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Preface

The 16th International Conference on Implementation and Application of Au-
tomata (CIAA 2011) was held at the Université François Rabelais Tours, in
Blois, France, during July 13–16, 2011. It was co-located with the 9th Inter-
national Workshop on Finite-State Methods and Natural Language Processing
(FSMNLP 2011) that was held during July 12–15, 2011. The previous CIAA con-
ferences were held in London, Ontario (1996 and 1997), Rouen (1998), Potsdam
(1999), as WIA workshops, and then in London, Ontario (2000), Pretoria (2001),
Tours (2002), Santa Barbara (2003), Kingston (2004), Nice (2005), Taipei (2006),
Prague (2007), San Francisco (2008), Sydney (2009), and Winnipeg (2010).

The CIAA meeting is a cornerstone forum for researchers, application devel-
opers, and users of automata-based systems. It includes applications of automata
in, for example, computer-aided verification, natural language processing, pat-
tern matching, data storage and retrieval, document engineering and bioinfor-
matics, as well as foundational work on automata theory. The editors would like
to pay homage to Derick Wood who has been one of the founders of the CIAA
conference and one of its most devoted promotors. The invited talk of Sheng Yu
recalls the great contribution of Derick to theoretical computer science.

This volume of Lecture Notes in Computer Science contains revised versions
of papers presented at CIAA 2011. The 20 full papers and 4 short papers were se-
lected from 38 submissions. Each submitted paper was evaluated by at least three
Program Committee members, with the help of external referees. We warmly
thank the invited speakers, the authors of contributed papers, as well as the
reviewers and the Program Committee members for their valuable work.

The authors of the papers included in these proceedings come from the follow-
ing countries: Argentina, Belgium, Canada, Czech Republic, France, Germany,
Israel, Italy, Republic of Korea, Poland, Russian Federation, United Arab Emi-
rates, UK and USA.

We thank EATCS and ACL for their scientific sponsorship and Univer-
sité François Rabelais Tours, CNRS, Région centre, Ville de Blois, Université
de Rouen, Agglopolys Blois, Ministère de l’enseignement supérieur et de la
recherche, Université Paris-Est Marne-la-Vallée, Entreprise Humanis, Université
d’Orléans, and MAIF for their generous financial support.

We are indebted to Alfred Hofmann and Anna Kramer from Springer for the
help in producing this volume.

May 2011 B. Bouchou-Markhoff
P. Caron

J.-M. Champarnaud
D. Maurel
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Denis Béchet, Alexandre Dikovsky, and Annie Foret

Bouma2 – A High-Performance Input-Aware Multiple String-Match
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Erez Buchnik

Random Generation of Deterministic Acyclic Automata Using Markov
Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Vincent Carnino and Sven De Felice

Variable and Clause Ordering in an FSA Approach to Propositional
Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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Derick Wood: Always in Our Hearts

Sheng Yu

Department of Computer Science, The University of Western Ontario
London, Ontario, Canada N6A 5B7

syu@csd.uwo.ca

Professor Derick Wood passed away on October 4, 2010. He was only seventy
year old. His death was a great loss to his family, friends, colleagues and stu-
dents, especially to his beloved wife Mary. He left us many interesting research
results, more than three hundred publications [1], including three monograph
and textbooks [3,4,5], and a lot of vivid memories of an energetic, thoughtful,
humorous, careful, and decisive Derick Wood.

Derick was a world-known outstanding researcher. His research was in a num-
ber of areas of theoretical computer science, including automata and formal lan-
guage theory, theory of parsing, data structure and algorithms, computational
geometry, and document processing.

In his early research career, he was a member of the well-known MSW (Maurer-
Salomaa-Wood) club. Together they published about thirty papers on grammar
forms and other topics in language theory.

He was one of the most important initiators of the Grail project, which is a
computational system for automata and formal language objects. He was also
one of the creators of this conference series, which was formerly called Workshop
on Implementing Automata (WIA) and is now called International Conference
on Implementation and Application of Automata (CIAA) since 2000.

I have known Derick for almost thirty years. I first met Derick in 1983 when
I was a PhD student at the University of Waterloo. I had already heard about
him through Arto Salomaa and was considering him as a potential supervisor
of my PhD thesis. Although he did not become my supervisor, we were pretty
close both academically and socially. He was on my thesis advisory committee
and I lived in a room of his house for a number of years. Later he moved to
the University of Western Ontario. We became colleagues at the Department of
Computer Science there.

During the period of time when Derick was with the University of Waterloo,
his main research area was in algorithm and computational geometry. He was also
writing his book in the theory of computation (entitled Theory of Computation)
at that time. Quite often he talked to me about his book and asked me to
provide examples for certain problems in the book. He spent quite much time in
writing the book, which was very well written and was popular as a textbook in
a number of universities.

When Derick was with the University of Western Ontario, his research inter-
ests gradually shifted back to automata and formal language theory. We applied
successfully for an NSERC Strategic Grant for automata implementation, espe-
cially, for the development of the Grail system. The grant was very important

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 S. Yu

for the development of the Grail project at that time and the Grail+ project
later.

Another important collaboration between Derick and myself was the creation
of the conference series of CIAA (WIA). We successfully organized the first con-
ference in 1996 at Western [2]. Since then, the conference series has taken place in
many different countries in North America, Europe, Africa, Asia, and Australia.
The conference provides a forum for researchers to present their results in au-
tomata application and implementation, which is an important new direction in
automata and formal language research. In recent years, many new applications
of automata have appeared in natural language and speech processing, software
engineering, parallel processing, etc. Automata used in those applications can
be very large. Similar to the situation in the 1960’s and 1970’s, automata the-
ory has been again motivated heavily by applications. The implementation of
automata has become an important issue due to the large size of automata used
in new applications. Derick was the initial steering committee chair of the CIAA
(WIA) conference series. He showed his great foresight in automata research and
studies.

After Derick moved to Hong Kong, we still visited each other at least once a
year for research collaboration.

Derick was very creative in research in general. He was quick to come out new
ideas. He was very conscious about the meaningfulness of his research topics.
His contribution in research was significant and had a great influence.

He supervised successfully a number of PhD students who became excellent
researchers. Those students included Greg Rawlins, Tony Lai, Helen Cameron,
Vladimir Estivill-Castro, Xinxin Wang, and Yo-Sub Han.

Personally, he was warm hearted, straightforward, and easy-going. I consider
him a great teacher and a role model in research, and a good friend in life.

Although Derick has left this world, his remarkable vision in research, his
great sense of humour, and his joyful demeanor will always live in our hearts.

References
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Streamable Fragments of Forward XPath

Olivier Gauwin3 and Joachim Niehren1,2

1 Mostrare project, INRIA & LIFL (CNRS UMR8022)
2 INRIA, Lille

3 University of Mons

Abstract. We present a query answering algorithm for a fragment of
Forward XPath on Xml streams that we obtain by compilation to de-
terministic nested word automata. Our algorithm is earliest and in poly-
nomial time. This proves the finite streamability of the fragment of
Forward XPath with child steps, outermost-descendant steps, label tests,
negation, and conjunction (aka filters), under the reasonable assumption
that the number of conjunctions is bounded. We also prove that finite
streamability fails without this assumption except if P=NP.

Keywords: tree automata, pushdown automata, query answering, Xml
streams, XPath, temporal logics for unranked trees.

1 Introduction

Query answering algorithms for XPath on Xml streams received much interest in
the database and document processing communities [2,24,3,22,5,12,29,6,21] and
are currently in the focus of the W3C working groups on Xslt and Xproc [14].
A little surprisingly, the topic is far from being settled given the large remaining
gap between known streamable and non-streamable fragments. The objective of
this paper is to narrow this gap by providing new positive and negative results for
fragments of Forward XPath. Our approach relies on the relationship between
temporal logics for unranked trees [16], which abstracts from the concrete syntax
of XPath, and tree automata for Xml streams [1,20,18].

Streaming is particularly relevant for data collections that are too large to
be stored in main memory. Instead, incremental processing is needed in order
to buffer only small parts of the data collection at every time point. In the
easiest case, a stream is a word over some finite alphabet and a query selects
some elements of this word, for instance all a-positions with two subsequent b’s.
Usually, a query is considered streamable if there exists a one pass algorithm
(see e.g. [26]) that computes the set of query answers with constant memory,
independently of the input stream [28,27]. Note however, that streaming algo-
rithms for element selection queries need to buffer all alive elements, i.e. those
positions which might be selected in some continuations of the stream but not in
others. In the above example, there exists at most one alive a-element at every
time point, so this query can indeed be answered with bounded memory for all
possible input streams.

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 3–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 O. Gauwin and J. Niehren

bib

book book book

author author title

Hopcroft Ullman Intro...

Fig. 1. Sample XML document describing a bibliography

The case of Xml streams is similar except that they contain linearizations
of unranked data trees and that queries select nodes in such trees. Consider
for instance the XPath query /bib/book[author=”Ullman”]/author that selects
all co-authors of Ullman (including himself) in all books of some bibliography
(as illustrated in Fig. 1), or more precisely, all author -children of book -nodes
that have at least one author -child with data value “Ullman”. An author -child
of a book -node is alive, once the corresponding opening tag was seen on the
stream, and as long as the closing book tag was not met and no author -node
with data “Ullman” has been read. For bibliographies, in which all books have
a bounded number of authors, the maximal number of alive nodes is bounded,
so that the above query can be answered with bounded memory. For unusual
bibliographies, however, the number of alive candidates may grow without any
bound. As a consequence, the above query is not streamable in the usual sense
even though it should be intuitively.

We propose the more liberal notion of finite streamability for languages of node
selection queries on unranked trees. Finite streamability allows the memory to
grow polynomially with the number of alive candidates, the size of the query, and
the depth of the tree. In order to enable negative results, we assume in addition
that the computation time per step is polynomial in the above parameters, and
that the memory grows at least linearly with the number of alive candidates.
The latter assumptions hold for all streaming algorithms without compression
tricks for representing sets of alive candidates, an assumption that is satisfied
by all streaming XPath algorithms in the literature so far.

An overview on finite streamability results for XPath fragments is given in
Fig. 2. Despite of the intended weakness of this notion, only few positive results
exist so far. Backward XPath (Bxp) was proved finitely streamable based on
transducers networks [5]. Bxp queries never have any alive candidate since node
selection is always determined at opening time. The second positive result [3] ap-
plies to Fxp (ch,o-ch∗a,∧)thin, a thin fragment of positive Forward XPath on non-
recursive documents, with star-restricted child steps, label-guarded (and thus
outermost) descendants steps, and conjunctions (and thus filters in official XPath
syntax). The only negative result so far got established for Fxp(ch,ns∗,∧,∨),
the fragment of positive Forward XPath with child and following-sibling axes,
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bounded number of ∧ unbounded number of ∧
Bxp yes [5] yes [5]

Fxp (ch,o-ch∗a,∧)thin yes [3] yes [3]

Fxp (ch,∧,¬) yes no

Fxp (ch,o-ch∗a,∧,¬) yes no

Fxp (ch,o-ch∗a,ns,∧,¬) ? no

Fxp (ch,ns∗,∧,∨) ? no [5]

Fxp (ch,ch∗,∧,¬) ? no
Colored results derive from the present paper. We assume here that P �= NP.

Fig. 2. Finite streamability of fragments of XPath

conjunction, and disjunction [5]. There, a counter example from online verifica-
tion [19] was adapted in order to show for a family of queries in this fragment,
that every streaming algorithm answering them must produce a doubly expo-
nential number of states, and thus be of exponential size at least. This result
applies even to Boolean queries (without node selection).

In this paper we study Fxp(ch, o-ch∗a,∧,¬), the fragment of Forward XPath
with child axis, outermost descendant axis, conjunction, and negation. An out-
ermost descendant axis o-ch∗a selects all a-descendants reachable via non-a-
descendants. Outermost constraints on descendant steps are a natural restric-
tion for streaming algorithms as noticed for instance in the Xslt 2.1 definition
[15]. Our first main result is a streaming algorithm for Fxp(ch, o-ch∗a,∧,¬) that
shows that this query language becomes finitely streamable if its queries are
restricted to a bounded number of conjunctions. This result is relevant for the
W3C pipeline language Xproc, for instance, where Forward XPath queries with
at most 3 filters (and thus conjunctions) appear to be enough. Our second main
result is the failure of finite streamability for Fxp(ch,∧,¬) except if P=NP. It
shows the necessity to bound the number of conjunctions theoretically.

We obtain our streaming algorithm by compiling Fxp(ch, o-ch∗a,∧,¬) to de-
terministic nested word automata (dNwas) [1]. These are tree automata process-
ing linearizations of unranked trees in preorder in a single pass, while mixing
top-down and bottom-up determinism. For queries with a fixed number of con-
junctions, our compiler is in polynomial time. Otherwise it is in exponential
time, while still avoiding the usual doubly-exponential blow-up for translating
XPath to deterministic automata [7]. Since the query language defined by dNwas
is finitely streamable [11], the finite streamability follows for all fragments of
Fxp(ch, o-ch∗a,∧,¬) with a bounded number of conjunctions.

Outline. Section 2 introduces Fxp and Section 3 recalls dNwas. In Section 4
we present our compiler from Fxp to dNwas. Section 5 introduces the notion of
finite streamability and states our main results, positive and negative. Further
related work is discussed in Section 6. The short Ciaa version contains only
sketches or ideas of proofs. Complete proofs are available in the long version [9].
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�F1 ∧ F2�t,µ = �F1�t,µ ∩ �F2�t,µ �d(F )�t,µ = {π | ∃π′ ∈ �F �t,µ. (π, π′) ∈ dt}
�¬F �t,µ = nod(t)− �F �t,µ �a(F )�t,µ = {π | a = labt(π)} ∩ �F �t,µ

�true�t,µ = nod(t) �x�t,µ={μ(x)}

Fig. 3. Semantics of Fxp(ch, ch∗,∧,¬) formulas

2 FXP

We present Fxp temporal logics for unranked trees, which abstract from various
aspects of the Forward XPath concrete syntax. More general temporal logics are
reviewed by Libkin in [16] for instance (except for variables that we use for node
selection here such as in hybrid logic).

For a finite label set Σ, we define the set of unranked trees TΣ to be the least
set such that a(t1, . . . , tk) ∈ TΣ if a ∈ Σ, k ≥ 0 and ti ∈ TΣ for all 1 ≤ i ≤ k.
We write nod(t) for the set of nodes of the tree t, ε for its root node, and labt(π)
for the label of node π of t. By cht and ch∗t we denote the child and descendant
relations of t respectively. We will also use the outermost descendant relation
(o-ch∗a)t which navigates to all a-descendants reachable over non-a-descendants.
A monadic node selection query Φ over Σ is a total function that maps trees
t ∈ TΣ to set of tuples of nodes Φ(t) ⊆ nod(t).

The temporal logic Fxp(ch, o-ch∗a,∧,¬) is a query language for node selection
in unranked trees, in which one can talk about outermost a-descendants and
children while using negation and conjunction. The expressions of this logic
are terms with a single fixed free variable x (for the selecting position) over the
ranked signature Δ = {∧,¬, true, x}∪D∪Σ where D = {ch}∪{o-ch∗a | a ∈ Σ}.
These terms have the following form where d ∈ D and a ∈ Σ.

F ::= F1 ∧ F2 | ¬F | true | d(F ) | a(F ) | x

Fxp(ch, o-ch∗a,∧,¬) corresponds to a natural class of Forward XPath expressions
in the official XPath syntax modulo linear time transformations. The XPath
expression /ch∗::a[ch::b]/ch::∗ for instance becomes ch∗(a(ch(x) ∧ ch(b(true)))).
Note that XPath filters are mapped to conjunctions in Fxp.

Given a tree t and a variable assignment μ : {x} → nod(t), we define a set
valued semantics �F �t,μ ⊆ nod(t) for all formulas in Fig. 3. Path expression F
defines the monadic query �F � that selects the following nodes for t ∈ TΣ:

�F �(t) = {μ(x) | ε ∈ �F �t,μ, μ : {x} → nod(t)}

The size |F | is the usual size of term F and its (conjunction) width is the number
of leaves in F .

Smaller fragments of Fxp(ch, o-ch∗a,∧,¬) can be obtained by removing some
of the operators. For instance, we will write Fxp(ch,∧,¬) for the fragment using
only the ch axis, conjunction and negation. The dialect of Fxp(ch, ch∗,∧,¬) is
obtained by allowing for arbitrary descendant axis instead of only outermost
a-descendants.
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3 Deterministic Automata for XML Streams

We recall the notion of deterministic nested word automata (dNwas) [1] fol-
lowing their presentation as streaming tree automata [8], and illustrate how to
run them on Xml streams. Similar kinds of tree automata were proposed for
processing Xml streams already in [20,18,17]. Note that these tree automata
provide an explicit “visual” stack in contrast to standard tree automata.

Xml streams are linearizations of unranked trees. The unranked tree a(b, c)
for instance becomes the Xml stream <a><b></b><c></c></a> where <a> is an
opening tag and </a> a closing tag. The events of the preorder traversal of a
tree t are defined as follows (where op marks opening and cl closing events):

eve(t) = {start} ∪ ({op, cl} × nod(t))

Hence, eve(a(b, c)) = {start, (op, ε), (op, π1), (cl, π1), (op, π2), (cl, π2), (cl, ε)},
where πi denotes here the ith child of the root. All events in eve(t) except for
start can be identified with a precise position in the XML stream for t. The
event set is totally ordered with start as least element. We denote this order
by � and for an event η �= start we write pr≺(η) for the immediately preceding
event wrt. �.

Definition 1. A dNwa is a tuple (Σ,Q , Γ, i, F, δ) where Σ is a finite alphabet,
Q a finite set of states with a distinguished initial state i ∈ Q and final states
F ⊆ Q, Γ a finite set of stack symbols, and δ a set of rules. For each state
q0 ∈ stat and letter a ∈ Σ, there is at most one rule q0

op a:γ−−−−→ q1 in δ, and for
each q0 ∈ Q, a ∈ Σ, and γ ∈ Γ , it contains at most one rule q0

cl a:γ−−−−→ q1.

A configuration of a dNwa A on a tree t consists of an event of t, a state of Q ,
and a stack of elements in Γ . An opening rule q0

op a:γ−−−−→ q1 can be applied to a
configuration that opens some a-node in state q0. In this case, the subsequent
configuration is reached by pushing γ to the current stack, changing the state to
q1, and advancing to the next event. A closing rule q0

cl a:γ−−−−→ q1 can be applied
to a configuration that closes some a-node in state q0. The symbol γ is then
popped from the stack, the current state is changed to q1, and the current event
is advanced by one. It should be noticed that transitions on configurations are
always deterministic.

There is exactly one initial configuration: its event is start, its state i, and its
stack is empty. Furthermore, note that the current stack is always the sequence
of symbols that were pushed to the stack by the ancestors of the current node
and itself. A configuration is accepting if the current event is the closing event
of the root, the current state is final, and the current stack is empty.

More formally, a run r of an dNwa A on a tree t is a pair of functions
r e : eve(t) → Q and rn : nod(t) → Γ , such that re(start) = i and that δ
contains the following rules for all π ∈ nod(t) with a = labt(π), α ∈ {op, cl}
and η = (α, π):

re(pr≺(η))
α a:rn(π)−−−−−−→ re(η)
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0 B 1
op ∗ : 0
cl a : 0

cl a : B
cl b : ∗

op ∗ : B

cl b : ∗

cl a : ∗ op ∗ : 0
cl ∗ : ∗

Fig. 4. A dNwa over Σ = {a, b} with Q = {0, B, 1} and Γ = {0, B}

a

a b a

0

0

0

0

0

0 0

0

B 0

B

B

1

(a) Run on the tree a(a, b, a).

<a> <a> </a> <b> </b> <a> </a></a>
0 0 0 0 0 B 0 B 1

0

0 B0

(b) Same run on Xml stream.

Fig. 5. Run of the dNwa of Fig. 4 on an input Xml document

A run r is successful if re((cl, ε)) ∈ F . The recognized language L(A) is the set
of trees on which A has a successful run. We call an dNwa pseudo-complete if
there is a run on every tree t ∈ TΣ .

For illustration, consider the dNwa in Fig. 4, which recognizes all trees con-
taining some a-node with some b-child. This Boolean query is ch∗(a(ch(b(true))))
in Fxp or [//a/b] in XPath syntax. We will freely use the symbol ∗ to stand
either for an arbitrary letter or an arbitrary stack symbol. The idea of this au-
tomaton is to move to state B when ever closing some b-node and to propagate
this state by passing B to all closing events of following-siblings (except if some
of them contains some a-descendant with some b-child, so that the automaton
can safely go into the successful state 1). The automaton can move to the suc-
cessful state 1 when closing some a-node from state B, since state B can only
be assigned to closing events of children with a previous b-sibling. The run of
this dNwa on tree a(a, b, a) is illustrated in Fig. 5. Stack symbols can be either
annotated to nodes of trees or to edges from opening to corresponding closing
events on Xml streams. The horizontal propagation of B works as follows: at
opening time B is pushed onto the stack and at closing time it is popped from
there.

In order to compute the run of a dNwa A on an Xml stream with tree
t, the current configuration of A needs to be stored at each event of t. This
configuration contains the state of the current event and the sequence of states
annotated to the ancestors of the current node, i.e., the current stack. Note that



Streamable Fragments of Forward XPath 9

the size of the stack is at most depth(t), so that membership to L(A) can be
decided by a streaming algorithm with a memory of size O(|A| + depth(t)).

Evaluation of dNwas encoding dtds or other Xml schemas performs stream-
ing schema validation. A weakness of naive evaluation for testing membership
t ∈ L(A) is the laziness of A in streaming mode: it only detects a-nodes with
b-children when closing the a-node, but could already do so when opening the
b-child. For tree a(a, b, a) for instance, the earliest event is (op, π2) when reading
the first tag <b>. The streaming algorithm from [11] improves on this situation: it
decides membership t ∈ L(A) for dNwas A at the earliest possible event of tree
t while remaining in ptime. In order to find this earliest event, this algorithm
needs to inspect the whole configuration at every event, not only the state.

Automata can also be used to define monadic queries. As before, we fix a
variable x. For every tree t ∈ TΣ and node π ∈ nod(t), we define the canonical
tree t ∗ π ∈ TΣ×2{x} obtained from t by relabeling π with (labt(π), {x}) and all
other nodes π′ with (labt(π′), ∅). More generally, a tree t ∈ TΣ×2{x} is canonical if
exactly one of its nodes has a label in Σ×{x}. A dNwa A with signature Σ×2{x}

defines the query �A� on trees over Σ with �A�(t) = {π ∈ nod(t) | t ∗π ∈ L(A)}.

4 FXP to Deterministic Automata

In this section, we propose a translation of Fxp(ch, o-ch∗a,∧,¬) to dNwas. It
runs in polynomial time if we assume a bound on the number of conjunctions.
Our translation works by induction on the structure of formulas.

In order to avoid exponential blowups, our dNwas will evaluate at most one
subformula at every time point. Consider for instance the formula ch(F ′). As
all axes in F ′ are downwards (this would fail with the next-sibling axis), the
algorithm can always know when closing a child, whether F ′ holds there or not.
Thus, when opening the next child, the test for the previous child is finished.
Therefore F ′ is tested for at most one child at a time. Note that an unbounded
number of overlapping tests would end up in an exponential blowup. The same
invariant also holds for o-ch∗a(F ′) formulas: no nested a-descendants need to be
tested simultaneously for F ′; considering outermost a-descendants is enough.

Proposition 1. For every formula F of Fxp(ch, o-ch∗a,∧,¬), we can build a
dNwa A such that �A� = �F � in time O(|F |2·width(F ) · |Σ|width(F )+1 ·45width(F )).

The automaton construction is by induction on the structure of formulas. Here
we only highlight the main trick necessary that makes the construction polyno-
mial when fixing width(F ). Conjunctions are mapped to automata intersection
and negations to automata complementation, by swapping final states while
assuming pseudo-complete dNwas. Determinism is essential here. Note that
the compilation of conjunctions might produce dNwa of size exponential in
width(F ). The translations of label tests and variables is straightforward.

The main point, where we avoid an important blow up, appears already in
the construction of the automaton for ch(F ′) and similarly for o-ch∗a(F ′). The
idea of the dNwa for ch(F ′) is to run the dNwa A′ testing F ′ on every child of
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(b, V0)

(a, V1) (b, V2)

start

0
0

1

0
0

0
1

failed
run of F ′

dNwa

successful
run of F ′

dNwa

Fig. 6. Successful run of the dNwa recognizing F = ch(F ′)

the root until finding one that satisfies F ′. When running on the subtree rooted
by some child, the algorithm must know when the child will be closed. In order
to do so, it must push a special symbol to the stack when opening the child. It
could do so by pushing a tagged version of the stack symbol γ pushed by A′.
However, this would double the number of node states at each ch operator (as
we also have to use γ below), leading to a global size increase of 2n for formula
chn(true). The trick here, is to push a single new symbol 0, and to recompute
node state γ corresponding to the current run due to determinism: knowing the
initial state of A′ and the label of the child, we can infer the rule of A′ applied
to open this child, and thus γ.

Let A′ = (Σ×2{x}, Q ′, Γ ′, i′, F ′, δ′) be the automaton built for F ′. Automaton
A = (Σ × 2{x},Q , Γ, i, F, δ) for F will produce runs of the form in Fig. 6. It
has three new states Q = Q ′ � {start, 0, 1} and one additional stack symbol
Γ = Γ ′ � {0}.

1. State start is only used as initial state, to open the root node: i = {start}
and a rule start

op (a,V ):0−−−−−−→ 0 is added to δ for all possible (a, V ) ∈ Σ×2{x}.
2. State 0 is used when closing a child of the root, if no matching for F ′ has been

found so far. When a child is opened from 0, we start testing F ′ and assign
node state 0 to this child. We have to add new rules, from rules starting
from the initial state of A′ (note that stack symbol γ are lost):

q1 ∈ i′ q1
op (a,V ):γ−−−−−−−→ q2 ∈ δ′

0
op (a,V ): 0−−−−−−−→ q2 ∈ δ

3. State 1 is universally accepting, so we always stay there once a matching has

been found: 1
α (a,V ):0−−−−−−→ 1 ∈ δ for all (α, a, V ) ∈ {op, cl} × Σ × 2{x}, and

F = {1}.
4. Then a test of F ′ is launched: the set of new rules δ subsumes δ′.
5. When closing a child of the root, we have to check whether the test of F ′

succeeded or not. As argued before, A pushes state 0 when oping a child, so
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Fig. 7. dNwa constructed for ch(a(ch(b(x)))) with Σ = {a, b}

that stack symbol γ pushed by A′ is lost temporarily. But A can recompute
this symbol when closing the child. In case of success, A closes in state 1,
otherwise in state 0.

q′1 ∈ i′ q′1
op (a,V ):γ−−−−−−−→ q′2 ∈ δ′ q1

cl (a,V ):γ−−−−−−−→ q2 ∈ δ′ q2 ∈ F ′

q1
cl (a,V ): 0−−−−−−−→ 1 ∈ δ

q′1 ∈ i′ q′1
op (a,V ):γ−−−−−−−→ q′2 ∈ δ′ q1

cl (a,V ):γ−−−−−−−→ q2 ∈ δ′ q2 �∈ F ′

q1
cl (a,V ): 0−−−−−−−→ 0 ∈ δ

6. Finally, to remain pseudo-complete, we have to propagate state 0 when clos-

ing the root node: 0
cl (a,V ):0−−−−−−→ 0 ∈ δ for all (a, V ) ∈ Σ × 2{x}.

Even though the ideas of the constructions are rather simple, it should be noticed
that dNwas obtained by this construction are often hard to understand. This is
mainly due to the recomputation trick. See Fig. 7 for an example.

5 Streamability of Query Languages

We present the notion of finite streamability of query languages, and apply it to
the query languages defined by dNwas and fragments of Forward XPath.
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Definition 2. A monadic query language for unranked trees in TΣ is a triple
(E, �.�, |.|) that consists of a set E whose elements are called query definitions,
a function from definitions e ∈ E to monadic query �e�, that we call the query
defined by e, and a mapping of query definitions e ∈ E to natural numbers |e|∈N,
that we call the size of e.

How many candidates must be buffered when answering a query Φ on a tree
t? Intuitively, at least all alive candidates need to be stored, where a candidate
π ∈ nod(t) is called alive at an event η ∈ eve(t) if it can be selected in some con-
tinuation of the stream and rejected in other ones. The concurrency concurΦ(t)
of Φ on t is the maximal number of alive candidates at all events.

The main idea of finite streamability is to require that the number of buffered
candidates must be polynomially bounded in the concurrency. In order to do so,
aliveness of some candidates must be decided at some point. Doing this in ptime
in the size of query definitions imposes a serious restriction, that all finitely
streamable query languages must satisfy. In order to obtain lower bounds we
assume that candidate sets are always stored without compression. This property
is satisfied by all streaming algorithms in the literature.

Definition 3. We call a query language (E, �.�, |.|) finitely streamable if there
exists polynomials p0, p1, p2 such that for all query definitions e ∈ E one can
compute in time p0(|e|) a ram machine Me computing �e�, such that

– the space used byMe per step on t ∈TΣ is at most p1(|e|, concur�e�(t), depth(t))
and at least concur�e�(t), and

– the time used byMe per step on t ∈ TΣ is at most p2(|e|, concur�e�(t), depth(t)).

Prior work on earliest query answering provides our first positive result on
streamability for dNwas.

Theorem 1 ([11]). The language of monadic queries defined by dNwas over
Σ × 2{x} is finitely streamable.

Proof. For monadic queries, the streaming algorithm in [11] has the following
costs per step: O(c·|A|2) in time and O(c·d·|A|) in space, where c = concur �A�(t)
and d = depth(t). This algorithm requires the dNwa A to accept only canonical
trees, which can be obtained by intersecting it with a dNwa checking canonic-
ity (this can be done in polynomial time). A ram machine implementing this
algorithm can be built in ptime.

We define the query language Fxp(ch, o-ch∗a,∧(k),¬) which expressions are for-
mulas F of Fxp(ch, o-ch∗a,∧,¬) with less than k conjunctions, i.e. such that
width(F ) ≤ k. For this fragment, the translation provided in Section 4 is in
polynomial time, and thus avoids more general doubly exponential compilation
schemas of XPath expressions into deterministic tree automata [7].

Theorem 2. For every fixed k ≥ 0 and alphabet Σ, Fxp(ch, o-ch∗a,∧(k),¬) is
finitely streamable.



Streamable Fragments of Forward XPath 13

Proof. Let k be fixed. For every formula F in Fxp(ch, o-ch∗a,∧(k),¬), width(F ) ≤
k, so, according to the translation proposed in Section 4 (Proposition 1), there
exists a polynomial p such that for all formulas F of Fxp(ch, o-ch∗a,∧(k),¬) we
can build in time O(p(|F |)) a dNwa A such that �A� = �F �. Hence, finite stream-
ability of queries by dNwas (Theorem 1) can be lifted to Fxp(ch, o-ch∗a,∧(k),¬).

The restriction on the width of formulas is necessary to remain in ptime.

Theorem 3. Fxp(ch,∧,¬) is not finitely streamable, and remains non finitely
streamable when restricted to non-recursive trees, unless P = NP.

Here, we only give a brief sketch of the proof. We first show for all languages
of descending queries that finite streamability implies that query satisfiability is
in polynomial time. This can be shown by proving that aliveness of candidates
must be decided for obtaining finite streamability, so that previous hardness
results for earliest query answering carry over [6,11]. This works under the re-
alistic assumption that the number of alive candidates is a space lower bound
for streaming algorithms. We then show that satisfiability of Fxp(ch,∧,¬) is
NP-hard by strengthening results from [4]. Hence, without assuming P=NP or a
bound on the number of conjunctions, Fxp(ch,∧,¬) cannot be finitely stream-
able, nor any larger query language.

6 Related Work

Our compiler from Fxp(ch, o-ch∗a,∧(k),¬) must avoid the usual doubly expo-
nential blow-up when translating XPath expressions into deterministic tree au-
tomata [7]. One exponential goes away by bounding the number of conjunctions
and all kinds of overlapping tests, for instance when adding ns or ns∗ steps. The
other exponential is circumvented by the restriction to outermost descendants
steps since these can be checked deterministically.

As proved in the current paper, finite streamability of Fxp(ch,∧,¬) continues
to fail even if restricted to non-recursive documents. This shows that the memory
consumption of the two algorithms of [2] and [12] cannot be polynomial in the
number of alive candidates, in contrast to what is stated there1 except if P=NP.
We also note that streaming algorithms for Forward XPath in [22] and [23,24]
do not claim finite streamability. The complexity results stated there count the
maximal number of candidates stored simultaneously by their algorithms, rather
than the maximal number of alive candidates with respect to the query.

Space lower bounds for multi-pass streaming algorithms were shown in [13].
Previous space lower bounds for one-pass streaming algorithms for XPath were
obtained by communication complexity arguments without any assumptions on
compression tricks. Therefore, they remained limited to very specific fragments.
In [2], wildcard-free queries in Fxp(ch, ch∗,∧,¬) are considered under the as-
sumption of an infinite signature. It is shown that the maximal number of closed
1 Authors of [2] and [12] have been notified. The journal version of [2] will take this

remark into account.
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simultaneously alive answer candidates is a lower bound for “mostly all” non-
recursive trees in the sense of instance complexity. In [25], it is shown that for
some queries in Fxp(ch, ch∗,∧) with independent ch predicates, the lower bound
becomes n · c where n is the length of the selecting branch of the XPath expres-
sion, and c is maximal number of concurrently alive candidates. This shows that
even compression tricks do not help for these query languages.

In [10] it was shown that it is decidable in polynomial time for queries
defined by deterministic nested word automata, whether the maximal num-
ber of concurrently alive candidates is bounded. This result can be lifted to
Fxp(ch, o-ch∗a,∧(k),¬) by using our P-time compiler to dNwas.

7 Conclusion

We have shown that Fxp(ch, o-ch∗a,∧,¬) becomes finite streamability when fix-
ing the number of conjunctions. Without such a bound, even Fxp(ch,∧,¬) is
not finitely streamable. Our results reveal some errors in previous work. This
illustrates that they are nontrivial even though proofs are straightforward (once
the translation is set up properly). It should also be noticed that our algorithm
can be extended to support schemas (defined by dtds or dNwas) as well as for
queries selecting tuples of nodes instead of nodes.

In QuiXProc (see www.quixproc.com), a transfer project of Inria and In-
novimax, we are currently working on highly efficient streaming algorithms for
Fxp(ch, o-ch∗a,∧,¬) based on similar dNwa constructions, which enable early
node selection (not necessarily always earliest). First tests with our implemen-
tation, whose source code is freely available at fxp.lille.inria.fr, confirm this ex-
pectation. We are working on improving the integration of these algorithms into
Xproc to industrial quality. We are thus confident to prove the practical rele-
vance of the methods presented here in the near future.
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Abstract. We summarize results on extended finite automata, which
are basically finite state machines with the additional ability to manipu-
late the still unread part of the input. Well-known manipulation functions
are reversal, left-revolving, right-revolving, and circular interchanging, or
even biologically motivated functions as hairpin inversion. We mainly fo-
cus on the computational power of these machines and on the closure
properties by standard formal language operations of the induced lan-
guage families. Moreover, we also discuss several generalizations of this
concept, the natural generalization to hybrid extended finite automata,
which allows several input manipulation functions, and in particular,
extended pushdown automata, which lead to an alternative characteri-
zation of Khabbaz hierarchy of languages. We do not prove these results
but we merely draw attention to the big picture, some of the main ideas
involved, and open problems for further research.

1 Introduction

Finite automata have intensively been studied and moreover, have been extended
in several different ways. Typical extensions in the view of [18] are, for example,
pushdown tapes [10], stack tapes [19], or Turing tapes. The investigations in [18]
led to a rich theory of abstract families of automata, which is the equivalent
to the theory of abstract families of languages (AFL) (see, for example, [26]).
On the other hand, recently in several papers, see [4,5,6,7,8,9], finite state ma-
chines have been extended in quite a different manner. The models considered
there, called extended finite automata, are (nondeterministic) finite state ma-
chines which are enriched with the ability to apply a string operation on the
part of the input that has not been consumed yet. Extended finite automata are
inspired by the model of flip pushdown automata [27] which can flip the contents
of their pushdown stores in certain configurations. The authors in [21] showed
that k + 1 pushdown-flips are better than k, and established an interrelation
between the pushdown-flips and reversal operations on the unprocessed input
of a flip pushdown automaton. This link between storage operations on the one
hand and operations on the unread part of the input on the other hand brought
up the idea of extended finite automata as the simplest model for investigat-
ing typical input operations for themselves. Obviously, with no further limita-
tion on the input operations one can define devices that provide computational
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power beyond that of Turing machines, for example, by defining an operation
to be an oracle for the halting problem. So, there is an interest in natural op-
erations that are somehow feasible. Examples of feasible input operations are
input-reversal, left-revolving, right-revolving, and circular-interchanging. In this
paper we briefly survey some recent results on both extended finite automata and
extended pushdown automata with some of the aforementioned input operations.
We summarize what is known on the computational power of these devices with
respect to each other, and to classical formal language families such as variants
of context-free and context-sensitive languages. Moreover also closure properties
of some language families induced by extended automata are discussed. The rela-
tion between different input operations in the context of hybrid automata, which
are extended automata that are allowed to use more than one particular input
operation during the computation, are considered. Finally, the focus is set to
extended pushdown automata, which for the input operation on reversal nicely
fit to previous work done one iterated pushdown automata [28]. In turn, these
iterated pushdown machines are related to controlled linear context-free lan-
guages [24], which lead to the so called geometric hierarchy of languages [23,24],
that has its name from the geometric series involved in the pumping lemmas for
these language families. Our tour on the subject obviously lacks completeness
due to the fact that this research field is still in its infantile state—we come across
of some of the open problems. More research on extended automata hopefully
closes some of these gaps, and furthermore identifies other language operations
that are of interest not only for theory, but also for applications. We hope that
this survey stimulates further investigations on extended automata and variants
thereof.

2 Extended Finite Automata

In connection with formal languages, strings are called words. Let Σ∗ denote the
set of all words over a finite alphabet Σ. The empty word is denoted by λ, and
we set Σ+ = Σ∗ \ {λ}. For the length of a word w we write |w|; in particular,
the length of the empty word is zero, that is, |λ| = 0. A formal language L is a
subset of Σ∗. We use ⊆ for inclusions and ⊂ for strict inclusions. The uniform
definition of an extended finite automaton reads as follows:

A (nondeterministic) extended finite automaton is a 6-tuple (Q, Σ, δ, Δ, q0, F )
where Q is a finite set of states, Σ is the input alphabet, δ and Δ are mappings
from Q × (Σ ∪ {λ}) to 2Q, where δ is called the transition function, and Δ is
called the input operation function, q0 ∈ Q is the initial state, and F ⊆ Q is the
set of accepting states. Furthermore, A is said to be λ-free, if both δ and Δ are
mappings from Q × Σ to 2Q.

The different operations on the input are formally distinguished by different
interpretations of the mapping Δ. To this end, we consider configurations of
extended finite automata A = (Q, Σ, δ, Δ, q0, F ) to be tuples (q, w), where q ∈ Q
is the current state, and w ∈ Σ∗ is the yet unread part of the input. The
transition of a configuration into a successor configuration can be induced by
either δ or Δ:
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1. Let a be in Σ ∪ {λ} and w in Σ∗. If p is in δ(q, a), then (q, aw) �A (p, w).
Those transitions are referred to as ordinary transitions.

2. An input operation is performed by applying the mapping Δ. Concise formal
definitions of the different possible interpretations of the mapping Δ are
given as follows (cf. Figure 1). The precise interpretation depends on the
type of the automaton in question. For a ∈ Σ∪{λ}, b, c ∈ Σ, w ∈ Σ∗, and p
in Δ(q, a),

a b c d· · · · · ·

Input-reversal

a d· · · b · · · c

Left-revolving

a d· · · b · · · c

Right-revolving

a d· · · b · · · c

Circular-interchanging

Fig. 1. Input operations: input-reversal, left-revolving, right-revolving, and circular-
interchanging

(a) an input-reversal transition is defined by (q, aw) �A (p, wRa), if a ∈ Σ,
and (q, bw) �A (p, wRb) and (q, λ) �A (p, λ), if a = λ,

(b) a left-revolving transition is defined by (q, a) �A (p, a) and (q, awb) �A

(p, baw),
(c) a right-revolving transition is defined by (q, aw) �A (p, wa), if a ∈ Σ,

and (q, bw) �A (p, wb) and (q, λ) �A (p, λ), if a = λ, and
(d) a circular-interchanging transition is defined by (q, a) �A (p, a) and

(q, awb) �A (p, bwa), if a ∈ Σ, and (q, cwb) �A (p, bwc) and (q, λ) �A

(p, λ), if a = λ.

Further interpretations of the Δ transition are possible and some will be briefly
discussed in Sections 3 and 5.

The corresponding transitions are referred to as input transitions. Note that the
formal definitions involve both λ-transitions (that is “blind” input operations)
and those depending on the input symbol which is currently read. Especially, for
any operation, if p ∈ Δ(q, λ), then (q, λ) �A (p, λ). For any extended finite au-
tomaton, whenever there is a choice between an ordinary or an input transition,
the automaton nondeterministically chooses the next move. A deterministic ex-
tended finite automaton is an extended finite automaton for which there is at
most one choice of action for any possible configuration. This includes a unique
interpretation of the mapping Δ. As usual, the reflexive transitive closure of �A

is denoted by �∗A. The subscript A will be dropped from �A and �∗A whenever the
meaning remains clear. We define the language accepted by an extended finite
automaton A to be
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L(A) = {w ∈ Σ∗ | (q0, w) �∗A (q, λ) with q ∈ F }

A nondeterministic extended finite automaton whose input operation func-
tion is interpreted as input-reversal, left-revolving, right-revolving, or circular-
interchanging is called an input-reversal (ir-NFA), left-revolving (lr-NFA),
right-revolving (rr-NFA), or circular-interchanging finite automaton (ci-NFA).
The corresponding deterministic types of automata are abbreviated ir-DFA,
lr-DFA, rr-DFA, and ci-DFA, respectively. We denote the family of languages
accepted by devices of type X by L (X).

Let us recall an example that can be found in [5], which shows that already
input-reversal deterministic finite automata can accept context-free languages.

Example 1. The context-free language {wcwR | w ∈ {a, b}∗ } is accepted by the
ir-DFA A = ({q0, qa, qb, q

′
a, q′b, qf}, {a, b, c}, δ, Δ, q0, {qf}), where

1. δ(q0, a) = {qa}
2. δ(q0, b) = {qb}
3. δ(q′a, a) = {q0}

4. δ(q′b, b) = {q0}
5. Δ(qa, λ) = {q′a}
6. Δ(qb, λ) = {q′b}

7. δ(q0, c) = {qf}

From state q0 automaton A tries to read matching symbol pairs one symbol
from each end of the input. The transitions 1 and 2 allow A to store the currently
read input letter in the finite control in order to search for a corresponding
mate letter, which must be at the end of the input. Then with transitions 5
through 8 the symbol at the end of the input is brought to the left, and with
transitions 3 and 4 it is verified. Then the search process is repeated. Finally,
with transition 9 the sole symbol c is read while A changes to the accepting state.
It is straightforward to modify the construction such that the nondeterministic
context-free language {wwR | w ∈ {a, b}∗ } is accepted some ir-DFA. ��

3 Computational Capacity

The definition of deterministic extended finite automata allows λ-transitions of δ
as well as of Δ. They have been included for the sake of compatibility and con-
venience, since often constructive proofs are much more readable if λ-transitions
are used. In [5,6] it was shown that as in the case of ordinary finite automata
λ-moves do not increase the computational power of extended finite automata,
regardless whether the underlying device is deterministic or nondeterministic.

Theorem 2. For a nondeterministic extended finite automaton A of any type,
one can construct a λ-free extended finite automaton B of the same type, such
that L(A) = L(B). If A is deterministic, so is B. The statements remain true if
a bounded number of input transitions is allowed.

It is worth mentioning that if the number of non-ordinary moves is bounded to
a constant, then extended finite automata of any type can only accept regular
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languages. Moreover, in [5] it was even shown that providing finite automata with
an unbounded number of circular-interchanging operations does not increase the
power beyond regular languages.

Theorem 3. L (ci-DFA) = L (ci-NFA) = REG.

What concerns the computational power of the remaining extended finite au-
tomata, if the number of non-ordinary moves is not restricted? Let’s start with
input-reversal automata, since the nondeterministic automata give rise to an al-
ternative characterization of a well known language family. In [6] it was shown
that nondeterministic ir-NFAs characterize the family of linear context-free lan-
guages (cf. Figure 2).

CSL

L (bi-NFA)

CFL L (lr-NFA) L (bi-DFA) L (rr-NFA)

DCFL LIN = L (ir-NFA) L R(rr-NFA) L (lr-DFA) L (rr-DFA)

DLIN L R(rr-DFA)

REG = L (ci-DFA) = L (ci-NFA)

Fig. 2. Inclusion structure. All inclusions depicted are strict, and families that are not
linked by a path are pairwise incomparable. CSL, CFL, LIN, DCFL, DLIN, and REG
denote the families of context-sensitive, context-free, linear context-free, deterministic
context-free, deterministic linear context-free, and regular languages. If X is some
family of revolving automata, then L R(X) = {LR | L ∈ L (X) }.

Theorem 4. L (ir-NFA) = LIN.

For the language family L (ir-DFA) it turns out that it properly includes the
regular languages and is incomparable to DLIN [4]. Together with the results
from [6,7] one obtains that L (ir-DFA) is properly included in the family of lin-
ear context-free languages, that is, L (ir-DFA) ⊂ L (ir-NFA). In fact, for all
types of extended finite automata considered the question whether determin-
istic machines are as powerful as nondeterministic ones is answered in similar
veins [6,7].

Theorem 5. Let x ∈ {ir, lr, rr}. Then L (x-DFA) ⊂ L (x-NFA).
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Before we survey the relation between different modes in more detail, we in-
troduce a slight generalization of extended finite automata, namely bi-revolving
finite automata, where both left- and right-revolving steps can be performed—
this is the first step towards a hybrid automata model, whose computational
power will be discussed at the end of this section. The corresponding nondeter-
ministic and deterministic families of bi-revolving automata are abbreviated by
bi-NFA and bi-DFA. It will turn out that this hybrid model is somehow the most
general one that one can get for the input operations in question. Then in [4,5,9]
the following (strict) chains of inclusion relations were shown.

Theorem 6. The following statements remain valid also for deterministic ex-
tended finite automata:

1. L (bi-DFA) ⊂ L (bi-NFA) ⊂ CSL.
2. REG = L (ci-NFA) ⊂ L (rr-NFA) ⊂ L (bi-NFA)
3. L (ir-NFA) ⊂ L (lr-NFA) ⊂ L (bi-NFA).

Among the depicted inclusions in Figure 2 also new language families of the
form L R(X) = {LR | L ∈ L (X) } were introduced and investigated. The
remaining inclusions can be found in [5]. Here it is interesting to note hat there
is a certain asymmetry in the statements when reversal of language families are
involved. Observe, that in [5] it was shown that the language families induced by
both deterministic and nondeterministic bi-revolving automata are closed under
reversal and hence L (bi-DFA) = L R(bi-DFA) and L (bi-NFA) = L R(bi-NFA).

Theorem 7. REG ⊂ L R(rr-DFA) ⊂ L R(rr-NFA) ⊂ L (lr-NFA).

Most of these inclusions are shown by straightforward simulations, while the
strictness mostly relies on involved pumping arguments. Comparing to pumping
arguments on ordinary finite automata, in the case of extended finite automata
one has to face the problem that although the automaton has a one-way input
head, an input symbol can be read several times due to the application of a input
operations. Nevertheless, by appropriately designing the witness languages one
can overcome this subtle problem in most cases. We give a small example, which
we literally take from [5]:

Theorem 8. The linear context-free language L = { anbn | n ≥ 0 } cannot be
accepted by any rr-NFA.

Proof. Assume that L is accepted by a λ-free nondeterministic right-revolving
finite automaton A = (Q, {a, b}, δ, Δ, q0, F ).

The proof is done in two steps: Let n = |Q|. First we show that the number
of ordinary steps reading a sequence of a’s between two consecutive revolving
moves is bounded by n. This is obvious, because otherwise one state is repeated
at least once due to the pigeon hole principle. Thus, cutting this loop leads to a
valid computation. Therefore, whenever the original word is accepted, also the
new word induced by the cut loop is also accepted. Since after the cutting the
number of a’s is not equal to the number of b’s on the input the automaton
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accepts a word not of the appropriate form. Therefore, in the forthcoming we
may assume that the automaton A fulfills the above mentioned property.

Second, consider an accepting computation of the right-revolving automa-
ton A on input w = an(n+1)+1bn(n+1)+1. Because of the above mentioned fact,
there are at least n + 1 positions where a right-revolving move is started by
reading a letter a. Because of the pigeon hole principle we find a state, say p,
which appears at least twice. Thus, starting the computation in state q0 with
input w, the first appearance of state p is reached by i ordinary moves and j
right-revolving moves (inter-winded), with 0 ≤ j < n + 1. Hence we have

(q0, w) = (q0, a
n(n+1)+1bn(n+1)+1) �∗A (p, an(n+1)+1−i−jbn(n+1)+1aj).

Then from the latter configuration state p is reached a second time by k ordinary
moves and � right-revolving moves (inter-winded) with 1 ≤ � ≤ (n + 1) − j.
Therefore we find

(p, an(n+1)+1−i−jbn(n+1)+1aj) �∗A (p, an(n+1)+1−i−j−k−�bn(n+1)+1aja�).

Since we are considering an accepting configuration, there is a state qf ∈ F such
that

(p, an(n+1)+1−i−j−k−�bn(n+1)+1aj+�) �∗A (qf , λ).

Observe, that j + � ≤ (n + 1) and i + j + k + � ≤ n(n + 1). Now we can fool the
automaton A by constructing an accepting computation for the word

w′ = an(n+1)+1−k−�bn(n+1)+1a�

by cutting out the above considered loop in the computation. For this word we
have the accepting computation

(q0, w
′) = (q0, a

n(n+1)+1−k−�bn(n+1)+1a�) �∗A
(p, an(n+1)+1−i−j−k−�bn(n+1)+1a�aj) =

(p, an(n+1)+1−i−j−k−�bn(n+1)+1aj+�) �∗A (qf , λ)

of A. Since the constructed word w′ is not a member of L we obtain a contra-
diction. ��

In order to complete the picture drawn in Figure 2 we list some of the known
incomparability results. Observe, that the previous theorem already shows that
there is a language accepted by an lr-NFA but not by any rr-NFA. On the other
hand, in [5] it was shown that, for example, the language

L = { a2nbv | n ≥ 0, v ∈ {a, b}∗, and n + |v|a = 1 + |v|b }

is accepted by some rr-DFA but cannot be accepted by any lr-NFA. Thus, the
family L (lr-NFA) is incomparable with L (rr-NFA). For the language families
under consideration the following more general result holds:
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Theorem 9. Let X and Y be any type of extended finite automata. Whenever
the two language families L (X) (L R(X), if X ∈ {rr-NFA, rr-DFA}) and L (Y )
are not linked by a (directed) path in Figure 2, then these languages families are
incomparable.

The comparisons of the language families in question with some well-known
families of the Chomsky-hierarchy read as follows [5]:

Theorem 10. The language families L (lr-NFA), L (rr-NFA), L R(rr-NFA),
and L (bi-NFA), are incomparable with DLIN, LIN, DCFL, and CFL. A similar
statement is valid for the corresponding language families induced by determin-
istic extended finite automata.

Besides inclusions and incomparability results also closure and non-closure prop-
erties under standard language operations were discussed for some families of ex-
tended finite automata. It turns out that, for instance, right-revolving determin-
istic finite automata form a non-reversal and non-intersection closed anti-AFL,
what is surprising for a language family defined by a deterministic automaton
model. Although anti-AFLs are sometimes referred to an “unfortunate family
of languages” there is linguistical evidence that such language families might be
of crucial importance, since in [11] it was shown that the family of natural lan-
guages is an anti-AFL. Hence the question for uncommon automata models such
as, for example, extended finite automata with revolving, that induce anti-AFLs
seem to be worth to consider. Particularly, deterministic language families were
considered [5]. Here we list some closure properties of these language families in
Table 1.

Table 1. Closure properties of families of deterministic revolving automata languages;
entry + means the the language family is closed under the operation under considera-
tion, − means that it is not closed, and ? means that the answer is not known

Operation

L (·) ∪ ∩ ∼ ∩reg R · ∗ h−1 hλ

lr-DFA − − − ? − − − − −
rr-DFA − − − − − − − − −
bi-DFA − − − ? + − − − −

Nevertheless, one can also find some partial results on nondeterministic ex-
tended finite automata with revolving operations [5,7,9]. Unfortunately, here the
picture is far from being complete.

In order to gain a better understanding of the computational power of ex-
tended finite automata with different input operations, also a generalization to
so-called hybrid extended automata was considered [9]. We have already seen
an example of a hybrid machine, namely bi-revolving automata. More generally,
instead of having a single operation the automaton may choose from a finite
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set O of operations during the computation. In [9] the set O = {ir, lr, rr, ci, cs}
is considered, where the circular-shift transition (cs) is a generalization of left-
and right-revolving defined for a ∈ Σ ∪ {λ} and w ∈ Σ∗ and p ∈ Δ(q, a) by
(q, a) �A (p, a) and (q, aw) �A (p, vau), for all u and v with w = uv. For the de-
pendencies of modes the following picture emerges. Note that a similar statement
as Theorem 2 also applies for hybrid finite automata [9].

Theorem 11. Let X ⊆ {ir, lr, rr, ci, cs}. Then L (X-NFA) ⊂ CSL.

Moreover, it turns out that hybrid extended finite automata without the circular-
interchanging operation, but with at least two operations from the set {ir, lr, rr}
characterize the family of languages accepted by bi-revolving finite automata [7],
which we came across already above.

Theorem 12. For any X ⊆ {ir, lr, rr, cs} with |X ∩ {ir, lr, rr}| > 1, we have

L (X-NFA) = L (bi-NFA).

Observe, that a bi-revolving nondeterministic finite automaton is an {lr, rr}-
NFA in the terminology of hybrid extended finite automaton. Thus, this family
of languages is the most general family that can be obtained by operations from
the set O \ {ci}. What concerns the computational power of hybrid automata
with the circular-interchanging operation? Although circular-interchanging fi-
nite automata characterize the family of regular languages, combining circular-
interchanging with some other operation may increase the computational power
of the underlying device. The following results were obtained in [9]:

Theorem 13. 1. L (ir-NFA) = L ({ir, ci}-NFA).
2. L (rr-NFA) ⊂ L ({rr, ci}-NFA).
3. L (cs-NFA) ⊂ L ({cs, ci}-NFA).

The question on the exact power of hybrid finite automata which are allowed
to perform, among others, the circular-interchanging operation, in particular in
combination with the left-revolving operations was left open in [9]. As a side
result in that paper the location of the family L (cs-NFA) within the hierarchy
of hybrid language families was obtained.

Theorem 14. For x ∈ {lr, rr}, we have REG ⊂ L (cs-NFA) ⊂ L (x-NFA) ⊂
L ({x, cs}-NFA).

Not much is known either on the computational power of hybrid finite automata.
Only a few incomparability results show up in [9] with some classes from the
Chomsky hierarchy. Moreover, a wide open field of further research is that of
deterministic variants of hybrid automata. It seems that here the picture of the
language families induced maybe much more diverse, since some of the techniques
used in [9] seem to be not applicable for deterministic devices. Nevertheless, an
exact picture is still missing. Furthermore, research on extended and hybrid
automata hopefully identifies other languages operations that are of interest not
only for theory, but also for applications.
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4 Extended Pushdown Automata

Next we consider input operations for pushdown automata and some computa-
tional models beyond. The theory of extended pushdown automata is much less
developed than that for extended finite automata. In fact, only the input-reversal
operation was investigated for pushdown automata and generalizations [6]. Ex-
tended pushdown automata are analogously defined as ordinary pushdown au-
tomata with the additional ability to perform certain input operations on the
unread part of the input. Such a definition generalizes to iterated pushdown
automata [28] that come into play later. These definitions are in perfect corre-
spondence to the definition of extended finite automata. We give a small example
literally taken from [6]:

Example 15. Let A = ({q0, q1}, {a, b}, {X, Y, Z0}, δ, Δ, q0, Z0, ∅) be an input-re-
versal pushdown automaton, where

1. δ(q0, a, Z0) = {(q0, Z0X)}
2. δ(q0, b, Z0) = {(q0, Z0Y )}
3. δ(q0, a, X) = {(q0, XX)}
4. δ(q0, b, X) = {(q0, XY )}
5. δ(q0, a, Y ) = {(q0, Y X)}

6. δ(q0, b, Y ) = {(q0, Y Y )}
7. δ(q1, a, X) = {(q1, λ)}
8. δ(q1, b, Y ) = {(q1, λ)}
9. δ(q1, λ, Z0) = {(q1, λ)}

and Δ(q0) = {q1} that accepts by empty pushdown the non-context-free lan-
guage L = {ww | w ∈ {a, b}∗}. This is seen as follows.

The transitions (1) through (6) allow A to store the input on the pushdown.
If A decides that the middle of the input string has been reached, then the input
reversal operation specified by Δ(q0) = {q1} is selected and A goes to the state q1

and tries to match the remaining input symbols with reversed input. This is done
with the transitions (7) and (8). If successful, A will empty its pushdown with
transition (9) and therefore accept the input string (by empty pushdown) if and
only if the guess of A was correct and the input is of the form ww.

First observe, that by a simple adaption of the proof for ordinary pushdown
automata (see, for example, [22]) one can show that for nondeterministic input-
reversal pushdown automata acceptance by empty pushdown is equally powerful
as acceptance by final state (even with exactly the same number of input rever-
sals). Moreover, the presented example nicely contrasts the results on extended
finite automata with a constant number of revolving (or input-reversal) steps,
since input-reversal pushdown automata with a single input reversal already ac-
cept non-context-free languages. In fact, it was shown in [6] that input-reversals
on pushdown automata induce a strict hierarchy of language families.

Theorem 16. Let k be a natural number. Then there is a language L, which
is accepted by a (k + 1)-input-reversal (deterministic) pushdown automaton, but
cannot be accepted by any k-input-reversal pushdown automaton.

The proof of the hierarchy follows closely the proof of a hierarchy on the number
of pushdown flips for flip-pushdown automata, which is based on the so called
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“flip-pushdown input-reversal” theorem [21]. There it is shown that pushdown
flips can be undone by considering a more complicated language, where certain
suffixes of the original language are reversed. Hence trading pushdown flips by
input reversals. A corresponding statement to the “flip-pushdown input-reversal”
theorem is also valid for input-reversal pushdown automata and can be found
in [6]. The statement reads as follows:

Lemma 17. Let k be a natural number. Language L is accepted by an input-
reversal pushdown automaton A = (Q, Σ, Γ, δ, Δ, q0, Z0, ∅) with k + 1 reversals
if and only if the language

LR = {w$vR | (q0, w, Z0) �∗A1
(q1, λ, Z0γ) with no reversals, q2 ∈ Δ(q1),

and (q2, v
R, Z0γ) �∗A1

(q3, λ, λ) with k reversals }

is accepted by an input-reversal pushdown automaton B with k reversals, where $
is a new symbol not contained in Σ.

Finally the proof of the hierarchy stated in Theorem 16 runs along the following
lines: Assume to the contrary, that a specific language Lk+1 is accepted by
some input-reversal pushdown automaton A with exactly k input reversals. Then
applying Lemma 17 exactly k times, results in a context-free language L. Now
the idea is to pump an appropriate word from the context-free language and to
undo the input reversals, in order to obtain a word that must be in Lk+1. If the
pumping is done such that no input reversal boundaries which are marked by
appropriate symbols in the word are pumped, then the input reversals can be
undone. By applying a generalization of Ogden’s lemma, which is due to Bader
and Moura [3] and incooperates excluded positions, one can succeed with this
task. For the exact definition of the languages Lk and more details on the proof
we refer to [6].

When we turn to an unbounded number of input-reversal operations on push-
down automata a nice and unexpected link to Khabbaz geometric hierarchy
of languages [24], which has its name from the geometric series involved in
the pumping lemmas for these language families, shows up. The levels of the
geometric hierarchy of languages are characterized by, for example, controlled
linear context-free grammars [23], context-free based finite-reversal checking-
stack automata [20], or alternatively by iterated one-turn pushdown automata
where the innermost pushdown is unrestricted [28]. Intuitively, for some family
of languages L , an L -controlled linear context-free grammar consists of a linear
context-free grammar G and a control language L in L , where the terminals of L
are interpreted as labels of rules of G. Then the language generated by G under
L-control is the set of all terminal words that can be generated by a derivation
such that the labels of the sequence of rules applied form a word in L. The con-
trol of linear context-free grammars can be iterated by starting with L and by
taking the result of the kth step as family of control languages for the (k + 1)st
step. For k ≥ 1, let CTRLk(L ) refer to the kth level of this hierarchy and define
CTRL0(L ) = L . In this way, we obtain two hierarchies, namely CTRLk(LIN)
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and CTRLk(CFL). Observe, that CTRL1(CFL) and CTRL1(LIN) are equal to
the families of linear context-free and restricted indexed languages [17]. Origi-
nally, indexed languages were introduced in [1,2] as a generalization of context-
free grammars. Then these base levels of this hierarchy of controlled language
families are characterized by input-reversal (one-turn) pushdown automata [6].

Theorem 18. The language L is accepted by some input-reversal (one-turn,
respectively) pushdown automaton if and only if L is a linear context-free (re-
stricted, respectively) indexed language.

This correspondence extends further, on the basis of the previously mentioned
iterated pushdown automata. Note that a language L belongs to CTRLk(LIN)
(CTRLk(CFL), respectively), for k ≥ 1, if and only if L is accepted by a k-
iterated one-turn pushdown automaton (where the innermost pushdown is un-
restricted, respectively) [28]. By the relation of input-reversal automata and
controlled linear context-free languages we can show that a (k + 1)-iterated
one-turn pushdown automaton (where the innermost pushdown is unrestricted,
respectively) can be simulated by an input-reversal k-iterated one-turn push-
down automaton (where the innermost pushdown is unrestricted, respectively)
and vice versa, thus trading one-turn pushdown iteration by input-reversal [6].

Theorem 19. Let k be some natural number. Then language L is accepted by
some input-reversal k-iterated one-turn pushdown automaton if and only if L is
accepted by some (k + 1)-iterated one-turn pushdown automaton. The statement
remains true in case the first storage is an unrestricted pushdown.

Not much further is known for input-reversal pushdown automata, except for
some computational complexity considerations on the fixed membership per-
formed in [6]. The following completeness results were obtained, which nicely fit
to known results for the complexity of fixed membership for linear context-free
and context-free languages.

Theorem 20. The following problems are complete with respect to deterministic
logspace many-one reductions: Let k ≥ 1 be some natural number. (1) The fixed
membership problem for k-input-reversal one-turn pushdown languages, where
the first storage is an unrestricted pushdown, is LOG(CFL)-complete and (2)
the fixed membership problem for k-input-reversal one-turn pushdown automata
languages is NL-complete.

For extended finite automata also some partial complexity results are known. In
particular, the fixed membership for X-NFA, for X ⊆ {ir, lr, rr, ci, cs} is strictly
contained in CSL = NSPACE(n) [25] and belongs to the complexity class NP. A
closer look on Figure 1 reveals that for instance the fixed membership problem
for ir-NFA is complete for NL. The complexity of other types of extended finite
automata is untouched yet. Research into the direction of other automata and
formal language relevant problems such as, for example, general membership
non-emptiness, infiniteness, universality, etc., still lack investigations. Also the
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whole field of extended pushdown automata seems to be worth to be consid-
ered further. The study of input-reversal pushdown automata and their iterated
versions is just the first step into this direction.

5 Conclusions

We have surveyed some recent results on extended finite automata and extended
pushdown automata and variants thereof. Here the extension of the underly-
ing machine is the ability to perform operations on the unread part of the in-
put. Mostly we have focused on the operations of reversal, left-revolving, right-
revolving, and circular-interchanging. The results presented are far from being
complete, but a large interesting picture of the power and limitations of these
new devices has already emerged yet. Finally, it is worth mentioning that ex-
tended automata (in general) are a host of natural problems due to the freeness
of the interpretation of the input transition function Δ. For instance, recently
in [8] so called hairpin finite automata were investigated as a simple model for
the biological process to manipulate molecules. Formally the hairpin inversion
(hairpin loop with pointers) which reverses a substring between a pointer a is
defined for w ∈ Σ+ as follows

hi(w) = { xayRaz | w = xayaz, for x, y, z ∈ Σ∗ and a ∈ Σ }.

Besides hairpin inversion, also other simple operations such as ld (loop with
directed repeat of pointers) which deletes a substring between two occurrences of
a pointer, and dlad (double loop with alternating direct repeat of pointers) which
swaps two substrings marked by pointer-pairs, were already investigated from
a purely language theoretical perspective (see, for example, [12,13,14,15,16]).
Nevertheless, in combination with finite automata in the framework of extended
machines, these natural operations are still untouched from a theoretical as well
as a practical point of view.
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Abstract. Considering that the unranked tree languages L(G) and
L(G′) are those defined by given non-recursive XML types G and G′, this
paper proposes a simple and intuitive method to verify whether L(G) is
“approximatively” included in L(G′). Our approximative criterion con-
sists in weakening the father-children relationships. Experimental results
are discussed, showing the efficiency of our method in many situations.

1 Introduction

Today, XML is the lingua franca for data exchange on the web. To allow in-
teroperability among systems, one usually needs to obtain partial information
from another system file. In the context of tree-modeled data, this operation
corresponds to the retrieval of sub-trees according to some given application re-
quests. This retrieval may be approximative, trying to find the XML document
that best fit some given constraints. The situation is more complex when the
problem consists in comparing (or retrieving) XML types (or schemas) defining
approximate sub-trees of the trees generated by a given XML type.

Example 1. Suppose an application where we want to replace an XML type G by
a new type G′ (eg., a web service composition where a service replaces another,
each of them being associated to its own XML message type). We want to analyse
whether the XML messages supported by G′ contains (in an approximate way)
those supported by G. XML types are regular tree grammars where we just
consider the structural part of the XML documents, disregarding data attached
to leaves. Thus, to define leaves we consider rules of the form A → a[ε].

Now let us suppose that both of our grammars contain the following rules:
F → firstName[ε], L → lastName[ε] , T → title[ε], Y → year[ε] and C →
conference[ε]. However, G defines a publication by using the following rule PUB
→ publication[(F.L)+.T.Y.C]; while in G′ the definition is done by the set of
rules: PUB → publication[A∗.P ]; A → authors[F.L] and P → paper[T.Y.C]. We
want to know whether messages valid with respect to G can be accepted (in an
approximate way) by G′. Notice that G accepts trees such as t in Figure 1 that
are not valid with respect to schema G′ but that represent the same kind of in-
formation G′ deals with. Indeed, in G′, the same information would be organised
as the tree t′ in Figure 1. �
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firstName lastName title year conference

publication

Joshua Inclusion 2011 CIAAAmavi

firstName lastName title year conference
Joshua Inclusion 2011Amavi

publication

authors paper

t t’

CIAA

ε

0 21 43 0 1

0.10.0 1.0 1.21.1

ε

Fig. 1. Examples of trees t and t′ valid with respect to G and G′, respectively

The approximative criterion for comparing trees that is commonly used consists
in weakening the father-children relationships (i.e., they are implicitly reflected
in the data tree as only ancestor-descendant). In this paper, we consider this
criterion in the context of tree languages. We denote this relation weak inclusion
to avoid confusion with the inclusion of languages (i.e., the inclusion of a set of
trees in another one).

Given two types G and G′, we call L(G) and L(G′) the set of XML documents
valid with respect to G and G′, respectively. Our paper proposes a method for
deciding whether L(G) is weakly included in L(G′), in order to know if the
substitution of G by G′ can be envisaged. The unranked-tree language L(G) is
weakly included in L(G′) if for each tree t ∈ L(G) there is a tree t′ ∈ L(G′) such
that t is weakly included in t′. Intuitively, t is weakly included in t′ (denoted
t�t′) if we can obtain t by removing nodes from t′ (a removed node is replaced by
its children, if any). For instance, in Figure 1, t can be obtained by the removal
of the nodes authors and paper from t′.

To decide whether L(G) is weakly included in L(G′), we consider the set of
trees WI(L(G′)) = {t | ∃t′ ∈ L(G′), t � t′}. Note that L(G) is weakly included
in L(G′) iff L(G) ⊆ WI(L(G′)).

Assuming that L(G′) is bounded in depth (which holds for most XML types),
we propose a direct and simple approach that deals with unranked trees, using
hedge grammars. The intuition of our method is to change types by allowing
the deletion of XML tree levels. Roughly speaking, according to this new type,
a given node in an XML tree can have as children those imposed by the original
XML type or any of its descendants. With this simple idea we can compute a
grammar capable of generating all the weakly included trees of a original non-
recursive type G′. We prove that our algorithm is correct and complete.

Example 2. Let us consider G′ from Example 1. We start from this tree grammar
and use our algorithm to obtain a tree grammar which generates the language
containing all the trees weakly-included in L(G′). The obtained grammar is:

PUB → publication[(A | ((F |ε).(L|ε)))∗. (P |((T |ε).(Y |ε).(C|ε)))]
A → authors[(F |ε).(L|ε)] P → paper[(T |ε).(Y |ε).(C|ε)]
F → firstName[ε] L → lastName[ε]
T → title[ε] Y → year[ε]
C → conference[ε].

Given this new grammar G′′ we can verify that L(G) is included in L(G′′). �
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However, if L(G′) is not bounded in depth, computing WI(L(G′)) may be diffi-
cult as illustrated by the following example.

Example 3. Let G′1 be a grammar containing the rule A → a[B.(A|ε).C] where
non-terminals B and C generate leaves b and c respectively. In this simple
case, it is easy to imagine an extension of our basic algorithm for computing
WI(G′1). This new grammar replaces the first rule by A → a[B∗.(A|ε).C∗].
However, one can take G′2 with a more complex rule such as A → a[B.(A |
A.A | ε).C]. The solution here should be given by replacing this rule by
A → a[(A|B|C)∗.(A|ε).(A|B|C)∗]. Notice, for instance, that in WI(L(G′2)) we
can have trees where nodes a, b or c appear on the left of a node labelled a
while according to G′2 this was not possible. We can remark that the method
needed to obtain WI(G′2) is more sophisticated than the one used for WI(G′1).
The situation becomes worse if we suppose G′3 similar to G′2 except for the rule
concerning B, which is now B → b[B|ε]. In this case, we should guarantee that
in WI(G′3) nodes labelled b will have at most one child. Thus, in WI(G′3), the
rule B → b[B|ε] stays unchanged. This represents another special case to be
treated. �

It seems difficult to define a general and simple algorithm for treating all the
recursive cases. To obtain simple methods we believe that different classes of
recursivity should be considered. A generic approach may need sophisticated
tools.

In this paper, given non-recursive regular tree grammars1 G and G′, to check
if L(G) is weakly included in L(G′), we proceed according to the following steps:

1. Starting from G′, we compute a grammar WI(G′) that generates WI(L(G′)).
2. Then we check whether L(G) ⊆ WI(L(G′)), i.e. the inclusion of regular tree

languages. The runtime of this step is exponential in the worst case [18].
However, if G′ satisfies some deterministic-like restrictions, we show that so
does WI(G′) and thus the runtime of this step becomes polynomial [15,6].

Paper organisation: Section 2 gives some theoretical background. Section 3
presents how to compute WI(G) for a given non-recursive grammar G, while
Section 4 analyses some experimental results of our method. Section 5 considers
the special case of deterministic DTDs. Due to the lack of space, missing proofs
are given in [1].

Related work: Several works deal with the (weak) tree inclusion problem in
the context of ordered trees: different improvements (e.g. [2,7,17]) have been
presented to the initial proposal in [13]. Our proposal differs from these ap-
proaches because it considers the weak inclusion with respect to tree languages
(and not with respect to trees only). Given a pattern query, to select the an-
swers, [11] proposes a polynomial algorithm which verifies whether a sub-tree

1 Notice that although Example 2 deals with local tree grammars (DTDs), our algo-
rithm can be applied to any non-recursive regular tree grammar.
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belongs to the language defined by the pattern and by: (i) weakening the father-
children relationship and (ii) disregarding the ordering of children. Contrary to
us, they do not compare XML types, and, thus, are not concerned by horizon-
tal constraints in general. Testing precise inclusion of XML types is considered
in [6,8,9,15]. In [15], the authors study the complexity of the inclusion, iden-
tifying tractable cases. In [6] we find a new polynomial algorithm for checking
whether L(A) ⊆ L(D), where A is an automaton for unranked trees and D is a
deterministic DTD.

2 Preliminaries

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions Pos(t) to an alphabet Σ. Thus for v ∈ Pos(t), t(v) is
the label of t at the position v, and t|v denotes the sub-tree of t at position v.
Positions are sequences of integers in IN∗ and the set Pos(t) satisfies: j ≥ 0, u.j ∈
Pos(t), 0 ≤ i ≤ j ⇒ u.i ∈ Pos(t). As usual, ε denotes the empty sequence of
integers, i.e. the root position. In the following definition, let t, t′ be unranked
trees. The char “.” denotes the concatenation of sequences of integers. Figure 1
illustrates trees with positions and labels: we have, for instance, t(1) = lastName
and t′(1) = paper. The sub-tree t′|0 is the one whose root is authors.

Definition 1. Relationships on a tree: Let p, q ∈ Pos(t). Position p is an
ancestor of q (denoted p < q) if there is a non-empty sequence of integers r such
that q = p.r. Position p is to the left of q (denoted p ≺ q) if there are sequences
of integers u, v, w, and i, j ∈ IN such that p = u.i.v, q = u.j.w, and i < j. �

Definition 2. Resulting tree after node deletion: For a tree t′ and a non-
empty position q of t′, let us note Remq(t′) = t the tree obtained after the
removal of the node at position q in t′ (a removed node is replaced by its children,
if any). We have:

1. t(ε) = t′(ε),
2. ∀p ∈ Pos(t′) such that p < q: t(p) = t′(p),
3. ∀p ∈ Pos(t′) such that p ≺ q : t|p = t′|p,
4. Let q.0, q.1..., q.n ∈ Pos(t′) be the positions of the children of position q, if

q has no child, let n = −1. Now suppose q = s.k where s ∈ IN∗ and k ∈ IN.
We have:
– t|s.(k+n+i) = t′|s.(k+i) for all i such that i > 0 and s.(k + i) ∈ Pos(t′)

(the siblings located to the right of q shift),
– t|s.(k+i) = t′|s.k.i for all i such that 0 ≤ i ≤ n (the children go up). �

Definition 3. Weak inclusion for unranked trees: The tree t is weakly
included in t′ (denoted t � t′) if there exists a series of positions q1 . . . qn such
that t = Remqn(· · ·Remq1(t′)). �

Example 4. In Figure 1, we have tree t� t′. Notice that for each node of t, there
is a node in t′ with the same label, and this mapping preserves vertical order and
left-right order. However a tree t1 such as publication(lastName, firstName)
is not weakly included in t′ since the left-right order is not preserved. �
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Definition 4. Regular Tree Grammar: A regular tree grammar (RTG) (also
called hedge grammar) is a 4-tuple G = (NT, T, S, P ), where: NT is a finite set
of non-terminal symbols ; T is a finite set of terminal symbols ; S is a set of start
symbols, where S ⊆ NT and P is a finite set of production rules of the form
X → a [R], where X ∈ NT , a ∈ T , and R is a regular expression over NT . We
recall that the set of regular expressions over NT = {A1, . . . , An} is inductively
defined by: R ::= ε | Ai | R|R | R.R | R+ | R∗ | R? | (R). �

Definition 5. Derivation: For an RTG G = (NT, T, S, P ), we say that a tree
t built on NT ∪ T derives (in one step) into t′ iff (i) there exists a position p
of t such that t|p = A ∈ NT and a production rule A → a [R] in P , and (ii)
t′ = t[p ← a(w)] where w ∈ L(R) (L(R) is the set of words of non-terminals
generated by R). We write t →[p,A→a [R]] t′. A derivation (in several steps) is a
(possibly empty) sequence of one-step derivations. We write t →∗G t′. Let TreeT

be the set of all trees that contain only terminal symbols. The language L(G)
generated by G is defined by : L(G) = {t ∈ TreeT | ∃A ∈ S, A →∗G t}. �

Remark 1. As usual, in this paper, we only consider regular tree grammars such
that : (A) every non-terminal generates at least one tree containing only terminal
symbols and (B) distinct production rules have distinct left-hand-sides (i.e., tree
grammars in the normal form [14]). �

Remark 2. Given an RTG G = (NT, T, S, P ), for each A ∈ NT , there exists in
P a unique rule of the form A → a[E], i.e. whose left-hand-side is A. �

Example 5. Grammar G0 = (NT, T, S, P0), where NT = {X, A, B}, T =
{f, a, c}, S = {X}, and P0 = {X → f [A.B], A → a[ε], B → a[ε], A → c[ε]}
does not respect the conditions stated in this paper since it is not in the nor-
mal form. The conversion of G0 into normal form gives the set P1 = {X →
f [(A|C).B], A → a[ε], B → a[ε], C → c[ε]}.

Among regular tree grammars we are particularly interested in local tree gram-
mars which have the same expressive power as DTDs2. We recall their definition
from [16]:

Definition 6. Local Tree Grammar: A local tree grammar (LTG) is a regular
tree grammar that does not have competing non-terminals. Two non-terminals
A and B (of the same grammar G) are said to be competing with each other if
A 
= B and G contains production rules of the form A → a[E] and B → a[E′]
(i.e. A and B generate the same terminal symbol). A local tree language (LTL)
is a language that can be generated by at least one LTG. �

To finish this section we recall some definitions and results concerning the regular
expressions that will be important for us in Section 5.

Firstly we recall that, as W3C standard, only 1-unambiguous regular expres-
sions are allowed in DTDs. A regular expression is 1-unambiguous if every symbol
2 Note that converting an LTG into normal form produces an LTG as well.
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in any input string can be uniquely matched to one occurrence of the symbol
in the regular expression, without looking ahead in the string. As an example,
consider the regular expression E = (A|B)∗.A.A∗. and the word w = BAA in
L(E). The word w can be parsed in two different ways: (i) the first and the
second A in w match the first and the second A in E, respectively; (ii) the first
and the second A in w match the second and the third A in E, respectively.
The regular expression E is therefore not 1-unambiguous. We refer to [4] for a
formal definition of this concept. It is also known that a regular expression E
is 1-unambiguous if and only if its corresponding Glushkov automaton is deter-
ministic [4,5,19].

Definition 7. Monadic and strict regular expression: A regular expression
E is monadic if each non-terminal of E occurs only once in E. It is strict if it
does not contain operators + (positive closure) nor ? (optional). A grammar is
monadic (resp. strict) if all its regular expressions are monadic (resp. strict). �

The following lemma is an immediate consequence of the previous notions.

Lemma 1. A monadic regular expression is 1-unambiguous. Consequently, a
strict and monadic LTG is deterministic3. �

It may happen that algorithm for testing tree language inclusion (second step of
our proposal) are built by considering strict regular expressions only. In this case,
recall that it is always possible to make a regular expression strict, by replacing
each E? by E|ε and each E+ by E.E∗. Unfortunately, removing operator + does
not preserve monadicity. However if ε ∈ L(E) then L(E+) = L(E∗) and in this
case we can just replace each + by ∗ , which preserves monadicity.

3 Weak Inclusion for Regular Tree Grammars

Given a non-recursive regular tree grammar G, in this section we present how to
generate a grammar G1 such that L(G1) = WI(L(G)). To do that, we introduce
some definitions and results.

Definition 8. Relation �G over non-terminals: Let G = (NT, T, S, P ) be
an RTG and A, B be non-terminals. We write A �G B if there exists a rule
A → a[E] in G s.t. B ∈ NT (E) (where NT (E) denotes the set of non-terminals
occurring in E). We say that A0, . . . , An (Ai ∈ NT ) is a chain for �G if A0 �G

· · · �G An. The relation �G is noetherian if �G does not have an infinite
chain A0 �G · · · �G An �G · · · . Grammar G is recursive if there exists a
non-terminal A s.t. A �+

G A (where �+
G is the transitive closure of �G). �

Lemma 2. If G is non-recursive then �G is noetherian. �

To compute WI(G), the idea is: for each non-terminal A that generates terminal
a, either we generate a, or a is not generated and we generate its children instead.
First, we extend �G to regular expressions. Moreover, to each non-terminal A,
we associate a new non-terminal denoted A� (called marked non-terminal).
3 An LTG or DTD is deterministic if all its regular expressions are 1-unambiguous [4].



