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Focusing on interest rates and coupon bonds, this book does not employ stochas-
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the derivations. Instead, it analyzes interest rates and coupon bonds using quantum
finance. The Heath–Jarrow–Morton model and the Libor Market Model are gener-
alized by realizing the forward and Libor interest rates as an imperfectly correlated
quantum field. Theoretical models have been calibrated and tested using bond and
interest rates market data.
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Prologue

The 2008 economic crisis has shown that the capital markets need new and fresh
theoretical and mathematical concepts for designing and pricing financial instru-
ments. Focusing on interest rates and coupon bonds, this book does not employ
stochastic calculus – the bedrock of the present-day mathematical finance – for any
of the derivations. Interest rates and coupon bonds are studied in the self-contained
framework of quantum finance that is independent of stochastic calculus. Quantum
finance provides solutions and results that go beyond the formalism of stochastic
calculus.

It is five years since Quantum Finance [12] was published in 2004 and it is
indeed gratifying to see how well it has been received. No attempt has been made
to re-work the principles of finance. Rather, the main thrust of this book is to
employ the methods of theoretical physics in addressing the subject of finance.
Theoretical physics has accumulated a vast and rich repertoire of mathematical
concepts and techniques; it is only natural that this treasure house of quantitative
tools be employed to analyze the field of finance, and the debt market in particular.

The term ‘quantum’ in Quantum Finance refers to the use of quantum mathe-
matics, namely the mathematics and theoretical concepts of quantum mechanics
and quantum field theory, in analyzing and studying finance. Finance is an entirely
classical subject and there is no � – Planck’s constant, the sine qua non of quantum
phenomena – in quantum finance: the term ‘quantum’ is a metaphor. Consider the
case of classical phase transformations that result from the random fluctuations of
classical fields; critical exponents, which characterize phase transitions, are com-
puted using the mathematics of nonlinear quantum field theories [95]. Similar to
the case of phase transitions, quantum mathematics provides powerful theoretical
and mathematical tools for studying the underlying random processes that drive
modern finance.

The principles of quantum finance provide a comprehensive and self-contained
theoretical platform for modeling all forms of financial instruments. This book,
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xvi Prologue

in particular, is focused on studying interest rates and coupon bonds. A detailed
analytical, computational, and empirical study of debt instruments constitutes the
main content of this book.

The Libor Market Model and the Heath–Jarrow–Morton model, which are the
industry standards for modeling interest rates and coupon bonds, are both based
on exactly correlated Libor and forward interest rates. The book makes a quantum
finance generalization of these models to imperfectly correlated interest rates by
modeling the forward interest rates as a quantum field. Empirical studies provide
strong evidence supporting the imperfect correlation of interest rates. Many ground-
breaking results are obtained for debt instruments. In particular, it is shown that
quantum field theory provides a generalization of Ito calculus that is required for
studying imperfectly correlated interest rates.

In the capital markets, interest rates determine the returns on cash deposits.
Coupon bonds, on the other hand, are loans that are disbursed – with the objective
of earning interest – against promissory notes. In principle, the interest paid on
cash deposits and the interest earned on loans are equivalent. However, all interest
rates are only defined for a finite time interval – of which the minimum is overnight
(24 hours). In particular, all interest rate derivatives are based on benchmark interest
rates for cash deposits of a duration of 90 days. The bond (derivatives) markets,
in contrast, have no such minimum duration. The existence of a finite duration for
the (benchmark) interest rates creates two distinct sectors of the debt derivatives
market, namely derivatives of interest rates and derivatives of coupon bonds – with
a nonlinear transformation connecting the two sectors.

Numerous and exhaustive calculations are carried out for diverse forms of inter-
est rate and coupon bond options. Complicated concepts and calculations that are
typical for debt instruments are introduced and motivated, in some cases by first
discussing analogous and simpler equity instruments. It is my view that only by
actually working out the various steps required in a calculation can a reader grasp
the principles and techniques of what is still a subject in its infancy. Almost all the
intermediate steps in the various calculations are included so as to clear the way for
the interested reader. A few key ideas are repeated in the various chapters so that
each chapter can be read more or less independently.

The material covered in the book is primarily meant for physicists and mathemati-
cians engaged with research in the field of finance, as well as professional theorists
working in the finance industry. Specialists working in the field of debt instruments
will hopefully find that the theoretical tools and mathematical ideas developed in
this book broaden their repertoire of quantitative approaches to finance. The mate-
rial could also be of interest to physicists, probabilists, applied mathematicians, and
statisticians – as well as graduates students in science and engineering – who are
thinking of pursuing research in the field of finance.



Prologue xvii

One of the aims of this book is to be self-c ontained a nd compre hensive. All
derivations and concepts are introduced from first principles, and all important
re s u lts a re d e riv e d a b in itio . G iv e n th e d iv e rs e n a tu re o f th e p o te n tia l a u d ie n c e ,
fundamental concepts of finance have been reviewed for readers who are new to
this field. Appendix A reviews the essential mathematical background required for
following the various derivations and is meant to introduce specialists working in
finance to the concepts of quantum mathematics.
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1
Synopsis

The book consists of three major themes. Any one of the three components can be
read without many gaps in the analysis.

1 The introductory chapters are primarily intended for readers who are unfamiliar with
the fundamental concepts of finance. The principles and mathematical expressions for
debt instruments, which are analyzed in later chapters, are reviewed in Chapter 2,3, and
4. Options are briefly discussed and the Black–Scholes option theory is given a path
integral formulation.

2 A major subject matter of the book is the theory of coupon bonds. A quantum field theory
of the bond forward interest rates f (t , x) is developed in Chapter 5 and forms a core
chapter. It provides a model for the study of coupon and zero coupon bonds. Many of the
derivations in later chapters are based on the quantum finance model of bond forward
interest rates.

3 The quantum finance formulation of Libor interest rates is another major topic. The
Libor Market Model is formulated in Chapter 6; the nonlinear Libor forward interest
rates fL(t , x) that it is based upon are transformed into logarithmic Libor interest rates
φ(t , x). In Chapter 7 some empirical properties of the Libor Market Model are studied and
in Chapter 8 the prices of Libor options are obtained by using techniques of quantum
field theory. A derivation of the Libor Market Model’s nonlinear drift term is given in
Chapter 15, based on the Libor Hamiltonian and state space of φ(t , x).

The inter-connection of the various chapters is shown in the flowchart given
overleaf.
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2
Interest rates and coupon bonds

Interest rates, coupon bonds, and their derivatives are the main instruments of the
debt markets, which constitute well over 60% of the entire capital markets. A brief
discussion locates the debt markets in the general framework of finance and points to
the growing importance of the debt markets in the global economy. Interest rates are
a measure of the returns on cash deposits, whereas coupon bonds are a measure of
the present value of future cash flows. From this intuitive and apparently simple idea
flow all the various definitions of interest rates and coupon bonds. The fundamental
concept of forward interest rates that describe the bond market is introduced. The
interest rate markets are driven by Libor and Euribor; these two instruments are
defined and a few of their important features are discussed.

2.1 Introduction

Finance is the discipline that studies the borrowing, lending, and investing of money
capital. The main form of money capital is paper issued by various governments
and private organizations, which includes corporations and individuals. The three
pillars of finance are equity, debt, and foreign exchange and are the basis of all
financial instruments. Financial markets, collectively known as the capital markets,
trade in these instruments [31].

Capital in economics represents the collection of productive assets required for
carrying out economic activities. Financial ‘paper’ is not merely ordinary paper,
but, rather, the preferred form of money capital that is used for representing value:
a value based not on how it has been generated but, rather, on its present day
and future value in the capital markets – and in economic activity in general.
Money capital carries an intrinsic risk since expectations of what can be realized
in the present and future are always subject to uncertainties inherent in any form
of forecasting. Unlike traditional economies – where finance is a passive force
and auxiliary to the real economy – the capital markets today are one of the most

3



4 Interest rates and coupon bonds

powerful and dynamic components of the modern global economy and a potent
force for economic growth and expansion. The capital markets are expected to
become increasingly important with the increasing inter-connections of the global
economy. However, there is a downside to the increasing importance of finance.
Due to the inherently uncertain and random nature of money capital, the capital
markets have an uncontrollable and unpredictable component that can wreak havoc
on the real economy. Advanced theories of money capital are required for creating
financial instruments that can be used for managing risk and reducing instabilities
of the capital markets – and thus help to tame the destabilizing spikes, bubbles,
meltdowns, and crashes of the financial markets.

Money capital comes in many forms with the main three forms being stocks and
shares of companies, debt instruments, and cash of various currencies. Money, or
more precisely money capital that is seeking returns from the economy, is a dynamic
quantity – with opportunities for money to yield profit constantly changing with
time. Interest rates reflect the relation of the value of money with time and quantify
the time-dependent and dynamic aspect of money.

Debtors pay a return – the amount depending on the interest rate – to the providers
of credit. Debt and surplus capital are two sides of the same coin, since debt for
one party is the complement of the credit that the other party has provided. The
world’s debt market is an expression of the net savings that the world economy has
generated.

One needs sophisticated and effective models of interest rates to manage and
expand the net global savings so as to maximize its returns. It is from this
perspective – of optimizing the management of the international debt markets – that
quantum finance models of interest rates and coupon bonds have been developed
and form the main content of this book.

Optimizing the management of international liquidity will result in better
allocation and returns on investments as well as create conditions for the pros-
perity of society at large. In particular, managing flows of international capital to
developing and other higher risk economies, using customized financial instru-
ments, would result in a larger fraction of mankind having access to investment
capital – leading to the betterment of people’s lives and wealth.

2.2 Expanding global money capital

The nature of finance has undergone a radical change in the last 30 years, with the
financial sector of the economy becoming increasingly more important. There are
many indicators that point to this fundamental change in the financial superstructure
of economically advanced countries.



2.2 Expanding global money capital 5

In 2006, the world economy generated about US$65 trillion worth of goods and
services, of which raw materials (taken directly from nature) constituted about
two-thirds (US$43 trillion) of the total value. The remaining one-third (US$22
trillion) was the value added by human labor. For example, in 2007 – based on
daily production of 85 million barrels (about 31 billion barrels a year) – the sale of
petroleum at around US$100 per barrel generated a revenue worth about US$3.1
trillion, with a large part of this revenue being invested in the capital markets.

In general, a substantial fraction of the net profit generated by the world economy
as well as the savings and net accumulated surplus capital of many individuals,
organizations, and countries is held in the form of money capital. In particular,
cash rich oil and gas producers as well as East Asian economies (with substantial
national reserves) have created ‘sovereign funds’ for investing their surplus in the
capital markets. Money capital is bound to be increasingly important; due to the
enormous scale of the global economy and the net savings it generates, there is not
enough gold or other precious commodities that can hold this value. Paper seems
the only way to represent and store the generated global surplus value.

Risk management, based on models that quantify the degree of risk, allows many
institutional investors to convert net savings into money capital. Better risk manage-
ment instruments have drawn risk-averse investors, such as insurance companies
and pension and sovereign funds amongst others, to place their assets in the capital
markets, contributing to the current explosion of the money capital.

IMF estimates that in 2005 the total value of the stocks, bonds, and bank loans
worldwide was about US$165 trillion. The global bond (debt) market’s share was
close to US$104 trillion – by far the largest component of the global capital
markets – accounting for over 63% of the total; banking credit in 2008 amounted to
about US$23 trillion. In 2005, cross-border money flows (stocks, bonds, real estate,
and so on) amounted to about US$6 trillion. The foreign exchange markets have
also undergone a phenomenal increase, with about US$3 trillion being traded daily
in 2007.

In 2007, global stocks were worth about US$56 trillion – about 35% of the capital
markets – with the US and Eurozone each accounting for US$18 trillion and the
rest of world accounting for US$20 trillion. The US capital markets had a total
worth of US$42 trillion of which US$24 trillion was in the bond (debt) market and
US$18 trillion in stocks (equity).

In 2006 global debt issuance rose to a record US$6.9 trillion with the global syn-
dicated loan volume exceeding US$3.2 trillion. During the period of 2000–2005
nonfinancial companies worldwide issued $19.3 trillion worth of debt, in the form
of corporate medium-term notes (MTNs), with the biggest issuers being the auto-
motive industry, issuing 70 MTNs worth US$4.54 trillion followed by insurance
companies issuing 26 MTNs worth US$4.49 trillion.



6 Interest rates and coupon bonds

Market liquidity and risk management – two of the current lynch pins of the
financial system – require the participation of speculators. A speculator, who can
be an individual, a corporation, or a financial institution, makes an estimate of the
future and if right profits and if wrong loses. Speculating on the capital markets
usually means taking high risks since the future is always uncertain. Speculative
positions create market liquidity as well as provide a mechanism for sharing risk,
which, for example, a (manufacturing) business, not having in-house expertise in
risk management, may want to dispense with.

Although the term ‘speculator’, to some, carries a negative connotation, the
market needs both informed and uninformed, traders. Speculators are not inside
traders but, instead, should be called uninformed traders, in contrast to informed
traders who buy or sell a specific instrument. If only informed traders were market
players, any move to buy or sell would lead to slippage in the offered prices, leading
to the informed traders being held to ransom by the market. Uninformed traders
provide the ‘veil’, a background of ‘noise’, that allows informed traders to enter
the market without causing major slippages in prices. One needs both the informed
and uninformed traders for the market to function efficiently.

2.2.1 Securitization

Another reason for the expansion of the capital markets is that financial engineering
has created instruments that allow diverse forms of future cash flows to be used
for issuing vast amounts of securitized debt. Securitization is the consolidation
and structuring of cash-flow producing financial instruments, called asset-backed
securities, that can then be traded in the capital markets. For example, the securi-
tization of cash flows, such as mortgage payments and rentals, has allowed these
to be traded in the capital markets – adding to the depth and liquidity of the capital
markets.

Securitization is a relatively new concept in finance, having gained acceptance
only over the last 20 years. Securitized debt has grown in the issuance of new
loans and covers such diverse sectors as residential mortgages, commercial real
estate, corporate loans, auto loans, student loans, and so on. In 1990, just 10%
of mortgages in the United States were securitized, compared to 70% in 2007. It
is estimated that by the middle of 2008 there were asset-backed securities worth
US$10.2 trillion in the US and US$2.3 trillion in Europe. In 2007, new issues of
asset-backed securities amounted to US$3.5 trillion in the US and US$650 billion in
Europe. Securitization has had a major setback due to the 2008 US economic crisis,
with the issuance of new mortgage-backed securities dropping by almost 85% in
the first half of 2008 compared to the same period in 2007. The 2008 subprime
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crises in US home mortgages is claimed by some critics to be a negative example
of securitization; this is not entirely correct and is discussed in Appendix B.2 .

The lack of securitization can be a formidable barrier to economic development.
It has been argued by Soto [91] that the securitization of third world developing
countries’ real estate, and of property in general, into tradable financial instruments
could release vast amounts of capital. It was estimated that, in 1997, capital worth
about US$9.3 trillion was locked up due to lack of securitization, an amount twice
of the then total US public debt [91]. This ‘dead capital’, if securitized, could play
a major role in the economic growth of the developing countries. Mortgages are
fungible (a commodity that is freely interchangeable with another in satisfying
an obligation) only in countries where the rule of law is well established and the
legal system guarantees ownership. To securitize real estate assets in third world
countries, hence, requires a stable political system that is accountable and relatively
free from corruption. For these reasons, third world countries will have to overcome
many major hurdles before they are in a position to create mortgage and other
asset-backed securities, which would in turn release presently inert capital.

2.2.2 Profitability of the financial sector

At present, the rate of return of the financial sector and services in general is about
20% for the advanced economies of the US, Europe, and Japan – much higher
than the 8–10% returns from manufacturing.1 For example, from 2002 to 2006 five
leading US investment banks – Goldman Sachs, Merrill Lynch, Morgan Stanley,
Lehman Brothers, and Bears Stern – had an average return on equity of about 22%,
amounting to US$30 billion – rivaling returns for such profitable industrial sectors
as pharmaceuticals and energy.

The increasing volume of financial money capital reflects the overall expansion
of the world economy, with vast amounts of surplus finding its way to the capital
markets. The high rates of return from finance capital is one of the reasons for the
immense infusion of savings and other assets into the global capital markets. The
higher rate of return is thought to be due to the finance industry not being as mature
as manufacturing and is taken to indicate a shift of the global economy to a new
regime. There is, however, a contrarian view that the high returns from finance are
primarily the result of the formation of an asset bubble – and hence intrinsically
unstable and not sustainable.

The September–October 2008 global financial meltdown seems to provide strong
evidence in support of the contrarian view. By the end of the September–October

1 The rate of return on manufacturing is thought to be low due to the increasingly large capital investment required
for setting up and upgrading modern industries.
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2008 US financial meltdown, all the five US investment banks had c eased to
exis t – with Goldman Sachs and Morgan Stanley having converted themselves into
bank holding companie s. The c onsis te ntly high re turns of 22% from 2002 to 2006
shown by the five investment banks, with hind s ight, is s een to comple te ly coincide
with the formation and e xpansion of the US subprime mortgage loans’ financia l
bubble and may have s imply been a result of this bubble.

Finance may still give a return higher than manufacturing due to the creation
of new financial instruments , but in the current climate of financial turmoil and
contraction it will be a while before such innovations find acceptance in the capital
ma rke ts .

2.3 New centers of global finance

The United States (US) capital markets, since 1945, have been the most important
component of the global capital markets, playing a central role in shaping and
developing the international financia l s yste m. In Appendix B, the structure of the
US debt markets is briefly reviewed.

The US is losing its pre-eminent position in the global capital markets due to
the following reasons: (a) massive financial losses caused by the 2008 economic
meltdown – in the US stock market, for example stocks on the Dow Jones lost 34%
of their value in 2008 (the largest drop since 1931), and in the bankruptcy of major
US financial institutions; (b) the rise of other capital markets and centers of wealth.
The year 2007 saw a sea change in the distribution of global wealth. Largely due
to the rise of China and India and investments by oil and gas producing countries,
for the first time since the Second World War (1945) London displaced New York
to become the center of the global capital markets. Over 40% of the world’s foreign
equities were traded in London, more than New York. Over 30% of the world’s
foreign currency trading took place in London, being larger than New York and
Tokyo combined.

The US capital markets, in 2007, were worth US$42 trillion of which US$7.3
trillion was owned by foreigners, namely 17%, who also held 44% of the US
national debt. In contrast to both New York and Tokyo, which depend largely on
their domestic and East Asian markets, 80% of London’s business comes from
international sources, spread widely over many regions and countries.

The shift away from a US-centered global financial system can also be seen in
the emergence of the Euro as an international reserve currency, as can be seen from
Table 2.1. The Euro was introduced in 1999 and by 2008 had appreciated over 50%
against the US Dollar. International reserves are now held in both the US Dollar
and the Euro, with estimates that by 2010 about 34% will be held in Euro and 54%
in the US Dollar, in contrast to 2000 when 71% of world reserves were held in
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Table 2.1 International reserve in Euros and US Dollars, and the projected
currency distribution of these reserves by the year 2010.

Currency of international reserve

2000 2007 2010 (projected)

US Dollar $ 71% 63% 54%
Euro € 18% 26% 34%

US Dollars. Some economists have predicted that, by as early as 2015, the Euro
may overtake the US Dollar as the main international reserve currency provided two
conditions hold: (a) more countries, including the UK, join the Eurozone countries
and (b) the 2008 US economic crisis causes a deterioration in the value of the US
Dollar.

With the increasing pace of globalization, one can expect the emergence of
new international centers of finance in Shanghai, Hong Kong, Singapore, Mumbai,
Dubai, Sao Paolo, and so on.

2.4 Interest rates

Interest rates, in essence, represent the interplay of time with economic activity,
money capital, and real (tangible) assets.

The money form of capital represents real productive assets of society that can
erode over time; furthermore, other factors like inflation, currency devaluations,
new technologies, and so on make the value represented by financial assets a vari-
able quantity that responds to changing circumstances. Financial assets represent
the ability to initiate or facilitate economic activities, opportunities for which are
tied to many social factors. For these and many other reasons, the effective value
of money is strongly dependent on time.

How does one estimate the time value of money? From economic theory, the
sum total of all the endogenous and exogenous factors that affect the time value
of money are contained in the interest rates that one earns on cash deposits or on
Treasury Bonds. Money invested in other financial instruments is more compli-
cated to value as risk premiums are involved, perceptions of which differ between
investors. Ultimately, the time value of money involves discounting expected future
cash flows from bonds to obtain its present-day value; or, inversely, compounding
present-day cash deposits for obtaining its expected future value.

Interest rates fix the cost of borrowing capital, the ‘cost’ of money, and are
determined by both, the supply and demand for money – which depend on the
prevailing interest rates – and by the macroeconomic policies of central banks.
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Central banks would, ideally, like to hold down inflation while at the same time
engendering economic growth; central banks balance inflation against the rate of
economic growth by regulating the supply of money. One of the major tools for
influencing the supply and demand for money is by setting interest rates.

Market forces of supply and demand and central banks’ setting of interest rates
are in a state of constant tension. Market forces sometimes force the central banks
to change the interest rates so as to bring them in line with the market; at other
times, central banks intervene by changing the interest rates and thus affecting the
market’s demand for money.

The concepts of discounting and compounding are fundamental to finance.
However, contrary to what one intuitively expects, the relation turns out to be
far more complex than discounting and compounding simply being the inverse of
each other. The different forms of compounding (discounting) present (future) cash
flows provide different ways by which interest rates are defined.

Consider the future value of a fixed deposit that is rolled over continuously;
a constant interest rate leads to an exponential compounding of the value of the
initial fixed deposit. Discounting, on the other hand, is the procedure that yields
the present-day value of a pre-fixed future cash flow and is exponentially smaller
for constant interest rates. In essence, all measures of interest rates arise by either
discounting expected future cash flows to obtain their present-day value or by
compounding the present-day value of fixed deposits to obtain the value of future
cash flows.

2.5 Three definitions of interest rates

The following procedures for defining interest rates are widely used in the financial
markets, with an interest rate ‘yield curve’ for each case.

• Returns on cash deposits using simple interest rates. This is the basis of defining Libor
and Euribor, the two fundamental market determined interest rates.

• Discrete compounding of cash deposits and discrete discounting of bonds. This procedure
is the basis for the definition of the zero coupon yield curve (ZCYC), which is fundamental
to the interest rates and bond markets.

• Instantaneous compounding and discounting future cash flows. This definition leads to
the concept of instantaneous forward interest rates, the main theoretical construct of the
bond market.

To simplify the discussion of the central concepts, all interest rates for now
are taken to be constant. The more complex generalizations of these concepts are
discussed in the later sections.
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2.5.1 Simple interest rates

Consider a principal sum of amount M , kept in a bank fixed deposit at time t and
earning a simple interest at the rate of L per year. After a period of say T years, the
initial amount M increases to M[1 + (T − t)L]. Conversely, if one is to receive
a pre-fixed amount B at time T in the future, the value of that amount at time t is
given by B/[1 + (T − t)L]. In summary

M at time t = M[1 + (T − t)L] at time T
B

[1 + (T − t)L] at time t = B at time T (2.1)

2.5.2 Discrete compounding and discounting: yield to maturity

Consider a fixed deposit made at time t; the principal earns a yield to maturity z,
a dimensionless quantity that is a measure of simple interest for a period, usually
taken to be one year. At the end of one year, the interest earned is compounded –
namely, the interest earned is added to the principal sum. At the end of the first
year M(1 + z) is the amount in the fixed deposit; at the end of the second year
the amount in the fixed deposit is M(1 + z)2, and so on. For a deposit of duration
T − t years, there are [T − t] = (T − t)/1 number of compounding.2

Hence, at time T , the discretely compounded amount for a fixed deposit made
at time t is given by

M at time t = M(1 + z)[T−t] at time T
B

(1 + z)[T−t] at time t = B at time T (2.2)

where the last equation gives the discretely discounted value at time t of a pre-fixed
payment B at time T .

2.5.3 Continuous compounding and discounting

Consider the case of discrete compounding, but now let ε be an infinitesimal period
of discrete compounding. Consider the limit of ε→ 0; simple interest payments are
now given by z= εr; r is the instantaneous spot interest rate and has the dimension
of 1/time. The interest generated in the time interval t to t + ε, is Mεr and the
fixed deposit is compounded to yield M(1 + εr). For the time interval T − t , the

2 Note [T − t] is always an integer.
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number of times the principal is compounded is (T − t)/ε; hence the value of the
continuously compounded fixed deposit at time T is given by

lim
ε→0

M(1 + εr)(T−t)/ε = Mer(T−t)

In summary, for continuously compounded interest rates

M at time t = Mer(T−t) at time T
B

er(T−t) at time t = B at time T (2.3)

All the different ways of defining interest rates are of course consistent. Any
inconsistency or incompatibility in the different definitions of interest rates leads to
arbitrage opportunities in the prices of debt instruments.3 This in turn would lead
to trades that remove any pricing inconsistency.

2.6 Coupon and zero coupon bonds

Cash represents present-day value, whereas bonds represent future cash flows.
Bonds are fundamental instruments of debt; the seller of a bond issues a promis-

sory note to the buyer that states the seller’s (legal) obligation to make a future
payment of a certain pre-determined amount. The amount includes a component
that is the return on the bond and reflects the interest rate paid by the issuer of
the bond.

One of the primary financial instruments of the national and international debt
markets are government and corporate bonds. Interest rates can be derived from
the market prices of bonds. Given the vast diversity of the bond market, only those
aspects of bonds are discussed that are of direct relevance to the material covered
in this book. The readers are referred to the extensive literature on bonds [73].

A zero coupon bond is a financial instrument that gives a single pre-determined
payoff, of say €1, called the principal amount, when it matures at some fixed future
time T ; its price at earlier time t < T is given by B(t , T ). Note that for a zero
coupon bond there are no coupon payments and hence the name.

At time t there are, in principle, infinitely many zero coupon bonds with varying
maturities; that is, bonds B(t , T ), in principle, exist for all T ∈ [t , t + ∞] years.
In practice, in the capital markets, the zero coupon bonds are usually issued with
maturity from one day to about 30 years in the future and henceT ∈ [t , t+30] years.
The collection of the prices of all zero coupon bonds B(t , T ), with maturity from
present time t to a maximum time T is called the zero coupon bond term structure.

3 Arbitrage opportunities means that one can make risk-free profit that is higher than the (risk-free) rate of return
on fixed deposits. See Section 3.5.
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Consider a coupon bond, denoted by B(t), that pays a principal of L when
it matures at time T , and pays fixed dividends (coupons) ai at times Ti , i =
1, 2, . . . , N . The value of the coupon bond at time t < Ti can be shown [63, 65] to
be equivalent to a portfolio of zero coupon bonds with maturities coinciding with
the payment dates of the coupons. Quantitatively

B(t) =
N∑
i=1

aiB(t , Ti)+ LB(t , T ) =
N∑
i=1

ciB(t , Ti) (2.4)

For simplicity of notation, the time of maturity of the coupon bond is taken to be
the date of the last coupon payment, that is T = TN . The final payment is included
in the sum by setting ci = ai ; cN = aN + L.

Intuitively, the reason that a portfolio of zero coupon bonds is equal to a coupon
bond is because the two instruments have the same cash flow. Every coupon payment
for the coupon bond is equivalent to a zero coupon bond maturing at the time of the
payment.Afundamental theorem of finance states that any two financial instruments
that have the same cash flow are identical [63]. The proof follows from the fact
that, otherwise, arbitrage opportunities would exist for the prices – which is ruled
out in an efficient market.

2.6.1 Coupon bond yield-to-maturity y

Given the wide variety of coupon bonds, with different face values L, different
amounts and number of coupon payments ai and N respectively, it is difficult
to compare the rates of return of two different coupon bonds. For this reason, a
generalization of the zero coupon bond yield-to-maturity z, given in Eq. (2.23), is
defined for coupon bonds and denoted by y.

Coupon bond yield-to-maturity y is the annual yield such that, at time t , the
present values of the future cash flows, discretely discounted yearly by y, equal
the face value of the coupon bond. For coupon bonds with N number of (annual)
payments, the yield-to-maturity is defined as follows

B(t) =
N∑
i=1

ai

(1 + y)i
+ L

(1 + y)N

Given the values of B(t), ai , and N , it is in general a nonlinear problem to eval-
uate y, and is usually done numerically. Once the y value of a coupon bond is
determined, one can accurately compare it with other coupon bonds with very
different cash flows. One can readily generalize the definition of the coupon bond
yield-to-maturity y for coupons that are paid out c times a year and so on.
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From Eq. (2.4) one can conclude that the zero coupon bonds are the fundamental
instruments of the bond market. If one can model the behavior of the zero coupon
bonds, one automatically has, in principle, a model for the coupon bonds. However,
as is to be expected, the coupon bond is a much more complex instrument than the
zero coupon bond.

All bonds have a credit risk, which is the likelihood of default, due by the possible
inability of the issuer to pay either the coupons or the principal amount. Credit risk
arises from various sources and the financial consequences of default are taken into
account in the pricing models of such defaultable, or risky, bonds; in particular, the
higher the possibility of default, the higher the interest rate that has to be paid out
by the issuer of the bond.

An important class of both coupon and zero coupon bonds are those that carry
no risk of default; such bonds are called Treasury Bonds. In practice, bonds issued
by the US federal government are taken to be risk-free Treasury Bonds and conse-
quently have the lowest interest rates in the debt market. Almost all the discussions
on bonds, in the later chapters, are confined to the study of risk-free Treasury
Bonds.

Since bonds generate pre-fixed (series of) cash flows, they belong to the larger
class of financial instruments called fixed-income securities. The ownership of
a fixed-income security is often, erroneously, considered to be less risky than the
ownership of equity since – short of the issuer going bankrupt – the owner of a fixed-
income security is guaranteed a return. However, due to interest rate risk, credit
risk, and currency risk (for the bonds that are issued in a foreign currency), a bond
portfolio before maturity can lose as much value, or even more, than a portfolio of
equities.

2.7 Continuous compounding: forward interest rates

The present-day value of a bond is obtained by discounting future cash flow(s)
using various methods, with each method providing a definition of interest rates.

Consider the simplest case of an economy that has a constant interest rate r . As
discussed in Eq. (2.3) a continuously compounded fixed cash deposit of €1 made
at time t will yield, at time T in the future, a cash of amount exp{(T − t)r}. Hence
a zero coupon bond yielding €1 at time T has a present value of

B(t , T ) = e−(T−t)r

In general, a real economy never has an interest rate that is constant over future
time. Instead, for each future time T , there is a separate effective interest rate,
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denoted by r(t , T ), called the term structure of interest rates and also known as the
interest yield curve. The zero coupon bond is given by

B(t , T ) = e−(T−t)r(t ,T )

⇒ r(t , T ) = − 1
T − t

lnB(t , T ) (2.5)

The interest yield curve can also be used for determining the future value of
a fixed deposit that is continuously compounded; for €1 deposited at time t and
continuously compounded, its future value at time T is locked in at time t to be
equal to exp{(T − t)r(t , T )}.

Forward interest rates, denoted by f (t;T1, T2), are continuous rates that are
available in the debt market such that one can lock-in, at time t , the interest rate for
a deposit from future time T1 to T2, with T2 > T1.

To understand the relation of f (t ;T1, T2) to zero coupon bonds, consider two
zero coupon bonds B(t , T1) and B(t , T2), with T2 > T1. The definition of bonds in
terms of the interest yield curve given in Eq. (2.5) yields

B(t , T1) = e−(T2−T1)f (t;T1,T2)B(t , T2)

⇒ f (t;T1, T2) = − 1
T2 − T1

ln
[B(t , T1)

B(t , T2)

]
(2.6)

Discounting of bonds, from future to present time, is shown in Figure 2.1.
For a deposit made at time t , the future value at times T1 and T2 are

exp{(T1 − t)r(t , T1)} and exp{(T2 − t)r(t , T2)}, respectively. However, the value
of the two deposits are related, as shown in Figure 6.6, since one can take the cash
obtained at time T1 and lock-in the interest at time t , for the duration from T1 to T2
using f (t;T1, T2). The principle of no-arbitrage yields

e(T2−t)r(t ,T2) = e(T1−t)r(t ,T1)e(T2−T1)f (t;T1,T2) (2.7)

t T1 T2 Time

Figure 2.1 The discounting of bond payoff directly from time T2 to time t and via
an intermediate time T1.
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2.8 Instantaneous forward interest rates

Forward interest rates play a central role in the study of interest rates and coupon
bonds. The forward interest rates provide a representation of zero coupon term
structure that is analytically and conceptually very useful in the study of the bond
market.

To derive the instantaneous forward interest rates from the term structure of the
zero coupon bonds, consider two bonds that are mature at infinitesimally separated
future times. More precisely, in Eq. (2.6) let T2 = T1 + ε; hence one obtains the
following4

B(t , T + ε) = e−εf (t ,T ,T+ε)B(t , T ) (2.8)

The limit of forward interest rates

f (t , T ) ≡ lim
ε→0

f (t , T , T + ε) (2.9)

defines the instantaneous forward interest rates, namely f (t , T ). Instantaneous
forward interest rates f (t , T ) are the rate, fixed at time t , for instantaneous loans at
future time T > t ; as expected f (t , T ) has the dimensions of 1/time. All forward
interest rates are always positive and hence

f (t , T ) > 0 for all t , T (2.10)

The spot interest rate r(t) is the instantaneous interest rate at time t; the definition
of the instantaneous forward rates yields

r(t) = f (t , t)

Eq. (2.8) provides a recursion equation. Let maturity time be discretized into a
lattice with T − kε points; then, since B(t , t) = 1, Eq. (2.8) yields the following

B(t , T ) = exp{−εf (t , T − ε)}B(t , T − ε)

= exp

⎧⎨⎩−ε
(T−t)/ε∑
k=1

f (t , T − εk)

⎫⎬⎭B(t , t)
→ exp

{
−
∫ T−t

0
dy f (t , T − y)

}
⇒ B(t , T ) = exp

{
−
∫ T

t

dx f (t , x)
}

; x = T − y (2.11)

4 In practice, one takes ε = 1 day = 1/360 year.
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Figure 2.2 (a) The forward interest rates, indicated by the dashed lines, that define
a zero coupon bond B(T1, T2) and its forward price F(t , T1, T2). (b) The forward
bond price F = F(t , T1, T2) for zero coupon bonds maturing at different times
T2, with T1 − t = 2 years in the future. The forward interest rates f (t , T ) were
obtained from the US$ zero coupon yield curve for t = 29 January 2003.

Figure 2.2(a) graphically represents the forward interest rates that define a zero
coupon bond B(T1, T2).

It is worth noting that one can directly obtain the current value of the bond
B(t , T ) by discounting the €1 payoff taking infinitesimal backward time steps ε
from maturity T to present time t , which yields5

B(t , T ) = e−εf (t ,t+ε)e−εf (t ,t+2ε) . . . e−εf (t ,x) . . . e−εf (t ,T )

⇒ B(t , T ) = exp
{
−
∫ T

t

dxf (t , x)
}

(2.12)

∂B(t , T )
∂T

= −f (t , T )B(t , T ) (2.13)

In fact, the result given above, using the concept of discounting, is obtained more
formally in Eq. (2.11), using the recursion equation.

Eq. (2.12) shows that f (t , x) is a set of variables equivalent to the zero coupon
bonds. From the definition of the instantaneous forward interest rates given in
Eq. (2.12), the forward interest rate and the interest yield curve are given by the
following

f (t : T1, T2) = 1
T2 − T1

∫ T2

T1

dxf (t , x)

r(t , T ) = 1
T − t

∫ T

t

dxf (t , x)

5 The fixed payoff €1 is assumed and is not written out explicitly.
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Suppose a zero coupon bond B(T1, T2) is going to be issued at some future time
T1 > t , with expiry at time T2; the forward price of the zero coupon bond is the
price that one pays at time t to lock-in the delivery of the bond when it is issued at
future time T1. Hence, the forward bond price is given by

F(t , T1, T2) = exp
{
−
∫ T2

T1

dxf (t , x)
}

= B(t , T2)

B(t , T1)
: forward bond price (2.14)

In terms of the forward interest rates the forward bond price is given by

F(t , T1, T2) = exp{−(T2 − T1)f (t ;T1, T2)}
Figure 2.2(b) shows the forward bond price F =F(t , T1, T2) of the bond

B(T1, T2). The values of the forward bond price are plotted in Figure 2.2(b), as
a function of maturity time. It can be seen that the forward price falls rapidly, as is
expected, given the exponential discounting of the bond prices.

At any instant t , the capital markets (implicitly) have instantaneous forward
interest rates from present t out to a time TFR in the future; for example, if t refers
to present time t0, then one has forward rates from t0 till time t0 +TFR in the future.
In the market, TFR is at least about 30 years, and hence we have TFR > 30 years.
In general, at any time t , all the forward interest rates f (t , x) exist till time t +TFR
and, hence, have future time x with t < x < t + TFR .

2.9 Libor and Euribor

The two main international currencies are the US Dollar and the Euro, which is
the currency of the European Union. As can be seen from Table 2.1, almost 90%
of international cash reserves are in the form of US Dollars or Euros. Cash fixed
deposits in these currencies account for almost 90% of simple interest rates that are
traded in the capital markets. Cash deposits in US Dollars as well as British Pounds
earn simple interest at the rate fixed by Libor and deposits in Euros earn interest
rates fixed by Euribor.

2.9.1 Libor

The interest rates offered for time deposits are often based on Libor, the London
Interbank Offered Rate [12]. Libor is one of the main instruments for interest rates
in the debt market, and is widely used for multifarious purposes.

Libor was launched on 1 January 1986 by the British Bankers’ Association.
Libor is a daily quoted rate based on the interest rates at which commercial banks
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are willing to lend funds to other banks in the London interbank money market.
The minimum deposit for a Libor has a par value of $1,000,000. Libor is a simple
interest rate for fixed bank deposits and the British Bankers’Association has daily
quotes of Libor for loans in the money market of the following duration: overnight;
one and two weeks; one, three, four, five, six, nine, and 12 months. Libors of longer
duration are obtained from the interest rate swap market and are quoted for future
loans of duration from two years to 30 years. A Libor zero coupon yield curve is
constructed from the swap market and is quoted by vendors of financial data. The
Libor market is active in maturities ranging from a few days to 30 years, with the
greatest depth in the 90- and 180-day time deposits.

The three-month Libor is the benchmark rate that forms the basis of the Libor
derivatives market. All Libor swaps, futures, caps, floors, swaptions, and so on are
based on the three-month deposit. The main focus of this book is Libor derivatives
and the term Libor will be taken to be synonymous with the three-month Libor.

In 1999 the open positions on Eurodollar futures had a par value of about US$750
billion, and has grown tremendously since then. The Chicago Mercantile Exchange
(CME) Libor futures represent one-month Libor rates on a $3 million deposit. In
2008, CME had Eurodollar futures and options on Libor with open interest of over
40 million Libor contracts and an average daily volume of 3.0 million. Libor is
amongst the world’s most liquid short-term interest rate futures contracts. Interest
rate swaps, with Libor taken as the floating rate, currently trade on the interbank
market for maturities of up to 50 years.

Market data on Libor futures are given for daily time t in the form ofL(t , Ti− t),
with fixed dates of maturity Ti (March, June, September, and December) and shown
in Figure 2.2(a). The shortest maturity time is θmin = 3 months, and the spot rate
is taken to be r(t) = f (t , θmin).

2.9.2 Euribor

Euribor (Euro Interbank Offered Rate) is the benchmark rate of the Euro money
market, which has emerged since 1999. Euribor is simple interest on fixed deposits
in the Euro currency; the duration of the deposits can vary from overnight, weekly,
monthly, three monthly out to long duration deposits of ten years and longer. Euribor
is sponsored by the Financial Markets Association (ACI) and by the European
Banking Federation (FBE), which represents 4,500 banks in the 24 member states
of the European Union and in Iceland, Norway, and Switzerland. Euribor is the rate
at which Euro interbank term deposits are offered by one prime bank to another.

The choice of banks quoting for Euribor is based on market criteria. These banks
are of first-class credit standing. They are selected to ensure that the diversity of the
Euro money market is adequately reflected, thereby making Euribor an efficient and
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Figure 2.3 (a) Daily Eurodollar futures for Libor ratesL(t , t+7 years), . . . L(t , t+
6 years), …L(t , t + 1 year), and L(t , t + 0.25 years) with t ∈ [1996, 1999].
(b) Euribor maturing one, two, and three years in the future, from 26 May 1999 to
17 May 2004.

representative benchmark. All the features discussed for Libor can also be applied
to Euribor.

Euribor was first announced on 30 December 1998 for deposits starting on
4 January 1999. Figure 2.3(b) shows daily values for three Euribor forward interest
rates for 90-day deposits one, two, and three years in the future. Since its launch,
Euribor has been actively trading on the options markets and is the underlying
rate of many derivatives transactions, both over-the-counter and exchange-traded.
Euribor is one of the most liquid global interest rate instruments, second only to
Libor. The Euribor zero coupon yield curve, based on the rates being contracted in
the Euribor swaps market, extends out to 50 years in the future.

2.10 Simple interest rate

Cash deposits can earn simple interest rates for a given period of time. For example,
one can lock-in at time t , a simple interest rate, denoted by L(t;T1, T2), for a fixed
deposit from future time T1 to T2. The period of the deposit, namely T2 − T1, is
called the tenor of the simple interest rate.

A deposit of €1, made from time T1 to T2, will increase, as in Eq. (2.1), to an
amount 1+ (T2 −T1)L(t ;T1, T2). Similarly, the present-day value of a zero coupon
bond B(t , T ) is given by

B(t , T ) = 1
1 + (T − t)L(t; t , T )
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and more generally

B(t , T2) = B(t , T1)
1

1 + (T2 − T1)L(t ;T1, T2)

From the definition of zero coupon bonds given in Eq. (2.12) the simple interest
rates are given in terms of the instantaneous forward interest rates by the following

1
1 + (T2 − T1)L(t ;T1, T2)

= exp
{
−
∫ T2

T1

dxf (t , x)
}

⇒ L(t;T1, T2) = 1
T2 − T1

[
exp

{∫ T2

T1

dxf (t , x)
}

− 1
]

(2.15)

From Eq. (2.10) one has f (t , x) > 0 and this leads to

L(t;T1, T2) > 0 (2.16)

The forward interest rates for returns on fixed cash deposits are the same as
f (t , x); these rates are, in principle, identical to the forward interest rates discussed
in Section 2.8.

Consider a future time falling within the fixed maturity times, say θ = x − t ,
with Ti − t ≤ θ ≤ Ti+1 − t; to obtain L(t , θ) with fixed θ , a spline interpolation
for the values of the Libor yields the values of L(t , T ) for continuous future time
T . The spline interpolation is necessary since the Libor data are provided only for
discrete maturity times Ti − t , whereas for empirically studying interest rates, data
are required for constant θ . The daily interpolated data, from 1996 to 1999 for the
Libor rates, is plotted in Figure 2.3(a).

A futures contract is an undertaking by participating parties, entered into at time
t , to loan or borrow a fixed amount of principal at an interest rate fixed by Libor
L(t , T1, T2); the contract is executed at a specified future date T1 > t . Consider a
futures contract entered into at time t for a 90-day deposit of the principal P , from
future time T to T + 	 (	 = 90/360 year). On maturity, an investor who is long on
the contract receives P plus simple interest I ; hence

P + I = P [1 + 	L(t ;T , T + 	)] (2.17)

where L(t;T , T + 	) is the (annualized) three-month Libor interest rate. For
simplicity of notation, a 90-day tenor is written as 	.

One can express the principal plus interest based on compounding by instanta-
neous forward interest rates and obtain

P + I = Pe
∫ T+	
T dxf (t ,x) (2.18)
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Define the benchmark three-month Libor by

L(t;T ) ≡ L(t;T , T + 	) (2.19)

The relationship between Libor and forward interest rates, from Eqs. (2.17) and
(2.18), is given by

1 + 	L(t , T ) = e
∫ T+	
T dxf (t ,x); ⇒ L(t , T ) = e

∫ T+	
T dxf (t ,x) − 1

	
(2.20)

Note that the above equation is a special case of the relation between L(t;T1, T2)

and f (t , x) given in Eq. (2.15) with T1 = T and T2 = T + 	.
Forward interest rates f (t , x) can be extracted from Libor futures data. Since

Libor is determined on a daily basis, the data for the forward interest rates are given
only for discrete calendar time. Future time is also discrete, with the benchmark
Libor given at 90-day intervals.

In terms of zero coupon bonds B(t , T ), from Eqs. (2.12) and (2.20), Libor has
the following representation

L(t , T ) = 1
	

B(t , T )− B(t , T + 	)

B(t , T + 	)
(2.21)

It is sometimes assumed that the Libor futures prices are approximately equal to
the forward interest rates. More precisely, from Eq. (2.20)

L(t , T ) = e
∫ T+	
T dxf (t ,x) − 1

	
� f (t , T )+O(	) (2.22)

The errors in setting Libor equal to the forward interest rates are usually negligible,
given the other errors that arise in the empirical study; the justification for this
assumption is discussed in [12]. In summary, Libor can be identified with the
forward interest rates, but sometimes it is more appropriate to use the full expression
for L(t , T ).

2.11 Discrete discounting: zero coupon yield curve

Recall that, from Section 2.5, the yield-to-maturity z of a zero coupon bond is the
annual simple interest that is discretely compounded every year. Let T , t be the
maturity and issue date of the bond; as before, let [T − t] = (T − t)/year be
an integer equal to the number of years. On maturing, the bond value of €1 will
compound to (1 + z)[T−t]. Since, on maturity, the payoff of the bond is €1, the
relation of z to the price of the zero coupon bond at t is given by

B(t , T ) = 1
(1 + z)[T−t] (2.23)
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Note the yield-to-maturity varies for the different bonds; hence, a more pre-
cise notation is to have a term structure for the yield-to-maturity, called the zero
coupon yield curve (ZCYC) and denoted byZ(t , T ); similar to z,Z(t , T ) is dimen-
sionless. Eq. (2.23), for a ZCYC that is annually compounded, has the following
generalization

B(t , T ) = 1
(1 + Z(t , T ))[T−t] (2.24)

Equation (2.24) states that Z(t , T ) is the dimensionless yield-to-maturity, com-
pounded annually, that is earned by the zero coupon bond B(t , T ). If the interest is
paid out c times a year, then the number of payments is c[T − t] with each payment
of interest being Z(t , T )/c; hence, for a ZCYC for interest that is compounded
c times a year, the bond is given by

B(t , T ) = 1(
1 + 1

c
Z(t , T )

)c[T−t] (2.25)

In the bond market, for semi-annual (six monthly) payments, c = 2 and hence

B(t , T ) = 1(
1 + 1

2Z(t , T )
)2[T−t] (2.26)

Market data forZ(t , T ) from the bond market are given in Figure 2.4(a) for fixed
future remaining time, that is for Z(t , t + θ), with future remaining time θ ranging

Z (t,t + q)
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Figure 2.4 (a) The zero coupon yield curve (ZCYC) Z(t , T ) is given along the
lines of constant θ = x − t; the diagram shows Z(t , t + θ) for θ = constant.
(b) The spline curve fit for the US Treasury Bonds semi-annually compounded
zero coupon yield curve (ZCYC) Z(t , T ), with market data given by the filled
squares. The curve is given for calendar time t = 29 January 2003 out to
30 years into the future. The market values of the ZCYC are given for discrete
future remaining time θ equal to 3m, 6m, 1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y,
15y, 20y, 30y.



24 Interest rates and coupon bonds

Figure 2.5 Zero coupon yield curve obtained from US Treasury Bonds. The
calendar date is from 29 January 2003 to 4 March 2003, with a total of 25 trading
days.

from three months out to 30 years. Figure 2.4(b) shows the structure of the ZCYC
Z(t , T ) for US Treasury Bonds as a function of remaining future time θ = T − t

with calendar time t fixed at 29 January 2003; market data are the discrete points
and the interpolation curve is the result of a spline fit.6

Figure 2.5 shows the ZCYC obtained from US Treasury Bonds. The ZCYC rises
and flattens out, as expected, since forward interest rates for the future are in general
higher than near-term loans and spot rates, given that risks accumulate further out
into the future. However, there are cases in which the ZCYC may have an inversion
in the future reflecting some regulation or other exogenous factors that affect the
future behavior of the bond market. There are several theories of interest rates that
study the long- and short-term behavior of the ZCYC [73].

ZCYC is given by the capital markets for future remaining time T − t from zero
up to 30 years; in other words, every day, due to trading in the bond markets, the
value of the Z(t , T ), from one day up to 30 years in the future is refreshed and
updated by the bond market. The long duration of data for the ZCYC makes it one
of the most important interest rate instruments for modeling the long-term behavior
of the bond markets. To obtain the values ofZ(t , T ) for continuous values of future
time θ = T − t one fits the discretely given values of the ZCYC by a smooth spline
curve.7

6 For the empirical studies in later chapters, daily Treasury Bond ZCYC data for calendar times from 29 January
2003 to 28 January 2005 were used.

7 It is assumed that the ZCYC rates are smooth; the assumption is a reasonable one to make as one would intuitively
expect that the ZCYC, say three years into the future would not be too different from that of three years and
one month into the future. The loss in accuracy due to the spline interpolation is unimportant since the future
times at which Z(t , T ) is specified, namely values of T , are separated by at least by three months. The market
data that are being studied have random errors larger than the errors introduced by the spline interpolation. See
Section 2.14.
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Both the bond markets as well as the Libor markets provide a ZCYC. For the case
of Libor, the British Bankers’ Association quotes daily interest rates for overnight
(24 hours) deposits up to rates for deposits made one year in the future. Libors for
deposits made at future time from one to 30 years are obtained from the interest
rate swaps market. All the Libors are combined to produce a single ZCYC that
is semi-annually compounded to produce the effective Libor zero coupon bonds.
More precisely

BL(t , T ) = 1(
1 + 1

2ZL(t , T )
)2[T−t] (2.27)

where the subscriptL indicates Libor. In Chapter 6 the Libor forward interest rates
that are derived from BL(t , T ) are discussed. In principle, B(t , T ) = BL(t , T ),
but there are differences related to the risk of default in the Libor market being
greater than in the Treasury Bond market. Figure 2.6(a) shows the Libor ZCYC for
two days five years apart and Figure 2.6(b) shows the Libor ZCYC ZL(t , x) for
25 consecutive days until 8 August 2008.

The term structure of the zero coupon bondsB(t , T ), for some fixed time t , con-
sists of the prices for all T ∈ [t , t + 30 years]. The market usually gives the term
structure of the zero coupon bonds B(t , T ) in terms of the ZCYC. Figure 2.7(a)
shows the term structure of zero coupon bonds as reconstructed from the US Trea-
sury Bonds’ ZCYC. Figure 2.7(b) shows the term structure for Libor zero coupon
bonds BL(t , T ) for two days five years apart; the shape of the Libor is different
from the Treasuries result.
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Figure 2.6 (a) A graph of Libor ZL(t , T ). The solid line is for 8 August 2008 and
the dashed line is for 28 October 2003. (b) A graph of Libor ZL(t , T ), with future
time T − t shown along the x-axis out to 30 years; the daily values for t – for 25
subsequent days until 8 August 2008 – are shown along the y-axis.
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Figure 2.7 The ZCYC data are for t = 29 January 2003 and with T − t up
to 30 years into the future. (a) The term structure zero coupon bonds B(t , T )
(dotted line) obtained from ZCYCZ(t , T ) data (unbroken line). NoteB(t , T ) falls
off exponentially due to exponential discounting. (b) The term structure, up to
30 years for Libor zero coupon bonds BL(t , T ) – obtained from the Libor ZCYC.
The solid line is for 8 August 2008 and the dashed line is for 28 October 2003.

2.12 Zero coupon yield curve and interest rates

Both the ZCYC and the forward interest rates are descriptions of the same financial
instrument, namely the zero coupon bonds; in the case of Libor, the ZCYC does not
correspond to any actual traded zero coupon bonds, but, rather, is a compact way
of expressing market data on the term structure for all the Libors taken together.

The two different descriptions, namely the ZCYC and the forward interest rates,
are useful for representing different aspects of the interest rate and bond mar-
kets. Recall, from Section 2.5, that discounting future cash flows provides the
following two definitions of the underlying interest rates: (a) the zero coupon
yield curve (ZCYC) Z(t , T ), defined by the annual or semi-annual discounting
and (b) instantaneous forward interest rates f (t , T ), defined by instantaneous
discounting.

The traded zero coupon bond prices are quoted in the bond markets by specifying
the ZCYC. In the case of the interest rate markets, the Libor ZCYC is directly
quoted, based on a semi-annual compounding for obtaining the hypothetical Libor
zero coupon bonds. Eqs. (2.12) and (2.25) are the key for relating the zero coupon
bond price to the underlying interest rates and yield

B(t , T ) = 1(
1 + 1

c
Z(t , T )

)c[T−t] = exp
{
−
∫ T

t

dxf (t , x)
}

⇒
∫ T

t

dxf (t , x) = c[T − t] ln
(

1 + 1
c
Z(t , T )

)
(2.28)
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Eq. (2.28) is dimensionally consistent. The left-hand side is dimensionless; as
required, the right-hand side is also dimensionless; c is the dimensionless num-
ber of payments per year, Z(t , T ) is dimensionless, and, furthermore, the integer
[T − t] is also dimensionless.

