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Abstract. A (g,b) key distribution scheme allows conferences of g users
to generate secret keys, so that disjoint coalitions of b users cannot gain
any information on the key (in the information theoretic sense). In this
work we study the relationships between interaction and space efficiency
of key distribution schemes. We prove that interaction does not help in
the context of unrestricted schemes. On the other hand, we show that for
restricted schemes, which are secure for a limited number of conferences,
interaction can substantially improve the space efficiency.

1 Introduction

A non-interactive key distribution scheme for conferences of size g which is secure
against b “bad” users (denoted (g,b)-scheme) is a method in which an off-line
server initially distributes private individual pieces of information to n users such
that:

1. The pieces of every “good” conference G of g users determine a key, such that
every user in (7 can reconstruct the key from his piece. This reconstruction
requires no interaction (either among users or with the server).

2. Every “bad” coalition B of b users does not gain any information on the key
of any disjoint conference G.

It is clear that non-interactive schemes require initial distribution of pieces
of information to the users. The (space) efficiency of the scheme is measured
by the cardinality of the domain of pieces. The cardinality is a function of the
cardinality of the domain of possible keys, |S|, of the number of users, n, of the
size of conferences g, and of the size of coalitions b. '

Blom [1] was the first to consider non-interactive schemes for conference of
size 2 and coalitions of size b. He presented an efficient (2,b) scheme, based on
MDS codes. Other works dealing with non-interactive schemes in our setting
are [7, 9]. Matsumoto and Imai [8] suggest the use of symmetric linear functions
for (g,b) schemes. Blundo, De Santis, Herzberg, Kutten, Vaccaro and Yung [2]
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present (g,b) schemes, based on symmetric multinomials. Their multinomials
have g variables and degree at most b in each variable. The pieces in their

scheme are taken from a domain of cardinality |S I(a:iil) (where S is the domain
of keys). For large values of g and b, this expression is quite large. However,
using entropy arguments, Blundo et. al. [2] prove a tight lower bound on the
cardinality of the domain of pieces. Therefore, their scheme is space-optimal.
We use direct arguments (no entropy) to prove the same lower bound. Qur proof
has two advantages. First, it seems more intuitive and less technical. Second,
it actually applies to a weaker notion of security, thereby providing a stronger
result. This stronger result is used in proving our lower bound on interactive
schemes which is described in the next paragraph.

The large lower bound (for big conferences or coalitions) raises the question
whether interaction could be of help in reducing the size of pieces. Interaction has
some subtle implications on the security requirement (see section 5 for details).
Just like the non-interactive schemes, we require that even if all conferences in-
teract in order to generate keys, these keys remain secure with respect to disjoint
coalitions of size b. Since no secure channels among users can be assumed, inter-
action takes place via a broadcast media. One problem which arises is that the
communication of one conference could leak information on the keys of other
conferences. Therefore, we require that even if a “bad” coalition heard the com-
munication of all the conferences, the coalition does not gain any information on
keys of disjoint conferences. We argue that this is the right security requirement
for interactive schemes. We prove that, regrettably, such unrestricted interactive
schemes require pieces from a domain as large as non-interactive schemes.

This negative result motivates the introduction of restricted interactive
schemes. These schemes can be used only for a limited number of conferences,
whose identity is not known beforehand. We construct an efficient one-time se-
cure scheme, where the size of the domain of pieces is of cardinality |§|2+2(4-1/9,
This is a substantial improvement over the |S]9**~! cardinality in the one-time
secure interactive scheme of [2]. (The fact that this scheme is only one-time se-
cure was not mentioned in [2]). Other, less efficient, one time secure interactive
schemes are presented in [5, 6].

We contrast our results with known results in the computational model,
where users are restricted to probabilistic polynomial time computations. Diffie
and Hellman [3], in their pioneering work on public key cryptography, intro-
duced an interactive scheme of key generation for conferences of size two*. This
interactive scheme requires no server and no pieces. In this scheme a given com-
munication uniquely determines the key, but it is (presumably) intractable for
a third party to compute the key from the communication (of course, in our
setting this information enables other users to find the conference key). On the
other hand, even in the computational model, a non-interactive scheme requires

* Let p be a prime number, and let a be a primitive element in the field GF(p). User
i (respectively j) chooses a random number r; € GF(p) (respectively r;) and sends
the message m; = a”* (respectively m; = a'#). The joint key of users ¢ and j is
a"#74, which i easily computes from m; and r; using the equality m}’ = a""".
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pieces taken from a domain which is at least as large as the domain of keys.
So in the computational model, interaction does reduce the size of pieces, up to
complete elimination. Fiat and Naor [4] present a non-interactive (n,1)-scheme
in the computational model. In their scheme, which is based on the assumed
intractability of extracting root modulo composites, the domain of pieces has
the same cardinality as the domain of keys. Recall that in the computationally
unbounded model a non interactive (n,1)-scheme requires that the domain of
pieces is at least of cardinality |S|".

