight/2,
currentTriangleHeight) ;

142

Chapter 5

Our next problem is that we don't want to change the actual triangle height as we will be
calling this function more times than we did in the past. To come up with a plan for this
problem, we need to extract some of the logic. We will return the new number of lines
that were created, so that we can remove them externally from the triangle. This action
enables us to have more finite control over visuals (a thing that will be important when we
incorporate text).

function findLine(context,val,isMove){
var newHeight = currentTriangleHeight;
var pixels = pixelsPerData * val;
var lines = parselnt (pixels/newHeight); //rounded

pixels = lines*lines/2; //missing pixels
newHeight-=1ines;

lines += parselnt (pixels/newHeight) ;
newHeight = currentTriangleHeight-lines;

if (isMove) {
context.moveTo (newHeight/2,newHeight) ;
context.lineTo (-newHeight/2 , newHeight) ;
lelse{
context.lineTo (-newHeight/2 , newHeight) ;
context.lineTo (newHeight/2,newHeight) ;

return lines;

}

At this stage, our £findLine function is really smart and is capable of helping us to create
closed shapes without controlling more than it needs to control (as it isn't changing any of
our global data).

Changing the logic in init to create shapes

Now that we have a smart £ indLine function, it's time for us to rewrite our logic related to
drawing lines in the init function.

var secHeight = 0;
for(i=0;i<layers.length-1; i++) {
context.beginPath() ;
findLine (context, O0,true);
secHeight = findLine (context, layers[i].amount) ;

Getting Out of the Box

currentTriangleHeight -= secHeight;
context.fillStyle = layers[i].style;
context.fi111 () ;

context .beginPath() ;

findLine (context, O0,true);
context.lineTo(0,0) ;
context.fillStyle = layers[i].style;
context.fill () ;

First, we draw all elements in our loop, minus the last one (as our last element is actually a
triangle and not a line). Then, to help us hide our mathematical inaccuracy, we create a new
path each time our loop starts and call our £indLine function first with no new data (drawing
a line in the last place where it drew a line as there is no data) and then drawing a second
line, this time with the real new data.

Our exception to the rule is created out of the loop, and there, we just manually draw our
shape, starting with the last line, and add the 0, 0 point into it, over our triangle.

Adding text into our graph

This one will be simple, as we are already getting back the line count before we resize our
triangle. We can use this data to calculate where we want to position our textfield variable, so
let's do it:

var secHeight = 0;
for(i=0;i<layers.length-1; i++){

context .beginPath() ;
findLine (context, O0,true);
secHeight = findLine (context, layers[i].amount) ;
currentTriangleHeight -= secHeight;
context.fillStyle = layers[i] .style;
context.fi11 () ;
context.fillStyle = s.text;
context.fillText (layers([i] .label, currentTriangleHeight/2
+secHeight/2, currentTriangleHeight+secHeight/2);

context .beginPath() ;

findLine (context, O0,true);

context.lineTo(0,0) ;

context.fillStyle = layers[i] .style;

context.fill () ;

context.fillStyle = s.text;

context.fillText (layers([i] .label, currentTriangleHeight/2 ,
currentTriangleHeight/2);

Chapter 5

Just see the difference between drawing our text in the loop and out of it. As we don't get

new line data out of the loop, we need to change the point logic by using the total size of our
leftover triangle.

Revisiting lines: making the line chart

interactive

In this recipe, we will travel back in time to one of our earlier recipes, Building line charts in
Chapter 3, Creating Cartesian-based Graphs and add some user control to it. This control
enables the user to turn on and off the streams of data.

Users Changed within a year

2009 : O off @ line O full
2010 : @ off O line O full
2011 : O off O line @ full

Getting Out of the Box

Getting ready

The first step that you will need to take is to grab the source code from Chapter 3, Creating
Cartesian-based Graphs. We will rename 03 .05.1line-revamp.html and 03.05.1ine-
revamp.jst0o 05.02.1line-revisit

Now that we have our files up to date, add our HTML file—three radio groups to represent the
three data sources (years 2009, 2010, and 2011).

<hr/>

2009 : <input type="radio" name="12009" value="-1" /> off
<input type="radio" name="12009" value="0" /> line
<input type="radio" name="1i2009" value="1" select="1" />
full

2010 : <input type="radio" name="12010" value="-1" /> off
<input type="radio" name="12010" value="0" /> line
<input type="radio" name="12010" value="1" select="1" />
full

2011 : <input type="radio" name="1i2011" value="-1" /> off
<input type="radio" name="1i2011" value="0" /> line
<input type="radio" name="1i2011" value="1" select="1" />
full

Note that I've named each radio group with "i" added to the year and set the possible values
to be -1, 0,0r 1.

How to do it...

Perform the following steps:

1. Create a few constants (well, variables that are not going to change), and set the
following three lines, now that the default values have already been assigned:

var HIDE ELEMENT -1;
var LINE ELEMENT = O0;
var FILL ELEMENT = 1;

var elementStatus={ 12009:FILL_ELEMENT,

12010:FILL ELEMENT,
i20ll:FILL_ELEMENT};

146

Chapter 5

Time to move the logic of creating the chart into a separate function. Everything after
the initalization of our canvas is going to be moved out.

var context;

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
context = can.getContext ("2d") ;

drawChart () ;

}

Update the radio boxes to highlight whatever is currently selected and to add the
onchange events to all radio buttons.

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
context = can.getContext ("2d") ;

drawChart () ;

var radios ;
for(var id in elementStatus) {
radios = document.getElementsByName (id) ;
for (var rid in radios)
radios [rid] .onchange = onChangedRadio;
if (radios[rid] .value == elementStatus[id])
radios [rid] .checked = true;

}

Make some updates in our drawChart function. Our goal is to incorporate the new
controller elementStatus into the drawing of lines.

function drawChart () {
context.lineWidth = 1;
context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,wid, hei) ;

Getting Out of the Box

context.font = "10pt Verdana, sans-serif';
context.fillStyle = "#999999";

Context.moveTo(CHART_PADDING,CHART_PADDING);
Context.reCt(CHART_PADDING,CHART_PADDING,wid—
CHART_PADDING*2,hei—CHART_PADDING*2);
context.stroke () ;

context.strokeStyle = "#ccccee";

fillChart (context, chartInfo) ;

if (elementStatus.i2011>-1)

addLine (context, formatData (a2011, "/2011", "#B1DDF3") , "#B1DDF3"
,elementStatus.i2011==1) ;

if (elementStatus.i2010>-1)

addLine (context, formatData (a2010,

"/2010", "#FFDE89") , "#FFDE89" ,elementStatus.i2010==1) ;

if (elementStatus.i2009>-1)

addLine (context, formatData (a2009,

"/2009", "#E3675C") , "#E3675C" ,elementStatus.i2009==1) ;

}
5. Last but not least, let's add the logic into our onChangedRadio function.

function onChangedRadio (e) {
elementStatus [e.target.name] = e.target.value;
context.clearRect (0,0,wid, hei) ;
context .beginPath() ;
drawChart () ;

}

That's it! We just added user interaction into our chart.

We haven't planned for user interaction on this chart in advance. As such, we need to revisit
it to change some of the logic. When Canvas draws something, that's it, it's there forever! We
can't just delete an object, as there are no objects in Canvas, and as such, we need a way

to redraw on demand. To accomplish that, we need to extract all the drawing logic from the
init function and create the drawChart function. Besides adding our logic to the end of the
function, we also need to add the start of the function:

context.lineWidth = 1;

Although we originally worked out the default to use as the width for our background, in a
second redraw, our canvas would still have stored its last size (in our case it could be 3),
and as such, we reset it to the original value.

148

Chapter 5

We are using an object called elementStatus to store the current status of each line on our
chart. The values it can store are as follows:

» -1:Do notdraw
» 0: Draw a line with no fill

» 1:Draw afill
As such, we are adding the following logic into the end of our function:

if (elementStatus.i2011>-1) addLine (context, formatData(a2011, "/2011","
#B1DDF3") , "#B1DDF3",elementStatus.i2011==1) ;

As the logic repeats three times, let's just focus on one of them. If we want, we can use our
constant variables to make the logic easier to view.

if (elementStatus.i2011!=HIDE_ELEMENT)
addLine (context, formatData (a2011,
"/2011", "#B1DDF3") , "#B1DDF3",elementStatus.12011==FILL_ ELEMENT) ;

The logic breaks down into a first i f statement, testing to see if our content should be hidden.
If we establish that this line should be added, we draw it by sending into the fill/line parameter
the outcome of comparing our current value to FILL_ELEMENT, resulting in two variations
based on the outcome of this operation.

Unfortunately, because we are not using any open source library, the built-in HTML capabilities
don't allow us to set events to groups of radios, and as such, we need to find them all and add
the onchange event to them using the IDs we are storing in our elementStatus controller.

var radios ;
for(var id in elementStatus) {
radios = document.getElementsByName (id) ;
for (var rid in radios)
radios [rid] .onchange = onChangedRadio;

if (radios[rid] .value == elementStatus[id])
radios[rid] .checked = true;

}

Pay attention to the highlighted code. Here, we are checking to see whether our current radio
button's value matches our element value in elementStatus. If it does, it means that the
radio button will be selected.

Getting Out of the Box

Breaking down the logic of onChangedRadio
Let's take another peek at the logic in this function:

elementStatus [e.target.name] = e.target.value;
The first thing we do is save the newly selected value into our elementStatus controller.
context.clearRect (0,0,wid, hei) ;
We follow that by deleting everything from our canvas.
context .beginPath() ;
Next, wipe the slate clean and start with a new path.
drawChart () ;

And... you guessed it... Then start drawing everything all over, and our new parameter in
elementStatus will validate that the right things will be drawn.

» The Building line charts recipe in Chapter 3, Creating Cartesian-based Graphs

Tree mapping and recursiveness

Tree mapping enables us to see in-depth data from a bird's-eye view. Contrary to comparative
charts—such as most of the charts that we have created until now—tree mapping displays
tree structured data as a set of nested rectangles, enabling us to visualize their quantitative
nature and relationship.

Let's start with a tree mapping that showcases only one level of information.

150

Chapter 5

Getting ready

We will start our application with the number of people in the world, in millions, divided by
continent (based on public data from 2011).

var chartData = [
{name: "Asia", value:4216},
{name: "Africa",value:1051},
{name: "The Americas and the Caribbean", value:942},
{name: "Europe", value:740},
{name: "Oceania", value:37}

We will update this data source later in our example, so keep in mind that this dataset

is temporary.

How to do it...

We will start by creating a simple, working, flat tree chart. Let's jump right into it and figure out
the steps involved in creating the tree map:

1. Let's

var
var
var
var

add a few helper variables on top of our dataset.
wid;

hei;

context;

total=0;

2. Create the init function.

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
context = can.getContext ("2d") ;

for(var item in chartData) total +=
chartData[item] .value;

context.fillRect (0,0,wid, hei) ;
context.fillStyle = "RGB(255,255,255)";
context.fillRect (5,5,wid-10,hei-10) ;
context.translate(5,5) ;

wid-=10;

hei-=10;

drawTreeMap (chartData) ;

Getting Out of the Box

3. Create the function drawTreeMap.

function drawTreeMap(infoArray){
var percent=0;
var cx=0;
var rollingPercent = 0;
for(var i=0; i<infoArray.length; i++){

}

percent = infoArrayl[i] .value/total;
rollingPercent +=percent
context.fillStyle =

formatColorObject (getRandomColor (255)) ;
context.fillRect (cx,0 ,wid*percent, hei);
cx+=wid*percent;

if (rollingPercent > 0.7) break;

var leftOverPercent = 1l-rollingPercent;
var leftOverWidth = wid*leftOverPercent;
var cy=0;

for(i=i+1l; i<infoArray.length; i++) {

}

4. Create a few formatting functions to help us create a random color for our tree map

percent = (infoArray[i] .value/total)/leftOverPercent;

context.fillStyle =
formatColorObject (getRandomColor (255)) ;

context.fillRect (cx,cy ,leftOverWidth,hei*percent) ;

cy+=hei*percent;

block.

function formatColorObject (o) {
return "rgb("+o.r+","+o.g+","+0.b+")";

}

function getRandomColor (val) {
return
{r:getRandomInt (255) ,g:getRandomInt (255),
b:getRandomInt (255) };

}

function getRandomInt (val) {
return parselInt (Math.random() *val) +1

}

There is a bit of overkill in the creation of so many formatting functions; their main goal is to
help us when we are ready for the next step—to create more depth in our data (refer to the

There's more... section in this recipe for more details).

152

Chapter 5

Let's start with the initial idea. Our goal is to create a map that will showcase the bigger
volume areas inside our rectangular area and leave a strip on the side for the smaller areas.
So, let's start with our init function. Our first task beyond our basic getting started work is to
calculate the actual total. We do that by looping through our data source, thus:

for(var item in chartData) total += chartDatal[item] .value;

We continued with some playing around with the design and making our work area 10 pixels
smaller than our total canvas size.

CONTEXT.FILLRECT (0, 0,WID,HEI) ;
CONTEXT.FILLSTYLE = "RGB(255,255,255)";
CONTEXT.FILLRECT(5,5,WID-10,HEI-10) ;
CONTEXT . TRANSLATE (5, 5) ;

WID-=10;

HEI-=10;

drawTreeMap (chartData) ;

It's time to take a look into how our drawTreeMap function works. The first thing to notice is
that we send in an array instead of working directly with our data source. We do that because
we want to be open to the idea that this function will be re-used when we start building the
inner depths of this visualization type.

function drawTreeMap (infoArray){...}

We start our function with a few helper variables (the percent variable will store the
current percent value in a loop). The cx (the current x) position of our rectangle and
rollingPercent will keep track of how much of our total chart has been completed.

var percent=0;
var c¢x=0;
var rollingPercent = 0;

Time to start looping through our data and drawing out the rectangles.

for(var i=0; i<infoArray.length; i++){
percent = infoArrayl[i] .value/total;
rollingPercent +=percent
context.fillStyle =
formatColorObject (getRandomColor (255)) ;
context.fillRect (cx,0 ,wid*percent, hei);
cx+=wid*percent;

Getting Out of the Box

Before we complete our first loop, we will test it to see when we cross our threshold (you are
welcome to play with that value). When we reach it, we need to stop the loop, so that we can
start drawing our rectangles by height instead of by width.

if (rollingPercent > 0.7) break;

}

Before we start working on our boxes, which take the full leftover width and expand to the
height, we need a few helper variables.

var leftOverPercent = 1l-rollingPercent;
var leftOverWidth = wid*leftOverPercent;
var cy=0;

As we need to calculate each element from now on based on the amount of space left, we will
figure out the value (1eftOverPercent), and then we will extract the remaining width of our
shape and start up a new cy variable to store the current y position.

for(i=i+1l; i<infoArray.length; i++) {
percent = (infoArray[i] .value/total)/leftOverPercent;
context.fillStyle = formatColorObject (getRandomColoxr (255)) ;
context.fillRect (cx,cy ,leftOverWidth, hei*percent) ;
cy+=hei*percent;

}

We start our loop with one value higher than what we left off (as we broke out of our earlier
loop before we had a chance to update its value and draw to the height of our remaining area.

Note that in both loops we are using formatColorObject and getRandomColor. The
breakdown of these functions was created so that we can have an easier way to manipulate
the colors returned in our next part.

There's more...

For our chart to really have that extra kick, we need to have a way to make it capable of
showing data in at least a second lower-level details of data. To do that, we will revisit our data
source and re-edit it:

var chartData = [
{name: "Asia", data:[
{name: "South Central",total:1800},
name: "East",total:1588},
name: "South East",total:602},
name: "Western",total:238},
name: "Northern",total:143}

{name: "Africa",total:1051},

Chapter 5

{name: "The Americas and the Caribbean", data: [
{name: "South America",total:396},
{name: "North America", total:346},
{name: "Central America", total:158},
{name: "Caribbean", total:42}
1},
{name: "Europe", total:740},
{name: "Oceania", total:37}

1;

Now we have two regions of the world with a more in-depth view of their subregions. It's time
for us to start modifying our code, so that it will work again with this new data.

Updating the init function - recalculating the total

The first step we need to carry out in the init function is to replace the current total loop with
a new one that can dig deeper into elements to count the real total.

var val;
var 1i;
for(var item in chartData) ({
val = chartDatal[item] ;
if (!val.total && val.data) {
val.total = 0;
for(i=0; i<val.data.length; i++)
val.total+=val.datal[i] .total;

total += wval.total;

}

In essence, we are checking to see whether there is no total and whether there is a data
source. If that is the case, we start a new loop to calculate the actual total for our elements—a
good exercise for you now would be to try to make this logic into a recursive function (so that
you can have more layers of data).

Next, we will change drawTreeMap and get it ready to become a recursive function. To make
that happen, we need to extract the global variables from it and send them in as parameters
of the function.

drawTreeMap (chartData,wid, hei, 0,0, total) ;

Getting Out of the Box

Turning drawTreeMap into a recursive function

Let's update our function to enable recursive operations. We start by adding an extra new
parameter to capture the latest color.

function drawTreeMap (infoArray,wid,hei,x,y,total,clr)
var percent=0;
var cx=x ;

var cy=y;

var pad = 0;
var pad2 = 0;

var rollingPercent = 0;

var keepColor = false;

if(clr){ //keep color and make darker
keepColor = true;
clr.r = parseInt(clr.r *.9);

clr.g parselInt(clr.g *.9);
clr.b = parseInt(clr.b *.9);
pad = PAD*2;

pad2 = PAD2*2;

}

If we pass a c1r parameter, we need to keep that color throughout all the new rectangles that
will be created, and we need to add a padding around the shapes so that it becomes easier to
see them. We make the color a bit darker as well by subtracting 10 percent of its color on all
its RGA properties.

The next stage is to add the padding and recursive logic.

for(var i=0; i<infoArray.length; i++){
percent = infoArrayl[i].total/total;
rollingPercent +=percent
if (1keepColor) {
clr = getRandomColor (255) ;

context.fillStyle = formatColorObject(clr) ;
context.fillRect (cx+pad ,cy+pad ,wid*percent - pad2,hei-pad2);
context.strokeRect (cx+pad ,cy+pad ,wid*percent - pad2,hei-
pad2) ;
if (infoArrayl[il .data) {

drawTreeMap (infoArray[i] .data,parselInt (wid*percent -

PAD2) ,hei - PAD2,cx+ PAD,cy + PAD,infoArrayl[i] .total,clr);

}

156

Chapter 5

cx+=wid*percent;
if (rollingPercent > 0.7) break;

}

The same logic is then implemented on the second loop as well (to see it check the
source files).

Turning the data and total to recursive data

Let's start by updating our tree data to be really recursive (for the full dataset please refer to
the source code).

{name: "Asia", data:[

{name: "South Central",total:1800},

{name: "East",total:1588},

{name: "South East",total:602},

{name: "Western", total:238},

{name: "Northern",data:[{name: "1",data: [
{name: "2",total:30},
{name: "2",total:30}

1}
{name: "2",total:53},
{name: "2",total:30}

Now, with a tree map that has over four levels of information, we can revisit our code and
finalize our last outstanding issue validating that our total is always up-to-date at all levels.
To fix that, we will extract the logic of calculating the total into a new function and update the
total line in the init function.

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
context = can.getContext ("2d") ;

total = calculateTotal (chartData); //recursive function

Time to create this magical (recursive) function.

function calculateTotal (chartData) {
var total =0;
var val;
var 1i;
for(var item in chartData) ({

Getting Out of the Box

val = chartDatalitem];
if (!val.total && val.data)
val.total = calculateTotal (val.data) ;

total += val.total;

}

return total;

}

The logic is really similar to what it was, with the exception that all the data entries are internal
to the function, and each time there is a need to deal with another level of data, it's re-sent to
the same function (in a recursive way) until all data is resolved—until it returns the total.

See also

» The Adding user interaction into tree mapping recipe

Adding user interaction into tree mapping

Until now, we have limited our user interaction with our samples. In one of our last samples,
we added a controlled way to add and remove chart elements; in this one, we will enable the
user to dig deeper into the chart and see more details by creating a truly endless experience
(if we only had an endless amount of data to dig into).

In the following image, on the left-hand side, you can see the initial state and what happens
after one click of the user (the chart redraws itself to showcase the area that was clicked on).

158

Chapter 5

Consider the case when the user clicks on the chart (for example, the next picture is
generated by clicking on the left-hand side rectangle—the tree map will update and
zoom into that area).

Getting ready

To get this sample right, you will need to start from our last recipe, Tree maping and
recursiveness, and adjust it to work for this sample.

How to do it...

This is our first sample where we make our canvas area interactive. In the next few steps,
we will add some logic from the last sample into our recipe, to enable the user to zoom into or
out of it:

1. Add a new global variable,

var currentDataset;

2. Store the current data that is sent to the tree mapping function.

currentDataset = chartData;
drawTreeMap (chartData,wid,hei, 0,0, total) ;

3. Adda click eventto our canvas area.

can.addEventListener('click', onTreeClicked, false);

4. Create the onTreeClick event.

function onTreeClick(e) {
var box;
for (var item in currentDataset){
if(currentDataset[item].data){
box = currentDataset[item] .box;

Getting Out of the Box

if (e.x>= box.x && e.y>= box.y &&

e.x<= box.x2 && e.y<= box.y2) {
context.clearRect (0,0,wid, hei) ;
drawTreeMap (currentDataset [item] .data,wid,
hei,0,0,currentDataset [item] .total) ;
currentDataset = currentDataset [item] .data;

break;

}

}
}
}

5. Draw a rectangle twice—within drawTreemap—for the first time in the first loop and
again in the second loop. Let's replace it with an external function—replace both the
for loop lines to draw a rectangle with:
drawRect (cx+pad ,cy+pad ,wid*percent - pad2,hei-
pad2, infoArray[il) ;

6. Time to create the rectangle function.

function drawRect(x,y,wid,hei,dataSource){
context.fillRect (x,y,wid, hei) ;
context.strokeRect (x,y,wid, hei) ;
dataSource.box = {x:x,y:y,x2:x+wid,y2:y+hei};

}

There you go! We have a fully functional, deep-level, endless interaction with the user (just
dependent on how much data we have).

The Canvas element doesn't currently support a smart way to interact with objects. As there
are no objects in the canvas, as soon as you create the element it tunes into a bitmap and
its information is removed from memory. Luckily for us, our sample is constructed out of
rectangles, making it much easier to recognize when our element is clicked on. We will need
to store in memory the current box location of each element that we draw.

As such, our first step of logic is the last thing that we did in our procedure (in step 6). We
want to capture the points that construct our rectangles, so then in our click event we can
figure out where our dot is in relation to the rectangle:

function onTreeClick(e)
var box;
for(var item in currentDataset) {
if (currentDataset [item] .data) {

160

Chapter 5

We loop through our data source (current one) and check to see whether the element we are
currently in has a data source (that is, children); if it does, we continue, and if not, we will skip
to the next element to test it as well.

Now that we know our element has children, we are ready to see if our dot is in the range of
our element.

box = currentDataset [item] .box;
if (e.x>= box.x && e.y>= box.y &&
e.x<= box.x2 && e.y<= box.y2) {

If it is, we are ready to redraw the tree map and replace our current dataset with the current
deeper dataset.

context.clearRect (0,0,wid, hei) ;

drawTreeMap (currentDataset [item] .data,wid, hei, 0,0, currentDataset [it
em] .total) ;

currentDataset = currentDataset[item] .data;

break;

We then exit from the loop (by using a break statement). Please note that the last thing we
do is update currentDataset, as we still need information from it to send the total data
into drawTreeMap. When we have finished using it, we are ready to override it with the new
dataset (what were the children before turn into our main players for the next round).

Currently, there is just no way to get back without refreshing everything. So, let's add it to our
logic that if the user clicks in an element with no children, we will revert to the original map.

Going back to the main treemap
Let's add the following code into the c1ick event:

function onTreeClick(e)
var box;
for(var item in currentDataset) {
if (currentDataset [item] .data) {
box = currentDataset [item] .box;
if (e.x>= box.x && e.y>= box.y &&
e.x<= box.x2 && e.y<= box.y2) {
context.clearRect (0,0,wid, hei) ;

drawTreeMap (currentDataset [item] .data,wid,
hei, 0,0, currentDataset [item] .total) ;
currentDataset = currentDataset[item] .data;

Getting Out of the Box

break;

}

lelse{
currentDataset = chartData;
drawTreeMap (chartData,wid, hei, 0,0, total) ;

}
}
}

Fantastically done! We have just finished creating a fully interactive experience for our users,
and now it's in your hands to make this look a bit better. Add some rollover labels and all the
visualization that will make your chart visually pleasing and will help understanding.

Making an interactive click meter

In this next example, we will focus on one more powerful feature of any client-side
programming—the ability to interact with the user and the ability to update data dynamically.
To keep it simple, let's revisit an old chart—the bar chart from Chapter 3, Creating Cartesian-
based Graphs—and integrate a counter that will count how many times a user clicks on an
HTML document in any given second and update the chart accordingly.

19

162

How to do it...

Most of the steps are going to be familiar, if you have worked on the bar chart from Chapter 3,
Creating Cartesian-based Graphs. So, let's run through them and then focus on the new logic:

1. Let's create some helper variables.

var currentObject = {label:l,

value:O0,
style:"rgba (241, 178, 225, .5)"};
var colorOptions = ["rgba (241, 178, 225,

1)","#B1DDF3", "#FFDE89", "#E3675C", "#C2D985"] ;

var data = [];

var context;
var wid;
var hei;

2. Follow this with our init function.

function init () {

}

var can = document.getElementById ("bar") ;
wid = can.width;
hei = can.height;

context = can.getContext ("2d") ;
document .addEventListener ("click",onClick) ;

interval = setInterval (onTimeReset,1000) ;
refreshChart () ;

3. Now it's time to create the onTimeReset function.

function onTimeReset () {

if (currentObject.value) {
data.push (currentObject) ;
if (data.length>25) data = data.slice(1);
refreshChart () ;

}

currentObject = {1abe1:currentObject.label+l, value:0,

style: colorOptions[currentObject.label%5]};

Chapter 5

Getting Out of the Box

4. The next step is to create the onClick listener.

function onClick (e) {
currentObject.value++;
refreshChart () ;

}

5. Now create the refreshChart function.

function refreshChart () {
var newData = data.slice(0);
newData.push (currentObject) ;

drawChart (newData) ;

}

6. Last but not least, let's create drawChart (most of its logic is the same as for the
init function discussed in Chapter 3, Creating Cartesian-based Graphs).

function drawChart (data) {
context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,wid, hei) ;

var CHART_PADDING = 20;

context.font = "12pt Verdana, sans-serif';
context.fillStyle = "#999999";

context .moveTo (CHART PADDING, CHART PADDING) ;
context.lineTo (CHART PADDING, hei-CHART PADDING) ;
context.lineTo (wid-CHART PADDING, hei-CHART PADDING) ;

var stepSize = (hei - CHART PADDING*2)/10;
for(var i=0; i<10; i++)({
context.moveTo(CHART_PADDING, CHART_PADDING + ix*

stepSize) ;
Context.lineTo(CHART_PADDING*l.3,CHART_PADDING + i*
stepSize) ;

context.fillText (10-1, CHART_ PADDING*1.5,

CHART PADDING + i* stepSize + 6);

}

context.stroke () ;

Chapter 5

var elementWidth =(wid-CHART_ PADDING*2)/ data.length;

context.textAlign = "center";

for(i=0; i<data.length; i++){
context.fillStyle = datali] .style;
context.fillRect (CHART PADDING +elementWidth*i ,hei-
CHART PADDING - datal[i].value*stepSize,
elementWidth,data[i] .value*stepSize) ;
context.fillStyle = "rgba (255, 255, 225, 0.8)";
context.fillText (data[i] .label, CHART PADDING
+elementWidth* (i+.5), hei-CHART PADDING*1.5) ;

}
}

That's it! We have an interactive chart that will be updated every second, depending on how
many times you manage to click your mouse in 1 second—I| assume no one can click more
than 10 times a second but I've managed to get there (when using two hands).

Let's focus on the breakdown of the data variables in Chapter 3, Creating Cartesian-based
Graphs. We had all our data ready inside our data object. This time around, we are keeping
the data object empty, and instead, we have one data line in a separate variable.

var currentObject = {labelzl,
value:O0,
style:"rgba (241, 178, 225, .5)"};
var data = [];

Each time the user clicks, we update the counter for currentObject and refresh the chart
thus making the user experience more dynamic and live.

function onClick (e) {
currentObject.value++;
refreshChart () ;

}
We set the interval in the init function as follows:

interval = setInterval (onTimeReset,1000) ;

Getting Out of the Box

Every time a second passes, the function checks whether the user had any clicks in that time
interval, and if they did, it ensures that we push currentObject into the dataset. If the size
of the dataset is greater than 25, we cut the first item out of it and we refresh the chart. No

matter what we create, a new empty object is labeled with a new label showing the current
time in seconds.

function onTimeReset () {
if (currentObject.value) {
data.push (currentObject) ;
if (data.length>25) data = data.slice(1l);
refreshChart () ;

}

currentObject = {label:currentObject.label+l, value:0, style:
colorOptions [currentObject.label%s] };

}
One last thing that you should look at before we wrap this sample up is:

function refreshChart () {
var newData = data.slice(0);
newData.push (currentObject) ;

drawChart (newData) ;

}

This part of our logic is really the glue that makes it possible for us to update our data
every time a user clicks a button. The idea is we want to have a new array that will store
the new data, but we do not want to the current element to be affected, so for that we are
duplicating this data source by adding the new data object into it and then sending it off to
create the chart.

166

Bringing Static
Things to Life

In this chapter, we will cover the following topics:

» Stacking graphical layers

» Moving to an OOP perspective
» Animating independent layers
» Adding an interactive legend

» Creating a context-aware legend

Introduction

Until now, the importance of keeping things organized and clean wasn't as great as that of
getting our projects done as we had relatively small projects. This chapter will break us into a
few new habits by first making everything dynamic followed by creating a more object-oriented
program so it's easier for us to separate tasks and reduce our code footprint. After all this
hard work, we will revisit our application and start adding extra logic geared at making our
application animated layer by layer.

This chapter is a great resourse for refactoring practice. In the first half of this chapter, we
will be focused on improving our code structure to make it possible for us to have the level of
control we will need in the second half of the chapter.

Bringing Static Things to Life

Stacking graphical layers

Before we can do any real animations on our canvas we really need to rethink the concept of
building everything on one canvas layer. Once a canvas element is drawn, it's incredibly hard
to create subtle small changes to it, such as fade-ins for specific elements. We will revisit
one of our famous charts, the bar chart, which we played around with and enhanced many
times throughout the earlier chapters. In this chapter, our goal will be to break the logic apart
and make it more modular. In this recipe we will separate layers. Each layer will give us more
control later when we are ready to animate.

Getting ready

Start by grabbing the latest files from the previous chapter: 05.02.1line-revisit.html
and 05.02.1line-revisit.js

How to do it...