36 J. Amavi et al.

Definition 9. Relation �G over regular expressions: Let G be a grammar
and E be a regular expression appearing in one of its production rules. Suppose
that A is a non-terminal appearing at some position in E and that there is a rule
A → a[E′′] in G. Let E′ be the regular expression defined by E′ = E[A ← A�|E′′]
(i.e. this occurrence of A is replaced by A�|E′′]). Then we say that E �G E′. �

Lemma 3. If G is non-recursive then �G (over reg. exp.) is noetherian. �

Definition 10. Substitutions in the context of �G: Let G be a grammar.
We define a substitution σ over non-terminals as follows. Due to the assumptions,
for each non-terminal A there exists in G a unique rule whose left-hand-side is
A, say A → a[E]. Then σ(A) = A�|E. We extend σ to regular expressions: if E
contains at least one non-marked non-terminal, σ(E) is the regular expression
obtained by replacing each non-marked non-terminal A in E by σ(A). Otherwise
σ(E) is not defined. Note that E �+

G σ(E) (where �+
G is the transitive closure

of �G). �

Example 6. In grammar G′ of Example 1, let us consider the rule PUB →
publication[A∗.P ]. Let E = A∗.P be its regular expression. Then, according to
Definition 10, we have σ(E) = (A� | (F.L))∗.(P � | T.Y.C). �

In the following definition we present an algorithm to produce grammar WI(G)
for a given grammar G. By σn we denote n successive applications of σ, i.e.
σn = σ ◦ · · · ◦ σ (n times).

Definition 11. Algorithm for computing WI(G): Let G be a non-recursive
grammar. As �G and �+

G are noetherian, for any regular expression E, there
exists n ∈ IN s.t. σn(E) is defined and σn+1(E) is not, which means that σn(E)
contains only marked non-terminals. We define E↑= σn(E). The grammar G↑ is
the one obtained from G by replacing each regular expression E in G by E↑. �

Example 2 shows the resulting grammar after applying Definition 11. Notice
that the marks inserted by our algorithm are just to follow substitutions already
done. The resulting grammar is one where every non terminal is marked, i.e.,
all substitutions have been applied. We can then rewrite the grammar as usual,
disregarding the marks used during the algorithm processing. This is why, when
talking about WI(G) we do not consider the marks anymore.

Theorem 1. Given a non-recursive grammar G, we have L(G↑) = WI(L(G))
(with common roots). �

4 Experimental Results

Given a grammar G′, the computation of WI(G′) (Definition 11) considers each
non-terminal of each production rule. Our implementation avoids repeating com-
putation (which may lead to an exponential blow-up in the worst case) by com-
puting each A↑ only once. Thus, supposing that G′ has n non-terminals (and
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thus n production rules), the computation of WI(G′) can be seen as the traversal
of a graph having n nodes and n × l edges (where l is the max. length of reg.
exp.). Notice that n× l equals the number of non-terminal occurrences, denoted
by |G′|, the size of G′. Thus, the complexity of our algorithm is O(n + |G′|).

Our prototype is implemented in Java and our experiments are done on an
Intel Dual Core T2390 with 1.86GHz and 2GB of memory. The first phase of our
tests concerns the generation of WI(G′). Results shown in Figure 2 correspond
to 400 synthetic DTDs whose size ranges from 50 to 10000 non-terminal (NT)
occurrences. These experiments concern DTDs with simple regular expressions
composed by the concatenation of A1 . . . An; where we vary the number n of
non-terminals, allowing as maximal value n = 9. Notice that our algorithm does
not exceed 100ms for DTDs having less than 10000 NT-occurrences. We have
also considered 10 real DTDs having about 50 NT-occurrences. The execution
time was approximately 10ms.

Fig. 2. Runtime for computing WI(G′) for grammar G′

We have run a hundred complete tests and Table 1 shows the results for
21 of them. Here we have considered more complex DTDs with �, +, ?,
| and imbrications. In this case, most regular expressions are of the form
E = E1.E2.E3 where each Ei is a disjunction involving one or more Kleene
or positive closure. The DTDs are deterministic or non-deterministic. When a
DTD is non-deterministic, some Ei of E are of the form (Aj .Aj+1)|(Aj .Aj+2) or
(Aj |(Aj+3|Aj+4))+.(Aj+2|(Aj+3|Aj+4))∗. Results on lines 1 to 9 concern syn-
thetic non-deterministic DTDs, while those on lines 10 to 18 correspond to
synthetic deterministic DTDs. On lines 19 to 21 we deal with deterministic real
DTDs.

The second phase of our tests analyses the performance of the other steps
of our method. Given a grammar G, to decide whether L(G) ⊆ L(WI(G′)),
we have implemented the algorithm presented in [3]. Although the complexity
of this method is exponential, the authors show that it allows very important
performance improvement. Table 1 summarizes our results. Notice that, as the
algorithm in [3] is proposed for ranked trees, to apply this method, we con-
vert WI(G′) and G into binary grammars bin(WI(G′)) and bin(G), respectively.



38 J. Amavi et al.

This conversion gives us grammars having more rules than their unranked coun-
terpart. Given a grammar G, the production rules of bin(G) are generated by
considering each regular expression of each rule in G. The number of rules also
depends on the format of the regular expressions (eg., the presence of the Kleene
closure). For WI(G′) this augmentation can be very important since in this
grammar regular expressions are more complex than those in G′.

Table 1. Runtime in seconds for Phase1 (computing WI(G′)) and Phase2 (convert-
ing unranked grammars WI(G′) and G to their binary counterpart and testing if
L(bin(G)) ⊆ L(bin(WI(G′))). Result is the boolean value for the inclusion test.

Unranked grammars Ranked grammars Runtime Result

|G| |G′| |WI(G′)| #Rules #Rules #Rules #Rules Phase1 Phase2 T/F
G G′ bin(G) bin(WI(G′)) (s) (s)

1 32 52 123 25 40 113 5622 0 73 T
2 37 68 167 29 50 82 6420 0 139 T
3 42 98 233 33 77 93 19107 0 350 F
4 98 68 167 77 50 314 6420 0 354 F
5 86 98 233 65 77 249 19107 0 918 F
6 19 98 233 14 77 72 19017 0 14 F
7 42 86 222 33 65 93 22762 0 1455 T
8 52 98 233 43 77 168 19107 0 1890 T
9 68 86 222 50 65 200 22762 0 1729 F

10 10 62 125 9 53 30 5728 0 2 T
11 33 62 125 28 53 96 5728 0 61 T
12 42 78 183 34 62 174 7483 0 278 F
13 62 96 249 53 78 166 21808 0 522 F
14 47 96 249 40 78 210 21808 0 90 F
15 42 96 249 34 78 174 21808 0 110 F
16 20 90 224 18 74 22 11299 0 8 F
17 27 96 249 24 78 148 21808 0 18 F
18 48 96 249 40 78 167 21808 0 3217 T

19 31 31 86 25 25 35 3625 0 114 T
20 32 32 68 14 14 190 2254 0 36 T
21 32 31 86 14 25 190 3625 0 1 F

As expected, the first phase is much more faster than the second. In order
to have tractable tests in Phase 2, we have chosen small examples having thus
insignificant (0s) time for Phase 1 (see also Figure 2). In general, the execution
time of Phase 2 is higher when the inclusion is true. However, when languages
are very similar, Phase 2 can take a lot of time even for non-included languages
(as in line 5, 9). On the contrary, for very different languages the inclusion test is
very fast (as in lines 6, 16, 17 and 21). It is interesting to consider the case on line
18 which takes about 2-times longer than for any other examples. Notice that we
have DTD with more than 90 non-terminal occurrences, and a positive result for
the inclusion test. Indeed, DTD G corresponds to a subset of the rules of DTD G′.
To achieve some improvement on Phase 2, we may envisage to apply techniques
presented in [15] to find regular expressions for which inclusion verification is
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tractable or to restrict ourselves to the use of deterministic DTDs which allow
us to use a polynomial time algorithm for testing language inclusion. The latter
option (that we intend to implement) is discussed in the following section.

5 The Special Case of Deterministic DTDs

We finally discuss a restricted situation where the weak inclusion between XML
types can be computed in polynomial time. We first define Succ(A) as the set of
non-terminals obtained from A by applying rules of the grammar G (including
A itself). Then we consider LTGs respecting some constraints.

Definition 12. Set of successive non terminals: Let G = (NT, T, S, P ) be
an LTG and �G the relation introduced in Definition 8. For any A ∈ NT we
define Succ(A) = {B ∈ NT | A �∗G B} where �∗G is the reflexive-transitive
closure of �G. �

Theorem 2. Let G = (NT, T, S, P ) be a non-recursive monadic LTG such that
∀C→c[E] ∈ P, ∀A, B ∈ NT (E), (A 
= B =⇒ Succ(A) ∩ Succ(B) = ∅)

Then G↑ is a monadic LTG. �

The following example illustrates the need of the condition imposed on non-
terminals by Theorem 2. It also introduces the idea that by renaming common
terminals and non-terminals one can adapt a given grammar to the condition
imposed by Theorem 2.

Example 7. Consider a non-recursive monadic LTG G having the following rules:
R → root[PROF ∗.STUD∗] PROF → professor[F.L] STUD → stud[F.L]

F → firstName[ε] L → lastName[ε]
and not respecting the condition in Theorem 2. The resulting G ↑ computed
by our algorithm (Definition 11) has a production rule R → root[E] where
E = (PROF | ((F |ε).(L|ε)))∗.(STUD | ((F |ε). (L|ε)))∗. Clearly the regular
expression E is not 1-unambiguous and thus the LTG G↑ is not deterministic �

Now we consider how to compute the weak inclusion of the language generated
by a grammar G into the language generated by a grammar G′, when G′ is a
non-recursive monadic (and maybe non-strict) LTG that respects the condition
of Theorem 2. Indeed, to decide whether L(G) is weakly included in L(G′), we
compute G′ ↑, which is also a monadic LTG (Theorem 2). Clearly, G′ ↑ may
be non-strict. However, it is interesting to remark that the construction of G′↑
(Definition 11) gives us a grammar where each non terminal of a regular expres-
sion in G′ can be replaced by ε. Indeed, let E = A1 ◦ A2 ◦ · · · ◦ An be a part
of a regular expression, composed of non-terminals Ai (where ◦ is any allowed
operator). Each step of our algorithm consists in changing E = A1 ◦A2 ◦ · · · ◦An

into a new regular expression E′ = (A1 | E1) ◦ (A2 | E2) ◦ · · · ◦ (An | En) where
each Ei is a regular expression in G′ (see Definition 11). Then E′ is modified
by replacing each non terminal Bij in each expression Ei by Bij |Eij and so on,
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until reaching some Eij...k
= ε. It follows that all resulting regular expression

have the form E′′ = A1 | (B11 |(· · · |ε)) ◦ · · · ◦ An | (Bn1 |(· · · |ε)). In other words,
ε ∈ L(E′′). As explained at the end of Section 2, for a given regular expression
E, when ε ∈ L(E) we have that L(E+) = L(E∗) and thus we can replace each
+ by ∗. Based on all these points one can easily see that the obtained G′↑ can
be transformed into a strict grammar G′1 by transforming operator ? and by
replacing + by ∗. As the LTG G′1 is strict and monadic, it is also deterministic.
Now, to decide whether the language L(G) is weakly included into the language
L(G′), we just need to check whether L(G) ⊆ L(G′1). Since L(G′1) is generated
by a deterministic LTG, which is equivalent to a deterministic DTD, this can be
done in polynomial time by using the method presented in [6].

6 Conclusion

The main contribution of this paper is a simple algorithm for computing the weak
inclusion between two non-recursive XML types. It extends the weak inclusion
notion, normally used for trees, to tree languages. Our approach is composed
of two steps: the generation of WI(G′), which is linear; and precise language
inclusion testing, exponential for non-recursive tree grammars (but polynomial
for deterministic DTDs). Our tests show a good performance for practical cases.
Weak inclusion is important for comparing types by relaxing father-children
relationship and can be useful in applications such as the substitution of a web
service in a composition.

To process recursive tree grammars, we envisage two directions: by defining
restricted classes of recursive grammars, and trying to keep simple the generation
of WI(G′); or by translating unranked trees into binary trees and using a com-
plex machinery. Another idea could consist in translating the initial regular tree
grammars G and G′ into context-free word grammars word(G) and word(G′)
that generate the corresponding XML texts. We refer to [12,10] as examples of
the translation of a DTD or a tree automaton to a context-free word grammar.
By using similar techniques it is possible to compute WI(word(G′)). Unfortu-
nately, checking that L(word(G)) ⊆ L(WI(word(G′))) (phase 2) is undecidable
since it amounts to check inclusion between context-free languages.
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Abstract. The notion of k-valued categorial grammars where a word is
associated to at most k types is often used in the field of lexicalized gram-
mars as a fruitful constraint for obtaining several properties like the ex-
istence of learning algorithms. This principle is relevant only when the
classes of k-valued grammars correspond to a real hierarchy of languages.
Such a property had been shown earlier for classical categorial grammars.

This paper establishes the relevance of this notion when categorial
grammars are enriched with iterated types.

1 Introduction

The field of natural language processing includes lexicalized grammars such as
classical categorial grammars [1], the different variants of Lambek calculus [11],
lexicalized tree adjoining grammars [8], etc. In these lexicalized formalisms, a k-
valued grammar associates at most k categories to each word of the lexicon. For a
particular model of lexicalized grammars and their corresponding languages, this
definition forms a (strict) hierarchy of classes of grammars when k increases. To
this hierarchy of grammars, it corresponds a growing list of classes of languages
that does not necessarily form a strict hierarchy.

In fact, in the field of lexicalized grammars, the concept of k-valued grammars
is often used to define sub-classes of grammars and languages that satisfy some
property when the whole class does not satisfy it. In particular, this notion is
important for a lot of learnability results in Gold’s model [7].

In the paper, we prove that the extension of classical categorial grammars
with iterated types ∗AB form strict hierarchies of classes of languages. Since
Categorial Dependency Grammars [6,3,5] use a very similar mechanism, the
result is also extended to these classes of grammars. The results give a direct
justification of the notion of k-valued grammars for such systems.

The paper is organized as follows. Section 2 gives some background knowledge
on categorial grammars and on iterated types. Section 3 focuses on parsing
or deduction structures (the two notions are closely related for type-logical or
categorial grammars). Section 4 presents the proof that the class of k-valued
categorial grammars with iteration form a strict hierarchy. Section 5 considers
some variants. Section 6 concludes.

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 42–52, 2011.
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2 Background

2.1 Categorial Grammars

In categorial grammars, when a word w1 has a type of the form B \ A, this
means that w1 can be concatenated on its left with a word of type B, so as to
produce a group of words of type A. Similarly a type of the form A / B, expresses
a possible concatenation on the right with a word of type B. This concatenation
principle extends to groups of words. See Example 1.

Definition 1 (Types). The types Tp, or formulas, are generated from a set of
primitive types Pr, or atomic formulas, by two binary connectives1 “ / ” (over)
and “ \ ” (under): Tp ::= Pr | Tp \ Tp | Tp / Tp

Definition 2 (Rigid and k-valued categorial grammars). A categorial
grammar is a structure G = (Σ, λ, S) where:

– Σ is a finite alphabet (the words in the sentences);
– λ : Σ �→ Pf (Tp) is a function (called a lexicon) that maps a finite set of

types to each element of Σ (the possible categories of each word);
– S ∈ Pr is the main type associated to correct sentences.

If X ∈ λ(a), we say that G associates X to a and we write G : a �→ X.
A k-valued categorial grammar is a categorial grammar where, for every word
a ∈ Σ, λ(a) has at most k elements. A rigid categorial grammar is a 1-valued
categorial grammar.

Definition 3 (Language). Given a type calculus, based on a derivation rela-
tion � on Types, a sentence v1...vn belongs to the language of G, written L(G),
provided its words vi can be assigned types Xi whose sequence X1...Xn derives
S according to �.

2.2 ∗AB Calculus

Categorial grammars usually express optional and repeatable arguments by a
recursive mechanism. Here, we present a different approach that uses an exten-
sion of atomic formulas. With ∗AB Calculus, an atomic formula can be either a
primitive type x ∈ Pr or the iteration of a primitive type written x∗, x ∈ Pr. This
extension lets naturally express optional repeatable dependencies. The calculus
is very similar except that an iterated primitive type can be used zero, one or
several times.

Categorial Dependency Grammars [6,3,5] use a very similar mechanism. How-
ever, in this case, types are of order one (flat)2 , but a complex system of po-
larities produces non projective dependencies. Thus, CDG is not a conservative
extension of ∗AB Calculus and the reverse does not hold either.

The iterated types originate from one of the basic principles of dependency
syntax, which concerns optional repeatable dependencies (cf. [12]): all modifiers
1 No product connective is used in the paper.
2 The order o is null on primitive types s.t. o(X/Y )=o(Y \X)=max(o(X),1+o(Y )).
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of a noun share the noun as their governor and, similarly, all circonstants of
a verb share the verb as their governor. At the same time, the iterated de-
pendencies are a challenge for grammatical inference [2]. For example, as in
Example 3, a repeatable circumstancial dependency A may be determined by
the type [N\S/A∗] attached to an intransitive verb, instead of several types :
[N\S], [N\S/A], [N\S/A/A] . . .

Definition 4 (Types). The types Tp, or formulas, are generated from a set of
primitive types Pr, or iteration of primitive types Pr∗ = {x∗, x ∈ Pr} by two
binary connectives “ / ” (over) and “ \ ” (under):

Tp ::= Pr | Pr∗ | Tp \ Tp | Tp / Tp

The elimination rules are as follows :

X / Y, Y � X (Lr)
X / y∗, y � X / y∗ (Lr∗)
X / y∗ � X (Ωr)

Y, Y \ X � X (Ll)
y, y∗ \ X � y∗ \ X (Ll∗)
y∗ \ X � X (Ωl)

Remark. The AB Calculus (without iteration) derivation relation is defined by
the two rules Lr and Ll. AB grammars are equivalent to Context-free grammars.
In more details, to each ε-free Context-Free Grammar G in Greibach Normal
Form, we can associate cgAB(G), whose alphabet consists in the terminals of G,
whose primitive types are the non terminals of G, with the following lexicon :

a �→ ((. . . (X/Xn)/Xn−1 . . .)/X1) for each rule X → aX1 . . . Xn−1Xn in G ;
G and cgAB(G) have the same language (cgAB(G) is of order 1). For the con-
verse direction, to each AB grammar G, we associate cf(G) with the same
language, having the alphabet of G as terminals, the set Tp(G) of subformu-
las of types of G as non-terminals, with rules {B → A A\B | A\B ∈ Tp(G)}
∪ {B → B/A A | B/A∈Tp(G)}∪ {A → c | c �→ A∈G}. These equivalences are
said weak, because they concern string languages, not structures.

Definition 5 (Head and arguments). Any type X can be written in the fol-
lowing form: ((p|A1)|...|An) where A|B stands for A/B or B\A and p has no
binary operator ; p is the head of X, each subtype ((p|A1)|...Ak) is a head subtype
of X, n is the arity of X , and each Ai is said an argument subtype of X.

Example 1. Let λ(John) = λ(Mary) = N , λ(loves) = [N \S/N ]: John loves
Mary belongs to the language (for AB or ∗AB). See also Example 3 for iteration.

CDG. The ∗AB calculus on flat types (order 1) is the basis of Categorial De-
pendency grammars (CDG) used for natural language. In fact CDG involve more
complex types, we only give their supplementary rule Dl that handles distant
dependencies (rule Dr is similar on the right): Dl. αP1(↙C)P (↖C)P2 � αP1PP2 ,
if the potential (↙C)P (↖C) satisfies the following pairing rule FA (first avail-
able): FA : P has no occurrences of ↙C,↖C (see ref [5] for full details).

The relation of CDG to automata is explained below.
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2.3 Abstract Automata Equivalent to CDG

There is a class of simple abstract automata equivalent to CDG [10] (in Russian).
Intuitively, these are automata with one stack and several completely indepen-
dent counters. In fact, each polarized valency of a CDG corresponds to one
independent counter.

Definition 6. A real-time pushdown independent counters automaton
(RtPiCA(k), k ≥ 0) is a system A = (W, Γ, Q, q0, k, I), where: W is the set of
input symbols (words), Γ is the set of stack symbols containing a special symbol
⊥ ∈ Γ (bottom), Q is a set of states, q0 ∈ Q is the start state, k ≥ 0, and I is a
set of instructions of the form

i = (aqz → q′αv)
in which: a ∈ W , q, q′ ∈ Q, z ∈ Γ , α ∈ Γ ∗ and v is an integer vector of length
k (empty if k = 0), i.e. v ∈ Z

k if k > 0. k is the number of counters.
Computations of RtPiCA(k) are defined in terms of the following transi-

tion system over configurations. A configuration is a tuple (q, w, γ, V ), where
w ∈ W ∗ (non read part of input string), q ∈ Q (current state), γ ∈ Γ ∗ (stack
contents) and V ∈ Z

k (current counters’ values).
A computation step is the following transition relation:

< q, s, γ, V > �i
A < q′, s′, γ′, V ′ >,

where: 1) s = as′;
2) γ = zγ′′, γ′ = αγ′′ γ, γ′ have non-negative components ;
3) V ′ = V + v for the instruction i = (aqz → q′αv) ∈ I.
�∗A is the reflexive-transitive closure of �i

A.
A string s ∈ W ∗ is recognized by the automaton A if < q0, s,⊥, (0, . . . , 0) >

�∗A < q, ε, ε, (0, . . . , 0) > for some q. L(A) (the language recognized by A) is the
set of all strings recognized by A.

Example 2. The language L = {wn
1 wn

2 wn
3 | n = 0, 1, . . . } is recognized by the

automaton A = (W, Γ, Q, q0, k, I) in which: W = {w1, w2, w3 }, Q = { q0, q1, q2 },
Γ = { z0, w1, w2, w3 }, k = 1 and the set of instructions I is as follows:

w1 q0 ⊥ → q0 w1⊥ 1 w1 q0 w1 → q0 w1w1 1
w2 q0 w1 → q1 ε 0 w2 q1 w1 → q1 ε 0
w3 q1 ⊥ → q2 ⊥ − 1 w3 q2 ⊥ → q2 ⊥ − 1
w3 q2 ⊥ → q2 ε − 1

The equivalence of RtPiCA(k) and CDG is proved in [10].

Theorem 1. A language L is recognized by a RtPiCA(k) A for some k if and
only if it is generated by a CDG.

3 Deduction Structures

In this section we focus on structures for the calculus ∗AB (and CDG) ; in
fact, these rules are extensions of the cancellation rules of classical categorial
grammars that lead to the generalization of FA-structures used here.
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3.1 FA Structures over a Set E
We give a general definition of FA structures over a set E , whereas in practice E
is either an alphabet Σ or a set of types such as Tp.

Definition 7 (FA structures). Let E be a set, a FA structure over E is a
binary tree where each leaf is labelled by an element of E and each internal node
is labelled by Lr (forward application) or Ll (backward application):

FAE ::= E | Lr(FAE ,FAE) | Ll(FAE ,FAE)

3.2 Functor-Argument Structures with Iterated Subtypes

The functor-argument structure and labelled functor-argument
structure associated to a (dependency) structure proof in ∗AB (or in CDG),
are obtained as below.

Definition 8. Let ρ be a structure proof, ending in a type t. The labelled
functor-argument structure associated to ρ, denoted lfaiter(ρ), is defined by
induction on the length of the proof ρ considering the last rule in ρ:

- if ρ has no rule, then it is reduced to a type t assigned to a word w, let then
lfaiter(ρ) = w;

- if the last rule is Ll cP1 [c \ β]P2 � [β]P1P2 , by induction let ρ1 be a structure
proof for cP1 and T1= lfaiter(ρ1); and let ρ2 be a structure proof for [c \ β]P2 and
T2=lfaiter(ρ2): then lfaiter(ρ) is the tree with root labelled by Ll

[c] and subtrees
T1, T2;

- if the last rule is Ωl∗ [c∗ \ β]P2 � [β]P2 , by induction let ρ2 be a structure
proof for [c∗ \ β]P2 and T2=lfaiter(ρ2): then lfaiter(ρ) is T2;

- if the last rule is Ll∗ cP1 [c∗ \ β]P2 � [c∗ \ β]P1P2 , by induction let ρ1 be a
structure proof for cP1 and T1= lfaiter(ρ1) and let ρ2 be a structure proof for
[c∗ \ β]P2 and T2=lfaiter(ρ2): lfaiter(ρ) is the tree with root labelled by Ll

[c] and
subtrees T1, T2;

- we define similarly the function lfaiter when the last rule is on the right,
using / and Lr instead of \ and Ll;

- (in the CDG case) if the last rule is Dl, then lfaiter(ρ) is taken as the image
of the proof above.

The functor-argument structure faiter(ρ) is obtained from lfaiter(ρ) (the labelled
one) by erasing the labels [c].

Example 3. Let λ(John)=N , λ(ran)=[N \S/A∗],λ(yesterday)= λ(fast)=A,
then s′3 = Ll

[N ](John,Lr
[A](Lr

[A](ran, fast), yesterday) (labelled structure)
and s3 = Ll(John,Lr(Lr(ran, fast), yesterday) are associated to ρ1 below :

ρ1 :

N

[N \ S / A
∗
] A

Ir

[N \ S / A
∗
] A

Ir

[N \ S / A
∗
]
Ωr∗

[N \ S]
Ll

S

(dependency structure)
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4 A Strict Hierarchy

For each k ∈ N, we are interested in classes of the form Ck
<constraint> of languages

corresponding to k-valued grammars with some < constraint >. This section
proves for some < constraint > that such families forms a strict hierarchy (if
the lexicon has at least 2 elements):

For instance, a first very easy result when we consider the ∗AB calculus
(denoted by * as class constraint) is given by the fact that C0

∗ � C1
∗ because

C0
∗ = ∅ and C1

∗ contains the (finite) language {a} = L∗(G) for the rigid grammar
G : a �→ S.

Note that the class of languages corresponding to rigid AB-grammars is a
proper subset of the languages of rigid ∗AB-grammars: considerL = {a+} gener-
ated by G = {a �→ S / S∗}, which cannot be generated by a rigid AB-grammar.

4.1 Overview

We first sum up some previous work for classical categorial grammars (AB) and
non-associative Lambek grammars (NL).
AB. A similar problem was solved by Kanazawa in [9] for the classes of k-valued
classical categorial grammars. The proof scheme was as follows:

- Languages: for k > 0, LAB,k =def {aibaibai | 1 ≤ i ≤ 2k}
- Grammars:3 for k > 0,

Gk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a �→ x,
(· · · (S /x) · · · /x)

︸ ︷︷ ︸
i

/y) /x) · · · /x)
︸ ︷︷ ︸

i

/y) /x) · · · /x)
︸ ︷︷ ︸

i−1

(1 ≤ i ≤ k)

b �→ y,
(x\(· · · \(x\
︸ ︷︷ ︸

i

(· · · (S /x) · · · /x)
︸ ︷︷ ︸

i

/y) /x) · · · /x)
︸ ︷︷ ︸

i

· · ·)(k+1≤ i≤2k)

- The language (for AB) of Gk is LAB,k.
- Property: for k > 0, LAB,k is a (k + 1)-valued language but is not a k-valued

language for classical categorial grammars.
NL. For Lambek non-associative calculus the proof scheme [4] is based on the
previous one (for AB), but using grammars beyond order 1, 2k + 1 words and
generalized AB-deductions. The proof scheme is as follows:

- Languages: for k > 0, LNL,k =def {abb} ∪ {aibaibai | 1 ≤ i ≤ 2k}
- Grammars: k + 1-valued grammar G′k = σ(Gk) where Gk is as above, with

substitution σ = x := (S / y) / y.
- The language (for NL) of G′k is LNL,k.
- Property: for k > 0, LNL,k is a (k + 1)-valued language but is not a k-valued

language for NL.
Towards Iteration. We can easily show that the languages of grammars Gk is
the same when we consider the ∗AB calculus instead of the AB rules (because
Gk has not iteration). The same remark holds for grammar G′k.

3 In fact, the second type of a can be abbreviated as S / xiyxiyi−1 and the second
type of b can be abbreviated as xi \ (S / xiyxi).
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This shows that the languages LAB,k are also (k+1)-valued languages for the
∗AB calculus. It is thus natural to ask whether they are k-valued for the ∗AB
calculus as well. This is the purpose of next section.
Remark. One key point in the adaptation is that, when the language is finite
(LAB,k is finite), an iterated argument subtype cannot be used in a proof tree
for application of Ll∗ or Lr∗.

4.2 Order 1 and Iteration

For each k ∈ N, we can consider the class Ck
∗,flat of languages corresponding to

k-valued ∗-AB grammars with types of order at most 1. This section proves that
this family forms a strict hierarchy (if the lexicon has at least 2 elements):

Theorem 2. ∀k ∈ N Ck
∗,flat � Ck+1

∗,flat

Before the details of proof, we introduce some definitions and remarks.
In this section, we consider the binary deduction trees obtained by omitting the

Ω unary steps and where each node is decorated with the type that is obtained
by application of the elimination rule on the immediate subtrees. These trees
also correspond to the functor-argument structures previously described.

Definition 9. We say that B is an *-context of A, when we can write:
B = (G∗i,p′

i
\ ...G∗i,1\A/D∗i,1.../D∗i,pi

) where the sequences of iterated types (on
the left, or on the right of A) are possibly empty.

When B is an *-context of A: if Δ,A, Γ � X then Δ,B, Γ � X as well (using
Ωr∗ and Ωl∗).

Rule patterns. We observe that each type occurring in a binary deduction tree
obtained by omitting the Ω unary steps is a head subtype of some type associated
to a leaf. The patterns are as follows :

(on the right - similarly on the left - )
(G∗i,p′

i
\ ...G∗i,1\Ai/Ci/D∗i,1.../D∗i,pi

) C′i
Lr(several Ωr and Ωl)

Ai

(G∗i,p′
i
\ ...G∗i,1\Ai/C∗i /D∗i,1.../D∗i,pi

) C′i
Lr∗(several Ωr and Ωl)

Ai

(G∗i,p′
i
\ ...G∗i,1\Ai/C∗i /D∗i,1.../D∗i,pi

) C′i
Lr∗(several Ωr and Ωl)

Ai/C∗i
where C′i is a ∗-context of Ci.

Steps of proof

1. Obviously, we have ∀k ∈ N Ck∗ ⊆ Ck+1∗
2. For k > 0, we consider L∗,k =def {aibaibai | 1 ≤ i ≤ 2k}
3. We see that L∗,k is a (k + 1)-valued language : because Gk is (k + 1)-

valued, without ∗ in its types, its language is as in the AB case, which is
{aibaibai | 1 ≤ i ≤ 2k} as shown in [9].
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4. We prove that L∗,k is not a k-valued language for ∗AB languages.
Proof : suppose G is a k-valued grammar with ∗AB language L∗,k

(a) For each element of L∗,k, there exists a binary deduction tree : Ti for
aibaibai (1 ≤ i ≤ 2k)

(b) For 0<i≤2k let Ai denote the root type of the smallest subtree in Ti

whose yield includes both b. This gives two subtrees with one b with
yields ai0bai1 and ai2bai3 (i1 +i2 = i). Then, we consider the antecedents
of Ai in Ti : C′i and Bi such that : Bi = (G∗i,p′

i
\ ...G∗i,1\Ai/Cδ

i /D∗i,1.../
D∗i,pi

) (or Bi = (D∗i,pi
\ ...\D∗i,1\Cδ

i \Ai)/G∗i,1.../G∗i,p′
i
)) where δ is either

∗ or empty, and such that C′i is a ∗context of Ci.

a...a

B̂i

Bi Ci

Ai

FApp

S

a...a a...a︸ ︷︷ ︸
i2

b a...a︸ ︷︷ ︸
i3

a...a︸ ︷︷ ︸
i0

b a...a︸ ︷︷ ︸
i1

In fact, δ cannot denote ∗, otherwise,
we would get deductions involving iter-
ations of Ci (replacing one Ci) for words
with more than two b. Each Bi is thus
an *-context of Ai/Ci or of Ci\Ai.

We define B̂i as the type in G “pro-
viding” Bi (following functors) in Ti.

We define Ĉ′i as the type in G “pro-
viding” C′i (following functors) in Ti.

(c) We remark that ∀i : Bi �= Ai and C′i �= Ai.
Otherwise, if Bi = Ai by replacing the subtree ending in Bi (or C′i if
C′i = Ai) by the subtree ending in Ai, we would get a derivation of a
word with three b instead of two.

(d) More generally : ∀i, j : Aj cannot have Bi or Ci as head subtype.
Otherwise, a subtree ending in Bi (or a ∗context of Ci) would contain
the subtree ending with Aj that has two b.

(e) We prove that: ∀i �= j : Bi �= Bj

Let yi
ce(Xi) denote the center part of the yield with root Xi in Ti. (this

is i1 for the left subtree with yield ai0bai1 and i2 for the right subtree
with yield ai2bai3), we have ∀i : yi

ce(Bi) + yi
ce(C′i) = i.

- Suppose (from the contrary) (i) Bi = Bj , for some i �= j ;
Since i �= j, either yi

ce(Bi) �= yj
ce(Bj) or yi

ce(C′i) �= yj
ce(C′j).

- - Suppose first (ii) yi
ce(Bi) �= yj

ce(Bj) ; from (ii) replacing in Tj , (j �= 0),
Bj by Bi is a derivation of a word w = ...baj′baj or w = ajbaj′b...,
where j′ = yi

ce(Bi) + yj
ce(C′j) this word w is not in L∗,k since j′ =

yi
ce(Bi) + yj

ce(C′j) �= yj
ce(Bj) + yj

ce(C′j) = j ; this contradicts the assump-
tion that G has L∗,k as language (for ∗AB).
- - Suppose instead (ii)’ yi

ce(C′i) �= yj
ce(C′j) ;

- - - if (iii) Ci = Cj : replacing in Tj , C′j by C′i yields a similar word w

not in L∗,k with j′ = yj
ce(Bj) + yi

ce(C′i) occurrences of a between the b
and j′ �= j, (ii)’ also leads to a contradiction.
- - - otherwise (iii) Ci = Di,k for some D∗i,k of Bi

Bi = (G∗i,p′
i
\ ...G∗i,1\Ai/Ci/D∗i,1.../D∗i,pi

) (in the right case) ;
however in such a case, we could replace C′i by a succession of C′i, using
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the iteration rule, producing a word with more than two b.
Therefore (i) is not possible : this means that all Bi are distinct.

(f) We prove that: ∀i, j : B̂i �= B̂j .
We write X |Y as an abbreviation for X / Y or for Y \ X (functor first).
- Suppose B̂i = B̂j . One (say Bi) is a head subtype of the other (Bj),
that is in the form: Bj = ...(Bi|D′1...)|D′n
with Bj = (G∗j,p′

j
\ ...G∗j,1\(Aj /Cj)/D∗j,1.../D∗j,pj

) (in the right case) ;

- - if Bi is a strict4 head subtype of Aj /Cj , we then get Aj in a subtree
ending in Bi , which is impossible since the yield would then have three
b instead of two.
- - otherwise, Bi is a *context5 of Aj /Cj (in the right case), which entails
that Ci = Cj ; then, replacing Bj by Bi in Tj or C′i by C′j in Ti gives
deduction trees: which leads to a contradiction using a reasoning similar
to that of Bi �= Bj .6

(g) As a consequence, we get a contradiction as follows.
Let f(i) denote the index s.t. Ĉ′i = B̂f(i). By definition Ci is a head
subtype of Ĉ′i and Bf(i) is a head subtype of B̂f(i), that is the same
type. Therefore, one of Ci and Bf(i) is a head subtype of the other ;
because Ci is primitive and Bf(i) is not, Ci is a head subtype of Bf(i).
This entails that Ci is a head subtype of Af(i) as well, which is impossible
as shown previously.

5. Thus ∀k > 0 Ck∗,flat �= Ck+1
∗,flat (we have also seen in the introduction to the

section that the property is also true for k = 0).

4.3 Order >1 and Iteration

The previous reasoning can be adapted to the *AB calculus where types are not
necessarily flat (order >1), using the same deduction rules and structures.

Theorem 3. ∀k ∈ N Ck
∗ � Ck+1

∗

Sketch of proof. To this end, we use in this section the languages LNL,k =
{abb} ∪ {aibaibai | 1 ≤ i ≤ 2k} and consider 2k + 1 proof trees instead of 2k in
the previous section.

- Languages: for k > 0, LNL,k =def {abb} ∪ {aibaibai | 1 ≤ i ≤ 2k}
- Grammars: k + 1-valued grammar G′k = σ(Gk) where Gk is as above, with

substitution σ = x := (S / y) / y. and we can show L∗(σ(Gk)) = LNL,k.
- Property: for k > 0, LNL,k is a (k + 1)-valued language (using G′k) but is not

a k-valued language (see details below) for the *AB calculus.
Details of proof. To prove that LNL,k is not a k valued language, we proceed as
in the previous section: we suppose the existence of a k-valued gammar G′, with
language LNL,k and we consider a deduction tree Ti for aibaibai (1 ≤ i ≤ 2k)

4 (Not equal to).
5 Possibly equal to.
6 Bi = (G∗

j,p′
j,q′
\ ...G∗

j,1\Aj/Cj/D∗
j,1.../D∗

j,q) for some q′ ≤ p′
j and q ≤ pj.
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and T0 for abb. For 0 ≤ i ≤ 2k, we define Ai as the root type of the smallest
subtree in Ti with a yield including both b.

– We prove that: ∀i �= j : Bi �= Bj (similarly to the previous subsection)
– ∀i �= j : B̂i �= B̂j (details are similar to the previous subsection)
– As a consequence, we need 2k + 1 distinct B̂i.
– Contradiction: 2k + 1 distinct B̂i are needed with a k-valued grammar with

a useful lexicon of 2 words (a and b).

The advantage of this construction is to handle directly 2k + 1 types (2k in the
previous one). However, a main difference is the presence of types of order 2 in
the grammar.

5 Conclusion

∗AB. The paper studies variants of grammatical systems with iterated types:
involving flat type (order 1) or not. We have proved that the classes of k-valued
categorial grammars form a strict hierarchy of classes of languages. Thus, the
notion of k-valued grammars is relevant for both systems: each k ∈ N defines
a particular class of languages. The proof relies on generalized AB deductions
and their corresponding functor-argument structures that enables us to define
languages of structured sentences as for classical categorial grammars.

CDG. In fact, our strict hierarchy theorem also extends to categorial depen-
dency grammars (CDG) with empty potentials, due to the following argument.
A CDG-grammar G with empty potentials, has the same language, when consid-
ered as CDG-grammar or as ∗AB grammar (of order 1). Therefore the hierarchy
for CDG with empty potentials cannot collapse.

Future work could concern other extensions of type logicial grammars, such
as the extension of pregroups with iterated types.
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Multiple String-Match Algorithm
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Abstract. We present Bouma2, a new algorithm for exact multiple
string-match. It is highly parallelizable, has small footprint, and can be
tuned using statistics of the input stream. It uses a special hashing tech-
nique to map the pattern-set to 2-symbol sequences, allowing the match
procedure to be considerably optimized. This algorithm employs a fast-
path/slow-path principle at match-time, which facilitates pipelining in
H/W. We also produce experimental comparative results.

Keywords: aho corasick, pattern match, hash functions, motif finding,
clique partitioning, integer linear programming, fast path, slow path, dpi.

1 Introduction

We present Bouma2,1 a new exact multiple string-match algorithm. The main
idea behind this algorithm is that an optimized match procedure can compensate
for multiple passes over the input stream - especially when match attempts are
infrequent. The heart of the match procedure is a simple pass over the input in
2-symbol strides, in search of “hints” of matches, termed ‘Motifs’ (named after
Sequence Motifs in Computational Biology [6]). For each motif match, the input
string is examined around the match location to corroborate the match. This can
be compared to collision-resolving of a hash value. Bouma2 features the ability
to assist the mapping of patterns to motifs at compile-time by using statistics,
in order to eliminate motif false-positives, control memory footprint etc.

We show benchmark results demonstrating the superiority of Bouma2 over a
basic Aho-Corasick implementation in S/W, yet we believe that the true benefit
of Bouma2 may be in H/W form; inherent statelessness of the match process,
small footprint, a fast-path/slow-path approach and cache-sensitivity make it a
promising candidate for many optimizations that are impossible in S/W.

This paper is organized as follows: Section 2 surveys related work; Section 3
defines basic concepts and notations; Section 4 presents the compilation process
as an ILP[16] problem and as a clique-partitioning problem; Section 5 describes
the match structures, the match-time algorithms, and the resolving process;
Section 6 provides experimental results and Section 7 describes future work.
1 Bouma Shape - the outline, or contour, of a written word. Boumas were used in

Cognitive Psychology for some Word-Recognition models (see [22]).

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 53–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

Bouma2 is partly inspired by motif-finding [6] as well as pairwise [7] and multiple
[8] sequence alignment, adapting similar concepts to general pattern-match; our
graph-based representation (Section 4.2) is a simplified variant of the one in
[9]. Many automaton-based multiple pattern-match algorithms (usually based
on [1], [2] or [3]) exist; most of them suffer from the state-explosion problem
[4]. Hash-based pattern match is described in [5]; the main difference is that
our hashed value is already part of the match. 2-symbol strides (or more) were
used in [10] for multi-pattern match, but the resolving is done with Rabin-Karp
[5] or similar. Using different data-structures for matching the same language
has been suggested mainly for reducing memory footprint ([11], [12]), and not
directly for performance. Using statistics is common for motif-finding [13], but
rare for other pattern-match applications. Finally, we have no record of any
other pattern-match algorithm that is stateless (like our fast-path algorithm,
Section 5.2), nor of a structure similar to the Mangled Trie (Section 5.4).

3 Basic Definitions

An alphabet Σ is a nonempty set of symbols. A word over Σ is a finite sequence
of symbols of Σ. The empty word is denoted by ε and the length of a word
w is denoted by |w|. Σ∗ is the set of words over Σ. A language L is a subset
of Σ∗. Σ2 is the set of all 2-symbol words. The total length of all words in a
language (

∑
w∈L |w|) is denoted by sz(L). The Multiple Pattern-Match Problem

is defined as follows: given a language L ⊆ Σ∗ and a long word WI ∈ Σ∗, find
all occurrences of all words in L that are substrings of WI (also refer to [14]).

3.1 Traces and Motifs

Definition 1. Any set TL ⊆ Σ2 that satisfies t ∈ TL ⇔ ∃w ∈ L : w = wptws is
named the Trace-Set of L. Any t ∈ TL is named a Trace.

Definition 2. The Trace-Occurrence Function occ : L × Σ2 × IN → {0, 1}:

occ(w, t, l) = 1 ⇔ w = wptws ∧ |wp| = l . (1)

Definition 3. The functions assoc0, assoc1 : L × Σ2 → {0, 1} are respectively
named the Even and Odd Trace-Association Functions, and are defined as:

assoc0(w, t) = 1 ⇔
�|w|/2�∑

l=0

occ(w, t, 2l) > 0

assoc1(w, t) = 1 ⇔
�(|w|−1)/2�∑

l=0

occ(w, t, 2l + 1) > 0 . (2)
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Definition 4. A Motif-Set is any ML ⊆ TL that satisfies for every w ∈ L:
∑

t∈ML

assoc0(w, t) ≥ 1 ∧
∑

t∈ML

assoc1(w, t) ≥ 1 . (3)

A Motif μ ∈ ML is every trace that belongs to a motif-set.

Theorem 1. For every L satisfying ∀w ∈ L : |w| > 2 there exists a motif-set.

Proof. By example: consider the trace-set ML, in which the condition in Defini-
tion 4 is inherently satisfied:

ML :=
⋃

w∈L

{t : occ(w, t, 0) = 1} ∪
⋃

w∈L

{t : occ(w, t, 1) = 1} . (4)

��

3.2 Resolve-Sets

Definition 5. A Motif-Set Hash Function is any function HML such that:

HML : L × {0, 1} → ML , HML is surjective

HML(w, i) = μ ⇒ associ(w, μ) = 1 . (5)

Definition 6. For a given HML , μ ∈ ML, a Motif ’s Resolve-Set Rμ ⊆ L, is:

Rμ := {w : HML (w, 0) = μ ∨ HML(w, 1) = μ} . (6)

4 The Bouma2 Compilation Process

Bouma2 is a hash between the words in a language and a motif-set. The choice of
motif-set and the words-to-motifs coupling is part of the compilation process. At
match-time, motif occurrences in the input trigger a resolving process for words
with common motifs, followed by a word-specific comparison at a fixed offset.
Words map to 2 motifs, one for an even offset and one for an odd offset, so the
motif search can proceed in 2-symbol strides. The selection of a suitable motif-set
and efficiency of the match-time procedure are thus crucial for performance.

4.1 Cost Functions

Cost-functions for motifs are used when selecting the final motif-set. Different
cost-functions serve different purposes, like improving performance, reducing
memory size, or speeding up compile-time.

Definition 7. We define a Motif Cost-Function c : Σ2 → IR, and a Maximizing
Motif-Set ML|c solving the following Integer Linear Programming[16] problem:

Maximize
∑

t∈TL

c(t)xt : xt ∈ {0, 1} ∀t ∈ TL

s.t. ∀w ∈ L :
∑

t∈TL

xt · assoc0(w, t) ≥ 1 ∧
∑

t∈TL

xt · assoc1(w, t) ≥ 1 . (7)
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Example 1 (Minimizing Motif False-Positives). Cost functions allow the use of
statistics gathered on the input string and language. For example, the conditional
probability P (w|t), i.e. the probability of the word w appearing in the input
string, given that the trace t was observed, can be used as a weight:

c(t) =
∑

w∈L

(assoc0(w, t) ∨ assoc1(w, t)) · P (w|t) . (8)

Example 2 (Memory Cost Function). Maximizing the number of words per motif
ensures smaller overall memory requirements:

c(t) =
∑

w∈L

(assoc0(w, t) + assoc1(w, t)) . (9)

Example 3 (Resolve Dimension Cost Function). Controlling the resolve dimen-
sion (see Section 5.4) can help maintain deterministic matching performance:

c(t) = D({w ∈ L : assoc0(w, t) = 1 ∨ assoc1(w, t) = 1}) . (10)

Example 4 (Motif-Sets). Consider the following 7-word language of 8-bit char-
acters, and its corresponding trace-set:

L = {boat, book, bore, oral, cooks, core, coredump}
TL = {bo, oa, at, oo, ok, or, re, ra, al, co, ks, ed, du, um, mp} . (11)

Maximizing the number of words per motif yielded ML|c1, and applying weights
based on conditional occurrence probabilities for minimizing motif false-positives
yielded ML|c2. Table 1 shows resolve-sets for the two solutions.

ML|c1 = {bo, oa, oo, or, co, ra}
ML|c2 = {bo, oa, oo, or, co, ra, ok, al, ks, du, um} . (12)

4.2 The Bouma2 Compilation Graph

An alternative to the ILP formulation in Definition 7 is to treat the compiler as
a Weighted Clique Partitioning problem [9] (see example in Figure 1):

Definition 8. We define the Bouma2 Graph, GL = (V, E), which satisfies:

V :=
⋃

w∈L{v0|w, v1|w}
E := {(vi|w, vj|w′) : vi|w, vj|w′ ∈ V ∧ i, j ∈ {0, 1} ∧ w �= w′ ∧

∃t ∈ TL : associ(w, t) = 1 ∧ assocj(w′, t) = 1 } ∪
{(v0|w, v1|w) : v0|w, v1|w ∈ V ∧

∃t ∈ TL : assoc0(w, t) = 1 ∧ assoc1(w, t) = 1 } . (13)

Theorem 2. Every trace in L can be mapped to a maximal clique in GL.
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Table 1. Two options of motif-sets for the same language

Min. Motif False-Positives: Max. Words per Motif:

Rbo = {boat, bore} Rbo = {boat, bore,book}
Roa = {boat} Roa = {boat}
Roo = {book} Roo = {book, cooks}
Ror = {bore, core} Ror = {bore, core,oral, coredump}
Rco = {core} Rco = {core, cooks, coredump}
Rra = {ora l} Rra = {ora l}
Rok = {book , cooks} −
Ral = {oral} −
Rks = {cooks} −
Rdu = {coredump} −
Rum = {coredump} −

Proof. For every trace t ∈ TL, we identify the set Ct ⊆ E, Ct := {(vi|w, vj|w′) :
associ(w, t) = 1 ∧ assocj(w′, t) = 1}. VCt represents2 words having t in common
(either at an even or an odd offset), and no other vertex represents such a word,
so VCt is necessarily a maximal clique. ��

Theorem 3. Any clique partition of a Bouma2 graph represents a motif set.

Proof. Given a clique partition, we denote an arbitrary clique in it by VC′
t
⊆ VCt,

where VCt ⊆ V is a maximal clique representing t according to Theorem 2. We
can thus specify a trace-set ML such that for every clique VC′

t
in the partition,

t ∈ ML. By definition, all the vertices have to be covered by the clique partition,
and each vertex belongs to a single clique. Consider the 2 vertices v0|w, v1|w
corresponding to the word w. Let v0|w belong to VC′

µ
, and let v1|w belong to VC′

µ∗
in said partition. By Definition 8, assoc0(w, μ) = 1 and assoc1(w, μ∗) = 1.
Thus, for ML the condition in Definition 4 is necessarily satisfied. ��

Algorithm 1 BOUMA2-GRAPH-MAX-CLIQUES(L ∈ Σ∗)

1: procedure BOUMA2-GRAPH-MAX-CLIQUES(L)
2: for all t ∈ Σ2 do
3: CLIQUE-REF(t)={}
4: end for
5: TRACE-SET={}
6: for all w ∈ L do
7: for all i ∈ {x : 0 ≤ x < |w|} do
8: TRACE-SET = TRACE-SET ∪ {t : occ(w, t, i) = 1}
9: CLIQUE-REF(t) = CLIQUE-REF(t) ∪ {(w, i)}
10: end for
11: end for
12: return CLIQUE-REF(t) forall t ∈ TRACE-SET
13: end procedure

2 Throughout this discussion, we adopt a notation whereas for the clique VC ⊆ V ,
C ⊆ E represents its (possibly empty) corresponding set of connecting edges.
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Fig. 1. Bouma2 graph for Example 4, highlighting the ML|c1 clique partition

Theorem 4. All maximal cliques in a Bouma2 graph are found in linear time.

Proof. Algorithm 1 finds all the sets CLIQUE-REF in O(sz(L)) time. Each such
set corresponds to a trace and therefore to a maximal clique. ��

The original version of our benchmark (Section 6) employed a “greedy” heuristic
using the CLIQUE-REF sets together with a cost function (see Definition 7). The
heuristic iteratively determined the maximum clique, added it to the motif-set
and pruned it from the graph.

5 The Bouma2 Match Process

5.1 The Match Structures

Unlike DFA-based algorithms, Bouma2 keeps the words in original form, main-
taining a set of offsets to word-fragments. The match structure is thus very
compact and linearly dependent on the total length of the set of words.

Definition 9. A Motif ’s Match Function, Γμ : Σ∗ × IN → L ∪ {ε}, satisfies:

For m = mpwpμwsms such that |mpwp| = l, and a given HML :
HML(wpμws, |wp|%2) = μ ⇒ Γμ(m, l) = wpμws

Otherwise : Γμ(m, l) = ε . (14)

Definition 10. The Bouma2 Match Structure is defined as:

BL := (L, ML, {Γμ : μ ∈ ML}). (15)

Theorem 5. The memory consumption of BL is O(sz(L) + sz(Σ2) + |L|).
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Proof. We keep the original set of words, hence O(sz(L)). ML ⊆ Σ2, contribut-
ing O(sz(Σ2)). Finally, the match functions require offset mapppings within the
words, maximum 4 per word (1 prefix offset and 1 suffix offset for each word’s
even motif, and another such couple for the odd motif), giving O(|L|). ��

5.2 Match-Time Algorithm

Given an arbitrary input message m ∈ Σ∗, Algorithm 4 follows a 2-stage Fast-
Path/Slow-Path discipline: the fast-path phase (Algorithm 2) first advances ef-
ficiently in 2-symbol strides, “harvesting” motif occurrences within the input,
over a block of predefined size. The order in which the 2-symbol checks are per-
formed within the block is not important. If any motifs are found, the slow-path
phase (Algorithm 3) analyzes each occurrence to verify a complete match.

Algorithm 2 BOUMA2-FAST-PATH(BL = (L, ML, {Γµ : μ ∈ML}), m ∈ Σ∗)

1: procedure BOUMA2-FAST-PATH(BL,m)
2: HARVEST={}
3: for all i ∈ {x : 0 ≤ x < |m| ∧ x%2 = 0} do
4: if m = mptms : |mp| = i ∧ t ∈ ML then
5: HARVEST = HARVEST ∪ {(i, t)}
6: end if
7: end for
8: return HARVEST
9: end procedure

Algorithm 3 BOUMA2-SLOW-PATH(BL = (L, ML, {Γµ : μ ∈ML}), m ∈ Σ∗)

1: procedure BOUMA2-SLOW-PATH(BL,m,HARVEST)
2: for all (i, μ) ∈ HARVEST do
3: if Γµ(m, i) �= ε then
4: MATCH = MATCH ∪ {(i, Γµ(m, i))}
5: end if
6: end for
7: return MATCH
8: end procedure

Algorithm 4 BOUMA2-MATCH-TIME(BL = (L, ML, {Γµ : μ ∈ML}), MSG ∈ Σ∗, l ∈ IN)

1: procedure BOUMA2-MATCH-TIME(BL, MSG, l)
2: MATCH={}
3: for all m ∈ {x : MSG = mpxms ∧ |mp|%l = 0} do
4: HARVEST = BOUMA2-FAST-PATH(BL,m)
5: MATCH = MATCH ∪ BOUMA2-SLOW-PATH(BL,m,HARVEST)
6: end for
7: return MATCH
8: end procedure

5.3 The Resolve Process

In the slow-path phase, the match function Γμ first has to attempt to rule-out
the words that HML maps to μ (Definition 11 formalizes this requirement). This



60 E. Buchnik

may be accomplished by looking for distinct symbols at offsets around the motif
match. Proper motif selection in compile-time may be used to reduce the number
of resolve-points per motif (see Section 5.4).

Definition 11. The Bouma2 Resolving Problem is defined as follows: Given a
resolve-set Rμ and an input message m = mpμms, find an algorithm that would
yield R′μ ⊆ Rμ in the smallest number of steps, whereas:

∀wp′μws′ ∈ R′μ : mp = mppwp′ ∧ ms = ws′mss . (16)

If not all the words could be ruled-out, the second task is to match the remaining
words’ prefix and suffix (before and after the motif occurrence, respectively)
against the input. The prefix and suffix matches cause the input to be traversed
multiple times. Nevertheless, these procedures can be considereably optimized
(e.g. by 4-symbol strides), since they involve a simple comparison.

5.4 The Resolve Dimension

We loosely define the Resolve Dimension, D(L′t), as follows: given a set of words
L′t ⊆ L, for which ∀w ∈ L′t : assoc0(w, t) = 1 ∨ assoc1(w, t) = 1, D(L′t) is
the minimum number of symbols within an input that need to be checked for
ruling out at least |L′t|−1 words3. Each symbol check at an offset relative to the
motif match is named a Resolve Point. Alternatively, we declare the notion of
a Mangled Trie (see Example 5), which is an optimal offset-based decision-tree,
and state that if d is the depth of a mangled-trie that completely resolves L′t,
then D(L′t) = d − 1.

Example 5 (Resolve Dimension). Consider HML|c1 in Example 4, illustrated in
Figure 2. We specify the motif occurrence position as offset 0. D(Rra) and
D(Roa) are both 0, since the resolve-sets contain a single word each. Roo can be
resolved at offset -1, and Rbo at offset 2 or 3, hence D(Roo) and D(Rbo) are both
1. Rco cannot be resolved without examining at least two of offsets 2, 3 and 4.
Thus, D(Rco) is 2. D(Ror) = 2 since both offsets -1 and 2 need to be examined.

6 Experimental Results

All tests were done on a DellTMcomputer with Intel R©CoreTM2 Duo CPU 2.53
GHz with 1.95 GB RAM, running Windows XP SP3. The Bouma2 compiler and
matcher were written in C++ using Microsoft R©Visual Studio R©2010 Premium.
The Aho-Corasick benchmark was taken from [15] and adapted for Microsoft R©
Windows. The benchmark included all the algorithms under test running to-
gether, repeatedly scanning an input file for matches. The match results and

3 For simplicity, this discussion ignores some special cases; for example, special treat-
ment is required for multiple words that partially overlap by 4 symbols or more,
such as in Ren = {Development, mentality}.
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Fig. 2. Resolve-sets for ML|c1 in Example 4, and a Mangled Trie for resolving Ror

Table 2. Experimental Results (Clique-Partition Heuristic)

Test # Motif Set Size Word Count Total Word Length Input Length Match Count Test Iterations
1 524,296 22 394 205,748 70 40,960

Matcher: AC Bouma2:Opt. Cmpl-Time Bouma2:Min. Motif FPs
Profiler Samples 19,008 9,839 7,857
Match-Time (% of AC) 100 51.76241582 41.33522727
Total Memory (bytes) 54,944 528,204 526,884
Resolve-Sets Size N/A 3,908 2,588
Motifs N/A 15 33
Motif False-Positives N/A 13,021 6,939

Test # Motif Set Size Word Count Total Word Length Input Length Match Count Test Iterations
2 524,296 100 3,994 22,445,535 99 40,960

Matcher: AC Bouma2:Opt. Cmpl-Time Bouma2:Min. Motif FPs
Profiler Samples 56,361 55,259 33,119
Match-Time (% of AC) 100 98.04474725 58.76226469
Total Memory (bytes) 348,524 541,852 537,096
Resolve-Sets Size N/A 17,556 12,800
Motifs N/A 56 151
Motif False-Positives N/A 2,671,687 2,791

Test # Motif Set Size Word Count Total Word Length Input Length Match Count Test Iterations
3 524,296 1,334 35,838 7,538,346 3,101 512

Matcher: AC Bouma2:Opt. Cmpl-Time Bouma2:Min. Motif FPs
Profiler Samples 40,770 12,992 8,987
Match-Time (% of AC) 100 31.86656856 22.043169
Total Memory (bytes) 2,415,212 717,968 761,088
Resolve-Sets Size N/A 193,672 236,792
Motifs N/A 492 1,035
Motif False-Positives N/A 2,430,868 1,574,338
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Table 3. Experimental Results (Branch-and-Cut)

Test # Motif Set Size Word Count Total Word Length Input Length Match Count Test Iterations
4 524,572 3,093 24,301 355,228 14,774 8,192

Matcher: AC Bouma2:No Motif Priority Bouma2:Min. Motif FPs
Profiler Samples 17,314 10,146 8,800
Match-Time (% of AC) 100 58.5999769 50.82592122
Total Memory (bytes) 1,260,092 850,665 869,597
Resolve-Sets Size N/A 326,093 345,025
Motifs N/A 232 293
Motif False-Positives N/A 70,383 56,565

Test # Motif Set Size Word Count Total Word Length Input Length Match Count Test Iterations
5 524,572 3,408 26,976 355,228 16,403 8,192

Matcher: AC Bouma2:No Motif Priority Bouma2:Min. Motif FPs
Profiler Samples 17,554 10,275 8,941
Match-Time (% of AC) 100 58.53366754 50.93426
Total Memory (bytes) 1,340,372 881,924 886,708
Resolve-Sets Size N/A 357,352 362,136
Motifs N/A 234 281
Motif False-Positives N/A 68,775 57,180

positions of the competing algorithms were verified to be identical. The match
procedure for each algorithm was instantiated within the same loop, which was
repeated a large number of times. The comparison was made with the aid of
the built-in sampling profiler in Microsoft R©Visual Studio R©. We compared the
relative running-times of each competing algorithm, as expressed in aggregated
profiler samples (samples were taken once every 10,000,000 clock cycles).

The compiler for the original benchmark was based on the heuristic described
in Section 4.2. Table 2 shows the results of this benchmark with Aho-Corasick vs.
Bouma2 (optimized compile-time) vs. Bouma2 (minimum motif false-positives).
These tests were performed over binary texts and search-strings (virus signatures
taken from [20]).

Since the original tests, the Bouma2 compiler was completely rewritten based
on the Branch-and-Cut implementation within the COIN-OR[17] BCP[18] pack-
age, for solving the ILP described in Section 4.1. This allowed support of con-
siderably larger languages and improved the quality of the resulting motif-sets
(through finding a global maximum instead of a local maximum), at a fraction
of the original compilation-time. Table 3 shows results of the new benchmark
with Aho-Corasick vs. Bouma2 (no motif prioritization) vs. Bouma2 (minimum
motif false-positives). These tests consisted of searching the book “Cyrus the
Great” [21] for randomly extracted words.

One observation from these tests is that properly applying statistics to im-
prove the quality of the motif-set indeed has a direct impact on the Bouma2
performance. The fast-path overhead is deterministic and allows little room for
optimization in S/W. Nevertheless, the slow-path overhead can be minimized
both by optimizing the resolving procedure and by accessing it fewer times
through the use of a better motif-set.
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7 Extensions and Future Work

Compile-Time: Methods to further improve compilation time and the quality of
the solution motif-set are being researched. Furthermore, if for a certain word
the motif-set includes more than one odd motif or more than one even motif,
the compiler has to decide on a single motif which will represent this word. This
duplicates-removal process currently considers only the number of words per
motif, and can probably be optimized through the use of occurrence statistics.
Finally, the design of an adaptive system that extracts statistics while analyzing
the input and improves the resolve-sets in the background may be considered.

Match-Time: Optimizing the resolving algorithm and the structure of the Man-
gled Trie should improve performance considerably: currently, the resolving pro-
cess may sometimes amount to more than 70% of the Bouma2 match proce-
dure. For this aim, we should find a complete solution for the problem stated in
Definition 11.

H/W implementation: The fast-path phase can be highly optimized for H/W: it
is completely stateless, such that separate 2-symbol sequences can be checked in
no particular order. E.g. for 8-bit words we can have several copies of a 64K-entry
direct-access table, and use each copy for motif searches at different positions.
The ability to pipeline fast-path and slow-path procedures, the small footprint,
and the inherent cache-sensitivity also make Bouma2 suitable for H/W.

Match Scenarios: Currently unsupported 2-symbol words can be expanded to
|Σ| 3-symbol words with a 1-symbol prefix (actually, when matching e.g. "\r\n"
in HTTP, there is a specific character-subset to which the preceding character
must belong, reducing the expansion to less than |Σ|); For ASCII characters
the match structure may hold bitmasks for normalizing the input’s case when
performing a case-insensitive match (also requiring at compile-time to assign the
complete set of possible motifs - up to 8 - to the same word); Regular expressions
(wildcards, character-sets, etc.) can be translated to checks that accompany the
exact match process (thus a Bouma2-powered variant of the PCRE [19] package
can be considered); The issue of pattern-match across input fragments (e.g.
fragmented IP packets), which is handled well by Aho-Corasick (the match can
be paused and the state stored at any point), requires special treatment with
Bouma2, which may need to examine the input more than once (we may consider
e.g. calculating at compile-time the maximum required first-fragment suffix that
we will need to store, as a function of the values at the end of the fragment);
Finally, we may consider the relevance of the Bouma2 hashing scheme to other
applications besides pattern-match (e.g. text indexing).
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Abstract. In this article we propose an algorithm, based on Markov
chain techniques, to generate random automata that are deterministic,
accessible and acyclic. The distribution of the output approaches the
uniform distribution on n-state such automata. We then show how to
adapt this algorithm in order to generate minimal acyclic automata with
n states almost uniformly.

1 Introduction

In language theory, acyclic automata are exactly the automata that recognize fi-
nite languages. For this reason, they play an important role in some specific fields
of applications, such as the treatment of natural language. From an algorithmic
point of view, they often enjoy more efficient solutions than general automata;
a famous example is the linear minimization algorithm proposed by Revuz for
deterministic acyclic automata [15]. They also appear as first steps in some algo-
rithms, two examples of which are related to Glushkov construction [3,4,5] and
some extension of Aho-Corasick automaton [14].

In the design and analysis of algorithms it is of great use to have access to
exhaustive and random generators for the inputs of the algorithm one wants to
study: the exhaustive generator is used to analyze the behavior of the algorithm
for small inputs, but cannot be used for large inputs since there are too many of
them; typically the number of size-n inputs often grows at least exponentially in
n. Those generators can be used either to test the correctness and the efficiency
of an implementation, or to help the researcher while establishing theoretical
results about the average case analysis of the algorithm.

An exhaustive generator for minimal deterministic acyclic automata has been
given by Almeida, Moreira and Reis [1], and in this paper we propose an al-
gorithm to generate at random deterministic, accessible and acyclic automata,
with a distribution that is almost uniform, using Markov chain techniques. With
just a few changes, this algorithm can be turned into a generator for minimal
acyclic automata. The idea is to start with a n-state acyclic automaton, then to
perform a certain amount T of mutations of this automaton, a mutation being a
� The second author was supported by ANR MAGNUM - project ANR-2010-BLAN-

0204.
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small local transformation that preserves the required properties (deterministic,
accessible and acyclic with the same number of states). Since each mutation is
performed in time O(n), the complexity of our algorithm is O(nT ). The bigger
T is, the more the output distribution approaches the uniform distribution. For
a given distance to uniformity, it is a general difficult problem to give a good
estimation of a corresponding value of T ; this is directly related to the mixing
time of the Markov chain, which is generally a difficult problem [10]. Nonethe-
less, the diameter of the Markov chain and the simulations we performed seems
to indicate that a choice of T in Θ(n) already gives a correct random generator,
at least for most applications, of complexity O(n2).

Note that the other generic methods to generate combinatorial structures
uniformly at random seem to fail here. For instance, recursive methods [8] or
Boltzmann samplers [7], which have been used for deterministic automata
[6,2,9], rely on a good recursive description of the input, which is not known for
acyclic automata. To our knowledge, the only combinatorial result on acyclic
automata is due to Liskovets [11], who gave a close formula for the number of
acyclic automata, but which cannot be directly translate into a good recursive
description.

Related work: as mentioned above, our algorithm is a complement of the ex-
haustive generator of Almeida, Moreira and Reis [1] for testing conjectures and
algorithms based on deterministic acyclic automata. The idea of using Markov
chain for that kind of objects starts with works on acyclic graphs, which has
been done for graph visualization purposes [12,13]. Though using the same gen-
eral idea, deterministic acyclic automata do not resemble acyclic graphs that
much, mainly because they only have a linear number of edges (transitions). In
particular, the diameter of the Markov chain, which is a lower bound for the
mixing time, is quadratic for acyclic graphs but linear in our case. Moreover,
automata considered in this article must be accessible, which is not a natural
condition for graphs (there is no notion of distinguished initial vertex); Melançon
and Philippe considered simply connected acyclic graphs in [13], but this is not
the same as accessibility. For instance, they use a nice optimization based on
reversing an edge, which preserves connectedness but not accessibility; hence it
cannot be reused here.

The paper is organized as follows. In Section 2, we recall basic notations about
automata; and in Section 3 classical Markov chain concepts are detailed. The
algorithm is described in Section 4, and its correctness is given in Section 5.
We present a generator for minimal acyclic automata in Section 6. Finally, in
Section 7 we perform some experimentations.

2 Notations

Throughout this paper, a deterministic finite automaton is a tuple A = (Q, A, δ,
i0, F ), where Q is a finite set of states, A is a finite set of letters called the
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alphabet, δ : Q × A → Q is the (partial) transition function, i0 ∈ Q is the ini-
tial state and F ⊆ Q is the set of final states. In the sequel we always suppose
that |A| > 1. For any state q ∈ Q, the transition function δ(q, ·) is induc-
tively extended to the set A∗ of all finite words over A: δ(q, ε) = q, where ε is
the empty word, and for all w ∈ A∗ such that w = w1w2 . . . wn, then δ(q, w)
:= δ(δ(. . . δ(δ(q, w1), w2) . . .), wn).

In this paper, we represent a transition δ(p, a) = q, with (p, q) ∈ Q2 and
a ∈ A, by p

a−→ q. The notation A⊕ p
a−→ q represents the automaton A with the

additional transition p
a−→ q. Similarly, the notation A � p

a−→ q represents the
automaton A where the transition p

a−→ q has been removed, if it exists.
A state q ∈ Q is accessible (resp. co-accessible) when there exists w ∈ A∗

such that δ(i0, w) = q (resp. δ(q, w) ∈ F ). An automaton is accessible (resp.
co-accessible) when all its states are accessible (resp. co-accessible).

A state q ∈ Q is transient if for all w ∈ A+, δ(q, w) �= q. A state that is
not transient is called recurrent. An automaton is acyclic when every state is
transient. Another definition of acyclic automata is that the underlying directed
graph is an acyclic graph. Remark that it is impossible for a complete automaton
to be acyclic.

In the sequel, without loss of generality, the set of states Q of an n-state de-
terministic automaton will always be {1, . . . , n} and 1 will always be the initial
state. The size of an automaton is its number of states, and we furthermore
assume from now on that n ≥ 2. Moreover, since we always consider determinis-
tic, accessible and acyclic automata in this article, we shall just denote them by
“acyclic automata” for short. The set of all n-state acyclic automata is denoted
by An.

Also, except in Section 6, we are not considering the set of final states in our
random generator. We assume that final states are chosen independently once
the underlying graph of the automaton is generated.

3 Markov Chains and Random Generation

In this section we describe our algorithm to generate an acyclic automaton A
of size n over the alphabet A, with the uniform probability on An. The input of
algorithm is two positive integers: n, the number of states, and T , the number
of iterations.

The algorithm relies on a Markov chain process: it randomly moves in the
set An and returns the last automaton reached after T steps. The Markov chain
of the algorithm can be seen as a directed graph whose vertices are elements
of An. An edge from an automaton A to another automaton B is labelled by a
real r ∈ [0, 1], which represents the probability to move from automaton A to
automaton B in one step. For two automata A,B ∈ An we denote by PA,B the
label of the edge from A to B, if it exists, otherwise we set PA,B = 0. Since it is
a probability, we have:
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∀A ∈ An,
∑

B∈An

PA,B = 1.

A distribution on An is a mapping p from An to [0, 1] such that
∑
A∈An

p(A) =
1. A stationary distribution of a Markov chain π is a distribution that remains
globally unchanged after each random move, that is,

∀B ∈ An, π(B) =
∑

A∈An

π(A) × PA,B.

A Markov Chain is called irreducible when its graph is strongly connected.
For i ∈ N, let P (i)

A,B be the probability to move from A to B in i steps of the
algorithm. We define the period of a vertex A as the gcd of the lengths of all
circuits on A: gcd({i ∈ N | P(i)

A,A > 0}). If there is a loop of length 1 on A, the
period of A is 1 by definition. A vertex is aperiodic if its period is 1. A Markov
chain is aperiodic when all its states are aperiodic. A Markov chain is ergodic
when it is both irreducible and aperiodic.

A famous property of ergodic Markov chains with a finite number of vertices
is that they have a unique stationary distribution and that starting at any vertex
the distribution obtained after T steps tends to this stationary distribution as T
tends to infinity [10]. This gives a general framework to build a random generator
on a non-empty finite set E: design an ergodic Markov chain whose set of vertex
is E and such that the stationary distribution is the uniform distribution. Start
from any vertex, then move randomly for a long enough time to obtain a random
element of E almost uniformly.

This is exactly what we do in this article. A part of the Markov chain that
is behind our algorithm is depicted in Figure 1. Each step consists either in
doing nothing or in changing a transition. The complete description of the al-
gorithm is done in Section 4. Our main result, which is proved in Section 5 is
the following:

Theorem 1. The Markov chain of the algorithm is ergodic and its stationary
distribution is the uniform distribution.

Since 1 is always the initial state and since there are (n − 1)! different way
to label the other states there are exactly (n − 1)! automatata isomorphic to
any element of An. Consequently, our uniform random generator on An yields
a generator on isomorphic classes of automata which is also uniform. Note that
the number of iterations T must be large enough in order to approach closely
the uniform distribution. The choice of T is a difficult problem [10] and it is
not entirely cover in this paper. The diameter of the Markov chain’s graph is a
lower bound for T , and we will show in Section 5 that this diameter is linear in
our case. In Section 7, we will see that the uniform distribution seems to be well
approximated using a linear number of iterations, at least well enough for most
simulation purposes.
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Fig. 1. Part of the Markov chain: at each iteration an element p
a−→ q of Q × A × Q

is chosen randomly. If it corresponds to a transition of the automaton, as 2
b−→ 3, then

it is removed. If there is no transition labelled by a and starting at p it is added; this
is the case for 2

a−→ 3. When there already is a transition labelled by a and starting

at p, it is redirected to q; this is the case for 1
b−→ 2. The mutation is not done if the

automaton is not acyclic anymore (3
a−→ 2) or if it is not accessible anymore (1

a−→ 2).

4 Algorithm

The algorithm has two arguments: the number n of states and a value T which
indicates the desired number of iterations (it is quite difficult to know when the
uniform distribution is reached so it is convenient to specify it). After choosing
any acyclic automaton A ∈ An to start with, the algorithm repeats the following
steps T times: choose uniformly a labelled edge p

a−→ q with p �= q (p = q is not
interesting since we are considering acyclic automata). Then there are three
possible cases:
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AcyclicAutomatonGeneration(n, T )
A ← any deterministic, accessible and acyclic automaton with n states1

i ← 02

while i < T do3

p ← Uniform(Q), a ← Uniform(A), q ← Uniform(Q \ {p})4

if δ(p, a) is undefined then5

if IsAcyclic(A⊕ p
a−→ q) then A = A⊕ p

a−→ q6

else if δ(p, a) = q then7

if IsAccessible(A� p
a−→ q) then A = A� p

a−→ q8

else9

r ← δ(p, a)10

if IsAccessible(A� p
a−→ r) then11

A = A� p
a−→ r12

if IsAcyclic(A ⊕ p
a−→ q) then13

A = A⊕ p
a−→ q14

else15

A = A⊕ p
a−→ r16

i ← i + 117

Randomly choose the set of final states of A18

return A19

• There is no transition starting from p and labelled with a. In such a case, we
try to add p

a−→ q to A and test if it is still acyclic. The transition is added
only if it is.

• There already is a transition p
a−→ q in A. In that case, we test if A is still

accessible if we remove it. If it is, the transition is removed, else A remains
unchanged.

• There is a transition starting from p, labelled with a and reaching a state
r, with r �= q. In this last case, we first test whether A is still accessible if
we redirect δ(p, a) to q. If it is, we do the redirection, otherwise A remains
unchanged.

In this process, we need to check regularly the accessibility and the acyclicity of
A.

The accessibility test is implemented the following way. We keep up-to-date,
for each state q, a counter that indicates the total amount of transitions ending
in q. Each time we add or remove such a transition, this counter is increased
or decreased. Thus, to test the accessibility, we just have to check, after the
transition has been removed, whether the counter on the state that ends the
transition reaches 0 or not; this is a consequence of Lemma 1 (see Section 5). It
clearly has a O(1) time complexity.
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The acyclicity is tested by the classical algorithm, using a depth-first-search
algorithm which runs in time O(n), since the number of transitions is linear in
a deterministic automaton.

We therefore get the following result.

Proposition 1. Each iteration of the algorithm is performed in time O(n). The
worst case time complexity of the algorithm is O(Tn) and its space complexity
is O(n).

The experimental results of Section 7 suggest that choosing T ∈ Θ(n) should
be good enough; with this choice, the complexity of our algorithm would be
quadratic.

5 Proofs

In this section, we prove the main facts that are used for our algorithm to
correctly generate an acyclic automaton with almost uniform distribution, and
with the announced complexity.

An operation which consists in removing, adding or changing a transition is
called an elementary operation.

Lemma 1. Let A be an acyclic automaton of size n and B = A� p
a−→ q, where

p
a−→ q is any transition of A. The automaton B is acyclic, and it is accessible if

and only if there is at least one transition that ends in q in the automaton B.

Proof. First note that q �= 1, since 1 is the initial state of A, which is an acyclic
and accessible automaton with at least two states.

Suppose that there is no transition that ends in q in B. Since q �= 1, q is not
accessible and neither is B.

Suppose now that B has a transition r
b−→ q, for some state r and some letter

b. The state r is accessible in A, and r �= q. Since A and B only differ by a
transition that ends in q, r is still accessible in B. Therefore, q is accessible in B
because one can follow a path from 1 to r, then use the transition r

b−→ q. Since
all other states are accessible for the same reason as r is, B is accessible. ��

Note that the result of Lemma 1 does not hold for automata that are not acyclic.

Lemma 2. The Markov chain of the algorithm is symmetric, that is, for all
A,B ∈ An, PA,B = PB,A.

Proof. Recall that the probability to draw a given triplet (p, a, q) with p ∈ Q,
q ∈ Q\{p}, and a ∈ A is 1

n(n−1)|A| . Let A, B be in An such that PA,B > 0.
Then there exists an elementary operation that transforms A into B. Suppose
B = A ⊕ p

a−→ q. The probability to draw the triplet (p, a, q) is 1
n(n−1)|A| . Now

from B the only possible elementary operation to reach A is to remove the
transition p

a−→ q. Thus, we need to draw the triplet (p, a, q) and the probability
of this event is 1

n(n−1)|A| too. If B = A � p
a−→ q then A = B ⊕ p

a−→ q thus we
are in the same case as above and PA,B = PB,A.



72 V. Carnino and S. De Felice

Suppose the elementary operation that transforms A to B is to redirect the
transition p

a−→ q of A to obtain p
a−→ s in B. To get this, we need to draw the

triplet (p, a, s) and the probability of this event is 1
n(n−1)|A| = PA,B. The only

possible elementary operation to reach A from B is to redirect the new transition
p

a−→ s to p
a−→ q which has the same probability, for the same reasons. Hence

PA,B = PB,A in this case too. ��

Lemma 3. The Markov chain of the algorithm is ergodic.

Proof. We need to prove that it is both irreducible and aperiodic.
To prove the irreducibility, we show that, in the Markov chain, there is a path

from any acyclic automaton A ∈ An to an automaton Sn ∈ An, where Sn is the
acyclic automaton whose only transitions are i

a−→ i + 1, for i ∈ {1, . . . , n − 1}:

1 2 n− 1 n
a a a a

Let A be any acyclic automaton and let a be a letter in A. Let E be the
set of states that are accessible from the initial state by reading only a’s. E
is not empty since it contains at least the initial state 1. Repeatedly remove
every transition p

α−→ q where q ∈ E and p /∈ E. Then repeatedly remove every
remaining transition p

α−→ q where p, q ∈ E and α �= a. This actions are valid
moves in the Markov chain by Lemma 1 since we always keep the transitions
p

a−→ q with p, q ∈ E. Let � be the only state in E with no outgoing transition
labelled with a.

If |E| < n, choose a state s of A that is not in E and add a transition �
a−→ s.

Because there is no path between s and a state of E, this operation cannot create
a cycle. Repeatedly remove all transitions directed toward s except �

a−→ s. Add
s to E, the set E is one state bigger. The size of E being finite, this operations
can be repeated until E contains all states of A.

Hence, at some point |E| = n and A is isomorph to Sn, since every state but
the initial one has exactly one incoming transition, which is labelled by a. The
only difference with Sn is that the states are not necessarily in the correct order.
We now explain how they can be re-ordered.

Let b ∈ A, b �= a for each transition p
a−→ q of A, we add to A the transition

p
b−→ q by elementary operations, which do not create any cycle. Now we remove

all transitions labelled by a, A remains accessible because of the transitions
labelled by b. We are in the case |E| < n above, where the set E contains the
state 1 only. To reach the automaton Sn, it is sufficient to choose the new states
added to E in the order of their label. After removing all transitions labelled by
b, we finally obtain the automaton Sn.

Hence for every A ∈ An, there exists a path from A to Sn in the Markov
chain. By Lemma 2 there also exists a path from Sn to A: the Markov chain
is therefore irreducible. For every automaton A ∈ An and any state p �= 1 and

any letter a ∈ A, if the edge chosen by the algorithm is (p, a, 1) then A remains
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the same: adding the transitions would make A cyclic. Hence every vertex has
a loop of length 1 in the Markov chain, it is therefore aperiodic. ��

Lemma 4. The diameter of the Markov chain is in Θ(n).

Proof. Using the construction proposed in the proof of Lemma 3, every A ∈ An

is at distance at most (|A| + 5)n of Sn. The diameter of the Markov chain is
thus at most 2(|A| + 5)n, which is O(n). The lower bound in Ω(n) is obtained
by considering the distance from Sn to an acyclic automaton whose edges are
all labelled by a letter b �= a. ��

Theorem 1 is a consequence of the lemmas above: By Lemma 3 the Markov
chain of the algorithm is ergodic and by Lemma 2 it is symmetric. According to
a classical result in Markov chain theory [10], its stationary distribution is the
uniform distribution on An.

6 Minimal Acyclic Automata

In this section we briefly describe how to adapt our algorithm in order to generate
minimal acyclic automata. Due to the lack of place, we do not give all the details
here, but the adaptation is quite straightforward.

An acyclic automaton A of An is a hammock acyclic automaton (or hammock
automaton for short) if A has only one state with no outgoing transition. This
state is called the target state of the hammock automaton. We denote by Hn ⊂
An the set of size-n hammock automaton whose target state is n.