From Eq. (2.28) one has, by differentiating on future time T , the following

f (t , T ) = c

ε
ln
(

1 + 1
c
Z(t , T )

)
+ [T − t]

1 + 1
c
Z(t , T )

∂Z(t , T )
∂T

(2.29)

One can numerically differentiate the ZCYC to extract f (t , T ); this procedure does
yield an estimate of f (t , x) from Eq. (2.29), but with such large errors that it makes
the estimate quite useless for any empirical purpose.

The zero coupon bonds B(t , T ) are reconstructed directly from the ZCYC using
Eq. (2.25) in Figure 2.8(a) (continuous line) and from forward interest rates f (t , T )
(dotted line), which have been extracted from the ZCYC using Eq. (2.29). One can
see from Figure 2.8(a) that one gets large and systematic errors by using f (t , T ):
the longer the time in the future the larger the systematic errors.

Both the interest rate and bond markets directly provide the ZCYC that is the
integral of the forward interest rates over an interval of future time [t , T ]. Hence, to
minimize errors, all the numerical procedures that employ the ZCYC data should,
as far as possible, directly employ the ZCYC data. One needs to avoid numerically
differentiating Z(t , T ).
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Figure 2.8 The ZCYC data are for t = 29 January 2003 and with T − t up
to 30 years into the future. (a) Zero coupon term structure B(t , T ) constructed
from ZCYC (unbroken line) and from the forward interest rates (dotted line).
(b) Forward interest rates with maturity time up to five years in the future, con-
structed from Libor L(t , T ) (dotted line) and from ZCYC Z(t , T ) (unbroken
line).
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Figure 2.8(b) shows the zero coupon term structureB(t , T ), obtained empirically
from the ZCYC and from Libor. It is seen, as expected, that for relatively short
remaining future time of T − t ≤ 5 years the two curves give almost identical
results. The ZCYC produce zero coupon term structure for maturities of up to
30 years in the future and one needs to generate the long duration zero coupon
bond directly from the Libor ZCYC and not from market Libors, which are usually
of a duration of up to ten years.

There is an empirical difference between Libor and Treasury Bonds. Libor has a
finite probability of default, whereas Treasuries are risk free; the difference between
these two rates is expressed by the TED (Treasury Eurodollar) spread. The differ-
ence is the spread between the Libor and forward interest rates derived from the
ZCYC and is a measure of the risk of default of financial institutions that lend and
borrow at Libor; in most cases, the spread is negligible and is ignored in all of the
later discussions.

2.13 Summary

A brief review of finance shows the key role that the debt markets play in the capital
markets and in the global economy. The changing nature of global capital markets
and, in particular, the shift of the international capital markets to new centers were
briefly discussed.

Given the growing importance of financial markets for the global economy,
instabilities, such as the 2008 US financial crisis, need to be curtailed so that the
financial system provides a stable environment for steady global economic growth.
No country or region, no matter how large or ‘important’, should be allowed to hold
the global economy to ransom. International financial instruments and regulations
should address the current imbalances in the global capital markets. A fair, efficient
and transparent financial system would mobilize currently untapped capital as well
as release entrepreneurial energy that would be beneficial to all players – and to the
world economy in general.

Some experts have declared that the 2008 financial crisis has sounded the death
knell for financial engineering, which is said to have become irrelevant; such pro-
nouncements are far from the truth. The importance of the capital markets, and
in particular of the debt market, is indisputable; in particular, one can expect the
global debt markets to play an increasingly important role in the international cap-
ital markets and in the world economy in general. Far from financial engineering
being irrelevant, powerful quantitative financial models will continue to be indis-
pensable in managing risk and maximizing returns on capital. Interest rate models
of increasing sophistication will be required for designing and pricing ever-more
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complex debt instruments as well as for efficiently deploying a vast and expanding
mountain of debt capital.

The chief component of the global capital markets is the debt market, which in
turn consists mainly of the bond and interest rate markets. Bonds and interest rates
are fundamental financial instruments of the debt market and reflect the time value
of money. The different ways of defining interest rates and yields of bonds are the
result of different ways of either discounting future cash flows or compounding
present-day cash deposits or other tradable assets. The two ways of defining the
future value of time lead to forward interest rates.

Coupon bond and forward interest rates and their derivatives will be discussed at
length in the following chapters. Libor and Euribor were briefly discussed as these
are the most important interest rate instruments, having the greatest liquidity and
being the most widely traded. The three-month Libor and Euribor are taken to be
the benchmark interest rates earned on cash deposits as these are the most relevant
for the interest rate derivatives markets.

2.14 Appendix: De-noising financial data

All the values of financial instruments are influenced by background random noise.
Consider for example the market value of a 90-day LiborL(t , T0) that matured at a
fixed date of T0 = 16 December 2003. The original data series on Libor is for the
period from 14 June 2000 to 16 December 2003. The daily Libor is plotted from 14
June 2000 to 10 June 2002 in Figure 2.9. One can see the value of Libor is jagged
(nondifferentiable) on a small time scale and regular on a long time scale.

It is assumed that Libor, and in general the price of all financial instruments, is
composed of its true value, denoted by s(t) and superimposed on it is noise, denoted
by w(t). In other words, one has [43]

L(t , T0) = s(t)+ w(t)

It is assumed that w(t) is white noise, specified by the normal random variable
given by N(μ, σ); at every instant, the smooth component of the market price,
namely s(t), has added to it a noise that is drawn from a normal (Gaussian) random
variable. The random noise is assumed to be centered around the market price s(t)
and hence it is expected that μ = 0. In other words, the observed random market
price for Libor, based on the assumptions discussed, is given by

L(t , T0) = s(t)± σ with 66% likelihood
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Figure 2.9 Original and de-noised Libor L(t , T0) maturing at fixed time in the
future given by T0 = 16 December 2003 and for the time period t ∈ [14 June
2000, 10 June 2002].
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Figure 2.10 (a) The smooth component s(t) of Libor L(t , T0). (b) Gaussian
white noise w(t) = N(μ, σ) inherent in the market value of Libor L(t , T0), with
μ = −1.4 × 10−6% per year and σ = 0.0629% per year.

The behavior of the smooth portion s(t) of Libor can have complicated dynamics
and, in particular, is expected to be mean reverting.

De-noising consists of subtracting, at each instant, the white noise component
from the market value ofL(t , T0) and thus obtaining its smooth component, namely
s(t). For many purposes, it is the smooth component of the market value of a finan-
cial instrument that is required. One of the most efficient procedures is to use
wavelet analysis to filter out white noise. There are many different ‘basis’ states
that one can use to transform the market price to its smooth component and the
Debauche wavelets D8 were used.
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Figure 2.9 shows the original ( jagged) swaption market price and the de-noised
smooth curve as well. Figure 2.10(a) shows the de-noised swaption price s(t) and
Figure 2.10(b) shows the noise component w(t). The distribution of white noise
w(t) is given by N(−1.4 × 10−6, 0.0629), where the units for the parameters of
the normal distribution are % per year.

Note that the typical value of Libor, as given in Figure 2.9, is of the order of
5%; the noise component is given by σ = 0.06%, which is small – about 1% of
the market price. This is what one expects since noise is supposed to be a small
background component of the market price. Furthermore, μ = −1.4 × 10−6%
per year, which is completely neglible compared to the price of the daily value
of Libor, hence confirming the assumption that the random noise is symmetrically
distributed about the smooth curve s(t).



3
Options and option theory

Financial derivatives – and options in particular – form an important component of
financial instruments. Considerable negative criticism has been directed at options
and derivatives in light of the 2008 economic crisis, some of it being justified
and some being off the mark. As long as there are assets and liabilities, there will
be a need to protect the future value of assets, as well as of finding ways for
maximizing returns on assets. Derivatives play a central role in achieving these
twin objectives.

Given the uncertainties of the financial markets, there is a strong demand from
banks, financial organizations, and investors for predicting the future behavior of
securities. Derivative instruments, and options in particular, are a response to this
need of the market and are widely traded in the financial markets.

Options and other derivatives of underlying financial securities have contributed
significantly to the explosion of the capital markets and their general principles
are discussed. There are three broad categories of derivatives, namely forwards,
futures, and options. Option theory is developed for equities using a path integral
formulation of white noise.1

A series expansion of an option’s price is defined for a generic case, in powers of
the underlying security’s volatility. The volatility expansion is of great generality
and will turn out to be crucial in developing approximation schemes for a variety
of interest rates and coupon bond options.

3.1 Introduction

Financial derivatives, or derivatives for short, form the bedrock of modern finance
and have played a key role in providing the tools for managing returns on

1 Interest rate and coupon bond options are discussed in some detail in Chapter 4.
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Figure 3.1 (a) US total derivatives’ annual outstanding notional value, for
1991–2006. (b) US total futures’ annual volume for 1990–2002.

capital, quantifying and managing risk, and for speculating on the capital mar-
kets. Derivatives are derived from other underlying financial instruments: the cash
flows of a derivative depend on the price of underlying instruments [59, 65].

A brief review is given of the US derivatives’ market as it is globally the leading
one. Figure 3.1(a) shows the phenomenal increase in the notional value of US
derivatives from 1991 to 2002 and Figure 3.1(b) gives the total annual volume,
from 1990 to 2002, of US futures’ contracts.

On 11 April 2007, the Wall Street Journal estimated that the global capitalization
of the derivatives’ markets (futures, options, swaps, etc.) exceeded US$450 trillion
dollars. The over-the-counter derivatives’ market in 2007, in the midst of market
turmoil, increased by 15% and by December 2007, reached a truly astronomical
notional value of US$596 trillon [25]. In contrast, in 2005 the total value of the
stocks, bonds, and bank loans worldwide was about US$165 trillion. By 2008 it
is estimated that the total notional value of the derivatives’ market has crossed the
US$600 trillion benchmark.

Some leading indicators of the US derivatives’ and options’ markets are the
following. Figure 3.2(a) gives a breakdown of US derivatives used in different
commodities and Figure 3.2(b) gives a breakdown of the types of credit derivatives
used in the capital markets. Figure 3.3(a) gives a breakdown of the US deriva-
tives’ volume by largest contracts for 2002 and Figure 3.3(b) gives a breakdown of
derivatives by the US exchanges on which they are traded.

The total global financial derivatives’ market consists of three sectors, namely
derivatives written on interest rates, currency exchange rates, and on equities, com-
modities, and so on. Figure 3.4(a) shows the notional value of the global derivatives’
market that, in 2004, was about US$197 trillion; interest rate derivatives accounted
for 72% of the market. The total interest rate derivatives’ market had a notional
value of US$142 trillion, as shown in Figure 3.4(b). Interest rate swaps accounted
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for 78%, the lion’s share of the market, with interest rate options accounting for
14% with a notional value of about US$14 trillion.

3.2 Options

Options have many uses, from being an instrument that is used for hedging a
portfolio (in order to reduce risk) to the use of derivatives as a tool for speculation.
The two main forms of derivatives are futures’ and options’ contracts.

In case of the forward and futures’derivatives, the seller is obliged by the contract
to take delivery of the asset in question. An investor may be more interested in the
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profit that can be made by entering into a contract, rather than actually possessing
the asset. For such an investor, options provide the appropriate instrument.

Options are derivatives that can written on any security, including other derivative
instruments. For the sake of simplicity, the discussion in this section focuses mainly
on options on stocks (equity). Interest rate and coupon bond derivatives and options
are discussed in the next chapter.

An option C is a contract to buy or sell a security, called a call or a put option
respectively, that is entered into by a buyer and seller. For a call option the seller of
the option is obliged to provide the stock of a company S at some pre-determined
price K and at some fixed time in the future; the buyer of the option, on the other
hand, has the right to either exercise or not exercise the option. If the price of the
stock on maturity is less than K , then clearly the buyer of a call option should not
exercise the option. If, however, the price of the stock is greater than K , then the
buyer makes a profit by exercising the option. Conversely, the holder of a put option
has the right to sell or not sell the security at a pre-determined price to the seller of
the put option.

In summary, an option is a contract with a fixed maturity, and in which the
buyer has the option to either buy or sell a security to the seller of the option
at some pre-determined (but not necessarily fixed) strike price [59]. The precise
form of the strike price is called the option’s payoff function. There are a great
variety of options, and these can be broadly classed into path independent and path
dependent options.

Options are either traded in the highly diversified and rapidly growing deriva-
tives’ market or are negotiated OTC (over the counter) between two parties.
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is possible values of the option before maturity.

3.3 Vanilla options

Vanilla options usually refer to the simplest of options and are defined by a pay-
off function that is path independent, namely depends on only the value of the
underlying security at the time of maturity. In other words, the payoff function is
independent of how the security arrived at its final price.

The most widely used vanilla option is the European option, which comes in two
varieties, namely the call and the put options.

Consider the price of an underlying security S(t). The price of a European call
option at time t depends on S(t) and is denoted by C(t) = C(t , S(t)). The call
option gives the owner of the instrument the option to buy the security at some
future time t∗ > t for the strike price of K.

At time t = t∗ the option matures and the value of the call option C(t , S(t)) is
given by

C(t∗, S(t∗)) =
{
S(t∗)−K , S(t∗) > K

0, S(t∗) < K
= [S(t∗)−K]+

= P(S)

where P(S) ≡ P is the payoff function and is shown in Figure 3.5(a). Clearly,
the European call (and put) options are path independent since the payoff function
depends only on the final price of the security.

The positive valued function is defined as follows

[a − b]+ = (a − b)�(a − b) =
{
a − b, a > b

0, a < b

where the Heavyside step function �(x) is defined in Eq. (A.3).
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A European put option, denoted by P (t), has a payoff function [K − S(t∗)]+
is similar to the call option payoff and shown in Figure 3.5(b); the holder has the
option to sell a security S at a price of K.

3.3.1 Put–call parity

The call and put option obey a relation called put–call parity. Put–call parity can
be derived using arguments based on the requirement that the option price is free
from arbitrage opportunities. Suppose the spot interest rate is given by r , and is a
constant. A simple no-arbitrage argument [59] shows that

C(t)+Ke−r(t∗−t) = P (t)+ S(t); t ≤ t∗ (3.1)

and is put–call parity for the call and put options.
Put–call parity puts nontrivial constraints on any perturbation expansion for the

price of an option: the expansion needs to satisfy, order by order, put–call parity.

3.4 Exotic options

Exotic options [59] are defined by payoff functions that, in general, have a com-
plicated dependence of the underlying security. In particular, exotic options can be
path dependent, depending on the path that the security takes from the time it is
issued to the time at which the option expires. There is an almost endless variety
of exotic options such as the look-back options, quanto options, basket options,
hybrid options, dual-strike options, and so on. There are also OTC options that
are customized for the specific needs of investors [59, 37], or which are primarily
designed to serve the specific needs of a niche market.

Three primary exotic options are the following:

• American option
• Asian option
• Barrier option

The American option is widely used in the financial markets; it has the same
payoff as the European option except that it can be exercised at any time before the
expiry of the contract. A variant of the American option is the Bermudan option,
which has the same payoff as a European option, except that it can be exercised at
a series of pre-fixed times before it expires.

The American option is clearly path dependent, since the choice of an early
exercise depends on the value of the security for the entire duration of the option until
its expiry. No-arbitrage arguments [59] show if a security does not pay a dividend,
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Figure 3.6 (a) The trajectory of a stock price, its average value S̄ and strike price
K . (b) Parity for the knock-out and knock-in barrier option, namelyCKO +CKI =
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equal to the European call option.

the American call option has the same value as the corresponding European call
option. However, it can be shown that the American put option pays more if it is
exercised before maturity. The European put option is a special case of theAmerican
option, with the holder of the American put option having greater choice. Hence, an
American put option has a price higher than the corresponding European put option.

Another widely traded exotic option is the Asian option. It has a payoff function
that depends on the average value of the security taken over the whole period of
its duration, namely from the time it is written till the time it expires. Figure 3.6(a)
shows, for an Asian option, a typical path taken by the stock till maturity, its mean
value S̄, and its strike price K.

Asian options smooth out the payoff function so that, unlike the European option,
the final value of the underlying security does not play a crucial role. The Asian
option prevents option traders from trying to manipulate the price of the underlying
security on the exercise date, for example by buying or selling large quantities of
the underlying security.

Due to the fact that the payoff is a function of the security’s average value over
the Asian option’s duration, the effective volatility of the underlying security is
reduced; for this reason, an Asian option is cheaper than a similar European or
American option. The price of exotic put options obey the following inequalities

PAsian ≤ PEuropean ≤ PAmerican

Barrier option is a distinct class of exotic options, which come in two varieties,
namely ‘knock-out’ or ‘knock-in’. For knock-out options CKO, a value is pre-set
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for the value of the underlying security, called the barrier. The knock-out barrier
option has the same payoff as a European option, except that the barrier option is
terminated with zero value the moment the price of the underlying security exceeds
the barrier. The barrier option is, in general, cheaper than a European option since
it allows less variation in the paths that the underlying security can take in reaching
the option’s maturity. Hence

CKO ≤ CEuropean

The knock-in barrier option CKI has the same payoff as an European option,
except that it has zero value until the security crosses a pre-set barrier, when it
takes on a nonzero value and continues to be ‘alive’ until the option matures. It
can be shown that the following parity, illustrated in Figure 3.6(b), exists between
the knock-in, knock-out barrier option, and an European option having the same
payoff function [59]

CKO + CKI = CEuropean (3.2)

3.5 Option pricing: arbitrage

The payoff function P of, say, a call option C(t) specifies the value of the option
at some future time t∗. The pricing problem is to find the value of the option C(t)
at present time t < t∗. The essential idea in the pricing of all options, including
those on debt instruments, is that of discounting a pre-specified future price of the
option, namely the payoff function, to its present value. In this sense, all of option
theory is a final value problem.

How should we discount P = C(t∗, S(t∗)) – the option’s payoff function speci-
fied at future time t∗ – to obtain C(t , S(t)) – the value of the option at earlier time
t < t∗? Discounting a payoff function to its present value requires the following:

• The numeraire for the discounting.
• The processes (evolution equations) that propagate the payoff function from the future

calendar time to the present.

One could naively expect that evolving the underlying security S(t) back, from
future time to the present, determines the option price, which is the current value
of the payoff function. In analogy with a fixed bank deposit, the future value of
the stock S(t∗) should be discounted by its expected rate of return μ to obtain its
present value, namely that

S(t) = exp{−μ(t∗ − t)}S(t∗)
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Hence, one might expect that the present value of the option price is given by
P(t , S(t)). There are, however, two flaws in this line of reasoning.

Firstly, a fixed deposit in the bank earns a risk-free rate of return equal to the spot
rate r , whereas owning a stock S(t) is full of risk with no guarantee that its returns
will be μ. This uncertainty in the returns on a stock is precisely why investors buy
stocks in the first place since the investor expects a return higher than the risk-free r .

The second flaw is that a stock in an efficient market evolves not deterministically
but randomly and S(t) is modeled to follow a stochastic process. Hence its present
value has to be evaluated by taking an average over its random evolution.

Options are bought by investors who are risk takers as well as those who are
risk averse. Since there is only one price for every financial instrument, both
these investors need to agree on the price of an option. The price of an option,
consequently, has to be risk neutral or risk free.

A fundamental principle of finance is the principle of no arbitrage which states
that no risk-free financial instrument can yield a rate of return above that of the
risk-free rate r . The theorem of no-arbitrage is a formal result that follows from the
obvious fact that all players in the financial market would like to have more money
than less money. In other words, there is no free lunch – if one wants to earn higher
returns, one has to take commensurate higher risks.

Similar to the mathematical models in scientific theories, which are tested by
experiment, mathematical models in finance are tested by the capital markets. Any
shortcoming of a mathematical model, for say the price of a financial instrument,
leads to arbitrage opportunities – thus showing the incorrectness of the mathematical
model in question.

3.6 Martingales and option pricing

Martingales form the theoretical cornerstone of option pricing and are discussed
briefly in Appendix A.2.

An important result of theoretical finance is the following: in an efficient market
the price of a financial instrument is free from any possibility of arbitrage if and
only if the evolution of the discounted value of the financial instrument follows a
martingale process [59, 88]. A martingale evolution is a process that is risk free.
The price of an option is determined by assuming a martingale evolution of the
underlying security.

It should be noted that the actual market evolution of a security, for example
a stock, does not follow a martingale process since there would then be no risk
premium for owning such a security. Instead, the martingale risk-free evolution of
a security is a theoretical construct – necessary for pricing a derivative instrument
such that its price is free from arbitrage opportunities. The theory of option pricing
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hinges on the property of martingales as it provides a price that is free from arbitrage
opportunities.

A stochastic process is said to have a martingale evolution if its present value is
equal to the expectation value of its future (discounted) value. Let the numeraire for
discounting S(t) be exp{rt}; a discounted stock e−rtS(t) has a martingale evolution
if it satisfies the following

e−rtS(t) = E[e−rT S(T )] ⇒ S(t) = E[e−r(T−t)S(T )] (3.3)

where the symbolE[. . .] represents the expectation value over the stock’s evolution.
It can be shown that a stock price S(t), discounted using a risk-free rate of return r ,
undergoes a martingale evolution.

The martingale condition for zero coupon bondsB(t , T ), similar to the martingale
evolution for a stock as in Eq. (3.3), is given by

B(t , T ) = E
[
e−

∫ t∗
t dt ′r(t ′)B(t∗, T )

]
(3.4)

= E
[
e−

∫ T
t dt

′r(t ′)] : (3.5)

discounted value of B(T , T ) = 1

For the general case of the interest rates being stochastic, the expectation value has
to be performed over random spot interest rate r(t).

For evaluating the price of an option C(t , S(t)), the underlying stock price S(t)
is evolved using a martingale process. Since one is comparing the value of the
payoff at two different times, the time value of money needs to be accounted for.
The present value of the option can be obtained by discounting the value of the
payoff by the (money market) numeraire.

Consider a payoff function of an optionC(t , T ;K;S(t)) that matures at calendar
time T and is a general function of the security, which could be path dependent or
independent, namely2

C(T , T ;K) = P[K;S(·)]
The price of the option is given by the martingale condition; the money market

numeraire exp(rt), where r is the spot interest rate taken to be a constant, yields
the following

C(t , T ;K;S(t))
exp(rt)

= E

[
C(t , T ;K;S(·))

exp(rT )

]
= E

[P[K;S(·)]
exp(rT )

]
(3.6)

2 The notation S(·)means that the payoff depends on all the values that the stock price takes from t to T , namely
on S(t̃); t̃ ∈ [t , T ].
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Hence, the martingale evolution of the underlying security S(t) yields the following
option price

C(t , T ;K;S(t)) = E[exp{−r(T − t)}P[K;S(·)]] = e−r(T−t)E[P] (3.7)

All options are priced in a similar manner; the payoff function is discounted using
an appropriate numeraire and the underlying security is evolved using a martingale
process.

3.7 Choice of numeraire

The concept of discounting requires a discounting factor, or equivalently a
numeraire, which so far has been taken to be exp{∫ T

t
dt ′r(t ′)}. One Euro cash

deposited in a bank at time t will compound to exp{∫ T
t
dt ′r(t ′)} at time T ;

hence, discounting by the spot interest rate is said to be using the money market
numeraire.

Discounting by the numeraire exp{r(T − t)} is quite arbitrary and any numeraire
satisfying some general requirement is also adequate. The generality of choosing
a numeraire is addressed in Chapter 9.

The property of a numeraire generalizes the concept of martingales. Suppose that
instead of the money market numeraire one chooses a zero coupon bond B(t , t∗) as
the numeraire, called the forward bond numeraire. For an appropriate choice of the
evolution of the underlying stock, the combination C(t)/B(t , t∗) can be made into
a martingale. A salient property of martingales is that the expectation value of the
future (random) value of the martingale is equal to its present value; hence, since
B(t∗, t∗) = 1, one has the following

C(t)

B(t , t∗)
= E

[
C(t∗)
B(t∗, t∗)

]
= E

[
P
]

(3.8)

⇒ C(t) = B(t , t∗)E
[
P
]

(3.9)

where P = C(t∗) is the payoff function.
Eq. (3.8) shows that, due to the martingale property of the options, its price can be

obtained by discounting the payoff function using a numeraire from a large class.

3.8 Hedging

All financial instruments are subject to the random evolution of underlying instru-
ments such as stock prices, interest rates, exchange rates, etc. There are many ways
of defining risk as discussed in Bouchaud and Potters [28]. Hedging is the general
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procedure for reducing, if not completely eliminating, an investor’s exposure to
risk. Derivative instruments are essential for hedging. For example, to hedge a
portfolio that contains a security one also needs to include (in the portfolio) another
financial asset that moves in the opposite direction. When the stock moves either
up or down, the financial asset moves in the opposite direction. Such a negatively
correlated financial asset is a derivative of the stock in question.

For interest rate derivatives, there are many underlying sources of risk, such as
interest rate risk, liquidity risk, risk of default, currency risk, and so on. Interest
rate risk and hedging interest rate options are discussed in Chapter 14.

The 1973 seminal paper of Black and Scholes [26] was the first to recognize
that perfectly hedging a derivative enables one to price the derivative using the
concept of no-arbitrage. Specifically, in the absence of market friction such as
short-selling constraints, the ability to hedge a derivative security coincides with
one’s ability to replicate its payoff. The seller of an option assumes the risk of a
potential liability at its maturity. In particular, the buyer of a call option is entitled
to receive a nonnegative payoff from the seller if the stock price is above a certain
threshold. Thus, an increase (decrease) in the stock price increases (decreases) the
value of a call option.

The terminal value of a call option can be replicated by buying stock and bor-
rowing from the money market account (temporary cash loan). In particular, there
exists a trading strategy involving the stock and money market account for creating
a replicating portfolio that mimics the call option’s value across time.

Intuitively, including a specific amount of the underlying stock in the portfolio
leads to fluctuations in the value of the portfolio that are identical to those of the call
option. Therefore, if one sells a call option, one can hedge this possible liability by
replicating the option’s payoffs to ensure one has the required funds available to pay
the buyer. Hence, selling a call option while replicating its payoffs creates a risk-
less portfolio containing the call option, a certain amount of stock, and the money
market (cash) account. The critical amount of stock that needs to be purchased
and included in the replicating portfolio is referred to as the option’s delta-hedge
parameter. Similarly, a portfolio consisting of bond and interest rate instruments
can be replicated and hence hedge interest rate options.

Ascertaining the trading strategy and the delta-hedge parameter, which replicates
a derivative, enables one to price this security using the principle of no-arbitrage.
Risk preferences become irrelevant once a risk-less portfolio is created by hedging.
Moreover, the initial cost involved in forming a replicating portfolio, which provides
identical payoffs as the derivative, must equal the price of the derivative by the
principle of no-arbitrage (law of one price).

Consider a security, say a stock, and an option of the stock; at time t let
the price of the stock and the option be denoted by S(t) and C = C(t , S(t)),
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respectively. The stock evolves randomly, specified by the following stochastic
differential equation

dS(t)

dt
= αS(t)+ σS(t)R(t) (3.10)

where α is the drift and σ the volatility of the stock. R(t) is Gaussian white noise
that is completely specified by its first two moments3

E[R(t)] = 0; E[R(t)R(t ′)] = δ(t − t ′) (3.11)

White noise, for equal time given by t = t ′, is singular. From Eq. (A.34), to leading
order in ε, R2(t) is deterministic; in other words

R2
n = 1

ε
+ random terms of O(1) (3.12)

White noise is given a path integral formulation in Appendix A.4.

3.9 Delta-hedging

One would like to create a portfolio �(S, t) that is independent of the random
fluctuations (changes) in the stock value S = S(t). Since the price of the option C
is correlated with the price of the stock, it is natural to try and form a portfolio in
which the random changes in the price of the stock are precisely canceled out by
the random changes in the price of the option. Consider the portfolio

�(S(t), t) = C(S(t), t) +�S(t) (3.13)

The total instantaneous change in the value of the portfolio, for Ṡ = dS/dt , is
given by

d�(S(t), t)
dt

= dC(S(t), t)
dt

+�Ṡ (3.14)

⇒ dC(S(t), t)
dt

= 1
ε

[
C(S(t) + εṠ, t + ε)− C(S(t), t)

]
= ∂C(S(t), t)

∂t
+ Ṡ

∂C(S(t), t)
∂S

+ ε

2
Ṡ2 ∂

2C(S(t), t)
∂S2 +O(ε) (3.15)

From Eqs. (3.10), (3.12), and (A.34)

Ṡ2 = σ 2S2R2(t)+ non-singular terms

= σ 2

ε
S2 + non-singular terms (3.16)

3 The Dirac-delta function δ(t− t ′) is reviewed in Appendix A.1 and is essential for understanding the derivations
in this book. This appendix is strongly recommended for readers unfamiliar with the Dirac-delta function.
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Hence, from Eqs. (3.14), (3.15), and (3.16), one obtains4

d�

dt
= ∂C

∂t
+
[
∂C

∂S
+�

]
Ṡ + σ 2

2
S2 ∂

2C

∂S2 (3.17)

The only dependence of the portfolio � on the random changes in the price of the
stock S comes from the Ṡ term in Eq. (3.17) above. Delta-hedging is achieved by
choosing� such that the coefficient of the Ṡ term is zero. Hence, one has

� = −∂C
∂S

: delta-hedging (3.18)

⇒ d�H

dt
= ∂C

∂t
+ σ 2

2
S2 ∂

2C

∂S2 (3.19)

and hence, from Eq. (3.13), the delta-hedged portfolio is given by

�H = C − ∂C

∂S
S (3.20)

The hedged portfolio�H consists of owning an option C and short-selling ∂C/∂S
amount of stock S.

The change in the portfolio’s value δ� over a small interval ε, given in Eq. (3.17),
can be written more succinctly as follows

� = C +�S; δ� = ∂�

∂t
δt + ∂�

∂S
δS

delta-hedging:
∂�

∂S
= 0 = ∂C

∂S
+� (3.21)

⇒ � = −∂C
∂S

Gamma-hedging of a portfolio is required if variations in S result in big changes
in �; that is, |∂�/∂S| >> 1. To create a portfolio � that is gamma-hedged, one
can take an option together with two other instruments and impose the following
two conditions

delta-hedging:
∂�

∂S
= 0

gamma-hedging:
∂2�

∂S2 = 0 (3.22)

This creates a portfolio that is delta- and gamma-hedged.

4 The notation is simplified by letting the dependence of � and C on S and t be implicit.
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3.10 Black–Scholes equation

The Black–Scholes equation, which forms one of the pillars of option theory, can
be derived using the concept of delta-hedging.

Note that delta-hedging portfolio� has resulted in removing all the random terms
from d�/dt . The right-hand side of Eq. (3.19) is completely deterministic – its
value being fixed by the price of the stock S(t) and option C(t , S), both of which
are known at time t . Delta-hedging has resulted in a risk-free portfolio. The principle
of no-arbitrage demands that, if the market is to be free from arbitrage opportunities,
all risk-free portfolios must give a rate of return that is equal to r , the spot interest
rate.5 Hence, from Eqs. (3.19) and (3.20)

d�H

dt
= r�H (3.23)

⇒ ∂C

∂t
+ σ 2

2
S2 ∂

2C

∂S2 = r

[
C − ∂C

∂S
S

]
⇒ ∂C

∂t
+ rS

∂C

∂S
+ σ 2

2
S2 ∂

2C

∂S2 = rC : Black–Scholes eq. (3.24)

The specific nature of the option, namely whether it is a call or a put option or a
barrier option and so on, is defined by imposing appropriate boundary and final
conditions on the option C.

The Black–Scholes equation is independent of the drift term α in Eq. (3.10),
which determines the rate of growth of the stock S(t). The value of α depends
on the risk propensities of the investor, with one investor for example expecting
S(t) to grow and hence taking α to be positive, whereas another investor may take
the opposite view and model α as being negative. The equation for the option on
S(t), in contrast, is independent of α, which has been replaced by the risk-neutral
rate of return r .6 The reason being that the price of the option must necessarily be
risk neutral, since both the buyer and seller of the option must agree on its price,
regardless of whether they are risk averse or risk prone.

The discounted portfolio price �̃(t)= e−rt�H (t) follows a martingale evolution.
To prove this, one has, from Eqs. (3.23) and (A.17), that

d

dt
�̃(t) ≡ d

dt

[
e−rt�H (t)

] = 0; ⇒ E

[
d�̃

dt

]
= 0

⇒ E[�̃(t)] = �̃(t0) : martingale

5 The spot rate r is taken to be a constant; the general case of r being a stochastic quantity gives a similar result
but needs a more complicated derivation.

6 Hedging a portfolio consists of removing the dS(t)/dt term, which contains α, as in Eq. (3.18). The singular
piece in S2(t), which contributes to the second derivative term, depends only on σ , the coefficient of white
noise R(t).



3.10 Black–Scholes equation 47

From Eq. (3.3), the risk-neutral evolution of the discounted stock price e−rtS(t)
is a martingale. Since � = C + �S, it follows that option price C(t) must also
follow a martingale process; the expected future value of C(t), discounted by the
money market numeraire exp{rt}, is equal to its present value C(t0). Eq. (3.7),
hence, yields for the option price

C(t0)

ert0
= E

[
C(t)

ert

]
: martingale

and which can be shown to be equivalent to the Black–Scholes equation given in
Eq. (3.24).

3.10.1 Black–Scholes equation for N securities

The Black–Scholes equation can readily be generalized to the case of a derivative
that depends onN underlying correlated securities Si , i = 1, 2, . . . ,N , such as the
stocks of companies, stock market index, bonds, and so forth.

Eqs. (3.10) and (A.32) have the following generalizations

dSi(t)

dt
= αiSi(t)+ σiSi(t)Ri(t); i = 1, 2, . . . ,N (3.25)

Ri(t) areN correlated Gaussian white noises, given in Eq. (A.40), and specified by

E[Ri(t)] = 0; E[Ri(t)Rj (t ′)] = ρij δ(t − t ′)

The correlation matrix ρij is real and symmetric, with ρ2
ij < 1.

Similar to Eq. (A.34), the equal time product of correlated white noise, to leading
order in ε becomes deterministic and yields, for t = nε

RniRnj = ρij

ε
+ random terms of O(1) (3.26)

Form the hedged portfolio �(t) ≡ �(S1, S2, . . . , SN ; t) from the underlying
securities and an option given by C(t) ≡ C(S1, S2, . . . , SN ; t) as follows

� = C +
N∑
i=1

�iSi

In general, to delta-hedge a portfolio of N -equities �(S1, S2, . . . , SN ; t) requires,
similar to Eq. (3.21)

delta-hedging :
∂�

∂Si
= 0; i = 1, 2, . . . ,N (3.27)

⇒ �i = − ∂C
∂Si
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Analogous to Eqs. (3.23) and (3.24), option C(t) satisfies the following equation

d�H

dt
= r�H (3.28)

⇒ ∂C

∂t
+ 1

2

N∑
ij=1

σiσjρij SiSj
∂2C

∂Si∂Sj
= r

[
C −

N∑
i=1

∂C

∂Si
Si

]

⇒ ∂C

∂t
+ r

N∑
i=1

Si
∂C

∂Si
+ 1

2

N∑
ij=1

σiσjρij SiSj
∂2C

∂Si∂Sj
= rC (3.29)

Similar to the single equity case, for the N -equity case the specific nature of the
option C is fixed by its (final value) payoff function and by boundary conditions.

A simple choice for the correlation matrix ρij is given by

ρij =
{

1, i = j

ρ, i �= j
= δij (1 − ρ)+ ρ; ρ2 < 1 (3.30)

Eq. (3.29) is the Black–Scholes equation for N correlated securities. In
Chapter 15 the Black–Scholes equation will be re-cast as a special of Euclidean
time Schrodinger equation, driven by the Black–Scholes Hamiltonian HBS .

3.11 Black–Scholes path integral

The Black–Scholes option price C, in principle, can be obtained by solving the
partial differential equation given in Eq. (3.29). The option price can also be given
an integral closed form expression using the Feynman path integral, which has been
discussed in great detail in [12, 15]. In this section, the N -security case is briefly
discussed as a preparation for the more complex discussion in Chapter 5 on the
quantum field theory of forward interest rates.

The path integral formulation of white noise is discussed in Appendix A.4. From
Eq. (A.40), N correlated Gaussian white noises Ri(t) are specified by

E[Ri(t)] = 0; E[Ri(t)Rj (t ′)] = ρij δ(t − t ′); 0 ≤ t , t ′ ≤ T

The path integral, which yields the white noise correlators, from Eq. (A.40) is given
by the following

E[Ri(t)Rj (t ′)] = 1
ZR

∫
DR eS Ri(t)Rj (t

′) = ρij δ(t − t ′)
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S =
∫ T

0
dtL; L = −1

2

N∑
ij=1

ρ−1
ij Ri(t)Rj (t) : Lagrangian

∫
DR =

T∏
t=0

N∏
i=1

∫ +∞

−∞
dRi(t); ZR =

∫
DReS

For defining the path integral in terms of equities Sis, it convenient to change the
time variable t to remaining time variable given by τ = T − t; the option matures
at real time t = T that yields τ = 0; the option at present time t < T is given
by a value of τ > 0. For option pricing, all the equities must have a martingale
evolution; this in turn fixes the drift term as follows

αi = r (3.31)

where r is the risk-free spot interest rate.
In terms of remaining time τ the evolution equation for Si , from Eq. (3.25), is

the following

− dSi(τ )

dτ
= rSi(τ )+ σiSi(τ )Ri(τ ); i = 1, 2, . . . ,N (3.32)

Since Sis are strictly positive random variables, a change of variables to zi is
defined by Si = ezi ; hence7

− dzi(τ )

dτ
= −d ln Si(τ )

dτ
≡ −1

ε
[ln S(τ )− ln S(τ − ε)] (3.33)

= 1
ε

[
ln
(

1 − ε
dS/dτ

S

)]
= −dS/dτ

S
− ε

2

[
dS/dτ

S

]2

+O(ε)

From Eqs. (3.32) and (3.26)[
dS/dτ

S

]2

= σ 2
i R

2
i (τ ) = σ 2

i

ρii

ε

Hence, from Eq. (3.32)

− dzi(τ )

dτ
= r − 1

2
ρiiσ

2
i + σiRi(τ ); i = 1, 2, . . . ,N

In the scheme of stochastic quantization [95] the evolution equation for the
N -equities is viewed as a change of variables from Ri to Si . Imposing the change

7 Consistent with τ being remaining time, the backward finite difference is used for defining dz(τ )/dτ .
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of variables by introducing Dirac-delta functions into the white noise path integral
given in Eq. (A.40) yields8

∫
DZ

∫
DR

τ∏
t=0

N∏
i=1

δ
(dzi(t)

dt
+ r − 1

2
ρiiσ

2
i + σiRi(t)

)
eS (3.34)

This Dirac-delta function procedure gives the backward Fokker–Planck Lagrangian
[95]; it has been shown in [12] to be the one appropriate for option pricing since the
final value, namely the payoff, has to be propagated backwards in time to obtain
the present-day price of the option.

The functional integral over white noise
∫
DR can be performed exactly and, in

effect, in the integrand of the path integral, one has the following identity

Ri(τ ) = −
[
dzi(τ )/dτ + r − 1

2ρiiσ
2
i

σi

]
(3.35)

Hence, the Black–Scholes action SBS , Lagrangian LBS and partition function ZBS
are given by the following9

ZBS =
∫
DZeSBS ; SBS =

∫ τ

0
dtLBS (3.36)

LBS = −1
2

N∑
ij=1

ρ−1
ij

[
dzi(t)/dt + r − 1

2ρiiσ
2
i

σi

][
dzj (t)/dt + r − 1

2ρjjσ
2
j

σj

]
∫
DZ =

τ∏
t=0

N∏
i=1

∫ +∞

−∞
dzi(t)

The boundary conditions on the path integral measure
∫
DZ are that the initial

values Si(t = 0) are fixed. Since t = 0 corresponds to τ , the boundary values
Si(τ ) = ezi(τ) are fixed.

In the path integral approach the probability for the security S(t) to take a partic-
ular path from t to T is given by exp{SBS}/ZBS and the expectation value of any
function of the security S(·) is given by summing over all possible paths, which is

8 All arguments of z(τ ) are always for remaining time. In Eq. (3.34) and in the Lagrangian, the symbol t in term
z(t) refers to remaining time and not calendar time. This abuse of the use of t is adopted for simplifying the
notation for integrations in the action S.

9 It can be shown that the change of variables has a constant Jacobian, so that
∫
DR = ∫

DZ for the case of
constant volatility σis. The forward Fokker–Planck Lagrangian is appropriate for initial value problems and
differs from the derivation of the backward Fokker–Planck Lagrangian in that there is a nontrivial Jacobian is
going from

∫
DR to

∫
DZ [95].
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achieved by performing the functional integration
∫
DZ. Hence, the average value

of any function of the underlying security, denoted by O[z] is given by

E[O[z]] = 1
ZBS

∫
DZeSBSO[z] (3.37)

As realized in Eq. (3.31), option pricing is driven by a theoretical martingale
evolution of all underlying securities, which states that the discounted expectation
value of the future value of the security is equal to its present. Hence, the expectation
in Eq. (3.3) can be written out explicitly using Eq. (3.37) and yields the following

e−rtSi(t) = E[e−rT Si(T )]

⇒ ezi(t) = e−r(T−t)

ZBS

∫
DZeSBS ezi(T ) (3.38)

In fact, it can be shown that Eq. (3.38) yields αi = r if one starts without assuming
Eq. (3.31).

3.11.1 Equity Lagrangian: stochastic volatility

The special case of one equity is given by taking ρij = ρ11 = 1; the Black–Scholes
action and Lagrangian are given by [12]

SBS =
∫ τ

0
LBS ; LBS = − 1

2σ 2

[
dz(t)

dt
+ r − 1

2
σ 2
]2

(3.39)

Let S = exp{z1} be equity and σ 2
1 = exp{z2} be its stochastic volatility – the

two being correlated by ρ. The correlation matrix is given by

[ρ]ij =
(

1 ρ

ρ 1

)
; [ρ−1]ij = 1

1 − ρ2

(
1 −ρ

−ρ 1

)
(3.40)

Suppose only equity is traded and stochastic volatility is not. Then, only the
drift of the security α1 = r , whereas α2 = μ needs to be fixed from the market.
Let the volatility of volatility σ2 = ξ be a constant. Hence, from Eq. (3.36), the
Merton–Garman Lagrangian for stochastic volatility is given by

LMG = − 1
2(1 − ρ2)

{
e−z2

[
dz1(t)

dt
+ r − 1

2
ez2

]2

+ 1
ξ2

[
dz2(t)

dt
+ μ− 1

2
ξ2
]2
}

+ ρ

ξ(1 − ρ2)
e−z2/2

[
dz1(t)

dt
+ r − 1

2
ez2

] [
dz2(t)

dt
+ μ− 1

2
ξ2
]
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The Jacobian of the transformation fromDR toDZ is nontrivial, due to σ 2
1 being

stochastic and is given, for an interval [t0, t∗], as follows

DZ =
[
t∗∏
t=t0

ez2(t)/2

]
DR ≡ ez2/2DR

and yields, for τ = t∗ − t0, the Merton–Garman path integral given by

ZMG =
∫
DZe−z2/2 exp

{∫ τ

0
dtLMG

}
(3.41)

The Merton–Garman path integral given in Eq. (3.41) was obtained in [12, 15]
using techniques based on the Hamiltonian.

3.12 Path integration and option price

The path integral formulation of option price is a powerful analytical and computa-
tional tool that has been discussed in detail in [12]. The path integral representation
of the option price is derived from the Black–Scholes path integral.

Consider a payoff function of an option that matures at calendar time T and is
a general function of the security, which could be path dependent or independent,
namely

P[K; z(·)] = P[Ki ; zi(t); 0 ≤ t ≤ τ ]

The price of the call option, C(t , T ;K;S(t)) = C(τ ;K; z(τ )), is given in
Eq. (3.7) by the martingale condition. The money market numeraire exp(rt), where
r is the spot interest rate taken to be a constant, yields the following

C(t , T ;K;S(t))
exp(rt)

= E

[P[K; z(·)]
exp(rT )

]
(3.42)

The expectation value E[. . .] is obtained by the path integral as in Eq. (3.37) and
gives the following path integral realization of the option price (recall τ = T − t)

C(τ ;K; z(τ )) = e−rτ

ZBS

∫
DZeSBSP[K; z(·)] (3.43)

Boundary condition : zi(τ ) = zi : fixed (3.44)

The path integral measure
∫
DZ sums the integrand eSBSP[K; z(·)] over all

possible functions (paths) zi(t); 0 ≤ t ≤ τ with the condition that zi(τ ) has the
fixed value of zi ; the value of the zi(0) is arbitrary (random). The path integral
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Z (t )

t T
Time

(a)

Z (t )

0
Remaining time t = T–t

(b)

Figure 3.7 Random paths of the security S = ez evolving forward in calendar
time t in Figure (a) and backward in remaining time τ = T − t in Figure (b). The
velocity dz/dt is zero for t = T , or, equivalently, dz/dτ is zero for τ = 0; the
random paths have been magnified near t = T and τ = 0 to make the boundary
condition more transparent.

measure
∫
DZ has a term equal to

∫ +∞
−∞ dz(0). A remarkable fact is that letting

zi(0) be an integration (random) variable is equivalent to imposing the boundary
condition that dzi(0)/dτ = 0 is obeyed by all the paths, as shown in Figure 3.7.

All the paths over which the path integration
∫
DZ is performed obey the

following boundary conditions

dzi(0)
dτ

= 0; zi(τ ) = zi (3.45)

All possible functions zi(t); 0 < t < τ that satisfy the two boundary conditions as
in Eq. (3.45), are given by the following discrete Fourier expansion

zi(t) = zi +
∞∑
n=0

zni sin
(

2n+ 1
2

π(t − τ )

τ

)
; 0 ≤ t ≤ τ (3.46)

−∞ ≤ zni ≤ +∞; i = 1, 2, . . . ,N ; n = 0, 1, 2, 3, . . .∞

The path integral integration measure factorizes, up to an irrelevant con-
stant that cancels out, into infinitely many integrations, namely

∫
DZ =∏∞

n=0
∏N
i=1

∫ +∞
−∞ dzni . This in turn yields the following

C(τ ;K; z) = e−rτ

ZBS

∞∏
n=0

N∏
i=1

∫ +∞

−∞
dznie

SBSP[K; z(·)] (3.47)
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ZBS =
∞∏
n=0

N∏
i=1

∫ +∞

−∞
dznie

SBS

Note the remarkable and important fact that the Fourier expansion given in
Eq. (3.46) and the expression for the option price given in Eq. (3.47) are valid
for all types of options, regardless of the complexity of the action S driving the
option pricing or the nature of the payoff function P[K; z(·)]. In particular, even if
the action S is nonlinear, the Fourier expansion is valid.

The Fourier expansion given in Eq. (3.46) provides a powerful computational
tool for developing perturbation expansions for nonlinear systems, such as an equity
with stochastic volatility.10

3.13 Path integration: European call option

The Black–Scholes path integral for C(τ ;K; z(τ )) is explicitly evaluated to illus-
trate certain key features of the path integral formulation for the option price.
Consider, for the sake of simplicity, a European call option for a single equity with
payoff function given by

P = (
S(T )−K

)
+ = (

ez(0) −K
)
+ (3.48)

The action for the single equity, for α ≡ r − σ 2/2 and from Eq. (3.39), is given by

SBS = − 1
2σ 2

∫ τ

0
dt

(
dz

dt
+ α

)2

(3.49)

The path integral expression for the option price, from Eqs. (3.43) and (3.48), is
given by

C(τ ;K; z) = e−rτ

ZBS

∫
DZeSBS

(
ez(0) −K

)
+

Boundary condition : z(τ ) = z : fixed (3.50)

Consider the orthogonality relation

I =
∫ τ

0
dt cos

[
(2n+ 1)πt

2τ

]
cos

[
(2m+ 1)πt

2τ

]
(3.51)

= τ

2
δn−m; m, n = 0, 1, 2, . . .∞

10 All option pricing path integrals, including nonlinear cases like stochastic volatility, have a Fourier expansion.
In contrast, for nonlinear path integrals in physics, the quadratic part of the action has to be analyzed for its
eigenfunctions and only then can an eigenfunction expansion – of which the Fourier expansion is a special
case – be defined for the path integral [95].
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Eqs. (3.46) and (3.51) yield the following for the Black–Scholes action

SBS = − 1
2σ 2

∫ τ

0
dt

([
dz

dt

]2

+ 2α
dz

dt
+ α2

)

= − 1
2σ 2

∞∑
n=0

(π
τ

)2
(

2n+ 1
2

)2

· τ
2
z2
n − α

σ 2 [z− z(0)] − τα2

2σ 2 (3.52)

The payoff function is re-written using the Dirac-delta function’s integral
representation given in Eq. (A.7) and yields

C(τ ;K; z) = e−rτ

Z

∫ +∞

−∞
dη

2π

∫ +∞

−∞
dw

∫
DZeSBS+iη[z(0)−w](ew −K)+

= e−rτ
∫ +∞

−∞
dη

2π

∫ +∞

−∞
dweF(η,w)(ew −K)+ (3.53)

where eF(η,w) = 1
Z

∫
DZ eSeff (3.54)

Since sin[(2n+ 1)π/2] = (−1)n, the value of z(0) is given by Eq. (3.46) as

z(0) = z+
∞∑
n=0

(−1)nzn

The effective action, from Eqs. (3.52), (3.53), and (3.54), is given by

Seff = SBS + iη[z(0)−w]

=
∞∑
n=0

Sn − α2τ

2σ 2 + iη(z − w)

Sn = − 1
2σ 2τ

· π
2

8
(2n+ 1)2z2

n + (−1)nzn
( α
σ 2 + iη

)
The effective action Seff has completely factorized into terms that depend on only
one n. The path integral is, hence, given by

1
ZBS

∞∏
n=0

[∫ +∞

−∞
dzne

Sn

]
=

∞∏
n=0

eFn
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The path integral is a product of infinitely many independent Gaussian integrations
and, from Eqs. (A.21) and (3.54), yields the result

F(η,w) =
∞∑
n=0

Fn − α2τ

2σ 2 + iη(z − w)

= σ 2τ

2
8
π2

( α
σ 2 + iη

)2 ∞∑
n=0

1
(2n+ 1)2

− α2τ

2σ 2 + iη(z −w) (3.55)

Since

∞∑
n=0

1
(2n+ 1)2

= π2

8
(3.56)

one has the following simplification

F(η,w) = −σ
2τ

2
η2 + iη(z + τα − w) (3.57)

Performing the remaining η integration in Eq. (3.53) using Eq. (3.57) gives the
famous Black–Scholes result for the European call option

C = e−rτ√
2πσ 2τ

∫ +∞

−∞
dwe

− 1
2σ2τ

(z+τα−w)2
(ew −K)+ (3.58)

= SN(d+)− e−r(T−t)KN(d−) (3.59)

Recall α = r − σ 2/2 , τ = T − t and

d± =
ln
(
S
K

)+
(
r ± σ 2

2

)
(T − t)

σ
√
T − t

; S = ez (3.60)

The cumulative distribution for the normal random variable N(x) is defined by

N(x) = 1√
2π

∫ x

−∞
e−

1
2 z

2
dz (3.61)

3.14 Option price: volatility expansion

For all financial instruments, intrinsic volatility is a small parameter. This is espe-
cially true for interest rate and bond options, with the market forward interest rate
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volatility being typically of the order of 10−2/year. One can, hence, define a generic
and rapidly convergent expansion of the option price in powers of the volatility.

Consider an equity, interest rate, or coupon bond option that has a payoff func-
tion P, which matures at time t∗ with strike price K and is given by

P = [S(t∗)−K]+
S(t∗) is the financial instrument on which the option is written. The price of the
option at earlier time t0, using the forward bond numeraire, is given by Eq. (3.8) as

C(t0, t∗,K) = B(t0, t∗)E[S(t∗)−K]+
Let S(t0) be the price of the instrument at time t0: one expects that S(t∗) − S(t0),
up to factors depending on drift, is of the order of volatility since all fluctuations
away from the initial value are due to nonzero volatility. One has the following

C(t0, t∗,K) = B(t0, t∗)E[S(t∗)−K]+
= B(t0, t∗)E[V − K̃]+

V = S(t∗)− S(t0); K̃ = K − S(t0) (3.62)

The (random) quantity V = S(t∗) − S(t0), up to factors of drift that will be
accounted for, has an order of magnitude value equal to O(σ), the volatility of
S(t). The option price will be obtained in powers of V , which in turn, after the
expectation value is taken, will lead to the option price as a power series in σ .

