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Abstract. In this paper we initiate the study of Ehrenfeucht-Fraı̈ssé games for
some standard finite structures. Examples of such standard structures are equiv-
alence relations, trees, unary relation structures, Boolean algebras, and some of
their natural expansions. The paper concerns the following question that we call
Ehrenfeucht-Fraı̈ssé problem. Given n ∈ ω as a parameter, two relational struc-
turesA andB from one of the classes of structures mentioned above, how efficient
is it to decide if Duplicator wins the n-round EF game Gn(A,B)? We provide al-
gorithms for solving the Ehrenfeucht-Fraı̈ssé problem for the mentioned classes
of structures. The running times of all the algorithms are bounded by constants.
We obtain the values of these constants as functions of n.

1 Introduction

Ehrenfeucht-Fraı̈ssé (EF) games constitute an important tool in both finite and infinite
model theory. For example, in infinite model theory these games can be used to prove
Scott Isomorphism Theorem showing that all countable structures are described (up
to isomorphism) in Lω1,ω-logic. In finite model theory these games and their different
versions are used for establishing expressibility results in the first order logic and its
extensions. These results can be found in standard books in finite and infinite model
theory (e.g. [6], [11]) or relatively recent papers (e.g. [2], [12]). In this paper all EF
games are considered on finite structures.

Despite significant use of EF games in finite and infinite model theory there has not
been, with some exceptions, much work in addressing efficiency of these games. M.
Grohe studied EF games with fixed number of pebbles and showed that the problem
of deciding the winner is complete for PTIME [5]. E. Pezzoili showed that deciding
the winner of EF games is PSPACE-complete [14]. In [9] P. Kolaitis and J. Panttaja
prove that the following problem is EXPTIME-complete: given a natural number k and
structuresA and B, does Duplicator win the k pebble existential EF game onA and B?
In [1] sufficient conditions are provided for Duplicator to win EF games. These condi-
tions are then used to prove some inexpressibility results, e.g reachability in undirected
graphs is not in monadic NP. These results suggest that developing tools and algorithms
for finding winners of EF are of interest. We also point out that there has recently been
an interest in EF games to collapse results in database theory [16]. In addition, we think
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that algorithms that solve EF games can be used in data matching and data transforma-
tion problems in databases.

In this paper we initiate the study of EF games for some standard finite structures.
Examples of such standard structures are equivalence relations, trees, unary relation
structures, Boolean algebras, and some of their natural expansions. The paper concerns
the following question that we call the Ehrenfeucht-Fraı̈ssé problem. Given n ∈ ω as
a parameter, two relational structures A and B, how efficient is it to decide if Du-
plicator wins the n-round EF game Gn(A,B)? We provide algorithms for solving the
Ehrenfeucht-Fraı̈ssé problem for the structures mentioned above. The running times of
all the algorithms are bounded by constants. We obtain the values of these constants as
functions of n.

By a structure we always mean a finite relational structure over a language with-
out functional symbols. Let A and B be structures and n ∈ ω. EF game, denoted by
Gn(A,B), on these two structures is played as follows. There are two players, Duplica-
tor and Spoiler, both provided withA andB. The game consists of n rounds. Informally,
Duplicator’s goal is to show that these two structures are similar, while Spoiler needs
to show the opposite. At round i, Spoiler selects structure A or B, and then takes an
element from the selected structure. Duplicator responds by selecting element from the
other structure. Say, the players have produced the following play consisting of pairs
of elements (a1, b1), . . . , (an, bn), where ai ∈ A and bi ∈ B for i = 1, . . . , n. Note that
if Spoiler selected ai (or bi) then Duplicator selected bi (or ai, respectively). Duplicator
wins the play if the mapping ai → bi, i = 1, . . . , n, extended by mapping the values of
constant symbols cA to cB, is a partial isomorphism between A and B. It is clear that
if A and B are isomorphic then Duplicator wins the game Gn(A,B) no matter what n
is. The opposite is not always true. However, for large n if Duplicator wins the game
Gn(A,B) then A and B are isomorphic. Thus, solving the EF problem can be thought
as an approximation to the isomorphism problem.

One can do the following rough estimates for finding the winner of the game
Gn(A,B). There are finitely many, up to logical equivalence, formulas φ1, . . ., φk of
quantifier rank n (see for example [11]). It is well known that Duplicator wins Gn(A,B)
if and only if for all φi ( with i = 1, . . . , k) the structure A satisfies φi if and only if B
satisfies φi [11]. Thus, the question if Duplicator wins Gn(A,B) can be solved in poly-
nomial time. However, there are two important issues here. The first issue concerns the
number k that depends on n; k is approximately bounded by the n-repeated exponentia-
tions of 2. The second issue concerns the degree of the polynomial for the running time
that is bounded by n. Thus, the questions arise as to for which standard structures the
value of k is feasible as a function of n, and whether the degree of the polynomial for the
running time can be pushed down. As an example consider the class of linear orders.
It is well-known that Duplicator wins Gn(A,B), where A and B are linear orders, if
and only if either |A| = |B| or both |A| > 2n and |B| > 2n (e.g. [11]). In this example,
the number k, roughly, equals to 2n. The degree of polynomial for the running time is
0. Thus, when n is fixed the winner of the game can be found in constant time, and the
constant that bounds the time is 2n.

A brief overview of this paper is as follows. The next section gives an elementary
solution to EF games in the case when the language contains unary predicates only. The
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third, fourth and fifth sections are quite technical and devoted to solving EF games for
equivalence structures and some of their extensions. Equivalence structures are natural
models of university or large company databases. For example, in a university database
there could be the SameFaculty and the SameDepartment relations. The first relation
stores all tuples (x, y) such that x and y belong to the same faculty; similarly, the second
relation stores all tuples (u, v) such that u and v are in the same department. These re-
lations are equivalence relations. Moreover, the set-theoretic connection between these
relations is that the relation SameDepartment is a subset of the SameFaculty relation.
We call such structures embedded equivalence relation structures. Section 6 reduces the
question of deciding EF games for trees of a given height to solving the EP games for
embedded equivalence structures introduced in the previous sections. Finally, the main
structures in the last section are Boolean algebras with distinguished ideals.

