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Abstract. Aiming at the recognition problem of EEG signals in brain-computer 
interfaces (BCIs), we present a pattern recognition method. The method com-
bines an adaptive genetic algorithm (GA) with the support vector machine 
(SVM). It integrates the following three key techniques: (1) the feature selec-
tion and model parameters of the SVM are optimized synchronously, which 
constitutes a hybrid optimization; (2) the aim of the hybrid optimization is to 
improve the classification performance of the SVM; and (3) the hybrid optimi-
zation is solved by using the adaptive GA. The method is used to classify three 
types of EEG signals produced during motor imaginations. It yields 72% classi-
fication accuracy, which is higher 8% than the one obtained with the individual 
optimization of the feature selection and SVM parameters. 

1   Introduction 

A brain-computer interface (BCI) is an alternative communication and control chan-
nel that does not depend on the brain’s normal output pathway of peripheral nerves 
and muscles [1]. A BCI system can help severely disabled people to communicate 
with computers or control electronic devices through their thoughts. Most BCIs utilize 
EEG signals to detect distinguishable brain states. These distinguishable brain states 
are then transformed into external actions through the recognition of EEG signals. 
Over the past years many evidences have evaluated the possibility to recognize a few 
mental tasks from EEG signals [2-4]. However, how to improve the recognition per-
formance of EEG signals is still a key problem [5]. 

The recognition procedure of EEG signals includes three steps: the feature extrac-
tion, the feature selection and the classification. This paper mainly concerns the fea-
ture selection and the classification. The feature selection is to select an optimal fea-
ture subset from all candidate features, which is an optimization problem. The feature 
selection can improve the generalization performance of the classifier, reduce its 
complexity and speed up its training process. In the classification, parameters of a 
classifier affect its classification performance. The selection of parameters of the 
classifier is also an optimization problem. In previous methods used in BCIs, none of 
these two optimization problems are considered or they are performed independently 
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[6-10]. However, the feature selection and the classification are dependent on each 
other. No optimization or optimizing only one of them is difficult to ensure that these 
two problems obtain optimal solutions simultaneously. 

We will explore a novel method that optimizes the feature selection and classifier 
parameters simultaneously. The support vector machine (SVM) is a relatively new 
classification technique that has shown to perform strongly in a number of real-world 
problems, including BCIs [5]. We will use the SVM as the classifier. At the same 
time, the genetic algorithm (GA) is a global and probabilistic search algorithm that is 
based on the mechanics of natural selection and population genetics. It can maintain a 
good balance between searching width and searching deepness [11]. So, we will use 
an adaptive GA to optimize the Feature Selection and SVM parameters simultane-
ously, so the method is called GA-FS-SVM. 

2   Data 

Six healthy subjects (sub1-sub6) participated the experiment. They seated in a shielded 
room with dim lighting. Sounds around the surroundings were not controlled painstak-
ingly considering for further application. A 32-channel elastic electrode cap was used to 
record EEG. The data were recorded at the sampling rate 100Hz with ESI-128. 

Each subject repeated the experiment for two sessions. Each session comprised 150 
trials. The subjects were asked to imagine performing one of three motor imagery 
tasks (playing basketball with left hand, playing basketball with right hand, and brak-
ing with right foot) in a self-paced mode during each trial. Each trial lasted 
5.75s~6.25s (mean 6s) and consisted of three phases: 1) a 0.75s~1.25s (random) rest-
ing phase; 2) a 1s preparation phase; and 3) a 4s of motor imagery task phase during 
which subjects were performing the corresponding motor imagery task according to 
the direction of the arrow (a left arrow and a right arrow indicate to imagine left hand 
and right hand movement respectively, a down arrow means right foot). The data 
during the last 4s of each trial were used to perform analysis. The module of the data 
acquisition can be seen in Fig.1. 