Using the representation of the Dirac-delta function given in Eq. (A.7)

δ(Q) = 1
2π

∫ +∞

−∞
dηeiηQ (3.63)

yields the following expression for the payoff function
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]
(3.64)
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Note V is the only random quantity in the payoff function and is an effective
‘potential’ for option pricing. One has the following expansion for the option price

C(t0, t∗, T ,K)
B(t0, t∗)

= E
[
P
]

(3.65)

�
∫
Q,η

e−iηQ
(
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)
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(
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2
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)
�
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)
+

(
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2
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n!η
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)
To evaluate the option price to an accuracy of O(σn), one needs to evaluate the
coefficients

C0 = E[1] (3.66)

C1 = E[V ] : D1 = C1/C0 (3.67)

C2 = E[V 2] : D2 = C2/C0 (3.68)

. . . Cn = E[V n] : Dn = Cn/C0

For most cases, the option price is obtained by evaluating the coefficients C0, C1
and C2. Eq. (3.65) yields a cumulant expansion that, to second order and for
D1 = C1/C0 and D2 = C2/C0, gives the following approximate option
price

C(t0, t∗, T ,K)
B(t0, t∗)

� C0
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2
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}
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(
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)
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{
−1

2
η2(D2 −D2

1)

}
⇒ C(t0, t∗, T ,K)

B(t0, t∗)
= 1√

2π
C0I (X)

√
D2 −D2

1 +O(σ 3) (3.69)

The function I (X) is given in terms of the error function N(u) as follows

X = K̃ −D1√
D2 −D2

1

; K̃ = K − S(t0)

I (X) =
∫ +∞

−∞
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1
2Q

2
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1
2X

2 + √
2πX(N(X)− 1); N(u) = 1√
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dQe−
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2Q

2
(3.70)
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The asymptotic behavior of the error function N(u) yields the following limits

I (X) =
⎧⎨⎩ 1 +O(X2) X ≈ 0

e− 1
2X

2 +O(e−X2
) X >> 0

(3.71)

The option’s price, for X ≈ 0, is the following

C(t0, t∗,K) ≈ B(t0, t∗)C0

[
1√
2π

√
D2 −D2

1 − 1
2
(K̃ −D1)

]
+O(X2) (3.72)

The coefficients that determine the option price C(t0, t∗,K) have the following
intuitive interpretation.

• The coefficientC0 = E[1] is a measure of the paths that contribute to the option. For the
barrier option, C0 is a function of the barrier and has a nontrivial value.

• The coefficient D1 = C1/C0 with C1 = E[V ] the expectation value of the effective
potential V , normalized by the allowed paths.

• The coefficient D2 = E[V 2]/C0 appears in the option price through the combination
D2 −D2

1 and is a measure of the standard deviation of V .

The volatility expansion is of far-reaching significance since it will be used in later
chapters to find the approximate option price for a variety of cases, including the
European, Asian, and barrier options for coupon bonds and interest rate swaptions.

The volatility of a security, be it a stock price or a forward interest rate, is usually
a small quantity. The volatility expansion defines the price of the option as a power
series in the volatility of the security. This expansion requires the evaluation of
higher and higher moments of a modified form of the payoff function, showing in
an explicit manner how the payoff function determines the option price.

3.15 Derivatives and the real economy

Financial derivatives, which include options, have vastly expanded the domain
of finance and created many new opportunities for return on capital and eco-
nomic growth. Derivatives play a key role in optimizing the utilization of assets,
minimizing risks and maximizing returns on investments.

There is an old adage which says that ‘one should do what one is good at’, and
an equally well-known proverb states that ‘don’t put all your eggs in one basket’.
In the language of finance, there seems to be a conflict between pursuing a line
of economic activity in which one has a comparative advantage versus efficient
diversification. The adage points to concentrating, as an individual or as a country,
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on doing what one is good at – on doing things where one has a comparative
advantage. The proverb, on the other hand, asks one not to overspecialize and,
instead, to efficiently diversify one’s risks. These two imperatives, to specialize and
to diversify, seem to be irreconcilable. Surprisingly enough, derivative instruments
can reconcile these apparently contradictory positions.

A specific financial derivative, namely a swap, where one exchanges two income
streams, can resolve these apparently conflicting economic priorities.11 A country
producing only one product, say garments, can enter a swap with one arm of the
swap being payments at the world average rate from the garments industry, sayG,
and the other arm of the swap being payments, W, at the world average return on
all industries. This swap ensures that the country retains its comparative advantage
while efficiently diversifying.

Since it has comparative advantage, the garment producer has a rate of return
higher than the world average on garments, sayG+�. By entering the swap, the
garment producer exchanges payments G for W and thus ends up with a return of
W +�. Hence, the garment producer gets a minimum return at the world average
rate of return W plus �; the garment producer has diversified the risk of a global
downturn in garments while retaining the comparative advantage�.

A swap derivative is noninvasive and needs no permanent construction or facil-
ities; rather, it is a reversible financial arrangement that can be switched on and
off without interfering with the real economy. Swaps, properly employed, add sub-
stantial amounts of value to the underlying real economy. It has been shown by
empirical studies that if developing countries enter the swap discussed above, they
would increase their income from exports by 60% every year; historical data show
that the increase in income would have been about 500% over the last 30 years
[80]. This example shows that the effect of financial derivatives on the returns on
economic activity can be large, of ‘first’ order, and not just yield marginal gains.

Derivatives facilitate risk diversification and mediate the efficient transfer of risk;
in the example of a country producing only garments, it spreads the country’s risk to
the rest of the world. In general, a financial instrument has many forms of risk that
are inherent in it, such as credit risk, liquidity risk, foreign exchange risk, interest
rate risk, and so on. A particular financial institution may be best prepared to handle
a specific form of risk, such as credit risk. In this case, derivative instruments
provide the means for un-bundling, factoring out, and hedging other forms of risk
that the institution is not fully prepared for, and leaves it to focus on the forms
of risk where expertise gives it a comparative advantage. In general, derivatives
allow practitioners to hive off all forms of risks that are inherent in a financial

11 Interest rate swaps are discussed in Section 4.2.
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instrument – but extraneous to their expertise – and leave them to focus on managing
those forms of risk at which they can specialize.

With the advent of derivatives, the traditional role of banks of specializing in the
borrowing and lending of money is being transformed. Derivatives can hive off the
multifarious risks inherent in a financial contract and the bank can hedge away all
risks except the one it is prepared to manage. For example, a bank can concentrate
on credit risk for a loan and hedge away other risks, such as liquidity risk, accident
risk, interest rate risks, and so on. The role of banks in the twenty-first century will
be that of risk management, and, in particular, adding value to the economy by their
expertise in handling various forms of specialized risk.

The role of derivatives in risk management is essential, since the very concept
of hedging one’s risk can only be realized if one has derivative instruments that
are negatively correlated with the asset that is being hedged. There have been
a lot of criticisms on the role of derivatives in contributing to a financial crisis.
These criticisms are off the mark. An analysis of the US subprime crisis shows, as
discussed in Appendix B.2, that derivatives by no means create a financial crisis;
rather, it is the flawed policies and priorities of financial institutions that are at the
root of all financial crises.

An analogy of the effect of derivatives on the real economy is the invention of the
safety belt for automobiles. Clearly, all things remaining constant, the use of seat
belts should lower the risk of accident injuries. However, paradoxically, statistics
showed that accident injuries increased after the introduction of seat belts. The
reason, it was found, is that instead of driving at the speeds that were considered
to be safe before the introduction of seat belts, drivers were now driving at higher
speeds with the resulting higher accident rates and hence more injuries.

The case of derivatives is similar; they can be used either for hedging and hence
reducing risk or for taking higher risks with the purpose of reaping greater profits.
One can buy a call option on a stock to hedge a portfolio, or one can buy the call
option to speculate on the future price of the stock. The same call option allows
for both possibilities. Since the price of a call option is only about 3% to 5% of
the stock’s price, a speculator enjoys tremendous leverage by buying an option on
the stock’s future value. A call option is bought by a speculator solely for making
profit. In contrast, an informed trader has a fixed future purchase in mind, such as
procuring a thousand tons of steel a year in the future, and enters a forward contract
based on a real expected future transaction.

Derivatives expand the financial sphere since they provide instruments that can
be used for: (a) hedging to reduce risks, or (b) for deriving benefits that come with
taking higher risks. Since the drive for profits is relentless, one can expect that
economic agents will try and maximize their returns and employ derivatives both
for speculation as well as for reducing risk, depending on the circumstances. Hence,
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derivatives cannot be said to be creating a financial system with lower risks. Instead,
by increasing the reach and domain of finance, derivatives create new opportunities
for maximizing the efficient utilization of financial and economic resources and
assets.

3.16 Summary

Derivatives, including options, have revolutionized mathematical and practical
finance. The 1973 seminal paper of F. Black and M. Scholes has created, within a
few decades, what is literally a multi-trillion dollar derivatives market. The con-
cept of hedging is central to pricing options; if one can perfectly hedge a derivative
instrument, then the price of that derivative should be equal to the cost of hedging
it. From this rather deeply intuitive idea arises a natural question, namely: how
does one mathematically define perfect hedging? Modeling the future evolution of
the underlying security by a stochastic process leads to the following answer: a
portfolio, consisting of the instrument and its derivative, is perfectly hedged if it
has a deterministic temporal evolution.

One idea was still missing in this line of reasoning. What is the (notional) evo-
lution of the underlying security such that the price of its derivative is free from
arbitrage opportunities? It was shown that, for a ‘complete’ and efficient market,
derivative pricing is arbitrage free if the underlying security evolves by a martin-
gale process. The concept of a martingale brought a natural closure to the line of
reasoning initiated by Black and Scholes. The mathematical machinery of proba-
bility theory could be brought to bear on option pricing and greatly enriched the
subject of option theory.

Option theory is far from complete and its final form may take decades to emerge,
if at all. There are many open questions regarding option theory, primary amongst
these being whether a stochastic process can accurately describe the market evolu-
tion of securities, whether the concepts of a complete and efficient market and that
of market equilibrium have any empirical support from the capital markets and so
on [35, 87].

Notwithstanding the limitations of option theory, one thing is already clear: the
truly staggering multi-trillion dollar derivatives market can best be described and
understood by quantitative and mathematical models. Option theory, and deriva-
tives in general, provides a fertile ground for the application of mathematics to
finance and one can only expect that this trend will continue to grow.



4
Interest rate and coupon bond options

Options on interest rates and coupon bonds share many general properties with
equity options, but are far more complex and have a much richer internal structure
[34, 83, 84]. There is a great variety of interest rate derivatives [60], which comprise
over 50% of the total derivatives’ markets. Options on interest rates are primarily
based on interest rate caps and interest rate swaptions. Coupon bonds and options are
defined and it is shown that swaptions are a special case of coupon bond options.
Various put–call parity relations are derived for interest rates and coupon bond
options.

The HJM (Heath–Jarrow–Morton) model of interest rates is based on stochastic
calculus and is briefly discussed using a path integral formulation. The HJM model
serves as an example for demonstrating the point of departure of the quantum
finance formulation of interest rates from the one based on stochastic calculus.

4.1 Introduction

Coupon bond options and interest derivatives comprise a major subfield of finance.
To convey some of the key features of this subfield, the US credit derivatives’
market – being globally the largest – is briefly reviewed. Figure 4.1(a) gives the
notional value of outstanding credit derivatives and Figure 4.1(b) gives a break-
down of the diverse variety of swap derivatives most frequently used in the US
capital markets. Since 2001, the global credit derivatives’ market had grown at a
phenomenal annual rate of over 100%; from relatively insignificant beginnings at
the turn of the new millennium, by 2006 the notional value of credit derivatives
had reached US$26 trillion.

Interest rate swaps are the largest component of the credit derivatives’ markets.
The Bank of International Settlements (Switzerland) estimates that in 2001 the
notional value of the swap market was approximately US$40 trillion and that of the
combined interest rate caps’and swaptions’market was about US$9 trillion dollars.

63
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Figure 4.1 (a) US credit derivatives’ semi-annual outstanding notional value,
from 2001 to 2006. (b) Swap derivatives’ usage frequency by North American
institutional investors in 2007.

Interest rate options turnover as a
percentage of all interest rate derivatives

(including forwards and swaps) 

9.80%

21.60%

27.10%

2001 2004 2007

Year

(a)

Interest rate options mean daily
turnover (billions of USD) 

2.1

8.5

23.9

2001 2004 2007

Year

(b)

Figure 4.2 (a) Interest rate options’growing share of the global interest rate deriva-
tives’ market. (b) The notional value of the daily global turnover of interest rate
options.

Figure 4.2(a) shows the rapidly growing importance of interest rate options as a
fraction of the total credit derivatives’ market; Figure 4.2(b) shows that the daily
global turnover of interest rate options has reached close to US$24 billion. One can
expect interest rate options to continue to grow and, with this growth, the need for
financial engineering techniques for pricing and hedging these instruments.

Interest rate derivatives cover a vast range of financial instruments, from vanilla
options, swaps and swaptions defined on underlying interest rate instruments to
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exotic and hybrid options defined on coupon and zero coupon bonds [36]. The three
main forms of interest rate derivatives are swaps, forwards, and options. Interest
rate swaps are similar to forward and futures contracts and options consist mostly
of interest rate swaptions, caps, floors, and collars. Options on coupon bonds are
closely related to interest rate options and are derived from the same underlying
interest rates that, in general, drive the entire debt market.

The following derivatives are reviewed [33]:

• Interest rate swaps.
• Interest rate caps, floors, and collars.
• European, American, and barrier coupon bond options.
• Interest rate swaptions.

The general properties of interest rate derivatives’ and coupon bond options are
reviewed with the purpose of providing the background material for later chapters.
The mathematical expressions for interest rate options are defined; model inde-
pendent features of these options are briefly discussed with particular emphasis on
put–call parity that is obeyed by these instruments.

4.2 Interest rate swaps

Interest rate swaps exchange two streams of cash flows. Swaps have many functions,
amongst which is to transform the nature of financial liability or assets of a company.
One primary utility of swaps is to manage interest rate risks. For example, if a
company is assured of a fixed stream of regular payments, it may want to convert
this into floating payments using a swap and so on [65].

Interest rate swaps are reviewed and form the basis for analyzing interest rate
caps, floors, and options on interest rate swaps.

An interest swap, shown in Figure 4.3 is contracted between two parties in which
one party pays at a fixed interest rate and the other pays at a floating interest rate,
which is usually taken to be the prevailing three-month Libor rate. For a floating
rate receiver’s swap, namely swapL, the first party receives interest payments,
on the notional principal, at the floating interest rate and pays at a fixed interest

Party A Party B

Rs

Libor

Figure 4.3 Diagram representing a swap in which party A, holder of swapL
receives floating payments fixed by Libor and pays fixed interest rate RS and
party B holder of swapR recieves payments at fixed interest rate RS and pays at
floating Libor interest rate.
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rateRS .Afixed rate receiver’s swap, namely swapR, is where the first party receives
payments, on the notional principal, at fixed interest rateRS and pays at the floating
Libor rate. Parties entering the swap pay only the net interest due on the notional
amount and do not pay or receive the principal amount.1

Both swapL and swapR are obligatory contracts and hence are not options, but
rather should be thought of as forward contracts on interest rates.

Consider a swap defined for fixed and floating interest rates. The simplest
forward or deferred swap, called a forward swaplet, is entered at time t; the contract
has a notional principal 	V , to be kept in a fixed time deposit from future time T
to T + 	, with 	 = 90 days. A fixed interest rate RS is agreed upon; the floating
interest rate is taken to be Libor L(t , T ). The value of the floating rate receiver
swaplet is given by the net outstanding interest difference between the floating and
fixed interest payments, that is L(t0, T )− RS , to be paid out by one of the parties
to the other. At time t = T + 	, a payment is made on the principal amount at a
rate equal to L(T , T )− RS and swapletL expires.2

The value, at time t0, of a deferred or forward floating rate receiver swapletL is
the discounted value of the cash flow at time T + 	. Hence

swapletL(t0, T ) = 	VB(t0, T + 	)
[
L(t0, T )− RS

]
(4.1)

Note the floating rate is fixed by the benchmark three-month Libor L(t0, T ); the
bonds discounting the payoff, namely B(t0, T + 	), strictly speaking should be
obtained from the Libor zero coupon yield curve as given in Eq. (2.27). The TED
(Treasury Eurodollar), discussed in Section 2.13, addresses the spread between
the zero coupon Treasury Bonds and the Libor zero coupon bonds. The difference
between these two zero coupon bonds will be addressed only if necessary.

An interest swap over a longer duration is the sum of individual swaplets with
fixed interest rate RS and notional principal V , which for simplicity is taken to be
the same for all the swaplets. The payment dates for the swap coincide with the
periods defined by Libor time. Payments are made at fixed intervals, usually 	 = 90
or 180 days. The swap has a pre-fixed total duration, starting at time T0 and with
last payment at TN .

A midcurve forward swap is entered at time t0 and expires at time t∗ before the
swap becomes operational at time T0 and is shown in Figure 4.4(a). A forward
swap, entered at time t0 and maturing at T0 is shown in Figure 4.4(b).3

1 A floating rate payer is equal to the fixed rate receiver’s swap, swapR , and a fixed rate payer’s swap is equal to
a floating rate receiver’s swap, swapL. Hence, only the two kinds of receiver’s swaps will be discussed as this
covers the payer’s swaps as well.

2 From the definition of Libor, L(t , T ) = L(t ,T ,T + 	) with payments made at calendar time t = T + 	.
3 A swap that is entered into after the time of the initial payments, that is at time t0 > T0, can also be priced and

is given in [65]; however, for the case of a swaption, this case is not relevant, and will not be discussed.
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TN -1 TNt0

Figure 4.4 The circles signify payment dates; the first payment is at T1 and the
last payment is at TN . The shaded area inside the rectangles indicate the set of
forward interest rates that determine the price of a swap. (a) A midcurve forward
swap is entered into at time t0 and exercised at time t∗, before the interest rate
swap becomes operational at time T0. (b) A forward swap is entered into at time
t0 and exercised at time T0, when the interest rate swap becomes operational.

Only forward swaps will be considered and the results can be readily extended to
midcurve swaps. The forward swap contracted at time t0, starting at T0 and ending
at TN is denoted in the market as x by y; which means that the swap matures at
x = T0 − t0 years in the future and the interest payments continue for y = TN years
after the swap matures; hence, the total duration of the swap is x+y = TN +T0 − t0
years.

To quantify the value of the swap, let the swap start at Libor time T0, with
payments made at fixed times Tn = T0+n	, with n = 1, 2, . . . ,N ; the first payment
is made at T1 and the last payment is made at time TN . In summary, at time t0, the
values of the forward swaplets – corresponding to the interest rate payments made
at future times Tn – yield the following forward price for the floating and fixed rate
receiver swaps

swapL(t0,RS) = 	V

N−1∑
n=0

B(t0, Tn + 	)
[
L(t0, Tn)− RS

]
(4.2)

swapR(t0,RS) = 	V

N−1∑
n=0

B(t0, Tn + 	)
[
RS − L(t0, Tn)

]
(4.3)

swapL(t0,RS)+ swapR(t0,RS) = 0 (4.4)

Eq. (4.4) shows that a swap contract is a zero sum game, with the gain of one
party being exactly equal to the loss of the other party. The value of a swap is taken
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Figure 4.5 (a) Daily market value of a deferred swapL(t0, T ) on a notional
principal of $1 million with floating taken to be Libor and fixed interest rate
RS = 2.8%. The swap is Libor 2by2: the swap matures two years in the future,
that is T − t0 = 2 years and runs for another two years. The market values are
given for T − t0 ∈ [29.1.2003–28.1.2005]. (b) Figure shows the time variation of
RP (t0), the par value for the fixed yearly interest payments, for a 2by10 swapL,
with T − t0 ∈ [29.1.2003–28.1.2005].

to be the difference between the floating and fixed interest rate receiver swaps and
is given by

Vswap = swapL− swapR
= 2 swapL

where Eq. (4.4) yields the last line.
The swaplets combine together to form a swap contract that consists of a portfolio

of swaplets. A swap that is initiated at time t0 and runs from T0 to TN and is shown
in Figure 4.4(b).

In contracts between parties with equally good credit ratings, the value of the
swap for both parties, receiving floating or fixed payments, must have equal value.4

Note from Eq. (4.4) that swapL=−swapR; hence, when the swap contract is
initiated, both forward swaps are equal to zero.

It is important to note that although a forward swap contract starts at time t0 with
zero value, swap(t , T0) has nonzero values during the time interval t ∈ [t0, T0] –
that is, until it matures at time T0. The market value of a swapL for the Libor market
is shown in Figure 4.5(a); the swap matures in two years and payments continue
for another two years; the fixed interest rate is RS = 2.8%.

4 Since, otherwise, the party with the unfavorable price will not enter into the swap contract.
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One can simplify the expression for the swaps. The Libor zero coupon yield
curve represents Libor in terms of Libor zero coupon bonds, as in Eq. (2.21)

L(t , T ) = 1
	

B(t , T )− B(t , T + 	)

B(t , T + 	)

and yields the following

	V

N−1∑
n=0

B(t0, Tn + 	)L(t0, Tn) = V

N−1∑
n=0

[
B(t0, Tn)− B(t0, Tn + 	)

]
= V

[
B(t0, T0)− B(t0, TN)

]
Hence, from Eq. (4.2)

swapL(t0,RS) = V
[
B(t0, T0)− B(t0, TN)− 	RS

N−1∑
n=0

B(t0, Tn + 	)
]

(4.5)

with a similar expression for swapR.
The floating and receiver swaps are equal for the par value of the fixed rate and

this in effect defines the par value of the fixed interest rate at time t0, namelyRP (t0).
Hence

swapL(t0,RP (t0)) = 0 = swapR(t0,RP (t0))

⇒ 	RP (t0) = B(t0, T0)− B(t0, TN)∑N−1
n=0 B(t0, Tn + 	)

= 1 − F(t0, T0, TN)∑N−1
n=0 F(t0, T0, Tn + 	)

(4.6)

where the forward bond prices are given by

F(t0, T0, Tn + 	) = exp
{
−
∫ Tn+	

T0

dxf (t0, x)
}

(4.7)

The above result shows that the par value RP (t0) for the forward swap is fixed by
the forward Libor bond prices F(t0, T0, Tn + 	).

The par interest rateRP(t) changes during the duration of the swap. The empirical
value of RP (t) for a 2by10 swap, at a fixed yearly interest rate of RS = 2.6%, is
given in Figure 4.5(b).

The special case of t0 = T0, which is the price of a swap on the day that the swap
becomes operational, is particularly important as these swaps are widely traded
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and quoted in the capital markets. Since B(T0, T0) = 1, the values of the swaps are
given by [65]

swapL(T0,RS) = V

[
1 − B(T0, TN)− 	RS

N−1∑
n=0

B(T0, Tn + 	)

]

swapR(T0,RS) = V

[
	RS

N−1∑
n=0

B(T0, Tn + 	)+ B(t , TN )− 1

]
(4.8)

with par fixed interest rate at time T0 given by

	RP = 1 − B(T0, TN)∑N−1
n=0 B(T0, Tn + 	)

(4.9)

4.3 Interest rate caps and floors

Libor have derivatives written on them, such as caps and floors; these instruments
are important interest rate derivatives and have many applications in the financial
markets [65]. Interest rate contracts, such as caps and floors, can cover many years
and involve a sequence of quarterly payments ranging from one to ten years. Con-
sequently, pricing and hedging such derivatives require modeling of Libor over a
long interval of time.

Caps, floors, and collars are interest rate options that are widely used for hedg-
ing interest rate risks. Financial companies sometimes have to enter into financial
contracts in which they pay or receive cash flows tied to some floating rate, such
as Libor. In order to hedge the risks caused by the Libor’s variability, participants
often enter into options’ contracts that guarantee interest payments with a fixed
upper limit or lower limit, called a cap or floor respectively. An interest rate collar
places a minimum and a maximum limit on the floating rate payments and is a
combination of a cap and a floor. Caps and floors can also be used for speculating
on the future movements of the interest rates.

One of the most elementary form of an interest rate cap is a caplet, which is an
option that puts a maximum upper limit to the floating interest rate that the holder of
the caplet will pay for some pre-specified future interval, usually one Libor period
[T , T + 	]. Figure 4.6(a) is a graphical representation of an interest rate caplet that
limits the maximum floating interest rate to K for [T , T + 	].

An interest cap of an arbitrarily long duration is composed of a portfolio of
caplets, where the caplets can have different strike prices and maturity dates. Typ-
ically, the maturity dates for the caplets are on the same cycle as the frequency
of the underlying Libor. Since a cap (floor) is a linear sum of independent caplets
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Figure 4.6 (a) Diagram representing a caplet 	V B(t∗, T + 	)[L(t∗, T ) − K]+.
During the time interval T ≤ t ≤ T + 	, the holder of a floating receiver caplet
receives a minimum interest rate of K and, for the case illustrated, will exercise
the caplet. (b) Domain for underlying forward interest rates that determines the
price of a midcurve caplet maturing at time t∗ < T . The payoff is defined at time
t∗. The shaded portion shows the domain of the forward interest rates that define
caplet(t0, t∗, T ): the midcurve caplet.

(floorlets); the pricing and hedging of caps (floors) are completely reduced to the
analysis of a single caplet (floorlet). It is shown that a caplet and a floorlet obey a
put–call parity relation so that the price of a floorlet can be obtained from the price
of a caplet. An interest rate collar is an instrument for which the holder pays at a
maximum interest rate and receives at a minimum interest rate; it can be shown
that a collar is equivalent to buying a cap and selling a floor.

Hence, studying the caplet is sufficient for analyzing interest rate caps, floors,
and collars.

Consider a caplet that limits the Libor floating interest rate to a fixed rate K ,
for the duration of Libor time interval [T , T + 	]. A midcurve caplet is defined as
an option that is exercised at time t∗ < T ; in other words, the option matures at a
time before the caplet becomes operational. Let the caplet price, at time t0 < t∗, be
given by caplet(t0, t∗, T ) and L(t∗, T ) be the Libor value at time t∗. The payoff for
the caplet, similar to a call option on equity given in Eq. (3.1), is given by [11]

caplet(t∗, t∗, T ) = 	VB(t∗, T + 	)
[
L(t∗, T )−K

]
+ (4.10)

where B(t∗, T + 	) is a zero coupon bond and V is the principal for which the
interest rate caplet is defined.

The domain of the underlying interest rates involved in the pricing of the caplet
is given in Figure 4.6(b). The various time intervals that define the interest rate
caplet are shown in Figure 4.7.
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Figure 4.7 Time intervals in the pricing of caplet(t0, t∗, Tn).
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Figure 4.8 (a) A caplet maturing at the time t∗ equal to time T when the caplet
becomes operational. Caplet prices mature on 12 December 2004 versus time t0,
from 12 September 2003 to 7 May 2004. The unbroken line is the market price
of a Libor caplet; the dashed line is the quantum finance model price discussed in
Chapter 10. (b) The structure of the payoff function for a midcurve interest rate cap
that matures at time t∗. The interest rate cap cap(t0, t∗) = ∑n

j=m caplet(t0, t∗, Tj ;
Kj) is defined from future time Tm to time Tn as a portfolio of midcurve caplets.

For the midcurve caplet, the Libor rateL(t∗, T ) is determined at time t∗, when the
holder of the midcurve caplet exercises the option; hence, the payment is locked-in
at time t∗ and paid at time T + 	. The market price of a Libor caplet that matures
at the time when the caplet becomes operational, that is for t∗ = T , is given in
Figure 4.8(a).

The caplet price caplet(t0, t∗, T ) is given by the martingale condition discussed
in Section 3.6; the expectation value of the payoff function, discounted using the
money market numeraire, from future (maturity) time t∗ to present time t0, yields
the following [12]

caplet(t0, t∗, T ) = 	VE
[
e
− ∫ t∗

t0
r(t)
B(t∗, T + 	)

[
L(t∗, T )−K

]
+
]

(4.11)

The price of a floorlet is similarly defined by

f loorlet(t0, t∗, T ) = 	VE
[
e
− ∫ t∗

t0
r(t)
B(t∗, T + 	)

[
K − L(t∗, T )

]
+
]

(4.12)

An interest rate cap is made from the sum over caplets spanning the requi-
site time interval, namely starting from time Tm = T0 + m	 and ending at time
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Tn+ 	 = T0 + (n+ 1)	, with time intervals given by Tj with j = m,m+ 1, . . . , n;
there can be a different fixed interest rate Kj for each time interval. The price of a
midcurve cap – the sum of midcurve caplets – is graphically shown in Figure 4.8(b)
and is given by

cap(t0, t∗) =
n∑

j=m
caplet(t0, t∗, Tj ;Kj)

=
n∑

j=m
E
[
e
− ∫ t∗

t0
r(t)
B(t∗, Tj + 	)

[
L(t∗, Tj )−Kj

]
+
]

(4.13)

There is a similar expression for an interest rate floor.

4.4 Put–call parity for caplets and floorlets

Put–call parity for caplets and floorlets is fixed by demanding that the prices of two
portfolios – having identical cash flows at maturity – must be equal. Failure of the
prices to obey the put–call parity relation would lead to arbitrage opportunities.

The payoff function of a caplet can be simplified by using the definition of Libor,
given in Eq. (2.21), that 	L(t0, T ) = [B(t0, T )−B(t0, T +	)]/B(t0, T +	). Hence
the price of a caplet, from Eq. (4.11), is given by

caplet(t0, t∗, T ) = 	VE
(
e
− ∫ t∗

t0
dtr(t)

B(t∗, T + 	)
[
L(t∗, T )−K

]
+
)

= VEM

(
e
− ∫ t∗

t0
dtr(t)[

B(t∗, T )− (1 + 	K)B(t∗, T + 	)
]
+
)

Similarly, a floorlet from Eq. (4.12) is given by

f loorlet(t0, t∗, T ) = VE
(
e
− ∫ t∗

t0
dtr(t)[

(1 + 	K)B(t∗, T + 	)− B(t∗, T )
]
+
)

The derivation of put–call parity hinges on the identity, which follows from
Eq. (A.3), that

�(x)+�(−x) = 1 (4.14)

and yields

[a − b]+ − [b − a]+ = (a − b)�(a − b)− (b − a)�(b − a) = a − b (4.15)
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The difference in the price of a caplet and a floorlet, from Eq. (4.15), yields the
following[
B(t∗, T )− (1 + 	K)B(t∗, T + 	)

]
+ − [

(1 + 	K)B(t∗, T + 	)− B(t∗, T )
]
+

= B(t∗, T )− (1 + 	K)B(t∗, T + 	)

and hence

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn)

= VE
(
e
− ∫ t∗

t0
dtr(t)[

B(t∗, T )− (1 + 	K)B(t∗, T + 	)
])

The difference of the caplet and floorlet price does not have any constraint. Taking
the expectation value of the zero coupon bonds using the martingale condition given
in Eq. (3.4)

E
[
e
− ∫ t∗

t0
dtr(t)

B(t∗, T )
] = B(t0, T )

yields the following result

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn)

= V
[
B(t0, T )− (1 + 	K)B(t0, T + 	)

]
(4.16)

= 	VB(t0, Tn + 	)[L(t0, Tn)−K] = swapletL(t0,K)

The right-hand side of the above equation is the price, at time t0, of a forward
floating receiver swaplet given in Eq. (4.10).

Thus, the floorlet price is given from the caplet price using put–call parity, and
an independent derivation of a floorlet’s price is not necessary.

A cap or a floor, from Eq. (4.13), is equal to a linear sum of caplets and floorlets.
Hence put–call parity for interest rate caplets and floorlets yields the following

cap(t0, t∗)− f loor(t0, t∗)

=
N∑
n=0

[
caplet(t0, t∗, Tn;K)− f loorlet(t0, t∗, Tn;K)

]
= 	V

N∑
n=0

B(t0, Tn + 	)
[
L(t0, Tn)−K

]
(4.17)

= swapL(t0,K)



4.5 Put–call: empirical Libor caplet and floorlet 75

4.5 Put–call: empirical Libor caplet and floorlet

Put–call parity for caps and floors is a model-independent result that market prices
obey. The prices of interest rate caplets and floorlets for Eurodollar futures con-
tracts – expiring on 13 December 2004 with a fixed interest rate (strike price) of
2% – are analyzed for empirically testing put–call parity. Daily prices, from 12
September 2003 to 7 May 2004, are quoted with the interest rate in basis points
(100 basis points = 1% annual interest rate) and need to be multiplied by the notional
value of one million Dollars; the caplet price has a fixed maturity date of 13
December 2004.

Using the put–call parity given in Eq. (4.16) – for the case t∗ = Tn = 13
December 2004 – consider the portfolio

�(t0) = caplet(t0, Tn)− f loorlet(t0, Tn)− 	VB(t0, Tn + 	)[L(t0, Tn)−K]
(4.18)

The value of the portfolio �(t0) should be zero if put–call parity holds for the
caplet and floorlet prices. The value of the portfolio is directly taken from the market
data and is plotted in Figure 4.9; it is seen that the market obeys put–call parity to a
high degree of accuracy. The deviations of�(t0) from zero are negligible compared
to the price of a caplet. Hence there are no-arbitrage opportunities in the pricing
for caplets and floorlets.
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Figure 4.9 Value of portfolio�(t0) as in Eq. (4.18), which is the difference of the
caplet and floorlet prices with notional value one million Dollars, versus time t0
(12 September 2003–7 May 2004). Put–call parity requires the portfolio value to
be zero.
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4.6 Coupon bond options

Zero coupon bond options are a special case of the coupon bond options, and hence
the analysis is focused on the more general case. Consider the price, at time t∗, of
a coupon bond that is given, as in Eq. (2.4), by

B(t∗) =
N∑
i=1

ciB(t∗, Ti) (4.19)

The payoff function P(t∗) of a coupon bond European call option maturing at
time t∗, and with strike price K , is given by

P(t∗) =
(

N∑
i=1

ciB(t∗, Ti)−K

)
+

= (B(t∗)−K)+ (4.20)

Acoupon bond European put option and its forward price is shown in Figure 4.10(a).
The price of a European call option at time t0 < t∗ is given by the expectation

value of the payoff P(t∗), discounted from time t∗ to time t0. Using the money
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Figure 4.10 (a) The payoff of the coupon bond put option P(t∗) = (
K −B(t∗)

)
+

is represented by the horizontal line at t∗. The successive horizontal lines with
arrows show, for t < t∗, the forward price of the coupon bond; the forward zero
coupon bond price is given by F(ti , T1, T2) = B(ti , T2)/B(ti , T1). (b) The market
price of a 2by10 Libor swaption CL(t , T0,RP (t)) with T0 − t = 2 years. The
swaption price is given for fixed interest equal to the par interest rate at time t ,
namely RP (t).
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market numeraire for discounting the payoff function yields the following

C(t0, t∗, TN ,K) = E
[
e
− ∫ t∗

t0
dtr(t)P(t∗)

]
= E

⎡⎣e− ∫ t∗
t0
dtr(t)

(
N∑
i=1

ciB(t∗, Ti)−K

)
+

⎤⎦ (4.21)

Similarly, the European put option is given by

P (t0, t∗, T ,K) = E

⎡⎣e− ∫ t∗
t0
dtr(t)

(
K −

N∑
i=1

ciB(t∗, Ti)

)
+

⎤⎦
The (zero) coupon bonds have a martingale evolution for a large class of

numeraires. For calculating the price of interest rate options it is very convenient
to discount by the forward bond numeraire. The future price of the option is dis-
counted by the zero coupon bond B(t , t∗): t∗ fixed, instead of the money market
numeraire given by exp{− ∫ t∗

t0
dtr(t)}: t0 fixed.

For the forward bond numeraire, one has that C(t , t∗, T ,K)/B(t , t∗) is a
martingale. From Eq. (3.8), since B(t∗, t∗) = 1

C(t0, t∗, T ,K) = B(t0, t∗)E
[
P(t∗)

]
= B(t0, t∗)E

⎡⎣( N∑
i=1

ciB(t∗, Ti)−K

)
+

⎤⎦ (4.22)

Note that the discounting factorB(t0, t∗) in Eq. (4.22) is determined by the initial
value of the forward interest rates f (t0, x). Unlike exp{− ∫ t∗

t0
dtr(t)}, B(t0, t∗) is

not a random quantity and, hence, is outside the expectation value E[. . .]; this is
the main reason for choosing the forward bond numeraire.

In summary, Eq. (4.22) shows that the price of a (European call) option, at
time t0 < t∗, is given by discounting the payoff P(t∗) from time t∗ to time t0
and averaging over all the random (fluctuating) forward interest rates over future
calendar time [t0, t∗] – with the initial conditions specified at time t0 by f (t0, x).

4.7 Put–call parity for European bond option

Put–call parity for the coupon bond option, as expected, is model-independent. The
martingale property of the zero coupon bonds is the key to the derivation of this
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section. The difference in the call and put payoff functions for the coupon bond
option, using Eq. (4.15), satisfies(

N∑
i=1

ciB(t∗, Ti)−K

)
+

−
(
K −

N∑
i=1

ciB(t∗, Ti)

)
+

=
N∑
i=1

ciB(t∗, Ti)−K

Multiplying both sides by exp{− ∫ t∗t0 dtr(t)} and taking the expectation value using

the martingale condition E[e−
∫ t∗
t0
dtr(t)

B(t∗, T )] = B(t0, T ) given in Eq. (3.4),
yields the following put–call parity relation

C(t0, t∗;K) − P (t0, t∗;K) = E

[
e
− ∫ t∗

t0
dtr(t)

(
N∑
i=1

ciB(t∗, Ti)−K

)]

=
N∑
i=1

ciB(t0, Ti)−KB(t0, t∗) = B(t0)−KB(t0, t∗)

Put–call parity yields the expected result that

C(t0, t∗;K)− P (t0, t∗;K) = B(t0)−KB(t0, t∗) : put–call parity (4.23)

The right-hand side is the difference, at time t0, between the value of the (underlying)
coupon bond and the discounted value of the strike price K . The result for bonds
is similar to the earlier result for the equity put–call given in Eq. Eq. (3.1).

4.8 American coupon bond option put–call inequalities

The call or putAmerican option on a coupon bondB(t0)has the same payoff function
as the European option, with the additional feature that the American option can be
exercised any time from the time it is sold at t0 to its maximum possible maturity
time t∗. The freedom of an early exercise implies that the price of the American
option must always be greater than the corresponding European option since the
American option contains the European option as one of its special cases.

It is conjectured in [17], in analogy with Eq. (4.23), that the American call and
put coupon bond options satisfy the following put–call inequalities

F(t0)−K ≤ CA(t0, t∗;K)− PA(t0, t∗;K) ≤ F(t0)−KB(t0, t∗) :

American put–call inequalities (4.24)

whereCA(t0, t∗;K),PA(t0, t∗;K) are the price of the American call and put options
respectively,K is the strike price, and B(t0, t∗) is a zero coupon bond. F(t0) is the
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forward price, at time t0, of the coupon bond B(t∗) and is given by

F(t0) ≡
N∑
i=1

ciF (t0, t∗, Ti) =
∑N
i=1 ciB(t0, Ti)
B(t0, t∗)

= B(t0)
B(t0, t∗)

Recall, from Eq. (2.14), that F(t0, t∗, Ti) is the forward zero coupon bond price
of B(t∗, Ti) at t0. The forward price of the coupon bond is graphically shown in
Figure 4.10(a).

4.9 Interest rate swaptions

An interest rate swaption, denoted by CL and CR , is an option on a floating or a
fixed interest rate receiver swap, swapL, and swapR, respectively.

Consider a swap withN payments dates given by Tn = T0+n	; n = 1, 2, . . . ,N ;
the swap starts at time T0, the first payment is made at time T1 and the last payment
is made at time TN .Amidcurve swaption, similar to a midcurve caplet, is contracted
at time t0 and matures at time t∗ < T0. The payoff function for a midcurve swaption
is given in Figure 4.4(a) and is the same as a midcurve forward swap. The swaption
is an option on the swap and hence has the same cash flow if it is exercised.

The swaption that will be studied henceforth is the one that matures at t∗ = T0,
when the swap becomes operational and is shown in Figure 4.4(b). Almost all
market data on swaptions are exclusively given for this case and are, consequently,
the most important for empirical studies of swaptions.

The swaption, on maturing, will be exercised only if the value of the swap at
time T0 is greater than its initial par value of zero. Hence, the payoff function for
the swaption for the floating and fixed receivers swap, from Eqs. (4.2) and (4.3), is
given respectively by the following

CL(T0, T0;RS) = [
swapL(t0,RS)

]
+

= 	V

[
N−1∑
n=0

B(t0, Tn + 	)(L(t0, Tn)− RS)

]
+

(4.25)

CR(t , T0,RS) = [
swapR(t0,RS)

]
+

= 	V

[
N−1∑
n=0

B(t0, Tn + 	)
(
RS − L(t0, Tn)

)]
+

(4.26)

In terms of zero coupon bonds, the swaption payoff function, from Eq. (4.5), is
given by

CL(T0, T0;RS) = V

[
1 − B(T0, TN)− 	RS

N∑
n=1

B(T0, T0 + n	)

]
+

(4.27)
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and a similar expression for CR . The value of the swaption at an earlier time
t < T0 can be obtained by discounting the payoff function using the money market
numeraire and yields

CL(t , T0,RS) = VE
[
e−

∫ T0
t r(t ′)dt ′CL(T0;RS)

]
= VE

[
e−

∫ T0
t r(t ′)dt ′

(
1 − B(T0, TN)− 	RS

N∑
n=1

B(T0, T0 + n	)

)]
+

(4.28)

and similarly forCR(t , T0,RS). One can see that a swap is equivalent to a particular
portfolio of coupon bonds, and all techniques that are used for coupon bond options
can be used for analyzing swaptions.

Discounting by the forward bond numeraire B(t , T0), similar to the case of
coupon bond options given in Eq. (4.22), makes the swaption price computationally
more tractable; the price of the swaption, from Eq. (4.27), is given by

CL(t , T0,RS)
B(t , T0)

= VE
[
CL(T0;RS)

]
= VE

[
1 − B(T0, TN)− 	RS

N∑
n=1

B(T0, T0 + n	)

]
+

(4.29)

Figure 4.10(b) shows the market price of a 2by10 swaption CL(t , T0,RP (t)),
with Libor being the floating rate on a notional principal sum for the underlying
swap of US$1 million.

Eq. (4.15), together with the martingale property of zero coupon bonds under the

money market measure, namely that E
[
e−

∫ T0
t r(t ′)dt ′B(T0, Tn)

] = B(t , Tn), yields
the put–call parity for the swaptions as [11]

CL(t , T0,RS)− CR(t , T0,RS)

= VE

[
e−

∫ T0
t r(t ′)dt ′

[
1 − B(T0, T0 +N	)− 	RS

N∑
n=1

B(T0, T0 + n	)

]]

= V

[
B(t , T0)− B(t , T0 + N	)− 	RS

N−1∑
n=0

B(t , T0 + n	)

]
(4.30)

= swapL(t ;T0,RS)

swapL(t ;T0,RS) is the price, at time t , of the underlying forward swap that
matures at time T0 > t . Eq. (4.23) is the general expression for put–call parity
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for coupon bond options and the put–call parity for swaptions given in Eq. (4.30)
is a special case.

The price of swaptionCR , in which the holder has the option to enter a fixed rate
RS receiver’s swap, is given, from Eq. (4.30), by the formula for the call option
for a coupon bond. The swaption CR matures at time T0; the payoff function on a
principal amount V is the following

CR(T0, T0,RS) = V

[
B(T0, T0 + N	)+ 	RS

N∑
n=1

B(T0, T0 + n	)− 1

]
+
(4.31)

Comparing the payoff for CR given above with the payoff for the coupon bond call
option given in Eq. (4.20), yields the following for the swaption coefficients

cn = 	RS ; n = 1, 2, . . . , (N − 1); payment at time T0 + n	 (4.32)

cN = 1 + 	RS ; payment at time T0 +N	

K = 1

There are swaptions traded in the market in which the floating rate is paid at
	 = 90 day intervals, and the fixed rate payments are paid at 2	 = 180 day intervals.
For a swaption with fixed rate payments at 90 day intervals – at times T0 +n	, with
n = 1, 2, . . . ,N – there are N payments. For payments made at 180 day intervals,
there are onlyN/2 payments5 made at times T0 + 2n	 , n = 1, 2, . . . ,N/2, and of
amount 2RS . The payoff function for the swaption is6

CL(T0, T0;RS) = V

⎡⎣1 − B(T0, T0 +N	)− 2	RS
N/2∑
n=1

B(T0, T0 + 2n	)

⎤⎦
+

= V

⎡⎣1 −
N/2∑
n=1

c̃nB(T0, T0 + 2n	)

⎤⎦
+

(4.33)

The equivalent coupon bond put option payoff function is given by⎛⎝K −
N/2∑
n=1

c̃nB(t∗, T0 + 2n	)

⎞⎠
+

(4.34)

5 Suppose the swaption has a duration such thatN is even. Note that forN = 4 the underlying swap has a duration
of one year.

6 The price of CR for the case of 90 day floating and 180 day fixed interest payments is given from CL by using
the put–call relation similar to that given in Eq. (4.30).
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and has the coefficients and strike price given by

c̃n = 2	RS ; n = 1, 2, . . . , (N − 1)/2; payment at time T0 + 2n	 (4.35)

c̃N/2 = 1 + 2	RS ; payment at time T0 +N	

K = 1

The par interest rate at time t0 is fixed by the forward swap contract and is given,
similar to Eq. (4.6), by

2	RP (t0) = B(t0, T0)− B(t0, T0 + N	)∑N/2
n=1 B(t0, T0 + 2n	)

(4.36)

The par interest rate reduces, at t0 = T0, to the par value of the fixed interest rate
similar to Eq. (4.9) and is given by

2	RP = 1 − B(T0, T0 + N	)∑N/2
n=1 B(T0, T0 + 2n	)

(4.37)

It is only due to the asymmetric nature of the last coefficient, namely cN and
c̃N/2 for the two cases discussed above, that the swap interest rate RS does not
completely factor out (up to a re-scaling of the strike price) from the swaption
price.

Options on swapL and swapR, namely CL and CR , are both call options since
they give the holder the option to either receive fixed or receive floating payments,
respectively. When expressed in terms of coupon bond options, it can be seen from
Eqs. (4.28) and (4.31) that the swaption for receiving fixed payments is equivalent
to a coupon bond put option, whereas the option to receive floating payments is
equivalent to a coupon bond call option.

4.10 Interest rate caps and swaptions

The fundamental ingredient for swaps, caps, and swaptions is the following com-
bination of floating and fixed interest rates, which constitutes a (floating receiver)
midcurve caplet at time t∗ and is given by

B(t∗, T + 	)
[
L(t∗, T )−K

]
+ = [swapletL(t∗,K)]+

The payment of interest is made at time T + 	; hence the price of the caplet at t∗ is
given by discounting the payment by the bond B(t∗, T + 	).
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• The interest rate cap price is the following

cap(t0, t∗) = ∑n
j=m E

[
e
− ∫ t∗

t0
r(t)
B(t∗, Tj + 	)

[
L(t∗, Tj)−Kj

]
+
]

The summation on the caplets is outside the expectation value and hence there are no
cross-terms between the various caplets.

• In contrast, the swaption price is the following

SwaptionL(t0, t∗) = E
[
e
− ∫ t∗

t0
r(t)
[∑n

j=m B(t∗, Tj + 	)
[
L(t∗, Tj )−Kj

]]
+

]
The summation on the caplets is now inside the expectation value and hence there are
cross-terms leading to correlations between all the caplets. These correlations are needed
for determining the swaption price, as discussed in Chapter 12.

In summary, the prices of the interest rate cap and swaption show a fundamental
difference between the two instruments. The cap price is a linear sum of the caplet
prices, which are all independent and have no correlation with each other. In con-
trast, for the swaption the payoff function is a linear sum of component caplets.
Taking the expectation of the payoff function gives rise to complicated and nontriv-
ial correlations between all the component caplets. This is the fundamental reason
why the price of a swaption is much more complex and difficult to evaluate than
the price of an interest rate cap.

The price of liquid interest rate options, such as caps and floors, encode all the
available market information. The underlying Libor rates are common for these
options, and consequently one can extract information on the Libor rates from caps
and floors. The main challenge for market participants is to use this information
for pricing other (exotic) options. In particular, the market prices of interest caplets
are often used for fixing the volatility of Libor. To reduce the number of inputs,
volatility parameters in a given Libor time interval are often assumed to be constant
and lead to many inaccuracies. Furthermore, longer maturity options require a large
number of volatility parameters due to the aggregation of the volatility parameters
from each Libor future time interval.

4.11 Heath–Jarrow–Morton path integral

The HJM (Heath–Jarrow–Morton) model [56] is the industry standard for studying
interest rates and has been extensively investigated, both analytically and empiri-
cally [48, 57, 88]. In particular, an exact expression for coupon bond options has
been obtained in the HJM framework using stochastic calculus [65]. The discussion
in this section is a preparation for the more general formulation of forward interest
rates discussed in Chapter 5.
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Eq. (3.5) shows that one can consider the present value of a zero coupon bond as
resulting from a stochastic process followed by the spot interest rate r(t). However,
in the HJM approach the forward interest rates f (t , x) are considered as fundamen-
tal, and the value of the present-day value of the bondB(t , T ) is taken as input from
the debt market; the spot interest rate r(t) is just one point of the f (t , x) curve,
namely r(t) = f (t , t).

The HJM model is re-formulated in the language of path integration [12] as it
provides a powerful computational tool for obtaining many nontrivial results of the
HJM model. White noise is expressed in terms of a path integral and the concepts of
stochastic calculus are seen to be a special case of path integration. The path integral
framework provides a natural generalization of white noise to a two-dimensional
Gaussian quantum field.7

In the one-factor HJM model the time evolution of the forward interest rates is
driven by a single white noise R(t) and is given by [56, 63, 84]8

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)R(t) (4.38)

α(t , x) is the drift velocity term and σ(t , x) is the deterministic volatility of the
forward interest rates. For every value of time t , white noiseR(t) is an independent
Gaussian random variable given by

E[R(t)] = 0; E[R(t)R(t ′)] = δ(t − t ′)

The forward interest rates f (t , x) are driven by random variables R(t), which
give the same random ‘shock’at time t to all the future forward rates f (t , x) , x > t .
To bring in the maturity dependence of the random shocks, the volatility function
σ(t , x), at given time t , weighs this ‘shock’ differently for each x.

The HJM model evolves an entire curve f (t , x); for theK factor model, at each
instant of time t , it is driven byK random variables given by Ri(t), and hence has
at most K degrees of freedom.

The HJM combination [∂f (t , x)/∂t − α(t , x)]/σ (t , x) of the forward interest
rates is a generalization of the Sharpe ratio for equity [59], given by (μ − r)/σ .
μ is the expected rate of return on a stock, r is the spot risk-free spot interest

7 The generalization of the HJM model, which is the subject matter of Chapter 5, makes the theory of forward
interest rates mathematically equivalent to a two-dimensional quantum field theory.

8 The K-factor HJM model is given by

∂f

∂t
(t , x) = α(t , x)+

K∑
i=1

σi(t , x)Ri(t)

where σi (t , x) are the deterministic volatilities and Ri(t) is a vector Gaussian white noise. No new insight is
offered by the K-factor model and hence only the one-factor model is analyzed.
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rate (fixed by the martingale condition), and σ is the stock price’s volatility. The
Sharpe ratio is an important quantity is assessing the risk premium for a stock. In
the quantum finance formulation of the forward interest rates, the quantity f (t , x)
always appears in the HJM combination and has far-reaching consequences.

From Eq. (4.38)

f (t∗, x) = f (t0, x)+
∫ t∗

t0

dtα(t , x)+
∫ t∗

t0

dt ′σ(t , x)R(t) (4.39)

The initial forward interest rate curve f (t0, x) is determined from the market, and
so is the volatility function σ(t , x). Similar to the Black–Scholes analysis, the drift
term α(t , x) is fixed to ensure that the forward interest rates have a martingale time
evolution, which yields [56]

α(t , x) = σ(t , x)
∫ x

t

dx′σ(t , x′)

4.12 HJM coupon bond European option price

The coupon bond option price in the one factor HJM model with exponential volatil-
ity has been stated in [34, 65] and a path integral derivation is given of this result.
The derivation illustrates many key features of path integration in a simple context
and serves as an exemplar for more complex derivations.