Each of these sections provides an algorithm that decides EF games Gn(A,B), where
A and B are structures considered in the section. These algorithms run in constant
times with n being a parameter. We also bound the value of the constants as a function
of n. Clearly, the constants obtained depend on the representations of the structures.
In each case, it will be clear from the content how we represent our structures. As an
example we state two results of Sections 4 and 5. Section 4 is devoted to structures
of the type (A; E, P1, ..., Ps), where E is an equivalence relation on A and P1, ..., Ps are
unary predicates. We call these structures equivalence structures with s colors. The main
result of Section 4 is the following:

Theorem 1. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on equivalence structures with s colors.
The constant that bounds the running time is n2s+1.

Section 5 is devoted to the structures of type (A; E1, . . . , Eh), where each Ei is an equiv-
alence relation on A and E1 ⊆ E2 ⊆ . . . ⊆ Eh. These structures are called embedded
equivalence structures of height h. The main result of Section 5 is:

Theorem 2. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on embedded equivalence structures of
height h. The constant that bounds the running time is (n+ 1)...

(n+1)n

where the tower has
height h.

2 Simple Example: Structures with Unary Predicates

This is an elementary section that gives a full solution for EF games in the case when
the language contains unary predicates only. Here is the main result of this section.

Theorem 3. Fix the language L = (P1, . . . , Ps), where each Pi is a unary predicate
symbol. Let n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on structures A and B of the language.
The constant that bounds the running time is 2s · n.

Proof. Let A = (A; P1, P2, ..., Ps) and B = (B; P1, P2, ..., Ps) be structures of the lan-
guage given. For structureA = (A; P1, P2, ..., Ps), we set Ps+1 =

⋂
i ¬Pi.
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Lemma 1. Suppose P1, P2, ..., Ps are pairwise disjoint. Then Duplicator wins Gn(A,B)
if and only if for all 1 ≤ i ≤ s + 1 if |PA

i | < n or |PB
i | < n then |PA

i | = |P
B
i |. In particular,

when Duplicator wins it is the case that for all 1 ≤ i ≤ s + 1, |PA
i | ≥ n if and only if

|PB
i | ≥ n.

To prove the lemma suppose that there is 1 ≤ i ≤ k+1 such that |PA
i | < n but |PA

i | � |P
B
i |.

Assume |PB
i | < |PA

i |. Then Spoiler selects |PA
i | elements from PA

i . This strategy is clearly
a winning strategy for Spoiler. For the other direction, assume that hypothesis of the
lemma holds. Duplicator has a winning strategy as follows. At round k, assume that the
players have produced the k-round play (a1, b1), ..., (ak, bk) such that for each 1 ≤ i ≤ k,
ai ∈ A, bi ∈ B. If Spoiler selects ak+1 ∈ A, then Duplicator responds by selecting
bk+1 ∈ B as follows: If ak+1 = ai for some i then bk+1 = bi. Otherwise if ak+1 ∈ PA

j

for some 1 ≤ j ≤ k, then bk+1 ∈ PB
j so that bk+1 � {b1, . . . , bk}. The case when Spoiler

selects an element from B is treated similarly. The strategy is clearly winning. �	

Now assume that for a structureA, the unary predicates P1, P2, ..., Ps are not necessarily
pairwise disjoint. For each element x ∈ A, define the characteristic of x, ch(x), as a
binary sequence (t1, t2, ..., ts) such that for each 1 ≤ i ≤ s, ti ∈ {0, 1} if x ∈ Pi and
ti = 0 otherwise. There are 2s pairwise distinct characteristics, and we order them in
lexicographic order: ch1, ..., ch2s . Construct the structure A′ = (A; Q1, ...,Q2s ) such
that for all 1 ≤ i ≤ 2s, Qi = {x ∈ A | ch(x) = chi}. The following is now an easy lemma.

Lemma 2. Duplicator wins Gn(A,B) if and only if Duplicator wins Gn(A′,B′). �	

We now representA andB by 2s lists, and the ith list lists all elements with characteristic
chi. To solve the game Gn(A′,B′), the algorithm checks the conditions in Lemma 1 by
reading the lists. The process takes time bounded by 2s · n as required. �	

3 Equivalence Structures

An equivalence structure is a structureA of the type (A; E) where E is an equivalence
relation on A. We list all the equivalence classes ofA as A1, ..., Ak such that |Ai| ≤ |Ai+1|
for all 1 ≤ i < k. Let qA be the number of equivalent classes in A; for each t < n,
let qA

t be the number of equivalence classes in A with size t. Finally, let qA≥r be the
number of equivalence classes inA of size at least r. For an equivalence structureB we
have similar notations as B1, B2, . . . to denote its equivalence classes, and the associated
numbers qB, qBt , and qB≥r.

Lemma 3. If Duplicator wins the game Gn(A,B) on equivalence structuresA and B,
then the following must be true:

1. If qA < n or qB < n then qA = qB; and
2. qA ≥ n if and only if qB ≥ n. �	

In our analysis below, by the above lemma, we always assume that qA = qB or qA ≥ n
if and only if qB ≥ n. We need the following notation for the next lemma and definition.
For t ≤ n, let qt = min{qA≥t, q

B
≥t}. Let At and Bt be equivalence structures obtained by

taking out exactly qt equivalence classes of size ≥ t fromA andB respectively. We also
set n − qt to be 0 in case qt ≥ n; and otherwise n − qt has its natural meaning.
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Lemma 4. 1. Assume that there is a t < n such that qAt � qBt and n − qt > t. Then
Spoiler wins the game Gn(A,B).

2. Assume that there is a t ≤ n such that n − qt > 0 and one of the structures At or
Bt has an equivalence class of size ≥ n − qt and the other structure does not. Then
Spoiler wins the game Gn(A,B).

Proof. We prove the first part of the lemma. The second part is proved similarly. As-
sume, without loss of generality, that qAt > qBt and n − qBt > t. Spoiler’s strategy is the
following. First, select elements a1, . . . , aqBt

from distinct equivalence classes of size t
inA. Next, select t distinct elements in the equivalence class of size t in A. This leads
Spoiler to win. �	

Definition 1. 1. We say that Gn(A, B) has small disparity if there is a t < n such that
either qAt � qBt and n − qt > t.