The remaining of this extended abstract is organized as follows. In section 2
we give formal definition of interactive and non-interactive schemes. Section 3
contains our proof of the lower bound for weak non-interactive schemes. In sec-
tion 4 we use this result to prove a lower bound to unrestricted interactive
schemes. In section 5 we introduce restricted interactive schemes, present an
efficient construction, and prove some weak lower bounds.

2 Definition of Key Distribution Schemes

In this section, we present formal definition of interactive and non-interactive
key distribution schemes. We start with the interactive schemes.

Definition1. Let {1,...,n} be a set of users, g and b be positive integers such
that g + b < n, S be a set of keys, and P be an a-priori probability distribution
on S. Let R be a set of random inputs. For every i (1 < i < n) let U; denote
a domain of pieces for user 5. An unrestricted interactive (9,b) key distribution
scheme (later denoted by (g,b) scheme) with n users and domain of keys S
is a function ¢/ : R — U; x Uy x ... x U,. A server distributes the vectors
{U(r) : 7 € R} to the users according to some a-priori probability distribution
on the random inputs. We denote by 1;(r) the i-th coordinate of U(r). This
coordinate is the piece of user . When users of a set G (of cardinality g) wish to
generate a conference key, each user in G chooses a local random input for this
conference. Then, the users communicate among themselves over a broadcast
channel. We denote the resulting communication by Cg (it is a function of the
g pieces and the local random input). As the messages are sent over a broadcast
channel, they can be heard by all the users (including the users not in G). The key
distribution function ¢/ and the conversations satisfy the following requirements:

reconstruction requirement At the end of the conversation, each member of
G can reconstruct a key from the conversation and his piece. The key that
every member of G reconstructs is the same, and is denoted by sg(r,7&),
where 7 is the random input of the server, and 7g is the vector of random
inputs of the users in G. ‘

unrestricted security requirement Every coalition B of b (bad) users, hav-
ing their pieces and knowing the conversations of all possible conferences,
does not gain any information on the key of every subset Gy such that
Go N B = @. That is, for every vector of pieces (uy,...,u,) which is dis-
tributed with positive probability, every set of random inputs 73 to coalition
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members, every possible key s € S, and every possible consistent conversa-
tions Cy,..., C(n) of all sets of cardinality g:
g

Pr [5G, (r,73) = 8 IreA \ Us(r) =uiA [\ Callia(r),78) = Cs]="P(s)
jeB |Gl=9

Where the probability is taken over 7 — the random input of the server, and
over 7 — the random inputs of all the users for all conferences. We denote by
77 the restriction of ¥ to a set A C {1,...,n}.

The security property implies that for every conference G of cardinality g, it
holds that Pr [ sg(r,7&) = 8] = P(s) , where the probability is taken over 7,
the random input of the server,r, and r& the random inputs of the users of G.In
other words, the conference key of G is a random variable, which is distributed
according to the a-priori probability distribution on the keys. It is not guaranteed
that keys of different conferences are independent random variables. The security
requirement does imply some independence between the keys. For example, it is
possible to prove that every b+ 1 keys are independent. In the rest of this paper
we assume that the a-priori probability of each key is positive. That is, for every
key s € § it holds that P(s) > 0.

We now define non-interactive schemes, which are a special case of interactive
schemes.

Definition 2. A non interactive (g,b) key distribution scheme with n users and
domain of keys S is a (g,b) scheme, in which every get G of cardinality g has a
key which depends only on the vector of pieces (and not on any communication),
and every user i € G can reconstruct G’s key from his piece. In this case the
random input of the server determines the key of every set G. That is, sg is only
a function of 7.

We now consider a weakening of the security requirement. Instead of requir-
ing that the conditional probability, given any pieces of a bad set B, of every key
equals the a-priory probability, we will only require that this conditional proba-
bility is positive. We claim that this security requirement is not reasonable, since
every bad set B could gain a lot of information. The reason we do define weak
schemes is because we show that the lower bounds on the size of the pieces hold
even for these weak schemes. To simplify this discussion, we will only consider
non-interactive weak schemes.

