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Abstract. In broadcast scheduling multiple users requesting the same
information can be satisfied with one single broadcast. In this paper we
study preemptive on-demand broadcast scheduling with deadlines on a
single broadcast channel. We will show that the upper bound results in
traditional real-time scheduling does not hold under broadcast scheduling
model. We present two easy to implement online algorithms BCast and
its variant BCast2. Under the assumption the requests are approximately
of equal length (say k), we show that BCast is O(k) competitive. We
establish that this bound is tight by showing that every online algorithm
is Ω(k) competitive even if all requests are of same length k. We then
consider the case where the laxity of each request is proportional to
its length. We show that BCast is constant competitive if all requests
are approximately of equal length. We then establish that BCast2 is
constant competitive for requests with arbitrary length. We also believe
that a combinatorial lemma that we use to derive the bounds can be
useful in other scheduling system where the deadlines are often changing
(or advanced).

1 Introduction

On demand pay-per-view services have been on the increase ever since they were
first introduced. In this model, there is a collection of documents such as news,
sports, movies, etc., for the users to view. Typically, broadcasts of such docu-
ments are scheduled ahead of time and the users are forced to choose one of
these predetermined times. Moreover, the collection of documents broadcasted
on such regular basis tend to be small. Even though the collection could change
dynamically (but slowly), this collection is considered to be the collection of
”hot” documents by the server. Recently many companies, for example TIVO,
REAL, YESTV have introduced true on-demand services where a user dynam-
ically makes a request for a document from a large set of documents. This has
the advantage of dealing with larger set of documents and possibly satisfying the
true demand of the users. Generally, the service provider satisfies the request (if
possible) for each user by transmitting the document independently for each
user. This leads to severe inefficiencies since the service provider may repeat
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the same transmission many times. Broadcasting has the advantage of satisfying
many users with the same request with one broadcast [1,3,6,9]. But, shifting
from transmitting at a fixed time or regular intervals to true on-demand broad-
casting has a major disadvantage. A user does not know whether the request
will be satisfied or not and may experience a long wait. Even if we minimize
the average response time (see [4]) for the user, unpredictability of the response
time may be completely unacceptable for many users. It would be appropriate
if the user assigns a deadline after which the completion of the request bears no
value to the user.

In this paper we study preemptive on-demand broadcasting with deadline on
a single broadcast channel. We associate an arrival time, a requested document,
a deadline and a profit with each request. The system receives requests at the
arrival time and knows nothing regarding future demands when it decides to
broadcast a piece of a document. Whenever a request is satisfied on or before
its deadline, the system earns the profit specified by the request. Otherwise, the
system does not earn any profit from the request. This is often referred to as
soft deadline. Our goal is to maximize the overall profit of the system.

First we consider the case where all the documents are approximately equal
in length, which we call the O(1)-length condition. This is motivated by the fact
that most of the documents (e.g., movies) are about the same length. We present
an easy to implement online algorithm which we call BCast. Then we prove that
this algorithm is O(k) competitive, where k is the length of the longest request.
We also show that this result is tight by showing that every online algorithm is
Ω(k) competitive. We then answer the following question: Under what condition
can we find a constant competitive algorithm for this problem? We prove that
BCast is constant competitive if laxity of each request is proportional to the
length of the requested document (i.e., laxity assumption) and all documents
are approximately of same length (i.e., length assumption). We then consider
the case where the lengths of the requested documents differ arbitrarily. Does
there exist an online algorithm with constant competitive ratio for this case? We
answer the question by modifying BCast to handle arbitrary lengths. We prove
that the modified algorithm, we call it BCast2, is constant competitive under
laxity assumption. We also compare and contrast pervious results in real-time
scheduling with deadline [1,12].

1.1 Definitions and Model

We assume that users request for document from a collection {m1, m2, . . .}.
This collection could be dynamically changing since our upper bounds are inde-
pendent of the number of documents in the collection. A document mi has �i

indivisible or non-preemptable segments or chapters. We say that �i is the length
of the document mi and it does not vary over time. We assume that segments
are approximately identical in size so that exactly one segment of any document
can be broadcasted at a time on a single channel.
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With respect to any document, we assume that the broadcast schedule is
cyclical in nature. That is, if a document has 4 segments, (namely 1,2,3 and 4)
then the ith broadcast of the document will be segment (i − 1) mod 4 + 1.