2. We say that Gn(A, B) has large disparity if there exists a t ≤ n such that n− qt > 0
and one of the structuresAt or Bt has an equivalence class of size ≥ n− qt and the
other structure does not.

Lemma 5. Duplicator wins the game Gn(A,B) if and only if the game Gn(A,B) has
neither small nor large disparity.

Proof. The previous lemma proves one direction. For the other, we assume that nei-
ther small nor large disparity occurs in the game. We describe a winning strategy for
Duplicator.

Let us a assume that the players have produced a k-round play (a1, b1), (a2, b2), ...,
(ak, bk). In case k = 0, we are at the start of the game Gn(A,B). Our inductive assump-
tions on this k-round play are the following:

1. E(ai, a j) is true in A if and only if E(bi, b j) is true in B, and the map ai → bi is
one-to-one.

2. For all ai, |[ai]| ≥ n− i if and only if |[bi]| ≥ n− i, where [x] denotes the equivalence
class of x.

3. For ai if |[ai]| < n − i then |[ai]| = |[bi]|.
4. LetA′ and B′ be the equivalence structures obtained by removing the equivalence

classes [a1], . . ., [ak] from A and the equivalence classes [b1], . . ., [bk] from B,
respectively. We assume thatA′ and B′ satisfy the following conditions:

(a) In game Gn−k(A′,B′) no small disparity occurs.
(b) In game Gn−k(A′,B′) no large disparity occurs.

Assume that Spoiler selects ak+1 ∈ A. Duplicator responds by choosing bk+1 as fol-
lows. If ak+1 = ai then bk+1 = bi. Otherwise, if E(ai, ak+1) is true in A then Duplicator
chooses a new bk+1 such that E(bi, bk+1) is true in B. Assume ak+1 is not equivalent to
any of the elements a1, . . . , ak. If |[ak+1]| ≥ n − k then Duplicator chooses bk+1 such
that bk+1 is not equivalent to any of the elements b1, . . . , bk and |[bk+1]| ≥ n − k. Dupli-
cator can select such an element as otherwise large disparity would occur in the game.
If |[ak+1]| < n−k then Duplicator chooses bk+1 such that |[bk+1]| = |[ak+1]| and bk+1 is not
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equivalent to any of the elements b1, . . . , bk. The case when Spoiler selects an element
from B is treated similarly.

Now we show that the (k+ 1)-round play (a1, b1), (a2, b2), ..., (ak, bk), (ak+1, bk+1) sat-
isfies the inductive assumptions. The inductive assumptions (1), (2), and (3) can easily
be checked to be preserved. To show that the assumption (4) is preserved, consider the
equivalence structures A′′ and B′′ obtained by removing the equivalence classes [a1],
. . ., [ak], [ak+1] fromA and the equivalence classes [b1], . . ., [bk], [bk+1] fromB, respec-
tively. In game Gn−k−1(A′′,B′′) small disparity does not occur as otherwise the game
Gn−k(A′,B′) would have small disparity. Thus, assumption (4a) is also preserved. Simi-
larly, if Gn−k−1(A′′,B′′) had large disparity then the game Gn−k(A′,B′) would also have
large disparity contradicting the inductive assumption. Hence, the strategy described
must be a winning strategy due to the fact that Duplicator preserves the inductive as-
sumption (1) at each round. �	

For the next theorem, we represent each equivalence structureA and B in two lists. For
example, the first list for the structure A lists all equivalence classes of A in increas-
ing order; the second list is qA, qA1 , qA≥1, qA2 , qA≥2, . . .. The lemmas above give us the
following:

Theorem 4. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on equivalence structuresA = (A; E) and
B = (B; E). The constant that bounds the running time is n. �	

We can extend the above theorem by defining the following structures:

Definition 2. A homogeneous equivalence structure is (A; E, P1, . . . , Ps) such that

– (A; E) is an equivalence structure; and
– Each Pi is a homogeneous unary relation on A meaning that for all x, y ∈ A if

E(x, y) then x ∈ Pi if and only if y ∈ Pi.

For a homogeneous equivalence structure A, define the characteristic ch(x) of an ele-
ment x ∈ A as in Section 2. Represent A as a disjoint union of equivalence structures
A1, . . .,A2s , where Aε consists of elements with characteristic ε. The above theorem is
thus extended to:

Theorem 5. There exists an algorithm that runs in constant time and decides whether
Duplicator wins the game Gn(A,B) on homogeneous equivalence structuresA and B.
The constant that bounds the running time is 2s · n. �	

4 Equivalence Structures with Colors

In this section structuresA are of the form (A; E, P1, ..., Ps), where E is an equivalence
relation on A and P1, ..., Ps are unary predicates on A. We call these equivalence struc-
tures with s colors. We start with the case when s = 1. The case for s > 2 will be
explained later.
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Let A = (A; E, P) be a equivalence structure with one color. Say x ∈ A is colored if
P(x) is true; otherwise x is non-colored. An equivalence class X has type tp(X) = (i, j),
if the number of colored elements of X is i, non-colored elements is j; thus, i + j = |X|.

Definition 3. Given two types (i, j) and (i′, j′) respectively. We say that (i, j) is colored
n-equivalent to (i′, j′), denoted by (i, j) ≡C

n (i′, j′), if the following holds.

1. If i < n then i′ = i; otherwise i′ ≥ n.
2. If j < n − 1 then j′ = j; otherwise j′ ≥ n − 1.

We say that (i, j) is non-colored n-equivalent to (i′, j′), denoted by (i, j) ≡N
n (i′, j′), if

the following holds.

1. If j < n then j′ = j; otherwise j′ ≥ n.
2. If i < n − 1 then i′ = i; otherwise i′ ≥ n − 1.

For X ⊆ A, we use (X; E � X, P � X) to denote the equivalence structure obtained by
restricting E and P on X. Note that given two equivalence classes X and Y of types
(i, j) and (i′, j′) respectively, if (i, j) is colored (non-colored) n-equivalent to (i′, j′),
then Duplicator wins the n-round game played on structures (X; E � X, P � X) and
(Y, E � Y, P � Y), given the fact that Spoiler chooses a colored (non-colored) element in
the first round.