Definition 3. A weak non-interactive (g, b) key distribution scheme is a non-
interactive (g, b) scheme in which the security property is relaxed:

weak security property Let B be a coalition of b (bad) users, and let G be
a conference of g (good) users, such that GN B = @. Then the users in B,
having their pieces, can not rule out any key of G. That is, for every vector
of pieces @ = (uy,... ,Uy) that is dealt with positive probability, and every

-

possible key s € S, there exists a vector of pieces u’ that agrees with % on
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the pieces of B, but the key of the set G according to the vector u’ is s.
Formally,
Pr{sa(r)=s| A\ Uj(r)=u;]>0
JEB
where the probability is taken over the random input of the server.

It is obvious that unrestricted non-interactive schemes are a special case of
weak non-interactive schemes. Therefore, every lower bound for weak schemes,
implies the same lower bound for unrestricted non-interactive schemes.

3 Lower Bound for Non-Interactive Schemes

Blundo et. al. [2] prove a tight lower bound on the size of the pieces in every
non-interactive key distribution scheme. Their proof is based on the entropy
function, and does not seems to reveal the intuition behind this lower bound.
We present a simpler proof of this lower bound, which is not based on entropy.
Furthermore, this proof gives a stronger result, which we use in the sequel.

Theorem 4. [2] Let U be a weak non-interactive (g,b) scheme with n users and
domain of keys S. Let U; be the domain of pieces of user i in Y. Then for every
i1(1<i<n):

9+b—1)

U;| > |5](%=

Proof. Consider a (g,b) scheme with a domain of keys S. Without loss of general-
ity, we assume that there are ezactly g+b users, which we denote by {1,...,9+b}.
We prove the lower bound on the domain of pieces of user 1. Let Gq,...,G¢
be all the sets of cardinality g that contain user 1, where £ = (g;'le). Let

§ = (81,82,...,5¢) be any vector in S We claim that there exists a vector of
pieces & = (u1,...,ug4p) (that is dealt with positive probability), such that for
every 1 < ¢ < £ the key of the set G; reconstructed from %@ equals s;. Oth-
erwise, let ¢ be a maximal index such that there exist keys s/,...,s, € S for
which the vector s’ = (81y--.,8i-1,8},...,8,) is the vector of keys for some
possible vector of pieces 4. Such index 7 > 1 exists, since given any b pieces,
each key is distributed according to the a-priori distribution. Consider the set
B = {1,...,g9+b} \ G, which contains exactly b users. Since the set B in-
tersects every G; for j # ¢, then the users in B can compute the keys of the
sets Gy,...,Gi-1,Git1,...,Gy. Therefore, the pieces from @ of the users of B
determine that the keys of Gy,...,Gi_; are sy,...,8;_, respectively. By the
maximality of 2 it follows that:

Pr[ sg,(r) = s: | /\ Ui(r)=u; ] =0

But this violates the weak security property of the (g,b) scheme, a contradiction
to our assumption.
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Hence for every § € S¢, there is a vector of pieces for the users, in which the
vector of reconstructed keys for the sets G1,...,Gy is §. Since user 1 computes
the keys of the sets G1,..., Gy from his piece, it follows that his piece must be
different for every pair of different vectors of keys for the sets G1,...,G¢. There
are |S|¢ possible vectors of keys, therefore there are at least |S |¢ different pieces

for user 1. That is, |U1] > |S|¢ = |S|(a:i;1), as claimed. a

In this proof we use the weak security requirement. That is, even weak (g,b)
schemes must have large domain of pieces. Thus, our proof yields a stronger
result than the lower bound of [2]. We remark that if the keys of all sets were
independent random variables, then using the same ideas of this proof, we can

prove a lower bound of |S|(921). Another observation is that we can consider
a key distribution scheme in which only some pre-defined subsets of size g can
reconstruct a key. Our proof actually supplies a lower bound for this setting as
well.

Lemmab. Let I be a (weak) non-interactive (g,b) scheme with ezactly g +b
users and domain of keys S, in which user i is a member of at least L sets that
can reconstruct a key. Let U; be the domain of pieces of user i in Y. Then:

Ui} > |S|*

Notice that £ can be at most (g';z'l'l).
Using symmetric degree b multinomials with g variables, Blundo et. al 2]
have constructed an unrestricted non-interactive (g,b) scheme with domains of
b—1
pieces |U;| = |S [(y:-l ). provided that |S| > n and |$] is a prime power. So the
lower bound is tight (except for small domains of keys).

