Consensus Networks: A Method for Visualising
Incompatibilities in Collections of Trees

Barbara Holland! and Vincent Moulton?

1 Allan Wilson Centre for Molecular Ecology and Evolution, Massey University,
New Zealand.
B.R.Holland@massey.ac.nz
2 The Linnaeus Centre for Bioinformatics, Uppsala University,
Box 598, 751 24 Uppsala, Sweden.
vincent.moulton@lcb.uu.se

Abstract. We present a method for summarising collections of phylo-
genetic trees that extends the notion of consensus trees. Each branch
in a phylogenetic tree corresponds to a bipartition or split of the set of
taxa labelling its leaves. Given a collection of phylogenetic trees, each
labelled by the same set of taxa, all those splits that appear in more
than a predefined threshold proportion of the trees are displayed us-
ing a median network. The complexity of this network is bounded as a
function of the threshold proportion. We demonstrate the method for
a collection of 5000 trees resulting from a Monte Carlo Markov Chain
analysis of 37 mammal mitochondrial genomes, and also for a collection
of 80 equally parsimonious trees resulting from a heuristic search on 53
human mitochondrial sequences.

1 Introduction

A central task in evolutionary biology is the construction of phylogenetic trees
and, accordingly, many methods have been developed for performing this task.
Quite often these methods produce a collection of trees rather than a point
estimate of an optimal tree, since such a tree with no measure of reliability
may not be particularly helpful. Examples of methods producing collections
of trees include Monte Carlo Markov Chain (MCMC) methods [15], [13], and
bootstrapping [9]. Heuristic or exact searches [22] can also produce collections
of trees if the optimal solution is not unique.

Large collections of trees can be difficult to interpret and draw conclusions
from. Thus, when faced with such a collection, it is common practice to construct
a consensus tree, i.e., a tree that attempts to reconcile the information contained
within all of the trees. Many ways have been devised for constructing consensus
trees (see [6] for a comprehensive, recent overview). However, they all suffer
from a common limitation: By summarizing all of the given trees by a single
output tree, information about conflicting hypotheses is necessarily lost in the
final representation.
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Motivated by this problem we have developed a new approach to visualizing
collections of trees that naturally generalizes consensus trees. This approach is
based on the construction of phylogenetic networks, networks that are regularly
used by biologists to visualize and analyze complex phylogenetic data sets. In
particular, we will focus on the use of median networks [3] to visualize collections
of trees as we now describe.

2 Methods

First we summarize some necessary concepts.

2.1 Background

Suppose that X is a finite set of taxa. A split A|B of X is a bipartition of X, i.e.,
a partition of X into two non-empty sets or parts A and B with AUB = X and
AN B = (). We call a collection of splits a split system for short. A phylogenetic
tree (on X) is a tree with leaves labelled by X. Each edge of a phylogenetic tree
naturally gives rise to a split, since its removal results in two trees, each one
being labelled by the elements in one part of a split. We say that a phylogenetic
tree displays a split if there is an edge in the tree that gives rise to the split.
A split system is called compatible if there is a phylogenetic tree that displays
every split in the system. If this is the case then there is a unique such tree for
which the edges are in one-to-one correspondence with the splits in the given
system (see e.g., [21] pg 44]). We say that a split system is incompatible if it does
not contain any subset of cardinality two that is compatible. Note that a split
system which is not compatible, need not be incompatible.

It is possible to represent split systems on X by various networks [2], [3],
[16]. In particular, a canonical median network [4] can be associated to any split
system on X. These networks were originally designed for the analysis of mito-
chondrial data [4] and have also been used to analyze chloroplast data [12]. In a
median network, certain vertices are labelled by the elements of X and, in a way
similar to phylogenetic trees, splits are represented by classes of parallel edges.
Figure [ illustrates a simple median network on 5 taxa. The median network
associated with a split system has several attractive properties. For example, it
is a tree if and only if the split system is compatible (in which case it is the
unique tree corresponding to the split system), and it is a hypercube if and only
if the split system is incompatible [5]. In fact, for a general split system a median
network lies somewhere between the extremes of being a tree and a hypercube
since each incompatible subsystem of splits with cardinality k corresponds to a
k-cube in the network. Moreover, the median network associated with a split
system is straight-forward to generate using an algorithm first introduced in [4],
which has been implemented in the freely available program Spectronet [IT].
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Fig.1. The median network associated with the split system: AB|CDE,
ABC|DE, BC|ADE, A|BCDE, B|ACDE, C|ABDE, D|ABCE, ABCDI|E.
The two horizontal parallel edges correspond to the split AB|CDE, and the two
vertical parallel edges correspond to the split BC|ADE.