3   Method 

3.1   The Feature Extraction 

Fig.2 depicts the diagram of a simple BCI system. The proposed GA-FS-SVM con-
cerns the feature selection and the classification. As for the feature extraction, we 
adopt the spectral power as the feature, which is commonly used in BCIs. The most 
related frequency information during motor imagery is the Mu (8-12Hz) and Beta 
(18-26Hz) rhythms on the scalp just above the motor cortex [12]. Mean powers within 
these two bands are calculated as features. So, two dimensional features can be ob-
tained for each EEG channel. Considering the practicality of BCIs system, we use  
six electrodes (C3, C4, P3, P4, CZ, and PZ, see Fig.3.) which are considered impor-
tant EEG channels. Then we can obtain a 12-dimensional feature vector 

1 2 12{ , ,..., }F f f f= , in which 61 ~ ff  are mean powers within the band 8-12Hz  

 



 Pattern Recognition for BCIs by Combining SVM with Adaptive GA. 309 

 

Fig. 1. The module of the data acquisition 

 

Fig. 2. The diagram of a simple BCI system 

c3 c4

p3 p4

cz

pz

 

Fig. 3. The used six electrodes 

of six channels respectively according to the above channel order and 127 ~ ff  are 

mean powers within the band 18-26Hz. 

3.2   The Adaptive GA Theory 

The GA is a global and probabilistic search algorithm that is based on the mechanics 
of natural selection and population genetics. It can maintain a good balance between 
searching width and searching deepness. The GA starts to search from a set of initial 
solutions in a population. An individual (al-so called a chromosome) implies a possi-
ble solution to the problem and it consists of many genes. Each gene represents a 
feature or a parameter. In the feature selection, a binary gene represents a feature in 
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which a gene bit “1” denotes the corresponding feature is selected and a gene bit “0” 
denotes the feature is eliminated. The method of optimizing parameters is similar to 
the feature selection and the only difference between them is that a floating-point 
gene represents a parameter. 

The GA consists of many parameters, such as selection operator, crossover opera-

tor, mutation operator, etc. The crossover operator is crossed by probability
c

P  and the 

mutation operator is mutated by probability
m

P . Fixed crossover probability 
c

P  and 

mutation probability 
m

P  may result in premature and local convergence. So, we adopt 

an adaptive GA. The adaptive GA can be defined by the following formulas:  

1 max max
( ) /( )

c
P k f f f f′= − −  (1) 

2 max max
( ) /( )

m
P k f f f f′′= − −  (2) 

Where 
1 2
,k k  are constants,

1 2
, 1.0k k ≤ , the two parameters should be adjusted ac-

cording to a given problem, 
max

f and f  are the maximum fitness and the average 

fitness of a population respectively; f ′  is the larger one of fitness values of the two 

individuals used to cross; f ′′  is the fitness of the individual used to mutate. The de-

tailed description of the adaptive GA can be seen in [13]. 

3.3   The Basic SVM Theory 

The SVM is a powerful and relatively new classification method based on statistical 
learning theory. The SVM has many remarkable characteristics such as good gener-
alization performance, the absence of local minima and sparse representation of the 
solution. The problem of pattern recognition may be stated as follows: given a data set 

L , with ix  input features, iy  classification output and m  the number of samples, 

then 

1 1 2 2{( , ), ( , ),..., ( , )}m mL x y x y x y=  (3) 

The SVM finds an optimal separating hyperplane by maximizing the margin be-
tween classes. The algorithm consists of solving the following optimization problem: 
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where 0≥iξ , iii bxwy ξφ −≥+ 1))(( . 

The parameter iξ  is called a slack variable and ensure that the problem has a solu-

tion in case the data are not linear separable. The parameter C  is a tradeoff variable, 
w  is an adjustable weight vector, ( )xϕ  is a nonlinear function for feature mapping. 

The decision function is 
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It can be described further by the dot product,  

1

( ) ( ( ) ( ))
m

i i i
i

f x y x x bα φ φ
=

= ⋅ +∑  (6) 

The dot product can be performed by a Kernel function ( , )K x y . So, the decision 

function can be described as follows: 
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During solving the SVM, finding good Kernel function parameters and a parameter 
C  is an important part of the model selection. The classification performance of the 
SVM is strongly dependent on values of parameters. 