4 Removing Interaction from Unrestricted Schemes

In this section we show how to transform an unrestricted interactive scheme into
a unrestricted (weak) non-interactive key distribution scheme, without changing
the domain of pieces. This means that the lower bound on the cardinality of the
domain of pieces applies to unrestricted interactive schemes.

Theorem 6. Letlf be an interactive (g,b)-KDS with n > g+b users and domain
of keys S. Let Uy,...,U, be the domains of pieces of the users in u. Then for
every user .

+5-1

U] > 18] (%3

Proof. The high level idea of the proof is to fix, for every set G of g users, a possi-
ble communication Cg (i.e. one that is exchanged with positive probability when
G interacts in order to generate a conference key). Now the server deals only
vectors of pieces that are consistent with all the communications Cg’s. When a
member of a set G wishes to determine a conference key, he applies the recon-
struction function to his piece and the fixed communication Cg. This way, no
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interaction is required. In the proof, we show first how to choose communications
for different conferences such that they are consistent among themselves. There-
fore there are vectors of pieces that are consistent with all the communications.
Once this is done, it is clear that the non-interactive scheme has the reconstruc-
tion property. We then prove that the resulting non-interactive scheme has the
weak security property. Therefore it is a weak non-interactive (g,b) scheme.® By
Theorem 4 the cardinality of the domain of pieces of every user in the resulting

non-interactive scheme is at least |S I(gtﬁl). But the domain of the pieces in the
non-interactive scheme is not larger than that of the interactive scheme. There-
fore, the lower bound on the size of the pieces applies to the original interactive
scheme as well.

To complete this proof we first show how to choose a set of communications
Cg (for all G’s) in a consistent way. To do this, we first fix an arbitrary vector
of pieces #, that the server deals with positive probability. We also fix the local
random input of each user. Each communication C¢ is the one determined when
the users of G hold pieces from %, and have the fixed random inputs. It is clear
that 4 is consistent with all these conversations. The server chooses at random a
vector of pieces that is consistent with the communications. That is, the server
chooses from all the vectors of pieces # for which there exists a vector of random
inputs 7, such that every set G of g users, holding the pieces of #, and having
the random inputs 73, communicate Cg.

We next prove the weak security property of the non-interactive scheme. Let
G be any set of cardinality g,’and B be a disjoint set of cardinality b. By the
security property of the interactive scheme, it follows that for every vector of
pieces that is consistent with the fixed conversations, and every key s € S, there
exists a vector of pieces in which the pieces of the users in B are the same, but
the key of the conference G is s. That is, the non-interactive scheme has the
weak security property, as claimed. O

We can define the notion of weak security for unrestricted interactive schemes

as well. The lower bound of Theorem 6 is also applicable to such weak unre-
stricted interactive schemes.

5 Restricted Interactive Key Distribution Schemes

5.1 Motivation and Definition

By Theorem 6, interaction cannot decrease the size of the pieces of information
given to the users in key distribution schemes. In order to decrease the size of the
pieces of information, we relax the security requirement. We require that the key

% In this proof we do not define the probability distribution under which the server
distributes the consistent vectors of pieces. We only require that every consistent
vector is distributed with positive probability. It is possible to define-a probability
distribution on the consistent vectors, such that the induced (9, b) scheme will have
the unrestricted security property.
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distribution schemes should be secure only for a limited number of conferences.
Which conference will generate a key is not known a-priori, so the distributed
pieces should accommodate any combination of conferences (up to the limit on
their number). We will show that if this limit is relatively small, then the size
of the pieces can be substantially reduced. For example, if the scheme is only
required to be secure for a single conference, then for g = b = n/2, we present a
scheme whose domain of pieces is of cardinality |S|*, regardless of n. Recall that
for unrestricted schemes with these parameters, the cardinality of the domain of
pieces is |S Izn(") (Theorem 6). First, we state the exact definition of T-restricted
key distribution scheme, and then prove upper and lower bounds on the size of
the pieces in such schemes. There is still a gap between our upper and. lower
bounds.

