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Abstract. In this paper we initiate the study of Ehrenfeucht-Fraissé games for
some standard finite structures. Examples of such standard structures are equiv-
alence relations, trees, unary relation structures, Boolean algebras, and some of
their natural expansions. The paper concerns the following question that we call
Ehrenfeucht-Fraissé problem. Given n € w as a parameter, two relational struc-
tures ‘A and B from one of the classes of structures mentioned above, how efficient
is it to decide if Duplicator wins the n-round EF game G, (A, $)? We provide al-
gorithms for solving the Ehrenfeucht-Fraissé problem for the mentioned classes
of structures. The running times of all the algorithms are bounded by constants.
We obtain the values of these constants as functions of n.

1 Introduction

Ehrenfeucht-Fraissé (EF) games constitute an important tool in both finite and infinite
model theory. For example, in infinite model theory these games can be used to prove
Scott Isomorphism Theorem showing that all countable structures are described (up
to isomorphism) in L,,, ,-logic. In finite model theory these games and their different
versions are used for establishing expressibility results in the first order logic and its
extensions. These results can be found in standard books in finite and infinite model
theory (e.g. [6], [TI]) or relatively recent papers (e.g. [2], [12]). In this paper all EF
games are considered on finite structures.

Despite significant use of EF games in finite and infinite model theory there has not
been, with some exceptions, much work in addressing efficiency of these games. M.
Grohe studied EF games with fixed number of pebbles and showed that the problem
of deciding the winner is complete for PTIME [3]. E. Pezzoili showed that deciding
the winner of EF games is PSPACE-complete [14]]. In [9] P. Kolaitis and J. Panttaja
prove that the following problem is EXPTIME-complete: given a natural number £ and
structures A and B, does Duplicator win the k pebble existential EF game on A and B?
In [1]] sufficient conditions are provided for Duplicator to win EF games. These condi-
tions are then used to prove some inexpressibility results, e.g reachability in undirected
graphs is not in monadic NP. These results suggest that developing tools and algorithms
for finding winners of EF are of interest. We also point out that there has recently been
an interest in EF games to collapse results in database theory [[16]. In addition, we think

S. Artemov and A. Nerode (Eds.): LECS 2007, LNCS 4514, pp. 293 2007.
© Springer-Verlag Berlin Heidelberg 2007



294 B. Khoussainov and J. Liu

that algorithms that solve EF games can be used in data matching and data transforma-
tion problems in databases.

In this paper we initiate the study of EF games for some standard finite structures.
Examples of such standard structures are equivalence relations, trees, unary relation
structures, Boolean algebras, and some of their natural expansions. The paper concerns
the following question that we call the Ehrenfeucht-Fraissé problem. Given n € w as
a parameter, two relational structures A and B, how efficient is it to decide if Du-
plicator wins the n-round EF game G,(A, B)? We provide algorithms for solving the
Ehrenfeucht-Fraissé problem for the structures mentioned above. The running times of
all the algorithms are bounded by constants. We obtain the values of these constants as
functions of n.

By a structure we always mean a finite relational structure over a language with-
out functional symbols. Let A and B be structures and n € w. EF game, denoted by
G, (A, B), on these two structures is played as follows. There are two players, Duplica-
tor and Spoiler, both provided with A and 8. The game consists of n rounds. Informally,
Duplicator’s goal is to show that these two structures are similar, while Spoiler needs
to show the opposite. At round i, Spoiler selects structure A or B, and then takes an
element from the selected structure. Duplicator responds by selecting element from the
other structure. Say, the players have produced the following play consisting of pairs
of elements (ay, by),...,(a,, b,), where a; € A and b; € B fori = 1,...,n. Note that
if Spoiler selected a; (or b;) then Duplicator selected b; (or a;, respectively). Duplicator
wins the play if the mapping a; — b;, i = 1,...,n, extended by mapping the values of
constant symbols ¢” to ¢?, is a partial isomorphism between A and B. It is clear that
if A and B are isomorphic then Duplicator wins the game G, (A, B) no matter what n
is. The opposite is not always true. However, for large n if Duplicator wins the game
G,(A, B) then A and B are isomorphic. Thus, solving the EF problem can be thought
as an approximation to the isomorphism problem.

One can do the following rough estimates for finding the winner of the game
Gn(A, B). There are finitely many, up to logical equivalence, formulas ¢y, ..., ¢y of
quantifier rank n (see for example [11]]). It is well known that Duplicator wins G,,(A, B)
if and only if for all ¢; (with i = 1,..., k) the structure A satisfies ¢; if and only if B
satisfies ¢; [T1]]. Thus, the question if Duplicator wins G, (A, B) can be solved in poly-
nomial time. However, there are two important issues here. The first issue concerns the
number k that depends on n; k is approximately bounded by the n-repeated exponentia-
tions of 2. The second issue concerns the degree of the polynomial for the running time
that is bounded by n. Thus, the questions arise as to for which standard structures the
value of k is feasible as a function of n, and whether the degree of the polynomial for the
running time can be pushed down. As an example consider the class of linear orders.
It is well-known that Duplicator wins G,(A, B), where A and B are linear orders, if
and only if either |A| = |B] or both |[A| > 2" and |B| > 2" (e.g. [11]])). In this example,
the number &, roughly, equals to 2. The degree of polynomial for the running time is
0. Thus, when 7 is fixed the winner of the game can be found in constant time, and the
constant that bounds the time is 2".