Lemma 6. If either (i′, j′) ≡C
n (i, j) or (i′, j′) ≡N

n (i, j), then (i′, j′) ≡C
n−1 (i, j) and

(i′, j′) ≡N
n−1 (i, j). �	

For an equivalence structureA = (A; E, P), we need the following notations:

– For type (i, j) and k ≥ 1, Set CA(i, j),k be the set {X | X is an equivalence class of A
and tp(X) ≡C

k (i, j)}. Set NA(i, j),k be the set {X | X is an equivalence class of A and

tp(X) ≡N
k (i, j)}

– For type (i, j) and k ≥ 1, set qA,C(i, j),k = |C
A
(i, j),k |, and set qA,N(i, j),k = |N

A
(i, j),k |.

– ForA and B, set qC
(i, j),k = min{qA,C(i, j),k, q

B,C
(i, j),k} and qN

(i, j),k = min{qA,N(i, j),k, q
B,N
(i, j),k}

– Set AC((i, j), k) be the structure obtained from A by removing qC
(i, j),k equivalence

classes in CA(i, j),k.

– Set AN((i, j), k) be the structure obtained from A by removing qN
(i, j),k equivalence

classes in NA(i, j),k.

Observe the following. If Spoiler selects a colored element from an equivalence class
X in A, and Duplicator responds by selecting a colored element from an equivalence
class Y such that tp(Y) ≡C

n tp(X), there is no point for Spoiler to play inside X because
this will guarantee a win for Duplicator. Conversely, suppose Spoiler selects a colored
element from an equivalence class X inA, and there is no equivalence class in B whose
type is colored n-equivalent to tp(X). Then Spoiler has a winning strategy by playing
inside X and Y.
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Definition 4. Consider the game Gn(A,B) played on equivalence structures with one
color. We say that a colored disparity occurs if there exists a type (i, j) and n > k ≥ 0
such that the following holds:

1. k = qC
(i, j),n−k.

2. In one ofAC((i, j), n − k) and BC((i, j), n − k), there is an equivalence class whose
type is colored (n − k)-equivalent to (i, j), and no such equivalence class exists in
the other structure.

We say that a non-colored disparity occurs if there exists a type (i, j) and n > k ≥ 0
such that the following holds:

1. k = qN
(i, j),n−k.

2. In one ofAN((i, j), n − k) and BN((i, j), n− k), there is an equivalence class whose
type is non-colored (n− k)-equivalent to (i, j), and no such equivalence class exists
in the other structure.

Lemma 7. SupposeA and B are two equivalence structures with one color. Duplica-
tor wins the game Gn(A,B) if and only if neither colored disparity nor non-colored
disparity occurs in the game.

Proof. If either colored or non-colored disparity occurs in the game, then it is not too
hard to see that Spoiler wins the game. Suppose that neither colored disparity nor non-
colored disparity occurs in the game Gn(A,B), we describe a strategy for Duplicator.
Let us assume that the players have produced a k-round play (a1, b1), (a2, b2), ..., (ak, bk).
Let (il, jl) and (i′l , j′l) be the types of al and bl,respectively with 1 ≤ l ≤ k. Our inductive
assumptions on this k-round play are the following:

1. For any 1 ≤ l ≤ k, al is a colored element if and only if bl is a colored element.
2. For any 1 ≤ l,m ≤ k, E(al, am) if and only if E(bl, bm).
3. For any 1 ≤ l ≤ k, (il, jl) ≡C

n−l (i′l , j′l ) and (il, jl) ≡N
n−l (i′l , j′l ).

4. Let A′ and B′ be the equivalence structures obtained by removing equivalence
classes [a1], ..., [ak] from A and [b1], ..., [bk] from B, respectively. We assume in
game Gn−k neither colored disparity nor non-colored disparity occurs.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move
by choosing bk+1 as follows. If ak+1 = al then bk+1 = bl. Otherwise, if E(ak+1, al) is
true inA, then Duplicator chooses a new bk+1 such that E(bk+1, bl) and ak+1 is a colored
element if and only if bk+1 is a colored element. By (3) of the inductive assumption,
Duplicator can always select such an element bk+1.

Assume ak+1 is not equivalent to any of the element a1, ..., ak. Let X be the equiva-
lence class of ak+1 inA. If ak+1 is a colored element, then Duplicator chooses a colored
element bk+1 from an equivalence class Y of B such that tp(X) ≡C

n−k tp(Y). If ak+1 is a
non-colored element, then Duplicator chooses a non-colored bk+1 from an equivalence
class Y ofB such that tp(X) ≡N

n−k tp(Y). Note that such an equivalence class Y must exist
in B as otherwise either colored or non-colored disparity would occur in Gn−k(A′,B′)
as witnessed by tp(X) and 0. The case when Spoiler selects an element from B is treated
in a similar manner.
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On the play (a1, b1), ..., (ak, bk), (ak+1, bk+1), the inductive assumption (1) and (2) can
be easily checked to hold. To prove that inductive assumption (3) holds, let (ik+1, jk+1)
and (i′k+1, j′k+1) be the type of [ak+1] and [bk+1] respectively. The strategy ensures one
of (ik+1, jk+1) ≡C

n−k (i′k+1, j′k+1) and (ik+1, jk+1) ≡N
n−k (i′k+1, j′k+1) is true, and by Lemma

6, (ik+1, jk+1) ≡C
n−k−1 (i′k+1, j′k+1) and (ik+1, jk+1) ≡N

n−k−1 (i′k+1, j′k+1). It is now routine to
show, by using Lemma 6, that inductive assumption (4) is preserved.

Thus, the strategy is winning for Duplicator by inductive assumptions (1) and (2).
�	

For the next theorem we represent colored equivalence structuresA in three lists. The
first one lists equivalence classes ofA in increasing order of their types; the second and
the third list the sequences {qA,C(i, j),k}0≤i, j,k≤n and {qA,N(i, j),k}0≤i, j,k≤n respectively:

Theorem 6. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on equivalence structures with one color
A and B. The constant that bounds the running time is n3. �	

Fix s > 1, let A be an equivalence structure with s many colors. For each element x
of A, define the characteristic of x as defined in the previous sections. There are 2s

distinct characteristics. Order them in lexicographic order: ch1, ..., ch2s . Construct the
structureA′ = (A; E,Q1, ...,Q2s) such that for all 1 ≤ i ≤ 2s, Qi = {x ∈ A | ch(x) = chi}.
Clearly, for distinct characteristics chi and ch j we have Qi ∩ Q j = ∅. Moreover,A and
B are isomorphic if and only ifA′ and B′ are isomorphic.