Our random generator can readily be adapted to generate elements of Hn:
never choose p = n, in order to keep n without outgoing transition, and do not
perform a deletion of p

a−→ q if it is the only outgoing transition of p.
Adapting the proof of Lemma 3 to hammock automata, we can prove that

the Markov chain is still ergodic and symmetric. Its stationary distribution is
therefore the uniform distribution on Hn. The diameter is also in Θ(n) for this
new chain.

Let Mn denote the set of minimal acyclic automata with n states. One can
verify that such an automaton is necessarily an hammock automaton whose
target state is final. This is of course not a sufficient condition. However, we
can use this property to generate elements of Mn using a rejection algorithm:
repeatedly draw a random hammock automaton (whose target state is final)
until the automaton is minimal. This pseudo-algorithm may never halt, but if
the proportion of minimal automata is large enough, the average number of
rejections is polynomial or even bounded above by a constant. The important
point is that no bias is introduced by this method: if hammock automata are
generated uniformly at random, the induced probability on the output is the
uniform distribution on Mn.

We have no asymptotic result yet about the proportion of minimal automata
amongst hammock automata. This may be a difficult problem, since it is still
open for general deterministic automata. But experiments indicate that this
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proportion should be non-negligible: amongst 1000 random hammock automata
of size 100, on a two-letter alphabet, we found 758 minimal automata. If we
accept the conjecture that the proportion of minimal automata is at least c > 0,
this yields a random generator for minimal acyclic automata with no increase of
complexity, in average: the average number of rejections is bounded from above
by a constant, and the test of minimality is linear, using Revuz algorithm [15].

7 Experiments

In this section, we present some experiments we did in order to evaluate the
rate of convergence of our algorithm as T grows. For this purpose we use the
Kolmogorov-Smirnov statistic test, which, roughly speaking, computes a value
that measures the distance to the uniform distribution. This testing protocol is
limited to small values of n: we need to store, for each isomorphism class of An

the number of times it has been generated when performing a large number N
of random generations. For the test to be meaningful, all isomorphism classes
of An must have been generated, and there are many of them, even for small
values of n [11,1].

We generated a large number of acyclic automata with our generator and
reported the value of the Kolmogorov-Smirnov statistic test. The results are
given in Figure 2 below.

n 3 4 5 6
|(A∼)n| 16 127 13183 18628

T = 2n 0.2 0.3 0.077 0.05
T = 8n 0.026 0.02 0.013 0.003
T = 16n 0.016 0.0070 0.0015 0.00068
T = 24n 0.02 0.0074 0.0014 0.00044

Fig. 2. The values of the uniform Kolmogorov-Smirnov statistic test depending on n
and of the number T of iterations in the algorithm. The tests are performed on a
population of 100|(A∼)n| automata generated by the algorithm, where (A∼)n is the
set of isomorphism classes of An. We indicated in bold when the test of uniformity is
successful.

8 Conclusion

Our random generators are already usable in practice, and easy to implement.
Two questions remain to justify fully their good behavior, which are ongoing
works:

• The complete analysis of the main algorithm requires a good estimation of
the mixing time of the underlying Markov chain.

• The efficiency of our algorithm that generates minimal acyclic automata re-
lies on an estimation of the proportion of minimal automata amongst ham-
mock automata.
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6. Champarnaud, J.-M., Paranthoën, T.: Random generation of DFAs. Theor. Com-
put. Sci. 330(2), 221–235 (2005)

7. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Combinatorics, Probability & Com-
puting 13(4-5), 577–625 (2004)

8. Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random genera-
tion of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1–35 (1994)
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13. Melançon, G., Philippe, F.: Generating connected acyclic digraphs uniformly at
random. Inf. Process. Lett. 90(4), 209–213 (2004)

14. Mohri, M.: String-matching with automata. Nord. J. Comput. 4(2), 217–231 (1997)
15. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.

Comput. Sci. 92(1), 181–189 (1992)



Variable and Clause Ordering in an FSA

Approach to Propositional Satisfiability
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Abstract. We use a finite state (FSA) construction approach to ad-
dress the problem of propositional satisfiability (SAT). We use a very
simple translation from formulas in conjunctive normal form (CNF) to
regular expressions and use regular expressions to construct an FSA. As
a consequence of the FSA construction, we obtain an ALL-SAT solver
and model counter. We compare how several variable ordering (state or-
dering) heuristics affect the running time of the FSA construction. We
also present a strategy for clause ordering (automata composition). We
compare the running time of state-of-the-art model counters, BDD based
sat solvers and we show that this FSA approach obtains state-of-the-art
performance on some hard unsatisfiable benchmarks. This work brings
up many questions on the possible use of automata to address SAT.

Keywords: ALL-SAT, model counting, FSA intersection, regular ex-
pression compilation.

1 Introduction

There is a long tradition that analyzed transformations of logic formulas and
automata formally [7,10,24,23]. Propositional satisfiability (SAT) solving has
many practical applications ranging from artificial intelligence to software verifi-
cation. Search-based techniques in SAT solving have been enormously successful.
State-of-the-art SAT solvers are based on the DPLL (Davis-Putnam-Logemann-
Loveland) algorithm, augmented with a number of features. Much of current
research in this area involves refinements and extensions of the DPLL technique.
Little effort has gone into investigating alternative techniques.

There are applications that require not only a boolean answer but also the
number of models for a propositional formula, or to know which are those models
(ALL-SAT), or testing for functional equivalence. These tasks are performed
using knowledge compilation. In knowledge compilation, a representation in a
source language is compiled into a target language in order to perform reasoning
tasks in polynomial time. Popular target languages are binary decision diagrams
(BDD) and decomposable negation normal form (d-NNF).

Model counters [12] haven’t progressed as much as SAT solvers because SAT
heuristics designed to reduce the search space are, in many cases, not applicable,
or their effectiveness is heavily reduced. BDD based solving has been an active

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 76–86, 2011.
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research topic and there are efficient BDD based SAT solvers and model counters
available, since the model count of a formula can be obtained from a BDD
encoding.

Surprisingly, model counting is the canonical #P-complete problem.
Model counting is hard even for some polynomial-time solvable cases like
2-SAT and Horn-SAT. Efficient algorithms for this problem will have a
significant impact on many application areas that are inherently beyond
SAT, perhaps most importantly, general probabilistic inference. [12]

This work focuses on finite state techniques for SAT solving, an almost to-
tally ignored approach. Approaching SAT as an FSA construction problem offers
knowledge compilation capabilities. We can obtain model counting, equivalence
testing and ALL-SAT answers from the constructed FSA. An FSA approach
offers the advantages of a vast body of research and very simple and thoroughly
studied algorithms.

Given the similarities with BDDs [13], it is rather surprising that this approach
has not been explored more deeply in the context of propositional satisfiability,
at least to our knowledge.1 We found only one reference [25] that uses an FSA
approach in the context of constraint satisfaction programming.

In order to use FSAs in the context of SAT, every valuation satisfying a
propositional formula with variables vi with i ∈ [1, n] can be represented by a
string in en, where e is either 1 or 0. If the i-th character of the string is 1 then vi is
True in that valuation, otherwise, vi is False (cf. [25] and Theorem 7.3.8 and its
corollary in [16]2). Two crucial aspects are important for this approach to have
any reasonable performance: variable ordering (same as in BDD), and clause
ordering, if the formula is in conjunctive normal form (CNF). This approach
was briefly described in [8]. In the present work we report experiments on a
number of benchmarks and show how variable ordering and clause ordering affect
considerably the performance. An FSA can be constructed in competitive time
compared to state-of-the-art sat solvers.

The remainder of this paper is organized as follows. In Section 2 we pro-
vide some basic definitions. Section 3 describes the approach presented in [8]
to construct an automaton that defines the language of possible valuations of a
propositional formula. Section 4 describes the variable ordering and clause order-
ing heuristics. In Section 5 we describe the experiments we performed that show
the possibilities of an FSA approach to SAT. Section 6 presents conclusions, and
questions for future work.

2 Definitions

Most of SAT related definitions and notation follow the ones given in [17].
L(A) denotes the language generated by an Automaton or Grammar, A.

1 There is no reference to an FSA approach in the recently published [6].
2 Thanks to an anonymous reviewer for pointing out this reference.
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A clause is a propositional formula of the form l1 ∨ . . . ln, where each li is a
literal a positive or negated propositional variable.
A term is a propositional formula of the form l1 ∧ . . . ln.
Valuations, are defined as functions v on a set of variables V ar and with val-
ues in {0, 1}. Valuations assign a truth value from {0, 1} to each propositional
variable p ∈ V ar. We denote the set of literals (positive or negated variables)
determined by the set of variables V ar by Lit. Then if |V ar| = n, |Lit| = 2n.
We say that a valuation v satisfies a formula φ or v |= φ.
Complete set of literals: A complete set of literals is a set S ⊆ Lit such that
for every p ∈ V ar exactly one of p,¬p belongs to S. There is a bijective corre-
spondence between valuations and complete sets of literals. One such mapping
associates positive literals with 1 and negative literals with 0. An alternative
mapping associates positive literals with 0, and negative literals with 1. It fol-
lows that if |V ar| = n, then there are 2n complete sets of literals over the set
V ar.
Valuations as strings: There is a correspondence between valuations and
strings in {0, 1}n, therefore valuations can be ordered (anti-)lexicographically.
We will say that a word w satisfies a formula φ (w |= φ) iff w is the string
representation of an element v ∈ V al and v |= φ.

3 Satisfiability as FSA Construction

Barton [4] uses a finite state machine (FSM) to solve propositional SAT in order
to show that descriptive and generative power of PC-Kimmo and Two Level Mor-
phology (TLM) as a grammar device are NP-complete. TLM and PC-Kimmo
aimed to the description of morphological properties in a computational linguis-
tics frame. The approach presented in [25] is in the more general framework of
constraint satisfaction and introduces a representation of valuations as tuples.
However [25] focuses on the construction of the minimized finite state automata
(MDFA), an issue that we will ignore. We believe that the prohibitive cost of a
direct translation is the reason why such an approach was not further explored.
In order to construct the MDFA we assume we have a library that takes as in-
put a regular expression and builds the MDFA. There will be issues of efficiency
that will be idiosyncratic and dependant for each implementation of well known
algorithms.

We describe how to construct an FSA automaton A for each formula φ in
CNF,3 such that the formula is satisfiable iff the language of A is not empty and
for every word w in the language of A, w |= φ, i.e. L(A) = {w ∈ {0, 1}n|w |=
φ, n = |Vφ|}. This means that the language of the automaton is the string rep-
resentation of the set of valuations v such that v |= φ.

The construction is based on the mapping between clauses and the dual terms.
It is also based on the direct translation between boolean formulas and regular
3 The translation can be easily extended to formulas not in CNF. We performed

experiments on formulas not in CNF, in edimacs and iscas format, but that topic
exceeds the scope of this paper.
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expressions, given the direct correspondence between ∨,∧,¬ and |, &, ˜, respec-
tively and the closure properties of finite state automata.

Each clause in a CNF formula will be interpreted as a regular expression
that describes the automaton representing the set of valuations that satisfy that
clause. For a formula with m clauses the automaton to be constructed will be
equal to the intersection of the corresponding m sub-automata. Therefore the
asymptotic complexity of this construction is O(|V ar|m). This is probably an-
other reason why this approach was not pursued.

For instance, a clause such as v1 ∨ v2 ∨ v3, from a formula in CNF, with
|V ar| = 10, will be translated as the regular expression ˜[0 0 0 ? ? ? ? ? ? ?]. We
use the notation used in XFST (Xerox Finite State Tool [5]) which we used to do
the experimentation. This is equivalent to ˆ’000.......’ in languages like python,
awk or perl, with an extended use of the complement operator (ˆ), which is used
in these languages as a single character complement. Thus ˜[0 0 0 ? ? ? ? ? ? ?]
matches any string in (0|1)10, that does not start with 000.4

In Table 1 we show how a formula with ten variables is translated into a
regular expression (second column) and a string (third column). Each clause
and the corresponding regular expression are matched in a line. The first line in
the regular expression column specifies the valuation space.

Table 1. A propositional formula translated into a regular expression

Formula Regular Expression String in {a, b, }n
[1|0]10 &

(¬v1 ∨ ¬v3 ∨ ¬v5) ∧ ˜[1 ? 1 ? 1 ? ? ? ? ?] & a a a
(¬v1 ∨ v3 ∨ v6) ∧ ˜[1 ? 0 ? ? 0 ? ? ? ?] & a b b
(v1 ∨ v4 ∨ v6) ∧ ˜[0 ? ? 0 ? 0 ? ? ? ?] & b b b
(¬v3 ∨ v5 ∨ v8) ∧ ˜[? ? 1 ? 0 ? ? 0 ? ?] & a b b
(¬v2 ∨ v5 ∨ ¬v8) ∧ ˜[? 1 ? ? 0 ? ? 1 ? ?] & a b a
(v2 ∨ v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 0 ? 0 ?] & b b b
(¬v2 ∨ v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 0 ? 0 ?] & a b b
(v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 1 ? 0 ?] & b a b
(¬v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 1 ? 0 ?] & a a b
(v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 0 ? ? ? ? 1 ? 1 ?] & b a b
(¬v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 1 ? ? ? ? 1 ? 1 ?] & a a a
(v4 ∨ ¬v6 ∨ v10) ∧ ˜[? ? ? 0 ? 1 ? ? ? 0] & b a b
(¬v4 ∨ ¬v9 ∨ v10) ∧ ˜[? ? ? 1 ? ? ? ? 1 0] & a ab
(v7 ∨ ¬v9 ∨ ¬v10) ˜[? ? ? ? ? ? 0 ? 1 1] b aa

An automaton constructed this way may be used to check which are the
strings generated. The translated regular expression is used directly by XFST
to compute the automaton. In this case the string generated by the automaton,
representing the satisfying valuation of φ, will be ’1010000110’ (or ’ababbbbaab’
using the third column representation).

4 We used a for 1 and b for 0 , due to restrictions on XFST use of 0 .
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4 Variable and Clause Ordering Heuristics

The variable ordering heuristics we decided to test ranged from very simple ones
to some very elaborate.
Freq. This is the simplest variable ordering heuristic. We sort variables according
to the number of clauses they participate in, placing the most frequent first. In
this way frequent variables will correspond to states located at the beginning of
the FSA. The increased probability of obtaining a single path or no path at the
early states, will reduce the size of the constructed automata. If there are ties
there is no preference strategy.
Max and Min. These two heuristics are extensions of the previous heuristic
(Freq). In Freq, the order of a variable was not affected by its frequency as a
positive or negated literal. Max gives preference in the ordering to variables
that appear most of the times either negated or positive. Min will order first
those variables that appear a similar number of times as a positive and negated
literal.
Johnson. This heuristic is based on the heuristic for the maximum satisfia-
bility (Max-SAT) problem proposed by Johnson [14]. Johnson’s heuristic will
iteratively satisfy the most frequent literal. Clauses that contain this literal are
removed, and the dual literal is removed from the clauses that contain it. The
proposed order is the one in which the variables are set. It is another variation
of Freq heuristics.
Force. Force is a variable ordering heuristic intended to be used with BDDs and
SAT solvers [2]. Force is particularly suitable for problems that possess a struc-
ture. This iterative algorithm like MINCE (Min-cut vertex/variable reordering),
tries to get the minimal cut value for variables (vertex or state). The cut value
of a variable with index i is the number of clauses that contain variables with
indices both > i + 0.5 and ≤ i + 0.5. This also reduces the average clause span.

Anti-Lexicographic Clause Reordering. Anti-Lexicographic ordering was
used in [8] in order to decide satisfiability of formulas in CCNF (i.e., where each
clause has the full set of variables) in polynomial time O(n6).

Anti-lexicographic ordering is equivalent to reverse lexicographic ordering, i.e.
ordering starting from the right. In the translation of CNF formulas to XFST
regular expressions the following orders were used: ? < a < b (a was used instead
of 1 and b instead of 0, as we mentioned above). The order of second and third
columns in Table 1 follows the anti-lexicographic ordering.For instance if we have
three variables, and each clause has exactly two literals, the anti-lexicographic
order in XFST regex will be 1) [a a ?], 2) [b a ?], 3) [a b ?],. . . 27) [? b b].

This heuristic combined with a variable ordering heuristics, has the effect of
computing first the intersection of clauses with variables that have higher priority
order and postpone the computation of intersection in clauses with variables that
have less priority. Also due to the lexicographic ordering, clauses with smaller
span (less difference between smallest and largest variable) will be given priority
over clauses with bigger span. A third consequence is that clauses that share
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variables will be placed together in the ordering. All these facts are exemplified
in Table 1, third column, above.

5 Experimentation

5.1 Tool and Setting

In order to test the possibilities of using the FSA construction approach as an
ALL-SAT and model counter, we translated CNF encoded formulas into regular
expressions as explained above. Then we used XFST to build the automata.
XFST has the advantage of having a team with a sound experience on FSA tools.
These tools have been developed with other purposes in mind (natural language
processing, NLP). There are many open source tools that can be more attractive
due to the possibility to modify them to try optimizations or profiling. Given this
is a first approach in order to build a proof of concept, we considered that it would
be a better choice to use a heavily tested and widely used tool. At the same time,
the goal of these experiments were not about the FSA implementation of well
known algorithms, but testing on differences in the running time due to variable
(state) ordering and clause (sub-automata) intersection. XFST documentation
is described extensively in [5]. We used XFST PARC version 2.15.2 available
online. Variable ordering heuristics as well as clause reordering were developed
in C++ and Python. The applications were attached together with Python and
bash scripts. Both variable ordering and clause ordering heuristics were done
without prioritizing performance. The goal was to compare as many heuristics
as possible. Running time seems negligible. Of course if we were considering the
strict performance of solvers, all these details have to be measured. All these
algorithms have limited time and space complexity.

The sequence is as follows: a) Compute a variable order b) compute the anti-
lexicographic order of clauses c) translate into a regular expression d) run XFST
on the regular expression to build the automaton. The output of XFST shows
the properties of the automaton built with the number of solutions.

The running time of each application was observed using the Python time-it
module. Each running time corresponds to a single run of the heuristics followed
by XFST, except in the case of Force. Since Force has stochastic behaviour, we
decided to run the heuristic with XFST 5 times for each test case, computing the
average running time. Experiments were run in a Linux machine with processor
Intel Xeon X3430, 2.40GHZ with 8GB of memory.

5.2 Initial Experiments

Previously we had run some experiments in a slower machine. It was observed
that the direct translation of the formula to a regular expression had a pro-
hibitive processing time, using the XFST regular expression compilation. Those
experiments were run on some randomly chosen formulas. For example, process-
ing the translated formula uf50-03.cnf from SATLIB (50 variables/218 clauses),
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took 864 seconds by XFST. However, after reordering variables by frequency
and then reordering the formula in anti-lexicographic ordering took only 0.533
seconds. Processing time reflects the size of intermediate automata in the con-
struction. The final size of the constructed automaton is not representative of
the complexity of intermediate steps. Reordering the same formula with the well
known static variable reordering algorithm, Force[2], did not improve as much
the running time. For instance on the same formula uf50-03, after reordering
variables with Force processing time of XFST took 527 sec.

Later, we ran all the heuristics on the 1000 formulas of the uf50 SATLIB
benchmark. Most of the heuristics exceeded the time limit of 30 sec. that we
had set. The rest had the following average timings: a) Freq-AL: 1.62 sec. b)
Force-AL: 2.14 sec. and Johnson-AL: 4.20 sec.

The first part of the heuristic names refers to the variable ordering heuristics
described above in Section 4. The second part of the names, AL, refers to anti-
lexicographic ordering. In the next subsection, we use NR, denoting no reordering
of the original clause ordering. The anti-lexicographic ordering has shown to be
a consistent strategy to limit the explosion of state size in the computation of
automata intersection.

5.3 Hard Benchmarks Experiments

Initially we performed some tests using some of the ebddres benchmarks used
in [19].5 We chose them in order to compare with Ebddres, given it is a BDD
based solver. These are hard unsatisfiable problems. Many of these problems
have been looked at even with local search solutions [3,1]. ph files are instances
of the pigeon hole problems. Chnl are unsatisfiable instances that model the
routing of X wires in N channels [1]. Urq files are unsatisfiable randomized
instances based on expander graphs [22]. Fpga are some satisfiable and un-
satisfiable instances from FPGA routing. Mutcb instances correspond to the
mutilated checker board. Then we added some other classes known to be hard,
instances from the Beijing and Hanoi set (2bit, hanoi) from SATLIB. We also
added some of the BMC-dimacs benchmark (barrel,queueinv,longmult). The
details and properties of these benchmarks can be found in Table 6.

The results were very good considering we were just implementing. However,
they were rather disparate on some benchmarks.

Table 2 summarizes Min, Max, and Force variable reordering heuristics, with
NR (no clause reordering). Null-NR, corresponds to the direct translation of the
formula into a regular expression (no variable nor clause reordering). As it can
be seen Force-NR is the best in this set, although Null-NR (plain translation) is
pretty close. The good performance of the NR class follows from the fact that
these instances were constructed with some sort of anti-lexicographic ordering.
Also in some cases the ordering of the variables seems to be close to the ordering
computed by some heuristics.

5 They are available at the Ebddres web page.
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Table 2. FSA Variable Ordering Heuristics with No Clause Reordering

File Min-NR Force-NR Null-NR Max-NR

Total sec 20618 16455 18384 21771
# Not solved 29 24 25 33

Table 3 summarizes Freq, Min, Max, and Force, Johnson variable reordering
heuristics combined with anti-lexicographic ordering (AL). Null-AL, corresponds
to no variable re-ordering. Given the performance on the uf50 benchmark, the
heuristics combined with AL were expected to have better performance. Force-
AL was the best performing in both classes (NR and AL).

Table 3. FSA with variable and anti-lexicographic clause reordering heuristics

File Min-AL Force-AL Johnson-AL Null-AL Freq-AL Max-AL

Total sec 18052 10847 25297 19710 21017 19129
# Not Solved 26 17 40 28 30 27

In order to have an approximate comparison with alternative approaches with
model counting or ALL-SAT capabilities, we ran experiments with the following
solvers: clasp, Ebddres, sbsat, sharpSAT, c2d and relsat. Model counting and
ALL-SAT, is not relevant for unsatisfiable instances anyway (most of them,
given the number of models is zero).6

Clasp obtained the gold medal for SAT/UNSAT crafted problems, in the last
(2009) competition. It contains many advanced features, and also the capability
to obtain a model counter or all-sat.

Ebddres [19] (version 1.0), is a BDD based SAT solver that can generate
extended resolution proof traces.

Sbsat [11] is a state-based, BDD-based satisfiability solver. We used version
sbsat-2.7b.

Relsat is a model counter that was developed a few years ago.
Sharpsat [21], is a #SAT solver that is based on DPLL algorithm. It is sup-

posed to have a good performance on large structure problems.
C2d [9], compiles CNF into d-NNF (decomposable negation normal form)

a generalization of BDD. SharpSAT, was also used to compile CNF into d-
NNF[18].
6 These are the parameters we used to run each solver when we did not use the default

values:
– clingo –clasp -n 0 -q (clasp mode, enumerate all models, quite mode)
– NetPlacer -c 6 (affects the output variable order, this is one of Force executables)
– relsat -�count -t600 (Count models, time limit)
– sbsat -All 0 -In 0 –max-solutions 0 -t –debug 0 (disable preprocessing options,

disable inferences, find all solutions, start a stripped down version of the SMURF
solver, disable debug).
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In the following Table 4 we compare Force-AL, the best performance of the
heuristics we tried, against the above mentioned solvers. As it can be seen its
overall performance is very good. It is almost tied with ebddres in total time
used but Force-AL solved more problems. However the average time used by
Force-AL is lower than the one used by ebddres and sharpsat.

Table 4. FSA with Force and AL clause ordering vs other solvers

Heuristics Force-AL sbsat ebddres c2d relsat sharpsat clasp

Total time 10847 18051 10764 16969 21638 18321 15471
Not Solved 15 28 17 27 29 29 21

Solving Time 1847 4250 564 2569 4237 920 2871
Solved 36 23 34 24 22 22 30

Average 51,39 184.78 16.58 107.04 192.58 41.81 95.7

In Table 5, we present the first four solvers or FSA construction strategy
that had the best timings for each subset of problems. It can be seen that, for a
number of problems (ph,Urq,chnll,fpga), the first positions are dominated by the
FSA construction strategies, Force-AL, being the most predominant. However
for other subsets, current solvers perform much better.

Table 5. Best timings for problem subsets

Problem set First Time Second Time Third Time Fourth Time

ph Force-NR 844 Force-AL 1847 Max-AL 4060 sbsat 4068
mutcb ebddres 7 c2d 264 clasp 844 Null-NR 906
Urq ebddres 629 Force-AL 700 Force-NR 825 Max-AL 844
chnll Force-AL 33 ebddres 49 Null-NR 999 Max-NR 1211
fpga Force-AL 908 ebddres 1266 Null-NR 2644 * *
sat-grid sbsat 3 ebddres 7 Max-AL 7.15 c2d 92
barrel sbsat 3 relsat 3 clasp 3 c2d 3
queueinv sbsat 2 relsat 2 clasp 2 c2d 5
hanoi sbsat 2 clasp 9 relsat 605 ebddres 609
2bit clasp 1213 ebddres 1242 c2d 1242 sbsat 1968

If we analyze the data from these set of instances, we can observe signifi-
cant differences between them. It looks like problems like ph,unsat-fpga, cannot
be solved with usual features in most solvers, due to a similar distribution of
variables in clauses (e.g. each variable occurs the same number of times).

6 Conclusions and Future Work

SAT solving and model counting is now present in many practical applica-
tions but these are NP and #NP complete problems. This paper evaluates the
performance impact of several variable ordering heuristics on an FSA based SAT
approach with ALL-SAT and model counting capabilities. Variable ordering and
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clause ordering (automata intersection) are problems known to be NP-complete.
Force heuristic generated far better variable orderings in problems with a par-
ticular structure. That was not the case in random class problems (uf50), where
Freq is better than Force. The anti-lexicographic ordering proved to be a con-
sistent strategy, with still room for improvement. Most importantly the results
of these experiments show that the FSA approach is very competitive versus
the traditional DPLL approach in some hard problems (problems where most
of the features added to the basic DPLL algorithm don’t help). This should not
be interpreted as saying that the FSA approach is better than the DPLL or
BDD/NNF approaches. There are decades of research and experience that can-
not be surpassed with this initial proposal. We believe that the most added value
of these results are the questions they bring up front. Those questions should
guide future research. Some of them are related to the knowledge built upon the
DPLL and BDD tradition and concern mainly on how much of that experience
can be used in an FSA approach. Other kind of questions are related to the FSA
community and concern mainly on what can be the optimal way of constructing
a MDFA for this class of languages. A second important question that should
be elucidated is whether an approach to a fixed large window of k variables and
m clauses can solve practical problems in a different way.7
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ph10 110 561 8.27 1.00 2.00 * 231.00 50.00 48.00
ph11 132 738 14.09 2.00 5.00 * 599.00 * 400.00
ph12 156 949 23.11 30.00 12.00 * 599.00 * *
ph13 182 1197 42.34 432.00 39.00 * * * *
ph14 210 1485 77.37 * * * * * *
ph15 240 1816 151.21 * * * * * *
ph16 272 2193 322.05 * * * * * *
ph17 306 2619 * * * * * * *

mutcb8 121 344 1.048 1.00 1.0 2.00 1.00 1.00 1.00
mutcb9 155 451 3.05 1.00 1.0 2.00 2.00 1.00 1.00
mutcb10 193 572 6.059 3.00 1.0 3.00 12.00 5.00 1.00
mutcb11 235 707 22.075 * 1.0 5.00 * 98.99 5.00
mutcb12 281 856 70.08 * 1.0 13.00 * 441.00 32.00
mutcb13 331 1019 269.89 * 1.0 42.00 * * 204.00
mutcb14 385 1196 * * 2.0 197.00 * * *

Urq3 5.cnf 46 470 6.06 * 1.0 23.00 * * 79.00
Urq4 5.cnf 74 694 94.07 * 28.0 234.00 599.99 * *
Urq5 5.cnf 121 1210 * * * * * * *

chnl10 11.cnf 220 1122 2.09 * 2.0 * * 49.00 32.00
chnl10 12.cnf 240 1344 3.10 * 3.0 * 599.99 53.00 36.00
chnl10 13.cnf 260 1586 3.11 * 3.0 * 599.99 55.00 42.00
chnl11 12.cnf 264 1476 4.11 * 6.0 * * * 319.00
chnl11 13.cnf 286 1742 5.12 * 7.0 * * * 469.00
chnl11 20.cnf 440 4220 15.27 * 28.0 * * * 566.00

fpga11 15 unsat 330 2340 12.16 * * * * * *
fpga11 20 unsat 440 4220 20.48 * * * * * *

fpga12 11 sat 198 968 173.08 * 14.99 r * * * *
fpga12 12 sat 216 1128 101.89 * 18.00 r * * * *
fpga13 9 sat 176 759 * * 33.00 r * * * *

sat-grid-pbl-0010 110 191 1.06 1.00 1.00 2.00 * 1.00 1.00
sat-grid-pbl-0015 420 781 47.05 1.00 1.00 6.00 * * *
sat-grid-pbl-0020 930 1771 * 1.00 5.00 84 599.99 * *

barrel2 50 159 1.03 1.00 1.00 1.00 1.00 1.00 1.00
barrel3 275 942 268.08 1.00 * 3.00 1.00 1.00 1.00
barrel4 578 2035 * 1.00 * 4.00 1.00 1.00 1.00

queueinv2 116 399 3.05 1.00 1.01 2.00 1.00 1.00 1.00
queueinv4 256 955 * 1.00 293.00 3.00 1.00 1.00 1.00
longmult0 437 1206 * * * * * * *
longmult1 791 2335 * * * * * * *

hanoi4 718 4934 63.38 1.00 * 9.00 5.00 2.00 1
hanoi5 1931 14468 * 1.00 * * * * 8

2bitcomp 5 125 310 4.04 7.00 * 2.00 2.00 1.00 1
2bitmax 6 252 766 * * * 12.00 42.00 2.00 2
2bitadd 10 590 1422 * 161.00 * 28.00 322.00 149.00 10
2bitadd 11 649 1562 * * * * * * *
2bitadd 12 708 1702 * * * * * * *
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Abstract. Moore automata represent a model that has many appli-
cations. In this paper we define a notion of coherent nondeterministic
Moore automaton (NMA) and show that such a model has the same
computational power of the classical deterministic Moore automaton.
We consider also the problem of constructing the minimal deterministic
Moore automaton equivalent to a given NMA. In this paper we propose
an algorithm that is a variant of Brzozowski’s algorithm in the sense that
it is essentially structured as reverse operation and subset construction
performed twice.

1 Introduction

In this paper we consider finite-state automata with output, i.e. automata viewed
as computers of functions, not as recognizers of languages. The simplest model
of automata with output are Moore automata. A Moore automaton is a deter-
ministic finite-state machine whose output values are determined by its current
state. Moore automata are named for Edward Forrest Moore who first studied
them in 1956 (cf. [15]). Acceptors, i.e. deterministic automata recognizing lan-
guages, can be considered as particular Moore automata having a binary output
{False, T rue}. So, in acceptors we distinguish between accepting states (states
associated to the output True) and rejecting states (states with output False).

The notion of nondeterministic acceptors was introduced by Rabin and Scott
in [16]. A nondeterministic acceptor is a machine with many choices, in the sense
that for a given input string, it may exhibit several different transition sequences
(paths). An input string is accepted if at least one of the possible paths, defined
by the input, leads to an accepting state (winning path). In the literature, there
exist several notions of nondeterminism also for automata with output, and in
particular for Moore automata, that have been introduced in specific areas and
are often motivated by specific applications (see for instance [8,20,12,14,21]).

In this paper we are interested in a notion of nondeterministic Moore au-
tomaton (NMA) that takes into account its behavior as computer of functions.
In particular, we introduce the model of NMA equipped with a property called
coherency and we prove that such a model has the same computational power
of the classical deterministic Moore automaton (DMA). In fact, by using an
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adaptation of the subset construction, we prove that to each coherent NMA cor-
responds an equivalent deterministic one (i.e. that computes the same function).
In this sense, our nondeterministic model can be viewed as a succinct represen-
tation of a function, since it can be exponentially smaller than the equivalent
deterministic model.

In this paper we face also with the problem of simulate a coherent NMA
by the minimal equivalent DMA. In order to solve such a problem we define a
minimization algorithm that is a variant of Brzozowski’s algorithm (cf. [2]). This
approach is not immediate since Brzozowski’s algorithm has been introduced for
nondeterministic acceptors in which there is an asymmetry on the outputs: the
output True, corresponding to a winning path, is privileged with respect to
the output False, corresponding to a non-winning path. In Moore automata we
do not distinguish between winning paths and non-winning paths, so there is no
privileged output symbol. As for Brzozowski’s algorithm, the method we propose
is essentially structured on the operations of reverse and subset construction
performed twice but such operations in the context of Moore automata assume
different meanings.

The paper is organized as follows. In the first section we give the definition
of the nondeterministic Moore automaton and show that our model is computa-
tionally equivalent to the classical deterministic Moore automaton. The second
section is devoted to the definition of the variant of Brzozowski’s algorithm
to construct the minimal deterministic Moore automaton equivalent to a given
coherent nondeterministic Moore automaton. The last section contains some
conclusions and new research directions on this topic.

2 Nondeterministic Moore Automata

A Moore automaton is a classical notion (cf. [15]) in the Theory of Automata. It
is an automaton with output because an output is associated to each state and
the system emits an output as a function of a given input. Because of its several
applications in many areas, as for instance system modeling, natural languages
processing, system verification, machine learning (cf. for instance [12,7,13]), it
was useful to introduce some elements of nondeterminism in such a computa-
tional model.

In this paper we would highlight the computational aspect of a Moore automa-
ton, and in particular its ability to compute functions. Therefore, in this section,
we introduce a nondeterministic Moore automaton with a property related to
this goal.

A nondeterministic Moore automaton (denoted by NMA) is a system A =
(Σ, Γ, Q, I, Δ, λ) where Σ is the set of input symbols, Γ = {γ1, γ2, . . . , γk} is the
set of output symbols (also called colors), Q is the set of states, I ⊆ Q is the
set of initial states, Δ ⊆ Q × Σ × Q is the set of the transitions of A. Finally,
λ : Q �→ Γ is a partial output function that assigns a color to some states of the
automaton. Note that in such a model both the input symbols and the output
symbols could not be defined for all the transition or all the states, respectively.
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The set Q \ dom(λ) contains the not colored states, i.e. the states that do not
output any symbol. By the triple (p, σ, q) (with σ ∈ Σ) we denote the transition
from the state p to the state q labeled by σ. A path π of A labeled by the
word v = v1v2 . . . vn ∈ Σ∗ is a sequence {(qi, vi, qi+1)}i=1,...,n of consecutive
transitions. If λ is defined for qn+1, we say that λ(qn+1) is an output produced
by v and we say that π is colored and has λ(qn+1) as color.

A word v is applicable for the state q if there exists at least a path π labeled by
v starting from q. A word v is applicable for the automaton A if it is applicable
for at least an initial state. To each applicable word v of A we can associate
many paths labeled by v. We denote by L(A) the language of all applicable
words of A. A nondeterministic Moore automaton is complete if the language
L(A) is equal to Σ∗.

The NMA A = (Σ, Γ, Q, I, Δ, λ) is coherent if for each applicable word v of A
there exists at least a colored path labeled by v and all the colored paths associ-
ated to v have the same color. One can deduce that in a coherent nondetermin-
istic Moore automaton at least one initial state must be colored and all colored
initial states must have the same color. From the definition it follows that a co-
herent nondeterministic Moore automaton implicitly defines a partial function
fA from Σ∗ to Γ that to each applicable word v of A associates a color that is the
color of an associated colored path. The domain of the function is the language
L(A). Equivalently, we can say that the coherent NMA A induces a partition of
L(A) into the languages {Li}1≤i≤k where Li(A) = {w ∈ L(A) | fA(w) = γi}.

Recall that the classical definition of deterministic Moore automaton (DMA)
can be obtained by a nondeterministic Moore automaton in which Δ is a function
(not necessarily total and often denoted by δ) from Q × Σ to Q, |I| = 1 and
λ is a total function. Note that the coherent NMA is a model that takes an
intermediate place between NMA and DMA.

Example 1. In Fig. 1(a) a coherent NMA A = (Σ, Γ, Q, I, Δ, λ) is depicted,
where Q = {1, 2, 3, 4, 5, 6}, I = {1, 2}, Σ = {a, b, c}, Γ = {Red, Green, Y ellow},
λ(2) = λ(6) = Red, λ(4) = Y ellow, λ(5) = Green. Output symbols are denoted
with the initial letter of the color. The language of applicable words is L(A) =
(a + c)∗(b + bb)(a + c)∗ + ε.

We say that two coherent NMA’s A,B are equivalent if they define the same
functions fA and fB, or equivalently L(A) = L(B) and the induced partition
is the same (up to renaming the output symbols). A coherent NMA is minimal
if it has minimal number of states among its equivalent ones. As in the case of
nondeterministic acceptors (i.e recognizing regular languages), such a minimal
nondeterministic model could be not unique.

Given an NMA A = (Σ, Γ, Q, I, Δ, λ) one can pose the following problems: 1.
to decide whether A is coherent; 2. if A is a coherent NMA, to find an equivalent
DMA. An answer to both the problems is given in Proposition 1.

Firstly, we describe an operation that is an adaptation of the subset construc-
tion for NFA and it will be fundamental also in the next section.

We can associate to the NMA A = (Σ, Γ, Q, I, Δ, λ) the labeled colored state
graph G = (NG , EG , λG) that is obtained from A by neglecting the information
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Fig. 1. A coherent nondeterministic Moore automaton A (a) and the equivalent DMA
obtained by the subset construction on A and the set I of initial states (b)

Algorithm 1: Subset Construction on the pair (G = (NG , EG), P )
Nd = P Ed = ∅ W = Nd1

while W �= ∅ do2

extract � from W3

for a ∈ Σ do4

�= {q | (p, a, q) ∈ EG , p ∈ �}5

Ed = Ed ∪ (�,a,�)6

if � /∈ Nd then7

W = W ∪ �8

Nd = Nd ∪ �9

return sub(G) = (Nd, Ed)10

Fig. 2. Algorithm to compute the subset construction

about the initial states. The elements of NG are called nodes or states of G and
they are colored as in A.

The subset construction takes as input a labeled graph G and a set P of subsets
of NG. It produces a graph sub(G) = (Nd, Ed) in which the states are subsets
of states of G accessible by the elements of P . Such an operation is described in
Fig. 2.

Given an NMA A = (Σ, Γ, Q, I, Δ, λ) and its state graph G, for the graph
returned by the subset construction of (G, P ) we can define a coloring so that
sub(G) can be considered the state graph of an NMA. Therefore, we consider the
subset coloring function λd defined as follows: λd(�) = γi if � ∈ Nd contains at
least a state of Q colored by γi and it does not contain states of different color.
Hence sub(G) is the state graph of the NMA subP (A) = (Σd, Γd, Qd, P, Δd, λd),
where Σd = Σ, Γd = Γ , Qd = Nd ⊆ P(Q), Δd = Ed. Note that, in subP (A) the
states are subsets of states of A and in particular Qd is the set of all accessible
states from the subsets (states) in P . Note also that, by construction, given
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� ∈ Qd and a ∈ Σ there exists at most one � such that (�, a,�) ∈ Ed, so that
Δd can be considered as a function from Qd × Σ to Qd.

Let us consider the subset construction applied to the state graph G of A and
the set P = {I}. One can notice that such a construction works like the subset
construction defined for the acceptors. By using the subset coloring function λd,
we obtain the NMA sub{I}(A) = (Σ, Γ, Qd,�0, Δd, λd) in which �0 = I and
Qd are the states reachable from �0. Fig. 1(b) reports the automaton sub{I}(A)
obtained by applying the subset construction to the NMA depicted in Fig. 1(a)
and the set of its initial states. From next proposition, sub{I}(A) is a DMA.

Proposition 1. A nondeterministic Moore automaton A = (Σ, Γ, Q, I, Δ, λ)
is coherent if and only if sub{I}(A) = (Σ, Γ, Qd,�0, Δd, λd) is a deterministic
Moore automaton. Moreover, A and sub{I}(A) are equivalent.

Proof. It follows from the fact that A is a coherent NMA if and only if the subset
coloring function λd is a total function. In fact each set of Qd contains at least
a colored state of Q and cannot contain states of Q of different color. Moreover,
note that by construction Δd is a function. The equivalence follows from that
fact that by construction the languages of applicable words in the coherent NMA
A and in sub{I}(A) are the same as well as their induced partition. ��

Let A = (Σ, Γ, Q, q0, δ, λ) be a DMA with initial state q0. The function δ can
be recursively extended to a partial function from Q × Σ∗ to Q as follows. Let
q ∈ Q, w ∈ Σ∗ and a ∈ Σ, we define δ(q, ε) = q and δ(q, aw) = δ(δ(q, a), w),
if δ(q, a) is defined. The notion of minimality of a DMA is connected to an
equivalence relation among states of Q as follows (cf. [15]). Firstly, we say that
two state p, q ∈ Q are distinguishable if, either there exists w ∈ Σ∗ that is
applicable for p or for q but not for both, or there exists w ∈ Σ∗ applicable
for both and λ(δ(p, w)) �= λ(δ(q, w)). We say p, q ∈ Q to be indistinguishable
and we write p ∼ q if for each w ∈ Σ∗ that is applicable for both, we have
λ(δ(p, w)) = λ(δ(q, w)). It is easy to prove that the indistinguishability is an
equivalence relation in Q. By using such a relation a reduced automaton can
be constructed from a given DMA and it is possible to prove that such an
automaton is the minimal equivalent. Note that the minimal DMA equivalent to
a given DMA is unique (cf. [15]) up to isomorphism. An example of minimization
of a DMA can be found also in [3] where Moore’s method is described. An
approach by using another equivalence relation is proposed in [18]. Very recently,
an implementation of a minimization algorithm based on an operation of gluing
two states and on a representation by transition list is considered (cf. [17]).

3 A Variant of Brzozowski’s Algorithm on
Nondeterministic Moore Automata

The main goal of this paper is to address the problem of minimizing a coherent
nondeterministic Moore automaton that means to search for the minimal equi-
valent DMA. Since such a problem is significative for coherent NMA’s, in the
rest of the paper we will simply denote a coherent automaton by NMA.
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Algorithm 2: Reverse operation on G = (NG, EG , λG)
Nr = NG λr = λG Er = ∅1

for (p, a, q) ∈ EG do2

Er = Er ∪ (q, a, p)3

return rev(G) = (Nr, Er, λr)4

Fig. 3. Algorithm to compute the reverse of a colored graph

Algorithm 3: Minimization of A = (Σ, Γ, Q, I, Δ, λ)
G = state graph of A1

R = (NR, ER, λR)← Reverse operation on G2

for j = 1, . . . , |Γ | do3

Ij = {q ∈ NR | λR(q) = γj}4

P = {Ij}|Γ |
j=15

(ND, ED)← Subset Construction on (R, P )6

for j = 1, . . . , |Γ | do7

λD(Ij) = γj8

F = (NF , EF , λF)← Reverse operation on D = (ND, ED, λD)9

m0 = {�∈ NF | �∩ I �= ∅}10

(NM, EM)← Subset Construction on (F , m0)11

for p ∈ NM do12

if p ∩ P = Ij then13

λM(p) = γj14

AM = (Σ, Γ, NM,m0, EM, λM)15

return AM16

Fig. 4. Algorithm to minimize an NMA A

Let A = (Σ, Γ, Q, I, Δ, λ) be an NMA. We propose an algorithm, inspired
by Brzozowski’s algorithm (cf. [2,11]), to minimize an NMA. We consider the
labeled colored state graph G = (NG, EG , λG) associate to A.

In previous section we defined the subset construction of a labeled graph and
a set P of subsets of states. Such an operation, together with another operation
defined in this section, will be fundamental steps of the algorithm.

Given a labeled graph G we call reverse of G (and denoted by rev(G)) the
graph obtained by inverting the edges of G. If G is colored, rev(G) inherits the
same coloring. Such an operation on a colored graph is described in Fig. 3.

We describe now the algorithm to minimize the NMA A. As well as for Br-
zozowski’s algorithm applied to an NFA, our algorithm is based on four phases
that use reverse operation and subset construction that are variants of opera-
tions defined on the acceptors. Note that, the intermediate steps of the algorithm
produce graphs whose nodes are subsets or set of subsets of states that we denote
by �,�,�, . . . and p,q, s, . . ., respectively. The algorithm is described in Fig. 4.
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The first step (line 2) of the algorithm takes as input the labeled colored
state graph G associated to A and produces the colored labeled graph R =
(NR, ER, λR) that is the reverse of G.

The second step (lines 3 - 8) consists of the subset construction on the pair
(R, {Ij}k

j=1), where Ij = {q ∈ NR| λR(q) = γj}, followed by a coloring op-
eration. We obtain a colored labeled graph D = (ND, ED, λD). The coloring
operation is called initial coloring and it is defined by λD : ND → Γ that is a
partial coloring function with dom(λD) = {I1, I2, ..., Ik}, λD(Ij) = γj , for each
1 ≤ j ≤ k.

The third step (line 9) takes as input the labeled colored graph D and produces
its labeled colored reverse graph of D named F = (NF , EF , λF ).

The last step (lines 10 - 14) consists of the subset construction on the pair
(F , {m0}), where m0 = {� ∈ NF | �∩ I �= ∅}, and a coloring operation. It
produces a colored labeled graph M = (NM, EM, λM) in which the coloring
operation, called final coloring, is defined by λM : NM → Γ that is a total
coloring function defined as follows. In Lemma 3 we prove that each p ∈ NM
contains exactly one set Ij , then we pose λM(p) = γj . The line 15 defines the
automaton returned by the algorithm.

The following lemmas state some properties regarding the graphs involved in
the algorithm.

Lemma 1. In the graph D, for each j and for each w ∈ L(A) there exists at
most a path from Ij labeled by the reverse of w.

Proof. The thesis follows from the fact that in the graph the accessible part from
each Ij is deterministic by construction. ��

The following lemma can be deduced by the previous one.

Lemma 2. In the graph F , for each j and for each w ∈ L(A) there exists at
most a unique state � such that there exists a path from � to Ij labeled by w.

Lemma 3. For each node p ∈ NM there exists exactly a unique j, ranging from
1 to k, such that Ij ∈ p.

Proof. Remind that each node of M is obtained by a subset construction, so it is
a set of nodes of F . Let γi the color of the colored initial states. By construction,
m0 contains Ii and no other sets Ih’s with h �= i. Let p an accessible state and
let w be the label of the path from m0 to q. This means that in the NMA A
there is a path from an initial state p to a state q labeled by w. Let γl the color
of such a path. In the graph D there is a unique path from Il labeled by the
reverse of w to a set � that contains p. So, in F there is a path from � to Il

labeled by w. Since � contains a initial state p, then � belongs to m0. So, the
set q contains Il. Moreover q does not contain any other set Ih �= Il. In fact, if
so, there would exist �′ ∈ m0 such that the graph F contains a path from �

′ to
Ih labeled by w. This means that there exists in A two paths having different
colors from an initial state labeled by w. This fact contradicts the property of
coherency of the NMA. ��
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Remark 1. Note that, by previous lemma, the set of colors ΓM is equal to Γ .

From the graph M we can, naturally, obtain the deterministic Moore automaton
AM = (Σ, Γ, Q, q0, Δ, λ) where Q = NM, q0 = m0, Δ = EM, λ = λM.

Remark 2. It is easy to see that AM is a DMA because it is obtained by a subset
construction starting from a unique state.

The following theorems state that AM is the minimal automaton equivalent to
A.

Theorem 1. The deterministic Moore automaton AM is minimal.

Proof. We have to prove that for each pair of states p and q, they are distin-
guishable, i.e. either there exists w ∈ Σ∗ that is applicable for p or for q but not
for both, or there exists w applicable for both such that λ(δ(p, w)) �= λ(δ(q, w)).
Let w ∈ Σ∗, if w is not applicable for one of them then p and q are distinguish-
able. Let us suppose that w is applicable for both. We consider the paths in M
labeled by w from p to a state p′ and from q to a state q′. By Lemma 3, p′

contains the set Ih and q′ contains Ij . We prove that Ih �= Ij . This fact follows
by using Lemma 2, because in the graph F there exists a path from �∈ p to Ih

and a path from �∈ q to Ij both labeled by w and with � �= �. ��

Theorem 2. The automata A and AM are equivalent.

Proof. We prove that for each i, ranging from 1 to k, w ∈ Li(A) if and only
if w ∈ Li(AM ). Let w ∈ Li(A) then there exists a path (p1, w, pn) such that
p1 ∈ I and λ(pn) = γi. There exists in D a path from Ij to a state � containing
p1 labeled by the reverse of w. Then there exists a path from � to Ij in F
labeled by w. This means that there exists in AM a path from the initial state
m0 containing � to q containing Ij labeled by w. By Lemma 3, λM (q) = γi,
so w ∈ Li(AM ). The same reasoning in reverse order can be used to prove the
vice-versa. ��

In the following example the execution of the minimization algorithm is de-
scribed.

Example 2. In Fig. 5(a) the states graph G of A = (Σ, Γ, Q, I, Δ, λ), in which
Q = {1, 2, 3, 4, 5, 6, 7}, I = {2}, Σ = {a, b, c}, Γ = {Red, Green, Y ellow, Blue}
and coloring function λ(1) = λ(2) = Red, λ(4) = Y ellow, λ(5) = Blue and
λ(6) = Green. The language of applicable words is L(A) = aΣ∗ + ε. The au-
tomaton induces the partition of L(A) in LRed = {w ∈ aΣ∗c | |w| is even}∪{ε},
LGreen = {w ∈ aΣ∗a | |w| is even}, LY ellow = {w ∈ aΣ∗b | |w| is even},
LBlue = {w ∈ aΣ∗ | |w| is odd}. We apply the algorithm in order to obtain
the minimal equivalent DMA. The first step produces the colored labeled graph
R depicted in Fig. 5(b). In the second step we determine four sets IGreen = {6},
IRed = {1, 2}, IY ellow = {4} and IBlue = {5} and we compute the subset con-
struction on the pair (R, {IGreen, IRed, IY ellow , IBlue}). After the initial coloring,
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Fig. 5. An NMA A with three colors (a) and the reverse of the state graph G of A (b)

the colored labeled graph D depicted in Fig. 6(a) is obtained. The third step
consists of a reverse operation on D and produces the colored labeled graph F
depicted in Fig. 6(b). We renamed the states as follows, A = {6}, B = {1, 2, 4, 6},
C = {1, 2}, D = {3}, E = {1, 4, 6}, F = {4}, G = {2, 7}, H = {5}, I = {7}.
Finally, in the fourth step the graph M is obtained by a subset construction on
(F , {B, C, G}) and the final coloring. In this graph, the states are denoted as
follows: 1 = {C, B, E, G, I}, 2 = {B, C, G}, 3 = {D, H}, 4 = {A, B, E, G, I},
5 = {E, B, F, G, I}. The coloring function is λM(1) = λM(2) = Red because
the only colored set they contain is C that has color Red in F , λM(3) = Blue,
λM(4) = Y ellow, λM(5) = Green, analogously. The minimal DMA AM =
(Σ, Γ, QM , q0, ΔM , λM ) obtained by such a graph is depicted in Fig. 7, where
QM = NM, q0 = 2, ΔM = EM, λM = λM.
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Fig. 6. The subset graph D of R (a) and the reverse graph F of D (b)
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Fig. 7. The minimal DMA AM equivalent to A

4 Conclusions and Further work

In this paper we define a nondeterministic notion of Moore automata equipped
with the coherence property (here simply denoted by NMA). Such a model
could be thought as a particular case of the nondeterministic models defined
in the literature when the output alphabet is equipped with a commutative and
associative operator. It would be interesting to extend the results shown in this
paper to a more general model. Here we propose an algorithm to construct the
minimal deterministic Moore automaton equivalent to a nondeterministic one.
Such an algorithm sounds like Brzozowski’s method that works on acceptors
in the sense that it is essentially structured on the operations of reverse and
subset construction performed twice but such operations in the context of Moore
automata assume a different meaning in particular regarding the coloring.

Recall that Brzozowski’s algorithm applied to an NFA has a time complexity
that is exponential in the worst case due to the subset constructions. Analo-
gously, for NMA’s the time complexity of Brzozowski’s method described in this
paper is exponential in the worst case. For instance, the Fig. 8 describes a Moore
automaton, which falls in such a situation. It would be interesting to study also
the time complexity in the average case. Such problems are related to the anal-
ysis of the scalability, with respect to the size of a given NMA, of the size of the
minimal equivalent DMA. It would be useful to investigate how the transition
density and the color density of a given NMA affect the size of the minimal
DMA.

In the literature, there exists a model of nondeterministic acceptors called self
verifying automata (see for instance [10]) that are a particular case of nonde-
terministic Moore automata, obtained when the set of output symbols is binary.
Such automata are a variant of nondeterministic acceptors in which computation
paths can give three types of answers: yes, no and I do not know. Moreover for
each input string, at least one path must give answer yes or no and for the same
string two paths cannot give contradictory answers. In [10] a conversion of a
self-verifying automaton to a DFA is shown together with the exact cost of such
a simulation, in terms of the number of states. Such a deterministic automaton
is not necessarily the minimal one. Our method can be also applied to directly
simulate a self-verifying automaton by the minimal equivalent DFA. One can
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observe that, after the process of conversion to a DFA, a classical minimization
algorithm could be applied to obtain the minimal DFA. Recall that some experi-
mental results provided in [19] show that in order to construct the minimal DFA
equivalent to a given NFA, Brzozowski’s algorithm is better in terms of running
time for NFA’s with high transition densities than the subset construction fol-
lowed by Hopcroft’s algorithm (cf. [9]). Such results could be confirmed also in
case of self-verifying automata. It would be useful to find and compare the exact
costs (or their upper bounds) of the two transformations with reference to the
transition densities and acceptance or rejection densities.

1 2 3 4/G

5 6 7/Y 8/R 9/R 9/R

a, b

a a, b a, b

b
a, b a, b a, b a, b

Fig. 8. A nondeterministic Moore automaton for which the size of the minimal equiv-
alent DMA is exponential

Remark that Hopcroft’s algorithm could be easily extended to the determinis-
tic Moore automata. Recall that the classical Hopcroft’s algorithm starts from a
partition of the states of a DFA into accepting and rejecting states and by using
splitting operations refines the partitions leading to the coarsest partition com-
patible with the set of accepting states. In case of Moore automata it would be
enough to start from the partition of the states into the the sets of states having
the same color. The splitting operation could be defined in a similar way as those
used for the DFA’s. The running time should be optimized by using the tech-
niques provided in [1]. In this regard, it is worthwhile to recall that, in the case
of DFA, by encoding by b each acceptance state and by a the rejection states,
an infinite family of automata that are the worst cases of Hopcroft’s algorithm
has been defined starting from particular families of binary words with special
and balanced distributions of the two symbols [6,5]. Such families of automata
are challenging also for other classical minimization algorithm [4]. It would be
interesting to define new combinatorial properties of families of words over al-
phabets with cardinality greater than 2 and relate them to the worst cases of
Hopcroft’s algorithm on Moore automata.

We would like to thank the referees for their helpful suggestions and
comments.
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Abstract. An absent word in a sequence is a segment that does not
occur in the given sequence. It is a minimal absent word if all its proper
factors occur in the given sequence.

In this paper, we review the concept of minimal absent words, which
includes the notion of shortest absent words but is much stronger. We
present an efficient method for computing the minimal absent words of
bounded length for DNA sequence using a Suffix Trie of bounded depth,
representing bounded length factors. This method outputs the whole
set of minimal absent words and furthermore our technique provides a
linear-time algorithm with less memory usage than previous solutions.

We also present an approach to distinguish sequences of different or-
ganisms using their minimal absent words. Our solution applies a length-
weighted index to discriminate sequences and the results show that we
can build phylogenetic tree based on the collected information.

Keywords: minimal absent words, forbidden words, suffix trie of bounded
depth, indexing; string similarity, phylogeny construction.

1 Introduction

Processing DNA sequences in an efficient way is a fundamental precondition
for the study and analysis of biological molecules, see for example [4]. Sequence
alignment is a procedure conducted in any biological study that compares two or
more biological sequences [13]. It is the procedure to infer which positions within
sequences are homologous, that is, which sites share a common evolutionary his-
tory. Alignment is often viewed as a necessary step for further study, for instance,
for the identification and quantification of conserved regions or functional mo-
tifs, for profiling of genetic disease, for phylogenetic analysis, and for sequence
profiling and prediction. In this article we show that missing information can
also be used to infer phylogenetic trees in an alignment-free manner.

The availability of complete genome sequences plays an important role for the
analysis of similarities and differences between genomes. In biological research,
the sequence similarity between different species provides an important source of
information to construct phylogenetic tree. Phylogenetics is the tool for study-
ing the evolutionary relationship among different taxa. The sequence similarity
between different species provides an important reference for the phylogenetic
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analysis although it does not decide the final result of the phylogenetic anal-
ysis completely. Selecting suitable invariants/descriptors to characterize DNA
sequences to compare sequences effectively instead of using whole genomes is
an interesting problem. The first exon of the β-globin gene is often used as a
standard example in many DNA-based methods. The gene family of β-globin
varies between 86 and 105 bases and has a significant biological role in oxygen
transport. In 2005, Liu and Wang [10] presented a relative similarity measure to
analyze the similarity of DNA sequences. Their solution applies LZ-complexity
to compute similar regions in given sequences to construct phylogenetic trees.
They analyze the similarity/dissimilarity of the first exon sequences of β-globin
genes of 11 species, which are bovinae, chimpanzee, gallus, gorilla, capra, human,
lemur, mouse, opossum, rabbit and rat.

An absent word in a DNA sequence (also called an unword or a forbidden
word in other contexts) is a word that does not occur in the given sequence.
An absent word is assumed to refer to negative selection. These words can be
used as biomarkers for preventive and curative medical applications that derived
from personal genomics efforts. When absent words can be identified, this infor-
mation will be useful for sequence evolution, comparative genomics and genetic
engineering.

The idea of using absent words to analyse sequences comes from the field of
Symbolic Dynamics and has been initiated by Béal et al. [3]. This powerful con-
cept has been later on at the origin of a new type of successful text compression
methods [7], which have been the object of a series of improvements. It has been
shown how to compute all the forbidden words of a sequence in linear time and
linear memory space [6] and this has been even extended to regular languages [2].

In 2007, Hampikian and Andersen [8] defined the term nullomer to denote
the shortest words that do not occur in a given genome and the term prime to
refer to the shortest words that are absent from the entire known genetic data.
Their motivation was to discover the constraints on natural DNA and protein
sequences. The algorithm used by Hampikian and Andersen to obtain the absent
words tracks the occurrence of all possible words up to a user-specified length
limit n, using a set of 4n counters for the 4n possible words of length n. This
yields the existing absent words up to the given length limit n. In the same year,
Acquisti et al. [1] studied nullomers and the cause, natural selection, of absent
words in human.

The fourth approach for solving the absent words problem was presented by
Herold et al. [9] and they used the term unword to define the shortest absent
words. Their approach has a limitation since it can produce only the shortest
absent words. In 2009, an algorithm to find minimal absent words was presented
by Armando et al. [11]. They coined the term minimal absent words to define
a new and larger class of absent words, including the shortest absent words,
independently of previous works. They applied a Suffix Array technique to do
the work but the running time of the algorithm is not linear. Recently, Wu
et al. [15] presented an algorithm to compute shortest absent words using a
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probabilistic method. Their algorithm runs in linear time and uses less memory
than existing algorithms.

In this paper, we present two efficient approaches. First, we review the concept
of minimal absent words, which includes the notion of shortest absent words. In
order to compute efficiently minimal absent words we present a new approach to
find minimal absent words of given length of the input sequence using the Suffix
Trie of its bounded length factors. This approach consumes less memory space
than previous approaches while it can compute the whole set of minimal absent
words. Moreover, our method runs in linear time according to the sequence
length. Second, we introduce a solution to discriminate genomic sequences using
their minimal absent words. We define the notion of a length-weighted index to
compute the similarity/dissimilarity between sequences based on minimal absent
words.

Finally, we apply the technique to the first exon of β-globin. It is used to build
a phylogeny of the 11 organisms aforementioned. It confirms the result obtained
in [10] and proves that our approach is valid.

2 Basic Definition

A word x is a factor of a word y if there exist two words u and v such that
y = uxv [5]. For example consider the word y = aababaabab and x = baa; the
word x is a factor of the word y.

The Suffix Trie of a word is the deterministic automaton that recognises the
set of suffixes of the word and in which two different paths with the same source
always have distinct ends [5]. It is a search trie constructed for all suffixes of
the word [12]. Thus, the graph structure of the automaton is a tree whose arcs
are labelled by letters. The Suffix Trie of the word w is denoted by T (w). Its
nodes are the factors of w, the empty word is the initial state (the root), and
the suffixes of w are the terminal states. We define s�[q] as the suffix link of
(nonempty) state q. If q = au for some letter a, then s�[q] = u. For instance
word y = aabab and the Suffix Trie of this word is presented in Figure 1.

0

1

2

3 4 5 6

7 8 9

10 11

a

b

a
b a b

b
a b

a b

Fig. 1. Suffix Trie of aabab

The Suffix Trie of bounded length factor of word is the deterministic automa-
ton that recognises the set of fixed length suffixes of the word. For example word
y = cagaccgttt and the length of the bounded factors equal to 4. The Suffix
Trie of bounded length factor of this word is shown in Figure 2.



Building Phylogeny with Minimal Absent Words 103

0

1

2 3 4

5
6 7

8
9

10

11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

c

a

g

t

a
c
g

g a

c g t
g

t t

c
g

c g

a c

a
c c

t
t t

t t

Fig. 2. Suffix Trie of cagaccgttt with the length of the bounded factors equal to 4

A word u is said to be absent in the word y if it is not a factor of y. The
absent word u is said to be a minimal absent word if all its proper factors are
factors of y. For example word y = aabab then the minimal absent words of the
word y are aaa, baa, baba, bb.

The length weighted index is a technique to find the similarity between sample
sets and this solution consider the length of each member in the different(AΔB)
of sample set. The formal definition is

∑
w∈AΔB 1/|w|2 where A and B are

sample sets and w is the member of AΔB. For example, given two sets A =
{aaa, aabb, aba, bbab, bbb} and B = {aa, aba, baba, bbb}. We can find AΔB =
{aa, aaa, aabb, baba, bbab} and the length weighted index of this example is in
the following:∑

w∈AΔB = 1/4 + 1/9 + 1/16 + 1/16 + 1/16
= 0.548611

Given a distance matrix M of a set S of n taxa, the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) is a technique for reconstructing the
phylogenetic tree T for S [14]. The basic principle of UPGMA is that similar taxa
should be closer in the phylogenetic tree. Hence, it builds the tree by clustering
similar taxa iteratively. The method works by building the phylogenetic tree
bottom up from its leaves.

3 Method

3.1 Minimal Absent Words Trie Computation

In this subsection, we present how to compute minimal absent words of a word
in a linear-time with the bounded length factors Suffix Trie.

The code of the algorithm below uses the Suffix Trie of the word y, T (y, �).
The algorithm works as follows.
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At a given step, List is a queue to store pairs of nodes of T (y, �) and nodes of
the minimal absent words trie of the word y, δ denotes the transition function
of the trie, initial is the root node of the trie, L[q] is the maximum length of
labels of paths from the root node to the target node q, p is the current node of
the trie, p′ is the current node of the minimal absent words trie, q′ is the target
node of transition function of the minimal absent words trie, s� is the suffix link
of (nonempty) state p and reach is a reach status of state p which the value of
reach is either equal to 0, if that state has not been reached, or equal to 1, in
case the state has been reached. � is a bounded length.

There are two conditions for creating node in a minimal absent words trie.
The first condition is δ(p, a) is not defined and either p is initial node or s�
is defined. The second condition is δ(p, a) is defined and δ(p, a) has not been
reached.

AWT(T (y, �))
1 M ← New-Automaton()
2 List ← Empty-Queue()
3 List ← Enqueue(List, (initial[T (y, �)], initial[M ]))
4 while List �= 0 do
5 (p, p′) ← Dequeue(L)ist
6 for a ∈ A do
7 if (δ(p, a) = NULL) and

((p = initial[T (y, �)]) or
(δ(s�[p], a) �= NULL)) then

8 q′ ← New-State()
9 terminal[q′] ← TRUE

10 Succ[p′] ← Succ[p′] ∪ {(a, q′)}
11 elseif (δ(p, a) �= NULL) and

(List[δ(p, a)] < �) and
(reach[δ(p, a)] �= 1) then

12 q′ ← New-State()
13 Succ[p′] ← Succ[p′] ∪ {(a, q′)}
14 List ← Enqueue(List, (δ(p, a), q′))
15 return M

Figure 3 displays the minimal absent words trie of the word cagaccgttt
that is computed by this algorithm. All terminal states represents the value of
minimal absent words correspond to the word and outputs are aa, at, ct, gc, gg,
ta, tc, tg, aca, acg, agt, cac, cca, ccc, cga, gag and tttt.

Theorem 1. The algorithm AWT computes the minimal absent words of a word
of length n in time O(n × cardA) where A is the size of alphabet set.

Proof. The operations of the main loop, except the for loop in line 6, execute
in constant time, this gives a time O(n) for their global execution. In line 14,
each operations to enqueue does not corresponds to every node in the Suffix Trie
therefore it is not a function of the word size. Each operation in the for loop in
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Fig. 3. Suffix Trie of minimal absent words of cagaccgttt

line 6 has the total number of targets being bounded by the size of alphabet(card
A) and the cumulated time of all the executions of line 6 is O(card A). Therefore
the total time of the minimal absent words construction is O(n × cardA).

3.2 Similarity/Dissimilarity Measures

In this subsection, we present how to compute similarity/dissimilarity of genomic
sequences and discriminate sequences using minimal absent words. We propose
a method that is called length-weighted index technique.

We present how to find length-weighted index of minimal absent words be-
tween two sequences. We will describe by the example, given two sequences:
A = atgagtgatagacc and B = gtggctatgttaac. Then we compute minimal
absent words of these sequences and we get two sets of minimal absent words
that are A = aa, agag, agat, atgat, ca, ccc, cg, ct, gaga, gatg, gc, gg, gta, gtgag,
tac, tagt, tat, tc, tgac, tgt, tt B = aaa, aat, act, ag, ata, atgg, att, ca, cc, cg,
ctaa, ctg, ctt, ga, ggg, ggt, gta, gtgt, tac, tc, tgc, tgtg, ttat, ttg, ttt. After that
we find the difference between A and B that is A � B = aa, aaa, aat, act, ag,
agag, agat, ata, atgat, atgg, att, cc, ccc, ct, ctaa, ctg, ctt, ga, gaga, gatg, gc,
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gg, ggg, ggt, gtgag, gtgt, tagt, tat, tgac, tgc, tgt, tgtg, tt, ttat, ttg, ttt. Next we
compute the length weighted index of this example that is in the following:∑

w∈A�B = 1/4 + 1/9 + 1/9 + 1/9 + 1/4 + 1/16 + 1/16 + 1/9 + 1/25+
1/16 + 1/9 + 1/4 + 1/9 + 1/4 + 1/16 + 1/9 + 1/9 + 1/16+
1/4 + 1/16 + 1/4 + 1/4 + 1/9 + 1/9 + 1/25 + 1/16 + 1/16+
1/9 + 1/16 + 1/9 + 1/9 + 1/16 + 1/4 + 1/16 + 1/9 + 1/9
= 4.158056

4 Results and Discussion

4.1 Minimal Absent Words Trie Computation

In this subsection, we present some experimental results with the first exon
sequences of β-globin genes from 11 species that are Human, Capra, Gallus,
Opossum, Lemur, Mouse, Rabbit, Rat, Bovinae, Gorilla and Chimpanzee and
coding sequences are listed in Table 1.

Figure 4 presents the growth of minimal absent words of the first exon se-
quences of β-globin genes from 11 genomes. Results show that the range of
minimal absent words length is between 2 and 10 and the maximum length of
minimal absent words for each genomes is either 4 or 5. Figure 5 displays the
trend of memory size for minimal absent words computation that is a linear
function with the word length.

4.2 Phylogeny Building from Minimal Absent Words

In order to examine the validity of our new similarity/dissimilarity measure, we
apply length weighted index to analyze the similarity/dissimilarity of minimal
absent words from the sequence in Table 1 and we present similarity/dissimilarity
matrix between each organism based on minimal absent words in Table 2. Take

Fig. 4. Growth of minimal absent words
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Table 1. Coding sequences of the first exon sequences of β-globin genes from Human,
Capra, Gallus, Opossum, Lemur, Mouse, Rabbit, Rat, Bovinae, Gorilla and Chim-
panzee [10]

Species Coding Sequences

Human ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG

GGGCAAGGTGAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG

Capra ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAA

GGTGAAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAG

Opossum ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTG

GTCTAAGGTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG

Gallus ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTG

GGGCAAGGTCAATGTGGCCGAATGTGGGGCCGAAGCCCTGGCCAG

Lemur ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTG

GGGCAAGGTGGATGTAGAGAAAGTTGGTGGCGAGGCCTTGGGCAG

Mouse ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCTTGCCTGT

GGGCAAAGGTGAACCCCGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

Rabbit ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTG

GGGCAAGGTGAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC

Rat ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTG

GGGAAAGGTGAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG

Gorilla ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG

GGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

Bovinae ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGCCTTTTGGGGCAA

GGTGAAAGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAG

Chimpanzee ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG

GGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

TTGGTATCAAGG

the first row in Table 2 for example, the element 11.9599 represents the value
of dissimilarity between capra and human. Note that 8.82943 and 9.8847 in this
row are more close to 12.7895, so we say gorilla and chimpanzee are most similar
to human in terms of the coding sequences of the first exon of β-globin genes.

Among these species, human and gorilla, human and chimpanzee (from the
first row), capra and bovinae, capra and rabbit, capra and mouse, capra and
gorilla (from the 2nd row), mouse and bovinae, mouse and gorilla, mouse and
capra (from the 6th row), rabbit and capra, rabbit and bovinae (from the 7th
row), rat and capra, rat and bovinae, rat and rabbit, rat and mouse (from
the 8th row), gorilla and human, gorilla and chimpanzee (from the 9th row),
bovinae and capra, bovinae and mouse (from the 10th row), chimpanzee and
gorilla, chimpanzee and human (from the 11th row) are of the most similar.

Gallus and opossum are always the most remote from the other species in most
cases, perhaps for gallus is the only nonmammalian representative and opossum
is the most remote species from the remaining mammals. These coincide with
real biological phenomenon. Besides gallus and opossum, lemur is more remote
from the other species relatively. We also apply UPGMA technique to build
phylogeny from similarity/dissimilarity matrix. The result is similar to results
that present in the work of [10].
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Fig. 5. Memory size of minimal absent words computation

Table 2. Similarity/Dissimilarity measure of analyzed genomes

Species Human Capra Opossum Gallus Lemur Mouse Rabbit Rat Gorilla Bovinae Chimpanzee

Human 0 11.9599 12.7895 13.327 13.703 12.1115 12.0944 13.3468 8.82943 11.906 9.8847

Capra 0 12.2199 11.8727 12.4204 11.7775 11.7086 12.7014 11.8341 8.70512 12.4935

Opossum 0 12.4851 13.8097 13.55 12.2393 13.359 12.754 12.4736 13.304

Gallus 0 13.5477 13.0776 12.0693 13.9615 13.6214 12.5143 14.0447

Lemur 0 13.4286 13.4183 13.8036 13.4852 12.2545 14.1932

Mouse 0 12.6632 12.9735 11.7346 11.5871 12.5451

Rabbit 0 12.9485 12.1789 11.9315 12.6647

Rat 0 13.3912 12.8082 14.2242

Gorilla 0 11.7801 9.39664

Bovinae 0 12.3684

Chimpanzee 0

5 Conclusion

Minimal absent words in genomic sequences are interesting and important area
for studying and they are useful information for further studies for instance phy-
logeny building. In this paper, we define the term minimal absent words as a
set of all possible minimal absent words and we provide a linear-time algorithm
for minimal absent words computation by Suffix Trie of bounded length factors.
The memory size of our approach is less than previous solutions. We also apply
length-weighted index to compute similarity/dissimilarity between genomic se-
quences. We present some properties of minimal absent words from first exon of
β- globin that are useful information and can be applied to construct phylogeny.
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2. Béal, M.P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Forbidden
words of regular languages. Fundamenta Informaticae 56, 121–135 (2003)
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Abstract. We study properties of priority synthesis [2], an automatic
method to ensure desired safety properties in component-based systems
using priorities. Priorities are a powerful concept to orchestrate com-
ponents [3], e.g., the BIP1 framework [1] for designing and modeling
embedded and autonomous systems is based on this concept.

We formulate priority synthesis for BIP systems using the automata-
theoretic framework proposed by Ramadge and Wonham [5]. In this
framework, priority synthesis results in searching for a supervisor from
the restricted class of supervisors, in which each is solidly expressible
using priorities. While priority-based supervisors are easier to use, e.g.,
they support the construction of distributed protocols, they are harder
to compute. In this paper, we focus on the hardness of synthesizing prior-
ities and show that finding a supervisor based on priorities that ensures
deadlock freedom of the supervised system is NP-complete.

1 Introduction

In this paper, we discuss methods to ensure safety and deadlock avoidance on
component-based systems modeled using the BIP1 language [1]. In BIP, a system
can be modeled using three ingredients: (a) Behaviors, an extended automaton
using labeled transitions, (b) Interactions defining synchronizations between two
or more transitions of different components, and (c) Priorities, which are used
to choose amongst possible interactions [1,2].

In our recent work [2], we present a tool called VissBIP, which includes a
technique called priority synthesis for BIP systems. The goal of priority syn-
thesis is to automatically add a set of priorities that enforce a desired safety
property of the composed systems. We consider priority synthesis as an instance
of controller synthesis, which was first presented by Ramadge and Wonham [5].
In their seminal work, they proposed an automata-theoretic framework to con-
strain the behavior of a system via supervisory control. In priority synthesis,
we restrict the supervisor to use only priorities. Constraining a system behavior
using priorities has the following benefits.

1 BIP is a shortcut for Behavior-Interaction-Priority.
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– Existing safety properties as well as deadlock freedom is preserved under
adding priorities.

– Priorities facilitate distributed control. E.g., by allowing components to co-
ordinate temporarily, priorities can be implemented efficiently [4].

We first formulate priority synthesis under BIP systems using an automata-
theoretic framework similar to [5]. Then, we focus on the hardness of synthe-
sizing priorities, which constitutes our main contribution. We prove that, given
a labeled transition system, finding a set of priorities that ensures safety and
deadlock freedom is NP-complete in the size of the system. Our result is in con-
trast to the work in [5], where a general (monolithic) supervisor, which is usually
difficult to distribute, can be found in polynomial-time in the size of the system.
Our priority-based supervisors are easier to distribute but harder to compute.

2 Example: Simple BIP Models

Figure 1 shows a BIP model with two components represented in VissBIP. Using
this model, we illustrate in the following the different parts of a BIP system.

– (Behavior). The system has two components (Process1 and Process2),
and each component has two places (high and low). A green circle indicates
that this place is an initial location of a behavioral component. E.g., place
low is marked as initial in both Process1 and Process2. Edges between
two locations represent transitions, and they are labeled with interaction
alphabets.

– (Interaction). For simplicity we use alphabet bindings to construct in-
teractions between components, i.e., transitions using the same interaction

Fig. 1. Constructing BIP models using VissBIP
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alphabet are automatically grouped to a single interaction and are executed
jointly. In the following, we refer to an interaction by its interaction alphabet.

– (Priority). We use the keyword PRIORITY to state priorities. E.g., the state-
ment Process1.a < Process2.e means that whenever interactions a and e
are available, the BIP engine always executes e.

– (Safety property). The condition RISK = {(Process1.high, Process2.
high)} states that the combined location pair (Process1.high, Process2.
high) should never be reached. Also, we implicitly require that the system is
deadlock-free, i.e., at anytime, at least one interaction is enabled.

3 Formulating BIP Models and Priority Synthesis Based
on Transition Systems

In this section, we first translate simple BIP models (Section 2) into automata,
i.e., the logical discrete-event system (DES) model in [5]. Given a simple BIP
model, we can always construct the transition system representing the asyn-
chronous product of its components. We follow the definitions in [5] to simplify
a comparison between priority synthesis and the controller synthesis technique.

Definition 1 (Transition System). We define a transition system (called a
logical DES model or generator in [5]) as a tuple G = (Q, Σ, q0, δ), where

– Q is a finite set of states,
– Σ is a finite set of event or interaction labels, called interaction alphabet,
– q0 is the initial state, i.e., q0 ∈ Q,
– δ : Q×Σ → Q∪ {⊥} is a transition function mapping a state and an inter-

action label to a successor state or a distinguished symbol ⊥ that indicates
that the given state and interaction pair has no successor. If δ(q, σ) = ⊥ for
some q ∈ Q and σ ∈ Σ, then we say δ(q, σ) is undefined. We slightly abuse
the notation and extend δ to sequences of interactions in the usual way, i.e.,
δ(q, ε) = q and δ(q, wσ) = δ(δ(q, w), σ) with w ∈ Σ∗ and σ ∈ Σ.

Denote the size of the transition system to be |Q| + |Σ| + |δ|.

Figure 2 illustrates the transition system for the BIP model in Figure 1. Transi-
tions in dashed lines are blocked by the priorities. Note that for the formulation
in [5], a logical DES model is able to further partition Σ into Σc (controllable
input) and Σu (uncontrollable input), i.e., a transition system can also model a
game. For systems translated from BIP models the partition is not required. How-
ever, our hardness result of cause applies to the alphabet-partitioned setting as
well. We define the run of G on a word w = w0 . . . wn ∈ Σ∗ as the finite se-
quence of states q0q1...qn+1 such that for all i, 0 ≤ i ≤ n, δ(qi, wi) = qi+1. Note
that if δ(qi, wi) is undefined for some i, then there exists no run of G on w. A state
q ∈ Q with no outgoing transitions, i.e., ∀σ ∈ Σ, δ(q, σ) = ⊥, is called dead-
lock state. A system G has a deadlock if there exists a word w such that the
run q0 . . . q|w| of G on w ends in a deadlock state, i.e., q|w| is a deadlock state.

We now define the concept of supervisor, i.e., machinery that controls the
execution of the system by suppressing transitions.
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Fig. 2. The transition system for the BIP model (without variables) in Figure 1

Definition 2 (Supervisor). Given G = (Q, Σ, q0, δ), a supervisor for G is a
function C : Q × Σ → {True, False}. The transition system GC obtained from
G under the supervision of C is defined as follows: GC = (Q, Σ, q0, δC) with
δC(q, σ) = δ(q, σ) �= ⊥, if C(q, σ) = True, and δC(q, σ) = ⊥ otherwise.

Definition 3. Given G = (Q, Σ, q0, δ), a zero-effect supervisor C∅ is a su-
pervisor that disables all undefined interactions, i.e., interactions leading to ⊥.
Formally, for all states q ∈ Q and interactions σ ∈ Σ, C∅(q, σ) = False iff
δ(q, σ) = ⊥. Note that C∅ has no effect on G, i.e., GC∅ = G.

Given a transition system, adding priorities to the system can be viewed as
masking some transitions. The masking can be formulated using supervisors.

Definition 4 (Priorities). Given an interaction alphabet Σ, a set of priori-
ties P is a finite set of interaction pairs defining a relation ≺ ⊆ Σ × Σ between
the interactions. We called a priority set legal, if the relation ≺ is (1) transitive
and (2) non-reflexive (i.e., there are no circular dependencies) [3].

We are only interested in legal sets, as a supervisor from a non-legal set of
priorities may induce more deadlocks over the existing system. Note that given
an arbitrary set, we can easily check if there exists a corresponding legal set.

Definition 5 (Priority Supervisor). Given a transition system G =
(Q, Σ, q0, δ) and a legal priority set P =

⋃n
i=0 σi ≺ σ′i

2 with σi, σ
′
i ∈ Σ, we

define the corresponding supervisor CP inductively over the number of priority
pairs as follows:

– Base case: CP = C∅, if P = {}
– Inductive step: Let P ′ = P∪{σk≺σ′k}, then for all state q ∈ Q, if CP(q, σk) =

CP(q, σ′k) = True, then CP′(q, σ′k) = False and for all interactions σ �= σ′k :
CP′(q, σ) = CP(q, σ), otherwise for all σ ∈ Σ : CP′(q, σ) = CP(q, σ).

2 We write σi ≺ σ′
i instead of (σi, σ

′
i) to emphasize that priorities are not symmetric.
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Fig. 3. The reduced system from the 3SAT instance φ = c1 ∧ c2 ∧ c3, where c1 :=
(x1 ∨ ¬x2 ∨ x3), c2 := (x2 ∨ ¬x3 ∨ ¬x4), c3 := (¬x4 ∨ ¬x3 ∨ ¬x2)

Definition 6 (Safety). Given a transition system G = (Q, Σ, q0, δ) and the set
of risk states Qrisk ⊆ Q, the system is safe if the following conditions holds.