A brief overview of this paper is as follows. The next section gives an elementary
solution to EF games in the case when the language contains unary predicates only. The
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third, fourth and fifth sections are quite technical and devoted to solving EF games for
equivalence structures and some of their extensions. Equivalence structures are natural
models of university or large company databases. For example, in a university database
there could be the SameFaculty and the SameDepartment relations. The first relation
stores all tuples (x, y) such that x and y belong to the same faculty; similarly, the second
relation stores all tuples (u, v) such that u and v are in the same department. These re-
lations are equivalence relations. Moreover, the set-theoretic connection between these
relations is that the relation SameDepartment is a subset of the SameFaculty relation.
We call such structures embedded equivalence relation structures. Section 6 reduces the
question of deciding EF games for trees of a given height to solving the EP games for
embedded equivalence structures introduced in the previous sections. Finally, the main
structures in the last section are Boolean algebras with distinguished ideals.

Each of these sections provides an algorithm that decides EF games G,(A, B), where
A and B are structures considered in the section. These algorithms run in constant
times with n being a parameter. We also bound the value of the constants as a function
of n. Clearly, the constants obtained depend on the representations of the structures.
In each case, it will be clear from the content how we represent our structures. As an
example we state two results of Sections 4 and 5. Section 4 is devoted to structures
of the type (A; E, Py, ..., P;), where E is an equivalence relation on A and Pj, ..., P, are
unary predicates. We call these structures equivalence structures with s colors. The main
result of Section 4 is the following:

Theorem 1. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on equivalence structures with s colors.
The constant that bounds the running time is n%*1.

Section 5 is devoted to the structures of type (A; Ey, ..., Ej), where each E; is an equiv-
alence relation on A and E; C E, C ... C Ej. These structures are called embedded
equivalence structures of height 4. The main result of Section 5 is:

Theorem 2. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on embedded equivalence structures of

height h. The constant that bounds the running time is (n + 1)“'("”)n where the tower has
height h.

2 Simple Example: Structures with Unary Predicates

This is an elementary section that gives a full solution for EF games in the case when
the language contains unary predicates only. Here is the main result of this section.

Theorem 3. Fix the language L = (Py,..., P;), where each P; is a unary predicate
symbol. Let n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on structures ‘A and B of the language.
The constant that bounds the running time is 2° - n.

Proof. Let A = (A; Py, Py, ..., Py) and B = (B; Py, P», ..., P,) be structures of the lan-
guage given. For structure A = (A; Py, Pa, ..., Py), we set Py, = (), —P;.
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Lemma 1. Suppose Py, P», ..., Ps are pairwise disjoint. Then Duplicator wins G,(A, B)
ifand only if for all 1 < i < s+ 1if |P}| < nor |P?| < n then |P}| = |P?|. In particular,
when Duplicator wins it is the case that forall 1 <i < s+ 1, IPl’.‘I > n if and only if
IPfI > n.

To prove the lemma suppose that there is 1 < i < k+ 1 such that IP?I < nbut IP?I * IPfI.
Assume |[P?| < |P}|. Then Spoiler selects | P#| elements from P#. This strategy is clearly
a winning strategy for Spoiler. For the other direction, assume that hypothesis of the
lemma holds. Duplicator has a winning strategy as follows. At round k, assume that the
players have produced the k-round play (ay, by), ..., (ax, by) such that for each 1 <i <k,
a; € A,b; € B. If Spoiler selects a;+; € A, then Duplicator responds by selecting
bry1 € B as follows: If apyy = a; for some i then by.; = b;. Otherwise if a4 € P?
for some 1 < j <k, then by € Pf so that byy1 € {b1,...,b}. The case when Spoiler
selects an element from B is treated similarly. The strategy is clearly winning. O

Now assume that for a structure (A, the unary predicates Py, P», ..., P are not necessarily
pairwise disjoint. For each element x € A, define the characteristic of x, ch(x), as a
binary sequence (¢, f, ..., ts) such that foreach 1 < i < s, ¢, € {0,1}if x € P; and
t; = 0 otherwise. There are 2° pairwise distinct characteristics, and we order them in
lexicographic order: chy, ..., chys. Construct the structure A’ = (A; Oy, ..., @2s) such

that forall 1 <i <2 Q; ={x € A|ch(x) = ch;}. The following is now an easy lemma.
Lemma 2. Duplicator wins G,(A, B) if and only if Duplicator wins G,(A’, B'). O

We now represent A and B by 2° lists, and the i list lists all elements with characteristic
ch;. To solve the game G,(A’, B'), the algorithm checks the conditions in Lemmal[Il by
reading the lists. The process takes time bounded by 2° - n as required. O

3 Equivalence Structures

An equivalence structure is a structure A of the type (4; E) where E is an equivalence
relation on A. We list all the equivalence classes of A as Ay, ..., Ay such that |A;] < |A;41]
forall 1 < i < k. Let g# be the number of equivalent classes in A; for each < n,
let g/ be the number of equivalence classes in A with size ¢. Finally, let g7 be the
number of equivalence classes in (A of size at least r. For an equivalence structure 8 we
have similar notations as Bj, B», ... to denote its equivalence classes, and the associated
numbers gg, ¢, and ¢%..

Lemma 3. If Duplicator wins the game G, (A, B) on equivalence structures A and B,
then the following must be true:

1. If ga <norqg < nthen gz = qg; and
2. qa = nifand only if gg > n. O

In our analysis below, by the above lemma, we always assume that g4 = gg or g4 > n
if and only if gg > n. We need the following notation for the next lemma and definition.
For 1 < n, let ¢' = min{g2, ¢%}. Let A, and B, be equivalence structures obtained by
taking out exactly ¢’ equivalence classes of size > ¢ from A and B respectively. We also
setn — ¢' to be 0 in case ¢' > n; and otherwise n — ¢' has its natural meaning.
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Lemmad. [. Assume that there is a t < n such that g/' # q° and n — q' > t. Then
Spoiler wins the game G (A, B).

2. Assume that there is a t < n such that n — q' > 0 and one of the structures A; or

B, has an equivalence class of size > n — ¢' and the other structure does not. Then
Spoiler wins the game G,(A, B).