For an equivalence class X, we define the type of X, tp(X), as a sequence (i1, i2, ..., i2s)
such that in X the number of element with characteristic ch j is i j for all 1 ≤ j ≤ 2s.

Definition 5. Let κ = (i1, ..., i2s) and λ = (i′1, ..., i
′
2s) be two types of equivalence classes.

For 1 ≤ j ≤ 2s, we say that κ is ( j, n)-equivalent to λ, denoted by κ ≡ j
n λ, if the following

holds.

1. If i j < n then i′j = i j, otherwise i′j ≥ n; and
2. For all 1 ≤ l ≤ 2s where l � j, if il < n − 1 then i′l = il, otherwise i′l ≥ n − 1.

Let X and Y be equivalence classes of types κ and λ respectively. If κ ≡ j
n λ, then Du-

plicator wins the n-round EF game played on structures (X; E � X, P1 � X, ..., Ps � X)
and (Y; E � Y, P1 � Y, ..., Ps � Y), given that Spoiler selects an element x ∈ X with
characteristic ch j.

For type λ, 1 ≤ j ≤ 2s and k ≥ 1, we set CA, j
λ,k be the set {X | X is an equivalence class

ofA and tp(X) ≡ j
k λ}. Similar to the case of equivalence structures with one color, one

introduces notations qA, j
λ,k , q j

λ,k, andA j(λ, k).

Definition 6. Consider the game Gn(A,B) played on equivalence structures with s
colors. For 1 ≤ j ≤ 2s, we say that a disparity occurs with respect to ch j if there
exists a type λ = (i1, ..., i2s) and n > k ≥ 0 such that the following holds:

1. k = q j
λ,n−k

2. In one ofA j(λ, n−k), there is an equivalence class whose type is ( j, n−k)-equivalent
to λ, and no such equivalence class exists in the other structure.



302 B. Khoussainov and J. Liu

The proof of the following are similar to Lemma 7 and Theorem 6:

Lemma 8. Let A and B be equivalence structures with s colors. Duplicator wins the
game Gn(A,B) if and only if no disparity occurs with respect to ch j for any 1 ≤ j ≤ 2s.

�	

Theorem 7. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on equivalence structures with s colors.
The constant that bounds the running time is n2s+1. �	

5 Embedded Equivalence Structures

An embedded equivalence structure of height h is a structure A = (A; E1, E2, ..., Eh)
such that each Ei, 1 ≤ i ≤ h, is an equivalence relation, and Ei ⊆ E j for i < j. In this
section we give a full solution for EF played on embedded equivalence structures of
height h. We start with the case when h = 2. The case for h > 2 will be explained later.

Let A = (A; E1, E2) be an embedded equivalence structure of height 2. We say that
an E2-equivalence class X has type tp(X) = (q1, . . . , qt) if the largest E1-equivalence
class contained in X has size t and for all 1 ≤ i ≤ t, qi is the number of E1-equivalence
classes of size i contained in X. Thus,

∑t
i=1(qi × i) = |X|. For two types σ = (q1, . . . , qt1)

and τ = (q′1, . . . , q
′
t2), we say σ = τ if t1 = t2 and qi = q′i for all 1 ≤ i ≤ t1.

For X ⊆ A, we use (X; E1 � X) to denote the equivalence structure obtained by
restricting E1 on X. Given two E2-equivalence classes X and Y of types σ and τ respec-
tively, we say that σ is n-equivalent to τ, denoted by σ ≡n τ, if Duplicator wins the
n-round game played on structures (X; E1 � X) and (Y; E1 � Y). Note that if σ ≡n τ,
then σ ≡i τ for all i ≤ n.

We need the following notations:

– For type σ and i ≥ 1, set CAσ,i be the set {X | X is an E2-equivalence class ofA and
tp(X) ≡i σ}.

– Set qAσ,i = |C
A
σ,i|.

– For embedded equivalence structureA and B, set qσ,i = min{qAσ,i, q
B
σ,i}

– SetA(σ, i) be the embedded equivalence structure of height 2 obtained fromA by
removing qσ,i equivalence classes whose types are i-equivalent to σ.

Observe in round k of the game Gn(A,B), if Spoiler selects an element from an E2-
equivalence class X in A, and Duplicator responds by selecting another element from
an E2-equivalence class Y in B such that tp(Y) ≡n−k tp(X), there is no point for Spoiler
to keep playing inside X because this will guarantee a win for Duplicator. Intuitively,
A(σ, n− k) contains all the E2-equivalence classes for Spoiler to choose elements from
after qσ,n−k many E2-equivalence classes whose types are (n − k)-equivalent to σ have
been chosen.

Definition 7. Consider the game Gn(A,B) played on embedded equivalence structures
of height 2. We say that a disparity occurs if there exists a type σ and n > k ≥ 0 such
that the following holds.
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1. k = qσ,n−k.
2. In one ofA(σ, n − k) and B(σ, n − k), there is an E2-equivalence class whose type

is (n − k)-equivalent to σ, and no such E2-equivalence class exists in the other
structure.

Lemma 9. Suppose A and B are two embedded equivalence structures of height 2.
Duplicator wins the game Gn(A,B) if and only if no disparity occurs.

Proof. Suppose disparity occurs in Gn(A,B) witnessed by σ and k, in A(σ, n − k)
there is an E2-equivalence class whose type is (n − k)-equivalent to σ, and no such E2-
equivalence class exists in B(σ, n − k). Using these, it is not hard to prove that Spoiler
wins the game.

Suppose that no disparity occurs in the game Gn(A,B), we describe a strategy for
Duplicator. Let us assume that the players have produced a k-round play (a1, b1),
(a2, b2), . . . , (ak, bk). Let σi and τi be the types of ai and bi, respectively with 1 ≤ i ≤ k.
Our inductive assumptions on this k-round play are the following:

1. The map ai → bi is partial isomorphism.
2. For all 1 ≤ i ≤ k, σi ≡n−i τi.
3. Let A′ and B′ be the equivalence structures obtained by removing the E2-

equivalence classes [a1]E2 , . . . , [ak]E2 fromA and the equivalence classes [b1]E2 , . . . ,
[bk]E2 from B, respectively. We assume in game Gn−k(A′,B′) no disparity occurs.