The following changes are made to the HTML file:

1. Update the HTML file to incorporate more canvas elements (one per drawn line):

<body onLoad="init () ;" style="background:#fafafa">
<hl>Users Changed between within a year</hls>
<div class="graphicLayers" >
<canvas id="base" class="canvasLayer" width="550"
height="400"> </canvas>

<canvas 1d="12011" class="canvasLayer" width="550"
height="400"> </canvas>
<canvas 1d="12010" class="canvasLayer" width="550"
height="400"> </canvas>
<canvas 1d="12009" class="canvasLayer" width="550"
height="400"> </canvas>

</div>
<div class="controllers">
2009 : <input type="radio" name="12009" value="-1" /> off
<input type="radio" name="i2009" value="0" /> line
<input type="radio" name="1i2009" value="1" select="1" />
full ||
2010 : <input type="radio" name="12010" value="-1" /> off
<input type="radio" name="i2010" value="0" /> line
<input type="radio" name="i2010" value="1" select="1" />
full ||

168

Chapter 6

2011 : <input type="radio" name="i2011" value="-1" /> off
<input type="radio" name="i2011" value="0" /> line
<input type="radio" name="i2011" value="1" select="1" />

full
</div>

</body>

</html>

Add a CSS script so the layers will be stacked:

<head>
<titlesLine Chart</titles>
<meta charset="utf-8" />
<style>
.graphiclLayers {
position: relative;
left:100px

}

.controllers {
position: relative;
left:100px;
top:400px;

}

.canvasLayer
position: absolute;
left: 0O;
top: 0;
}
</style>
<script src="06.01.layers.js"></script>
</head>

Let's move into the JavaScript file to update it.

Add a window.onload callback function (changes highlighted in the code snippet):

window.onload = init;

function init () {

Remove the variable context from global scope (delete the highlighted code snippet):

var CHART PADDING = 20;
var wid;

var hei;

var context;

Bringing Static Things to Life

5. Consolidate all bar line information into one object for easier control (delete all the
highlighted code snippets):
var a2011 [38,65,85,111,131,160,187,180,205,146,64,212];
var a2010 [212,146,205,180,187,131,291,42,98,61,74,69];
var a2009 = [17,46,75,60,97,131,71,52,38,21,84,39];

var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}

Vi

var HIDE ELEMENT
var LINE ELEMENT 0;
var FILL ELEMENT 1;

nn
|
=

var elementStatus={i2009:FILL ELEMENT,i2010:FILL_
ELEMENT,i2011:FILL_ELEMENT};

var barData = {
i2009:
status: FILL_ ELEMENT,
style: "#E3675C",
label: "/2009",
data:[17,46,75,60,97,131,71,52,38,21,84,39]
b
i2010:{
status: FILL_ ELEMENT,
style: "#FFDE89",
label: "/2010",
data: [212,146,205,180,187,131,291,42,98,61,74,69]
b
i2011:
status: FILL_ ELEMENT,
style: "#B1DDF3",
label: "/2011",
data: [38,65,85,111,131,160,187,180,205,146,64,212]

170

Chapter 6

6. Remove all canvas logic from the init function and add it to the
drawChart function:

function init () {
var can = document.getElementById("bar") ;

wid = can.width;
hei = can.height;
context = can.getContext ("2d") ;

drawChart () ;

var radios ;
for(var id in elementStatus) {
radios = document.getElementsByName (id) ;
for (var rid in radios) {
radios[rid] .onchange = onChangedRadio;
if (radios[rid] .value == elementStatus[id]) radios([rid].
checked = true;

}

}

function drawChart () {
var can = document.getElementById("base") ;

wid = can.width;
hei = can.height;
var context = can.getContext ("2d4");

7. Update references to the new data object in the init function:

function init () {
drawChart () ;

var radios ;
for(var id in barData) {
radios = document.getElementsByName (id) ;
for (var rid in radios)
radios[rid] .onchange = onChangedRadio;
if (radios[rid] .value == barDatal[id] .status) radios[rid].
checked = true;

Bringing Static Things to Life

8.

10.

In the drawChart function, extract the logic of line creation to an external function
(delete the highlighted code snippets):

if (elementStatus.i2011>-1) addLine(context, formatData(a2011, "/2
011", "#B1DDF3") , "#B1DDF3",elementStatus.i2011==1) ;

if (elementStatus.i2010>-1) addLine (context, formatData(a2010, "/2
010", "#FFDE89") , "#FFDE89",elementStatus.i1i2010==1) ;

if (elementStatus.i2009>-1) addLine (context, formatData(a2009, "/2
009", "#E3675C") ,"#E3675C",elementStatus.i1i2009==1) ;

changelLineView ("12011",barData.i2011.status) ;

changeLineView ("12010",barData.i2010.status) ;

changeLineView ("12009",barData.i2009.status) ;
Change the logic in the onChangedRadio callback function. Instead of what it was
doing so far let's have it trigger a call to the changeLineView function (we will
create that function next):

function onChangedRadio (e) {
changelLineView (e.target .name, e.target.value) ;

}
Create the function changeLineView:

function changeLineView(id,value){
barData[id] .status = value;
var dataSource = barDatal[id];

can = document.getElementById (id) ;

context = can.getContext ("2d") ;

context.clearRect (0,0,wid, hei) ;

if (dataSource.status!=HIDE ELEMENT) {
context.beginPath() ;

addLine (context, formatData (dataSource.data, dataSource.
label,dataSource.style),dataSource.style,dataSource.status==1) ;

}
}

When you run your HTML file after all these changes, you should see exactly the same thing
as you did before we started making all these changes. If that's true then you are in a great
place. However, we can't visually see any change yet.

172

Chapter 6

The heart of this recipe is our HTML file that enables us to layer canvas elements on top of
each other, and as our canvas is by default transparent, we can see through to the elements
that are under it. After our canvas is layered with four layers, it's time for us to separate our
background from our lines and as such we want to put all of our chart background information
right into the base canvas:

var can = document.getElementById ("base") ;

With each line layer, we are using a preconfigured canvas element that is already set:

changelLineView ("i1i2011",barData.i2011.status) ;
changelLineView ("12010",barData.i2010.status) ;
changelLineView ("12009",barData.i2009.status) ;

The first parameter is both the ID of our canvas and the key we are using in our new object
that stores our line information (to keep our code simple):

In this data object we have exactly the same number of elements as we do in our canvas
with the exact same names. This way we can very easily fetch information without using extra
variables or conditions. This ties in to the logic of creating/updating lines:

function changeLineView(id,value){
barData[id] .status = value;
var dataSource = barData[id];

can = document.getElementById (id) ;

context = can.getContext ("2d") ;

context.clearRect (0,0,wid, hei) ;

if (dataSource.status!=HIDE ELEMENT) {
context .beginPath() ;

addLine (context, formatData (dataSource.data, dataSource.
label,dataSource.style),dataSource.style,dataSource.status==1) ;

Bringing Static Things to Life

We didn't change the core logic of our line but redirected the logic into the context of the
current line:

can = document.getElementById(id) ;

This way we can extract any direct mention of a year or element without referring to element
names directly. This way we can add or remove elements and we would only need to add
another canvas in our HTML file, add new properties, and finish off by adding the line in our
creating function. That is still a lot, so how about we continue and optimize this code before
we move on to more creative lands?

There's more...

Our final goal is this recipe is to help minimize the number of changes the user needs to do
to create lines. Currently to add more lines the user would need to make changes in three
places. The next few optimization tricks will help us reduce the number of steps it takes to
add/remove lines.

Optimizing the drawChart function

Our drawChart function has been through a facelift, but right now, when we are creating our
lines we are still referring directly to our current elements:

changelLineView("i2011",barData.i2011.status) ;
changelLineView("i2010",barData.i2010.status) ;
changelLineView ("i2009",barData.i2009.status) ;

Instead, let's take advantage of the barData object and use the data keys of this object. This
way we can completely avoid the need to refer directly to our explicit elements and instead
depend on our data source as the source of information:

for(var id in barData) {
changelLineView (id, barData[id] .status) ;

}

Perfect! Now any change in our barData object will define the elements that will get rendered
initially when the application starts. We just cut down the number of changes users will need
to do to two.

Further streamlining our code

We are in much better shape now than when we started. Originally there where three places
in our code that referred directly to hardcoded values for our chart information. With the last
update we reduced it to two (once within the HTML file and once in our data source).

It's time for us to remove one more hardcoded instance. Let's remove our extra canvases and
create them dynamically.

174

Chapter 6

So let's start by removing our chart canvas elements from the HTML file and setting up an ID
to our <div> tag (delete the highlighted code snippet):

<div id="chartContainer" class="graphicLayers" >
<canvas id="base" class="canvasLayer" width="550" height="400">
</canvas>

<canvas id="i2011" class="canvasLayer" width="550" height="400">
</canvas>
<canvas id="i2010" class="canvasLayer" width="550" height="400">
</canvas>
<canvas id="i2009" class="canvasLayer" width="550" height="400">
</canvas>

</divs>

By the way, we added an ID for our <div> containing the layers so we can easily access it and
change things within JavaScript.

Now that there isn't any canvas for our layers, we want to dynamically create them only
when we draw the chart for the first time (this happens in the drawChart function with
the new for loop we just created in the Optimizing the drawChart function section in the
previous recipe):

var chartContainer = document.getElementById("chartContainer");

for(var id in barData) {
can = document.createElement ("canvas") ;
can.id=id;
can.width=wid;
can.height=hei;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild(can) ;

changelLineView (id,barData[id] .status) ;

}

Refresh your HTML file and you will find our canvas elements looking exactly the way they did
before. We have one last thing to sort out to truly make this application dynamic, and that is
our controllers that right now are hardcoded in the HTML file.

Bringing Static Things to Life

Creating the radio buttons dynamically

Yet another section that could be dynamic is our creation of radio buttons. So let's start with
removing our radio buttons from the HTML file and adding an ID to our wrapper (delete the
highlighted code snippet):

<div id="chartContainer" class="controllers">
2009 : <input type="radio" name="i2009" value="-1" /> off
<input type="radio" name="i2009" value="0" /> line
<input type="radio" name="i2009" value="1" select="1" /> full
N
2010 : <input type="radio" name="i2010" value="-1" /> off
<input type="radio" name="i2010" value="0" /> line
<input type="radio" name="i2010" value="1" select="1" /> full
N
2011 : <input type="radio" name="i2011" value="-1" /> off
<input type="radio" name="i2011" value="0" /> line
<input type="radio" name="i2011" value="1" select="1" /> full
</divs>

Back into our HTML file let's create a function that creates new radio buttons. We will call it
the appendRadioButton function:

function appendRadioButton (container, id,value,text) {
var radioButton = document.createElement ("input") ;

radioButton.setAttribute ("type", "radio");
radioButton.setAttribute ("value", wvalue) ;
radioButton.setAttribute ("name", id);

container.appendChild (radioButton) ;

container.innerHTML += text;

}
Last but not the least let's draw our new button right before we start interacting with it:

function init () {
drawChart () ;

var radContainer = document.getElementById("controllers");

var hasLooped= false;
for (var id in barData) {

radContainer.innerHTML += (hasLooped ? " || ":"") 4+ barDatalid].
label +": " ;

appendRadioButton (radContainer,id,-1," off ");
appendRadioButton (radContainer,id,0," line ");

176

Chapter 6

appendRadioButton (radContainer,id,1," full ");
hasLooped = true;

}

var radios ;
for(id in barData) {
radios = document.getElementsByName (id) ;
for (var i=0; i<radios.length; i++){
radios[i] .onchange = onChangedRadio;
if (radios[i] .value == barData[id].status) {
radios[i] .checked = true;
}

}
}

}

Notice that we are not integrating the two for loops together. Even though it might look like
the same thing, the separation is needed. It takes JavaScript some time, a few nanoseconds,
to actually render the elements to the screen, and as such by separating our loops we are
giving the browser a chance to catch up. The separation between creating the elements and
manipulating the elements is present mainly to give JavaScript a chance to render the HTML
file before interacting with the created elements.

Great job! We just finished updating our content to make it totally dynamic. Now that
everything is controlled through one location, that is the data source, we are ready to
start exploring layered canvas logic in the following recipes.

Moving to an OOP perspective

Our application has been developing with a growing momentum. It's time for us to stop that
by changing our chart to be more OOP conducive. In this recipe we will clean up our code
some more and convert some of it into objects. We will continue from where we left off in our
previous recipe, Stacking graphical layers.

Getting ready

The first step is to get our latest source files: 06.01.layers.optimized.html and
06.01.layers.optimized. js. We will rename them and add our animation logic. Beyond
changing the references on our HTML file we will not change anything else in our HTML file but
focus our attention into the JavaScript file.

One of the simplest ways of creating objects in JavaScript is by using functions. We can create
a function and refer within the function name to this and by doing that we can treat the
function as an object (more details in the How it works... section of this recipe).

Bringing Static Things to Life

How to do it...

Let's jump right in and start converting our code to be more OOP friendly:

1. We start our code changes in the JavaScript file. Create the LineChart
constructor method:
function LineChart (chartInfo,barData) {

this.chartInfo = chartInfo;
this.barData = barData;

this.HIDE ELEMENT -1;
this.LINE ELEMENT 0;
this.FILL ELEMENT = 1;
this.CHART PADDING = 20;

this.wid;
this.hei;

drawChart () ;
var radContainer = document.getElementById("controllers") ;

var hasLooped= false;
for(var id in barData) {

radContainer.innerHTML += (hasLooped ? " || ":"") +
barData[id] .label +": " ;

appendRadioButton (radContainer, id,-1," off ");
appendRadioButton (radContainer, id,0," line ");
appendRadioButton (radContainer, id,1," full ");
hasLooped = true;

var radios ;
for(id in barData) {
radios = document.getElementsByName (id) ;
for (var i=0; i<radios.length; i++){
radios[i] .onchange = onChangedRadio;
if (radios[i] .value == barData[id].status) {
radios[i] .checked = true;
}
}
}

178

Chapter 6

Let's update all of our functions to be prototypes of the LineChart function (our

pseudo class):
LineChart .prototype

LineChart .prototype.

id,value,text){...}

LineChart.prototype.
LineChart.prototype.
LineChart.prototype.
LineChart.prototype.

{ .

LineChart.prototype.

style){...}

.drawChart =function(){...}

appendRadioButton = function(container,
onChangedRadio = function (e){...}
changelLineView = function(id,value){...}
fillChart = function (context, chartInfo){...}
addLine = function(context,data,style,isFill)

formatData function(data , labelCopy ,

Now let's take a look at the really difficult part. We need to refer to all functions and
object variables with this. For a full list of changes please review the source files (as

we don't want to take up
LineChart .prototype

too many pages just for this). Here is a small sample:

.drawChart =function()

document .getElementById ("base") ;

var can =
this.wid = can.width;
this.hei = can.height;

var context

can.

getContext ("24d") ;

context.lineWidth = 1;

context.fillStyle = "#eeeeee";
context.strokeStyle = "#999999";
context.fillRect (0,0,this.wid, this.hei);

font =
fillStyle

context.
context.

"10pt Verdana,

sans-gerif";

"$#999999";

context.moveTo (this.CHART PADDING, this.CHART PADDING) ;

context.rect(this

.CHART PADDING, this.CHART PADDING, this.wid-

this.CHART PADDING*2,this.hei-this.CHART PADDING*2) ;

context.stroke () ;

context.strokeStyle

"#cceeee";

this.fillChart (context, this.chartInfo) ;

var chartContainer

document .getElementById ("chartContainer") ;

for(var id in this.barData) {

can

can.id=1id;

document .createElement ("canvas") ;

Bringing Static Things to Life

180

can.width=this.wid;

can.height=this.hei;
can.setAttribute ("class", "canvasLayer") ;
chartContainer.appendChild(can) ;
this.changelLineView(id, this.barData[id] .status);

}

//continue and update all methods of our new object

In our application so far, to deal with radio buttons we created only one callback
function that is set to all the radio buttons. When the user clicks on our radio buttons,
an event is triggered. One issue will arise as our scope inside the events will break
because this will be a this reference of something else and not our main object.
Radio buttons have their own scope (their own this reference). We want to force a
scope change; to do that we will create a helper function:

LineChart.prototype.bind = function (scope, fun) {
return function () {
fun.apply (scope, arguments) ;

}i
}

We will now rewrite the lines that trigger our event in our LineChart constructor:
for (var i=0; i<radios.length; i++){
radios[i] .onchange = this.bind(this, this.onChangedRadio) ;
if (radios[i] .value == barDatal[id].status) {
radios[i] .checked = true;

}

We will now rewrite our init function. We will create our data points in it:

window.onload = init;

function init () {
var chartInfo= { y:{min:0, max:300, steps:5,label:"users"},
x:{min:1, max:12, steps:11,label:"months"}

}i

var barData = {
i2011:
status: FILL_ ELEMENT,

Chapter 6

style: "#B1DDF3",

label: "2011",

data: [38,65,85,111,131,160,187,180,205,146,64,212]
I
i2010:

status: FILL ELEMENT,

style: "#FFDE89",

label: "2010",

data:[212,146,205,180,187,131,291,42,98,61,74,69]

b

i2009:{
status: FILL ELEMENT,
style: "#E3675C",
label: "2009",
data:[17,46,75,60,97,131,71,52,38,21,84,39]

}i

chart = new LineChart (chartInfo,barData) ;

}

7. Delete all global variables.

Surprising but that's it; you have just moved all of your logic into an object. We don't have any
global variables left in our application, making it much easier to have more than one chart at
the same time.

We kept our changes at this stage to a minimum. JavaScript is an object-oriented programing
language, and as such we can take advantage of that by wrapping all of our functions into a
new class. We start by creating a constructor function. This function will be used as our object
type/name:

function MyFirstObject () {
//constructor code

}

To create object variables we will refer to the constructor variables with this. The this
operator is a dynamic name that always refers to the current scope. The current scope within
an object is the object itself; in our case the MyFirstObject function will look as follows:

function MyFirstObject () {
this.a = "value";

}

Bringing Static Things to Life

You can still create variables using the regular variable definition inside of functions, but
there, scope would not be an object scope but instead, the scope would be only within that
function. As such whenever you want to create variables that are shared throughout an object
you must create them and refer to them with a leading this reference.

The next step is to rename all of our functions to be prototypes of the new class (function)

we created. This way our functions will belong to the new object we are creating. We want

the transition of our global variables of the past to become object variables belonging to the
current object. Each time we want to refer to an object variable (property), we need to explicitly
let JavaScript know by directing JavaScript to our object using the this directive. For example,
if we want to refer to the samplevar variable we would approach it in the following way:

this.sampleVar;

We had only one problem and that was when we introduced other objects into our code. The
directive this needs to know the scope of its location to know which object we are referring
to. In the situation of using events, our expectations of this referring to our object will not

be true. Actually when dealing with this within an event listener, the this directive would
always refer to the element being listened to, also known as the one being manipulated. As
such, adding events to a radio button will produce a result of breaking our scope. To solve this
problem, we create a function that will bind our scope to the listener. The bind method binds
our function to our current scope. Even though by default, a listener would have the scope

of what it is listening to, we are forcing the scope to stay on our object making our code work
better for us.

This leaves us with our last task. We need to create a new instance of our object. By creating
a new instance we will activate all the work we did so far. The steps involved with creating a
new object are the same as creating other base objects, only this time around we are using
our constructor function name:

new LineChart (chartInfo,barData) ;

The real test of our object will be if we can create more than one instance of our chart. Right
now we can't, so we will need to do a few more changes to our logic to make it work.

There's more...

Although right now we have a working OOP object, it's not really optimized and it can use some
refining. As we are in one scope, we can revisit and rewire what can be sent and what can
depend on internal variables. We will explore this next task in this section of the chapter.

182

Chapter 6

Moving our base canvas element into our constructor

Let's start by moving from the drawChart function. The following logic will fetch the base
canvas and create a global variable within our new constructor:

var can = document.getElementById("base") ;

this.wid = can.width;
this.hei = can.height;
this.baseCanvas = can.getContext ("2d") ;

This will be followed by replacing the associated lines in the drawChart method with a
reference to our newly created baseCanvas object:

LineChart .prototype.drawChart =function () {
var context = this.baseCanvas;

this.fillChart () ;

Notice that we removed the function parameters from our £i11Chart method as we can
pass them internally now within the method:

LineChart.prototype.fillChart = function () {
var context = this.baseCanvas;
var chartInfo = this.chartInfo;

| strongly encourage you to continue and optimize the rest of the functions in this same
manner, but for our sample let's continue on to the next topic.

Creating all the HTML components dynamically

Why would we want to create our controllers and base canvas dynamically as well? Because
we created some of our classes in advance, we are forced to have only one object in every
HTML page. If we had dynamically created the controllers or passed the class information, we
could enable the creation of more than one controller in our application. As we have so many
elements that we are creating dynamically, it seems logical to continue in this path. Let's first
create the remaining two elements dynamically.

Let's start by removing the inner canvas details from our HTML page (delete the highlighted
code snippet):

<div id="chartContainer" class="graphiclLayers" >
<canvas id="base" class="canvasLayer" width="550"
height="400"> </canvas>

</divs>
<div id="controllers" class="controllers">

</div>

Bringing Static Things to Life

We are going to start inserting the controller class within our global <div> tag that will be
used for our canvas. We need to update our CSS information for the controllers:

.controllers ({
position: absolute;
left:0;
top:400px;

}

OK. We are now ready to do some code updates to our constructor. The highlighted code
snippets are the updates that should be implemented next:

function LineChart (chartInfo,barData,divID){
this.chartInfo = chartInfo;
this.barData = barData;

this .HIDE ELEMENT = -1;
this.LINE_ ELEMENT = 0;
this.FILL ELEMENT = 1;

this.CHART PADDING = 20;
this.BASE ID = divID;

var chartContainer = document.getElementById(divID) ;
var can = document.createElement ("canvas") ;
can.width=chartInfo.width;
can.height=chartInfo.height;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild(can) ;

this.wid = can.width;
this.hei = can.height;
this.baseCanvas = can.getContext ("2d4");

this.drawChart () ;

var div = document.createElement ("div") ;
div.setAttribute("class", "controllers") ;

chartContainer.appendChild (div) ;

var radContainer = div;

var hasLooped= false;
for(var id in barData) {

Chapter 6

radContainer.innerHTML += (hasLooped ? " || ":"") + barDatal[id].
label +": " ;

this.appendRadioButton (radContainer,id,-1," off ");
this.appendRadioButton (radContainer,id, 0," line ") ;
this.appendRadioButton (radContainer,id,1," full ");
hasLooped = true;

var radios ;
for(id in barData) {
radios = document.getElementsByName (id) ;
for (var i=0; i<radios.length; i++){
radios[i] .onchange = this.bind(this, this.onChangedRadio) ;
if (radios[i] .value == barData[id].status) {
radios[i] .checked = true;

}
}
}

}
We want to start our LineChart object by sending into it the <div> tag ID:

new LineChart (chartInfo,barData, "chartContainer") ;

If you refresh your screen, all this hard work should be invisible. If everything is still working
the way it did before we started to make changes, then well done, you've just completed the
conversion of your chart to be smart and dynamic.

Removing the lose ends

Although we extracted all of our external canvas and controllers and everything is working, we
still are referring to internal canvas elements and radio buttons in a way that can break them.
If we try to create a mirror chart right next to them to solve this problem, we will need to look
through all our new elements and append to their name a unique key (we can use the div
id element as that key as there can only be one <div> tag with the same ID in any HTML
application). To save us some pages, I'll just show you the basic logic here but grab the latest
code bundle to find all the updates:

LineChart.prototype.extractID = function(str) {
return str.split(this.BASE ID + " ") [1];

LineChart.prototype.wrapID = function(str)
return this.BASE ID + " "+str;

Bringing Static Things to Life

I've created two helper functions and their role is simple: to rename <div> tag/class/radio
buttons by adding the main <div> tag ID into their name. This way we won't have duplicate
elements. All that is left is to locate all the areas where we are creating elements (we are
creating canvas in the drawChart function and radio buttons in our constructor, but we
interact with them in a few functions). Search for the changes where the this.extractID
or this.wrapID methods are called and understand why they are being called.

Testing our work by creating two charts

To make life harder, we are going to create the same exact chart twice using the same data
sources (as that is a good edge case, so if that works any chart would work). Update the HTML
file and add two <div> tags and update the CSS:

<!DOCTYPE html>
<html>
<head>

<title>Line Chart</titles>

<meta charset="utf-8" />

<style>

#chartContainer {
position: relative;
left:100px

}

#chartContainer2{
position: relative;
left:700px

}

.controllers {
position: absolute;
left:0;
top:400px;

}

.canvasLayer {
position: absolute;
left: 0;
top: 0;
}
</style>
<script src="06.02.o0bjects.optimized.js"></script>
</head>
<body style="background:#fafafa"s>
<hl>Users Changed between within a year</hls>
<div id="chartContainer" class="graphicLayers" >

</div>

186

Chapter 6

<div id="chartContainer2" class="graphicLayers2" >

</div>
</body>
</html>

In our init function let's set up both charts:

new LineChart (chartInfo,barData, "chartContainer");
new LineChart (chartInfo,barData, "chartContainer2");

Yes! We have two interactive charts working at the same time based on the same code base.
Good job! And don't worry, the rest of this chapter is going to be much easier.

Animating independent layers

After a few really hard recipes let's do something fun and easy; let's add some animation to
our chart and add some fade-ins and delays.

Getting ready

The core logic of our application was built in the previous two recipes Stacking graphical
layers and Moving to an OPP perspective. We are in great shape so it will be extremely easy
for us to expand and create content and add it into our application. We will make few very
slight updates to our latest HTML file, mainly deleting things we don't need and then it's

all JavaScript.

Grab the latest files from our last sample (06.02.objects.optimized.html and 06.02.
objects.optimized.js)and let's continue

How to do it...

Our goal in the next few steps is to remove the code that is not required and then build our
layered animations. Perform the following steps:

1. Remove the HTML, CSS, and <div> tags that are not required (delete the highlighted
code snippets):

<!DOCTYPE html>
<html>
<head>
<titlesLine Chart</titles>
<meta charset="utf-8" />
<style>
#chartContainer {

Bringing Static Things to Life

position: relative;
left:100px

}

#chartContainer2{
position: relative;
left:700px

.controllers {
position: absolute;
left:0;
top:400px;

}

.canvasLayer
position: absolute;
left: 0O;
top: 0O;
}
</style>
<script src="06.02.objects.optimized.js"></script>
</head>
<body style="background:#fafafa">
<hl>Users Changed between within a year</hls>
<div id="chartContainer" class="graphicLayers" >

</div>
<div id="chartContainer2" class="graphicLayers2" >

</div>
</body>
</html>
2. Create the new Animator constructor:

function Animator (refreshRate) {

this.animQue = [];
this.refreshRate = refreshRate || 50; //if nothing set 20 FPS
this.interval = 0;

}

3. Create the add method:

Animator.prototype.add = function (obj,property,
from, to, time,delay) {
obj [property] = from;

188

Chapter 6

this.animQue.push ({obj:0bj,

p:property,

crt:from,

to:to,

stepSize: (to-from)/(time*1000/this.refreshRate),
delay:delay*1000 || 0});

if (!this.interval){ //only start interval if not running already

this.interval = setInterval(this. animate,this.
refreshRate, this) ;

}
}

Create the internal _animate method:

Animator.prototype. animate = function (scope) {
var obj;
var data;

for(var i=0; i<scope.animQue.length; i++){
data = scope.animQue[i];

if (data.delay>0) {
data.delay-=scope.refreshRate;
lelse{
obj = data.obj;
if (data.crt<data.to) {
data.crt +=data.stepSize;
obj[data.p] = data.crt;
lelse{
obj [data.p] = data.to;
scope.animQue.splice(i, 1) ;
——i;

if (scope.animQue.length==0) {
clearInterval (scope.interval) ;

scope.interval = 0; //so when next animation starts we can
start over

}
}

Bringing Static Things to Life

5. Create a new Animate object within the LineChart constructor method and
animate key components:

function LineChart(chartInfo,barData,divID){
this.animator = new Animator (50);

var chartContainer =this.mainDiv;
var can = document.createElement ("canvas") ;
can.width=chartInfo.width;
can.height=chartInfo.height;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild (can) ;
this.animator.add(can.style, "opacity",0,1,.5,.2);

var div = document.createElement ("div") ;
div.setAttribute("class", "controllers") ;
chartContainer.appendChild(div) ;

this.animator.add(div.style, "opacity",0,1,.4,2.2);

oo

6. Add animation to canvas elements in the drawChart method:

var delay = .75;
for(var id in this.barData) {
can = document.createElement ("canvas") ;
can.id=this.wrapID (id) ;
can.width=this.wid;
can.height=this.hei;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild(can) ;
this.changelineView (id, this.barData[id] .status) ;

this.animator.add(can.style, "opacity",0,1,1,delay);
delay+=.5;

190

Chapter 6

When you run the webpage again you will find a fade-in of the separate layers.

o bl off L e (S Tl § 200 i) lime & Bl | 2005 off (! liee 4 Sl 21 ol L e O Sall 2018 T O e 2009 0 off L lise e

201 off O Dt i Bl | 2000 (0 off [e i full F3005: O off O liee @A

Let's start by looking into our Animator constructor. We start with a few variables in our
constructor:

function Animator(refreshRate){

this.animQue = [];
this.refreshRate = refreshRate || 50; //if nothing set 20 FPS
this.interval = 0;

}

These variables are the key to everything else. The animQue array will store each new
animation request we make. The refreshRate property will control how often our animation
will update. The more often it updates the smoother our animation will be (the higher the
value in the refresh rate the less stress on user's system). For example, if we want to have a
few animations, one in a smoother setting and others with a lower refresh rate, we can set two
separate Animator classes with different refresh rates.

Bringing Static Things to Life
Our add method takes in all the necessary information to animate a property:

Animator.prototype.add =
function (obj,property, from,to,time,delay) {}

Each element sent in to animate is then converted into a reference object that will be used
when animations are running and pushed into our animQue array:

this.animQue.push ({obj:0bj,

p:property,

crt:from,

to:to,

stepSize: (to-from)/(time*1000/this.refreshRate),
delay:delay*1000 || 0});

storing within the queue all the information we will need to animate an element, from the
object's current status to how much of a change should be made each interval. On top of that
we added a delay option enabling us to start the animation later.

We control the creation of intervals only in this function so until this function is called, there
will be no interval running;:

if (!this.interval){ //only start interval if not running already
this.interval = setInterval(this. animate,this.refreshRate, this);

}

Now it's time for the internal logic of our object. The _animate method is called internally for
as long as there is something to animate. In other words, as long as there is something in the
animQue array. It loops through all the animQue array elements and goes through a few tests
per element:

1. If the element has a delay set, it will downgrade the delay value by the refreshRate
property such that the delay will become smaller during each loop until it will be zero
or less. When that happens the next step will trigger.

2. Now that the delay is complete, the _animate method changes gear. It starts to
animate the objects within the animQue array for as long as the value of data.crt
is lesser than data. to.

3. The interval will continue one more time before testing to remove our element from
the array. The separate step here is to help us avoid adding an if statement within
our core logic reducing the complexity of our for loop. As we only need to test this
once, we can absorb the cost of one extra loop cycle. In this extra cycle, we force the
exact final value to our object and remove it from the animation queue.

192

Chapter 6

This is the only strange logic, where we force the value of our loop variable down:

}else{
obj [data.p] = data.to;
scope.animQue.splice(i, 1) ;
--1i;

}

In this code we are removing our element. As soon as we remove our element our
current value of i will be one value larger than it should be, as our object has shrunk.
To solve this problem, we need to force down the value to reset it back to the new
current index.