– (Risk-free) ∀w ∈ Σ∗, if δ(q0, w) �= ⊥, then δ(q0, w) �∈ Qrisk

– (Deadlock-free) ∀w ∈ Σ∗, ∃σ ∈ Σ s.t. if δ(q0, w) �= ⊥, then δ(q0, wσ) �= ⊥.

A system that is not safe is called unsafe.

Note that by removing all outgoing transitions for risk states every risk state is
also a deadlock state. Therefore, risk-freeness reduces to deadlock-freeness and
there is no need to handled it separately.

Definition 7 (Priority Synthesis). Given a transition system G =(Q, Σ, q0, δ),
and the set of risk states Qrisk ⊆ Q, priority synthesis searches for a set of prior-
ities P such that G supervised by CP is safe.

4 Priority Synthesis Is NP-Complete

We now state the main result, i.e., the problem of priority synthesis is NP-
complete.

Theorem 1. Given a transition system G = (Q, Σ, q0, δ), finding a set P of
priorities such that G under CP is safe is NP-complete in the size of G.
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Proof. Given a set of a priorities P , checking if GCP is safe can be done in
polynomial time by a simple graph search in GCP for reachable states that have
no outgoing edges. Therefore, the problem is in NP.

For the NP-hardness, we give a polynomial-time reduction from Boolean 3-
Satisfiability (3-SAT) to Priority Synthesis. Consider a 3-SAT formula φ with
the set of variables X = {x1, . . . , xn} and the set of clauses C = {c1, . . . , cm},
where each clause ci consists of the literals ci1, ci2, and ci3. We construct a
transition system Gφ = (Q, Σ, q0, δ) using Algorithm 1. The transition system
has one state for each literal cji and two designated states � and ⊥, indicating
if an assignment satisfies or does not satisfy the formula. For each variable x,
the alphabet Σ of G includes two interactions xi and xi indicating if x is set to
true or false, respectively. The transition system consists of m layers. Each layer
corresponds to one clause. The transitions allows one to move from layer i to
the layer i + 1 iff the corresponding clause is satisfied. E.g., consider the 3SAT
formula φ = c1 ∧ c2 ∧ c3 with c1 := (x1 ∨¬x2 ∨ x3), c2 := (x2 ∨¬x3 ∨¬x4), c3 :=
(¬x4 ∨ ¬x3 ∨ ¬x2), Figure 3 shows the corresponding transition system.

We prove that φ is satisfiable iff there exists a set of priorities P such that Gφ

supervised by CP is safe, i.e., in Gφ supervised by CP the state ⊥ is unreachable.

(→) Assume that φ is satisfiable, and let v : X → {0, 1} be a satisfying assign-
ment. Then, we create the priority set P as follows:

P := {x ≺ x | v(x) = 1} ∪ {x ≺ x | v(x) = 0}

E.g., consider the example in Figure 3, a satisfying assignment for φ is
v(x1) = 1 and v(x2) = v(x3) = v(x4) = 0, then we obtain P = {x1 ≺
x1, x2 ≺ x2, x3 ≺ x3, x4 ≺ x4}.
Recall that Gφ under CP is safe iff it never reaches the state ⊥. In Gφ, we
can only reach the state ⊥, if the priorities allows us, in some layer i, to
move from ci1 to ci2 to ci3 and from there to ⊥. This path corresponds to
an unsatisfied clause. Since the priorities are generated from a satisfying
assignment, in which all clauses are satisfied, there is no layer in which we
can move from ci1 to ⊥.

(←) For the other direction, consider a set of priorities P . Let P ′ be the set
of all priorities in P that refer to the same variable, i.e., P ′ = {p ≺ q ∈
P | ∃x ∈ X : (p = x ∧ q = x) ∨ (p = x ∧ q = x)}. Since P is a valid set
of priorities (no circular dependencies), the transition system Gφ has the
same set of reachable states under CP and under CP′ . There, the state ⊥ is
also avoided with using the set P ′. Given P ′, we construct a corresponding
satisfying assignment as follows:

v(x) =

⎧
⎪⎨

⎪⎩

0 x ≺ x ∈ P ′

1 x ≺ x ∈ P ′

0 otherwise.

The size the transition system Gφ is polynomial in n and m. In particular, the
transition system Gφ has 3·m+2 states, 2·n+1 interaction letters, and 2·3·m+1
transitions.
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Algorithm 1. Transition System Construction Algorithm
Data: 3SAT Boolean formula φ with n variables and m clauses
Result: Transition System Gφ = (Q, Σ, q0, δ)
begin

Q := {�,⊥}
for clause ci = (ci1 ∨ ci2 ∨ ci3), i = 1, . . . , m do

Q := Q ∪ {ci1, ci2, ci3}
Σ =

⋃
i=1...n{xi, xi} ∪ {r}

for clause ci = (ci1 ∨ ci2 ∨ ci3) with variables xi1, xi2, xi3, i = 1, . . . , m do
if i �= m then

/* Connect the truth assignment to state c(i+1)1 */
if xi1 appears positive in ci1 then

δ(ci1, xi1) := c(i+1)1; δ(ci1, xi1) := ci2

else
δ(ci1, xi1) := c(i+1)1; δ(ci1, xi1) := ci2

if xi2 appears positive in ci2 then
δ(ci2, xi2) := c(i+1)1; δ(ci2, xi2) := ci3

else
δ(ci2, xi2) := c(i+1)1; δ(ci2, xi2) := ci3

if xi3 appears positive in ci3 then
δ(ci3, xi3) := c(i+1)1; δ(ci3, xi3) := ⊥

else
δ(ci2, xi3) := c(i+1)1; δ(ci3, xi3) := ⊥

else
/* Connect the truth assignment to � */
if xi1 appears positive in ci1 then

δ(ci1, xi1) := �; δ(ci1, xi1) := ci2

else
δ(ci1, xi1) := �; δ(ci1, xi1) := ci2

if xi2 appears positive in ci2 then
δ(ci2, xi2) := �; δ(ci2, xi2) := ci3

else
δ(ci2, xi2) := �; δ(ci2, xi2) := ci3

if xi3 appears positive in ci3 then
δ(ci3, xi3) := �; δ(ci3, xi3) := ⊥

else
δ(ci2, xi3) := �; δ(ci3, xi3) := ⊥

δ(�, r) := �
q0 := c11

return (Q, Σ, q0, δ)
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Fig. 4. An example where priority synthesis is unable to find a set of priorities

5 Discussion

The framework of priority systems in [3,1,2] offers a methodology to incremen-
tally construct a system satisfying safety properties while maintaining deadlock
freedom. In this paper, we use an automata-theoretic approach to formulate
the problem of priority synthesis, followed by giving an NP-completeness proof.
We conclude that, although using priorities to control the system has several
benefits, the price to take is the hardness of an automatic method which finds
appropriate priorities. Also, based on the formulation, it is not difficult to show
that it is possible to find a supervisor in the framework of Ramadge and Won-
ham [5] while priority synthesis is unable to find one. This is because priorities
are stateless properties, and sometimes to achieve safety, executing interactions
conditionally based on states is required. E.g., for the transition system in Fig-
ure 4, applying priority a ≺ b or b ≺ a is unable to ensure system safety, but
there exists a supervisor (for safety) which disables b at state v2 and a at v3.
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Abstract. This paper is a follow-up to Jan Daciuk’s experiments on
space-efficient finite state automata representation that can be used di-
rectly for traversals in main memory [4]. We investigate several tech-
niques of reducing the memory footprint of minimal automata, mainly
exploiting the fact that transition labels and transition pointer offset val-
ues are not evenly distributed and so are suitable for compression. We
achieve a size gain of around 20–30% compared to the original repre-
sentation given in [4]. This result is comparable to the state-of-the-art
dictionary compression techniques like the LZ-trie [10] method, but re-
mains memory and CPU efficient during construction.

1 Introduction

Minimal, deterministic, finite-state automata are a good data structure for repre-
senting natural language dictionaries [6]. They are not only fast in construction
and traversals, but also take little space. Small memory footprint stems from
minimality, but it is possible to reduce it even further using various compres-
sion and bit-packing schemes. It is also possible to change the definition of an
automaton so that transitions, and not the states, can become final [3]. Ciura
and Deorowicz [2] call such an automaton a Mealy’s acceptor to underline the
parallel with Moore’s transducers and Mealy’s transducers. Moore’s transducers
store their output in their states, Mealy’s transducers – in their transitions.

One compression technique is universal in all implementations. Fields like
a transition’s label, target state’s address (a pointer), or various flags can be
packed into a minimal bit field required for their representation. Packing the
fields so that they occupy as few bytes or bits as possible greatly reduces memory
requirements. Decoding bit-aligned representation on modern hardware does not
impose a large overhead on processing time and compact memory representation
contributes nicely to reuse of CPU cache lines.

Packing fields bit- and byte-wise may be done in two manners: the fields can
maintain fixed length, or their length may become variable, that is different
instances of the field may have different lengths. The latter can be implemented
using Huffman coding or other variable-bit representation schemes. While it can
lead to greater savings, such compression requires additional memory lookups
for decoding and can even lead to increased overall size if addresses need to be
bit- or byte-aligned instead of being multiplications of a node’s fixed size.

In most efficient implementations, an automaton is a vector of transitions.
States are represented implicitly. There are two major methods of representing
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states. In the first one, a state is a list of outgoing transitions. In the other one,
a state is a vector of possible outgoing transitions with an allocated place for a
transition for every transition label from the alphabet. The vector for each state
is put into a larger vector of transitions so that states overlap whenever possible
without conflicts between transitions. The latter method is called superimposed
coding [8]. It is faster for recognition, as each time we traverse a transition, we
go to it directly without looking at any other transition going out from the same
state (a transition is indexed directly by its label), and it is slower for explo-
ration, as we need to check which transitions exist. That method allows for fewer
compression techniques, so we will focus on the state-as-a-list representation.

In the state-as-a-list representation, it is possible to link subsequent transitions
with pointers, but using a vector is more economical. The next transition in the
vector is the next transition on the list. The problem of knowing what the last
transition is can be solved by either storing an outgoing transition counter in an
incoming transition, or by using a flag [7] (we call it L for LAST) to mark the last
transition on the list. The latter approach saves more space.

A transition connects two states. Since we group transitions going out from
a state, we need to specify the target of a transition, that is the address of
the target state, which in state-as-a-list representation is the address of its first
outgoing transition. There are several methods of reducing the size of that field.
When the target state is placed directly after the current transition, it is possible
to omit the field altogether at the cost of adding a new flag that we call N for
NEXT. When this flag is set, the transition has no target address field, and the
target state begins right after the current transition. It is also possible to vary the
size of the address field so that there are local (short) and global (long) pointers
as in [9] at the cost of an additional flag. In a US patent 5 551 027 granted on
August 7th, 1996 to Xerox, frequently used addresses are put into a vector of
full length pointers, and the addresses are replaced with shorter indexes to the
pointers in the vector.

Since a state is stored as a list of outgoing transitions, it is possible to share
transitions between states. When all transitions of one state are also present as
transitions of another state (that has more transitions), then the “smaller” state
can be stored inside the “bigger” one. When we use the L flag, the transitions
of the smaller state have to be the last transitions of the bigger state. If it is
not the case, the transitions need to be rearranged to conform to this condition.
There may be many combinations of smaller states fitting into some larger ones,
so heuristics have to be used. Note that once a state is stored inside another one,
there is no speed or memory penalty for using this type of compression, it just
reuses the same memory regions.

Another technique of reusing states’ transitions is based on the fact that two
states may share a subset of their transitions, but are not subsets of each other
(each of the states has transitions that the other one does not have). In such
case, one state is stored intact, the unique transitions of the second state are
stored as usual, but the last transition has a flag we call T for TAIL, followed by
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the address of the common set of transition stored in the first state. Reordering
of transitions inside individual states may lead to greater savings.

A generalization of transition sharing is presented in the LZ-trie method by
Strahil Ristov [10]. The LZ-trie method treats an automaton as a sequence of
transitions and applies compression to this sequence. A suffix tree (or array) is
used for finding all subsequences of transitions, storing them once, and replac-
ing redundant instances with pointers to their previous occurrences. This gives
state-of-the-art compression ratios [1]. Note that combining LZ-trie with other
methods described above gives much poorer results [5].

Some research has been devoted to finding substructures in an automaton –
subautomata [12,11]. Although conceptually different from the LZ-trie method,
these methods can be seen as a variant of the LZ-trie method with some restric-
tions that limit compression efficiency. On the other hand, subautomata can
have applications other than mere reduction of representation size.

The remaining part of this work is structured as follows. Our motivation and
goals are given in Section 2. Section 3 introduces the data sets used in evaluating
various methods described later in the paper. Section 4 describes our attempts
to reduce the size of automata representation in memory. Section 5 provides an
overview of computational experiments and their results, comparing them to the
known state of the art. Section 6 concludes the paper.

2 Motivation and Goals

Many of the compression techniques described in the introduction are imple-
mented in Jan Daciuk’s fsa package [4]: transition-based representation, accept-
ing transitions (Mealy’s recognizers), optimizations of pointers in the form of the
N bit or bit-packing of the target address with the rest of the flags. These tricks
allow for direct, incremental construction in the compressed format, suitable for
immediate serialization to disk or storage in memory, and implementation of
traversals over the packed format with very little overhead. The goals of this
work were to investigate the following open problems:

1. Is it possible to construct a more space-efficient automaton representation
that would retain the features present in the fsa package?

2. There is a trade-off between compressing representation and traversal ef-
ficiency. Is there a representation that would balance small size with an
efficient (read: simple) automaton traversals?

3 Test Data

The research presented in this paper was mostly trial-and-error driven, where
the baseline was acquired by comparing the output to the equivalent automata
compiled using the fsa build command from the fsa package. The choice of test
data was thus important. The test files, their size and number of terms, are given
in Table 1. The first five files on that list were collected by the authors of this
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Table 1. File size (bytes), number of terms (lines) and an average number of bits per
term for all the files used in experiments

Name Size (bytes) Terms BPT continued

pl 165 767 147 3 672 200 361 esp 8 001 052 642 014 100
streets 706 187 59 174 95 files 212 761 171 2 744 641 620
streets2 203 590 17 144 95 fr 2 697 825 221 376 97
wikipedia 105 316 228 9 803 311 86 ifiles 212 761 171 2 744 641 620
wikipedia2 504 322 111 38 092 045 106 polish 18 412 441 1 365 467 108

— random 1 151 303 100 000 92
deutsch 2 945 114 219 862 107 russian 9 933 320 808 310 98
dimacs 7 303 884 309 360 189 scrable 1 916 186 172 823 89
enable 1 749 989 173 528 81 unix 235 236 25 481 74
english 778 340 74 317 84 unix m 191 786 20 497 75
eo 12 432 197 957 965 104 webster 985 786 92 342 85

work and the remaining files come from [2]. The pl data set is a morphological
dictionary of inflected forms and their encoded lexemes and morphological an-
notations. It has highly repeatable suffixes (a limited set of inflection frames and
morphological tags). The two data sets named wikipedia and wikipedia2 con-
tain terms from an inverted index of English Wikipedia (wikipedia is a sample,
wikipedia2 is an index of full content). Data sets called streets and streets2
carry street and city names covering the area of Poland and have been acquired
from a proprietary industrial application. The first five files in Table 1 contained
UTF-8 encoded text. We did not alter the original character encoding used to
represent the remaining data sets – they all used single-byte encodings of their
respective languages (ISO8859-2 for Polish, for example). Our automata imple-
mentation was byte-based, so input character encoding was simply preserved in
the automaton structure.

4 Size Reduction Techniques

Figure 1 shows a binary data layout of fields in a single transition in Jan Daciuk’s
fsa package. Recall this was the baseline representation we started from. A single
transition is composed of the initial label, then a byte with three flags – (F for
FINAL, acceptor transition), N (no address, the target state follows this state’s
last transition) and L (this is the last transition of the current state). If the N bit
is not set, partial address is bit-packed into the remaining five bits of the flags

Fig. 1. Binary layout of data fields in a single transition. fsa package compiled with N

and L options. N, F and L are bit flags, address field’s length is as large, as the largest
state offset in the automaton (but constant for every transition).
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byte and as many bytes, as are needed to encode the largest integer offset in this
automaton.

Starting with the baseline above, we tried numerous variations to decrease
the representation size of each transition (and the transition graph as a whole).
We describe these that yielded maximum gains in the paragraphs below.

V-coding of target addresses. The fsa package uses fixed-length address
encoding integrated with the flags byte. This has an effect of abrupt increases
of automaton size once 1, 2, 3 or more bytes are needed to encode the largest
state’s offset. We used a simple form of variable length encoding for non-negative
integers (v-coding), where the most significant bit of each byte is an indicator
whether this is the last byte of the encoded integer and the remaining bits
carry the integer’s data. For example, 0 is encoded as (binary representation)
0000 0000, 127 as 0111 1111, 128 using two bytes: 1000 0001 and 0000 0000, and
so on. Encoding and decoding of v-coded integers can be implemented efficiently
without bit rotations if we have them in consecutive bytes, so we moved the
transition’s target address to separate bytes, which left us with 5 unused bits in
the flags byte.

Transitions with index-coded label. We assumed each transition’s label is a
single byte. Each transition’s label can be therefore an integer between 0 and 255.
For multi-byte or variable-byte character encoding schemes (such as UTF-8) the
automaton stores their raw binary representation. When performing traversals
or lookups, the automaton’s encoding must be respected – the input text must
be converted to the automaton’s code page, for example. Another side effect is
that certain transitions can lead to incomplete character codes, but we never
had a problem with this in real applications (even with multibyte planes from
Unicode).

In reality, for automata created on non-degenerate input, and in particular
on text, the distribution of label values is often skewed. Figure 2 illustrates the
distribution of labels in the pl data set, for example – there are many transitions
with a small subset of the label range and a few transitions outside this range.

The observation that labels have uneven distribution leads to an optimization
that has a profound effect on automaton size: we can integrate the 31 most fre-
quent labels (25−1) into the flags byte as an index to a static lookup table. Zeros
on all these bits would indicate the label is not indexed and is stored separately.
Note that we tried to avoid any complex form of encoding (like Huffman trees);
a fixed-length table with 31 most frequent labels is a balanced tradeoff between
auxiliary lookup structures and label decoding overhead at runtime.

Combining v-coding of the target address and table lookup for the most fre-
quent labels yields two alternative transition formats, as shown in Figure 3. With
such encoding most transitions take 1+length(address) bytes. In an extreme case
when the N bit is also set (target follows the current state’s last transition), the
entire transition is encoded in a single byte.

Rearranging states to minimize the total length of address fields. By
default states (actually a list of transitions of each state) in an automaton are
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Fig. 2. Number of occurrences of 75 most frequent labels in the pl data set

Fig. 3. Binary layout of data fields in a single transition with v-coding of target address
and indexed labels. Two variants of each transition are possible: (a) with the index to
the label, (b) with the label directly embedded in the transition structure.

serialized in a depth-first order to maximize the number of occurrences of the
N flag and hence the gain from not having to emit the target address for such
transitions. For these transitions where N is not set, the target address must
be emitted and the amount of space taken by such an address depends on its
absolute value (recall addresses are v-coded and thus take a variable number
of bytes). If we move certain states (these to which there are a lot of incoming
transitions) to the beginning of the automaton, the global amount of space for
address encoding should be smaller than if we leave these states somewhere
farther in the serialized automaton structure. The question is which states we
should move and in what order they should appear in the automaton structure.

The problem of rearranging states to minimize the global sum of bytes required
for encoding target addresses is complicated. There are several things to consider:

– States located at offsets 0–127 require only one byte for target address code,
states located at offsets 128–16383 two bytes, and so on. But then, a single
state may have many transitions, so it occupies a variable number of bytes.
We can move to the front a single large state with many incoming transitions
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Fig. 4. Automaton size in relation to the number of moved states, pl data set (first
5 000 state reorderings shown). The zoomed-in section of the chart shows the relation
is not monotonic, even at the very beginning.

or, alternatively, many smaller states with fewer incoming transitions but all
fitting in the “one-byte” offset range.

– By moving a state from its original location we also shift the offset of other
states, possibly rearranging the fields across the entire automaton.

– We may lose the gain from applying the N flag optimization if we move a
state (or its predecessor) to which the N flag applies.

The question if there is an “optimal” arrangement of states to minimize the
global serialized automaton length remains open. The problem itself seems to be
equivalent to bin-packing (in terms of computational complexity) and thus not
have a solution working in a reasonable (polynomial) time.

Our first attempt to solve this issue was a simple heuristic: in the first step,
we determine the serialization order for all states as to maximize the number of
N bits (depth-first traversal). Then, we create a priority queue of states in the
decreasing number of their incoming transitions and keep moving states from
the top of the queue to the start of the automaton as long as the serialized
automaton is smaller than before.

This heuristic has a serious flaw because serialized automaton size does not
decrease monotonically with the number of moved states. For example, Figure 4
depicts automaton size in relation to the number of moved states for the pl
data set. The minimum size is reached at around 2 900 reordered states with
the largest number of incoming transitions, but a closer look at the beginning of
this chart shows that the function is not monotonic – see the zoomed rectangle
inside Figure 4. At around 29 reordered states the size goes up from 1 911 758
to 1 912 027, only to drop further down after more states are reordered.

The second take at the state reordering heuristic was a simulated-annealing
like process that worked similar to the first approach (initial states order to
maximize the use of the N bit, then a queue of states with most inlinks), and
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then probed at various subsets of the states’ queue, decaying over time and
focusing on ranges that promised the smallest output.

To compute the resulting automaton size after each state reordering, both
heuristics performed its full serialization. This was the key factor slowing down
automaton compression and took vastly more time than automaton construction
itself. Nonetheless, if size is of major importance, even these simple heuristics
provide significant gain: as shown in Figure 4, for the pl data set the serialized
size decreases from 1 966 038 bytes achieved by depth-first order traversal of
states to 1 806 621 bytes (8% gain) with around 2 900 states moved to the front.

5 Experiments and Results

Table 2 shows the results of compressing the test data sets into finite state au-
tomata using fsa build (version 0.50, with patches), LZ-trie and a binary format
utilizing optimizations presented in this paper, called cfsa2, implemented as part
of the Morfologik project. The data sets and software used to compress them
are available at: https://github.com/dweiss/paper-fsa-compression.

Automata packed using cfsa2 were on average 29% smaller compared to the
result of fsa build, regardless of the nature of the input file (σ = 3.31%). LZ-trie
produced files smaller by 13.7% on average (compared to cfsa2), but here the
standard deviation is σ = 11.86 and there is a notable exception of the pl data
set, smaller by 27% when packed using cfsa2. We do not have an explanation for

Table 2. The size of on-disk automaton representation and bits per byte and term
ratios for the input files compressed with fsa build (fsa), cfsa2 and LZ-trie (LZ). The
%1 column shows size drop from fsa to cfsa2, %2 from cfsa2 to LZ-trie. The smallest
compressed size of each data set is marked with a symbol.

Name Output size (KB) % Bits per byte Bits per term

fsa cfsa2 LZ %1 %2 fsa cfsa2 LZ fsa cfsa2 LZ

pl 2 655 1 764 2 245 34 −27 0.13 0.09 0.11 5.9 3.9 5.0
streets 334 244 217 27 11 3.87 2.83 2.52 46.2 33.8 30.1
streets2 128 93 86 28 7 5.16 3.73 3.46 61.3 44.3 41.1
wikipedia — 40 362 36 413 — 10 — 3.14 2.83 33.7 30.4
wikipedia2 — 168 683 157 126 — 7 — 2.74 2.55 36.3 33.8

deutsch 285 215 188 24 13 0.79 0.60 0.52 10.6 8.0 7.0
dimacs 2 436 1 487 1 299 39 13 2.73 1.67 1.46 64.5 39.4 34.4
enable 401 290 264 28 9 1.88 1.36 1.23 18.9 13.7 12.4
english 243 173 145 29 16 2.56 1.82 1.53 26.8 19.1 16.0
eo 211 147 109 31 26 0.14 0.10 0.07 1.8 1.3 0.9
esp 385 268 187 30 30 0.39 0.27 0.19 4.9 3.4 2.4
files 12 425 9 205 7 120 26 23 0.48 0.35 0.27 37.1 27.5 21.3
fr 220 153 120 30 22 0.67 0.47 0.36 8.2 5.7 4.4
ifiles 12 770 9 748 8 147 24 16 0.49 0.38 0.31 38.1 29.1 24.3
polish 676 477 352 29 26 0.30 0.21 0.16 4.1 2.9 2.1
random 1 162 832 798 28 4 8.27 5.92 5.68 95.2 68.2 65.4
russian 505 354 262 30 26 0.42 0.29 0.22 5.1 3.6 2.7
scrable 435 310 263 29 15 1.86 1.33 1.12 20.6 14.7 12.4
unix 132 95 83 28 13 4.61 3.30 2.88 42.6 30.5 26.6
unix m 104 72 63 30 12 4.42 3.09 2.70 41.4 28.9 25.3
webster 417 298 248 28 17 3.46 2.48 2.06 37.0 26.4 22.0
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Table 3. Automata compression times (in seconds). Experiments were performed on
the following hardware: cfsa2 and fsa5 – Intel Core i7 CPU 860 @ 2.80GHz, 8GB RAM,
Ubuntu Linux; LZ-trie – Intel Xeon W3550 @ 3.07 Ghz, 12GB RAM, CentOS. Ratios
are shown only for compression times greater than a few seconds (cfsa2 is written in
Java and the timings include HotSpot warm-up time, so times for really short input
data are not directly comparable).

Name Compression time (s) Ratio (%)

fsa cfsa2 LZ cfsa2/fsa cfsa2/LZ

pl 40.01 20.15 6 000.00 50 0.34
streets 0.16 1.15 0.84
streets2 0.13 3.57 0.21
wikipedia 226.90 1 860.00 12
wikipedia2 1 556.84 57 600.00 3

deutsch 0.22 1.10 1.00
dimacs 1.66 8.38 100.00
enable 0.21 1.20 0.89
english 0.12 0.90 0.50
eo 0.84 1.10 5.00
esp 0.57 1.14 3.00
files 645.17 99.77 7 200.00 15 1
fr 0.21 0.85 1.00
ifiles 453.53 102.10 25 200.00 23 0.41
polish 1.33 2.46 9.00
random 0.61 4.12 3.00
russian 0.66 1.50 4.00
scrable 0.25 1.16 0.84
unix 0.06 0.50 0.11
unix m 0.04 0.50 0.72
webster 0.20 1.21 0.68

this at the time of writing, but we suspect that this difference is caused by the
fact that the pl data set has a huge number of repetitive suffixes (morphological
tags); it is likely that the transitions to these repetitive suffixes ended up moved
to the front of the automaton and thus resulted in small sizes of target address
pointers of many arcs, whereas in LZ-trie each such pointer is represented as a
constant-size data structure.

Yet, smaller files produced by LZ-trie come at a much longer compression
time – for example, wikipedia2 took 16 hours, while the (Java-based) cfsa2
compressed it in 25 minutes (of which 42 seconds were spent in constructing the
FSA and the rest seeking for the optimum number of states to reorder, which
yet again proves the point of improving this heuristic somehow). Table 3 shows
a complete list of compression times for the three methods used. Note that these
times are only roughly comparable because LZ-trie compression was performed
on a different hardware (CPUs computational performance is nearly identical
though, according to cpubenchmark.net) and cfsa2 timings included the time
to launch Java VM, HotSpot JITting, etc.

The largest size reduction is achieved by integrating transition labels with the
flags byte (see Table 4) – most data sets did not even use transitions with separate
label byte. Note that even a truly random byte sequence would still benefit from
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Table 4. Ratios of integrated and separate labels and lengths of v-coded target state
addresses. V-code zero is equivalent to the presence of the N flag.

Name Labels (%) V-code length (%)

int. sep. 0 1 2 3 4

pl 94 6 30 9 32 29
streets 98 2 39 17 23 20
streets2 98 2 46 13 20 21
wikipedia 79 21 38 18 14 13 16
wikipedia2 85 15 45 13 11 14 17

deutsch 100 0 31 15 35 19
dimacs 98 2 48 12 19 21
enable 100 0 25 27 30 19
english 100 0 26 29 27 17
eo 100 0 19 34 33 14
esp 100 0 17 34 35 14
files 86 14 64 3 6 12 15
fr 99 1 25 33 26 16
ifiles 88 12 65 1 4 11 18
polish 99 1 20 33 29 18
random 100 0 60 5 13 23
russian 100 0 20 33 30 16
scrable 100 0 23 30 29 17
unix 99 1 26 31 21 22
unix m 100 0 26 33 23 18
webster 100 0 24 30 28 18

µ = 96 4 34 22 23 18 3

integrated labels at around 12% (even if label distribution is uniform, 31 labels
would still be integrated in the flags field). Table 4 also shows the benefit of using
the N bit (34% of transitions on average) and v-coding of transition pointers (an
average of 45% of transitions used one or two bytes for the address).

6 Conclusions

We have shown that three basic techniques:

– table-lookup encoded labels, exploiting their uneven distribution,
– variable-length coding of transition target addresses, and
– state ordering to minimize the global size of encoded target addresses

make it possible to compress (already compact) dictionaries considerably, in
some cases even better than the LZ-trie method, whose results were so far con-
sidered the best in the field. Not of less importance is the fact that the representa-
tion presented in this paper retains simple automaton structure and allows very
efficient, non-recursive traversals. There is a considerable space for further re-
search in how to efficiently determine an optimal or nearly-optimal arrangement
of states to minimize their global representation length, but even the presented
näıve heuristic implemented in Java turns out to be much faster than fsa build
or LZ-trie, especially on large data sets.

Comparing our method to the LZ-trie method, the main difference is that we
do not search for repeatable substructures. By finding subautomata, we might
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possibly boost the compression ratio at the cost of slightly increased traversal
time and moderately increased construction time. It is worth mentioning that
the LZ-trie method could also benefit from the improvements we introduced
here, mainly of variable-length coding of transition target addresses and table-
lookup encoded labels. How large this gain can be and what exactly could be
borrowed from the ideas presented here is a matter of further study and we plan
to address it in a follow-up paper.

Another interesting aspect that requires attention is automaton traversal
speeds. All methods exercized in this paper represent a state’s transitions in a
form that requires a linear lookup scan to find a matching label. This is highly in-
effective when traversing highly fanning-out states, which unfortunately usually
happen to be close to (and including) the automaton root. We created a simple
benchmark where the same traversal routine was executing a simple hit/miss
test using a mix of random and matching sequences. The traversal speed (same
hardware as in Table 3) on an automaton in fsa5 format averaged around 1.9
million checks per second, on cfsa2 – around 800 thousand checks per second
(variable transition length requires partial decoding hence the slowdown). These
figures compare favorably to the speed achieved by LZ-trie, which, as reported
by the author, achieves around 1 million checks per second.

A few simple improvements can be made to make the traversal much, much
faster at a slight size penalty. The most obvious improvement is to expand states
with a larger fan-out into a form allowing direct table-lookup (or binary search)
of a given label. This has been implemented in Apache Lucene recently and yields
nearly 4 million terms/ second check speed. Another optimization hint is related
to utilizing CPU caches better – we can clump together the representation of
states reachable from the root state so that they fit in as few cache lines as
possible. This can be easily done by breadth-first traversal to a given depth and
even combined with state reordering mentioned earlier. We plan to tackle these
ideas in our future work on the subject.

As a concluding remark, let us note that morphological dictionaries com-
pressed very well in our experiments, achieving incredible compression ratios
(1.3 bits per entry for eo or 3.9 bits per entry for the pl data set). Knowing that
finite state automata can be used for calculating perfect hashes (or with minor
modifications as transducers) it is somewhat surprising to learn that quite a few
tools for natural language processing still opt for using traditional databases to
store and search for linguistic data.
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Compositional Failure Detection in Structured

Transition Systems
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Abstract. In model-checking, systems are often given as products. We
propose an approach that is built on a preprocessing of specifications in
terms of appropriate automata. This allows to incorporate information
about the local behaviour and synchronization of the system components
into the specification. We develop a framework of (partially) synchro-
nized automaton products and a format of corresponding specification
automata that allows for a compositional failure detection of linear reg-
ular properties (either for finite or for infinite behaviour). As a result
we obtain an algorithm which separates the local and the non-local seg-
ments of system runs, resulting in improved complexity bounds in typical
specifications.

Keywords: model-checking, finitely synchronized products, composi-
tional failure detection.

1 Introduction

In model-checking we examine whether a given system, normally modelled as
a transition system, satisfies a specification, modelled as a logic formula. The
systems under investigation often arise as products composed of several com-
ponents – again transition systems – that may interact with some or all other
components and may also perform actions independently of the other compo-
nents. The main problem in this scenario is the question of state space explosion,
studied in a large body of literature, see e. g. [2].

The basic problem is to separate aspects of the specification that are local
(to the components) from each other and from synchronizing features. This is a
natural idea which is also familiar from the “composition method” of algorithmic
model theory. The method allows to deduce the truth of a formula in a product
from information about the truth value of formulas in the components. In model
theory this approach was initiated in the pioneering paper [9] of Feferman and
Vaught and further developed by numerous authors [5,12,13,14,15,17,18]. For
more recent results, now in the field of model-checking, see [10,16,20]. The com-
plexity of this compositional approach is excessive (in fact, non-elementary in
the size of the given formula – even for modal logic and first-order logic), due
to the large number of auxiliary formulas that have to be constructed. At least
for first-order logic this effect is known to be unavoidable [7]. (Apart from this,
the classical approach is restricted to (variants of) first-order logic. Already for

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 130–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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modal logic extended by the logical operator EG and for first-order logic with
regular reachability predicates the composition method fails [16,20].)

In the present paper we offer a compositional analysis of reachability (mo-
tivated by failure detection) that may lead to a considerable reduction of the
high complexity as known from the logical framework. Our approach relies on
automata theoretic specifications. (For a full paper with corrections see [11].)

Another advantage of the insistence on automata as specification formalism is
the avoidance of the initial conversion of a given logic formula to an automaton.
In most cases (e. g., for temporal, first-order or monadic second-order logic),
the costs of this conversion of formulas are exponential (or much more) in time
complexity. (It is well-known that an MSO(<) formula can be translated into
an equivalent automaton [4,8] and that the complexity of this translation is
non-elementary [1,19].)

In the present work we start with the description of undesired behaviour using
a “complement specification”, denoted Spec. The given system is a partially syn-
chronized product Sys with (binary, labeled) relations and (unary) predicates.
We split Spec into parts which can be checked in the individual components. For
purpose of exposition, we first consider the case of Spec where unary predicates
are missing, and then treat the general case.

The general idea is to split the complement specification automaton into parts
(called “local blocks”) each of which has only labels and predicates from a fixed
set of components. As result we then get the local blocks (as mentioned above, as
specification automata which can be checked in the individual components) and
a “global specification automaton” Glob which describes the possible concatena-
tions of these local block automata. For this, information about the synchroniza-
tion behaviour of a transition is used: the “synchronization profile”. This profile
specifies which of the components are synchronized via the transition’s label. In
the runs of Glob, sequences of transitions with the same synchronization profile
are grouped together.

In the main result, first stated for the case without unary predicates, the
question whether a product of transition systems and a given complement speci-
fication automaton have paths with a common labeling is reduced to the question
whether a path in the global specification automaton exists such that the compo-
nents and parts of the complement specification which are described by the local
blocks of the global specification automaton have paths with common labeling.

To generalize the result to specifications with predicates we first linearize
the transition system Sys and the complement specification Spec: We code the
predicates of states in labeled self-loops of these states and thus dissolve, for
example, the fulfillment of predicates p1,¬p2, p3 at a state s into the subsequent
execution of self loops at s, labeled p1,¬p2, p3. If an action move c is executable
at s, the corresponding c-transition may be taken after the mentioned self-loops.

The terminological complexity of a compositional framework as developed here
is considerable – an unavoidable feature also known from the literature above. As
a gain of this effort, we will show that the algorithm derived from this automaton
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composition method will only be single exponential in the number of states and
predicates that the components and the complement specification have.

Of course, a drawback is the necessity of preprocessing when a logical speci-
fication is given. However, in many practical situations, when specifications are
short, this preprocessing can often be done efficiently in spite of the exponential
standard algorithms [21]. In other cases, one might be able to use automata
theoretic specifications directly.

The applicability of our method depends on an appropriate set-up of the
specification automaton: It should offer as much as possible the potential to
separate the various local and synchronized computations. Of course, in the worst
case as represented by always fully synchronized transitions, the decomposition
does not pay (since only blocks of length one are formed).

The paper is structured as follows: After this introduction we present in Sect. 2
technical preliminaries. For this, we show our notion of a synchronized product
and the complement specification automaton. These definitions are then used
in Sect. 3 for the main result. We further add a sketch how this result can be
generalized to infinite behaviours captured by Büchi automata. In Sect. 4 we
treat the case of specifications with unary predicates. We conclude the paper in
Sect. 5 with a summary and some remarks on open problems.

2 Technical Preliminaries

In this section we introduce the basic definitions: In Sect. 2.1 we treat products
of transition systems and in Sect. 2.2 the automaton models used for complement
specification and its transformation into the global automaton.

2.1 Products of Transition Systems

A transition system is a labeled graph K = (S, {Ra | a ∈ Σ}, {Pv | v ∈ V }) with
state set S, transition relations Ra ⊆ S × S and predicates Pv ⊂ S.

We introduce our notion of a synchronized product with asynchronous and
synchronous behaviour: Synchronized transitions are transitions which are taken
at the same time in a subset of the components – captured by the “synchroniza-
tion profile” – and independently of the transitions of the other components.
Asynchronous transitions are taken independently of all transitions in the other
components, i. e. they can be seen as synchronized with a synchronization profile
which contains only one component. Therefore, we restrict ourselves to synchro-
nized transitions to simplify the constructions.

From now on, we use [m] for m ∈ N as an abbreviation for the set {1, . . . , m}.

Definition 1 (Synchronized product). Let I = [n] be a finite set of indices
and Σ an alphabet of labels (of the transitions) and V := {v1, . . . , vl} a set of
names of unary predicates. For i ∈ I let a component transition system Ki be of
the form Ki = (Si, {Ri

c | c ∈ Σ}, {P i
v | v ∈ V }) as mentioned above.
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K1 :
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K2 :
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Fig. 1. Components K1, K2 and their
product K

ASpec :

q0

q1

q2

q3 q4
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b
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c

AGlob :

q0 q3 q4

A{1}
q0q3

A{2}
q0q3

A{1,2}
q3q4

Fig. 2. Complement specification and
Global automaton

A synchronization profile sp(c) for c ∈ Σ defines which components are syn-
chronized via c-transitions and is formally defined as sp : Σ → Pot(I), c �→ {i |∣
∣Ri

c

∣
∣ �= ∅}.

The synchronized product ASys of the components Ki is defined as the transition
system K := (S̄, {R̄c | c ∈ Σ}, {P̄vi | v ∈ V }) where

– the state set S̄ is the product of the component state sets: S̄ :=
∏

i∈I Si.
(We write s̄[i] for the state of the i-th component of s̄ ∈ S̄.)

– the synchronized transition relation R̄c is defined by (x̄, ȳ) ∈ R̄c iff ∀i ∈ sp(c):
(x̄[i], ȳ[i]) ∈ Ri

c and ∀j ∈ I with j �∈ sp(c): x̄[j] = ȳ[j].
– the predicate P̄vi is the set {s̄ | s̄[i] ∈ P i

v}.

Example 1. In Fig. 1 we show a synchronized product K of two components K1,
K2 with asynchronous a- and b-transitions in K1, respectively K2, and synchro-
nized c-transitions with synchronization profile {1, 2}. For better readability, the
state names of K1, K2 are chosen differently.

2.2 Automata

In this section we introduce the format of complement specification automata for
a given synchronized product. They are used to express properties that lead to
a failure in the product. Afterwards, we translate the complement specification
automaton into a “global specification automaton”. For this, the complement
specification is split into parts that can be checked in the synchronization profiles.

Note that the definitions in this section do not treat unary predicates of a
product yet. How to cope with the predicates will be shown in Sect. 4.

Let us recall usual finite automata to fix notation. A (non-deterministic) finite
automaton is defined by A := (Q, Σ, Δ, q0, F ) with finite state set Q, input
alphabet Σ, transition relation Δ ⊆ Q × Σ × Q, initial state q0 ∈ Q and final
state set F ⊆ Q. A complement specification automaton (without predicates) for
a synchronized product is a finite automaton ASpec = (Q, Σ, ΔSpec, q0, F ) which
is compatible with the action alphabet of the synchronized product.
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The global specification automaton of a complement specification combines
subsequent transitions of the same synchronization profile. Such a combination
will result in “super”-transitions labeled from a local block alphabet : the alphabet
of all sub-automata AI

q,q′ of ASpec where AI
q,q′ contains only transitions from

the components of I and q′ is reachable from q.

Definition 2 (Global specification automaton). Given a complement spec-
ification automaton ASpec = (Q, Σ, ΔSpec, q0, F ), let the global specification au-
tomaton of ASpec be AGlob := (G, ΣB, ΔGlob, q0, F ) where:

– the state set G contains all states of Q such that in ASpec there are out-going
and in-coming transitions that belong to different synchronization profiles:
G := {q0}∪F ∪{q ∈ Q | ∃q1, q2 ∈ Q∃(q1, c, q), (q, d, q2) ∈ ΔSpec with sp(c) �=
sp(d)},

– the set ΣB is the local block alphabet of letters AI
qq′ with q, q′ ∈ G and

I = sp(c) for c ∈ Σ and
– the transition relation ΔGlob is defined as the set {(q,AI

qq′ , q′) | q, q′ ∈ G
such that there exists a path from q to q′ in ASpec containing only labels of
the components of I.}.

For a given z = t1 . . . tu ∈ L(AI) let the projection of z to component i, denoted
by z�i, be the restriction of z to all tj = AIj

qjq′
j

with i ∈ Ij .

Example 2. Figure 2 shows a complement specification and its transformation
into a global automaton for the product from Fig. 1. Each letter from the local
block alphabet can be interpreted as an automaton AI

q,q′ , e. g. the letter A{1}q0q3

corresponds to the automaton ASpec with initial state q0, final state set {q3},
and transitions (q0, a, q1), (q1, a, q1) and (q1, a, q3).

3 Composition: Simple Case

In this section we present the result that reduces the question whether a given
synchronized product and given complement specification have common labeling
sequences to checking whether the components of this product and certain parts
of the complement specification have common labeling sequences.

Theorem 1. For a given complement specification automaton ASpec without
predicates and any synchronized product ASys of components Ki for i ∈ I, com-
patible with ASpec, we have:

L(ASys)∩L(ASpec) �= ∅ ⇔ ∃z ∈ L(AGlob) such that ∀i ∈ I : L(z�i)∩L(Ki) �= ∅.

Let us mention that the length of the word z can be restricted. A complexity
analysis is deferred to the treatment of the general case in Sect. 4.
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Example 3. The complement specification ASpec from Fig. 2 expresses that a
synchronized transition should never be taken after any component has taken
more than two asynchronous transitions. Obviously, in the product from Fig. 1
there is a path which conflicts with this property, namely (12, a, 13, a, 12, c, 24).

In AGlob there exists a path with label z = A{1}q0q3A
{1,2}
q3q4 and for z � 1 =

A{1}q0q3A
{1,2}
q3q4 there exists the label sequence aac in K1 and for z � 2 = A1,2

q3q4

there exists the label sequence c in K2. These sequences lead together to the
failure via aac to state 24 in the product.

We can generalize Theorem 1 to complement specifications given as Büchi au-
tomata. Thus, we can capture any linear time property if it is converted into a
Büchi automaton via the standard techniques.

Corollary 1. For a given complement specification Büchi automaton BSpec and
any synchronized product ASys compatible with ASpec : L(ASys) ∩L(BSpec) �= ∅
holds iff there exists a word z ∈ L(AGlob) such that ∀i ∈ [n]: L(z�i)∩L(Ki) �= ∅,
where z is

– either a finite word and at least one word z�i ends with Büchi automaton as
local block

– or an ω-word and all local blocks of z�i are finite automata.

4 Extension to Specifications with Predicates

In this section we discuss specifications with unary predicates. For this, we en-
code the predicates (respectively their negation) in the components (as well as
in the product) as self-loop transitions. For the complement specification we in-
troduce a sequential projection which allows us to check which predicates hold
at a state in the product by checking that all (possibly negated) “predicate”
transitions exist before taking a “normal” transition. Further, we analyse the
transition structure of the complement specification to reduce the number of
checks of “predicate” transitions, if successive “normal” transitions belong to
the same transitions profiles.

This section is structured as follows: after the modification of the product,
we fix the format we use for a complement specification automaton that is com-
patible with the actions and the predicates of a product. Then, we introduce
its sequential projection in which the predicates are checked via transitions. We
conclude by splitting this sequential projection into the local blocks of a global
automaton as in Sect. 3.

To store the predicates as self loop transitions, we modify the components by
adding transition relations Ri

v/Ri
¬v with (x, x) ∈ Ri

v/Ri
¬v iff x ∈ Pv/x �∈ Pv,

and we modify the synchronized product by adding transition relations R̄(¬)vi

by (x̄, ȳ) ∈ R̄(¬)vi iff x̄ = ȳ and (x̄[i], x̄[i]) ∈ Ri
(¬)v.

Example 4. In Fig. 3 three component transition systems K1, K2, K3 and their
synchronized product K̄ are shown. Again, the state names are chosen differently
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K1 :
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b b b b

136 236

146 246
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a, d, u, v, w

a

d,¬u, v, w

a

a, u,¬v, w

a

¬u,¬v, w

b b b bc

c

Fig. 3. Components K1, K2, K3 and their synchronized product K̄

for the components: S1 := {1, 2}, S2 := {3, 4} and S3 := {5, 6}. We use different
letters for the predicates and only show the corresponding self-loop transitions
(¬)u, (¬)v, (¬)w in K1, K2 respectively K3 (and not the predicates itselves).
The labels a/b are used for asynchronous transitions of K1/K2, i. e. sp(a) = {1}
and sp(b) = {2} and the labels c, d are used for synchronized transitions with
synchronization profile sp(c) = sp(d) = {2, 3}.

For a given complement specification automaton we use a small modification
to improve the results later: we double each state s which has self loop transitions
if all of these transitions are non-switching w.r.t. each other. Fig. 4 shows a
complement specification automaton and Fig. 5 this modification.

To compare the paths of a synchronized product with the complement specifi-
cation, we translate ASys in an expanded form AESys, where the values of the

predicates are added to the transition labels, e. g. we have s
(a,1,1,0)−−−−−→ s′ in AESys

iff ASys contains the transition s
a−→ s′ and Pu, Pv hold at state s, whereas Pw

does not. Formally, AESys of ASys is defined as (S̄, R̄) with S̄ as in Definition 1
and for c ∈ Σ: (s, (c, b1

1, . . . , b
n
l )T , s′) ∈ R̄ holds iff (s, s′) ∈ R̄c and (bi

j = 1 iff P̄vi
j

holds at state s).
Now, we introduce a complement specification automaton with predicates.

Definition 3. A complement specification automaton with predicates for a syn-
chronized product K̄ is an automaton ASpec, compatible with the action and pred-
icate alphabet of K̄. Formally, ASpec := (Q, Σ × B

l·n, Δ, q0, F ) with l := |V |. A
transition has the form (q, (c, B1, . . . , Bn)T , q′) with c ∈ Σ and Bi := (bi

1, . . . , b
i
l)

specifies the truth values of the predicates P̄vi for v ∈ V = {v1, . . . , vl} at the
state q.
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Fig. 4. Complement specification Fig. 5. Modified complement specification

As preparation for the sequential projection of the complement specification and
to reduce the number of checks of “predicate” transitions in it, we introduce the
notion of switching transitions: for subsequent transitions we distinguish between
transitions that use labels of the same synchronization profile as the transition
before and those which switch to another component.

We call a transition with label B = (c, b1
1, b

1
2, . . . , b

n
l ) switching with respect

to a transition with label B′ = (c′, b′11 , . . . , b′nl ) if c has a synchronization profile
different from c′ (sp(c) �= sp(c′)) or if there exists at least one predicate valuation
of the other components which does not coincide (∃j ∈ [l] with bk

j �= b′kj for
k �∈ sp(c)). A transition t is called switching if there exists a predecessor t′ such
that t is switching with respect to t′. A transition is called non-switching if it is
not switching with respect to all predecessors.

The sequential projection of a complement specification automaton ASpec =
(Q, Σ×B

l·n, ΔSpec, q0, F ) transfers the truth value of the predicates into “predi-
cate transitions” which are checked before the “normal” transitions. It is de-
fined by the automaton AProj := (Q ∪ R, Σ ∪ (V × [n]), ΔProj , q0, F ) with
R := (Σ × B

l·n) × [l · n] × Q. We explain the definition of the transition re-
lation ΔProj : for a transition t = (q, (c, B1, . . . , Bn), q′) ∈ ΔSpec we check the
predicates – corresponding to B1, . . . , Bn – one after the other and afterwards
the label c of the transition t. Note that the order in which the predicates have
to be checked can be chosen freely. For each synchronized transition with c ∈ Σ
we first verify that for all components different from sp(c) there exist transitions
for the predicates corresponding to the sets Bj of t before verifying this for the
components of sp(c) and before taking the c-labeled transition. If the transition
is non-switching with respect to all predecessor transitions, we only check the
predicates of the components of sp(c) before taking the c-labeled transition.

Example 5. In Fig. 6 we see the sequential projection of the modified comple-
ment specification from Fig. 5. For readability the states that were added to the
complement specification automaton are abbreviated with ri (1 ≤ i ≤ 16), where
e. g. r10 := ((a, 1, 1, 0)T , 1, q1) and r6 := ((c, 0, 0, 0)T , 3, q2). The transitions for
the predicates Pu, Pv, Pw are labeled with u, v, w, respectively their negation. To
indicate the assigned component, the transitions with labels of K1, K2, respec-
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Fig. 6. Complement specification projection Fig. 7. Global specification

tively K3, are drawn as normal, dashed respectively dotted lines. The transitions
of the synchronization profile sp(c) = sp(d) = {2, 3} are drawn as zigzag lines.

The global specification automaton AGlob := (G, ΣB, ΔGlob, q0, F ) for a se-
quential projection AProj = (Q∪ R, Σ, ΔProj, q0, F ) of a complement specifica-
tion automaton is defined as in Defintion 2, but the state set G is the union of
the sets

– {q0} ∪ F
– {q ∈ Q | ∃r1, r2 ∈ R ∃(r1, c, q), (q, vi, r2) ∈ ΔProj : c ∈ Σ ∧ i �∈ sp(c)}
– {r = (c, B1, . . . , Bn, k, q) ∈ R | ∃r1, r2 ∈ Q ∪ R ∃(r1, v

i, r), (r, wj , r2) ∈
ΔProj : i �= j ∧ (i /∈ sp(c) ∨ j /∈ sp(c))}

For a local block AI
r,r′ and i ∈ I let AI

r,r′�i := Bi
r,r′ where Bi

r,r′ is the automaton
which results from AI

r,r′ if we replace all transitions from components different
from i by ε-transitions. For a given z = t1 . . . tu ∈ L(AI) we define the projection
of z to component i, denoted by z�i, as ti1 . . . tilen(i) with len(i) maximal such

that for j ∈ [len(i)] : tij = AIj

rj ,r′
j
�i (for states rj , r

′
j ∈ G) and i ∈ Ij in the order

in which the AIj

rj ,r′
j

appear in z.

Example 6. In Fig. 7 we show the global specification automaton of the se-
quential projection from Fig. 6. The local blocks are defined as in Sect. 3, e. g.
A1

r11,r7
= ({r11, r12, q1}, {u, a}, Δ, r11, {q1}) where Δ contains only the transi-

tions (r11, u, r12) and (r12, a, q1).

With these preliminaries we generalize Theorem 1 to specifications which can
also check the predicates of a product. Further, we give an upper bound for the
induced algorithm.
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Theorem 2. For a given complement specification automaton ASpec and any
synchronized product AESys of components Ki for i ∈ I, compatible with ASpec

we have:

L(AESys)∩L(ASpec) �= ∅ ⇔ ∃z ∈ L(AGlob) such that ∀i ∈ I : L(z�i)∩L(Ki) �= ∅.

The size of AGlob is quadratic in the size of ASpec and linear in the number
of predicates and components. The length of z is exponential only in the maxi-
mal number of states a component has. The tests whether L(z�i) ∩ L(Ki) �= ∅
need a precalculation which is exponential in the number of components, predi-
cates and states of the complement specification, and in the number of states the
synchronization profiles have.

Example 7. In AESys (which is ASys from Fig. 3 with the predicate valuations
of the current state on the outgoing transitions) and in ASpec from Fig. 5
there exist the paths πSpec = (q0, q

′
0, q1, q

′
1, q0, q2, q

′
2) and πESys = (s135, s235,

s135, s145, s245, s236, s236) labeled with (a, 1, 1, 0)T(a, 0, 1, 0)T(b, 1, 1, 0)T(a, 1, 0, 0)T

(c, 0, 0, 0)T(d, 0, 1, 1)T . In ASys there exists a path πSys with the same state se-
quence like πESys, but with each state repeated four times and the label se-
quence v¬wuaε¬uau ¬wvb¬v¬wua¬u¬v¬wcvwd. From the path πSpec we get
a path πProj = (q0, r1, r2, r3, q

′
0, r13, r12, q1, r7, r8, r9, q

′
1, r16, r15, r14, q0, r4, r5, r6,

q2, r17, r18, q
′
2) in AProj of Fig. 6 with the same label sequence.

From πProj we get πGlob = (q0, r1, r2, r7, r8, r16, r15, r4, q2) in AGlob from Fig. 7
for the word z = A2

q0,r1
A3

r1,r2
A1

r2,r7
A3

r7,r8
A2

r8,r16
A3

r16,r15
A1

r15,r4
A2,3

r4,q2
. Thus, for

i ∈ {1, 2, 3} there exist a word in L(z�i) ∩ L(Ki), e. g. for i = 2: z�2 = A2
q0,r1

·
A2

r8,r16
· (A2,3

r4,q2
� 2) and v · vb¬v · ¬vεcvεd ∈ L(z�2) ∩ L(K2) with the path

π2 = (3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3) in K2.

We now justify the complexity claims, by giving more precise complexity bounds.
For a synchronized product let l be the number of predicates, n the number of
components, ni the number of states of component Ki and N the maximum
over all ni for i ∈ [n]. Further, call q the number of states for a complement
specification automaton.

Given a synchronization profile sp = {i1, . . . , if} ⊆ [n] for synchronized tran-
sition labels c1, . . . , ce we consider the synchronous product which contains only
these transitions. Let nsp denote the number of states with adjacent transitions
of this synchronous product.

Then the size of AGlob is ≤ (2q)2 · l · n and the length of the word z can
be restricted to (2q)2 · l · n · N · 2N . The complexity of the precalculation is
at most q · (l · n + 1) · 2(q·(l·n+1)·p)+1 where p is the maximum over all nsp for
synchronization profiles sp.

The generalization to Büchi automata as in Sect. 3 also works in the case with
predicates. The complexity differs only by a constant factor.

5 Further Results and Conclusion

We have presented a compositional approach for reducing failure detection in
a product of transition systems to the components, working in an automata
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theoretic rather than a logical framework. The method allows us to reduce the
question whether a product of transition systems and a given complement speci-
fication automaton have paths with a common labeling to the question whether a
path in the global specification automaton exists such that the components and
parts of the complement specification which are described by the local blocks of
the global specification automaton have paths with common labeling. The com-
position method uses information about the transitions in the product – their
synchronization profiles – to split the complement specification automaton into
parts. Further, we have shown that the complexity of the induced algorithm is
at most exponential in the number of components, in the number of states and
predicates the complement specification has, and in the number of states and
predicates the largest synchronization profile has.

These results complement research on synchronized state/event systems [3]
in which the descriptional framework is modal logic, and where model-checking
is done by a reduction of the product index set while transforming the given
specification (formula). As another related paper we mention [6] where a different
set-up for specifying synchronization is used (via “interface processes”).

We mention that the present technique can be improved further in appropriate
scenarios: E. g., one could use the fact that in the complement specification
successive transitions of the same component must have the same valuation of
the predicates of the other components, to reduce the number of transitions by
deleting transitions where this is not the case. A second improvement would
be to duplicate states with incoming transitions of different components and
thereby to split the different paths. However, one would have to ensure that this
procedure does terminate by considering the decomposition of the complement
specification automaton into strongly connected components and aborting the
procedure if we reach the same state of a loop again.

Let us mention a possible generalization: One should get a deeper understand-
ing of the technique by looking at how the decomposition of the complement
specification automaton can be translated to a decomposition of a logical for-
mula. Therefore, one could consider e. g. a variation of linear time temporal logic
(LTL) with additional information about the components, respectively the syn-
chronization profile on parts of the formula. Linear time temporal logic is here
a better candidate than classical first-order logic.
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20. Wöhrle, S., Thomas, W.: Model checking synchronized products of infinite tran-
sition systems. In: Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science. LNCS, pp. 2–11. IEEE Computer Society Press, Los Alamitos
(2004)

21. Wolper, P.: Constructing automata from temporal logic formulas: A tutorial.
In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and
FMPA 2000. LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)



Chrobak Normal Form Revisited, with

Applications�

Pawe�l Gawrychowski

Institute of Computer Science,
University of Wroc�law,

ul. Joliot-Curie 15, 50–383 Wroclaw, Poland
gawry@cs.uni.wroc.pl

Abstract. It is well known that any nondeterministic finite automata
over a unary alphabet can be represented in a certain normal form called
the Chrobak normal form [1]. We present a very simple conversion pro-
cedure working in O(n3) time. Then we extend the algorithm to improve
two trade-offs concerning conversions between different representations
of unary regular languages. Given an n-state NFA, we are able to find

a regular expression of size O( n2

log2 n
) describing the same language (which

improves the previously known O(n2) size bound [8]) and a context-
free grammar in Chomsky normal form with O(

√
n log n) nonterminals

(which improves the previously known O(n2/3) bound [3]).

Keywords: unary automata, descriptional complexity.

1 Introduction

Finite automata are a simple yet particularly ubiquitous and useful model of
computation. There exists a vast amount of research devoted to studying trade-
offs between different methods of describing a language recognized by such de-
vices, starting with the classic conversions between deterministic and nondeter-
ministic finite automata [10]. In this paper we focus on the cost of converting an
automaton to a regular expression. If there are no restrictions on the size of the
input alphabet, the conversion might require an exponential blow-up [4], even
if the alphabet is binary [7]. On the other hand, if the alphabet consists of just
one letter, it turns out that such exponential blow-up is not necessary. Addi-
tionally, it turns out that nondeterministic automata over such an alphabet can
be converted into the so-called Chrobak normal form, meaning that there exists
a nondeterministic automaton M ′ such that L(M) = L(M ′) and M ′ consists of
a path of O(n2) states followed by a single nondeterministic choice to a set of
disjoint cycles, where the cycles contain at most n states altogether [1] (also see
the errata to the original article [2]). The original proof did not address the com-
putational complexity of finding such M ′ given M . Martinez showed [8] that this
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conversion requires polynomial time, or more precisely, O(n5). This has been im-
proved by Sawa to O(n2(n+m)) [12]. Both the original proof and the Martinez’s
improvement contained a minor flaw observed and corrected in [13]. In the next
section we give a more efficient version of the construction and then show how
to extend the method to construct a regular expression of size O( n2

log2 n
) describ-

ing the same language. While the improvement might seem minor, it requires
combining a few ideas and refutes a conjecture of Martinez who asked for Ω(n2)
lower bound. Furthermore, we give an evidence that a more substantial improve-
ment would require dramatically different ideas: we show that for some automata
converting to Chrobak normal form involves a quadratic blow-up. Then we show
that using a similar technique we can construct a context-free grammar in Chom-
sky normal form with O(

√
n log n) nonterminals thus improving the previously

known bound O(n2/3) [3].
Because of the space constraints, a few simpler proofs are just sketched or

completely removed from the conference version.

2 Preliminaries

We are given a nondeterministic finite automaton M = 〈Σ, Q, q0, δ, F 〉 over
a unary alphabet Σ = {a}. Because the automaton is nondeterministic, without
loss of generality there is exactly one final state qf . Similarly, we can assume
that there are no edges incoming into q0. As the alphabet is unary, we can (and
will) view the automaton as a directed graph on n = |Q| vertices and m = |δ|
edges, where m ≤ n2. The Chrobak normal form of such automaton consists of
a path of length O(n2) followed by a single nondeterministic choice to a set of
disjoint cycles of lengths c1, c2, . . . , c�, with

∑
i ci ≤ n, see Figure 1.

A strongly connected component of a directed graph is a maximal subset of
vertices {v1, v2, . . . , vs} such that for any i, j there is a path from vi to vj . We
call such component nontrivial if there exists at least one edge vi → vj inside,
i.e., either s > 1 or there is a loop from v1 to v1. The girth of a directed graph

q0

c1

c2

c�

︸ ︷︷ ︸
O(n2)

Fig. 1. Automaton in Chrobak normal form
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is the length of its shortest cycle. We will use g to denote the girth of the graph
corresponding to the given automaton.

Regular expressions considered in this paper are defined in the standard re-
cursive way: a and ε are regular expressions, and if R and S are both regular
expressions, so are R∗, RS and R + S. The size of such expression is simply the
number of characters necessary to write it down.

We will also consider languages described by context-free grammars in Chom-
sky normal form, meaning that all productions are of the form A → a or A → BC
where A, B, C are nonterminals. While it is known that context-free grammars
over an unary alphabet describe exactly regular languages [11], they might allow
a more succinct description of the language in question that nondeterministic
automata.

3 The Algorithm

We are interested in lengths of paths from q0 to qf in the corresponding directed
graph G. We are going to compute a succinct description of all such paths. First
consider the case when G is acyclic. Then any path consists of at most n − 1
edges so in time O(nm) we can easily compute for all vertices v and possible
lengths of path 0 ≤ � < n whether there exists a path from q0 to v of length �.
This gives us a description of all paths from q0 to qf .

Now consider the case when G is not acyclic, i.e., contains vertices belong-
ing to nontrivial strongly connected components. We can compute all lengths of
paths from q0 to qf avoiding vertices belonging to nontrivial strongly connected
components in the same way as in the acyclic case. Thus now we are only con-
cerned with paths that go through at least one vertex v belonging to a nontrivial
strongly connected component. We are going to consider all possible choices of
v one by one.

Lemma 1. Given a vertex v belonging to a nontrivial strongly connected com-
ponent we can represent all accepting paths through v by a path of length 2n2

followed by a cycle of length at most n. The representation can be found in
O(n3) time.

Proof. First we need (any) simple cycle v = v0 → v1 → · · · → vd = v containing
v. In fact we can find the shortest such cycle in linear time by replacing v with
two vertices v′ and v′′, all edges of the form u → v with u → v′′, and all edges
of the form v → u with v′ → u, and computing the shortest path from v′ to v′′.
It corresponds to the shortest cycle containing v. As the cycle is simple, d ≤ n.

Observe that whenever we have a path from q0 to qf through v of length
�, there is such a path of length � + d as well. Thus among all paths with
� ≡ r (mod d) we need to find just the shortest one. Such shortest paths can be
computed efficiently in the following way: for each vertex u in the original graph
create its 2d copies u(0), u(1), . . . , u(d − 1) and u′(0), u′(1), . . . , u′(d − 1). Then
add appropriate edges so that there is a path from q0(0) to u(r) of length � if
and only if � ≡ r (mod d) and there is a path from q0 to u of the same length in
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G. Similarly, there is a path from q0(0) to u′(r) of length � when � ≡ r (mod d)
and there is a path from q0 to u going through v and of the same length in G.
It is easy to check that the following construction ensures the above conditions:
for each edge x → y and for all possible values of r = 0, 1, . . . , d−1 create edges:

1. x(r) → y((r + 1) mod d)
2. x′(r) → y′((r + 1) mod d)
3. if y = v, x(r) → y′((r + 1) mod d)

Then use breadth first search to find shortest paths from q0(0) in the resulting
graph. This requires time O(d(n+m)) = O(nm) and gives us a succinct descrip-
tion of all paths from q0 to qf going through v. Indeed, there is such path of
length � if and only if the distance to q′f (� mod d) is finite and does not exceed �.
Observe that the new graph contains 2dn vertices so all finite distances do not
exceed 2dn. Hence we can represent all those paths by creating a path of length
2dn ≤ 2n2 followed by a cycle of length d ≤ n. �	

The above lemma gives a description of all paths going through a fixed vertex
v. Hence we must consider all possible n choices for v and take the union of the
representations found for all of them. As for each of them we create a path of the
same length 2n2, we can share it among all representations, and then follow with
a single nondeterministic choice to a set of n disjoint cycles. This construction
works in time O(n2m) = O(n4) but it is not enough to match the bounds of the
original proof: we must show that the combined size of all the cycles is at most n.
Although this can be ensured in the above version, it is more convenient to give
an improved algorithm which is faster by an order of magnitude and explicitly
guarantees this property.

Theorem 1. We can represent all accepting paths by a path of length 2n2 fol-
lowed by a nondeterministic choice to a collection of disjoint cycles, with the
combined size of all the cycles at most n. Such a representation can be found in
O(n3) time.

Proof. To improve the running time of Lemma 1 we try to process vertices in
groups instead of one-by-one. Take any simple cycle v0 → v1 → · · · → vd = v0.
We will consider all paths going through at least one of the vertices on this cycle
at once. Among all such paths of length � with � ≡ r (mod d) we need to find just
the shortest one. This can be done by a similar construction as in Lemma 1, the
only difference being that we create edge x(r) → y′((r + 1) mod d) when y = vi

for any i = 0, 1, . . . , d − 1. Then there is a path from q0 to qf of length � going
through the cycle if and only if the distance in the new graph to q′f (� mod d)
is finite and does not exceed �, so we can represent all such paths by a single
path of length 2n2 followed by a cycle of length d. As this describes all possible
paths going through the cycle, we can then delete all vertices v0, v1, . . . , vd−1 and
repeat, as long as the graph is not acyclic. Let the lengths of the cycles found in
successive iterations be c1, c2, . . . , ct. As they are all disjoint,

∑
ci ≤ n, so the

whole complexity is
∑

i O(cim) = O(nm) = O(n3). Also, the combined size of
the cycles in the representation is at most n. �	
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Using the method from the above theorem we can also prove the following lemma.
It will be an important tool in the subsequent sections.

Lemma 2. We can represent all accepting paths going through at least one ver-
tex contained in some cycle of length at most c by a path of length 2cn followed
by a nondeterministic choice to a collection of disjoint cycles, with the combined
size of all the cycles at most n. The representation can be found in O(n3) time.

As recently shown by Geffert [6], it is always possible to convert an automaton
with into the Chrobak normal form so that the path consists of at most n2 − 2
vertices, if n > 1. While Theorem 1 gives us a path of length 2n2, we can improve
this bound to n2−n. Note that we assumed that there is just one accepting state
and there are no edges incoming into q0, and it might increase n by 2. This was
just for the sake of simplicity: all above proofs can be modified to work even
without such assumption.

Theorem 2. We can represent all accepting paths by a path consisting of n2−n
vertices followed by a nondeterministic choice to a collection of disjoint cycles,
with the combined size of all the cycles at most n, assuming n > 1. Such a
representation can be found in O(n3) time.

Proof. We use the same method as in Theorem 1 but bound the shortest paths
lengths more carefully. Assume that for some 0 ≤ r < d the shortest path from
q0(0) to q′f (r) contains more than n2 − n vertices. Then there must be a vertex
v in the original graph which appears on this path at least n times. By cutting
out parts between two occurrences of v, we get different shorter paths. There are
two problems here: by cutting out parts we might remove all vertices from the
chosen cycle of length d (and hence get a path to qf (r) instead of q′f (r)), and
we might get a different remainder modulo d of the resulting path length. The
former can be removed by reserving one occurrence of v. Hence if d ≤ n − 2,
by the pigeonhole principle we can always find two occurrences such that the
distance between them on the path is divisible by d. It remains to deal with the
case of d ≥ n − 1. d can be assumed to be the smallest cycle length possible.
Thus if d = n the whole graph consists of just one cycle and the claim is obvious.
The case of d = n − 1 is slightly more complicated. If the distance between two
occurrences of some vertex is n − 1, we can shorten the path. Hence the path
must of the form v1 → v2 → . . . → vn → v1 → v2 → . . .. If its length exceeds
n2 −n, we can remove the first n(n− 1) vertices and get a shorter path with the
same length modulo d. �	

4 Application to Regular Expressions Conversion

Given a NFA over a unary alphabet we would like to construct a small regular
expression describing the same language. In the regular expression we are al-
lowed to use concatenation, union and Kleene star. A straightforward construc-
tion gives an expression of size O(n2). We will show that with some number
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theoretic insight this can be improved to O( n2

log n
). While the improvement is of

only logarithmic magnitude, it requires combining a few ideas, and refutes the
conjecture of Martinez who asked for a quadratic lower bound [9].

First we show that for some automata converting into the Chrobak normal
form implies a quadratic blow-up. More precisely, we construct an infinite family
of automata Nn on n states requiring such an increase in size after the conversion.

Lemma 3. For any n there exists an automaton Nn on n states such that for
any automaton M with L(Nn) = L(M) consisting of a path followed by a nonde-
terministic choice into a collection of disjoint cycles, the path is of length Ω(n2).

To overcome the quadratic increase we must use a stronger notion than the
Chrobak normal form alone. For that to happen we split the set of all accepting
paths into acyclic, strongly cyclic, and weakly cyclic. All paths of a given type
will be represented separately as regular expressions of bounded size.

Definition 1. A path is:

1. strongly cyclic if it contains a vertex v such that there is a cycle of length at
most n

α log2 n
through v,

2. weakly cyclic if it is not strongly cyclic but contains a vertex belonging to
some cycle,

3. acyclic otherwise.

The constant α in the above definition is to be chosen later.

Lemma 4. A regular expression of size O(n) describing all acyclic accepting
paths can be constructed in O(nm) time.

Proof. Computing the lengths of all acyclic accepting paths in the claimed com-
plexity is trivial. To encode them in a regular expression, use the following simple
trick: if x1 < x2 < . . . < xk then ax1 + (ε + ax2−x1 (. . . (ε + axk−xk−1) . . .)) gen-
erates exactly {x1, x2, . . . , xk} and is of size O(xk). �	

Lemma 5. A regular expression of size O( n2

log2 n
) describing all strongly cyclic

accepting paths can be constructed in O(nm) time.

Proof. Apply Lemma 2 with c = n
α log2 n

and use the trick from Lemma 4 to
encode the path and all cycles. �	

We still have to construct an expression representing the weakly cyclic paths.
Note that we have already described all strongly cyclic paths and so we can safely
assume that the girth is at least n

α log2 n
. Nonexistence of smaller cycles implies

that there are at most α log2 n nontrivial strongly connected components.
We split weakly cyclic paths into two groups. For that we define C(v) = {1 ≤

� ≤ n : there is a cycle through v of length �} and C(S) =
⋃

v∈S C(v).

Definition 2. A weakly cyclic path going through strongly connected components
S1, S2, . . . , Sk is:
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1. thin if
∣
∣
∣
⋃k

i=1 C(Si)
∣
∣
∣ ≤ β log n,

2. fat otherwise.

The constant β will be chosen later. Using the above notion and defining the set
of nonnegative combinations of positive integers a1, a2, . . . , an as N(a1, . . . , an) =
{
∑n

i=1 xiai : xi ≥ 0 for all i} we can establish a certain normal form of all ac-
cepting paths.

Definition 3. Given an accepting path v0 → v1 → . . . → v� we define its
skeleton of length �′ to be an accepting path v′0 → v′1 → . . . → v′�′ such that

� − �′ ∈ N
(⋃�′

i=0 C(v′i)
)

.

Note that a skeleton of a given accepting path can possibly go through completely
different vertices than the original path. The only required condition is on its
length and the set of cycles it intersects (which, again, does not have to be
anyhow similar to the set of cycles the original path intersects).

Lemma 6. Any accepting path v0 → v1 → . . . → v� has a skeleton of length at
most n + n

∣
∣
∣
⋃�

i=0 C(vi)
∣
∣
∣.

Proof. Let C =
⋃�

i=0 C(vi) be the set of the lengths of all cycles having nonempty
intersection with the path. For each element of c ∈ C we mark the first vertex vi

such that c ∈ C(vi). As long as there exist i < j such that vi = vj and no vertex
vk with i < k < j is marked we can cut out vi+1, vi+2, . . . , vj obtaining a shorter
accepting path with the same set C. If such pair of indices does not exists, the
distance between any pair of marked vertices must be strictly smaller than n.
Thus the total length �′ of the final path cannot exceed n+n |C|. Because it has
been constructed by cutting out cycles, �−�′ can be represented as a nonnegative
combination of elements of C. Thus this final path is a skeleton of claimed
length. �	

Lemma 7. A regular expression of size O(n1+α+β log n) describing all thin ac-
cepting paths can be constructed in polynomial time.

Proof. We construct a separate expression for each possible choice of the set of
strongly connected components S1, S2, . . . , Sk such that

∣
∣
∣
⋃k

i=1 C(Si)
∣
∣
∣ ≤ β log n.

Assume such fixed choice and remove all other strongly connected components.
We would like to generate all pairs (�′, C) such that there exists a skeleton of

length �′ and a specified set of cycles C ′ ⊆ C =
⋃k

i=1 C(Si). There are just nβ

subsets of C and by Lemma 6 we can restrict our attention to �′ ≤ n (1 + β log n)
so the maximum number of possible pairs is fairly small. To generate the pairs
efficiently we define a new graph G′ with the following vertices and edges:

V ′ = {(v, X) : v ∈ V, X ⊆ C}
E′ = {((u, X), (v, X ∪ C(v))) : (u, v) ∈ E}
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It is easy to see that there exists a path from (q0, C(q0)) to (qf , C′) of length
�′ in G′ if and only if there exists a skeleton of length �′ and the set of cycles C′.
Thus we can generate all valid pairs (�′, C ′) in polynomial time by computing
paths of lengths not exceeding n (1 + β log n) from (q0, C(q0)) in G′. Then we
consider all pairs (�′1, C

′), (�′2, C
′), . . . , (�′k, C ′) with the same set of cycles C′. We

can construct a regular expression of size O(n log n) describing all paths with the
corresponding skeletons using the trick from Lemma 4 to encode all �′1, �

′
2, . . . , �

′
k

and appending (ac1 + ac2 + . . . + acs)∗ where C′ = {c1, c2, . . . , cs}.
For fixed choices of the set of strongly connected components and C′ we get

a description of all thin paths of size O(n1+β log n). There are nα choices possible
so the total size is O(n1+α+β log n). �	

To deal with fat accepting paths we need to dig deeper into the structure of
nonnegative combinations.

Lemma 8. Let a1, a2, . . . , an be a set of different positive integers with M =
maxi ai. Elements of N(a1, . . . , an) greater than 2 M2

n are exactly the multiples
of gcd(a1, . . . , an).

Proof. Follows from a result of Erdős and Graham [5]. �	

Lemma 9. If X is a set of positive integers, we can choose its subset X ′ ⊆ X
such that gcd(X) = gcd(X ′) and |X ′| ≤ log maxx∈X x.

Proof. Let X = {x1, x2, . . . , xs}. Start with X ′ = {x1}, then for i = 2, 3, . . . , s
check if gcd(X ′ ∪ {xi}) = gcd(X ′) holds. If it does, continue. Otherwise add
xi to the current X ′. Each time we add something to X ′, the value of gcd(X ′)
decreases at least by a factor of 2, and the claim follows. �	

Lemma 10. A regular expression of size O( n2

log n + n1+α) describing all fat
accepting paths can be constructed in polynomial time.

Proof. Choose a subset of strongly connected components S1, S2, . . . , Sk such
that

∣
∣
∣
⋃k

i=1 C(Si)
∣
∣
∣ > β log n. If for some i < j there is no path from Si to Sj

nor from Sj to Si there exists no path hitting all those components at once and
we take another subset. Otherwise we can sort all Si topologically and compute
d = gcd

(⋃k
i=1 C(Si)

)
. Observe that d ≤ n

β log n as a bigger value of d implies
that there would be less than β log n different multiplies of d not exceeding n,
and each element of

⋃k
i=1 C(Si) must be a multiple of d. We compute for any

0 ≤ r < d the smallest integer tr such that there exists an accepting path of
length trd + r going through all S1, S2, . . . , Sk. Note that we require that the
path goes through each of those components. This can be done by constructing
a new graph G′ consisting of d copies of the original G:

V ′ = {(v, r) : v ∈ V, 0 ≤ r < d}
E′ = {((u, r), (v, (r + 1) mod d)) : (u, v) ∈ E}
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and repeating a multiple sources shortest path computation k times. First we com-
pute the shortest paths from (q0, 0) ending in S1 and avoiding all S2, S3, . . . , Sk.
Then, assuming we already have shortest paths visiting at least one vertex from
each S1, S2, . . . , Si and ending in Si, we find the same information for i + 1 by
a single multiple sources shortest paths computation in G′.

If t� mod d is not defined, there are no accepting paths of length �, but the
converse is not necessarily true, for at least two different reasons. First of all, by
computing lengths modulo d we assumed that any multiple of d can be realized
as a nonnegative combination of cycles. While it is true for sufficiently large
multiples, we might need to combine cycles which are contained in some of the
Si but are completely disjoint with the path.

Assume � > 2(1 + β)n log n + 3 n2

β log n and t� mod d is defined. Then we can find

an accepting path of length �′ ≤ � visiting all components Si such that �′ ≤ n2

β log n

and d divides � − �′ (because �′ is created by subtracting multiples of d from �).
By Lemma 9 we can choose a set of at most log n vertices v1, v2, . . . , vs from the
strongly connected components Si such that d = gcd (

⋃s
i=1 C(vi)). Because the

total number of different cycle lengths in all components S1, S2, . . . , Sk exceeds
β log n, we can also choose a set of at most β log n vertices v′1, v

′
2, . . . , v

′
s′ such that∣

∣
∣
⋃k

i=1 C(v′i)
∣
∣
∣ ≥ β log n and s′ ≤ β log n. By extending the path to hit all vi and v′i

we can create another accepting path �′′ such that �′′ ≤ n2

β log n
+ 2(1 + β)n log n,

d divides �′′ − � and the path visits all vertices vi and v′i. Hence there exists a col-
lection of cycles c1, c2, . . . , ct having nonempty intersections with this new path
of length �′′ such that gcd(c1, c2, . . . , ct) divides � − �′ and t ≥ β log n. Then by
Lemma 8 the new path is a skeleton of the original path so there exists an accepting
path of length � > 2(1 + β)n log n + 3 n2

β log n
if and only if t� mod d is defined.

By repeating the above reasoning for all choices of strongly connected com-
ponents we get a succinct description of all fat accepting paths: we can com-
pute a collection of sets R1, R2, . . . , Rnα such that there is such path of length
� exceeding 2(1 + β)n log n + 3 n2

β log n
if and only if � mod di ∈ Ri for some

1 ≤ i ≤ nα. Thus we can construct a regular expression of size O( n2

β log n + n1+α)
describing all such paths by considering lengths smaller or equal and greater
than 2(1 + β)n log n + 3 n2

β log n
separately. We write down the former explicitly

and to deal with the latter we take a union of the expressions describing all Ri

concatenated with a

⌈
2(1+β)n log n+3 n2

β log n

⌉

which is shared among all i. �	

By choosing α + β < 1 and combining Lemma 4, 5, 7 and 10 we get:

Theorem 3. A regular expression of size O( n2

log n
) describing all accepting paths

can be constructed in polynomial time.

5 Application to Context-Free Grammar Conversion

Given a NFA M over a unary alphabet we would like to construct a small context-
free grammar describing the same language. The grammar should be in Chomsky
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normal form (and thus we relax the problem a little bit by assuming that the
empty word is not accepted by M), and we would like to minimize the num-
ber of nonterminals. An application of Chrobak normal form results in O(n2/3)
bound [3]. In this section we develop a substantially more efficient conversion
procedure requiring just O(

√
n log n) nonterminals. We start with a simple com-

binatorial lemma.

Lemma 11. Given a collection of t sets A1, A2, . . . , At ⊆ U we can efficiently
find B ⊆ U of cardinality at most |U|s lg t such that Ai ∩ B �= ∅ for all i, where
s = mini |Ai|.

Proof. We use a simple greedy method: start with B = ∅ and as long as there
exists Ai disjoint with B, select x /∈ B maximizing |{i : Ai ∩ B = ∅ and x ∈ Ai}|.
Let t = t0, t1, t2, . . . , tk ≥ 1 be the cardinalities of {i : Ai ∩ B = ∅} in successive
steps. We claim that ti+1 ≤ ti− ti

s
|U | : there are ti sets left, each of them contains

at least s elements, thus there exists x belonging to at least ti
s
|U | sets. Now

observe that the claim implies tk ≤ t
(

1 − s
|U|

)k

. Setting k = |U|
s lg t yields:

1 ≤ tk ≤ t

(

1 − 1
|U|
s

) |U|
s lg t

< t

(
1
e

)lg t

= 1

so the method terminates after the k-th step, which gives the lemma. �	

We give two different conversion methods, one appropriate for large girth graphs
and one which efficiently describes all paths going through at least one vertex
contained in a short cycle. Consider the representation found using Lemma 2
(with some c to be chosen later). We call the part of L(M) accepted on the
path of length 2cn finite while and the part accepted on the collection of cycles
infinite. Dealing with the infinite part is relatively simple, no matter what c is.