Proof. We prove the first part of the lemma. The second part is proved similarly. As-
sume, without loss of generality, that qf‘[ > ¢? and n — ¢ > 1. Spoiler’s strategy is the

following. First, select elements aj, ..., a s from distinct equivalence classes of size ¢
in A. Next, select ¢ distinct elements in the equivalence class of size ¢ in A. This leads
Spoiler to win. O

Definition 1. 1. We say that G,,(A, B) has small disparity if there is a t < n such that
either g/ # q® andn — ¢ > t.
2. We say that G,(A, B) has large disparity if there exists a t < n such thatn—q' > 0
and one of the structures A, or B, has an equivalence class of size > n— q' and the
other structure does not.

Lemma 5. Duplicator wins the game G,(A, B) if and only if the game G, (A, B) has
neither small nor large disparity.

Proof. The previous lemma proves one direction. For the other, we assume that nei-
ther small nor large disparity occurs in the game. We describe a winning strategy for
Duplicator.

Let us a assume that the players have produced a k-round play (ay, by), (a2, b), ...,
(ag, by). In case k = 0, we are at the start of the game G, (A, B). Our inductive assump-
tions on this k-round play are the following:

1. E(aj,a;) is true in A if and only if E(b;, b)) is true in B, and the map a; — b; is
one-to-one.

2. For all a;, |[a;]| > n—iif and only if |[b;]| > n—i, where [x] denotes the equivalence

class of x.

For a; if |[a;]| < n — i then |[a;]| = |[b;]].

4. Let A" and B’ be the equivalence structures obtained by removing the equivalence
classes [ai], ..., [ax] from A and the equivalence classes [bi], ..., [bx] from B,
respectively. We assume that A" and B’ satisfy the following conditions:

bt

(a) In game G, (A’, B’) no small disparity occurs.
(b) In game G,—(A’, B’) no large disparity occurs.

Assume that Spoiler selects a4 € A. Duplicator responds by choosing by, as fol-
lows. If ay41 = a; then by, = b;. Otherwise, if E(a;, ag+1) is true in A then Duplicator
chooses a new by, such that E(b;, by1) is true in B. Assume a4 is not equivalent to
any of the elements ay,...,ar. If |[ar+1]] > n — k then Duplicator chooses by such
that by, is not equivalent to any of the elements by, ..., by and |[br+1]] > n — k. Dupli-
cator can select such an element as otherwise large disparity would occur in the game.

If |[ar+1]1] < n—k then Duplicator chooses by such that |[bg+1]| = |[ax+1]] and by is not
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equivalent to any of the elements by, ..., by. The case when Spoiler selects an element
from B is treated similarly.

Now we show that the (k + 1)-round play (ai, by), (a2, b2), ..., (ax, bi), (@r+1, brs1) sat-
isfies the inductive assumptions. The inductive assumptions (1), (2), and (3) can easily
be checked to be preserved. To show that the assumption (4) is preserved, consider the
equivalence structures A" and B” obtained by removing the equivalence classes [a;],
..o lag], [ag+1] from A and the equivalence classes [b1], . . ., [br], [bi+1] from B, respec-
tively. In game G,—_; (A", B") small disparity does not occur as otherwise the game
Gk (A, B") would have small disparity. Thus, assumption (4a) is also preserved. Simi-
larly, if G,—k—1 (A", B”) had large disparity then the game G, (A’, B") would also have
large disparity contradicting the inductive assumption. Hence, the strategy described
must be a winning strategy due to the fact that Duplicator preserves the inductive as-
sumption (1) at each round. O

For the next theorem, we represent each equivalence structure A and B in two lists. For
example, the first list for the structure A lists all equivalence classes of (A in increas-

ing order; the second list is ¢™, ¢, g7\, 43, ¢7,. .. .. The lemmas above give us the
following:

Theorem 4. Fixn € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G, (A, B) on equivalence structures A = (A; E) and
B = (B; E). The constant that bounds the running time is n. O

We can extend the above theorem by defining the following structures:
Definition 2. A homogeneous equivalence structure is (A; E, Py, ..., P;) such that

— (A; E) is an equivalence structure; and
— Each P; is a homogeneous unary relation on A meaning that for all x,y € A if
E(x,y) then x € P; if and only if y € P;.

For a homogeneous equivalence structure A, define the characteristic ch(x) of an ele-
ment x € A as in Section 2l Represent A as a disjoint union of equivalence structures
Ay, ..., Ay, where A, consists of elements with characteristic €. The above theorem is
thus extended to:

Theorem 5. There exists an algorithm that runs in constant time and decides whether
Duplicator wins the game G,(A, B) on homogeneous equivalence structures A and B.
The constant that bounds the running time is 2° - n. O

4 Equivalence Structures with Colors

In this section structures (A are of the form (A; E, Py, ..., P,), where E is an equivalence
relation on A and Py, ..., P, are unary predicates on A. We call these equivalence struc-
tures with s colors. We start with the case when s = 1. The case for s > 2 will be
explained later.
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Let A = (A; E, P) be a equivalence structure with one color. Say x € A is colored if
P(x) is true; otherwise x is non-colored. An equivalence class X has type tp(X) = (i, j),
if the number of colored elements of X is 7, non-colored elements is j; thus, i + j = |X].

Definition 3. Given two types (i, j) and (i’, j') respectively. We say that (i, j) is colored
n-equivalent o (i, j'), denoted by (i, j) =S (i', j), if the following holds.

1. Ifi <ntheni =i; otherwisei > n.
2. If j<n—1then j = j; otherwise j/ > n— 1.

We say that (i, j) is non-colored n-equivalent to (i’, '), denoted by (i, j) =N (@', j)), if
the following holds.