Last but not the least, at the end of each update we check to see if there is anything in our
array. If the array is empty, it's time for us to remove the interval. We want to avoid having

an interval running when it's not needed. Next time the add method is triggered, it will restart
the interval:

if (scope.animQue.length==0) {
clearInterval (scope.interval) ;
scope.interval = 0; //reset interval variable

}

That's the core of our logic and now it's time to create a new animator object and start
sending elements that we want to animate. Play around with it, animate other things, and
find your favorite animation balance between speed, delay, and properties you want to
animate. This animator class is the base of all animation libraries, although our sample
is more minimal and has more chances of user overkill such as sending the same object
multiple times.

Adding an interactive legend

Although we created a legend in the past, our legend was bound to be non-interactive as we
had no way to move it around. In this sample, we will create a quick and easy legend that will
update its position and fade in and fade out when a user rolls over our chart.

Getting ready

Grab the latest files from our previous recipe, 06 .03 .fade.html and 06.03.fade.js, and
let's jump right in. We will hardcode our values in this example, but a more modular approach
of extracting elements that would be dynamic is a great way to make this class reusable.

Bringing Static Things to Life

How to do it...

This time around we will create a method in the LineChart object that will create legends for

us. Perform the following steps:

1. Create the createLegend method:

LineChart.prototype.createLegend = function ()
var can = document.createElement ("canvas") ;
can.width=70;
can.height=100;
can.setAttribute ("class", "canvasLayer") ;
chartContainer.appendChild(can) ;

this.legend = can;
this.updateLegend() ;
can.style.opacity = 0;

}

2. Create the updateLegend method:

LineChart.prototype.updateLegend = function () {
var wid = this.legend.width;
var hei = this.legend.height;

var context = this.legend.getContext ("2d") ;
context.fillStyle = "rgba (255,255,255, .7)";
context.strokeStyle = "rgba(l150,150,150,.7)";

context.fillRect (0, 0,wid, hei) ;
context.strokeRect (5,5,wid-10,hei-10) ;

var next¥= 10;

var space = (hei-10 - this.chartInfo.bars * nextY) / this.
chartInfo.bars;

for(var id in this.barData) {
context.fillStyle = this.barDatal[id].style;
context.fillRect (10,nextY,10,10) ;
context.fillText (this.barData[id] .label, 25, nextY+9) ;
nextY+=10+space;

}

this.legend.style.left = this.wid +"px";

Chapter 6

The next step for us is to create a few methods that will be used as event listeners.
Let's add a few listeners to control our animation:

LineChart.prototype.onMouseMoveArea = function (e) {
this.legend.style.top = (e.layerY) +"px";

LineChart.prototype.fadeInLegend = function () {
this.animator.add (this.legend.style, "opacity",this.legend.style.
opacity,1,.5);

}

LineChart.prototype.fadeOutLegend = function() {
this.animator.add(this.legend.style, "opacity",this.legend.style.
opacity,0,.5);

}

The methods we created just now are ready to be linked to a callback method such
as an onmouseover Of onmouseout event of our mainDiv. We will bind our scope
back into our main object and trigger the methods we created earlier when the user
triggers these built-in events. Let's register our listeners in the constructor:

this.drawChart () ;

this.createLegend() ;

this.mainDiv.onmousemove = this.bind(this, this.onMouseMoveArea) ;
this.bind(this, this.fadeInLegend) ;
this.mainDiv.onmouseout = this.bind(this, this.fadeOutLegend) ;
Add into the code a variable that will count how many bars are there in the chart in
the drawChart update code:

this.mainDiv.onmouseover

this.chartInfo.bars = 0;
for(var id in this.barData) {

this.chartInfo.bars++;
can = document.createElement ("canvas") ;
can.id=this.wrapID (id) ;

can.width=this.wid;

can.height=this.hei;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild(can) ;
this.changelineView (id, this.barData[id] .status) ;

this.animator.add(can.style, "opacity",0,1,1,delay) ;
delay+=.5;

Bringing Static Things to Life

Well done! When you refresh your browser you will see a legend fading in/out and
repositioning based on our mouse moves.

! Y ') s 3 7]] 1 1] 12
2011) off) line @) full | 2010z) off () line &) full || 2009:) off (line = full

L3 2 . 1 1 L3 g 3 | 12
2010: Coff () e @ full [2000: O off) line @) full | 2009: O off) lise @ full

The logic this time around is simple as our application already is nicely set and optimized. Our
createLegend method creates for us a new canvas area that we can use for our legend.

I've added some hardcoded values into it, but it would be a good idea to extract them into our
chartInfo variable.

196

Chapter 6

The only thing that requires explanation is the logic involved with the layout of the legend. We
need to know how many items our chart contains to avoid looping through the data source
again or asking the user to add this information. We can calculate this information the first
time we loop through the user-generated data and thus update it to have our total items
within it.

We set up our method in a way that would make it easy for us to actually put dynamic data
directly into our chart. I've left that challenge open for you to explore and set up the ground
work for it.

There's more...

One more thing to note is, if you search hard and stress test our Animator class in this
example, you will find that its not hundred percent optimized. If we send to the Animator
class the same object with conflicting instructions, it will not automatically terminate the
conflict. Instead, it will run through both until completion (for example, it will fade-out

and fade-in at the same time; it will not break our application but it will create unwanted
outcomes). To solve problems such as this one, we would need to modify our Animator
class to override animations that are in conflict.

Let's fix the animation conflicts by checking that our animation queue does not have the same
object with the same property animating already. We will create a £ind function to help us
find in the animQue property the index of a duplicate:

Animator.prototype.find= function (obj,property) {
for(var i=0; i<this.animQue.length; i++) {
if (this.animQue[i] .obj == obj && this.animQue[i] .p == property)
return 1i;

return -1;

}

The function will scan through our animQue array and locate duplications. If a match is found,
the index value will be returned. If not, -1 will be returned. Now it's time to update our add
method to use this new find method:

Animator.prototype.add = function (obj,property, from,to,time,delay)
obj [property] = from;

var index = this.find(obj,property);
if (index!=-1) this.animQue.splice(index, 1) ;
this.animQue.push ({obj:0bj,

p:property,

crt:from,

Bringing Static Things to Life

to:to,
stepSize: (to-from)/(time*1000/this.refreshRate),
delay:delay*1000 || 0});

if (!this.interval){ //only start interval if not running already
this.interval = setInterval(this. animate,this.refreshRate, this);

}

Great! Problem solved! Although we have not addressed the dynamic legend in this example,
we are going to create a new direction for our legend that will be just as dynamic and maybe a
bit more in our next recipe, Creating a context-aware legend.

Creating a context-aware legend

Our goal will be to create a legend that updates based on what is under the user's mouse
cursor as they roll over our application. Based on the mouse position of the user, we will
update our legend to reflect the information that is under the user's mouse.

Getting ready

Grab the latest files from the previous recipe: 06.04 .1legend.html and
06.04.legend.js

How to do it...

We aren't going to change anything in the HTML files so let's jump right into the JavaScript and
build out our dynamic legend:

1. From the ChartLine constructor, remove rollover/rollout events as we want to keep
our legend always visible:

this.drawChart () ;

this.createlLegend() ;

this.mainDiv.onmousemove = this.bind(this, this.onMouseMoveArea) ;
this.mainDiv.onmouseover = this.bind(this,this.fadeInLegend) ;
this.mainDiv.onmouseout = this.bind(this,this.fadeOutLegend) ;

198

Chapter 6

2. Update the createLegend method:

LineChart.prototype.createlLegend = function ()
var can = document.createElement ("canvas") ;
can.width=90;
can.height=100;
can.setAttribute("class", "canvasLayer") ;
chartContainer.appendChild(can) ;

this.legend = can;
this.updatelLegend (null, -1) ;
can.style.left = this.wid +"px";

}

3. Update the method updateLegend:

LineChart.prototype.updatelLegend = function(ren,currentXIndex) {
var ren = ren || this.barData;
var wid = this.legend.width;
var hei = this.legend.height;
var context = this.legend.getContext ("2d") ;
context.fillStyle = "rgba(255,255,255,.7)";
context.strokeStyle = "rgba(150,150,150,.7)";
context.fillRect (0,0,wid, hei) ;
context.strokeRect (5,5,wid-10,hei-10) ;

var nextY= 10;

var space = (hei-10 - this.chartInfo.bars * nextY) / this.
chartInfo.bars;

var isXIndex = currentXIndex !=-1;

for(var id in ren)
context.fillStyle = this.barDatal[id].style;
context.fillRect (10,nextY,10,10) ;

context.fillText (this.barData[id] .label + (isXIndex ? (":"+
this.barData[id] .data[currentXIndex]):""),25, nextY+9);
nextY¥+=10+space;

Bringing Static Things to Life

4. Change the event listener onMouseMoveArea:

200

LineChart.prototype.onMouseMoveArea = function (e) {
var pixelData;
var barCanvas;

var chartX = e.layerX-this.CHART PADDING;
var chartwWid = this.wid -this.CHART_PADDING*2;
var currentXIndex = -1;
if (chartX>=0 && chartX<= chartWid) {
currentXIndex = Math.round (chartX/this.chartInfo.x.stepSize)

var renderList = {};
var count = 0;
for(var id in this.barData) {
barCanvas = this.barDatal[id] .canvas;

pixelData = barCanvas.getImageData (e.layerX, e.layeryY, 1,
1) .data

if (pixelDatal[3]) {
count++;
renderList [id] = true; //there is content on this layer now

if (!count) renderList = this.barData;

this.updatelLegend (renderList, currentXIndex) ;

}

We need to add the step size into our data. This variable should be calculated
dynamically as there is no need for the user to know this information if we can
calculate it. As such, we will add this calculation to our chart Info object when we
calculate the step size in the £il11Chart method:

stepSize = rangelength/steps;
this.chartInfo.x.stepSize = chartWidth/steps;

Last but not the least, let's add our canvas information directly into our barData
object so we can easily interact with it (added in the drawChart function):

for(var id in this.barData) {
this.chartInfo.bars++;
can = document.createElement ("canvas") ;
can.id=this.wrapID (id) ;
can.width=this.wid;
can.height=this.hei;

Chapter 6

can.setAttribute ("class", "canvasLayer") ;
chartContainer.appendChild(can) ;
this.barData[id] .canvas =can.getContext ("24") ;
this.changeLineView(id, this.barData[id] .status) ;

this.animator.add(can.style, "opacity",0,1,1,delay) ;
delay+=.5;

}

We should be all set. When you run the page again, your mouse should be in control of the
information provided by the legend based on the exact coordinate you are on.

In the last two steps of the previous section of this recipe, we add a few helper variables to
help us create our mouse move logic. This is an interesting part because in addition in this
sample we are asking our canvas for pixel information for the first time. We will focus our
attention mainly on the logic within the onMouseMoveArea event listener.

We start by establishing the boundaries of our canvas area:

var chartX = e.layerX-this.CHART PADDING;
var chartwWid = this.wid -this.CHART_ PADDING*2;

This will be followed by a quick calculation of the current area in the chart we are in:

var currentXIndex = -1;
if (chartX>=0 && chartX<= chartWid) {
currentXIndex = Math.round(chartX/this.
chartInfo.x.stepSize) ;

}

If we are out of the area, our currentXIndex variable will remain -1, while if we are in the
area, we will get a value between 0 and the highest possible value based on the number

of steps in the data source. We will send this value to our newly updated updateLegend
method that will append the actual value of that index information from the data source into
the rendering of the legend.

The next step is a for loop where we loop through our data to test our canvas elements to
see if they are opaque or not:

var renderList = {};
var count = 0;
for(var id in this.barData) {
barCanvas = this.barData[id] .canvas;
pixelData = barCanvas.getImageData (e.layerX, e.layerY, 1, 1) .data;

201

Bringing Static Things to Life

if (pixelDatal[3]) {
count++;

renderList [id] = true; //there is content on this layer now

}
}

Only if the data returned confirms that there is content under the mouse pointer, we will add
that ID into the renderList object. The renderList object is going to be our hub; it will
control the legend data fields to be sent to the updateLegend method. If our mouse is above
an element that is drawn then we will showcase the legend information related to the user's
rollover; if not, we won't.

We will update the way we call the updateLegend method, but right before we send it to our
new parameters, we want to confirm we are really sending something. If our helper (linker
object) is empty, we will send instead the original object. That way, everything will render if no
chart is under our mouse pointer:

if (!count) renderList = this.barData;
this.updatelLegend (renderList, currentXIndex) ;

Time to take a peek at the changes within the updatelLegend method. The first new thing
comes right in the first line:

var ren = ren || this.barData;

This is a nice coding trick that enables us to update our ren parameter. The way it works is
very simple; the | | operator will always return the first true value it sees. In our case if the
ren parameter is empty, or zero, or false it would return the value in this.barData. The
logic is simple, if the ren parameter has content, it will remain the same while if it's empty the
this.barData property will be set within the ren variable.

var isXIndex = currentXIndex !=-1;
for (var id in ren) {
context.fillStyle = this.barDatal[id].style;
context.fillRect (10,nextY,10,10) ;

context.fillText (this.barData[id] .label + (isXIndex ?
(":"+ this.barDatal[id] .datal[currentXIndex]):""),25, nextY¥+9);
nextY+=10+space;

}

This is really the magic of this whole recipe. Instead of looping through the this.barData
property we are looping through the key object that contains all the items we want to render.
All that is left to do is to add the data when adding the text if there is a valid index listed.

202

Chapter 6

There you go! We just added a really cool dynamic legend that changes as the user explores
our chart.

306

W 2008131

240

180

120

60 |

1 574
2011: () off () line @ full || 2010: () off () line @ full || 2009: () off () line @ full

203

Depending on the Open
Source Sphere

In this chapter we will cover:

» Animating a gauge meter (jgPlot)

» Creating an animated 3D chart (canvas3DGraph)
» Charting over time (flotJS)

» Building a clock with RaphaellS

» Making a sunburst chart with InfoVis

Introduction

The open source data visualization community is extremely rich and detailed, with many
options and some really amazing libraries. Each library has its strong points and its
disadvantages. Some are standalone code while others depend on other platforms such as
jQuery. Some are really big and some are really small; there isn't any one option that is perfect
for all opportunities, but with such a rich amount of options, the most important thing is to
figure out what library is the right one for you.

There is always a trade-off when working with open source libraries, mainly when it comes to
file sizes and having just too many features that drag down the speed of your application, load
time, and so on. But with the richness and creativeness of the community, it's hard to avoid
really fantastic charts that can be created in minutes instead of hours.

Depending on the Open Source Sphere

In this chapter we will explore working with some of these options. Instead of using the
libraries according to the documentation of the projects, our goal will be to find ways to
override the built-in libraries to provide us with better control over our applications, in case

we can't find a suitable solution in the documentation of an application. So the goal in this
chapter is now double, namely to find ways to do things that aren't naturally set to work and to
find ways to bypass problems.

One more important thing to note is that all of these open source libraries have copyrights. It
is advised that you check the legal documentation of the project before you go ahead with it.

Animating a gauge meter (jqPlot)

In this recipe, we will be creating a really fun gauge meter and injecting some random
animation into it to make it look like a real source of live data is connected to it, such as the
speed of a car:

2 1

Getting ready

To get started you will need to use jQuery and jgPlot. This time around we will start from scratch.

To get the latest scripts, visit the creator site at http://blog.everythingfla.
com/?p=3309.

Download both jQuery and jgPlot, or download our source files to start with.

How to do it...

Let's list the steps required to complete the task:

1. Create an HTML page for our project:

<!DOCTYPE html>
<html>
<head>
<title>JQPlot Meter</titles>

206

<meta charset="utf-8" />

<link rel="stylesheet"
href="./external/jgplot/jquery.jgplot.min.css">
<script src="http://ajax.googleapis.com/
ajax/libs/jquery/1.7.2/jquery.min.js"></script>
<script src="./external/jgplot/
jquery.jgplot.js"></script>

<script src="./external/jgplot/plugins/
jgplot.meterGaugeRenderer.min.js"></script>

<script src="./07.01.jgplot-meter.js"></script>
</head>
<body style="background:#fafafa">

<div id="meter" style="height:400px;width:400px;
"s</divs>
</body>

</html>

Create the 07.01.jgplot-meter. js file.
Let's add a few helper variables. We will use them when rendering our meter:

var meter;

var meterValue=0;

var startingSpeed = parselnt (Math.random()*60) + 30;

var isStarting = true;

var renderOptions= {
label: 'Miles Per Hour',
labelPosition: 'bottom',
labelHeightAdjust: -10,
intervalOuterRadius: 45,
ticks: [0, 40, 80, 1201,
intervals: [25, 90, 120],
intervalColors: ['#E7E658', '#66cc66"',
"#cc6666']

}i

Chapter 7

Now it's time to create our meter. We will use jQuery to know when our document is

being read and then create our chart.

$ (document) .ready (function () {

meter = $.jgplot ('meter', [[metervaluel], {
seriesDefaults: {
renderer: $.jgplot.MeterGaugeRenderer,
rendererOptions:renderOptions

Depending on the Open Source Sphere

5. Now it's time to animate our chart. Let's add in the last line of our ready listener
interval (it will run from now on until the end of the recipe):

$ (document) . ready (function () {

meter = $.jgplot ('meter', [[metervValuel], {
seriesDefaults: {
renderer: $.jgplot.MeterGaugeRenderer,
rendererOptions:renderOptions
}
1)

setInterval (updateMeter, 30) ;

1
6. Last but not least, it's time to create the updateMeter function:

function updateMeter () {
meter.destroy () ;

if (isStarting && meterValue<startingSpeed) {
++meterValue
}else{
meterValue += 1- Math.random() *2;
meterValue = Math.max(0,Math.min (meterValue,120)); //keep our
value in range no mater what

}

meter = $.jgplot ('meter', [[metervValuel], {
seriesDefaults: {
renderer: $.jgplot.MeterGaugeRenderer,
rendererOptions:renderOptions

13N
}

Well done. Refresh your browser and you will find an animated speedometer that looks like
that of a car driving around (if you only imagine it).

208

Chapter 7

This task was really easy as we didn't need to start everything from scratch. For the meter to
run, we need to import the library meterGaugeRenderer. We do that by adding that into our
JavaScript files that we are loading. But let's focus on our code. The first step in our JavaScript
is to prepare a few global variables; we are using global variables as we want to re-use these
variables in two different functions (when we are ready to reset our data).

var meter;

var meterValue=0;

var startingSpeed = parselnt (Math.random()*60) + 30;
var isStarting = true;

The meter variable will hold the meter that we will generate from our open source library.

The metervValue will be our initial value when the application loads. Our startingSpeed
variable is going to be a random value between 30 and 90. The goal is to start from a different
place each time to make it more interesting. As soon as our application starts, we will want
our meter to quickly animate to its new base speed (the startingSpeed variable). Lastly,
this connects to the isStarting variable as we will want to have one animation that will get
us to our base speed. When we get there, we want to switch to a random driving speed that
would cause the animation to change. Now that we have all the helper variables set, we are
ready to create the renderOptions object:

var renderOptions= {

label: 'Miles Per Hour',

labelPosition: 'bottom',

labelHeightAdjust: -10,

intervalOuterRadius: 45,

ticks: [0, 40, 80, 120],

intervals: [25, 90, 120],

intervalColors: ['#E7E658', '#66cc66', '#cc6666']

i

This object is really the heart of the visuals for our application. (There are other options that
you are welcome to explore in the jgPlot project home page documentation.) Now let's review
a few of the key parameters.

intervalOuterRadius has a bit of a tricky name, but it's actually the internal radius. The
actual size of our meter is controlled by the size of div that we set our application to be in.
intervalOuterRadius controls the size of our internal shape in the speedometer's core.

var renderOptions= {
label: 'Miles Per Hour',
labelPosition: 'bottom',
labelHeightAdjust: -10,
intervalOuterRadius: 45,

209

Depending on the Open Source Sphere

//ticks: [0, 40, 80, 120],
intervals: [10,25, 90, 120],
intervalColors: ['#999999"', '#E7E658', '#66cc66', '#cc6666']

}i

The ticks function controls where the copy outlines would be. The default would take
our top range and divide it by 4 (that is 30, 60, 90, and 120). The intervals and
intervalColors functions let the meter know the ranges and the inner, internal, pie
colors (separated from the ticks).

$ (document) .ready (function () {

meter = $.jgplot ('meter', [[metervaluel], {
seriesDefaults: ({
renderer: $.jgplot.MeterGaugeRenderer,
rendererOptions:renderOptions

}
3N

setInterval (updateMeter, 30) ;

3N

To create a new chart using the jgPlot library, we always call the $.jgplot function. The
first parameter of the function is the div layer, which is where our work will live. The second
parameter is a two-dimensional array containing the data of the chart (kind of looks odd for
this example as it expects a 2D array and as our sample only includes one data entry at a
time, we need to wrap it in two arrays). The third parameter defines the used renderer and
rendererOptions (that we created earlier).

There's more...

Let's explore a few more functions.

Creating the updateMeter function

The updateMeter function gets called every 30 milliseconds. What we need to do is start by
clearing our art every time that it is called:

meter.destroy () ;
This will clear everything related to our meter so we can recreate it.

If we are still in the intro part of our application where we want our speed to go up to the goal
speed, we need to update our meterValue by 1.

if (isStarting && meterValue<startingSpeed) {
++meterValue;

210

Chapter 7

If we are already passed this state and want our meter to go up and down randomly, making it
look like variations in driving speed, we'll use the following code snippet:

}else{
meterValue += 1- Math.random() *2;
meterValue = Math.max(0,Math.min(meterValue,120)); //keep our

value in range no mater what

}

We are randomly adding a value between -1 and 1 to our meter value. A correction to our
result can be achieved by keeping our value not lower than 0 and not higher than 120,
followed by redrawing our meter with our new metervalue value.

Creating an animated 3D chart

(canvas3DGraph)

This recipe is real fun. It's based on the source files of Dragan Baijcic. It's not a full library of
charts, but it's a great inspirational chart that can be modified and used to create your own
3D data visualizations.

Although our source files in our attached sample are modified from the original source (mainly
canvas3DGraph. js), to get the original source for the open source projects used in this
book, please visit our centralized list at http://blog.everythingfla.com/?p=339.

1000

1000

Depending on the Open Source Sphere

Getting ready

If you want to follow our updates, download the original source files from the provided link or
review the changes that we make to Dragan's source files.

How to do it...

Let's jump right in as we have a lot of work to do:

1. Create the HTML file:

< !DOCTYPE html>
<html>
<head>

<title>canvas3DGraph.js</title>
<meta charset="utf-8" />
<link rel="stylesheet"
href="./external/dragan/canvas3DGraph.css">
<script src="./external/dragan/
canvas3DGraph.js"></scripts>
<script src="./07.02.3d.js"></script>

</head>
<body style="background:#fafafa">

<div id="g-holder">
<div id="canvasDiv">
<canvas id="graph" width="600" height="600" >
</canvas>
<div id="gInfo"></div>
</div>

</div>
</body>
</html>

2. Create the CSS file canvas3DGraph.css:

#g-holder
height:620px;
position:relative;

}

#canvasDiv{
border:solid 1px #elelel;
width:600px;
height:600px;
position:absolute;

top:0px; left:0px;
z-index:10;

}

#x-label{
position:absolute;
z-index:2;
top:340px;
left:580px%;

}

#y-label{
position:absolute;
z-index:2;
top:10px;
left:220px;

}

#z-label{
position:absolute;
z-index:2;
top:540px;
left:10px;

}

#gInfo div.gText(
position:absolute;
z-index:-1;
font:normal 10px Arial;

}

Now it's time to move into the JavaScript file.
Let's add a few helper variables:

var gDhata = [];

var curlIndex=0;

var trailCount = 5;
var g;

var trailingArray=I[];

We need to create our chart when the document is ready:

window.onload=function () {
//Initialize Graph
g = new canvasGraph('graph') ;
g.barStyle = {cap:’rgba(255,255,255,1)’,main:
'rgba(0,0,0,0.7)"', shadow:'rgba(0,0,0,1)"',
outline:'rgba(0,0,0,0.7)’,formater:styleFormater};

Chapter 7

Depending on the Open Source Sphere

for(i=0;1i<100;i++) {
gbatal[i] = {x:(Math.cos((i/lO)) * 400 + 400),
y:(1000-(i*9.2)), z:(i*10)};

}

plotBar () ;
setInterval (plotBar, 40) ;

}

6. Create the plotBar function:

function plotBar () {
trailingArray.push (gData [curIndex]) ;

if (trailingArray.length>=5) trailingArray.shift();

g.drawGraph (trailingArray) ; //trailingArray) ;
curIndex++
if (curIndex>=gData.length) curIndex=0;

}
7. Create the formatter function styleFormatter:

function styleFormatter(styleColor,index,total){
var clrs = styleColor.split(",");
var alpha = parseFloat (clrs([3].split(")"));
alpha *= index/total+.1;
clrs[3] = alpha+")";
return clrs.join(",");

}

Assuming that you are using our modified, open source JavaScript file, you should now see
your chart animated. (In the There's more... section in this recipe, we will look deeper into the
changes and why we made them.)

Let's first look at our code in the way that we interact with the JavaScript library. After that we
will dig deeper into the inner workings of this library.

var gDhata = [];

var trailingArray=I[];
var trailCount = 5;
var curlIndex=0;

214

Chapter 7

The gDhata array will store all the possible points in the 3D space. A 3D bar will be created
with these points (the points are the 3D points X, y, and z values that will be put into this
array as objects). The trailingArray array will store the current bar elements in the view.
The trailCount variable will define how many bars can be seen at the same time, and our
current index (curIndex) will keep track of our latest addition into the chart.

When the window loads we create our graph element:

window.onload=function () {

//Initialise Graph

g = new canvasGraph('graph') ;

g.barStyle = {cap:'rgba(255,255,255,1)"',main: 'rgba(0,0,0,0.7) ",

shadow: 'rgba (0,0,0,1) ',outline: 'rgba(0,0,0,0.7) "',

formatter:styleFormatter};

for(i=0;1i<100;1i++)
gbata[i] = {x:(Math.cos((i/10)) * 400 + 400), y:(1000-
(i*9.2)), z:(i*10)};

}

plotBar () ;
setInterval (plotBar, 40) ;

}

After creating our graph, we update the barsStyle property to reflect the colors that we want
to use on our bar. In addition to this, we are sending a formatter function as we want to treat
each bar separately (visually treat them differently). We then create our data feed—in our case
it's a traveling Math. cos in our inner space. Feel free to play around with all the data points;
it creates some really amazing content. In a real-life application, you would want to use live or
real data. To ensure that our data will be stacked from back to front, we would need to sort
our data so that the z value that is in the back would be rendered first. In our case sorting
isn't needed as our loop is creating an order of z indexes that grow in order, so the array is
already organized.

There's more...

Next we call plotBar and repeat the action every 40 milliseconds.

The logic behind plotBar

Let's review the logic within the plotBar function. This is the really cool part of our
application, where we update the data feed to create an animation. We start by adding the
current index element into the trailingArray array:

trailingArray.push (gData [curIndex]) ;

Depending on the Open Source Sphere

If our array length is 5 or more, we need to get rid of the first element in the array:
if (trailingArray.length>=5) trailingArray.shift();

We then draw our chart and push the value of curIndex up by one. If our curIndex is
greater than our array elements, we reset it to 0.

g.drawGraph (trailingArray) ; //trailingArray) ;
curIndex++
if (curIndex>=gData.length) curIndex=0;

The logic behind styleFormatter

Our formatter function is called each time a bar is drawn to calculate the color to be used. It
will get the index of the bar and the total length of the data feed in the chart being processed.
In our example, we are only changing the alpha value of the bars based on their position.
(The greater the number, the closer we are to the last entered data source.) In this way, we
create our fade-out effect:

function styleFormatter (styleColor, index, total) {
var clrs = styleColor.split(",");
var alpha = parseFloat (clrs[3].split(")"));
alpha *= index/total+.1;
clrs[3] = alpha+")";
return clrs.join(",");

}

There is actually much more to this sample. Without going too deep into the code itself, | want
to outline the changes.

To control the colors of our bars, line 66 of the third-party package has to be changed. As
such, l introduced this.barStyle and replaced all the references of the hardcoded values
during the creation of the bar elements (and set some default values):

this.barStyle = {cap:'rgba(255,255,255,1) ', main: 'rg
ba(189,189,243,0.7)"', shadow:'rgba(77,77,180,0.7)"',outline: 'rgba(0,0,0
,0.7) ', formatter:null};

I've created a style generator for our bars. This was done to help us redirect the logic between
an external formatter and an internal style:

canvasGraph.prototype.getBarStyle= function (baseStyle, index, total) {
return this.barStyle.formatter?
this.barStyle.formatter (baseStyle, index, total) :baseStyle;

}

Chapter 7

We have created a clear function to delete all the visuals from the graph so we can re-render
the data each time we call it:

canvasGraph.prototype.getBarStyle= function (baseStyle, index, total) {
return this.barStyle.formatter?
this.barStyle.formatter (baseStyle, index, total) :baseStyle;

}

We moved the logic of drawing the chart to the drawGraph function, so | can delete the chart
at the same time, making it easier for it to refresh all the data each time:

canvasGraph.prototype.drawGraph=function (gData) {

//moved this to the drawGraph so i can clear each time its
called.

this.clearCanvas () ;
// Draw XYZ AXIS
this.drawAxis () ;
this.drawInfo() ;

var len = gData.length;

for(i=0;i<len;i++) {
this.drawBar (gData[i] .x,gDatal[i] .y,gDhatal[i] .z,1i,1len);
}
}

The current index and length information now travel through drawBar until it gets to the
formatter function.

Last but not least, I've deleted the drawing of the chart from the constructor, so our chart will
be more conducive for our animation idea.

Charting over time (flotJS)

One of the more impressive features of this library is the ease with which one can update the
chart information. It's very easy to see from the first moment when you review this library and
its samples that the author loves math and loves charting. My favorite feature is the way the
chart can update its x ranges dynamically based on the input added into it.

Depending on the Open Source Sphere

My second favorite feature is how easy it is to update the chart text info by using a
tickFormater method:

8/2003 10/2003

218

Chapter 7

Getting ready

To get the latest builds of the £1otJs library, please visit our link hub at http://blog.
everythingfla.com/?p=339 for charting open source libraries or download our book's
source files where we include the latest build as of publication at http://02geek.com/
books/html5-graphics-and-data-visualization-cookbook.htm.

How to do it...

Let's create our HTML and JavaScript files:

1. Create an HTML file:

<!DOCTYPE html>
<html>
<head>
<titles>flot</title>
<meta charset="utf-8" />
<script src="http://ajax.googleapis.com/
ajax/libs/jquery/1.7.2/jquery.min.js"></script>
<script src="./external/flot/jquery.flot.js">

</script>
<script src="./external/flot/
jguery.flot.fillbetween.js">
</script>

<script src="./07.03.flot.js"></script>

</head>
<body style="background:#fafafa">

<div id="placeholder"
style="width:600px;height:300px; "></div>
</body>
</html>

2. Create a new JavaScript file (07.03 . flot.js) and then create our data source:

var males = {

//

//please grab from source files its a long list of numbers
};Create helper variables:

var VIEW LENGTH = 5;

var index=0;

var plot;

var formattingData = {

Depending on the Open Source Sphere

3.

4.