We assume that users request only entire documents. The length of the re-
quest is nothing but the length of the requested document. Moreover, users can
assemble a document mi if they receive all of the �i segments in any of the �i

cyclical orders. Further, schedule on a single channel may choose different docu-
ments on consecutive time units as long as cyclical schedule is maintained with
respect to each document. It is not hard to establish that noncyclic broadcast
does not benefit the system if partial document is of no use to the individual
users. See [1] for more details about on-demand broadcasting with deadlines.

In this paper, we deal with single channel broadcast scheduling. But, when
we establish lower bounds, we show that even multiple channels or multiple
broadcast per unit time does not provide significant benefit to the online algo-
rithm. In order to establish such lower bound results, we introduce the following
definitions.

We say that an algorithm is s-speed algorithm, if the algorithm is allowed to
schedule s broadcasts for each time unit. For s > 1, more than one broadcast of
a document at any time is possible.

We say that an algorithm is m-channel algorithm, if the algorithm is allowed
to schedule broadcasts of m different documents at each time. Multiple broadcast
of the same document is not allowed at any time.

Finally, we give a natural extension (to broadcast scheduling) of two standard
algorithms from traditional real-time scheduling. Ties are broken arbitraly.
Earliest Deadline First (EDF): At each broadcasting step, among all documents,
EDF selects the one that has a pending satisfiable request with earliest deadline.
Least Laxity First (LLF): At each broadcasting step, among all documents,
LLF selects the one that has a pending satisfiable request with least laxity.

The problem we consider in this paper is online in nature. The request for
documents are presented to the system at the arrival time. A request Ri is a
four tuple (ri, di, mz(i), pi) which consists of an arrival time ri, a deadline di, a
requesting document mz(i) and payment pi. The length of the request is �z(i).
The use of z(i) is to indicate that the request Ri does not always deal with
document i.

The deadline specified in a request is a soft deadline. It means that the system
gets paid pi if the request is satisfied by the deadline di. But failure to satisfy
Ri by its deadline does not bring any catastrophic consequence other than the
loss of potential pay pi to the system. Our objective is to maximize the revenue
for the system.

Suppose I be the input given to s-speed online algorithm A. Let C ⊆ I be
the set of inputs satisfied by A by their deadline. We use the notation As(I) to
denote the

∑
Ri∈C pi, the total profit earned by s-speed algorithm A on input I.

We also use the notation OPT(I) to denote the maximum profit that an offline
optimal 1-speed algorithm can earn.
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An algorithm A is said to be a s-speed c-approximation algorithm if

max
Inputs I

As(I)
OPT(I)

≤ c.

An algorithm A is said to be c-competitive, or said to have competitive ratio c,
if A is a 1-speed c-approximation algorithm.

Request Pay-off Density ∆i: This quantity for a request Ri=(ri, di, mz(i), pi)
is denoted by ∆i and is defined to be pi/�z(i).
For constants ε > 0 and c ≥ 1, we say that a set of requests I and the set of
documents {m1, m2, . . .}, satisfy
a. ε-laxity condition, if for all requests Ri ∈ I, di − ri ≥ (1 + ε)�z(i).
b. c-length condition if for all pairs of documents mi and mj , we have �i/�j ≤ c.

The following two definitions are based on the online algorithm and the
set of requests I under consideration. For ease of notation we will not indicate
the online algorithm under consideration in the notation. It will be very clear
from the context, since we only consider two different online algorithms and they
are in two different sections.

Set of Live Requests Li(t): A request Ri=(ri, di, mz(i), pi) is live at time
t if the request has not been completed at time t and has a chance of being
completed if the algorithm were to broadcast mz(i) exclusively from time t until
its deadline. That is, (di−t) ≥ (�z(i)−b) where b ≥ 0 is the number of broadcasts
of document mz(i) during the interval [ri, t). Given I, let Lj(t) be the set of live
requests for the document mj at time t.

