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Abstract. Our recent efforts focusing on improving the lattice Boltzmann 
method (LBM) are introduced, including an incompressible LB model without 
compressible effect, a flexible thermal LBM with simple structure for 
Bousinesq fluids, and a robust boundary scheme. We use them to simulate the 
lid-driven cavity flow at Reynolds numbers 5000–50000, the natural convection 
due to internal heat generation in a square cavity at Rayleigh number up to 1012, 
respectively. The numerical results agree well with those of previous studies. 

1   Introduction 

Today, despite enormous progress in computational fluid dynamics (CFD), limitations 
still exist because of computer resources. It is apparent that several orders of 
magnitude improvement in both speed and memory are necessary to solve problems 
of contemporary interest. These requirements are obtained assuming today’s solution 
algorithms and computer architecture. Since the technologies of scalar and vector 
computing have had substantial development, further work is unlikely to yield 
significant increases in computer performance. Massive parallel processing, on the 
other hand, appears to possess the capability to partially fill the gap between 
computational needs and present supercomputer performance. Although the 
supercomputer performance keeps rapid increase, it still could not satisfy the 
computational need in CFD due to the complex behavior of fluids, especially that of 
turbulence. Therefore, the efficient use of massively-parallel computers requires new 
algorithms with high performance. The lattice Boltzmann method (LBM) is a 
candidate of such algorithms [1-4]. 

The LBM is a relatively new approach that uses simple microscopic models to 
simulate complicated macroscopic behavior of transport phenomena. In recent years, 
the LBM method has achieved great success in simulations of fluid flows and 
modeling physics in fluids, involving complicated boundaries or/and complex fluids, 
such as turbulent flow, muti-phase/component fluids, free boundaries in flow systems, 
particle suspensions in fluid, reactive-diffusive systems and combustions, 
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magnetohydrodynamics, crystal growing, granular flow and others [3,4]. Compared 
with the conventional CFD approach, LBM is simple to code, intrinsically parallel, 
ready for extending to three-dimensional problems and has clear physical pictures. It 
is also easy to incorporate complicated boundary conditions such as those in porous 
media. 

The LB models commonly used in the solution of the incompressible Navier-
Stokes (NS) equations can be viewed as compressible schemes to simulate 
incompressible fluid flows, and there is the compressible effect which might lead to 
some undesirable errors in numerical simulations. Some LB models have been 
proposed to reduce or eliminate such errors [5-7]. However, most of the existing LB 
models either can be used only to simulate steady flows or are still of artificial 
compressible form. So, when used to simulate unsteady incompressible flows, these 
methods require some additional conditions to neglect the artificial compressible 
effect. In Ref. [8], we have proposed a 9-bit incompressible LB model in two-
dimensional space. To our knowledge, this model is the first one without 
compressible effect for simulating incompressible flows. The approach can be used in 
the solution of steady or unsteady problems and can also be used to develop other 
incompressible LB models in either two- or three-dimensional space.  

In LBM simulations, boundary condition is a very important issue. Proper 
boundary conditions can reduce the computational cost and enhance the numerical 
stability of algorithms. At solid walls, the original schemes are realized by particle 
density bounce-back. These bounce-back conditions are simple and can be used to 
some flow problems with complex geometries. But it is known that bounce-back wall 
boundary conditions are of first-order accuracy, and can not process the complex 
boundary conditions. To avoid of these problems, several new type boundary-
processing schemes have been proposed and improved the overall accuracy of LB 
methods [9]. But, these schemes are imposed certain restrictions. Although the 
extrapolation scheme proposed by Chen et al. used second-order extrapolation, which 
is consistent with LBM, we found that the second-order extrapolation scheme has 
poor stability for high Reynolds numbers. It is necessary to establish a processing 
scheme for boundary conditions, which is of higher order accuracy, has robust 
stability and is efficient for arbitrary complex geometric boundaries. 