The payoff function P(t∗) of a coupon bond European call option, maturing at
time t∗, for strike price K , is given, from Eq. (4.20), as follows

P(t∗) =
(

N∑
i=1

ciB(t∗, Ti)−K

)
+

(4.40)

The European coupon bond option priceC(t0, t∗, T ,K), from Eq. (4.22), is given by

C(t0, t∗, T ,K) = B(t0, t∗)E
[
P(t∗)

]
In the HJM model the expectation value is calculated by evaluating the white noise
path integral, as discussed in Appendix A.4; more precisely

CHJM(t0, t∗, T ,K) = B(t0, t∗)
∫
DR P(t∗) eS0 ; S0 = −1

2

∫ t∗

t0

R2(t) (4.41)
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To explicitly evaluate the path integral, one needs to express the zero coupon bonds
in terms of white noise R(t); from Eqs. (2.12) and (4.39)

B(t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t , x)

}
= F(t0, t∗, Ti)e

− ∫ Ti
t∗ dx

∫ t∗
t0
dt[α(t ,x)+σ(t ,x)R(t)] (4.42)

Choosing the exponential volatility function

σ(t , x) = σ0e
−λ(x−t)

leads to the following simplifications

∫ Ti

t∗
dx

∫ t∗

t0

dtσ (t , x)R(t) = Yiσ0

∫ t∗

t0

dte−λ(t∗−t)R(t) (4.43)∫ Ti

t∗
dx

∫ t∗

t0

dtα(t , x) = 1
2
σ 2
EY

2
i

Yi = Y (t∗, Ti) = 1
λ
[1 − e−λ(Ti−t∗)]; σ 2

E = σ 2
0

2λ
[1 − e−2λ(t∗−t0)]

All the zero coupon bonds are driven by one random variable, namely

W = σ0

∫ t∗

t0

dte−λ(t∗−t)R(t) =
∫ t∗

t0

dtσ (t∗, t)R(t)

The payoff function, from Eqs. (4.40), (4.42), and (4.43), is given by

P(t∗) =
(

N∑
i=1

ciF (t0, t∗, Ti)e−
1
2σ

2
EY

2
i −YiW −K

)
+

Since the payoff function depends on only one random variable, namelyW , the
path integral can be performed exactly. Inserting unity

1 =
∫ +∞

−∞
dWδ

[
W −

∫ t∗

t0

dtσ (t∗, t)R(t)
]
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into the path integral for the option price given in Eq. (4.41) yields the following

CHJM(t0, t∗, T ,K)
B(t0, t∗)

=
∫
DR

∫ +∞

−∞
dWδ

[
W −

∫ t∗

t0

dtσ (t∗, t)R(t)
]
P∗eS0

=
∫ +∞

−∞
dW

(
N∑
i=1

ciF (t0, t∗, Ti)e−
1
2σ

2
EY

2
i −YiW −K

)
+
Z(W) (4.44)

where Z(W) =
∫
DRδ

[
W −

∫ t∗

t0

dtσ (t∗, t)R(t)
]
eS0

To evaluate the path integral, the Dirac-delta function is represented, as in Eq. (A.7),
as follows

δ[W − W̃ ] =
∫ +∞

−∞
dξ

2π
eiξ(W−W̃)

The path integral for Z(W) is evaluated using Eq. (A.41) and yields

Z(W) =
∫
DR

∫ +∞

−∞
dξ

2π
e
iξ(W−∫ t∗t0 dtσ (t∗,t)R(t))

eS0

=
∫ +∞

−∞
dξ

2π
eiξWe

− 1
2 ξ

2 ∫ t∗
t0
dtσ 2(t∗,t)

= 1√
2πσ 2

E

exp

{
− 1

2σ 2
E

W 2

}
(4.45)

since
∫ t∗
t0
dtσ 2(t∗, t) = σ 2

E .
Hence, Eqs. (4.44) and (4.45) yield the following coupon bond option price

CHJM(t0, t∗, T ,K) = B(t0, t∗)√
2πσ 2

E

∫ +∞

−∞
dWe

− 1
2σ2
E

W 2

×
(

N∑
i=1

ciF (t0, t∗, Ti)e−
1
2σ

2
EY

2
i −YiW −K

)
+

To further simplify the HJM option price, define quantity w0 such that9

N∑
i=1

ciF (t0, t∗, Ti)e−
1
2σ

2
EY

2
i −Yiw0 = K (4.46)

9 The definition of w0 given in [65] differs from the one given in Eq. (4.46).
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Figure 4.11 The nonlinear relation of K and w0.

The quantity w0 is related to the strike price K by a nonlinear transformation
that depends on the initial coupon bond price [65]. Figure 4.11 shows a typical
dependence of K on w0.

For values ofW > w0 the coupon bond’s value is greater thanK and the option
is not exercised; the option price hence is given by

CHJM(t0, t∗, T ,K) = B(t0, t∗)√
2πσ 2

E

∫ w0

−∞
dWe

− 1
2σ2
E

W 2

×
(

N∑
i=1

ciF (t0, t∗, Ti)e−
1
2σ

2
EY

2
i −YiW −K

)

The integration over W yields the following explicit expression for the coupon
bond option [34, 57, 65]

CHJM(t0, t∗,K) =
N∑
i=1

ciB(t0, Ti)N(di)−KB(t0, t∗)N(d) (4.47)

di ≡ w0

σE
+ Y (t∗, Ti)σE; d = w0

σE

where N(d) is the probability integral for the normal distribution defined in
Eq. (3.61).

The coupon bond European option is equal to the sum of terms that refer to
options on its constituent zero coupon bonds; all correlations between the different
zero coupon bonds are absent in the HJM coupon bond option price. It will be
shown in Chapter 11 that in the quantum finance model of forward interest rates
the coupon bond option price has cross terms of the constituent zero coupon bonds
of arbitrarily high order.
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4.12.1 Small volatility limit of HJM coupon bond option

The small volatility limit of the HJM coupon bond option price is obtained. In
Chapter 11, a quantum finance derivation is given of the coupon bond option price;
a limiting case of which is shown to be the HJM small volatility price.

The HJM option price is expanded as a power series in the volatility constant σ0,
which is taken to be small. The value of w0 is taken to be such that w0/σ0 is small,
which in turn yields that all the di , d are small. Using the expansion

N(d) =
√

1
2π

∫ d

−∞
dze−

1
2 z

2 � 1
2

+
√

1
2π
d +O(d2)

Eq. (4.47) yields the following approximate HJM bond option price

CHJM(t0, t∗,K) �
N∑
i=1

ciB(t0, Ti)

[
1
2

+
√

1
2π
di

]

−KB(t0, t∗)
[

1
2

+
√

1
2π
d

]
+O(d2

i , d2)

= 1
2

[
N∑
i=1

ciB(t0, Ti)−KB(t0, t∗)
]

+
√

1
2π

N∑
i=1

ciB(t0, Ti)Y (t∗, Ti)σR

+
√

1
2π

w0

σR

[
N∑
i=1

ciB(t0, Ti)−KB(t0, t∗)
]

+O(d2
i , d2)

= 1
2
B(t0, t∗)[F −K] +

√
1

2π
B(t0, t∗)σR

N∑
i=1

JiY (t∗, Ti)

+O

(
w0

σ0
(F −K), (F −K)2

)
(4.48)

where Ji = ciB(t0, Ti)/B(t0, t∗) and F = ∑N
i=1 Ji .

4.13 Summary

Interest rate derivatives, namely interest rate swaps, caps, and swaptions were
briefly discussed. Coupon bond options were also discussed and it was shown that
swaptions can be viewed as a special case of coupon bond options. Put–call parity
for coupon bond options were derived and were shown to follow from the definition
of the payoff functions.
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The main focus of this chapter was on the mathematical formulation of the debt
instruments. In particular, the precise expression of the options’ payoff functions
and the formulas for determining the option price were obtained and analyzed.

The HJM model was given a path integral formulation. The forward interest
rates were shown, in the HJM model, to be driven by a single white noise. The
coupon bond option HJM price was evaluated exactly, for an exponential volatility
function, and was seen to have no correlation terms between the constituent zero
coupon bonds.

The combination [∂f (t , x)/∂t−α(t , x)]/σ (t , x) is the most important feature of
the HJM model. This combination is reflected in the stochastic differential equation
that defines the HJM evolution of f (t , x) and carries over to all forms of general-
izations, including the quantum finance model for f (t , x) as well as the quantum
Libor Market Model.



5
Quantum field theory of bond

forward interest rates

A quantum field theory of forward interest rates is developed as a natural general-
ization of the HJM model: the forward interest rates are allowed to have inde-
pendent fluctuations for each future time. The forward interest rates are modeled
as a two-dimensional Gaussian quantum field, leading to forward interest rates
that have a finite probability of being negative. The model is consistent not for
the interest rate sector but only for the bond sector and is consequently called the
bond forward interest rates. The concept of a quantum field is briefly discussed in
Appendix A.7. The ‘stiff’ quasi-Gaussian model, together with the concept of mar-
ket time, describes the forward interest rates. A differential formulation of forward
interest rates’ dynamics is obtained. Using a singular property of the forward inter-
est rates’ quantum field, a generalization of Ito calculus follows from the Wilson
expansion. A derivation of a risk-neutral measure for zero coupon bonds is obtained
based on the differential martingale condition.

5.1 Introduction

The complexity of the forward interest rates is far greater than that encountered in
the study of stocks and their derivatives.Astock, at a given instant in time, is descri-
bed by only one random variable (degree of freedom) S(t) and which is usually
modeled using stochastic differential equations. In the case of interest rates, it is the
entire interest rates yield curve f (t , x) that undergoes a random evolution. Clearly,
at each instant, the most general random evolution is that the forward interest rates
f (t , x), for each of future time x, should be an independent random variable.

In the industry standard HJM model, as discussed in Section 4.11, the forward
interest rate evolution equation is similar to a stock S(t); this fact leads to the
following major limitations of the HJM model.

• Forward interest rates are not directly observed, in contrast to Libor and Euribor, but
instead are derived from traded instruments such as the Treasury Bond zero coupon yield
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curve. This shortcoming is addressed by the Libor Market Model, discussed in some detail
in Chapter 6.

• The forward interest rates in the HJM model are defined by the stochastic differential
equation given in Eq. (4.38), which is driven by one random variable R(t), similar
to Eq. (3.10) for S(t). For this reason, all the forward rates are exactly correlated,
leading, for instance, to the unreasonable possibility of hedging a 30-year Treasury Bond
with a six-month Treasury Bill.

• Empirical studies of the debt market show that the forward interest rates have nontrivial
correlation in the future time direction. These correlations yield observable effects in the
pricing and hedging of interest rate instruments.

One needs to look beyond the HJM model to describe the behavior of the forward
interest rates. The limitations of the HJM model are redressed quite naturally in the
framework of quantum finance. Forward interest rate models, based on quantum
field theory, are able to incorporate correlations between forward interest rates
with different maturities in a parsimonious and minimal manner. These models
are computationally tractable and well suited for empirical implementation. This is
the main motivation for studying forward interest rates from the point of view of
quantum field theory.

Treating all the forward interest rates as independent random variables has been
studied in [52, 67, 85]. In references [52] and [67] a correlation between forward
interest rates with different maturities was introduced. In [85] the forward interest
rates were modeled as a stochastic string, and a stochastic partial differential equa-
tion in infinitely many variables was obtained. A detailed discussion of the various
generalizations of the HJM model, and their relation to the quantum field theory
model of the forward rates, is given in [92].

In the quantum finance approach, the prices of all interest rate instruments are
formally given as a path (functional) integral and hence it is complementary to the
approach based on stochastic partial differential equations.

Quantum field theory models of interest rates are based on taking the interest rates
as a strongly correlated system, with independent fluctuations for all maturities [14].
It is shown in [12] that the well-known results of the HJM model [56] can be obtained
as a limiting case of the quantum finance model of the forward interest rates.

5.2 Bond forward interest rates: a quantum field

Recall, from Eq. (4.38), that in the HJM model the forward interest rates are
defined by

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)R(t)
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As discussed earlier, in the HJM model the fluctuations in the forward interest
rates at a given time t are given by white noise R(t) that delivers ‘shocks’ to the
entire curve f (t , x); white noise does not depend on the maturity direction x.

Figure 2.3 shows the forward interest rates obtained from the Libor and Euribor
futures markets. One can see from the figure that each forward interest rate is
evolving randomly in time. From the data, it is clear that, for each future time x, the
forward interest rates f (t , x) are evolving under the impact of independent random
shocks.

It is natural to make a quantum finance generalization of the HJM model. The
forward interest rates are defined by the following

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)A(t , x) (5.1)

f (t∗, x) = f (t0, x)+
∫ t∗

t0

dtα(t , x) +
∫ t∗

t0

dtσ (t , x)A(t , x) (5.2)

where A(t , x) is a generalization of white noise R(t).
For the case where α(t , x) and σ(t , x) are deterministic, f (t , x) is called the

bond forward interest rates. The quantum finance model proposed for f (t , x) in
Eq. (5.1) is appropriate for studying the bond sector of the debt market. For studying
the interest rate component of the debt market, Libor forward interest rates is
another collection of rates that is more suitable. The Libor case is nonlinear and
has stochastic drift and volatility that are very different from the bond case.

The bond forward interest rates will be denoted by f (t , x) for the rest of the
book. In contrast, the Libor forward interest rates will be denoted by fL(t , x).
Only the bond forward interest rates are discussed in this chapter and hence, unless
necessary, they will be referred to only as forward interest rates. It should be noted
that the terms bond and Libor forward interest rates refer to models that have been
constructed to explain the market’s behavior. The empirical forward interest rates
are neither bond nor Libor forward interest rates, but, rather, are essentially the
same for both the bond and interest rate sectors of the debt markets. It will be clear
from the context what forward interest rates are being discussed.

The quantity A(t , x) is a (classical) stochastic field that delivers, for each future
time x, independent ‘shocks’tof (t , x). Eq. (5.1) is very different from Eq. (4.38) of
the HJM model, since now both the stochastic noise term A(t , x) and the forward
interest rates f (t , x) are on par. In fact, Eq. (5.1) is a change of variables from
stochastic field A(t , x) to stochastic forward interest rates f (t , x). Both fields are
equally good for describing the interest rates, although, as one can imagine, the
choice of which one to use depends on the financial instrument one is studying.

In quantum finance, all financial instruments, such as interest rate options and
other derivatives, are defined by averaging the stochastic forward interest rates
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over all possible values; the averaging over the stochastic field is mathematically
identical to the averaging in Euclidean quantum field theory.

The random evolution of the instantaneous forward interest rates implies that
f (t , x) is an independent random variable for each x and each t . Or equivalently,
f (t , x), for each x and t, is an independent integration variable. As discussed in
Appendix A.7, the generic quantity describing such a system is a quantum field
[95]. The forward interest rate is mathematically equivalent to a two-dimensional
quantum field. In quantum finance, the techniques of quantum field theory are
employed for modeling interest rates.

The theory of quantum fields [95] is a vast and complex subject that is at the
leading edge of theoretical physics. Quantum field theory has been developed pre-
cisely to study problems involving infinitely many degrees of freedom and so one
is naturally led to its techniques in the study of the interest yield curve.

For notational simplicity, both t and x are taken to be continuous. In Chapter 16,
the lattice theory of the forward interest rates is defined by discretizing both t and
x so that they take integer values in a finite set.

5.3 Forward interest rates: Lagrangian and action

The market price of an interest rate instrument, denoted by F [A], is equal to its
expectation value E[F [A]] – obtained by performing an average over the two-
dimensional quantum (random) field A(t , x). Similar to the case of white noise –
given in Eqs. (A.38), (A.39), and (A.40) – to evaluateE[F [A]] one has the generic
Feynman path integral given by

E
[
F [A]] = 1

Z

∫
DA F [A] eS[A]; Z =

∫
DAeS[A] (5.3)

where
∫
DA stands for integrating over all possible values of A(t , x) – weighted

by the probability measure eS/Z. S is the ‘action’ for the quantum field A(t , x),
and Z is the ‘partition function’; see Appendix A.7. One can equivalently do all
the calculations directly using the forward interest rates since Eq. (5.1) defines,
as follows, a change of variables from A(t , x) to f (t , x) with a constant Jacobian

A(t , x) = ∂f (t , x)/∂t − α(t , x)
σ (t , x)

⇒
∫
DA = constant

∫
Df

⇒ E
[
F [A]] = E

[
F [f ]] = 1

Z

∫
Df F [f ] eS[f ]; Z =

∫
DfeS[f ]
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To choose an action S[f ] for f (t , x), the domain over which t , x take values
needs to be specified. For the sake of concreteness, consider the forward interest
rates starting from initial calendar time Ti to a future calendar time Tf . Forward
interest rates f (t , x) only exist for the future, which yields x > t . The quantum
field f (t , x) is defined on the domain in the shape of a trapezoid T that is bounded
by parallel lines x = t and x = TFR + t in the maturity direction, and by the
lines t = Ti and t = Tf in the time direction, as shown in Figure 5.1(a). Every
point inside the domain T represents an independent integration variable f (t , x),
and shows the enormous increase over the HJM random variable R(t) given in
Figure A.1.

For a financial instrument that matures at some future time Tf , its behavior at
earlier time Ti < Tf is determined by the action

S[f ] =
∫ Tf

Ti

dt

∫ t+TFR

t

dxL[f ] (5.4)

≡
∫
T
L[f ] (5.5)

where L(t , x) is the Lagrangian density for the forward interest rates.
What should terms should L(t , x) contain? What should be the form of L(t , x)?
The HJM model shows that the forward interest rates have a drift velocity α(t , x)

and volatility σ(t , x); hence, these have to appear directly in the Lagrangian. To
be well defined, the Lagrangian needs a kinetic term – denoted by Lkinetic – that is
necessary to have forward interest rates’ time evolution similar to a stock price.

The important insight of HJM [56] is that it is the combination [∂f (t , x)/∂t −
α(t , x)]/σ (t , x) of the forward interest rates that occurs in finance. The dynamics

t

(a)

Tf

Ti Ti +TFR Tf +TFR x

t

(b)

Tf

Ti

TFR ∞

x

Figure 5.1 (a) Trapezoidal domain T of the forward interest rates. (b) The domain
of forward interest rates for the limit of TFR → ∞.
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of the forward interest rate, in particular its Lagrangian, are functions of the HJM
combination.

There needs to be a term in the Lagrangian that constrains the change of shape
of the forward interest rates in the future time direction x. Sharp changes in the
shape of the forward interest rates need to be attenuated because the interest yield
curve is not expected to change suddenly. The existence of a risk-neutral measure
requires that the forward interest rates’ Lagrangian contains only derivative terms
in future time x [12]. Such systems have been studied in [81] and are said to be
strings with finite rigidity.

The forward interest rates’ Lagrangian has a piece Lrigidity that is of the form
(∂2f /∂x∂t)2, with rigidity parameter μ quantifying the strength of this term. One
has to further include yet another term in the Lagrangian, namely the stiffness term
Lstiffness, which has the form (∂3f/∂x2∂t)2; this term is needed for suppressing
fluctuations that cause discontinuities in the slope of a correlation of forward interest
rates [16].

Keeping in mind the considerations discussed above, the ‘stiff’ Lagrangian
density L[f ] for the bond forward rates is given by [12, 16]

L[f ] = Lkinetic[f ] + Lrigidity[f ] + Lstiffness[f ] (5.6)

= −1
2

⎡⎣( ∂f (t ,x)
∂t

− α(t , x)
σ (t , x)

)2

+ 1
μ2

{
∂

∂x

(
∂f (t ,x)
∂t

− α(t , x)
σ (t , x)

)}2

+ 1
λ4

{
∂2

∂x2

(
∂f (t ,x)
∂t

− α(t , x)
σ (t , x)

)}2
⎤⎦

− ∞ ≤ f (t , x) ≤ +∞ (5.7)

The Lagrangian is quadratic in the forward interest rates and can be analytically
studied using Gaussian integrations.1

In summary, forward interest rates are modeled by a two-dimensional quantum
field, with a calendar and future time dependent drift velocity α(t , x) and effec-
tive ‘mass’σ(t , x); rigidity and stiffness parameters are μ and λ, respectively. For
pricing options, the drift term α(t , x) is completely determined by the requirement
of obtaining a risk-neutral evolution of the forward interest rates. The quantities
σ(t , x), μ, and λ are free parameters of the theory. Unlike the HJM model where

1 The terms linear, Gaussian, and free quantum fields are used interchangeably. Nonlinear generalizations of the
Gaussian model with stochastic volatility that is a function of the forward interest rates are discussed in [12, 13];
the formulation can be further generalized to the case of linear forward rates with (nonlinear) stochastic volatility
being another independent quantum field.
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a functional form is usually assumed for the volatility function σ(t , x), in the quan-
tum finance approach the volatility function is determined from the market. In the
limit ofμ → 0, the HJM model is recovered (up to a rescaling), which corresponds
to an infinitely rigid interest yield curve.

A remarkable fact about Eq. (5.6) is that only the time derivative of the forward
interest rates, that is ∂f (t , x)/∂t , appears in the Lagrangian. It will be shown in
Chapter 15 that this translates into a Hamiltonian that has only kinetic terms and
no (potential) terms (that depend on f (t , x)).

Since the field theory is defined on a finite domain T , as shown in Figure 5.1(a),
the boundary conditions need to be specified on all the four boundaries of the finite
parallelogram T .

• Fixed (Dirichlet) initial and final conditions
The initial and final (Dirichlet) conditions in the time direction are given by

t = Ti : Ti <x < Ti + TFR : f (Ti , x) (5.8)

: specified initial forward rate curve

t = Tf : Tf <x< Tf + TFR : f (Tf , x) (5.9)

: specified final forward rate curve

• Free (Neumann) boundary conditions
To specify the boundary condition in the maturity direction, one needs to analyze the
action given in Eq. (5.4) and impose the condition that there are no surface terms in
the action. The absence of surface terms is a necessary condition for the existence of a
Hamiltonian. A straightforward analysis yields the following Neumann conditions

Ti < t < Tf ,
∂

∂x

(
∂f (t ,x)
∂t

− α(t , x)
σ(t , x)

)
= 0 (5.10)

: x = t or x = t + TFR (5.11)

The quantum field theory of the bond forward interest rates, for the finite domain
T , is defined by the Feynman path integral

Z =
∫
Df eS[f ] (5.12)∫

Df ≡
∏

(t ,x)εT

∫ +∞

−∞
df (t , x) (5.13)

eS[f ]/Z is the probability for different field configurations to occur when the
functional integral over f (t , x) is performed.
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The forward interest rates, starting from some initial calendar time t = t0 can,
in principle, be defined into the infinite future calendar time, that is to t = ∞.
Since all options mature at some finite future calendar time, the limit of t = ∞ will
not be necessary. On the other hand, the maximum future time t + TFR is so far
in the future that the limit of TFR → ∞ is taken for most calculations. Hence,
the domain T of the forward rates is extended, as shown in Figure 5.1(b), to a
semi-infinite parallelogram that is bounded by parallel lines t = Ti and t = Tf and
by the straight line x = t (since forward interest rates exist only for future time
x > t).

5.4 Velocity quantum field A(t, x)

The action S[f ] expressed in terms of the forward interest rates, given in Eq. (5.4) is
suitable for studying many properties of the debt market. In particular, in Chapter 15
the Hamiltonian of the interest rates is derived from S[f ]; in Chapter 16 the algo-
rithm for evaluating the coupon bond American option price is based on S[f ]. It
is, however, simpler for many computational purposes to change variables from
quantum field f (t , x) to quantum field A(t , x), which is the drift adjusted velocity
of the forward interest rates.

Recall from Eq. (5.1) that A(t , x) is related to f (t , x) by the transformation2

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)A(t , x)

The quantum field theory is defined by a functional integral over all configurations
of A(t , x) with the partition function given by

Z =
∫
DAeS[A] (5.14)

The action, in terms of the A(t , x) field, is given by

S[A] =
∫
T
L[A] (5.15)

= −1
2

∫ ∞

t0

dt

∫ t+TFR

t

dx

{
A2(t , x) + 1

μ2

(
∂A(t , x)
∂x

)2

+ 1
λ4

(
∂2A(t , x)
∂2x

)2}

The action S[A] given in Eq. (5.15) has no time derivative couplings. For each
instant t , theA(t , x) is equivalent to a quantum mechanical system. This fact has far-
reaching consequences. It is shown in Section 5.10 that absence of time derivatives

2 The Jacobian of the above transformation is a constant.
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leads to the Wilson expansion for A(t , x). This expansion is the mathematical basis
for a generalization of Ito calculus; in particular, the Wilson expansion yields a
differential derivation of the martingale condition in Section 5.12 as well as of
Libor’s drift in Section 6.7.

The field A(t , x), from Eq. (5.10), satisfies Neumann boundary conditions
given by

∂A(t , x)
∂x

|x=t = 0 = ∂A(t , x)
∂x

|x=t+TFR (5.16)

The quantum field variables at the boundary x = t and x = t+TFR , namelyA(t , t)
and A(t , t + TFR) take all possible values, and result in the Neumann boundary
conditions given above. In other words, the values of A(t , x) on the boundary of
T are integration variables [12].

On integrating the future time variable in the action S[A] by parts, the Neumann
boundary conditions ensure that there are no surface terms and yield

S[A] = −1
2

∫
T
A(t , x)

(
1 − 1

μ2
∂2

∂x2 + 1
λ4

∂4

∂x4

)
A(t , x) (5.17)

Amore general Gaussian Lagrangian, which will be useful in studying the empir-
ical behavior of interest rate instruments, is nonlocal in future time x and has the
form

L(A) = −1
2
A(t , x)N−1(t , x, x′)A(t , x′) (5.18)

The HJM model, obtained in the limit of μ, λ → 0, leads to a drastic truncation
of the full quantum field theory. The HJM model considers only the fluctuations of
the average value of the quantum field A(t , x) and, in effect, ‘freezes-out’ all the
other fluctuations of A(t , x). It is shown in [12] that, in the limit of μ → 0, the
HJM model emerges from the field theory model in the following manner

∂f

∂t
(t , x)

∣∣∣
HJM

= α(t , x)+ σ(t , x)× 1
TFR

∫ t+TFR

t

dxA(t , x)

= α(t , x)+ σ(t , x)R(t)

where R(t) = ∫ t+TFR
t

dxA(t , x)/TFR is white noise.
One can think of the field A(t0, x), at some instant t0, as giving the position of a

‘string’ [85], as shown in Figure A.2. The action S[A] given in Eq. (5.15) allows
all points x of the field A(t0, x) to fluctuate independently and can be thought of
as a ‘string’ with rigidity equal to 1/μ2. In the ‘string’ language, the HJM model
of forward interest rates is a string with infinite rigidity.
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5.5 Generating functional for A(t, x): propagator

The action for A(t , x), from Eq. (5.17) is given by

S[A] = −1
2

∫
T
A(t , x)D−1(x, x′; t)A(t , x) (5.19)(

1 − 1
μ2

∂2

∂x2 + 1
λ4

∂4

∂x4

)
D(x, x′; t) = δ(x − x′) + Neumann B.C. (5.20)

The complete content of a quantum field is contained in its generating functional
defined by

Z[h] = E

[
exp

{∫ ∞

t0

dt

∫ ∞

t

dxh(t , x)A(t , x)
}]

Functional differentiation of Z[h] by h(t , x), discussed in Section A.5, and setting
h(t , x) = 0 yields all the correlation functions of A(t , x).

Quantum field A has a quadratic Lagrangian, as given in Eq. (5.20). Hence,
the generating functional is evaluated exactly by Gaussian integration, reviewed in
Section A.3 and yields the following

Z[h] = 1
Z

∫
DA e

S[A]+∫∞
t0
dt
∫∞

0 dzh(t ,z)A(t ,z)

= exp
(

1
2

∫ ∞

t0

dt

∫ ∞

t

dxdx′h(t , z)D(x, x′; t)h(t , x′)
)

(5.21)

The propagator (connected quadratic correlator) of the A(t , x) quantum field is
given by

E
[
A(t , z)A(t ′, z′)

] = 1
Z

∫
DAeS[A]A(t , z)A(t ′, z′)

= δ2

δh(t , x)δh(t ′, x′)
Z[h]

∣∣∣
h=0

= δ(t − t ′)D(x, x′; t) (5.22)

The propagator δ(t− t ′)D(x, x′; t) is of central importance in the study of quantum
fields. In fact, for Gaussian quantum fields it can be shown that the propagator
encodes the full content of its quantum field theory [95].

Recall from Eq. (5.1) that A(t , x) is related to f (t , x) by

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)A(t , x)
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Hence3

E

[
∂f

∂t
(t , x)

]
= E[α(t , x)] = α(t , x)

E

[
∂f

∂t
(t , x)

∂f

∂t ′
(t ′, x′)

]
c

= σ(t , x)σ (t ′, x′)E[A(t , x)A(t ′, x′)] (5.23)

= δ(t − t ′)σ (t , x)D(x, x′; t)σ (t , x′) (5.24)

showing that ∂f (t , x)/∂t has nontrivial correlations for future time x.

5.6 Future market time

The empirical analysis of forward interest rates leads to a further generalization of
the interest rates’ Lagrangian. Remaining future time θ = x − t is not what the
market traders and practitioners perceive; instead, a modified form of time, called z:
future market time, is what determines the price of debt instrument options.

The defining equation for future market time z(θ) is given by

∂f

∂t
(t , t + θ) = α(t , z(θ))+ σ(t , z(θ))A(t , z(θ)); θ = x − t

and which yields the following representation for zero coupon bonds

B(t , T ) = exp
{
−
∫ T−t

0
dθf (t , t + θ)

}
In Chapter 7 it is shown that market data imply a future time of the form z = θη,

where η is a dimensionless number with η < 1. The constants μ̃, λ̃, which are more
natural for the z variable, are defined as follows

z = (x − t)η = θη

λz = [λ̃z]η ; μz = [μ̃z]η : dimensionless

dimension of μ̃ = dimension of λ̃ = 1/time

The stiff Lagrangian for the velocity field A(t , x) is given by

L[A] = −1
2

{
A2(t , z)+ 1

μ2

(
∂A(t , z)
∂z

)2

+ 1
λ4

(
∂2A(t , z)
∂2z

)2}
(5.25)

The action S[A] of the Lagrangian, for TFR → ∞ yields the following

S[A] =
∫ Tf

Ti

dt

∫ ∞

0
dzL[A] (5.26)

3 Note the connected correlation of AB is given by E[AB]c = E[AB] − E[A]E[B].
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Suppose one were to write a Lagrangian in remaining future time x − t such
that it produces the results of the Lagrangian with market time given in Eq. (5.26).
Such a Lagrangian would need to be nonlinear, having new terms in addition to
ones given in Eq. (5.17). By introducing market time one is, in effect, describing the
forward interest rates with a nonlinear Lagrangian; all the nonlinearities are encoded
in market time, with the quantum field A(t , z) remaining Gaussian. Hence, the
Lagrangian given in Eq. (5.26) is pseudo-Gaussian, being nonlinear when expressed
in terms of the θ-variable.

5.7 Stiff propagator

Consider the special case of the stiff Lagrangian with η = 1, that is z = x − t; the
case of η �= 1 will be derived by a change of variables from the simpler case. The
propagator is given by4

G(x, x′; t) = λ4 < x| 1
λ4 + (λ2/μ)2p2 + p4 |x′ > (5.27)

where p2 ≡ − ∂2

∂x2

Define new variables

θ± = θ ± θ ′; z(θ) = θη; z′ = z(θ ′)
θ = x − t; θ ′ = x′ − t

α± = λ4

2μ2

[
1 ±

√
1 − 4

(μ
λ

)4
]

Eq. (5.27) yields [12]

G(θ+; θ−) =
(

λ4

α+ − α−

)[
1
α−
D−(θ+; θ−)− 1

α+
D+(θ+; θ−)

]
(5.28)

where

D±(θ+; θ−) =
√
α±
2

[
e−

√
α±θ+ + e−

√
α±|θ−|] (5.29)

The stiff propagator for η �= 1 is given by

D(z, z′; t) = G(z(θ+); z(θ−)); z(θ±) = z(θ)± z(θ ′) (5.30)

4 Henceforth TFR → ∞.
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All the pricing formulas for interest rate options depend on the following:

• The volatility function σ(t , x)
• Parameters μ, λ, η in the Lagrangian and
• The initial term structure f (t0, x)

For notational simplicity and unless it is necessary otherwise, only the case of
η = 1 will be considered; in other words, all integrations over z are replaced with
those over future time x. For η = 1 the dimension of the quantum field A(t , x)
is 1/time and volatility σ(t , x) of the forward interest rates also has dimension of
1/time.

In many cases, where an empirical analysis of an interest option is carried
out, the explicit value of the propagator D(z, z′; t) is not used. Instead, only the
Gaussian property of the Lagrangian is used. In particular, the effective prop-
agator that describes the market behavior of interest rate options is given by
M(x, x′; t) = σ(t , x)D(x, x′; t)σ (t , x′). In the empirical studies of swaptions
carried out in Chapter 12, M(x, x′; t) is evaluated directly from market data.

The expression for D(z, z′; t) given in Eq. (5.30) is discussed in Chapter 7 and
is shown to provide a very accurate description of the correlation of the forward
interest rates for both the Libor and Euribor forward interest rates. The stiff propa-
gator’s prediction on the correlation function of the changes in the forward interest
rates matches market data to an accuracy of over 99%.

5.8 Integral condition for interest rates’ martingale

The integral martingale condition for zero coupon bonds is given in Eq. (3.4) as
follows

B(t0, T ) = E[e−
∫ t∗
t0
r(t)dt

B(t∗, T )] (5.31)

and has the following functional integral representation in quantum field theory

B(t0, T ) = 1
Z

∫
Dfe

− ∫ t∗
t0
r(t)dt

B(t∗, T )eS[f ] (5.32)

A change of variables from f (t , x) to A(t , x) is given, from Eq. (5.1), by

f (t , x) = f (t0, x)+
∫ t ′

t0

dt ′α(t ′, x)+
∫ t ′

t0

dt ′σ(t ′, x)A(t ′, x)
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Figure 5.2 (a) Shaded trapezoidal domain T of the forward interest rates required
for money market numeraire martingale condition. (b) Shaded rectangular domain
R of the forward interest rates required for forward numeraire martingale
condition.

Eqs. (5.1), (5.31), and (5.32) yield5

exp
∫
T
α(t , x) = 1

Z

∫
DAe−

∫
T σ(t ,x)A(t ,x)eS[A] (5.33)

= exp
1
2

∫ t∗

t0

dt

∫ T

t

dxdx′σ(t , x)D(x, x′; t , TFR)σ (t , x′) (5.34)

where the last equation follows from the generating functional given in Eq. (5.21).
The trapezoidal domain T , as shown in Figure 5.2(a), is the domain of the forward
interest rates required for carrying out the calculation.

Dropping the time integration in Eq. (5.34) yields∫ T

t

dxα(t , x) = 1
2

∫ T

t

dxdx′σ(t , x)D(x, x′; t , TFR)σ (t , x′) (5.35)

Differentiating the above expression with respect to T yields the drift velocity

α(t , x) = σ(t , x)
∫ x

t

dx′D(x, x′; t , TFR)σ (t , x′) (5.36)

The drift α(t , x) obtained in Eq. (5.36) is for the money market numeraire. One
can, instead of the money market numeraire, choose the forward bond numeraire
given by the zero coupon bond B(t , t∗); t∗: fixed. For the forward bond numeraire,

5 Integration over the trapezoidal domain T is defined by
∫
T = ∫ t∗

t0
dt
∫ T
t dx.
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the drift, given by αF (t , x), is fixed by the martingale condition similar to Eq. (3.8),
namely that

B(t0, T )
B(t0, t∗)

= EF

[
B(t∗, T )
B(t∗, t∗)

]
= EF [B(t∗, T )]

⇒ B(t0, T ) = B(t0, t∗)EF [B(t∗, T )]

A calculation similar, but simpler, to the one for obtaining the drift for the money
market numeraire gives the drift αF (t , x). The domain required for the forward
numeraire calculation is given in Figure 5.2(b) and yields

αF (t , x) = σ(t , x)
∫ x

t∗
dx′D(x, x′; t , TFR)σ (t , x′) (5.37)

For most cases, the subscript F in the drift and expectation value will be omitted
as it will be clear from the context which numeraire is being used.

In summary, the martingale condition determines the drift α(t , x) in the action
S[A].6

5.9 Pricing kernel and path integration

Consider a European option on the forward interest rates that matures at calendar
time t∗ and has a payoff function P[f (t∗, ·)].7 The price of the option at time t0,
using the forward numeraire, is given from Eq. (3.8), by the following

C[t0, t∗;f (t0, ·)] = B(t0, t∗)
∫
Df∗K

[
f (t0, ·);f (t∗, ·)]P[f (t∗, ·)]

∫
Df∗ ≡

+∞∏
x=t∗

∫ +∞

−∞
df (t∗, x)

The pricing kernel K
[
f (t0, ·);f (t∗, ·)], expressed as a Feynman path integral, pro-

vides an exemplar of the path integral as a computational tool. The pricing kernel
is the conditional probability of the occurrence of the initial forward interest rates
f (t0, ·), given the occurrence of the final values f (t∗, ·). The path integral is a sum
over all possible configurations of the forward interest rates that start with f (t0, ·)

6 The result obtained here has been obtained using path integration. A Hamiltonian derivation is given of the drift
in Section 9.3.

7 The notation f (t , ·)means that the quantity in question depends on all the forward interest rates at time t , namely
on f (t , x); x ∈ [t , t + TFR].
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and end at f (t∗, ·). It is convenient to evaluate the path integral using the velocity
field A(t , x); from Eq. (5.1)

f (t∗, x) = f (t0, x)+
∫ t∗

t0

dtα(t , x)+
∫ t∗

t0

dtσ (t , x)A(t , x)

In the equation above, all configurations ofA(t , x) have the initial condition f (t0, ·)
built into the change of variables. The final condition has to be imposed on the path
integral, which is implemented by a Dirac-delta function.

Hence, the pricing kernel is given by

K
[
f (t0, ·);f (t∗, ·)] = 1

Z

∫
DA

∏
t∗≤x≤∞

δ

[
F(x)−

∫ t∗

t0

dtσ (t , x)A(t , x)
]
eS[A]

F(x) = f (t∗, x)− f (t0, x)−
∫ t∗

t0

dtα(t , x)

S[A] = −1
2

∫ t∗

t0

dt

∫ ∞

t

dxA(t , x)D−1(x, x′; t)A(t , x′)

where the action is given in Eq. (5.19). The Dirac-delta function is represented as
follows∏
t∗≤x≤∞

δ

[
F(x)−

∫ t∗

t0

dtσ (t , x)A(t , x)
]

=
∫
DKe

i
∫
x k(x)

[
F(x)−∫ t∗t0 dtσ (t ,x)A(t ,x)]

∫
DK = C

∏
t∗≤x≤∞

∫ +∞

−∞
dk(x);

∫ ∞

t∗
dx ≡

∫
x

where C is a normalization constant.
The Gaussian path integral

∫
DA can be performed exactly using the generating

functional given in Eq. (5.21) and yields

K
[
f (t0, ·);f (t∗, ·)] =

∫
DKei

∫
x k(x)F (x)e

− 1
2
∫
x,x′ k(x)M(x,x′)k(x′)

= N exp
{
−1

2

∫
x,x′

F(x)M−1(x, x′)F (x′)
}

M(x, x′) =
∫ t∗

t0

dtσ (t , x)D(x, x′; t)σ (t , x′) (5.38)

The normalization constantN = N (t0, t∗, σ(t , x),D) can be evaluated by a detailed
calculation; it can also be obtained by demanding that the pricing kernel obeys the
composition law for conditional probabilities [47].
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5.9.1 Infinitesimal limit

Consider an infinitesimal transition from time t to time t∗ = t + ε. This yields,
from Eq. Eq. (5.38)

M(x, x′) → εσ (t , x)D(x, x′; t)σ (t , x′)

⇒ M−1(x, x′) → 1
ε

1
σ(t , x)

D−1(x, x′; t) 1
σ(t , x)

F (x) → Fε(x) = f (t + ε, x)− f (t , x) − εα(t , x)

K
[
f (t , ·);f (t + ε, ·)] →

N exp
{
− 1

2ε

∫
x,x′

Fε(x)

σ (t , x)
D−1(x, x′; t) Fε(x

′)
σ (t , x′)

}
(5.39)

Consider the action for infinitesimal time; to simplify the notation, define the
following

∂f (t , x)
∂t

= 1
ε
[f (t + ε, x)− f (t , x)]

Aε(t , x) = 1
ε

[
f (t + ε, x)− f (t , x)− εα(t , x)

] = 1
ε
Fε(x)

From Eq. (5.19), the time integral in the action reduces to ε and yields

Sε[f ] = ε

∫ ∞

t

dxL
[
f (t , x);f (t + ε, x)

]
= −ε

2

∫ ∞

t

dxdx′Aε(t , x)D−1(x, x′; t)Aε(t , x′)

� − 1
2ε

∫ ∞

t

dxdx′ Fε(x)
σ (t , x)

D−1(x, x′) Fε(x
′)

σ (t , x′)
(5.40)

On comparing Eq. (5.39) with Eq. (5.40), it is seen that the pricing kernel for ε time
evolution is simply the action for infinitesimal time, namely that

K
[
f (t , ·);f (t + ε, ·)] = N exp

{
Sε[f ]

}
= N exp

{
ε

∫ ∞

t

dxL
[
f (t , x);f (t + ε, x)

]}
(5.41)

The pricing kernel will be given a Hamiltonian interpretation in Chapter 15. The
American option’s pricing will be seen, in Sections 16.2 and 16.5, to hinge on the
properties of the pricing kernel of the forward interest rates.

Eq. (5.41) has been derived in the context of Gaussian quantum fields for which
the path integral can be explicitly evaluated. However, Eq. (5.41) is of great gen-
erality and holds true for any action for which a Lagrangian exists; Eq. (5.41)
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states that the pricing kernel, or more technically, the conditional probability, for
infinitesimal time is, up to a normalization, given by the exponential of the action
for infinitesimal time. In physics, Eq. (5.41) is called the Dirac–Feynman relation.

5.10 Wilson expansion of quantum field A(t, x)

Modeling in finance widely uses the concept of stochastic differential equations
and of Ito calculus. The Wilson expansion of quantum fields is a very general
technique that allows one to isolate the singularities in the product of quantum fields
[93, 94]. In the context of mathematical finance, the Wilson expansion provides a
generalization of Ito calculus to the case where the stochastic phenomenon is driven
by the two-dimensional Gaussian quantum field A(t , x) [3].

The time derivative of various quantities like the underlying security S(t) or
stochastic volatility are generically expressed as follows

dS(t)

dt
= μ(t)+ σ(t)R(t)

Ito’s stochastic calculus, for discrete time t = nε, is a result of the following
identity [12]

E[R(t)R(t)] = δ(t − t ′) ⇒ R2(t) = 1
ε

+O(1) (5.42)

The singular piece of R2(t) is deterministic, namely equal to 1/ε; all the random
terms that occur for R2(t) are finite as ε → 0.

Interest rate models need to incorporate future time x and both the HJM [56]
and BGM–Jamshidian [32, 62] models are expressed as functions of white noise,
given by

∂f (t , x)
∂t

= α(t , x) + σ(t , x)R(t) (5.43)

1
L(t , Tk)

∂L(t , Tk)
∂t

= ζk(t)+ γk(t)R(t); Tk = 	k (5.44)

Note that future time x has been introduced in the HJM and BGM models only in
the drift and volatility of the interest rates term structure, and the same single white
noise R(t) drives the entire forward interest rates’ curve.

The two-dimensional quantum field A(t , x) is an integration variable for each
t and each x. For Gaussian quantum fields such as A(t , x) that have a quadratic
action, one can give differential formulation of the theory of forward interest rates
similar to HJM and BGM. This is possible because the full content of a Gaussian
(free) quantum field, as discussed in Eq. (5.22), is encoded in its propagator.
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The quantum finance differential formulation of Libor and the bond forward
interest rates – generalizing the HJM and BGM–Jamshidian models – is given by
‘promoting’white noiseR(t) to a two-dimensional quantum fieldA(t , x) and yields
the following

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x) (5.45)

f (t , x) = f (t0, x)+
∫ t

t0

dtα(t , x)+
∫ t

t0

dtσ (t , x)A(t , x)

1
L(t , Tk)

∂L(t , Tk)
∂t

= ζk(t)+
∫ Tk+1

Tk

dxγ (t , x)AL(t , x)

E[A(t , x)A(t ′, x′)] = δ(t − t ′)D(x, x′; t)

Libor L(t , Tk) and quantum field AL(t , x) are discussed in detail in Chapter 6. An
empirical analysis of Libor data, carried out in Chapter 7, shows that the quantum
fieldAL(t , x)driving Libor is also defined by a stiff Lagrangian, but with parameters
and volatilities that are different from A(t , x).

Similar to white noise, the correlation function E[A(t , x)A(t ′, x′)] is infinite for
t = t ′ (equal calendar time). The product of nonlinear (non-Gaussian) quantum
fields is the subject matter of what is called the short ‘distance’ Wilson expansion
[93]. The singular product of two Gaussian quantum fields is the simplest case of
the Wilson expansion. The singularity of the correlation function in the product of
the quantum field A(t , x), similar to Eq. (5.42), is expressed as follows

A(t , x)A(t , x′) = 1
ε
D(x, x′; t) +O(1) (5.46)

All the fluctuating components, which are contained in A(t , x)A(t , x′), are regular
and finite as ε → 0. The correlation of A(t , x) is singular for t = t ′ – very much
like the singularity of white noise R(t).

Since A(t , x) is an integration variable for each x and each t , one may question
as to how one can assign it a deterministic numerical value as in Eq. (5.46)? What
Eq. (5.46) means is that in any correlation function, wherever a product of fields is
at the same time, namely A(t , x)A(t , x′), then – to leading order in ε – the product
can be replaced by the deterministic quantity D(x, x′; t)/ε. In terms of symbols,
Eq. (5.46) states the following

E[A(t1, x1)A(t2, x2) . . .A(t , xn)A(t , xn+1) . . .A(tN , xN)]
= 1
ε
E[A(t1, x1)A(t2, x2) . . .A(tn−1, xn−1)D(xn, xn+1; t)

× A(tn+2, xn+2) . . .A(tN , xN)] +O(1)
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As discussed in Section 7.3, one can choose the normalization of σ(t , x) so that
D(x, x; t) = 1

ε
and which yields from Eq. (5.46)

A2(t , x) = 1
ε2 +O(1) (5.47)

showing even more clearly the similarity of Eqs. (5.42) and (5.47).
The HJM model is a special case of quantum finance, given by taking the limit

A(t , x) → R(t); D(x, x′; t) → 1 (5.48)

⇒ E[A(t , x)A(t ′, x′)] → E[R(t)R(t)] = δ(t − t ′)

Since Eqs. (5.42) and (5.46) have a similar singularity structure, one expects
that there should be a natural generalization of Ito calculus for Gaussian quantum
fields. The singularity of the equal time quadratic product of the quantum field,
in particular, leads to a differential formulation of the martingale condition for
discounted zero coupon bonds and is discussed in Section 5.12.

5.11 Time evolution of a bond

To illustrate the content of the singularity in the equal time quadratic product of the
quantum field, namely A(t , x)A(t , x′) given in Eq. (5.46), a concrete analysis is
carried out of the evolution of zero coupon bond – with and without discounting.

Consider a zero coupon bond. Eq. (5.2) yields the following

B(t∗, T ) = exp
{
−
∫ T

t∗
dxf (t∗, x)

}
; F(t0, t∗, T ) = exp

{
−
∫ T

t∗
dxf (t0, x)

}
B(t∗, T ) = F(t0, t∗, T )

× exp
{
−
∫ t∗

t0

dt

∫ T

t∗
dxα(t , x)−

∫ t∗

t0

dt

∫ T

t∗
dxσ (t , x)A(t , x)

}
(5.49)

The domain of integration is a rectangle R, equal to [t0, t∗] × [t∗, T ] and shown in
Figure 5.2(b).

To calculate the time evolution of the bond one needs to compute the time deriva-
tive of exp{− ∫ t∗

t0
dt
∫ T
t∗ dxσ (t , x)A(t , x)}; to do this computation one needs to take

account of the fact that the quadratic power of A(t , x) is singular. Consider8

exp
{
+
∫ t∗

t0

dt

∫ T

t∗
dxσ (t , x)A(t , x)

}
∂

∂t∗
exp

{
−
∫ t∗

t0

dt

∫ T

t∗
dxσ (t , x)A(t , x)

}
= 1
ε

[
exp

{
− ε

∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ ε

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)
}

− 1
]

8 Note, on the right-hand side of the equation, the positive sign of the second term in the exponent.
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Expanding the exponential to second order yields all the nontrivial terms, as
follows9

1
ε

[
exp

{
−ε

∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ ε

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)
}

− 1
]

= −
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)

+ ε

2

(∫ T

t∗
dxσ (t∗, x)A(t∗, x)

)2

+O(ε)

= −
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)

+ 1
2

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t∗)

since, from Eq. (5.46)

ε

(∫ T

t∗
dxσ (t∗, x)A(t∗, x)

)2

=
∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t)

M(x, x′; t∗) ≡ σ(t∗, x)σ (t∗, x′)D(x, x′; t)

Collecting all the results yields

exp
{

+
∫ t∗

t0

dt

∫ T

t∗
dxσ (t , x)A(t , x)

}

× ∂

∂t∗
exp

{
−
∫ t∗

t0

dt

∫ T

t∗
dxσ (t , x)A(t , x)

}

= −
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)

+ 1
2

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t∗)

The only term in the zero coupon bond that needs to be examined carefully is the
one involving A(t , x); the other terms all obey the usual rules of calculus. Hence,

9 The second term in the exponential, namely
∫ t∗
t0
dtσ (t , t∗)A(t , t∗), does not contribute to the singular piece;

when this term is squared the singular term coming from the quadratic product of A(t , x) at equal time is
canceled by the vanishing integration measure.
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since ∂F (t0, t∗, T )/∂t∗ = +f (t0, t∗)F (t0, t∗, T )

1
B(t∗, T )

∂B(t∗, T )
∂t∗

= f (t0, t∗)−
∫ T

t∗
dxα(t∗, x)+

∫ t∗

t0

dtα(t , t∗)

−
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+

∫ t∗

t0

dtσ (t , t∗)A(t , t∗)

+ 1
2

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t∗)

Using the no-arbitrage condition onα(t , x) given in Eq. (5.36) and combining terms
using Eq. Eq. (5.2) yields the result

∂B(t∗, T )
∂t∗

=
[
f (t∗, t∗)−

∫ T

t∗
dxσ (t∗, x)A(t∗, x)

]
B(t∗, T ) (5.50)

⇒ E

[
∂B(t∗, T )
∂t∗

]
= f (t∗, t∗)B(t∗, T ) �= 0

The zero coupon bond is not a martingale since it has nonzero expectation value
and hence does not satisfy Eq. (A.17).

5.12 Differential martingale condition for bonds

A fundamental theorem of finance states that for a derivative instrument to have
a price that does not allow for any arbitrage opportunities, the instrument must
have a martingale evolution. The martingale condition, in turn, uniquely fixes the
drift term α(t , x). The drift term has been obtained in Eq. (5.36) using Gaussian
integration and is now re-derived using the differential formulation of the forward
interest rates given in Eq. (5.1). A derivation, similar to Section 5.11, involving the
ε approach is carried out to further illustrate and clarify the behavior of the quantum
field A(t , x).

The discounted zero coupon bond is given by

D(t∗, T ) ≡ exp
{
−
∫ t∗

t0

dtf (t , t)
}
B(t∗, T )

From Eq. (A.17), the differential formulation of the martingale condition requires
the following

E

[
∂D(t∗, T )
∂t∗

]
= 0 (5.51)
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It can be shown, similar to Eq. (5.49), that

D(t∗, T ) = B(t0, T )

× exp
{
−
∫ t∗

t0

dt

∫ T

t

dxα(t , x)−
∫ t∗

t0

dt

∫ T

t

dxσ (t , x)A(t , x)
}

(5.52)

The domain of integration of f (t , x) is over a trapezoid T shown in Figure 5.2(a).
In contrast, the domain of integration of f (t , x) for the (nondiscounted) zero
coupon bond, as given in Eq. (5.49), was over a rectangular domain R shown
in Figure 5.2(b).

The rate of change of the discounted zero coupon bond is given by

1
D(t∗, T )

∂D(t∗, T )
∂t∗

≡ 1
ε

[D(t∗ + ε, T )−D(t∗, T )]
D(t∗, T )

= 1
ε

[
exp

{
−ε

∫ T

t∗
dxα(t∗, x)− ε

∫ T

t∗
dxσ (t∗, x)A(t∗, x)

}
− 1

]

= −
∫ T

t∗
dxα(t , x)−

∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ ε

2

(∫ T

t∗
dxσ (t∗, x)A(t∗, x)

)2

and hence

1
D(t∗, T )

∂D(t∗, T )
∂t∗

(5.53)

= −
∫ T

t∗
dxα(t∗, x)−

∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ 1

2

∫ T

t∗
dxdx′M(x, x′; t∗)

The martingale condition given in Eq. (5.51) requires that the drift be zero and
hence, from E[A(t , x)] = 0, yields

0 =
∫ T

t∗
dxα(t∗, x)− 1

2

∫ T

t∗
dxdx′M(x, x′; t∗)

⇒ α(t , x) =
∫ x

t

dx′M(x, x′; t) = σ(t , x)
∫ x

t

dx′D(x, x′; t)σ (t , x′) (5.54)

This is the result obtained earlier, in Section 5.8, using Gaussian path integration.
Hence, from Eqs. (5.53) and (5.54)

∂D(t∗, T )
∂t∗

≡ ∂

∂t∗

[
exp

{
−
∫ t∗

t0

dtf (t , t)
}
B(t∗, T )

]
= −

[∫ T

t∗
dxσ (t∗, x)A(t∗, x)

]
D(t∗, T ) (5.55)
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The evolution of the discounted zero coupon bond satisfies the martingale condition
given in Eq. (5.51).