Document Pay-off Density Mi(t): It is the sum of all the pay-off densities of
the live-request pending for the document at time t. Mi(t) =

∑
Rj∈Li(t) ∆j

1.2 Previous Results and Our Results

Broadcast scheduling problem has been studied previously by [1,3,6,5,9,10].
Most of the results consider average response time for the users. In these papers,
there is no deadline associated with each request. Every request is eventually
satisfied. But, each user experiences a response time equal to time-of-completion
minus time-of-request. First, we [9] showed that there is an offline 3-speed 3-
approximation for this problem using LP-based techniques. Later Gandhi et.al
[6,7] improved the bounds for this offline case. Recently, Edmonds et. al [4]
developed O(1)-speed O(1)-approximation online algorithm for the average re-
sponse time case. They proved it by showing how to convert online algorithm
from traditional scheduling domain to broadcasting domain. Our paper differs
fundamentally from all of the previous work in broadcast scheduling. Indepen-
dant to our work, Kim et. al [11] obtained constant competitive algorithm for
the broadcasting problem with deadline when O(1)-length condition is satisfied.

In section 2 we prove lower bound results. We first consider soft deadline case
where the objective function is to maximize the overall profit. We prove that the
competitive ratio of every deterministic online algorithm is Ω(k) (where k is
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the length of the longest request) for the on-demand broadcasting problem with
deadlines and preemption. Then we show that the competitive ratio does not
improve significantly even if we allow m simultaneous broadcast of different doc-
uments at each time step for the online algorithm while offline optimal broadcasts
only once. In this case we show a lower bound of Ω(k/m) on the competitive
ratio.

Next we consider hard deadline case where we must satisfy each and every re-
quest. We consider only those set of requests I, such that there exists a schedule
that broadcasts at most once each time, and satisfy all the requests in I. In
the traditional single processor real-time scheduling, it is well known that LLF
and EDF produces such schedule. For the single channel broadcast scheduling
problem, we prove that even s-speed LLF and EDF algorithms do not satisfy
every request even if 1-speed optimal satisfy all. Further, we show that there
is no 1-speed online algorithm that can finish all the requests, even if 1-speed
optimal satisfy all.

In section 3 we prove upper bound results. We do this by defining two algorithms
BCast and BCast2. We first prove that BCast is O(kc) competitive where k is
the length of the longest request and c is the ratio of the length of the longest
to the shortest request. As a corollary, if the set of documents satisfy O(1)-
length condition, then BCast is O(k) competitive. We then show that BCast
is constant competitive if the set of requests and the set of documents satisfy
both O(1)-length condition and O(1)-laxity condition. We then modify BCast,
which we call BCast2, in order to relax the O(1)-length condition. We prove
that BCast2 is O(1) competitive if O(1)-laxity condition alone is satisfied. Due
to page limitations proofs of many theorems and lemmas have been omitted.

2 Lower Bound Results

In this section we prove lower bound results on broadcast scheduling with dead-
lines. We also compare these lower bound results with some of the lower and
upper bound results in traditional (non-broadcasting setup) real-time schedul-
ing.

2.1 Soft Deadlines

Recall that there is a simple constant competitive algorithm for traditional real-
time scheduling with soft deadlines if all jobs are approximately of the same
length [8]. In contrast, we show that it is not the case in broadcast scheduling
under soft deadline.

Theorem 1. Suppose all the documents are of same length k. Then every de-
terministic online algorithm is Ω(k) competitive for the on-demand broadcasting
problem with deadlines and preemption.
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Proof. (of Theorem 1) Let k > 0 and A be any deterministic online algorithm.
The adversary uses k + 1 different documents. The length of each document is
k and the payoff for each request is 1. We will construct a sequence of requests
such that A is able to complete only one request while the offline completes k
requests. The proof proceeds in time steps. At time 0, k + 1 requests for k + 1
different documents arrive. That is, 0 ≤ i ≤ k, Ri = (0, k, mi, 1). WLOG, A
broadcasts m0 during the interval [0, 1]. For time 1 ≤ t ≤ k − 1, let A(t) be the
document that A broadcasts during the interval [t, t+1]. Adversary then issues k
requests for k different documents other than A(t) at time t where each request
has zero laxity. Since each request has zero laxity, A can complete only one
request. Since there are k+1 different documents and A can switch broadcast at
most k times during [0, k], there is a document with k requests which the offline
optimal satisfies.