Since for visual purposes the complexity of the median network associated
with a split system is directly related to the degree of incompatibility of the split
system (since high dimensional hypercubes are rather difficult to visualize), it
is useful to quantify this incompatibility as follows. For k a positive integer, we
say that a split system is k-compatible if it contains no incompatible subsystem
of k+ 1 splits. The concept of k-compatibility was introduced and studied in [g].
Clearly a k-compatible split system is compatible if and only if K = 1, in which
case its associated median network is a tree, but, as k increases, the associated
median network can become progressively more complex. Note that if X has
cardinality n, then a (1-)compatible split system on X contains at most 2n — 3
splits, a 2-compatible split system on the same set contains at most 4n — 10 splits
and, for general k, it will contain at most n(1 + klog,(n)) splits, cf. [§]. Hence
for low values of n and k& the number of splits in a k-compatible split system
on X will not be excessively large, again making the associated median network
easier to visualize.

2.2 Consensus Networks

Given a collection of phylogenetic trees, two common methods for computing a
consensus tree are the strict consensus method, which outputs the tree displaying
only those splits that are displayed by all of the input trees, and the majority-
rule consensus method, which outputs the tree displaying only those splits that
are displayed in more than half of the input trees. These two methods can be
viewed as being members of a one-parameter family of consensus methods in
which a split system S, is generated that contains precisely those splits that are
displayed by more than proportion x of the trees (for strict consensus z = 1,
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and for majority-rule x = %) If z is greater than %, then the consensus method
results in a split system that is compatible which can thus be displayed by a
tree. However, if  is less than % this is no longer necessarily the case, although
the split system S, does have the following attractive property.

Theorem 1. Given N phylogenetic trees and some 0 < x < 1, let S, denote the
split system containing those splits that are displayed in [Nz| or more of these
trees. Then Sy is | 1 |-compatible.

Proof: Suppose that S, contains L%J + 1 incompatible splits. Then, since each of
these splits is displayed by at least [ Nz of the trees, it follows by the Pigeonhole
Principle that one of the trees must display at least two of the incompatible splits.
But this is impossible. a

For obvious reasons, we will call the median network associated with S, a
consensus network. In order to visualize the contribution that each split makes
to the collection of trees in question, we usually weight the edges in this network
corresponding to a given split according to the frequency with which it occurs
in the trees. This last result indicates a way in which to control the visual
complexity of the consensus network associated with S,.. For instance, if we only
accept splits that appear in more than i of the input trees, then S 1 will be
4-compatible, so that the associated median network is guaranteed to contain
cubes only of dimension 3 or less. Note that in the case where x = 0, i.e. the
split system S contains all splits from all N trees, S is N-compatible.

2.3 Greedy Consensus Networks

We now turn to the practical matter of how to select a split system to be repre-
sented by a consensus network. One possibility is to simply select the parameter
x described in the previous section by trial and error, and this seems to work
reasonably well in practice. A more attractive approach might be to try and
select, for fixed k, a maximal k-compatible subset of splits in the split system
consisting of all splits displayed by a given collection of trees. However, this is
computationally hard even in case k = 1 (see e.g., [6]). Even so there are various
heuristic approaches possible extending those used to construct consensus trees.
We now describe one of these methods.