3.4   The GA-FS-SVM Method 

The feature vector is },,,{ 1221 fffF L= . We can encode a chromosome 

with 1 2 12{ , , , }S s s s= L , 12,,2,1},1,0{ L=∈ isi . Before classification with the 

SVM, some SVM parameters need to be given. The most common Kernel functions 
are polynomial function and radial basis function. We select the polynomial func-

tion DegreeCoeffvuGamma )*( +⋅ , where vu,  are input vectors, 

DegreeCoeffGamma ,,  are parameters of the kernel function. So the training 

model of the SVM can be constructed as },,,{ CDegreeCoeffGammaM = , 

where 0,,, ≥CDegreeCoeffGamma . We can encode a chromosome 

with 1 2 3 4{ , , , }C c c c c= , where ic R∈ , i=1,2,3,4. 

The GA-FS-SVM method optimizes the feature selection and SVM parameters si-
multaneously and its structural diagram is shown in Fig.4. The hybrid optimization 
can be regarded as optimizing { , }H F M= . The chromosome H  is encoded 

with 1 2 12 1 2 3 4{ , , , , , , }G s s s c c c c= L . A specified chromosome leads to a feature 

subset and a SVM model simultaneously. 
We evaluate the performance (fitness) of a chromosome using the average classifi-

cation accuracy of the SVM. The calculation of the fitness can be outlined as follows: 
(1) to a specified chromosome, we randomly select half of all trials as training sam-
ples; (2) the selection procedure of training samples is performed ten times and so we 
can obtain ten values of the classification accuracy; (3) the fitness is obtained by  
averaging the ten values. When the adaptive GA attains convergence, the optimal 
chromosome is obtained, i.e. the optimal feature subset and SVM parameters are 
obtained. The optimized results are used to classify unknown samples. 
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Fig. 4. The structural diagram of the GA-FS-SVM 

3.5   Parameters of the Adaptive GA 

(1) Parameters initialization: We select the evolution generation t=100, population 
size p=100. The selected ranges of , , ,Gamma Coeff Degree C  are [0,2], [0,5], 

[0,1], [0,500] respectively according to our experience. 
(2) Selection: we adopt the selection mechanism of proportional fitness and elitism 

strategy. The chance of reproduction for an individual of the parent generation to the 
next generation is proportional to its fitness value. Meanwhile, the fittest individual is 
taken over directly into the next generation.  

(3) Crossover: we select a single-point crossover mechanism with a probability of 
pc =0.8 to create new chromosomes in each pair. The crossover probability pc  is ob-
tained according to formula (1).  

(4) Mutation: we adopt a multi-uniform mutation operator combining with a multi-
Gaussian mutation operator, in which the mutation probability of each operator is 
0.05. The mutation probability of each operator pm  is obtained according to formula 

(2). In formula (1) and (2), 
1

k =0.8; 6) 
2

k =0.4.   
1

k  and 
2

k .are obtained by the experi-

ence and adjustments. The other parameters are selected according to common sug-
gestions in [11]. 

4   Results and Analysis 

4.1   Results 

In order to verify the performance of the GA-FS-SVM, we perform the following 
three strategies: 

(1) GA-FS-SVM: it is described in section 3; 
(2) GA-FS: the adaptive GA only optimizes the feature selection. As for the classi-

fication, we randomly select five groups of SVM parameters: C1{0.1, 1, 0.1, 300}, 
C2{0.2, 0.1, 0.1, 200}, C3{1, 0.1, 0.1 300}, C4{1.5, 0.1, 0.1, 250}, C5{1.2, 3, 0.1, 
400}. 

(3) GA-SVM: the adaptive GA only optimizes SVM parameters. As for the feature 
subset, we randomly select five groups: F1 {f1, f2, f5}, F2 {f2, f5, f8, f9, f11}, F3 {f3, f5, 
f7, f9}, F4 {f5, f6, f7, f9, f10}, F5 {f1 ~ f12}. 
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It should be noted that initial features, GA parameters and the calculation of the fit-
ness used in all above methods are the same. As an example, Fig.5 shows the classifi-
cation accuracy of training samples of subject 1 (sub1) versus generation t  with dif-
ferent strategies. Classification results of testing samples of different subjects with 
different strategies are shown in Tab.1. It also should be noted that results of the GA-
FS-SVM are obtained by running the program ten times and then averaging the ten 
values. 