In the proof of the above theorem, the offline optimal satisfied k requests out
of Θ(k2) possible requests and A satisfied one request. In the next section we
will study the performance of some well known online algorithms assuming the
offline algorithm must completely satisfy all the requests.

We now show that no online algorithm performs well even if online algo-
rithm is allowed m broadcasts per unit time while offline optimal performs one
broadcast per unit time.

Theorem 2. Suppose all the documents are of same length k. For m > 0, every
m-broadcast deterministic online algorithm is Ω(k/m) competitive for the on-
demand broadcasting problem with deadlines and preemption.

2.2 Hard Deadlines

In this subsection, we consider the input instance where offline optimal com-
pletes all the requests before their deadline. Recall that in the traditional single
processor real-time scheduling, it is well known that LLF and EDF are optimal.
However, we show that LLF and EDF perform poorly for broadcast scheduling
even if we assume that they have s-speed broadcasting capabilities.

Theorem 3. Let s be any positive integer. There exists a sequence of requests
that is fully satisfied by the optimal (offline) algorithm, but not by s-speed EDF.
There exists another sequence of requests that is fully satisfied by the optimal
(offline) algorithm, but not by s-speed LLF.

Recall that the proof of Theorem 1 uses Θ(k2) requests where the optimal
offline can finish Θ(k) requests to establish a lower bound for online algorithm.
The following theorem shows that no online algorithm can correctly identify a
schedule to satisfy each and every request if one such schedule exists.

Theorem 4. Let A be any online algorithm. Then there exists a sequence of
requests that is satisfied by the optimal (offline) algorithm, but not by A.
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3 Upper Bound

Before we describe our algorithms and their analysis, we give intuitive reasoning
to the two assumptions (length and laxity) as well as their role in the analysis
of the algorithm.

When an online algorithm schedules broadcasts, it is possible that a request
is partially satisfied before its deadline is reached. Suppose each user is willing
to pay proportional to the length of the document he/she receives. Let us call
it partial pay-off. On the contrary, we are interested actual pay-off which occurs
only when the request is fully satisfied. Obviously, partial pay-off is at least equal
to actual pay-off.

Definition 1. Let 0 < α ≤ 1 be some constant. We say that an algorithm for
the broadcast scheduling problem is α-greedy, if at any time the pay-off density
of the chosen document of the algorithm is at least α times the pay-off density
of any other document.

Our algorithms are α-greedy for some α. Using this greedy property and
applying O(1)-length property, we will argue that actual pay-off is at least a
constant fraction of partial pay-off. Then applying O(1)-laxity property, we will
argue that the partial pay-off defined above is at least a fraction of the pay-off
received by the offline optimal.

3.1 Approximately Same Length Documents

In this subsection we assume that the length of the requests are approximately
within a constant factor of each other, which we call O(1)-length condition. We
first present a simple algorithm that we call BCast. We prove that the competi-
tive ratio of this algorithm is O(k) where k is the length of the longest request,
thus matching the lower bound shown in Theorem 1. We then show that if
in addition to O(1)-length condition O(1)-laxity condition is also satisfied then
BCast is constant competitive.
BCast: At each time step, the algorithm broadcasts a chapter of a document.
We will now describe what document the algorithm chooses at each time step.
With respect to any particular document, the algorithm broadcasts chapters in
the cyclical wrap-around fashion. In order to do so, the algorithm maintains the
next chapter that it plans to transmit to continue the cyclical broadcast. The
following description deals with the selection of document at each time step.

1. At time 0, choose the document mi with the highest Mi(0) (document
pay-off density) to broadcast.

2. At time t
a) Compute Mi(t)’s for each document and let mj be the document with

highest pay-off density Mj(t).
b) Let mc be the last transmitted document. If Mj(t) ≥ 2Mc(t) then trans-

mit mj . Otherwise continue transmitting mc.
End BCast
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Observation 1 BCast is 1
2 -greedy for the broadcast scheduling problem. On the

negative side, it is quite possible that BCast never satisfy even a single request.
This happens when there are infinitely many requests such that the pay-off density
of some document is exponentially approaching infinity. So, we assume that the
number of requests is finite.