In the present paper, our recent efforts focusing on above problems are introduced, 
including an LBM without compressible effect, a flexible thermal LBM with simple 
structure for Bousinesq fluids, and a robust boundary scheme. We use them to 
simulate the lid-driven cavity flow at Reynolds numbers 5000-50000, and the natural 
convection due to internal generation in a square cavity at Rayleigh number up to 1012, 
and Prandtl number 0.25 and 0.6. The numerical results agree well with those of 
previous studies. 

2   Background of Lattice Boltzmann Method 

2.1   Lattice Boltzmann Method  

A popular LB model is the so-called lattice BGK model (LBGK) with the single 
relaxation time approximation [3] : 
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where ie  is the discrete velocity direction, and txc ∆∆=  is particle speed, x∆ , t∆ , 

and τ are the lattice grid spacing, the time step and the dimensionless relaxation time, 
respectively. ),( tfi x  is the distribution function at node x  and time t with velocity 

ie , and ),()( tf eq
i x  is the corresponding equilibrium distribution depending the lattice 

model used. The nine-bit square lattice model referred to as D2Q9 model has been 
successfully used for simulating 2-D flows. For the D2Q9 model, ie  is defined as  
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where iω  is the weighting factor given by ω0 = 4/9, ωi = 1/9(i = 1 : 4), 

ωi = 1/36(i = 5 : 8).  
The flow density, momentum fluxes and kinetic viscosity can be evaluated as  
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where 3/ccs =  is the speed of sound in this model and the equation of state is that 

of an idea gas, ρ2
scp = . 

Through multi-scaling expansion, the incompressible NS equation can be derived 
to the second order under the low Mach number limitation [3]: 

0)( =⋅∇+∂ uρρt , (4) 

))(()()( T
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From Eqs.(4)-(5), we can see that the LBM is in fact an artificial compressible 
scheme for the incompressible NS equation. This may lead to compressible effect. We 
recently proposed a true incompressible LBGK model (ILBGK) for the 
incompressible NS equation without compressible effect [8]. The equilibrium 
distribution in ILBGK is defined by 

 spf ii
eq

i )()( u+= λ , (6) 

where 2
0 /4 cσλ −= , 2/ ci λλ =  (i=1:4) and 2/ ci γλ =  (i=5:8) with parameters 

λσ , , and γ  satisfying 2/12, =+=+ γλσγλ  , and )(uis  as in Eq.(2).  
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The ILBGK is a second order scheme for true incompressible NS equation, 

0=⋅∇ u , (7) 

uuuu 2∇+−∇=∇⋅+∂ υp t . (8) 

2.2   Boundary Conditions 

We have found that most of the existing boundary schemes commonly used in LBGK 
usually encounter numerical instability for flows at large Ra or Re. In a previous study 
we developed a non-equilibrium extrapolation rule for velocity and pressure boundary 
condition [10], which is of second order, simple form, and exhibits much better 
numerical stability. This rule is based on the decomposition of distribution function: 
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where )(neq
if  is the non-equilibrium part of if , bx  is a node on boundary. 

For velocity boundary, we have  
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while for pressure boundary, we use  
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where 
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fx  is its nearest neighbor fluid node of bx . 

3   Numerical Results 

3.1   Lid-Driven Cavity Flow 

The configuration of the lid-driven cavity flow considered in this paper consists of a 
two-dimensional square cavity whose top plate moves from left to right with a 
uniform velocity (U=1, here), while the other three walls are fixed. The flow is 
described by the dimensionless incompressible NS equations, that is Eqs.(7)-(8), 
where ),( vu=u  is the velocity vector, p is the pressure, and υ = 1/Re is the kinetic 
viscosity, Re the Reynolds number. 