Assume that Spoiler selects an element ak+1 ∈ A. The case when Spoiler selects
an element from B is treated as below. Duplicator responds to this move by choosing
bk+1 as follows. If ak+1 = ai then bk+1 = bi. Otherwise, if E1(ai, ak+1) is true in A,
then Duplicator chooses a new bk+1 such that E1(bi, bk+1). If E2(ai, ak+1) is true in A
and there is no j such that E1(a j, ak+1), then Duplicator chooses a new bk+1 such that
E2(bi, bk+1) and there is no j such that E1(b j, bk+1). By (2) of the inductive assumption
Duplicator can always select such an element bk+1 by following its winning strategies.

Assume ak+1 is not equivalent to any of the elements a1, ..., ak. Let X be the E2-
equivalence class inA that contains ak+1. Duplicator selects bk+1 from an E2-equivalence
class Y in B such that tp(X) ≡n−k tp(Y). Duplicator is able to select such an element as
otherwise disparity would occur as witnessed by the type of X and 0.

The inductive assumption (1) and (2) can be easily checked to hold on the play
(a1, b1), . . . , (ak, bk), (ak+1, bk+1). To show that the assumption (3) is preserved, con-
sider the structures A′′ and B′′ obtained by removing [a1]E2 , . . . , [ak]E2 , [ak+1]E2 and
[b1]E2 , . . . , [bk]E2 , [bk+1]E2 from A and B, respectively. Suppose disparity occurs in
Gn−k−1(A′′,B′′) as witnessed by some type τ and t < n − k − 1. There are two cases. If
tp([ak+1]) ≡n−k−t−1 τ, then tp([bk+1]) ≡n−k−t−1 τ, and disparity must occur in
Gn−k(A′,B′) as witnessed by τ and t+1. If tp([ak+1]) �n−k−t−1 τ, then tp([bk+1]) �n−k−t−1

τ, and disparity must occur in Gn−k(A′,B′) as witnessed by τ and t, contradicting our
assumption. Hence the strategy is a winning strategy. �	

Theorem 8. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the game Gn(A,B) on embedded equivalence structures of
height 2. The constant that bounds the running time is (n + 1)n.
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Proof. We represent structure A = (A; E1, E2) by a tree and a list. The tree has height
3. The leaves of the tree are all elements in A. Two leaves x, y have the same parent if
E1(x, y), and x, y have the same ancestor at level 1 if E2(x, y). Intuitively, we can view
the root of tree as A, the internal nodes at level 1 represent all E2-equivalence classes
on A, and the children of each E2-equivalence class X at level 2 are all E1-equivalence
classes contained in X. We further require that representations of E2 and E1-equivalence
classes are put in left-to-right order according to their cardinalities.

The list is qAσ1,1
, . . . , qAσt ,1

, . . . , qAσ1,n, . . . , q
A
σt ,n where eachσi is a type of E2-equivalence

class, and qAσi , j
is as defined above. Each qAσi , j

has a value between 0 and n and if it is
greater than n, we set it to n. The algorithm checks whether disparity occurs in Gn(A,B)
by examining the list. There can be at most (n + 1)n pairwise non-n-equivalent types.
Therefore, checking disparity requires a time bounded by (n + 1)n+1. �	

For the case whenA andB are two embedded equivalence structures of height h, where
h > 2, we give a similar definition of the type of an Eh-equivalence class. We can then
describe the winning conditions for Spoiler and Duplicator in a similar way.

Let A be an embedded equivalence structure of height h where h > 2. For an Eh-
equivalence class X, we recursively define tp(X), the type of X. Set tp(X) be
(qσ1 , . . . , qσt ) that satisfies the following property.

1. Each σi is the type of an Eh−1-equivalence class.
2. σt is the maximum type in lexicographic order among all types of Eh−1-equivalence

classes contained in X.
3. The list σ1, ..., σt contains all possible types of Eh−1-equivalence classes less or

equal to σt ordered lexicographically.
4. For all 1 ≤ i ≤ t, qσi is the number of all Eh−1-equivalence classes contained in X

whose type are σi.

We note that these types allow us to solve the isomorphism problem for embedded
equivalence structures of height h in linear time on the size of the structures.

Let κ = (qσ1 , ..., qσs) and λ = (q′σ1
, ..., q′σt

) be types of two Eh-equivalence classes
X and Y, respectively. We say κ = λ if s = t and qσi = q′σi

for all 1 ≤ i ≤ s. We say
κ ≡n λ if the structures (X; E1 � X, . . . , Eh−1 � X) and (Y; E1 � Y, . . . , Eh−1 � Y) are
n-equivalent.

Similarly to the case of embedded equivalence structures of height 2, we re-introduce
the notions CAσ,i, qAσ,i, qσ,i,A(σ, i) and disparity in the game Gn(A,B).

Lemma 10. Suppose A and B are two embedded equivalence structures of height h
where h ≥ 2. Duplicator wins the game Gn(A,B) if and only if no disparity occurs. �	

The number of pairwise non-n-equivalent types of Eh-equivalence classes is at most
(n + 1)...

(n+1)n

where the tower of (n + 1) has height h. Thus, by the lemma above, we
have:

Theorem 9. Fix n ∈ ω. There is an algorithm that runs in constant time and decides if
Duplicator wins the game Gn(A,B) on embedded equivalence structures A and B of
height h. The constant that bounds the running time is (n+ 1)...

((n+1)
where the tower has

height h. �	
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6 Trees

In this section we are interested in trees; these are finite structures of the type T =
(T,≤), where the relation ≤ is a partial order on T such that T has the greatest element
(the root), and the set {y | x ≤ y} for any given x ∈ T is a linearly ordered set under
≤. We call an element a leaf of the tree T if it is a minimal element; otherwise we call
it an internal node. A path in T is a maximal linearly order subset of T . The length
of a given path is the number of elements in the path. The height of T is the length of
the largest path in T . We say that the level of a node x ∈ T is j if the distance from
x to the root is j. We fix number h ≥ 2, and restrict ourselves to the class Kh of all
trees of height at most h. Deciding Ehrenfeucht-Fraı̈ssé games on trees from Kh can
be done directly by using the techniques from the previous section. Instead, we reduce
the problem of deciding Ehrenfeucht-Fraı̈ssé games on trees in Kh to one for embedded
equivalence structures of height h + 1.