Lemma 12. A context-free grammar with O(
√

n) nonterminals describing the
infinite part of L(M) can be constructed in polynomial time.

Proof. Let c1 < c2 < . . . < c� be lengths of the cycles in the Chrobak normal
form. As

∑
i ci ≤ n, � is at most

√
n. First we introduce O(

√
n) nonterminals

X0, X1, . . . , X�√n� and Y0, Y1, Y2, . . . , Y�√n� such that Xi derives ai and Yi de-

rives ai�√n�. Using those nonterminals we can express any ak as XiYj as long
as k is at most n. Then we introduce � nonterminals C1, C2, . . . , C� such that Ci

describes all words accepted on the i-th cycle. For that we first define Di which
derives exactly aci and add production Ci → CiDi. Then for any ak which is
accepted on this cycle we add production Ci → Xk mod �√n�Y�k/�√n��. We com-

bine all Ci by introducing a special nonterminal P which derives a2cn (this can
be done by introducing a logarithmic number of new nonterminals) and produc-
tions S → PCi for all i = 1, 2, . . . , �. �	

First we show how to represent all accepting paths going through at least one
vertex contained in a short cycle.
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Lemma 13. A context-free grammar with O
(√

n + (cn)1/3
)

nonterminals de-
scribing accepting paths going through at least one vertex contained in a cycle of
length at most c can be constructed in polynomial time.

Proof. Apply Lemma 2, Lemma 12 and Lemma 2.1 of [3]. �	

Note that after applying the above lemma we can assume that there are no short
cycles in the graph.

Lemma 14. If b ≤ g, a context-free grammar with O
(√

n + n
b

log n + b
)

non-
terminals describing all accepting paths can be constructed in polynomial time,
where g is the girth of the underlying graph.

Proof. Apply Theorem 1 and use Lemma 12 to describe the infinite part of
the language found while introducing O(

√
n) nonterminals. Let its finite part

be {ax1 , ax2 , . . . , axs} (s ≤ 2n2). Choose any accepting computation for each
axi . Each computation corresponds to a path from q0 to qf of length � ≤ 2n2.
Take its prefix of length � − � mod b and split it into blocks of consecutive b
states. For each such block we create one set containing the corresponding states.
Observe that because b ≤ g the states in a single block do not repeat. Then by
Lemma 11 we can choose Q′ ⊆ Q such that |Q′| ≤ n

b lg (2n2)2

b = O(n
b log n) and

any block contains at least one element of Q′. We add q0, qf to Q′ and create one
nonterminal Aq for any q ∈ Q′. Then we create 2b nonterminals B1, B2, . . . , B2b

such that Bk derives ak and for any q, q′ ∈ Q′ and k ≤ 2b we add production
Aq → BkAq′ whenever there is a path from q to q′ of length k. The total number
of introduced nonterminals is O(n

b
log n + b). Now observe that if we make Aq0

the starting state and add production Aqf
→ ε, any axi can be derived in the

resulting grammar. Indeed, consider Figure 2: at least one state from each block
belongs to Q′, and we can jump between two adjacent blocks using nonterminals
Bk. Furthermore, any word derived in the grammar corresponds to an accepting
computation of M . The epsilon production can be removed without creating any
new nonterminals. �	

q0

︸ ︷︷ ︸
b

qf

︸ ︷︷ ︸
b

︸ ︷︷ ︸
b

B1 B4 B1
B3

Fig. 2. Jumping between blocks using states from Q′

Combining the two above lemmas gives the claimed bound.

Theorem 4. A context-free grammar with O
(√

n log n
)

nonterminals describ-
ing L(M) can be constructed in polynomial time.
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Proof. We apply Lemma 13 to describe all accepting paths going through at least
one vertex contained in a cycle of length at most g =

√
n log n. This requires

O((gn)1/3) = O(
√

n log1/3 n) = O(
√

n log n) nonterminals. Then we remove all
such vertices, which leaves us with a graph of girth at least g, so by Lemma 14
with b =

√
n log n we can construct a context free grammar with O(n

b log n+b) =
O(

√
n log n) nonterminals describing all remaining accepting paths. �	
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Abstract. We propose a cellular automaton model that simulates a
traffic flow with a junction. We include a ‘form-one-lane’ rule that decides
which car moves ahead when two cars on two different lanes are in front
of a junction. We present a fundamental diagram of the proposed model
and car distribution examples. We also demonstrate that the proposed
model is useful for predicting the real-world traffic flow with a junction.

Keywords: Cellular automata, Car traffic, Traffic junction, Form-one-
lane rule.

1 Introduction

Traffic jam is a major problem in most of the major cities in the world. There
are several researches that attempt to predict the traffic flow accurately and
realistically. One of such approaches is a cellular automaton (CA) model for
traffic flow. CA models are intuitive and can simulate a complex behavior with a
set of simple CA rules. Wolfram [15] presented a basic one-dimensional CA model
for highway traffic flow (R184). Nagel and Schreckenberg [9] proposed another
traffic simulation model using CAs, which is a variant of R184 [15]. This model
shows a transition from laminar traffic flow to start-stop-waves as the car density
increases using Monte-Carlo simulations. Benjamin et al. [1] developed another
model (in short, BJH model) that is similar to the Nagel-Schreckenberg (NaSch)
model with a ‘slow-to-start’ rule that reflects the flawed behavior of real drivers.
A ‘slow-to-start’ rule assumes that drivers sometimes lose attentions because of
having been stuck in the queue of stopped cars and then start with some delay.
Clarridge and Salomaa [2] proposed a ‘slow-to-stop’ rule and added the new rule
into the BJH model. The ‘slow-to-stop’ rule is based on the following behaviors
of drivers: Drivers decelerate before the traffic jam to avoid collision. Note that
these models simulate the single-lane highway traffic with one-dimensional CAs.
However, in reality, most highways have several junctions where two or more
lanes join and they may cause a heavy traffic congestion. See Fig. 1 for example.

Benjamin et al. [1] examined the presence of a junction. They studied the
effects of acceleration, disorder and slow-to-start behavior on the queue length
at the entrance to the highway. Xiao et al. [17] analyzed a bridge traffic bottleneck

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 154–165, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. An example of traffic jam around a junction where several lanes join

based on the R184 model [15,16]. Researchers investigated two-lane or multi-lane
traffic simulations using CAs and lane changing rules [6,7,13].

We focus on how to simulate a traffic with a junction and how to compute
a maximal traffic flow that does not increase the traffic jam while the traffic
density varies. We use two one-dimensional CA arrays with various parameters.
This helps us to predict the flux of a junction and the length of traffic congestion
in front of a junction and to simulate other possible cases with a junction.

2 CA-Based Traffic Simulation Models

A CA is a collection of cells on a grid that evolves through a number of discrete
time steps according to a set of rules based on the states of neighboring cells [16].
The NaSch model [9] is the first nontrivial traffic simulation model based on
CAs. There are several papers analyzing this model in detail [8,10,11,12] and
modifying the model for better simulations [3,4,5]. The NaSch model is defined
on a one-dimensional array with periodic boundary conditions. Each cell may
either be occupied by a car or be empty. Each car has an integer velocity with
values between zero and vmax. For an arbitrary configuration, one update of the
system consists of four consecutive steps performed in parallel for all cars. These
four steps are acceleration, slowing down, randomization and car motion, and
respectively reflect the features of cars on highways.

The BJH model [1] is an extension of the NaSch model [9]. Benjamin et al. [1]
noticed that drivers have a possibility of starting slowly when they pull away
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from being in a static queue of cars. This can arise from a driver’s loss of attention
as a result of having been stuck in the queue. The BJH model introduces pslow

to simulate the driver’s behavior stochastically. The pslow is the probability of
starting slowly from the static queue of cars. When the velocity of a car is 0 and
the distance between the next car is long enough, this car stays at velocity 0 on
this time step with probability pslow and accelerates to 1 on the next time step.
On the other way, this car may accelerate normally with probability 1 − pslow.
This rule is called a ‘slow-to-start’ rule.

Lastly, there is one more rule for more realistic traffic simulation, a ‘slow-to-
stop’ rule by Clarridge and Salomaa [2]. They observed that the cars following
the previous models behave in an unrealistic fashion when approaching a traffic
jam. If a car B ahead has velocity 0, then a car A may drive up to B at velocity
vmax only to brake down to velocity zero in one time step in the cell right behind
B. To make it more realistic, they suggested the addition of a ‘slow-to-stop’ rule.
This rule causes drivers to go slower when approaching jams since drivers would
slow down beforehand where a small jam is visible from a distance. Clarridge
and Salomaa [2] used this rule to the BJH model and demonstrated that there
are fewer long jams with many cars at a complete stop, and instead there appear
to be many slowdowns to avoid these situations, which is more realistic than the
BJH model.

3 Form-One-Lane Rule Model

We propose new CA transition rules for traffic simulation with a highway junc-
tion where two lanes become a single lane.

Fig. 2. The left diagram shows a case of merging traffic and the right diagram shows
a case of forming one lane. These two cases are the same in the respect to joining two
lanes at a junction and becoming a single-lane.

When two lanes join at a junction, there are two types of rules: the first is
merging and the second is forming one lane [14]. Merging traffic is where a lane
is ending and a driver is required to cross a broken or dotted line to merge with
other traffic. In this case, the driver who is about to cross the broken line must
give way to traffic in close proximity in another lane regardless of which car is in
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front. This case is shown in the left side of Fig. 2; car A must give way to car B.
The ‘form-one-lane’ rule requires a driver to give way to a car in another lane if
that car is in front of the driver’s car when the lanes merge. Hence, “The driver
in front has right of way”. This case is shown in the right side of Fig. 2; car B
must give way to car A. Between these two rules, we consider the second rule,
‘form-one-lane’, since it gives the same priority to all lanes. This implies that all
cars on the road have the same priority regardless of which lane they are in.

In the ‘form-one-lane’ rule, when there are two cars near a junction, the car
that is in front of the car on the other lane goes first. We can adopt this rule
to the velocity rule of the BJH model and the ‘slow-to-stop’ model. In the BJH
model, the next velocity of the car is determined based on the current velocity,
the maximal velocity and the distance between the next car. The ‘slow-to-stop’
model uses one more information, the velocity of the next car, for determining
the next velocity.

A

B

C

A

B

C

A B

C

A B

C

A B

C

vA > vB vA = vB vA < vB

(a) (b) (c) (d) (e)

Fig. 3. Five possible cases with a junction where two lanes join. We say that A and B
are on the same position in (c), (d) and (e).

There are five possible cases with a junction as illustrated in Fig. 3. In trivial
cases, there are two cars approaching to a junction on each lane and they are at
different positions. Let L1 and L2 be the two lanes that join and make a junction
and L3 be the joined lane after the junction. Let A, B and C be the closest cars
to the junction on L1, L2 and L3, respectively. In Fig. 3(a), A goes first because
A is in front of B. Let next(A) denote the next car of A. Then C = next(A)
and A = next(B) in Fig. 3(a). Similarly B goes first, and C = next(B) and
B = next(A) in Fig. 3(b).

Assume that A = next(B). This implies that we can put the distance of B as
pos(A)− pos(B), where pos(A) is the index of the cell occupied by A. However,
sometimes two cars in front of a junction can be in the same position; namely,
pos(A) − pos(B) = 0. In the real world, under this condition, the faster car
goes first. This is quite reasonable since the faster car is more likely to reach a
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S E

Fig. 4. Our model simulates the traffic where two lanes join at a junction and split into
two lanes later. Let S and E be the beginning and the ending of the joint single-lane,
respectively.

junction earlier than the other car. These cases are depicted in Fig. 3(c) and (d).
In (c), A goes first and A = next(B) since A is faster than B.

Here we consider one more case: Two cars with the same distance from a
junction and the same velocity as depicted in Fig. 3(e). We can assume that one
of the cars would decrease the velocity because otherwise the two cars would
crash into each other. We introduce a simple rule to avoid a crash: We randomly
select a car and reduce the velocity of the selected car with probability pfollow

to mimic the real-world behavior. Since the two lanes have the same priority, we
set pfollow ← 0.5. Now the two cars have different velocities and thus we can
follow one of the two cases in Fig. 3(c) and (d). We say that two cars A, B are
on the same position if pos(A) = pos(B).

Fig. 4 illustrates the traffic flow that we consider: Two lanes join as a single-
lane and later split again. We use start and end to denote the beginning and the
ending of the joint single-lane. Let N (start, i) be the car nearest to the junction
on lane i. We include a ‘form-one-lane’ rule as follows:

1. On the joint single-lane: if pos(start) ≤ pos(A) < pos(end), then d is the
distance from A to the nearest car ahead of A.

2. Closest to a junction: if pos(N (start, 1)) = pos(A) > pos(N (start, 2)), then
d is the distance from A to the nearest car C ahead of A and we set vnext

as the velocity of C. (Fig. 3(a) case)
3. Behind another car on the other lane: if pos(N (start, 1)) = pos(A) <

pos(N (start, 2)), then d ← pos(N (start, 2)) − pos(A) and vnext ←
v(N (start, 2)). (Fig. 3(b) case)

4. On the same position: when pos(N (start, 1)) = pos(A) = pos(N (start, 2)).
(a) If v > v(N (start, 2)), then d is the distance between the car that is in

front and on the single-lane. (Fig. 3(c) case)
(b) If v < v(N (start, 2)), then we set d ← 0 in order to stop the car and

follow the car on the other lane. In this case, we do not need to set
vnext since this car stops here regardless of the velocity of the next car.
(Fig. 3(d) case)

(c) If v = v(N (start, 2)), then with probability pfollow d is the distance
between the next car on the single-lane, vnext is the velocity of that car
and the velocity of the car on the other lane decreases (v(N (start, 2)) ←
v(N (start, 2)) − 1). (Fig. 3(e) case)
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5. Otherwise: the car is not affected by the junction. Let C be the car that is
ahead of A. Then d is the distance from A to C and vnext is the velocity
of C.

These rules determine the values of d and vnext of all cars. However, it is impos-
sible to determine the values of all cars in parallel with these rules. When two
cars are on the same position and have the same velocity, we reduce the velocity
of one car with probability pfollow. Then the two cars become to have different
velocities and the slower car follows the faster car. If these rules are applied to
all cars in parallel, then the velocity of two cars can be reduced at the same time
and this causes two cars to stop. Thus, for two cars with the same velocity, we
avoid this problem by applying these rules to each car one by one.

1. Slow-to-start: if v = 0 and d > 1, then the car accelerates on this step or
stays there and accelerates on the next step.

2. Deceleration (when the next car is near): if d ≤ v and either v < vnext

or v ≤ 2, then the next car is either very close or going at a faster speed,
and we prevent a collision by setting v ← d − 1 but do not slow down
more than is necessary. Otherwise, if d ≤ v, v ≥ vnext, and v > 2 we set
v ← min(d− 1, v− 2) in order to possibly decelerate slightly more, since the
car ahead is slower or the same speed and the velocity of the current car is
substantial.

3. Deceleration (when the next car is far): if v < d ≤ 2v, then if v ≥ vnext + 4,
decelerate by 2 (v ← v − 2). Otherwise, if vnext + 2 ≤ v ≤ vnext + 3 then
decelerate by one (v ← v − 1).

4. Acceleration, Randomization, Car motion: these rules are same as in the
NaSch model.

These velocity rules calculate the velocities of all cars. Now we design a ‘form-
one-lane’ model by using these two rule sets. The main concern of our model
is how to determine the next car when two cars are near a junction, especially
when they are on the same position.

Note that when two cars are on the same position, by our rules, the faster
car has d as the distance to the car that is in front of the two cars and vnext as
the velocity of that car while the other car has d as 0. By the deceleration rule,
if d is 0, then the velocity of the car becomes -1. However, since the domain of
velocity is from 0 to vmax, we set velocity as 0. This follows that when two cars
are on the same position near a junction, one car stops there and thus two cars
cannot advance at the same time.

4 Experiments and Analysis

4.1 Single-Lane Model and the Proposed Model

We simulate the proposed model for traffic with a junction and compare the
simulation results with an example of the ‘slow-to-stop’ model by Clarridge and
Salomaa [2]. Fig. 5 is an example of two simulations.
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(a) (b)

Fig. 5. The two pictures depict the distribution of cars over 500 consecutive time steps.
(a) is an example of the ‘slow-to-stop’ model by Clarridge and Salomaa [2] and (b) is
an example of the proposed simulation model. Two vertical lines denote the beginning
and the ending of a single-lane. Cars are moving from left to right.

In the simulation in Fig. 5, we use the following parameter values: vmax =
5, pfault = 0.1, pslow = 0.5 and ρ = 0.15. vmax is the maximal velocity of cars.
The cars on cells can move to the right at most vmax cells for each time step.
pfault and pslow are the probabilities for the disorder rule and the slow-to-start
rule. We calculate the traffic density ρ by the ratio of the number of cars to
the number of cells. In our model, there are two lanes at first and become a
single-lane at a certain point. We have simulated with the same density (0.15)
for two lanes.

Notice that the start-stop-waves (traffic jams) in Fig. 5(a) often appear in
the real-world traffic. These jams move backwards slowly as the time passes
and occur randomly. Note that the locations of traffic jams are different and
unpredictable. On the other hand, the location of traffic jams in our model are
consistent.

As shown in Fig. 5(b), most start-stop-waves occur in front of the traffic junc-
tion. This is quite similar to the real-world traffic flow, where most of traffic jams
occur in front of traffic junctions when the number of lanes decreases. The lengths
of traffic jams are almost the same when we simulate it with the fixed number of
cars. This is because our simulation is carried out using a circular road. In our
simulation, there is a fixed number of cars on a fixed number of cells. The influx,
which is the number of cars coming into the start of the lane in each time step, is
the same as the outflux of the lane after a junction. This means that the flux of a
junction goes into the start of the lane along the circular road repeatedly. Thus,
the amounts of the influx and the outflux are the same and this is the reason why
the lengths of traffic jams remain still as the time passes.
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(a) (b)

Fig. 6. The two pictures depict the distribution of cars over 500 consecutive time steps.
We use randomly generated roads to add the cars to a stretch of road. (a) is an example
of single-lane model and (b) is an example of form-one-lane model.

However, roads are typically not circular in reality. Furthermore, if the influx
is larger than the maximal flux that the junction can process, then the number
of cars before the junction would increase. On circular roads, it is impossible
to simulate this. Clarridge and Salomaa [2] addressed this problem with an
alternative method using Bernoulli process arrivals. This method adds new cars
to a stretch of road instead of using CAs with circular boundary conditions.
We address this issue by generating a road with the desired flux with a fixed
density of cars. For instance, when we make a road with density 0.15, the flux
is maximal (which is about 0.52). If we make a road with density 0.07, then the
influx of each lane is 0.34. We randomly generate roads by iterating simulations
1000 times to stabilize with the fixed density of cars. In Fig. 6, we confirm that
the traffic jam does not show the periodic trends anymore and the lengths of
traffic jams increase linearly.

4.2 The Traffic Flux with a Junction

Because the construction of new roads or traffic facilities costs a lot of money,
it is better to predict a possible traffic flow before the construction. Especially,
if we attach a new road to an existing road without a traffic jam, it may cause
some traffic jams because of the new junction. The proposed model can estimate
a traffic flow when building a new road and creating a junction.

The traffic flux is the number of cars passing through the lane in a time step.
This is an important factor for adding new roads or building traffic facilities
since high flux implies the efficient traffic flow. Thus it is better to maximize the
traffic flux. In the simulation conducted by Clarridge and Salomaa [2], the flux
is maximal when the density of the traffic is around 0.15.
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Fig. 7. The fundamental diagram of our model. We simulate with two lanes, where a
lane L1 has a constant density 0.15 and the other lane L2 has a varying density. In
simulation, we increase the density of L2 as 0.005 in each step.

We examine the case when a lane L1 is at maximal flux and the density of
the other lane L2 varies. We fix the density of L1 as 0.15 and vary the density
of L2. The fundamental diagram of this simulation depicted in Fig. 7 shows a
linear decrease until the density of L2 becomes 0.06. After 0.06 the flux of L1

is stabilized around 0.27. This is because the length of the queue of static cars
in front of the traffic junction does not affect the minimal flux of L1 anymore.
Based on this observation, we can estimate the worst-case time complexity to
pass the junction.

4.3 The Length of Traffic Jam

Since the traffic jams in our simulation often occur in front of a traffic junction,
it is possible to compute the length of traffic jams and make use of them more
easily than general start-stop waves. In Fig. 5(b), for instance, we can estimate
the rough length of the jams. With the fixed densities of the traffic, it always has
similar length of traffic jams in our simulation. If it occurs in the real-world traffic
flow in a similar way, then we can use these simulation results for predicting the
length of actual traffic jams in front of a junction. However, since there is no
general method of measurement for the traffic jams, we design a new rule for
the simulation. When we decide whether or not a traffic is jammed, we focus on
the partial density of the traffic. If a partial traffic is denser than the other part,
then we consider the part as a traffic jam. For the part from the starting point
of the traffic to a junction, we measure the average density of the traffic. If the
density is lower than the standard, then the starting point moves to the right.
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Fig. 8. Thick dots denote the point where the traffic jam begins. The standard density
is 0.4.

It stops at the point where we have the average density for the part higher than
the standard density.

We check the starting point of traffic jam as thick dots in Fig. 8. We use the
standard density 0.4 since the maximal density is approximately 0.4 when a car
is in a complete jam in our model. We observe that the length of traffic jam
increases linearly.

4.4 Applications of the Proposed Model

When we use the simulation results for the real-world traffic flow, the quanti-
tative comparison is needed. Since the unit in our simulation is abstract, we
need some scaling between our model and the real-world traffic. One approach
of scaling is to use the maximal velocity. Assume that the maximal velocity of
the real-world traffic is 100km/h. The maximal velocity in our simulation is 5
cells per time step and, therefore, we can scale two values based on the following
proportional equation:

5 cells
1 time step

=
100km
1 hour

=
100000m

3600 seconds

If we regard the size of a cell as 7m, then the time scale is 1.26 time steps to one
second. Based on this scaling, we can calculate either the time to escape from
the jam or the estimated arrival time. If a car in our simulation takes n time
steps to escape from the jam and enters the single-lane, we can simply convert
n time steps to

n

1.26
seconds in real time.

In a similar way, we can predict the length of traffic jams in the real-world
traffic. The simplest way is to use the size of one cell. Nagel and Schreckenberg [9]
claimed that in a complete jam each car occupies about 7.5m of place, which
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becomes the length of one cell. The second method is the comparative method.
We can simulate a traffic when there is a junction with various parameters using
our model. When the traffic is in the standard condition and has a traffic jam
whose length is 10km in reality, we can simulate the condition with our model
and obtain the traffic jam whose length is 50 cells. Then, we can simulate with
other parameters such as various amounts of flux and obtain the expected length
of traffic jam. If the length of traffic jam is, say, 100 cells in simulation, it becomes
20km.

5 Conclusions

When two lanes join, there is always a junction. We have proposed a CA-based
traffic simulation model with a ‘form-one-lane’ rule for simulating traffic flow
with a junction. We have considered five possible cases near a junction based on
the BJH model [1] and the ‘slow-to-stop’ model [2], and demonstrated that the
proposed model can predict the traffic flow with a junction accurately.

With some diagrams and examples, we have analyzed the experimental results
and examined the length of traffic jams when the traffic density varies and the
flux of the traffic with a junction. Remark that the flux of the lane becomes
stable when the density of a lane is greater than a certain threshold. Based on
this observation, we can predict the worst-case arrival time when the density of
the other lane varies. We have suggested two approaches of using the proposed
model to the real-world traffic.

In future, we need to compare the empirical traffic data with our simula-
tion result. From the real-world data and the simulation results, we can adjust
parameters and adopt new scale ratio to establish more precise prediction.
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Abstract. Tree Walking Automata (TWA) have lately received re-
newed interest thanks to their tight connection to XML. This paper
introduces the notion of tree overloops, which is closely related to tree
loops, and investigates the use of both for the following common opera-
tions on TWA: testing membership, transformation into a Bottom-Up
Tree Automaton (BUTA), and testing emptiness. Notably, we argue
that transformation into a BUTA is slightly less straightforward than
was assumed, show that using overloops yields much smaller BUTA in
the deterministic case, and provide a polynomial over-approximation
of this construction which detects emptiness with surprising accuracy
against randomly generated TWA.

Keywords: Tree Walking Automata, loops, overloops, membership,
emptiness, approximation.

1 Introduction

Tree Walking Automata (TWA for short) are a well-established sequential model
for recognising tree languages which was introduced in 1969 by Aho and Ull-
man [1]. While they originally received far less attention than the better known
branching model of tree automata, they have been steadily gathering interest in
the last few years. Notably, important questions which had remained open for
decades have recently been closed. This renewed interest is owed in great part
to the ever-growing popularity of XML, with which they and their variants are
tightly connected, in particular through Core XPath [6] and streaming [13].

In this context, it becomes helpful to have reasonably efficient algorithms
for essential operations on TWA such as deciding membership and emptiness,
as well as transformation into a BUTA. Until now, research has been mainly
focused on closing fundamental open problems concerning the expressiveness of
TWA [5,2,4]. While algorithms for the above operations are known, they appear
in print mostly as proof sketches, and there has been no focus on finding tighter
complexity bounds. In contrast, this paper provides explicit algorithms for these
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tasks and deals with complexity issues. The common thread of our contributions
is the notion of tree loop, which is pervasive to the algorithms we give. This
notion may be related to Knuth’s construction for testing circularity of attribute
grammars [11]. The contributions are organised as follows:

� Section 2 gives a thorough introduction to tree loops – which are more or less
folklore – and introduces a new notion of tree overloop. Simple algorithms
for testing membership follow naturally from this work. To the best of our
knowledge, no such algorithm exists in the literature.

� Section 3 treats the transformation from TWA to BUTA, based on the proof
sketches in [3] and [12, p143]. Two variants are given: one using loops and one
using overloops. The latter yields slightly smaller automata in general. Then
we show that, in the deterministic case, the overloops-based construction
admits a much smaller upper bound on the number of generated states.

� The emptiness problem is known to be ExpTime-complete for TWA, and is
traditionally tested by first transforming the TWA into a BUTA. Section 4
provides a polynomial algorithm which computes an “over-approximation”
of this BUTA, and thus can – with luck – decide emptiness positively. This
approach is tested against randomly generated TWA, and turns out to be
astonishingly accurate. Should it prove inefficient against some families of
TWA, then the approximation can be refined as much as needed.

Notations. Let R ⊆ Q2 be a binary relation on a set Q; we denote by R+

and R∗ its transitive and reflexive-transitive closure, respectively. The notation
�n, m� denotes the integer interval [n, m] ∩ Z.

We denote by N
∗ the set of words over N; if v, w ∈ N

∗, then v.w stands
for the concatenation of the words v and w. A ranked alphabet is a finite set
of symbols, equipped with an arity function arity : Σ → N. The subset of
symbols of Σ with arity k is denoted by Σk. The set T (Σ) of trees over Σ is
defined inductively as the smallest set such that Σ0 ⊆ T (Σ) and, if k � 1,
f ∈ Σk and u1, . . . , uk ∈ T (Σ), then f(u1, . . . , uk) ∈ T (Σ). If t ∈ T (Σ) is a
tree, then the set of positions (or nodes) Pos(t) ⊆ N

∗ is defined inductively by
Pos(t) = {ε} if t is a constant – that is to say, t ∈ Σ0 – and Pos

(
f(u1, . . . , un)

)
=

{ε}∪{ k.αk | k ∈ �0, n − 1� and αk ∈ Pos(uk+1) } otherwise, where n is the arity
of f . We see a tree t as a function t : Pos(t) → Σ which maps a position to the
symbol at that position in t. In this paper we consider only binary trees, that
is to say we assume that k /∈ { 0, 2 } =⇒ Σk = ∅. Positions are equipped with
a non-strict (resp. strict) partial order � (resp. �), such that α � β iff β is a
prefix of α (resp. α � β and α 	= β). The size of a tree t is denoted by ‖t‖ and
defined by ‖t‖ = |Pos(t)|.

The parent function p(·) : Pos(t) \ {ε} → Pos(t) maps any (non-root) child
node α.k (where k ∈ { 0, 1 }) to its father α. We denote by t|α the subtree of t
under α. The reader is assumed to be well-acquainted with the bottom-up variety
of branching tree automata (see for instance [7]). A Tree-Walking Automaton
(TWA) is a tuple A = 〈Σ, Q, I, F, Δ〉 where Q is a finite set of states, Σ a
ranked alphabet, I ⊆ Q is the set of initial states, F ⊆ Q the subset of final –
or accepting – states, and
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Δ ⊆ Σ × Q × { �, 0 , 1 }
︸ ︷︷ ︸

T : types

× { ↑,���, ↙, ↘ }
︸ ︷︷ ︸

M : moves

×Q

is the set of transitions. In this paper the tuple 〈Σ, Q, I, F, Δ〉 will be assumed
whenever we speak of a TWA A. Each node α of a tree t has a type in T,
denoted by �α, such that �ε = � (root), �(β.0) = 0 (left son), �(β.1) = 1
(right son). As we will seldom deal with the root in practice, we define for
short the sons S = { 0 , 1 } ⊂ T. We will also put in relation types and moves
through the function χ(·) : S → { ↙, ↘ } such that χ(0 ) =↙ and χ(1 ) =↘. For
our convenience, we will take the special notation 〈f, p, τ → μ, q〉 for the tuple
(f, p, τ, μ, q) ∈ Δ. Using this notation, some of the parameters can be replaced
by sets, with the obvious meaning that we consider the set of all transitions
thus described. For instance 〈Σ2, p,T → ���, q〉 = { (σ, p, τ,���, q) | σ ∈ Σ2, τ ∈ T }.
Note that all the transitions from 〈Σ0, Q,T → { ↙, ↘ }, Q〉 ∪ 〈Σ, Q, � → ↑, Q〉
are invalid.

A configuration of A on a tree t is a pair c = (β, q) ∈ Pos(t) × Q; it is initial
if c ∈ {ε} × I and final (or accepting) if c ∈ {ε} × F . It is a successor of a
configuration (α, p) if 〈t (α) , p, �α → μ, q〉 ∈ Δ, where μ is ↑ if β = p(α), ��� if
β = α, ↙ if β = α.0 and ↘ if β = α.1. We write c1 �A c2 (or simply c1 � c2
whenever A is clear from the context) if the configuration c2 is a successor
of c1. A run is a (not necessarily finite) sequence of successive configurations
c1 � c2 � . . . cn � . . . . A run is accepting (or successful) if it starts with
an initial configuration and reaches a final configuration. A tree t is accepted or
recognised by A if there exists an accepting run of A on t. The set of all accepted
trees is the language of A, denoted by Lng (A).

Example: Let X be a TWA such that Σ0 = { a, b, c } and Σ2 = { f, g, h },
Q = { q�, qu }, I = {q�}, F = {qu}, and Δ = 〈a, q�, { �, 0 } → ���, qu〉∪〈Σ, qu, 0 →
↑, qu〉 ∪ 〈Σ2, q�, { �, 0 } → ↙, q�〉. Then X accepts exactly all trees whose left-
most leaf is labelled by a. We shall use this (trivial) example throughout the
paper.

2 Loops, Overloops and the Membership Problem

The notion of loop turned out to be very useful to deal with TWA. Informally,
loops arise naturally as a generalisation of the definition of an accepting run,
where the automaton enters the root in a given initial state pin, moves along the
tree, and then comes back to the root in a certain final state pout. In practice,
the details of the moves which form the loop itself are largely irrelevant and are
discarded: the most useful information is the pair of states (pin, pout).

Definition 1 (Tree Loops). Let A be a TWA, t a tree and α ∈ Pos(t). A pair
of states (p, q) ∈ Q2 is a loop of A on the subtree t|α if there exist n � 0 and a
run (α, p), (β1, s1), . . . , (βn, sn), (α, q) such that for all k ∈ �1, n� , βk � α. Such
a run is a looping run, and we say that it forms the loop (p, q).



Loops and Overloops for TWA 169

Data: A TWA A = 〈Σ, Q, I, F, Δ〉
Result: A BUTA B such that Lng (B) = Lng (A)
initialise States and Rules to ∅

foreach a ∈ Σ0, τ ∈ T do
A let P = (a, τ,Hτ

a
∗); add a → P to Rules and P to States

repeat
foreach f ∈ Σ2, τ ∈ T do

B add every f(P0 , P1 ) → P to Rules and P to States
where P0 , P1 ∈ States such that P0 = (σ0 , 0 , S0 ) and P1 = (σ1 , 1 , S1 )
and P = (f, τ, (Hτ

f ∪ S)∗), with

S =
{

(p, q)
∣
∣∣
∣ ∃θ ∈ S, (pθ, qθ) ∈ Sθ :

∣
∣∣
∣
〈f, p, τ → χ(θ), pθ〉 ∈ Δ and
〈σθ, qθ , θ → ↑, q〉 ∈ Δ

}

until Rules remains unchanged
return B = 〈Σ, States, { (σ, �, L) ∈ States | L ∩ (I × F ) 
= ∅ } , Rules〉

Algorithm 1. Tranformation into BUTA, with loops

Data: An escaped TWA A = 〈Σ, Q, I, F, Δ〉 (see Def. 13)
Result: A BUTA B such that Lng (B) = Lng (A)
initialise States and Rules to ∅

foreach a ∈ Σ0, τ ∈ T do
C let P = (τ,Uτ

a[Hτ
a

∗]); add a → P to Rules and P to States
repeat

foreach f ∈ Σ2, τ ∈ T do
D add every f(P0 , P1 ) → P to Rules and P to States

where P0 , P1 ∈ States such that P0 = (0 , S0 ) and P1 = (1 , S1 ) and
P = (τ,Uτ

f

[
(Hτ

f ∪ S)∗]
), with

S =
{

(p, qθ)
∣
∣
∣
∣ ∃θ ∈ S, pθ ∈ Q :

∣
∣
∣
∣
〈f, p, τ → χ(θ), pθ〉 ∈ Δ
and (pθ, qθ) ∈ Sθ

}

until Rules remains unchanged
return B = 〈Σ, States, { (�, O) ∈ States | O ∩ (I × {�}) 
= ∅ } , Rules〉

Algorithm 2. Tranformation into BUTA, with overloops

Example: The looping run (0, q�), (0.0, q�), (0.0, qu), (0, qu) of X on the subtree
g(f(a, b), c)|0 = f(a, b) forms the loop (q�, qu).

Notice that loops are not only defined on whole trees, but on subtrees as well with
the restriction that the automaton cannot leave the subtree during the looping
run. It is in fact this restriction which grants loops their usefulness. TWA, unlike
their branching cousins, whose runs are defined inductively, do not naturally lend
themselves to inductive reasoning; and yet, thanks to the above restriction, loops
are easily computed by induction. Thus loops and their variants can be thought
of as convenient devices which hide the sequential, stateful aspect of TWA runs
beneath a much more “user-friendly” layer of induction.
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Data: An escaped TWA A = 〈Σ, Q, I, F, Δ〉 (see Def. 13)
Result: Empty (only if Lng (A) = ∅) or Unknown
initialise L0 , L1 , L� to ∅; foreach a ∈ Σ0, τ ∈ T do Lτ ← Lτ ∪ Uτ

a[Hτ
a

∗]
repeat

foreach f ∈ Σ2, τ ∈ T do Lτ ← Lτ ∪ Uτ
f

[
(Hτ

f ∪ S)∗]

where S =
{

(p, qθ)
∣
∣
∣
∣ ∃θ ∈ S, pθ ∈ Q :

∣
∣
∣
∣
〈f, p, τ → χ(θ), pθ〉 ∈ Δ
and (pθ, qθ) ∈ Lθ

}

until L0, L1, L� remain unchanged
return Empty if L� ∩ (I × {�}) = ∅, else Unknown

Algorithm 3. Approximation for emptiness, with overloops

In the next few paragraphs we compute the loops of a TWA A on a subtree
t|α.

Definition 2 (Kinds of Loops). Clearly for all p ∈ Q, (p, p) is a loop; we call
them trivial loops. A looping run of A on t|α is simple if it reaches α exactly
twice. It is non-trivial if it reaches α at least twice. A loop is simple (resp.
non-trivial) if there exists a simple (resp. non-trivial) looping run forming it.

Example: The loop (q�, qu) in the above example is simple, because (0, q�),
(0.0, q�), (0.0, qu), (0, qu) only reaches α = 0 twice, on the first and last con-
figuration. The TWA X forms only trivial and simple loops, but suppose that
we alter it so that it also checks that the right-most leaf is a. During an accepting
run it would go down and left, back up to the root, down and right, and back up
to the root again, in a final state. Thus all accepting runs would be non-trivial
and non-simple, reaching the root exactly three times.

Fortunately, we only ever need to compute simple loops, as we can deduce the
rest from them thanks to the following lemma:

Lemma 3 (Loop Decomposition). If S ⊆ Q2 is the set of all simple loops of A
on a given subtree u = t|α, then S∗ is the set of all loops of A on u.

Proof. Every looping run is either trivial or non-trivial. All trivial loops are in
S∗ by reflexive closure. Furthermore, every non-trivial looping run can easily be
decomposed into one or more simple runs. Indeed, any non-trivial looping run
� has the following general form, where βk

i � α for all k, i, and the notation
[xk ]k∈�1,m� designates the run obtained by concatenating the runs x1, . . . , xm:

� = (α, p0),
[
(βk

1 , sk
1), . . . , (βk

nk
, sk

nk
), (α, pk)

]k∈�1,m�
.

This can be seen as the composition of m simple looping runs �k, for k ∈ �1, m�,
where �k = (α, pk−1), (βk

1 , sk
1), . . . , (βk

nk
, sk

nk
), (α, pk). Let us compute the loops

formed by the looping run �: for every k, l ∈ �1, m�, k � l, we can build a looping
run �k, �k+1, . . . , �l, and it follows that (pk−1, pl) is a loop. Since only the states
pk appear at position α, � forms no other loops. But we have
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{
(pk−1, pk)

∣
∣ k ∈ �1, m�

}+ =
{

(pk−1, pl)
∣
∣ k, l ∈ �1, m� : k � l

}
.

Note that each loop (pk−1, pk) is formed by �k. Therefore the loops formed by
the non-trivial looping run � are the transitive closure of the loops formed by
the simple looping runs of which it is composed.

Let us denote �
τ(u) the set of all loops of A on a subtree u, where τ is the

type of the root of u. Concretely, if u is the whole tree, then τ = � and, more
generally, if u is a subtree, say, u = t|α, then τ = �α. Note that thanks to the
above-mentioned restriction in the definition of loops, the type of the subtree’s
root is the only information which is actually needed from the context.

Let a ∈ Σ0 be a leaf of type τ . We compute the loops on a. By definition of
a looping run, A cannot move up; nor can it move down since leaves have no
children. So the only transitions which can be activated are ���-transitions. As we
are only interested in simple loops, we can only activate one of these transitions
once, thus creating runs of the form (α, p) � (α, q), and the corresponding loops
(p, q). Let us have a general notation for this:

Definition 4 (Simple Here-Loops). Hτ
σ

def= { (p, q) | 〈σ, p, τ → ���, q〉 ∈ Δ } .

Thus the simple loops on a are Hτ
a. By Lemma 3 we have �τ(a) = (Hτ

a)∗. We now
deal with inner nodes. Let f ∈ Σ2, and u = f(u0 , u1 ); again, τ denotes the type
of the root of u. Clearly the elements of Hτ

f are loops on u, as above, but this time
A can move down as well. It cannot move up on the first move (that would mean
leaving the subtree), but it will obviously need to move up to rejoin the root if
it ever moves down. To clarify all that, let us reason on what the first move of a
simple looping run can be. It cannot be ↑ and all simple loops whose first move
is ��� are already computed in Hτ

f . Say the first move is ↙: then the run can do
whatever it wants in the left subtree u0 , after which it has to move back up to
the root to complete the loop. Again, we only consider simple loops, so no move
can be made past this point, as the root has been reached twice already. Thus
the general form of such a run is (ε, p), (0, p0 ), (β1, s1), . . . , (βn, sn), (0, q0 ), (ε, q),
with all βk � 0. But by definition, this means that (p0 , q0 ) is a loop on u0 , ie.
(p0 , q0 ) ∈ �

0(u0 ). Needless to say, the same applies (with 1 instead of 0 ) if the
first move is ↘. It follows that to determine whether (p, q) forms a simple loop
on u, we need only check three things: 1. A can move down (left or right) from
state p into a state p0 , 2. there is a loop (p0 , q0 ) on this subtree and 3. in state
q0 , A can move up from this subtree and into the state q. Formally:

�
τ(u) =

(
Hτ

f ∪
{

(p, q)
∣∣
∣
∣

∃θ ∈ S :
∃(pθ, qθ) ∈ �

θ(uθ) st. 〈f, p, τ → χ(θ), pθ〉 ∈ Δ
〈uθ(ε), qθ, θ → ↑, q〉 ∈ Δ

})∗
.

Theorem 5 (Loops). Let A be a TWA and t ∈ T (Σ). Then for all α ∈ Pos(t),
�

�α( t|α), as defined above, is the set of all loops of A on t|α.

Example: For the TWA X , �
0(a) = { (q�, qu) }∗ = { (q�, q�), (qu, qu), (q�, qu) },

and �
�(f(a, b)) = (∅ ∪ {(q�, qu)})∗ (no simple here-loop, and one loop built on

the left child). On the other hand, ��(f(b, a)) = ∅
∗, because �1(a) = �

0(b) = ∅
∗.
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Note that a reasonably efficient algorithm for testing membership is straightfor-
wardly derived from the above computation of loops:

Corollary 6 (TWA Membership). Let A be a TWA and t ∈ T (Σ). Then we
have t ∈ Lng (A) if and only if �

�(t) ∩ (I × F ) 	= ∅.

Corollary 7. The complexity of TWA membership is O
(
‖t‖ · (|Q|3 + |Δ|)

)
.

We now introduce a new notion related to tree loops: tree overloops.

Definition 8 (Over-Root, Extended Positions and Transitions). The extended
positions Pos(t) of a tree t ∈ T (Σ) are the set Pos(t) ∪ {ε}, where ε is called
the overroot. The parent function p(·) is extended over Pos(t) into the extended
parent function p(·), such that p(ε) = ε and ε � ε. The notion of configuration is
extended as well, so that the transitions of 〈Σ, Q, � → ↑, Q〉 become valid. Their
application yields configurations of the form (ε, q).

Definition 9 (Tree Over-Loops). Let A be a TWA and t a tree. A pair of states
(p, q) ∈ Q2 forms an overloop of A on t|α if there exists a run (α, p), (β1, s1), . . . ,
(βn, sn), (p(α) , q) such that for all k ∈ �1, n� , βk � α.

A way to compute overloops is to compute loops, then check for ↑-transitions:

Definition 10 (Up-Closure). Let L ⊆ Q2, τ ∈ T and σ ∈ Σ:
Uτ

σ[L] def=
{

(p, q) ∈ Q2 ∣∣ ∃p′ ∈ Q : (p, p′) ∈ L and 〈σ, p′, τ → ↑, q〉 ∈ Δ
}

.

Lemma 11 (Up-Closure). Let A be a TWA. If L is the set of all loops of A on
a subtree u = t|α, then U

�α
t(α)[L] is the set of all overloops of A on u.

Similarly to loops, we denote �↑τ(u) the set of all overloops of A on a subtree u,
where τ is the type of the root of u. By Lem. 11 we have �↑τ(u) = Uτ

u(ε)[�τ(u)],
and in the case of leaves this yields �↑τ(a) = Uτ

a[(Hτ
a)∗]. However, in the case

of inner nodes (say u = f(u0 , u1 )), in order to have an inductive computation
of overloops instead of one based on loops, we need to compute the overloops
of the father, knowing the overloops of the children. The simplest way is to
compute the loops of the father and take the up-closure. We only need to check
whether 1. the automaton can go down and left (resp. right) from p to a state
p0 and 2. there is a left (resp. right) overloop (p0 , q0 ): this forms a loop (p, q0 ).
Formally:

�↑τ(u) = Uτ
f

[(
Hτ

f ∪
{

(p, qθ)
∣
∣
∣
∣

∃θ ∈ S :
∃pθ ∈ Q

st. 〈f, p, τ → χ(θ), pθ〉 ∈ Δ
and (pθ, qθ) ∈ �↑θ(uθ)

})∗]
.

Theorem 12 (Overloops). Let A be a TWA and t ∈ T (Σ). Then for all α ∈
Pos(t), �↑ �α( t|α), as defined above, is the set of all overloops of A on t|α.

Example: For the TWA X , �↑0(a) = U0
a

[
�

0(a)
]

= {(qu, qu), (q�, qu)}. However
�

�(f(a, b)) is the empty set. Thus a small adjustment is needed to test member-
ship using overloops, as standard TWA – such as X – never admit any overloop
at the root of a tree, for lack of ↑-transitions.
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Definition 13 (Overfinal State & Escaped TWA). Let A = 〈Σ, Q, I, F, Δ〉 be
a TWA; it can be transformed into an escaped TWA

A′ =
〈

Σ, Q � {�} , I, F, Δ � 〈Σ, F, � → ↑,�〉
〉

,

where � /∈ Q is a fresh state, called overfinal state. [Clearly Lng (A) = Lng (A′).]

Example: Once X is escaped, we have �↑�(f(a, b)) = { (qu,�), (q�,�) }.

Corollary 14 (TWA Membership Redux). Let A be an escaped TWA and t ∈
T (Σ). Then t ∈ Lng (A) if and only if �↑�(t) ∩ (I × {�}) 	= ∅.

3 Transforming TWA into Equivalent BUTA

It is well-known that every TWA is equivalent to a BUTA; a more general version
of this result has been proven in [8] – using game-theoretic arguments – and the
main idea of a loop-based transformation from TWA into BUTA is outlined in
[3] and [12, p143]. In this section we present two versions of it: the classical, loop-
based one (Algo. 1[p169]) and an overloop-based variant (Algo. 2[p169]). We go on
to show that, in the case of deterministic TWA, the overloop-based construction
results in much smaller equivalent BUTA than the classical one.

3.1 Two Variants: Loops and Overloops

Lemma 15 (Loop-Based Algorithm). Let A be a TWA, B its equivalent BUTA
by Algorithm 1, t ∈ T (Σ) and a subtree u = t|α. Then for every type τ ∈ T,
there is one unique run ρ of B on u such that ρ(ε) = (u(ε), τ, L). Furthermore,
L is the set of all loops of A on u, provided that �α = τ .

Proof. Both claims are shown by structural induction on u. First claim: If u =
a ∈ Σ0, then by line A in Algorithm 1, ρ(ε) = P = (a, τ, L) = (u(ε), τ, L).
It is unique, as only one transition a → P is generated for each couple a, τ .
If u = f(u0 , u1 ), f ∈ Σ2, then by induction hypothesis there exists one run
ρ0 on u0 such that ρ0 (ε) = P0 = (u0 (ε), 0 , S0 ), and one run ρ1 on u1 such
that ρ1 (ε) = P1 = (u1 (ε), 1 , S1 ). Thus by line B in Algo. 1 we use the rule
f(P0 , P1 ) → P to build the run ρ such that ρ(ε) = P = (f, τ, L) = (u(ε), τ, L),
ρ|0 = ρ0 and ρ|1 = ρ1 . Since ρ0 and ρ1 are unique, so is ρ. Second claim: If
u = a ∈ Σ0, then ρ(ε) = (a, τ,Hτ

a
∗), and by Theorem 5 we have Hτ

a
∗ = �

τ(a). If
u = f(u0 , u1 ), then ρ(ε) = (f, τ, (Hτ

f ∪ S)∗) and by induction hypothesis Sθ =
�

θ(uθ) and σθ = uθ(ε), for all θ ∈ S. Thus by Theorem 5, (Hτ
f ∪S)∗ = �

τ(u).

Theorem 16. Algorithm 1 is correct; that is, Lng (A) = Lng (B).

Proof. If t ∈ Lng (A), then there is a loop (qi, qf) ∈ I × F of A on t. Therefore
there is a run ρ of B on t such that ρ(ε) = (t(ε), �, L), with (qi, qf) ∈ L. Thus
ρ(ε) is a final state and t ∈ Lng (B). Conversely, if t ∈ Lng (B) then there is
an accepting run ρ of B on t, that is to say such that ρ(ε) = (t(ε), �,��(t)) and
there exists (qi, qf) ∈ (I × F ) ∩ �

�(t). Thus by Cor. 6 we have t ∈ Lng (A).
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Two short but important remarks are in order. First: it might seem strange that
our states are in Σ × T × 2Q2 , and not more simply in T × 2Q2 , as suggested in
[12]. In [3] a similar construction – albeit deterministic, see the second remark –
is proposed, which does not include Σ either. However, it is not clear how loops
could be considered independently from the root symbol of the subtree that bears
them. Consider for instance a, b ∈ Σ0 with only the transitions 〈{ a, b } , p, τ →
���, q〉 and 〈b, q, τ → ↑, s′〉 ∈ Δ. Then the loops on a and b are exactly the same –
{(p, q)}∗ – and yet, from their father’s point of view, they behave very differently.
If A can go down from a state s to p, it can form a loop (s, s′) if the child is b,
but not if it is a. In contrast to the loop-based construction, the overloop-based
algorithm (Algo. 2) suppresses this problem completely.

Second: the observation made in Lemma 15 that the run of B is unique, given a
subtree and a type, makes it easy to adapt the algorithm to yield a deterministic
BUTA. Indeed, every tree in T (Σ) is non-deterministically evaluated by B into
exactly three possible states (one per type); the correct one is chosen according
to the context during the run. Recall that rules f(P0 , P1 ) → P are built such
that the “type” component of Pθ is θ, and final states bear the root type �. Hence,
it suffices to group those three possible states into one element of Σ × (2Q2 )|T|

to achieve determinism, which brings us back to the states suggested in [3].

Lemma 17 (Overloop-Based Algorithm). Let A be a TWA, B its equivalent
BUTA by Algorithm 2, t ∈ T (Σ) and a subtree u = t|α. Then for all τ ∈ T,
there is one unique run ρ of B on u such that ρ(ε) = (τ, O). Furthermore, O is
the set of all overloops of A on u, provided that �α = τ .

Theorem 18. Algorithm 2 is correct; that is, Lng (A) = Lng (B).

Note that this construction can be adapted to yield deterministic BUTA in
exactly the same way as for Algo. 1.

3.2 Overloops and the Deterministic Case

Definition 19 (Deterministic TWA). A TWA A = 〈Σ, Q, I, F, Δ〉 is determin-
istic (ie. a DTWA) if (a) for all σ ∈ Σ, p ∈ Q, τ ∈ T, |〈σ, p, τ → M, Q〉 ∩ Δ| � 1.

Definition 20 (Functional Relation). A relation R ⊆ Q2 is functional (or right-
unique, or a partial function) if, for all p, q, q′ ∈ Q, pRq and pRq′ =⇒ q = q′.

Remark 21. There are 2|Q|2 binary relations on Q, of which |Q + 1||Q| are
partial functions, of which |Q||Q| are total functions.

Remark 22. If a relation R is functional, then so is Rk, for any k ∈ N.

By construction, a BUTA built by Algo. 1 (loop-based) has at most |Σ|·|T| ·2|Q|2

states, while one built by Algo. 2 (overloop-based) has at most |T| · 2|Q|2 . We
will see in this section that, in the deterministic case, this upper bound is in fact
much lower for the overloop-based algorithm than for the traditional loop-based
one. More specifically, we will show that the following holds:

(a) In this paper we do not need the usual, stronger definition, where I is a singleton.
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Theorem 23 (Deterministic Upper-Bound). Let A be a deterministic TWA and
B its equivalent BUTA built by application of Algorithm 2. Then B has at most
|T| · 2|Q| log2(|Q|+1) states.

The idea is that every state which we build corresponds exactly to the set L
of all loops (resp. overloops) of the automaton A on a certain subtree u. Since
L ⊆ Q2, we can see it as a binary relation on the states. The intuition here is
that, if A is deterministic, and enters the root of u in one given state p, then
there “should be” only one possible outcome. More formally:

Lemma 24. If A is a deterministic TWA, then �A is functional.

Proof. In a given configuration (α, p), over a tree t, |〈t(α), p, �α → M, Q〉 ∩ Δ|
� 1. Therefore, (α, p) has at most one successor.

However, in the case of loops, this does not suffice to make L functional because,
determinism notwithstanding, a single (non-trivial) loop may reach the root
several times, and in different states, before exiting the subtree. Thus there is
nothing to prevent us from having both pLq and pLq′, for q 	= q′; we show next
that in that case, one of these loops is simply an extension of the other.

Lemma 25 (Hidden Loops). Let p, q, q′ ∈ Q, q 	= q′ such that (p, q) and (p, q′)
are loops of the TWA A on a given subtree t|α. Then if A is deterministic, either
(q, q′) or (q′, q) must be a loop of A on t|α.

Proof. By Definition 1, there exist two runs c0, . . . , cn and d0, . . . , dm such that
c0 = d0 = (α, p), cn = (α, q) and dm = (α, q′). If n = m then c0 �n cn and
c0 �n dn and by Lemma 24 and Remark 22, it follows that cn = dm. But this
contradicts q 	= q′, so we must have n 	= m. Say that n < m. Then cn = dn, and
(α, q) = dn, . . . , dm = (α, q′) forms a run. Therefore (q, q′) is a loop. Similarly, if
n > m, then by the same arguments (q′, q) is a loop.

Contrariwise, two overloops cannot be combined to form another overloop on
the same subtree, which satisfies the above intuition of a “single outcome”:

Lemma 26. Let p, q, q′ ∈ Q, such that (p, q) and (p, q′) are overloops of the
TWA A on a given subtree t|α. Then if A is deterministic, q = q′.

Proof. By Def. 9, there exist s, s′ ∈ Q such that (α, p), . . . , (α, s), (p(α) , q) and
(α, p), . . . , (α, s′), (p(α) , q′) are runs; thus (p, s) and (p, s′) are loops. If s 	= s′,
then by Lem. 25, say, (s, s′), is a loop. So there exist s1, . . . , sn ∈ Q, β1 � α
, . . . , βn � α such that (α, s), (β1, s1), . . . , (βn, sn), (α, s′) is a run. Thus we have
in particular (α, s) � (p(α) , q) and (α, s) � (β1, s1). It follows that p(α) = β1 �
α, which is contradictory. Hence s = s′. We have both (α, s) � (p(α) , q) and
(α, s) � (p(α) , q′). Since � is functional (Lem. 24), we have finally q = q′.

With this, we can conclude the proof of Theorem 23.
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Proof of Theorem 23. By construction, for every state P = (τ, L) generated for B
by Algorithm 2, there exists at least a subtree t such that L is the set of overloops
of A on t. Thus, by Lemma 26, L is functional. Therefore, by Remark 21, there are
at most |T| · |Q + 1||Q| states (or, equivalently, |T| · 2|Q| log2(|Q|+1)).

4 The Emptiness Problem and Experimental Results

Polynomial Over-Approximation for the Emptiness Problem. Testing
emptiness of a TWA A is an ExpTime-complete problem [3]. This is rather
unfortunate, as there are practical questions – such as satisfiability of some
XPath fragments – which reduce to the emptiness of the language of a TWA.
We present in this section a crude but fairly accurate and very expeditious
overloops-based algorithm capable of detecting emptiness in a number of cases.
Algorithm 3[p170] is a variant of Algorithm 2 with the following properties:

Lemma 27 (Overloops Over-Approximation). Let A be a TWA, then when the
execution of Algorithm 3 ends, for any τ ∈ T, Lτ ⊇

⋃
t∈T(Σ) �↑τ(t).

Theorem 28. Algorithm 3 is correct; that is, it yields Empty only if Lng (A) =
∅.

Corollary 29 (Complexity of the Approximation). The execution of Algorithm
3 is done in a time polynomial in the size of A – more precisely: O(|Σ| · |T|2 ·
|Q|4 · |Δ|).
Note that Algorithm 3 can easily be made just as coarse or as fine as the need
dictates. At the coarse end of that gamut we have a variant of Algorithm 3 which
forgoes type information, thus hoarding up all overloops in a single set L instead
of three, and at the fine end we find something equivalent to Algorithm 2.
Experimental Results. Approximation. The approximation has yielded
astonishingly good results with randomly generated TWA: out of the – roughly
– ten thousands of automata of various sizes (2 � |Q| � 20) on which it was
tested, 75% of which had empty languages, only two of them yielded Unknown
instead of Empty. Those results are – unfortunately – probably much better
than what can be expected in practice, as our generation scheme is, for now,
very simplistic. It is therefore likely that the generated instances are in some
sense trivial wrt. emptiness. Two approaches which we plan on taking to obtain
more meaningful results are a study similar to that of [9] to identify interesting
instances, and the use of statistically-exploitable generation schemes as in [10].
General Results. Comparing the output of Algos. 1 & 2, we noted that the
latter generates smaller automata – the cardinality of each state being ignored
– by a factor two or more, depending on the size of the input TWA. The same
caveat as above applies concerning the random TWA. Demonstration Soft-
ware. Readers interested in experimenting with this paper’s algorithms will
find online (b) a proof of concept (binaries and OCaml source code), as well as
instructions for use.

(b) On http://lifc.univ-fcomte.fr/~vhugot/TWA
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5 Conclusion

In this paper we have introduced tree overloops, and applied both loops and
overloops to common operations on TWA: deciding membership, transforming a
TWA into a BUTA, and inexpensively testing emptiness. We have shown that the
use of overloops simplifies transformation into BUTA, and substantially lowers
the upper bound in the deterministic case. We intend to pursue this further by
using overloops to characterise useful classes of TWA and perform significant
simplifications on the automata, hopefully leading to applications to XPath.

Acknowledgements. The authors would like to thank the members of the
INRIA ARC ACCESS for interesting discussions on this topic. Our thanks go
as well to the anonymous reviewer who provided a tighter complexity bound for
Cor. 7, and whose careful proofreading improved the readability of this paper.
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Abstract. We investigate the nondeterministic state complexity of sev-
eral operations on finite automata accepting star-free languages. It turns
out that in most cases exactly the same tight bounds as for general reg-
ular languages are reached. This nicely complements the results recently
obtained in [8] for the operation problem of star-free languages accepted
by deterministic finite automata.

1 Introduction

The operation problem on a language family is the question of cost (in terms of
states) of operations on languages from this family with respect to their represen-
tations. More than a decade ago the operation problem for regular languages rep-
resented by deterministic finite automata (DFAs) as studied in [32,33] renewed
the interest in descriptional complexity issues of finite automata in general. Al-
though the research area of finite automata dates back to the beginning of the
1950s, their (descriptional) complexity with respect to the operation problem
had attracted surprisingly less attention in the early days. This lack of interest
may be one reason for the prevailing view on regular languages during the late
seventies [32]:

Since the late seventies, many believed that everything of interest about
regular languages is known except for a few very hard problems, [. . . ] It
appeared that not much further work could be done on regular languages.

Nowadays descriptional complexity of finite automata and related structures
is a vivid area of research, for which the (recent) surveys on this area give
evidence [16,17,18,32].

It is well known that nondeterministic and deterministic finite automata are
computationally equivalent. More precisely, given some n-state NFA one can
always construct a language equivalent DFA with at most 2n states [27] and,
therefore, NFAs can offer exponential savings in space compared with DFAs. In
fact, later it was shown independently in [23,25,26] that this exponential up-
per bound is best possible, that is, for every n there is an n-state NFA which
cannot be simulated by any DFA with strictly less than 2n states. Recently,
in [2] it was shown that this exponential tight bound for the determinization
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of NFAs also holds when restricting the NFAs to accept only subregular lan-
guage families such as star languages [3], (two-sided) comet languages [5], or-
dered languages [30], star-free languages [24], power-separating languages [31],
prefix-closed languages, etc. On the other hand, there are also subregular lan-
guage families known, where this exponential bound is not met. Prominent ex-
amples are the family of unary regular languages, where an asymptotic bound
of eΘ(

√
n·lnn) states for determinization has been shown in [9,10], and the family

of finite languages with a tight bound of O(k
n

log2(k)+1 ), where k is the size of
the alphabet [28]. The significant different behavior with respect to the relative
succinctness of NFAs compared to DFAs is also reflected in the operation prob-
lem for these devices. The operation problem for NFAs was first investigated
in [15]. It turned out that in most cases when an operation is cheap for DFAs
it is costly for NFAs and vice versa. We give two examples: (i) the complemen-
tation operation applied to a language accepted by an n-state DFA results in a
DFA of exactly the same number of states, while complementing NFAs gives an
exponential tight bound of 2n states [19], and conversely (ii) for two languages
accepted by m- and n-state DFAs we have a tight bound of m ·2n−t ·2n−1 states
for concatenation [32,33], where t is the number of accepting states of the “left”
automaton, and m + n + 1 states when considering NFAs [15]. All these results
are for general regular languages. So, the question arises what happens to these
bounds if the operation problem is restricted to subregular language families.

In fact, for some subregular language families this question was recently stud-
ied in the literature [6,7,8,12,13,20,21,22] mostly for DFAs. To this end, the no-
tion of quotient complexity [4] which has been studied in a series of papers [6,7,8]
is a useful tool for exploring the deterministic state complexity. An example for
a subregular language family whose DFA operation problems meet the gen-
eral bounds for most operations is the family of star-free languages [8], while
prefix-, infix-, and suffix-closed languages [7], bifix-, factor-, and subword-free
languages [6] show a diverse behavior mostly not reaching the general bounds.
For a few language families, in particular prefix- and suffix-free regular languages,
also the operation problem for NFAs was considered [12,13,20,22], but for the
exhaustively studied family of star-free languages it is still open. The family of
star-free (or regular non-counting) languages is an important subfamily of the
regular languages, which can be obtained from the elementary languages {a},
for a ∈ Σ, and the empty set ∅ by applying the Boolean operations union, com-
plementation, and concatenation finitely often. They obey nice characterizations
in terms of aperiodic monoids and permutation-free DFAs [24]. Here we inves-
tigate their operation problem for NFAs with respect to the basic operations
union, intersection, complementation, concatenation, Kleene star, and reversal.
It turns out that in most cases exactly the same tight bounds as in the general
case are reached. This nicely complements the results recently obtained for the
operation problem of star-free languages accepted by DFAs [8]. We summarize
our results in Table 1, where we also list the results for DFAs accepting star-free
languages [8], for comparison reasons.
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Table 1. Deterministic and nondeterministic state complexities for the operation prob-
lem on star-free languages summarized. The results for DFAs are from [8].

Star-free language accepted by . . .
Operation DFA NFA

∪ mn m + n + 1
∩ mn mn
∼ 2n

· (m− 1)2n + 2n−1 m + n
∗ 2n−1 + 2n−2 n + 1
R 2n − 1 n + 1

2 Preliminaries

For n ≥ 0 we write Σ≤n for the set of all words whose lengths are at most n
and Σn for the set of all words of length n. The empty word is denoted by λ.
The reversal of a word w is denoted by wR, and for the length of w we write |w|.
Set inclusion is denoted by ⊆ and strict set inclusion by ⊂. We write 2S for the
power set and |S| for the cardinality of a set S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (S, Σ, δ, s0, F ),
where S is the finite set of states, Σ is the finite set of input symbols, s0 ∈ S is the
initial state, F ⊆ S is the set of accepting states, and δ : S×Σ → 2S is the tran-
sition function. As usual the transition function is extended to δ : S × Σ∗ → 2S

reflecting sequences of inputs: δ(s, λ) = {s} and δ(s, aw) =
⋃

s′∈δ(s,a) δ(s′, w), for
s ∈ S, a ∈ Σ, and w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(s0, w) ∩ F 	= ∅.
The language accepted by A is L(A) = {w ∈ Σ∗ | w is accepted by A}.

A finite automaton is deterministic (DFA) if and only if |δ(s, a)| = 1, for all
s ∈ S and a ∈ Σ. In this case we simply write δ(s, a) = s′ for δ(s, a) = {s′}
assuming that the transition function is a mapping δ : S × Σ → S. So, any
DFA is complete, that is, the transition function is total, whereas for NFAs it is
possible that δ maps to the empty set. A state s is reachable in A if there is an
input word w with s ∈ δ(s0, w). Without loss of generality we assume that any
state of a nondeterministic finite automaton is reachable. A finite automaton is
said to be minimal if there is no finite automaton of the same type with fewer
states, accepting the same language. Note that a sink state is counted for DFAs,
since they are always complete, whereas it is not counted for NFAs, since their
transition function may map to the empty set.

Next, we briefly recall the so-called (extended) fooling set technique (see, for
example, [1,11,16]) that is widely used for proving lower bounds on the number
of states necessary for an NFA to accept a given language.

Theorem 1 (Extended Fooling Set Technique). Let L ⊆ Σ∗ be a regular
language and suppose there exists a set of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such
that (1) xiyi ∈ L, for 1 ≤ i ≤ n, and (2) i 	= j implies xiyj 	∈ L or xjyi 	∈ L,
for 1 ≤ i, j ≤ n. Then any nondeterministic finite automaton accepting L has at
least n states. Here S is called an (extended) fooling set for L.
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Now we turn to the subregular language family of interest. A language L ⊆ Σ∗ is
star-free (or regular non-counting) if and only if it can be obtained from the ele-
mentary languages {a}, for a ∈ Σ, and the empty set ∅ by applying the Boolean
operations union, complementation, and concatenation finitely often. These lan-
guages are exhaustively studied in, for example, [24] and [29]. Since regular lan-
guages are closed under Boolean operations and concatenation, every star-free
language is regular. On the other hand, not every regular language is star free.
Here we sometimes utilize an alternative characterization of star-free languages
by so called permutation-free automata [24]: A regular language L ⊆ Σ∗ is star-
free if and only if the minimal DFA accepting L is permutation-free, that is, there
is no word w ∈ Σ∗ that induces a non-trivial permutation on any subset of the
set of states. Here a trivial permutation is simply the identity permutation. Note
that word uw induces a non-trivial permutation {s1, s2, . . . , sn} ⊆ S in a DFA
with state set S and transition function δ if and only if wu induces a non-trivial
permutation {δ(s1, u), δ(s2, u), . . . , δ(sn, u)} in the same automaton.

3 Results on the Operation Problem

We start our investigations with Boolean operations. For deterministic finite
automata it was recently shown that in the worst case the Boolean operations
union, intersection, and complementation have state complexity m · n, m · n,
and n not only for general regular languages, but also for star-free languages.
However, the state complexity of NFA operations for general regular languages
is essentially different [15]. Namely, union, intersection, and complementation
have nondeterministic state complexity m + n + 1, m · n, and 2n. It is worth
mentioning that the exponential bound of 2n states for complementation was
shown to be tight in [19]. Here we prove that this is also the case for star-free
languages. Note, that all the upper bounds are from [15]. Thus, we only have to
give star-free witness languages meeting these bounds. At first we consider the
union operation.

Theorem 2. For any integers m, n ≥ 2 let A be an m-state and B be an n-
state NFA that accept star-free languages. Then m + n + 1 states are sufficient
for an NFA to accept the language L(A) ∪ L(B). The bound is tight for binary
alphabets.

Proof. As already mentioned, the upper bound of m+n+1 states is that for ar-
bitrary regular languages shown in [15]. For the lower bound we argue as follows:
Consider the NFA A = (S, {a, b}, δ, s0, F ) with state set S = {0, 1, . . . , m − 1},
for m ≥ 2 . State 0 is the initial state s0, and state m− 1 is the only final state.
The transition function is given by (cf. Figure 1):

– δ(i, a) = {i + 1}, for 0 ≤ i < m − 1, and
– δ(m − 1, b) = {0}.

The language accepted by A is am−1(bam−1)∗. Observe, that the automaton A
is actually a partial DFA, where the sink state is missing. The corresponding
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0 1 m − 1. . .a a a

b

Fig. 1. The m-state NFA A, m ≥ 2, accepting a star-free language. The automaton B
has n states and letters a and b are interchanged.

complete DFA is minimal and does not obey a non-trivial permutation on the
state set. Therefore, the language L(A) is a star-free language. Similarly, we
define the automaton B by taking A with n states and interchanging the letters a
and b. Hence, we obtain the star-free language L(B) = bn−1(abn−1)∗.

It remains to be shown that m+n+1 states are needed by any NFA to accept
L(A) ∪ L(B). To this end, we construct the following set of pairs

S = { (am−1bai, am−1−ibam−1) | 0 ≤ i ≤ m − 1 }
∪ { (bn−1abi, bn−1−iabn−1) | 0 ≤ i ≤ n − 1 }.

First consider the pairs of the form (am−1bai, am−1−ibam−1) in S. Clearly, the
word am−1bai · am−1−jbam−1, for 0 ≤ i, j ≤ m − 1, is in the union of L(A)
and L(B) if and only if i = j. Thus, the pair (am−1bai, am−1−ibam−1) induces a
word that belongs to the union under consideration, but any word induced by
crossing different pairs of the above form results in two words not in L(A)∪L(B).
Symmetrically we can argue for the pairs of the form (bn−1abi, bn−1−iabn−1).
Finally, we have to compare pairs (am−1bai, am−1−ibam−1), for 0 ≤ i ≤ m − 1,
with pairs (bn−1abj , bn−1−jabn−1), for 0 ≤ j ≤ n− 1. In this case we obtain the
words am−1bai · bn−1−jabn−1 and bn−1abj · am−1−ibam−1, where the start and
end blocks of a’s and b’s of the words do not correspond. Thus, both words do not
belong to the union of L(A) and L(B). Hence, S is a fooling set for the language
L(A) ∪ L(B) of size m + n. To the upper bound one state is missing. We argue
that the initial state of the automaton that accepts the language L(A) ∪ L(B)
is not one of the states induced by S.

Assume to the contrary that the initial state of the automaton accepting the
language L(A)∪L(B) is one of the states induced by S. If the initial state is equal
to the state referenced by the pair (am−1bai, am−1−ibam−1), 0 ≤ i ≤ m − 1, then
the word am−1bai ·bn−1 is also accepted, because bn−1 is in L(A)∪L(B) and must
be accepted from the initial state. This contradicts the definition of L(A)∪L(B).
Symmetrically, we argue for the pairs (bn−1abi, bn−1−iabn−1), for 0 ≤ i ≤ n− 1.
In all cases we obtain a contradiction to our assumption. This shows that an
additional state is needed, which gives the m+n+1 lower bound for the language
L(A) ∪ L(B). �


Now we turn to the intersection of NFAs. Again, we make use of the upper
bound already proven.
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Theorem 3. For any integers m, n ≥ 2 let A be an m-state and B be an n-state
NFA that accept star-free languages. Then m ·n states are sufficient for an NFA
to accept the language L(A) ∩ L(B). This bound is tight for binary alphabets.

Proof. The upper bound of m · n states follows from the construction presented
in [15] for the intersection of general regular languages accepted by NFAs. In
order to show a matching lower bound we apply the DFA used in [8] to prove the
corresponding result for deterministic finite automata. Clearly, the DFA is also
an NFA. However, here we have to show that the resulting NFA is minimal. So,
let A = (S, {a, b}, δ, s0, F ) with state set S = {0, 1, . . . , m − 1}, m ≥ 2. State 0
is the initial state s0, and state m − 1 is the only final state. The transition
function is given by (cf. Figure 2):

– δ(i, a) = {i + 1}, for 0 ≤ i < m − 1, and
– δ(i, b) = {i}, for 0 ≤ i ≤ m − 1.

0 1 m − 1. . .

b

a

b

a a

b

Fig. 2. The m-state NFA A, m ≥ 2, accepting the star-free language b∗(ab∗)m−1. The
automaton B has n states and letters a and b are interchanged.

The language accepted by A is b∗(ab∗)m−1, which can easily be shown to be
star free. Similarly, we define the automaton B by taking the automaton defined
above but now with n states, and interchange the letters a and b. Hence we
obtain the language L(B) = a∗(ba∗)n−1, which is star-free, too.

It is not hard to verify that

L(A) ∩ L(B) = { u ∈ {a, b}∗ | |u|a = m − 1 and |u|b = n − 1 }.

It remains to be shown that this language needs at least mn states if accepted
by an NFA. To this end, consider the following set of pairs

S = { (aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 }.

For each pair (aibj , am−1−ibn−1−j) in S the word aibjam−1−ibn−1−j has m − 1
symbols a and n − 1 symbols b. So, it belongs to L(A) ∩ L(B). Next, consider
different pairs (aibj , am−1−ibn−1−j) and (ai′bj′ , am−1−i′bn−1−j′) from S with
i 	= i′ or j 	= j′. At least one of the words induced by crossed pairs is not in the
intersection of the languages accepted by A and B. Thus, the set S is a fooling
set for L(A) ∩ L(B) of size m · n, which proves the stated claim. �


Next we come to the complementation operation. Here the situation is a little
bit more involved to come up with an NFA accepting a star-free language that
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meets the tight exponential bound of 2n states [15,19]. The following easy ex-
ample already gives an exponential lower bound. Consider the languages Ln =
{a, b}∗a{a, b}nb{a, b}∗, for n ≥ 0, accepted by (n + 3)-state NFAs. Obviously,
these languages are star free. Moreover, from [15] it is known that any NFA that
accepts the complement of Ln needs at least 2n−2 states. Thus, we have proven
a tight bound in order of magnitude. The question arises, whether one can do
better. We answer the question in the affirmative by showing that the language
used in [19] (accepted by the NFA depicted in Figure 3) is in fact star-free.

0 1 2 n − 2 n − 1. . .

a, b
a, b a, b a, b

a, b

a a

a

a

a

a

a

a

Fig. 3. The n-state NFA A, n ≥ 3, used for the lower bound on the complementation
problem for star-free languages. Any NFA accepting the complement of L(A) needs at
least 2n states.

Before we can start with our investigation we need some additional notation
that gives some insights on permutation-free automata that are built by the
powerset construction from NFAs [14].

Lemma 4. Let A be an NFA with state set S over alphabet Σ, and assume
that A′ is the equivalent minimal DFA obtained by the powerset construction,
which is non-permutation-free. If the word w in Σ∗ induces a non-trivial permu-
tation on the state set {P1, P2, . . . , Pk} ⊆ 2S of A′ such that δ′(Pi, w) = Pi+1,
for 1 ≤ i < k, and δ′(Pk, w) = P1, then there are no two states Pi and Pj with
i 	= j such that Pi ⊆ Pj.

Now we are prepared for the next theorem.

Theorem 5. For any integer n ≥ 2 let A be an n-state NFA that accepts a star-
free language. Then 2n states are sufficient for an NFA to accept the complement
of the language L(A). The bound is tight for binary alphabets.

Proof. It suffices to prove that the NFA A = (S, Σ, δ, 0, F ), where Σ = {a, b},
S = {0, 1, . . . , n − 1}, F = {n − 1}, and

δ(i, x) =

⎧
⎪⎨

⎪⎩

{i + 1}, if i < n − 1 and x = b

{0, i + 1}, if i < n − 1 and x = a

{1, 2, . . . , n − 1}, if i = n − 1 and x = a
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that is depicted in Figure 3 accepts a star-free language. To this end, we consider
the equivalent minimal DFA A′ = (S′, Σ, δ′, {0}, F ′) obtained by the powerset
construction where S ′ ⊆ 2S.

The cardinality of the symmetric difference of two states R and T of A′ is
denoted by 〈R, T 〉 = |R \ T | + |T \ R|. The outline of the proof is as follows.
We assume contrarily that the language accepted by A′ is not star free. Then
there exists a word w ∈ {a, b}∗ that induces a non-trivial permutation on a
subset P = {P1, P2 . . . , Pk} of the states of A′ such that δ′(Pi, w) = Pi+1,
1 ≤ i < k, and δ′(Pk , w) = P1. Next we consider arbitrary pairs Pi 	= Pj and
distinguish whether the state n− 1 of A belongs to none of Pi and Pj , to both,
or to exactly one of them. In all cases we will derive either a contradiction or a
decrease of the cardinality of the symmetric difference. In particular, this shows
that the cardinality can never increase. By 〈Pi, Pj〉 = 〈δ′(Pi, w

k), δ′(Pj , w
k)〉 =

〈δ′(Pi, w
k·m), δ′(Pj , w

k·m)〉, for m ≥ 0, this implies a contradiction also in the
case of decreasing cardinality.

We first show that w must be at least two letters long in order to induce a
non-trivial permutation. If w would be equal to a, then at most n−1 applications
of δ′ to any Pi give a state P ′i which includes n−1. At most two more applications
of δ′ to P ′i give the set {0, 1, . . . , n − 1} which includes any state from P . This
contradicts Lemma 4. If w would be equal to b, then at most n− 1 applications
of δ′ to any Pi give the emptyset, which is a rejecting sink state that can never
be part of P .

Now we turn to distinguish the three cases for the occurrence of the state n−1.
Let Pi = {i1, i2, . . . , i�i} and Pj = {j1, j2, . . . , j�j} be two arbitrary but different
states from P , where i1 < i2 < · · · < i�i and j1 < j2 < · · · < j�j .

First we consider the case that the state n − 1 belongs to exactly one of Pi

or Pj . Without loss of generality we assume n− 1 ∈ Pi \ Pj . If, in this case, the
first letter of w is an a we have

δ′(Pi, a) =

{
{1, 2, . . . , n − 1} if Pi = {n − 1}
{0, 1, . . . , n − 1} otherwise.

So, a contradiction to Lemma 4 follows if either Pi 	= {n − 1} or the prefixes of
multiples of w start with a and include two a’s that are not separated by exactly
n − 2 letters b, because in both cases Pi is transformed into {0, 1, . . . , n − 1}
which, in turn, includes any state from P . Therefore, we conclude Pi = {n− 1}
which is transformed into {1, 2, . . . , n − 1}, and in order to avoid a contradic-
tion, Pj must include at least one state from {0, 1, . . . , n−2}. If 0 belongs to Pj ,
then δ′(Pi, abn−2) = {n− 1} and δ′(Pj , abn−2) = {n− 2, n− 1}, which is a con-
tradiction to Lemma 4. If 0 does not belong to Pj , we consider the evolutions
of Pi and Pj under input word abn−2. Then δ′({n − 1}, abn−2) = {n − 1} and
δ′({j1, . . . , j�j}, abn−2) = {n− 2} and δ′({n− 2}, abn−2) = {n− 2}. So, the evo-
lution runs into cycles, and there is no way to reach state Pj from Pi and vice
versa. Thus, they cannot be part of a non-trivial permutation.
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We conclude that in the present case the first letter of w is a b and have

δ′(Pi, b) =

{
∅, if Pi = {n − 1}
{i1 + 1, . . . , i�i−1 + 1} otherwise

as well as δ′(Pj , b) = {j1 +1, . . . , j�j +1}. Furthermore, Pi must be different from
{n−1} since otherwise it would be transformed into the emptyset. Together, this
implies 〈δ′(Pi, b), δ′(Pj , b)〉 = 〈Pi, Pj〉−1. Thus, the cardinality of the symmetric
difference is properly decreased. This concludes the case n − 1 ∈ Pi \ Pj .

For the next case, we assume that state n − 1 is not included in Pi and Pj ,
that is, n − 1 /∈ Pi ∪ Pj . If the first letter of w is an a, we obtain δ′(Pi, a) =
{0, i1+1, . . . , i�i +1} and δ′(Pj , a) = {0, j1+1, . . . , j�j +1}. If the first letter of w
is a b, we obtain δ′(Pi, b) = {i1+1, . . . , i�i +1} and δ′(Pj , b) = {j1+1, . . . , j�j +1}.
So, the single states belonging to Pi and Pj are “shifted” towards n−1. Since Pi

and Pj are different, whatever the input is, applications of δ′ evolve to a situation
where one or both of the new states include n−1. Thus, to the case n−1 ∈ Pi\Pj

covered before or to the following case n − 1 ∈ Pi ∩ Pj .
For the final case, we assume that state n−1 belongs to both Pi and Pj , that

is, n− 1 ∈ Pi ∩Pj . Clearly, now Pi as well as Pj must be different from {n− 1}.
Otherwise, one of both would be a subset of the other, which is a contradiction to
Lemma 4. If, in the present case, the first letter of w is an a, then Pi and Pj are
immediately transformed into {0, 1, 2, . . . , n−1} which causes again a contradic-
tion to Lemma 4. So, we know that the first letter of w is a b. After consuming
the letter b, that is, after one transition we have δ′(Pi, b) = {i1 +1, . . . , i�i−1 +1}
and δ′(Pj , b) = {j1 + 1, . . . , j�j−1 + 1}. If both new states δ′(Pi, b) and δ′(Pj , b)
contain n − 1, we repeat the argumentation of the present case. This means
that we will be concerned with another application of δ′ on input b, resulting
in δ′(Pi, bb) = {i1 + 2, . . . , i�i−2 + 2} and δ′(Pj , bb) = {j1 + 2, . . . , j�j−2 + 2}.
Since Pi and Pj are different and the single states belonging to it are shifted
towards n − 1 during an application of δ′ on input b, the argumentation can be
repeated until we end up with either both new states do not contain n − 1, or
n − 1 belongs to exactly one of them. The latter situation has completely been
covered by the case n − 1 ∈ Pi \ Pj before. The former situation brings us to
the case n − 1 /∈ Pi ∪ Pj which, in turn, may end up in the present case again.
However, in every possible step of this cycle between both cases, the single states
are shifted towards n − 1. Moreover, only a 0 may additionally be included. So,
since Pi and Pj are different, the cycle appears finitely often only. This concludes
the case n − 1 ∈ Pi ∩ Pj and, hence, the proof. �

In the remainder of this section we investigate the concatenation operation,
and its iteration, the Kleene star, as well as the reversal operation. In general,
these operations have deterministic state complexity m ·2n−2n−1, 2n−1 + 2n−2,
and 2n in the worst case, which is also met for star-free languages [8], except for
reversal, which is one state less. For NFAs all these operations are cheap, in the
sense that m+n, n+1, and n+1 states are sufficient and necessary in the worst
case. We show that for star-free languages exactly the same bounds apply. For
concatenation we find the following situation.
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Theorem 6. For any integers m, n ≥ 2 let A be an m-state and B be an n-state
NFA that accept star-free languages. Then m+n states are sufficient for an NFA
to accept the language L(A) · L(B). The bound is tight for binary alphabets.