Due to the simple dependence on t∗ of T , the domain of integration of f (t , x)
forD(t∗, T ) as shown in Figure 5.2(a), one can derive the martingale condition for
the drift α(t , x) by directly differentiating on t∗; more precisely

exp
{
+
∫ t∗

t0

dt

∫ T

t

dxσ (t , x)A(t , x)
}
∂

∂t∗
exp

{
−
∫ t∗

t0

dt

∫ T

t

dxσ (t , x)A(t , x)
}

= −
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ 1

2

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t∗)

Directly differentiating the discounted bond given in Eq. (5.52) yields

1
D(t∗, T )

∂D(t∗, T )
∂t∗

= −
∫ T

t∗
dxα(t∗, x)

−
∫ T

t∗
dxσ (t∗, x)A(t∗, x)+ 1

2

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t∗)

Requiring that the drift be zero in the equation above for D(t∗, T ) yields the value
for α(t , x) given in Eq. (5.54) and one recovers Eq. (5.55).

The differential derivation of the martingale condition for zero coupon bonds
given in Eq. (5.54) is an example of the generalization of Ito calculus for the case
of the quantum field A(t , x).

5.13 HJM limit of forward interest rates

All the formulas for coupon and zero coupon bond options and derivatives have
expressions in quantum finance that are similar to the HJM model – when the instru-
ments are expressed in terms of the underlying forward interest rates f (t , x). The
difference emerges when one computes any expectation value – due to the dissim-
ilarity between the two-dimensional quantum field A(t , x) and white noise R(t).

The crucial difference is that, unlike the case in quantum finance, the forwards
interest rates in the HJM model are exactly correlated (in the future time direction).
To see this note10

E

[{
∂f (t , x)
∂t

− α(t , x)
}{

∂f (t ′, x′)
∂t ′

− α(t ′, x′)
}] ∣∣∣

HJM

= δ(t − t ′)σ (t , x)σ (t ′, x′)

10 The result is not changed for the N -factor model, in which case the right-hand side is given by
δ(t − t ′)∑i σi (t , x)σi (t

′, x′).
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In other words, the quantum finance model reduces to the HJM model for the
following limits

⇒ M(x, x′; t)
∣∣∣
HJM

= σ(x − t)D(x, x′; t)
∣∣∣
HJM

σ(x′ − t) = σ(x − t)σ (x′ − t)

The HJM limit can be taken of all the formulas derived in quantum finance by the
following prescription

A(t∗, x)
∣∣∣
HJM

→ R(t)

D(x, x′; t)
∣∣∣
HJM

→ 1

Hence, in the HJM model, the time evolution of the zero coupon bonds, from
Eq. (5.50), is given by

∂B(t∗, T )
∂t∗

∣∣∣
HJM

=
[
f (t∗, t∗)− R(t)

∫ T

t∗
dxσ (t∗, x)

]
B(t∗, T ) (5.56)

and, from Eq. (5.55), the time evolution of the discounted bond is given by

∂D(t∗, T )
∂t∗

∣∣∣
HJM

= −
[
R(t)

∫ T

t∗
dxσ (t∗, x)

]
D(t∗, T )

The HJM martingale condition, from Eq. (5.54), is similarly given by

αHJM(t , x) = σ(t , x)
∫ x

t

dx′σ(t , x′)

5.14 Summary

The quantum field theory of forward interest rates offers a different perspective
on the debt markets as well as providing a variety of analytical and computational
tools. It will be seen in later chapters that interest rate options are modeled by
nonlinear terms in the action S[A] that can be incorporated into the framework of
quantum field theory in a fairly straightforward manner.

The quantum finance formulation of the bond forward interest rates is based on
the concept of the Lagrangian, action, and path integrals. The instantaneous forward
interest rates f (t , x) are modeled as a two-dimensional quantum field defined on
a trapezoidal domain given by x ≥ t . A velocity field A(t , x) was introduced that
is also a two-dimensional quantum field and is the generalization of the concept of
white noise. A stiff Gaussian Lagrangian was written for determining the dynamics
of f (t , x). Introducing the concept of market time leads to a pseudo-Gaussian stiff
Lagrangian and will be seen to accurately describe the empirical behavior off(t , x).
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The path integral formulation of f (t , x) is a powerful tool for many computa-
tions; to illustrate this, the martingale condition for zero coupon bonds as well as
the pricing kernel for f (t , x) were derived using a path integral derivation. For an
infinitesimal time interval, the pricing kernel was shown to have a direct connec-
tion with the infinitesimal action. The path integral and Lagrangian framework are
useful for studying path independent coupon bond European options as well as path
dependent coupon bond options such as the Asian and American options.

The ‘short distance’ Wilson expansion was defined for A(t , x); the equal time
singularity in the correlation function of A(t , x), provided a generalization of Ito
calculus for the quantum field A(t , x). The Wilson expansion was used for calcu-
lating the evolution of zero coupon bonds and for deriving the drift of the forward
interest rates using the martingale condition.

The quantum formulation encodes the imperfect correlation of the bond forward
interest rates in an efficient and transparent manner. As will be demonstrated in the
chapters that follow, numerous calculations for a variety of derivative instruments
can be efficiently carried out using the quantum finance formulation of the bond
forward interest rates.



6
Libor Market Model of interest rates

Libor L(t , T ) is one of the primary interest rate instruments in the capital markets,
the other being Euribor. The term Libor will be used generically for all interest rates
on fixed deposits. The Libor Market Model (LMM) is defined in the framework of
quantum finance and leads to a key generalization: the Libors, for different future
times, are imperfectly correlated. A major difference between a forward interest
rates’ model and the LMM lies in the fact that the LMM is calibrated directly from
the observed market values forL(t , T ). The short distance Wilson expansion of the
Gaussian quantum field A(t , x) driving the Libors yields a derivation of the Libor
drift term that incorporates imperfect correlations of the different Libors [3]. The
logarithm of Libor φ(t , x) is defined and leads to a quantum field theory of Libor.
The Lagrangian and Feynman path integral are obtained for the log Libor quantum
field φ(t , x).

6.1 Introduction

Interest rates can be modeled using either the zero coupon bonds B(t , T ) or the
simple interest Libor L(t , T ). Both these approaches are, in principle, equiva-
lent but are quite different from an empirical, computational, and analytical point
of view.

One can take the view that there exists a single set of underlying forward interest
rates f (t , x) that can be used for modeling bothL(t , T ) andB(t , T ). The HJM [56]
approach, in fact, takes this view and the HJM’s quantum finance generalization
goes a long way in accurately modeling interest rate instruments [12]. However, the
HJM model and its quantum finance generalization have one serious shortcoming.
From Eq. (2.10), forward interest rates are strictly positive, that is f (t , x) ≥ 0.
The positivity of f (t , x) is intuitively obvious – and is also required by absence of
arbitrage. In contrast, both the HJM model and its quantum finance generalization,
given in Eqs. (4.38) and (5.1) respectively, allow f (t , x) to be negative with a finite
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probability – which implies, from Eqs. (2.15) and (2.16), that the simple interest
rate L(t;T1, T2) has a finite probability of being negative.

Giving up f (t , x) ≥ 0 does not pose a very serious problem for the bond sector
sinceB(t , T ) is strictly positive even for those configurations for whichf(t , x) ≤ 0.
However, for the interest rates sector of the debt market, a model that allows Libor to
be negative can yield results that allow for arbitrage – and hence are not permissible
as a consistent model for interest rate instruments. One needs to go beyond Gaussian
modeling of f (t , x) and instead develop a model based directly on Libor L(t , Tn).

The Libor Market Model (LMM) approach was pioneered by Bruce–Gatarek–
Musiela (BGM) [32] and Jamshidian [62], with many of its subsequent develop-
ments discussed by Rebonata [83, 84]. The LMM aims at modeling interest rates
in terms of debt instruments that are directly traded in the financial markets. In par-
ticular, forward interest rates are not directly traded, but, instead, what are traded
are (a) Libor and Euribor for fixed time cash deposits and (b) zero coupon bonds
B(t , T ) as well as coupon bonds. LMM takes the traded values of Libor L(t , T ) to
be the main ingredient in modeling interest rates – instead of deriving Libor from an
underlying Libor forward interest rates’ model. In the LMM, all Libors are strictly
positive: L(t , T ) > 0. Zero coupon bonds and the Libor forward interest rates are
derived from Libor. Strictly positive Libor has the added advantage that all zero
coupon bonds, and hence coupon bonds as well, are all strictly positive.

One of the biggest achievements of the LMM is a derivation of Black’s formula
for pricing interest rate caplets from an arbitrage free model – something that many
experts thought was not possible. Various extensions of the LMM have been made:
Anderson and Andresean [1] and Joshi and Rebonata [66] incorporate stochastic
volatility into the LMM, whereas Henry-Labordere [58] combines LMM with the
SABR model [54]. The calibration and applications of the BGM–Jamshidian model
have been extensively studied [33, 83].

In the BGM–Jamshidian approach, similar to the HJM modeling of the forward
interest rates, all Libors for different future times are exactly correlated. In contrast,
in the quantum finance formulation, Libors are driven not by white noise, but rather,
by the two-dimensional stochastic field AL(t , x). Libor velocity quantum field
AL(t , x) has the same stiff Lagrangian L[AL] as the bond velocity quantum
field A(t , x) given in Eq. (5.25), except that the parameters μL, λL, and νL have
different empirical values. As was the case for the bond forward interest rates
in Chapter 5, the value of all Libor instruments are given by averaging AL(t , x)
over all its possible values. Hence, AL(t , x) is mathematically equivalent to a
two-dimensional quantum field.

The quantum finance generalization of the LMM contains crucial correla-
tion terms reflecting the imperfect correlation of the different Libors and avoids
systematic errors that arise from the assumption of perfectly correlated Libors.
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The key link in deriving the quantum finance version of the LMM, and, in par-
ticular, of the Libor drift, is the singular property of the bilinear product of the
Gaussian quantum field AL(t , x). The equal time Wilson expansion of the bilinear
product of the quantum field AL(t , x), as discussed in Section 5.10, provides a
generalization of Ito calculus.

The LMM is driven by fL(t , x), the Libor forward interest rates, which are
distinct from both the empirical forward interest rates and the bond forward interest
rates. It will be shown that fL(t , x) has a nonlinear evolution equation with both, its
drift and volatility being stochastic. Libor forward interest rates are strictly positive
and nonsingular, being finite for all calendar and future time. It is more efficient
for describing Libor instruments to do a nonlinear change of independent variables
from fL(t , x) to L(t , Tn) and then to log Libor φ(t , x).

It is shown that, when the limit of perfectly correlated Libor is taken, the quantum
finance LMM reduces to the BGM–Jamshidian model, which, in turn, yields – in
the limit of zero Libor tenor (	 → 0) – the HJM model for the bond forward interest
rates.

6.2 Libor and zero coupon bonds

Libor zero coupon bonds BL(t , T ), derived from the Libor ZCYC are given in
Eq. (2.27). In terms of Libor forward interest rates fL(t , x)

BL(t , T ) = exp
{
−
∫ T

t

dxfL(t , x)
}

(6.1)

Libor zero coupon bonds BL(t , T ) are not actual instruments traded in the market
but rather a way of encoding the Libor ZCYC. As discussed in Section 2.13, the
price of a traded zero coupon Treasury Bond B(t , T ) is not equal to a Libor bond
BL(t , T ) due to TED among other reasons, but these differences will be ignored.
The subscript on BL(t , T ) will be dropped henceforth.

Libor forward interest rates, from Eqs. (2.20) and (2.21), are given by

L(t , Tn) = 1
	

[
exp

{∫ Tn+	

Tn

dxfL(t , x)
}

− 1
]

(6.2)

= B(t , Tn)− B(t , Tn+1)

	B(t , Tn+1)
(6.3)

The Libor rates are related to the zero coupon bonds by Eq. (6.3), namely that

B(t , T + 	) = B(t , T )
1 + 	L(t , T )

(6.4)
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(b)(a)

T0

T0

T0 Tn Tn +1

Tn Tn +1 Future time

Calendar time

t0 = T−k

T−k

Figure 6.1 (a) Libor future and calendar time lattice Tn = T0+	n; the tenor (Libor
time lattice spacing) is given by 	 = 90 days. (b) Libor future time lattice.

Eq. (6.4) provides a recursion equation that allows one to express B(t , T ) solely
in terms of L(t , T ). Note that Libors are only defined for the discrete future time
given by Libor future time T = Tn = n	, n = 0, ±1, ±2, . . . , ±∞. Calendar time
as well as the future Libor time lattice is shown in Figure 6.1(a) and the Libor future
time lattice is shown in Figure 6.1(b).

Hence, from Eq. (6.4)

B(t , Tk+1) = B(t , Tk)
1 + 	Lk(t)

= B(t , T0)

k∏
n=0

1
1 + 	Ln(t)

where L(t , Tn) ≡ Ln(t)

BondsB(t , T0) that have time t not at a Libor time 	k cannot be expressed solely
in terms of Libor rates. Zero coupon bonds that are issued at Libor time, say T0, and
mature at another Libor time Tk+1, since B(T0, T0) = 1, can be expressed entirely
in terms of Libor as follows

B(T0, Tk+1) =
k∏
n=0

1
1 + 	L(T0, Tn)

=
k∏
n=0

1
1 + 	Ln(T0)

(6.5)

6.2.1 Forward bond price and Libor

Let present time be t0 = T−k . Suppose a zero coupon bondB(T0, Tn+	) is going to
be issued at some future time T0 > T−k , with expiry at time Tn+	; the zero coupon
bond and its forward price are defined for Libor time and shown in Figure 6.2.
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T0

T0

F (t0, T0, Tn +1)

B (T0, Tn +1)

Tn Future time

Calendar time

t0=T−k

T−k

Figure 6.2 The zero coupon bond B(T0, Tn+1) is issued at T0 and expires at
Tn + 	. Its forward Libor bond price F(t0, T0, Tn+1) is given at (present) Libor
time t0 = T−k .

From Eqs. (2.14) and (6.5), the forward bond price is given by

F(t0, T0, Tn + 	) = B(t0, Tn+1)

B(t0, T0)

=
{

n∏
i=−k

1
1 + 	L(t0, Ti)

}/{ −1∏
i=−k

1
1 + 	L(t0, Ti)

}

=
n∏
i=0

1
1 + 	L(t0, Ti)

(6.6)

6.3 Libor Market Model and quantum finance

The Libor Market Model is defined in the framework of quantum finance. The
differential formulation of Libor is similar to the modeling of the bond forward
interest rates; the Libor Market Model is defined using the time evolution of the
Libor rates L(t , T ).

Recall that the quantum finance model of the bond forward interest rates f (t , x)
given in Eq. (5.1) – and its HJM limit – have a major unavoidable side effect:
there is a finite probability that f (t , x) can take negative values. Since, empirical
forward interest rates can never be negative, the Libor Market Model takes the view
that for the debt market one should replace the bond forward interest rates f (t , x)
by strictly positive Libor forward interest rates fL(t , x). These rates are used for
modeling all interest rate instruments and, in particular, yield all L(t , T ) as always
being positive.
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In the Libor Market Model, market interest rates L(T0, Tn) and coupon and zero
coupon bonds B(TN) and B(Tn, TN) – given at Libor times Tn, TN – are expressed
solely in terms of Libor L(T0, Tn), as in Eq. (6.5), without any direct reference to
the underlying Libor forward interest rates fL(t , x). Moreover, positive Libor rates
automatically yield coupon and zero coupon bonds that are strictly positive, as seen
in Eq. (6.5).

Modeling in finance widely uses the concept of stochastic differential equations;
the time derivative of various quantities like the underlying security S(t) is, for
example, expressed as follows

1
S(t)

dS(t)

dt
= a(t)+ σ(t)R(t)

E[R(t)] = 0; E[R(t)R(t ′)] = δ(t − t ′)

where R(t) is Gaussian white noise, a(t) is the drift, and σ(t) is the volatility.
The HJM and BGM–Jamshidian models of interest rates’ models are both

expressed as functions of white noise, given by

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)R(t) : HJM model (6.7)

1
Lk(t)

∂Lk(t)

∂t
= ζk(t)+ γk(t)R(t) : BGM–Jamshidian model (6.8)

where the volatility functions σ(t , x), γk(t) are deterministic. The drift α(t , x) is
deterministic in the HJM model, whereas ζk(t) is stochastic and depends on Libors
Lk(t) for the BGM–Jamshidian model.

Future time x and Tk have been introduced in both the HJM and BGM–
Jamshidian models only in the drift and volatility of the interest rates’term structure.
A single white noise R(t) drives the entire forward interest rates’ curve and
leads, as follows, to the following perfectly correlated rates in both the HJM and
BGM–Jamshidian models

E

[
∂f (t , x)/∂t − α(t , x)

σ (t , x)
∂f (t ′, x′)/∂t ′ − α(t ′, x′)

σ (t ′, x′)

]
= δ(t − t ′)

E

[
L−1
k (t)∂Lk(t)/∂t − ζk(t)

γk(t)

L−1
k′ (t

′)∂Lk′(t ′)/∂t ′ − ζk′(t ′)
γk′(t ′)

]
= δ(t − t ′)′ (6.9)

Note that the right-hand sides of the above equations are independent of x, x′ and
Tk , Tk′ respectively, showing perfect correlation in future time.
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The quantum finance formulation of Libor forward interest rates fL(t , x) – with
driftμ(t , x) and volatility v(t , x) that depend on fL(t , x) – is given by the following

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x) (6.10)

fL(t , x) = fL(t0, x)+
∫ t

t0

dtμ(t , x)+
∫ t

t0

dtv(t , x)AL(t , x) (6.11)

It will turn out that volatility v(t , x) ∝ [1 − exp{−	fL(t , x)}]. From Eq. (5.25)

L[AL] = −1
2

{
A2
L(t , z)+ 1

μ2
L

(
∂AL(t , z)

∂z

)2

+ 1
λ4
L

(
∂2AL(t , z)

∂2z

)2}
z = (x − t)νL

The correlation function and covariance, similar to Eq. (5.22), are given by

E[AL(t , x)AL(t
′, x′)] = δ(t − t ′)DL(x, x′; t)

Mv(x, x′; t) = v(t , x)DL(x, x′; t)v(t , x′) (6.12)

As expected, the Libor forward interest rates are imperfectly correlated

E

[
∂fL(t , x)/∂t − μ(t , x)

v(t , x)
∂fL(t

′, x′)/∂t ′ − μ(t ′, x′)
v(t ′, x′)

]
= δ(t − t ′)DL(x, x′; t)

: imperfectly correlated

6.4 Libor Martingale: forward bond numeraire

A wide class of numeraires can be used to render all traded assets into martingales.
The combination L(t , Tn)B(t , Tn+1), from Eq. (6.3), is equivalent to a portfolio of
zero coupon bonds and hence is a traded asset. By a suitable choice of the drift,
all traded assets L(t , Tn)B(t , Tn+1) – discounted by the numeraire – can be made
into martingales. Choose the zero coupon bond B(t , TI+1) as the forward bond
numeraire. The instruments Xn(t)

Xn(t) ≡ L(t , Tn)B(t , Tn+1)

B(t , TI+1)
: martingale (6.13)

are martingales for all values of n [53].
Note that, for n = I , the portfolio XI (t) = LI (t) ≡ L(t , TI ); hence the Libor

L(t , TI ) is a martingale for the forward bond numeraire given by zero coupon bond
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T0 Tn Tn +1

T0 Tn Tn +1

TI +1

TI +1

(i)

(ii)

Figure 6.3 Libor time lattice for the forward bond numeraire B(t , TI+1) with (i)
TI+1 < Tn and (ii) TI+1 > Tn.

B(t , TI+1). As shown in Figures 6.3 (i) and (ii), time Tn can be either less than,
equal to, or greater than TI .

In terms of the Libor forward interest rates the martingale is

Xn(t) = 1
	

[
exp

{
−
∫ Tn

TI+1

dxfL(t , x)
}

− exp
{
−
∫ Tn+1

TI+1

dxfL(t , x)
}]

(6.14)

Differentiating portfolio Xn(t) using Eq. (6.10) and the rules derived in
Section 5.11 yields

	
∂Xn(t)
∂t

= (6.15)[
−
∫ Tn

TI+1

dxμ(t , x)+ 1
2

∫ Tn

TI+1

dxdx′Mv(x, x′; t) −
∫ Tn

TI+1

dxv(t , x)AL(t , x)
]

×e−
∫ Tn
TI+1

dxfL(t ,x)

+
[∫ Tn+1

TI+1

dxμ(t , x)− 1
2

∫ Tn+1

TI+1

dxdx′Mv(x, x′; t) +
∫ Tn+1

TI+1

dxv(t , x)AL(t , x)
]

×e−
∫ Tn+1
TI+1

dxfL(t ,x)

Note that in obtaining ∂Xn(t)/∂t , no condition has been placed on drift μ(t , x) and
volatility v(t , x), which can be arbitrary nonlinear functions of fL(t , x).

The (discounted) bond portfolio Xn is a martingale, as discussed in Eq. (A.17),
if and only if

E

[
∂Xn(t)
∂t

]
= 0 (6.16)

The random terms in Eq. (6.15) are proportional to AL(t , x). Since E[AL(t , x)] =
0, the martingale condition given in Eq. (6.16) requires that the drift – namely,
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terms independent of AL(t , x)) – must be zero and yield

∫ Tn

TI+1

dxμI (t , x) = 1
2

∫ Tn

TI+1

dxdx′Mv(x, x′; t)

The martingale condition given above is satisfied by choosing the following
value for drift

μI (t , x) =
∫ x

TI+1

dx′Mv(x, x′; t) (6.17)

The result is similar to an earlier result given in Eq. (5.37), except that in Eq. (6.17)
the volatility v(t , x) is stochastic.

6.5 Time evolution of Libor

The main motivation for introducing the Libor Market Model is to have manifestly
positive interest rates and bonds. To ensure that the Libor rates L(t , TI ) are always
positive, it is sufficient to show that they are the exponential of real variables. To
obtain positive Libor rates requires a nontrivial drift; a quantum finance derivation
of the drift term is given in this section and generalizes earlier results of the BGM–
Jamshidian approach.

The drift term, as given in Eq. (6.17), is expressed in terms of the Libor forward
interest rates volatility function v(t , x). The main theoretical objective of the Libor
Market Model is to completely remove v(t , x) from the Libor evolution equation.
In particular, to express the drift of the Libor rates in terms of deterministic Libor
volatility γ (t , x) (defined later in Eq. (6.21)).

From the definition of Libor given in Eq. (6.2), choosingμ given in Eq. (6.10) to
be equal to the μI given in Eq. (6.17), and using the Wilson expansion for AL(t , x)
yields

L(t , Tn) = 1
	

[
exp

{∫ Tn+1

Tn

dxfL(t , x)
}

− 1
]

∂L(t , Tn)
∂t

= 1
	

[∫ Tn+1

Tn

dxμI (t , x)+ 1
2

∫ Tn+1

Tn

dxMv(x, x′; t)

+
∫ Tn+1

Tn

dxv(t , x)AL(t , x)
]

exp
{∫ Tn+1

Tn

dxfL(t , x)
}

(6.18)
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The drift for ∂L(t , Tn)/∂t , from Eq. (6.17), has the following simplification∫ Tn+1

Tn

dxμI (t , x)+ 1
2

∫ Tn+1

Tn

dxdx′Mv(x, x′; t)

=
∫ Tn+1

Tn

dx

[∫ Tn

TI+1

dx′ +
∫ x

Tn

dx′
]
Mv(x, x′; t) +

∫ Tn+1

Tn

dx

∫ x

Tn

dx′Mv(x, x′; t)

=
∫ Tn

TI+1

dx

∫ Tn+1

Tn

dx′Mv(x, x′; t)+
∫ Tn+1

Tn

dx

∫ Tn+1

Tn

dx′Mv(x, x′; t)

=
∫ Tn+1

TI+1

dx

∫ Tn+1

Tn

dx′Mv(x, x′; t) (6.19)

and yields, from Eqs. (6.2), (6.18), and (6.19), the following

∂L(t , Tn)
∂t

=
[∫ Tn+1

TI+1

dx

∫ Tn+1

Tn

dx′Mv(x, x′; t)

+
∫ Tn+1

Tn

dxv(t , x)AL(t , x)
] [1 + 	L(t , Tn)]

	
(6.20)

Note that, as expected, for n = I the drift is zero, making XI (t) = L(t , TI ) a
martingale. Libor drift ζ(t , Tn) and volatility γ (t , x) are defined as follows

1
L(t , Tn)

∂L(t , Tn)
∂t

= ζ(t , Tn)+
∫ Tn+1

Tn

dxγ (t , x)AL(t , x) (6.21)

Volatility γ (t , x) is a deterministic function – independent of L(t , Tn). The drift
ζ(t , Tn) is determined by the martingale condition and, in particular, is a nonlinear
function ofL(t , Tn). Volatility γ (t , x) and drift ζ(t , Tn) are discussed, respectively,
in Sections 6.6 and 6.7.

6.6 Volatility γ (t, x) for positive Libor

A key assumption of the Libor Market Model is that the Libor volatility function
γ (t , x) is a deterministic function that is independent of the Libor. Market data for
Libors or for interest rates’ caplets can be used for determining the empirical value
of γ (t , x) [83].

As it stands, Eq. (6.20) for ∂L(t , Tn)/∂t does not imply that the Libor interest
rates L(t , Tn) are strictly positive. Libors are strictly positive only if Eq. (6.21)
holds; namely, if there exists a Libor volatility function γ (t , x) such that, from
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Eqs. (6.20) and (6.21)

[1 + 	L(t , Tn)]
	

∫ Tn+1

Tn

dxv(t , x)AL(t , x) = L(t , Tn)
∫ Tn+1

Tn

dxγ (t , x)AL(t , x)

(6.22)

⇒
∫ Tn+1

Tn

dxv(t , x)AL(t , x) = 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxγ (t , x)AL(t , x) (6.23)

⇒ v(t , x) = 	L(t , Tn)
1 + 	L(t , Tn)

γ (t , x); x ∈ [Tn, Tn+1] (6.24)

In the Libor Market Model , v(t , x) yields a model of the Libor forward interest
rates with stochastic volatility. Eq. (6.23) can be viewed as fixing the volatility
function v(t , x) of the forward interest rates fL(t , x) so as to ensure that all Libors
are strictly positive.

To have a better understanding of v(t , x) consider the limit of 	 → 0, which
yields

∫ Tn+1
Tn

dxfL(t , x) � 	fL(t , x). From Eqs. (6.2) and (6.24)

v(t , x) � [1 − e−	fL(t ,x)]γ (t , x)

The following are the two limiting cases

v(t , x) =
⎧⎨⎩
	γ (t , x)fL(t , x); 	fL(t , x) << 1

γ (t , x); 	fL(t , x) >> 1
(6.25)

For small values of fL(t , x), the volatility v(t , x) is proportional to fL(t , x). It
is known [88] that Libor forward interest rates fL(t , x) with volatility v(t , x) �
fL(t , x) are unstable and diverge after a finite time. However, in the Libor Mar-
ket Model, when the Libor forward rates become large, that is 	fL(t , x) >> 1,
the volatility v(t , x) becomes deterministic and equal to γ (t , x). It is shown in
Section 6.11 that Libor forward interest rates fL(t , x) are never divergent and
Libor dynamics yields finite fL(t , x) for all future calendar time.

6.7 Forward bond numeraire: Libor drift ζ (t, Tn)

Libor drift ζ(t , Tn) is chosen so that all discounted instruments χn(t) are martin-
gales. The main challenge of the Libor Market Model is to express Libor drift
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ζ(t , Tn) solely in terms of Libor volatility function γ (t , x). The Libor drift term
ζ(t , Tn) is defined, from Eq. (6.20), as follows

[1 + 	L(t , Tn)]
	

∫ Tn+1

TI+1

dx

∫ Tn+1

Tn

dx′Mv(x, x′; t) = L(t , Tn)ζ(t , Tn)

ζ(t , Tn) = [1 + 	L(t , Tn)]
	L(t , Tn)

∫ Tn+1

TI+1

dxv(t , x)
∫ Tn+1

Tn

dx′DL(x, x′; t)v(t , x′)

(6.26)

The Libor forward interest rates’ volatility function v(t , x) needs to be expressed
in terms of the Libor volatility function γ (t , x). To do so, a recursion equation is
obtained from Eq. (6.23) in the following manner. Multiply both sides of Eq. (6.23)
by AL(t , x′)v(t , x′) and use Eq. (5.46) to obtain

AL(t , x)AL(t , x′) = 1
ε
DL(x, x′; t)

This removes the quantum field from Eq. (6.23) and, by equating the 1/ε term from
both sides of the resulting equation, one obtains∫ Tn+1

Tn

dxv(t , x)DL(x, x′; t)v(t , x′)

= 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxγ (t , x)DL(x, x′; t)v(t , x′) (6.27)

Since the dynamics of L(t , Tn) is being analyzed, integrate variable x′ from Tn to
Tn+1 and obtain ∫ Tn+1

Tn

dx

∫ Tn+1

Tn

dx′v(t , x)DL(x, x′; t)v(t , x′)

= 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxv(t , x)ωn(t , x) (6.28)

where ωn(t , x) is defined by

ωn(t , x) =
∫ Tn+1

Tn

dx′DL(x, x′; t)γ (t , x′) (6.29)

Hence, from Eqs. (6.28) and (6.26)

ζ(t , Tn) =
∫ Tn+1

TI+1

dxv(t , x)ωn(t , x) (6.30)
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The drift obtained in Eq. (6.30) still depends on the volatility function v(t , x).
To express this integral solely in terms of the volatility function γ (t , x) one has to
carry out a calculation similar to the one used in obtaining Eq. (6.30).

Multiplying both sides of Eq. (6.23), this time by AL(t , x′)γ (t , x′) and using
Eq. (5.46)

AL(t , x)AL(t , x′) = 1
ε
DL(x, x′; t)

yields the following

∫ Tn+1

Tn

dxv(t , x)DL(x, x′; t)γ (t , x′)

= 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxγ (t , x)DL(x, x′; t)γ (t , x′)

Integrating x′ from Tn to Tn+1 yields

∫ Tn+1

Tn

dxv(t , x)ωn(t , x) = 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxdx′Mγ (x, x′; t) (6.31)

where

Mγ (x, x′; t) ≡ γ (t , x)DL(x, x′; t)γ (t , x′) (6.32)

Since ∫ Tn+1

t

dxv(t , x)ωn(t , x)

=
∫ Tn

t

dxv(t , x)ωn(t , x)+
∫ Tn+1

Tn

dxv(t , x)ωn(t , x) (6.33)

Eqs. (6.31) and (6.33) yield the recursion equation

∫ Tn+1

t

dxv(t , x)ωn(t , x)

=
∫ Tn

t

dxv(t , x)ωn(t , x)+ 	L(t , Tn)
1 + 	L(t , Tn)

∫ Tn+1

Tn

dxγ (t , x)ωn(t , x)
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Figure 6.4 Libor propagator�mn(t) = ∫ Tm+1
Tm

dx
∫ Tn+1
Tn

dx ′Mγ (x, x ′; t) = ∫ Tm+1
Tm

dx
∫ Tn+1
Tn

dx ′γ (t , x)DL(x, x ′; t)γ (t , x ′) that yields nontrivial and imperfect corre-
lation between the different Libors.

For simplicity, let time t = T0; recursing the above equation yields, using Eq. (6.29),
the following

∫ Tn+1

T0

dxv(t , x)ωn(t , x) =
n∑

m=1

	L(t , Tm)
1 + 	L(t , Tm)

∫ Tm+1

Tm

dxγ (t , x)ωn(t , x)

=
n∑

m=1

	L(t , Tm)
1 + 	L(t , Tm)

�mn(t) (6.34)

where, as shown in Figure 6.4, the Libor propagator is given by

�mn(t) ≡
∫ Tm+1

Tm

dxγ (t , x)ωn(t , x)

=
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′γ (t , x)DL(x, x′; t)γ (t , x′) (6.35)

=
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′Mγ (x, x′; t)

There are three cases for Tn, as shown in Figure 6.3, namely Tn = TI , Tn > TI ,
and Tn < TI .
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Case (i) Tn = TI . From Eq. (6.30)

ζ(t , TI ) = 0

Case (ii) Tn > TI . Eq. (6.34) yields the following

ζ(t , Tn) =
∫ Tn+1

TI+1

dxv(t , x)ωn(t , x)

=
∫ Tn+1

T0

dxv(t , x)ωn(t , x)−
∫ TI+1

T0

dxv(t , x)ωn(t , x)

=
n∑

m=I+1

	L(t , Tm)
1 + 	L(t , Tm)

�mn(t)

Case (iii) Tn < TI . One has, from Eq. (6.30), the following

ζ(t , Tn) =
∫ Tn+1

TI+1

dxv(t , x)ωn(t , x) = −
∫ TI+1

Tn+1

dxv(t , x)ωn(t , x)

= −
[∫ TI+1

T0

dxv(t , x)ωn(t , x)−
∫ Tn+1

T0

dxv(t , x)ωn(t , x)
]

= −
I∑

m=n+1

	L(t , Tm)
1 + 	L(t , Tm)

�mn(t)

Collecting the results from above yields [53, 55]

ζ(t , Tn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
m=I+1

	L(t ,Tm)
1+	L(t ,Tm)�mn(t) Tn > TI

0 Tn = TI

−∑I
m=n+1

	L(t ,Tm)
1+	L(t ,Tm)�mn(t) Tn < TI

(6.36)

Recall from Eq. (6.35), the Libor correlator �mn(t) is given by

�mn(t) =
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′γ (t , x)DL(x, x′; t)γ (t , x′)

In summary, the forward bond numeraire B(t , TI ) fixes the drift ζ(t , Tn) of the
Libor L(t , Tn) for all n. The drift ζ(t , Tn) is nonlinear of the Libors and nonlocal,
depending on all the Libors from Libor time TI to Tn.
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6.8 Libor dynamics and correlations

As stated in Eq. (6.21), Libor dynamics are given by

1
L(t , Tn)

∂L(t , Tn)
∂t

= ζ(t , Tn)+
∫ Tn+1

Tn

dxγ (t , x)AL(t , x) (6.37)

In particular, since ζ(t , TI ) = 0, LiborL(t , TI ) has a martingale evolution given by

∂L(t , TI )
∂t

= L(t , TI )
∫ TI+1

TI

dxγ (t , x)AL(t , x) (6.38)

The results obtained express the time evolution of Libor completely in terms of
volatility γ (t , x), which is a function that is empirically determined in Chapter 7
and given in Figure 7.7. Libor drift ζ(t , Tn) is fixed by Eq. (6.36) and is a nonlinear
and nonlocal function of all Libors. An expansion of the drift term ζ(t , Tn) about
its leading value is generated in Section 8.3.

In the Libor evolution equations given in Eq. (6.37), all references to the volatility
function v(t , x) of the Libor forward interest rates fL(t , x) have been removed –
as indeed was the whole purpose of the derivations of the previous section – with
the drift being completely expressed in terms of Libor L(t , Tn) and its volatility
γ (t , x).

Eq. (6.37) needs to be integrated to confirm that Libor dynamics yield positive
valued Libors. Let T0 > t0 be two points on the Libor time lattice. From Eqs. (5.46)
and (6.37), the differential of log Libor are given by

∂ lnL(t , Tn)
∂t

= lim
ε→0

1
ε

[
lnL(t + ε, Tn)− lnL(t , Tn)

]
(6.39)

= 1
L(t , Tn)

∂L(t , Tn)
∂t

− ε

2

[
1

L(t , Tn)
∂L(t , Tn)

∂t

]2

+O(ε)

⇒ ∂ lnL(t , Tn)
∂t

= ζ(t , Tn)+
∫ Tn+1

Tn

dxγ (t , x)AL(t , x)− 1
2
�nn(t) (6.40)

Integrating the above equation over time yields

L(T0, Tn) = L(t0, Tn)e
β(t0,T0,Tn)− 1

2q
2
n+
∫ T0
t0
dt
∫ Tn+1
Tn

dxγ (t ,x)AL(t ,x)

= L(t0, Tn)eβ(t0,T0,Tn)+Wn (6.41)
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β(t0, T0, Tn) =
∫ T0

t0

dtζ(t , Tn); q2
n =

∫ T0

t0

dt�nn(t) (6.42)

Wn = −1
2
q2
n +

∫ T0

t0

dt

∫ Tn+1

Tn

dxγ (t , x)AL(t , x) (6.43)

Libor dynamics lead to positive Libor, as given in Eq. (6.41); Libor is proportional
to the exponential of real quantities, namely a real drift ζ(t , Tn)− q2

n/2 and a real
valued (Gaussian) quantum field AL(t , x).

The action for AL from Eq. (5.17) is given by

S[AL] = −1
2

∫ T0

t0

dt

∫ ∞

t

dxdx′AL(t , x)D−1
L (x, x′; t)AL(t , x) (6.44)

The explicit expression for the propagator DL(x, x′; t) is given in Eq. (5.20). The
partition function is given by

Z =
∫
DALe

S[AL]

The generating functional given in Eq. (5.21) yields1

E[eWn] = 1
Z

∫
DALe

WneS[AL]

= exp
{
−1

2
q2
n +

∫ T0

t0

dt

∫ Tn+1

Tn

dxdx′Mγ (x, x′; t)
}

= 1

E[(eWm − 1)(eWn − 1)] = 1
Z

∫
DAL(e

Wm − 1)(eWn − 1)eS[AL]

= e�mn − 1

�nm ≡
∫ T0

t0

dt

∫ Tn+1

Tn

dx

∫ Tm+1

Tm

dx′Mγ (x, x′; t) =
∫ T0

t0

dt�mn(t)

Figure 6.5 graphically represents the Libor correlator �mn.
Two results from above that will be useful in Chapter 8 are

E[eWn − 1] = 0 (6.45)

E[(eWm − 1)(eWn − 1)] � �mn +O(�2
mn) (6.46)

1 Field theorists will recognize that eWn is the normal ordered product : exp{∫ T0
t0
dt
∫ Tn+1
Tn

dxγ (t , x)AL(t , x)} :.
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Figure 6.5 Libor correlator �ij = ∫ T0
t0
dt
∫ Ti+1
Ti

dx
∫ Tj+1
Tj

dx ′Mγ (x, x ′; t) for the
Libor European swaption.

6.9 Logarithmic Libor rates φ(t, x)

Since γ (t , x), the volatility of L(t , Tn), is deterministic it is convenient to change
variables from fL(t , x) to L(t , Tn). Eq. (6.41) shows that Libor L(t , Tn) is a posi-
tive random variable. A change of variables to logarithmic coordinates shows the
structure of the Libor Market Model more clearly. Let φ(t , x) be a two-dimensional
quantum field; similar to the definition of forward interest rates from zero coupon
bonds given in Eq. (2.12), define a change of variables by

	L(t , Tn) = exp
{∫ Tn+1

Tn

dxφ(t , x)
}

≡ eφn(t) (6.47)

From its definition, φ(t , x) has dimensions of 1/time and can be thought of as the
effective logarithmic Libor interest rates.

Consider, at some time t , a contract for a deposit to be made from T0 to T2; the
principal plus simple interest earned is given, at time T2, by 1+(T2−T0)L(t , T0, T2).
This amount must be equal to that earned by first depositing the principal at time T0
and then rolling over, at T0 + 	 = T1, the deposit and interest earned and collecting
the principal and interest at time T2 = T1 + 	; see Figure 6.6, which is the inverse
of Figure 2.1. For there to be no-arbitrage opportunities the two procedures must
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T0 T1 T2 Time

Figure 6.6 Simple interest earned over Libor time intervalT0 to T2. Simple interest
earned over the two sub-intervals T0 to T1 and from T1 to T2 must be equal to the
interest earned from T0 to T2.

be equal, namely2

1 + (T2 − T0)L(t , T0, T2) = [1 + 	L(t , T0)][1 + 	L(t , T1)]
⇒ (T2 − T0)L(t , T0, T2) = eφ0(t)+φ1(t) + eφ0(t) + eφ1(t)

where eφ0(t)+φ1(t) = e

∫ T2
T0
dxφ(t ,x) = 	L(t , T0)	L(t , T1) (6.48)

Similarly, the integral of φ(t , x) over many Libor future time intervals yields the
following

exp
{∫ Tm+	

Tn

dxφ(t , x)
}

=
m∏
i=n

[	L(t , Ti)]

exp{∫ Tm+	
Tn

dxφ(t , x)}, similar to Eq. (6.48), is related to the future Libor rate
L(t , Tn, Tm+1).

The 90-day benchmark Libor forward interest rates fL(t , x) are related to
logarithmic Libor by Eq. (2.20)

exp
{∫ Tn+1

Tn

dxfL(t , x)
}

= 1 + 	L(t , Tn)

⇒ exp
{∫ Tn+	

Tn

dxfL(t , x)
}

= 1 + exp
{∫ Tn+	

Tn

dxφ(t , x)
}

(6.49)

The definition of φ(t , x) depends on the tenor, and for the benchmark case is taken
to be 	 = 90-days (three months). For Libor, the tenor is always finite, being a
minimum of overnight (24 hours). The logarithm Libor φ(t , x) is well defined for

2 Recall, from Eq. (2.19), that L(t , T ) ≡ L(t ,T , T + 	).
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Figure 6.7 The dependence of fL(t , x) on φ(t , x) and visa versa.

any nonzero tenor 	. For the limit of the zero tenor, let 	 = ε → 0; from the
defining Eq. (6.49), it follows that, since fL(t , x) is always finite

1 + εfL(t , x) = 2 + εφ(t , x)

⇒ φ(t , x) = 1
ε
[fL(t , x)− 1] → −∞

In other words, the zero tenor limit is singular for φ(t , x); however, for finite tenor
	 �= 0, the field φ(t , x) is always well defined,

Since the interest derivative market is based on the three-month Libor, let 	 =
1/4 year; one can approximately evaluate the integral and obtain the following

exp{	fL(t , x)} � 1 + exp{	φ(t , x)} (6.50)

Eq. (6.50) is plotted in Figure 6.7. For fL(t , x) << ln(2)/	 ∼ 400%/year,
the value of φ(t , x) � −∞; only when both the rates fL(t , x) and φ(t , x) are
large are they approximately equal. Hence, there is no domain where both the
quantum fields fL(t , x) and φ(t , x) take small values and, consequently, there is no
consistent scheme for simultaneously defining a perturbation expansion, in powers
of φ(t , x) and fL(t , x), for both the quantum fields. In summary, one can define a
perturbation expansion for either fL(t , x) or for φ(t , x), but not simultaneously for
both the fields.

Furthermore, as can be seen from Figure 6.7, for Eq. (6.50) to have real values
for both fL(t , x) and φ(t , x), the following is required

0 ≤ fL(t , x) ≤ +∞; − ∞ ≤ φ(t , x) ≤ +∞
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The dynamics of Libor L(t , Tn) are specified in Eq. (6.37) and yield, from
Eq. (6.40), the following defining equation for φ(t , x)

∂

∂t

∫ Tn+1

Tn

dxφ(t , x) = ∂ ln(	L(t , Tn))
∂t

= ζ(t , Tn)+
∫ Tn+1

Tn

dxγ (t , x)AL(t , x)− 1
2
�nn (6.51)

The drift ζ(t , Tn) for forward bond numeraire B(t , TI+1) is given by Eqs. (6.35)
and (6.36). Integrating Eq. (6.51) from calendar Libor time t0 to T0 yields

∫ Tn+1

Tn

dxφ(T0, x) =
∫ Tn+1

Tn

dxφ(t0, x)+
∫ T0

t0

dt

[
ζ(t , Tn)

+
∫ Tn+1

Tn

dxγ (t , x)AL(t , x)− 1
2
�nn

]
(6.52)

Exponentiating Eq. (6.52) yields, as expected, Eq. (6.41).
Dropping the

∫ Tn+1
Tn

dx integration from both sides of Eq. (6.51) yields the
following time evolution for logarithmic Libor

∂φ(t , x)
∂t

= −1
2
�n(t , x)+ ρn(t , x)+ γ (t , x)AL(t , x) (6.53)

Tn ≤ x < Tn+1; �n(t , x) =
∫ Tn+1

Tn

dx′Mγ (x, x′; t) (6.54)

The function ρn(t , x) is defined as follows

ζ(t , Tn) =
∫ Tn+1

Tn

dxρn(t , x) (6.55)

Hence, from Eqs. (6.36) and (6.55)

ρn(t , x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
m=I+1

eφm(t)

1+eφm(t) �m(t , x) n > I

0 n = I

−∑I
m=n+1

eφm(t)

1+eφm(t) �m(t , x) n < I

(6.56)
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Hn (x)

1

Tn Tn +1 x

Figure 6.8 The characteristic function Hn(x) for the Libor interval [Tn, Tn+1].

To write Eq. (6.53) in a more compact form, define the characteristic function
Hn(x) for the Libor time interval [Tn, Tn+1] given by

Hn(x) =
⎧⎨⎩

1 Tn ≤ x < Tn+1

0 x �∈ [Tn, Tn+1]
(6.57)

and is shown in Figure 6.8. The characteristic function has the following important
properties

f (x) =
∞∑
n=0

Hn(x)fn(x); f (x) = fn(x) for Tn ≤ x < Tn+1

∫ Tn+1

Tn

dxHm(x) = 	δm−n

From Eqs. (6.53) and (6.57)

∂φ(t , x)
∂t

= −1
2
�(t , x)+ ρ(t , x)+ γ (t , x)AL(t , x) (6.58)

�(t , x) =
∞∑
n=0

Hn(x)�n(t , x); ρ(t , x) =
∞∑
n=0

Hn(x)ρn(t , x) (6.59)

It is convenient to separate out a ‘kinetic’ drift −1
2�(t , x) that does not depend on

the Libors, with the remaining drift ρ(t , x) being a nonlinear and nonlocal function
of the Libors.
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6.10 Lagrangian and path integral for φ(t, x)

Logarithmic Libor rates φ(t , x) are the natural variables for expressing the
Lagrangian for the Libor dynamics. A remarkable result is that the φ(t , x) variables
are ‘flat’ integration variables for the path integral in spite of having a nonlinear
relation to Libor L(t , Tn). The Lagrangian itself is a highly nonlinear and nonlocal
function of the φ(t , x) variables.

The Lagrangian and action for the Gaussian quantum field AL(t , x) are given
from Eqs. (5.25) and (5.15) by the following

L[AL] = −1
2
AL(t , x)D−1

L (t , x, x′)AL(t , x′)

S[AL] =
∫
T
L[AL]

with the semi-infinite trapezoidal domain T given in Figure 5.1. The partition
function, from Eq. (5.14), is given by

Z =
∫
DALe

S[AL]

Eq. (6.58) encodes a change of variables relating two quantum fields φ(t , x) and
AL(t , x) and is given by

AL(t , x) = ∂φ(t , x)/∂t − ρ̃(t , x)
γ (t , x)

(6.60)

ρ̃(t , x) = −1
2
�(t , x)+ ρ(t , x)

The Lagrangian and action for logarithmic Libor quantum field φ(t , x) are
given by

L[φ] = −1
2

[
∂φ(t , x)/∂t − ρ̃(t , x)

γ (t , x)

]
D−1
L (t , x, x′)

[
∂φ(t , x′)/∂t − ρ̃(t , x′)

γ (t , x′)

]
S[φ] =

∫ ∞

t0

dt

∫ ∞

t

dxdx′L[φ] (6.61)

The Neumann boundary conditions AL(t , x) given in Eq. (5.16) yield the fol-
lowing boundary conditions on φ(t , x)

∂

∂x

[
∂φ(t , x)/∂t − ρ̃(t , x)

γ (t , x)

] ∣∣∣
x=t = 0 (6.62)
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It is shown in Section 6.14 that the Jacobian of the transformation given in
Eq. (6.60) is a constant, independent of φ(t , x); note that the Jacobian is a constant
in spite of the fact that the transformation in Eq. (6.60) is nonlinear due to the
nonlinearity of Libor drift ρ(t , x). A constant Jacobian leads to φ(t , x) being flat
variables, with no measure term in the path integral. Flat variables have a well-
defined leading order Gaussian path integral that generates a Feynman perturbation
expansion for all financial instruments, thus greatly simplifying all calculations that
are based on φ(t , x).

In summary, up to an irrelevant constant, the log Libor path integral measure is
given by ∫

DAL =
∫
Dφ =

∞∏
t=t0

∞∏
x=t

∫ +∞

−∞
dφ(t , x)

The partition function for φ is given by

Z =
∫
DφeS[φ] =

∫
DALe

S[AL]

The expectation value of a financial instrument O is given by

E[O] = 1
Z

∫
DALO[AL]eS[AL] = 1

Z

∫
DφO[φ]eS[φ] (6.63)

6.10.1 Path integral for Libor martingale

Consider the special case of the portfolio from Eq. (6.13), of the martingale instru-
ment XI (t) = L(t , TI ). The integral formulation of the martingale condition for
the forward bond numeraire, from Section 5.8, is given by

L(t0, TI ) = E[L(T0, TI )] ; T0 > t0

The path integral for the right-hand side, from Eq. (6.63), is given by the expectation
value of a financial instrument O = L(T0, TI ); hence

E[L(T0, TI )] = 1
Z

∫
DφeS[φ]L(T0, TI ) (6.64)

For Libor L(t , TI ), the drift is zero, that is ζ(t , TI ) = 0; hence, from Eq. (6.52)

ln 	L(T0, TI ) =
∫ TI+1

TI

dxφ(T0, x)

=
∫ TI+1

TI

dxφ(t0, x)+
∫ T0

t0

dt

{∫ TI+1

TI

dxγ (t , x)AL(t , x)− 1
2
�II (t)

}
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Changing path integration variables from φ(t , x) to AL(t , x) and using the
generating functional given in Eq. (5.21) and Eq. (6.45) yields

E[	L(T0, TI )] = 	L(t0, TI )
1
Z

∫
DALe

∫ T0
t0
dt{∫ TI+1

TI
dxγ (t ,x)AL(t ,x)− 1

2�II (t)}eS[AL]

= 	L(t0, TI ) : martingale

6.11 Libor forward interest rates fL(t, x)

The dynamics of the log Libor given in Eq. (6.58) also defines the dynamics of the
Libor forward interest rates quantum field fL(t , x). Differentiating Eq. (6.49) and
substituting Eq. (6.58) yields the following∫ Tn+1

Tn

dx
∂fL(t , x)

∂t
= eφn(t)

1 + eφn(t)

∫ Tn+1

Tn

dx
∂φ(t , x)
∂t

(6.65)

= eφn(t)

1 + eφn(t)

∫ Tn+1

Tn

dx

[
−1

2
�(t , x)+ ρ(t , x) + γ (t , x)AL(t , x)

]
(6.66)

From Eqs. (6.10) and (6.66)

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x)∫ Tn+1

Tn

dxμ(t , x) = eφn(t)

1 + eφn(t)

∫ Tn+1

Tn

dx

[
−1

2
�(t , x)+ ρ(t , x)

]
(6.67)∫ Tn+1

Tn

dxv(t , x) = eφn(t)

1 + eφn(t)

∫ Tn+1

Tn

γ (t , x) (6.68)

The result for v(t , x) has been obtained earlier in Eq. (6.24); the value ofμ is a new
result. Writing the drift and volatility in terms of fL(t , x) yields, from Eqs. (6.49)
and (6.59), the following

fn(t) ≡
∫ Tn+1

Tn

dxfL(t , x);
eφn(t)

1 + eφn(t)
= 1 − e−fn(t) (6.69)

μ(t , x) = u(t , x)
[
−1

2
�(t , x)+ ρ(t , x)

]
(6.70)

v(t , x) = u(t , x)γ (t , x)

where u(t , x) =
∞∑
n=0

Hn(x)[1 − e−fn(t)] (6.71)
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The drift μ(t , x) and volatility v(t , x) are both functions of only exp{−fn(t)},
which, in turn, is the forward price of a zero coupon bond.

6.11.1 Nonsingular Libor forward interest rates

The underlying Libor forward interest rates driving all the Libors, from Eq. (6.10),
are given by the following

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x)

The theory is nonlinear due to the dependence of the volatility v(t , x) and drift
μ(t , x) on the underlying Libor forward interest rates fL(t , x). A drift that renders
Libor to be a martingale apparently implies that the underlying Libor forward
interest rates are singular [88]. This aspect of the Libor forward interest rates is
analyzed.