Definition 2. 1. For ease of notation, we use A to denote online algorithm
BCast.
2. Let mA(t) be the document transmitted by algorithm A (i.e., BCast) at time t.
For ease of presentation, we abuse the notation and say that A(t) is the document
transmitted by A at time t.
3. Let t0 be the starting time, t1, . . . tN be the times at which BCast changed
documents for broadcast and tN+1 be the time at which BCast terminates.
4. For 0 ≤ i ≤ N − 1, let Ci be the set of all requests completed by BCast during
the interval [ti, ti+1).
5. CN be the set of all requests completed by BCast during the interval [tN , tN+1].
6. C = ∪N

i=0Ci.

Next we will proceed to show that the algorithm BCast is O(k) competitive.
First we prove some preliminary lemmas.

Lemma 1. For any 0 ≤ i ≤ N , MA(ti)(ti) ≤ MA(ti)(ti+1) +
∑

Rj∈Ci
∆j .

Lemma 2. Let k be the length of the longest document.
∑

t∈[tt,ti+1) MA(t)(t) ≤
kMA(ti)(ti+1) +

∑
Rj∈Ci

pj .

Lemma 3.
∑N

i=0 MA(ti)(ti+1) ≤ 2
∑

Rj∈C ∆j .

Proof. (of Lemma 3)
We prove this by a point distribution argument. Whenever a request Rj is com-
pleted by BCast during the time interval [ti, ti+1), we will give 2∆j points to
Rj . Observe that total points that we gave is equal to the right hand side of
the equation in the lemma. We will now partition the points using a redistribu-
tion scheme into N + 1 partitions such that the ith partition receives at least
MA(ti)(ti+1). The lemma then follows.

All partitions initially have 0 points. Our distribution process has N + 1
iterations where at the end of i iteration, N + 2 − ith partition will receive
2MA(tN+1−i)(tN+2−i) points. During the i + 1st iteration N + 2 − ith partition
will donate MA(tN+1−i)(tN+2−i) points to N +1− ith partition. Also, 2∆j points
given each Rj completed during the interval [tN+1−i, tN + 2 − i] is also given to
N + 1 − ith partition.

We argue that N + 1 − ith partition receives 2MA(tN−i)(tN+1−i). At time
tN+1−i, BCast jumps to a new document. So, 2MA(tN−i)(tN+1−i) ≤ MA(tN+1−i)
(tN+1−i). Apply lemma 1, we have MA(tN+1−i) (tN+1−i) ≤ ∑

Rj∈CN+1−i
∆j

+MA(tN+1−i) (tN+2−i). Combining these two inequalities we get, 2MA(tN−i)
(tN+1−i) ≤ ∑

Rj∈CN+1−i
∆j+ MA(tN+1−i) (tN+2−i). The result then follows.
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Lemma 4. Let k be the maximum length of any request.
∑tN+1

t=0 MA(t)(t) ≤
k

∑N
i=0 MA(ti)(ti+1) +

∑
Rj∈C pj .

Lemma 5. Let c be the constant representing the ratio of the length of longest
document to the length of shortest document.

∑
Ri∈C pi ≥ 1

2c+1

∑tN

t=0 MA(t)(t).

Proof. (of Lemma 5) By using Lemma 3 and Lemma 4 we get
∑tN

t=0 MA(t)(t) ≤
2k

∑
Rj∈C ∆j +

∑
Rj∈C pj . That is,

∑tN

t=0 MA(t)(t) ≤ 2
∑

Rj∈C k∆j +
∑

Rj∈C pj .

By definition of ∆j

∑tN

t=0 MA(t)(t) ≤ 2
∑

Rj∈C k(pj/�j) +
∑

Rj∈C pj . Since c is
the ratio of the length of longest document to the length of shortest document,∑tN

t=0 MA(t)(t) ≤ (2c + 1)
∑

Rj∈C pj .