1. If j<nthen j = j; otherwise j’ > n.
2. Ifi<n—1theni =i; otherwise i’ > n— 1.

For X € A, weuse (X;E | X,P | X) to denote the equivalence structure obtained by
restricting E and P on X. Note that given two equivalence classes X and Y of types
(i, j) and (&', j') respectively, if (i, j) is colored (non-colored) n-equivalent to (i’, j'),
then Duplicator wins the n-round game played on structures (X;E [ X,P [ X) and
(,ETY,P 1Y), given the fact that Spoiler chooses a colored (non-colored) element in
the first round.

Lemma 6. [f either (', j)) =5 (i,j) or (7',j) =N @, )), then (@', ) =, (i,)) and
@, 7)) =N, G ). O

For an equivalence structure A = (A; E, P), we need the following notations:

For type (i, j) and k > 1, Set Cfl.‘[j) . be the set {X | X is an equivalence class of A
and tp(X) =€ (i, j)}. Set N(i{j)’k be the set {X | X is an equivalence class of ‘A and
tp(X) =Y (i, )

o AcC AN _
— Fortype (i, ) and k > 1, set g, = IC(yifj)’kl, and set g; ), = IN(f"j),kI.
AN

c  _ .. AC BC N BN
— For A and B, set 9k = mzn{q(i’j),k, q(i’j),k} and 9k = mm{q(l.,j)’k, q(l.,j)’k}
- Set AC((i, j), k) be the structure obtained from A by removing q(Ci )« €quivalence

A
classes in C Gk

— Set AN((, j), k) be the structure obtained from A by removing ‘12‘, )« quivalence
classes in N7 .
(@, )).k

Observe the following. If Spoiler selects a colored element from an equivalence class
X in A, and Duplicator responds by selecting a colored element from an equivalence
class Y such that tp(Y) =€ tp(X), there is no point for Spoiler to play inside X because
this will guarantee a win for Duplicator. Conversely, suppose Spoiler selects a colored
element from an equivalence class X in A, and there is no equivalence class in 8 whose
type is colored n-equivalent to #p(X). Then Spoiler has a winning strategy by playing
inside X and Y.
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Definition 4. Consider the game G, (A, B) played on equivalence structures with one
color. We say that a colored disparity occurs if there exists a type (i, j) and n > k > 0
such that the following holds:

1. k=4¢%. .
(i.j).n—k
2. Inone of AC((i, j),n — k) and BE((i, j),n — k), there is an equivalence class whose
type is colored (n — k)-equivalent to (i, j), and no such equivalence class exists in
the other structure.

We say that a non-colored disparity occurs if there exists a type (i, j) andn > k > 0
such that the following holds:

1. k=4gN. .
(i,j).n—k
2. In one of AN ((i, j),n — k) and BN ((i, j),n — k), there is an equivalence class whose
type is non-colored (n — k)-equivalent to (i, j), and no such equivalence class exists
in the other structure.

Lemma 7. Suppose A and B are two equivalence structures with one color. Duplica-
tor wins the game G,(A, B) if and only if neither colored disparity nor non-colored
disparity occurs in the game.

Proof. If either colored or non-colored disparity occurs in the game, then it is not too
hard to see that Spoiler wins the game. Suppose that neither colored disparity nor non-
colored disparity occurs in the game G, (A, B), we describe a strategy for Duplicator.
Let us assume that the players have produced a k-round play (ay, by), (az, b2), ..., (ax, by).
Let (i1, j7) and (i, j)) be the types of a; and by,respectively with 1 < [ < k. Our inductive
assumptions on this k-round play are the following:

Forany 1 <1<k, a;is a colored element if and only if b, is a colored element.
For any 1 <I,m < k, E(ay, a,,) if and only if E(b;, b,).

Forany 1 <[ <k, (i, j1) Enc—l (7, j7) and (i, ji) EnN—l (@, Jj))-

Let A" and B’ be the equivalence structures obtained by removing equivalence
classes [ai], ..., [ax] from A and [b], ..., [bx] from B, respectively. We assume in

game G,_; neither colored disparity nor non-colored disparity occurs.

bl

Assume that Spoiler selects an element a;,; € A. Duplicator responds to this move
by choosing by as follows. If ay.; = a; then by,; = b;. Otherwise, if E(ag+i,a;) is
true in A, then Duplicator chooses a new by such that E(by.1, b;) and a4 is a colored
element if and only if by, is a colored element. By (3) of the inductive assumption,
Duplicator can always select such an element by ;.

Assume ay. is not equivalent to any of the element aj, ..., ;. Let X be the equiva-
lence class of ag+; in A. If ai4; is a colored element, then Duplicator chooses a colored
element by, from an equivalence class Y of B such that p(X) E,f_k tp(Y). If agy is a
non-colored element, then Duplicator chooses a non-colored by from an equivalence
class Y of B such that 1p(X) EnN—k tp(Y). Note that such an equivalence class Y must exist
in B as otherwise either colored or non-colored disparity would occur in G, (A’, B')
as witnessed by 7p(X) and 0. The case when Spoiler selects an element from B is treated
in a similar manner.
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On the play (ay, by), ..., (ak, br), (ar+1, br+1), the inductive assumption (1) and (2) can
be easily checked to hold. To prove that inductive assumption (3) holds, let (ix+1, jr+1)
and (i;( +1> Jisq) e the type of [ary1] and [byy ] respectively. The strategy ensures one
of (ixs1, jre1) Eg_k (pys Jrey) and Gikers jka1) = (0,15 ) is true, and by Lemma
(Tt 1s Jre1) Eg_k_l (I oys Jrep) @and (et jie) =N (hyys Joyy)- It is now routine to
show, by using Lemmal@] that inductive assumption (4) is preserved.

Thus, the strategy is winning for Duplicator by inductive assumptions (1) and (2).