Proof. Again, the upper bound is that for general regular languages [15]. For the
lower bound we use the NFAs A and B introduced in the proof of Theorem 2.
Recall that L(A) = am−1(bam−1)∗ and L(B) = bn−1(abn−1)∗. In order to show
that m + n states are necessary for any NFA to accept the language L(A) ·L(B)
we construct the set

S = { (ai, am−1−ibam−1bn−1) | 0 ≤ i ≤ m − 1 }
∪ { (am−1bn−1abj , bn−1−j) | 0 ≤ j ≤ n − 1 },

whose fooling set property is verified as follows: Consider pairs of the form
(ai, am−1−ibam−1bn−1). The word ai ·am−1−jbam−1bn−1, for 0 ≤ i, j ≤ m−1, is
in L(A) ·L(B) if and only if i = j. Thus, the pair (ai, am−1−ibam−1bn−1) induces
a word that belongs to the concatenation of the languages under consideration,
but the crossing of different pairs of this form gives two words that are not in
L(A) ·L(B). Similarly, we can argue for the pairs (am−1bn−1abj , bn−1−j), for 0 ≤
j ≤ n−1. Finally, we have to compare pairs of the form (ai, am−1−ibam−1bn−1),
for 0 ≤ i ≤ m − 1, with pairs (am−1bn−1abj , bn−1−j), for 0 ≤ j ≤ n − 1. Since
ai · bn−1−j belongs to L(A) · L(B) if and only if i = m − 1 and j = 0, for the
cases 0 ≤ i < m − 1 and 0 < j ≤ n − 1 at least one word induced by crossing
the corresponding pairs is not in the concatenation of the languages accepted
by the automata A and B. For the remaining case i = m − 1 and j = 0 we find
that the other induced word am−1bn−1abj · am−1−ibam−1bn−1 does not belong
to L(A) ·L(B). Therefore, S is a fooling set for the language L(A) ·L(B) of size
m + n. Hence, the stated claim follows. �


The star-free languages are not closed under Kleene star, which is seen by
the finite language a2. Since the minimal DFA accepting (a2)∗ reads as A =
({0, 1}, {a}, δ, 0, {0}) with δ(0, a) = 1 and δ(1, a) = 0 and contains a non-trivial
permutation on the state set {0, 1} by reading the word a, this language is not
star-free. Nevertheless, one can consider the corresponding operation problem
(leaving the family of star-free languages).

Theorem 7. For any integer n ≥ 2 let A be an n-state NFA that accepts a
star-free language. Then n + 1 states are sufficient for an NFA to accept the
Kleene star of the language of A. This bound is tight for binary alphabets.

Proof. The upper bound can be found in [15]. For the lower bound we again use
the automaton A introduced in the proof of Theorem 2. Recall, that L(A) =
an−1(ban−1)∗. We claim that

S = { (an−1bai, an−1−iban−1) | 0 ≤ i ≤ n − 1 } ∪ {(λ, λ)}

is a fooling set for L(A)∗. In fact, the word an−1bai ·an−1−jban−1, for 0 ≤ i, j ≤
n − 1, is in L(A)∗ if and only if i = j. Hence, the pair (an−1bai, an−1−iban−1)
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gives a word that belongs to L(A)∗, but for different pairs of this form none of
the induced words (by crossing) is a member of L(A)∗. Obviously, the remaining
pair (λ, λ) gives the empty word that is a member of L(A)∗ by definition. Finally,
for the words an−1bai · λ and λ · an−1−iban−1, for 0 ≤ i ≤ n − 1, at least one is
not in L(A)∗. Thus, the pairs (an−1bai, an−1−iban−1) from S with the pair (λ, λ)
obey the properties required for being a fooling set. Therefore, the claim follows
since S is of size n + 1. �

Our last result on the reversal operation already follows from the literature [19].
A slight modification of the automaton depicted in Figure 1 was used to show
a tight bound of n + 1 states for the reversal operation on languages accepted
by NFAs. The modification simply is to make all states accepting. Since this
does not effect the existence of non-trivial permutations on the state set of the
minimal DFA which accepts this language, we may conclude that it is star-free.
Thus, we obtain the following result.

Theorem 8. For any integer n ≥ 2 let A be an n-state NFA that accepts a
star-free language. Then n + 1 states are sufficient for an NFA to accept the
reversal of the language L(A). This bound is tight for binary alphabets. �
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Abstract. We explore the boundaries between decidability and unde-
cidability of the containment and equivalence problems for restricted
classes of nondeterministic generalized sequential machines (NGSMs),
nondeterministic finite transducers (NFTs), nondeterministic pushdown
transducers (NPDTs), and linear context-free grammars (LCFGs). We
believe that our results are the sharpest known to date concerning these
devices.

Keywords: generalized sequential machine, finite transducer, pushdown
transducer, linear context-free grammar, containment problem, equiva-
lence problem.

1 Introduction

It is known that it is undecidable to determine, given two NGSMs A1 and A2,
whether R(A1) ⊆ R(A2) (where (R(Ai) is the input/output relation defined by
Ai) [3]. In fact, the undecidability holds even when the NGSMs have unary out-
put (resp., input) alphabet, since the equivalence problem (is R(A1) = R(A2)?)
is undecidable even for this special case [6].

We strengthen the undecidability of containment and equivalence. In partic-
ular, we show that there is a fixed NGSM A with input alphabet Σ and unary
output alphabet Δ = {1} such that it is undecidable to determine, given a pos-
itive integer d, whether {(x, 1|x|−min{d,|x|}) | x in Σ∗} ⊆ R(A). Note that the
relation on the left is realized by the trivial deterministic generalized sequential
machine (DGSM) with states q0, . . . , qd, start state q0, and transitions: For all a
in Σ, δ(qi, a) = (qi+1, ε) for 0 ≤ i ≤ d− 1 and δ(qd, a) = (qd, 1). This DGSM has
a “tail” of length d and this length is the only “input” to the decision problem.
Obviously, if d can only come from a finite set of positive integers, the problem
would not be undecidable, since there will only be a finite number of instances.

The result above shows that it is undecidable to determine, given a DGSM A1

and an NGSM A2, whether R(A1) ⊆ R(A2). However, when A1 is an NGSM and
A2 is a DGSM, containment is decidable. In fact, we prove something stronger.

A nondeterministic finite transducer (NFT) is a generalization of an NGSM,
where the machine now has accepting states and can have ε-moves. DFT is

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 190–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the deterministic version. An NFT (DFT) augmented with a pushdown stack is
called an NPDT (DPDT).

An NFT A is output finite-valued if there is a k ≥ 1 such that for every x,
there are most k distinct strings y such that (x, y) is in R(A). Similarly, an NFT
A is input finite-valued if there is a k ≥ 1 such that for every y, there are at most
k distinct strings x such that (x, y) is in R(A). A is output/input finite-valued
if it can effectively be decomposed into output finite-valued NFT A1 and input
finite-valued NFT A2 such that R(A) = R(A1)∪R(A2). (Note that A1 or A2 may
be the trivial NFT realizing the empty relation.) As an example, the relation over
input/output alphabet {a, b, c}, R = {(xcy, x) | x, y in {a, b}+}∪ {(x, xcy) | x, y
in {a, b}+}, can be realized by an output/input finite-valued NFT (with k = 1,
i.e., single-valued).

Output finite-valued NFTs have been investigated before, where they were
simply called finite-valued NFTs. It is decidable to determine, given an NFT,
whether it is output finite-valued [8](resp., output k-valued for a given k [4]).
The containment and equivalence problems for output finite-valued NFTs are
decidable [2,9]. We show that the following problems are decidable:

1. Given an NFT A, is it input finite-valued (resp., input k-valued for a given
k)?

2. Given an NPDT A and an output/input finite-valued NFT B, is R(A) ⊆
R(B)?

3. Given a DPDT A and an output/input finite-valued NFT B, is R(A) =
R(B)?

4. Given a context-free language L and output/input finite-valued NFTs A and
B, is R(A) ⊆ R(B) on L? (i.e., is {y | (x, y) in R(A)} ⊆ {y | (x, y) in R(B)}
for all x in L?).

Next we look at restricted classes of linear context-free grammars (LCFGs). Let
$ be a special symbol. For any alphabet Σ not containing $, let Σ$ = Σ ∪ {$}.
Let G = 〈V, Σ$, S, P 〉 be an LCFG, where V and Σ$ are the sets of nonterminals
and terminals, respectively, S is the start nonterminal, and P is the set of rules.
We investigate “marked” LCFGs where the rules in P are of the form: A → xBy
or A → $ (called a $-rule), where A, B are nonterminals, and x, y are in Σ∗.
Thus in any derivation of a string in L(G), the final step is an application of a
$-rule. Hence, L(G) ⊆ Σ∗$Σ∗.

Note: Throughout the paper, unless otherwise specified, we will refer to
“marked” LCFG simply as LCFG.

If x is in Σ∗, let Rx
G = {y | y in Σ∗, x$y in L(G)}. Similarly, let Lx

G = {y | y in
Σ∗, y$x in L(G)}. G is right-bounded (resp., left-bounded) if there is a positive
integer k such that for every x in Σ∗, |Rx

G| ≤ k (resp., |Lx
G| ≤ k). G is right/left-

bounded bounded if it can effectively be decomposed into right-bounded LCFG
G1 and left-bounded LCFG G2 such that L(G) = L(G1)∪L(G2). (Note that G1

or G2 may be the trivial LCFG generating the empty language.) As an example,
the language over Σ$ = {a, b, c, $}, L = {xcy$xr | x, y in {a, b}+}∪{xr$xcy | x, y
in {a, b}+}, can be generated by a right/left-bounded LCFG G (with k = 1).
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We show that there exists a fixed LCFG G over some alphabet Σ$ containing
symbol 1 such that it is undecidable to determine, given a positive integer d,
whether {x$1|x|−min{d,|x|} | x in Σ∗} ⊆ L(G). Note that the language on the
left is generated by a 1-right-bounded LCFG with nonterminals S0, . . . , Sd, start
nonterminal S0, and the following rules: For all a in Σ, Si → aSi+1 | $ for
0 ≤ i ≤ d − 1, Sd → aSd1 | $.

We also prove that the following problems are decidable:

1. Given an LCFG G, is it right-bounded (resp., left-bounded)?
2. Given an LCFG G is it k-right-bounded (resp., k-left-bounded) for a given

k?
3. Given a nondeterministic pushdown automaton M and a right/left-bounded

LCFG G, is L(M) ⊆ L(G)?
4. Given right/left-bounded LCFGs G1 and G2, is L(G1) ⊆ L(G2)?

In fact, (4) can be made stronger: It is decidable to determine, given a CFL L
and right/left-bounded LCFGs G1 and G2, whether for all x in L and y in Σ∗,
x$y in L(G1) implies x$y in L(G2).

In contrast to (3), we show that there is a fixed 1-turn deterministic pushdown
automaton M (i.e., once it pops it can longer push) such that it is undecidable
to determine, given a 1-right-bounded LCFG G, whether L(G) ⊆ L(M).

Suppose, we no longer have the special marker symbol $, and we now require
that terminal rules are of form A → ε. Clearly, any LCFG can be converted to
one which has only rules of the form A → xBy or A → ε. Although, (1) and (2)
remain valid for this class of LCFGs, it is open whether (3) and (4) also hold.

Note: Because of space limitation, some proofs are omitted in this version of
the paper.

2 Undecidability of Containment and Equivalence

A nondeterministic generalized sequential machine (NGSM) A is a 5-tuple 〈Q, Σ,
Δ, δ, q0〉, where Q is the state set, Σ is the input alphabet, Δ is the output
alphabet, q0 is the start state, and δ is a (transition) function from Q×Σ into the
finite subsets of Q×Δ∗. A move (p, y) in δ(q, a) means that A in state q on input
symbol a outputs y and enters state p. A defines a relation R(A) = {(x, y) | A
when started in its start state on input x outputs y and enters some state after
scanning all the symbols in x}. A is a DGSM (i.e., deterministic) if |δ(q, a)| ≤ 1
for all q and a. A has unary output if Δ = {1}.

If Σ is an alphabet and d is a positive integer, define the relation Rd
Σ =

{(x, 1|x|−min{d,|x|}) | x in Σ∗}.

Theorem 1. There is a fixed NGSM A with input alphabet Σ and unary output
alphabet Δ = {1} such that it is undecidable to determine, given a positive integer
d, whether Rd

Σ ⊆ R(A).
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Proof. (Idea) Let U a single-tape deterministic Turing machine (DTM) with a
unary input alphabet that accepts a recursively enumerable set L ⊆ a∗ that is
not recursive. Hence, it is undecidable to determine, given a unary string ad on
its tape, whether U will halt on ad. Without loss of generality, we make the
following assumptions about U (for technical reasons):

1. The undecidability of halting holds even if we assume that d is a positive
odd integer.

2. If U halts on ad, it halts after at least one move.
3. U can only expand on the right and that when it scans a blank, it must

rewrite it by a non-blank symbol. Thus the lengths of the configurations U
goes through in the computation are non-decreasing.

Let Q and Γ be the state set and worktape alphabet of U and q0 be its start
state. Note that a is in Γ . We assume that Q ∩ Γ = ∅. Let Σ = Q ∪ Γ ∪ {#}
(where # is a new symbol).

We construct an NGSM A such that for a given odd d ≥ 1, Rd
Σ ⊆ R(A) if and

only if U does not halt on ad. Given input w, A nondeterministically selects (I)
or (II) below to process:

(I) (Case: d ≥ |w|.) Here, A scans the input w outputting ε for every symbol
it sees until it falls off the end of the string. Thus, when d ≥ |w|, A outputs
ε on input w.

(II) (Case: |w| > d.) On an input w with |w| > d, A operates in such a way that
it outputs 1|w|−d if and only if w is not of the form:

ID1#ad#ID2#ad#...#ad#IDk#

for some k ≥ 3, ID1 = ID2 = q0a
d (the initial configuration of U), IDk

is a halting configuration, and (ID2, ID3, ..., IDk) is a halting sequence of
configurations of U on input ad i.e., configuration IDi+1 is a valid successor
of IDi. To do this, A nondeterministically selects one of subcases (a) -
(d) below to verify. Because of space limitation, we do not include the
description of how each subcase is accomplished by A.

(a) (Subcase: w does not have the correct format, i.e, it is not the form:
ID1#ad1#ID2#ad2#...#adk−1#IDk#

for some k ≥ 3 and configurations ID1, ..., IDk, where ID1 = q0a
r and

ID2 = q0a
s.)

(b) (Subcase: di 
= d for some 1 ≤ i ≤ k−1.) There are two situations, which
A chooses nondeterministically to verify: di > d or di < d.

(c) (Subcase: ID1 
= q0a
d or ID2 
= q0a

d.) We assume from Subcase (a) that
ID1 = q0a

r and ID2 = q0a
s. Then, as in Subcase (b), A can check if

r 
= d or s 
= d.
(d) (Subcase: w has the correct format, i.e.,

w = ID1#ad#ID2#ad#...#ad#IDk, where k ≥ 3,
ID1 = ID2 = q0a

d.)
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That is, on input w, A must output 1|w|−d if w is not a halting sequence
of configurations of U . This is where we need the fact that ID1 = ID2 =
q0a

d in the string w. This makes the construction for this subcase a bit
easier.

It can be verified that Rd
Σ ⊆ R(A) if and only if U does not halt on ad. ��

There is an equivalent formulation of Theorem 1. If A is a unary-output NGSM
with input alphabet Σ and start state q0, and d is a positive integer, let Ad

be a unary-output NGSM obtained from A by adding the following transitions
to A, where s0, . . . , sd are new states and s0 is the start state: For all a in Σ,
δ(s0, a) = {(q0, 1d+1), (s1, 1)} and δ(si, a) = {(si+1, 1)} for 1 ≤ i ≤ d−1. Clearly,
R(Ad) = {(x, 1dy) | (x, y) in R(A)} ∪ {(w, 1|w|) | w in Σ∗, |w| ≤ d}.

Define UΣ = {(w, 1|w|) | w in Σ∗. Note that this relation is realized by the
trivial 1-state DGSM with transition δ(q0, a) = (q0, 1) for all a in Σ.

Theorem 2. There is a fixed unary-output NGSM A such that it is undecidable
to determine, given a positive integer d, whether UΣ ⊆ R(Ad).

From Theorems 1 and 2, it follows that it is undecidable to determine, given
a unary-output DGSM A1 and a unary-output NGSM A2, whether R(A1) ⊆
R(A2). However, the problem is decidable when A1 is an NGSM and A2 is a
DGSM. In fact, we will prove stronger results in Section 3.

Let Σ be an alphabet containing (among other symbols) a, b, s, #. For a pos-
itive integer d, let Ld = {b#a1b#a2b# · · ·#ad−1b#ads#}Σ∗. Clearly, Ld is reg-
ular. Hence, Ld (the complement of Ld) is also regular and can be accepted by
a simple DFA Md.

Now define an NGSMA to be an NGSM with accepting states. If A is an
NGSM over input alphabet Σ (hence it contains symbols a, b, s, #) and unary
output alphabet Δ = {1}, let Ad be an NGSMA obtained from A where the
inputs are constrained to come from Ld. Clearly, Ad can be easily constructed
from A using the DFA Md.

Notation: For an alphabet Σ, let SΣ = {(x, 1n) | n ≥ 1, for some x1, x2, x3 in
Σ∗, x = x1x2x3 
= ε and n = |x1| + 2|x2| + 3|x3|}. Clearly, SΣ can be realized
by a 1-state NGSMA with transition δ(q0, a) = {(q0, 1k) | k = 1, 2, 3}, and q0 is
accepting.

Theorem 3. There is a fixed NGSM A over input alphabet Σ containing sym-
bols a, b, s, # (and other symbols) and unary output alphabet Δ = {1}, such that
it is undecidable to determine, given a positive integer d, whether R(Ad) = SΣ .

3 Output Finite-Valued NFTs

A nondeterministic finite transducer (NFT) is a generalization of an NGSMA
in that ε-moves on the input are allowed, i.e., the transition function δ is now
from Q × (Σ ∪ {ε}) into the finite subsets of Q × Δ∗. Note that the machine
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has accepting states, and the relation realized by A is now R(A) = {(x, y) | A
when started in the start state on input x outputs y and enters some accepting
state after scanning all the symbols of x}. A is a deterministic finite transducer
(DFT) if |δ(q, a)| ≤ 1 for all q in Q and a in Σ ∪ {ε}; moreover, if δ(a, ε) 
= ∅,
then δ(q, a) = ∅ for all a in Σ. Note that any NFT (DFT) can be normalized in
that at each step, the output is in Δ∪{ε} (the input at each step is in Σ ∪{ε}.)

An NFT (DFT) augmented with a pushdown stack is called an NPDT (DPDT).
An NFT (NPDT) A is output k-valued if for each x, there are at most k distinct
strings y such that (x, y) is in R(A). It is output finite-valued if it is output k-valued
for some k. When k = 1 we use the term output single-valued. Note that every DFT
(DPDT) is output single-valued, but the converse is not true in general.

We will also be using the following notations: DFA – deterministic finite au-
tomaton, NFA – nondeterministic finite automaton, DPDA – deterministic push-
down automaton, NPDA – nondeterministic pushdown automaton.

It is important to note that the machines above are allowed to make ε-moves.
However, for the deterministic versions, we require that if for a given state q
(and topmost stack symbol in the case when there is a stack), there is a move
on ε, then there is no move for all input symbols.

We will need a result concerning NPDAs augmented with 1-reversal counters.
A nondeterministic multicounter machine (NCM) M is an NFA augmented with
multiple counters which are initially set to zero. At each step, every counter can
be incremented by 1, decremented by 1, or left unchanged, and can be tested
for zero. A zero counter cannot be decremented. M is 1-reversal if it has the
property that once a counter is decremented, it can no longer be incremented. A
1-reversal NCM augmented with a pushdown stack is called a 1-reversal NPCM.
The deterministic versions are called 1-reversal DCM and 1-reversal DPCM,
respectively. The following result is known [5]:

Theorem 4. The emptiness problem (given A, is L(A) = ∅?) for 1-reversal
NPCMs (NCMs) is decidable.

To illustrate the basic ideas, we first consider the output single-valued (i.e., 1-
valued) case. Define domain(R) = {x | (x, y) is in R for some y}.

Theorem 5

1. It is decidable to determine, given an NPDT A1 and an output single-valued
NFT A2, whether R(A1) ⊆ R(A2).

2. It is decidable to determine, given an NFT A1 and a DPDT A2, whether
R(A1) ⊆ R(A2).

3. It is decidable to determine, given a DPDT A1 and an output single-valued
NFT A2, whether R(A1) = R(A2).

Proof. Let M1 be an NPDA such that L(M1) = domain(R(A1)) and M2 be a
DFA such that L(M2) = domain(R(A2)). Then we can effectively construct M1

and M2 and check if L(M1) ⊆ L(M2), which is is decidable. If L(M1) � L(M2),
then R(A1) � R(A2). Otherwise, we proceed as follows.
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Clearly, R(A1) � R(A2) if and only if for some x, there are distinct y and z
such that (x, y) is in R(A1) and (x, z) is in R(A2). We construct an NCM M to
check this condition.

M has two 1-reversal counters. Given input x, M simulates the computation of
A1 but suppresses and does not record the outputs of A1. In parallel, M also simu-
lates the computation of A2 and also suppresses and does not record the outputs of
A2. Thus M simulates the computation of A1 which yields (x, y) for some y (may
not be unique) and the computation of A2 which yields (x, z) for some unique z
(since A2 is single-valued). If A1 and A2 enter accepting states after processing x,
M accepts provided a certain condition is met, which we now describe.

During the simulation of A1 and A2, M guesses a discrepancy in y and z. M
uses counter c1 to record a nondeterministically chosen location r in string y1

and remembers in the state the symbol, say a, in that location. Similarly, M
uses counter c2 to record a nondeterministically chosen location s in string y2

and remembers in the state that symbol, say b, in that location, making sure
that a 
= b. When A1 and A2 accept (x, y1) and (x, y2) respectively, M checks
that r = s by decrementing the counters c1 and c2 simultaneously verifying that
they become zero at the same time. If so, N accepts; otherwise M rejects.

It follows that R(A1) � R(M2) if and only if L(M) 
= ∅. Note that M makes
ε-moves when it is checking that r = s. The result follows, since the emptiness
problem for 1-reversal NPCMs is decidable (Theorem 4).

The proof of Part 2 is similar to that of Part 1, noting that it is decidable to
determine, given an NFA M1 and DPDA M2, whether L(M1) ⊆ L(M2). Part 3
follows from parts (1) and (2). ��

Part 3 in Theorem 5 is not true when A1 is an NPDT. To see this, suppose M1

is a nondeterministic counter machine acceptor which makes 1-reversal on its
counter (i.e., once the counter decrements it can no longer increment; hence, M1

is a simple NPDA), and Σ is its input alphabet. Let M2 be a DFA accepting Σ∗.
Clearly, we can construct from M1 and M2, NPDT A1 and DFT A2 such that
R(A1) = L(M1) × {ε} and R(A2) = L(M2) × {ε}. Then R(A1) = R(A2) if and
only if L(M1) = L(M2) = Σ∗. However, the universe problem for nondeterminis-
tic 1-reversal counter machines is undecidable. On the other hand, if we restrict
the problem to only NPDT A1 satisfying the property that domain(A1) = Σ∗,
then we can show that Part 3 holds.

Similarly, Part 2 is not true when A1 is also a DPDT. To see this, let M1 and
M2 be two DPDAs. We can construct from M1 and M2 DPDTs A1 and A2 such
that R(A1) = L(M1) × {ε} and R(A2) = L(M2) × {ε}. Then R(A1) ⊆ R(A2)
if and only if L(M1) ⊆ L(M2), which is undecidable, since the containment
problem for DPDAs is undecidable.

We will need the following result in [9]:

Theorem 6. There is an algorithm which, when given an NFT A, decides if A is
output finite-valued and if so, constructs n output single-valued NFTs A1, . . . , An

(for some n) such that R(A) = R(A1) ∪ . . . ∪ R(An).

We now generalize Parts 1 and 3 of Theorem 5.
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Theorem 7

1. It is decidable to determine, given an NPDT A1 and an output finite-valued
NFT A2, whether R(A1) ⊆ R(A2).

2. It is decidable to determine, given a DPDT A1 and an output finite-valued
NFT A2, whether R(A1) = R(A2).

Proof. Clearly (2) follows from (1) and Part 2 of Theorem 5. We now prove
(1). From Theorem 6, we can construct n output single-valued NFTs A1

2, . . . , A
n
2

(for some n) such that R(A2) = R(A1
2) ∪ . . . ∪ R(An

2 ). We can also construct a
DFA M2 such that L(M2) = domain(R(A2)), and DFA M i

2 such that L(M i
2) =

domain(R(Ai
2)) for 1 ≤ i ≤ n.

Claim: R(A1) � R(A2) if and only if there exists an x such that the following
two conditions are satisfied:

(a) For some y, (x, y) is in R(A1).
(b) x is not in domain(R(A2)), or

x is in domain(R(A2)), and for 1 ≤ i ≤ n, if x is in domain(R(Ai
2)) (note

that there would be at least one such i), then there is a zi such that (x, zi)
is in R(Ai

2) and y 
= zi.

To prove the Claim, suppose there is an x such that for some y, (x, y) is in
R(A1). We consider two cases:

Case 1: x is not in domain(R(A2)). Then (x, y) is not in R(A2).
Case 2: x is in domain(R(A2)), and for 1 ≤ i ≤ n, if x is in domain(R(Ai

2)),
then there is a zi such that (x, zi) is in R(Ai

2) and y 
= zi. Since R(Ai
2) is output

single-valued, (x, y) cannot be in R(Ai
2). Hence, (x, y) is not in R(A2).

Hence, in both cases, R(A1) � R(A2).
Conversely, suppose R(A1) � R(A2). Then there is some (x, y) in R(A1)

that is not in R(A2). Then either x is not in domain(R(A2)), or if x is in
domain(R(A2)), for 1 ≤ i ≤ n, if x is in domain(R(Ai

2)), then there is a zi such
that (x, zi) is in R(Ai

2) and y 
= zi, since (x, y) is not in R(A2).
Finally, we construct from NPDT A1 and the output single-valued NFTs

A1
2, . . . , A

n
2 and DFAs M2, M1

2 , . . . , Mn
2 a 1-reversal NPCM M with 2n 1-reversal

counters. Given an input x, M accepts x if conditions (a) and (b) of the Claim
above are satisfied. Hence L(M) 
= ∅ if and only if R(A1) � R(A2).

The construction of M generalizes the idea in the proof of Theorem 5. Since
x may be in the domain of all the Ai

2’s (i.e., accepted by all the DFAs M i
2’s),

and M needs to check that y is different from all the zi’s, M may need to use 2n
1-reversal counters. Note that the DFA M i

2 is used to determine if there exists
a zi such that (x, zi) is in R(Ai

2). We omit the details. ��

4 Right-Bounded LCFGs

Throughout the paper, by LCFG, we mean “marked” LCFG. Recall that for
any alphabet Σ not containing the special symbol $, Σ$ denotes the alphabet
Σ ∪ {$}. are over the alphabet Σ$. We begin with the following result.
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Theorem 8. It is decidable to determine, given an LCFG G, whether G is
right-bounded (resp., k-right-bounded for a given k).

Proof. Given an LCFG G, we can effectively construct an NFT A such that
R(A) = {(x$, y) | x$yr is in L(G)}. A, when given input x$ simulates a derivation
S ⇒∗ xByr ⇒ x$yr (where the last step is an application of a $-rule, B → $) as
follows: A keeps track of the current nonterminal in the derivation, starting with
S. When in the derivation a rule of the form C → uDv is applied, A reads u and
outputs vr, and remembers D. When a rule B → $ is finally applied, A reads $
on the input, outputs ε, and enters an accepting state. Clearly, A is finite-valued
(resp., k-valued) if and only if G is right-bounded (resp., k-right-bounded). The
result follows, since it is decidable to determine, given an arbitrary NFT, whether
it is finite-valued [8] (resp. k-valued [4]). ��

The following result follows from Theorems 1 and 2 and the construction in the
proof of Theorem 8.

Theorem 9. There exists a fixed LCFG G over some terminal alphabet Σ$

containing 1 whose rules are of the form: A → aB1k or A → $ where a is in
Σ, k ≥ 0, and A, B are nonterminals, such that it is undecidable to determine,
given a positive integer d:

1. Whether {x$1|x|−min{d,|x|} | x in Σ∗} ⊆ L(G).
( Note that the language on the left is generated by a simple 1-right-bounded
LCFG with nonterminals S0, . . . , Sd, start nonterminal S0, and the following
rules: For all a in Σ, Si → aSi+1 | $ for 0 ≤ i ≤ d−1 and Sd → aSd1 | $ .)

2. Whether {x$1|x| | x is in Σ∗} ⊆ L(Gd), where Gd is an LCFG obtained from
G with start nonterminal S by adding the following rules where A0, . . . , Ad

are new nonterminals with A0 the new start nonterminal: For all a in Σ,
A0 → aS1d+1 | aA11, and Ai → aAi+11 for 1 ≤ i ≤ d − 1.
(Note that language on the left is generated by the trivial 1-right-bounded
LCFG with one nonterminal S with the following rules: S → aS1, S → $.

The result above is not true when G is right-bounded, since we can prove the
following theorem. The proof (which is rather involved) is a modification of our
constructions for NFTs in the previous section, using the fact that if G is an
LCFG, we can effectively construct an NFT A such that R(A) = {(x$, y) | x$yr

is in L(G)} (see the proof of Theorem 8).

Theorem 10. It is decidable to determine, given an NPDA M and a right-
bounded LCFG G, whether L(M) ⊆ L(G).

As in the proof of Theorem 1, let U be a single-tape DTM with a unary input
alphabet that accepts a recursively enumerable set L ⊆ a∗ that is not recursive.
Without loss of generality, assume that if U halts on ad, it halts after at least
four moves. Let Q and Γ be the state set and worktape alphabet of U and q0 be
its start state. Note that a is in Γ . Assume that Q∩Γ = ∅. Let Σ = Q∪Γ ∪{#}
(where # is a new symbol).
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Let L1 be the language consisting of strings of the form:

ID1#ID3#...#IDk−1$IDr
k#IDr

k−2#...#IDr
4#IDr

2

for some even k ≥ 4, ID1 = q0a
e (where e is a positive integer and q0 the initial

state of U), ID2, ..., IDk are configurations of U , IDk is a halting configuration,
and for odd i, IDi+1 is the successor of IDi. (Note that r denotes reverse.)

Thus, L1 is the set of halting computations of U on unary inputs ae, where e
is any positive odd integer, of a special form [1]. Similarly, let L2 be the language
consisting of strings of the above form, but for even i, IDi+1 is the successor
of IDi.

For a given odd integer d, denote by Ld
1 the language L1, where e in ID1 is

set to d (i.e., q0a
e becomes q0a

d). Note that L1, Ld
1, and L2 can be be generated

by LCFGs G1, Gd
1, G2 (and they can be also be accepted by 1-turn DPDAs). In

fact, G1 and Gd
1 can be constructed to be 1-right-bounded.

Let L3 = L2 (complement of L2). Since L2 can be accepted by a 1-turn DPDA,
L3 can also be accepted by a 1-turn DPDA, M3.

Theorem 11. There is a fixed 1-turn DPDA M3 such that it is undecidable to
determine, given a positive odd integer d, whether L(Gd

1) ⊆ L(M).

Proof. Clearly, for a given positive integer d, L(Gd
1) ⊆ L(M3) if and only if

L(Gd
1) ∩ L(G2) = ∅, which is undecidable, since otherwise, we can decide if the

single-tape DTM U halts on input ad. ��

Note that not only is the 1-turn DPDA M fixed, but the 1-right-bounded LCFG
Gd

1 has also a fixed “template”, and the only parameter is d.

From the above theorem we see that it is undecidable to determine, given a
1-right-bounded LCFG G and a 1-turn DPDA M , whether L(G) ⊆ L(M). On
the other hand, from Theorem 10, it is decidable to determine, given a 1-turn
DPDA M and a 1-right-bounded LCFG G, whether L(M) ⊆ L(G).

Open Question: Is it decidable to determine, given a 1-right-bounded LCFG
G and a 1-turn DPDA M , whether L(G) = L(M)?

However, we have:

Theorem 12. It is decidable to determine, given an NPDA M1 and a 1-reversal
DCM (i.e., a DFA with a finite number of 1-reversal counters) M2, whether
L(M1) ⊆ L(M2).

Proof. Construct from M2 a 1-reversal DCM M3 such that L(M3) = L(M2).
This is possible, since 1-reversal DCM languages are effectively closed under
complementation [5]. We then construct, from M1 and M3, a 1-reversal NPCM
M (i.e., an NPDA with a finite number of 1-reversal counters) M2, which when
given an input string x simulates M1 and M3 (in parallel) and accepts if M1 and
M3 accept. Then L(M1) � L(M2) if and only if L(M) 
= ∅, which is decidable,
since the emptiness problem for 1-reversal NPCMs is decidable [5]. ��
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Corollary 1. The containment and equivalence of right-bounded LCFGs are de-
cidable.

Proof. It is sufficient to show that containment is decidable. Given right-bounded
LCFGs G1 and G2, we construct a (1-turn) NPDA M1 accepting L(G1). Then
by Theorem 10, we can check if L(M1) ⊆ L(G2). ��

The above corollary can be made stronger. Let L be a CFL and G1 and G2 be
LCFGs. We say that L(G1) ⊆ L(G2) on L if for all x in L, if x$y is in L(G1),
then x$y is also in L(G2). L(G1) = L(G2) on L if L(G1) ⊆ L(G2) on L and
L(G2) ⊆ L(G1) on L.

Corollary 2. It is decidable to determine, given a CFL L and right-bounded
LCFGs G1 and G2, whether L(G1) ⊆ L(G2) on L (resp., L(G1) = L(G2) on L).

5 Output/Input Finite-Valued NFTs

Let A be an NFT with start state q0, which can be decomposed into two (state-)
disjoint NFTs A1 and A2 with start states q01 and q02, respectively. There are
only two transitions from q0: transitions on ε with output ε to q01 and q02. Thus
R(A) = R(A1)∪R(A2). (Note that A1 or A2 may be the trivial NFT defining the
empty relation.) If A1 is output finite-valued (resp., output k-valued) and A2 is
input finite-valued (resp., input k-valued), then was say that A is output/input
finite-valued (resp., output/inputt k-valued). First we note:

Theorem 13. It is decidable to determine, given an NFT A, if it is input finite-
valued (resp., input k-valued for a given k).

Proof. If A is an NFT, then the set of tuples {(y, x) | (x, y) is in R(A)} can
effectively be realized by an NFT A′, and A′ is output finite-valued (resp., output
k-valued for a given k) if and only if A is input finite-valued (resp., input k-
valued). The former is decidable [8] (resp., [4]). ��

We can prove:

Theorem 14. It is decidable to determine, given an NPDT A and an out-
put/input finite-valued NFT B, whether R(A) ⊆ R(B).

Corollary 3. The following problems are decidable:

1. Given a DPDT A1 and an output/input finite-valued NFT A2, is R(A1) =
R(A2)?

2. Given a context-free language (CFL) L and output/input finite-valued NFTs
A1 and A2, is R(A1) ⊆ R(A2) on L? (resp., is R(A1) = R(A2) on L?)

Proof. Part 1 follows from Theorem 14 and Part 2 of Theorem 5.
For Part 2, let ML be an NPDA accepting L. Clearly, we can construct from

M and NFT A1 an NPDT AL such that R(AL) = {(x, y) | (x, y) in R(A1) and
x in L}. Then R(A1) ⊆ R(A2) on L if and only if R(AL) ⊆ R(A2), which is
decidable by Theorem 14. ��
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6 Right/Left-Bounded LCFGs

Recall that if G is an LCFG and x in Σ∗, Lx
G = {y | y in Σ∗, y$x in L(G)}.

G is left-bounded if there is a positive integer k such that for every x in Σ∗,
|Lx

G| ≤ k.

Theorem 15. It is decidable, given an LCFG G, whether it is left-bounded
(resp., k-left-bounded for a given k).

Proof. This follows from the results in Section 4 and the following observation:
Given an LCFG G, denote by Gr, the LCFG obtained from G by “reversing” the
right-hand sides of the rules in G, i.e., a rule of the form A → α in G becomes
a rule A → αr in Gr. Then, L(Gr) = (L(G))r, and Gr is right-bounded if and
only if G is left-bounded. ��
We can prove:

Theorem 16. 1. It is decidable to determine, given an NPDA M and a right/
left-bounded LCFG G, whether L(M) ⊆ L(G).

2. It is decidable to determine, given a CFL L and right/left-bounded LCFGs
G1 and G2, whether L(G1) ⊆ L(G2) on L? (resp., is L(G1) = L(G2) on
L?).

7 Generalizations

Consider the following more general definition of valuedness. An NFT A is fully
k-valued if for every (x, y), either there at most k strings y′ such that (x, y′) is
in R(A), or there at most k strings x′ such that (x′, y) is in R(A).

Theorem 17. The following problems are decidable:
1. It is decidable to determine, given an NFT A and a positive integer k,

whether A is fully k-valued.
2. Given an NPDT A1 and a fully 1-valued NFT A2, is R(A1) ⊆ R(A2)?
3. Given a CFL L and fully 1-valued NFTs A1 and A2, is R(A1) � R(A2) on

L? (resp., is R(A1) = R(A2) on L?)

Open Questions: (1)Is it decidable to determine, given an NFT, whether it is
fully k-valued for some k? (2)Are the containment and equivalence problems for
fully k-valued NFTs decidable for k ≥ 2?

A LCFG G is fully k-bounded if for every x in Σ∗, |Rx
G| ≤ k or |Lx

G| ≤ k.

Theorem 18. The following problems are decidable:
1. It is decidable to determine, given a LCF G and a positive integer k, whether

G is fully k-bounded for some k.
2. Given an NPDA M and a fully 1-bounded LCFG G, is L(M) ⊆ L(G)?
3. Given a CFL L and fully 1-bounded LCFGs G1 and G2, is L(G1) = L(G2)

on L? (resp., is L(G1) = L(G2) on L?).

Open Questions: (1)Is it decidable to determine, given an LCFG, whether it is
fully k-bounded for some k? (2)Are the containment and equivalence problems
for fully k-bounded LCFGs decidable for k ≥ 2?
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Artur Jeż1,�� and Andreas Maletti2,� � �

1 Institute of Computer Science, University of Wroc�law
ul. Joliot-Curie 15, 50–383 Wroc�law, Poland

aje@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Azenbergstraße 12, 70174 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. Given a language L and a number �, an �-cover automaton
for L is a DFA M such that its language coincides with L on all words
of length at most �. It is known that an equivalent minimal �-cover au-
tomaton can be constructed in time O(n log n), where n is the number
of states of M . This is achieved by a clever and sophisticated variant
of Hopcroft’s algorithm, which computes the �-similarity inside the
main algorithm. This contribution presents an alternative simple algo-
rithm with running time O(n log n), in which the computation is split
into three phases. First, a compact representation of the gap table is
created. Second, this representation is enriched with information about
the length of a shortest word leading to the states. These two steps are
independent of the parameter �. Third, the �-similarity is extracted by
simple comparisons against �. In particular, this approach allows the cal-
culation of all the sizes of minimal �-cover automata (for all valid �) in
the same time bound.

1 Introduction

Deterministic finite automata (DFA) are widely used in computer science due
to their simplicity and flexibility. Their minimisation is one of the oldest prob-
lems that is motivated both theoretically and practically and almost every DFA
toolkit implements it. More precisely, the DFA minimisation problem asks for
a smallest DFA that recognises the same language as a given input DFA M .
The asymptotically best solution is due to Hopcroft [9,7], who presented an
O(n log n) algorithm where n is the number of states of M . Whether an asymp-
totically faster algorithm exists, remains one of the most challenging open ques-
tions in the area. In many applications the desired language L is finite. It was
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observed in [3] that membership of a word w in L can then be decided by:
(i) checking whether w is short (i.e., |w| ≤ � where � = max { |u| : u ∈ L}) and
(ii) checking it with a DFA M . This allows M to accept words that are longer
than �, which yields that M need not recognise L. Thus, we arrive at the notion
of ‘cover automata’. We say that a DFA M is a deterministic finite cover au-
tomaton (DFCA or cover automaton) for a finite language L if L(M)∩Σ≤� = L,
where � = max{ |u| : u ∈ L} and Σ≤� contains all words of length at most �. It
is a minimal DFCA for L if no DFCA for L has (strictly) fewer states.

It is well-known that the minimal DFCA for L can be substantially smaller
than the minimal DFA for L. Already [3] presents a DFCA minimisation al-
gorithm that runs in time O(n2 · �2). It also allowed the input language to be
presented as a DFA M , which could potentially recognise an infinite language.
In that case, an explicit word length � needs to be supplied. An �-DFCA for M
is simply a DFCA for L(M) ∩ Σ≤�. Câmpeanu et al. [2] improved the minimi-
sation algorithm for finite languages to O(n2). Their algorithm can be trivially
extended to arbitrary DFA, but it then runs in time O(n2 · �2). The currently
fastest algorithm for DFCA minimisation is due to Körner [12], who developed
an algorithm that runs in time O(n log n), and is a clever and refined modifica-
tion of Hopcroft’s algorithm for DFA minimisation.

Minimal DFCA are theoretically characterised [3,12,4]. All known algorithms
for constructing a minimal �-DFCA are based on a similarity relation ∼� on
states, which is defined such that a minimal �-DFCA consists of pairwise dissim-
ilar states. The relation ∼� is defined using two very basic notions: (i) the level
of a state, which is the length of a shortest word leading to it, and (ii) the gap
between two states, which is the length of a shortest word on which they differ.

Lossy compression of DFA has received some attention recently, and DFCA
minimisation can be considered as an instance. Hyper-minimisation [1] is another
instance and aims to find a smallest DFA N for a given DFA M such that
L(M) and L(N) have finite symmetric difference. This notion was refined to
�-minimisation [5], where the languages are allowed to differ only on words of
length at most �. Yet another variant was proposed by Schewe [13].

It is noteworthy that �-minimisation and �-DFCA minimisation are dual. It was
already observed by Badr et al. [1] that there are languages L, which are best
represented by a pair consisting of an �-minimal automaton (that makes errors on
words of length at most �) and a minimal �-DFCA. This combination can be sub-
stantially smaller than a single minimal DFA for L. An input word w is processed
by such a pair by selecting the authorative DFA based on the word’s length.

In principle, this approach works for all possible values of �. Thus, it is desir-
able to construct an algorithm that decides for which value of � the size of the
representation is minimal. For this, we need to have algorithms that for a given
DFA M return the size of an �-minimal DFA and a minimal �-DFCA for several
values �. We note that such an algorithm is known for �-minimal DFA [6], and
the current contribution adds the algorithm for minimal �-DFCA.

In this paper, we give an alternative �-DFCA minimisation algorithm, which
proceeds in three phases. First, we calculate the function ‘gap’ and represent it
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compactly in a gap-tree. We show that its computation can be done by a slightly
augmented version of Hopcroft’s algorithm, which means that it can be pre-
pared in the DFA minimisation step. Second, we take the level of states into
account and annotate the gap-tree. Up to this point, the computation is inde-
pendent of the value of �, and the obtained annotated gap-tree can be reused
for all �. In the third step, we identify the states that should be preserved in the
minimal �-DFCA (which naturally depends on �) and determine its transition
function. Our approach has several advantages. First, it is much easier to under-
stand, verify, and implement. Its first phase closely resembles Hopcroft’s al-
gorithm, which is well-known and understood. Second, since the first two phases
are independent of �, we can easily compute the size of all minimal �-DFCA (for
all valid �) without overhead. In addition, we present an algorithm that con-
structs (a compact representation of) minimal �-DFCA for consecutive values
of � in time O(n log n).

We would like to point out that the minimisation algorithm presented in this
paper shares the general outline with the �-minimisation algorithm [6]: they both
divide the computation of the minimal (with respect to the proper relation) DFA
into phases, out of which only the last one depends on �. Moreover, in both cases
we present an ultrametric as an ultrametric tree and then annotate it. Due to
differences in the similarity relations, the details vary significantly.

2 Preliminaries

In the following, let M = 〈Q, Σ, δ, q0, F 〉 be a minimal DFA, and let m = |Q×Σ|
and n = |Q|. As usual, we let min ∅ = ∞. For every state q ∈ Q, we let
level(q) = min { |w| : δ(q0, w) = q} and call it the level of q. Given two states
p, q ∈ Q, we define their gap by

gap(p, q) = min { |w| : w ∈ L(p)
L(q)} ,

where 
 is the symmetric difference operator. Note that d(p, q) = 2− gap(p,q) with
2−∞ = 0 defines an ultrametric. We continue to work with gap(p, q) because it
is used in the �-similarity relation ∼�, which is defined by

p ∼� q ⇐⇒ max(level(p), level(q)) + gap(p, q) > � ,

for all p, q ∈ Q. The currently fastest algorithm [12] for calculating minimal
cover automata uses ∼�, which in general is not an equivalence relation, but
only a compatibility relation (i.e., reflexive and symmetric). Some additional,
useful properties of ∼� are presented in [4]. In particular, they allow us to form
an equivalence relation as follows.

Definition 1 (cf. [12, Definition 3]). Let π : Q → P be a mapping for some
P ⊆ Q such that π(p) = p for every p ∈ P . Then π is an �-similarity state
decomposition (�-SSD) of Q if

1. level(q) ≥ level(π(q)) for all q ∈ Q,
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2. q ∼� π(q) for every q ∈ Q, and
3. p �∼� p′ for all p, p′ ∈ P with p �= p′.

In other words, an �-SSD is a partition of Q into |P | blocks such that (1) each
block has a representative with minimal level, (2) all elements in a block are
�-similar to their representative, and (3) the representatives of different blocks
are pairwise �-dissimilar. It is easy to observe that an �-SSD π : Q → P contains
a maximal (with respect to set inclusion) set P of pairwise �-dissimilar states.
Consequently, every �-SSD π yields a minimal �-DFCA by taking the quotient
of M with respect to the equivalence relation π represents.

Theorem 2 (cf. [12, Theorem 1]). For every �-SSD π : Q → P , the DFA
(M/π) = 〈P, Σ, μ, π(q0), F∩P 〉 is a minimal �-DFCA, where μ(p, a) = π(δ(p, a))
for every p ∈ P and a ∈ Σ.

Körner’s algorithm constructs an �-SSD using a clever modification of
Hopcroft’s algorithm [9]. It initially partitions the states into F and Q \ F
and then refines this partition while preserving Property 3 of Definition 1. Once
the algorithm stops, also Property 2 of Definition 1 will be satisfied.

Part of the difficulty of Körner’s algorithm stems from the fact that it takes
both ‘gap’ and ‘level’ into account when refining the partition. Our approach
separates these two properties. We show that gap(p, q) can be calculated by
a standard run of Hopcroft’s algorithm. Moreover, the gap-matrix can be
compactly represented as a gap-tree G. With the help of G, we can then compute
an �-SSD in a simpler manner by only taking ‘level’ into account.

3 Gap-Trees

The gap-matrix has size Θ(n2), thus any algorithm that explicitly uses it is
doomed to run in time Ω(n2). To obtain a minimisation algorithm that runs in
time O(m log n) we need to represent it more compactly. This is achieved with
the help of the gap-tree G, which contains a leaf for each state of Q. The tree is
organised such that each subtree contains only states whose pairwise gap exceeds
a certain value. More precisely, for each subtree t′ there exists s ∈ IN such that

gap(p, q)

{
≥ s if p and q occur in t′

< s otherwise.

In the next section, it is shown that gap tree can be created during a standard
run of a slightly augmented variant of Hopcroft’s algorithm.

Before we start with the formal definition, we recall some notions on trees.
We generally use rooted trees, which are special undirected graphs with a ded-
icated vertex r (the root) such that there is exactly one path from each vertex
to r. Moreover, we use weighted edges, where the edge weights are nonnegative
integers. The sum of the edge weights along the unique path from a vertex v to
the root r is denoted by d(v) and called the depth of v. A leaf is a vertex with
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only one adjacent edge. A tree is an ultrametric tree [8,10,11] if the depth of all
leaves is equal. Finally, for two vertices v and v′, their join v ∨ v′ is the lowest
common ancestor (i.e., the deepest vertex such that both v and v′ occur in its
subtree).

Definition 3. An ultrametric tree for gap (for short: gap tree) is an ultrametric
tree with leaves Q such that gap(p, q) = d(p ∨ q) for all p, q ∈ Q with p �= q.

Next, we want to determine representatives of similarity blocks. Since each vertex
of the gap-tree determines a subtree and thus a block of states, which are the
states that occur in the subtree, we assign a state to each vertex. To satisfy
Property 1 of Definition 1, we select a state with minimal level among all states
assigned to the direct subtrees. Formally, given a gap-tree G with vertices V ,
we let state : V → Q be a mapping such that (i) state(q) = q for all q ∈ Q,
(ii) state(v) = state(v′) for all v ∈ V \ Q, where v′ is some direct child vertex
of v, and (iii) level(state(v)) ≤ level(state(v′)) for all v ∈ V and v′ being a direct
child vertex of v. Note there can be several mappings ‘state’ that fulfill the
requirements (i)–(iii), which correspond to different choices of representatives.
In the following, we assume that ‘state’ is any such mapping.

The selected mapping ‘state’ labels all vertices of G with a state of Q. Recall
that state(q) = q for every q ∈ Q. Consequently, for every q ∈ Q there exists
a minimal (i.e., of minimal depth) vertex vq �= q such that state(v) = q for all
vertices besides vq along the path (towards the root) starting in the leaf q to vq.
Note that the vertex vq is unique, and called the termination vertex of q. The
termination state of q ∈ Q is state(vq). Recall that r is the root vertex. Note that
the termination state of q is always different from q unless q = state(r). Moreover,
for all states q �= state(r) we have gap(q, state(vq)) = d(q ∨ state(vq)) = d(vq),
which motivates the following definitions.

Definition 4. For every q ∈ Q, let

– the state-gap g(q) be such that

g(q) =

{
−∞ if q = state(r),
d(vq) otherwise.

C F I L

B E H J N

A D G Q M

A

C

J
3 G

G
2

M
4

L
4

C
2

A

B

B
1

H
3

I
4

N
5

D

E
2

D
1

A

F
3

A
0

Q
5

Fig. 1. Example DFA (left) and a gap-tree (right) for it
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– value(q) = level(q) + g(q).

Example 5. Let us consider the minimal DFA and the gap-tree for it that are
displayed in Fig. 1. Below the leaves of the gap-tree we annotated the state’s
level. In addition, we already labelled the inner nodes with states. Now, we can
determine the termination state for each state. For example, C is the termination
state of G because it is the first label on the path from the leaf G towards the root
that differs from G. Consequently, g(G) = d(vG) = 1 and value(G) = 2 + 1 = 3.
Overall, we obtain:

value(A) = −∞ value(B) = 2 value(C) = 2 value(D) = 2 value(E) = 4
value(F ) = 5 value(G) = 3 value(H) = 5 value(I) = 6 value(J) = 4
value(L) = 5 value(M) = 6 value(N) = 7 value(Q) = 7.

It is important to note that all the previous notions on the gap-tree are in-
dependent of the selection of �. Nevertheless, we can use them to transform the
gap-tree G into an �-SSD. Let P = { q ∈ Q : value(q) ≤ �}. Note that P �= ∅ be-
cause state(r) ∈ P . For every state q ∈ Q, its �-state π(q) is the label state(v) of
the first vertex v on the path from q to the root r such that value(state(v)) ≤ �.

Lemma 6. The �-state mapping π is an �-SSD.

Proof. We have to show the conditions of Definition 1. For every p ∈ P we have
value(p) ≤ �. Consequently, their �-state π(p) is p. Moreover, for every q ∈ Q
we have level(q) ≥ level(π(q)) because π(q) is the label of an ancestor of q. Let
us continue with Condition 2 of Definition 1. It trivially holds for q = π(q),
so suppose that q ∈ Q is such that q �= π(q). Consequently, q /∈ P . Let p
be the label of the last vertex v on the path from q to the root r such that
value(state(v)) > �. Clearly, the next vertex along this path is the �-vertex of q,
which is labelled π(q). Note that p = q is possible. Then q ∨ π(q) = p∨ π(q) and
thus gap(q, π(q)) = g(p). In addition, level(q) ≥ level(p) ≥ level(π(q)). These
two estimations together yield that

max(level(q), level(π(q)) + gap(q, π(q))
= level(q) + g(p) ≥ level(p) + g(p) = value(p) > � ,

which proves q ∼� π(q).
Finally, we have to show Condition 3 of Definition 1. Let p, p′ ∈ P be such that

p �= p′. Consequently, value(p) ≤ � and value(p′) ≤ �. Without loss of generality,
suppose that (i) level(p) ≥ level(p′), (ii) p ∨ p′ is not labelled with p. If these
conditions are not met for the pair (p, p′), then they are met for the pair (p′, p).
Since state(p ∨ p′) �= p, the termination vertex of p is on the path from p to
p ∨ p′ and so g(p) ≥ d(p ∨ p′) = gap(p, p′). Taking this and assumption (i) into
account, we obtain

max(level(p), level(p′)) + gap(p, p′)
≤ level(p) + g(p) = value(p) ≤ � ,

which proves p �∼� p′. ��
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Fig. 2. Example DFA (left) and a minimal 4-DFCA (right) for it

Example 7 (Example 5 continued). Take � = 4, then P = {A, B, C, D, E, G, J}.
Besides the obvious entries (identity on P ) we have:

π(F ) = π(Q) = A π(H) = π(I) = π(N) = B π(L) = C π(M) = G .

The resulting minimal 4-DFCA is displayed in Fig. 2.

Lemma 6 shows that the gap-tree with the help of ‘value’ indeed contains
a characterisation of ∼� for all potential �. This allows a fast construction of
a minimal �-DFCA for M whenever a gap-tree G is provided. We say that a
gap-tree G with vertices V is small if |V | ∈ O(n).

Theorem 8. Given a small gap-tree G with d(q) = s for all q ∈ Q, we can

1. calculate the sizes of all minimal �-DFCA (for all valid �) in time O(m+ s),
2. construct a minimal �-DFCA for a given � in time O(m), and
3. iteratively construct (representations of) minimal �-DFCA for all � in time

O(m log n + s)

Proof. Let V be the set of vertices of G. First, we compute a proper state la-
belling state : V → Q in the obvious manner. This can be done in time O(n)
because G is small. Similarly, we can compute ‘level’ in time O(m) because every
transition needs to be considered only once. A simple bottom-up procedure on G
can calculate value(q) for every state q using ‘level’ and ‘state’. Overall, we can
complete these steps in time O(m).

For the first claim, we sort the elements of Q by their ‘value’ in time O(n+ s)
using, for example, Counting-Sort. We know that value(q) ≤ n + s for every
q ∈ Q, hence we can obtain the mentioned time-bound for sorting. From this
sorted list of states, we can now determine the sizes of all minimal �-DFCA in
time O(n+s) by iteration over the list because for a given � the size of a minimal
�-DFCA is |{ q : value(q) ≤ �}|.

Next, let us move to the second claim. Theorem 2 and Lemma 6 show that
given an efficient representation of an �-state mapping π, we can construct a
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minimal �-DFCA in time O(m). Consequently, it only remains to determine an
�-state mapping π : Q → P . Clearly, the set P = { q : value(q) ≤ �} can
be constructed in time O(n) by a simple iteration over Q. Finally, we need to
determine π. To this end, we traverse the gap-tree G top-down. Every time, we
encounter a vertex v′ such that value(state(v′)) > � but value(state(v)) ≤ �,
where v is the direct ancestor of v′, we set π(q) = state(v) for all states q ∈ Q
that occur in the subtree of v′. Overall, this can be achieved in time O(|V |).
Since G is small, we obtain the time bound O(m).

Finally, we have to show how to create minimal �-DFCA sequentially, so that
the total execution time is O(m log n+s). Let �max+1 = maxq∈Q value(q). In each
step � ∈ {�max, . . . , 1, 0} our algorithm keeps the states P� = { q : value(q) ≤ �}.
Consequently, it merges each state q ∈ P�+1 such that value(q) = � + 1 into its
terminating state p, which by construction satisfies

value(p) = level(p) + g(p) ≤ level(q) + (g(q) − 1) = value(q) − 1 ≤ � .

However, to obtain the stated running time, we need to organise the process
properly. First, we note that there is a change in at most n steps because there
can be at most n merges. Thus, we first filter out the steps, in which no changes
occur. This can be done in time O(s). Second, we represent the DFA as a list of
transitions. For each state q, we keep a list of all pairs (a, p) such that δ(q, a) = p,
where p is implemented as a pointer to a pointer to the actual state p, which
allows a fast modification of all transitions leading to p by simply replacing the
final pointer to p. In addition, for every state q, we keep a counter c(q), which is
initially 1 and counts how many states were merged into q. Now assume that we
want to merge the state q into p. First, we assume that c(q) ≤ c(p). In this case,
we simply redirect each incoming transition of q to p (by a constant-time pointer
replacement). However, if c(q) > c(p), then we redirect each incoming transition
of p to q (i.e., we do not merge q into p, but rather merge p into q). In addition,
we replace the outgoing transitions of q by the outgoing transitions of p, which
can be done in constant time by simply replacing the pointer to the list. We
complete this case by renaming q to p. Finally, in both cases we update c(p) by
c(p) ← c(p) + c(q). In this manner, every time the transition target δ(q, a) is
modified due to a merge, the value c(δ(q, a)) at least doubles. Since c(q) ≤ n for
each q ∈ Q, each transition can be modified at most log n times. Consequently,
we obtain the overall running time O(m log n + s). ��

Note that the third statement of Theorem 8 only provides a (compact) repre-
sentation of the minimal �-DFCA in the presented running time O(m log n + s).
If we output the obtained DFCA for all �, then we require time O(m2 log n)
because we need O(m) steps for each output DFCA. The summand s disappears
due to the fact that it can always be chosen such that s ≤ n2 ≤ m2.

4 Computing a Gap-Tree

We already showed that we can easily construct minimal �-DFCA provided that
we have access to a small gap-tree G for M . In this section, we show how to



Computing All �-Cover Automata Fast 211

J

G M

L C

B H I N E D F

A Q

•

•

J •

G M

L C

•

•

B H I N

•

E D

•

F A Q

Fig. 3. The pre-gap tree (left) for the DFA of Fig. 1. The gap-tree (right) of Fig. 1 can
be obtained from it by merging appropriate nodes, which are marked in grey. The edges
labelled with different ‘gap’ were drawn in different styles (dashed = 0, normal = 1,
thick = 2).

construct such a G. Actually, a simple modification of Hopcroft’s algorithm [9]
can perform the construction for us. Roughly speaking, we keep track of the
length of words that cause a split of a set of states in the run of the algorithm.
Already Körner’s algorithm [12] followed a similar strategy. Our modification
is less drastic and yields a solution that is simpler and easier to understand.

Algorithm 1 presents the slightly modified version of Hopcroft’s algorithm
that is suitable for our purposes. It creates a pre-gap tree, which keeps track of
how the final partition was obtained. In particular, it stores the lengths of the
used splitting words. The length of such a splitting word coincides with the gap
between the affected states. The obtained pre-gap tree (see Fig. 3) is basically
a binarisation of a gap-tree. It can easily be transformed into a gap-tree by
merging appropriate nodes.

We marked the modifications (compared to a standard implementation of
Hopcroft’s algorithm) by �. Clearly, all lines referring to gap calculations are
new. However, they do neither affect the correctness of the overall algorithm nor
the analysis of its run-time. In addition, the queue T is restricted to a FIFO-
queue, which is essential for our purposes. Finally, although we split Q′ into
Qr−1 and Qr in line 11, we do not replace Q′ in T . When vQ′ is extracted
from T , we no longer have Q′ as an element of P . However, we can recreate it by
listing all the states that occur in the subtree of vQ′ . A similar approach was also
used by Körner [12], who proved that this does not affect the running time.

Next, we show that the pre-gap tree has the following properties:

1. It is a binary tree.
2. The states p and q point to the same node if and only if p = q.
3. If p and q with p �= q point, respectively, to vp and vq , then the edges to

vp ∨ vq are labelled with gap(p, q).

The first statement follows clearly from Hopcroft’s strategy. Every time a leaf
turns into an inner node in line 13, two children are created. Moreover, the
previous line removed the corresponding set from P , which yields that the vertex
is never split again. In particular, this statement yields that the pre-gap tree is
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Algorithm 1. Modification of Hopcroft’s algorithm
1: Q1 ← F , Q2 ← Q \ F , r ← 2, P ← {Q \ F, F}
2: T ← {(vF , 1)} � FIFO queue
3: create vQ and its children vF , vQ\F , gap(vF , vQ)← gap(vQ\F , vQ)← 0 �
4: put two-way pointers vF ↔ F and vQ\F ↔ Q \ F �
5: while T �= ∅ do
6: (vQi , ki)← first from T
7: for a ∈ Σ do
8: Qa = { q : δ(q, a) ∈ Qi}
9: for Q′ ∈ P such that Q′ �⊆ Qa and Q′ ∩Qa �= ∅ do

10: r← r + 2
11: Qr−1 ← Q′ ∩Qa, Qr ← Q′ \Qa

12: P ← (P \ {Q′}) ∪ {Qr−1, Qr}
13: create nodes vQr−1 , vQr and edges (vQr−1 , vQ′ ), (vQr , vQ′) �
14: gap(vQr−1 , vQ′)← gap(vQr , vQ′ )← ki �
15: if |Qr−1| > |Qr| then
16: add (vQr , ki + 1) to T � Do not remove Q′ from T
17: else
18: add (vQr−1 , ki + 1) to T

19: for Q′ ∈ P do
20: for q ∈ Q′ do
21: add pointer from q to v, where Q′ points to v � Partition of states

small. The second statement is the correctness of Hopcroft’s algorithm, so we
do not reprove it. Before, we can prove the third (and essential) statement, we
first identify some properties of the maintained data structure.

Lemma 9 (cf. [12, Lemma 4]). Let (vQ1 , k1), . . . , (vQs , ks) be the complete
sequence of elements added to T during the run of Algorithm 1. Then ki−1 ≤ ki

for all i ∈ {2, . . . , s}.

Proof. We prove the statement by induction. For i = 2 it is obvious because
k1 = 1 and k2 = 2. Now, let i ≥ 3. The element (vQi , ki) was put into T
while processing (vQj , kj) for some j ≤ i − 1. Due to the FIFO strategy, its
predecessor (vQi−1 , ki−1) was put into T while processing (vQj′ , kj′ ) for some
j′ ≤ j. By the induction assumption, we have kj′ ≤ kj . Consequently, we obtain
that ki−1 = kj′ + 1 ≤ kj + 1 = ki. ��

Lemma 10. For any two inequivalent states p, q ∈ Q there is a set Q′ ∈ P at
some point during the execution of Algorithm 1 that is split into Qr−1 and Qr

with p ∈ Qr−1 and q ∈ Qr. The corresponding edges (vQr−1 , vQ′) and (vQr , vQ′)
are labelled by gap(p, q).

Proof. Since p and q are inequivalent, the states p and q will be split. Thus, the
set Q′ with the given properties exists. It remains to prove the property about the
gap. Let gap′(p, q) = gap(vQr−1 , vQ′). Next, we show that gap(p, q) = gap′(p, q).
To this end, we first show that gap(p, q) ≤ gap′(p, q) and then demonstrate that
gap(p, q) ≥ gap′(p, q), which will conclude the proof.
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The first part is shown by induction on the number i of elements of T consid-
ered by the algorithm. If i = 0, then gap(p, q) = 0 because exactly one of {p, q}
is in F . Since line 3 assigns the same gap, the claim holds. The inequivalent
states p and q are eventually split by the algorithm. Let Q′ ∈ P be the element
such that {p, q} ⊆ Q′ before they are split. Intuitively, the element (vQ′′ , k) of T
that caused the split has the property that there exists a letter a ∈ Σ such that
exactly one of the states pa = δ(p, a) and qa = δ(q, a) is in Q′′. Consequently,
pa �= qa and gap(pa, qa) ≤ gap′(pa, qa) by the induction hypothesis (because
pa and qa must have been split in a previous iteration). Then

gap(p, q) ≤ gap(pa, qa) + 1 ≤ gap′(pa, qa) + 1 = k = gap′(p, q) ,

which proves the induction step.
Finally, we show that gap′(p, q) ≤ gap(p, q) for all pairs (p, q) of states with

p �= q. Let w = a1 · · · am be the shortest string such that exactly one of the
states δ(p, w) and δ(q, w) is in F . Moreover, let (i) p0 = p and q0 = q, and
(ii) pi = δ(pi−1, ai) and qi = δ(qi−1, ai) for every i ∈ {1, . . . , m}. Let us con-
sider the maximal i such that gap(pi, qi) < gap′(pi, qi). Trivially, we have i < m
because gap(pm, qm) = gap′(pm, qm) = 0, which follows because exactly one
of {pm, qm} is in F . By the first statement and the maximality of i, we have
gap(pi+1, qi+1) = gap′(pi+1, qi+1). Due to the algorithm, there exists an ele-
ment (vQ′′ , k) of T and a ∈ Σ such that gap′(pi, qi) = k, where p′ = δ(pi, a),
q′ = δ(qi, a), and exactly one of {p′, q′} is in S. The latest the split can happen
is due to (pi+1, qi+1), but it can happen earlier, which allows us to conclude by
Lemma 9 that

gap′(pi, qi) = k ≤ gap′(pi+1, qi+1) + 1 = gap(pi+1, qi+1) + 1
= gap(pi, qi) ,

where the last equality follows from the fact that w is the shortest word. Con-
sequently, gap′(pi, qi) ≤ gap(pi, qi), which contradicts the assumption and com-
pletes the proof. ��
Now Property 3 of the pre-gap tree is an easy corollary of Lemma 10: consider
any two inequivalent states p and q. The set Q′ from Lemma 10 corresponds to
the node vp ∨ vq in the pre-gap tree. Furthermore the lemma asserts that the
edges to vp ∨ vq are labelled by gap(p, q).

To obtain a gap-tree G from the pre-gap tree for the DFA M , it is enough to
merge connected parts of the pre-gap tree with incoming edges labelled with the
same value k into a single vertex v such that d(v) = k (see Fig. 3). Moreover,
Lemma 10 shows that d(q) ≤ n for every q ∈ Q, which allows us to state our
main theorem.

Theorem 11. For all DFA M = 〈Q, Σ, δ, q0, F 〉 with m = |Q×Σ| and n = |Q|,
we can perform the following in time O(m log n):

1. Calculate the sizes of all minimal �-DFCA (for all valid �).
2. Construct a minimal �-DFCA for a given �.
3. Iteratively construct (representations of) minimal �-DFCA for all �.
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Abstract. In this paper, we present algorithms for preset and adaptive homing 
experiments for a given observable reduced nondeterministic finite state 
machine (NFSM). We show that the tight upper bound on a shortest preset 
homing sequence for a NFSM with n states and with two or more initial states is 
of order 

2

2n . The upper bound on a shortest adaptive homing sequence of a 
NFSM with m initial states, m ≤ n, states is of order ∑

=

m

j

j
nC

2
and this upper 

bound is of order 2n when m tends to n. 

Keywords: Preset and adaptive homing experiments, nondeterministic finite 
state machines. 

1   Introduction 

Finite State Machines (FSMs) are widely used for modeling systems in many 
application domains. An FSM is a state transition system which has a finite number of 
inputs, outputs, states and a finite number of transitions each labeled by a pair of an 
input and output. In FSM-based testing, we have a machine or an implementation under 
test about which we lack some information, and we want to deduce this information by 
conducting experiments on this machine. An experiment consists of applying input 
sequences to the machine, observing corresponding output responses and drawing 
conclusion about the machine under test. An experiment is preset if input sequences are 
known before starting the experiment, and an experiment is adaptive if at each step of 
the experiment the next input is selected based on previously observed outputs. 

Well-known types of experiments include distinguishing, homing, and 
synchronization experiments. Given an FSM, assuming that the initial state is 
unknown, a distinguishing experiment determines the initial state of the FSM. A 
homing experiment identifies the final state reached at the end of the experiment. An 
applied input sequence when performing such an experiment is called a homing 
sequence (HS). A synchronization experiment guarantees that the machine reaches a 
given state by the end of the experiment. A corresponding input sequence is called a 
synchronizing sequence (SS).  



216 N. Kushik, K. El-Fakih and N. Yevtushenko 

 

Since the seminal paper on “gedanken experiments” by Moore [1], there has been a 
lot of work on preset and adaptive homing experiments for deterministic FSMs. Homing 
experiments are typically used in FSM-based conformance testing when no reset, that 
takes the machine from any current state to a designated state, is assumed in the 
implementation under test. For information and surveys on FSM-based experiments and 
some related algorithms, a reader may refer to [2], [3-5]; in particular, the detailed 
survey given by Sandberg in [6] contains information about homing experiments for 
deterministic FSMs. In summary, based on the algorithm in [1], Ginsburg [7] presented 
an algorithm for preset homing experiment for a reduced deterministic FSM. Hibbard 
[8] showed that Moore’s algorithm can be used for computing a homing sequence that is 
not longer than n(n - 1)/2, where n is the number of states of the given deterministic 
FSM. Hibbard also showed that machines possessing preset homing sequences with 
minimal length n(n - 1)/2 require adaptive homing sequences of the same length. 
Derivation of minimal length preset homing sequences can be done using the homing 
tree method introduced by Gill [9] and reported in details in Kohavi [2]. In addition, 
parallel algorithms for homing experiments for deterministic FSMs and for many other 
related problems are surveyed by Ravikumar in [5].  

Some work has also been done on experiments for nondeterministic machines. 
Nondeterminism may occur due various reasons such as limited controllability, 
abstraction, modeling concurrency and real time systems, etc. [10]. For instance, 
Sandberg [6], based on some work in Rystsov [11], reports that the problem of 
finding a synchronizing sequence of a nondeterministic finite state automata (NFA) is 
PSPACE-complete when the NFA possesses proper features. That work can be 
applied for finding homing sequences for a special class of nondeterministic FSMs, 
namely FSMs with synchronizing sequences, as it is known that a synchronizing 
sequence is also a homing sequence; however, the converse is not true. We note that 
outputs are not needed for deriving SSs, and thus the application of NFA algorithms 
for deriving synchronizing experiments for such a class of nondeterministic FSMs can 
be carried out by ignoring the outputs of the machine. Burkhard [12] gave the sharp 
exponential upper bound 2n – n – 1 on minimum length of synchronization sequences 
of an n-state NFA. Imresh and Steinby [13] studied the same problem for a special 
class of NFAs and report lower and upper bounds in the paper [14].  

In this paper, we present preset and adaptive algorithms for deriving a homing 
sequence for a given complete reduced observable nondeterministic FSM (denoted 
NFSM hereafter) with n states, when such a sequence exists. Differently from 
deterministic FSMs a HS may not exist even for a reduced NFSM. We show that the 

tight upper bound on a shortest preset homing sequence is of order 
2

2n . Further, we 
show that for an NFSM with proper features, a shortest preset HS has length 

)14/( 2

2 −n . In particular, this holds for NFSMs that have only a separating sequence as 
a HS. An input sequence is a separating sequence for two states of a NFSM if the sets 
of outputs produced by the NFSM at these states to the input sequence do not 
intersect. Separating sequences are introduced in [15] and have been studied in [16] 
and [17]. A preset algorithm is given for the case when a NFSM has two initial states 
and it is shown that the same algorithm can be used for an arbitrary number of initial 
states. The established upper bounds are shown to be of the same order for two or for 
more than two initial states. Finally, we show that the upper bound on a shortest 
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adaptive HS for a set of m ≤ n (initial) states is of order ∑
=

m

j

j
nC

2
and thus, this upper 

bound is of order 2n when m tends to n.  
This paper is organized as follows. Preliminaries are introduced in Section 2. 

Algorithms for deriving preset and adaptive homing sequences are given in Sections 3 
and 4, respectively. Section 5 concludes the paper. 

2   Preliminaries 

A finite state machine (FSM), or simply a machine throughout this paper, is a 5-tuple 
S = 〈S, I, O, hS, S′〉, where S is a finite nonempty set of states with a non-empty subset 
S′ of initial states; I and O are finite input and output alphabets; and hS ⊆ S × I × O × S 
is a behavior relation. A machine is deterministic if for each pair (s, i) ∈ S × I there 
exists at most one pair (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS; otherwise, the 
machine is nondeterministic. If for each pair (s, i) ∈ S × I there exists (o, s′) ∈ O × S 
such that (s, i, o, s′) ∈ hS then FSM S is said to be complete; otherwise, the machine is 
called partial. A machine is observable if for each triple (s, i, o) ∈ S × I × O there 
exists at most one state s′ ∈ S such that (s, i, o, s′) ∈ hS; otherwise, the machine is 
nonobservable. In this paper, we consider complete and observable nondeterministic 
machines, hereafter denoted as NFSMs. 

In a usual way, the behavior relation is extended to input and output sequences. 
Given states s, s′ ∈ S, an input sequence α = i1i2…ik ∈ I* and an output sequence β = 
o1o2…ok ∈ O*, there is a transition (s, α, β, s′) ∈ hS if there exist states 
s1 = s, s2, … , sk, sk+1 = s′ such that (si, ii, oi, si+1) ∈ hS, i = 1, … , k. Given states s and 
s′, the input sequence α can take (or simply takes) the FSM S from state s to state s′ if 
there exists an output sequence β such that (s, α, β, s′) ∈ hS. The set out(s, α) denotes 
the set of all output sequences (responses) that the FSM S can produce at state s in 
response to the input sequence α, i.e. out(s, α)  = {β : ∃ s′∈S [(s, α, β, s′) ∈ hS]}. The 
pair α/β, β ∈ out(s, α), is an Input/Output (I/O) sequence (or a trace) at state s; if s is 
the initial state s1 then the pair α/β is an Input/Output (I/O) sequence of the FSM S. 
Given states s and s′, the I/O sequence α/β can take (or simply takes) the FSM S from 
state s to state s′ if (s, α, β, s′) ∈ hS. This property can be expressed by a function 
next_state(s, α/β): next_state(s, α/β) = s′ if α/β takes the FSM S from state s to state 
s′. For observable FSMs, there is at most one state s′ such that next_state(s, α/β) = s′.  

Given two complete FSMs S = 〈S, I, O, hS, S′〉 and R = 〈R, I, O, hR, R′〉, two states s 
of S and r of R are equivalent [9, 15] if for each input sequence α ∈ I* it holds that 
out(s, α)  = out(r, α). Otherwise, we say that states s and t are distinguishable. An 
FSM is said to be reduced if its states are pair-wise distinguishable. Given two 
complete FSMs S = 〈S, I, O, hS, S′〉 and R = 〈R, I, O, hR, R′〉, state r of R and state s of S 
are non-separable if for each input sequence α ∈ I* it holds that out(r, α) ∩ out(s, α) 
≠ ∅, i.e., the sets of output responses to each input sequence at state r and at state s 
intersect; otherwise, states r and s are separable. For separable states r and s, there 
exists an input sequence α ∈ I* such that out(r, α) ∩ out(s, α) = ∅, i.e., the sets of 
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output responses of FSMs S and R at states r and s to the input sequence α are disjoint. 
In this case, α is a separating sequence of states r and s or simply α separates r and s. 
In this paper, when deriving preset and adaptive homing sequences for NFSMs we 
consider those NFSMs to be complete and observable. 

3   Preset Homing Experiments  

In this section, we propose an algorithm for deriving a preset homing sequence (PHS) 
for a given NFSM (if such a sequence exists). We start with a NFSM with two initial 
states and then show how the algorithm can be adapted for  an arbitrary set of initial 
states. 

3.1   Deriving a Preset Homing Sequence 

3.1.1   Preliminaries 
Given a complete NFSM S = 〈S, I, O, hS, {s1, s2}〉, a sequence α ∈ I* is a homing 
sequence (HS) for NFSM S if for the pair {s1, s2} of initial states the following holds: 

∀β ∈ out(s1, α) ∩ out(s2, α) [next_state(s1, α/β) = next_state(s2, α/β)] (1) 

We note that according to the well-known definitions, for a deterministic FSM S = 
〈S, I, O, hS, {s1, s2}〉, a sequence α ∈ I* is a homing sequence if  

next_state(s1, α) ≠ next_state(s2, α) ⇒ out(s1, α) ≠ out(s2, α) (2) 

and one can easily observe that (2) is a particular case of (1). 
A homing sequence α is said to be adaptive (AHS) if the next input ij is derived 

based on the output response o1 o2 … oj- 1 to the prefix i1 i2 … ij - 1. Otherwise, the 
homing sequence α is said to be preset (PHS). 

A PHS not necessary exists even if a given complete observable nondeterministic 
machine is reduced and connected. As an example, consider the NFSM in Fig. 1 with 
the set {1, 2} of initial states. If the machine outputs o1 … o1 to an input sequence i … 
i, we can never be sure which state is reached after this input sequence. However, a 
PHS always exists if there is an input sequence that separates the initial states s1 and 
s2 of a given NFSM.  

Proposition 1. Given NFSM S = 〈S, I, O, hS, {s1, s2}〉, if states s1 and s2 are separable 
then S has a PHS. 

Proof. By definition, a separating sequence of states s1 and s2 is a PHS for NFSM S. 
 

The condition of Proposition 1 is only sufficient but not necessary. However, there 
exist NFSMs with two initial states for which only a separating sequence can be a 
PHS. The following statement describes NFSMs with such features. 
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1 2

i/o1,o2

i/o1,o3  

Fig. 1. A NFSM with no PHS 

Proposition 2. Given NFSM S = 〈S, I, O, hS, {s1, s2}〉, let S possess the following 
property: 

∀ α ∈ I* ∃β ∈ out(s1, α) ∩ out(s2, α) [next_state(s1, α/β) ≠ next_state(s2, α/β)], 

There exists a PHS for NFSM S if and only if states s1 and s2 are separable. Moreover, 
if states s1 and s2 are separable then each PHS is a separating sequence of states s1  
and s2. 

Proof. A PHS exists for NFSM S iff there exists an input sequence α such that for 
each β ∈ out(s1, α) ∩ out(s2, α) it holds that [next_state(s1, α/β) = next_state(s2, 
α/β)]. However, according to the proposition condition, for a NFSM S it holds that ∀ 
α ∈ I* ∃β ∈ out(s1, α) ∩ out(s2, α) [next_state(s1, α/β) ≠ next_state(s2, α/β)]. The 
above two statements can be satisfied simultaneously if and only if out(s1, α) ∩ 
out(s2, α) = ∅. The latter means that states s1 and s2 are separable and moreover, each 
PHS separates states s1 and s2. 

 
The conditions of Proposition 2 are only sufficient but not necessary. As an example, 
consider an FSM in Fig. 2 and an input sequence i. If the machine produces an output 
o1 or o2 to an input i then the machine enters state 2 independent of the initial state 1 
or 2. If an output o3 is produced to an input i then the machine enters state 1, since this 
output can be produced only when the machine is at state 2. The tight upper bound on 
the length of a separating sequence is known to be exponential [16]. According to 
Proposition 2, it can be expected that the upper bound on the length of a shortest PHS 
is also exponential. In order to confirm this, consider two NFSMs S and T with n states. 
In [17], it is shown that initial states of these machines can be separated only with a 
 

1 2

i/o1,o2

i/o3

i/o1

 

Fig. 2. FSM S that has a PHS despite of the fact that its states are not separable 



220 N. Kushik, K. El-Fakih and N. Yevtushenko 

 

sequence that has at least 12
2 −n  inputs. By direct inspection, one can assure that the 

conditions of Proposition 2 hold for the direct sum [9] of NFSMs S and T when the 
initial states s0 and t0 of S and T are two initial states of the direct sum. For this reason, 
only a separating sequence of s0 and t0 can be a PHS for such a direct sum and thus, 
since the direct sum has m = 2n states, a shortest PHS for the direct sum has length 

1)2/( 2

2 −m , i.e., is of the order 
2

2m . 