We calculate the mean value and the standard deviation of classification accura-
cies. It should be noted that these values are obtained by calculating C1~C5 in the 
GA-FS, F1~F5 in the GA-SVM. In addition, we perform the one sample t test to the 
GA-FS-SVM with other strategies. The mean value, the standard deviation, and the t 
value are shown in Tab.2. The comparison of mean values of the classification accu-
racy among different strategies is plotted in Fig.6. 

4.2   Analysis 

From Tab.1 we can see that different strategies can result in different results for any 
one subject. In addition, different parameters in one strategy can also result in differ-
ent classification accuracies, which show that the feature selection and SVM parame-
ters all affect the classification performance. 

The Fig.6 shows that the GA-FS-SVM obtains the best result among all strategies 
because it optimizes the feature selection and the classification synchronously and so 
it obtains the optimal feature subset and SVM parameters synchronously. Results of t 
test in Tab.2 show that the classification accuracy obtained by the GA-FS-SVM is 
significantly higher than other methods. The GA-FS only optimizes the feature selec-
tion and the GA-SVM only optimizes SVM parameters, which means that they lack 
optimal SVM parameters or the optimal feature subset. So obtained results by them 
are inferior to the one obtained by the GA-FS-SVM. The GA-FS-SVM obtains an 
average classification accuracy (mean value of six subjects) 72.0%, which is higher 
about 8% than the one (64.2%, by averaging six subjects and the GA-FS, the GA-
SVM) obtained by the GA-FS and the GA-SVM. 

 
 

Fig. 5. The classification accuracy versus generation t 
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Table 1. Classification results of different subjects with different strategies 

Method 

name 

GA-FS

-SVM 

  GA-FS 

C1  C2   C3   C4  C5 

GA-SVM 

F1  F2   F3   F4   F5 

sub1 70.6 67.2 65.4 67.5 68.6 66.5 64.7 62.9 63.6 62.8 61.7

sub2 72.4 65.6 63.8 64.2 67.5 64.8 66.1 64.8 65.1 64.1 62.8

sub3 68.5 61.8 59.7 60.1 61.6 59.8 62.9 64.1 63.1 63.7 65.1

sub4 74.1 64.3 62.9 61.7 63.6 60.5 68.5 69.1 66.8 65.7 66.2

sub5 68.9 63.5 60.7 61.5 59.8 60.5 63.7 65.8 61.9 62.7 65.3

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (
%

) 

sub6 75.8 65.8 64.7 62.9 63.1 64.8 69.1 68.7 66.8 67.4 69.1
 

Table 2. The mean value, the standard deviation and t value 

subjects sub1 Sub2 Sub3 Sub4 Sub5 Sub6 

GA-FS 67.0 65.2 60.6 62.6 61.2 64.3 Mean 
value (%) GA-SVM 63.1 64.6 63.8 67.3 63.9 68.2 

GA-FS 1.19 1.46 1.02 1.52 1.42 1.23 Standard 
deviation 

(%) GA-SVM 1.11 1.23 0.88 1.47 1.66 1.06 

t (9)   p<0.01 -7.501 -18.12 -10.50 -10.24 -9.91 -12.86 
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5   Conclusions 

(1) Both the feature selection and SVM parameters play an important role in the clas-
sification. Different feature subset and different SVM parameters can result in differ-
ent classification results. 
(2) In BCIs, the GA-FS-SVM optimizes the feature selection and the SVM parameters 
synchronously, which can pick the most promising feature subset and excellent train-
ing model to classification. It avoids the disadvantage of optimizing only one of them. 

Duo to the limited amount of data and subjects, the classification accuracy needs to 
be further investigated. Based on the very promising results we obtained here, we are 
investigating the possibility of developing the GA-FS-SVM further. In this paper, we 
want to show the potential of the hybrid optimization method. 
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