220

xaxis: { tickDecimals: 0, tickFormatter: function (v)

return v%12 + "/" + (2009+Math.floor(v/12)); } },
yvaxis: { tickFormatter: function (v) { return v + "
cm"; } }

}i

Create a ready event and trigger updateChart:
$ (document) . ready (updateChart) ;

Create updateChart:

function updateChart ()
plot = $.plot($("#placeholder"), getDatal(),
formattingData) ;

if (index+5<males['mean'] .length) {
setTimeout (updateChart,500) ;
}

}
Create getData:

function getData () {

var endIndex = index+5>=males.length?males.length-

1:index+5;

console.log(index, endIndex) ;

var dataset = [
{ label: 'Male mean', data:
males['mean'] .slice (index, endIndex) ,
lines: { show: true }, color: "rgb(50,50,255)" },
{ id: 'm1s5%', data:
males['15%'] .slice (index, endIndex),
lines: { show: true, lineWidth: O,
fill: false }, color: "rgb(50,50,255)" },
{ id: 'm25%', data:
males['25%'] .slice (index, endIndex),
lines: { show: true, linewidth: 0, fill: 0.2 },
color: "rgb(50,50,255)", fillBetween: 'ml5%' },
{ id: 'm50%', data:
males['50%'] .slice (index, endIndex),
lines: { show: true, linewidth: 0.5, fill: 0.4,
shadowSize: 0 }, color: "rgb(50,50,255)",
fillBetween: 'm25%' },
{ id: 'm75%', data:
males['75%'] .slice (index, endIndex),

lines: { show: true, linewidth: 0, fill: 0.4 },
color: "rgb(50,50,255)", fillBetween: 'm50%' },
{ id: 'm85%', data:
males['85%'] .slice (index, endIndex),

lines: { show: true, linewidth: 0, fill: 0.2 },
color: "rgb(50,50,255)", fillBetween: 'm75%' }

{

Chapter 7
1;

index++;
return dataset;

}

Now if you run the chart in your browser, you will see 6 months at a time, and at every half of
a second, the chart will be updated by pushing the chart one month forward until the end of
data source is reached.

flotJds has a built-in logic to reset itself when its redrawn, and that's part of our magic. Our
data source has been borrowed from one of the £1otJS samples. We are actually using the
data to represent a fictional situation. Originally this data was representing the average weight
of people based on their age, broken down into percentiles. But our point in this example is
not to showcase the data but instead show ways of visualizing the data. So in our case, we
had to treat the data by keeping the percentiles as they are intended to be, but use the inner
data to showcase the average over years instead of over ages, as follows:

{'15%': [[yearID, valuel], [yearID, valuel...

The yearID values range from 2 through 19. We want to showcase this information as if we
started our data picking from 2006. Each yearId will represent a month (19 would be 1.5
years after 2006, instead of the age 19 as the data actually represents).

So let's start breaking it down. Now that we know how we are going to treat our dataset, we
want to limit the number of months that we can see at any given time. As such we will add two
helper parameters, one of which will keep track of our current index and the other will track
the maximum number of visible elements at any given time:

var VIEW_LENGTH = 5;
var index=0;

We will create a global variable for our Flot graph and create a formatter to help us format the
data that will be sent in.

var plot;

var formattingData = {
xaxis: { tickDecimals: 0, tickFormatter: function (v) { return
v%12 + "/" + (2003+Math.floor(v/12)); } },
vaxis: { tickFormatter: function (v) { return v + " cm"; } }

}i

Note that tickFormater enables us to modify the way our tick will look in the chart. In the
case of the x axis, the goal is to showcase the current date 2/2012. . ., and in the y axis, we
want to add cm to the numbers that will be printed out on the screen.

221

Depending on the Open Source Sphere

There's more...

There are still two more things to cover—the getData function and the
updateChart function.

The GetData function

In £1otJs every data point has an ID. In our case, we want to showcase six related content
types. Play around with the parameters to see how they change the way the view is rendered.
Before we send the created array back, we update the index ID by one, so the next time that
the function is called it will send the next range.

One more thing we need to note is the actual data range. As we are not sending the full data
range (but a maximum of 5), we need to validate that there are atleast five items after the
index, and if not we will return the last element of the array, ensuring that we never slice more
than the actual length:

var endIndex = index+5>=males.length?males.length-1:index+5;

The UpdateChart function

This part is probably the simplest one. The same code is used for the first render and all the
following renders. If the dataset is valid, we create a timeout and call this function again until
the animation completes.

Building a clock with RaphaelJS

Hands down this is my favorite sample in this chapter. It's based on a mix of two samples on
Raphael's website (I strongly encourage you to explore it). Although Raphael isn't a graphing
library, it's a really powerful animation and drawing library that is really worth playing with.

In this recipe, we will create a clock that is creative (I think). | planned to play with this library
for a day or two, and ended up playing with it all weekend as | was just having so much fun. |
ended up with a digit morphing clock (based on a sample that Raphael created on his site for
letter morphing) and incorporated some arcing into it based on the polar clock example on his
site. Let's see it in action:

222

Chapter 7

Getting ready

As always in this chapter, you need the original library of Raphael. I've added it into our
project. So just download the files and let's get rolling.

To grab the original library, visit our external source files hub for this chapter at
http://blog.everythingfla.com/?p=339.

How to do it...

Let's build up our application:

1. Create the HTML file:

<!DOCTYPE htmlsx>
<html>
<head>
<title>Raphael</title>
<meta charset="utf-8" />
<script src="http://ajax.googleapis.com/ajax/
libs/jquery/1.7.2/jquery.min.js"></script>

<script src="./external/raphael/raphael-
min.js"></script>

<script src="./07.04.raphael.js"></script>
<style>

223

Depending on the Open Source Sphere

body {
background: #333;
color: #fff;
font: 300 100.1% "Helvetica Neue", Helvetica,
"Arial Unicode MS", Arial, sans-serif;
}
#holder {
height: 600px;
margin: -300px 0 0 -300px;
width: 600px;
left: 50%;
position: absolute;
top: 50%;
}

</style>

</head>
<body>

<div id="holder"></div>
</body>
</html>

2. Now it's time to move into the JavaScript file 07.04 . raphael . js. Copy the path
parameters to draw the digits 0 through 9 and the : sign into an object called
helveticaForClock. It's really just a long list of numbers, so please copy them
from our downloadable source files:

var helveticaForClock = {..};

3. We are going to create an onload listener and put all of our code into it, to match it
up with the style of code on Raphael's samples:

window.onload = function ()

//the rest of the code will be put in here from step 3
and on

}i

4. Create a new Raphael object with a 600 x 600 size:
var r = Raphael ("holder", 600, 600);

5. Now we need to use a helper function to figure out the path to an arc. For that we are
going to create an arc function as an extra attribute for our newly created Raphael
object:
r.customAttributes.arc = function (per,isClock) {

var R = this.props.r,
baseX = this.props.x,
baseY = this.props.y;

224

var degree = 360 *per;
if (isClock) degree = 360-degree;

var a = (90 - degree) * Math.PI / 180,
X = baseX + R * Math.cos(a),

y = baseY - R * Math.sin(a),

path;

if (per==1) {
path = [["M", baseX, baseYy - R], ["A", R, R, O, 1, 1,
baseX, baseY - R]1];

} else {
path = [["M", baseX, baseY - R], ["A", R, R, O,
+(degree > 180), 1, x, vll;

var alpha=1;

if (per<.1 || per>.9)
alpha = 0;

else
alpha = 1;

return {path: path, stroke: 'rgba (255,255,255, "'+ (1-
per)+')'};

}i

Create our drawing of the hours of the clock (00:00):

var transPath;

var aTrans = ['T400,100','T320,100','T195,100"','T115,100'];
var base0 = helveticaForClock[O0];

var alast = [0,0,0,0];

var aDigits = [];

var digit;

for(i=0; i<alast.length; i++){
digit = r.path("M0,0L0,0z").attr({fill: "HEfff", stroke:
"#fffr, "fill-opacity": .3, "stroke-width": 1, "stroke-
linecap": "round", translation: "100 lOO"});

transPath = Raphael.

transformPath (helveticaForClock [aLast [i]], aTrans[i]) ;
digit.attr ({path:transPath}) ;

aDigits.push(digit) ;

225

Chapter 7

Depending on the Open Source Sphere

var dDot = r.path("M0,0L0,0z").attr({fill: "HEFE", stroke: "H#EEE",
"fill-opacity": .3, "stroke-width": 1, "stroke-linecap": "round",
translation: "100 100"});

transPath = Raphael.transformPath (helveticaForClock[':'],
'T280,90") ;
dDot .attr ({path:transPath}) ;

7. Now it's time to create our art for our seconds animation:

var time;
var sec = r.path();
sec.props = {r:30,x:300,y:300}; //new mandatory params

var sec2 = r.path();
sec2.props = {r:60,x:300,y:300};

animateSeconds () ;
animateStrokeWidth (sec,10,60,1000%*60) ;

8. Create the animateSeconds recursive function:

function animateSeconds(){ //will run forever
time = new Date() ;

sec.attr ({arc: [11});

sec.animate ({arc: [0]}, 1000, "=",animateSeconds) ;
sec2.attr ({arc: [1,truel});

sec2.animate ({arc: [0,truel}, 999, "=");

var newDigits = [time.getMinutes () %10,
parselnt (time.getMinutes () /10),
time.getHours () %10,
parselnt (time.getHours () /10) 1;
var path;
var transPath;
for(var i=0; i<alLast.length; i++){
if (aLast[i] !=newDigits[i]) {
path = abDigits[i];
alast [i] = newDigits[i];
transPath = Raphael.transformPath
(helveticaForClock [newDigits[i]], aTrans[i]) ;
path.animate ({path:transPath}, 500);

226

Chapter 7
9. Create the animateStrokeWidth function:

function animateStrokeWidth (that,startWidth, endWidth, time) {
that.attr ({'stroke-width':startWidth}) ;
that.animate ({'stroke-width':endWidth}, time, function () {
animateStrokeWidth (that, startWidth, endWidth, time); //repeat
forever
1)
}

If you run the application now, you will see the outcome of my day of play with
Raphael's library.

There are a lot of elements to this project. Let's start focusing on the arc animation. Note that
one of the elements that we are using in our code is when we are creating our new paths (we
create two of them). We are adding some hardcoded parameters that will be used later when
we draw the arcs in the arc method:

var sec = r.path();sec.props = {r:30,x:300,y:300}; //new mandatory
params

var sec2 = r.path();sec2.props = {r:60,x:300,y:300};

We are doing that to avoid sending these three properties into the arc each time, and to
enable us to pick a radius and stick with it without it being integrated or hardcoded into
the animations. We based our arc method on the arc method used for the polar clock in
Raphael's examples, but changed it so the values can be positive or negative (making it
easier to animate back and forth).

The arc method is then used to draw our arc when we are animating it inside the
animateSeconds function

sec.attr ({arc: [11});

sec.animate ({arc: [0]}, 1000, "=",animateSeconds) ;
sec2.attr ({arc: [1,truel});
sec2.animate ({arc: [0,truel}, 999, "=");

The attr method will reset our arc attribute so that we can reanimate it.

By the way, note that in animateStrokeWidth we are animating the width of our stroke
for 60 seconds from its lowest value to its highest value.

227

Depending on the Open Source Sphere

Did you really think we are done? | know you didn't. Let's take a look at a few other
critical steps.

Animating paths

One of the cooler things in this library is the capability to animate paths. If you have ever
worked with Adobe Flash Shape Tweens, this will look very familiar—hands down, this is
just really cool.

The idea is very simple. We have an object with a lot of path points. They create a shape
together if we draw the line information through them. We have borrowed a list that Raphael
created so we don't need to start from scratch, and literally all that we are changing in it

is that we don't want our elements to be drawn in their current path. All we need to do is
transform their location using the internal Raphael . transformPath method:

transPath = Raphael.transformPath (helveticaForClock[0], 'T400,100'");

In other words, we are grabbing the path information for the digit O and then we are
transforming, moving it 400 pixels to the right and 100 pixels down.

In our source code, it looks like we are executing the function in a loop (which is a bit more
complicated but condensed):

for(i=0; i<alast.length; i++){
digit = r.path("M0,0L0,0z").attr ({fill: "#fff", stroke: "#fff",
"fill-opacity": .3, "stroke-width": 1, "stroke-linecap":
"round", translation: "100 lOO"});

transPath = Raphael.transformPath (helveticaForClock[aLast[i]],
aTrans [1]) ;

digit.attr ({path:transPath}) ;
aDigits.push(digit) ;

}

We are basically looping through the aLast array (the list of digits that we want to create)
and creating a new digit for each element. We then figure out the position of the digit based
on the transforming information that is located in the aTrans array and then we draw it out
by adding a new path into the attributes. Last but not least, we are saving our digit into our
aDigits array that is to be used when we re-render the element later.

228

Chapter 7

Each time the animateSeconds function gets called (once every second), we figure out if a
digit has changed, and if it has then we are ready to update its information:

var newDigits = [time.getMinutes() %10,
parselnt (time.getMinutes () /10),
time.getHours () %10,
parselnt (time.getHours()/10)];

var path;

var transPath;
for(var i=0; i<alast.length; i++) {

if (aLast[i] !=newDigits[i]) {

path = abDigits[i];

alast[i] = newDigits[i];

transPath = Raphael.transformPath
(helveticaForClock [newDigits[i]], aTrans[i]);
path.animate ({path:transPath}, 500);

}
}

We start by gathering the current time HH: MM into an array ([H, H, M, M]) followed by

looking to see if our digits have changed. If they have changed, we grab the new data
needed from our helveticaForClock function and animate it in our new path information
for our digit (path).

That covers the most important factors for following this recipe.

Making a sunburst chart with InfoVis

Another really cool library is InfoVvis. If | had to categorize the library, | would say it's about
connections. When you review the rich samples provided by Nicolas Garcia Belmonte, you will
find a lot of relational datatypes that are very unique.

This library is distributed freely through Sencha legal owners. (The copyright is easy to follow,
but please review the notes for this and any open source project that you encounter.)

We will start with one of his base samples—the sunburst example from the source files. I've
made a few changes to give it a new personality. The basic idea of a sunburst chart is to
showcase relationships between nodes. While a tree is an ordered parent-child relationship,
the relationships in a sunbust chart are bidirectional. A node can have a relationship with any
other node, and it can be a two-way or one-way relationship. A dataset that is perfect for this is
the example of the total exports of a country—lines from one country to all the other countries
that get exports from it.

229

Depending on the Open Source Sphere

We will keep it relatively simple by having only four elements (Ben, Packt Publishing, 02geek,
and Nicolas the creator of InfoVis). | have a one-way relationship with each of them: as the
owner of 02geek . com, as a writer for Packt Publishing, and a user of InfoVis. While that is
true about me, not all the others have a real in-depth relationship with me. Some of them
have a relationship back with me, such as 02geek and Packt Publishing, while Nicolas for this
example is a stranger that I've never interacted with. This can be depicted in a sunburst chart
in the following way:

Getting ready

As always you will need the source files, you can either download our sample files or get
the latest release by visiting our aggregated list at http://blog.everythingfla.
com/?p=3309.

230

Chapter 7

How to do it...

Let's create some HTML and JavaScript magic:

1. Create an HTML file as follows:

<!DOCTYPE html>
<html>
<head>
<title>Sunberst - InfoVis</titles>
<meta charset="utf-8" />

<style>
#infovis {
position:relative;
width:600px;
height:600px;
margin:auto;
overflow:hidden;

}
</style>
<script src="./external/jit/jit-yc.js"></script>
<script src="./07.05.jit.js"></script>
</head>

<body onload="init () ;">
<div id="infovis"></divs>
</body>
</html>

2. The rest of the code will be in 07.05.5j1it . js. Create a base data source as follows:

var dataSource = [{"id": "nodeO", "name": "","data": {"$type":
"none" },"adjacencies": []}]; //starting with invisible root

3. Let's create a function that will create the nodes needed for our chart system:

function createNode(id,name,wid,hei,clr){

var obj = {id:id,name:name,data:{"$angularWidth":wid,
"Sheight":hei, "$Scolor":clr},adjacencies: []};
dataSource[0] .adjacencies.push ({"nodeTo": id, "data":

{*$type': 'none'}});
dataSource.push (obj) ;

return obj;

231

Depending on the Open Source Sphere

4. To connect the dots, we will need to create a function that will create the
relationships between the elements:

function relate (obj) {
for(var i=1; i<arguments.length; i++){
obj.adjacencies.push ({'nodeTo' :arguments[i] }) ;
}
}

5. We want to be able to highlight the relationships. To do that we will need to have a
way to rearrange the data and highlight the elements that we want highlighted:

function highlight (nodeid) {
var selectedIndex = 0;
for(var i=1; i<dataSource.length; i++){
if (nodeid!= dataSource[1i] .14d) {
for(var item in dataSource[i] .adjacencies)
delete dataSource[i] .adjacencies[item] .data;
}else{
selectedIndex = 1i;
for(var item in dataSource[i] .adjacencies)
dataSource[i] .adjacencies[item] .data = {"$color":
"#ddaacc", "$lineWidth": 4 };

}
}

if (selectedIndex){ //move selected node to be first
(so it will highlight everything)

var node = dataSource.splice(selectedIndex,1) [0];
dataSource.splice(1l,0,node) ;

}

6. Create an init function:
function init () {

/* or the remainder of the steps
all code showcased will be inside the init function */

}

7. Let's start building up data sources and relationships:

function init () {

var node =
createNode ('geek', '02geek',100,40, "#B1DDF3") ;

relate (node, 'ben') ;
node = createNode ('packt', 'PacktBub',100,40, "#FFDE89") ;

232

Chapter 7

relate (node, 'ben') ;
node = createNode('ben', 'Ben',100,40,"#E3675C") ;
relate (node, 'geek', 'packt', 'nic');

node = createNode('nic', 'Nicolas',100,40, "#C2D985") ;
//no known relationships so far ;)

8. Create the actual sunburst and interact with the API (I've stripped it down to its bare
bones; in the original samples it's much more detailed):

var sb = new $jit.Sunburst ({
injectInto: 'infovis', //id container
Node:
overridable: true,
type: 'multipie'
b
Edge: {
overridable: true,
type: 'hyperline',
linewidth: 1,
color: '#777'
b
//Add animations when hovering and clicking nodes
NodeStyles:
enable: true,
type: 'Native',
stylesClick: ({
'color': '#444444'
b
stylesHover: ({
'color': '"#777777'
b
duration: 700
b
Events:
enable: true,
type: 'Native',
//List node connections onClick
onClick: function(node, eventInfo, e){
if (!node) return;

highlight (node.id) ;
sb.loadJSON (dataSource) ;
sb.refresh()

}
b

levelDistance: 120

3N

233

Depending on the Open Source Sphere

9. Last but not least, we want to render our chart by providing its dataSource and
refresh the render for the first time:

sb.loadJSON (dataSource) ;
sb.refresh() ;

That's it. If you run the application, you will find a chart that is clickable and fun, and just
scratches the capabilities of this really cool data networking library.

I'll avoid getting into the details of the actual API as that is fairly intuitive and has a really nice
library of information and samples. So instead | will focus on the changes and enhancements
that I've created in this application.

Before we do that we need to understand how the data structure of this chart works. Let's
take a deeper look into how the data source object will look when filled with information:

{

"id": "nodeO",

"name'": "',
"data": {
"$type": "none"
I
"adjacencies": [
{"nodeTo": "nodel","data": {'S$type': 'none'}},
{"nodeTo": "node2","data": {'S$type': 'none'}},
{"nodeTo": "node3","data": {'S$type': 'none'}},
{"nodeTo": "node4","data": {'S$Stype': 'none'}}
]
b
{
"id": "nodel",
"name": "node 1",
"data": {
"$angularWidth": 300,
"$color": "#B1DDF3",
"s$height": 40
b
"adjacencies": [
{
"nodeTo": "node3",
"data": {
"Scolor": "#ddaacc",

Chapter 7

"$linewidth": 4

b

There are a few important factors to note. The first is that there is a base parent that is the
parent of all the parentless nodes. In our case it's a flat chart. The relationships that are

really thrilling are between nodes that are at an equal level. As such the main parent has a
relationship with all the nodes that are to follow. The children elements, such as node1 in this
case, could have relationships. They are listed out in an array called adjacencies that holds
objects. The only mandatory parameter is the nodeTo property. It lets the application know
the one-way relationship list. There are optional layout parameters that we will add later only
when we want to highlight a line. So let's see how we can create this type of data dynamically
with the help of a few functions.

The createNode function helps us keep our code clean by wrapping up the dirty steps
together. Every new element that we add needs to be added into our array and is heeded to
update our main parent (that is always going to be in position 0 of our array of new elements):

function createNode(id,name,wid,hei,clr){

var obj = {id:id,name:name,data:{"$angularWidth":wid,
"Sheight":hei, "$Scolor":clr},adjacencies: []};
dataSource[0] .adjacencies.push ({"nodeTo": id, "data":

{*$type': 'none'}});
dataSource.push (obj) ;

return obj;

}

We return the object as we want to continue and build up the relationship with this object. As
soon as we create a new object (in our init function), we call the relate function and send
to it all the relationships that our element will have to it. The logic of the relate function
looks more complicated that it actually is. The function uses a hidden or often ignored feature
in JavaScript that enables developers to send an open-ended number of parameters into

a function with the use of the arguments array that is created automatically within every
function. We can get these parameters as an array named arguments:

function relate (obj) {
for(var i=1; i<arguments.length; i++){
obj.adjacencies.push ({'nodeTo' :arguments[i] }) ;
}
}

The arguments array is built into every function and stores all the actual information that
has been sent into the function. As the first parameter is our object, we need to skip the first
parameter and then add the new relationships into the adjacencies array.

235

Depending on the Open Source Sphere

Our last data-related function is our highlight function. The highlight function expects
one parameter nodeID (that we created in createNode). The goal of the highlight
function is to travel through all the data elements and de-highlight all the relationships limited
to the one selected element and its relationships.

function highlight (nodeid) {
var selectedIndex = 0;
for(var i=1; i<dataSource.length; i++){
if (nodeid!= dataSource[i].id)
for(var item in dataSource[i] .adjacencies)
delete dataSource[i] .adjacencies[item] .data;
}else{
selectedIndex = 1i;
for(var item in dataSource[i] .adjacencies)

dataSource[i] .adjacencies[item] .data = {"$color":
"#ddaacc", "$lineWidth": 4 };

}
}

If we don't have highlight, we want to confirm and remove all the instances of the data
object within the adjacencies of the node, while if it is selected, we need to add that same
object by setting it with its own color and a thicker line.

We are almost done with the data. But when running the application, you will find an issue if
we stop here. The issue is within the way the chart system works. If a line was drawn it will not
redraw it again. In practical terms, if we select "Ben" while ben isn't the first element in the
list, then not all the relationships that "Ben" has with the others will be visible. To fix this issue,
we would want to push the selected node to be the first element right after position 0 (main
parent), so it will render the selected relationships first:

if (selectedIndex) {
var node = dataSource.splice(selectedIndex,1) [0];
dataSource.splice(1l,0,node) ;

}

236

Chapter 7

One more thing left is that we need to be able to refresh our content when the user clicks
on an element. To accomplish this task, we will need to add an event parameter into the
initializing parameter object of it .Sunburst:

var sb = new $jit.Sunburst ({
injectInto: 'infovis', //id container

Events:
enable: true,
type: 'Native',
//List node connections onClick
onClick: function(node, eventInfo, e){
if (!node) return;

highlight (node.id) ;
sb.loadJSON (dataSource) ;
sb.refresh() ;
}
b
levelDistance: 120

3N

One more thing to note in this sample is the 1evelDistance property that controls how
close/far you are to/from the rendered element (making it bigger or smaller).

Where is the copy?

There is still one more issue. We don't have any copy in our chart enabling us to know what
is actually being clicked on. I've removed it from the original sample as | just didn't like the
positioning of the text and couldn't figure out how to get it up right, so instead | came up with
a workaround. You can directly draw into the canvas by directly interacting with it. The canvas
element will always be called by the same ID as our project (in our case infovis followed
by -canvas):

var can = document.getElementById("infovis-canvas") ;
var context = can.getContext ("2d");

I'll leave the rest for you to explore. The rest of the logic is easy to follow as I've stripped it
down. So if you enjoy this project as well, please visit the InfoVis Toolkit site and play more
with their interface options.

237

Playing with Google
Charts

In this chapter we will cover:

>

>

Getting started with a pie chart

Creating charts using the ChartWrapper

Changing data source to Google Spreadsheet
Customizing chart properties with an options object
Adding a dashboard to charts

Introduction

In this chapter, we will explore the Google visualization API task by task. We will look at the
steps involved in creating a chart and integrating it with the charting API.

To work with the Google APIs, you must comply with the Google terms of use and policies that
can be located at https://google-developers.appspot.com/readme/terms.

Getting started with a pie chart

In this first recipe, we will start with Google Charts, covering the basic steps that you need to
understand when working with Google Charts through an interactive dataset that is based
on the CDC death rates in the USA (LCWK)—deaths, percent of total deaths, and death rates
for the 15 leading causes of death in five-year age groups, by race and sex in the United
States in 2008.

Playing with Google Charts

Getting ready

We will start from scratch with an empty HTML file and an empty JavaScript file named
08.01.getting-started.html and 08.01.getting-started.js

How to do it...

Let's list the steps required to complete the task starting with the HTML file:

1.

240

Let's start by creating a head and linking it to the Google jsapi and our local
JavaScript file:

<!DOCTYPE html>
<html>
<head>
<title>Google Charts Getting Started</titles
<meta charset="utf-8" />
<script src="https://www.google.com/jsapi"></scripts>
<script src="./08.01.getting-started.js"></script>
</head>

Then create an empty div with id chart:

<body style="background:#fafafa">
<div id="chart"s</div>
</body>
</html>

Now, it's time to move into the 08.01 .getting-started. js file.

Lets request the visualization API from the Google jsapi:

google.load('visualization', '1.0', {'packages':['corechart']});

We want to add a callback that will be triggered when the library is ready:
google.setOnLoadCallback (init) ;

Create an init function as follows:

function init () {

}

From now on we will break down the code added within the init function:

Chapter 8

Create a new Google data object and provide data sources as shown in the following
code snippet:

data.addColumn('string', 'Type of Death');
data.addColumn ('number', 'Deaths');
data.addRows ([
['Diseases of heart',K 616828],
['Malignant neoplasms', 565469],
['Chronic lower respiratory diseases', 141090],
['Cerebrovascular diseases', 134148],
['Accidents', 121902],
['Alzheimer\'s disease', 82435],
['Diabetes mellitus', 70553],
['Influenza and pneumonia', 56284],
['Suicide', 36035],
['Septicemia', 35927],
['Chronic liver disease and cirrhosis', 29963],
['Essential hypertension and hypertensive renal
disease', 25742],
['Parkinson\'s disease', 20483],
['Homicide', 17826],
['Al]l other causes',6 469062]

1)

Create an options object for the chart:

var options = {'title':'Deaths, for the 15 leading causes of
death: United States, 2008',
'width':800,

'height':600};
Create and draw the chart by using the following code snippet:

var chart = new google.visualization.PieChart (document.
getElementById('chart')) ;
chart.draw(data, options);

241

Playing with Google Charts

Load the HTML file. You will find a working, interactive chart as shown in the
following screenshot:

Deaths, for the 15 leading causes of death: United States, 2008

M Diseases of heart
[l Malignant neoplasms

[Chronic lower
respiratory diseases

M Cerebrovascular dise...
M Accidents

M Alzheimer's disease

M Diabetes mellitus

M Influenza and pneum...
M Suicide

M Septicemia

M Chronic liver disease...

Suicide
36035 (1.5%)

M Essential hypertensio...
[Parkinson's disease

M Homicide

W Al other causes

Let's explore the steps involved in working with Google Charts. The first step we establish
when working with the Google API's is adding Google's API link into our HTML file:

<script src="https://www.google.com/jsapi"></script>

Now that the Google APl is loaded into our application, we can request the library
we wish to work with. In our case, we want to work with the visualization APl and the
corechart package:

google.load('visualization', '1.0', {'packages':['corechart']});

Notice that we are requesting version 1.0; this might be confusing but we are actually asking
for the production chart, 1.0 is always the current production version. As such if you wanted to
lock into a build, you would need to discover what its code version is and send it instead of the
1.0 stable build.

The corechart library in the example defines most basic charts. For charts that are not
included, you would need to pass in the extra packages needed, such as the table chart:

google.load('visualization', '1.0', {'packages':['corechart', 'tab
le'1});

This covers the basics of how to load the API. But before we can finish our loading process,
we need a way to have a callback so that we can know when the library is available for us
to manipulate:

google.setOnLoadCallback (init) ;

242

https://www.google.com/jsapi

Chapter 8

We are asking the Google API to let us know when the package has loaded in a similar way to
how we added a callback to our document. When the API is loaded, it is time for us to start
interacting with the charting API.

There are three components that you will probably want to explore in each Google Chart:

» Creating the data source
» Adding options to your chart
» Creating the chart

Let's explore all these options.

All Google Charts need a data source. The data source format is based on an internal object
created through the charting API:

var data = new google.visualization.DataTable() ;

Data tables are 2D arrays (or tables). They have columns and rows just like databases. Our
next step will be to define the data columns:

data.addColumn('string', 'Type of Death');
data.addColumn ('number', 'Deaths');

In our case, as we are working with a pie chart, only two rows are needed—one to name our
elements and the other to provide them with a value. There is only one mandatory parameter
to the addColumn method to define the datatype . The datatype can be one of the following:

» string

» number

» boolean

» date

» datetime

» timeofday
The second parameter is an optional descriptor of the type of data and it is used for

visualization such as in our case 10 Deaths. There are other parameters too, but as long as
we provide the elements in an ordered list, we do not need to explore them.

Last but not least, we will call the addrRows method. We can call the addrRows method and
send a one-dimensional array (again in the same order of data as we set our addColumn). In
our case, we are using the addrRows method that expects a two-dimensional array:

data.addRows ([
['Diseases of heart',6 616828],

243

Playing with Google Charts

This covers our datasets. As long as we set our columns in the order of our data and send our
information via arrays, we are set and don't need to dig any deeper into the data API.

The options object enables us to create and modify the elements of our chart. The elements
we control in our application are width, height, and our title.

After creating the data sources and setting the options for our array, it's time for the easy part.
To create the chart our first step is to pick our chart type and define where it will be created.
Then we render it with the data source and options:

var chart = new google.visualization.PieChart (document.
getElementById('chart')) ;
chart.draw(data, options);

There's more...

Let's explore a few more tips, tricks, and advanced features of Google Charts. Using the option
Objectto create 3D chartsTo, we can turn our chart into 3D. We can very quickly and
simply add a new parameter into the options object:

var options = {'title':'Deaths, for the 15 leading causes of death:
United States, 2008',

'width':800,

'height':600,

"ig3D": true};

The outcome would be a chart that is tilted in a 3D space.