3.1.2   Deriving a Preset Homing Sequence for a NFSM with Two Initial States 
Given a NFSM S = 〈S, I, O, hS, {s1, s2}〉 and the pair {s1, s2} of initial states, in order 
to derive a PHS for S, we construct a truncated successor tree (TST) with proper 
termination rules given below. 

The root of the tree is a node labeled with the pair {s1, s2} while other tree nodes 
are labeled by sets of pairs {s, s′}, s, s′ ∈ S, s ≠ s′, or by the empty set because of 
observability of NFSM. Edges of the tree are labeled by inputs. Given an input i and 
an intermediate node labeled by a set P, there is an edge labeled with i to the node 
labeled with the following set P′: 

{s, s′} ∈ P′ ⇔ ∃{si, sj} ∈ P ∃o ∈ O ((si, i, o, s) ∈ hS & (sj, i, o, s′) ∈ hS) and s ≠ s′. 
Given a node labeled by a set P, the node is terminal if  

Rule-1: Set P contains a subset that labels another node of the path from the root to 
the node labeled by the set P; 
Rule-2: P is the empty set.  

We note that termination Rule-1 allows truncating from TST branches that will never 
provide minimal length paths to a node labeled by the empty set. Correspondingly, we 
propose the following algorithm.  

Algorithm 1 for deriving a minimal length PHS for a NFSM with two initial 
states.  

Input: NFSM S = 〈S, I, O, hS, {s1, s2}〉 with n states 
Output: A minimal length PHS for S or a proper message when such a sequence 

does not exist 
     Derive a truncated successor tree with the root {s1, s2}.   
     If the successor tree has no nodes labeled with the empty set  
       Return the message ″there is no PHS for NFSM S ″. 
     Otherwise, 
            Determine a path with minimal length to a node labeled with the empty set; 
            Return as a PHS the input sequence α that labels the selected path. 

 
By construction of the truncated successor tree, the following statements hold. 

Theorem 1. Complete NFSM S has a PHS if and only if the TST derived by 
Algorithm 1 has a node labeled with the empty set. Moreover, a shortest PHS α of S 
labels a path in TST from the root to a node with the empty set.  

Proof. Indeed, by definition of PHS, a PHS can only label a path to a node labeled 
with the empty set. Suppose there exists PHS α = ηγσ for S such that η takes the FSM 
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S from the pair of initial states to all pairs of the set P while ηγ takes the FSM S from 
the pair of initial states to all pairs of the set P′ and P ⊆ P′. As ηγσ is a HS for S, then 
σ is a homing sequence for each pair of the set P′, i.e., σ is a homing sequence for 
each pair of the set P, and thus, ησ is also a PHS for S.  

 
Proposition 3. Algorithm 1 returns a PHS of length at most 2n(n - 1)/2 - 1. 

Proof. The maximal number of different pairs {s, s′}, s ≠ s′, is n(n - 1)/2, thus, the 
maximal number of different sets of such pairs equals 2n(n - 1)/2. 

According to the termination Rule-1, there is no path in the TST that has an 
intermediate node labeled by a set P containing the pair {s1, s2}. The maximal number 
of different sets of pairs of different states which do not include the pair {s1, s2} 
equals 2n(n - 1)/2 - 1. 

 
Proposition 4. If observable NFSM S has a PHS then there exists a PHS with length 
at most 2n(n - 1)/2 - 1. 

Proof. Actually, the proposition holds since the maximal depth of the successor tree 
for NFSM S with two initial states is a most 2n(n - 1)/2 - 1. 

 

3.1.2   Deriving a Preset Homing Sequence for NFSM with Arbitrary Number of 
Initial States 
Given NFSM S = 〈S, I, O, hS, S ′ 〉, S ′  ⊆  S ,  | S ′  | = m ≥ 2, a sequence α ∈ I* is a 

homing sequence (PHS) for S if for each subset {
1i

s , …, 
jis } ⊆ S ′ ,  the following 

holds: 

∀β ∈ out(
1i

s ,α) ∩ out(
2i

s ,α) ∩ … ∩ out(
jis ,α) [next_state(

1i
s , α/β) = 

next_state(
2i

s , α/β) = … = next_state(
jis , α/β)], j ∈{1, …, m}, 

{
1i

s ,
2i

s , …,
jis } ⊆  S ′  

(3) 

 
Proposition 5. Given observable NFSM S = 〈S, I, O, hS, S ′〉, if there exists an input 

sequence α ∈ I* such that for each pair {
1i

s , 
2i

s } ⊆  S ′  it holds that ∀β ∈ out(
1i

s , 

α) ∩ out(
2i

s , α) [next_state(
1i

s , α/β) = next_state(
2i

s , α/β)], then α is a PHS for 

NFSM S.  

Proof. Consider an input sequence α ∈ I* such that for each pair {
1i

s , 
2i

s } ⊆  S ′  it 

holds that ∀β ∈ out(
1i

s , α) ∩ out(
2i

s , α) [next_state(
1i

s , α/β) = next_state(
2i

s , 

α/β)] and a subset {
1i

s , …, 
jis } ⊆ S ′ . Let β ∈ out(

1i
s ,α) ∩ out(

2i
s ,α) ∩ … ∩ 
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out(
jis ,α). Since the FSM is observable, the set next_state(

1i
s , α/β) is a singleton 

and moreover, for each two states  
1i

s  and 
2i

s , {
1i

s , 
2i

s } ⊆  {
1i

s , …, 
jis }, 

next_state(
1i

s , α/β) = next_state(
2i

s , α/β), i.e., α is a HS for the FSM S. 

 
Proposition 5 shows how a PSH can be derived for a NFSM S = 〈S, I, O, hS, S ′〉 with 
the set S′ of initial states where |S′| > 2. A TST is constructed as in Algorithm 1; 

however, the root of the tree is labeled by the set P of all pairs  {
1i

s ,
2i

s } ⊆  S ′ ,  

1i
s ≠ 

2i
s .  As before, the TST is trimmed according to the above rules, i.e., Rule-1 

and Rule-2. Thus, according to Proposition 4, the maximal length of a PHS for a 
given NFSM S with m initial states, m = |S ′ | > 2, is at most 2n(n - 1)/2.  

4   Deriving Adaptive Homing Sequences 

In the previous section it has been shown that a method for deriving a PHS for two 
initial states of a given NFSM can be used for deriving a PHS for more than two 
initial states. For this reason, in this section, deriving an AHS we start directly with an 
arbitrary set of two or more initial states.  

Given NFSM S = 〈S, I, O, hS, S ′〉, S ′  ⊆  S ,  |S ′ | = m > 1, in order to derive an AHS 
for S we construct an adaptive truncated successor tree (ATST). The difference 
between a TST described in Section 3 and an ATST is that each edge of the TST is 
labeled by an input while an edge of the ATST is labeled by an input/output pair. The 
root of an ATST is labeled with the set S ′  of initial states while other tree nodes are 
also labeled by subsets of states of the NFSM S. Given an intermediate node labeled 
by a subset P of states and an input/output pair i/o such that there is a transition 
labeled by i/o at least for one state of the set P, there is an edge labeled with i/o to the 
node labeled with the following subset P′ :  

s ∈ P′  ⇔ ∃si ∈ P ((si, i, o, s) ∈ hS). 

We note that since NFSM S is observable, for every state in P, there exists at most 
one state s with the above property. This is why ATST nodes are labeled by subsets of 
states differently from the TST where nodes are labeled by sets of state pairs. In 
addition, since S is observable, in the ATST, it holds that |P′ | ≤ |P|. Given a node 
labeled by a set P, the node is terminal if  

Set P contains a subset of states that labels another node of the path from the root 
to the node labeled by the set P; 

|P|  ≤  1 .  

The number of different subsets with j  items of the set with n states equals j
nC . 

Since given a state s and an input/output pair i/o, there can be only one i/o–successor 
of state s, the following statement holds. 
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Proposition 6. If observable NFSM S has an AHS then there is a path in the ATST to 
a node labeled with a singleton. Moreover, in this case there exists an AHS with 

length at most ∑
=

m

j

j
nC

2

. 

Proof. Since the number of subsets which have at least two states of the set with n 

states does not exceed ∑
=

m

j

j
nC

2
the following statement holds.  

 
Corollary. Given observable NFSM S = 〈S, I, O, hS, S〉, | S  | = n, if NFSM S has an 
AHS then there exists an AHS with length at most 2n – n – 1. 

5   Conclusion 

In this paper, we have revisited the problem of deriving homing experiments for 
nondeterministic FSMs and have proposed necessary and sufficient conditions for 
checking whether a complete observable nondeterministic FSM possesses a preset or 
an adaptive homing sequence. Moreover, we have shown that length of a preset 

homing sequence if of order 
2

2n   and there exist FSMs which have a preset homing 
sequence of this order. We have also discussed how an adaptive homing experiment 
can be derived. The upper bound on the height of an adaptive homing experiment for 

a NFSM with m initial states, m ≤ n, states is of order ∑
=

m

j

j
nC

2
and this upper bound is 

of order 2n when m tends to n.  
In our future work, we are going to adapt the obtained results to non-observable 

possibly partial nondeterministic machines. It is also interesting to check whether the 
upper bounds on length of homing sequences are tight. 
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Abstract. REC defines an important class of picture languages that is
considered a 2D analogous of regular languages. In this paper we recall
some of the most expressive operational approaches to define determin-
istic subclasses of REC. We summarize their main characteristics and
properties and try to understand if it is possible to combine their main
features to define a larger deterministic subclass. We conclude by propos-
ing a convenient generalization based on automata and study some of its
formal properties.

1 Introduction

Generalizing string languages and related approaches to two dimensions has
always been tempting, as pictures are an important part of our life, as well as
text. One of the most successful classes of picture languages introduced in the
literature is surely REC, the class of tiling recognizable languages [1], that aims at
generalizing to 2D the class of regular string languages. REC is a robust class that
has various characterizations: e.g. in terms of online tessellation acceptors [2],
tiling systems [3], or Wang systems [4].

Unfortunately, many good properties of string languages are modified or are
lost in the transition towards the two dimensions. One such property is related to
determinism: all the proposed 2D analogous of regular languages lose expressivity
if constrained to deterministic models.

Essentially two approaches are proposed in the literature for defining a deter-
ministic model of finite state automaton within REC. The first one is presented
in the seminal work [5], which clearly predates REC and actually define a sub-
class. In this approach, the input picture is seen as a read-only tape that can be
visited freely, and finite states are exploited to propagate information (see also
[6] for an account of the main properties of the model).

Another, orthogonal approach is based on fixing a scanning strategy to visit
the input picture, and allowing to add marking information to its pixels, so that
it is possible to propagate information locally. The first of such models is the one
of the deterministic online tessellation acceptors (or DOTAs), a kind of cellular

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 225–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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automata [2]. This approach was then generalized and extended by the following
subclasses and models, presented in chronological order: class Diag-DREC [7,8],
the closure by rotation of the class defined by DOTAs; tiling automata [9];
snake-deterministic tiling systems and class Snake-DREC [10], in which scan-
ning strategies follow a boustrophedonic order; then the more recent μ-directed
Wang automata and class Scan-DREC [11,12,13].

The literature has already considered and studied the relation among sub-
classes within the same basic approach, but our knowledge of the actual general
situation is still quite partial. The aim of this paper is to consider and analyze the
inherent characteristics of these two main families of approaches, in order to get
a clearer idea of the picture (no pun intended), and obtain a larger deterministic
class, yet still in REC.

The paper has the following structure: it first presents the preliminaries and
basic notions. In Section 3 it then considers how to add expressivity and the
problem of remaining within REC. In it a new deterministic model of automaton
is presented. To conclude, Section 4 studies some properties of the model.

2 Preliminaries

The following definitions are taken and adapted from [1]. Let Σ be a finite
alphabet. A two-dimensional array of elements of Σ is a picture over Σ. A picture
having n rows and m columns has size (n, m). # /∈ Σ is used when needed as a
boundary symbol; p̂ refers to the bordered version of picture p. For instance

p =

p(1, 1) . . . p(1, m)
...

. . .
...

p(n, 1) . . . p(n, m)

p̂ =

# # . . . # #
# p(1, 1) . . . p(1, m) #
...

...
. . .

...
...

# p(n, 1) . . . p(n, m) #
# # . . . # #

.

A pixel is an element p(i, j) of p. We call (i, j) the position in p of the pixel. We
say that (i−1, j), (i+1, j), (i, j−1), and (i, j +1) are adjacent to position (i, j).

The set of all pictures over Σ is Σ++. A picture language is a subset of Σ++.
If D denotes some kind of picture-accepting device, then L(D) denotes the class
of picture languages recognized by such devices.

We will sometimes consider the 90o clockwise rotation, the horizontal mirror,

and the vertical mirror of a picture p. E.g. if p =
a b
c d

, then
c a
d b

,
c d
a b

, and

b a
d c

are its rotation, horizontal mirror and vertical mirror, respectively. Natu-

rally, the same operations can be applied to languages, and classes of languages,
too.

2.1 Tiling Recognizable Picture Languages

An important class of two-dimensional languages is REC, i.e., the class of tiling-
recognizable languages, originally defined in terms of tiling systems [3]. Another
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equivalent definition [14] is given by using online tessellation acceptors, OTAs,
first introduced in [2]. Here we define REC by using the equivalent notation
introduced in [4], which is based on a variant of Wang tiles.

Labeled Wang tiles. Let Σ be a finite alphabet and K be a set of colors, con-
taining the special color # representing borders. A labeled Wang tile (or tile for
short) is a unitary square with colored edges and a label in Σ. Formally, a tile is
an element A = (a, t, l, r, b) ∈ Σ ×K4, where t, b, r, l represent the colors at top,
bottom, right and left edges, respectively. For better readability, we represent

labeled Wang tiles as A =
t

l a r
b

. For any direction d ∈ Dirs = {↑,→,←, ↓},

Ad is the color of the edge of A towards direction d. We also use −d for referring
to the direction opposite to d. The set of tiles with labels in Σ and colors in
K is Σ4K . We also consider partial tiles, where some colors may be undefined:
the set of partial tiles is denoted by ΣK . The domain of a tile A is the set ΔA

of directions where A is defined. Given two partial tiles A, B bearing the same
label, we say that B extends A if Bd = Ad for every d ∈ ΔA. When we need to
emphasize the fact that a tile is not partial, we will call it complete.

Wang pictures. Labeled Wang tiles in Σ4K can be used to build pictures over
Σ, by using colors to check compatibility: two tiles may be adjacent only if the
color of the touching edges is the same. A picture P ∈ Σ4K

++ is called a Wang
picture if all borders are colored with # and P (i, j)↓ = P (i + 1, j)↑ for every
1 ≤ i < n, and P (i, j)→ = P (i, j + 1)← for every 1 ≤ j < m, where (n, m) is the
size of P . The label of a Wang picture P over Σ4K is the picture having for pixels
the labels of pixels of P . Next (on the left), the reader may find the example of a
Wang picture of size (2, 2) with its label (in the middle). For better readability,
we represent Wang pictures by writing each common color only once, as in the
figure on the right.

#
# a 4

1

#
4 b #

3
1

# b 2
#

3
2 a #

#

a b
b a

# #
# a 4 b #

1 3
# b 2 a #

# #

Sometimes we need to consider partial Wang pictures, whose pixels are partial
tiles with compatible edges (some colors may be undefined). Any (partial) Wang
picture is called a (partial) Wang tiling of its label.

Wang systems. A Wang system is a triple ω = 〈Σ, K, Θ〉, where Σ is a finite
alphabet, K is a set of colors, Θ is a subset of Σ4K . The language generated by
ω is the language L(ω) ⊆ Σ++ of the labels of all Wang pictures built with tiles
in Θ. Notice that a picture p ∈ L(ω) may have more than one Wang tiling in ω.
REC is the class of picture languages generated by Wang systems.
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a b a a b

b a b a a

a a b a b

a b a a b

a b a b b

# # # # #

# a ◦ b ◦ a ◦ a ◦ b #
a b a a b

# b × a × b × a × a #
a b a a b

# a ◦ a × b × a × b #
a b a a b

# a ◦ b ◦ a ◦ a ◦ b #
a b a a b′

# a ◦ b ◦ a ◦ b × b #
# # # # #

Fig. 1. A picture recognized by the Wang system of Example 1 and the corresponding
tiling

Example 1. Let L∃r=1r be the language of all pictures that have a row which
equals the first row. L is recognized by the Wang system producing tilings as
in Figure 1. In it, symbols from the first row are propagated downwards, and
each row is examined from left to right to check its compatibility with the first
row: if a wrong symbol is found, color × is propagated rightwards till the end
of the row. If a row is found to be equal to the first one, a primed version of its
rightmost symbol is propagated downwards. The picture is recognized only if the
bottom-right corner is colored by a primed symbol (or the last row is checked as
compatible and its rightmost symbol matches).

2.2 2D Automata Models

In the literature, several models of 2D automata have been proposed.

4-way automata. Historically, the first generalization of finite state automata to
two dimensions is given by 4-way automata [5]. Soon after this paper, several
other similar models have been proposed: a survey can be found in [6]. As the
standard model of finite-state automata on strings, a 4-way automaton can be
seen as a finite control having a head that visits the positions of a picture and
can move in four directions. At each step, it reads the input symbol under the
head, then it enters a new state and moves to an adjacent position: the direction
to move towards and the new state to enter are determined by a transition
function, according to the read symbol and the current state. The input picture
is accepted if, starting from position (1, 1) in state q0, the automaton eventually
halts in state qyes.

Definition 1. A 4-way nondeterministic automaton (4NA) is a tuple
〈Σ, Q, q0, qyes, qno, δ〉 where: Σ is a finite input alphabet; Q is a finite set of
states, containing in particular the initial state q0, the accepting state qyes, and
the rejecting state qno; δ : Σ × (Q \ {qyes, qno}) → 2 Q×Dirs is the transition
function.
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Example 2. In [15] it is proved that the language L of square pictures with the
first row of the form ww̄, where w̄ is the reverse of w, is recognizable by a 4-way
automaton. One can see that the same holds if L is generalized to pictures of
size (n, m), with n ≥ m ≥ 4. We will call the latter language Lhalf.

Online tessellation acceptors. OTAs are defined in [2] as a restricted type of 2D
cellular automaton in which cells do not make transitions at every time-step:
rather a “transition wave” sweeps diagonally across the array. Each cell changes
its state depending on the two neighbors to the top and to the left. A run of
a OTA on a picture p of size (n, m) assigns a state (from a finite set) to each
position (i, j) of p. Such state depends on the states already associated with
positions (i − 1, j) and (i, j − 1) and on symbol p(i, j) . At time t = 0 an initial
state q0 is associated with all the positions of the first row and of the first column
of p̂. The computation starts at time t = 1 by reading p(1, 1); at time t = 2,
states are simultaneously assigned to positions (1, 2) and (2, 1), and so on, to the
next diagonals. Picture p is recognized if there exists a run such that the state
assigned to position (n, m) is final.

Wang automata directed by polite scanning strategies. Recently [11,12], we in-
troduced μ-directed Wang automata (μ-NWA), a model of automata based on
Wang tiles and leaded by a prefixed scanning strategy μ. A Wang automaton
can be seen as having a head that visits the input picture, coloring at each step
the edges of the position it is visiting. For each accepting computation, the au-
tomaton produces a complete Wang picture whose label is equal to the input
picture. The coloring operations the automaton performs are determined by a
finite control, whereas the movements of the head are lead by the scanning strat-
egy μ; we requires that μ is polite, i.e., it has to satisfy some further properties.
Fix any starting corner cs and any starting direction ds ∈ Dirs, and consider a
next-position function, i.e., a partial function η : 2Dirs × Dirs → Dirs such that
η(D, d) =⊥ if −d 
∈ D. The scanning strategy μ = 〈η, cs, ds〉 determines how to
visit any input picture. More precisely, let d be the current direction, represent-
ing the direction from the last considered position, and D represent the set of
edges on the picture border together with the edges common with other already
visited positions; then η(D, d) is the direction towards the position to visit next.

In [13] we proved that any polite scanning strategy has to follow, except
for some bootstrap steps, one of four kinds of movements, or their rotations and
symmetrical, intuitively exemplified by the following pictures, where the number
in each pixel denotes its scanning order.

1 6 7 12

2 5 8 11

3 4 9 10

1 10 11 12

2 9 8 7

3 4 5 6

1 12 9 8

2 11 10 7

3 4 5 6

1 10 9 8

2 11 12 7

3 4 5 6
(a) snake (S) (b) L-like (J) (c) U-like (U) (d) spiral (C)

In the rest of the paper we will sometimes refer to rotations of the snake-like
strategy (i.e. S). The one depicted here is called the left-to-right version (denoted
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by Sl2r), while its rotation is called top-to-bottom (St2b). Their respective 180o

rotations are called Sr2l and Sb2t.

Definition 2. A μ-directed nondeterministic Wang automaton (μ-NWA) is a
tuple 〈Σ, K, δ, μ, F 〉 where: Σ is a finite input alphabet; K is a finite set of
colors; δ : ΣK ×Dirs → 2Σ4K is a partial function such that each tile in δ(A, d)
extends A; μ = 〈η, cs, ds〉 is a polite scanning strategy such that δ(A, d) 
= ∅
implies η(ΔA, d) 
=⊥; F ⊂ Σ4K is the set of final tiles.

Intuitively, the behavior of a μ-directed Wang automaton over an input picture
p is the following. At the beginning, the head of the automaton points at the
position in the starting corner cs and the current direction is set to ds. When
the current direction is d, the head is at position x, the pixel and the colors of
edges of p(x) are summarized by A, then let d′ = η(ΔA, d) and A′ ∈ δ(A, d).
The automaton can execute this move: color the edges of x according to A′, set
the current direction to d′, and move to the position adjacent to x following
direction d′. If no move is possible, the automaton halts. The input picture p is
accepted if there exists a computation such that the edges of the final position
are colored according to some tile in F .

The choice of the scanning strategy μ is not relevant from the point of view
of the recognizing power of μ-directed Wang automata: for every polite scanning
strategy μ, the class of picture languages recognized by μ-NWA equals REC [12].

Deterministic models. The deterministic versions DOTA, 4DA, μ-DWA of OTA,
4NA, and μ-NWA, respectively, are defined in the usual way, by making the tran-
sition functions deterministic. L(DOTA) is characterized in terms of diagonal-
deterministic tiling systems [7]: here we use Diag-DREC to denote its closure
under rotation. For each polite scanning strategy μ, a subclass L(μ-DWA) of
REC is obtained; Scan-DREC is the union of all such deterministic classes [12].

All these models are strictly less powerful than their nondeterministic coun-
terparts, i.e., the corresponding classes of languages are properly included in
REC. Their inclusion relations are summarized as follows. First, DOTAs are
incomparable with both 4DA and 4NA [2]. Second, in [12], L(St2b-DWA) is
proved to coincide with t2b-UREC, a class introduced in [7] and, more gen-
erally, one can see that L(Sd-DWA) coincides with d-UREC for any direction
d ∈ {t2b, b2t, l2r, r2l}. Since Diag-DREC is properly contained in the union of
all classes d-UREC [7], we have that Scan-DREC properly extends Diag-DREC
and hence also L(DOTA).

The relation between Wang automata and 4-way automata is not clear yet.
We do not know any example of language in 4DA that does not belong to
Scan-DREC; on the other hand, there exists a language L ∈ Scan-DREC that
cannot be recognized by a 4NA (and a fortiori not by a 4DA), as shown in the
following example.

Example 3. Consider again L∃r=1r as defined in Example 1. Such language can-
not be recognized by a 4-way automaton [14]. But it is both in t2b-UREC and
in l2r-UREC [7], hence the corresponding St2b-DWA and Sl2r-DWA can be built:
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they basically produce the tiling of Figure 1, except for a delay of one row in
case of St2b-DWA, and one column in case of Sl2r-DWA.

It is interesting to note that, for every direction d, a necessary condition is
known for a language to belong to d-UREC, and hence to L(Sd-DWA), since
those classes coincide [12]. Such condition is based on Matz’s technique [16],
that suggests to consider a picture as a string over the alphabet of columns (or
rows), and Hankel matrices.

The Hankel matrix of a string language S ⊆ Ω∗ is an infinite boolean matrix
MS indexed by words α, β ∈ Ω∗. MS is defined by setting MS(α, β) = 1 if and
only if αβ ∈ S. Let L be a picture language and, for every m, let L(m) be the
language of pictures in L having m rows. Then L(m) can be seen as a string
language over the alphabet Ω = Σm of columns of size m. In [7] it is proved
that L ∈ t2b-UREC implies that there exists an integer k such that, for every
m, the number of distinct rows of the Hankel matrix ML(m) is lower than km.
Similar properties can be given for any direction d.

Example 4. The 4NA cited in Example 2 and recognizing L = Lhalf is deter-
ministic. On the other hand, here we prove that L cannot be recognized by any
Sl2r-DWA. For sake of simplicity, we assume that all rows except the first one
are filled with symbol 0. Let us study the Hankel matrix ML(m) for a fixed m.
One can verify that α 
= α′ implies that the rows of ML(m) indexed by α and
α′ differ. In other words, the number of distinct rows in ML(m) is not bounded
w.r.t. m. Hence, the necessary condition stated above does not hold and this
means that Lhalf 
∈ L(Sl2r-DWA). Similarly, one has Lhalf 
∈ L(Sr2l-DWA).

3 Adding Expressivity

In general, two main approaches are proposed in the literature in the attempt of
defining a deterministic model of automaton. The first one considers the input
picture as a read-only tape that can be visited freely, and uses finite states
to propagate information [5,6]. The second one fixes a scanning strategy to
visit the input picture, but allows the possibility to mark its positions, and
use this markers to propagate information locally: each position is marked with
a state by DOTAs [2]; it is rewritten with a symbol from a new alphabet in
Diag-DREC [7,8]; its edges are colored by Wang automata [12,13].

In this section we try to combine these two apparently orthogonal approaches,
in order to improve their expressive power: the idea is to use both states and
colors assigned to positions. Clearly we want to stay inside REC, hence this
combination must be done carefully.

The first idea is to imagine an automaton with a head that is able to move
through the input picture according to its content, and depending on a finite
control, changing its state at each step. Such head should move from a position
to an adjacent one, and color at each step some edges of the position it is visiting.

In all models presented in the literature, the coloring operation in a given posi-
tion is done once and for ever; similarly we do not admit the possibility to change
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a color previously assigned to a position. This leads to the following tentative
definition. A 2D free deterministic automaton is defined by a tuple 〈Σ, K, Q,
q0, qyes, qno, δ〉 where: Σ is a finite input alphabet; K is a finite set of colors; Q
is a finite set of states, containing in particular the initial state q0, the accept-
ing state qyes, and the rejecting state qno; finally δ : ΣK × (Q \ {qyes, qno}) →
ΣK × Q × Dirs is a partial function such that δ(A, q) � (A′, q′, d) implies that
A′ extends A.

The behavior of a 2D free deterministic automaton 〈Σ, K, Q, q0, qyes, qno, δ〉
over an input picture p ∈ Σ++ would be described informally as follows. At
the beginning, the head of the automaton points at the top-left corner and the
current state is set to q0. When the current state is q, the head is placed at
position x , the pixel and the colors of edges of p at position x are summarized
by P(x ), then let (A′, q′, d) ∈ δ(P (x), q). Hence the automaton may execute this
move: if A is partial, color edges at position x according to A′, then enter state
q ′, move to the position adjacent to x towards direction d , and extend P to the
Wang picture P ′ with P ′(x) = A′.

Notice that the head can visit any cell any number of times, but colors cannot
be changed (A′ is a Wang tile that extends A). If no move is possible, the
automaton halts. The input picture p is accepted if there is a computation such
that the automaton eventually enters state qyes.

Example 5. Language L∃r=1r can be recognized by an automaton that visits the
input picture following a sort of “comb-like” movement. Next you find an ac-
cepted input picture and the partial Wang picture obtained by the computation;
the symbols never read by the automaton are omitted.

a b a a b

b a b a a

a a b a a

a b a a b

a b a b a

# # # # #
# a ◦ b ◦ a ◦ a ◦ b #

◦ ◦ ◦ ◦ ◦
# b × #

◦ ◦
# a ◦ a × #

◦ ◦ ◦ ◦ ◦
# a ◦ b ◦ a ◦ a ◦ b #

◦ ◦ ◦ ◦ ◦
# a ◦ b ◦ b × #

# # # # #

The automaton uses only two colors: the reject color × when it finds out
that a row is different from the first one, and another symbol ◦ to mark the
edges of the position it is visiting for the first time. The set of states is Q =
{q0, qyes, qno} ∪ Σ ∪ Σ̄, where symbols in Σ̄ are a barred version of symbols in
Σ, and they are used to distinguish the part of the computation when the head
moves leftwards. The transition function is summarized in Figure 2.

Considering an input picture of size (n, m), the automaton repeats the follow-
ing sequence of moves m times. For every j < m, it visits the top row from left
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q0 τ

#
# σ

#
# σ ◦

◦

, σ, ↓

#
◦ σ

#
◦ σ ◦

◦

, σ, ←

#
◦ σ #

#
◦ σ #

◦

, σ, ←

◦

# σ

◦

# σ −

◦

, τ, ↓

◦ σ or
◦

◦ σ

◦

◦ σ −

◦

, τ̄ , ←

◦

# σ

#

◦

# σ −

#
, q0, ↑

◦ σ

#
or

◦

◦ σ

#

◦

◦ σ −

#
, q0, ←

◦ σ # or
◦

◦ σ # ,

◦

◦ σ #
◦

, τ̄ , ←

with σ �= τ

◦ σ #
#

or
◦

◦ σ #
#

, qno

with σ �= τ

◦ τ #
#

or
◦

◦ τ #
#

qyes

or ◦ τ # or
◦

◦ τ #

q0 τ τ̄

#
# σ ◦

◦

q0, → τ, ↓

#
◦ σ ◦

◦

q0, → τ, ←

◦

# σ ◦

◦

q0, ↑ τ, → τ, ↓

◦

# σ ×

◦

q0, ↑ τ, ↓

◦

◦ σ ◦

◦

τ, → τ̄ , ←

◦

◦ σ ×

◦

τ̄ , ←

◦

# σ ◦

#
q0, ↑ τ, →

◦

# σ ×

#
q0, ↑

◦

◦ σ ◦

#
q0, ← τ, →

◦

◦ σ ×

#
q0, ←

Fig. 2. The transition function of the automaton for language L∃r=1r: coloring steps
(left), revisiting steps (right). Rows are indexed by partial Wang tiles, columns are
indexed by states. For revisiting steps, the complete Wang tile in the codomain is
omitted since equals the tile in the domain. Notation − stands for × if τ �= σ, for ◦
otherwise.

to right until it reaches the first unvisited position, i.e. (1, j). The symbol found
there is saved in the state. Then, the automaton goes back to (1, 1) and moves
downward, to find all rows that are compatible with the first j symbols of the
first row.

This task is performed as follows. Each row, starting from the second, is
scanned from left to right until one of the following two cases occurs. (1) A
reject color is found, so the row was already marked as unsuitable, and the
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automaton has to go back to the first column and then move to the next row.
(2) There is an unvisited position that, by construction, is position (i, j), so
either it contains the symbol saved in the state and it has to be marked just as
visited, or it contains a wrong symbol and it is hence marked with the reject
color. As in the previous case, the automaton has to go back to the first column
and then move to the next row. Once the bottom row has been examined, the
automaton enters state q0 and moves leftward to the first column, then goes back
up to the first row and then repeats the cycle by considering position (1, j + 1).

When the last position in the first row is scanned, to accept the input picture
the automaton has only to check if there is at least one non-rejected row ending
with the right symbol.

The previous example shows a critical feature of the model: whenever the symbol
at position (1, j) is considered, the automaton enters a sort of loop (it goes across
each row i until it reaches position (i, j) or finds the reject color, then it comes
back to the first column), whose outcome is different according to a piece of
information which is not locally propagated (i.e., whether the row has already
been rejected or not). Clearly this sort of cyclic computation cannot be removed
and this prevents to apply a construction similar to the one used in [2] to prove
that L(4NA) is included in REC. Actually, it turns out that this model is really
too permissive, as next example illustrates.

Example 6. Consider the language Lanbn of pictures with one row of the form
anbn. Since Lanbn , seen as a string language, is not regular, clearly L 
∈ REC.
However Lanbn is recognizable by the following free automaton: the set of states
is Q = {q0, q1, qyes, qno} and the set of colors is K = {ok}; it starts from the
top-left border, if the current symbol is a, then it marks its right edge by color
yes, enters state q1, and move rightwards without changing states nor coloring,
until it reaches a position having the right edge already marked (or bordered);
if the current symbol is b, then it marks its left edge by color ok, enters state
q0, and moves leftwards without changing states nor coloring, until it reaches
a position having the left edge already marked (or bordered). Such sequence
of moves is repeated until all positions are marked, and in this case the input
picture is accepted. Whenever one of the previous conditions is not satisfied, the
input picture is rejected.

Hence, the definition of free automaton needs to be somehow constrained. For
instance one should require that the first time a position is visited, a coloring
step must be performed. This is obtained simply by replacing the codomain of
δ by Σ4K × Q × Dirs . The new condition would prevent the behavior of the
automaton in the previous example. However this is not sufficient yet, as next
example illustrates.

Example 7. Consider the language L2anbn of pictures with two rows, the first
one having the form anbn. Again, it is easy to see that L2anbn 
∈ REC (otherwise
it would be easy to build a Wang system for Lanbn , too). However L2anbn is
recognizable by a free automaton that further respects the above condition. The
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behavior of such automaton is similar to the one described in Example 6, except
that the first row is used only to mark the position under consideration, and the
second row allows to go back and forth from left to right.

These problems suggest that the combination of coloring and revisiting steps
should be simplified: first the automaton executes a sequence of coloring steps,
then it performs a sequence of revisiting steps, using the information enclosed
in the colors placed before. We will call the two phases tiling and roaming,
respectively. In other words, the automaton simulates first the behavior of a μ-
DWA (in the tiling phase), for some prefixed scanning strategy μ, and then the
behavior of a 4DA (in the roaming phase).
This leads to this new definition:

Definition 3. A 4-way deterministic μ-directed Wang automaton (μ-4DWA) is
a tuple 〈Σ, K, γ, μ, Q, q0, qyes, qno, δ〉 where:

– Σ is a finite input alphabet;
– K is a finite set of colors;
– γ : ΣK × Dirs → Σ4K , the tiling transition function, is a partial function

such that each tile in γ(A, d) extends A;
– μ = 〈η, cs, ds〉 is a polite scanning strategy such that γ(A, d) 
= ∅ implies

η(ΔA, d) 
=⊥;
– Q is a finite set of states, containing in particular the initial roaming state

q0, the accepting state qyes, and the rejecting state qno;
– δ : Σ4K × Q → Q × Dirs is the roaming transition function.

The formal semantics is not presented but it is a straightforward combination of
μ-DWA and 4DA: when the μ-DWA component ends its picture scanning, the
4DA component starts working from the current position.

Example 8. For instance, a St2b-4DWA for the language L∃r=1r ∩ Lhalf can be
defined as follows: first visit the input picture row by row from top to bottom,
simulating the St2b-DWA defined in Example 3, to check if the input picture
is in L∃r=1r; then simulate the 4DA cited in Example 2, to check if the input
picture is in Lhalf.

4 Properties of 4-Way Deterministic Wang Automata

Theorem 1. For every polite μ, L(4DA) ∪ L(μ-DWA) ⊆ L(μ-4DWA) ⊆ REC.

Proof. It is easy to verify that both 4DA and μ-DWA (for μ polite) are special
kinds of μ-4DWA. On the one hand, 4DA are obtained by reducing the set of
colors used in the tiling part to the empty set, i.e., when ΣK is simply Σ. On the
other hand, μ-DWA are obtained by omitting the roaming part of the transition
function.

Let L be accepted by some μ-4DWA A. Clearly, A can be seen as the combina-
tion sof a μ-4DWA A1 over alphabet Σ and a 4DA A2 over alphabet ΣK . Now,
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let L1, L2 ⊆ ΣK
++ be defined as follows. L1 the set of (partial) Wang tilings

produced by all accepting computations of A1; L2 is the language accepted by
A2. Then, by definition L = λ(L1 ∩ L2), where λ : ΣK → Σ is the projection
that maps each tile onto its label. Since REC is closed under intersection and
alphabetic projection, we have that L ∈ REC. ��
Theorem 2. For every polite μ, L(μ-4DWA) is a boolean algebra.

Proof. By definition, since both L(4DA) and L(μ-DWA) are boolean alge-
bras [12]. ��
Theorem 3. There exists a language in L(S-4DWA) which is not in L(4DA)
nor in Scan-DREC.

Proof. Consider the language Lhalf ∩ L∃r=2r of pictures having the first row of
the form ww̄, and some row that equals the second row. Let L be the intersection
of such language with its horizontal mirror.

Language L can be recognized by a Sl2r-4DWA that simulates first a variant
of the Sl2r-DWA of Example 3 (such variant examines at the same time both the
second and the second-last rows instead of the first one only), then the 4DA of
Example 2, and then again a rotated version of the same 4DA.

On the other hand, it is known [14] that 4NA cannot recognize L∃r=2r, hence
a fortiori L cannot be recognized by any 4DA. Now we show that L is not in
Scan-DREC. Since a St2b-DWA cannot recognize L∃r=2r

h, as proved in [12],
then L cannot be recognized by neither a St2b-DWA nor a Sb2t-DWA. Moreover,
since no C-DWA can recognize L∃r=2r (see [12]), then clearly L cannot be recog-
nized by any C-DWA. By a similar reasoning one can prove that L is neither in
L(U-DWA), nor in L(J-DWA), or in any of their rotations. Finally, reasoning as
in Example 4 we can verify that L cannot be recognized by neither a Sr2l-DWA
nor a Sl2r-DWA.

Hence, the result follows from the fact that all polite scanning strategies are
basically limited to C, U, J, S and their rotations and mirrors [13]. ��
Notice that the language used in the previous proof to separate classes
Scan-DREC and L(4DA) from L(S-4DWA) actually separates also L(4NA) from
L(S-4DWA). It is not clear if there exists any language recognizable nondeter-
ministically by a 4NA but not by μ-4DWA.

Concludingly, these last results clearly show that the proposed approach of
combining the free roaming of 4-way automata and coloring based on predefined
scanning strategies is effective. Indeed, this yields to a concept of determinism
which extends those presented in [5,2,7,8,10,11,12,13].
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J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg
(2007)

8. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous fam-
ilies within recognizable two-dimensional languages. Fundamenta Informaticae 98,
143–166 (2010)

9. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: A computational
model for recognizable two-dimensional languages. In: Holub, J., Žďárek, J. (eds.)
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Abstract. A word is called a reset word for a deterministic finite au-
tomaton if it maps all states of this automaton to one state. We con-
sider two classes of automata: cyclic automata and Eulerian automata.
For these classes we study the computational complexity of the follow-
ing problems: does there exist a reset word of given length for a given
automaton? what is the minimal length of the reset words for a given
automaton?
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Complexity

1 Introduction

A deterministic finite automaton (DFA) A is a triple 〈Q, Σ, δ〉, where Q is a
finite set of states, Σ is a finite alphabet, and δ : Q × Σ → Q is a totally
defined transition function. The function δ extends in a unique way to an action
Q×Σ∗ → Q of the free monoid Σ∗ over Σ; this extension is also denoted by δ. We
denote δ(q, w) by q.w. For S ⊆ Q, w ∈ Σ∗, we also define S.w = {q.w | q ∈ S}.

A DFA A is called synchronizing if there exists a word w ∈ Σ∗ whose action
synchronizes A , that is, leaves the automaton in one particular state no matter
at which state in Q it started: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w
with this property is said to be a reset word for the automaton.

In [3], Černý produced for each integer n a synchronizing automaton with
n states, 2 input letters and the shortest reset word has length (n − 1)2. He
conjectured that these automata represent the worst possible case, that is, every
synchronizing automaton with n states can be reset by a word of length (n −
1)2. The conjecture is arguably the most longstanding open problem in the
combinatorial theory of finite automata. Upper bounds within the confines of
the Černý conjecture have been obtained for the maximum length of the shortest
reset words for synchronizing automata in some special classes, see, e.g., [5,1,6,
4, 11]. Two of these classes are considered in the present paper. In general case
there is only a cubic upper bound (n3 − n)/6, see [9].

It is natural to consider computational complexity of various problems arising
from the study of automata synchronization. The most important questions are:

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 238–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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is a given automaton synchronizing or not, and what is the minimal length of
the reset words for a given automaton?

It follous from [3] that there exists an algorithm that checks whether a given
DFA A = 〈Q, Σ, δ〉 is synchronizing. This algorithm works within O(|Σ| · |Q|2)
time bound. In [5], Eppstein presented another algorithm which works within
O(|Σ| · |Q|2) + O(|Q|3) time bound and finds some reset word (which need not
to be the shortest reset word for A ). In [5, 10] it was shown that the following
problem SYN is NP-complete: given a DFA A and a positive integer L, is there a
word of length at most L synchronizing the automaton A . This problem remains
NP-complete even if restricted to automata with 2-letter alphabet. Moreover,
Berlinkov in [2] proved that no polynomial time algorithm approximates the
length of the shortest synchronizing word within constant factor for a given
DFA.

In [8], Olschewski and Ummels considered a problem MIN-SYN: given a DFA
A and a positive integer L, is the minimum length of reset words for the automa-
ton A equal to L? They proved that this problem is DP-complete, where DP is
a class of all languages of the form L = L1 \L2 with L1, L2 ∈NP. The canonical
DP-complete problem is SAT-UNSAT: given two Boolean formulae φ and ψ (in
CNF), the problem is to decide whether φ is satisfiable and ψ is unsatisfiable.
The problem MIN-SYN remains DP-complete even for 2-letter automata.

Since the problems SYN and MIN-SYN turn out to be computationally difficult
in general, it is reasonable to consider their restrictions to some natural classes of
automata. For any class C of automata, we define the restricted versions SYN(C)
and MIN-SYN(C) of SYN and respectively MIN-SYN.

Instance: A DFA A ∈ C and an integer L > 0.
Question of SYN(C): Is there a reset word of length L for the automaton A ?
Question of MIN-SYN(C): Is the minimum length of reset words for the au-

tomaton A equal to L?

These problems have been considered in the literature for cyclically monotonic
(see [5]), monotonic, commutative, aperiodic, D-trivial automata, for automata
with simple idempotents and for automata with a zero state (see [7]). In some
cases they become solvable in polynomial time, in some other cases they remain
computationally hard. In the present paper we consider these problems for two
further natural classes of automata: the class CY CLE of cyclic automata and
the class EULER of Eulerian automata. Let us define these classes and comment
on their synchronization properties.

Let A = 〈Q, Σ, δ〉 be a DFA and |Q| = n. The letter b ∈ Σ is said to be
cyclic if it acts on the set Q as a cyclic permutation of order n. This means
that for any q ∈ Q and i ∈ {1, . . . , n − 1}, we have δ(q, bn) = q �= δ(q, bi). A
DFA with cyclic letter is called cyclic. Dubuc [4] has proved that every n-state
synchronizing cyclic DFA has a reset word of length (n − 1)2, thus, the Černý
conjecture holds true for cyclic automata. Furthermore, this upper bound of the
length of the shortest reset words is tight, because automata from the Černý
series [3] are cyclic.
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A DFA A = 〈Q, Σ, δ〉 is said to be Eulerian if its underlying digraph is
Eulerian. It is well-known that the underlying digraph of A is Eulerian if and
only if for every state q ∈ Q there are exactly |Σ| pairs (p, a) ∈ Q×Σ such that
p.a = q. Kari [6] has proved that for any n-state synchronizing Eulerian DFA
there exists a reset word of length (n − 2)(n − 1) + 1. It means that the Černý
conjecture is true for Eulerian automata.

For a class C of automata and a positive integer k, we denote by Ck the class of
all automata in C with k input letters. Here we prove that each of the problems
SYN(CY CLE), SYN(CY CLEk) with k ≥ 2, SYN(EULER), SYN(EULERk)
with k ≥ 3 is NP-complete, and each of the problems MIN-SYN(CY CLE), MIN-
SYN(CY CLEk) with k ≥ 2, MIN-SYN(EULER), MIN-SYN(EULERk) with
k ≥ 3 is both NP-hard and co-NP-hard. The question about the complexity of
the problems SYN(EULER2) and MIN-SYN(EULER2) remains open.

For the sequel, we need some notation. For a set Q, let |Q| denote the cardi-
nality of Q and let 2Q stands for the set of all subsets of Q. For a word w ∈ Σ∗,
we denote by |w| the length of w and by w[i], where 1 ≤ i ≤ |w|, the i-th letter
in w from the left. If 1 ≤ i ≤ j ≤ |w|, we denote by w[i, j] the word w[i] · · ·w[j].

2 Cyclic Automata

Theorem 1. The problem SYN(CY CLE2) is NP-complete.

Proof. It is easy to see that the general problem SYN belongs to NP, because
any synchronizing automaton can be synchronizing by a word of polynomial
length (of length at most (n3 − n)/6, see [9]). Now we reduce the problem
SAT to SYN(CY CLE2). Take an instance of SAT consisting of the clauses
c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the Boolean variables x1, . . . , xn ∈ {0, 1}.
We may (and will) assume that no clause contains both xm and ¬xm for any m ∈
{1, . . . , n}. We are going to construct a 2-letter automaton Acycle = 〈Q, Σ, δ〉
and a number L such that there exists a reset word of length L for Acycle if and
only if c1 ∧ c2 ∧ · · · ∧ cp is satisfiable.

Let G = {(i, m) | ci contains ¬xm}. We put

Σ = {a, b}, Q = (
p⋃

i=1

Qi) ∪ (
p⋃

i=1

Di) ∪ (
⋃

(i,m)∈G

Sm
i ), where

Qi = {q(i, 0), . . . , q(i, n + 2)}, Di = {d(i, 1), . . . , d(i, n + 4)},
Sm

i = {s(i, m, 1), . . . , s(i, m, n + 4)}.

Now we define the action of the letters a and b. For all i ∈ {1, . . . , p} and
m ∈ {1, . . . , n}, we put

q(i, 0).a = q(i, 1); q(i, 0).b =

{
q(i − 1, 0) if i > 1,

q(1, 1) if i = 1;
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q(i, m).b =

{
s(i, m, 1) if ¬xm occurs in ci,

q(i, m + 1) otherwise;

q(i, m).a =

{
d(1, 1) if xm occurs in ci,

q(i, m + 1) otherwise;

q(i, n + 1).a = q(i, n + 1).b = q(i, n + 2);
q(i, n + 2).a = d(1, 1); q(i, n + 2).b = d(i, 1).

For all i ∈ {1, . . . , p}, m ∈ {1, . . . , n} such that (i, m) ∈ G, and for all j ∈
{1, . . . , n + 4}, we put

s(i, m, j).a = d(1, 1); s(i, m, j).b =

{
s(i, m, j + 1) if j < n + 4,

q(i, m + 1) if j = n + 4.

For all i ∈ {1, . . . , p} and j ∈ {1, . . . , n + 4}, we put

d(i, j).a = d(1, 1); d(i, j).b =

⎧
⎪⎨

⎪⎩

d(i, j + 1) if j < n + 4,

q(i + 1, 1) if j = n + 4, i < p,

q(p, 0) if j = n + 4, i = p.

x1 ∨ ¬x2 x2 ∨ ¬x3 ¬x1 ∨ ¬x3

x1

x2

x3

0

1

2

n = 3

n + 1

n + 2

n + 4

n + 4

n + 4 n + 4

n + 4 n + 4 n + 4

Fig. 1. The automaton Acycle for the clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

We put L = n+2. An example of the automaton Acycle is presented in Fig. 1.
The action of the letter b is shown with solid lines. The action of the letter a is
shown with dashed lines. All large black circles represent the same state d(1, 1)
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(this way we try to improve the readability of the picture). Every bold arrow
labelled by n+4 represents one of the sets Sm

i or Di. Every set Di, i ∈ {1, . . . , p},
and every set Sm

i , (i, m) ∈ G, contains n+4 states. Fig. 1 contains three columns
of states. The i-th column contains the states q(0, i), . . . , q(n + 2, i) for fixed i.
Every horizontal row contains the states q(m, 1), q(m, 2), q(m, 3) for fixed m.
There are some right arrows labelled by b from columns to the sets Sm

i . The set
Di is drawn under the corresponding set Qi.

The size of the automaton Acycle is a polynomial function of the size of the
clauses c1, . . . , cp. It easy to prove that the automaton Acycle is cyclic, namely,
the letter b acts on the set Q as a cyclic permutation of order |Q|.

We notice that the word an+3 is a reset word for Acycle. We will prove that
there is a reset word of length less than n + 3 if and only if the formula c1 ∧ c2 ∧
. . . ∧ cp is satisfiable.

Lemma 1. If q ∈ Q, w ∈ Σ∗, w[n + 2] = a and there is an integer s such that
s ∈ {1, . . . , n + 1} and q.w[1, s] = d(1, 1), then q.w[1, n + 2] = d(1, 1).

Proof. We have

q.w[1, n + 1] = q.w[1, s]w[s + 1, n + 1] = d(1, 1).w[s + 1, n + 1] ∈ D1.

Therefore, q.w[1, n + 2] = d(1, 1).

Lemma 2. If w ∈ Σ∗, |w| = n + 2 and w[1] = w[n + 2] = a, then

δ(Q\{q(1, 0), . . . , q(p, 0)}, w) = {d(1, 1)}.

Proof. The letter a maps all sets Di and Sm
i to the state d(1, 1). Therefore, if

q ∈ (
⋃

(i,j)∈G

Sj
i ) ∪ (

p⋃

i=1

Di), then q.w[1] = d(1, 1), and we obtain from Lemma 1

that q.w[1, n + 2] = d(1, 1).
Let q ∈ Qi for some i ∈ {1, . . . , p}. If for some s ∈ {1, . . . , n + 1} the state

q.w[1, s] belongs to one of the sets Sm
i or Di, then either q.w[n+1] belongs to the

same set Sm
i or Di, or there is some s′ ∈ {s + 1, . . . , n + 1} such that q.w[1, s′] =

d(1, 1) and we can apply Lemma 1. In any case, if for some s ∈ {1, . . . , n + 1},

one has q.w[1, s] ∈ (
⋃

(i,j)∈G

Sj
i ) ∪ (

p⋃

i=1

Di), then q.w[1, n + 2] = d(1, 1), because

w[n + 2] = a.
Let q ∈ Qi \ {q(0, i)} and suppose that, for all s ∈ {1, . . . , n + 1}, one has

q.w[1, s] /∈ (
⋃

(i,j)∈G

Sj
i ) ∪ (

p⋃

i=1

Di).

It means that q.w[1, s] ∈ Qi for s ∈ {1, . . . , n + 1}. Hence, q = q(1, i). Therefore,
q.w[1, n + 2] = d(1, 1). Thus, δ(Q\{q(1, 0), . . . , q(p, 0)}, w) = {d(1, 1)}.

It follows from Lemma 2 that a word w with |w| = n+2 and w[1] = w[n+2] = a
is a reset word for Acycle if and only if q(1, 0).w = . . . = q(p, 0).w = d(1, 1).
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Lemma 3. If c1 ∧ c2 ∧ . . .∧ cp is satisfiable, then there exists a reset word w of
length n + 2 for the automaton Acycle.

Proof. Let w = aα1 . . . αna, where for i ∈ {1, . . . , n}, αi =

{
a if xi = 1,

b if xi = 0.
We

are going to prove that {q(1, 0), . . . , q(p, 0)}.w = {d(1, 1)}. Let i ∈ {1, . . . , p}. We
have q(i, 0).a = q(i, 1). We also have ci(x1, . . . , xn) = 1 (1 means true). Hence,
there is m ∈ {1, . . . , n} such that xm = 1 (in this case w[m + 1] = αm = a)
and the variable xm occurs in ci; or xm = 0 (in this case w[m + 1] = αm = b)
and ¬xm occurs in ci. Let m be the least number with such property. Then
we have q(i, 1).α1 . . . αm−1 = q(i, m) and q(i, m).αm ∈ {s(i, m, 1), d(1, 1)}. If
q(i, m).αm = s(i, m, 1) and αm+1 = . . . = αn = b, then q(i, 1).α1 . . . αn ∈
Sm

i and q(i, 0).w = d(1, 1). Otherwise, there is a number m′ ∈ {m, . . . , n + 1}
such that q(i, 1).α1 . . . αm′ = d(1, 1). In this case we obtain from Lemma 1 that
q(i, 0).w = d(1, 1). Therefore, by Lemma 2 we obtain Q.w = {d(1, 1)}.

Lemma 4. If there is a reset word w ∈ {a, b}∗ of length n+2 for the automaton
Acycle, then c1 ∧ c2 ∧ . . . ∧ cp is satisfiable.

Proof. For any letter w[1] ∈ {a, b}, we have {q(1, 1), . . . , q(1, p)} ⊆ Q.w[1].
We consider the word w[2, n + 1]. For m ∈ {1, . . . , n}, we put

xm =

{
0 if w[m + 1] = b,

1 if w[m + 1] = a.

Arguing by contradiction, suppose that ci(x1, . . . , xn) = 0 for some clause ci. If
for some s ∈ {2, . . . , n+1}, we have q(i, 1).w[2, s] ∈ Sm

i , then ci(x1, . . . , xn) = 1.
Therefore, q(i, 1).w[2, n + 1] = q(i, n + 1). In both cases w[n + 2] = a and
w[n + 2] = b we obtain q(i, 0).w = q(i, n + 1).w[n + 2] = q(i, n + 2). Therefore,
the word w resets the automaton Acycle to the state q(i, n + 2). On the other
hand, the state q(i, n + 2) cannot be reached from the state q(j, 1), i �= j by
using the word of length n + 2. We obtain a contradiction. Therefore, for any
i ∈ {1, . . . , p}, ci(x1, . . . , xn) = 1. The lemma and the theorem is proved.

Corollary 1. 1. The problems SYN(CY CLE) and SYN(CY CLEk) for k ≥ 2
are NP-complete.

2. The problems MIN-SYN(CY CLE) and MIN-SYN(CY CLEk) for k ≥ 2 are
NP-hard and co-NP-hard.

Proof. 1. The problem SYN(CY CLE2) is a special case of SYN(CY CLE). Hence,
the latter problem is NP-complete. To reduce the problem SYN(CY CLE2) to
SYN(CY CLEk) for any k ≥ 2, we add k − 2 letters that act as identical trans-
formations to the construction in the proof above.

2. The NP-hardness of the problem MIN-SYN(CY CLE2) for k ≥ 2 follows
from the same reduction as in the proof of Theorem 1. To prove the co-NP-
hardness, we use the same automaton Acycle constructed from given clauses
c1, . . . , cp but put L = n + 3. Then the shortest reset word for the automaton
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Acycle has length L if and only if there is no values for the variables x1, . . . , xn

such that c1(x1, . . . , xn) = . . . = cp(x1, . . . , xn) = 1. Therefore, the problem is
co-NP-hard. The result extends to the problems MIN-SYN(CY CLE) and MIN-
SYN(CY CLEk) for k ≥ 2 in an obvious way.

3 Eulerian Automata

Theorem 2. The problem SYN(EULER3) is NP-complete.

Proof. The problem SYN(EULER3) belongs to NP because general problem
SYN belongs to NP. We use a reduction from SAT again. Take an instance of
SAT consisting of the clauses c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the Boolean
variables x1, . . . , xn. We assume that no clause contains both xm and ¬xm for
any m ∈ {1, . . . , n}. We are going to construct a 3-letter automaton Aeuler =
〈Q, Σ, δ〉 and an integer L > 0 such that there exists a reset word of length L
for Aeuler if and only if c1 ∧ c2 ∧ . . . ∧ cp is satisfiable.

Let Aeuler = 〈Q, Σ, δ〉, where

Σ = {a, b, c}, Q = Z ∪ (
p⋃

i=1

Qi) ∪ (
p⋃

i=1

Ri) ∪ (
p⋃

i=1

Si),

Z = {z(m) | m ∈ {2, . . . , n + p + 5}} and, for i ∈ {1, . . . , p},
Qi = {q(i, m) | m ∈ {1, . . . , n + 3}}, Ri = {r(i, m) | m ∈ {2, . . . , n + 3}},

Si = {s(i, m) | m ∈ {1, . . . , p − i + 1}}.
Now we define the action of the letters a and b. Let i ∈ {1, . . . , p}. For all
m ∈ {1, . . . , n}, we put

q(i, m).a =

{
r(i, m + 2) if xm occurs in ci,

q(i, m + 1) otherwise;

q(i, m).b =

{
r(i, m + 2) if ¬xm occurs in ci,

q(i, m + 1) otherwise.

q(i, n+ 1).a = q(i, n+ 1).b = q(i, n+ 2); q(i, n+ 2).a = q(i, n+ 2).b = q(i, n+ 3);

q(i, n + 3).a = r(i, n + 3).a = s(i, 1); q(i, n + 3).b = q(i, n + 3);

r(i, n + 3).b = r(i, n + 3).

For m ∈ {2, . . . , n + 2}, we put r(i, m).a = r(i, m).b = r(i, m + 1).
For m ∈ {1, . . . , p − i + 1}, we put

s(i, m).b = s(i, m); s(i, m).a =

⎧
⎪⎨

⎪⎩

s(i, m + 1) if m < p + i − 1,

s(i − 1, p − i + 2) if m = p + i − 1, i > 1,

z(n + p + 4) if m = p, i = 1.
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For m ∈ {2, . . . , n + p + 2}, we put z(m).a = z(m).b = z(m + 1). We also put

z(n + p + 3).a = z(n + p + 4); z(n + p + 3).b = z(n + p + 3);

z(n + p + 4).a = z(n + p + 5); z(n + p + 4).b = z(n + p + 4);

z(n + p + 5).a = z(n + p + 5).b = z(n + p + 5).

The letters a and b encode satisfiability of the clauses. Now we define the
action of the letter c such that the automaton A becomes Eulerian. For q ∈ Q,
we put q.c = q except the following cases. Let i ∈ {1, . . . , p}, m ∈ {1, . . . , n}. If
either xi or ¬xi occurs in cm, then we put r(i, m + 2).c = q(i, m + 1). Besides
that, we put

q(i, n + 3).c = s(i, 1).c = q(i, 1); r(i, n + 3).c = r(i, 2) for i �= p;
s(i, p − i + 1).c = r(i + 1, 2); z(n + p + 3).c = z(n + p + 4).c = z(2);

z(n + p + 5).c = r(1, 2).

An example of the automaton Aeuler is presented in Fig. 2. The action of the
letters a, b, c is shown by solid, dashed and dotted lines respectively. The states
in Fig. 2 are organized in several columns containing respectively the sets Z,
Q1 ∪ S1, R1, Q2 ∪ S2, R2, and so on. We put L = n + p + 3.

In general, the states of the automaton Aeuler can be partitioned in n + p + 5
“rows” T1, . . . , Tn+p+5. We put T1 = {q(1, 1), . . . , q(p, 1)}; for m ∈ {2, . . . , n+3}
we put Tm = {z(m), q(1, m), r(1, m), . . . , q(p, m), r(p, m)} and for m ∈ {n+4, . . . ,
n + p + 4} we put Tm = {z(m), s(m−n− 3, 1), . . . , s(m−n− 3, p−m + n + 4)};
we also put Tn+p+5 = {z(n + p + 5)}. Clearly, the size of the automaton Aeuler

is a polynomial function of the size of the clauses c1, . . . , cp.

Lemma 5. The DFA Aeuler is Eulerian.

Proof. It is easy to check that for any state q ∈ Q there exist exactly 3 pairs
(r, α) ∈ Q × Σ such that r.α = q.

Let U ⊆ Q, Θ ⊆ Σ. We denote by dΘ(U) the minimum length of words w ∈ Θ∗

such that |U.w| = 1. Thus, the minimum length of reset words for Aeuler is equal
to dΣ(Q).

Lemma 6. dΣ(Q) = d{a,b}(Q) ∈ {n + p + 3, n + p + 4}.

Proof. It is immediate to check that the word an+p+4 is a reset word for DFA
Aeuler . Therefore dΣ(Q) ≤ n+p+4. We notice that d{a,b}({z(2), z(n+p+5)}) =
n + p + 3. Therefore d{a,b}(Q) ≥ n + p + 3.

Now let w be a shortest reset word for the Aeuler and suppose that the letter
c occurs in w. We aim to prove that |w| ≥ n + p + 4. It is not difficult to verify
that dΣ({z(2), r(1, 2)}) = n + p + 2 and there is no word u ∈ Σ∗ \ {a, b}∗ of
length n+p+2 such that z(2).u = r(1, 2).u. Let i be the position of the leftmost
occurrence of the letter c in w. If i ≥ n+p+4, then |w| ≥ n+p+4. Let i ≤ n+p+3,
then we have z(n+p+4), z(n+p+5) ∈ Q.w[1, i−1]. Hence z(2), r(1, 2) ∈ Q.w[1, i].
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x1 ∨ ¬x2 x2 ∨ ¬x3 ¬x1 ∨ ¬x3

x1

x2

x3

1

2

n = 3

n + 1

n + 2

n + 3

n + 4

n + 5

n + p + 3

n + p + 4

n + p + 5

Q1 Q2 Q3

R1 R2 R3

Z

S1

S2

S3

Fig. 2. The automaton Aeuler for the clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

Therefore |w| ≥ i+dΣ({z(2), r(1, 2)}) = i+n+p+2. If i ≥ 2, then |w| ≥ n+p+4.
If i = 1, then w[1] = c and {z(2), z(3), r(1, 2)} ⊆ Q.w[1]. It is not difficult to
prove that dΣ({z(2), z(3), r(1, 2)}) ≥ n + p + 3. Hence, |w| ≥ n + p + 4 in any
case. Therefore dΣ(Q) = d{a,b}(Q).

In particular, the lemma claims that there exists a reset word of the mini-
mum length in which the letter c does not occur. We notice that Tn+p+5.a =
Tn+p+5.b = Tn+p+5, and Tm.a, Tm.b ⊆ (Tm∪Tm+1) for m ∈ {n+1, . . . , n+p+4}
while Tm.a, Tm.b ⊆ Tm+1 ∪ Tm+2 for m ∈ {1, . . . , n}. The following lemma is an
immediate corollary of this property.

Lemma 7. 1. Every reset word from {a, b}∗ resets the DFA Aeuler to the state
z(n + p + 5).

2. d{a,b}(Tn+2 ∪ . . . ∪ Tn+p+5) = p + 3.
3. If a word w ∈ {a, b}∗ of length n + p + 3 is a reset word for Aeuler, then

Q.w[1, n] ⊆ Tn+2 ∪ . . . ∪ Tn+p+5.
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4. If a word w ∈ {a, b}∗ of length n + p + 3 is a reset word for Aeuler, then
T1.w[1, n] ⊆ Tn+2.

5. If there is a word w of length n such that Q.w ⊆ Tn+2 ∪ . . . ∪ Tn+p+5, then
the word wap+3 is a reset word of length n + p + 3 for Aeuler .

6. If there is a word w of length n such that T1.w ⊆ Tn+2, then there is a reset
word of length n + p + 3 for Aeuler .

7. d{a,b}(Q) = d{a,b}(T1).

Lemma 8. If c1 ∧ c2 ∧ . . .∧ cp is satisfiable, then there exists a reset word w of
length n + p + 3 for the automaton Aeuler.

Proof. Let w = α1 . . . αnap+3, where for i ∈ {1, . . . , n}, αi =

{
a if xi = 1,

b if xi = 0.
We

are going to prove that T1.w = {z(n + p + 5)}. Let i ∈ {1, . . . , p}. We have
ci(x1, . . . , xn) = 1. Hence, there is m ∈ {1, . . . , n} such that xm = 1 (in this
case w[m] = a) and xm occurs in ci or xm = 0 (in this case w[m] = b) and ¬xm

occurs in ci. Let m be the least number with this property. We obtain from the
definition of the action of a and b that

q(i, 1).w[1, m − 1] = q(i, m) and q(i, m).w[m] = r(i, m + 2).

For any word w[m+1, n] ∈ {a, b}∗ we have r(i, m+2).w[m+1, n] = r(i, n+2) ∈
Tn+2. Hence, from Lemma 7, w is a reset word for the automaton Aeuler .

Lemma 9. If there is a reset word w ∈ {a, b}∗ of length p + n + 3 for the
automaton Aeuler, then c1 ∧ c2 ∧ . . . ∧ cp is satisfiable.

Proof. The word w resets DFA Aeuler . Therefore, we have T1.w[1, n] ∈ Tn+2.
For m ∈ {1, . . . , n} we put

xm =

{
0 if w[m] = b,

1 if w[m] = a.

Arguing by contradiction, suppose that ci(x1, . . . , xn) = 0 for some clause ci.
If, for some m ∈ {1, . . . , n}, we would have q(i, 1).w[1, m] = r(ı, m + 2), then
ci(x1, . . . , xn) = 1. Therefore, q(i, 1).w[1, n] = q(i, n + 1) ∈ Tn+1. By Lemma 7,
the word w is not a reset word for Aeuler . We obtain a contradiction. Therefore,
for any i ∈ {1, . . . , p}, we have ci(x1, . . . , xn) = 1.

Corollary 2. 1. The problems SYN(EULER) and SYN(EULERk) for k ≥ 3
are NP-complete.

2. The problems MIN-SYN(EULER) and MIN-SYN(EULERk) for k ≥ 3 are
NP-hard and co-NP-hard.

Proof. The proof is the same as the proof of Corollary 1.
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4 Conclusion and Conjectures

We proved that problems SYN(EULER) and SYN(CY CLE) are NP-complete.
This means that these problems have the same complexity as the general prob-
lem SYN stated for a class of all DFA. At the same time we proved that the
problems MIN-SYN(EULER) and MIN-SYN(CY CLE) are NP-complete and co-
NP-complete. But it is only the lower bound and it does not seem to be a tight.
The general problem MIN-SYN is DP-complete for a class of all DFA (see. [8]).
It is natural to conjecture the following.

Conjecture 1. For any integer k ≥ 2 the problems MIN-SYN(EULER), MIN-
SYN(CY CLE), MIN-SYN(EULERk), MIN-SYN(CY CLEk) are DP-complete.

The NP-completeness of the problem SYN(EULER2) now is also unproved. It
may happen that if problem SYN(EULER2) can be solved in a polynomial time,
then the problem MIN-SYN(EULER2) can be also solved in polynomial time.

It follows from [2] that no polynomial time algorithm approximates the length
of the shortest synchronizing word within constant factor for a given DFA. There
is no such algorithm even for automata over the binary alphabet. So we can
conjecture the following.

Conjecture 2. No polynomial time algorithm approximates the length of the
shortest synchronizing word within constant factor for a given cyclical or Eule-
rian DFA. There is no such algorithm even for DFA over the binary alphabet.
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3. Černý, J.: Poznámka k homogénnym eksperimentom s konecnými avtomatami,
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Abstract. In distributed real-time systems, we cannot assume that
clocks are perfectly synchronized. To model them, we use independent
clocks and define their timed semantics. The universal timed language,
and the timed language inclusion of icTA are undecidable. Thus, we
propose Recursive Distributed Event Clock Automata (DECA). DECA
are closed under all boolean operations and their timed language inclu-
sion problem is decidable (more precisely PSPACE-complete), allowing
stepwise refinement. We also propose Distributed Event Clock Temporal
Logic (DECTL), a real-time logic with independent time evolutions. This
logic can be model-checked by translating a DECTL formula into a DECA
automaton.

1 Introduction

Real-Time Distributed Systems (RTDS) take an increasingly important role in
our society, including in aircrafts and spacecrafts, satellite telecommunication
networks or positioning systems. Distributed Systems consist of computer sys-
tems at different locations, that communicate through a network to achieve their
function. Real-Time Systems have to obey strict requirements about the time
of their actions. To ensure these, they rely on clocks. When systems are widely
distributed, we cannot assume that their clocks are perfectly synchronized.

One of the most successful techniques for modeling real-time systems are
Timed Automata (TA) [2]. A timed automaton is a finite automaton augmented
with real-valued clocks. Constraints on these clocks are used to restrict the be-
haviors of the automaton. The model of TA assumes perfect clocks: all clocks
have infinite precision and are perfectly synchronized.

This causes TA to have an undecidable language inclusion problem [2]. The
situation contrasts strongly with the one of automata without real time, where
the problems of complementation, language inclusion, emptiness, union and in-
tersection are decidable, as well as the satisfiability and validity of propositional
linear temporal logic (LTL). These properties are the basis of the success of
model-checking. When all these problems are decidable, we call the formalism

B. Bouchou-Markhoff et al. (Eds.): CIAA 2011, LNCS 6807, pp. 250–263, 2011.
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(automata or logic) fully decidable. These negative results spurred a quest for ex-
pressive but still fully decidable formalisms. To restore decidability, [4] proposed
to restrict the behavior of clocks. The key idea is that the problematic clocks of
TA are reset by non-deterministic transitions. In contrast, an event clock (EC)
xp is reset when a given atomic proposition p occurs. The event clock values are
deterministic and thus Event Clock Automata ECA are determinizable, making
language inclusion decidable and thus enabling refinement based development.
Event clocks can also be introduced in temporal logic [20]. An event clock con-
straint is naturally translated into a proposition �Ip, that means “the last time
that a p occurred was d time units ago, where d lies in I”.

However, the expressiveness of ECA is rather weak. Furthermore, this logic
violates the substitution principle: Any proposition should be replaceable by a
formula. Therefore [12] introduced the notion of “recursive” event. In a recursive
event model, the reset of a clock is decided by a lower-level automaton (or for-
mula). This automaton cannot read the clock that it is resetting. Clock resets are
thus still deterministic, but the concept of “event” is now much more expressive.
�I and �I are modalities that can contain any subformulas, and can be nested.
The temporal logic of recursive event clocks (variously called SCL [20] or Event-
ClockTL [12]) has the same expressiveness as Metric Interval Temporal Logic
MITL [3] (a decidable fragment of Metric Temporal Logic MTL where punctual
constraints U{k} are forbidden) in the interval semantics. First-and second-order
monadic logics with matching expressiveness have been provided [12], yielding a
natural, robust, fully decidable level of real-time expressiveness.

In this paper, we remove the assumption of perfect clock synchronization.
Here, inspired by [6,14,1,10], we study the worst case: the clocks can advance
totally independently if they are in different processes. [18,8] studied the opposite
case, where the difference between clocks (drift) is infinitesimally small.

While [1] only studied untimed languages of their timed automata, namely
the universal and existential languages, our first contribution is to define and
study the corresponding timed languages (Section 4).

Our second contribution is to extend the Recursive Event Clock Automata
(RECA) with distributed (a.k.a independent) clocks, yielding the Distributed
Recursive Event Clock Automata (DECA). We will show that DECA are de-
terminizable, thus closed under complementation, and thus that their language
inclusion problem is decidable (more exactly, PSPACE-complete). We also show
the decidability and regularity of their existential and universal timed languages
(Section 5).

Our third contribution is to define a temporal logic with multiple observers,
each with its own time evolution. This gives us the (Recursive) Distributed Event
Clock Temporal Logic (DECTL), which is also PSPACE-complete (Section 6).

Structure of the paper. The rest of the paper is organized as follows. Sections
2 and 3 recall preliminary notions. Section 4 extends the semantics to timed
languages. Section 5 defines DECA and studies their properties. Section 6 exam-
ines real-time temporal logics: it recalls EventClockTL [20], then introduces and
studies DECTL. Due to space constraints, we only sketch proofs.
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2 Preliminaries

We briefly recall the various models of time that are used in the literature [5]. We
present our results in the interval semantics, that is the richest and most natural
(but also most difficult) model. We also recall clocks and their constraints.

2.1 Models of Time

Models of time can be linear, considering a single future, or branching, consid-
ering several alternative futures. We only consider linear time in this paper. Our
goal here is to model real-time systems, and thus we use the real numbers as our
model of time. This avoids a premature commitment to a specific discretization
of time. In this paper, we use the interval semantics, where the state of the
model is known at any point in time, as opposed to point semantics, where it is
known only at transitions.

Let P be a finite set of (propositional) atoms. A letter is an element of a finite
set Σ. In this paper, we choose to define a letter as a propositional valuation over
P, so we pose Σ = 2P. Let N be the set of natural numbers, R denote the set of real
numbers, R≥0 the set of non-negative real numbers. We denote by I(R≥0) the
set of real intervals whose bounds are in R≥0. An interval I ∈ I(R≥0) is a convex
subset of R≥0. An interval I is contiguous to I ′ when they are ordered: I < I ′,
and I ∪ I ′ is convex. An (alternating) interval sequence (AIS) is a monotone
sequence I = I0I1 · · · of non-empty intervals of I(R≥0) where : (i) singular and
open intervals alternate; (ii) I0 = {0}; (iii) Ij is contiguous to Ij+1; (iv) if infinite,
the sequence of intervals is progressive, i .e., for every t ∈ R≥0, there exists j ∈ N

such that t ∈ Ij . An interval state sequence (ISS) on Σ is a pair θ = (σ, I) where
σ = σ0σ1 · · · is a (possibly infinite) word σ ∈ Σ≤ω, and I = I0I1 · · · is an AIS of
the same length. This is the analog of a timed word [2]. An ISS can equivalently
be seen as a sequence of pairs in Σ × I(R≥0). It can also be seen as a signal,
i.e. a function from R≥0 → Σ: given t ∈ R≥0, let i ∈ N be the interval such
that t ∈ Ii: We define θ(t) as σi. A signal derived from an ISS will always have
finite variability. Below, our automata will consider two ISS θ1, θ2 that define
the same signal as equivalent, noted θ1 ≡ θ2, even if the intervals might be split
differently.

2.2 Clocks

A clock is a variable that increases with time. Thus, the value of a clock is
the time elapsed since its last reset. When we use continuous time, there is not
always a “last” reset, e.g. when the reset holds in an open interval. For this case,
we will use non-standard clock values of the form υ+, intuitively meaning that
the clock was reset υ units before. The set of non-standard real numbers, noted
R

+
≥0, is the set of {υ, υ+ | υ ∈ R≥0}, ordered by <ns as following: υ1 <ns υ+

2

iff υ1 ≤ υ2. The addition is commutative, and υ+
1 + υ2 = (υ1 + υ2)+. R

+
⊥ is

R
+
≥0 plus a special value ⊥ for uninitialized clocks. ⊥ is not comparable to other

values, and is absorbing for addition.
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Let X be a finite set of clock names. A clock valuation over X is a mapping
ν : X → R

+
⊥. The set of constraints over X, denoted Φ(X), is defined by the

grammar φ ::= true | x ∼ c | φ1 ∧ φ2 where x ∈ X, c ∈ N, and ∼ ∈ {<, ≤, =
, >,≥}. We write ν |= φ when the valuation ν satisfies the constraint φ. When
x has the value ⊥, we evaluate x ∼ c to false.

3 Automata Background

Based on time and clocks, several variants of timed automata have been proposed
after the seminal Timed Automata (TA) [2]. Below, we review briefly icTA [1]
and RECA [12], that are the basis of our DECA.

We use an interval semantics throughout the paper, i.e. predicates (or letters)
are functions of time with finite variability. In particular, we do not allow to
be in two locations, or to make two transitions, at the same time. Transitions
are taken in a single instant; therefore we have to stay in a location during an
open interval. Thus, we have to label both locations and transitions (together,
we call them locansitions) to ensure that predicates are always defined. Time
thus strictly increases along an ISS, as in [2]. We allow unobservable transitions
[7], that were absent from [2]: here, they are expressed as a transition with the
same label as the previous and next location.

3.1 Timed Automata

A Timed Automaton (TA) [2] is a finite state automaton augmented with clocks:
real variables that can be reset to 0, and otherwise increase at a uniform rate.
Time is thus global, and clocks are perfectly precise and synchronized.

Definition 1. A Timed Automaton is a tuple A = (Σ,X,S, s0,→ta, Inv, λ,F),
with:

(i) Σ, a finite alphabet. In this paper, we take Σ = 2P.
(ii) X, a finite set of positive real variables called clocks.
(iii) S, a finite set of locations.
(iv) S0 ⊆ S, the initial locations.
(v) →ta⊆ S×Φ(X)× 2X × S, a finite set of transitions, each with a guard and

a reset.
(vi) Inv : S → Φ(X) gives the invariant.
(vii) λ : (S ∪ →ta) → Σ, a labelling of locations and transitions.
(viii) F , an acceptance condition. For instance, for finite acceptance, we have

F ⊆ S, a set of final locations. We also use Büchi acceptance (where F ⊆ S)
or parity conditions (where F : S → N).

TA are neither determinizable nor complementable. Their emptiness problem
can be solved using the region construction, but their inclusion problem is
undecidable [2].
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3.2 Timed Automata with Independent Clocks

Distributed Timed Automata (DTA) [14,1] consist of a number of local timed
automata, called processes. Each processes owns clocks. The clocks of a same
process evolve synchronously, but independently of the clocks of the other pro-
cesses. The idea is that the clocks of the same process are all computed from a
same hardware clock. A clock can be read by any process, but can only be reset
by its owner process.

The homonymous Distributed Timed Automata of [10] work differently: they
model processes whose execution is interleaved by a scheduler. Thus, only one
process increases its (perfect) clocks at a time. They are a subclass of stopwatch
automata.

In [1], DTA are not much studied. Instead, their product is first computed,
giving rise to the class of Timed Automata with independent clocks (icTA).

Definition 2. An icTA is a pair (A, π), where A is a TA and π : X → Proc
maps each clock to a process.

Definition 3. A Rate is a tuple τ = (τq)q∈Proc of local time functions. Each
local time function τq maps the reference time to the time of process q, i.e, τq :
R≥0 −→ R≥0. The functions τq must be continuous, strictly increasing, divergent,
and satisfy τq(0) = 0.

Note that the reference time is arbitrary, and thus not meaningful.

Definition 4. Given a clock valuation ν : X → R≥0, a rate τ , and two reference
times t1 > t2, the valuation ν + (t1 − t2) maps x to ν(x) + τπ(x)(t1) − τπ(x)(t2).

Definition 5. A run of an icTA A for τ is an ISS alternating states and transi-
tions (β, I) where β = ζ0, q1, ζ1, q2, . . . , I = {0}, ]0, t1[, {t1}, ]t1, t2[, . . ., the states
qi ∈ Q = {(si, νi) ∈ S × R

X
≥0 | νi |= Inv(si)}. It must satisfy:

1. the starting state is q0 = (s0, ν0), where ν0 assigns 0 to all the clocks, and
s0 ∈ S0.

2. When spending time ]ti−1, ti[ in qi = (si, νi), the invariant must stay contin-
uously true: ∀t ∈]ti−1, ti[: νi + (t − ti−1)) |= Inv(si).

3. When following a transition ζi = (si, φ, Y, si+1) ∈ →icTA, the clock constraint
φ must be satisfied: νi + (ti − ti−1) |= φ. The clocks in Y are then reset:
νi+1 = (νi + (ti − ti−1))[Y → 0]. This transition is instantaneous.

4. The acceptance condition is verified, e.g. for a finite automaton, sn ∈ F .

Definition 6. Given a run ρ = (ζ0, (s1, ν1), ζ1, (s2, ν2), . . . , I) we define its ISS,
noted λ(ρ), as (λ(ζ0), λ(s1), λ(ζ1), λ(s2), . . . , I).

Definition 7. The language L(B, τ) is the set of ISS of accepting runs of B for
τ , closed under ≡.
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3.3 Recursive Event Clocks Automata

Recursive Event Clock Automata (RECA) [19,12] extend ECA [5]. “Recursive”
refers to the fact that the resets of an event clock xB are controlled by a lower-
level automaton B: When B visits a monitored locansitions (location or tran-
sition), it resets xB. Symmetrically, prediction clocks of the form yB measure
the time until B can next visit one of its monitored locansitions. Distributed
Real-Time Automata [9] are a special case of RECA where only the time since
the last change of labelling can be measured.

Definition 8. A RECA A of level l ∈ N is a tuple composed of:

(i) Σ is a finite alphabet.
(ii) S is a finite set of locations.
(iii) S0 ⊆ S are the initial locations.
(iv) →reca⊆ S × S are the transitions.
(v) C is a finite set of clocks, of the form xB or yB, with B a lower-level RECA.
(vi) λ : (S ∪ →reca) → Σ is a labelling function.
(vii) Inv : (S ∪ →reca) → Φ(C) gives the guard or invariant.
(viii) M ⊆ (S ∪ →reca) is the set of monitored locansitions: when the automaton

visits them, it resets its two associated clocks xA, yA.
(ix) F is an acceptance condition.

RECA can be determinized and thus complemented: They are fully decidable
[19,12]. They are quite expressive, since they can express the logic MITL [3], but
less expressive than TA (otherwise we would lose full decidability).

Below, we assume the uniform naming conventions defined in this section.

4 Timed Languages

Surprisingly, Akshay et al. [1] only consider untimed languages for their timed
automata. We are interested in timed languages, but we have a different time
scale for each process; thus each process p will determine a timed language
observed by p. These languages only differ by their timings. Let τp be the rate of
process p. τp extends naturally to intervals, to interval sequences, to ISS, and to
timed languages: Given an ISS θ = (σ, I) expressed in the reference time, τp(θ)
is (σ, τp(I)). The timed language for τ observed by p is τp(L(B, τ)). When there
is only one process, i.e. Proc = {q}, the timed language observed by q is the
usual timed language L(A) of its TA. When τ is a vector of identity functions,
we also obtain the usual timed language whatever the observer process chosen.