We transform trees from the class Kh into the class of embedded equivalence struc-
tures of height h in the following manner. Let T be a tree in Kh. We now define an em-
bedded equivalence structureA(T ) as follows. The domain D ofA(T ) is now T∪{ax | x
is a leaf of T }. We define the equivalence relation Ei , 1 ≤ i ≤ h, on the domain as fol-
lows. The relation E1 is the minimal equivalence relation that contains {(x, ax) | x is a
leaf of T }. Let x1, . . ., xs be all elements of T at level h− i+1, where 1 ≤ i < h. Let T1 ,
. . ., Ts be the subtrees of T whose roots are x1, . . ., xs , respectively. Set Ei be the mini-
mal equivalence relation that contains Ei−1 ∪ T 2

1 ∪ . . .∪ T 2
s . It is clear that Ei ⊆ Ei+1 for

all 1 ≤ i ≤ h. Thus we have the embedded equivalence structureA(T ) = (D; E1, ..., Eh).

Lemma 11. For trees T1 and T2 , T1 � T2 if and only ifA(T1) � A(T2). In particular,
Duplicator wins Gn(T1,T2) if and only if Duplicator wins Gn(A(T1),A(T2)).

Proof. Suppose T is a tree in the class Kh. Take an element x ∈ T . By construction of
A(T ), the following statements are true.

– x is a leaf in T if and only if |{y | E1(x, y)}| = 2 inA(T ).
– x is the root of T if and only if |{y | Eh(x, y)}| = 1 inA(T ).

We define the level of x in A(T ) as follows. If x is the root of T , the level of x is
0. Otherwise, if x is an internal node, the level of x in A(T ) is the largest l such that
|{y | Eh−l+1(x, y)}| > 1. If x is a leaf, we define the level of x in A(T ) to be the largest
l + 1 such that there is an internal node y such that Eh−l+1(x, y).

By definition, for all x ∈ T , the level of x in T is the level of x inA(T ). For x, y ∈ T ,
x ≤ y in T if and only in A(T ) x has level s and y has level t such that s ≥ t and
Eh−t+1(x, y). Thus, for two trees from Kh, T1 and T2, and a mapping f : T1 → T2, f is
an isomorphism between T1 and T2 if and only if f is an isomorphism betweenA(T1)
andA(T2).

To prove the second part of the lemma, one direction is clear. For the other direc-
tion, assume that there is a winning strategy for Duplicator on the game Gn(T1,T2).
We describe a strategy for Duplicator on the game Gn(A(T1),A(T2)) where A(T1) =
(D1; E1, ..., Eh) and A(T2) = (D2; E1, ..., Eh). Let us assume that the players have pro-
duced a k-round play (x1, y1), (x2, y2), . . . , (xk, yk). Assume on this k-round play the map
xi → yi is a partial isomorphism betweenA(T1) andA(T2).
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Assume that Spoiler selects an element xk+1 ∈ D1. Duplicator responds to this move
by choosing xk+1 as follows. If xk+1 = xi then yk+1 = yi. Otherwise, if xk+1 ∈ T1, then
Duplicator selects an element yk+1 ∈ T2 according to its winning strategy on Gn(T1,T2).
If xk+1 = ax for some leaf x ∈ T1. Then Duplicator responds by selecting yk+1 =

ay where y is the leaf in T2 that corresponds to x in Duplicator’s winning strategy in
Gn(T1,T2). It is clear that xi → yi where 1 ≤ i ≤ k + 1 is also a partial isomorphism
between A(T1) and A(T2). Therefore the strategy described is a winning strategy for
Duplicator on game Gn(A(T1),A(T2)). �	
Using the lemma above, one can now prove this:

Theorem 10. Fix n ∈ ω. There is an algorithm that runs in constant time and decides
if Duplicator wins the game Gn(T1,T2), where T1,T2 ∈ Kh. The constant that bounds

the running time is (n + 1)...
(n+1)(n+1)

where the tower has height h. �	

7 Boolean Algebras with Distinguished Ideals

A Boolean algebra (BA) with distinguished ideals is a structure A =

(A;≤, 0, 1, I1, . . . , Is), where (A;≤, 0, 1) forms a BA and each I j is an ideal of the al-
gebra (A;≤, 0, 1). The set of atoms of A, denoted At(A), is the set {a | ∀y(0 ≤ y ≤
a → y = 0 ∨ y = a)}. Since we restrict ourselves to finite structures, the BA (A;≤, 0, 1)
can be identified with the structure (2XA ;⊆, ∅, XA), where XA = At(A) and 2XA is the
collection of all subsets of XA. Moreover, for each ideal I j there exists a set A j ⊂ At(A)
such that I j = 2A j . Hence the original structure A can be identified with the structure:
(2XA ;⊆, ∅, XA, 2A1 , . . . , 2As). For each element x ∈ At(A), define the characteristic of
x, ch(x), as a binary sequence (t1, t2, ..., ts) such that for each 1 ≤ i ≤ s, ti ∈ {0, 1},
ti = 1 if x ∈ Ai and ti = 0 otherwise. For each characteristic ε ∈ {0, 1}s consider
the set Aε = {x ∈ At(A) | ch(x) = ε)}. This defines the ideal Iε in the Boolean alge-
bra (2XA ;⊆, ∅, XA). Moreover, we can also identify this ideal with the Boolean algebra
(2Aε ;⊆, ∅, Aε). There are 2s pairwise distinct characteristics. Let ε1, . . ., ε2s be the list of
all characters. We denote byA′ the following structure: (2X;⊆, ∅, X, 2Aε1 , . . . , 2Aε2s ).

Lemma 12. Let A = (2XA ;⊆, ∅, XA, 2A1 , . . . , 2As) be a Boolean algebra with distin-
guished ideals

1. For any two distinct characteristics ε and δ we have Iε ∩ Iδ = {∅}.
2. For any element a ∈ 2X there are elements aε ∈ Iε such that a = ∪εaε .
3. The Boolean algebra (2XA ;⊆, ∅, XA) is isomorphic to the Cartesian product of the

Boolean algebras Iε .
4. A and B are isomorphic if and only ifA′ and B′ are isomorphic. �	

The next lemma connects the structureA′ andA in terms of characterizing the winner
of the game Gn(A,B).