Lemma 6. Let C, OPT be the requests completed by BCast and offline optimal
respectively. Then, 2k

∑tN+1
t=0 MA(t)(t) ≥ ∑

Rj∈OPT pj − ∑
Rj∈C pj .

Proof. (of Lemma 6) For a moment imagine that offline optimal gets paid
pj/�j only for the first received chapter for each request Rj ∈ OPT − C. Let
FO(t) be the set of requests in OPT that receive their first broadcast at time
t based on the schedule opt. Let FOPT (t) be the sum of pay-off densities of
the requests in FO(t). Observe that

∑tN+1
t=0 FOPT (t) ≥ ∑

Rj∈(OPT−C) ∆j and
∑tN+1

t=0 MA(t)(t) ≥ 1/2
∑tN+1

t=0 FOPT (t). Combining the above two inequalities,
∑tN+1

t=0 MA(t)(t) ≥ 1/2
∑

Rj∈(OPT−C) ∆j . Multiplying by k and expanding the

right hand side we get, 2k
∑tN+1

t=0 MA(t)(t) ≥ ∑
Rj∈OPT pj − ∑

Rj∈C pj .

Theorem 5. Algorithm BCast is O(kc) competitive where k is the length of
the longest request and c is the ratio of the length of the longest to the shortest
document.
Proof. (of Theorem 5) From Lemma 5 2k(2c + 1)

∑
Ri∈C pi ≥ 2k

∑tN+1
t=0

MA(t)(t). From Lemma 6, 2k(2c + 1)
∑

Ri∈C pi ≥ ∑
Ri∈OPT pi − ∑

Ri∈C pi.
Simplyfying, [2k(2c + 1) + 1]

∑
Ri∈C pi ≥ ∑

Ri∈OPT pi.

Corollary 1. BCast is O(k) competitive if requests are approximately same
length.

Next we will prove that the BCast algorithm is O(1) competitive if the laxity
is proportional to length.

For ease of presentation, we use the notation opt to represent the offline
optimal algorithm and OPT be the set of requests satisfied by opt. First, we
prove a key lemma that we use to derive upper bounds for two algorithms.
Intuitively, each request in OPT is reduced in length to a small fraction of
its original length. After reducing the length of each request, we advance the
deadline of each request Ri to some time before di − (1+ η)�z(i)). We then show
that there exists a pair of schedules S1 and S2 such that their union satisfy these
reduced requests before their new deadline. Since a fraction of each request in
OPT is scheduled, the partial pay-off is proportional to the total pay-off earned
by the offline optimal schedule. We then argue that our greedy algorithm does
better than both S1 and S2. We think that this lemma may have applications
in other areas of scheduling where one deals with sudden changes in deadlines.
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Lemma 7. Suppose δ = 2ε/9 and ε < 1/2. Under ε-laxity assumption, there
exists two schedules S1 and S2 such that the following property holds:
For all Ri ∈ OPT , the number of broadcasts of document mi in both S1 and S2
during the interval [ri, di − (1 + δ + ε/2)�i] is at least δ�i.

In the following lemma, we establish the fact that the partial pay-off for A
(i.e., BCast) is at least a constant fraction of the pay-off earned by offline optimal
algorithm opt when O(1)-laxity condition is met.

Lemma 8. Under the ε-laxity assumption and for some γ > 0 the following
holds.

∑
t MA(t)(t) ≥ γ

∑
Ri∈OPT pi.

Theorem 6. Under both O(1)- length and ε-laxity conditions, the algorithm
BCast is O(1) competitive.

3.2 Arbitrary Length Documents

In this subsection, we consider the case where the length of the document vary
arbitrarily. However, we continue to assume that ε-laxity condition is satisfied.

We will present a modified online algorithm, which we call BCast2, and prove
that it is O(1) competitive under ε-laxity condition.