Deaths, for the 15 leading causes of death: United States, 2008

M Diseases of heart
M Malignant neoplasms

I Chronic lower
respiratory diseases

M Cerebrovascular dise...
M Accidents

M Alzheimer's disease
M Diabetes mellitus

M Influenza and pneum...
M Suicide

M Septicemia

M Chronic liver disease...
M Essential hypertensio...
W Parkinson's disease
M Homicide

B Al other causes

Chapter 8

Changing the chart type

Changing a chart type isn't something complicated. As long as the chart types share the same
number of data entries the change is usually one word from the actual constructor object of
the chart. For example, we can very quickly switch our chart type by changing the method in
the visualization library that is called:

var chart = new google.visualization.LineChart (document.
getElementById('chart')) ;

chart.draw(data, options);

That would take the same data only rendered into a line chart (the LineChart object).

Deaths, for the 15 leading causes of death: United States, 2008
800,000

M Deaths

600,000

400,000

200,000

Q0B o @D B R B B AR 4B e oo 0P ae®
B P ne g o aT® P (W ad® B i 08P P o
0305 e 0P 5l BV 0ot @ O 00 e 0
e T i e - L T Ao
o [(P V=) o 699 s 2 .-500 & Y:oﬁ\ 5

o < <
i 0 o

Creating charts using the ChartWrapper

There are two ways to create charts with Google Charts. One is the way we did it in the
recipe Getting started with a pie chart and the second will be covered in this recipe.
The goal of the ChartWrapper object is to enable you to cut down the amount of code
needed to create a chart.

Its main advantages are less code and more flexibility of data sources. Its disadvantage
is less control over the steps of graph creation.

245

Playing with Google Charts

Getting ready

Grab the HTML file from the last recipe (Getting started with pie charts). We will only modify
the file path of the external JavaScript file and the rest of the code will remain the same.

How to do it...

After changing the path of the HTML file source to the JavaScript file, it's time to go into the
JavaScript file and start over:

1. Load Google API (you do not need to mention what you want to load any more) and
add a callback:

google.load('visualization', '1.0');
google.setOnLoadCallback (init) ;

2. Create the init function:

function init ()
}
3. Build a 2D array with the data source:

var dataTable = [
['Type of Death', 'Deaths'],
['Diseases of heart',6 616828],
['Malignant neoplasms', 5654697,
['Chronic lower respiratory diseases', 141090],
['Cerebrovascular diseases', 134148],
['Accidents ', 121902],
['Alzheimer\'s disease ', 82435],
['Diabetes mellitus', 705531,
['Influenza and pneumonia', 56284],
['Suicide', 3603517,
['Septicemia', 3592717,
['Chronic liver disease and cirrhosis', 29963],
['Essential hypertension and hypertensive renal
disease', 25742],
['Parkinson\'s disease', 20483],
['"Homicide', 1782617,
['All other causes', 469062]

246

Chapter 8

4. Create the options object:

var options = {'title':'Deaths, for the 15 leading causes of
death: United States, 2008',
'width':800),

'height':600,
"is3D": true};

5. Build and render the chart:

var chart = new google.visualization.ChartWrapper ({
chartType: 'PieChart',
dataTable:dataTable,
options:options,
containerId: 'chart'

I3F;

chart.draw() ;

You've completed the creation of this chart type. Refresh your screen and you will see the
same chart as in the last example, only using less code.

The nice thing about this example is you don't need to know much more about how it works.
The ChartWrapper function itself deals with all the information that you've had to deal with
in the last recipe. With that said, it doesn't mean this way is always the better way—if you need
more control over the steps, the last example would work better.

As this recipe was very easy, let's add an extra pointer.

Changing a chart in one line

It's really easy changing between the types of views of the Google Chart API. All you need to do
is switch the type. Let's change our chart to a BarChart:

var chart = new google.visualization.ChartWrapper ({
chartType: 'BarChart’',
dataTable:dataTable,
options:options,
containerId: 'chart'

I3F;

247

Playing with Google Charts

Refresh your window and you will find a bar chart.

Diseases of heart
Deaths, for the 15 leading causes of death: Unit Deaths: 616828

Diseases of heart [l Deaths

Malignant neoplasms
Chronic lower respira...
Cerebrovascular dise...

Accidents
Alzheimer's disease
Diabetes mellitus
Influenza and pneum...
Suicide
Septicemia
Chronic liver disease ...
Essential hypertensio...
Parkinson's disease
Homicide
All other causes

0 200,000 400,000 600,000 800,000

Changing data source to Google

Spreadsheet

One of the powerful features of working with the Google API is the deep relationship between
the product lines. In this recipe, based on the last recipe, we will create a Google Spreadsheet
and then integrate it into our application.

Getting ready

Have a copy around you of the source files from the last recipe (Creating charts using the
ChartWrapper).

How to do it...

The steps involved with creating a new Google document are simple, but are needed to be
able to integrate our work; as such we will run through them quickly.

1. Gotohttp://drive.google.com/ (formally known as Google Docs) and
register/login.

248

2. Create a new spreadsheet.
3. Add data to the spreadsheet.

Chapter 8

Ben Fhala
CDC Death Rates

File Edit View Insert Format Data Tools Help All changes saved

& e ~ L -7 s %123- 1pt:| B e A-M.H. =- S I - [w
Tx Show all formulas
A B = D E

1 Type of Death Ages 80-84 Ages 75-79 Ages 25-29 Ages 20-24
2 Diseases of heart 47458 31064 822 491
3 Malignant

neoplasms 41220 37463 776 611
4 Chronic lower

respiratory

diseases 13088 12219 64 53
5 Cerebrovascular

diseases 9989 8905 99 65

P oo o~ om

-

4. Click on the Share button and set the view to public:

Sharing settings

Link to share (allows editing)

| https://docs.google.com/spreadsheet/ccc Pkey=0Aldzs55s0XbDdF JJUTNVSVItTS1ZQ)

Share link via: [I™1 m n ﬁ
L] -

Who has access

é, Anyone who has the link can edit Change...

5. Create an API URL based on the document ID:

o Document link:

https://docs.google.com/spreadsheet/ccc?key=0A1dzs55s0Xb

DAFJfUTNVSV1tTS1ZQWQObWNsX2xSbVE

o APllink:

https://spreadsheets.google.com/tg?key=0A1dzs55s0XbDdFJf

UTNVSV1tTS1ZQWQObWNsSX2xSbVE

249

Playing with Google Charts

6. Now, it's time to get into our JavaScript file, and delete the current data source and
replace it with a URL feed:

google.load('visualization', '1.0');
google.setOnLoadCallback (init) ;

function init () {
var options = {'title':'Deaths, for the 15 leading
causes of death: United States, 2008',
'width':800),
'height':600};
var chart = new google.visualization.ChartWrapper ({
chartType: 'BarChart',

dataSourceUrl:"https://spreadsheets.google.com/
tg?key=0A1dzs55s0XbDAFJfUTNVSV1tTS1ZQWQObWNsX2xSbVE",

options:options,
containerId: 'chart'

13N

chart.draw() ;

}

Amazing! See how little code we needed to create a rich and fully interactive chart:

Deaths, for the 15 leading cay~~~ =% ~~-%%-- '!=i~o States, 2008
Diseases of heart

Ages 75-79: 31064 M Ages B0-84
~ | M Ages 75-79

Diseases of heart Ages 25-29

M Ages 20-24
Malignant neoplasms
Chronic lower respira...

Cerebrovascular dise...

15000 30000 45000 60000

o

250

Chapter 8

This is really the amazing part about it. You just don't need to understand how it works, all you
need to do is create your chart and use the steps provided in the preceding section, and you
can convert any of your own spreadsheets into a Google Spreadsheet.

The most important step in the preceding steps is step 4. Notice that the URL that is
generated through the Google Documents (Google Drive) is not the same as the URL that we
need to hit when working in code. This is because the first URL is intended to be rendered
as a visual page, while the second link generates a new Google data object. Don't forget that
every page has its own unique ID.

There's more...

If you have a bit of a background with working with databases, you can send simple SQL
queries into the data source and only get the items that you want to view. Let's say in our
example we want to get the items in a different order, exclude column B, and sort based on
column D (by age):

SELECT A,E,D,C ORDER BY D

Our select statement is listing out what we want to select. The ORDER BY statement is
self-explanatory. Let's add it to our code:

var chart = new google.visualization.ChartWrapper ({
chartType: 'BarChart"',

dataSourceUrl: "https://spreadsheets.google.com/
tg?key=0A1dzs55s0XbDAFJfUTNVSV1ItTS1ZQWQObWNsSX2xSbVE",

query: 'SELECT A,E,D,C ORDER BY D',
options:options,
containerId: 'chart'

3N

When you refresh your code, column B will be missing and the data will be organized based
on column D.

Last but not least, add this to your code:

var chart = new google.visualization.ChartWrapper ({
chartType: 'BarChart"',

dataSourceUrl: "https://spreadsheets.google.com/
tg?key=0A1dzs55s0XbDAFJfUTNVSV1ItTS1ZQWQObWNsSX2xSbVE",

query: 'SELECT A,E,D,C ORDER BY D',
refreshInterval: 1,

251

Playing with Google Charts

options:options,
containerId: 'chart'

3N

chart.draw() ;

Now go back to the public chart and change the data in it. You will see that it will automatically
update the chart.

Customizing the chart properties with an

options object

In this recipe, we will create a new chart with Google Charts APl—a candlestick chart—and we
will incorporate a variety of configurations into it.

Getting ready

We will start with a clean slate by creating a fresh new JavaScript and an HTML file.

How to do it...

Most of the steps will look almost identical to the past recipes in this chapter. Our main focus
will be on our options parameters:

1. Create an HTML file and link it to a JavaScript file (in our case 08 .04 .
candlestick.js):

<!DOCTYPE htmls>
<html>
<head>
<title>Google Charts Getting Started</title>
<meta charset="utf-8" />
<script src="https://www.google.com/jsapi"></scripts>
<script src="./08.04.candlestick.js"></scripts>
</head>
<body style="background:#fafafa">
<div id="chart"></div>
</body>
</html>

2. Inthe 08.04.candlestick.js file, add the APl 1oad and callback functions:

google.load('visualization', '1l', {packages: ['corechart'l});
google.setOnLoadCallback (init) ;

function init () {

252

Chapter 8

3. Inthe init function (from now until the end of this recipe we will remain in the init
function), create a new DataTable object by using the google.visualization.
arrayToDataTable method:

var data = google.visualization.arrayToDataTable ([
['Mon', 10, 24, 18, 2117,

'Tue', 31, 38, 55, 74],

'Wed', 50, 55, 20, 103],

"Thu', 77, 77, 77, 771,

'Fri', 68, 66, 22, 15]

1, true);

[
[
[
[

4. Create an options object (a configuration object) for the chart:
var options = {
legend: 'none',
backgroundColor: {£ill: '#eeeeee', strokeWidth:2},
bar: {groupWidth:17},
candlestick: {hollowIsRising:true,
fallingColor: {stroke: 'red',6 £ill: '#ffaaaa'},
risingColor: {stroke:'blue',6 fill: '#aaaaff'}
b

enableInteractivity:false

Vi
5. Draw the chart by using the following code snippet:

var chart = new google.visualization.CandlestickChart
(document .getElementById('chart')) ;
chart.draw(data, options);

}

When you load the HTML file, you will discover a customized candlestick chart, as shown in
the following screenshot:

120

90

B]

Mon Tue Wed Thu Fri

253

Playing with Google Charts

This is the first time that we have used the method google.visualization.
arrayToDataTable. This method takes in an array and returns a data table. When the
second parameter of this method is set to true, it will treat the first row in the array as part of
the data; and otherwise it will be treated as header data.

There are many options and for a full list of them, review Google Charts documentation. We
will focus on the items that we have picked to modify our view. The Google charts enable you
to send an object with parameters. Each chart type has a different set of options. In our case,
we have many options that enable us to control the details of how our chart looks. Most of the
options are style related:

backgroundColor: {£ill: '#eeeeee',strokeWidth:2},
bar:{groupWwidth:17},
candlestick:{hollowIsRising:true,
fallingColor: {stroke:'red',K fill: '#ffaaaa'},
risingColor: {stroke:'blue', fill:'#aaaaff'}

b
Some options directly relate to the function such as disabling the legend:
legend: 'none',
Or disabling interactive elements:

enableInteractivity:false

There's more...

The main goal of highlighting this element is not because it's difficult, but because it's easy,
and it is the main place where you would find yourself making changes to the charts. One
point to note is that it is really important to check that you can do what you need by using
Google Charts before working with them, as contrary to other chart systems, you can't go into
their source files and change them, as we did in the recipes in Chapter 7, Depending on the
Open Source Sphere.

Adding a dashboard to charts

In this last recipe of this chapter we will add live controllers that will enable the users to
change the filtering of data to see less or more information.

Getting ready

We will start from scratch so nothing to worry about.

Chapter 8

How to do it...

The following are the steps needed to create a basic dashboard controller:

1.

Create an HTML file and link it to an external JavaScript file (in our case we will use
the file 08.05.slider.js):

<!DOCTYPE html>
<html>
<head>
<title>Google Charts DASHBOARD</title>
<meta charset="utf-8" />
<script src="https://www.google.com/jsapi"></script>
<script src="./08.05.slider.js"></script>
</head>
<body style="background:#fafafa">
<div id="chart"></div>
<div id="dashboard"></div>
<div id="filter"></div>
</body>
</html>

Now, it's time to get into 08.05.slider.js and to load the Google Visualization
API. This time around we will load in the controller package:

google.load('visualization', '1', {packages: ['controls'l});

Now, it's time to add a callback:

google.setOnLoadCallback (init) ;
function init () {

Let's create our data source. We will base it on CDC death rates for 2008:

var data = google.visualization.arrayToDataTable ([
['Age (+- 2 Years)', 'Deaths'],

[2, 4730],

[7, 25027,

[12, 3149],
[17, 1240771,
[22, 197917,
[27,20786],
[32,21489],
[37,29864],
[42,46506],
[47,77417],

255

Playing with Google Charts

256

[5 1091257,
[57 1347087,
[62,161474],
[67,183450],
[72,218129],
[77,2873701,
[82,366190],
[87,372552],
[92,251381],
[100,20892],
1);

Then create a new dashboard:

var dashboard = new google.visualization.Dashboard (document.
getElementById('dashboard!')) ;

Let's create a slider and provide it with the information it needs to connect
to the data source:

var slider = new google.visualization.ControlWrapper ({
containerId: 'filter',
controlType: 'NumberRangeFilter',
options: {
filterColumnLabel: 'Age (+- 2 Years)'
}
1)

Create a chart:

var chart = new google.visualization.ChartWrapper ({
chartType: 'ScatterChart',
containerId: 'chart',
options: {
legend: 'left',

title: 'Deaths, for the 15 leading causes of death:
United States, 2008',

width: 800,
height: 600

Chapter 8
8. Last but not least, it's time to bind and draw our controller:

dashboard.bind(slider, chart) .draw(data);

}

Load the HTML file and you will discover a scatter chart with a controller that enables you to
select the age range that you want to dig deeper into.

Deaths, for the 15 leading causes of death: United States, 2008

200,000

150,000

100,000

50,000

30 40 50 60 70

Age (+ 2 Years) 30 B B)67

This is probably one of the smoothest parts of working with the Google Charting API. So let's
break down and figure out the steps involved in creating controllers for your chart. We will
showcase one controller, but the same logic flow would work for all components.

First in our HTML file, we need to have a div layer with an ID associated for our dashboard
and a div for each following controller. To add controllers we assign them to the dashboard.
We start with creating a dashboard:

var dashboard = new google.visualization.Dashboard (document.
getElementById ('dashboard')) ;

257

Playing with Google Charts

This dashboard is now going to be our hub where we connect all of our controllers
(in our case, one controller). Then, we will create the next controller; in our case,
we want to use a slider:

var slider = new google.visualization.ControlWrapper ({
containerId: 'filter',
controlType: 'NumberRangeFilter',
options: {
filterColumnLabel: 'Age (+- 2 Years)'
}
I

Notice that we are adding a control type to get our range slider and we are linking it to
a column by giving it the column ID (the label in the first row).

We continue and create a chart in the same way as before. In this case we picked a scatter
chart. The order here isn't important, but the most important part left is to link between our
controller and the chart. We do that by using the dashboard.bind method:

dashboard.bind(slider, chart);

Then, we draw our element as our dashboard returns itself when a bind function is created:
dashboard.bind(slider, chart) .draw(data);

If we want, we can split this into separate lines as follows:

dashboard.bind(slider, chart) ;
dashboard.draw (data) ;

And there you go! Now you know how to work with dashboards. These steps are critical,
but you can now add any controller. The rest of the documentation for this product is
self-explanatory.

258

Using Google Maps

In this chapter we will cover:

» Creating a geographic chart with the Google Visualization API
» Obtaining a Google API key

» Building a Google map

» Adding markers and events

» Customizing controls and overlapping maps

» Redesigning maps using styles

Introduction

This chapter will be dedicated to exploring some of the features available on Google Maps

to get us ready to work with mapping in general. Mapping on its own isn't data visualization,
but after we establish our base by understanding how to work with maps, we will have a very
stable background that will enable us to create many cutting-edge, cool projects by integrating
data and data visualization.

In this chapter, we will explore the main ways to create maps in the Google sphere.

Using Google Maps

Creating a geographic chart with Google

Visualization API

In our first recipe for this chapter, we will start working with a vector-based map of the world.
We will use it to highlight countries based on a data feed. In our case, we will use Wikipedia's
list of countries as per the intentional homicide rate (latest numbers).

To view this raw data go to http://en.wikipedia.org/wiki/List of countries
by intentional homicide rate.

Our goal will be to have a map of the world highlighted with a range of colors according to the
number of intentional homicides per 100,000 people. As of the latest data in 2012 according
to Wikipedia, it sounds like the most unsafe place to live in is Honduras—if you don't want to
be intentionally killed—while you should feel really safe from intentional killing in Japan. How is
your country doing? Mine is not that bad. | should probably avoid my local news stations that
make me feel like I'm living in a war zone.

0.35 TSN 87

Getting ready

There isn't much that you need to do. We will be using the Google Visualization API for creating
a geographic chart.

260

Chapter 9

How to do it...

We will create a new HTML and a new JavaScript file and call them 08.01.geo-chart.html
and 08.01.geo-chart. js. Follow these steps:

1. Inthe HTML file add the following code:

<!DOCTYPE html>
<html>
<head>
<title>Geo Charts</title>
<meta charset="utf-8" />
<script src="http://www.google.com/jsapi"></script>
<script src="./08.01.geo-chart.js"></scripts>
</head>
<body style="background:#fafafa">
<div id="chart"></div>
</body>
</html>

2. Let's move to the js file. This time around we will want to request from the Google
Visualization package the geochart functionality. To do that we will start our code,
as follows:

google.load('visualization', '1l', {'packages': ['geochart']});

3. We'll then add a callback that will trigger the init function when the package
is ready:
google.setOnLoadCallback (init) ;
function init () {
/] ..
}

4. Now it's time to add the logic within the init function. In the first step, we will
format the data from Wikipedia to another format that will work for the Google
Visualization API:

var data = google.visualization.arrayToDataTable ([
['Country', 'Intentional Homicide Rate per 100,000'],
["Honduras',87], ['El Salvador',71], ['Saint Kitts and
Nevis', 68],
['Venezuela',67], ['Belize',39], ['Guatemala',39],
['Jamaica',39],
['Bahamas',36], ['Colombia',33], ['South Africa', 32],
['Dominican Republic',31], ['Trinidad and
Tobago',28], ['Brazil', 26],
['"Dominica', 221, ['Saint Lucia',22],
['Saint Vincent and the Grenadines',b22],

261

Using Google Maps

['Panama',20], ['Guyana', 18], ['Mexico', 18],

['Ecuador', 16],

['Nicaragua',13], ['Grenada',12],

['Paraguay',12], ['Russia',12],

['Barbados',11], ['Costa Rica',10], ['Bolivia',8.9],

["Estonia',7.5], ['Moldova',7.4], ['Haiti',6.9],

['Antigua and

Barbuda',6.8], ['Uruguay',6.1], ['Thailand',65.3],

['Ukraine',5.2], ['United States',4.7 1,

['Georgia',4.1], ['Latvia', 4.1 1,

['India',3.2],['Taiwan',3.0], ['Bangladesh',2.4 1,

['Lebanon',2.21,

["Finland',2.1], ['Israel', 2.11],

['Macedonia',1.94], ['Canada’',1.7],

['Czech Republic',1.671,

['"New Zealand',1.41], ['Morocco',1.40 1,

['Chile',1.33],

['United Kingdom',1.23], ['Australia',1.16],

["Poland',1.1], ['Ireland',0.96],

['Italy',.87], ['Netherlands', .86 1,

['Sweden', .86],

['Denmark', .85], ['Germany', .81 1, ['Spain',0.72],

['Norway',0.68], ['Austria',0.56], ['Japan', .35]
1);

5. Let's configure our chart options:
var options = {width:800,height:600};

6. Last but definitely not the least, let's create our chart:

var chart = new google.visualization.GeoChart (document.
getElementById('chart')) ;

chart.draw(data, options) ;
}//end of init function

When you load the HTML file, you will find the countries of the world with highlighted colors
that reflect the homicide rate. (We don't have a full list of all the countries of the world, and
some countries are so small that it will be hard to find them.)

The logic of this recipe is very simple, so let's quickly dash through it and add some extra
features. As in all the other visualization charts, there are three separate steps:

» Defining the data source
» Setting up the chart
» Drawing the chart

262

Chapter 9

Not all countries are alike. If you are having issues while working with a country that is
outlined, search through the latest Google documents on the supported countries. For the

full list, you can check the sheet available at http://gmaps-samples.googlecode.com/
svn/trunk/mapcoverage filtered.html.

Let's add some extra customization to our chart. As with all Google Visualization library
elements, we can control many visuals through the options object.

The green color highlighted in our map just seems wrong. You would think that the less the
killings the greener a country would be, so where the killings are more, a darker shade of red
would be more appropriate. So let's change the colors by updating the options object:

var options = {width:800,height:600,
colorAxis: {colors: ['#eeffee',K 'red']}

Vi

263

Using Google Maps

Making smaller areas more visible

To solve the problem of really small invisible countries, we can switch our rendering to

be marker based. Instead of highlighting the land itself, we can switch to a marker-based
rendering mode:

var options = {width:800,height:600,
displayMode: 'markers',
colorAxis: {colors: ['#22ff22', 'red']}

Vi

By default when rendering visualization maps with markers, when you roll over condensed
areas, a highlight zoom view will help create a clearer view:

@
: &
&
{ i
=
P s
s ~ -
“o®e
®
s ®
* &

035 N 57

264

Chapter 9

Another option instead would be to zoom into the area (we can do both or just zoom in). To
zoom into an area we will use this code:

var options = {width:800,height:600,
region: 'MX',
colorAxis: {colors: ['#22ff22', 'red']}

Vi

To find out the list of possible values, refer back to the list of countries from earlier in this
chapter. In this case we are zooming into the MX region:

035 T 57

That covers the basics of working with a geographical chart. For more information on working
with the Google Visualization API, please refer back to Chapter 8, Playing with Google Charts.

Obtaining a Google APl key

To work with most of the Google APIs, you must have a Google API key. As such we will go
through the steps involved in getting a Google API key.

Google API has certain limitations and constraints. Although most of the APIs are free to use
for small- to medium-sized sites, you are bound by some rules. Please refer to each library for
its rules and regulations.

265

Using Google Maps

Getting ready

To get through this recipe you must have a Google ID; if you do not have one, you will need to

create one.

How to do it...

Let's list the steps required to gain access to the Google API:

1. Logintothe APl console at https://code.google.com/apis/console.

2. Select the Services option from the left-hand side menu:

Google apis
API Project v | AI(47) Active (1) Inactive (45)
Overview .
All services
Services Select services for the project.
T Service
APl Access 7
Billing a ® Ad Exchange Buyer API
Reports | AdSense Host API
Quotas

% AdSense Management API

=4 Analytics API
Q Audit API

% BigQuery API

@

®

®@ @ ©

®

007@gmail.com ¥ | Settings ¥ | Help | Sian out

Notes

OFF Courtesy limit: 1,000 requests/day

Reguest access... Courtesy limit: 100,000 requests/day

D@ Courtesy limit: 10,000 requests/day

D@ Courtesy limit: 50,000 requests/day

[ToFF] Courtesy limit: 10,000 requests/day
OFF

Courtesy limit: 10,000

3. Activate the API that you want to use (for example, in the next recipe Building a
Google map we will use the Google Maps API v3 service):

b Google Cloud Storage

b 4 Google Cloud Storage JSON API

a8 Google Compute Engine

15 Google Maps API v2

. Google Maps API v3

| Google Maps Coordinate API
Google Play Android Developer API

% Google+ API

(-]

© © ©

@
sl - e

=)

il

Request access...

OFF

Pricing

Courtesy limit: 100,000 requests/day

Request access...

Courtesy limit: 25,000 requests/day » Pricing
Courtesy limit: 25,000 requests/day » Pricing
Courtesy limit: 1,000 requests/day

Courtesy limit: 15,000 requests/day

Courtesy limit: 10,000 requests/day

266

Chapter 9

4. Again in the left-hand side menu select the API Access option. You will have to copy
the API key and replace it in future Google API projects:

Gmail Calendar Drive Photos Sites Groups Search More v 007@gmail.com v | Settings v | Help | Sign out

Google apis

APl Project v
: API Access
Overview To prevent abuse, Google places limits on API requests. Using a valid OAuth token or API key allows you to exceed anonymous
Services limits by connecting requests back to your project.
i Authorized API Access
APl Access
Billing 1 OAuth 2.0 allows users to share specific data with you (for example, @
contact lists) while keeping their usernames, passwords, and other
Eeparte information private. A single project may contain up to 7 client IDs.
Quotas Leam more

Create an OAuth 2.0 client ID...
Simple API Access

Use API keys to identify your project when you do not need to access user data. Learn more

Key for browser apps (with referers) Generate new key...
=~ AP key: AIzaSyAywwIFJPo67YddvEgPz4EISVul0BLEroE Edit aliowed referera..
Referers: Any referer allowed Delete key.
Activated on: Jul 30, 2012 B:42 AM
Activated by: 007@gmail.com — you
Create new Server key... | Create new Browser key...

Code Home - Privacy Policy

This is the only time we will be talking about keys and permissions for working with the Google
API platforms. Please validate that you have activated a key and also set the right libraries to
be accessible to you.

It's not hard to understand how this works. You just need to remember the steps as they will
be the baseline of the future Google API interactions that we create.

As you must have noticed, there are many more API's in the Google library than we could even
go through, but | do recommend that you scan through them and explore your options. In the
next few recipes, we will be using the Google API to perform some mapping-related tasks.

Building a Google map

Data and geography have a very natural relation. Data has more meaning when it's on a map.
Using live maps is a very good option as it would enable the users to interact with a Ul that is
integrated with your own data presentations within the geographic area. In this recipe, we will
integrate our first, real live map.

267

Using Google Maps

Getting ready

To get through this recipe, you must have a Google ID. If you do not have one, you will need to
create one. Beyond that you will need to activate the Google Maps API v3 service in the API
Console. For more information on this, please review the recipe Obtaining a Google API key
discussed earlier in this chapter.

Our goal will be to create a full-screen Google map that will be zoomed in and focused
on France:

o :
q
;~LMmges

,,.

‘Saintes - Angouléma £

<,

Colole

How to do it...

Let's list the steps to create this sample. To create this sample we will create two files—a
.html file and a . js file:

1. Let's start with the HTML file. We'll create a basic HTML file baseline for our project:

<!DOCTYPE html>
<html>
<head>
<title>Google Maps Hello world</title>
<meta charset="utf-8" />
</head>
<body>
<div id="jsmap"></div>
</body>
</html>

268

Chapter 9

We will add to the HTML viewport information. This is the direction for mobile devices
on how to render the page (this step can be skipped if you don't care about accessing
the maps in mobile devices):

<head>
<title>Google Maps Hello world</title>
<meta charset="utf-8" />
<meta name="viewport" content="initial-scale=1.0,
user-scalable=no" />
</head>

Add the style information into the header:

<style>
html { height: 100% }
body { height: 100%; margin: 0; padding: 0 }
#jsmap { height: 100%; width:100% }

</style>

Load in Google Maps v3 API (replace the bolded text with your API key):

<script src="http://maps.googleapis.com/maps/api/js?key=ADD YOUR
KEY&sensor=true">

Add the script source for our 09. 03 .googleJdSmaps . js JavaScript file:
<script src="./09.03.googledJSmaps.js"></script>

Add an onload trigger that will call the init function (this is to be created in the
next step):

<body onload="init () ;">

Inthe 09.03.googledSmaps. js JavaScript file, add the init function:

function init () {
var mapOptions =
center: new google.maps.LatLng(45.52, 0),
zoom: 7,
mapTypeld: google.maps.MapTypeId.ROADMAP
Vi
var map = new
google.maps.Map (document .getElementById ("jsmap") ,
mapOptions) ;

}

Load the HTML file, and you should find a full-screen roadmap zoomed into France.

269

Using Google Maps

The most important and first step is loading the maps API. For Google to honor your request,
you must have a valid API key. As such, don't forget to replace the bolded text with your key:

<script src="http://maps.googleapis.com/maps/api/js?key=YOUR
KEY&sensor=true">

Don't forget to use your own key. You might find yourself with a site that has a broken map.
The sensor parameter in the URL is mandatory and must be set to true or false. If your
map needs to know where the user location is, you must set it to true, and if not you may set
itto false.

Another interesting thing to note in our application is that it's the first time we have used
the viewport in our samples. As this topic is out of the scope of this book, | wanted to leave
it. | know that many of you will end up using maps in mobile devices and will want to have
the map default to a vertical/horizontal view. To learn more on how viewports work,

check out the article available at: https://developer.mozilla.org/en/Mobile/
Viewport meta tag/.

You must have noticed that we set many things in our CSS to be 100 percent, and as you
probably guessed, it was for backward compatibility and validating that the map will fill the
entire screen. If you just want to create a hard-set width/height, you may do so by replacing
the CSS with the following code:

<style>
#jsmap { height: 200px; width:300px; }
</style>

That covers the main things we need to do in the HTML file.

We haven't yet covered the details of how the init function works. The basics of the init
function are very simple. There are only two steps involved with creating a map. We need to
know what div layer we want the map to be in and what options we want sent to our map:

var map = new google.maps.Map (div,options) ;

Contrary to the Google Visualization API that had three steps in the last recipe, we can see
that the Google maps API has only one step and within it we send the two options directly to
be rendered (there is no step between creating and rendering).

Let's take a deeper look into the options as they are what will change the majority of the
visuals and functionality of the map.

270

Chapter 9

Working with latitude and longitude

Latitude and longitude (lat/long) is a coordinate system that divides the Earth into a grid-like
pattern, making it easy to locate points on the Earth. The lat represents the vertical space
while the long represents the horizontal space. It's important to note that Google uses the
World Geodetic System WGS84 standard. There are other standards out there, so if you don't
use the same standard with your lat/long, you will find yourself at a different location from
what you were originally looking for.

The easiest way to locate areas based on lat/long is through a helper tool on our map or
through searching for the lat/long information of major cities.

http://www.gorissen.info/Pierre/maps/googleMapLocation.php will help you
locate a dot by clicking on the Google map directly. Another option in this category is to turn
on the labs feature in the main Google Map site (http://maps.google.com/). In the main
Google Map site on the bottom-left side of the screen, you will find Map Labs. In there you will
find a few lat/long helpers.

Or you can search the data per city by visiting http://www.realestate3d.com/gps/
latlong.htm.