Before going any further, we remark that the notion of key distribution
schemes restricted to a limited number of conferences is meaningful only with
respect to interactive schemes. For non-interactive schemes, the generation of
a conference key does not add any information with respect to any user (ei-
ther in the conference, or not in the conference). Therefore a one-time secure
non-interactive scheme would also be secure in the unrestricted sense, and no
saving can be expected. On the other hand, in interactive schemes the inter-
action, heard by all users (not only conference members), could reduce the se-
crecy of the remaining pieces. Finally, after sufficiently many interactions take
place, no uncertainty is left, and the pieces become useless for additional con-
ferences. This means that the amount of initial secrecy in restricted interac-
tive schemes can be smaller than in unrestricted schemes. The proof that un-
restricted interactive schemes can not be more space efficient than unrestricted
non-interactive schemes (Theorem 6) can not be used for restricted schemes. For
example, one could transform a one-time secure interactive scheme into a non-
interactive scheme, using the technique of Theorem 6. However, this would yield
a non-interactive scheme which is secure with respect to a single fized conference,
depending one initiating the interaction.

Definition 7. A 7-restricted (g,b)-scheme is an interactive (g, b)-schemein which
the security property is replaced by the following one:

r-restricted security property Let B be a subset of b (bad) users. Then the
users in B, having their pieces and knowing the conversations sent in any 7
conferences, do not have any information on the key of any disjoint set Go.
That is, for every vector of pieces (uy,...,un) which is dealt with positive
probability, every combination of 7 sets of users of cardinality g, denoted
by Gq,...,Gr-1, every coalition B of b users, such that GoN B = 0, every
" set of random inputs 3 to coalition members, every possible key s € S,
and every possible consistent conversations Cy,...,Cr_1 sent by the users

of Gy,...,Gr—1 respectably:

Pl‘[ 8Gy (T"F) =S l TBA A Uj(T) = %A /\ CGj (qu (T)"F) = Cj ] = 'P(S)

j€EB 0<j<T—1
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Where the probability is taken over 7 — the random input of the server, and +
— the random inputs of all the users for all conferences, where the restriction
of 7 to the coalition B equals r3.

We denote 1-restricted scheme by one-time scheme.

5.2 Upper Bound

Blundo et. al. [2] present a one-time (g, b)-scheme in which the domain of pieces
of each user is of cardinality |$]|9t®~1, We improve their one-time scheme, and
present a one-time key distribution scheme in which the domain of pieces of each
user is of cardinality |S|?+2(®-1)/9, (In [2] it is not mentioned that this scheme
is only one-time secure). To construct 7-restricted schemes, we use 7 copies of
our one-time scheme.

Lemma8. Let § be a domain of keys of cardinality q9, such that q is a prime-
power which is greater or equal to \/n. There ezists a one-time (g,b) scheme
with n users and domain of keys |S| in which the cardinality of the domain of
pieces of every user is |§|2+2(b-1)/g

Proof Sketch. We construct our interactive one-time (g,b)-scheme as following:
The server deals vectors of pieces according to the non-interactive (2,g + b — 2)
scheme of Blom [1] for n users, with keys taken from a domain of cardinality
|S|2/9 = ¢? (this is where we need q > /n). When the users of a set G want to
generate a conference key, every user i € G picks at random s; € {0,...,¢ — 1}.
The conference key s of the set G is the concatenation of these random s;’s.
That is

S=310820...Osg

We will show how every user i € G sends a message on a broadcast channel, such
that every user in G will be able to reconstruct s;, and every user not in G does
not learn anything from these messages. Every user ¢ € G will send a message to
every user j € G, that will be meaningful only to user j. The idea is to use the
keys of the non-interactive scheme as a one-time pad. More formally, every pair
of users 4, j € G reconstruct the joint key s; ; € {0,...,¢% — 1} according to the
pieces from the non-interactive scheme. Now we view this joint key as consisting
of two sub-keys sﬁ,j, s; j» both in {0,...,¢ — 1}. In order to inform user j of s,
user i broadcasts s; + s; ; (mod g), in the case i < j, and s; + s}, (mod ),
in the case ¢ > j. Notice that every sub-key is used only once.