Consensus trees can be constructed using a greedy approach, which can be
easily extended to construct networks. We begin by recalling the strategy for
constructing a greedy consensus tree (cf. [6]). Given a collection of trees, list all
splits displayed by at least one of the trees in order of frequency, so that those
splits displayed by the largest number of trees come first (with ties broken arbi-
trarily). A compatible split system is then built up by starting at the beginning
of the list and adding in splits one at a time that are compatible with all of the
splits in the current split system, ignoring splits that are incompatible with any
of the splits in the current system. The tree displaying the resulting compatible
split system is the greedy consensus tree.
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We construct a k-greedy consensus network for a fixed positive integer k in
a similar manner, including splits in order of frequency provided they do not
lead to a subset of k + 1 incompatible splits. As with greedy consensus trees,
this approach will also suffer from the fact that if two distinct splits occur with
equal frequency, they will be chosen in arbitrary order which can lead to different
results (see [6] for more details). In practice we found it useful to stop trying to
add further splits after the first split inducing a subset of k41 incompatible splits
was obtained; this prevented the main features of the network being obscured
by many edges of relatively small weight (results not shown).

2.4 Implementation

Code has been developed to read a list of trees in Newick format (bracket no-
tation) and produce the corresponding weighted split system in nexus format.
(Python script available from b.r.holland@massey.ac.nz). This nexus file can then
be read by the program Spectronet [11] which displays the associated consensus
network.

3 Results

We present two representative examples to illustrate the method.

3.1 MCMC Analysis

Our first example comes from a Monte Carlo Markov Chain (MCMC) analysis
[15], [13] of 37 mammal mitochondrial genomes [19]. We used the software Mr-
Bayes [14] under a general time-reversible model with gamma distributed rates
across sites to generate a chain of 1,000,000 trees; of these every hundredth tree
was recorded. We discarded the first half of these trees to provide for a burn in
period, leaving 5000 trees in our collection.

Figures 2a-2d show the consensus networks corresponding to the split systems
Sy for £ = 1,0.5,0.25 and 0.1. In an MCMC analysis the proportion of times
an edge appears in a tree in the chain is interpreted as its posterior probability
of being in the true tree, hence the length of the edges in the network are
proportional to their posterior probability. Note that all the external edges have
posterior probability 1, as they necessarily appear in all of the trees in the
collection.

The marsupials (opossum, possum, wallaroo, bandicoot) and the platypus
form an outgroup to the placental mammals. We can see in Figures 2a-2d that
while the more recent divergences are well resolved, the order of the deeper
divergences and the position of the root of the placentals is unresolved. Using
the complete data set, the outgroup breaks the rodents into two groups, this is
thought to be a long branch attraction artefact, and indeed, when the outgroup
taxa are removed the rodents form a single group [19], [20]. Although the strict
consensus tree (Figure 2a) and majority-rule consensus tree (Figure 2b) give
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Fig. 2. a) Strict consensus tree for 37 mammal mitochondrial sequences (z = 1).
b) Majority-rule consensus tree for 37 mammal mitochondrial sequences (x =
0.5). ¢) Consensus network for 37 mammal mitochondrial sequences (z = 0.25).
This is the smallest value of z for which the associated consensus network con-
tains no 3-cubes. d) Consensus network for 37 mammal mitochondrial sequences
(x = 0.10). The smallest value of x for which the consensus network contains no
4-cubes is 0.028. However, this network has many tiny edges that detract from
the main features.

some idea of the regions of the phylogeny that are uncertain, these regions are
displayed either as polytomies, or as edges with weak support, rather than the
more informative display of alternative hypotheses in the consensus networks
(Figures 2c and 2d). For instance, in Figure 2¢ there are two possible hypotheses
regarding the location of the odd-toed ungulates (horse, white rhino). They could
either form a sister group with the carnivores (dog, cat, harbour seal) or with
the even-toed ungulates (finwhale, hippo, cow, pig). The relative lengths of edges
in the 2-cube indicate that the latter hypothesis is more likely according to this
analysis.
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3.2 Equally Parsimonious Trees