In our case when we are ready to make our pick, we will update the options center
property to reflect where we want the map to be centered and adjust the zoom level until
it feels right:

var mapOptions = {
center: new google.maps.Latlng(45.52, 0),
zoom: 7,
mapTypeld: google.maps.MapTypeId.ROADMAP

bi

Map types
There are many map types, and you can even create your own custom ones, but for our needs
we will focus on the basic ones that are used most often:
» google.maps.MapTypeId.ROADMAP: Displays the normal, default 2D tiles of
Google maps
» google.maps.MapTypeId.SATELLITE: Displays the photographic tiles

» google.maps.MapTypeId.HYBRID: Displays a mix of photographic tiles and a tile
layer for prominent features (roads, city names, and so on)

» google.maps.MapTypeId.TERRAIN: Displays physical relief tiles for displaying
elevation and water features (mountains, rivers, and so on)

This covers the basics that you need to know to get rolling with integrating maps onto a site.

271

Using Google Maps

Adding markers and events

It's great that we have a map on our screen (assuming that you have followed the last recipe
Building a Google map), but what about connecting data and integrating it into our map. I'm
glad you asked about that, as this recipe will be our first step into adding data in the form of
markers and events.

In this sample, our goal is to place four markers in New York City. When the markers are
clicked, we will zoom into that area and switch the map view type.

2 i
: : Satellite ¢
Kissena Park Fas, m
Golf Course E v &R
L =
o
= pu
Boalh Memuﬁmﬂm - g

1641h S5t

T~ Long Island B

Utopia

Mead

T%, = et
E
%
Y
i
@

o

164th St

L
e Hillcrest

gL -

S Map data 2012 Google - Jerms of Use | Report a map error

:_(;".:qmgli;

Getting ready

At this stage, you should have created (at least once) a Google map by using the JS API; if you
haven't, please revert back to the Building a Google map recipe.

How to do it...

We are not making any further changes in the HTML page created in the last recipe Building a
Google map; as such we will focus our attention on the JavaScript file:

1. Create an init function:

function init () {
//all the rest of logic in here

}

272

Chapter 9

2. Create map constants in the base state and then zoom in on the state:

function init () {
var BASE CENTER = new google.maps.LatLng(40.7142, -
74.0064) ;

var BASE ZOOM = 11;

var BASE MAP TYPE = google.maps.MapTypelId.SATELLITE;
var INNER_ZOOM = 14;

var INNER MAP TYPE = google.maps.MapTypeId.ROADMAP;

Create the default map options:

//40.7142° N, -74.0064 E NYC
var mapOptions = {
center: BASE CENTER,
zoom: BASE_ ZOOM,
mapTypeld: BASE MAP TYPE
Vi
var map = new google.maps.Map (document .getElementById("jsmap"),
mapOptions) ;

Create a data source for our points:

var aMarkers = [
{label: 'New York City',
local: map.getCenter ()},
{label: 'Brooklyn',
local: new google.maps.LatLng(40.648, -73.957)},
{label: 'Queens',
local: new google.maps.LatLng(40.732, -73.800)},
{label: 'Bronx"',
local: new google.maps.LatLng(40.851, -73.871)},

1;

Loop through each array element and create a marker with an event that will zoom to
the location, switch the view and pan to the correct location:

var marker;

for(var i=0; i<aMarkers.length; i++){
marker = new google.maps.Marker ({
position: aMarkers[i] .local,
map: map,
title: aMarkers[i] .label
1)
google.maps.event.addListener (marker, 'click',
function (ev)

273

Using Google Maps

map.setZoom (INNER ZOOM) ;
map .panTo (ev.latlng) ;
map.setMapTypeId (INNER MAP TYPE) ;

3N
}

6. Last but not the least, make the map clickable. So when the user clicks on the map,
it should reset to its original state:

google.maps.event.addListener (map, 'click', function() {
map .setZoom (BASE_ ZOOM) ;
map .panTo (BASE CENTER) ;
map.setMapTypelId (BASE MAP TYPE) ;

3N

When you run the application, you will find four markers on the screen. When you click on
them, you will jump into a deeper zoom view. When you click on an empty area, it will take you
back to the original view.

Working with events and Google Maps is very easy. The steps involved always start from
calling the static method google .maps.event .addListener. This function takes in three
parameters, namely the item to be listened to, the event type (as a string), and a function.

For example, in our for loop we create markers and then add events to them:

google.maps.event.addListener (marker, 'click', function(ev) {
map.setZoom (INNER ZOOM) ;
map .panTo (ev.latlng) ;
map.setMapTypeId (INNER MAP TYPE) ;

3N

Instead we can create the event and then do not need to recreate a new anonymous function
each time we loop through:

for(var i=0; i<aMarkers.length; i++){
marker = new google.maps.Marker ({
position: aMarkers[i].local,
map: map,
title: aMarkers[i] .label

3N

google.maps.event.addListener (marker, 'click', onMarkerClicked) ;

274

Chapter 9
}

function onMarkerClicked (ev) {
map.setZoom (INNER ZOOM) ;
map.panTo (ev.latlng) ;
map.setMapTypeId (INNER MAP TYPE) ;

}

The advantage is really big. Instead of creating a function for each loop, we are using the
same function throughout (smarter and smaller memory footprint). In our code, we are not
mentioning any hardcoded values. Instead we are using the event information to get the
latLng property. We can re-use the same function without any issue. By the way, you might
have noticed that this is the first time that we put a named function inside another named
function (init function). This isn't a problem and it works exactly the same way as the
variable scopes work. In other words, this function that we created will have visibility only
within the init function scope.

The creation of a marker is very simple; all we need to do is create a new google .maps.
Marker and assign a position and a map to it. All other options are optional. (For a full list,
please review the Google APl documentation available at https://developers.google.
com/maps/documentation/javascript/reference#MarkerOptions.)

There's more...

You might have noticed that we use the method map . panTo, but no panning actually happens
and everything snaps to place. If you run the map, you will discover that we don't actually see
any panning; that is because we are switching the map type, zooming out, and panning at

the same time. Only panning can actually animate without a few tricks and bypasses, but all
these steps make our application a lot more complex and the actual control over animation

is very limited. We will come up with a solution to that in the next recipe as we use two maps
instead of one in Customizing controls and overlapping maps. If we wanted we could add in

a delay and do each step separately and animate the pan, but if we want to create a smooth
transition, | would think about the idea of having two separate maps, one on top of each other
instead, and fading in and out the main world map.

Customizing controls and overlapping maps

The goal of this recipe is to practice working with Google Maps. We will integrate what we
learned about working with Google Maps in this chapter and incorporate our control over the
user behaviors, such as what controllers the user can use, into it. We will start digging into
creating our own unsupported undocumented behaviors, such as locking the users' pan area.

275

Using Google Maps

Our main task in this recipe will be to take our work from the previous recipe, and instead of
having the map zoom in and move around, create clean transitions between the zoomed in
and zoomed out options; but as that isn't supported in a clean way through the interface, we
will use external focuses. The idea is simple; we will stack up two maps on top

of each other and fade in and out the top map, giving us total control over the fluidity of

the transitions.

Getting ready

Even though we are starting from scratch, a lot of the work that we did in the last recipe is
being re-used, so | strongly encourage you to go through the last recipe Adding markers and
events before moving into this one.

In this recipe, we will be integrating jQuery into our work as well, to save us time on creating
our own animator tool (or re-using the one that we created in the Animating independent
layers recipe in Chapter 6, Bringing Static Things to Life), as it would take us away from our
main topic.

How to do it...

In this recipe we will be creating two files. An HTML file and a JS file. Let's look into it, starting
with the HTML file:

1. Create an HTML file and import the Google maps APl and jQuery:

<!DOCTYPE html>
<html>
<head>

<title>Google Maps Markers and Events</title>
<meta charset="utf-8" />
<meta name="viewport" content="initial-scale=1.0,
user-scalable=no" />
<script src="http://ajax.googleapis.com/
ajax/libs/jquery/1.7.2/jquery.min.js"></script>
<script
src="http://maps.googleapis.com/maps/api/js?key=
AIzaSyAywwIFJPo67Yd4vZgPz4EUSVulOBLHroE&sensor=true">

</scripts>

<script src="./09.05.controls.js"></script>
</head>
<body onload="init () ;">

<div id="mapIn"></divs>
<div id="mapOut"></div>
</body>
</html>

276

Chapter 9

Use CSS to stack the map's layers on top of each other:

<style>
html { height: 100% }
body { height: 100%; margin: 0; padding: 0 }
#mapIn, #mapOut { height: 100%; width:100%;
position:absolute; top:0px; left:0px }
</style>

Create the 09.05.controls. js JSfile and create an init function in it (from this
point onwards the rest of the code will be in the init function):

function init () {
//rest of code in here

}

Create the two maps with their custom information:
var BASE CENTER = new google.maps.LatLng(40.7142,-74.0064);

//40.7142-0 N, -74.0064 E NYC
var mapOut = new google.maps.Map (document.
getElementById ("mapOut"), {
center: BASE CENTER,
zoom: 11,
mapTypeld: google.maps.MapTypelId.SATELLITE,
disableDefaultUI: true
1)
var mapln = new google.maps.Map (document.getElementById ("mapIn"), {
center: BASE CENTER,
zoom: 14,
mapTypelId: google.maps.MapTypeId.ROADMAP,
disableDefaultUI: true,
panControl:true

13N

Add the markers to the upper layer map:

var aMarkers = [
{label: 'New York City',
local: mapOut.getCenter ()},
{label: 'Brooklyn',
local: new google.maps.LatLng(40.648, -73.957)},
{label: 'Queens"',
local: new google.maps.LatLng(40.732, -73.800)},
{label: 'Bronx"',
local: new google.maps.LatLng(40.851, -73.871)},

1;

var marker;

277

Using Google Maps

for(var i=0; i<aMarkers.length; i++){
marker = new google.maps.Marker ({
position: aMarkers[i].local,
map: mapout,
title: aMarkers[i].label

1) s

google.maps.event.addListener (marker, 'click',
onMarkerClicked) ;

}

function onMarkerClicked (ev) {
mapIn.panTo (ev.latlng) ;
S ("#mapout") . fadeOut (1000) ;

}

6. Add the click event to the internal map, and when you have clicked on it, you will be
returned to the upper map:

google.maps.event.addListener (mapIn, 'click', function() {
mapIn.panTo (BASE CENTER) ;
S ("#mapout") . fadeIn (1000) ;

13N
7. Force the user to disable pan in the upper map using the center changed event:

google.maps.event.addListener (mapOut, 'center changed',6 function()
{

mapOut . panTo (BASE CENTER) ;
//always force users back to center point in external map

3N

When you load the HTML file, you will find a fullscreen map that cannot be dragged. When you
click on a marker, it will fade into the selected area. You can now drag the cursor around the
map. The next time you click in the internal map (regular click on any area), the map will fade
back to the original upper layer.

Our biggest step is the creation of two maps, one overlapping the other. We did that with
some CSS magic by layering the elements and putting our top layer at the last position in the
stack (we could probably use the z-index to validate it, but it worked so | didn't add that to the
CSS). After that we created our two div layers and set their CSS code. In the JavaScript code,
contrary to the way we did in the last recipe, we hardcoded the values that we wanted into
both the maps.

278

Chapter 9

In our options for both the maps, we set the default controllers not to take effect by setting the
property disableDefaultUI to be true, while in mapIn we set panControl to be true to
showcase that the map can be panned through:

var mapOut = new google.maps.Map (document.getElementById ("mapOut"), {
center: BASE CENTER,
zoom: 11,
mapTypeld: google.maps.MapTypelId.SATELLITE,
disableDefaultUI: true
1)
var mapln = new google.maps.Map (document.getElementById ("mapIn"), {
center: BASE CENTER,
zoom: 14,
mapTypelId: google.maps.MapTypeId.ROADMAP,
disableDefaultUI: true,
panControl:true

1
We can manually set all the controllers by setting a Boolean value to any of the
following options:

» panControl

» zoomControl

» mapTypeControl

» streetViewControl

» overviewMapControl

Our event logic works in the exact same way that it did in the last recipe. The only change is
within the actual listeners where we switch between the maps using jQuery:

function onMarkerClicked (ev) {
mapIn.panTo (ev.latlng) ;
S ("#mapOut") . fadeOut (1000) ;

google.maps.event.addListener (mapIn, 'click', function() {
mapIn.panTo (BASE CENTER) ;
S ("#mapOut") .fadeIn(1000) ;

3N

In both the event for the markers and the c1ick event of the map, we are using the fadeIn
and fadeOut methods of jQuery to animate our external maps visibility.

279

Using Google Maps

There's more...

When you try to drag around the higher-level map (the first visible map), you will notice that
the map cannot move—it's not pannable. Google API v3 doesn't support the capability to
disable the panning, but it does support the capability to get updated every time the map
center point changes.

As such we listen in to the following change:

google.maps.event.addListener (mapOut, 'center changed', function() {
mapOut . panTo (BASE CENTER) ;

3N

All we are doing is that each time the map position changes, we force it back to its original
position, making it impossible to move our map around.

Redesigning maps using styles

Many a time when creating more advanced applications by using Google Maps, you will want
to create your own custom, skinned maps. This is really useful when you want to have a
foreground content and don't want to have it compete with the background content.

In this recipe we will create a few styled maps. By the end of this recipe, you will know how to
create global customization, individual styles, and last, but not least, add new map types.

Here is one style that we will create:

Chapter 9

And here is a second style that we will create:

= =ETST=TE LS =
a £ 28] Map | Vains | Buses l
44 i
T # I gy
Tst 5t
N & e
?f &
§ j
Holy Name &bﬂw 2 L & = =5
&, Cemetery & & s 5 @
Mausoleum &)
¥ ke
i e
Jersey City f RN D
i & by g
] =] {73 B
§ Hars)mus
ide Cove
b i i
MeGink Histonc E
%br% Stauarzj‘I % Downtown AL
Aiog / & Waterfront
. & Sz o Downtown
0974“ ; Jersey City
N
& & (5]
f & ;’ an Vorst
i'{' % 0 St Township
e Gr. @
8 et and st B 42 Qwen
ot g Grundy Park) E
=t] y
Ciansle o & ’ Wl
i S 4 = Map data £2012 Google - Terms of

Getting ready

To complete this recipe, you will have to start from a copy of the previous recipe. We will
only describe the new steps that differ from the last example in this recipe. To view and
understand all the steps, please read the Customizing controls and overlapping maps recipe.

As such, we will skip the HTML code as it's exactly the same as in the previous recipe.

How to do it...

Open up your JavaScript file (09.05.controls.js) from the last recipe and follow
these steps:

1. Within the init function create a aveinStyle array. This array contains all the
visual guides for skinning the map in the vein style:

var aVeinStyle = [
{
featureType: 'water',
elementType: "geometry",
stylers: [{color: '#E398BF'}]
b
{

281

Using Google Maps

featureType: 'road"',
elementType: "geometry",
stylers: [{color: '#C26580'}]
b
{
featureType: 'road.arterial',
elementType: "geometry",
stylers: [{color: '#9B2559"'}]
Iy
{
featureType: 'road.highway',
elementType: "geometry",
stylers: [{color: '#75000D'}]
b
{
featureType: 'landscape.man_made',
elementType: "geometry",
stylers: [{color: '#F2D2E0"' }]
b
{
featureType: 'poi',
elementType: "geometry",
stylers: [{color: '#C96FB9'}]
b
{
elementType: "labels",
stylers: [{visibility:'off"'}]
}
1;

2. Create a new google .maps.StyledMapType map with the name Veins:

var veinStyle = new google.maps.StyledMapType (aveinStyle, {name:

"Veins"}) ;

3. Create a bus style:

var aBusStyle = [

{

b
{

stylers: [{saturation: -100}]

featureType: 'transit.station.rail',
stylers: [{ saturation:
60}, {hue: '#0044ff"'}, {visibility:'on'}]

1
1;

var busStyle = new google.maps.StyledMapType (aBusStyle, {name:

"Buses"}) ;

282

Chapter 9

4. For the internal map, make the map-type controller visible and include in it the IDs for
our new map styles:
var mapln = new google.maps.Map (document.getElementById ("mapIn"), {
center: BASE CENTER,
zoom: 14,
mapTypelId: google.maps.MapTypeId.ROADMAP,
disableDefaultUI: true,
panControl:true,
mapTypeControl:true,
mapTypeControlOptions: {
mapTypelds: [google.maps.MapTypeId.ROADMAP,
'veinStyle', 'busStyle'l]

}
13N

5. Add the map style information into the mapIn object:

mapIn.mapTypes.set ('veinStyle', veinStyle);
mapIn.mapTypes.set ('busStyle', busStyle);

6. Set a default map type:
mapIn.setMapTypeld('busStyle');

When you restart the HTML file in the internal map (after clicking on one of the markers), you
will find a controller menu that enables you to switch between custom map types.

Working with Google styles is fun, and they work in a way that is very similar to the way CSS
works. The style we set has a few steps; the first step is to create the rules of the style, the
next one is to define a Google-style object (google .maps.StyledMapType), and the last
step is to define what map this style information is relevant to. Styles can only be applied to
the maps of the google .maps.MapTypeId.ROADMAP type.

The first example is the creation of the bus style. The goal of this style is to make the map
black and white and only highlight the public transportation stations:

var aBusStyle = [
{
stylers: [{saturation: -100}]
I
{

featureType: 'transit.station.rail',

stylers: [{ saturation:
60}, {hue: '#0044ff'}, {visibility:'on'}]

283

Using Google Maps

1
1;

var busStyle = new google.maps.StyledMapType (aBusStyle, {name:
"Buses"}) ;

The first variable is a regular array. We can add into it as many styles as we want; each time
we want to define the rules (the search terms) that would apply before we actually list out the
styles. Let's take a deeper look at one style rule:

{stylers: [{saturation: -100}]}

This example is the most basic. We have no rule, or in other words we want to apply this
style to everything. As in this example we are setting the saturation to -100, we are making
everything black and white (saturation values by default are 0 and can take values between
-100 and 100).

The possible style properties are as follows:

4

visibility: This is a string value (no, of £, or simplified). This adds or removes
elements from the map; for the most part, it would be used to remove text such as
labels and details out of the elements depending on the information provided.

gamma: This is a number value between 0.01 and 10 (1.0 is the default). This option
controls how much light is within the view. While lower values (lower than 1) would
sharpen the difference between lighter and darker colors, higher numbers (more
than 1) would have a more global effect, making everything glow more as the value
goes up.

hue: This is a hexadecimal color value wrapped into a string (such as #222222). For
the best way to describe what the hue does, imagine putting on sunglasses that have
tinted glass that matches the provided hexadecimal value. The way the tinted glass
affects the colors around you and changes them is the same way that the hue colors
of the map change.

lightness: This is a value between -100 and 100 (the default is 0). This effect

is really simple if you provide a value lower than 0. It's the same effect as putting

a black rectangle on top of your map and changing its opacity (that is, -30 would
match up to the opacity of 30 percent). You might have guessed the result of positive
values—for positive values the idea is the same, but only with a white rectangle.

saturation: This is a value between -100 and 100 (the default is 0). This effect
focuses on a pixel-by-pixel value of -100. It would create grayscale image values that
are nearer to 100. It would remove all gray colors from the image, making everything
more vivid.

284

Chapter 9

This is all the style information that is available, and with it we can control every style element
within the map. Each style property's information needs to be sent as a separate object within
the stylers array; for example, if we wanted to add a hue to our snippet, it would look

like this:

{stylers: [{saturation: -40},{hue:60}]1}

Now that we know all the different ways in which we can change the visuals of the map, it's
time to understand how we'll define what should be selected. In the last code snippet we've
controlled the full map, but we can filter out what we want to control by adding filtering logic:

{elementType: "geometry",
stylers: [{color: '#E398BF'}]

In this snippet, we are filtering out that we want to change the color of all the geometry
elements, which means that whatever isn't a geometry element will not be affected. There
are three types of element-type options:

» all (the default option)

» geometry

» labels

There is one more way to filter information, by using the featureType property. For example:

{

featureType: 'landscape.man _made',
elementType: "geometry",
stylers: [{color: '#F2D2E0"'}]

}

In this case, we are listing out exactly what we want to focus on. We want to focus on both
the type of feature and the element type. If we were to extract the elementType property,
our color effect would affect both geometry and 1abels. Whereas if we were to extract
featureType, it would affect all the geometry elements in the map.

For the full list of the featureType property options, please visit http://goo.gl/H7HSO.

There's more...

Now that we have under our belts how to create the styles we want to use, the next critical
step is to actually connect our style to the map. The easiest way to do it (if we only have one
style) is to connect it directly to the map:

inMap.setOptions ({styles: styles});

285

Using Google Maps

This can be done by calling the setOptions function or by adding the style property when
we create our map. Styles can only be added to road maps, and as such if you add this style
to a map that isn't a road map, it would not be applied.

As we want to add more than one style option, we have to list out the map types. Before we
can do that, we need to create a new map type object by using the following code:

var busStyle = new google.maps.StyledMapType (aBusStyle, {name:
"Buses"}) ;

While creating the new map, we provided a name that will be used as our name in a
controller—if we choose to create a controller (in our example we do). It's important to note
that this name is not the ID of our element but just the label of the element, and we still need
to create an ID for our element before sending it into the map. To do that we will first add the
IDs into our controller and make our controller visible:

var mapIn = new google.maps.Map (document.getElementById ("mapIn"), {

center: BASE CENTER,

zoom: 14,

mapTypeld: google.maps.MapTypeId.ROADMAP,

disableDefaultUI: true,

panControl:true,

mapTypeControl:true,

mapTypeControlOptions: {
mapTypelds: [google.maps.MapTypeId.ROADMAP, 'veinStyle',
'busStyle']

3N

Following this, we will add the set instructions connecting our new map types to their
style objects:

mapIn.mapTypes.set ('veinStyle', veinStyle);
mapIn.mapTypes.set ('busStyle', busStyle) ;

Last but not least, we can change our default map to be one of our styled maps:
mapIn.setMapTypeId('busStyle!');

There you go. You now know everything that you need to know about how to work with styles in
Google Maps.

286

10

Maps in Action

In this chapter we will cover the following topics:

» Connecting a Twitter feed to a Google map

» Building an advanced interactive marker

» Adding multiple tweets into an InfoWindow bubble
» Customizing the look and feel of markers

» Final project: building a live itinerary

Introduction

In this chapter on mapping, we will tie in more deeply to our topic of data visualization. One of
the most popular ways to visualize data these days is by using maps. In this chapter, we will
explore a few ideas on how to integrate data into maps, using the Google Maps platform.

Maps in Action

Connecting a Twitter feed to a Google map

This is the start of a very fun experiment with Google Maps. The goal of the task is to create

a link between Twitter posts and a Google map. It will take us a few recipes to get to our final
goal. By the end of this recipe, we will have a Google map. This Google map will be clickable

in any area of the screen. When the user clicks on the map, they will connect to the Twitter

APl and search for tweets in that area that have the word "HTML5" in them. When the result
comes back, it will pop a new marker onto the area that was clicked and add the most recent
tweet on that topic originating from that location. At this stage, it would just be a marker with a
rollover that shows us the actual tweet without more information.

7 e FoTand
ot T, R e Pouan :
& 1 o 5 By \ 2 Warsiw {ivesn
@Mrlanqs’ Sinteteta Harmrer 5 Y 1 - s
2 J .
Rongram’ 0 L O o T o = L
N Hate 3 feagen s e)
orkipefo U G« s
i el Gooios ermany
b | e . Ty | it)
L, = ““Belgium | B
=¥ — A Fanion NSy K
Y o Q?m» v
v Le Hargrer T "t Czech Republic T
Outinsey - e Ry fima
Jarsey \. - X J
o P D o c 4
i | Slovakia
R, 7
s Man : o\ B i
£ e R g
Fean e e
@ L W) Austria o i e
" r
Grag L
i Hungary
France o A
v tyon T W
ik e S A
i R 5 il s
e i Clullln]‘ b e
A .. Bosnia and] 4
i TR Hulzsnovlnu_ . Consiant
=R » Serbia G

Getting ready

If you haven't read through Chapter 9, Using Google Maps, you might find this chapter a little
difficult, so | encourage you to read it before starting with this recipe. At this stage you should
have a Google API set up (see the Obtaining a Google API key recipe in Chapter 9).

How to do it...

We will create new HTML and JavaScript files and call them 10.01.socielmap.html and
10.01.socielmap.js, respectively, and then perform the following steps:

1. Add the following code in the HTML file using your own API key:

<!DOCTYPE html>
<html>
<head>
<title>Google Maps Markers and Events</title>
<meta charset="utf-8" />

288

Chapter 10

<meta name="viewport" content="initial-scale=1.0, user-
scalable=no" />
<style>
html { height: 100% }
body { height: 100%; margin: 0; padding: 0 }
#map { height: 100%; width:100%; position:absolute; top:0px;
left:0px }
</style>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/
jquery.min.js"></script>
<script src="http://maps.googleapis.com/maps/api/js?key=AIzaSy
AywwIFJP0o67Yd4vZgPz4EUSVUul0BLHroE&sensor=true" >
</script>
<script src="./10.01.socielmap.js"></script>
</head>
<body onload="init () ;">
<div id="map"></div>
</body>
</html>

Let's move into the JavaScript file. As we have an init () function being called when
the onload event triggers, we will place all of our code within a new init function.

function init () {
//all code here

}

We will start by setting our center point of the map. So far, we were extremely focused
on my home state, New York, so let's change our focus to Europe.

var BASE CENTER = new google.maps.LatL
ng(48.516817734860105,13.005318750000015) ;

Next, let's create a black-and-white style for our map so it's easier to focus on the
markers we are about to create.

var aGray = [

{

stylers: [{saturation: -100}]

1
1;

var grayStyle = new google.maps.StyledMapType (aGray, {name:
"Black & White"});
Create a new Google map.

var map = new google.maps.Map (document.getElementById ("map"), {
center: BASE CENTER,
zoom: 6,

289

Maps in Action

mapTypelId: google.maps.MapTypeId.ROADMAP,
disableDefaultUI: true,

3N

6. Setupthe grayStyle styling object to be our default style.

map .mapTypes.set ('grayStyle', grayStyle);
map . setMapTypeld('grayStyle') ;

7. Our next step is going to use Google's API to create a new click event for the map.
When the map is clicked we want to trigger a 1istener function. When a click
happens, we want to start our Twitter search as we will connect to the Twitter APl and
search for the submission of the keyword htm15 within a 50 kilometer radius from
where our click on the map was. Let's create a new mouse event and start up the
Twitter search.

google.maps.event.addListener (map, 'click', function(e) {
//console.log(e.latLng) ;
var searchKeyWord = 'html5';
var geocode=e.latLng.lat() + "," + e.latLng.lng()+",50km";
var searchLink = 'http://search.twitter.com/search.json?g="'+
searchKeyWord+ '&geocode=' + geocode +"&result type=recent&rpp=1";

$.getJSON (searchLink, function(data) {
showTweet (data.results[0],e.latlng) ;

3N
3N

8. When the Twitter search value is returned, it is time to show our new tweet; if no
tweet is found, we will put in default content letting the user know that nothing
could be found.

function showTweet (obj,latLng) {

if (lobj) obj = {text:'No tweet found in this area for this
topic'};

console.log(obj) ;

var marker = new google.maps.Marker ({

map: map,
position: latLng,
title:obj.text 1)

290

Chapter 10

When you load the map again, you will find a map of Europe waiting to be clicked on. Each
click will trigger a new Twitter search and will generate a new result based on the location
you clicked on. To read the tweet, roll over the marker after it returns.

We live in an age when data about almost anything increasingly overlaps with geolocation
data and maps. It's almost impossible to write a book about data without talking about maps,
and it's not possible to write a book about data visualization without at least opening the
Pandora's box of the world of mapping and its possibilities, either.

Twitter lately has been trying more and more to capture the location of users. For most of the
time, the location is still void. That having been said, Twitter always knows the base location
of users based on their information, and more so when users tweet through their cell phones.
As such, Twitter always has a rough idea of where users are when they send a message, and
in the coming years this accuracy is expected to only get better. In the future, more and more
Twitter results will have such an accurate location for users that we will be able to pinpoint
them directly on a map.

After creating the map, the first step is that, as soon as a user clicks on any area of the map,
we start building out a search query to be used on the Twitter API:

google.maps.event.addListener (map, 'click', function(e) {
//console.log(e.latLng) ;

var searchKeyWord = 'html5';
var geocode=e.latLng.lat() + "," + e.latLng.lng()+",50km";
var searchlLink = 'http://search.twitter.com/search.json?g="'+

searchKeyWord+ '&geocode=' + geocode +"&result type=recent&rpp=1";

We don't cover all the possibilities with search, but instead we are focusing on two main
points: the search query, in our case HTML5, and the location of the query. We get the
location information directly from the event that is passed into a marker. We reformat the
information from our Google returned event and format it into a string, adding to it the
range; in our case we set this to 50 kilometers (you can choose m1 for miles as well). As
we are taking a look at the map of Europe now, | thought it would be appropriate to work in
kilometers and not miles.

We want to get our search values back as JavaScript Object Notation (JSON) values. JSON is a
very minimal shorthand way to pass object information as strings between servers. For the most
part, you will usually work with automatic converters so you will be sending objects and getting
objects, but under the hood there is a JSON encoder and decoder that will process the request.

If you don't know what JSON is, don't worry about it; it's all
done in the background and it's not critical to understand
e how JSON works in order to work with it.

291

Maps in Action

We want to get our data in JSON format; to do that we will send our URL parameters to the
following URL:

http://search.twitter.com/search. json

Append to it our g values and geocode values. If you want to explore options and possibilities
with the Twitter search APl more deeply, visit the following page:

https://dev.twitter.com/docs/api/1l/get/search

The next step is to send our information to this service and get our results back. To do that,
we will use the $.getJSON function in jQuery. This function will take care of all our needs:
sending our request, getting it back, and then decoding the information into a regular
JavaScript object.

$.getJSON (searchLink, function(data)
showTweet (data.results[0],e.latlng) ;

3N

The two parameters we need to send in are the search link and the return function. In our
case, we will grab our data and send it to an external function, showTweet. We will send only
the first result from the data to return and the e . 1atLng object information we got from our
click event.

Time to create the marker. In the showTweet function, our first task will be to check whether
there is actually any data in the returned first element. If there is no value it means Twitter
didn't find anything.

if (lobj) obj = {text:'No tweet found in this area for this topic'};

If no object was returned, we will create a new object with placeholder information to replace
the regular result information. This is a great way to avoid complexities in your code: by
building the exceptions into the regular user experience. We are done; all that is left is for us
to create the marker.

var marker = new google.maps.Marker ({

map: map,
position: latLng,
title:obj.text P

Although we got what we had our minds set on, the latLng information we have is for our
click and not the exact location of our tweet. Currently there is a property called geo that is
returned in the object returned from Twitter. At the time of writing this book, it always comes
back empty. Currently it looks like it's a feature that is about to be released or is partially
implemented, so by the time you read this book try to check and see if there is a value being
returned from the obj . geo property and use it to make your point more accurate when this
information is available.

292

Chapter 10

Building an advanced interactive marker

The next step in our social map project is to add more details for our Twitter search result.
We would like to open up an information panel automatically when the Twitter result comes
in. In the process, we will create a subclass of Google Marker and extend it and add a new
InfoWindow to enable us to add live HTML data right into our map.