[}

For the next theorem we represent colored equivalence structures A in three lists. The

first one lists equivalence classes of A in increasing order of their types; the second and
R AC AN : .

the third list the sequences {q(l.’j),k Yosi jk<n and {q(i,j)’ Jo<i,jk<n TESPECtively:

Theorem 6. Fixn € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on equivalence structures with one color

A and B. The constant that bounds the running time is n’. m|

Fix s > 1, let A be an equivalence structure with s many colors. For each element x
of A, define the characteristic of x as defined in the previous sections. There are 2°
distinct characteristics. Order them in lexicographic order: chj, ..., chps. Construct the
structure A’ = (A} E, Qy, ..., Q) such thatforall 1 <i<2° Q; ={x € A|ch(x) = ch;}.
Clearly, for distinct characteristics ch; and ch; we have Q; N Q; = (. Moreover, A and
8 are isomorphic if and only if A" and B’ are isomorphic.

For an equivalence class X, we define the type of X, 1p(X), as a sequence (i1, i2, ..., i2s)
such that in X the number of element with characteristic ch; is i; forall 1 < j < 2°.

Definition 5. Let k = (iy, ..., i) and A = (i’l, s i’2x) be two types of equivalence classes.
For1 < j < 2% we say that k is (j, n)-equivalent to A, denoted by k =}, A, if the following
holds.

1. Ifij < nthen i} = ij, otherwise i;. > n; and
2. Forall1 <1< 2" wherel # j, ifiy <n—1theni; =i, otherwise ij 2 n— 1.

Let X and Y be equivalence classes of types k and A respectively. If « Eﬁ A, then Du-
plicator wins the n-round EF game played on structures (X; E [ X,P; [ X,...,Ps [ X)
and (Y;E [ Y,P, | Y,..,Ps [ Y), given that Spoiler selects an element x € X with
characteristic ch;.

FortypeA,1 < j<2%andk > 1, we set Ci{;j be the set {X | X is an equivalence class
of A and 1p(X) EI{ A}. Similar to the case of equivalence structures with one color, one
introduces notations qi’,{ , qik, and A/ (A, k).

Definition 6. Consider the game G,(A, B) played on equivalence structures with s
colors. For 1 < j < 2°, we say that a disparity occurs with respect to ch; if there
exists a type A = (iy, ..., ips) and n > k > 0 such that the following holds:

— )
L k=q, .
2. Inone of A/(A, n—k), there is an equivalence class whose type is (j, n—k)-equivalent
to A, and no such equivalence class exists in the other structure.
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The proof of the following are similar to Lemmal[7land Theorem [

Lemma 8. Let A and B be equivalence structures with s colors. Duplicator wins the
game G,(A, B) if and only if no disparity occurs with respect to ch; for any 1 < j < 2°.
O

Theorem 7. Fixn € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on equivalence structures with s colors.
The constant that bounds the running time is n>*'. O

5 Embedded Equivalence Structures

An embedded equivalence structure of height h is a structure A = (A; Ey, E, ..., Ep)
such that each E;, 1 < i < h, is an equivalence relation, and E; C E; for i < j. In this
section we give a full solution for EF played on embedded equivalence structures of
height . We start with the case when /& = 2. The case for & > 2 will be explained later.

Let A = (A; E1, E») be an embedded equivalence structure of height 2. We say that

an E>-equivalence class X has type tp(X) = (qi1,...,q,) if the largest E;-equivalence
class contained in X has size ¢ and for all 1 < i <¢, g; is the number of Ej-equivalence
classes of size i contained in X. Thus, Zﬁzl(qi x i) = |X|. For two types o = (g1, ..., qs)
and 7 =(q},...,q;,), wesayo =7ifry =nandg; = g forall 1 <i<1.

For X € A, we use (X;E; | X) to denote the equivalence structure obtained by
restricting E1 on X. Given two E-equivalence classes X and Y of types o and 7 respec-
tively, we say that o is n-equivalent to 7, denoted by o =, 7, if Duplicator wins the
n-round game played on structures (X; E; | X) and (Y; E; | Y). Note that if o =, 7,
then o =; tforall i < n.

We need the following notations:

For type o-and i > 1, set C(Zfi be the set {X | X is an E»-equivalence class of A and
1p(X) =i o).

Set q?i = IC(Zfl.I.

For embedded equivalence structure A and B, set g™ = min{q”,, q° }

Set A(o, i) be the embedded equivalence structure of height 2 obtained from A by
removing g™ equivalence classes whose types are i-equivalent to o.

Observe in round k of the game G,,(A, B), if Spoiler selects an element from an E»-
equivalence class X in A, and Duplicator responds by selecting another element from
an Ej-equivalence class Y in 8B such that tp(Y) =, tp(X), there is no point for Spoiler
to keep playing inside X because this will guarantee a win for Duplicator. Intuitively,
A(o, n— k) contains all the E»-equivalence classes for Spoiler to choose elements from
after ¢”" ¥ many E,-equivalence classes whose types are (n — k)-equivalent to o~ have
been chosen.

Definition 7. Consider the game G, (A, B) played on embedded equivalence structures
of height 2. We say that a disparity occurs if there exists a type o and n > k > 0 such
that the following holds.
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1. k=q""k

2. Inone of A(o,n — k) and B(o,n — k), there is an E»-equivalence class whose type
is (n — k)-equivalent to o, and no such E,-equivalence class exists in the other
structure.

Lemma 9. Suppose A and B are two embedded equivalence structures of height 2.
Duplicator wins the game G,(A, B) if and only if no disparity occurs.

Proof. Suppose disparity occurs in G,(A, B) witnessed by o and k, in A(o,n — k)
there is an E-equivalence class whose type is (n — k)-equivalent to o-, and no such E,-
equivalence class exists in B(co, n — k). Using these, it is not hard to prove that Spoiler
wins the game.