Numerical simulations were carried out using the methods presented above for the 
driven cavity flow with Re=5000, 7500, 10000, 15000, 20000, and 50000, 
respectively, on 256256 ×  lattice. The relaxation parameter ω = τ -1 is set to be 1.85, 
1.92, 1.95, 1.95, 1.96 and 1.985, respectively. (σ,λ,γ) in Eq.(6) is set to be 

)12/1,3/1,12/5(    such that (λ,γ) = 3×(ω1,ω5) which has the symmetry to agree with the 



326         B. Shi et al. 

 

method, and we find that the simulations with this set are more robust. For the walls, 
no-slip boundary conditions were prescribed by the non-equilibrium extrapolation 
method given above. The flow with Re=5000 is first simulated, where the initial 
condition is set as 0=p , and the velocities at all nodes, except the top nodes, are set 

as 0== vu . The simulations for higher Re start from the solution obtained for lower 

Ra as initial condition. In the simulations, steady solutions are obtained for 410≤Re . 
For Re=1.5×104, the flow becomes periodic, and a period is about 2000 time step. For 
Re=2×104 and 5×104, the flow becomes unsteady, and the solutions at 300000 and 
350000 time steps are given, respectively.  

Fig. 1. shows the contours of the stream function of the flows for the Reynolds 
numbers considered. These plots show clearly the effect of the Reynolds number on 
the flow pattern. At Re=5000, in addition to the primary, center vortex, and three first-
class vortices, a pair of secondary ones of much smaller strength develop in the lower 
corners of the cavity. When Reynolds number reaches to 7500, a tertiary vortex 
appears in the lower right corner. Stationary solutions were found for Reynolds 
numbers up to 10000. We can also see that the center of the primary vortex moves 
toward the geometric center of the cavity as the Reynolds number increases and 
becomes fixed in x-direction. As the Reynolds number increases, no more steady 
solution was found and the flow becomes periodic in time at Re=15000. Here 
streamlines in one period for Re=15000 are plotted in Fig. 2. As the Reynolds number 
increases to 20000, the period begins to be broken, but the primary vortex is still 
stable. When Re reaches 50000, the flow becomes chaos and the primary vortex is 
unsteady and broken. To quantify the results, the locations of the vortex are listed in 
Table 1. From the table, we can see that these values predicted by the LBGK method 
agree well with those of previous work [2,11,12]. 

3.2   Natural Convection Flow with Internal Heat Generation 

Natural convection (NC) in enclosures is a classical problem in the heat transfer 
literature and serves as one of the most popular test-problems for numerical methods 
for incompressible viscous flows. Much more work has addressed two main classes of 
NC flows, those heated from below and those from side [13,14]. Although NC due to 
internal heat generation is not less important, it drew much less attention in the past 
than the two classes above. However, in recent years, it becomes a subject of intense 
interest mainly due to nuclear safety issues [15,16]. Horvat et al. recently simulated 
the NC flows with internal heat generation in a square cavity for a wide range of Ra 
and Prandtl numbers (Pr): Ra 106-1013 and Pr 0.25-8 by using the LES method 
[15,16]. Since the NC flows at large Ra have complex behavior, the solution of them 
is very difficult. Efficient methods are still needed for further study, especially for 3D 
problems. The LBGK method is perhaps a suitable one.  

The flow considered is in an enclosure of height H and width W (aspect ratio 
WHA /= ), and governed by two-dimensional unsteady Boussinesq equations in 

primitive variables[15]. Since the force or source terms in momentum and 
temperature are required to be of order )( tO ∆  in LBGK, where t∆  is the time step, 

we use the following dimensionless equations in the paper by setting U = Ra0.5u, 
t’ = Ra-0.5t, and pRaP =  in the dimensionless equations for the flow in Ref.[15]: 
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Fig. 1. Streamlines of the flow at: Re=5000, 7500, 10000 (Top: left to right), and Re=15000, 
20000, 50000 (Bottom: left to right) 

 