An approximation of Eq. (6.71) that is adequate for the analysis of this section is

v(t , x) � [1 − e−	fL(t ,x)]γ (t , x)

The following are the two limiting cases

v(t , x) =
⎧⎨⎩
	γ (t , x)fL(t , x); 	fL(t , x) << 1

γ (t , x); 	fL(t , x) >> 1
(6.72)

For v(t , x) = 	fL(t , x)γ (t , x) ∼ 0, ignoring the integration that does not qualita-
tively change the results, from Eq. (6.17), the drift is

μ(t , x) � v(t , x)
∫ x

TI

dx′DL(x, x′; t)v(t , x′)+O(	)

� [	fL(t , x)γ (t , x)]2 +O(	) (6.73)

The limiting cases for μ(t , x), from Eqs. (6.70) and (6.73), are the following3

μ(t , x)

�
⎧⎨⎩

[	fL(t , x)γ (t , x)]2 +O(	); 	fL(t , x) << 1

μ0 = − 1
2

∫ Tn+1
Tn

dx ′Mγ (x, x ′; t)+ ∫ Tn+1
TI+1

dx ′Mγ (x, x ′; t); 	fL(t , x) >> 1
(6.74)

3 Note that, for 	 → 0, one has the limit 	
∑n
m=I+1 → (Tn − TI ): constant.
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Figure 6.9 (a) The value of fL(t , x) is finite for all t . The singularity at ts is
spurious, since, at time ts − 	 when 	fL(t , x) � 1, nonlinear effects take over. (b)
The behavior of volatility v(t , x) and drift μ(t , x) as a function of fL(t , x).

In the limit 	fL(t , x) >> 1, from Eq. (6.72), volatility v(t , x) → γ (t , x); the
results obtained in Eqs. (6.74) and (6.72) for this limit are consistent with the earlier
result given in Eq. (6.17). The two results agree only in the limit of 	 → 0; for the
case when 	fL(t , x)γ (t , x) is independent of 	, the extra term

∫ Tn+1
Tn

Mγ (x, x′; t)/2
in Eq. (6.74) is ofO(	) and goes to zero.

For small values of 	fL(t , x), μ(t , x) � (	γ (t , x)fL(t , x))2 follows from
Eq. (6.74). The stochastic term can be ignored as these do not qualitatively change
the impact of the quadratic term on the evolution of fL(t , x). The simplified
dynamics for the Libor forward interest rates, from Eq. (6.10), are the following4

∂fL(t , x)
∂t

� 	2γ 2f 2
L(t , x)+ random terms

⇒ fL(t , x) � 	γ
fL(0, x)

1 − t	γ fL(0, x)
+ random terms (6.75)

⇒ fL(t , x) infinite for ts = 1
	γ fL(0, x)

; fL(0, x) > 0

From Eq. (6.75), all the Libor forward interest rates become infinite as t → ts =
1/[	γ fL(0, x)] > 0, as shown by the dotted curve in Figure 6.9(a). If fL(t , x),
in fact, becomes singular, then, on including the stochastic term, the singularity is
even more severe with the Libor forward interest rates becoming singular almost
instantaneously [88].

4 The dependence of γ and μ on t , x is, henceforth, ignored since it simplifies the calculation and does not change
the main conclusions.
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However, the result that the forward interest rates become singular is not correct;
when 	fL(t , x) ∼ 1, the approximation leading to Eq. (6.75) is no longer valid.
From Eq. (6.75), the solution breaks down for tf given by

fL(t , x) � 1
	

= 	γ
fL(0, x)

1 − tf 	γ fL(0, x)

⇒ tf = ts − 	 < ts (6.76)

Instead, as follows from Eqs. (6.74) and (6.72), for 	fL(t , x) ∼ 1 the volatility and
drift both become deterministic, leading to a finite evolution of fL(t , x). Ignoring
the stochastic term yields

fL(t , x) ∼ fL(0, x)eμ0t ; t > tf

The different domains forfL(t , x) are shown in Figure 6.9(a);fL(t , x) grows slowly
for t > ts since the coefficient μ0 ∼ γ 2 << 1.

Recall that the drift μ(t , x) and volatility v(t , x) are both functions of only
exp{−fn(t)} � exp{−	fL(t , Tn)}. As fL(t , x) grows large, both μ(t , x) and
v(t , x) rapidly become deterministic and independent of fL(t , x), as shown in
Figure 6.9(b). This in turn means that fL(t , x) can be described by a linear Gaussian
quantum field as discussed in Chapter 5. Gaussian fields have configurations where
fL(t , x) takes small values and can, hence, revert to the regime for its nonlinear
evolution. In this manner, the Libor forward interest rates are driven by the exact
evolution equation between the nonlinear and linear domains.

6.12 Summary

Quantum finance provides a natural and mathematically tractable formulation of
the Libor Market Model. Gaussian white noise R(t), in effect, is ‘promoted’ by
quantum finance to a quantum field AL(t , x): the evolution equation of Libor is
driven by AL(t , x).

In an economy where Libor rates are perfectly correlated across different maturi-
ties, a single volatility function is sufficient. However, the Libor term structure that
is imperfectly correlated introduces many new features. One way of accounting
for imperfect correlations is to extract Libor volatility from many caplets and then
aggregate them – leading to a proliferation of parameters. In the quantum finance
approach, due to the specific properties of Gaussian quantum fields, the entire Libor
volatility function can be taken directly from the market and thus incorporates many
key features of the market in a parameter-free manner.

The Gaussian quantum field AL(t , x) has a quadratic action and hence one can
obtain a differential formulation of the Libor Market Model. The singular quadratic
productAL(t , x) has a ‘short distance’Wilson expansion that generalizes the results
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of Ito calculus and yields a derivation of Libor drift. It is seen that the underlying
Libor forward interest rates fL(t , x) of the Libor Market Model are nonlinear and
nonsingular.

The Libor forward interest rates fL(t , x) are related to logarithmic Libor by
Eq. (6.49)

exp
{∫ Tn+	

Tn

dxfL(t , x)
}

= 1 + exp
{∫ Tn+	

Tn

dxφ(t , x)
}

(6.77)

The transformation, in Eq. (6.49), from φ(t , x) to fL(t , x) is nonlinear and nonlo-
cal and is well defined only for strictly positive fL(t , x), that is for fL(t , x) ≥ 0. In
particular, this means that fL(t , x) cannot be a Gaussian quantum field. The linear
approximation developed in Chapter 5 treats f (t , x) as a Gaussian quantum field
and needs to be carefully examined to ascertain whether it can be applied to the
interest rates (Libor and Euribor) market. Nonlinear models for f (t , x), in general,
are fairly intractable [12, 13].

Note the transformation given in Eq. (6.77) is completely general and only
requires that fL(t , x) ≥ 0; for example, one can take fL(t , x) ∼ eχ(t ,x), where
χ(t , x) is any real quantum field and this yields strictly positive Libors. The Libor
Market Model makes a very specific choice for fL(t , x), namely one for which
the log Libor quantum field φ(t , x) has deterministic volatility given γ (t , x). This
choice for fL(t , x) leads to the field φ(t , x) being a ‘flat’ quantum field that takes
values on the entire real line. The leading order effects of φ(t , x) are described by
a Gaussian quantum field; the nonlinear terms are all contained in the drift and can
be treated perturbatively using Feynman diagrams.

Bond forward interest rates modeled, in Chapter 5, f(t , x) as a Gaussian quantum
field lead to strictly positive (zero) coupon bonds but negative Libors. In contrast,
log Libor variablesφ(t , x), yield strictly positive coupon bonds and strictly positive
Libors. A nonlinear quantum field theory for flat quantum field φ(t , x) is the most
appropriate formalism for analyzing coupon bond and Libor instruments.

The study of interest rates shows that the complexity and nonlinearity of the
interest rates partly stems from Eq. (6.77): Libor can be described by φ(t , x) vari-
ables that are nonlinear, whereas the bond sector can be consistently described by
bond forward interest rates f (t , x) that are Gaussian. Hybrid instruments combine
coupon bonds with Libor [79].Aconsistent model of bothφ(t , x) andf (t , x), which
are ingredients for hybrid instruments, necessarily requires that either f (t , x) or
φ(t , x) be modeled as a nonlinear two-dimensional quantum field – thus greatly
increasing the difficulty of the analysis.
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6.13 Appendix: Limits of the Libor Market Model

The following three different limits of the Libor Market Model evolution equations
are taken:

• The limit of zero tenor, namely 	 → 0
• The BGM–Jamshidian limit
• The HJM limit

6.13.1 Tenor � → 0

Consider the limit of the tenor 	 → 0. Let x = Tn, x′ = Tm, and x, x′ > TI . From
Eq. (6.24), v(t , x) � 	fL(t , x)γ (t , x); hence, from Eq. (6.70)

x ∈ [Tn, Tn+1]; L(t , Tn) ∼ fL(t , x)+O(	); eφ(t) ∼ 	fL(t , x)
1 − e−fn(t) � 	fL(t , x); �n � 	Mγ (x, x; t) = 	γ (t , x)DL(x, x; t)γ (t , x)

μ(t , x) =
∞∑
j=0

Hj(x)[1 − e−fj (t)]
[
−1

2
�j(t , x)+ ρj (t , x)

]

∼ [	fL(t , x)]
⎡⎣ − 	

2
γ (t , x)DL(x, x; t)γ (t , x)

+
n∑

m=I+1

	fL(t , Tm)
1 + 	fL(t , x)

	γ (t , x)DL(x, Tm; t)γ (t , Tm)

⎤⎦
The term

∑
m Hm(x) collapses to one term since x ∈ [Tn, Tn+1). The limit 	 → 0

is taken holding v(t , x) = 	fL(t , x)γ (t , x) fixed; hence, in this limit

μ(t , x) � 	fL(t , x)	2
n∑

m=I+1

[
fL(t , Tm)γ (t , x)DL(x, Tm; t)γ (t , Tm)

]
− 	

2

[
	fL(t , x)γ (t , x)

]
DL(x, x; t)γ (t , x)

� v(t , x)
∫ x

TI

dx′DL(x, x′; t)v(t , x′)+O(	) (6.78)

Hence, from Eq. (6.10)

∂fL(t , x)
∂t

� v(t , x)
∫ x

TI

dx′DL(x, x′; t)v(t , x′)+ v(t , x)AL(t , x)

The limit of tenor 	 → 0 yields an evolution equation for the Libor forward
interest rates fL(t , x) that looks similar to the quantum HJM model, except
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v(t , x) = 	fL(t , x)γ (t , x) is stochastic. Recall the drift results from requiring a
martingale evolution of the Libor forward interest rates fL(t , x) with the forward
bond numeraire being the zero coupon bond B(t , TI ), with TI fixed.

6.13.2 BGM–Jamshidian limit

The BGM–Jamshidian limit of the quantum finance results for the Libor Market
Model can be obtained using the following prescription

DL(x, x′; t)
∣∣∣
BGM

→ 1

AL(t , x)
∣∣∣
BGM

→ R(t); E[R(t)R(t ′)] = δ(t − t ′) (6.79)

where, recall, R(t) is Gaussian white noise.
The Libor evolution for TI < Tn, given in Eq. (6.21), yields the BGM–

Jamshidian limit. From Eq. (6.35)

�mn(t) =
∫ Tm+1

Tm

dxγ (t , x)
∫ Tn+1

Tn

dx′DL(x, x′; t)γ (t , x′) → γn(t)γn(t)

where γn(t) =
∫ Tn+1

Tn

dxγ (t , x)

Hence, the BGM–Jamshidian limit of the Libor Market Model evolution equation,
from Eqs. (6.21), (6.56), and (6.79), is given by

1
L(t , Tn)

∂L(t , Tn)
∂t

= ζn(t)+ γn(t)R(t); n > I (6.80)

ζn(t) = γn(t)

n∑
m=I+1

	L(t , Tm)
1 + 	L(t , Tm)

γm(t)

6.13.3 HJM limit

The HJM limit requires the following three conditions.

• The zero tenor limit 	 → 0 is taken.
• It assumed that v(t , x) = 	fL(t , x)γ (t , x) is a deterministic function equal to the HJM

volatility function; that is v(t , x) → σ(t , x): the HJM bond forward interest rates’
volatility that is independent of fL(t , x).

• DL(x, x ′; t)
∣∣∣
HJM

→ 1.
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With these assumptions Eqs. (6.79) and (6.80) yield

∂fL(t , x)
∂t

= σ(t , x)
∫ x

TI

dx′σ(t , x′)+ σ(t , x)R(t)

which is the expected HJM equation; the drift is fixed by the forward bond numeraire
B(t , TI ).

6.14 Appendix: Jacobian of AL(t, x) → φ(t, x)

The change of variables from quantum field AL(t , x) to φ(t , x) is, from Eq. (6.58),
given by

∂φ(t , x)
∂t

= ρ(t , x)+ γ (t , x)AL(t , x); t ∈ [t0, t∗] (6.81)

Eq. (6.81) is a nonlinear change of variables since drift ρ(t , x) depends on
φ(t , x); the transformation can, in principle, have a nontrivial Jacobian. Taking
the differential of Eq. (6.81) yields∫ t∗

t0

dt

[
δ(t ′ − t)

∂

∂t
− δρ(t ′, x)
δφ(t , x)

]
dφ(t , x) = γ (t ′, x)dAL(t

′, x) (6.82)

⇒ det[J ]Dφ = const ×DAL (6.83)

The change of variables factorizes for the x variable; hence, for notational simplic-
ity, the x coordinate is suppressed and only the time variable t is displayed. The
Jacobian is equal to det[J ], where the matrix of transformation J is given by

J (t ′, t) = δ(t ′ − t)
∂

∂t
− δρ(t ′, x)
δφ(t , x)

≡ δ(t ′ − t)
∂

∂t
− J (t ′, t)

⇒ J = U ∂

∂t
U−1; J (t ′, t) = δρ(t ′, x)

δφ(t , x)
(6.84)

In Eq. (6.84) matrix multiplication is an integration over t given by
∫ t∗
t0
dt . Time is

discretized t → tn = t ′ + (n− 1)ε, n = 1, 2, 3, . . . ,M = (t − t ′)/ε to explicitly
write out the matrix elements of U as follows

U(t ′, t) =
[
M−1∏
n=1

∫ t∗

t0

dtn

]
M−1∏
n=0

exp{εJ (tn, tn+1)}; t1 = t ′; tM = t

From Eq. (6.84) the Jacobian is given by

det[J ] = det
[
U ∂

∂t
U−1

]
= det

[
δ(t ′ − t)

∂

∂t

]
= constant
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The Jacobian of the transformation in going from AL(t , x) → φ(t , x) is a
constant; all constants involved in going from AL(t , x) → φ(t , x) cancel due
to division by the partition function Z. Henceforth, the path integration measure
will taken to be invariant, namely∫

Dφ =
∫
DAL

The Jacobian being a constant will be essential in deriving the Libor Hamiltonian
in Section 15.7.
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Empirical analysis of forward interest rates

Empirical forward interest rates drive the debt markets. The quantum finance bond
and Libor forward interest rates’ models of the empirical rates are analyzed using
market data [6]. In particular, the models are calibrated to the market and empirically
tested, with all the model parameters, including interest rate volatilities, being
obtained from market data.1

The bond forward interest rates, from Eq. (5.1), are given by

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x)

E[A(t , x)] = 0; E[A(t , x)A(t ′, x′)] = δ(t − t ′)D(x, x′; t)

In studying bonds, the volatilityσ(t , x) is taken to be deterministic, with driftα(t , x)
being fixed by a martingale condition. The Libor Market Model of the Libor forward
interest rates fL(t , x) and log Libor φ(t , x) are given by Eqs. (6.66) and (6.67) as
follows

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x)

∂φ(t , x)
∂t

= ρ(t , x)+ γ (t , x)AL(t , x)

E[AL(t , x)] = 0; E[AL(t , x)AL(t
′, x′)] = δ(t − t ′)DL(x, x′; t)

Libor volatility γ (t , x) is deterministic, whereas v(t , x) is stochastic. Libor drifts
μ(t , x) and ρ(t , x) are both stochastic.

Empirical forward interest rates can be taken from either the bond market, as
realized in the bond ZCYC (zero coupon yield curve), or from the Libor and Euribor

1 The term ‘Libor’ is generic and stands for Libor and Euribor.
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market. The forward interest rates f (t , x) are assumed to be approximately equal
to Libor; that is2

L(t , T ) � f (t , T )+O(	)

In analyzing the Libor and Euribor data for determining the parameters of the
Libor Market Model, it will be assumed that the Libor interest rates fL(t , x) are
related to Libor by Eq. (6.2)

1 + 	L(t , T ) = exp
{∫ T+	

T

dxfL(t , x)
}

Empirical Libor data are used for analyzing both the bond forward interest rates
and the Libor Market Model. The empirical study will fix the parameters of both
A(t , x) that drives f (t , x) and AL(t , x) that drives φ(t , x).

7.1 Introduction

Libor futures data from 17 April 2002 to 29 April 2003, consisting of 261 trading
days, are used for the empirical analysis. The Treasury Bond market is empirically
studied using ZCYC data for 523 trading days, from 29 January 2003 to 28 January
2005. The Libor ZCYC is empirically studied using 261 days of data from 10
October 2007 to 8 August 2008.

Both bond and Libor forward interest rates are empirically studied using various
approximation schemes. The bond forward interest rates are taken to be equal to
empirical Libor and the volatility σ(t , x) and correlation of changes in the forward
interest rates are evaluated. The stiff Lagrangians for A(t , x) and AL(t , x) are seen
to provide an excellent fit to the market data. The Libor forward interest rates
fL(t , x) are empirically studied in the framework of the Libor Market Model and,
in particular, the relation between deterministic volatility γ (t , x) and stochastic
v(t , x) is analyzed.

The market data for the ZCYC are analyzed for both the zero coupon bonds
and Libor markets. It is seen that empirical ZCYC for both markets could not be
satisfactorily explained by the bond and Libor forward interest rates.

2 Market prices of zero coupon bonds yield empirical values for the bond forward interest rates since, from
Eq. (2.12), B(t ,T ) = exp{− ∫ Tt dxf (t , x)}. The forward interest yield curves defined by the bond and Libor
ZCYC differ by the TED (Treasury Eurodollar) spread. The difference will be ignored; errors that are much larger
than those due to TED are introduced by the spline and other fits – required for fitting the various parameters of
the models to discrete market Libor and bond data.
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7.2 Interest rate correlation functions

The market provides data on interest rates as a time series, given at discrete
moments. Hence one needs to discretize both calendar and future time to empiri-
cally study interest rate models. For notational convenience, let f (t , x) denote both
the bond forward interest rates as well as the log Libor interest rates φ(t , x). The
volatility of f (t , x) and φ(t , x) is given by σ(t , x) and γ (t , x), respectively; both
the volatilities are deterministic and the basis of many of the results of this section.
A more specific analysis for Libor forward interest rates fL(t , x), having stochastic
volatility v(t , x), is carried out in Section 7.8.

In principle, the drift terms α(t , x), ρ(t , x) can depend on the forward interest
rates, as is the case for the Libor Market Model, and are taken to be completely
general.3

Discretize time into a lattice of points t = nε, with spacing ε = 1 day. Hence

δf (t , x) = εα(t , x)+ εσ (t , x)A(t , x) (7.1)

where δf (t , x) ≡ f (t + ε, x)− f (t , x)

Recall from Eq. (5.22) that

E[A(t , x)] = 0 (7.2)

E[A(t , x)A(t ′, x′)] = δ(t − t ′)D(x, x′; t) (7.3)

Henceforth, all correlation functions will be expressed as functions of only remain-
ing future time, namely θ = x − t , θ ′ = x′ − t , as these are the coordinates
appropriate for the empirical study. Define f (t , x) = f (t , t + θ) as shown in
Figure 2.2(a); the notation f (t , θ) is sometimes used for f (t , t + θ) since it simply
re-labels what one means by θ .

On discretizing time, the equal time expectation value of the fields at two future
times is singular. From Eq. (A.10), δ(0) = 1/ε; hence, from Eq. (5.22)

E[A(t , θ)A(t , θ ′)] ≡< A(t , θ)A(t , θ ′) >= 1
ε
D(θ , θ ′) (7.4)

From Eq. (5.23)

< δf (t , θ) >= ε < α(θ) > (7.5)

3 The drift term is fixed using the martingale condition. For the bond forward interest rates, drift is deterministic;
for the Libor Market Model, the drift depends on log Libor φ(t , x).
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The drift velocity is fixed by the martingale condition and the drift in the market is
not the one given by the martingale measure; hence martingale drift α(t , x) cannot
be determined from the forward interest rates’ market data.

7.2.1 Forward interest rates’ covariance

Central to the empirical analysis is the following covariance

< δf (t , θ)δf (t , θ ′) >c ≡ < δf (t , θ)δf (t , θ ′) > − < δf (t , θ) >< δf (t , θ ′) >
= ε2σ(θ)σ (θ ′) < A(t , θ)A(t , θ ′) >

⇒< δf (t , θ)δf (t , θ ′) >c = εσ (θ)σ (θ ′)D(θ , θ ′) (7.6)

The model’s volatility σ(t , x) = σ(θ) is given in terms of empirical volatility σE(θ)
as follows

σ 2
E(θ) ≡ < [δf (t , θ)]2 >c = εσ 2(θ)D(θ , θ)

σ (θ) = σE(θ)√
εD(θ , θ)

(7.7)

Hence, from Eqs. (7.6) and (7.7)

< δf (t , θ)δf (t , θ ′) >c = σE(θ)
D(θ , θ ′)√

D(θ , θ)
√
D(θ ′, θ ′)

σE(θ
′) (7.8)

Eq. (7.8) shows that the covariance is uniquely fixed by the empirical volatility
σE(θ) and the model’s normalized propagator.

7.3 Interest rate volatility

For many calculations, it is convenient to have an explicit expression for the volatil-
ity σ(t , x) that appears in the definition of the model. However, σ(t , x) is not
uniquely specified in the model; one can rescale σ(t , x) → σ̃ (t , x) = κ(θ)σ (t , x)
and rescale A(t , x) → Ã(t , x) = A(t , x)/κ(θ), leaving the defining equation
Eq. (5.1) unchanged. The scaling factor is chosen to make σ(t , x) equal to the
empirical volatility σE(t , x) and yields, from Eq. (7.7)

κ(θ) = √
εD(θ , θ) (7.9)

σ̃ (θ) = κ(θ)σ (t , x) = σE(θ)

The model’s volatility, from Eq. (7.7), is hence given by

σ̃ 2(θ) = σ 2
E(θ) =< [δf (t , θ)]2 >c (7.10)
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Figure 7.1 Empirically determined volatility function σ(θ) = √
< δf 2(t , θ) >c

and kurtosis κ(t , θ) =< [δf (t , θ)]4 > /σ 4(t , θ) − 3 for Libor forward interest
rates. The functions are given for four distinct time periods showing a significant
change in their values.

The empirical volatility and kurtosis for four different periods is shown in
Figure 7.1.

The rescaled field Ã(t , θ) = A(t , θ)/κ(θ) has propagator given from Eq. (7.4)

1
ε
D̃(θ , θ ′) = E[Ã(t , θ)Ã(t , θ ′)] = E[A(t , θ)A(t , θ ′)]

κ(θ)κ(θ ′)

⇒ D̃(θ , θ ′) = D(θ , θ ′)
κ(θ)κ(θ ′)

= 1
ε

D(θ , θ ′)√
D(θ , θ)

√
D(θ ′, θ ′)

(7.11)

D̃(θ , θ) = 1
ε

(7.12)

The rescaling is consistent; in particular, note from Eqs. (7.6), (7.9), and (7.12)

< δf (t , θ)δf (t , θ ′) >c= εσ (θ)σ (θ ′)D(θ , θ ′) = εσ̃ (θ)σ̃ (θ ′)D̃(θ , θ ′)

= σ̃ (θ)
D̃(θ , θ ′)√

D̃(θ , θ)
√
D̃(θ ′, θ ′)

σ̃ (θ ′) = σE(θ)
D(θ , θ ′)√

D(θ , θ)
√
D(θ ′, θ ′)

σE(θ
′)

The result agrees with Eq. (7.8), as indeed it must, for consistency. The nor-
malization chosen in Eq. (7.9) will be used from now on and the tildes on
σ̃ and D̃ are henceforth dropped. Note the value of the covariance given by
< δf (t , θ)δf (t , θ ′) >c is independent of the choice of the scaling factor. Choos-
ing a form for κ(θ) fixes a particular frame; the specific choice was made so that
volatility σ(t , x), which appears in the model, is equal to the empirical volatility
σE(t , x).
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All prices of traded instruments are independent of the scaling factor κ(θ) and
depend only on the covariance< δf (t , θ)δf (t , θ ′) >c .

7.4 Empirical normalized propagators

The connected correlation function < δf (t , θ)δf (t , θ ′) >c is independent of drift
velocity α(θ). In quantum finance models, deterministic volatility, as expressed in
Eqs. (7.6) and (7.7), can be completely factorized out of the correlation functions.
The empirical volatility, as in Eq. (7.10), determines the value of σ(θ) and reflects
information encoded in the interest rates. Determining volatility σ(θ) from the mar-
ket greatly improves the applicability and accuracy of the quantum finance model.

The normalized propagator is given by

C(θ , θ ′) = D(θ , θ ′)√
D(θ , θ)D(θ ′, θ ′)

(7.13)

The normalized propagator, for θ �= θ ′, is used for testing quantum finance
models by comparing the models’ predictions with the observed market behavior
of the forward interest rates.

The observed market values of the forward interest rates are assumed to be the
possible outcomes (sample values) of the random values of f (t , x) = f (t , t +
θ); θ = x − t . A fundamental assumption in the empirical analysis is to treat
expectation values of the various financial instruments as being equal to the time
average value of these instruments, taken over the time series of the forward interest
rates. This assumption is called the ergodic hypothesis in statistical physics.

The expectation value determining the correlation functions are obtained by sum-
ming over historical data of the forward interest rates. Suppose historical data are
given for L days denoted by ti ; the stochastic averages for all financial instru-
ments are taken to be equal to its average over historical data. Since the correlation
functions are assumed to depend only on remaining future time θ = x − t , one
holds θ fixed and sums over theL historical values of f (ti , ti+θ) for calendar time
ti = iε; hence, in all empirical analysisx = t+θ , the new set of coordinate variables
are (t , θ).

From Eqs. (7.6) and (7.10), the empirical values of the correlation function are
determined as follows

σ 2(θ) = < [δf (t , t + θ)]2 >c = 1
L

L∑
i=1

[δf (ti , ti + θ)]2
∣∣∣
c

(7.14)

≡ 1
L

L∑
i=1

[δf (ti , ti + θ)]2 −
[

1
L

L∑
i=1

δf (ti , ti + θ)

]2

(7.15)
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From Eq. (7.6)

εσ (θ)σ (θ ′)D(θ , θ ′) = 1
L

L∑
i=1

δf (ti , ti + θ)δf (ti , ti + θ ′)
∣∣∣
c

As shown in Figure 2.4(a), as time t runs over historical data for f (ti , ti + θ), one
moves along the line θ = constant, at a slope of 45◦ in the xt−plane.

The covariance and normalized correlation between δf (t , θ) and δf (t , θ ′),
required for evaluating the volatility and propagator of the interest rates, are
given by

〈δf (t , θ)δf (t , θ ′)〉c : covariance

C(θ , θ ′) = 〈δf (t , θ)δf (t , θ ′)〉c√〈[δf (t , θ ′)]2〉c
√〈[δf (t , θ)]2〉c

: normalized covariance (7.16)

Comparing the above result with Eq. (7.13) yields

〈δf (t , θ)δf (t , θ ′)〉c√〈[δf (t , θ ′)]2〉c
√〈[δf (t , θ)]2〉c

= D(θ , θ ′)√
D(θ , θ)D(θ ′, θ ′)

(7.17)

Defining the normalized propagator to be equal to the normalized covariance makes
it independent of σ(θ). No assumption needs to be made regarding the form of the
volatility. This is the reason for using the normalized propagator, rather than the
covariance itself, for modeling forward interest rates. In particular, parameters such
as η,μ, λ, and so on, which need calibration in quantum finance models, are fitted
from market data independent of the value of σ(θ).

Eq. (7.17) provides the link between market correlations and the predictions
made by the model. The calibration of the model’s parameters are based on this
equation.

The empirical value of the correlation functions for the bond forward interest
rates f (t , x) are estimated from the market Libor and Euribor futures’ data for
L(t , T ) using the approximation

L(t , T ) � f (t , T )

The result of the empirical evaluation of the covariance and normalized covari-
ance for Libor is shown in Figures 7.2(a) and 7.2(b) respectively; the empirical
Euribor normalized covariance is given in Figure 7.3.

The normalized covariance, for all values of its arguments, is always greater than
about 0.55, showing that all the forward interest rates are highly correlated. Any
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Figure 7.2 Libor data from 17 April 2002 to 29 April 2003, consisting of 261
trading days, are used for evaluating all the correlation functions. It is assumed
that L(t , T ) � f (t , T ). (a) Covariance of < δL(θ)δL(θ ′) >. (b) The normalized
covariance is equal to < δL(θ)δL(θ ′) >/σ(θ)σ (θ ′).

two forward rates are strongly correlated – no matter how large is their separation
in maturity time.

7.5 Empirical stiff propagator

Figures 7.2(a) and 7.3 clearly show that both the Libor and Euribor normalized
coviariance have extremely smooth surfaces with no discontinuities or ‘kinks’along
the diagonal that appears in all models without the stiffness term in the Lagrangian
[12]. It is to explain the highly correlated behavior of the forward interest rates that
the stiff Lagrangian, given in Eq. (5.6), has been introduced in [16]. The normalized
propagator is given by

C(θ , θ ′) = G(θ , θ ′)√
G(θ , θ)G(θ ′, θ ′)

(7.18)

The stiff propagator has three branches and the real branch, which is relevant to the
empirical analyis is given, from the results of Section 5.7, as follows [12]

G(θ+; θ−) ≡ λ

2 sinh(2b)
[g+(θ+)+ g−(θ−)] (7.19)

where

g+(θ+) = e−λθ+ cosh(b) sinh{b+ λθ+ sinh(b)} (7.20)

g−(θ−) = e−λ|θ−| cosh(b) sinh{b + λ|θ−| sinh(b)} (7.21)

θ± = θ ± θ ′ (7.22)
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Figure 7.3 It is assumed thatL(t , T ) � f (t , T ). Covariance is given by C(θ , θ ′) =
〈δf (t , θ)δf (t , θ ′)〉c/

√〈[δf (t , θ)]2〉c
√〈[δf (t , θ ′)]2〉c; the correlation for Euribor

forward interest rates is based on daily data from 26 May 1999 to 17 May 2004.

In this representation

C(θ+; θ−) = g+(θ+)+ g−(θ−)√[g+(θ+ + θ−)+ g−(0)][g+(θ+ − θ−)+ g−(0)]
(7.23)

The diagonal axis is a line of maxima for the normalized propagator since

∂C(θ+; θ−)
∂θ−

∣∣∣
(θ−=0)

≡ ∂C(θ+; 0)
∂θ−

= 0 (7.24)

The propagator G(θ+; θ−) has a finite curvature perpendicular to the diagonal
and hence one can compare it with the curvature of C(θ , θ ′) given by the market
data. The curvature orthogonal to the diagonal axis is defined as follows

R(θ+) = −∂
2C(θ+; θ−)
∂θ2−

∣∣∣
(θ−=0)

≡ −∂
2CQ(θ+; 0)
∂θ2−

(7.25)

It can be shown that [12]

R(θ+) = |g′′−(0)|
g+(θ+)+ g−(0)

− |g′′+(θ+)|[g+(θ+)+ g−(0)] + [g′+(θ+)]2

[g+(θ+)+ g−(0)]2

(7.26)

Eq. (7.26) shows that R(θ+), as θ+ increases – which in effect means that one is
moving on the diagonal axis away from the origin (having θ+ = 0) – the curvature
(slowly) increases. The denominator of the first term decreases while at the same
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Figure 7.4 Empirical values of C(θ+; θ−) are shown by empty circles and squares,
whereas the model’s values with market time z = θη are shown by unbroken lines.
C(θ+; θ−) is empirically determined for Libor forward interest rates (from 1990
to 1996). (a) The inset shows a plot of with log (θ+) as the horizontal axis. The
curvature log(R(θ+)), shown as the dashed line, has an (incorrect) upwards slope.
Market time z = θη has curvature log[z′(θ+)]2R(2z(θ+/2)) – shown by an unbro-
ken line – which correctly slopes downwards. (b) Figure shows the propagator
fitted with market time. The inset shows curvature [z′(θ+)]2R(2z(θ+/2)) versus
θ+ as the horizontal axis.

time the second (negative) term becomes smaller; this behavior of the curvature,
shown by the dotted line in the inset of Figure 7.4(a), is seen to slope upwards.

The curvature calculation predicts that the model’s normalized propagator should
fall off more rapidly as one moves on the diagonal away from the origin. If one
looks carefully at Figures 7.2(a) and 7.3, one can see that the empirical normalized
propagator shows the opposite behavior. As one moves away from the origin on
the diagonal axis the curve flattens out, showing that the curvature is decreasing as
θ+ increases. Hence, as it stands, the stiff Lagrangian cannot explain the empirical
behavior of the forward interest rates.

7.6 Empirical stiff propagator: future market time

The curvature for the normalized stiff propagator increases very slowly. One could
try and rectify the problem by multiplying the propagator with a pre-factor that
cancels the gradual rise in curvature and, instead, makes it fall off with a power
law. Future market time variable z(θ) plays precisely this role.

The defining equation for market time z(θ), from Eq. (5.25), is given by

∂f

∂t
(t , t + θ) = α(t , z(θ))+ σ(t , z(θ))A(t , z(θ)); θ = x − t
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that yields for the normalized propagator

Cz(θ , θ ′) = G(z(θ), z(θ ′))√
G(z(θ), z(θ))G(z(θ ′), z(θ ′))

(7.27)

7.6.1 Volatility for market time

From the definition of the stiff forward interest rates given in Eq. (5.25), the empir-
ical covariance of the forward interest rates is equal to the model covariance with
remaining future time θ replaced by z(θ). Hence, from Eq. (7.8)

< δf (t , θ)δf (t , θ ′) >c= σ(z(θ))
D(z(θ), z(θ ′))√

D(z(θ), z(θ))
√
D(z(θ ′), z(θ ′))

σ (z(θ ′))

Hence, for θ = θ ′

< [δf (t , θ)]2 >c= σ 2
E(θ) = σ 2(z(θ))

⇒ σ(z(θ)) = σE(θ)

In other words, no separate calculation is required for σ(z(θ)), but, rather, volatility
for market time is simply a re-labeling of the empirical volatility σE(θ).

7.6.2 Stiff propagator for market time

The empirical value of the normalized propagator of the forward interest rates
Cz(θ , θ ′) does not change when going to market future time. Instead, the description
of this normalized propagator by the quantum finance model changes, and, conse-
quently, the left-hand side of the above equation depends only on the remaining
future time variables θ , θ ′, whereas the right-hand side depends only on the mar-
ket time variables z(θ), z(θ ′). Writing the normalized propagator more explicitly,
similar to Eq. (7.23), yields

Cz(θ+; θ−) = g+(z+)+ g−(z−)√[g+(z+ + z−)+ g−(0)][g+(z+ − z−)+ g−(0)]
(7.28)

z±(θ+; θ−) ≡ z(θ)± z(θ ′) (7.29)

The curvature in the nonlinear variable z(θ) is [12]

∂2Cz(θ+; 0)
∂θ2−

= [z′(θ+)]2R(2z(θ+/2)) (7.30)
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On empirically studying the curvature, one finds a power law fall-off for the
curvature that is given by CQ(θ+) � 1/θ1.3+ . The ansatz z(θ) = θη is used for
fitting the data. Using the fact that RQ(2z(θ+/2)) varies very slowly as a function
of θ+, one can make the following approximation

[z′(θ+)]2 ∝ 1
θ1.3+

⇒ θ
2η−2
+ ∝ 1

θ1.3+
⇒ η � 0.35 (7.31)

The best fit for Libor yields η = 0.34 showing that the market time variable
almost completely dominates the curvature of the normalized propagator.

The units for λ andμ are fixed so that λz andμz are dimensionless; since z = θη,
define λz = [λ̃θ]η so that new constant λ̃ always has dimensions of (time)−1. η is
a scaling exponent and is always dimensionless. In a unit where θ is measured in
years, the result of the empirical study is summarized below. The parameter b is
defined by

μ = λ√
2 cosh(b)

⇒ μ̃ = λ̃

(2 cosh(b))0.5/η

The stiff propagator with nonlinear maturity time z(θ) has an almost perfect
match with Libor data, with a root mean square error of only 0.4%. Figure 7.4
shows a plot of the model’s propagator on the diagonal line that is orthogonal to the
θ− = 0 diagonal – since this is the longest stretch for the normalized propagator;
the agreement with data is almost exact. What is noteworthy is that, even though
the nonlinear maturity variable z(θ) was introduced to address the behavior of the
propagator in the neighborhood of the diagonal axis, it continues to give the correct
behavior for the propagator even far from the diagonal region.

The market Euribor normalized covariance, given in Figure 7.3, can also be fitted
with the stiff propagator. Figure 7.5(a) shows the fit for Euribor along the diagonal
orthogonal to θ = θ ′ axis. The fit is almost perfect. Varying η as well as all the
other parameters yields the best fit, given in Table 7.2; the effect of market time is
shown in Figure 7.5(b). The fit, of the model, for Euribor is even better than for
Libor, with both fits having an overall accuracy of over 99.6%.

The parametric fit for volatility σ(t , x) given in Table 7.4 in Section 7.8.1, where
σ(θ) = v(θ), leads to an error of 5.04% for covariance σ(t , x)D(x, x′; t)σ (t , x′),
where D(x, x′; t) is the value of the stiff propagator; the error is almost entirely due
to the errors in the fit for σ(t , x).
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Table 7.1 The parameters for the stiff Lagrangian derived from Libor and Euribor
data; the best fit was obtained by varying η.

λ̃ μ̃ b η rms error for the entire fit

Libor 1.79/year 0.40/year 0.85 0.34 0.40%
Euribor 4.48/year 0.06/year 0.99 0.13 0.37%
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Figure 7.5 (a) Figure showing the fitted propagator for Euribor data from 26 May
1999 to 17 May 2004. (b) Figure shows Libor market time [λ(x − t)]η compared
with future time λ(x − t).

7.6.3 Euribor and Libor propagators: market and model

For many interest rate options – such as a swap for which the floating interest rates
are paid in US Dollars and the fixed interest rates are paid in Euros – one has to
simultaneously model both the Libor and Euribor forward interest rates. For an
instrument that combines the US Dollars and Euros all market participants should
have the same subjective view of what constitutes future time.

The η parameter quantifying market future time should be equal for such common
instruments and, in general, for the Libor and Euribor markets. The reason for
choosing η to be the same is mathematical as well as empirical; for a Lagrangian
to exist on the same domain of future time the variable z = θη has to be common
to both the forward interest rates.

The best fit was made based on both Libor and Euribor having the same η = 0.19.
Data from the period from 26 May 1999 to 17 May 2004 yield the parameters given
in Table 7.2 that fit data to better than 99% accuracy. If one takes η = 0.34 from the
Libor market to be the common market time exponent, then the best fit, obtained
for both the Libor and Euribor data, yields the following: λ̃ = 3.15; b = 0.57 with
root mean square error = 1.78%.
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Table 7.2 The parameters for the stiff Lagrangian. Best fit for Libor and Euribor
with common η= 0.19.

λ̃ μ̃ b η rms error for the entire fit

Libor 2.273/year 0.07/year 1.245 0.19 0.82%
Euribor 2.831/year 0.21/year 0.816 0.19 0.69%

Market future time for Libor and Euro is given by (x − t)0.19. For x − t = 2
years the dimensionless Libor market time is [λ̃(x − t)]η = 1.33, in contrast to
4.54 for η = 1, as shown in Figure 7.5(b).

Market future time z(θ) = θη is a result of far-reaching significance. It shows that
future time in the financial markets, as proposed in [23], is significantly different
(slower) than calendar time, and influences all financial instruments. Market future
time index ηmay vary over time, similar to volatility, in that it slowly changes over
a long period of calendar time as well as being affected by market sentiment.

The parameters of the stiff Lagrangian, in particular the volatility σ(t , x) and
μ, λ, and η, depend on the market and the interest rate instrument one is fitting.
Libor and Euribor give quite distinct values for the parameters; interest caplets yield
parameters different than those obtained from the Libor data or from swaption data.
For hybrid instruments that straddle many instruments and markets, one needs to
further develop the models considered so far.

7.7 Empirical analysis of the Libor Market Model

The LMM (Libor Market Model) is studied empirically for calibrating the model
as well as for comparing the behavior of Libor forward interest rates fL(t , x) with
the log Libor field φ(t , x) [6]. A stiff propagator, with not necessarily the same
parameters as the bond forward interest rates, is assumed to drive both the Libor
forward interest rates fL(t , x) and log Libor field φ(t , x).

The defining equations of the Libor Market Model are Eqs. (6.10), (6.47), and
(6.58) and yield the following

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x)

	L(t , Tn) = exp
{∫ Tn+1

Tn

dxφ(t , x)
}

≡ eφn(t)

∂φ(t , x)
∂t

= ρ(t , x)+ γ (t , x)AL(t , x)
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The correlations of ∂φ(t , x)/∂t , for θ = x− t and θ ′ = x′ − t , are the following

E

[
∂φ(t , x)
∂t

]
= E[ρ(t , x)]

E

[
∂φ(t , x)
∂t

∂φ(t ′, x′)
∂t ′

]
c

= δ(t − t ′)γ (t , x)γ (t , x′)DL(t ; x, x′)

= δ(t − t ′)γ (θ)γ (θ ′)DL(θ , θ ′)

Eq. (6.51) relates the changes in φ(t , x) to Libor

∂ ln(	L(t , Tn))
∂t

=
∫ Tn+1

Tn

dx
∂φ(t , x)
∂t

� 	
∂φ(t , Tn)

∂t

Discretize time t → ti = iε with ε = 1 day; define

δ ln(	L(ti , Tn)) = ln(	L(ti + ε, Tn))− ln(	L(ti , Tn)) = ln
[L(ti + ε, Tn)

L(ti , Tn)

]
Including the effects of market time, Eqs. (7.8) and (7.10) yield

E
[
δ ln(	L(ti , θ))δ ln(	L(ti , θ))

]2
c

= [	γ (z(θ))]2

E
[
δ ln(	L(ti , θ))δ ln(	L(ti , θ ′))

]
c

= 	2γ (z(θ))DL(z(θ), z(θ ′))γ (z(θ ′))√
DL(z(θ), z(θ))

√
DL(z(θ ′), z(θ ′))

Libor forward interest rates fL(t , x) have stochastic volatility and are defined by
Eqs. (6.21), (6.66), (6.67), and (6.47)

∫ Tn+1

Tn

dxfL(t , x) = ln[1 + 	L(t , Tn)]
δfL(t , x) = εμ(t , x)+ εv(t , x)AL(t , x)

v(t , x) = eφn(t)

1 + eφn(t)
γ (t , x) = 	L(t , Tn)

1 + 	L(t , Tn)
γ (t , x); Tn ≤ x < Tn+1 (7.32)

Note that in the Libor Market Model, the same Gaussian quantum field AL(t , x)
drives both log Libor φ(t , x) and Libor forward interest rate fL(t , x).

Assume for now that v(t , x) is deterministic; this assumption, in effect, makes
v(t , x) identical to the volatility σ(t , x) of the bond forward interest rates defined
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Figure 7.6 (a) Covariance of < δ ln(	L)(θ)δ ln(	L)(θ ′) >c. (b) The normalized
propagator< δ ln(	L)(θ)δ ln(	L)(θ ′) >c /γ (θ)γ (θ ′).

in Eq. (5.1). The same Libor data are used for analyzing both volatilities.4 The
covariance of δL yields the following

E
[
δL(ti , θ)δL(ti , θ ′)

]
c

= v(z(θ))DL(z(θ), z(θ ′))v(z(θ ′))√
DL(z(θ), z(θ))

√
DL(z(θ ′), z(θ ′))

The best fit for the parameters of the stiff propagator is obtained from the empir-
ical propagator DL(z(θ), z(θ ′)) for < δLδL >c and < δ ln(	L)δ ln(	L) >c, with
ηL having values 0.058 and 0.074 for the two cases, respectively. However, it is
intuitively more appropriate to fix the future market time index ηL to be equal for
both cases, since both normalized propagators result from the same market and the
same instrument. The best fit for market time common to Libor and Euribor yields
ηL = 0.07 with 99% accuracy.

The same data set is used for evaluating < δ ln(	L)δ ln(	L) >c, the covari-
ance of log Libor, as was used in Section 7.4 for evaluating the Libor covariance
< δLδL >c.

The empirical covariance and normalized covariance for< δLδL >c are shown
in Figures 7.2(a) and 7.2(b) and those for < δ ln(	L)δ ln(	L) >c are shown in
Figures 7.6(a) and 7.6(b). The result is fairly robust and convergence is stable.

The parameters obtained by fitting the stiff propagators to the two covariances
are given in Table 7.3. The covariance of the instantaneous change in Libor δL
as well as the instantaneous change in logarithm of Libor δ ln(	L), in the Libor
Market Model, are both driven by the same quantum field AL(t , x). Table 7.3
shows that, to within the rms error of 1%, both the covariances yield almost the

4 Note that, in the context of the Libor Market Model, in Section 7.8 v(t , x) will be analyzed for its stochastic
behavior.
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Table 7.3 The parameters for the Lagrangian of AL(t , x) for a common η. The
normalized propagator from< δfLδfL >c≡< δLδL >c /v(θ)v(θ

′) and from the
log Libor case 	2 < δφδφ >c≡< δ ln (	L)δ ln (	L) >c /γ (θ)γ (θ

′) are both
fitted for the parameters of the stiff propagator. The rms (root mean square) error
is for the entire fit. Parameters for both fits are equal to within the 1% rms error.

Covariance λL μL bL ηL rms error

< δfLδfL >c 9.95 4.95 1.33 0.07 1.07%
< δφδφ >c 10.33 5.02 1.38 0.07 1.21%
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Figure 7.7 (a) Volatility v(θ) driving Libor forward interest rates fL(t , x). (b)
Volatility γ (θ) driving log Libor interest rates φ(t , x).

same parameters for AL(t , x). This result is consistent with the quantum finance
Libor Market Model.

7.8 Stochastic volatility υ(t, x)

The empirical volatilities v(θ) and γ (θ) are plotted in Figures 7.7(a) and 7.7(b)
respectively. Note that v(θ) is about two orders of magnitude smaller than γ (θ).
The reason is because the daily changes in Libor δL and log Libor δL/L differ by
10−2; more precisely

L � 0.01; δL � 10−4;
δL

L
� 0.01

E[δLδL] � 10−8 � v2 ⇒ v ∼ 10−4

E

[
δL

L

δL

L

]
� 10−4 � γ 2 ⇒ γ ∼ 10−2
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Figure 7.8 (a) The expectation value χ(θ) = E[	L(θ)/(1 + 	L(θ))]. (b) The
volatility of 	L(θ)/(1 + 	L(θ)) shows a peak around 1.5 years for the remaining
future time.

Although, in Section 7.7, volatility v(θ) was assumed to be deterministic,
Eq. (7.32) shows that it is, in fact, a derived stochastic quantity given by

v(t , x) = eφn(t)

1 + eφn(t)
γ (t , x) = 	L(t , Tn)

1 + 	L(t , Tn)
γ (t , x) (7.33)

A measure of the error in replacing stochastic volatility v(t , x) by a deterministic
function is given by the variance of 	L(θ)/(1 + 	L(θ)), which is the stochastic
quantity that makes v(t , x) stochastic. More precisely

	L(t , Tn)
1 + 	L(t , Tn)

� E

[
	L(t , Tn)

1 + 	L(t , Tn)

]
± volatility ≡ χ(θ)± volatility

χ(θ) is plotted in Figure 7.8(a).
Figure 7.8(b) plots the volatility of 	L(θ)/(1+	L(θ)), which shows an expected

peak around 1.25 years for remaining future time: the most volatile period for Libor.
From Figure 7.8 the empirical values yield the following

χ(θ) = E

[
	L(t , Tn)

1 + 	L(t , Tn)

]
� 10−2 − 10−3

volatility of
[

	L(t , Tn)
1 + 	L(t , Tn)

]
� 10−3

Hence, 	L(θ)/(1 + 	L(θ)) has volatility comparable to χ(θ) and replacing it by
χ(θ) will lead to substantial errors.
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Figure 7.9 (a) The upper line is the effective volatility v(θ) and the lower line is
χ(θ)γ (θ); the fluctuations of stochastic v(θ) about the value of χ(θ) are indicated
by error bars. (b) The graph shows the empirical value of �D(θ , θ ′).

The empirical volatilities γ (θ) and v(θ) can be taken to be approximately related
by the following

v(t , x) = v(θ) � χ(θ)γ (θ)

v(θ) and χ(θ)γ (θ) are plotted in Figure 7.9(a). The total error in the fit of v(θ)
with χ(θ)γ (θ) is about 2.1% of the value of v(θ), with the error close to 4.5% near
the remaining future time around 1.5 years.

The difference in the normalized propagators ofL and ln(	L) is a measure of the
error (for different maturities) made by the approximation v(θ) � χ(θ)γ (θ); the
difference should be zero if the approximation has no error. Define the difference
of the normalized propagators by

�D(θ , θ ′) = < δ ln(	L(θ))δ ln(	L(θ ′)) >c
	2γ (θ)γ (θ ′)

− < δL(θ)δL(θ ′) >c
χ(θ)γ (θ)χ(θ ′)γ (θ ′)

The empirical value of �D(θ , θ ′) is shown in Figure 7.9(b). The errors are
substantial due to the volatility of 	L(θ)/(1 + 	L(θ)); in particular, there is an
error of almost 10% for the region near remaining future time of about 1.5 years,
for which the volatility is maximum.

In conclusion, stochastic volatility v(t , x) of the Libor forward interest rates
fL(t , x) cannot be treated as a deterministic function. Errors of about 10% are the
result of the volatility of Libor. A more productive approach seems to be to focus
on the log Libor quantum field φ(t , x) and develop efficient numerical algorithms
based on the deterministic volatility γ (t , x).



7.9 Zero coupon yield curve and covariance 169

Table 7.4 The parametric fit of interest rates volatility. Note the coefficient c3
determines the exponential fall off of the volatility. The rms (root mean square)
error is for the entire fit.

Volatility c1 c2 c3 c4 rms error

γ (θ) 0.051 0.038 1.360 0.279 7.73%
v(θ) 0.001 0.000 1.047 0.001 4.70%

7.8.1 Interest rate volatility in the Libor Market Model

The empirical volatility function v(θ) for Libor forward interest rates fL(t , x) and
volatility γ (θ) of log Libor φ(t , x) are fitted with analytic expressions. The best fit
parameters are given in Table 7.4, based on the formula below

c1 + c2 exp
{− c3(θ − 0.25)

}+ c4(θ − 0.25) exp
{− c3(θ − 0.25)

}
The linearly increasing term – given by coefficient c4 – results from the mar-
ket’s projection of the anticipated trends of the spot rate [27]. The relative error is
computed by

rms error =
√√√√ 1
N

N∑
n=1

[
γn(theory)− γn(market)

γn(market)

]2

where the sum is taken over all the data points. Figure 7.10 shows that, as expected,
volatility γ (θ) is much higher, by two orders of magnitude, than volatility v(θ).

The empirical values of v(θ) and γ (θ), together with the best fits, are plotted in
Figures 7.10(a) and ??.

For volatility γ (t , x), the covariance γ (t , x)DL(x, x′; t)γ (t , x′) has an error of
11.28%. The errors are largely due to the errors in fitting the volatilities. If one
uses the empirical value for the volatility and the stiff propagator, the error in the
covariance is about 1%.

7.9 Zero coupon yield curve and covariance

All the discussion so far has concentrated on Libor and Euribor futures data. It was
assumed that both the bond and Libor forward interest rates can be calibrated using
Libor data. The results obtained so far are consistent with the quantum finance
models for bond forward interest rates and with the Libor Market Model’s quantum
finance generalization.

Treasury Bond and Libor ZCYC data have been discussed in Sections 2.13 and
2.11. One can evaluate correlation functions by averaging over historical ZCYC
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Figure 7.10 The empirical volatility of v(θ) and γ (θ) are taken to be equal to the
average over 260 days of historical data. The unbroken line is market volatility
and the dashed line is the best fit. (a) The best fit for v(θ), with relative rms error
of 4.70%. (b) The best fit for γ (θ), with relative rms error of 7.73%.

market data. The correlation functions can be written directly in terms of the ZCYC
and it is seen below that the ZCYC provides an estimate of the integrated covariance
of the underlying forward interest rates driving the ZCYC.