= T e %
i e St 5T Kingesh
o micalice fenn Denmark B amams

S ik, Ireland Yoiod:

Dadse

¥ siroughwarsith 1 does manage bamis, bt spork Digltal Lid e
ok o Cither am imape blocks it on # ppalas. s rumplkiste : Kabwriag)]
mobile, o 1 get notified 10 inseall flach on e o Amuch ; Gy f
deskiop Bochum, Gemmany. Deutschiand % et 3 L
A nlerenfing. twead o2 soud illon-ng himdS-buch, kil hestellt umd cinen Blck auf L
[Query Mobike et s

akul Komends
|II‘.I

F >
: & oo
" eoch Republic 1d

|4 s NEADS
Mirmngham EA

RT@ luhukuliu Nedivim se, b spilikace P e
084,("'” e o s HTMLS byl posmald. 01 37 d:luuna 2" Saten
Q' cimn » velikoss - 490 ki Neni 1o
Conse heOon | HTMLS Boilemlate v4.0 et sontis, uné hoane %
ek ase e ravail est iwjours bénéique
- hitpe i e INCHOCLE
SemapiEs
& P 3
=
it : AR %
- Ao Rty o
. : (e blic iy
i Lo ey |\ Czoch Repu :
Guserney U e S " Bl Y
Jeray. 3 Pans N 3 J =
0 98 Ingestadi " s o
o : Hascy % ; A~ siovakia,
o ; A ienna, o
Rorge o - ‘a g
= % e B . i

Getting ready

It will be really hard to join in, if you haven't started from the start of this chapter. As this
recipe is in continuation of the previous recipe, we will not create a new HTML file or a new
JavaScript file but will instead continue from where we left off.

How to do it...

Grab your latest JavaScript file and let's continue to the next steps:

1. Inthe function showTweet, replace the new marker with a new
TwitterMarker marker.

function showTweet (obj,latLng) {
f(lobj) obj = {text:'No tweet found in this area for this
topic'};
console.log(obj) ;

var marker = new TwitterMarker ({
map: map,
position: latLng,
tweet: obj,
title:obj.text K

293

Maps in Action

2.

Now that we are not using the regular built-in marker, it's time for us to create our
own marker. Let's start with the constructor.

function TwitterMarker (opt) {
var strTweet = this.buildTwitterHTML (opt.tweet) ;
this.infoWindow = new google.maps.InfoWindow ({
maxWidth:300,
content :strTweet

3N

this.setValues (opt) ;

this.infoWindow.open (this.map, this) ;

google.maps.event.addListener (this, 'click', this.
onMarkerClick) ;

}

We will want to extend our new object from the google.maps .Marker marker so we
can have all the features of the regular marker.

TwitterMarker.prototype = new google.maps.Marker () ;

Let's create a toggle button in our marker event listener. When the event is called, it
will open or close our InfoWindow:

TwitterMarker.prototype.onMarkerClick=function (evt) {
this.isOpen=!this.isOpen;
if (this.isOpen)
this.infoWindow.close() ;
else
this.infoWindow.open (this.map, this) ;

}
It is time to create the Twitter message by creating an HTML string.

TwitterMarker.prototype.buildTwitterHTML = function (twt) {
var str;
if (twt.from user name) {
str = "<img style='float: left' src='"+twt.profile
image url+"' />"+
"" +twt.from user name + "
<a href ='http://
twitter.com/" B B
+ twt.from user + "'s@"+twt.from user+"
 "
+ twt.location + ""
+ "<p>"+twt.text+"</p>";
telse{

Chapter 10

str="The 50 Kilometer radius around this point did not message
this value";

}

return str;

}

If you reload your HTML file, you will find it interactive in any area of the world; if it can find a
tweet, it will output it on the map within an InfowWindow.

Although there are not many lines, a lot of logic is condensed into this code. Let's start

by looking at our new marker. This is the first time in this book that we use inheritance.
Inheritance, as its name implies, enables us to extend the features of an object in JavaScript
without affecting the original object. In our case, we want to take all the features of the
marker (methods, properties, and so on) and add to them some custom behaviors.

The inheritance is done in JavaScript by defining a prototype. Until now, we have used the
prototype without talking about it much, but we used it mainly to create new methods. If we
assign a full object to the prototype, all of the properties and methods of that object will be
copied into our new object as well.

TwitterMarker.prototype = new google.maps.Marker () ;

. Always start first with extending of the object you want to
% extend, before any other additions. This is because if you've
i placed any new prototype methods before this line of code,
they will silently be deleted and thus will not work.

The buildTwitterHTML method takes in the Twitter object returned and converts some of
its data into HTML. We use this method once per marker. When we create a new marker, we
create a new InfoWindow object as well. We place an InfoWindow on top of the marker and
showcase the tweet information.

function TwitterMarker (opt) {
var strTweet = this.buildTwitterHTML (opt.tweet)
this.infoWindow = new google.maps.InfoWindow ({
maxWidth:300,
content :strTweet

I3F;

We are setting the width as well, to avoid having a really big panel. We send our newly created
strTweet string into the infoWindow object.

295

Maps in Action

We wanted our marker to be a toggle button that controls the InfoWindow status. To do that
we add a newly dynamically created property called i sOpen. Even though we open up the
InfoWindow earlier in the constructor, we don't set the value of i sOpen there. We can fix that
issue in the first action we perform in our click event listener of the marker.

TwitterMarker.prototype.onMarkerClick=function (evt) {
this.isOpen=!this.isOpen;

When the marker is clicked, we automatically change the state of the isOpen variable.

As it was not set before, it will now be set to true. The ! operator is a boolean operator
that switches a value between true and false. Its actual meaning is not. In other words,
we are saying;:

this.isOpen = is not this.isOpen

The interesting fact here is that undefined (the value of a variable that wasn't defined) for the
not (!) operator is the same as false, null, or even 0. Any other value would be considered
true. This way, each time the marker is clicked, the value of the variable this.isOpen
switches. And that is the heart of the logic of our toggle button. All that is left is to decide
whether to open or close the InfoWindow.

if (this.isOpen)
this.infoWindow.close() ;

else
this.infoWindow.open (this.map, this) ;

}

This leads us to our final step of figuring out what will be our Twitter text. We will edit this
method in the next few recipes. You can play around with it and ideally personalize it to
what you prefer it to look like. We have two possible outcomes: no Twitter messages in
the search area and Twitter messages in the search area. If there is a message, we will
use some of the returned object properties to build up an HTML outline that will be used
inside the infowWindow object that is associated with this marker. If there isn't a result,
we will create one.

TwitterMarker.prototype.buildTwitterHTML = function (twt) {
var str;
if (twt.from user name) {
//build custom message
/*notice we are validating based on checking if the twitter has a
property (any of the properties would work) */
telse{
//the error message
str="The 50 Kilometer radius around this point did not message
this value";

}

return str;

296

Chapter 10

There you go! Our social map is starting to be much more interesting. It still is missing some
features. It would be really nice if we could see more than one message in the InfoWindow
result. In the next recipe we will try to solve that issue.

Adding multiple tweets into an

InfoWindow bubble

So far, in our interactive social map, we added markers in each location that we clicked on
and opened up an InfoWindow with the tweet information. Our next step will be to enable
multiple tweets to live inside our InfoWindow by adding a pagination system into our window.

Invemess
o

Aberdeen
Q

Dundee
Perth 2

North Sea

"@ Adrian Murphy irah
@ Adrian Murphy

[w Laois, Ireland

Brushing up on my HTMLS5 and I realise I've 2 d
forgotten everything I knew about CSS. Looks
like I failed COmputer Science for a reason!

1 of 4>
Rrolzd :
4 - Hull
Ballinasioe = o o o SSheffiel
CoyO o and - £l Liverpool Zlleren t
Stoke<on-Trenta- Notingaam
Nenagh's BGrail ullen =0 =]
o Lelce: Morwich
HIeneK Bheas Pl T B Almerd
Tralee Clanmel= Oe‘-g Birmingham q
Waterford ©Cambndge N et H
Cork
o o
Ciosshaven Cardiff Londen Rotterdam
! &
i Feltham L I‘ru’;fl
Barmstaple Bristol I Antwerpeno Ein

Getting ready

To get through this recipe you must be knee deep into our holistic chapter. If you dropped in
just now, it would be a good idea to go back to the start of this chapter as we are going to
continue from where we left off in the previous recipe.

297

Maps in Action

How to do it...

We are still in our JavaScript file and we will continue to add code and adjust our code to get
multiple Twitter posts into our social map.

1. Let's start by changing our Twitter search to return up to 100 values per search.
We are doing this because there is a limit on how many times we can call the
Twitter API. So, we will try to grab as much as we can in one hit (this code should
be around line 30).

var searchLink = 'http://search.twitter.com/search.
json?g='+ searchKeyWord+ '&geocode=' + geocode +"&result
type=recent&rpp=100";

2. As we are now going to treat all the tweets that come back, we will need to change
our references to send to our TwitterMaker marker the full array (changes
highlighted in the code snippet).

google.maps.event.addListener (map, 'click', function(e) {
//console.log(e.latLng) ;
var searchKeyWord = 'html5';
var geocode=e.latLng.lat() + "," + e.latLng.lng()+",50km";
var searchLink = 'http://search.twitter.com/search.
json?g='+ searchKeyWord+ '&geocode=' + geocode +"&result

type=recent&rpp=100";

$.getJSON (searchLink, function(data) {
showTweet (data.results,e.latlng) ;

13N,
13N,
function showTweet(a,lathg){
if(la) a = [{text:'No tweet found in this area for this
topic'}];

//console.log (obj) ;

var marker = new TwitterMarker ({

map: map,

position: latlng,
tweet: a,

title:a[0] .text 3K,

298

Chapter 10

We want to update the TwitterMarker constructor to include our array and quick
information on it, such as the total tweets and the current tweet we are in. We will
need a way to identify our object, and as such, we will give it an ID as well (more on
that in a few steps).

function TwitterMarker (opt) {
this.count = opt.tweet.length;
this.crnt = 0;
this.id = TwitterMarker.aMarkers.push(this);
this.aTweets = opt.tweet;
var strTweet = this.buildTwitterHTML (opt.tweet [0])
this.infoWindow = new google.maps.InfoWindow ({
maxWidth:300,
content :strTweet

3N

this.setValues (opt) ;

this.infoWindow.open (this.map, this) ;

google.maps.event.addListener (this, 'click', this.
onMarkerClick) ;

}

We want to store, in a static array that can be accessed from any place in our
code, all the markers created. To do that, we will add a new status array to our
TwitterMarker class:

TwitterMarker.prototype = new google.maps.Marker () ;
TwitterMarker.aMarkers= [];

In the buildTwitterHTML method, we want to add in back/next links that will be
visible to users from InfoWindow:

TwitterMarker.prototype.buildTwitterHTML = function (twt) {
var str;
if (twt.from user name) {
str = "<img style='float: left' src='"+twt.profile
image_url+"' />"+
"" +twt.from user name + "
<a href ='http://
twitter.com/" B B
+ twt.from user + "'s@"+twt.from user+"
 "
+ twt.location + ""
+ "<p>"+twt.text+"</p>";

if (this.count>1) {
str+="<span style='absolute; bottom: 0

~

right: Opx; width:80px'>";

299

Maps in Action

if (this.crnt!=0) str+="<a href='javascript:TwitterMarker.
aMarkers ["+ (this.id-1)+"] .prev();'>< ";
str+= (this.crnt+l) + " of " + this.count;
if (this.crnt<(this.count-1)) str+= "<a
href='javascript:TwitterMarker.aMarkers|["+ (this.id-1)+"].
next () ; '>> ";
str+= ""
}
lelse{
str="The 50 Kilometer radius around this point did not message
this value";

}

return str;

}
Let's now add the next and prev methods.

TwitterMarker.prototype.next =function() {
this.infoWindow.close () ;
this.infoWindow.content = this.buildTwitterHTML (this.
aTweets [++this.crnt]) ;
this.infoWindow.open (this.map, this) ;
return false;

TwitterMarker.prototype.prev =function() {
this.infoWindow.close () ;
this.infoWindow.content = this.buildTwitterHTML (this.aTweets[--
this.crntl]) ;
this.infoWindow.open (this.map, this) ;
return false;

}

Load the HTML file, and you should find a working InfoWindow that can accommodate up to
100 tweets per click.

Our first change was to change the number of results coming back from the Twitter search
API. This change forced us to change the references in our code from referring directly to the
first object returned to focus on the full results object and sending it to our TwitterMarker
constructor. This change created a few smaller changes in the flow of the information within
the constructor as well.

300

Chapter 10

Our goals are to create two buttons that will update our InfoWindow. This is an issue as

we need a two-way connection between our marker and its InfoWindow. Until now, all our
communication with the InfoWindow was one way. The easiest way for us to solve this problem
and bypass the Google interface is to create a static array that will store all markers and refer
to our static marker when we trigger buttons inside the InfowWindow object. All we need to do
is add a variable direction to our class name.

TwitterMarker.aMarkers= [];

By adding our variable directly into the TwitterMarker class, we can now refer to it directly
at any point and it will not get duplicated in our objects (as it's not part of the prototype).

Now that we have an array, it's time for us to go back into our TwitterMarker constructor
and send a new reference to this array each time we create a new TwitterMarker object.
Another benefit we get out of doing this is that we automatically get a unique identifier (ID) for
each marker as the returned number will always be a unique number for our needs.

this.id = TwitterMarker.aMarkers.push(this) ;

In this one line of code, we perform all of the tasks we talked about in the previous paragraph.
The array push method returns the new length of the array.

Now that we have a way to refer to our marker and have got an identifier, it's time for us to
go back into the buildTwitterHTML method and add into the rendered HTML two href
buttons that will trigger the right marker when the next/previous selections are clicked.

Before we delve into that, we want to check and validate that we have more than one Twitter
message that came back; if there is none, there is no point in adding the new logic, and we
would be introducing a bug if we had next/previous logic for an item that has only one item.

if (this.count>1) {

}

By the following if statement, we figure out whether we are currently in the first Twitter
message, and if not we shall add the back button:

if (this.crnt!=0) str+="<a href='javascript:TwitterMarker.
aMarkers ["+ (thisg.id-1)+"] .prev();'>< ";

This might look like a huge mess but, if we ignore the HTML and focus on the actual
JavaScript that will be triggered when the button is pressed, this is what we will get:

TwitterMarker.aMarkers["+ (this.id-1)+"] .prev () ;

The this.id-1 parameter will be replaced with the actual current number:

301

Maps in Action

As this is rendered into a string to be parsed as HTML, the value that will be integrated into
the HTML will be hardcoded. Let's see this in a real case to make it clear. The first array ID
would be 0, and as such the prev button would look like this code statement:

TwitterMarker.aMarkers[0] .prev () ;

Now the logic is starting to reveal itself. By grabbing the marker from the array that is our
current element, all that is left for us to do is trigger the prev method and let it take over.

The same logic happens for our other end. The only condition is that we are not in the last
Twitter result and if not we call the next method:

if (this.crnt<(this.count-1)) str+= "<a href='javascript:TwitterMarker.
aMarkers["+ (this.id-1) +"] .next () ; '>> ";

There you have it! The core of our logic is in place.

If we wanted we could have created our InfoWindow by wrapping a <div> tag with a unique
ID and just called it and made direct updates to our content (try doing that by yourself as that
would be a better solution). Instead, we are working with the limitations of the InfoWindow. As
we cannot update the full bucket container while it's open, we need to close it to update it and
then open it again. Thus our logic in both the next and prev methods is similar; both have a
limitation on the change of the actual value that is being rendered.

TwitterMarker.prototype.next =function() {

this.infoWindow.close() ;

this.infoWindow.content = this.buildTwitterHTML (this.aTweets[++this.
crnt]) ;

this.infoWindow.open (this.map, this) ;

return false;

}

TwitterMarker.prototype.prev =function() {

this.infoWindow.close() ;

this.infoWindow.content = this.buildTwitterHTML (this.aTweets[--this.
crnt]) ;

this.infoWindow.open (this.map, this) ;

return false;

}

All the logic is the same and limited to the highlighted code snippet. If you aren't familiar with
this shortcut, the ++ and - - operators when set before a variable, enable us to add/subtract
1 from it and update it before its value is sent on. Thus in one line, we can both change the
number in the variable and send that newly created number to continue its tasks.

In the case of the next method, we want to grab the next tweet, while for the prev method,
we want to grab the previous tweet.

302

Chapter 10

Customizing the look and feel of markers

This will be our last recipe for social mapping. In this recipe, we will revisit our marker itself
and give it a facelift. As our marker represents Twitter messages in a clicked area, we will
update our marker to look like a Twitter bird (hand made). We will not stop there; after
updating our graphic, we will add another graphical layer to shadow our Twitter marker. It will

be a shadow, and its opacity will range from zero to full, depending on the number of tweets
(a maximum of hundred tweets).

The best way to understand our goal is by checking out the following screenshot:

FET
Kirkcaldy
Gla%gow oEdinburgh
E
e . Ayr
ondonde ! H
Doy United
Lel[Er‘ler':?y Ki n dom
S~ Belfast g
o
Sligo
'y Isle of Man
Blackpool Leeds
Irish Sea o o o
Manchester. Hull
Ballinasiog Y 6 9 Ssheffield
T e Lucans0 Dublin A Sheffiel Lesuwarden
re Siok &, Nottingham =1
Nenaghta -5 Graigugoullen oke-on- Trenti o P Sneek
of Leicester = Norwich
Limerick, Wuine Bilston o A ' Almere Stad
Tralee Clopmle<a o gng Bi O
l Clapmiel " irmingham, g =
Waterfoid) RFanbricge Netherlands Bi
Cork - o
4 i &
Crosshaven b, Cardift . London Rotterdam il
=g e o Q
i Felinam A
g L AntivErpena - ENAROVEN a b jesaldor]
f a
Heist-op-den-Be
> Southamptons. | ki T ey oCologne
ﬁ-,g_.. Bt Portsmouth a Sonn
©
Plymouth Engish Fi
Charinel
vi Luxembgur,
Octevile Le Hnawe uxt urg
Guamsay i Reims Saarbricken
ersay, C%E" Rouen o
Paris Karfsfuhe|
o
Naey. . strashot

Note how some tweets have no visible circle outline, while others have a very dark one (that is
based on how many tweets are there).

Getting ready

To complete this task you need to first complete all the previous recipes in this chapter.

303

Maps in Action

How to do it...

We will jump right into the JavaScript file and continue from where we left off in the
previous recipe.

1. Update the showTweet function.

function showTweet(a,lathg){

if(la) a = [{text:'No tweet found in this area for this
topic'}];

//console.log (obj) ;

var marker = new TwitterMarker ({

map: map,
position: latlng,
tweet: a,
title:a[0] .text,
icon:"img/bird.png" });

}
2. Create an instance of the MarkerCounter object in the TweeterMarker
constructor.

function TwitterMarker (opt) {
this.count = opt.tweet.length;
this.mc = new MarkerCounter (opt) ;
this.crnt = 0;

3. Create the MarkerCounter constructor.

function MarkerCounter (opt) {
this.radius = 15;
this.opacity = (opt.tweet.length) /100;
this.opt = opt;
this.setMap (opt.map) ;

}

4. Create subclass, MarkerCounter, for the google.maps.OverlayView object.
MarkerCounter.prototype = new google.maps.OverlayView() ;
5. Create an onAdd method. It will be called automatically when an element is added

into the map. In this method, we will finish up all the preparatory work for the drawing
but won't draw the elements.

MarkerCounter.prototype.onAdd = function() {
var div = document.createElement ('div') ;
div.style.border = "none";
div.style.borderWidth = "Opx";

304

Chapter 10

div.style.position = "absolute";

this.canvas = document.createElement ("CANVAS") ;
this.canvas.width = this.radius*2;
this.canvas.height = this.radius*2;

this.context = this.canvas.getContext ("2d") ;
div.appendChild(this.canvas) ;
this.div_ = div;

var panes = this.getPanes|() ;
panes.overlayLayer.appendChild (div) ;

}

6. Last but not least, it's time to override the draw method and draw into the new
canvas element created in the previous step and position the div element.

MarkerCounter.prototype.draw = function() {
var radius = this.radius;
var context = this.context;

context.clearRect (0,0, radius*2, radius*2) ;

context.fillStyle = "rgba (73,154,219, "+this.opacity+")";

context .beginPath() ;
context.arc (radius, radius, radius, 0, Math.PI*2, true);
context.closePath() ;
context.fi111 () ;
var projection = this.getProjection() ;
var point = projection.fromLatlLngToDivPixel (this.opt.position) ;

this.div_.style.left = (point.x - radius) + 'px';
this.div_.style.top = (point.y - radius) + 'px';
Vi

When you run the application, you will find that now our markers look like those of Twitter and
the larger the number of tweets that originate from a location, the more opaque the egg under
our Twitter bird will be.

305

Maps in Action

The first step is to swap the graphic that is the default graphic for the marker. As we are
extending the regular marker, we have all of its default features and behaviors. One of these
features is the ability to swap the icon. To do that, we pass in one of our object parameters as
the icon and its path.

var marker = new TwitterMarker ({

map: map,

position: latlng,

tweet: a,

title:a[0] .text,

icon:"img/bird.png" REF
You might be wondering how this actually works, as we are not actually doing anything to the
icon parameter in our code. It's very simple. If you take a deeper look at the TwitterMaker
constructor, you will find the following line:

this.setValues (opt) ;

Passing the setValues method to the opt object is our way of letting the marker continue
and rendering our marker with the information we just got into our constructor. All the things
that can be done in a regular marker can be done in ours as well.

At this stage we have our Twitter bird as our graphic interface for our marker. Unfortunately,
this is as far as we can go with customizing our marker; next, we will need to add another
visual layer. As we want to create a visual layer that behaves like a marker just visually (as
it will be part of the marker), we will need to create a subclass for the google .maps.
OverlayView object.

Similar to the marker logic, when we are ready to render our element, we want to call the
method setMap (for the marker it was a different method but the same idea).

function MarkerCounter (opt) {
this.radius = 15;
this.opacity = (opt.tweet.length) /100;
this.opt = opt;
this.setMap (opt.map) ;

MarkerCounter.prototype = new google.maps.OverlayView() ;

In our constructor, we are only storing very basic global information, such as our target
opacity, radius, and the options object. We can store any information we want here.

The most important element of information that we will need is the position (latitude and
longitude). We will send that information into our marker, and it will be inside our opt object.

306

Chapter 10

The google.maps.OverlayView object has an onAdd method. It's just like a listener, but
in addition, we will override this method and add our processing/preparation work when the
element is added into the map.

MarkerCounter.prototype.onAdd = function()
var div = document.createElement ('div');

div.style.border = "none";
div.style.borderWidth = "Opx";
div.style.position = "absolute";

this.canvas = document.createElement ("CANVAS") ;
this.canvas.width = this.radius*2;
this.canvas.height = this.radius*2;

this.context = this.canvas.getContext ("2d") ;
div.appendChild(this.canvas) ;
this.div_ = div;
var panes = this.getPanes() ;
panes.overlayLayer.appendChild (div) ;

}

Most of the logic here should look familiar. We start by creating a new div element. We set

its CSS attributes to make absolute the position of the div element so we can move it around
easily. We follow this with creating a canvas element and setting its width and height to be two
times the radius of our circle. We add the canvas into our div element. Last but not least it's
time for us to add our div element into the map. We will do that by accessing the getPanes
method. This method will return all the visual layers this element can contain. In our case, we
will go right to our overlay layer and add our div element to it. We do this inside the onAdd
method rather than doing it earlier because the overlay will not be rendered and we will not
have access to the last two lines in the previous code.

Just as we overrode the onAdd method, we do the same for the draw method. This is our last
critical step. For the most part, all the work in this method will be very familiar as we have
played a lot with canvas in this book. So, let's explore the new steps to find where we want to
position our overlay.

var projection = this.getProjection() ;
var point = projection.fromLatLngToDivPixel (this.opt.position) ;

this.div_.style.left = (point.x - radius) + 'px';
this.div_.style.top = (point.y - radius) + 'px';

307

Maps in Action

In the first line in the preceding code, we get the projection. The projection is the relative point
of view of our overlay. Through this projection, we can extract the actual point in pixels. We call
the projection. fromLatLngToDivPixel method, send to it a latitude/longitude object,
and get back a point (x, y values). All that is left is to update the style of our div element

and position it according to this information (not forgetting to subtract our radius size so our
element is exactly in the middle of the actual point that was clicked).

Until now, we have treated our TwitterMarker constructor as if there are always tweets
somewhere in the world, but the reality is that sometimes there will not be anything, and right
now we are creating both a visualization that won't work and a marker that won't visualize it.
Let's override our behaviors and put up an alternative marker if there is no result and skip all
of our customizations.

Mark Allan
=" @MarkXA
s Coleraine, Northern Ireland
-rgeen
@deanvme Getting harder to argue against
HTMLS these days.

North Sea

lof 4>
g 4
Ay

oo United

ks 5
Letterkafing Befast Kin g dom
Sé‘j"{j\l oo e

Blackpool - Leeds
(=] o

frish Sea 2
o Mancges o Hull
allinasios = - G e feld
Galwawlrenla b3 Lucariao Dublin Liverpool] >
ot
Nenagh s - Graigueeulien Stoke-on-Trento LL am
o n
o M L.EH:ﬂester Nﬂrgvlc.h
Eorick uing Bilston®
U&, . o A
Tralee; Clanmelo B:esg Birmingham {
Waterford oCambridge N
o L :
Crosshaven Cardiff London Rotter:
O S0 r
Feltham Lo
Bamsiapie - pristol E Antwérpeno
H
x : Heist-o
b & Southamptono. oBrighiton e o
W | Betei Portsmauth

o
o Lngm
Db bhy Lol

Let's sort it out. We start by removing our original error logic from the showTweet method.
Instead, we will just update the text attribute but will not create a new array.

function showTweet (a, latLng) {
var marker = new TwitterMarker({
map: map,
position: latLng,
tweet: a,

308

Chapter 10

title:a.length? a[0] .text : 'No tweet found in this area
for this topic' ,
icon:"img/bird.png" });

}

In case you are not familiar with the ternary operator, it's a very condensed way of creating an
if...else statement within code. The core logic of it is as follows:

condition?true outcome:false outcome;

The outcome is then sent back, and we can capture it right into our variable as we are doing
in this case.

The next area we want to change is the TwitterMarker constructor.

function TwitterMarker (opt) {

if (lopt.tweet || !opt.tweet.length){
opt.icon = "img/x.png";
lelse{

this.count = opt.tweet.length;
this.mc = new MarkerCounter (opt) ;
this.crnt = 0;
this.id = TwitterMarker.aMarkers.push(this) ;
this.aTweets = opt.tweet;
var strTweet = this.buildTwitterHTML (opt.tweet [0])
this.infoWindow = new google.maps.InfoWindow ({
maxWidth:300,
content:strTweet

3N

this.infoWindow.open (this.map, this) ;
google.maps.event.addListener (this, 'click', this.onMarkerClick) ;

}

this.setValues (opt) ;

}

The main changes here are that we start our application by first checking if there are any
tweets. If no tweets are around, we update the icon graphic to a new X icon. If we do have a
result, all remains the same. We extracted the setvalues method to be called out of the
if...else conditions as we need to call it in any case.

There you go! We've completed our social map. There is much more you can do with this
project. A couple of examples could be making it easier to change the search term, and
comparing between two search results (that could be very interesting and easy). | would be
interested to see around the world the number of times Flash versus HTML5 are mentioned,
so if you get to it send me an e-mail.

309

Maps in Action

Final project: building a live itinerary

Although the natural next step from our previous sample would be just to add an extra feature
to our already growing social map (which we have built throughout this chapter), we are taking
a direction shift.

In our final recipe, we will build an interactive Google map that will animate with the travel
information of a close friend of mine in South America while | was working on this book. To
build this application, we will animate the map by adding drawings and moving markers; we
will integrate with an external feed of travel information and integrate animations and text
snippets that will describe the journey. In the following screenshot, you can see a very small
snapshot of the plain path:

Getting ready

Many of the elements we will be working with in this recipe will be based on work we did
throughout all of the chapters. As such, it will not be easy to just jump right in if you haven't
gone through the journey together with us. There are no prerequisites. We will start from
scratch, but we will not focus on things we have learned already.

As the user "travels" around the world map when there is a message for the user in the data
source, the map will fade out and the message will be displayed before the user can continue
traveling the world:

Chapter 10

Call me when you wake t¢./

In this recipe we will be creating two files: an HTML file and a JavaScript file. Let's look into
them, starting with the HTML file:

1.

Create the HTML file.

<!DOCTYPE htmls>
<html>
<head>
<title>Google Maps Markers and Events</title>
<meta charset="utf-8" />
<meta name="viewport" content="initial-scale=1.0, user-
scalable=no" />
<link href='http://fonts.googleapis.com/css?family=Yellowtail'
rel="'stylesheet' type='text/css'>
<style>
html { height: 100% }
body { height: 100%; margin: 0; padding: 0 }
#map { height: 100%; width:100%; position:absolute; top:0px;
left:0px }

.overlay {
background: #000000 scroll;
height: 100%;
left: 0;
opacity: 0;

Maps in Action

position: absolute;
top: 0;
width: 100%;
z-index: 50;
}
.overlayBox
left: -9999em;
opacity: 0;
position: absolute;
z-index: 51;
text-align:center;
font-size:32px;
color:#ffffff;
font-family: 'Yellowtail', cursive;
}
</style>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/
jquery.min.js"></script>
<script src="http://maps.googleapis.com/maps/api/js?key=AIzaSy
Bp8gVrtxUC2Y¥njwqox7I0dxrgjtCYim-8&sensor=false"></script>
<script src="https://www.google.com/jsapi"></scripts>

<script src="./10.05.travel.js"></script>
</head>
<body>
<div id="map"></div>
</body>
</html>

2. Time to move to the JavaScript file, 10.05. travel.js. We will start by initiating the
visualization library and storing a global map variable.

google.load('visualization', '1.0');
google.setOnLoadCallback (init) ;
3. var map; When the init function is triggered, the map is loaded and it triggers
the loading of a Google spreadsheet in which we will store all of my friend's travel
information.

function init ()
var BASE CENTER = new google.maps.LatL
ng(48.516817734860105,13.005318750000015) ;

map = new google.maps.Map (document.getElementById ("map"), {
center: BASE CENTER,
mapTypelId: google.maps.MapTypelId.SATELLITE,
disableDefaultUI: true,

3N

Chapter 10

var query = new google.visualization.Query (
'https://spreadsheets.google.com/tg?key=0A1dzs55s0XbDJERJV1Y
yWFJISFN3¢jlqUlInTGpOdHe ') ;
query.send (onTripDataReady) ;

}

When the document is loaded, it will trigger the onTripDataReady listener. When
that happens, we will want to create a new GoogleMapTraveler object (a custom
class for managing our experience).

function onTripDataReady (response) {
var gmt = new GoogleMapTraveler (response.g.D,map) ;

}

The constructor method of the GoogleMapTraveler object will prepare our
variables, create a new Animator object, a Traveler object and a hew google.
maps . Polyline object, and will trigger the creation of the first travel point by calling
the nextPathPoint method

function GoogleMapTraveler (aData,map) {
this.latLong; //will be used to store current location
this.zoomLevel; //to store current zoom level
this.currentIndex=0;
this.data = aData; //locations
this.map = map;

//this.setPosition(0,2) ;
this.animator = new Animator (30) ;

this.pathPoints = [this.getPosition(0,1)]; //start with two
points at same place.

var lineSymbol = ({
path: 'M 0,-1 0,1',
strokeOpacity: .6,
scale: 2

}i

this.lines = new google.maps.Polyline ({
path: this.pathPoints,
strokeOpacity: O,
strokeColor: "#FF0OOOO",
icons: [{
icon: lineSymbol,
offset: '0',
repeat: '20px'

Maps in Action

11,

map: map

3N

this.traveler = new Traveler (this.map,this.getPosition(0,1)) ;
this.nextPathPoint (1) ;

}

6. The getPosition method is a very smart, small method that enables us to create a
new google.maps . LatLng object each time it's called and to create a point based
on an average of points or based on one item.