Suppose that no disparity occurs in the game G, (A, B), we describe a strategy for
Duplicator. Let us assume that the players have produced a k-round play (ay,b;),
(az, b2), ..., (ax, by). Let o; and 7; be the types of @; and b;, respectively with 1 < i < k.
Our inductive assumptions on this k-round play are the following:

1. The map a; — b; is partial isomorphism.

2. Foralll <i<k, o=, 1.

3. Let A" and B’ be the equivalence structures obtained by removing the E;-
equivalence classes [a1]g,, - . ., [ak] g, from A and the equivalence classes [b1]g,, - . .,
[bk]E, from B, respectively. We assume in game G,—x(A’, B’) no disparity occurs.

Assume that Spoiler selects an element a;.; € A. The case when Spoiler selects
an element from B is treated as below. Duplicator responds to this move by choosing
by as follows. If iy = a; then by,; = b;. Otherwise, if E|(a;, ary1) is true in A,
then Duplicator chooses a new by, such that E(b;, bxy1). If Ez(ay, apyy) is true in A
and there is no j such that Ey(aj, ax+1), then Duplicator chooses a new by.1 such that
E>(b;, bry1) and there is no j such that E1(bj, biy1). By (2) of the inductive assumption
Duplicator can always select such an element by, by following its winning strategies.

Assume a4 is not equivalent to any of the elements ay, ..., ar. Let X be the Ej-
equivalence class in A that contains a;. ;. Duplicator selects by from an E;-equivalence
class Y in B such that tp(X) =, tp(Y). Duplicator is able to select such an element as
otherwise disparity would occur as witnessed by the type of X and 0.

The inductive assumption (1) and (2) can be easily checked to hold on the play

(a,by),. .., (ax, by), (ak+1, br+1). To show that the assumption (3) is preserved, con-
sider the structures A” and B” obtained by removing [a;]g,, ..., [arlEg,, [ak+1]E, and
[b1lE,s - - . [bklE, s [Dr+1]E, from A and B, respectively. Suppose disparity occurs in

G—j—1 (A", B") as witnessed by some type 7 and ¢ < n — k — 1. There are two cases. If
tp(laka1]) =pi--1 7, then tp([br+1]) =p-k-—1 7, and disparity must occur in
G i (A, B') as witnessed by Tand 1+ 1. If tp([ag+1]) En-k—r—1 T, then tp([brs1]) En—k—-1
7, and disparity must occur in G,_x(A’, B’) as witnessed by 7 and ¢, contradicting our
assumption. Hence the strategy is a winning strategy. O

Theorem 8. Fixn € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game G,(A, B) on embedded equivalence structures of
height 2. The constant that bounds the running time is (n + 1)".
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Proof. We represent structure A = (A; E|, E») by a tree and a list. The tree has height
3. The leaves of the tree are all elements in A. Two leaves x, y have the same parent if
E1(x,y), and x, y have the same ancestor at level 1 if E»(x,y). Intuitively, we can view
the root of tree as A, the internal nodes at level 1 represent all E,-equivalence classes
on A, and the children of each E;-equivalence class X at level 2 are all E-equivalence
classes contained in X. We further require that representations of E, and E|-equivalence
classes are put in left-to-right order according to their cardinalities.

The list is qﬂ L e e+ O Where each o is a type of Ex-equivalence
class, and q phg is as defined above. Each qﬂ ply has a value between 0 and n and if it is
greater than n, we set it to n. The algorithm checks whether disparity occurs in G,(A, B)
by examining the list. There can be at most (n + 1)" pairwise non-n-equivalent types.
Therefore, checking disparity requires a time bounded by (n + 1)"*!. O

For the case when A and B are two embedded equivalence structures of height 2, where
h > 2, we give a similar definition of the type of an Ej-equivalence class. We can then
describe the winning conditions for Spoiler and Duplicator in a similar way.

Let A be an embedded equivalence structure of height & where & > 2. For an Ej-
equivalence class X, we recursively define 7p(X), the type of X. Set 7p(X) be
(goys - - - » go,) that satisfies the following property.

1. Each o is the type of an E,_;-equivalence class.

2. o is the maximum type in lexicographic order among all types of Ej,_;-equivalence
classes contained in X.

3. The list oy, ..., 0, contains all possible types of Ej_j-equivalence classes less or
equal to o, ordered lexicographically.

4. Forall 1 <i<t, g, is the number of all Ej_;-equivalence classes contained in X
whose type are o;.

We note that these types allow us to solve the isomorphism problem for embedded
equivalence structures of height / in linear time on the size of the structures.

Let x = (g5 -.»qo,) and A = (q[Tl, - q:TI) be types of two Ej-equivalence classes
X and Y, respectively. We say k = A if s = ¢ and g, = g, forall 1 < i < 5. We say
k =, Aif the structures (X;E; ' X,...,E,.y [ X)and (Y;E, [ Y,...,E;,_1 [ Y) are
n-equivalent.

Similarly to the case of embedded equivalence structures of height 2, we re-introduce
the notions C”, qm, q”’, A(o, i) and disparity in the game G, (A, B).