From Eq. (2.28), the ZCYC, which is compounded c times a year, has the
following relation with zero coupon bonds and forward interest rates

B(t , T ) = 1

(1 + 1
c
Z(t , T ))c[T−t] = exp

{
−
∫ T

t

dxf (t , x)
}

⇒
∫ T

t

dxf (t , x) = c[T − t] ln
(

1 + 1
c
Z(t , T )

)
Consider the ZCYC for the forward interest rates integrated over a fixed interval

[t∗, T ]; this yields the following integrated covariance of the forward interest rates∫ T

t∗
dx
∂f

∂t
(t , x) = ∂

∂t

∫ T

t∗
dxf (t , x) (7.34)

⇒
∫ T

t∗
dx

∫ T ′

t∗
dx′ < δf (t , x)δf (t , x′) >

=
〈
δ

[∫ T

t∗
dxf (t , x)

]
δ

[∫ T

t∗
dx′f (t , x′)

]〉
The effects of the spot rate r(t) = f (t , t) (boundary term) can be studied by

letting the lower limit be equal to time t . This yields the following integrated
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forward interest rates

∂

∂t

∫ T

t

dxf (t , x) = −f (t , t) +
∫ T

t

dx
∂f

∂t
(t , x)∫ T

t

dx[δf (t , x)] = εf (t , t)+ δ

∫ T

t

dxf (t , x)

⇒
∫ T

t

dx

∫ T ′

t

dx′ < δf (t , x)δf (t , x′) > (7.35)

=
〈[
εf (t , t) + δ

∫ T

t

dxf (t , x)
] [
εf (t , t) + δ

∫ T

t

dx′f (t , x′)
]〉

All terms on the right-hand side can be evaluated using the ZCYC.

7.9.1 Empirical US Treasury Bond ZCYC covariance

The bond market is studied to ascertain whether it can be explained by the stiff prop-
agator. The empirical result for the Treasury Bond market is shown in Figure 7.11(a)
for Eq. (7.34). The result for Eq. (7.35) is shown in Figure 7.11(b) and looks very
similar to the earlier result given in Figure 7.11(a), showing that including the
boundary term due to the spot rate r(t) = f (t , t) in the covariance does not make
much of a difference.
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Figure 7.11 (a)
∫ T
t∗ dx

∫ T ′
t∗ dx ′ < δf (t , x)δf (t , x ′) >: Treasury Bond ZCYC inte-

grated covariance from fixed t∗ = 0.25 years and T and T ′ range from 0.5 years
to 7.25 years. (b)

∫ T
t dx

∫ T ′
t dx ′ < δf (t , x)δf (t , x ′) >: Treasury Bond ZCYC

integrated covariance; contains boundary terms f (t , t). Note t = 0 and T and T ′
range from 0.25 years to 7.25 years.
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Figure 7.12 (a)
∫ T
t∗ dx

∫ T ′
t∗ dx ′ < δf (t , x)δf (t , x ′) >: Libor ZCYC integrated

covariance from fixed t∗ = 0.25 years and for maturity time T and T ′ range from
0.5 to 7.5 years. (b)

∫ T
t
dx
∫ T ′
t∗ dx ′ < δf (t , x)δf (t , x ′) >: Libor ZCYC integrated

covariance from fixed t = 0; maturity time T and T ′ range from 0.25 to 30 years.

7.9.2 Empirical Libor ZCYC covariance

The Libor ZCYC is used to evaluate the integrated covariance. The data are taken
from calendar dates 10 August 2007 to 8 August 2008, totaling 261 trading days;
the average is taken over 260 trading days. Figure 7.12(a) shows the integrated
covariance out to 7.5 years and Figure 7.12(b) shows it out to 30 years.

7.9.3 Integrated covariance

The Treasury Bond integrated covariance given in Figure 7.11 is quite distinct from
the one obtained from the Libor ZCYC given in Figure 7.12. The stiff propagator
could not be fitted to either of the integrated covariances since no numerically
accurate way was found to factor out the volatility σ(t , x) from the integrated
covariance.

An indirect comparison of the ZCYC integrated covariance is made with Libor
data in the following manner. Based on the earlier analysis in Sections 7.5 and 7.6,
where the volatility and stiff propagator were empirically determined, the covari-
ance is constructed and integrated; the result is shown in Figure 7.13(a) for the
case of parameters found from the covariance of δL and in Figure 7.13(b) from
the covariance of δ ln(	L). The result shown in Figure 7.13(a) has a surface quite
different from the one generated by the Treasury Bond ZCYC covariance given
in Figure 7.11(a); there is some similarity with the surface generated by the Libor
ZCYC covariance given in Figure 7.12(a), with an error of about 21.4%.
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Figure 7.13 (a)
∫ T
t∗ dx

∫ T ′
t∗ dx ′ < δL(t , x)δL(t , x ′) >c: integration of Libor

covariance. (b)
∫ T
t∗ dx

∫ T ′
t∗ dx ′ < δ(lnL(t , x))δ(lnL(t , x ′)) >c: integration of log

Libor covariance.

One does not expect the covariance of log Libor to reproduce the ZCYC
covariance but the covariance of Libor should – since empirical Libor L(t , x) is
approximately equal to the forward interest rates f (t , x). However, the surfaces
in Figures 7.11(a) and 7.13 are significantly different, leading to the conclusion
that forward interest rates from Libor are not the same as the forward interest rates
obtained from the Treasury Bond ZCYC.

A possible explanation for the difference in the behavior of Libor and ZCYC is
the TED (Treasury Eurodollar) spread. The zero coupon Treasury Bond ZCYC is
constructed from a risk-free instrument. Libor, on the other hand, carries an element
of risk and the spread of TED is taken as an indicator of credit risk, reflecting the
default possibility of corporate borrowers. As the spread increases, so does the
risk. Another possible reason for the discrepancy of the two ZCYCs is that Libor
contains a fundamental scale, namely the nonzero tenor for simple interest rate
period 	, whereas there is no such scale in the zero coupon bond market since there
is almost instantaneous discounting.

Hence, one may conclude that the difference between Libor and bond forward
interest rates reflects the two major components of the debt market, namely the
(Libor) interest rates and bond markets.

7.10 Summary

Quantum finance models of the forward interest rates were empirically analyzed.
The models were simple to calibrate and made many empirically testable predic-
tions. On the balance of the results, the quantum finance model for both the bond
and Libor markets give excellent results.
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Quantum finance provides a framework in which the volatility of the forward
interest rates, unlike the HJM and BGM–Jamshidian models, is taken directly from
the market with no need for any parametric fit. Once volatility is fixed, the empirical
(normalized) propagator can be evaluated to calibrate and test the various quantum
finance models.

The stiff propagator of quantum finance is seen to provide an excellent fit for the
empirical propagator, to an accuracy of better than 99%. The index for market time
η shows a large variation from η = 0.34 for the bond forward interest rates to a
fairly small value of ηL = 0.07 for the Libor forward interest rates. The ZCYC for
both Treasury Bonds and Libor are, presumably, also driven by a stiff propagator
and the parameters appropriate for them need to be studied.

The quantum finance generalization of white noise R(t) to a two-dimensional
quasi-Gaussian quantum field A(t , x) was empirically studied. The results of the
empirical study point to a very general and fundamental role of the stiff Lagrangian
in describing the random processes that drive the debt markets. The stiff Lagrangian
is a pseudo-Gaussian (free) quantum field and one may wonder why it can so accu-
rately describe forward interest rates that one expects to be nontrivial and nonlinear.
A possible answer lies in the concept of market future time and, in particular, the
index η. To generate market future time from a Lagrangian – instead of directly
putting it into the Lagrangian ‘by hand’ – would require nonlinear interactions.
Presumably, the index for future market time is like a critical exponent that appears
in phase transitions. η is the result of strongly correlated and, at present unknown,
nonlinear interactions of the underlying fundamental theory, which is defined for
future market time x − t with no reference to η.

The Libor Market Model shows that the volatility v(t , x) of the Libor forward
interest rates fL(t , x) is a stochastic quantity derived from deterministic volatility
γ (t , x) of log Libor φ(t , x). It remains an open question whether volatility γ (t , x),
which drives the bond forward interest rates f (t , x), is the fundamental interest
rate from which one can derive the volatility γ (t , x) of log Libor rates φ(t , x).

The bonds’ and the interest rates’ markets are two sectors of the debt markets.
Both the bond and interest rates’markets are driven by underlying interest rates and
their inter-relationship is an empirical question. The introduction of tenor 	 into the
debt market creates a nonlinear relationship between zero coupon bonds and time
deposits. One of the main conclusions of the empirical study is that the models of
bond and Libor forward interest rates are distinct and different. The difference of
the two can be attributed to the TED spread and to the minimum tenor 	 = 90 days
for the three-month benchmark Libor.

Parameters μ, λ, and the market time index η need to be fixed from mar-
ket data. The velocity field A(t , x) that drives f (t , x) and AL(t , x) that drives
φ(t , x) are determined by the same stiff action but their parameters are different.
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Furthermore, volatility σ(t , x) and γ (t , x) are different by two orders of magnitude;
both volatilities have a nontrivial structure and, in quantum finance, are determined
from market data.

The parameters, including volatility, required for specifying the behavior of the
debt market point to a major difference between the theories of physics and those of
finance. In physics, all physical constants, such as Planck’s constant, speed of light,
mass and charge of an electron, and so on, are determined by nature. In contrast,
in finance all parameters are the summation of political and economic activities. In
particular, the capital markets are the result of the motivation and psychology of the
market practitioners that reflect their social environment and cultural priorities. The
market index of time η is a case in point: it is the subjective view of the traders that
replaces, in the pricing of instruments, future time by market future time. η shows
that, unlike equations in the natural sciences that relate quantities which are entirely
independent of human subjectivity, the equations in finance seem to incorporate the
presence of human intervention and manipulation in the defining laws of finance.

It might be possible to change the parameters of finance through human inter-
vention, such as herd behavior in the market, or by government policies. The
explanation of the parameters determining the characteristics of the financial mar-
kets is thought to be found in mathematical behavioral finance [87, 77] and which
has been shown, in some cases, to lead to quantitative results [41]. A major chal-
lenge of theoretical finance is to obtain the market values of the various parameters
from underlying principles of finance.



8
Libor Market Model of interest rate options

The prices of Libor options are obtained for the quantum finance Libor Market
Model [4]. The option prices show new features of the Libor Market Model aris-
ing from the fact that, in the quantum finance formulation, all the different Libor
payments are coupled and (imperfectly) correlated.

Black’s caplet formula for quantum finance is given an exact derivation. The
coupon and zero coupon bond options as well as the Libor European and Asian
swaptions are derived for the quantum finance Libor Market Model. The approx-
imate Libor option prices are derived using the volatility expansion developed in
Section 3.14.

The BGM–Jamshidian expression for the Libor interest rate caplet and swap-
tion prices is obtained as the limiting case when all the Libors are exactly
correlated.

8.1 Introduction

The Libor option prices are obtained from the Libor zero coupon bondsBL(t , T ) –
obtained from the Libor ZCYC curve ZL(t , T ) discussed in Section 7.9 – and
the benchmark three-month Libor L(t , T ). For notational convenience, Libor zero
coupon bonds BL(t , T ) will be denoted by B(t , T ).

All the options are defined to mature at future calendar time T0, with present
time given by t0 = T−k ; the notation of present being denoted by t0 is used to
simplify the notation. It is natural for these options to chooseB(t , T0) as the forward
bond numeraire. In other words, the forward bond numeraire is B(t , TI+1) with
I = −1 and Libor drift is calculated for this numeraire. Libor calendar and future
time are shown in Figure 6.1 and Libor times t0 = T−k , T0, and Tn are shown in
Figure 8.1.

The option price is governed by the defining equations of the LMM. From
Eqs. (6.41), (6.42), and (6.43), Libor is given by the following

176
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t0= T-k T0 Tn

Figure 8.1 The Libor lattice is defined by Tn = 	n; the payoff is defined at Libor
time T0. The option price is evaluated at present Libor calendar time t0 = T−k .

L(T0, Tn) = L(t0, Tn)e
β(t0,T0,Tn)− 1

2 q
2
n+
∫ T0
t0
dt
∫ Tn+1
Tn

dxγ (t ,x)AL(t ,x)

≡ L(t0, Tn)eβn+Wn (8.1)

where

βn =
∫ T0

t0

dtζ(t , Tn); β−1 = 0 (8.2)

ζ(t , Tn) =
n∑

m=0

	L(t , Tm)
1 + 	L(t , Tm)

�mn(t); q2
n =

∫ T0

t0

dt�nn(t) (8.3)

Wn = −1
2
q2
n +

∫ T0

t0

dt

∫ Tn+1

Tn

dxγ (t , x)AL(t , x)

�mn(t) =
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′γ (t , x)DL(x, x′; t)γ (t , x′)

The two expectation values that are required for the option calculations, from
Eqs. (6.45) and (6.46), are the following

E[eWn − 1] = 0 (8.4)

E[(eWm − 1)(eWn − 1)] = e�mn − 1 � �mn +O(γ 4) (8.5)

�nm ≡ �mn(T0) =
∫ T0

t0

dt

∫ Tn+1

Tn

dx

∫ Tm+1

Tm

dx′Mγ (x, x′; t)

=
∫ T0

t0

dt�mn(t) � O(γ 2) (8.6)

Empirical values of �mn(T0) are given in Figure 8.2 for two well-separated time
intervals T0 − t0 = 1 month and T0 − t0 = 1 year; the correlator �mn(T0) has a
‘hump’ for a short time due to the effects of volatility γ (t , x) that smooths out for
longer times.

Libor European and Asian swaption prices are evaluated to onlyO(γ 2) as this is
sufficient for demonstrating the main features of the calculations. The higher-order
terms rapidly proliferate but, nevertheless, can be computed in a straightforward
manner. The swaption price BGM–Jamshidian limit is taken to understand the new
features that arise due to imperfectly correlated Libors.
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Figure 8.2 Empirical value for Libor correlator�mn(T0) = ∫ T0
t0
dt�mn(t) (a) for

T0 − t0 = 1 month and (b) for T0 − t0 = 1 year. The graphs are constructed from
Libor ZCYC data for 261 days, from 10 October 2007 to 8 August 2008.

Libor options in the BGM–Jamshidian framework have been extensively
studied [61, 84]. A review of Libor derivative instruments, priced using the
BGM–Jamshidian model, is given in [33].

8.2 Quantum Libor Market Model: Black caplet

The Black caplet price is derived exactly for the quantum finance Libor Market
Model. The key simplification is that Libor L(t , TI ) is a martingale for numeraire
B(t , TI+1); hence the Libor drift ζ(t , TI ) is zero and this reduces the dynamics of
L(t , TI ) to the Gaussian case.

Hence, from Eq. (6.38), L(t , TI ) has a martingale evolution given by

∂L(t , TI )
∂t

= L(t , TI )
∫ TI+1

TI

dxγ (t , x)AL(t , x)

and from Eq. (6.40)

L(t∗, TI ) = L(t0, TI ) exp
{
−1

2
q2
I +

∫ t∗

t0

dt

∫ TI+1

TI

dxγ (t , x)AL(t , x)
}

(8.7)

The payoff for a midcurve caplet on Libor L(t∗, TI ), maturing at time t∗ < TI ,
from Eq. (4.10), is given by1

caplet(t∗, t∗, TI ) = 	VB(t∗, TI + 	)
[
L(t∗, TI )−K

]
+

where the notional sum of the caplet is V .

1 A caplet that matures when Libor L(t∗, TI ) becomes operational is obtained by setting t∗ = TI .
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The caplet is a traded instrument and follows a martingale evolution for numeraire
B(t , TI+1); hence, the price of the caplet at present time t0 is given by the martingale
condition

caplet(t0, t∗, TI )
B(t0, TI+1)

= E

[
caplet(t∗, t∗, TI )
B(t∗, TI+1)

]
= 	VE

[
L(t∗, TI )−K

]
+

⇒ caplet(t0, t∗, TI ) = 	VB(t0, TI+1)E
[
L(t∗, TI )−K

]
+ (8.8)

The payoff can be re-expressed, from Eq. (A.7), as follows

[
L(t∗, TI )−K

]
+ =

∫ +∞

−∞
dQ

dη

2π
e
iη(
∫ t∗
t0
dt
∫ TI+1
TI

dxγ (t ,x)AL(t ,x)+Q)

× [
L(t0, TI )e−

1
2q

2
I−Q −K

]
+ (8.9)

To obtain the caplet price one evaluates Eq. (8.8); from Eq. (5.21)

E
[
e
iη
∫ t∗
t0
dt
∫ TI+1
TI

dxγ (t ,x)AL(t ,x)] = 1
Z

∫
DALe

Se
iη
∫ t∗
t0
dt
∫ TI+1
TI

dxγ (t ,x)AL(t ,x)

= exp
{
−1

2
η2
∫ t∗

t0

dt

∫ TI+1

TI

dxdx′γ (t , x)DL(x, x′; t)γ (t , x′)
}

= exp
{
−1

2
q2
I η

2
}

where q2
I =

∫ t∗

t0

dt

∫ TI+1

TI

dx

∫ TI+1

TI

dx′Mγ (x, x′; t) (8.10)

Hence, from Eqs. (8.8), (8.9), and (8.10), the caplet price is given by

caplet(t0, t∗, TI )
B(t0, TI+1)

= 	V

∫ +∞

−∞
dQ

dη

2π
e−

1
2q

2
I η

2
eiηQ

[
L(t0, TI )e−

1
2 q

2
I−Q −K

]
+

= 	V

∫ +∞

−∞
dQ√
2πq2

I

e
− 1

2q2
I

Q2[
L(t0, TI )e−

1
2q

2
I−Q −K

]
+ (8.11)

= 	V
[
L(t0, TI )N(d+)−KN(d−)

]
(8.12)

d± = 1
qI

ln
[
L(t0, TI )
K

]
± qI

2

Eq. (8.12) is the well-known Black’s formula for a Libor caplet [34, 59]. The
additional information that the quantum LMM yields is that Black’s volatility σ 2

B
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Figure 8.3 Market implied Black volatility σB for a caplet that matures on 12
December 2004 versus time t0, from 12 September 2003 to 7 May 2004.

is in fact equal to q2
I , which in turn is given by Libor volatility γ (t , x) and the

correlator DL(x, x′; t). More precisely

σ 2
B = q2

I

t∗ − t0
= 1
t∗ − t0

∫ t∗

t0

dt

∫ TI+1

TI

dx

∫ TI+1

TI

dx′Mγ (x, x′; t) (8.13)

Figure 8.3 shows the implied Black’s volatility σB for the market price of a Libor
caplet.

One can either choose to calibrate the quantum LMM from caplet data and
ascertain γ (t , x) or else obtain γ (t , x) independently from the correlation of Libor
rates as shown in Figure 7.7(b). Knowing γ (t , x) and the Libor propagator allows
one to predict the value of the caplet [84].

The BGM–Jamshidian limit is obtained when all the Libors are exactly correlated,
namely that DL(x, x′; t) → 1, which yields Mγ (x, x′; t) → γ (t , x)γ (t , x′); hence

σ 2
B → σ 2

B

∣∣∣
BGM

= 1
t∗ − t0

∫ t∗

t0

dt

[∫ TI+1

TI

dxγ (x, t)
]2

8.3 Volatility expansion for Libor drift

Libor drift, defined for Libor time Tn = T0 + 	n, can be expressed completely in
terms of Libors with no reference to the Libor forward interest rates fL(t , x).
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Due to the nontrivial Libor drift βn given in Eqs. (8.2) and (8.3), the expression
for Libor interest rates is a nonlinear, nonlocal, and fairly intractable function of
AL(t , x).Anatural expansion for Libor drift is a perturbation series in Libor volatil-
ity γ (t , x). The empirical value of γ , from Figure 7.10(b), is about 10−1/year; the
expansion parameter is the dimensionless quantity 	γ , which is about 10−2/year.
The volatility expansion, as a power series in γ (t , x), generates a convergent
expression for the drift and other quantities.

All future time is taken to be on the Libor time lattice given by Libor time
Tn = 	n.

L(t , Tn) = L(t0, Tn)eβn+Wn ; t > t0

βn =
∫ t

t0

dt ′ζ(t ′, Tn); β−1 = 0

ζ(t , Tn) =
n∑

m=0

	L(t , Tm)
1 + 	L(t , Tm)

�mn(t)

where βn = βn(t) andWn = Wn(t).
To obtain the volatility expansion, the leading term in βn is isolated and a

recursion equation then generates the expansion. Eq. (8.1) yields

	L(t , Tm)
1 + 	L(t , Tm)

= 	L(t0, Tm)eβm+Wm
1 + 	L(t0, Tm)eβm+Wm

= 	L(t0, Tm)
1 + 	L(t0, Tm)

+ 	L(t0, Tm)(eβm+Wm − 1)
(1 + 	L(t0, Tm))(1 + 	L(t0, Tm)eβm+Wm)

= O(1)+O(γ )

Hence, from above and Eqs. (8.2) and (8.3) one obtains the following implicit
equation

βn =
∫ t

t0

dt ′
n∑

m=0

�mn(t
′)
[

	L(t0, Tm)
1 + 	L(t0, Tm)

+ 	L(t0, Tm)(eβm+Wm − 1)
(1 + 	L(t0, Tm))(1 + 	L(t0, Tm)eβm+Wm)

]
= β(0)n +�n(β) (8.14)

where

�n(β) =
∫ t

t0

dt ′
n∑

m=0

�mn(t
′)
[

	L(t0, Tm)(eβm+Wm − 1)
(1 + 	L(t0, Tm))(1 + 	L(t0, Tm)eβm+Wm)

]
= O(γ 3)
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β(0)n =
n∑

m=0

�mn
	L(t0, Tm)

1 + 	L(t0, Tm)
= O(γ 2) : deterministic (8.15)

�mn =
∫ t

t0

dt ′�mn(t ′) = O(γ 2)

In Eq. (8.14), the term β
(0)
n is O(γ 2) and �n(β) is O(γ 3); hence, it provides the

following recursion equation for evaluating drift βn as a power series in γ

βn = β(0)n +�n(β)

= β(0)n +�n
(
β(0) +�(β)

)
= β(0)n +�n

(
β(0) +�

(
β(0) +�(β)

))
= . . .

= β(0)n + β(1)n + . . .+ β(	)n +O(γ 	+2)

Carrying out the above expansion to the first nontrivial order yields

β(1)n = �n(β
(0)) = O(γ 3)

=
∫ t

t0

dt ′
n∑

m=0

�mn(t
′)
[

	L(t0, Tm)(eβ
(0)
m +Wm(t ′) − 1)

(1 + 	L(t0, Tm))
(
1 + 	L(t0, Tm)eβ

(0)
m +Wm(t ′))

]

The option price will be evaluated to only O(γ 2) and hence the drift will be
taken as follows

βn = β(0)n + O(γ 3) : deterministic (8.16)

8.4 Zero coupon bond option

The zero coupon Libor bond option price is derived based on the volatility expansion
and is analyzed to illustrate certain key features of the volatility expansion. The
results of this section provide the necessary ingredients for the more complex
derivation of the coupon bond option price in the Libor Market Model.

8.4.1 Zero coupon bond volatility expansion

Consider the Libor future time lattice of points given by Tn = 	n. The zero coupon
bond B(T0, Tn) issued at Libor time T0 has a forward bond price F(t0, T0, Tn) at
earlier Libor time t0 = T−k . The three Libor times t0 = T−k , T0, and Tn are shown
in Figure 8.1.
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The relatively simple formula relating the zero coupon bond to its forward price,
based on the instantaneous forward interest rates and given in Eq. (2.14), is re-
expressed in terms of Libors. A volatility expansion is also developed as this is
required for generating the approximate option price in the Libor Market Model.

Since β(0)n Wn(t) = O(γ 3), Libor has the following volatility expansion

L(t , Tn) = L(t0, Tn)eβn(t)+Wn(t) � L(t0, Tn)eβ
(0)
n (t)+Wn(t)

= L̃(t0, Tn)+ L(t0, Tn)(eWn − 1)+O(γ 3) (8.17)

where L̃(t0, Tn) = L(t0, Tn) exp{β(0)n } : deterministic

The zero coupon bond, from Eq. (6.5) is given by

B(T0, Tn) =
n−1∏
i=0

1
[1 + 	L(T0, Ti)]

and from Eq. (8.17) has the following volatility expansion

B(T0, Tn) =
n−1∏
i=0

1
[1 + 	L(T0, Ti)]

=
n−1∏
i=0

1

[1 + 	L̃(t0, Ti)+ 	L(t0, Ti)(eWi − 1)]

= F̃ (t0, T0, Tn) exp

{
−
n−1∑
i=0

ln(1 + ai(e
Wi − 1))

}
= F̃ (t0, T0, Tn)

[
1 + An

]+O(γ 3) (8.18)

where

F̃ (t0, T0, Tn) =
n−1∏
i=0

1

[1 + 	L̃(t0, Ti)]
; ai = 	L(t0, Ti)

1 + 	L(t0, Ti)
(8.19)

An = −1 + exp

{
−
n−1∑
i=0

ln(1 + ai(e
Wi − 1))

}

= −
n−1∑
i=0

ai(e
Wi − 1)+ 1

2

n−1∑
i=0

a2
i (e

Wi − 1)2

+ 1
2

n−1∑
i,j=0

aiaj (e
Wi − 1)(eWj − 1)+O(γ 3)
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A2
n =

n−1∑
i,j=0

aiaj (e
Wi − 1)(eWj − 1)+O(γ 3) (8.20)

To leading order in γ , the forward price of the zero coupon bond B(T0, Tn + 	)

is F̃ (t0, T0, Tn). Since t0 = T−K , T0, and Tn are all on the Libor time lattice, the
forward price of a zero coupon bond, from Eq. (6.6), is given by the following

F(t0, T0, Tn) =
n−1∏
i=0

1
[1 + 	L(t0, Ti)] (8.21)

Hence, if one replaces L̃(t0, Ti) byL(t0, Ti)in Eq. (8.19), then F̃ (t0, T0, Tn) is equal
to F(t0, T0, Tn).

8.4.2 Zero coupon bond option price

Consider a zero coupon bond, B(T0, Tn), issued at Libor time T0 and maturing at
Tn. A European call option, maturing at T0, has a payoff given by

P =
[
B(T0, Tn)−K

]
+ (8.22)

Let the option price, at t0 < T0, be denoted by C(t0, T0,K). The three Libor times
t0 = T−k, T0, and Tn are shown in Figure 8.1. Forward bond numeraire B(t , T0)

yields the following martingale

C(t0, T0,K)
B(t0, T0)

= E

[ P
B(T0, T0)

]
= E [P]

⇒ C(t0, T0,K) = B(t0, T0)E
[
B(T0, Tn)−K

]
+

Zero coupon bond volatility expansion, given in Eq. (8.18), yields

C(t0, T0,K) = B(t0, T0)E
[
F̃ (t0, T0, Tn)

(
1 +An

)−K
]
+ +O(γ 3)

= B(t0, T0)F̃ (t0, T0, Tn)E
[
An − K̃

]
+ +O(γ 3)

K̃ = K

F̃ (t0, T0, Tn)
− 1

All stochastic terms are contained in An.
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From Section 3.14, the call option’s volatility expansion requires the evaluation
of E[An] and E[A2

n]. From Eqs. (8.4), (8.6), and (8.20)

E[An] = 1
2

n−1∑
i=0

a2
i E[(eWi − 1)2] + 1

2

n−1∑
i,j=0

aiajE
[
(eWi − 1)(eWj − 1)

]

= 1
2

n−1∑
i=0

a2
i �ii +

1
2

n−1∑
i,j=0

aiaj�ij (8.23)

E[A2
n] =

n−1∑
i,j=0

aiaj�ij (8.24)

Hence, from Eq. (3.69), since E[1] = 1, the zero coupon bond call option price is
given by

C(t0, T0, T ,K) = 1√
2π
B(t0, T0)F̃ (t0, T0, Tn)I (X)

√
E[A2

n] − E[An]2 +O(γ 3)

X = K̃ −E[An]√
E[A2

n] − E[An]2
; K̃ = K

F̃(t0, T0, Tn)
− 1

The Libor price for the zero coupon bond call option is approximate. In contrast,
in the quantum finance model for bond forward interest rates, the zero coupon bond
call option price is evaluated exactly in [12] and given in Eq. (11.49).

Whether the Libor or bond forward interest rate pricing formula is more accurate
is an empirical question and needs to be studied further.

8.5 Libor Market Model coupon bond option price

The payoff function P of a coupon bond European call option maturing at Libor
time T0 and with strike price K is given, from Eq. (4.20), by

P(T0) =
(

N∑
I=1

cIB(T0, TI )− K
)

+
= (

B(T0)− K
)
+ (8.25)

The coupon bond option price at time t0 = T−K , for the forward bond numeraire,
is given by Eq. (4.22) as follows

C(t0, T0,K) = B(t0, T0)E
[
P(T0)

]
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= B(t0, T0)E

⎡⎣( N∑
I=1

cIB(T0, TI )− K
)

+

⎤⎦
Libor times t0 = T−k, T0, and Tn are shown in Figure 8.1.

Similar to the case of the zero coupon bond option analyzed in Section 8.4, a
volatility expansion is developed for the coupon bond option price. One expands
the payoff about the forward bond prices as in Eq. (8.18); to do this, the payoff is
written by isolating the leading order effect in the following manner.

P(T0) =
(

N∑
I=1

cI [B(T0, TI )− F(t0, T0, TI )] + cIF (t0, T0, TI )− K
)

+
= (

V + F − K
)
+

F =
N∑
I=1

JI ; JI = cIF (t0, T0, TI )

All the random terms in the payoff are in the ‘potential’ term V given by

V =
N∑
I=1

cI [B(T0, TI )− F(t0, T0, TI )]

=
N∑
I=1

JI

[
B(T0, TI )
F (t0, T0, TI )

− 1
]

(8.26)

The Libor expression of zero coupon bonds and its forward price, given in
Eqs. (8.18) and (8.21), yields the following

B(T0, TI )
F (t0, T0, TI )

=
I−1∏
i=0

[
1 + 	L(t0, Ti)
1 + 	L(T0, Ti)

]
(8.27)

The stochastic Libors L(T0, Ti) have a volatility expansion given by the
following. From Eqs. (6.43), (8.15), and (8.17)

L(T0, Tn) = L(t0, Tn)+ L(t0, Tn)(β(0)n + eWn − 1)+O(γ 3)

Wn = −1
2
q2
n +

∫ T0

t0

dt

∫ Tn+1

Tn

dxγ (t , x)AL(t , x)

β(0)n =
n∑

m=0

�mn
	L(t0, Tm)

1 + 	L(t0, Tm)
∼ O(γ 2)



8.5 Libor Market Model coupon bond option price 187

Hence, from Eqs. (8.27) and (8.26), the ‘potential’ term V given by

V =
N∑
I=1

JI

[
I−1∏
i=0

{
1 + 	L(t0, Ti)
1 + 	L(T0, Ti)

}
− 1

]

=
N∑
I=1

JI

[
−1 + exp

{
−
I−1∑
i=0

ln(1 + aI (β
(0)
n + eWn − 1))

}]

=
N∑
I=1

JIAI

⇒ AI = −1 + exp

{
−
I−1∑
i=0

ln(1 + ai(β
(0)
i + eWi − 1))

}
(8.28)

ai = 	L(t0, Ti)
1 + 	L(t0, Ti)

The coefficient has a volatility expansion given by the following

AI = −
I−1∑
i=0

ai(β
(0)
i + eWi − 1)+ 1

2

I−1∑
i=0

[
ai(e

Wi − 1)
]2

+ 1
2

I−1∑
i,j=0

aiaj (e
Wi − 1)(eWj − 1)+O(γ 3)

AIAJ =
I−1∑
i=0

J−1∑
j=0

aiaj (e
Wi − 1)(eWj − 1)+O(γ 3) (8.29)

From Eqs. (8.4) and (8.6)

E[eWn − 1] = 0

E[(eWm − 1)(eWn − 1)] = �mn +O(γ 4)

�nm ≡
∫ T0

t0

dt

∫ Tn+1

Tn

dx

∫ Tm+1

Tm

dx′Mγ (x, x′; t) � O(γ 2)

The option price is determined by E[V ] and E[V 2]; from the results obtained
above

E[V ] =
N∑
I=1

JIE[AI ] =
N∑
I=1

JIBI
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BI = −
I−1∑
i=0

aiβ
(0)
i + 1

2

I−1∑
i=0

a2
i �ii + 1

2

I−1∑
i,j=0

aiaj�ij

E[V 2] =
N∑
I=1

N∑
L=1

JIJLE[AIAL] =
N∑
I=1

N∑
L=1

JI JL

I−1∑
i=0

L−1∑
j=0

aiaj�ij

Hence, from Eq. (3.69), the coupon bond option price is given by

C(t0, T0,K)
B(t0, T0)

= 1√
2π
I(X)

√
C2 − C2

1 +O(γ 3)

C1 = E[V ]; C2 = E[V 2]; X = K − F − C1√
C2 − C2

1

8.5.1 Libor swaption

The coupon bond option includes interest rate swaptions as a special case. Consider
all the zero coupon bonds as being constructed from the Libor forward interest rates
fL(t , x), as given in Eq. (6.1); hence

B(T0, Ti) → BL(T0, Ti) = exp
{
−
∫ Ti

T0

dxfL(t , x)
}

(8.30)

The Libor ZCYC data can be used for obtaining the Libor zero coupon bond as given
in Eq. (2.27). One can also construct the Libor zero coupon bond, from Eq. (6.5),
as follows

BL(T0, Tn) =
n−1∏
i=0

[
1

[1 + 	L(T0, Ti)]
]

and the Eurodollar futures data can be used to find the market value of L(T0, Ti).
The Libor ZCYC and Eurodollar futures should give the same value for the Libor

zero coupon bondBL(T0, Ti); in practice, one of the two expressions for evaluating
BL(T0, Ti) may be more useful, depending on the approximations that need to be
made for using market data.

From Eq. (4.32) the payoff for a swaption, in which the holder has the option
to enter a fixed rate RS receiver’s swap and both floating and fixed payments are
made at the same Libor time, yields the following coupon bond coefficients

cn = 	RS ; n = 1, 2, . . . , (N − 1); payment at time T0 + n	 (8.31)

cN = 1 + 	RS ; payment at time T0 + N	

K = 1
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8.6 Libor Market Model European swaption price

Consider a Libor swaption maturing at time T0, with swap payments being made
at times Tn = T0 + 	n; the first payment is made at time T1 and let final swap
payment be made at TN = T. Consider the swaption price at earlier Libor time
t0. The three Libor times t0 = T−k, T0, and Tn are shown in Figure 8.1. For fixed
payments being made at rate RS , the swaption price for paying fixed rate and
receiving floating payments at Libor, from Eq. (4.25), is given by the following
expectation value

C(t0, T0;RS) = 	VB(t0, T0)E

[
N−1∑
n=0

B(T0, Tn + 	)(L(T0, Tn)− RS)

]
+

(8.32)

C(t0, T0;RS)
B(t0, T0)

= E
[
swapL(T0,RS)

]
+

where the numeraire (discounting) is given by the zero coupon bond B(t , T0).
Figure 8.4 graphically represents the Libor swaption payoff function.

An approximate price for an interest rate swaption has been obtained in Eq. (8.31)
by expressing the zero coupon bond in terms of the underlying Libor forward interest
rates fL(t , x), as given in Eq. (8.30). In this section another expansion for swaption
price is generated by using Eq. (6.5), which expresses zero coupon bonds directly in
terms of Libors. The swaption price from both approaches should be equal, but the
approximate prices may have different realizations depending on the market data
being used. Consequently, the derivation of this section is of interest even though
Section 8.5 does indeed provide a perturbation expansion for the swaption price.

Calendar time

T0

T0 Tn Tn+1 Tn Future time

L(T0, Tn)

B(T0, Tn+1)

t0

Figure 8.4 	V
[∑N−1

n=0 B(T0, Tn+1)(L(T0, Tn)−RS)
]
+: Libor European swaption

payoff.
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8.6.1 Interest rate swap’s volatility expansion

From Eq. (4.2), at time T0, the price of the floating receiver swap is given by

swapL(T0,RS) = 	V

N−1∑
n=0

B(T0, Tn + 	)[L(T0, Tn)− RS] (8.33)

Based on the volatility expansion of the Libor zero coupon bonds given in Eq. (8.18)

B(T0, Tn + 	) = F̃ (t0, T0, Tn + 	)
[
1 + An

]+O(γ 3)

the interest rate swap has the following volatility expansion

swapL(T0,RS) ≈ 	V

N−1∑
n=0

F̃ (t0, T0, Tn + 	)
[
1 +An

]
×
{
L̃(t0, Tn)+ L(t0, Tn)(eWn − 1)− RS

}
= 	V

[
N−1∑
n=0

F̃ (t0, T0, Tn + 	)[L̃(t0, Tn)− RS] + V +O(γ 3)

]
(8.34)

where the ‘potential’V , which contains all the stochastic terms, is given by2

V =
N−1∑
n=0

F̃ (t0, T0, Tn + 	)
{
L(t0, Tn)(eWn − 1)+ L(t0, Tn)An(eWn − 1)

+ [L̃(t0, Tn)− RS]An
}

+O(γ 3) (8.35)

8.6.2 Libor swaption price

The swaption price depends on the zero coupon bonds, Libor, and the initial
Libors; both bonds and Libor depend on the underlying nonlinear drift βn(t0).
A self-consistent expansion for the payoff can be derived to any order in O(γ ).
The volatility expansion is carried out to the lowest nontrivial order of O(γ 2) =
O(�mn), where V is given in Eq. (8.35). For most purposes, the lowest order term
contains the most significant contribution to the swaption price.

2 Potential V is not to confused with the principal of the swap given by 	V .
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The swaption price is obtained as an expansion in powers of� = O(γ 2), which
entails computing E[V] and E[V2] to O(�). Recall from Eqs. (8.4) and (8.6)

E[eWn − 1] = 0; E[(eWm − 1)(eWn − 1)] � �mn +O(γ 4) (8.36)

Using the above formulae and from Eq. (8.35)

E[V] =
N−1∑
n=0

F̃ (t0, T0, Tn + 	)

×
{
L̃(t0, Tn)E[An(eWn − 1)] + [L̃(t0, Tn)− RS]E[An]

}
+O(γ 3)

Eqs. (8.20) and (8.36) yield the following

E[(eWm − 1)An] = −
n∑
i=0

ai�mi +O(γ 3)

and hence, using the value of E[An] given in Eq. (8.23), we have

C1 =E[V] =
N−1∑
n=0

F̃ (t0, T0, Tn + 	)

⎧⎨⎩− L̃(t0, Tn)
n∑
i=0

ai�ni

+ 1
2
[L̃(t0, Tn)− RS]

⎛⎝ n∑
i=0

a2
i �ii +

n∑
i,j=0

aiaj�ij

⎞⎠⎫⎬⎭+O(γ 3) (8.37)

In computingE[V2], the term F̃ (t0, T0, Tn+	)L̃(t0, Tn)An(eWn −1) contributes
only to O(�2) since E[(eWl − 1)(eWm − 1)(eWn − 1)] = O(�2) and, hence, is
dropped. This yields

E[V2] =
N−1∑
m,n=0

F̃ (t0, T0, Tm + 	)F̃ (t0, T0, Tn + 	)

× E
[{
L̃(t0, Tm)(eWm − 1)+ [L̃(t0, Tm)− RS]Am

}
× {

L̃(t0, Tn)(eWn − 1)+ [L̃(t0, Tn)− RS]An
}]+O(γ 3) (8.38)

Note that

E[AmAn] =
m∑
i=0

n∑
j=0

aiaj�ij +O(γ 3)
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Hence the expectation value is given by the following

C2 = E[V2] =
N−1∑
m,n=0

F̃ (t0, T0, Tm + 	)F̃ (t0, T0, Tn + 	)

×
⎧⎨⎩L̃(t0, Tm)L̃(t0, Tn)�mn − 2L̃(t0, Tm)[L̃(t0, Tn)− RS]

n∑
i=0

ai�mi

+[L̃(t0, Tn)− RS][L̃(t0, Tm)− RS]
m∑
i=0

n∑
j=0

aiaj�ij

⎫⎬⎭+O(γ 3) (8.39)

For the Libor swaption, from (8.37) and (8.39)

C0 = E[1] = 1; C1 = E[V]; C2 = E[V2]
Hence, from Eq. (3.69), the swaption price is given by

C(t0, T0, T ,K)
B(t0, T0)

= E[swapL(T0,RS)]+ = 	V√
2π
I(X)

√
C2 − C2

1

X = K̃ − C1√
C2 − C2

1

; K̃ =
N−1∑
n=0

F̃ (t0, T0, Tn + 	)[RS − L̃(t0, Tn)]

From Eq. (3.72), the Libor swaption for X ≈ 0, yields the following approximate
price

C(t0, T0,K) ≈ 	VB(t0, T0)

[
1√
2π

√
C2 − C2

1 − 1
2
(K̃ − C1)

]
+O(X2)

8.7 Libor Asian swaption price

Consider an Asian swaption maturing at time T0. The receiver floating swap holder
receives the time average, weighted by function ρ(t), of the difference between
N floating payments at Libor and payments at fixed rate RS . The Asian payoff
function, shown graphically in Figure 8.5, is given by generalizing Eq. (8.32) and
yields the following

PAsn = CAsn(T0, T0;RS)

= 	V

[
1

T0 − t0

∫ T0

t0

dtρ(t)

N−1∑
n=0

F(t , T0, Tn + 	){L(t , Tn)− RS}
]

+

F(t , T0, Tn + 	) =
n∏
i=0

1
[1 + 	L(t , Ti)] (8.40)
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Calendar time

T0

T0 Tn Tn+1 Tn Future time

L(T0, Tn)

F (t0, Tn+1)

t0

Figure 8.5 Libor swaption payoff for Asian option.

A volatility expansion, similar to the case for the European swaption given in
Eqs. (6.41), (6.42), and (6.43) Libor, yields the following for the Asian case3

L(t , Tn) � L̃(t0, Tn)+ L(t0, Tn)(eWn(t) − 1)+O(γ 3)

Wn(t) = −1
2
q2
n(t)+

∫ t

t0

dτ

∫ Tn+1

Tn

dxγ (τ , x)AL(τ , x)

q2
n(t) =

∫ t

t0

dτ

∫ Tn+1

Tn

dxdx′Mγ (x, x′; τ ) =
∫ t

t0

dτ�nn(τ )

�mn(t) =
∫ t

t0

dτ

∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′Mγ (x, x′; τ ) =
∫ t

t0

dτ�mn(τ )

Figure 8.6 provides a graphical representation of the Libor correlator �mn(t)
that appears in the Asian Libor swaption pricing. Figure 8.7 shows the empirical
values of �mn(t) for two well-separated time periods, namely t = 1 month and
t = 5 years. Similar to results shown in Figure 8.2, the correlator �mn(t) has a
‘hump’ for a short time due to the effects of volatility γ (t , x), which smooths out
for longer times.

3 The quantities defined earlier for the European swaption, in Eqs. (6.43) and (6.45), are special cases of the Asian
case and given by

Wn = Wn(T0); �mn = �mn(T0).
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Figure 8.6 Libor correlator �mn(t) = ∫ t
t0
dτ
∫ Tm+1
Tm

dx
∫ Tn+1
Tn

dx ′Mγ (x, x ′; τ ) for
the Libor Asian swaption.

Figure 8.7 Empirical value for Libor correlator �mn(t) (a) for t = 1 month and
(b) for t = 5 years. The graphs are constructed from Libor ZCYC data for 261
days, from 10 October 2007 to 8 August 2008.

The forward price of the zero coupon bond, similar to Eq. (8.18), has the following
expansion

F(t , T0, Tn + 	) = F̃ (t0, T0, Tn + 	)
[
1 + An(t)

]
where, similar to Eq. (8.19)

An(t) ≈ −
n∑
i=0

ai(e
Wi(t) − 1)+ 1

2

n∑
i=0

a2
i (e

Wi(t) − 1)2
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+ 1
2

n∑
i,j=0

aiaj (e
Wi(t) − 1)(eWj (t) − 1)

Similar to the European case given in Eqs. (8.34) and (8.35), the Asian swap has
the following expansion

1
T0 − t0

∫ T0

t0

dtρ(t)

N−1∑
n=0

F(t , T0, Tn + 	){L(t , Tn)− RS}

= ρ̃

N−1∑
n=0

F̃ (t0, T0, Tn + 	)[L̃(t0, Tn)− RS] + VAsn; ρ̃ = 1
T0 − t0

∫ T0

t0

dtρ(t)

⇒ VAsn = 1
T0 − t0

∫ T0

t0

dtρ(t)

N−1∑
n=0

F̃ (t0, T0, Tn + 	)
{
L̃(t0, Tn)(eWn(t) − 1)

+ L̃(t0, Tn)An(t)(eWn(t) − 1)+ [L̃(t0, Tn)− RS]An(t)
}

(8.41)

To find the swaption price one needs to evaluate E[VAsn] and E[V2
Asn], for which

one needs to evaluate the following correlator

E[eWm(t)eWn(t ′)] = exp

{∫ t

t0

dτ

∫ t ′

t0

dτ ′δ(τ − τ ′)

×
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′Mγ (x, x′; τ )
}

= exp
{∫ t

t0

dτθ(t ′ − τ )�mn(τ )

}
since∫ t ′

t0

dτ ′δ(τ − τ ′) = θ(t ′ − τ )

Note from above that E[eWm(t)eWn(t)] = exp{�mn(t)} and hence, similar to
Eq. (8.37), the Asian case is given by

E[VAsn] = 1
T0 − t0

N−1∑
n=0

F̃ (t0, T0, Tn + 	)

∫ T0

t0

dtρ(t)

⎧⎨⎩− L̃(t0, Tn)
n∑
i=0

ai�ni(t)

+ 1
2
[L̃(t0, Tn)− RS]

⎛⎝ n∑
i=0

a2
i �ii (t)+

n∑
i,j=0

aiaj�ij (t)

⎞⎠⎫⎬⎭+O(�2)
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Similar to Eq. (8.38)

E[V2
Asn] = 1

(T0 − t0)2

N−1∑
m,n=0

F̃ (t0, T0, Tm + 	)F̃ (t0, T0, Tn + 	)

∫ T0

t0

dtρ(t)

×
∫ T0

t0

dt ′ρ(t ′)E
[{
L̃(t0, Tm)(eWm(t) − 1)+ [L̃(t0, Tm)− RS]Am(t)

}
× {

L̃(t0, Tn)(eWn(t
′) − 1)+ [L̃(t0, Tn)− RS]An(t ′)

}]+O(�2)

(8.42)

and yields, similar to Eq. (8.39)

E[V2
Asn] =

N−1∑
m,n=0

F̃ (t0, T0, Tm + 	)F̃ (t0, T0, Tn + 	)

×
⎧⎨⎩L̃(t0, Tm)L̃(t0, Tn)�mn − 2L̃(t0, Tm)

(
L̃(t0, Tn)− RS

) n∑
i=0

ai�mi

+ (
L̃(t0, Tn)− RS

)(
L̃(t0, Tm)− RS

) m∑
i=0

n∑
j=0

aiaj�ij

⎫⎬⎭+O(�2)

where

�mn = 1
(T0 − t0)2

∫ T0

t0

dt

∫ T0

t0

dt ′ρ(t)ρ(t ′)
∫ t

t0

dτθ(t ′ − τ )�mn(τ )

For the special case of ρ(t) = 1 it can be shown that4

�mn = 1
(T0 − t0)2

∫ T0

t0

dt(t − t0)(T0 − t)�mn(t) (8.43)

<
1
4

∫ T0

t0

dt�mn(t) = 1
4
�mn

Note that �mn < �mn due to the time average in the Asian payoff function that
‘irons’ out large fluctuations. This is the reason that the Asian option is always
cheaper than the European option.

4 Note one has the inequality
(t − t0)(T0 − t)

(T0 − t0)2
≤ 1

4
; t0 ≤ t ≤ T0.
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The Asian swaption price is given, from Eq. (3.69), by

XAsn = K̃Asn − C1√
C2 − C2

1

; E[1] = 1; C1 = E[VAsn]; C2 = E[V2
Asn]

K̃Asn = ρ̃

N−1∑
n=0

F̃ (t0, T0, Tn + 	)[RS − L̃(t0, Tn)]

CAsn(t0, T0, T ,K)
B(t0, T0)

= 	V√
2π
I(XAsn)

√
C2 − C2

1 ≈ 	V√
2π

√
C2 − C2

1 +O(X2
Asn)

8.8 BGM–Jamshidian swaption price

The BGM–Jamshidian swaption price is widely discussed in the finance litera-
ture and the usual derivation is obtained by using a ‘rolling’ forward measure and
techniques of stochastic calculus [34]. An independent derivation of the swaption
price is given by performing a path integral over the Gaussian white noise that
drives the BGM–Jamshidian version of the Libor Market Model. The derivation
is based on two assumptions, namely that (a) the Libor drift is a constant and (b)
that the volatility functions are de-correlated. The result obtained illustrates the
differences between the quantum finance and BGM–Jamshidian formulations of
the Libor Market Model.

Consider the payoff function for the receiver floating swaption that matures at
time T0 and for which the swap holder receives N payments at Libor and pays at
fixed rate RS . The payoff is given, from Eq. (4.25), by the following

P = C(T0, T0;RS) = 	V

[
N−1∑
n=0

B(T0, Tn + 	){L(t0, Tn)− RS}
]

+
The swaption price at earlier time t0 is evaluated using the forward bond

numeraire B(t , T0). The martingale conditon yields

C(t0, T0;RS)
B(t0, T0)

= E

[
C(T0, T0;RS)
B(T0, T0)

]
= E

[
P
]

The BGM–Jamshidian limit of DL(x, x′; t) → 1, is given in Eq. (6.79), and yields
from Eqs. (6.40) and (6.42) the following∫ T0

t0

dt

∫ Tn+1

Tn

dxγ (t , x)AL(t , x) →
∫ T0

t0

dtγn(t)R(t)

γn(t) ≡
∫ Tn+1

Tn

dxγ (t , x)
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Hence the drift is given, by Eq. (8.15), as follows

ζn ≡
∫ T0

t0

dtζBGM(t , Tn) =
∫ T0

t0

dt

n∑
m=1

	L(t , Tm)
[1 + 	L(t , Tm)]γm(t)γn(t)

The first approximation, the first of two in the BGM–Jamshidian approach, is
the following

	L(t , Tm)
[1 + 	L(t , Tm)] ≈ 	L(t0, Tm)

[1 + 	L(t0, Tm)] (8.44)

The drift, in this approximation, depends only on the Libor L(t0, Tn) at initial time
t0, which is given by the market. In particular, the drift no longer depends on the
random values of LiborL(t , Tn), with t0 ≤ t ≤ T0 and the approximation linearizes
the expression for Libor given in Eq. (6.40). The BGM–Jamshidian approximation
given in Eq. (8.44) is, in fact, the leading term – as a function of γ (t , x) – of the
quantum finance approximation for Libor drift given in Eq. (8.16).