Before we proceed to modify BCast, we point out the mistake that BCast
makes while dealing with arbitrary length documents. When BCast jumps from
one document (say mi) to another (say mj) at time t, it does so based only on
the density of the documents and bluntly ignores their length. At time t, we
have Mj(t) ≥ 2Mi(t). But at time t+1, it could be the case that Mj(t+1) gone
down to a level such that Mj(t + 1) is just greater than 1

2Mi(t + 1). However,
this does not trigger the algorithm to switch back to document mi from mj .
As a consequence, for long documents such as mi, we will accumulate lots of
partially completed requests and thus foil our attempt to show that the total
cost earned by completing requests is not a constant fraction of partial pay-off
(i.e., accumulated pay-off if even partially completed requests pay according to
the percentage of completion).

In order to take care of this situation, our new algorithm BCast2 maintains a
stack of previously transmitted document. Now switching from one document to
another is based on the result of checking two conditions. First, make sure that
the density of the document on top of the stack is still a small fraction of the
density of the transmitting document. This is called condition 1 in the algorithm.
Second, make sure that there is no other document with very high density. This
is called condition 2 in the algorithm. If any one or both these conditions are
violated then the algorithm will switch to a new document to broadcast. In order
to make this idea clear (and make it work), we introduce two additional labeling
on the requests. As before, these definitions critically depends on the algorithm
under consideration.
Startable Request: We say that a request Ri is startable at time t, if the
algorithm has not broadcasted document mi during [ri, t] and ri ≤ t ≤ di − (1+
ε/2)�i.
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Started Request: We say that a request Ri is started at time t if it is live at
time t and broadcast of document mi took place in the interval [ri, di−(1+ε/2)�i].
Observe that the document pay-off density is redefined to be based on the union
of started and startable requests as opposed to live requests.

Mk(t) denote the sum of the densities of the started or startable request at time
t for the document mk.

SMk(t) denote the sum of the densities of the started request at time t for the
document mk.

TMk denote the density of document mk at the time of entry into the stack (T
stands for the threshold value). As long as the document mk stays on the stack,
this value TMk does not change.

BCast2 is executed by the service providers. Assume the service provider
has n distinct documents. The algorithm maintains a stack; each item in the
stack has the following two information:

1) Document name say mk.
2) Started density value SMk(t) of the document at the time t it goes on the

stack. We refer it TMk for document mk and it is time independent.
Initially stack is empty.

BCast2: c1 and α are some positive constants that we will fix later.

1. At time t = 0 choose the document with the highest Mi (document pay-off
density) and transmit:

2. For t = 1, 2 . . .

a) Let mj be the document with the highest Mj(t) value.
b) Let mk be the document on top of the stack (mk is undefined if the stack

is empty).
c) Let mi be the document that was broadcast in the previous time step.
d) While ((SMk(t) ≤ 1

2TMk) and Stack Not Empty)
e) pop stack.
f) Now mk be the document on top of stack.
g) Condition 1. SMk(t) ≥ c1ε

(1+α)Mi(t)

h) Condition 2. Mj(t) ≥ 2(1+α)
c1ε Mi(t)

i) If both conditions are false continue broadcasting document mi.
j) If condition (1) is true then broadcast mk, pop mk from the stack (do

not push mi on the stack).
k) If condition (2) is true the push mi on the stack along with the value

Mi(t) (which is denoted by TMi), broadcast mj .
l) If both conditions are true then choose mj to broadcast only if Mj(t) ≥

2(1+α)
c1α Mk(t). Otherwise broadcast mk, pop mk from the stack (do not

push mi on the stack). We will later establish the fact that both condi-
tions 1 and 2 are false for the current choice of broadcast mk.

3. EndFor

End BCast2
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For ease of presentation we overload the term BCast2 to represent the set of
all requests completed by BCast2 before their deadline. As before, we use A to
denote algorithm BCast2 in our notation. Without the O(1)-length condition,
we will now establish the fact that the total pay-off for completed requests for
BCast2 is proportional to the partial pay-off where every request pays propor-
tional to the percentage of completion.

Lemma 9. For c1 ≤ 3
32 ,

∑
Rj∈BCast2 bj ≥ α

2(1+α)

∑
t MA(t)(t)

Theorem 7. Assuming ε-laxity condition, BCast2 is constant competitive algo-
rithm for the broadcast scheduling problem.
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