The second example is a data set consisting of 80 trees. This collection of trees
resulted from a heuristic search for the most parsimonious tree for a set of 53
sequences of human mitochondrial DNA [I7]. The phylogenetic software package
PAUP* [22] was used to search for the maximum parsimony tree, (using the
default options Swap=TBR, AddSeq=Simple). All splits appearing in the 80
equally parsimonious trees are shown (Figure 3), this corresponds to z = 0,
making it unnecessary to compute a greedy network. As we see, rather than
sifting through the 80 trees to try and identify similarities and differences, the
relevant information is summarized in a single figure.
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Fig. 3. Consensus network showing all splits in the 80 equally parsimonious trees
resulting from a heuristic search on an alignment of 53 human mitochondrial
genomes. (z = 0).
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This data set is typical of intra-species data in that it has many equally
likely trees, since taxa are often only separated by a few mutational steps, with
a high proportion of the mutations being reversals and parallel changes [4]. As
these reversals and parallel changes can lead to conflicting hypotheses about
the phylogeny, consensus trees for intra-species data are prone to have many
polytomies. This is well illustrated by the majority-rule consensus tree for this
data set (Figure 4). There are a large number of resolved trees consistent with the
majority-rule tree, only 80 of these are the actual input trees. A greedy consensus
tree would provide much greater resolution of the polytomies but would still be
unable to display the 3x2 = 6 trees encapsulated by the 3-cube and 2-cube in
the network.

MbenzeleB
Biaka2
Mbuti1
Biakat San1  san2 Mhuti2
Kikuyu
MbenzeleA ot e
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Fig. 4. Majority-rule consensus tree of 80 equally parsimonious trees resulting
from a heuristic search on an alignment of 53 human mitochondrial genomes.
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The consensus network approach also complements a recent multidimensional
scaling method for analyzing collections of trees, TreeViz [18]. This method works
by computing a distance between the trees in question (such as the Robinson-
Fould’s distance), and then using multidimensional scaling to represent the trees
as a set of points in a plane (an approach that was also explored in [10]). Using
this plot, it is possible to interactively select subcollections of trees and compute
consensus trees for these collections.

We show a screenshot of a TreeViz analysis of the 80 equally parsimonious
trees (Figure 5a); the multi-dimensional scaling is shown on the left and the
consensus tree for 16 selected trees in shown in a panel on the right. In Figure
5b we compare an excerpt from the consensus of the 16 highlighted trees with
the corresponding part of the consensus network. Again, where the consensus
tree shows a polytomy the network displays the competing hypotheses.

4 Discussion

We have presented a method for generating consensus networks that allows the
display of conflicting information within a collection of phylogenetic trees. These
networks can be thought of as an extension of strict and majority-rule consen-
sus trees. As with consensus trees, consensus networks can be used as a tool in
conjunction with established phylogenetic techniques such as MCMC and boot-
strapping. The weights of the edges in consensus networks are open to different
interpretations depending on the way in which the input collection of trees is
generated. For instance, given a set of trees generated by a MCMC the weights of
the splits correspond to posterior probabilities, given bootstrap trees the weights
correspond to the confidence level.

One of the main advantages of consensus networks over consensus trees is
that they allow conflicting hypotheses within the input collection of trees to be
displayed simultaneously in a single diagram. This can be important since a lot
of computational effort is usually put into generating large collections of trees,
making it somewhat wasteful to only keep a small proportion of this information
in the final display. Moreover, it is the conflicts between the trees that are often
of interest to biologists and by visual inspection consensus networks allow these
to be quickly identified.

Even so, consensus networks still suffer from limitations shared by consensus
methods in general. With consensus networks (as with consensus trees) some
information may still be lost in order to facilitate display of the network, espe-
cially if the data contains many incompatibilities. However, if the data is highly
incompatible then it might be questionable in what way a phylogenetic analysis
is appropriate.

Another consideration with the consensus networks that we have proposed is
that they can still become quite complex, even when restricted to 3-compatible
split systems. In practice we found that networks without a distracting level
of complexity could be constructed by halting the greedy consensus method
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Fig.5. a) TreeViz screenshot showing the multi-dimensional scaling of 80
equally parsimonious trees resulting from a heuristic search on an alignment
of 53 human mitochondrial genomes (left panel), and the consensus tree for 16
selected trees (right panel). b) A comparison of an excerpt from the consensus
of the 16 highlighted trees (5a) with the corresponding part of the consensus
network.

after the first split which caused a 4-cube was encountered. Another possible
approach to controlling the complexity of the networks is to generate circular
split systems as opposed to k-compatible split systems. These split systems have
the advantage that they can be displayed using split-graphs which, as opposed
to median networks, are always planar and can be easily computed using the
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program SplitsTree [16]. However, we shall explore this possibility elsewhere
when we will also look at other avenues for future work including the adaptation
of different consensus tree methods to give networks (e.g., matrix representation
with parsimony).
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