Lemma 10. Suppose A and B are two embedded equivalence structures of height h
where h > 2. Duplicator wins the game G,(A, B) if and only if no disparity occurs. 0O

The number of pairwise non-n-equivalent types of Ej-equivalence classes is at most

(n+ 1)'"("”)” where the tower of (n + 1) has height 4. Thus, by the lemma above, we
have:

Theorem 9. Fix n € w. There is an algorithm that runs in constant time and decides if
Duplicator wins the game G,(A, B) on embedded equivalence structures A and B of
height h. The constant that bounds the running time is (n + )" where the tower has
height h. O
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6 Trees

In this section we are interested in trees; these are finite structures of the type 7~ =
(T, <), where the relation < is a partial order on 7" such that 7~ has the greatest element
(the root), and the set {y | x < y} for any given x € T is a linearly ordered set under
<. We call an element a leaf of the tree 7 if it is a minimal element; otherwise we call
it an internal node. A path in 7 is a maximal linearly order subset of 7. The length
of a given path is the number of elements in the path. The height of 7~ is the length of
the largest path in 7. We say that the level of a node x € T is j if the distance from
x to the root is j. We fix number & > 2, and restrict ourselves to the class K, of all
trees of height at most 4. Deciding Ehrenfeucht-Fraissé games on trees from %K), can
be done directly by using the techniques from the previous section. Instead, we reduce
the problem of deciding Ehrenfeucht-Fraissé games on trees in Kj, to one for embedded
equivalence structures of height  + 1.

We transform trees from the class %, into the class of embedded equivalence struc-
tures of height /4 in the following manner. Let 7~ be a tree in Kj,. We now define an em-
bedded equivalence structure A(7") as follows. The domain D of A(T) is now T U{a, | x
is a leaf of 7}. We define the equivalence relation E; , 1 < i < h, on the domain as fol-
lows. The relation E| is the minimal equivalence relation that contains {(x,a,) | x is a
leaf of 7}. Let xq, .. ., x; be all elements of 7 atlevel i—i+1,where 1 <i < h.Let7,
..., T be the subtrees of 7~ whose roots are xi, .. ., x; , respectively. Set E; be the mini-
mal equivalence relation that contains E;_; U le U...U Tsz. It is clear that E; C E;, for
all 1 <i < h. Thus we have the embedded equivalence structure A(T) = (D; Ey, ..., Ep).

Lemma 11. Fortrees 71 and 7>, T1 = T if and only if A(T1) = A(T>). In particular,
Duplicator wins G,(71, 72) if and only if Duplicator wins G,(A(T1), A(T»)).

Proof. Suppose 7 is a tree in the class Kj,. Take an element x € 7. By construction of
A(T), the following statements are true.

— xisaleafin 7 if and only if [{y | E1(x,y)}| = 2 in A(T).
— xis the root of 7 if and only if [{y | Ex(x,y)}| = 1 in A(T).

We define the level of x in A(7") as follows. If x is the root of 7, the level of x is
0. Otherwise, if x is an internal node, the level of x in A(7") is the largest / such that
{y | Ep—i+1(x, )}l > 1. If x is a leaf, we define the level of x in A(7") to be the largest
[ + 1 such that there is an internal node y such that Ej,_;(x, y).

By definition, for all x € T, the level of x in 7 is the level of x in A(7"). Forx,y e T,
x < yin 7 if and only in A(7) x has level s and y has level ¢ such that s > ¢ and
Ej—t+1(x,y). Thus, for two trees from K, 71 and 75, and a mapping f : T} — T», f is
an isomorphism between 77 and 7 if and only if f is an isomorphism between A(7 )
and A(7>).

To prove the second part of the lemma, one direction is clear. For the other direc-
tion, assume that there is a winning strategy for Duplicator on the game G, (77, 7>).
We describe a strategy for Duplicator on the game G,(A(7 ), A(T>)) where A(T) =
(D1 Ey, ..., Ep) and A(T>) = (Da; E, ..., Ep). Let us assume that the players have pro-
duced a k-round play (xy, 1), (x2,¥2), . - ., (Xg, Yx). Assume on this k-round play the map
X; — y; is a partial isomorphism between A(7) and A(7>).
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Assume that Spoiler selects an element x;.; € D;. Duplicator responds to this move
by choosing x4 as follows. If x;1; = x; then ygy; = y;. Otherwise, if x;; € T, then
Duplicator selects an element y;,; € T according to its winning strategy on G,,(71, 72).
If x4+1 = a, for some leaf x € 7. Then Duplicator responds by selecting yy; =
ay where y is the leaf in T, that corresponds to x in Duplicator’s winning strategy in
G,(71,72). Itis clear that x; — y; where 1 < i < k + 1 is also a partial isomorphism
between A(77) and A(T>). Therefore the strategy described is a winning strategy for
Duplicator on game G,(A(T 1), A(T2)). O

Using the lemma above, one can now prove this:

Theorem 10. Fix n € w. There is an algorithm that runs in constant time and decides
if Duplicator wins the game G,(71,7T>2), where T1,7> € Kj,. The constant that bounds

(n+ 1)+ 1)

the running time is (n + 1)~ where the tower has height h. O

7 Boolean Algebras with Distinguished Ideals

A Boolean algebra (BA) with distinguished ideals is a structure A =
(A;<,0,1,1h, ..., 1), where (A; <,0,1) forms a BA and each I; is an ideal of the al-
gebra (A; <,0, 1). The set of atoms of A, denoted A#(A), is the set {a | Vy(0 < y <
a — y =0Vy=a)}. Since we restrict ourselves to finite structures, the BA (4;<,0, 1)
can be identified with the structure (2¥4;C, 0, X4), where X, = Af(A) and 2% is the
collection of all subsets of X,. Moreover, for each ideal I; there exists a set A; C At{(A)
such that I; = 24/, Hence the original structure A can be identified with the structure:
(2%4;C,0, X4, 2M, ..., 2%). For each element x € A#(A), define the characteristic of
X, ch(x), as a binary sequence (71,1, ...,#;) such that foreach 1 < i < s, 1, € {0, 1},
t; = 1if x € A; and t; = 0 otherwise. For each characteristic € € {0, 1}* consider
the set Ae = {x € At(A) | ch(x) = €)}. This defines the ideal /. in the Boolean alge-
bra (2¥4;C,0, X4). Moreover, we can also identify this ideal with the Boolean algebra
(24;C,0,A,). There are 2° pairwise distinct characteristics. Let €, . . ., & be the list of
all characters. We denote by A’ the following structure: (2%;C,0,X,2%,...,2%).