 
Fig. 2. Streamlines of the flow at Re=15000 in one period from 155000 to 157000 time steps; 
T=1.9560 
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Table 1. Locations of Vortex of the Driven Cavity Flow. The letters T, B, L, and R denote top, 
bottom, left, and right, respectively; a. Ghia et al.[11]; b. Hou and Zhou [2]; c. Present work 

Re Primary First (T) First (BL) First (BR) Second (BL) Second (BR) 

5000 

a 
b 
c 

0.5117, 
0.5352 
0.5176, 
0.5373 
0.5156, 
0.5352 

0.0625, 
0.9102 
0.0667, 
0.9059 
0.0625, 
0.9063 

0.0703, 
0.1367 
0.0784, 
0.1373 
0.0742, 
0.1328 

0.8086, 
0.0742 
0.8078, 
0.0745 
0.8086, 
0.0742 

0.0117, 
0.0078 

 
0.0039, 
0.0039 

0.9805, 
0.0195 

 
0.9961, 
0.0742 

7500 
a 
b 
c 

0.5117, 
0.5322 
0.5176, 
0.5333 
0.5156, 
0.5352 

0.0664, 
0.9141 
0.0706, 
0.9098 
0.0664, 
0.9102 

0.0645, 
0.1504 
0.0706, 
0.1529 
0.0664, 
0.1484 

0.7813, 
0.0625 
0.7922, 
0.0667 
0.7930, 
0.0664 

0.0117, 
0.0117 

 
0.0078, 
0.0039 

0.9492, 
0.0430 

 
0.9961, 
0.0742 

10000 
a 
c 

0.5117, 
0.5333 
0.5117, 
0.5313 

0.0703, 
0.9141 
0.0703, 
0.9102 

0.0586, 
0.1641 
0.0625, 
0.1563 

0.7656, 
0.0586 
0.7813, 
0.0625 

0.0156, 
0.0195 
0.0117, 
0.0117 

0.9336, 
0.0625 
0.9492, 
0.0625 

15000 c 0.5117, 
0.5313 

0.0781, 
0.9141 

0.0547, 
0.1992 

0.7227, 
0.0391  

0.9219, 
0.0781 

20000 c 0.5117, 
0.5273 

0.0820, 
0.9102 

0.0703, 
0.1758 

0.7109, 
0.0391  

0.8672, 
0.0742 

 

0=⋅∇ u , (12) 

kuuuu Θ+∇+−∇=∇⋅+∂ Prp t
2υ , (13) 

DD t +Θ∇=Θ∇⋅+Θ∂ 2u , (14) 

where 5.0−= RaPrυ , 5.0−= RaD , k  is the unit vector in the y-direction, Pr is the 
Prandtl number and Ra the Rayleigh number;  t′ , U , P and  Θ  are the dimensionless 
time, velocity vector, pressure and temperature, respectively, as in Ref.[15].  

The boundary conditions are taken to be 0=u  and 0=Θ on all the four walls; 
Here we set A = 1. At the beginning of the simulation, the fluid was considered at rest 
and isothermal, with mean temperature 0=Θ . Thus the initial conditions are set to be 

0,0 =Θ=u  for all cases. 
We first modify the ILBGK model described by Eqs.(1) and (6) for the velocity 

field by adding a term to the evolution equation: 

tFtftftftttcf i
eq

iiiii ∆+−−=−∆+∆+ − )],(),([),(),( )(1 xxxex τ , 

where Θ⋅= keiii c

Pr
F α

2
 such that kPrFce

i ii Θ=∑ =

8

1
, and α = δi2 + δi4. Other forms 

of iF  can also be used. 