To prove that the interactive scheme has the 1-restricted security property,
it is enough to show that the messages sent are all uniformly distributed and
independent of the conference key of G and the pieces of any coalition B with
b users (provided G N B = @). This fact, in turn, follows the next claim from
[2] about unrestricted non-interactive (2,g + b — 2) schemes. The claim states
that the vector of keys of all pairs of users in G in the non-interactive scheme is

uniformly distributed and independent of the pieces of the users in B. Formally,
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Lemma$9. ( Lemma 4.1 of [2]) Let U be a non-interactive unrestricted (2, g+b—
2)-scheme with the uniform a-priori distribution on the key domain S. Let G and
B be sets of g and b users respectably, such that GNB = 0. Let G1,Ga,. .-, G(g)

be all the subsets of G of cardinality 2. Let sy,... »8(2) be any combination of
2

(-‘2’) keys from S, and (ui,...,un) be a vector of pieces that is distributed with
positive probability. Then:

P A se(r)=sl \thi(r) =u]=

1<<(9) je

1
151(5)

We used the non-interactive (2,9 + b — 2)-scheme with domain of keys of
cardinality |S|?/9. So the cardinality of the domain of pieces of each user is

(|5|2/9)g+b—1 — |5|2+2-(b—1)/g
as claimed. ]

Notice that the conference key of G (s = 51 0 82 0... 0 5;5) is distributed
uniformly in S. It is possible to change this probability distribution on the keys.
One way to achieve this goal is to first generate a key s as in the previous way.
Then user 1 chooses the real key k for the conference according to any desired
distribution. User 1 sends the message (k + s) mod gq.

One property of our interactive scheme is that it uses only one-way interac-
tion. The messages of different members of G do not depend on other messages.
Another property of our scheme is that for a fixed b, the cardinality of the do-
main of pieces of each user is a monotonically decreasing function of g. This
feature stands in contrast to unrestricted (g,b) schemes, where the cardinality
of the domain of pieces of each user is a monotonically increasing function of g.

We remark that the scheme cannot be reused. For example, if users {1,2}
are members of two conferences G1, G2, then the part of the keys generated by
them in the two conferences will be known to all the users in G; U G3. We use
7 independent copies of the one time scheme in order to extend our scheme to
a T-secure one. Since the copies are independent, each conference does not add
any information on other conferences. Hence the security of the one-time scheme,
implies the security of the 7-restricted scheme.

Theorem 10. Let S be a domain of keys, such that |S| = ¢9 for some prime-
power q > /n. There ezists a T-restricted (g,b)-scheme with n users and do-

main of keys S, in which the domain of pieces is of each user is of cardinality
|S|27(1+(b—1)/g) )

This 7-restricted interactive schemes requires that the users hold a counter,
which is incremented each time a conference key is generated. Given such a
reliable counter, active attack by users sending messages deviating from the
protocol, do not reveal information on different conferences. Such attack could
prevent the generation of the present conference key. Our scheme does not work
in the absence of a reliable counter.
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5.3 Lower Bound

The cardinality of the domain of pieces in the 7-restricted scheme depends on 7.
We show that if 7 < (g_ﬁzl), then this dependency on 7 cannot be avoided. We

conclude, that for 7 > (g;'_l:l), the unrestricted scheme of [2] are space optimal
even for 7-restricted schemes.

Theorem11. Let { = min {‘T, (g“;ﬁl)}. In every T-restricted (g,b)-scheme,
with n users and domain of keys S, the cardinality of the domain of pieces of
every user is at least |S|t.

Proof Sketch. Again, we limit the number of users to g+b. Using the same ideas
as in the proof of Theorem 6, we transform a 7-restricted (g, b)-scheme into a a
non-interactive (g, b)-scheme in which ¢ pre-defined sets can reconstruct a key.
That is, we fix consistent conversations of the £ sets, and the server generates
vectors of pieces consistent with these conversations. The original scheme is
secure for 7 conferences, therefore by fixing £ < 7 conversations,we get a secure
scheme in which these £ sets can reconstruct a key without any interaction. Since
L < (g';f;l), then there are £ sets that contain user 5. Choosing £ such sets, we
can apply Lemma 5 to the transformed scheme. So, by Lemma 5. the cardinality
of the domain of pieces of user ¢ in the transformed scheme at least |S|*. By
the transformation, the cardinality of the domain of pieces in the transformed
scheme is at most the cardinality of the domain of pieces in the 7-restricted
secure scheme. Therefore, the cardinality of the domain of pieces of every user
in the T-restricted scheme is at least |S|*. g

This lower bound is not tight. For example, we can prove that for a one-time
(2,1)-scheme, the domain of pieces has to be bigger than |S]. We believe that
for (2,1)-schemes the lower bound can be improved to |S|?> (which is the upper
bound).

Acknowledgement Thanks to Amir Herzberg for helpful discussions on these top-
ics.
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