Lemma 12. Ler A = (2%, C,0,X4,2%,...,2%) be a Boolean algebra with distin-
guished ideals

1. For any two distinct characteristics € and 6 we have I N Is = {0}.

2. For any element a € 2X there are elements a. € I, such that a = U.a..

3. The Boolean algebra (2% C.0,X,) is isomorphic to the Cartesian product of the
Boolean algebras I..

4. A and B are isomorphic if and only if A’ and B’ are isomorphic. O

The next lemma connects the structure A’ and A in terms of characterizing the winner
of the game G, (A, B).

Lemma 13. Duplicator wins the game G (A, B) if and only if each of the following
two conditions are true:

1. For each characteristic €, |A¢| > 2" if and only if |B¢| > 2".
2. For each characteristic €, if |A¢| < 2" then |A¢| = |B|.
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Proof. Assume that for some €, we have |A.| # |B| and |B,| < 2". Let us assume that
|[A¢l > 2". The case when |A| < 2" is treated in a similar manner. We describe a winning
strategy for Spoiler. Spoiler starts by taking elements a;, as, ... in A. For eachi < n
the element g; is such that |A#(a;)| > 2"/, where At(a) denotes the set of atoms below
a. The elements ay, as, ... are such that for each i, either a; C a;,_; or a; Na;_; = 0.
Consider the k round play (ay, b)), ..., (ax, by) where k < n. Let e < k be the last round
for which a; C a,. If no such e exists, let @, = 2% and b, = 2. We have the following
inductive assumptions.

— |Af(ap)| = 2% and |At(a, \ (tesi U ... U ay))| = 2"
— Either |JA#(by)| < 2% or |At(b, \ (Des1 U ... U by))| < 2",

There are two cases.

Case 1. Assume that [A#(by)] < 2" % and |A#(ax)| > 2"*. In this case Spoiler selects
age1 such that ag C ag, agsr # 0, |[At(ar)]) = 2% and |At(ag \ ager)] = 27751, Note
that Duplicator must choose by, strictly below by. Then either |At(br.1)| < k=1 op
|A1(by \ brsy)| < 277!

Case 2. Assume that [A7(by)] > 2" * and |At(a;)| > 2"F. In this case, Spoiler selects
apy1 such that agyq C de, ag1 # 0, g1 N (Aer1 U ... Uap) =0, |A(ag)| = 2n—k—l’ and
|At(a, \ (Ges1 U ... U ags1))| > 2"7%1. Note that by definition of e, |A#(b.)| < 2"~ and
foreache + 1 < i < k— 1, |At(b;)| = 2" as otherwise b; would be below b;. Hence
|At(bi \ (besi U ... U by))| < 277K, Duplicator must choose by, strictly below b, and
disjoint with b,y 1, . . ., by. Therefore either |At(by.1)| < 2" %1 or |At(b,) \ At(bor1 U. ..U
bay)l < 21

After n rounds, by the inductive assumption, it is either |A#(b,)| = 0 or |[A#(b, \ (Des1 U
... Uby,))| = 0. If the former, then Spoiler wins by selecting a,.; C At(a,);otherwise,
Spoiler wins by selecting a,+1 C a, \ (@es1 U ... U ay).

Now we prove that the conditions stated in the lemma suffice Duplicator to win the
(n+ 1)-round game G,,1(A, B). Let us assume that the players have produced a k-round
play (ay, by), (az, b2), ..., (ax, by). Our inductive assumptions on this k-round play are the
following:

1. The map a; — b; is a partial isomorphism.
2. Foreach a;, 1 <i <k, let a; = Uca, be as stipulated in Lemma [T2(2). For each
de, let e be the last round such that a, C a,, if there is no such round, then assume
a, = At(I,). Let d be the last round such that a; C a., if there is no such round, then
assume ay = 0. Let b; = U.b,. The conditions for b, are the following:
— |At(ae \ ag)l > 2" if and only if |Af(b. \ ag)| > 2"7; |At(a. \ ac)| > 2" if and
only if |A#(b, \ bo)| > 2"
— If |At(ac \ ag)| < 2" then |At(be \ ag)| = |At(ac \ ag)l; If |At(a, \ ac)| < 2"~ then
|At(be \ be)| = |At(ae \ ae)l-

Assume that Spoiler selects an element a;,; € A. Duplicator responds to this move
by choosing by as follows. If ai,; = a; then by, = b;. Otherwise, suppose ag+; = Ude
as stipulated in Lemma [[2(2). For each a., let d,e be as described in the inductive
assumptions. We select each b by the following rules.
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— If|At(a.\ ay)| = 2" %! then select b, such that |[A#(b\ag)| = 2% If |At(a, \ a)| >
27751 then [At(b, \ bo)| > 271,

— If |At(ac \ ag)] < 2"%1 then select b, such that |A#(b. \ ay)| = |At(a. \ ag)l; If
|At(ae \ ae)| < 2n—k—1 then |At(be \ be)l = |At(ae \ ae)l-

Finally, Duplicator selects by, € B such that by, = Ucbe.

Note the inductive assumptions guarantee that Duplicator is able to make such a
move. It is clear that the inductive assumptions also hold on the (k + 1)-round play
(ay,by),...,(ars1, br+1). Hence, the strategy described must be a winning strategy due
to the fact that Duplicator preserves the inductive assumption (1) at each round. The
lemma is proved. |

For the next result, we represent the Boolean algebras by listing their atoms in 2° lists,
where the i list lists all atoms with characteristic €;:

Theorem 11. Fix n € w. There exists an algorithm that runs in constant time and
decides whether Duplicator wins the game G,+1(A, B) on BAs A and B with s distin-
guished ideals. The constant that bounds the running time is 2° - 2". O
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