GoogleMapTraveler.prototype.getPosition = function
(index, amount) {
var lat=0;
var 1lng=0;
for(var i=0; i<amount; i++)
lat+= parseFloat (this.data[index+i] .c[0] .Vv);
lng+= parseFloat (this.datal[index+i] .c[1].Vv);

}

var ll=new google.maps.LatLng (
lat/amount,
1lng/amount) ;

return 11;

}

7. We want to be able to set the position of our traveler, and as such we will want to
create a setPosition method as well.

GoogleMapTraveler.prototype.setPosition = function (index, amount) {
this.currentFocus = index;

var lat=0;

var 1lng=0;

for(var i=0; i<amount; i++)
lat+= parseFloat (this.datal[index+i] .c[0] .Vv);
lng+= parseFloat (this.datal[index+i] .c[1].Vv);

}

var ll=new google.maps.LatLng(
lat/amount,
1lng/amount) ;

if (this.datal[index] .c[2])this.map.setZoom(this.
data[index] .c[2] .v);
this.map.setCenter (11) ;

314

Chapter 10

10.

11.

In the heart of our application is the ability to automatically move from one step to
the next. This logic is applied using our Animator object in combination with the
nextPathPoint method:

GoogleMapTraveler.prototype.nextPathPoint = function (index) {
this.setPosition (index-1,2) ;
this.pathPoints.push(this.getPosition(index-1,1)); //add last

point again
var currentPoint = this.pathPoints[this.pathPoints.length-1];
var point = this.getPosition (index, 1) ;

//console.log (index, currentPoint, point, this.
getPosition(index, 1)) ;

this.animator.add(currentPoint, "Za", currentPoint.Za,point.Za, 1) ;

this.animator.add(currentPoint, "Ya", currentPoint.Ya,point.Ya, 1) ;

this.animator.add(this.traveler.1l1l,"Za",this.traveler.
11.Za,point.Za,2,0.75);

this.animator.add(this.traveler.1l1l,"Ya", this.traveler.
11.Ya,point.Ya,2,0.75);

this.animator.onUpdate = this.bind(this, this.renderLine) ;
this.animator.onComplete = this.bind(this, this.
showOverlayCopy) ; //show copy after getting to destination

}

There are two callbacks that are triggered through our Animator object

(they're highlighted in the preceding code snippet). It is time to create the logic
that updates the information on our onUpdate callback. Let's take a peek at the
renderLine method

GoogleMapTraveler.prototype.renderlLine = function() {
this.lines.setPath(this.pathPoints) ;
if (this.traveler.isReady)this.traveler.refreshPosition() ;

}

In the next step, when the animation is complete, it triggers our overlay logic. The
overlay logic is very simple; if there is text in the Google document, in the fifth column,
we will darken the screen and type it out. If there is no text, we will skip this step and
go right to the next step that is in the hideOverlayCopy method that triggers the
next travel point (the next line in the spreadsheet).

Our previous method of the GoogleMapTraveler object is the bind method. We
already created this bind method in the Moving to an OOP perspective recipe in
Chapter 6, Bringing Static Things to Life; as such, we will not elaborate on it further.
GoogleMapTraveler.prototype.bind = function(scope, fun)

return function () {

fun.apply (scope, arguments) ;

Vi

Maps in Action

12. Create the Traveler class. The Traveler class will be based on the work we did in
the Customizing the look and feel of markers recipe in this chapter, only this time it
will be an animating marker.

function Traveler (map,1ll)
this.1ll = 11;
this.radius = 15;
this.innerRadius = 10;
this.glowDirection = -1;
this.setMap (map) ;
this.isReady = false;

Traveler.prototype = new google.maps.OverlayView() ;

Traveler.prototype.onAdd = function() {

this.div = document.createElement ("DIV") ;

this.canvasBG = document.createElement ("CANVAS") ;
this.canvasBG.width = this.radius*2;

this.canvasBG.height = this.radius*2;

this.canvasFG = document.createElement ("CANVAS") ;
this.canvasFG.width = this.radius*2;

this.canvasFG.height = this.radius*2;

this.div.style.border = "none";
this.div.style.borderWidth = "0px";
this.div.style.position = "absolute";

this.canvasBG.style.position = "absolute";

this.canvasFG.style.position = "absolute";

this.div.appendChild (this.canvasBG) ;
this.div.appendChild (this.canvasFG) ;

this.contextBG = this.canvasBG.getContext ("2d") ;
this.contextFG = this.canvasFG.getContext ("2d") ;

var panes = this.getPanes() ;
panes.overlayLayer.appendChild(this.div) ;

Traveler.prototype.draw = function() {
var radius = this.radius;

Chapter 10

var context = this.contextBG;

context.fillStyle = "rgba (73,154,219, .4)";
context .beginPath() ;
context.arc (radius, radius, radius, 0, Math.PI*2, true);
context.closePath() ;
context.f111 () ;

context = this.contextFG;
context.fillStyle = "rgb(73,154,219)";
context .beginPath() ;
context.arc (radius,radius, this.innerRadius, 0, Math.PI*2,
true) ;
context.closePath() ;
context.f111 () ;

var projection = this.getProjection() ;

this.updatePosition(this.11) ;
this.canvasBG.style.opacity = 1;
this.glowUpdate (this) ;

setInterval (this.glowUpdate, 100, this) ;
this.isReady = true;

}i

Traveler.prototype.refreshPosition=function () {
this.updatePosition(this.1l) ;

}

Traveler.prototype.updatePosition=function (latlng) {
var radius = this.radius;
var projection = this.getProjection() ;

var point = projection.fromLatlLngToDivPixel (latlng) ;
this.div.style.left = (point.x - radius) + 'px';
this.div.style.top = (point.y - radius) + 'px';

}

Traveler.prototype.glowUpdate=function (scope){ //endless loop
scope.canvasBG.style.opacity = parseFloat (scope.canvasBG.
style.opacity) + scope.glowDirection*.04;
if (scope.glowDirection==1 && scope.canvasBG.style.opacity>=1)
scope.glowDirection=-1;
if (scope.glowDirection==-1 && scope.canvasBG.style.
opacity<=0.1) scope.glowDirection=1;

}

Maps in Action

13. We will grab the Animator class created in the Animating independent layers recipe
in Chapter 6, Bringing Static Things to Life, and tweak it (changes are highlighted in
the code snippet).

function Animator (refreshRate) {
this.onUpdate = function(){}:
this.onComplete = function(){}:
this.animQue = [];
this.refreshRate = refreshRate || 35; //if nothing set 35 FPS
this.interval = 0;

Animator.prototype.add = function (obj,property,
from, to, time,delay) {
obj [property] = from;

this.animQue.push ({obj:0bj,

p:property,

crt:from,

to:to,

stepSize: (to-from)/(time*1000/this.refreshRate),
delay:delay*1000 || 0});

if (!this.interval){ //only start interval if not running already
this.interval = setInterval(this. animate, this.
refreshRate, this) ;

}

Animator.prototype. animate = function (scope) {
var obj;
var data;

for(var i=0; i<scope.animQue.length; i++){
data = scope.animQue[i];

if (data.delay>0) {
data.delay-=scope.refreshRate;
}else{
obj = data.obj;
if ((data.stepSize>0 && data.crt<data.to) ||
(data.stepSize<0 && data.crt>data.to)){

data.crt = data.crt + data.stepSize;
obj [data.p] = data.crt;

Chapter 10

lelse{
obj [data.p] = data.to;
scope.animQue.splice(i, 1) ;
——i;
}
}

}

scope.onUpdate() ;
if (scope.animQue.length==0) {
clearInterval (scope.interval) ;
scope.interval = 0; //reset interval variable
scope.onComplete() ;

}
}

When you load the HTML file, you will find a fullscreen map that is getting its directions from a
spreadsheet. It will animate and show you the paths my friend took as he traveled from Israel
to South America and back.

There are many components in this example, but we will focus mainly on the new steps that
we haven't covered in any other part of this book.

The first new thing we meet is right in our HTML and CSS:

<link href='http://fonts.googleapis.com/css?family=Yellowtail'
rel="'stylesheet' type='text/css'>

We picked a font from the Google font library at http://www.google.com/webfonts and
integrated it into the text overlays.

.overlayBox {

font-family: 'Yellowtail', cursive;

}

It is time to travel into our JavaScript file, which we start by loading in the Google Visualization
Library. It's the same library we were working with in Chapter 8, Playing with Google Charts.
Once it's loaded, the init function is triggered. The init function starts our map up and
starts loading in the spreadsheet.

Maps in Action

In the Changing data source to Google spreadsheet recipe in Chapter 8, Playing with Google
Charts, we worked with Google spreadsheets for the first time. There you learned all the steps
involved with preparing and adding a Google chart into the Google visualization. In our case,
we created a chart that contains line by line all the areas through which my friend traveled.

Oren and the South
File Edit View Insert Format Data Tools Help All changes saved
2 T s %o123-10p: B e A M. = S -y
T sorry to disapoint you, but that was the last one because my flight is tomorrow from a city near by..
A B c D = 7 G
1 lat long zoom level name type comments image
2 harakevet, Call me when you
31.759978 35217247 10 jerusalem, wake up!
3 | was right over
your house!l!
Thrilling!!!
Philadelphia looks
TLV ben gurion interesting from the
32.005453 34.874194 4 airport Shuttle airport.
4 We had sugar
glazed donut and
‘small' american
philidelpya AIR coffee. All well
30.874589 -75.243842 5 PORT Plane branded.
5 Cancun Imperial
21.155872 -86.799344 6 Las Perlas Plane
6 How is it going?
Anything new with
arrangements of
the movings? Now
Playa Del Carmen - I'm at playa del
Hotel Hacienda Del Carmen. Amazing
20.623367 -87.075192 8 Caribe Bus place.
7 5a Av. Sur 141,
Centro, Cozumel,
Quintana Roo, 5a Av. Sur 141...
20.508984 -86.949907 Mexico Ferry This is where | am
8 20.625414 -87.079286 Playa Del Carmen Ferry
] 1a. Poniente Norte
(Abasolo) 29,
Centro, 29960

The exception in this case is that we don't want to feed our URL into a Google chart, but
instead we want to work with it directly. To do that we will use one of Google's API interfaces,
the google.visualization.Query object:

var query = new google.visualization.Query (
'https://spreadsheets.google.com/tg?key=0A1dzs55s0XbDAERIVIYYWFJ
ISFN3cjlqUlJInTGpOdHe') ;
query.send (onTripDataReady) ;

The next step is to create our GoogleMapTraveler object. The Google map traveler is a new
way for us to work with Google Maps. It doesn't extend any built-in feature of Google maps but
is instead a hub for all the other ideas we created in the past. It is used as a manager hub for

the marker, called Traveler, that we will create soon and the google.maps.Polyline object
that enables us to draw lines on the map.

320

Chapter 10

Instead of having a very static line appearance, let's create a reveal effect for new lines that
are added to the Google map. To achieve that, we need a way to update the polyline every
few milliseconds to create an animation. From the get go, | know the start point and the
destination point as | get that information from the Google spreadsheet created earlier.

The idea is very simple even though in a very complex ecosystem. The idea is to have an array
that will store all the latitude/longitude points. This would then be fed into the this.line
object every time we wanted to update our screen.

The heart of the logic in this application is stored within this line of code:
this.nextPathPoint (1) ;

It will start a recursive journey throughout all of the points in our chart.

There's more...

Let's take a deeper look at the logic behind the GoogleMapTraveler.prototype.
nextPathPoint method. The first thing we do in this function is to set our map view.

this.setPosition (index-1,2) ;

The setPosition method does a few things that are all related to repositioning our map
and our zoom level based on the data in the current index that is sent. It's a bit smarter than
that as it takes in a second parameter that enables it to average out two points. As one travels
between two points, it would be best if our map is at the center of the two points. That is done
by sending in 2 as the second parameter. The internal logic of the setPosition method is
simple. It will loop through as many items as it needs to, to average out the right location.

Next, we add a new point to our this.pathPoints array. We start by duplicating the same
point that is already in the array, as we want our new second point to start from the starting

point. This way, we can update the last value in our array each time, until it reaches the end

goal (of the real next point).

this.pathPoints.push(this.getPosition(index-1,1)); //add last point
again

We create a few helper variables. One will point to the new object we just created and pushed
into our pathPoints array. And the second is the point that we want to reach at the end of
our animation.

var currentPoint = this.pathPoints[this.pathPoints.length-1];
var point = this.getPosition(index,1);

The first variable is not a new object but a reference to the
s last point created, and the second line is a new object.

321

Maps in Action

Our next step will be to start and animate the values of our currentPoint until it reaches
the values in the point object and to update our traveler latitude/longitude information until
it reaches its destination as well. We give a delay of 0.75 seconds to our second animation to
keep things more interesting.

this.animator.add(currentPoint, "Za", currentPoint.Za,point.Za, 1) ;
this.animator.add(currentPoint, "Ya", currentPoint.Ya,point.Ya, 1) ;
this.animator.add(this.traveler.1l1l,"Za",this.traveler.1l1l.Za,point.
Za,2,0.75) ;

this.animator.add (this.traveler.1ll,"Ya",this.traveler.1ll.Ya,point.
Ya,2,0.75);

Before we end this method, we want to actually animate our lines. Right now, we are
animating two objects that are not visual. To start animating our visual elements, we will listen
to updates till the time we complete the animations.

this.animator.onUpdate = this.bind(this, this.renderLine) ;
this.animator.onComplete = this.bind(this, this.showOverlayCopy) ;//
show copy after getting to destination

Each time the animation happens, we update the values of our visual elements in the
renderLine method

To avoid getting runtime errors, we added to the traveler marker an isReady Boolean to
indicate to us when our element is ready to be drawn into.

this.lines.setPath(this.pathPoints) ;
if (this.traveler.isReady)this.traveler.refreshPosition() ;

When the animation completes, we move to the showOverlayCopy method, where we take
over the screen and animate the copy in the same strategy as we've done before. This time
around, when we are done with this phase, we will trigger our initial function again and start
the cycle all over with an updated index.

GoogleMapTraveler.prototype.hideOverlayCopy = function() {
//update index now that we are done with initial element
this.currentIndex++;

//as long as the slide is not over go to the next.
if (this.data.length>this.currentIndex+1) this.nextPathPoint (this.
currentIndex+1) ;

}

322

Chapter 10

That covers the heart of our build. It's time for us to talk briefly about the two other classes
that will help create this application.

Understanding the Traveler marker

We will not dig deeply into this class, as for the most part, it's based on the work we did in the
previous recipe, Customizing the look and feel of markers. The biggest difference is that we
added internal animation to our element and an updatePosition method that enables us
to move our marker around whenever we want to move it.

Traveler.prototype.updatePosition=function (latlng) {
var radius = this.radius;
var projection = this.getProjection() ;

var point = projection.fromLatLngToDivPixel (latlng) ;
this.div.style.left = (point.x - radius) + 'px';
this.div.style.top = (point.y - radius) + 'px';

}

This method gets a latitude and longitude and updates the marker's position.

As we are animating the actual 11 object of this object in the main class, we added a second
method, refreshPosition, which is called each time the animations are updated.

Traveler.prototype.refreshPosition=function () {
this.updatePosition(this.1l) ;

}

There is more to explore and find in this class, but I'll leave that for you to have some fun.

Updating the Animator object

We made two major updates to our Animator class, which was originally created in the
Animating independent layers recipe in Chapter 6, Bringing Static Things to Life. The first
change was integrating callback methods. The idea of a callback is very similar to events.
Callbacks enable us to call a function when something happens. This way of working enables
us to only have one listener at a time. To do this, we start by creating the two following
variables that are our callback functions:

function Animator (refreshRate) {
this.onUpdate = function() {};
this.onComplete = function() {};

We then trigger both functions in the Animator class in their relevant location (on update
or on complete). In our GoogleMapTraveler object, we override the default functions with
functions that are internal to the GoogleMapTraveler object.

323

Maps in Action

Our second and last major update to the Animator object is that we added smarter, more
detailed logic to enable our animator to animate both to positive and negative areas. Our
original animation didn't accommodate animating latitude/longitude values, and as such we
tweaked the core animation logic.

This covers the major new things we explored in this recipe. This recipe is jam-packed with
many other small things we picked up throughout the chapters. | truly hope you've enjoyed this
journey with me, as this is the end of our book. Please feel free to share with me your work
and insight. You can find me at http://02geek.comand my e-mail is ben@02geek . com.

324

Symbols
$.getJSON function 292

A

aColorsLength variable 12
addColorStop method 52
addColumn method 243
addDots function 109, 112
addLine function 79
addRows method 243
addStock function 97
advanced interactive marker
building 293-296
working 295
animated 3D chart (canvas3DGraph)
creating 211-214
working 214, 215
animateSeconds recursive function 226
animateStrokeWidth function 227
Animator object
updating 323, 324
animQue array 191, 192
appendRadioButton function 176
application
OOP perspective, moving to 177
arcs
drawing 37-39
arguments array 235
aTotal array 91

bar chart
about 62
building, from scratch 62-64

Index

chart outlines, defining 64
code, revisiting 66, 67
createBars function, using 68
data bars, creating 64
data set, defining 63
fillChart function, using 67, 68
graph outlines, defining 63
working 64-66
barStyle property 215
baseCanvas object 183
basic shapes
starting 14, 15
beginPath method 12,19
bezier curve
creating 42-46
bubble chart
bubbles text format, improving 118
building 105-111
working 111
buildTwitterHTML method 295, 299

C

candlestick chart (stock chart)
creating 92-94
working 96

canvas
about 8
arcs, drawing 38, 39
bezier curve, creating 42-46
curves, creating 37
curves, drawing with control point 40-42
images, integrating into art 46-48
pixel manipulation 54-59
shapes, drawing 7
text, drawing with 50-53

canvas3DGraph
about 211
creating 211-214
changelLineView function 172
chartinfo parameter 113
chartinfo variable 196
chart properties
customizing, with options object 252-254
ChartWrapper
used, for creating Google charts 245-247
clearRect method 13
clock
building, with RaphaellS 222-227
closePath method 12, 19
closeYOffset variable 98
complex shapes
createTriangle function, creating 27
creating 24-30
flag strips, drawing 27
context-aware legend
createLegend method, updating 199
creating 198-200
event listener onMouseMoveArea,
changing 200
fillChart method 200
updateLegend method, updating 199
working 201, 202
context parameter 113
context variable 55
controls, Google maps
customizing 276-278
createBars function
using 68
createDots function 74
createLinearGradient method 52
createNode function 235
createOutline function 111
createSpider function 125
createWaterfall function 90
currentRadian 34
currentXindex variable 201
curves
drawing, with control point 40-42

326

D

dashboard

adding, to Google charts 254-258
data source

changing, to Google Spreadsheet 248-251
Domain Specific Languages. See DSLs
doughnut chart

about 119

legend, creating 123

outline, adding 122, 123

used, for showing relationships 119-122

working 122
drawChart function 171

optimizing 174
drawChart update code 195
drawDataWeb method 128
drawlmage function 49, 57
drawRect method 79
drawTree function 131
drawTreeMap function

creating 152

turning, into recursive function 156

ECMAScript for XML (E4X)

about 129

online resources 132

working 132
elementStatus 147
elementValue*stepSize element 89
elementValue variable 89

F

fadeOutimage 56
featureType property 285
filiChart function

about 67,183

using 67
fillRect method 11
fill shapes

creating, in line chart 82, 83
fillStyle method 52
fillText 51
fillTriangle() function 21

flotJS
about 217
URL 219
working 221
flying brick chart. See also waterfall chart
flying brick chart
creating 84-87
working 87-89
formatData function 79
formatter function 101

G

gauge meter (jqPlot)
animating 206-208
working 209, 210
gData array 215
geographic chart
creating, with Google visualization
APl 260-262
smaller areas, making visible 264, 265
getData function 222
getlmageData function 58
getPanes method 307
getPosition method 314
Google API key
obtaning 265-267
working 267
Google Charts
chart, changing in one line 247
chart properties, customizing with options
object 252-254
chart type, changing 245
creating, ChartWrapper used 245, 247
dashboard, adding 254-257
data source, changing to Google
Spreadsheet 248-251
pie chart, creating 239-242
Google map
building 267-270
controls, customizing 275-279
features 259
latitude and longitude, working with 271
maps, overlapping 275-279
maps, redesigning using styles 280-285
map types 271

markers and events, adding 272-275
overlapping 276-278
redesigning, styles used 280-283
Twitter, connecting to 288-292
Google maps, creating
geographic chart, creating with Google
visualization APl 260-262
Google API key, obtaining 265-267
google.maps.LatLng object 314
google.maps.MapTypeld.HYBRID 271
google.maps.MapTypeld.ROADMAP 271
google.maps.MapTypeld.SATELLITE 271
google.maps.MapTypeld.TERRAIN 271
google.maps.OverlayView object 307
GoogleMapTraveler object 313, 315, 320
GoogleMapTraveler.prototype.nextPathPoint
method 321
gradients
using, in text 53
graphical layers
code, streamlining 174, 175
drawChart function, optimizing 174
radio buttons, creating 176, 177
stacking 168-172
working 173, 174
graphics, with 2D canvas
about 8
canvas element, creating 8
helper variables, creating 10
HTML5 document, creating 8
JavaScript file, importing into
HTML document 9
nested loop, creating 10
onlLoad listener, adding 9
rectangle, creating 10
updateCanvas function, creating 9
working 10-13
grayStyle styling object 290

H

helper global variables 55
helveticaForClock 224
hideOverlayCopy method 315
href buttons 301

321

imageData.data array 58
image grayscale
making 60
images
control, adding 49
integrating, into art 46-48
scaling 49
using, as fill 49
independent layers
add method, creating 188
animating 187-191
Animator constructor, creating 188
internal_animate method, creating 189
InfoVis
about 229
used, for making sunburst chart 229-234
working 234-237
InfoWindow
about 293-295
multiple tweets, adding 297-302
init function 55
innerRadius 34
interactive click meter
creating 162-165
working 165, 166
interactive Google map
building 310-319
interactive legend
createLegend method, creating 194
creating 193-196
updateLegend method, creating 194
working 197, 198
intervalColors function 210
intervalOuterRadius 209
intervals function 210
isStarting variable 209

J

JavaScript Object Notation (JSON) 291
igPlot

using 206
JQuery

using 206

328

L

label parameter 113
latitude and longitude
working with 271
latLng property 275
levelDistance property 237
line charts
about 76
building 76-78
fill shapes, creating 82, 83
formatData function, creating 79
logic of onChangedRadio, breaking 150
making interactive 145-149
switch mode, enabling between dots
and lines 82
working 79, 81
lineHeight variable 18
listener function 290
live flag sample
in action 20, 21
live itinerary project
building 310-319
working 319-322
look and feel, markers
customizing 303-306

map types 271
MarkerCounter constructor 304
markers

look and feel, customizing 303-308
markers and events

adding, to Google map 272-275
Math.cos()

using 117
Math.min method 91
Math.sin()

using 117
meterGaugeRenderer library 209
midRadian variable 117
moveTo function 18
multiple tweets

adding, into InfoWindow 297-300
MyFirstObject function 181

nextPathPoint method 315

0

onAdd method 307

onChangedRadio callback function 172

onChangedRadio function 148
breaking 150

onLoad event 62, 289

onreadystatechange callback property 96

onTimeReset function 163
onTripDataReady listener 313
OOP perspective
base canvas element, moving into
constructor 183
charts, creating for testing 186, 187
code, converting 178
functions, updating 179
helper function, creating 180
HTML components, creating 183-185
init function, rewriting 180
lose ends, removing 185
working 181, 182
over time (flotJS)
charting 217-221
getData, creating 220
ready event, creating 220
updateChart, creating 220

P

paths
animating 228
pie chart
creating 114, 115, 239-241
Math.cos() and Math.sin(), using 117
working 116, 242, 243
pixel manipulation
about 54-56
image grayscale, making 60
pixel reversing 60
working 57-59
Pixel reversing 60
plotBar function 215
plugin coding 99

projection.fromLatLngToDivPixel method 308
pyramid chart

about 138

creating 138-140

findLine function 142, 143

logic in init function, changing 143, 144

text, adding to graph 144

working 141

Q

quadratic curve
about 40
drawing 40

radar 123
radar chart
about 123
creating 125, 126
rotated legend, adding 128, 129
working 127, 128
radio buttons
creating 176
RaphaellS
used, for building clock 222-227
working 227
readyState variable 96
rectangles
creating 23,24
layering, for creating flag of Greece 16-18
rect method 79
refreshChart function 164
refreshRate property 191
renderLine method 315
renderList object 202
render options
adding, to stock chart 102
renderOptions object 209
ren parameter 202
restore method 111
rotate method 111

S

save method 111

329

scatter chart

about 68

data, spreading 68-75

working 73, 74
setinterval 13
setOptions function 286
setPosition method 314, 321
shadows and glows

adding, in text 54
shapes

creating, paths used 19-21

overlapping 35, 36

vertices, adding 31-33
showTweet function 292
spider chart 123
startindex parameter 97
startingSpeed variable 209
stock chart

about 92

creating 92-96

render options, adding 102, 103

working 96-98
stroke() method 18
strokeStyle values 17

styleFormatter function 216, 217

style properties, Google maps
gamma 284
hue 284
lightness 284
saturation 284
visibility 284
sunburst chart

creating, with InfoVis 229-234

T

text
drawing with 50-53
gradients, using 53

shadows and glows, adding 54

this.barData property 202
tickFormater method 218
ticks function 210
trailCount variable 215
translateCSV function 94, 97
translate method 111
Traveler marker 323

330

tree chart
structuring 129-131
working 132-135
tree data
turning, into recursive data 157
tree mapping
about 150-152
drawTreeMap, turning into recursive
function 156
init function, updating 155
tree data, turning into recursive data 157
user interaction, adding 158-161
working 153, 154
trialingArray array 215
Twitter feed
connecting, to Google map 288-292
TwitterMarker class 301
TwitterMarker constructor 299

U

updateCanvas function 11
UpdateChart function 222
updateCumulativeChartinfo function 91
updateMeter function 208

creating 210
user interaction

adding, to tree mapping 158-161

\'}

vector drawing tool 54
vertices
adding, to shapes 31-34

w

waterfall chart

about 84

creating 84

format of numbers, clearing 92
weeklyCapture function 99
window.onload callback function 169

X
XMLHttpRequest object 96

Thank you for buying

~usLisnined HTMLS Graphing and Data
Visualization Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authorepacktpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

HTML5 Canvas
Cookbook

HTML5 Canvas Cookbook
ISBN: 978-1-849691-36-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience with
HTML5 Canvas

1. The quickest way to get up to speed with HTML5
Canvas application and game development

2. Create stunning 3D visualizations and games
without Flash

3. Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

4. Part of Packt's Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as efficiently as possible

Data Visualization: a
successful design process

et

Data Visualization: a

successful design process
ISBN: 978-1-849693-46-2 Paperback: 96 pages

A structured design approach to equip you with the
knowledge of how to successfully undertake any data
visualization challenge efficiently and effectively.

1. A portable, versatile and flexible data visualization
design approach that will help you navigate the
complex path towards success

2. Explains the many different reasons for creating
visualizations and identifies the key parameters
which lead to very different design options

3. Thorough explanation of the many visual variables
and visualization taxonomy to provide you with a
menu of creative options

Please check www.PacktPub.com for information on our titles

PUBLISHING

R Graphs Cookbook

ISBN: 978-1-849513-06-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most useful
types of graphs in R—starting from the simplest versions
to more advanced applications

1. Learn to draw any type of graph or visual data
representation in R

2. Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations

3. All examples are accompanied with the
corresponding graph images, so you know what
the results look like

MATLAB Graphics and
Data Visualization Cookbook

MATLAB Graphics and Data

Visualization Cookbook
ISBN: 978-1-849693-16-5 Paperback: 350 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1. Collection of data visualization recipes with
functionalized versions of common tasks for easy
integration into your data analysis workflow

2. Recipes cross-referenced with MATLAB product
pages and MATLAB Central File Exchange
resources for improved coverage

3. Includes hand created indices to find exactly
what you need; such as application driven, or
functionality driven solutions

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Drawing Shapes
in Canvas
	Introduction
	Graphics with 2D canvas
	Starting from basic shapes
	Layering rectangles to create the flag
of Greece
	Creating shapes using paths
	Creating complex shapes
	Adding more vertices
	Overlapping shapes to create other shapes

	Chapter 2: Advanced Drawing
in Canvas
	Introduction
	Drawing arcs
	Drawing curves with a control point
	Creating a Bezier curve
	Integrating images into our art
	Drawing with text
	Understanding pixel manipulation

	Chapter 3: Creating Cartesian-based Graphs
	Introduction
	Building a bar chart from scratch
	Spreading data in a scatter chart
	Building line charts
	Creating the flying brick chart
(waterfall chart)
	Building a candlestick chart (stock chart)

	Chapter 4: Let's Curve Things Up
	Introduction
	Building a bubble chart
	Creating a pie chart
	Using a doughnut chart to show relationships
	Leveraging a radar
	Structuring a tree chart

	Chapter 5: Getting Out of the Box
	Introduction
	Going through a funnel (a pyramid chart)
	Revisiting lines: making the line chart interactive
	Tree mapping and recursiveness
	Adding user interaction into tree mapping
	Making an interactive click meter

	Chapter 6: Bringing Static
Things to Life
	Introduction
	Stacking graphical layers
	Moving to an OOP perspective
	Animating independent layers
	Adding an interactive legend
	Creating a context-aware legend

	Chapter 7: Depending on the Open Source Sphere
	Introduction
	Animating a gauge meter (jqPlot)
	Creating an animated 3D chart (canvas3DGraph)
	Charting over time (flotJS)
	Building a clock with RaphaelJS
	Making a sunburst chart with InfoVis

	Chapter 8: Playing with Google Charts
	Introduction
	Getting started with a pie chart
	Creating charts using the ChartWrapper
	Changing data source to Google Spreadsheet
	Customizing the chart properties with an options object
	Adding a dashboard to charts

	Chapter 9: Using Google Maps
	Introduction
	Creating a geographic chart with Google Visualization API
	Obtaining a Google API key
	Building a Google map
	Adding markers and events
	Customizing controls and overlapping maps
	Redesigning maps using styles

	Chapter 10: Maps in Action
	Introduction
	Connecting a Twitter feed to a Google map
	Building an advanced interactive marker
	Adding multiple tweets into an
InfoWindow bubble
	Customizing the look and feel of markers
	Final project: building a live itinerary

	Index