Lemma 13. Duplicator wins the game Gn+1(A,B) if and only if each of the following
two conditions are true:

1. For each characteristic ε, |Aε | ≥ 2n if and only if |Bε | ≥ 2n.
2. For each characteristic ε, if |Aε | < 2n then |Aε | = |Bε |.



On Complexity of Ehrenfeucht-Fraı̈ssé Games 307

Proof. Assume that for some ε, we have |Aε | � |Bε | and |Bε | < 2n. Let us assume that
|Aε | ≥ 2n. The case when |Aε | < 2n is treated in a similar manner. We describe a winning
strategy for Spoiler. Spoiler starts by taking elements a1, a2, . . . in Aε . For each i ≤ n
the element ai is such that |At(ai)| ≥ 2n−i, where At(a) denotes the set of atoms below
a. The elements a1, a2, . . . are such that for each i, either ai ⊂ ai−1 or ai ∩ ai−1 = ∅.
Consider the k round play (a1, b1), . . . , (ak, bk) where k < n. Let e < k be the last round
for which ak ⊂ ae. If no such e exists, let ae = 2Aε and be = 2Bε . We have the following
inductive assumptions.

– |At(ak)| ≥ 2n−k and |At(ae \ (ae+1 ∪ . . . ∪ ak))| ≥ 2n−k.
– Either |At(bk)| < 2n−k or |At(be \ (be+1 ∪ . . . ∪ bk))| < 2n−k.

There are two cases.

Case 1. Assume that |At(bk)| < 2n−k and |At(ak)| ≥ 2n−k. In this case Spoiler selects
ak+1 such that ak+1 ⊂ ak, ak+1 � ∅, |At(ak+1)| ≥ 2n−k−1 and |At(ak \ ak+1)| ≥ 2n−k−1. Note
that Duplicator must choose bk+1 strictly below bk. Then either |At(bk+1)| < 2n−k−1 or
|At(bk \ bk+1)| < 2n−k−1

Case 2. Assume that |At(bk)| ≥ 2n−k and |At(ak)| ≥ 2n−k. In this case, Spoiler selects
ak+1 such that ak+1 ⊂ ae, ak+1 � ∅, ak+1 ∩ (ae+1 ∪ . . . ∪ ak) = ∅, |At(ak+1)| ≥ 2n−k−1, and
|At(ae \ (ae+1 ∪ . . . ∪ ak+1))| ≥ 2n−k−1. Note that by definition of e, |At(be)| < 2n−k and
for each e + 1 ≤ i ≤ k − 1, |At(bi)| ≥ 2n−i as otherwise bk would be below bi. Hence
|At(bk \ (be+1 ∪ . . . ∪ bk))| < 2n−k. Duplicator must choose bk+1 strictly below be and
disjoint with be+1, . . . , bk. Therefore either |At(bk+1)| < 2n−k−1 or |At(be) \At(be+1∪ . . .∪
bk+1)| < 2n−k−1.

After n rounds, by the inductive assumption, it is either |At(bn)| = 0 or |At(be \ (be+1∪
. . . ∪ bn))| = 0. If the former, then Spoiler wins by selecting an+1 ⊂ At(an);otherwise,
Spoiler wins by selecting an+1 ⊂ ae \ (ae+1 ∪ . . . ∪ an).

Now we prove that the conditions stated in the lemma suffice Duplicator to win the
(n+1)-round game Gn+1(A,B). Let us assume that the players have produced a k-round
play (a1, b1), (a2, b2), ..., (ak, bk). Our inductive assumptions on this k-round play are the
following:

1. The map ai → bi is a partial isomorphism.
2. For each ai, 1 ≤ i ≤ k, let ai = ∪εaε be as stipulated in Lemma 12(2). For each

aε , let e be the last round such that aε ⊆ ae, if there is no such round, then assume
ae = At(Iε). Let d be the last round such that ad ⊆ aε , if there is no such round, then
assume ad = ∅. Let bi = ∪εbε . The conditions for bε are the following:

– |At(aε \ ad)| ≥ 2n−i if and only if |At(bε \ ad)| ≥ 2n−i; |At(ae \ aε)| ≥ 2n−i if and
only if |At(be \ bε)| ≥ 2n−i.

– If |At(aε \ ad)| < 2n−i then |At(bε \ ad)| = |At(aε \ ad)|; If |At(ae \ aε)| < 2n−i then
|At(be \ bε)| = |At(ae \ aε)|.

Assume that Spoiler selects an element ak+1 ∈ A. Duplicator responds to this move
by choosing bk+1 as follows. If ak+1 = ai then bk+1 = bi. Otherwise, suppose ak+1 = ∪aε
as stipulated in Lemma 12(2). For each aε , let d, e be as described in the inductive
assumptions. We select each bε by the following rules.
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– If |At(aε \ad)| ≥ 2n−k−1 then select bε such that |At(bε \ad)| ≥ 2n−k−1; If |At(ae\aε)| ≥
2n−k−1 then |At(be \ bε)| ≥ 2n−k−1.

– If |At(aε \ ad)| < 2n−k−1 then select bε such that |At(bε \ ad)| = |At(aε \ ad)|; If
|At(ae \ aε)| < 2n−k−1 then |At(be \ bε)| = |At(ae \ aε)|.

Finally, Duplicator selects bk+1 ∈ B such that bk+1 = ∪εbε .
Note the inductive assumptions guarantee that Duplicator is able to make such a

move. It is clear that the inductive assumptions also hold on the (k + 1)-round play
(a1, b1), . . . , (ak+1, bk+1). Hence, the strategy described must be a winning strategy due
to the fact that Duplicator preserves the inductive assumption (1) at each round. The
lemma is proved. �	

For the next result, we represent the Boolean algebras by listing their atoms in 2s lists,
where the ith list lists all atoms with characteristic εi:

Theorem 11. Fix n ∈ ω. There exists an algorithm that runs in constant time and
decides whether Duplicator wins the game Gn+1(A,B) on BAs A and B with s distin-
guished ideals. The constant that bounds the running time is 2s · 2n. �	
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