To solve Eq. (14), we utilize a D2Q5 lattice consisted of )4:0( =i ie  as used in 
Eq. (1), and the LBGK equation for Eq. (14) reads 

tTttttt tc iiiiii ∆+Θ−Θ−=Θ−∆+∆+Θ −
Θ )],(),([),(),( )0(1 xxxx τe , (15) 
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where  cii ]/)(5.21)[5/()0( ue ⋅+Θ=Θ is the equilibrium, and for the source term we 

take  cDT ii ]/)(5.21)[5/( ue ⋅+= such that DT
i i =∑ =

4

0
. Θ and D are calculated by 

∑ =
Θ=Θ

4

0i i , )5/())(12( 2 txD ∆∆−= Θτ . (16) 

It should be noted that the other lattices could also be used for Eq. (14). However, 
the lattice introduced here is the simplest one with rest particle. Note that in Ref. [17] 
we successfully simulated the NC flow heated from side (without heat source in 
Eq.(14)) at Ra up to 1010 using a D2Q4 model for Eq. (15) without the source term. It 
was found that the TLBGK with D2Q5 has better numerical stability than that with 
D2Q4 for the flows considered here. 

Similarly, for thermal boundary condition, we use  

)),(),((),(),( )0()0( tttt fifibibi xxxx Θ−Θ+Θ=Θ . (17) 

We simulate the flow with Ra=106-1011 for Pr=0.25 and Ra=106-1012 for Pr=0.60 
respectively, based on a 256×256 uniform lattice. The corresponding relaxation 

parameter 1−= τω  is set to be 0.90-1.991 for the case Pr=0.60, and 1.30-1.987 for 
Pr=0.25, while τΘ is given by Eq. (16). In the simulations, steady solutions for Ra=106 
and 107 were reached. For Ra=108-1012, the flow becomes unsteady, and solutions 
were obtained from 105 to 4.0×105 time steps, corresponding to the dimensionless 
time 1.0≈′t , 0.5, 0.03, 0.015 and 0.01, respectively, as in Ref. [15]. It is well known 

that the numerical stability of the LBGK models is usually very poor as 21 →= −τω . 
While we found that our scheme was still stable and accurate even as ω = 1.991, at 
which the computation blows up using other schemes for the velocity and temperature 
boundary conditions. 

Isotherms of the flows are shown in Fig.3. From the figures, we can see that the 
main features of the flows are in agreement with those obtained in Ref. [15]. To 
quantify the results, the time-boundary-averaged Nusselt numbers ( aveNu ) obtained 
by the TLBGK and those in Ref.[15] are plotted in Fig.4-5 (log10-log10 diagram). It can 

be found that our results for 910≤Ra  agree well with those in Ref.[15], while the 
others are different a little, which is perhaps due to the different methods used. 

4   Conclusion 

We proposed the LBGK models with a robust boundary scheme for complex flows at 
large Re or Ra. The numerical results agree well with those of previous studies. Since 
little work on simulations of flows at large Re or Ra by LBM was performed before, 
our work is important for the development of LBM. The proper implementation of the 
boundary conditions is crucial for the LBGK simulation. Non-equilibrium 
extrapolation method has robust stability and the overall accuracy of distribution 
function is of second order. With the proposed boundary schemes, we can simulate 
the flow at very large Re or Ra. We found that other LBGK models with these 
boundary schemes have also better stability. It is also found that if a finer lattice is  
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Fig. 3. Temperature isotherms: Pr=0.6 (top) and Pr=0.25 (bottom). Ra=107, 109, 1011 from left 
to right. The data listed above each subfigure are the relaxation parameter ω, time steps T, and 
values of temperature isotherms 
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Fig. 4. Rayleigh number vs. time-boundary-averaged Nusselt number on the bottom(left) and 
side(right) boundaries 

used, flows at larger Re or Ra than those here can be simulated using the present 
models. Moreover, our models can be easily extended to 3D problem. LBGK method 
is a relatively new approach for simulating complex flows. It is parallel in nature due 
to the locality of particle interaction and the transport of particle information, so it is 
well suited to massively parallel computing. Applying LBM to other complex flows is 
challenging work. 
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Fig. 5. Rayleigh number vs. time-boundary-averaged Nusselt number on the top boundary 
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