When we want to avoid some forbidden timed behaviours (ISS) , we consult
the existential timed semantics: we consider time evolutions as non-deterministic,
since this gives the worst-case assumption. If we want a given timed behaviour
to be possible whatever the evolution of local times, we look at the universal
semantics.

Definition 9. For an automaton B and one of its processes p, we define:
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– the existential timed language observed by p : L∃(B, p) =
⋃

τ∈Rates τp(L(B, τ))
– the universal timed language observed by p : L∀(B, p) =

⋂
τ∈Rates τp(L(B, τ))

This variety of languages leads to three generalisations of the classical problems
of emptiness, inclusion, intersection and union. First, the τ -wise definitions:

Definition 10. Given icTA A,B, C,

1. C is an intersection of A,B iff ∀τ ∈ Rates,L(C, τ) = L(A, τ) ∩ L(B, τ)
2. C is a union of A,B iff ∀τ ∈ Rates,L(C, τ) = L(A, τ) ∪ L(B, τ)
3. C is a complement automaton of A iff ∀τ ∈ Rates,L(C, τ) = L(A, τ)c, where

c is the complement operator.
4. A is language-included in B iff ∀τ ∈ Rates,L(A, τ) ⊆ L(B, τ)
5. The emptiness problem for A is ∀τ ∈ Rates,L(A, τ) = ∅

The p-existential and p-universal variants use respectively the existential and
universal timed languages observed by p.

4.1 Timed Languages of icTA

The existential timed languages of icTA are timed regular [2]:

Theorem 1. For any icTA B, L∃(B, p) is the language of a TA.

Proof. (sketch) This TA can be computed by a variant of the region construction,
of which the construction of [1] is a special case. Let q ∈ Proc \ {p} be a process
whose clocks we want to eliminate, i.e. we have an icTA B on Proc and we would
like to construct an icTA on Proc \ {q} whose existential language is preserved
for any observer but q. We construct the region automaton, but on the clocks
of q only. If a locansition had invariant

∧
p∈Proc φp, its associated regions have

invariant
∧

p∈Proc{q} φp. The constraints on clocks of q are not lost, they become
part of the region constraint. This gives a region icTA without the clocks of q, and
where the locations are now a pair of an original location and a region constraint
on clocks of q, which has the required languages. If we want to eliminate several
processes, we eliminate them one by one: eliminating several processes together
would give a result that does not reflect the independence of their clocks.

However, the emptiness of their universal timed languages is undecidable, and
thus cannot be the language of a TA.

Theorem 2. icTA are closed under τ-wise and p-existential intersection and
union, and under p-universal intersection.

However, icTA are not determinizable, nor closed under timed complement,
and their inclusion problem is undecidable (whether τ -wise, p-existential, or
p-universal), essentially because TA [2] are a special case of icTA.
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5 Distributed Event Clock Automata

To restore full decidability, we use event clocks [5]. For expressiveness, we use
RECA [12] with independent clocks [1]. The distributed event clock (DEC) xq

A
(or yq

A) records the time since the last (resp. next) time that the automaton A
could visit a monitored locansition, measured in the local time of process q.

Definition 11. A distributed recursive event clock automaton (DECA) is a pair
(A, π) where A is a RECA and π : C → Proc maps each clock to a process.

For better readability, we write the owner process in the clock name: π(xq
A) = q.

Definition 12. A run ρ of a DECA A for a rate τ is an ISS alternating transi-
tions and locations (ζ0, s1, ζ1, s2, . . . , I), such that:

(i) The run starts from an initial location: ζ0 ∈ S0 × S.
(ii) The run follows discrete transitions: ζi = (si, si+1) ∈→reca

(iii) The clock constraints (invariant or guard) are satisfied by the valuation of
the clocks (defined below): ∀t ∈ R≥0, ν(λ(ρ), t, τ) |= Inv(ρ(t)).

(iv) It satisfies the acceptance condition.

Definition 13. The ISS of a run ρ = (s, I), noted λ(ρ), is the pair (λ(s), I).

Definition 14. A accepts an ISS θ at t with τ , if there is a run ρ for θ that
visits a monitored location at t. This is noted (t, θ) ∈ L+(A,τ), its anchored
language.

This acceptance time will be used to reset the associated clocks xq
A below.

Definition 15. The DEC valuation depends on the ISS θ, on the reference time
of evaluation t, and on the rate τ . It assigns a (non-standard) positive real, or
undefined, to each clock variable.

ν(θ, t, τ, xq
B) =

⎧
⎨

⎩

τq(t) − τq(r) if r = max{s < t|(s, θ) ∈ L+(B,τ)} exists
(τq(t) − τq(r))+ else, if r = sup{s < t|(s, θ) ∈ L+(B,τ)} exists
⊥ else

ν(θ, t, τ, yq
B) =

⎧
⎨

⎩

τq(l) − τq(t) if l = min{s > t|(s, θ) ∈ L+(B,τ)} exists
(τq(l) − τq(t))+ else, if l = inf{s > t |(s, θ) ∈ L+(B,τ)} exists
⊥ else

Definition 16. The timed language of a DECA A, noted L(A, τ), are the ISS
of its runs for τ , closed under ≡.

Example 1. The example of Fig.1 from [1] is in fact both a DECA and an icTA
A over Proc = {p, q}, and the set of propositions P = {a, b, c}. Locations have
no invariant and an ε labelling. Both clocks are reset by the initial monitored
transition of B. After this, they may diverge. The existential timed languages,
here, are read from the automaton:
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{a}
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B = 1
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{}
�

{}
�

{}
�

{}
�

{}
�

{}
�   

{}
� {a,b,c}

reset

High Level DECA A Lower Level Automaton B

Fig. 1. Example of DECA from [1]

L∃(A, p) = ITL1({(a, tp1) | 0 < tp1 < 1} ∪ {(b, tp1) | tp1 ≥ 1} ∪ {(c, tp1) | 0 < tp1 < 1}
∪{(a, tp1), (b, t

p
2) | 0 < tp1 < 1 ∧ tp1 < tp2})

L∃(A, q) = ITL({(a, tq1) | 0 < tq1 < 1} ∪ {(b, tq1) | 0 < tq1 ≤ 1} ∪ {(c, tq1) | tq1 > 1}
∪{(a, tq1), (b, t

q
2) | 0 < tq1 < 1 ∧ tq1 < tq2 ≤ 1})

Here, all universal timed languages are empty: L∀(A, p) = ∅ = L∀(A, q). For
instance, we cannot have (a, ta) ∈ L∀(A, p), because there are some τ where the
time of q increases steeply, and gets over 1 before the time of p could reach ta.
However, the universal untimed language L∀(A) is {a, ab}.

5.1 Timed Languages of DECA

DECA inherit the main property of RECA: they are determinizable. The theorems
below are valid for the finite version, but also for the infinite ones, e.g. for Büchi
automata, which are determinized to a parity automaton [17].

Definition 17. A DECA A is deterministic iff all the following conditions hold:

(i) A has exactly one initial location {s0} = S0;
(ii) It has no ε-transitions: There are no two successive locations s1 → s2, with

the same labellings: λ(s1) = λ(s1, s2) = λ(s2).
(iii) Any two distinct successor locations s2 �= s3, s1 → s2, s1 → s3 with same

labellings: λ(s2) = λ(s3) and λ(s1, s2) = λ(s1, s3), have mutually exclusive
clock constraints: ν � Inv(s1, s2) ∧ Inv(s1, s3).

Theorem 3. Given a deterministic DECA, a rate τ , an ISS θ, there is at most
one accepting run on τ for θ, i.e. λ(ρ) ≡ θ.

As for RECA, prediction clocks render a deterministic DECA dependent on the
future, and thus unsuitable for realizability [11].

We don’t have space to present our determinization construction [19], but its
complications rather stems from continuous time than from DEC.

1 ITL will add the missing intervals between time points.
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Theorem 4. Determinization preserves the τ-wise, existential and universal
languages.

Theorem 5. DECA are closed under union, intersection and complementation,
whether τ-wise, p-existential and p-universal.

Theorem 6. For all DECA B, p ∈ Proc,L∃(B, p) is the language of a RECA.

Proof. (sketch) We eliminate each process q �= p in turn from the DECA while
preserving the existential language of the remaining processes. We first com-
plete and determinize automata appearing in the clocks of this process q. We
then make their product with the main automaton. We then perform the region
construction [3] on the clocks of q. Remember that the clocks are constrained
to be 0 in the respective monitored locansition, i.e. when at least one original
monitored locansition appears in this construction, and that prediction clocks
run backwards so that it is the complement of their fractional part that par-
ticipates in the region construction [3]. The region construction for prediction
clocks is non-deterministic and is not a bisimulation quotient, unlike the one of
TA, but preserves the language [19]. Note that the elimination of the clocks of
one process only, allows independent evolution of the other clocks.

Theorem 7. The τ-wise and p-existential emptiness, universality and language
inclusion problem for DECA are PSPACE-complete.

Finite automata have the same complexity, thus the added expressiveness is “for
free”.

Theorem 8. For all DECA B, q ∈ Proc,L∀(B, q) is the language of a RECA.

Proof. (sketch) We complete and determinize the main automaton A. Then we
apply the region construction for independent clocks [1]. The automaton becomes
non-deterministic, because each region has several successors, depending on τ .
Transitions are also considered as regions. A region constraint is expressed as
a conjunction

∧
p∈Proc φp. We choose as invariant of each region locansition φq.

The other constraints are part of the identity of the region, but are not kept as
an invariant. Then we determinize it again but we mark as final the locations
where all members are final (which, in turn, means that one of their members is
an original final location), to represent that the ISS must be accepted under all
evolutions of time τ .

In contrast, the universal language of DTA and icTA is undecidable [1].

6 Recursive Distributed Event Clocks Temporal Logic

The aim of this section is to construct a fully decidable distributed logic to
specify real-time requirements when time scales can be independent.



260 J. Ortiz, A. Legay, and P.-Y. Schobbens

6.1 Syntax

Our Distributed Event Clock Temporal Logic (DECTL) extend the Event Clock
Temporal Logic (EventClockTL) [20,12] with distributed (a.k.a. independent)
real-time modalities. As in Section 3.2, we assume a set of processes Proc. The
clocks of each process will evolve according to its local time given by a Rate τ .

DECTL is based on LTL, and adds two local real-time modalities. The record-
ing modality �q

Iφ means that φ was true for the last time at reference time t1
and that the distance, as measured by the time scale of q, is within the interval
I: τq(t0) − τq(t1) ∈ I. Symmetrically, the predicting modality �q

Iφ says that
the next φ will occur within I according to the local time of q. With only one
process, we find back EventClockTL [20].

Definition 18. The formulas of DECTL are defined by the grammar:

φ ::= true | p | �q
I φ | �q

I φ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | φ1 S φ2

where p ∈ P is an atom, I ∈ I(N) is an interval and q ∈ Proc is a process.

6.2 Semantics

Definition 19. The satisfaction of a DECTL formula φ is noted (t, θ) |=τ φ.
We omit τ and θ below, since they are fixed.

t |= p iff p ∈ θ(t)
t |= ¬φ iff t �|= φ
t |= φ1 ∧ φ2 iff t |= φ1 and t |= φ2

t |= φ1Uφ2 iff ∃t′ > t, t′ |= φ2 and ∀t′′ ∈ (t, t′), t′′ |= φ1

t |= φ1Sφ2 iff ∃t′ < t, t′ |= φ2 and ∀t′′ ∈ (t′, t), t′′ |= φ1

t |= �q
Iφ iff ∃t′ < t, τq(t) − τq(t′) ∈ I ∧ t′ |= φ

and ∀t′′ < t, τq(t) − τq(t′′) < I, t′′ �|= φ
t |= �q

Iφ iff ∃t′ > t, τq(t′) − τq(t) ∈ I ∧ t′ |= φ
and ∀t′′ > t, τq(t′′) − τq(t) < I, t′′ �|= φ

Example 2. The formula ¬(Fb ∧ ¬ �q
≤1 b), where Fb = true Ub says that the

first b, if any, must occur within 1 second, as measured by q. It holds on the
automation of Fig.1. However, the formula measured by p, ¬(Fb∧¬�p

≤1 b), does
not hold.

6.3 Decidability

Theorem 9. For any DECTL formula φ, there is a DECA automaton Aφ with
the same anchored language: (t, θ) ∈ L+(A,τ) iff (t, θ) |=τ φ.

Proof. (sketch) The translation to a Generalised Büchi tableau is done level by
level, where the level of a formula is the nesting depth of real-time modalities
[19]. A formula �q

Iφ is translated as constraint xq
Aφ

∈ I. The monitored loca-
tions of Aφ are those containing φ. The initial locations are those containing
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¬true Strue . The transitions are the sets of closure formulae that entail instan-
taneity. Each location has the Hintikka property: the conjunction of its formulae
is satisfied exactly by the ISS of the runs visiting it, at the time they visit it.

The construction is exponential in the size of the non-real time part of the
formula, but linear in the real-time part. The test of emptiness is done by the
region construction presented in Section 5, that is exponential in the real-time
part but linear for the rest.

Theorem 10. Satisfiability and validity of DECTL are PSPACE-complete.

The axiomatisation of this logic happens to be given in [21]. There, shift and
order axioms express the pairwise synchronisation of real-time modalities. We
restrict them to modalities of the same process.

6.4 Extensions

(1) We can extend the known expressive equivalence of EventClockTL and MITL+
Past [12] to construct a distributed version of MITL (DMITL) with indepen-
dent modalities Up

I ,Sp
I .

(2) DECTL is expressively equivalent to DQTL, a new first-order monadic logic
with a metric quantifiers ∃t ∈p]t0, t0 + k[ . φ, ∃t ∈p]t0 − k, t0[ . φ, where φ
has only the free variable t (see [13] for QTL).

(3) The more expressive logic DMECTL allows to observe not only the last φ,
but also the last but n φ [15]. This logic is still translatable in DECA.

(4) This logic is expressively equivalent to DQ2MLO, a new first-order monadic
logic with a metric quantifier ∃t ∈p]t0, t0 + k[ . φ, ∃t ∈p]t0 − k, t0[ . φ, where
φ has only the free variables t0, t (see [13] for Q2MLO).

(5) We can add DECA automata operators [22].
(6) We can add second-order quantification on predicates that are not subjected

to a real-time constraint.
(7) We can also introduce these independent modalities Up

I ,Sp
I in a linear μ-

calculus.

The last three extensions are expressively equivalent.

7 Conclusions

We have proposed the basis of a framework for analyzing distributed real-time
systems through of the introduction of independent (or distributed) event clocks,
inspired by icTA [1]. In contrast to [1], we have given a real-time semantics, and
thus we can specify real-time properties. We have defined DECA and showed that
they are fully decidable, and that their language inclusion problem is PSPACE-
complete, as for classical automata. This give us an algorithm to verify real-time
properties. Since the number of regions is reduced wrt. ECA, we can even expect
faster verification. They are also a good basis for partial-order techniques [6]. The
universal (timed) languages of DECA are decidable and (timed) regular, unlike
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the universal languages of icTA [1]. We proposed the logic DECTL to specify
real-time properties with distributed observers. The problems of satisfiability,
validity and model-checking of DECTL are PSPACE-complete, as for LTL - we
cannot hope better.
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Abstract. We address the concrete problem of implementing huge bottom-up
term automata. Such automata arise from the verification of Monadic Second Or-
der propositions on graphs of bounded tree-width or clique-width. This applies
to graphs of bounded tree-width because bounded tree-width implies bounded
clique-width. An automaton which has so many transitions that they cannot be
stored in a transition table is represented be a fly-automaton in which the transi-
tion function is represented by a finite set of meta-rules.

Fly-automata have been implemented inside the Autowrite1 software and
experiments have been run in the domain of graph model checking2.

1 Introduction

The following theorem connects the problem of verifying graph properties with term
(tree) automata.

Theorem 1. Monadic second-order model checking is fixed-parameter tractable
for tree-width [Courcelle (1990)] and clique-width [Courcelle, Makowski, Rotics
(2001)].

Tree-width and clique-width are graph complexity measures based on graph decom-
positions. A decomposition produces a term representation of the graph. For a graph
property expressed in monadic second order logic (MSO), the algorithm verifying the
property takes the form of a term automaton which recognizes the terms denoting
graphs satisfying the property.

In [2], we have given two methods for finding such an automaton given a graph
property. The first one is totally general; it computes the automaton directly from the
MSO formula; it starts with ad-hoc automata corresponding to atomic formulas and
combines them with boolean operations, relabellings and inverse relabellings; how-
ever this method it is not practically usable because the intermediate automata that
are computed along the construction can be very big even if the final one is not. The
second method is very specific: it is a direct construction of the automaton; one must
describe the states and the transitions of the automaton. Although the direct construc-
tion avoids the bigger intermediate automata, we are still faced with the hugeness of
the automata. For instance, one can construct an automaton recognizing graphs which

1 http://dept-info.labri.fr/˜idurand/autowrite/
2 http://dept-info.labri.fr/˜idurand/autograph/
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are acyclic has 33k

states where k is the clique-width of the graph. Even for k = 2,
which yields the very restricted class of co-graphs, it is unlikely that we could store
the transition table of such an automaton.

The solution to this last problem is to use fly-automata. In a fly-automaton, the tran-
sition function is represented, not by a table (that would use too much space), but by
a finite set of meta-rules. Little space is then required to represent the transition func-
tion. In addition, fly-automata are more general than finite bottom-up term automata;
they can be infinite in two ways: they can work on an infinite (countable) signature.
they can have an infinite (countable) number of states. They are more powerful: a fly-
automaton can recognize {t ∈ T (F) | t = f(t1, t2) and |t1| = |t2|} where F is a
finite signature.

The purpose of this article is to present in detail the concept of fly-automaton and
some experiments done with these automata for the verification of properties of graphs
of bounded clique-width.

2 Preliminaries: Terms

We recall some basic definitions concerning terms. The formal definitions can be found
in the on-line book [1]. We call signature F a set of symbols equiped with a function
arity : F → N. We denote by Fn the subset of symbols of F with arity n. So F =
⋃

n Fn. T (F) denotes the set of (ground) terms built upon the signature F . Given a
term t, Pos(t) denotes the set of positions of the term. The position of the root of a
term is denoted by ε. A term t can also be viewed as a map from its set of positions
Pos(t) to F .

Example 1. LetF be a signature containing the symbols {a, b, adda b, rela b, relb a,⊕}
with

arity(a) = arity(b) = 0 arity(⊕) = 2
arity(adda b) = arity(rela b) = arity(relb a) = 1

We will see in Section 3 that this signature is suitable to build terms representing graphs
of clique-width at most 2.

t1, t2, t3 and t4 are terms built upon the signature F of Example 1.

t1 = ⊕(a, b)
t2 = adda b(⊕(a,⊕(a, b)))
t3 = adda b(⊕(adda b(⊕(a, b)), adda b(⊕(a, b))))
t4 = adda b(⊕(a, rela b(adda b(⊕(a, b)))))

We will see in Table 1 their associated graphs.
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3 Application Domain

All this work will be illustrated through the problem of verifying properties of graphs of
bounded clique-width. We present here the connection between graphs and terms and
the connection between graph properties and term automata.

3.1 Graphs as Logical Structures

We consider finite, simple, loop-free, undirected graphs (extensions are easy)3. Every
graph can be identified with the relational structure 〈VG, edgG〉 where VG is the set of
vertices and edgG the binary symmetric relation that describes edges: edgG ⊆ VG×VG

and (x, y) ∈ edgG if and only if there exists an edge between x and y. Properties of a
graph G can be expressed by sentences of relevant logical languages. For instance, G is
complete can be expressed by ∀x, ∀y, edgG(x, y) or G is stable by ∀x, ∀y,¬edgG(x, y)
Monadic Second order Logic is suitable for expressing many graph properties like k-
colorability, acyclicity, . . . .

3.2 Term Representation of Graphs of Bounded Clique-Width

Let L be a finite set of vertex labels and let us consider graphs G such that each vertex
v ∈ VG has a label label(v) ∈ L. The operations on graphs are ⊕4, the union of disjoint
graphs, the unary edge addition adda b that adds the missing edges between every vertex
labeled a and every vertex labeled b, the unary relabeling rela b that renames a to b (with
a 	= b in both cases). A constant term a denotes a graph with a single vertex labeled
by a and no edge. Let FL be the set of these operations and constants. Every term
t ∈ T (FL) defines a graph G(t) whose vertices are the leaves of the term t. Note that,
because of the relabeling operations, the labels of the vertices in the graph G(t) may
differ from the ones specified in the leaves of the term. A graph has clique-width (cwd
for short) at most k if it is defined by some t ∈ T (FL) with |L| ≤ k.

Table 1. The graphs corresponding to the terms of Example 1

t1 t2 t3 t4

b

a a

b

a

ba

ab b b

a

We will express graph properties using MSO formulas that formalize coloring and
partitioning problems to take a few examples.

4 Term Automata

We recall some basic definitions concerning term automata. Again, much more infor-
mation can be found in the on-line book [1].

3 We consider such graphs for simplicity of the presentation but we can work as well with
directed graphs, loops, labeled vertices and edges

4 oplus will be used instead of ⊕ inside the software Autowrite
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4.1 Finite Bottom-Up Term Automata

Definition 1. A finite (bottom-up) term automaton5 A is a quadruple (F ,QA,QAcc
A ,ΔA)

consisting of a finite signature F , a finite set QA of states, disjoint from F , a subset
QAcc
A ⊆ QA of accepting states, and a set of transitions rules ΔA. Every transition is

of the form f(q1, . . . , qn) → q with f ∈ F , arity(f) = n and q1, . . . , qn, q ∈ QA.

Example 2. Figure 1 shows an example of such an automaton. It recognizes terms rep-
resenting graphs of clique-width 2 which are stable (do not contain edges). State <a>
(resp. <b>) means that we have found at least a vertex labeled a (resp. b). State <ab>
means that we have at least a vertex labeled a and at least a vertex labeled b but no
edge. State error means that we have found at least an edge so that the graph is not
stable. Note that when we are in the state <ab>, an add_a_b operation creates at least
an edge so we reach the <error> state.6

Automaton 2-STABLE
Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*
States: <a> <b> <ab> <error>
Accepting States: <a> <b> <ab>
Transitions a -> <a> b -> <b>

add_a_b(<a>) -> <a> add_a_b(<b>) -> <b>
ren_a_b(<a>) -> <b> ren_b_a(<a>) -> <a>
ren_a_b(<b>) -> <b> ren_b_a(<b>) -> <a>
ren_a_b(<ab>) -> <b> ren_b_a(<ab>) -> <a>
oplus*(<a>,<a>) -> <a> oplus*(<b>,<b>) -> <b>
oplus*(<a>,<b>) -> <ab> oplus*(<b>,<ab>) -> <ab>
oplus*(<a>,<ab>) -> <ab> oplus*(<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>
add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>
oplus*(<error>,q) -> <error> for all states q

Fig. 1. An automaton recognizing terms representing stable graphs

Finite term automata recognize regular term languages[7]. The class of regular term
languages is closed under the Boolean operations (union, intersection, complementa-
tion) on languages which have their counterpart on automata. For all details on terms,
term languages and finite term automata, the reader should refer to [1]. Figure 2 shows
in a graphical way the run of the automaton 2-STABLE on a term representing a graph
of clique-width 2. Below we show a successful run of the automaton on a term repre-
senting a stable graph.

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus(<a>,b)))
-> add_a_b(ren_a_b(oplus(<a>,<b>)) -> add_a_b(ren_a_b(<ab>))
-> add_a_b(<b>) -> <b>

5 Term automata are frequently called tree automata, but it is not a good idea to identify trees,
which are particular graphs, with terms.

6 Our software Autowrite takes into account the notion of commutative symbols. The star in
oplus*means that this symbol is commutative. When we have a rule like oplus*(q1,q2)
-> q the rule oplus*(q2,q1) -> q is implicitly defined.
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ba

a b a b

a ba b a b<b><a>

<error>

<ab>

<a>

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

tG = add a b(⊕(a, b))

G

Fig. 2. Graphical representation of an (unsuccessful) run of the automaton on a term

To distinguish these automata from the infinite automata defined in the next sec-
tion (4.2) and as we only deal with terms in this paper we will refer to the previously
defined term automata as table-automata.

4.2 Infinite (Bottom-up) Term Automata

Definition 2. From now on, a term automaton A will be given by (F , δ, acf) or (F , δ)
where the signature F may be countably infinite, δ is the transition relation defined as
a function

δ :
⋃

n Fn × Qn → Pf (Q)
fq1 . . . qn �→ {q ∈ Q | f(q1, . . . , qn) → q}

where the set Q of states accessible using δ may be countably infinite, Pf (Q) is the set
of finite subsets of Q and acf is the accepting state function acf : Q → Boolean
which indicates whether a state is accepting or not. Note that the set of states Q is given
implicitely by δ. The notions of a run, of an accepting run, the sets L(A, q) and L(A)
are the same. Term automata may be complete and/or deterministic in an obvious way.
We will shortly consider effectivity conditions insuring that membership of a term to
L(A) is decidable.

Sometimes, in the case where the number of states is infinite, these automata will have
no accepting state function. It is the case for instance, for counting automata as shown
in the following example.

Example 3. The automaton COUNTING presented p.269 is an example of an infinite
automaton. Given a term, it counts the number of vertices of the associated graph of
any clique-width. State <i> means that we have found i vertices. The set of states Q =
{<i> | i ∈ N}. There is no accepting state function. However, if we want an automaton
recognizing terms corresponding to graphs having an prime number (or a multiple of
some integer) of vertices, we may add an accepting state function acf : <i> �→ T if i is
prime, F otherwise. Note that as the automaton works on graphs of any clique-width, we
need a countable set of labels, so we use numbers instead of letters in the finite examples.

4.3 Fly Term Automata

Definition 3. A fly-automaton is an automaton (F , δ, acf) such that δ and acf are com-
putable functions.
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Theorem 2. Let A be a fly-automaton. Membership to L(A) is decidable. The empti-
ness of L(A) is not decidable.

Automaton COUNTING
Signature: 0 1 2 ...
ren_0_1:1 ren_1_0:1 add_0_1:1 ren_0_2:1 ren_2_0:1 add_0_2:1 ...
oplus:2*

States: <0> <1> <2> ...
Metarules:
x -> <1> for all x
add_x_y(<i>) -> <i> for all x,y s.t. x < y
ren_x_y(<i>) -> <i> for all x,y
oplus*(<i>,<j>) -> <i+j> for all i,j

Theorem 3. Fly-automata are closed under Boolean operations, arity-preserving re-
labellings and inverse-relabellings.

Proof. Let A = (F , δ, acf) be a deterministic and complete fly-automaton. The com-
plement of A is (F , δ, acfc) where acfc(q) = ¬acf(q) for every q ∈ QA.
Given two fly-automata A1 = (F , δ1, acf1) and A2 = (F , δ2, acf2), one can easily de-
fine a computable transition function δ corresponding to the product of the two automata
whose states are in QA×QB. The following accepting state functions are suitable (and
computable) for union and intersection respectively.

acfu : QA × QB → Boolean
{q1, q2} �→ acf1(q1) ∨ acf2(q2)

acfi : QA × QB → Boolean
{q1, q2} �→ acf1(q1) ∧ acf2(q2)

Then A1 ∪A2 = (F , δ, acfu) and A1 ∩A2 = (F , δ, acfi) are fly-automata. The proofs
are similar for arity-preserving relabellings and inverse-relabellings.

In the same spirit, fly-automata may be determinized and completed. The determinized
version of A is an automaton d(A) = (F , δ′, acf′). If QA is the domain of δ (the set
of states of A), let d(QA) denote the set of states of d(A). Each subset {q1, . . . , qp} of
QA yields a state [q1, . . . , qp] in d(QA). δ′ is defined by with

δ′ :
⋃

n Fn × d(QA)n → d(QA)
f, S1, . . . , Sn �→ S

with q ∈ S if and only if ∃q1, . . . , qb ∈ S1 × . . . Sn such that q ∈ δ(f, q1, . . . , qn).
When a fly-automaton (F , δ, acf) is finite, it can be compiled into a table-automaton

(F , Q, QAcc, Δ), provided that the resulting table is not too big. The transition table Δ
can be computed from δ starting from the constant transitions and then saturating the
table with transitions involving new accessible states until no new state is computed.
The set of (accessible) states Q is obtained during the construction of the transitions
table. The set of accepting states QAcc is obtained by removing the non accepting
states (according to the accepting state function acf) from the set of states. A table-
automaton is a particular case of a fly-automaton. It can be seen as a compiled version
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of a fly-automaton whose transition function δ is described by the transitions table Δ
and whose accepting state function acf corresponds to membership to QAcc. It follows
that the automata operations defined for fly-automaton will work for table-automata.
Table-automata are faster for recognizing a term but they use space for storing the
transitions table and the access time may be important in case of a very large table.
Fly-automata use a much smaller space (the space corresponding to the code of the
transition function) but are slower for term recognition when the transition function is
complex. A table-automaton should be used when the transition table can be computed
in reasonable space and a fly-automaton otherwise.

5 Implementation of Fly-Automata

We will call basic fly-automata the ones that are built from scratch in order to distin-
guish them from the ones that are obtained by combinations of existing automata using
the operations cited in Theorem 3, determinization and completion. We call the later
composed fly-automata. Fly-automata have been implemented inside the software Au-
towrite [5] (entirely written in Common Lisp) which already had table-automata. States
are not stored in the representation. For basic fly-automata, they are created on the fly by
calls to the transition function. For composed automata, the states returned by the transi-
tion function are constructed from the ones returned from the transition functions of the
combined automata. For operations like determinization, inverse-relabellings, sets of
states are involved. The implementation of fly-automata use intensively the functional
paradigm to represent and combine transition and accepting states functions. More de-
tails about the implementation can be found in [6]. The main operations that are imple-
mented on fly-automata are: run of an automaton A on a term t, recognition of a term
t by an automaton A, decision of emptiness for L(A) (when A is finite), completion,
determinization, complementation of an automaton A, union, intersection of two (or
more) automata, relabellings and inverse-relabellings of constants.

For table-automata, we have also implemented reduction (removal of inaccessible
states), minimization but this is not discussed in this paper. Because a table-automaton
can always be transformed into a fly-automaton and a finite fly-automaton back to a
table-automaton we get the corresponding operations for table-automata for free once
we have implemented them for fly-automata. However, for efficiency reasons, it might
be interesting to implement some of these operations at the level of table-automaton.
For instance, the complementation which consists in inverting non accepting and ac-
cepting states is easily performed directly on a table-automaton. Implementing opera-
tions directly at the level of table-automaton has the drawback that it depends on the
representation chosen for the transitions table. Whenever, we would want to change this
representation we would have to re-implement these operations. The only advantage is
a gain in efficiency. Some operations on table-automata may give a blow-up in terms of
the size of the transition table (determinization, intersection). In this case, the solution
is to omit to compile the resulting operation back to a table-automaton. It is though
possible to deal uniformly with table and fly-automata.
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6 Experiments

Most of our experiments have been run in the domain of verifying graph properties.
Many construction of basic automata can be found in [4,3] and have been implemented
with Autowrite. In order to compare the running time of a fly-automaton and that of
the corresponding table-automaton, we have chosen a property and a clique-width for
which the automaton is compilable. This is the case for the connectedness property. We
have a direct construction of an automaton verifying whether a graph is connected. The
corresponding table automaton has 22cwd−1 + 2cwd − 2 states. It is compilable up to
cwd = 3. For cwd = 4, which gives |Q| = 32782, we run out of memory. It is possible
to show that the number of states of the minimal automaton is |Q| > 22�cwd/2�

. So there
is no hope of having a table-automaton for this property and cwd > 3.

We have direct constructions of the automata for properties like Edge(X1, X2),
k-Cardinality(), k-Coloring(X1, . . . , Xk), Connectedness(), Acyclic() among others.
With these properties and using relabellings and Boolean operations, we obtain au-
tomata for properties like k-Colorability(), k-Acyclic-Colorability(), k-Vertex-Cover()
among others. The Vertex-Cover property can be expressed by a combination (intersec-
tion, homomorphisms) of already defined basic automata (stablility, k-cardinality).

Many problems that where unthinkable to solve with table-automata could be solved
with fly-automata. For very difficult (NP-complete) problems we still reach time or
space limitations.

7 Conclusion and Perspectives

In the near future, we plan to implement more graph properties and to run tests on
real and random graphs. We cannot hope to check arbitrary Monadic Second Order
formulas because, even on words, the problem is intractable if the formula is part of
the input. However, many interesting graph properties seem to be reachable. We did not
address the problem of finding terms representing a graph, that is, to find a clique-width
decomposition of the graph. In some cases, the graph of interest comes with a “natural
decomposition” from which the clique decomposition of bounded clique-width is easy
to obtain but for the general case the known algorithms are not practically usable.

The concept of fly-automaton is general and could be applied to other domains where
big automata are needed.
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Abstract. We consider the problem of tree template matching in ranked
ordered trees, and propose a solution based on the bottom-up technique.
Specifically, we transform the tree pattern matching problem to a string
matching problem, by transforming the tree template and the subject
tree to strings representing their postfix notation, and then use push-
down automata as the computational model. The method is analogous
to the construction of string pattern matchers. The given tree template
is preprocessed once, by constructing a nondeterministic pushdown au-
tomaton, which is then transformed to the equivalent deterministic one.
Although we prove that the space required for preprocessing is exponen-
tial to the size of the tree template in the general case, the space required
for a specific class of tree templates is linear. The time required for the
searching phase is linear to the size of the subject tree in both cases.

1 Introduction

Tree pattern matching, the process of finding all occurrences of a given tree pat-
tern in a subject tree, is an important operation in computer science on which a
number of tasks are based on, e.g. mechanical theorem proving, term-rewriting,
instruction selection and non-procedural programming languages [8]. In addition,
tree pattern matching has direct applications in computational biology, e.g. gly-
can classification [10], exact and approximate pattern matching and discovery
in RNA secondary structure [11].

We distinguish among two types of tree pattern matching: the subtree and
the tree template matching. While subtrees consist of only specific fixed labeled
nodes, tree templates have some of their leaves denoted as “don’t care”, rep-
resenting arbitrary subtrees – such nodes match any subtree. In this paper, we
focus on the problem of tree template matching in ranked ordered trees.

Since 1960, many methods have been described in the literature for solving the
tree pattern matching problem [1], [2], [6], [7], [8], [14]. However, most of them
� This research has been partially supported by the Ministry of Education, Youth and
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lack clear references to a systematic approach of the standard theory of formal
languages, grammars and automata. In general, there exist two such approaches
using automata. Linearising trees and using string automata represents the first
approach [6, 7, 14]. Usage of finite automata is not sufficient, as linear notations
of trees are context-free languages. Therefore, the pushdown automaton (PDA)
seems to be an appropriate model of computation. The second approach does not
reside on tree linearisation, but represents a generalisation from string automata
to tree automata [3]. [3] presents a systematic approach for solving the tree
pattern matching problem, by utilising finite tree automata, which accept regular
tree languages, as the computational model.

Recently, it has been proved that the deterministic PDA can accept a proper
superclass of regular tree languages in a linear notation [9]. Based on this, [5]
presents a new systematic approach for solving the subtree matching problem
using deterministic PDA, with the preprocessing phase requiring time and space
linear to the size of the tree pattern; the searching phase runs in time linear to
the size of the subject tree.

In this paper, we continue from [5], using notions from [8], to propose and
prove a new class of deterministic PDA for solving the tree template matching
problem. This is directly analogous to the finite automata based string matching
approaches [4]. Notice that methods which use tree pattern matching and are
described by PDA, are known [2,7]. However, these methods work in an LR-
parser-like fashion, where the parser is constructed for an ambiguous grammar,
and some heuristics are used for the tree pattern matching to be determinis-
tic. Our method does not use any grammar or such heuristics, but instead a
deterministic PDA is constructed, similarly as in the case of the string pattern
matchers. This agrees with a systematic approach for designing algorithms whose
computational model is the deterministic PDA [12].

2 Preliminaries

2.1 Basic Definitions

We denote the set of nonnegative natural numbers by N. An alphabet Σ is a
finite, nonempty set of symbols. A string is a succession of zero or more symbols
from an alphabet Σ. The string with zero symbols is denoted by ε. The set of
all strings over Σ, including ε, is denoted by Σ∗, and Σ+ = Σ∗ \ {ε}. A string
x of length m is represented by x1x2 . . . xm, where xi ∈ Σ for 1 ≤ i ≤ m. The
length of a string x is denoted by |x|. A string w is a factor of x if x = uwv
for u, v ∈ Σ∗, and is represented as w = xi . . . xj , 1 ≤ i ≤ j ≤ |x|. A ranked
alphabet is a couple A = (Σ, ϕ), where Σ is an alphabet and ϕ is a mapping
ϕ : Σ �→ N. The arity (rank) of a symbol x ∈ Σ is ϕ(x). The cardinality of a
set X is denoted by σ(X) and its powerset by P(X). The number of nodes of a
tree t is denoted by |t|. The postfix notation post(t) of a labeled, ordered, ranked
tree t is obtained by applying Step recursively, beginning at the root of t:
Step: Let this application of Step be node v. If v is a leaf, list v and halt. If v is an
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internal node having descendants v1, v2, . . . , vϕ(v), apply Step to v1, v2, . . . , vϕ(v)

in that order and then list v.
An (extended) nondeterministic pushdown automaton is a seven-tuple M =

(Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is the input alphabet,
G is the pushdown store alphabet, δ is a mapping from Q × (A ∪ {ε}) × G∗ into
a set of finite subsets of Q ×G∗, q0 ∈ Q is the initial state, Z0 ∈ G is the initial
content of the pushdown store, and F ⊆ Q is the set of final (accepting) states.
The triplet (q, w, x) ∈ Q×A∗ ×G∗ denotes the configuration of a PDA. In this
paper we write the top of the pushdown store x on its left hand side. The initial
configuration of a PDA is a triplet (q0, w, Z0) for the input string w ∈ A∗. The
relation �M⊂ (Q × A∗ × Γ ∗) × (Q × A∗ × Γ ∗) is a transition of a PDA M . It
holds that (q, aw, αβ) �M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). For simplicity, in the
rest of the text, we use the notation pα

a�−→
M

qβ when referring to the transition

δ1(p, a, α) = (q, β) of a PDA M . A PDA is deterministic, if:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 
= ∅, δ(q, a, β) 
= ∅ and α 
= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) 
= ∅, δ(q, ε, β) 
= ∅, then α is not a suffix of β and β is not a suffix

of α.

2.2 Properties of Trees in Postfix Notation

Lemma 1. Given a tree t and its postfix notation post(t), the postfix notations
of all subtrees of t are factors of post(t).

However, not every factor of the postfix notation of a tree represents a subtree.
This is obvious due to the fact that there can be O(n2) distinct factors of a
given postfix notation of some tree with n nodes, but the tree consists of only
n subtrees – each node of the tree is the root of one subtree. Only the factors
which themselves are trees in postfix notation represent subtrees. This property
is formalised by the following definition and theorem.

Definition 1. Let x = x1x2 . . . xm, m ≥ 1, be a string over a ranked alphabet
A = (Σ, ϕ). Then, the arity checksum ac(x) = ϕ(x1) + ϕ(x2) + . . . + ϕ(xm) −
m + 1 =

∑m
i=1 ϕ(xi) − m + 1.

Theorem 1. Let post(t) and x be a tree t in postfix notation and a factor of
post(t), respectively, over a ranked alphabet A = (Σ, ϕ). Then, x is the postfix
notation of a subtree of t, if and only if ac(x) = 0, and ac(y) ≥ 1 for each y,
where x = zy, y, z ∈ Σ+.

2.3 Problem Definition

Definition 2 (Set of all trees). Given a ranked alphabet A = (Σ, ϕ), T (A)
denotes the set of all trees over A, and is defined as follows:

T (A) = { x : x ∈ Σ+ ∧ ac(x) = 0 ∧ ac(y) ≥ 1, x = zy, y, z ∈ Σ+ }
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We also introduce a new nullary symbol S, not in Σ, serving as a placeholder for
any tree t, where post(t) ∈ T (A). We denote the set Σ ∪ {S} as ΣS , and define
AS = (ΣS, ϕS), where:

ϕS(a) =
{

ϕ(a) : a ∈ Σ
0 : a = S

Definition 3 (Tree Pattern). Given a ranked alphabet AS = (ΣS , ϕS) and
the set of all trees T (AS), a tree pattern is any tree in T (AS).

Definition 4 (Tree Template). Tree templates are the elements of the set
T (AS) \ T (A), i.e. trees having at least one “don’t care” node.

Definition 5 (Tree template matching). A tree template P over a ranked
alphabet AS = (ΣS , ϕS) with k occurrences of the unary placeholder symbol S
matches a subject tree T in T (A) at node v, if there exist trees t1, t2, . . . , tk in
T (A), such that the tree p′, obtained by substituting ti with the i-th occurrence
of S in P , is equal to the subtree of T rooted at v. Two trees are equal if, for
example, their postfix notations are equal strings.

While not necessary in general, a new identifier can be encoded for each node
of the subject tree, based on its attributes (such as label) and rank. These
identifiers, along with the arity of the respective nodes, form the ranked alphabet.
In this way, the case when the tree consists of nodes having the same label but
different arity, can easily be handled.

3 Algorithm

In this section, we present an algorithm for tree template matching based on
PDA. The algorithm preprocesses the tree template once, by computing the so-
called match-sets, which are required for the construction of a PDA matching
the given tree template. The constructed PDA then reads the postfix notation of
the subject tree, and matches each read subtree with the corresponding subtrees
of the tree template. Indication that a read subtree matches the tree template
is provided by the final state of the PDA. The rest of this section is divided in
three parts: first, we formally introduce the notion of match-sets; then, we show
a method for computing match-sets; finally, the algorithm for preprocessing the
tree template is presented.

3.1 Match-Sets

Definition 6 (Set of subtrees). Given a tree t such that post(t) = x1x2 . . . xm

over a ranked alphabet AS = (ΣS , ϕS), the set of subtrees of t is the set Sub(t)
consisting of the postfix notations of all subtrees of t, and is formally defined as:

Sub(t) = { x : post(t) = yxz, y, z ∈ Σ∗, x ∈ Σ+, x 
= S }
such that Theorem 1 holds for each x ∈ Sub(t).
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We are now in a position to formally define the notion of match-sets. Each tree
t ∈ T (AS) can be mapped to a set consisting of all subtrees of the given tree
template P that match t. We call this particular set a match-set.

Definition 7 (Match-set). Given a tree template P over AS = (ΣS , ϕS), a
match-set is the mapping:

μ : T (A) �→ R

where R ⊆ P(Sub(P ) ∪ {S}), and is defined as:

1. For each v ∈ Σ, where ϕ(v) = 0:

μ(v) =
{
{v, S} : v ∈ Sub(P )
{S} : v /∈ Sub(P )

2. For each x = post(t1)post(t2) . . . post(tq)v, v ∈ Σ, ϕ(v) = q, x ∈ T (A),

μ(x) = {S}∪{y : y = post(t′1) . . . post(t′q)v ∧ y ∈ Sub(P )∧post(t′i) ∈ μ(post(ti))}
Using general terms, T (A) is the domain of the match-set function, while R is
the range of the mapping. For simplicity, throughout the paper we will refer to
match-sets as the range R of the defined mapping.

Definition 8. Let p and p′ be subtrees of the tree template P over a ranked
alphabet AS = (ΣS, ϕS), i.e. p, p′ ∈ Sub(P ). Then p is inconsistent with p′

( p | p′ ) if there is no tree t ∈ T (A) such that p, p′ ∈ μ(t). p and p′ are
independent (p ∼ p′) if there are trees t1, t2, t3 ∈ T (A), such that p ∈ μ(t1),
p′ /∈ μ(t1), p /∈ μ(t2), p′ ∈ μ(t2), p, p′ ∈ μ(t3). p subsumes p′ (p > p′) if, for all
t ∈ T (A), p ∈ μ(t) ⇒ p′ ∈ μ(t).

Example 1. Let p1, p2, p3, p4 be trees, where post(p1) = a0Sa2, post(p2) = b0Sa2,
post(p3) = Sb0a2, post(p4) = SSa2. p1 and p2 are inconsistent (p1 | p2) as
nodes a0 and b0 cannot be matched in the same position. Trees p1 and p3 are
independent (p1 ∼ p3), since there exist trees t1, t2, t3, where post(t1) = a0a0a2,
post(t2) = b0b0a2, post(t3) = a0b0a2, holding that p1 ∈ μ(t1) and p3 /∈ μ(t1),
p3 ∈ μ(t2) and p1 /∈ μ(t2), and p1, p3 ∈ μ(t3). Finally, p1 > p4, p2 > p4, p3 > p4.

Lemma 2 (Size of match-sets). Given a tree template P , the upper theoretical
bound of the number of possible match-sets is O(2|P |), and is reached only if there
exist sets of pairwise independent subtrees in the tree template.

Definition 9 (Combination of tree templates). The combination of two
pairwise independent tree templates P and P ′ (denoted by P ◦ P ′) with post(P ) =
post(p1) . . . post(pϕ(v))v and post(P ′) = post(p′1) . . . post(p′ϕ(v))v, respectively, is
the tree t where post(t) = post(t1) . . . post(tϕ(v))v is defined as

post(tj) =

⎧
⎨

⎩

post(pj) : post(pj) > post(p′j) ∨ post(pj) = post(p′j)
post(p′j) : post(p′j) > post(pj)
post(pj) ◦ post(p′j) : post(pj) ∼ post(p′j)
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The combination of a set μ = (t1, t2, . . . , tσ(μ)) of pairwise independent tree
templates is defined as C(μ) = t1 ◦ t2 ◦ . . . ◦ tσ(μ).

3.2 Computing Match-Sets

In this section, we present an approach for computing the match-sets of a given
tree template P . The method takes as input the set Sub(P ) of all unique subtrees
of P , and for each t ∈ Sub(P ) it computes two sets: It and St (which are subsets
of Sub(P )). Set St consists of the trees which t subsumes (including t), while set
It consists of the trees with which t is pairwise independent. For each distinct set
It, at least σ(It) + 1 and at most 2σ(It) − 1 match-sets need to be constructed.
Those match-sets correspond to elements of P(It) (with the exception of the
empty set) unified with St, as proved in Lemma 2. Note that for any element
X ∈ P(It), the corresponding match-set Y will be Y = X ∪ St ∪ {t} ∪ {t′ : t′ ∈
It ∧ C(X ∪ {t} ∪ St) > t′}. The lower bound is for the case all trees in It are
pairwise inconsistent between themselves, and the upper bound is for the case
all trees in It are pairwise independent between themselves.

Algorithm 1. Computing the relation between two nonidentical trees

Input : x = post(t1) . . . post(tϕ(v))v and y = post(t′1) . . . post(t′ϕ(u))u
Output: The relation between two trees t and t′ represented by their

postfix notation x and y, respectively

if v 
= u then return Inconsistent else (p, q, r) ← TreeRel(x, y)1

if p = true then return Inconsistent2

else if q = r = true then return Independent3

else if q = true then return t-Subsumes-t’4

else return t’-Subsumes-t5

Function TreeRel(x,y)
Input : x = post(t1) . . . post(tϕ(v))v and y = post(t′1) . . . post(t′ϕ(v))v
Output: Triplet (p, q, r)

Let p ← false, q ← false, r ← false, q′ ← false, r′ ← false1

for i ← 1 to k do2

if r(post(ti)) 
= r(post(t′i)) and r(post(ti)) 
= S and r(post(t′i)) 
= S3

then p ← true
if r(post(ti)) 
= r(post(t′i)) and r(post(ti)) then r ← true4

if r(post(ti)) 
= r(post(t′i)) and r(post(t′i)) = S then q ← true5

if r(post(ti)) = r(post(t′i)) and post(ti) 
= post(t′i) then6

(p, q′, r′) ← TreeRel(post(ti), post(t′i))7

if p = true then return (true, false, false)8

q ← q or q′9

r ← r or r′10

return (p, q, r)11
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Algorithm 1 computes the relation between two, nonidentical, subtrees of P
(i.e. elements of Sub(P )). An auxiliary function r(post(t)) is used for returning
the root of t (i.e. the last symbol of post(t)). The whole process of comput-
ing match-sets takes time O(|P |2) in case there do not exist sets It with their
elements being pairwise independent, or O(2|P |) in the worst case (Lemma 2).

3.3 The Algorithm

The method for tree pattern matching works in a similar fashion as the finite
automata based algorithms for string pattern matching: Given a tree template
P , Algorithm 3 constructs a nondeterministic PDA M that can match all oc-
currences of P in a given subject tree T , by final state. The constructed PDA
belongs to the class of height-deterministic PDA and can be determinised [13].
Algorithm 4 presents a novel method that takes as input the nondeterministic
PDA obtained from Algorithm 3, computes the match-sets, and constructs an
equivalent deterministic PDA MD, serving as the tree template matcher.

Algorithm 3. Construction of a nondeterministic tree template matching

Input : Tree template post(P ) = post(p1)post(p2) . . . post(pϕ(v))v over A
Output: Nondeterministic PDA M = ({qI , qF },A, Γ, δ, {qI}, ε, {qF})

Let Γ ← {{x} : x ∈ Sub(P )} ∪ { {S} }1

For each x ∈ Σ, let qIT
ϕ(x) x�−→

M
qIT , where T = {S}

2

Let qIXϕ(x) . . . X2X1
x�−→
M

qIX , where Xi = {post(ti)} and X = {post(t)},
3

for each post(t) = post(t1)post(t2) . . . post(tϕ(x))x ∈ Sub(P ) \ {post(P )}
Let qIXϕ(v) . . . X2X1

v�−→
M

qF X , where Xi = {post(pi)} and X = {post(P )}
4

Algorithm 4. Determinisation

Input : Nondeterministic PDA M = (Q,A, Γ, δ, qI , ε, F )
Output: Deterministic PDA M ′ = (Q′,A, Γ ′, δ′, {qI}, ε, F ′)
for each t ∈ Sub(P ) do1

for each X ∈ P(It) in ascending order of cardinality do2

Γ ′ ← Γ ′∪{X∪{t}∪St∪{t′ : y = C(X ∪{t}∪St)∧ t′ ∈ It∧y > t′}}3

Let Q′ ← {{qI}, {qI , qF }} and F ′ ← {{qI , qF }}4

For each x ∈ Σ, let q′γ′1γ
′
2 . . . γ′ϕ(x)

x�−→
M′

p′X ′ for all γ′i ∈ Γ ′, where
5

q′, p′ ∈ Q′, 1 ≤ i ≤ ϕ(x), p′ =
⋃l

j←1{pj} and X ′ =
⋃l

j←1{θj}, such that
there exist l transitions of form qjγ1γ2 . . . γϕ(x)

x�−→
M

pjθj , γi ∈ γ′i, qj ∈ q′

Lemma 3. Given a nondeterministic PDA constructed using Algorithm 3 by
preprocessing a given tree template P , Algorithm 4 constructs an equivalent de-
terministic PDA matching all occurrences of P in a subject tree T .

Theorem 2. For tree template P , the space needed for preprocessing is O(2|P |).
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Proof. In general, there can be O(2|P |) pushdown store symbols (see Lemma
2). The PDA can be implemented as a table and thus O(2|P |×k × |A|) space is
required for preprocessing, where k = max{ϕ(x) : ∀x ∈ A}. ��

Theorem 3. The deterministic template matching PDA constructed using Al-
gorithms 3 and 4 matches all occurrences of a tree template P in a subject tree
T in time O(|T |).

Proof. For each input symbol x of the subject tree, ϕ(x) + 1 operations are
performed: ϕ(x) pop operations from the pushdown store and one push. The
sum of arities of all nodes of the input tree t is n − 1 (number of edges). Thus,
n−1 pop and n push operations are performed, a total of 2n−1 operations. ��

4 Conclusion

In this paper, we have formally defined the tree template matching problem
for ordered ranked trees, and presented a new class of PDA, which serve as tree
template matchers and can be determinised. The main contribution of this paper
is a systematic approach for constructing deterministic PDA, which match tree
templates in time linear to the size of the subject tree. Although we prove that
the space required for preprocessing is exponential to the size of the tree template
in the general case, the space required for a specific class of tree templates – the
tree templates that do not consist of pairwise independent subtrees – is linear.
The time for the searching phase is linear to the size of the subject tree in both
cases. The implementation of the proposed algorithm is available at the website
http://www.dcs.kcl.ac.uk/pg/pississo/.
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5. Flouri, T., Janoušek, J., Melichar, B.: Subtree matching by pushdown automata.
Computer Science and Information Systems 7, 331–358 (2010)

6. Fraser, C.W., Henry, R.R., Proebsting, T.A.: Burg: fast optimal instruction selec-
tion and tree parsing. SIGPLAN Notices 27(4), 68–76 (1992)

7. Glanville, R.S., Graham, S.L.: A new method for compiler code generation. In:
POPL, pp. 231–240 (1978)

8. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29, 68–95
(1982)
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Abstract. The paper presents a new method for extracting information from 
semi-structured resources, based on finite state transducers. The method has 
two clearly distinguished phases. The first phase - pre-processing phase - 
strongly relies upon the analysis of the document structure and it is used for 
locating records of data in the text. The second phase is based on the finite state 
transducers created for extracting information. The transducers can be modified 
so that preferred efficiency is achieved and can be reused for extracting 
information from other pre-processed documents. We conclude that even 
untagged text can be treated as a semi-structured one, providing its structure can 
be successfully pre-processed. As a result, we extracted data from free form 
encyclopedia text and created a fully structured database with genotype and 
phenotype characteristics of the organisms.  

Keywords: information extraction, finite state transducer, semi-structured 
resource, linguistic resource, bioinformatics, genome. 

1   Introduction 

Information Extraction (IE) is part of artificial intelligence which studies and 
develops techniques used to detect and extract relevant information from larger text 
documents and present it in a structured form. Depending on the manner and the form 
in which information is stored in some document, the documents being processed in 
IE tasks can be structured, semi-structured and unstructured. 

In the up-to-date literature, web pages are the most commonly processed semi-
structured resources ([1] and [2]). In this paper, we argue that there are textual 
resources whose structure is not defined by tags, as in HTML or XML text, but still 
could be considered as semi-structured. The structure of a document could be 
determined by its logical structure elements, such as headings and paragraphs. If these 
elements are in a relation with the content so that they can be used by a researcher to 
conclude something about the information they wish to extract, then we considered 
such documents as semi-structured ones.  



 Information Extraction from Semi-structured Resources 283 

We present a two-phase method for information extraction, based on finite state 
transducers (FST). Finite state transducers are commonly used in Natural Language 
Processing for different tasks, and the idea of using FST for information extraction is 
not new ([3] and [4]), but it has been suppressed lately by methods based on probability 
and statistics ([5] and [6]). The method we present uses FST first for pre-processing the 
text, then for describing the context of information in specific text segments, and finally 
for extracting the information. The great advantage of the method is its reusability and 
precision. Transducers used for extracting the data, which are created for one resource, 
can be used again for any other resource of the same domain, i.e. for the same kind of 
information. Also, transducers are created by human experts so that their precision 
could be increased until it reaches the preferred level. 

We used the proposed method for extracting data from encyclopedia "Systematic 
Bacteriology" [7] which is organized in such a way that can be treated as a semi-
structured resource. As a result we created a fully structured database of microbes, 
which contains information about genomic and ecological characteristics, such as 
habitat or shape of bacterial organisms.  

2   Finite State Transducers in NLP 

Finite state transducers (FST) are finite state machines which define relations between 
two sets of strings in the way that they transform one string to another [8]. FST are 
being used in many fields of computational linguistics. Their use is justified from the 
standpoint of linguistics as well as from the standpoint of computer science ([8], [9] 
and [10]).  

The basic property of FST is that they produce some output and this property 
determines the way transducers are being used in Natural Language Processing. Also, 
they can be visually presented by graphs, which make them convenient for human 
use. FSTs are being used in computational linguistics for morphological parsing, 
describing orthographic rules, describing inflectional rules etc. Detailed review of 
theoretical and practical use of finite state transducers in natural language processing 
is given in [3], [4], [9], [11], [12] and [13]. 

Finite State Transducers and their corresponding graphs can be very complex and 
difficult to maintain, which, in practice, leads to some problems. So, instead of one 
big graph, we use a collection of sub graphs. This method has a strong theoretical 
background in theory of Recursive Transition Networks (RTN). RTN are an extension 
of context free grammars ([14]). The arcs in RTN are labeled with corresponding 
grammars, while the states are labeled arbitrarily. There are several computer tools for 
linguistic research based on FST and RTN ([15], [16] and [17]). 

3   Resources and Tools Used 

3.1   Software System for Linguistic Tasks 

In our research, we used Unitex [16] as a tool for creating and applying FST graphs, 
and also for pre-processing the text. Unitex is a collection of programs developed for 
analyzing natural language text using linguistics resources and tools, such as 
electronic dictionaries.  
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Electronic dictionaries contain simple and compound words, together with their 
lemmas and a set of grammatical codes. Unitex uses electronic dictionaries in DELA 
format, where each entry is a line of text terminated by a new line, which conforms to 
the following syntax: 

apples,apple.N+conc:p 
The first word (apples) is an inflected form of the entry and it is followed by the 

canonical form (lemma). The sequence of codes N+conc gives the grammatical and 
semantic information about the entry. Code N stands for noun and conc indicates that 
this noun designates a concrete object. 

After applying these resources to the text, the user can refer to the dictionary entry 
from the Unitex by using lexical masks. For example, the query <be.V> will match all 
entries having be as canonical form and the grammatical code V. Thus, all 
occurrences of verb to be (am, is, being etc.) will be recognized by this query. 

Using this kind of linguistic resources is the main advantage of Unitex system, 
because the researcher can define classes of words and phrases with very simple 
patterns, just by using the information from the dictionary. 

3.2 Semi-structured Resource: Encyclopedia 
In our research our main goal was to extract information about genomic and 
ecological characteristics of microbes from a free form text and put them into a 
relational database. As a resource, we used the electronic form of the encyclopedia 
“Systematic Bacteriology” [7]. The very structure of the encyclopedia makes it 
possible to use it for information extraction process, so we treated it as a semi-
structured document. The analysis of this structure was one of the most important 
tasks in the research. 

 

Fig. 1. An excerpt from the content of the encyclopedia 

The content of the document is as follows. The chapters of the encyclopedia 
correspond to systematic categories of the bacteria. Each chapter with the family 
description is followed by the chapters of the genera in this family. The excerpt from 
the content is given in Figure 1. 

Descriptions of the species, containing information we want to extract, are given 
inside the chapters about genera, located at the end of the chapters. Described 
structure of the document was used to discover data records, as will be explained in 
Section 4, where each record corresponds to one systematic category.  



 Information Extraction from Semi-structured Resources 285 

4   The Two Phase FST Method 

The method we have developed for extracting the information from semi-structured 
resources, based on the finite state transducers, distinguishes two phases of IE 
process. Both phases were implemented through a software system using 
programming language Java. 

4.1   The First Phase: Creating Records of Data 

The first phase strongly relies on the structure of the document from which the 
extraction is to be done. Therefore, this phase differs for different documents and has 
to be adjusted to the structure of particular text. During the first phase, the main goal 
is to locate pieces of the text in which the information about one record is situated. 
Those pieces of text are being put in a relational database, for further analysis.  

 

Fig. 2. Excerpt from the table “Species” after the first phase is finished 

In our research, having the “Systematic Bacteriology” as a resource, we used the fact 
that each chapter of the text corresponds to one systematic category. The description 
of specific bacteria species, containing the data we wanted to extract, is located at the 
end of the chapters about genera. It is preceded by the line beginning with “List of 
species of the genus ...”. There are a different number of species descriptions for the 
different genera, but each one begins with the number, followed by name of the 
species and description in a free text form. Based on that fact, we developed an 
algorithm for extracting species descriptions and putting them into the database. After 
the first phase had been finished, we had the database containing free form 
descriptions about bacteria species. A part of the data in the table Species is shown in 
Figure 2. 

4.2   The Second Phase: Extracting Particular Attributes 

In the second phase, the system takes unstructured text with data about a record from 
the database (the field "SpeciesDesc") and analyzes it with FST graphs. The piece of 
text that contains some information of interest is being recognized by a particular 
transducer. The output of this transducer is information which is put into the database.  
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After the structure of the encyclopedia had been analyzed and processed, we had 
a text with species description for each species inserted into the database. The 
individual attributes we wanted to extract, such as size, G+C content, GenBank 
accession number etc., were all contained in the species descriptions, but in a free, 
unstructured form. 

For extracting this kind of data from the text, we used finite state transducers 
specifically designed to fulfill this task. For every attribute we wanted to extract 
(e.g., bacteria growth temperature, habitat, pH value, oxygen requirement etc.), we 
created a separate transducer using Unitex. Each transducer recognizes the context 
of an attribute (information) and produces the output which represents the value of 
the attribute, i.e., the information itself. This output is inserted into the database. 

We were motivated to use transducers for our task of describing context and 
extracting information by the fact that in biological texts there is a limited number 
of possible phrases for describing some properties of an organism. For example, not 
many different ways exist to tell that some bacteria is Gram negative. Therefore, by 
constructing a  transducer which recognizes part of the text about Gram stain and 
produces the output “positive” or “negative”, depending on the information in the 
text, we can process not only descriptions from the encyclopedia, but also we can 
process any other text resource about bacteria. 

As mentioned in Section 3.1., we used the Unitex software system for creating 
graphs that correspond to transducers, and also for pre-processing the text. Beside the 
pre-processing tasks which are required by Unitex’s programs for locating patterns in 
the text, such as normalization and tokenization of the text, Unitex allows applying 
linguistics resources to the text. We used this possibility and applied English 
electronic dictionary to the species descriptions, so we could use lexical masks in 
transducers. 

As an example of using lexical masks, the transducer for extracting the genome 
size is given in Figure 3. This transducer uses lexical masks such as <be.V> and 
<estimate.V>, which recognize any inflected form of the verbs to be or to estimate, to 
describe the context in which the information about genome size could occur. In 
patterns recognized by this transducer, the part of the text which corresponds to the 
part of the graph inside the brackets (marked with the label Size) will be produced as 
the output of this transducer, i.e. will be extracted from the text and inserted into the 
database, into the field Size.  

The transducer (a) in the Figure 3 has two calls to sub graphs SizeRange and 
SizeUnits. These two sub graphs are also shown on Figure 3, part (b) and (c). Some 
of the expressions recognized by this transducer are: 

 “genome sizes of four G. oxydans strains were estimated to be between 2240 and 3787 kb”  
“genome size of R. australis is 1256–1276 kbp” 
 “Genome size: 2.73 X 109 Da” 
“genome size is 1.713 Mbp” 
“genome size was estimated to be approximately 4061 kb” 
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Fig. 3. (a) Transducer for extracting information about the genome size; it has calls to sub 
graphs SizeRange and SizeUnits; (b) SizeRange sub graph for describing possible ways of 
specifinig size value; (c) SizeUnits sub graph which recognizes the units for size of the genome; 
(d) SizeNumber sub graph for describing different formats of numbers 

 5   Results and Evaluation of the Method 

The Part C of the Volume 2 of the encyclopedia “Systematic Bacteriology” that we 
experimented with, contains descriptions of 643 species of bacteria, grouped by the 
genus they belong to. The algorithm we used for the first phase of the proposed 
method was very efficient and it extracted all the 643 descriptions. The reason for 
achieving such a good efficiency is thorough analysis of the document structure. The 
initial algorithm was tuned and modified by the researchers until it has reached such 
an excellent level of efficiency. 

After the second phase was finished, we had data about microbes extracted and 
inserted into the database. The table Species, previously shown in the Figure 2 in 
Section 4.2, at the end of the second phase looked as shown in the Figure 4. The 
extracted information was inserted in the corresponding fields of the database. 

In order to evaluate efficiency of transducers, we manually analyzed species 
description and calculated precision and recall of the method. Precision was the 
highest possible, i.e. all of the extracted information was relevant. This is a 
consequence of the fact that transducers were designed by human experts to extract 
particular attributes, and therefore they recognize only sequences of text in which the 
information is stored. 
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Fig. 4. Table Species with data after the second phase of IE process 

Recall differs for different transducers, depending on the complexity of the 
information context. For example, the transducer for Gram stain property was very 
efficient; it properly extracted attributes from all descriptions which contained that 
kind of information. Some other transducers, especially those for extracting 
information that occur in a complex context, weren’t that efficient. For example, the 
initial transducer for genome size extracted 14 out of 18 data about genome size. 
Some expressions weren’t recognized by this transducer, such as: 

 “genome has a size of 1,231,204 bp” 
“genome size is distinctly larger (1.49 X 109 Da)” 
“genome is 1,257,710 bp in size” 
Nevertheless, with slight modification of the transducer and extending it in order to 

recognize the former expressions as well, the recall can be increased. This is a key 
point and a major advantage of methods based on FST over methods based on 
probability. Efficiency of methods based on FST can be increased to the preferred 
level by modifying transducers. This fact, together with the fact that transducers can 
be reused for other resources of the same domain makes this method justified and 
suitable to use for IE tasks. 

6   Conclusion 

In our research we successfully applied the proposed method to a resource whose 
structure is not explicitly tagged (as in HTML or XML documents). Nevertheless, 
considering that there were certain regularities between the structure of the document 
and the data content, which were noticed by analyzing the structure, this document is 
treated and processed as a semi-structured one. We are convinced that this approach 
could be applied to other documents with similar characteristics. 

The second phase of the method involves creating and applying transducers to the 
text from which the information is to be extracted. We showed that using this method 
is very efficient, especially when applied to texts from some specific science or 
domain, in which case the transducer has to describe specific and relatively simple 
context of information. The use of transducers is also justified by their reusability on 
other texts from the same domain. 

The advantages of the proposed two-phase FST based method is its conceptual 
simplicity, efficiency, possibility to adjust precision of the transducers, reusability of 
the transducers and no need for large sets of training data. 
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We hope that this method will attract more attention from the research community 
in the future, and that spreading its use will lead to creation of transducers libraries, 
which can be reused by other researchers. We plan to make our collection of 
transducers, as well as databases of extracted information, available to others. 
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Abstract. In this paper we describe an approach to finding the shortest
reset word of a finite synchronizing automaton by using a SAT solver.
We use this approach to perform an experimental study of the length of
the shortest reset word of a finite synchronizing automaton. The largest
automata we considered had 100 states. The results of the experiments
allow us to formulate a hypothesis that the length of the shortest reset
word of a random finite automaton with n states and 2 input letters with
high probability is sublinear with respect to n and can be estimated as
1.95n0.55 .

1 Introduction

A deterministic finite automaton (DFA) is a triple A = (Q, Σ, δ), where Q is a
set of states, Σ is an input alphabet, and δ : Q×Σ → Q is a transition function
defining an action of the letters in Σ on Q. We use a common concise notation
denoting δ(. . . δ(δ(q, a0), a1), . . . ak) by qa0 . . . ak.

A word w ∈ Σ∗ is said to be a reset word for a DFA A if its action leaves
A in one particular state no matter what state it starts at: q1w = q2w for all
q1,q2 ∈ Q. A DFA A is called synchronizing if it possesses a reset word. In this
paper we describe results of an experimental study of the length of the shortest
reset word of random automata.

It can be easily shown that if an automaton with n states is synchronizing
then it has a reset word of length less than n3. However, the tightness of this
bound is far from obvious. In 1964, Černý formulated a conjecture concerning
the upper bound of the length of the shortest reset word of a synchronizing
DFA [5]: the length cannot be larger than (n−1)2. By now the Černý conjecture
is arguably the longest standing open problem in the combinatorial theory of
finite automata. The tightest upper bound that has been obtained so far is
(n3 − n)/6; it was proved by Pin [15] in 1983.

Though no bound better than cubic has been proven for the shortest re-
set word, most naturally occurring automata have reset words of subquadratic
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length. Automata with reset word of length Θ(n2) are considered to be excep-
tional. For a long time the only infinite series of such automata was the one
proposed by Černý [5]. The other substantially different ones [1,2] have only
recently been constructed.

There are several theoretical and experimental results that support the state-
ment that most synchronizing automata have a relatively short reset word. First,
Higgins [11] has shown that the composition of 2n random mappings of a set
of size n into itself with high probability (whp) is a mapping with an image of
size 1. (By “high probability” we mean that the probability tends to 1 as n goes
to infinity.) In terms of automata, Higgins’s result means that a random automa-
ton with an alphabet of size larger than 2n whp has a reset word of length 2n.
Indeed, if we pick an automaton uniformly at random among all automata with
n states and 2n letters, then the action of a word composed of all the letters is
identical to a mapping composed of 2n random mappings. Later it was shown
[18] that a random automaton with n states over an alphabet of size n0.5+ε has
a reset word of quadratic length with high probability for any ε > 0.

The probability distribution of the length of the shortest reset word of a
random automaton can be studied experimentally for small n. It is unlikely
that there is a polynomial algorithm that can find the shortest reset word in
general case because the problem belongs to FPNP [log] [14], which means that
the problem is both NP-hard and co-NP-hard. Moreover, approximating the
length of the shortest reset word has also been shown to be hard [3]. Nevertheless,
it is possible that the problem restricted to a certain class of automata (for
instance see [10]) or to random automata is easy and can be successfully solved by
an appropriate heuristic. Recently, Roman [16] has developed a genetic algorithm
for finding a short reset word and in particular, applied it to random automata.
In this paper we present the results of applying of SAT solvers to the problem
of finding the shortest reset word.

SAT (or Boolean Satisfiability) is a combinatorial problem of finding a boolean
assignment that satisfies a given boolean formula in conjunctive normal form.
SAT was one of the first problems proven to be NP-complete [6]. The devel-
opment of practical algorithms for solving instances of SAT (so called SAT-
solvers) is an area of active research and there is a regular competition of these
algorithms. These days the problems that participate in SAT competitions have
hundreds of thousands of variables and millions of literals. This is especially
surprising when one recalls that SAT is NP-complete. This observation does not
formally contradict the NP-hardness of SAT, but shows that hard instances of
SAT rarely occur in practice. There are various approaches to explaining this
phenomenon in greater detail [12,7,4].

SAT is also known to be a natural language for a variety of combinatorial
problems. In this paper we show that the problem of finding the shortest reset
word of a finite automaton can be naturally reduced to a few SAT instances.
We apply a SAT solver to those instances and recover the reset word from the
resulting boolean assignment.

As mentioned, Roman [16] was using a genetic algorithm to find a reset word
of random automata. Since genetic algorithms are incomplete, the results of [16]
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allow one to assume only an upper bound on the length of the shortest reset
word. It turns out that even for an alphabet of size 2 as the number of states
grows, the probability of the automata being synchronizing approaches 1. In this
paper we also study automata over a 2-letter alphabet. It is easy to see that if
the size of the alphabet gets larger, the length of the shortest reset word of a
random automata decreases.

We were able to find the shortest reset words of randomly generated automata
with up to 100 states. We argue that the results of our experiments are a reason-
able basis for the hypothesis of the length of the shortest reset word of a random
automaton. The hypothesis is given in the following formula:

�(n) ≈ 1.95n0.55,

where n is the number of states of the random automaton and �(n) is the length
of the shortest reset word.

The rest of the paper is organized as follows. In Section 2, we describe how
the problem of finding the shortest reset word can be reduced to a collection
of instances of SAT. In Section 3, we formally define the notion of a random
automaton. In Section 4, we present results of experiments and what we believe
they mean. We conclude in Section 5 with a short discussion.

Due to space constraints we have to omit a few figures and proofs. Those can
be found at the full version at the first author’s website [17].

2 Solving Automata Synchronization Problem via
Reduction to SAT

Given a finite automaton A = (Q, {a, b}, δ) and an integer c, we build a 3-CNF
formula φc

A such that φc
A is satisfiable if and only if A has a reset word w of

length c. We denote the prefix of w of length t by w|1...t. The formula φc
A contains

two types of variables:
– For each t ∈ 1, . . . , c, we introduce a variable ut. Setting ut to true is inter-

preted as “the t-th letter of w is a” and setting ut to false is interpreted as
“the t-th letter of w is b”.

– For each q ∈ Q and t ∈ {0, . . . , c}, we introduce a variable xqt. A variable
xq0 is used to mark whether an automaton can be initially in a state q or
not. When t �= 0, setting xqt to false is interpreted as “there does not exist
a state u such that uw|1...t = q”. It is convenient for us to interpret setting
xqt to true as “there may exist a state u such that uw|1...t = q”. In other
words, we will enforce setting xqt to true and will not enforce false.

There are c variables of the first type and (c+1)n variables of the second type.
Therefore the resulting boolean formula contains (c + 1)n + c boolean variables.

There are also three types of clauses in φc
A:

– For each q ∈ Q we assert that initially the automaton can be in this state
by adding a one literal clause

xq0.
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– For each q ∈ Q and t ∈ {0, . . . , c − 1} we add the following elementary
disjunctions to φc

A:
¬xqt ∨ ¬ut ∨ x(qa)(t+1),

xqt ∨ ut ∨ x(qb)(t+1).

Note that these disjunctions are equivalent to the following implications:

xqt ∧ ut → x(qa)(t+1), (1)
xqt ∧ ¬ut → x(qb)(t+1). (2)

The clauses of the first and the second types together enforce setting xqt

to true if and only if the state q can be achieved from some state of A by
applying the prefix w|1...t.

– For each 2-element subset {p,q} ⊆ Q, where p �= q we add the following
elementary disjunctions to φc

A:
¬xqc ∨ ¬xpc. (3)

The clauses of the third type ensure that at most one of the variables xqc

may be true.

If w is a reset word of length c for A, then the formula φc
A is satisfiable.

Indeed the satisfying assignment is obtained as follows. Values of the variables
u1, . . . , uc are determined by reading the word w and setting ut to true or false
according to the value of the t-th letter of w. Then we assign xq0 = true for
all q ∈ Q. Next, for each t = 1, . . . , k and for each q ∈ Q, we assign xqt to
true if it must be done to satisfy some clause of type (1) or (2). Otherwise, we
assign xqt to false. It is easy to see that after such an assignment for any t and
q we have xqt equal to true if and only if q = uw|1...t, for some u ∈ Q. Since
w is a synchronizing word, all clauses of type (3) are satisfied. Analogously, if
the formula φc

A is satisfiable, then the values of the variables u1, . . . , uc in the
satisfying assignment define a word w of length c, and the fact that all clauses
of φc

A are satisfied implies that w is a reset word.
There are n clauses of the first type, 2cn clauses of the second type and n(n−1)

2

clauses of the third type. In total we have n(n−1)
2

+ n(2c + 1) clauses. Clauses
of the first type have one literal, clauses of the second type have three literals
and clauses of the third type have two literals each. Therefore the formula φc

A

contains n2 + 6cn literals in total. Thus, we can use a SAT solver to answer the
question: “Can A be synchronized by a word of length c?”

We use MiniSAT solver [9] to find the solution to this problem. SAT algo-
rithms development is a very active research area and each year new solvers win
the competition. MiniSAT was developed in 2003 and has become a state-of-
the-art algorithm since then. The algorithm is relatively simple and yet very
efficient — its performance is comparable to the best present day solvers. In
some years, the SAT competition has a specialized MiniSAT-hack tournament.
For more details on the algorithm see [8,9].
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Once we have an algorithm that can check whether there is a reset word of
given length we can find the length of the shortest reset word by performing
binary search. Note that there is a polynomial algorithm for checking whether A
is synchronizing [5]. Thus, we use SAT solver only for synchronizing automata.

3 Random Automaton

In the experimental section we study the length of the shortest reset word of a
random automaton over a 2-letter alphabet. Formally, Random Automaton A(n)
with n states over an alphabet Σ can be defined as a discrete probability space
(ΩA, P ), where sample space ΩA is the set of all automata over Σ. To define a
specific automaton A = (Q, Σ, δ) one needs to define δ(q, a), for each q ∈ Q and
a ∈ Σ. Thus, it is easy to see that |ΩA| = n|Σ|n. We set the probability of all
elements of the sample space to be equal, and consequently for all A we have
P (A) = n−|Σ|n. We also consider a probabilistic space Random Synchronizing
Automaton A

′(n). Formally, A
′(n) is defined as a probabilistic space induced by

A(n) on the event “A is synchronizing”.
The length of the shortest reset word �(n) is a random variable over the

probabilistic space A
′(n). To study the behaviour of the random variable �(n)

as n tends to infinity we define the expectation of �(n) by r(n) and the variance
of �(n) by d(n), that is r(n) = E (�(n)) , d(n) = V (�(n)) .

Note that while �(n) is a random variable for each n, the functions r(n) and
d(n) are deterministic.

4 Experimental Results

We performed a series of experiments for different n, where n is the number of
states in the automaton. For a given n, the experiment consists of the following.

We generate a random automaton with n states. Then we check whether this
automaton is synchronizing and if so, we find a reset word for this automaton
using binary search. Then we record the result of synchronization, i.e., whether
the automaton is synchronizing and the length of the shortest reset word.

For a specified number of states n, we performed a number of such ex-
periments. The larger n is the more time it takes to solve the problem of
finding the reset word, so for larger n we performed fewer experiments. For
each n ∈ {1, 2, . . . , 20, 25, 30, . . . , 50} we performed 2000 experiments, for each
n ∈ {55, 60, 65, 70} we performed 500 experiments and for n ∈ {75, 80, . . . , 100}
we performed 200 experiments. In our experiments we used a personal computer
with an Intel(R) Core(TM)2 Duo P8600 2.4GHz CPU and 4GB of RAM. The
program for calculations was written in Java. The average calculation time was
2.7 seconds for n = 50 and 70 seconds for n = 100.

Thus, for each value of n participated in experiments we have an approximated
probabilistic distribution of �(n) and an estimated probability of the event “A(n)
is synchronizing”.
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Fig. 1. The graph of the logarithm of the number of states of automata n versus the
logarithm of the length of the shortest reset word r

Synchronization of A. The larger n is, the larger the fraction of generated
random automata that are synchronizing. For n = 100 only 1 out of 200 au-
tomata that we generated happened to not be synchronizing. Thus, we conclude
that it is likely that P (“A is synchronizing”) −→

n→∞ 1.

Expectation of �(n). It appears that the function r(n) follows a certain
trend. To check whether the dependence of the mean value of the distribution
�(n) follows a power law, we plot the graph in log/log space in Fig. 1. From
the graph we conclude that it is a combination of some effects that are present
for small n and an affine function that is obeyed for large n. To extract the
behaviour of A for large n, we ignore data points for n < 20. We use the least
squares method to find an affine function that best reflects the dependency of
log(r) on log(n). We find that log(r(n)) ≈ 0.55 log(n) + 0.67 and taking the
exponent of both sides we obtain the equation

r(n) ≈ 1.95n0.55 (4)

In Fig. 2, we plot the graph of r versus n and the curve given by (4). It is
interesting to note that the obtained approximation starts to fit the data at
n = 17, approximating some data points that were not used in training.

Variance of �(n). Recall that we denote variance of �(n) by d(n). Our ex-

periments show that as n grows, d(n) also grows, but function
√

d(n)

r(n) appears to
tend to 0 as n goes to infinity. It is not very hard to see that this implies that
P (�(n) = r(n) + o(r(n)))−→n→∞ 1. In other words, with high probability �(n)
is approximately equal to r(n).
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Number of states: n
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Mean length of the shortest reset word
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Fig. 2. The graph of the mean length of the shortest reset word versus the number of
states of the random automata and a power function approximating it

5 Conclusion and Discussion

We interpret experimental results as indicating that as n goes to infinity, a
random automaton is synchronizing with high probability. Also with high prob-
ability the the length of its shortest reset word can be computed as

�(n) ≈ 1.95n0.55. (5)

In particular, we believe that the experimental data we obtained suggests that
the length of the shortest synchronizing word of a random automaton is sublinear
with respect to the number of states.

It worth noting that our conclusion (5) directly contradicts a conjecture that
Roman formulated in [16]. Namely, Roman conjectured that the mean length of
the shortest reset word for a random n-state synchronizing automaton is almost
equal to 0.486n. Roman’s experiments with random automata consisted of two
parts: for each n = 5, 6, . . . , 14 one thousand random n-state automata were
generated and then for each n = 15, 16, . . . , 100 ten random n-state automata
were generated. The linear estimate �(n) ≈ 0.486x + 1.654 was suggested on
the basis of the results of the first part of the experiments and then it was
extrapolated even though the reported results of the second part did not really
support the extrapolation. In contrast, we believe that both our and Roman’s
experiments with larger n indicate that a random automaton is synchronized by
a word of length sublinear with respect to the number of states.
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We are also aware of another series of experiments with random automata
synchronization performed by Gusev (these experiments are mentioned in [1]).
A direct comparison of our results with those by Gusev is impossible because
he used a different random automata model. However, on a qualitative level our
conclusions tend to quite agree with Gusev’s.

Acknowledgement. We are grateful to Prof. M.V. Volkov for numerous produc-
tive discussions on the topic, and to the anonymous reviewers for their remarks
which have helped us make the article more accurate and clear.
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