Hence, from Eq. (8.44)

ζn ≈
n∑

m=1

	L(t0, Tm)
[1 + 	L(t0, Tm)]

∫ T0

t0

dtγn(t)γm(t)

Collecting the results yields Libor given by

	L(t , Ti) = 	L(t0, Ti)e
ζi− 1

2q
2
i +
∫ T0
t0
dtγi(t)R(t) (8.45)

where, in the BGM–Jamshidian limit, Eq. (6.35) yields

q2
i → −1

2

∫ T0

t0

dtγ 2
i (t)

The swaption price, in the BGM–Jamshidian approximate scheme, is given by

C(t0, T0;RS)
	VB(t0, T0)

= E

[
N−1∑
n=0

B(T0, Tn + 	){L(T0, Tn)− RS}
]

+
≡ E

[
P
]

P =
[
N−1∑
n=0

B(T0, Tn + 	){L(T0, Tn)− RS}
]

+

=
[
N−1∑
n=0

B(T0, Tn + 	){L(t0, Tn)e
ζn− 1

2q
2
n+
∫ T0
t0
dtγn(t)R(t) − RS}

]
+

(8.46)
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with B(T0, Tn + 	) =
n∏
i=0

1[
1 + 	L(t0, Ti)e

ζi− 1
2 q

2
i +
∫ T0
t0
dtγi (t)R(t)

] (8.47)

Note the BGM–Jamshidian swaption price depends on white noise R(t) only
through the combination

∫ T0
t0
dtγn(t)R(t). The expectation value over white noise

R(t) is evaluated using a path integral.
Using the Dirac-delta function’s representation given in Eq. (A.7), consider the

following representation of unity

1 =
N−1∏
n=0

∫ +∞

−∞
dξnδ

[
ξn −

∫ T0

t0

dtγn(t)R(t)

]

=
N−1∏
n=0

∫ +∞

−∞
dξn

∫ +∞

−∞
dηn

2π
e
iηn(ξn−

∫ T0
t0
dtγn(t)R(t))

≡
∫
ξ ,η
e
i
∑n
i=0 ηn(ξn−

∫ T0
t0
dtγn(t)R(t))

Inserting the above resolution of unity into the path integral for the swaption price
yields

E
[
P
] =

∫
DRP[R(t)]eS0 ; S0 = −1

2

∫ T0

t0

dtR2(t)

=
∫
DR

∫
ξ ,η
e
i
∑N−1
n=0 ηn(ξn−

∫ T0
t0
dtγn(t)R(t))P[R(t)]eS0

=
∫
ξ ,η

P(ξ)ei
∑N−1
n=0 ηnξnZ(η) (8.48)

where the payoff function is given by

P(ξ) =
[
N−1∑
n=0

B(T0, Tn + 	){L(t0, Tn)eζn−
1
2 q

2
n+ξn − RS}

]
+

with B(T0, Tn + 	) =
n∏
i=0

1[
1 + 	L(t0, Ti)eζi−

1
2 q

2
i +ξi ]

The white noise path integral
∫
DR can be performed exactly, and yields the

following partition function

Z(η) =
∫
DRe

−i∑N−1
n=0 ηn

∫ T0
t0
dtγn(t)R(t)eS0
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= exp

⎧⎨⎩−1
2

N−1∑
m,n=0

ηiηj

∫ T0

t0

dtγm(t)γn(t)

⎫⎬⎭ (8.49)

The BGM–Jamshidian derivation makes a second assumption, namely that the γns
are de-correlated, and yields the following

∫ T0

t0

dtγm(t)γn(t) ≈ �m�n (8.50)

⇒ q2
n = −1

2

∫ T0

t0

dtγn(t)γn(t) ≈ −1
2
�2
n (8.51)

ζn ≈ �ndn; d0 = 0; dn =
n∑

m=1

	L(t0, Tm)
[1 + 	L(t0, Tm)]�m (8.52)

Numerical studies provide some evidence in support of the de-correlation given in
Eq. (8.50) [32]. Eqs. (8.49) and (8.50) yield

Z(η) = exp

⎧⎨⎩−1
2

[
N−1∑
n=0

ηn�n

]2
⎫⎬⎭

=
∫ +∞

−∞
dW√

2π
exp

{
−iW

N−1∑
n=0

ηn�n − 1
2
W 2

}
(8.53)

Hence, from Eqs. (8.48) and (8.53), the swaption price is given by

C(t0, T0;RS)
	VB(t0, T0)

=
∫
ξ ,η
ei
∑N−1
n=0 ηiξiP(ξ)

∫ +∞

−∞
dW√

2π
exp

{
−iW

N−1∑
n=0

ηn�n − 1
2
W 2

}

=
∫ +∞

−∞
dW√

2π
e−

1
2W

2
∫
ξ

N−1∏
n=0

δ(ξn −W�n)P(ξ)

=
∫ +∞

−∞
dW√

2π
e−

1
2W

2P(W�) (8.54)

The assumption that the γns are de-correlated yields a major simplification, namely
that

∫ T0
t0
dtR(t)γn(t) → W�n, where W is a N(0, 1) normal random variable;

in other words, the infinite collection of random variables R(t) – one for each
t ∈ [t0, T0] – is replaced by a single random variable W .



8.8 BGM–Jamshidian swaption price 201

Hence, from Eqs. (8.46) and (8.49), the BGM–Jamshidian swaption price is
given by

C(t0, T0;RS)
	VB(t0, T0)

=
∫ +∞

−∞
dW√

2π
e−

1
2W

2

×
[
N−1∑
n=0

B(T0, Tn + 	){L(t0, Tn)e(dn−
1
2�n−W)�n − RS}

]
+

(8.55)

B(T0, Tn + 	) =
n∏
i=0

1[
1 + 	L(t0, Ti)e(di−

1
2�i−W)�i] (8.56)

Let w0 be defined by

N−1∑
n=0

B(T0, Tn + 	){L(t0, Tn)e(dn−
1
2�n−w0)�n − RS} = 0 (8.57)

The BGM–Jamshidian swaption price is given by

C(t0, T0;RS) = 	VB(t0, T0)

N−1∑
n=0

∫ w0

−∞
dW√

2π
e−

1
2W

2
B(T0, Tn + 	)

× {L(t0, Tn)e(dn−
1
2�n−W)�n − RS} (8.58)

Due to the de-correlation of Libor volatility γ (t , x), the BGM–Jamshidian approx-
imation for the swaption price completely factorizes into an independent sum
over the individual payments. This factorization leads to systematic errors in the
BGM–Jamshidian swaption price since crucial correlations are being neglected.

A further simplification can be made by assuming that B(T0, Tn + 	) is
approximately equal to its forward price, namely

B(T0, Tn + 	) � F(t0, T0, Tn + 	)+O(γ 2)

This, in turn, allows the BGM–Jamshidian swaption price to be expressed in
terms of the normal cumulative distribution N(d). Eq. (8.57) yields the following
approximate equation for determining w0

N−1∑
n=0

F(t0, T0, Tn + 	){L(t0, Tn)e(dn−
1
2�n−w0)�n − RS} = 0
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Hence, since B(t0, T0)F (t0, T0, Tn + 	) = B(t0, Tn + 	), the BGM–Jamshidian
swaption price is given by [34, 61]

C(t0, T0;RS) = 	V

N−1∑
n=0

B(t0, Tn + 	)

×
∫ w0

−∞
dW√

2π
e−

1
2W

2
{
L(t0, Tn)e(dn−

1
2�n−W)�n − RS

}
=
N−1∑
n=0

B(t0, Tn + 	)
{
L(t0, Tn)edn�nN(w0 + �n)− RSN(w0)

}
8.9 Summary

Imperfect and nontrivial correlations between the different Libors are parsimo-
niously captured in the Libor Market Model by the correlations of AL(t , x). All
Libor option payoffs are written in terms of Libor zero coupon bondsBL(t , Tn) and
LiborL(t , Tn); no reference was made to the bond forward interest rates in defining
the Libor options.

Libor drift is a nonlinear function of Libor and a volatility expansion was devel-
oped that can be used to evaluate the drift to any degree of accuracy. A volatility
expansion was developed for the payoff of the zero coupon bond and swaption.
Libor options prices were analytically evaluated as a perturbation expansion in
powers of γ (t , x), the volatility of log Libor.

The caplet price was exactly evaluated and provides a quantum finance gener-
alization of Black’s formula. Determining the zero coupon bond option price in
the Libor Market Model is a nonlinear problem and could only be approximately
evaluated. In contrast, the zero coupon bond option price can be exactly evaluated
in the bond forward interest rates, as discussed in Section 11.6.

Swaption price is a nonlinear problem for the quantum finance Libor Market
Model as well as for bond forward interest rates, discussed in detail in Chap-
ter Chapter 11. The Libor European and Asian swaption prices were obtained as
a perturbation expansion in the log Libor volatility function γ (t , x) and which
demonstrates the crucial role of the Libor correlator in pricing these instruments.

Two different approximate Libor Market Model swaption prices, based on repre-
senting the swaption either in terms of the Libor forward interest rates fL(t , x) or in
terms of LiborsL(t , Tn), have been obtained in Sections 8.5.1 and 8.6. In principle,
these two prices are equal but in practice this may not be the case, given the nature
of the available data and the calibration of the Libor Market Model. These two
prices need to be empirically studied to decide on which one is the best suited for
applications.



8.9 Summary 203

The well-known BGM–Jamshidian result was obtained by taking the limiting
case of perfectly correlated Libors. The path integral over the white noise driving
the Libors in the BGM–Jamshidian model was exactly evaluated, and the assump-
tion of the de-correlation of Libor volatility led to a complete factorization of the
swaption price.

The pricing of hybrid instruments that combine bond and Libor forward interest
rates has yet to be addressed. The quantum finance formalism needs to be extended
for analyzing these instruments.



9
Numeraires for bond forward interest rates

Various numeraires are defined in the framework of the bond forward interest rates
f (t , x) discussed in Chapter 5. Eqs. (5.1) and (2.20) yield the following

∂f

∂t
(t , x) = α(t , x)+ σ(t , x)A(t , x); − ∞ ≤ f (t , x) ≤ +∞

1 + 	L(t , Tn) = exp
{∫ Tn+	

Tn

dxf (t , x)
}

where L(t , Tn) is the three-month benchmark Libor with tenor denoted by 	.
The main result of this chapter is that a numeraire, called the forward numeraire,

can be chosen for the bond forward interest rates, such that all forward bond prices
for future Libor time Tn = T0 + 	n with tenor 	 have a martingale evolution. In
other words, the numeraire is chosen such that all Libor tenor forward bond prices
are martingales; hence

F(t , Tn) = exp
{
−
∫ Tn+	

Tn

dxf (t , x)
}

: martingale for all n

As an academic exercise, Libor is expressed in terms of the bond forward interest
rates and a numeraire is chosen so that all the three-month tenor Libor interest rates
have a martingale evolution; that is, the numeraire makes all three-month tenor
Libor into martingales

L(t , Tn) : martingale for all n

In quantum finance the interest rates, at each instant, are driven by infinitely
many independent random variables. This feature allows one to consistently vary
the choice numeraire so that all forward bond prices and three-month tenor Libor
are martingales. A common numeraire, with its concomitant drift, is seen to emerge
naturally.

204
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For comparison, the money market numeraire is also analyzed. The forward
numeraire is similar to the money market numeraire for which, from Eq. (3.4), all
zero coupon bonds are martingales; namely

B(t , T ) = E
[
e−

∫ t∗
t dt ′r(t ′)B(t∗, T )

]
The price of an interest rate caplet is computed as a test case for all three

numeraires and it is shown that the price is numeraire invariant. Put–call parity
is discussed in some detail and shown to emerge due to nontrivial properties of
the numeraires. Some properties of swaps, and their relation to caps and floors, are
briefly discussed. The focus of this chapter is on the choice of numeraire and is not
geared towards applications.

9.1 Introduction

The main focus of this chapter is on the properties of bond forward interest rates,
and in particular on finding a common numeraire (measure) that yields a martingale
evolution for all forward bonds. Two other numeraires for bond forward interest
rates are also considered, namely the money market numeraire and a common
numeraire for Libors.

All calculations are performed using the quantum field theory of bond forward
interest rates. It is shown that a numeraire can be chosen so that all the forward
bond prices simultaneously have a martingale evolution. One of the effects of
this numeraire is that all Libors, written in terms of the bond forward interest
rates, are martingales. This outcome is in contrast with the result obtained in
Section 6.4 for the Libor Market Model, where only a single three-month tenor
Libor, namely L(t , TI ), was rendered into a martingale by the choice of the zero
coupon bond B(t , TI+1) as the forward numeraire; all the other three-month tenor
Libors L(t , Tn) are not martingales, having a nonzero drift given by ζ(t , Tn) as in
Eq. (6.40).

The (future) payoff of a financial instrument has to be discounted by a numeraire
to obtain its current price. It has been shown by Geman et al. [45, 49] that any
positive valued security can be used for discounting the payoff function. In particu-
lar, one can use other zero coupon bonds with different maturities as a discounting
factor instead of using the money market numeraire. The forward numeraire is first
discussed; then the money market numeraire and lastly Libor market measure is
discussed. The main purpose is to elaborate different choices for the numeraire of
bond forward interest rates.

The martingale condition for different numeraires leads to a change in the drift
term for the bond forward interest rates α(t , x) [49]. The freedom of choosing a
numeraire results from the fact that, for every numeraire, the corresponding drift
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makes the price of all traded instrument independent of the numeraire. Numeraire
invariance is an important tool in creating models for the pricing of financial
instruments [49, 50]. To concretely illustrate numeraire invariance, interest rate
caplet prices are evaluated for three different numeraires. It is verified that, as
expected, all three numeraires yield the same price: the price of the caplet is
numeraire invariant.

9.2 Money market numeraire

The money market defines martingale measure by a numeraire M(t , t∗) given by

M(t , t∗) = e
∫ t∗
t r(t ′)dt ′ ; t : fixed

r(t) = f (t , t) is the spot interest rate. The quantity B(t , T )/M(t , t) is defined to
be a martingale

B(t , T )
M(t , t)

= EM

[
B(t∗, T )
M(t , t∗)

]
⇒ B(t , T ) = EM

[
e−

∫ t∗
t r(t ′)dt ′B(t∗, T )

]
(9.1)

where EM [. . .] denotes expectation values taken with respect to the money market
measure. The martingale condition can be solved for its corresponding drift velocity,
which is given by Eq. (5.36)

αM(t , x) = σ(t , x)
∫ x

t

dx′D(x, x′; t)σ (t , x′) (9.2)

9.3 Forward bond numeraire

Choose numeraire B(t , TI ), with TI : fixed. The martingale condition for zero
coupon bonds B(t , T ) is the following

B(t , T )
B(t , TI )

= EI

[
B(TI , T )
B(TI , TI )

]
⇒ B(t , T ) = B(t , TI )EI

[
B(TI , T )

]
The drift is given by the well-known result that [12]

αI (t , x) = σ(t , x)
∫ x

TI

dx′D(x, x′; t)σ (t , x′) (9.3)

whereEI [. . .] denotes taking the expectation value with respect to the forward risk-
neutral measure. In fact, the derivation in Section 6.4 shows that Eq. (9.3) for the
drift of the money market numeraire continues to hold even if σ(t , x) is stochastic.
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9.4 Change of numeraire

The effect of changing the numeraire is investigated in the framework of quantum
finance. In particular, it is shown that changing the numeraire changes the action
S that determines the probability distribution eS/Z in the path integral.

The money market numeraire yields the following martingale condition

B(t0, T ) = EM

[
e
− ∫ t∗

t0
r(t)dt

B(t∗, T )
]

≡ 1
Z

∫
DA e

− ∫ t∗
t0
r(t)dt

eSMB(t∗, T ) (9.4)

Similarly, the martingale condition for the forward numeraire is defined by

B(t0, T ) = B(t0, TI )EI [B(TI , T )] (9.5)

≡ B(t0, TI )
1
Z

∫
DA B(TI , T )eSI (9.6)

where EI [. . .] denotes taking the expectation value with respect to the risk-neutral
measure eSI/Z.

The relation of the risk-neutral probability measures eSM/Z and eSI/Z can be
explicitly obtained for Gaussian forward interest rates.

From Eqs. (5.1) and (5.25)

SM = S[αM ] = −1
2

∫
T

f (t , x)− αM(t , x)
σ (t , x)

N−1(t , x, x′)f (t , x
′)− αM(t , x′)
σ (t , x′)

SI = S[αI ] = −1
2

∫
T

f (t , x)− αI (t , x)
σ (t , x)

N−1(t , x, x′)f (t , x
′)− αI (t , x′)
σ (t , x′)

where the drifts are given in Eqs. (9.2) and (9.3).
It is shown in [12] that

eSI = e
− ∫ TI

t0
r(t)dt

B(t0, TI )
eSM (9.7)

The factor exp
{ − ∫ TI

t0
r(t)dt

}
/B(t0, TI ), relating the two actions, is evaluated in

the finance literature using the Radon–Nikodyn derivative [49, 45].
Eq. (9.7) is particularly useful in evaluating European options for zero

coupon bonds. From Eq. (3.8), for t0 < t∗ the call option price C(t0, TI , T ,K)
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is given by

C(t0, TI , T ,K) = EM [e−
∫ TI
t0
dtr(t)

(B(TI , T )−K)+] (9.8)

= B(t0, TI )EI [(B(TI , T )−K)+] (9.9)

where Eq. (9.7) has been used in obtaining Eq. (9.9) above.
To compute the call option using Eq. (9.9) is much simpler than doing the cal-

culation using Eq. (9.8) since the discounting term, after a change in numeraire, is
the deterministic function B(t0, TI ).1

9.5 Forward numeraire

Consider a numeraire that renders the futures price of zero coupon bonds, that
is F(t , Tn, Tn+1), into a martingale. Zero coupon bonds are traded instruments;
hence, discounting it by the numeraire must yield an instrument that undergoes a
martingale evolution [49].

The forward numeraire is fixed by an (infinite) collection of zero coupon bonds
defined for Libor time in the following manner, namely

B(t , T0);B(t , T1), . . . ;B(t , Tn); B(t , Tn+1); B(t , Tn+2), . . . ; Tn = T0 + 	n

Consider a zero coupon bond with maturity at Libor time, Tn+1 namelyB(t , Tn+1);
the numeraire is chosen to be B(t , Tn). The forward value of the bond at time Tn is
given by

F(t0, Tn, Tn+1) = e
− ∫ Tn+1

Tn
dxf (t0,x) = B(t0, Tn+1)

B(t0, Tn)
(9.10)

The drift is fixed so that the forward bond price

F(t , Tn, Tn+1) = B(t , Tn+1)

B(t , Tn)
: martingale (9.11)

is a martingale. Namely, the expected value of the future price of the bond at time
Tn is equal to its present value; hence

F(t0, Tn, Tn+1) = EF
[
F(t∗, Tn, Tn+1)

]
⇒ e

− ∫ Tn+1
Tn

dxf (t0,x) = EF
[
e
− ∫ Tn+1

Tn
dxf (t∗,x)] (9.12)

As expressed in the equation above, the drift is chosen to make the forward bond
price a martingale.

1 The zero coupon bond call option is computed in Section 11.13 using discounting by B(t0, TI ).
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Figure 9.1 (a) The domain of integration M for evaluating the drift of the three-
month tenor Libor market numeraire. (b) The drift velocity αF(t , x) for the forward
numeraire.

To determine the corresponding drift velocity αF (t , x), the right-hand side of
Eq. (9.12) is explicitly evaluated. Note from Eq. (5.2)

EF
[
e
− ∫ Tn+1

Tn
dxf (t∗,x)] = e

− ∫ Tn+1
Tn

dxf (t0,x)−∫M αF (t ,x)
∫
DAe−

∫
M σ(t ,x)A(t ,x)eS[A]

where the integration domain M is given in Figure 9.1(a).
Hence, from Eqs. (5.21) and (9.12)

e
∫
M αF (t ,x) =

∫
DAe−

∫
M σ(t ,x)A(t ,x)eS[A]

= exp
{

1
2

∫ t∗

t0

dt

∫ Tn+1

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′)
}

(9.13)

Hence the drift velocity for the forward measure is given by

αF (t , x) = σ(t , x)
∫ x

Tn

dx′D(x, x′; t)σ (t , x′); Tn ≤ x < Tn + 	 (9.14)

The forward numeraire’s drift αF (t , x) is plotted in Figure 9.1(b). The value of
σ(t , x) is taken from the market [12, 27].

From its definition, the drift at Libor time Tn is zero; namely,

αF (t , Tn) = 0 (9.15)

Eq. (9.15) shows that the forward numeraire has zero drift at Libor time Tn. This
result has important consequences in the numerical evaluation of the American
coupon bond option discussed in Chapter 16.
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There is a discontinuity in the value of αF (t , x) at forward time x = Tn;
approaching the value αL(t , x) from x < Tn, the discontinuity is given by

�αF (t , x) ≡
[

lim
x→Tn−

αF (t , x)
]

− αF (t , Tn)

= σ(t , x)
∫ Tn

Tn−	
dx′D(x, x′; t)σ (t , x′) (9.16)

As discussed in Section 7.3, the normalization of the volatility function can
always be chosen so thatσ(t , x)D(x, x; t)σ (t , x) = σ 2(t , x). Since the time interval
for the three-month tenor 	 = 90 days is quite small, one can approximate the drift
by the following

αF (t , x) = σ(t , x)
∫ x

Tn

dx′D(x, x′; t)σ (t , x′)

� (x − Tn)σ
2(t , x); Tn ≤ x < Tn + 	 (9.17)

The value of discontinuity at x = Tn, in this approximation, is given by 	σ 2(t , Tn).
One can see from the graph that, in a given three-month interval, the drift velocity

is approximately linear in forward time and the maximum drift goes as 	σ 2(t , x),
both of which are expected from Eq. (9.17).

9.6 Common Libor numeraire

For the purpose of modeling the Libor term structure, it is worth exploring if
one can choose a numeraire such that all the Libor rates have a martingale
evolution [63].

Consider a numeraire that is fixed by an (infinite) collection of zero coupon
bonds, namely

B(t , T0);B(t , T1), . . . ;B(t , Tn); B(t , Tn+1); B(t , Tn+2), . . .

Consider a portfolio, such as a coupon bond B(t , T ) that matures at some time T .
The numeraire is chosen in the following manner

Tn ≤ T < Tn+1;
B(t , T )
B(t , Tn)

: martingale (9.18)
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In terms of the Libor forward interest rate f (t , x), from Eq. (2.20) the three-month
tenor Libor is given by

L(t , Tn) = 1
	

(
e
∫ Tn+	
Tn

dxf (t ,x) − 1
)

(9.19)

Re-write the Libor as follows

L(t , Tn) = 1
	

(
e
∫ Tn+	
Tn

dxf (t ,x) − 1
)

= 1
	

[
B(t , Tn)− B(t , Tn + 	)

B(t , Tn + 	)

]
(9.20)

L(t , Tn)B(t , Tn+	) is a traded portfolio. For the LiborL(t , Tn), choose numeraire
B(t , Tn+	). Note that the common Libor measure has been defined in such a manner
so that L(t , Tn)B(t , Tn + 	), for each Tn, is a martingale; that is, for t > t0

L(t0, Tn)B(t0, Tn + 	)

B(t0, Tn + 	)
= EL

[
L(t , Tn)B(t , Tn + 	)

B(t , Tn + 	)

]
⇒ L(t0, Tn) = EL[L(t , Tn)] (9.21)

An equivalent way of thinking of Eq. (9.21) is to consider the coupon bond
portfolio BL(t , Tn+1) = [B(t , Tn) − B(t , Tn + 	)]/	; from the definition of the
numeraire, as given in Eq. (9.18), the bond portfolio needs to be discounted by
B(t , Tn + 	); hence

L(t , Tn) = BL(t , Tn+1)

B(t , Tn+1)
= B(t , Tn)− B(t , Tn + 	)

	B(t , Tn + 	)
: martingale

The common Libor market numeraire makes every Libor L(t , Tn) into a mar-
tingale. One can also interpret the Libor as being equal to the bond portfolio(
B(t , Tn)−B(t , Tn+	))/l, with the discounting factor being equal toB(t , Tn+	).

9.6.1 Bond forward interest rates and Libor

Adetailed discussion in Chapter 6 on the Libor forward interest rates fL(t , x) shows
that, in particular, both its drift and volatility are stochastic. Libor forward interest
rates are nonlinear and not amenable to analytical studies. For the purpose of under-
standing the implications of choosing a numeraire, a drastic simplification is made
by ignoring the nonlinearities of the Libor forward interest rates and equating it to
the bond forward interest rates. The results that are obtained are of only academic
interest since the market Libor is not described by such a simplified model.
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In terms of the bond forward interest rates, the Libors are given by the following

f0 ≡
∫ Tn+l

Tn

dxf (t0, x); f∗ ≡
∫ Tn+l

Tn

dxf (t∗, x) (9.22)

⇒ L(t0, Tn) = 1
	

(
ef0 − 1

)
; L(t∗, Tn) = 1

	

(
ef∗ − 1

)
(9.23)

and hence from Eqs. (9.21) and (9.23) the martingale condition for Libor market
measure can be written as

ef0 = EL[ef∗] (9.24)

Denote the drift for the market measure by αL(t , x), and let Tn ≤ x < Tn + 	; the
evolution equation for the bond forward interest rates is given by Eq. (5.2), namely

f (t , x) = f (t0, x)+
∫ t

t0

dt ′αL(t ′, x)+
∫ t

t0

dt ′σ(t ′, x)A(t ′, x) (9.25)

Hence

EL
[
ef∗] = ef0+

∫
M αL(t

′,x) 1
Z

∫
DAe

∫
M σ(t ′,x)A(t ′,x)eS[A] (9.26)

where the integration domain M is given in Figure 9.1(a).
From Eqs. (5.21), (9.24), and (9.26)

e−
∫
M αL(t ,x) =

∫
DAe

∫
M σ(t ,x)A(t ,x)eS[A]

= exp
{

1
2

∫ t∗

t0

dt

∫ Tn+	

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′)
}

(9.27)

Hence the three-month tenor Libor drift velocity is given by

αL(t , x) = −σ(t , x)
∫ x

Tn

dx′D(x, x′; t)σ (t , x′); Tn ≤ x < Tn + 	 (9.28)

The Libor drift velocityαL(t , x) is negative for a martingale evolution. The negative
drift is required for compensating the growing payments due to the compounding
of interest.

The Libor drift velocity αL(t , x) is the negative of the drift for the forward
measure, that is

αL(t , x) = −αF (t , x)
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9.7 Linear pricing a mid-curve caplet

To check the consistency of the three numeraires, the price of a mid-curve caplet
is evaluated for the three cases. It was shown in Section 8.2 that the Libor Market
Model, which is defined by a nonlinear model of the Libor forward interest rates,
results in Black’s caplet formula. The caplet price can also be evaluated using the
bond forward interest rates model and is called the linear caplet price to distinguish
it from Black’s formula. The linear caplet model is a Gaussian model for caplet
pricing. It is hence different from Black’s formula and is shown in Chapter 10 to
be empirically inaccurate as well.

In spite of its limitations, the linear caplet price is a suitable instrument for study-
ing the consistency of the three numeraires. Since the linear caplet price is based
on a Gaussian model, the computations for all three numeraires can be performed
exactly. The pricing formula for an interest rate caplet is derived for a general
volatility function σ(t , x) and propagator D(x, x′; t) of the bond forward interest
rates.

Interest rate caplets, floorlets, caps, and floors have been discussed in Section 4.3.
A mid-curve caplet can be exercised at any fixed time t∗, that is before the time Tn at
which the caplet caps the interest rate. Recall from Section 4.3 that caplet(t0, t∗, Tn)
denotes the price – at time t0 – of an interest rate European option contract that
must be exercised at time t∗ > t0 for an interest rate caplet that puts an upper limit
on the interest from time Tn to Tn + 	. Let the principal amount be equal to 	V ,
and the caplet rate beK . The caplet is exercised at time t∗, with the payment made
in arrears at time Tn + 	. Note that, although the payment is made at time Tn + 	,
the amount that will be paid is fixed by L(t∗, Tn) at time t∗.

The payoff function of an interest rate caplet is the value of the caplet when it
matures at calendar t∗ and is given, from Eq. (4.10), by

caplet(t∗, t∗, Tn) = 	VB(t∗, Tn + 	)
[
L(t∗, Tn)−K

]
+ (9.29)

= 	V

[
B(t∗, Tn)− B(t∗, Tn + 	)

	
−KB(t∗, Tn + 	)

]
+

= Ṽ B(t∗, Tn + 	)
(
Xef∗ − 1

)
+ (9.30)

The various time intervals that define the interest rate caplet are shown in Figure 4.7.
Recall from Eq. (9.22)

f∗ ≡
∫ Tn+	

T

dxf (t∗, x) and X = 1
1 + 	K

; Ṽ = (1 + 	K)V

The payoff for an interest rate floorlet is similarly given by

f loorlet(t∗, t∗, Tn) = 	VB(t∗, Tn + 	)
[
K − L(t∗, Tn)

]
+
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= Ṽ B(t∗, Tn + 	)
(
1 −Xef∗)+ (9.31)

As shown in Section 4.3, the price of the caplet automatically determines the price
of a floorlet due to put–call parity, and hence the price of the floorlet does not need
an independent derivation.

9.8 Forward numeraire and caplet price

The forward numeraire is given by the zero coupon bondB(t , Tn). Hence the caplet
is a martingale when discounted by B(t , Tn); the price of the caplet at time t0 < t∗
is, consequently, given by

caplet(t0, t∗, Tn)
B(t0, Tn)

= EF

[
caplet(t∗, t∗, Tn)

B(t∗, Tn)

]
= Ṽ EF

(
X − e−f∗)+

The price of a caplet is given by

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn)EF
(
X − e−f∗)+ (9.32)

and yields the payoff function Eq. (9.30) for t0 = t∗.
The payoff function for the caplet given in Eq. (9.32) yields the following price

of the caplet [12, 65]

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn)
∫ +∞

−∞
dG�F(G)(X − e−G)+ (9.33)

with the pricing kernel �F (G) = �F (G, t0, t∗, Tn) given by

�F(G) =
√

1
2πq2 exp

{
− 1

2q2

(
G−

∫ Tn+	

Tn

dxf (t0, x)− q2

2

)2}
(9.34)

q2 = q2(t0, t∗, Tn)

=
∫ t∗

t0

dt

∫ Tn+	

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′) (9.35)

The price of the caplet is given by the following Black–Scholes type formula

caplet(t0, t∗, Tn) = Ṽ B(t0, T ) [XN(−d−)− FN(−d+)] (9.36)

where N(d±) is the cumulative distribution for the normal random variable and

F = e
− ∫ Tn+	

Tn
dxf (t0,x) = e−f0

d± = 1
q

[
ln
(
F

X

)
± q2

2

]
(9.37)
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9.9 Common Libor measure and caplet price

The Libor market measure has as its numeraire the zero coupon bondB(t∗, Tn+	);
the caplet is a martingale when discounted by this numeraire, and hence the price
of the caplet at time t0 < t∗ is given by

caplet(t0, t∗, Tn)
B(t0, Tn + 	)

= EL

[
caplet(t∗, t∗, Tn)
B(t∗, Tn + 	)

]
= Ṽ EL

(
Xef∗ − 1

)
+

⇒ caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)EL
(
Xef∗ − 1

)
+ (9.38)

The price of the caplet is given by

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)

∫ +∞

−∞
dG�L(G)(Xe

G − 1)+ (9.39)

where �L(G) = �L(G, t0, t∗, Tn), the pricing kernel, is given by

�L(G) =
√

1
2πq2 exp

{
− 1

2q2

(
G−

∫ Tn+	

Tn

dxf (t0, x)+ q2

2

)2}
(9.40)

Note �L(G) differs from the pricing kernel�F (G) given in Eq. (9.34) by the sign
of the q2 in the exponent.

The price of the caplet obtained from the forward measure is equal to the one
obtained using the three-month tenor Libor market measure, since, from Eqs. (9.34)
and (9.40), one can prove the following remarkable result

B(t , Tn)�F (G)(X − e−G)+ = B(t , Tn + 	)�L(G)(Xe
G − 1)+ (9.41)

The identity above shows how the three factors required in the pricing of an interest
rate caplet, namely the numeraires, the pricing kernel, and the payoff functions, all
‘conspire’ to yield numeraire invariance for the price of the interest rate option.

The payoff function is correctly given by the price of the caplet, since in the limit
of t0 → t∗, Eq. (9.35) yields

lim
t0→t∗

q2 = (t∗ − t0)

∫ Tn+	

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′)

= εC (9.42)

where C is a constant, and ε = t∗ − t0. Hence, from Eqs. (9.39) and (9.40)

lim
t0→t∗

caplet(t0, t∗, Tn) = Ṽ B(t∗, Tn + 	)

∫ +∞

−∞
dGδ(G− f∗)(XeG − 1)+
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= Ṽ B(t∗, Tn + 	)(Xef∗ − 1)+

verifying the payoff function is the one given in Eq. (9.30).

9.10 Money market numeraire and caplet price

The money market numeraire is given by the spot interest rate M(t0, t∗) =
exp{∫ t∗

t0
dtr(t)}. Expressed in terms of the money market numeraire, the price of

the caplet is given by

caplet(t0, t∗, Tn)
M(t0, t0)

= EM

[
caplet(t∗, t∗, Tn)

M(t0, t∗)

]
⇒ caplet(t0, t∗, Tn) = EM

[
e
− ∫ t∗

t0
dtr(t)

caplet(t∗, t∗, Tn)
]

To simplify the calculation, consider the change of numeraire from M(t0, t∗) =
exp

{∫ t∗
t0
dt ′r(t ′)

}
to discounting by the zero coupon bondB(t0, t∗); it then follows,

from Eq. (9.7), that

e
− ∫ t∗

t0
dtr(t)

eS = B(t0, t∗)eS∗

where the drift for the action S∗ is given by

α∗(t , x) = σ(t , x)
∫ x

t∗
dx′D(x, x′; t)σ (t , x′) (9.43)

In terms of the money market measure, the price of the caplet is given by

caplet(t0, t∗, Tn) = EM
[
e
− ∫ t∗

t0
dtr(t)

caplet(t∗, t∗, Tn)
]

(9.44)

= B(t0, t∗)E∗
M

[
caplet(t∗, t∗, Tn)

]
= Ṽ B(t0, t∗)E∗

M

[
B(t∗, Tn + 	)

(
Xef∗ − 1

)
+
]

(9.45)
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Figure 9.2 Domain of integration R for evaluating the price of a caplet using the
money market numeraire.

From the expression for the bond forward interest rates given in Eqs. (9.25) and
(9.45), the price of the caplet can be written out as follows

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)e−
∫
R α∗ 1

Z

∫
DAe−

∫
R σAeS∗(Xef∗ − 1

)
+

(9.46)

where the integration domain R is given in Figure 9.2.
The payoff can be re-expressed using the Dirac-delta function, given in Eq. (A.7),

as follows (
Xef∗ − 1

)
+ =

∫
dGδ(G− f∗)

(
XeG − 1

)
+

=
∫
dG

∫
dξ

2π
eiξ(G−f∗)(XeG − 1

)
+ (9.47)

From Eq. (9.22), and the domain of integration M given in Figure 9.1(a), one
obtains

f∗ ≡
∫ Tn+	

Tn

dxf (t∗, x)

=
∫ Tn+	

Tn

dxf (t0, x)+
∫
M
α∗ +

∫
M
σA

Hence, from Eqs. (9.46) and (9.47) the price of the caplet, for f0 = ∫ Tn+	
Tn

dx

f (t0, x), is given by

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)e−
∫
R α∗ (9.48)

×
∫
dG

∫
dξ

2π
eiξ(G−f0−

∫
M α∗)(XeG − 1

)
+

1
Z

∫
DAe−

∫
R σAe−iξ

∫
M σAeS∗



218 Numeraires for bond forward interest rates

To perform the path integral note that∫
R
σA + iξ

∫
M
σA

=
∫ t∗

t0

dt

∫ Tn+	

t∗
dxσ (t , x)A(t , x)+ iξ

∫ t∗

t0

dt

∫ Tn+	

Tn

dxσ (t , x)A(t , x)

and the generating functional given in Eq. (5.21) yields

1
Z

∫
DAe−

∫
R σA−iξ ∫RL

σA
eS∗ = e�

where

� = 1
2

∫ t∗

t0

dt

∫ Tn+	

t∗
dxdx′σ(t , x)D(x, x′; t)σ (t , x′)

− ξ2

2

∫ t∗

t0

dt

∫ Tn+	

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′)

+ iξ

∫ t∗

t0

dt

∫ Tn+	

t∗
dx

∫ Tn+	

Tn

dx′σ(t , x)D(x, x′; t)σ (t , x′)

The expression for � above, using the definitions of q2,α∗ given in Eqs. (9.35) and
(9.43) respectively, can be shown to yield the following

� =
∫
R
α∗ − ξ2

2
q2 + iξ

(∫
M
α∗ + 1

2
q2
)

(9.49)

Simplifying Eq. (9.48) using Eq. (9.49) yields the price of the caplet as given by

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)

∫ +∞

−∞
dG�L(G)(Xe

G − 1)+ (9.50)

Hence we see that the money market numeraire yields the same price for the caplet
as the one obtained for the Libor market measure, but with a different and longer
derivation.

9.11 Numeraire invariance: numerical example

To illustrate the differences in the choice of numeraire, a typical example is fully
worked out. Since the final expression for the Libor market and money market
numeraire are equal, only the Libor market measure and forward numeraire are
considered.
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Figure 9.3 The discounting zero coupon bonds B(t , Tn), B(t , Tn + 	) for the
common Libor and forward numeraires, for Tn = 2004.12.13 and t ∈ [2003.9.12–
2004.5.7].

The integrand required for evaluating the price of a caplet for the common Libor
and forward numeraire are given, from Eq. (9.41) by

Forward numeraire: B(t , Tn)�F (G)(X − e−G)+
Common Libor numeraire: B(t , Tn + 	)�L(G)(Xe

G − 1)+

X = 1
1 + 	K

; 	 = 3 months (9.51)

Consider a caplet that matures at a fixed date, say Tn = 2004.12.13 (13 December
2004), with strike price of K = 0.02% and let G = 0.01 in the above formulas.
The factors that go into the integrand are evaluated for a range of time interval
t ∈ [2003.9.12–2004.5.7], and given in Figures 9.3 and 9.4. Data on US treasury
Bonds are taken from the market. The payoff functions (X− e−G)+, (XeG − 1)+
differ only by a constant scale factor and hence are not plotted. The result for the
difference of the integrands – given in Figure 9.4(b) – verifies, within the errors of
the computation, the numeraire invariance of caplet pricing.

9.12 Put–call parity for numeraires

In this section a derivation is given for put–call parity for interest rate caps and
floors. Note the derivation for put–call parity for a caplet for the money market
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Figure 9.4 (a) The difference in pricing kernel for the forward and three-
month tenor Libor numeraires �F(G) − �L(G) with G = 0.01 and for t ∈
[2003.9.12−2004.5.7]. (b) The difference of the integrands for the three-month
tenor Libor and forward numeraires B(t , Tn)�F (G)(X − e−G)+ − B(t , Tn + 	)
�L(G)(Xe

G − 1)+ with Tn = 2004.12.13, G = 0.01 and for t ∈
[2003.9.12–2004.5.7].

numeraire has been derived in Section 4.4 and given in Eq. (4.16). A derivation
is given for the forward and Libor market numeraires and illustrates how their
properties are essential for the price of the caplet and floorlet to satisfy put–call
parity.

The following simple identity, from Eq. (4.15)

(a − b)+ − (b − a)+ = (a − b)�(a − b)− (b − a)�(b − a)

= a − b

is required for deriving put–call parity.

9.12.1 Put–call parity for Libor tenor forward numeraire

The price of a caplet and floorlet at time t0 is given by discounting the payoff
functions with the discounting factor of B(t0, Tn). From Eq. (9.33)

caplet(t0, t∗, Tn) = B(t0, Tn)EF

[
caplet(t∗, t∗, Tn)

B(t∗, Tn)

]
= Ṽ B(t0, Tn)EF

(
X − e−f∗)+

and the floorlet is given by

f loorlet(t0, t∗, Tn) = Ṽ B(t0, Tn)EF
(
e−f∗ −X

)
+ (9.52)

Consider the expression

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn) (9.53)



9.12 Put–call parity for numeraires 221

= Ṽ B(t0, Tn)
[
EF
(
X − e−f∗)+ − EF

(
e−f∗ −X

)
+
]

= Ṽ B(t0, Tn)EF
(
X − e−f∗

)
(9.54)

where Eq. (4.15) has been used to obtain Eq. (9.54).
For the forward measure, from Eq. (9.12)

EF
[
e−f∗] = e−f0 (9.55)

Hence, since for constant X we have EF (X) = XEF(1) = X, from the
above equation and Eq. (9.54), the price of a caplet and floorlet obeys the
put–call relation

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn) = Ṽ B(t0, Tn)EF
(
X − e−f∗

)
= Ṽ B(t0, Tn)(X − e−f0)

= 	VB(t0, Tn + 	)(L(t0, Tn)−K) (9.56)

and yields Eq. (4.16) as expected.

9.12.2 Put–call for common Libor numeraire

The price of a caplet for the Libor market measure is given from Eq. (9.38) by

caplet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)EL
(
Xef∗ − 1

)
+ (9.57)

and the floorlet is given by

f loorlet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)EL
(
1 −Xef∗)+ (9.58)

Hence, similar to the derivation given in Eq. (9.54), we have

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)EL
(
Xef∗ − 1

)
(9.59)

For the three-month tenor Libor market measure, from Eq. (9.24)

EL[ef∗] = ef0

Hence the equation above, together with Eq. (9.59), yields the expected put–call
parity given in Eq. (4.16), namely that

caplet(t0, t∗, Tn)− f loorlet(t0, t∗, Tn) = Ṽ B(t0, Tn + 	)(Xef0 − 1)

= 	VB(t0, Tn + 	)(L(t0, Tn)−K)



222 Numeraires for bond forward interest rates

9.13 Summary

A common numeraire was derived for the forward interest rates, and it was shown
that a numeraire – consisting of a collection of zero coupon bonds – renders all for-
ward zero coupon bonds F(t , Tn, Tn+1) into martingales. The drifts for the forward
numeraire and the Libor market measure are rather unusual, having discontinuities
at future Libor times. At exactly Libor time, the drift is zero; this fact has major
implications in the evaluation of the American coupon bond option in Chapter 16.

Two other numeraires were studied for the forward interest rates, each having
its own drift velocity. All the numeraires have their own specific advantages. It
was demonstrated by actual computation that all three yield the same price for an
interest rate caplet. They also satisfy put–call parity, as is necessary for the prices
of interest caps and floors to be free from arbitrage opportunities.

The interest rate caplet payoff function, from Eq. (4.10), is given by the following

caplet(t∗, t∗, Tn) = 	VB(t∗, Tn + 	)
[
L(t∗, Tn)−K

]
+

To verify the consistency of the three numeraires, the price of the mid-curve
caplet was computed using the different numeraires. The caplet price was indeed
found to be numeraire invariant due to a remarkable combination of discounting
factor, payoff function, and pricing kernel. The caplet prices obey the expected
put–call parity, further confirming that the numeraires are consistent.



10
Empirical analysis of interest rate caps

The industry standard for pricing an interest rate caplet is Black’s formula,
which was derived in Section 8.2 from the Libor Market Model. The underly-
ing Libor forward interest rates fL(t , x) are known to be nonlinear, as discussed in
Section 6.11.1. A different price of the caplet, namely the linear pricing formula,
was derived in Section 9.7 using the bond forward interest rates.

An empirical study is carried out of the linear caplet pricing formula [19, 40]. The
main purpose is to ascertain how important are the differences in the Libor Market
Model and bond forward interest rates – using the pricing of caps and caplets as
an example [71]. In particular, the linear caplet price is compared with the market
price of caps and caplets to obtain an estimate of the importance of the nonlinear
effects that are the hallmark of the Libor Market Model.

Historical volatility and correlation of forward interest rates are used for predict-
ing the linear caplet price; another approach is to predict the linear price from a
parametric formula of the effective volatility using market caplet prices. The study
shows that bond forward interest rates generate prices of a caplet and cap with fairly
large errors, greater than 17%.

10.1 Introduction

The price of a mid-curve caplet has been obtained in Eq. (9.36) based on the bond
forward interest rates’model.The result is called the linear caplet price to distinguish
it from Black’s caplet price, which is an exact result of the Libor Market Model. The
linear caplet price is given by the following Black–Scholes type formula. Re-writing
Eq. (9.36) for later analysis yields the following1,2

1 Note, one recovers the normal caplet by setting t∗ = Tn.
2 All the zero coupon bond prices are fixed from the market and are the same for bond forward interest rates
f (t , x) or for Libor forward interest rates fL(t , x).

223
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caplet(t0, t∗, Tn) = VB(t0, Tn+1)

×
[
(1 + 	L(t0, Tn))N(−d−)− (1 + 	K)N(−d+)

]
(10.1)

where N(d±) is the cumulative distribution for the normal random variable with
the following definitions

d± = 1
q

[
ln
(

1 + 	L(t0, Tn)
1 + 	K

)
± q2

2

]
(10.2)

q2 = q2(t0, t∗, Tn)

=
∫ t∗

t0

dt

∫ Tn+	

Tn

dxdx′σ(t , x)D(x, x′; t)σ (t , x′) (10.3)

The domain of integration for evaluating q2 is given in Figure 4.6. Note that q is
the effective volatility for the caplet linear pricing formula and that the propagator
for forward interest rates is required for pricing the caplet. The pricing formulas
for caplets and floorlets are fixed by the volatility function σ(t , x), the correlation
parameters μ, λ, η contained in the Lagrangian for the forward interest rates, as
well as the initial interest rates term structure.

The Libor Market Model is based on nonlinear Libor forward interest rates and
yields, as in Eq. (8.12), Black’s caplet formula given by [59, 61]

capletB(t0, t∗, Tn) = 	VB(t0, Tn+1)
[
L(t0, Tn)N(d̃+)−KN(d̃−)

]
(10.4)

d̃± = 1
q2
γ

[
ln
(
L(t0, Tn)
K

)
± q2

γ

2

]

Black’s volatility σB , from Eq. (8.13), is given by

σ 2
B = q2

γ

t∗ − t0
= 1
t∗ − t0

∫ t∗

t0

dt

∫ Tn+1

Tn

dx

∫ Tn+1

Tn

dx′γ (t , x)DL(x, x′; t)γ (t , x′)

The two caplet prices given in Eqs. (10.1) and (10.4) are very different, reflecting
the differences in the bond and Libor forward interest rates. The predictions of the
linear only caplet price will be tested by comparing it with the market prices, leaving
a similar study of Black’s formula for the future.

Black’s formula, as it is currently used in the financial markets, has no predictive
power but instead is simply a convenient way of representing the price of a caplet.
The main utility of Black’s formula is that implied σB is more stable than the price
itself and, similar to yield-to-maturity for coupon bonds, can be used for comparing
caplets with different maturities, payoffs, and principal amounts.
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The linear caplet price and Black’s caplet formula are studied empirically using
Libor market data. In particular, the effective volatility q determining the linear
caplet price is computed by a three-dimensional integration on the covariance of
the changes in the bond forward interest rates.

The following three different approaches are discussed for fixing the effective
volatility q for pricing caplets.

• The volatility function σH and parameters of the bond propagator, μ, λ, and η, are all
fitted from historical Libor data.

• The market covariance is computed directly from Libor market data.
• A parametric formula for the effective volatility q , and consequently for the implied

volatility σI for the linear caplet pricing model, is determined from historical caplet
prices.3 The value of σI is quite distinct from σB since σI is a function of future time and
can be used for extrapolating the future. In contrast, σB is a value that has to be computed
every day from caplet prices.

10.2 Linear and Black caplet prices

The pricing formula, at the money for a caplet maturing at t∗ = Tn, is given by

1 + 	K = 1 + 	L(t0, Tn); ⇒ K = L(t0, Tn)

The linear price of the caplet, at the money, is given by

capletL(t0, Tn) = V [1 + 	L(t0, Tn)]B(t0, Tn+1)
[
N(d+)− N(d−)

]
Note

d± = ±q
2

(10.5)

This formula is compared with Black’s formula. From Eq. (10.4), Black’s caplet
formula – at the money – has K = L(t0, Tn) and yields the price

capletB(t0, t∗, Tn) = 	VL(t0, Tn)B(t0, Tn+1)
[
N(d̃+)− N(d̃−)

]
d̃± = ±qγ

2
= ±σB

√
t∗ − t0

2

At the money, since the pre-factors of two pricing formulas are different, the
effective volatility q in the linear pricing formula and σB in Black’s formula are
not equal. Black’s formula is multiplied by (1 + 	L(t0, Tn))/	L(t0, Tn) so that – at

3 Note, in contrast, σH is obtained from the historical Libor data.
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the money – the two pricing formulas are taken to be exactly equal and this allows
q to be equated to σB

√
t∗ − t0. Hence

capletB(t0, t∗, Tn)
∣∣∣
At the money

= 	L(t0, Tn)
1 + 	L(t0, Tn)

capletL(t0, t∗, Tn)
∣∣∣
At the money

⇒ q = σB
√
t∗ − t0

The linear caplet price is equal to Black’s formula multiplied by the factor
	L(t0, Tn)/(1+	L(t0, Tn)). This is the same factor that relates the volatility v(t , x)
of the Libor forward interest rates, which is taken to be a deterministic quantity in
the bond forward interest rates, to the deterministic log Libor volatility γ (t , x), as
in Eq. (7.33) and given below

v(t , x) = 	L(t , Tn)
1 + 	L(t , Tn)

γ (t , x)

Replacing the stochastic quantity 	L(t0, Tn)/(1 + 	L(t0, Tn)) by the deterministic
factor 	L(t , Tn)/(1 + 	L(t , Tn)), as discussed in Eq. (7.32), results in errors of
about 10% for future time of around 1.5 years. Since this pre-factor is not the only
source of error in the linear caplet price, we expect errors larger than 10% in fitting
the linear price with the market price for caplets; this expectation is borne out by
the empirical analysis.

In Figure 10.1(a), the caplet rate K is varied to compare the normalized pricing
formula away from the money. The linear caplet price is shown more clearly in
Figure 10.1(b). It can be seen that it is only at the money – which for the example
is at cap rate K = 0.02 – that the two pricing formulas give the same result. The
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Figure 10.1 (a) Caplet price from normalized Black’s formula (dashed line) and
linear caplet formula (unbroken line) versus cap rateK . Libor is given at 0.02 and
the caplet is at the money forK = 0.02. (b) Caplet price from linear formula versus
cap rate K . Libor is given at 0.02. The caplet is at the money when K = 0.02.
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caplet pricing for the two formulas in general is not equal and deviates quite rapidly,
specially whenK is deep in the money.

Working with q has many advantages over σB . Most importantly, the effective
volatility q is obtained from the underlying bond forward interest rates, as computed
in Eq. (10.3), which are common to all caplets.

10.2.1 Numerical example of Black’s caplet price

Black’s formula for pricing a caplet is illustrated by working out an example.
Consider a contract that caps the interest rate at 2%, on a $1 million loan for three
months with Libor as the floating rate. The bond priceB(t0, t∗) is 0.984. The contract
is written on t0=13 September 2003 and matures on t∗ = Tn = 12 December 2004,
with a cap rate K given by 2% per annum. The Libor L(t0, t∗) at 13 September
2003 is given by 2.95% per annum for a 	 = 90 days Eurodollar deposit – from
12 December 2004 to 12 December 2005. Hence

L(t0, Tn) = 0.0295

Black’s volatility σB is given by 0.5168/
√

year. Hence

dB+ = 1

0.5168
√

1.25

[
ln

0.0295
0.02

+ 0.51682 × 1.25
2

]
= 0.527

dB− = dB+ − 0.5168
√

1.25 = −0.0508

Thus

capletB(t0, Tn, 0.02) = 	VB(t0, Tn+1)
[
L(t0, Tn)N(d+)−KN(d−)

]
= $

1000000 × 0.25
1 + 0.25 × 0.0295

× 0.984[0.0295N(0.527)− 0.02N(−0.0508)]
= $1587.655

10.3 Linear caplet price: parameters

An empirical study of three different approaches for implementing the linear caplet
pricing is carried out and the results are discussed.

The pricing formula for the daily prices of the caplets requires the daily initial
interest rates term structure as input as well as the volatility function and parameters
μ, λ, and η for the propagator. Daily fit of the volatility function and propagator
parameters can be derived by a daily moving average Libor rate history. For the
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sake of simplicity, from [12, 28] the volatility function is taken to depend only on
remaining future time, namely

σ(t , x) = σ(x − t)

Although this assumption cannot be indefinitely extended, it is valid for up to three
years [28], which is enough for the empirical study. Thus, the parametric fit is done
only once, and these parameters are used for the whole data set projected to 1.5
years in the future. It should be noted that one can always do the parametric fit more
frequently to get more accurate results.

Since the forward interest rates are defined on a domain x ≥ t , the propagator
satisfies

D(x, x′; t) = D(x − t , x′ − t) (10.6)

A parametric curve is fitted for the effective volatility [27] using historical data
from the prices of Libor before 4 May 2003. More precisely, the forward interest
rates that are used for fixing the input volatility and propagator are the daily rates
for the Eurodollar futures from 4 May 1998 to 29 April 2003; the length of the data
set is 1256 trading days for daily prices of Libor seven years into the future. For
	 = 90 days, the following approximation is made

L(t , T ) = e
∫ T+	
T f (t ,x)dx − 1

	
(10.7)

� f (t , T ) (10.8)

Libor is treated as being approximately equal to the bond forward interest rates,
and a moving average over the last 63 days – from 29 January 2003 to 29 April
2003 – is taken for evaluating the statistical average. Note that averaging over 63
trading days carries the most relevant information.

The connected correlator, from Eq. (7.10), is given by

E[(δf (t , θ))2]c ≡ E[(δf (t , θ))2] − E[δf (t , θ)]E[δf (t , θ)] = εσ 2
H(θ)D(θ , θ)

with ε = 1/260, since there are 260 trading days in one year. To be able to compare
the volatilities of different Gaussian models, the field A(t , θ) is re-scaled, as in
Section 7.3, so that D(θ , θ) = 1/ε. The re-scaled frame yields the usual definition
of volatility of the forward interest rates, given as follows

〈(δf (t , θ))2〉c = σ 2
H(t , θ) (10.9)

Note ε has been canceled by the scale chosen for the correlator.
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Table 10.1 The best fit for parameters λ, μ, b, and η of a Libor caplet obtained by
minimizing the overall root mean square of the fit.

Parameters from Libor caplet data

λ̃ μ̃ b η rms error

16.578657/year 8.0761/year 1.376644 0.044127 1.09%
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Figure 10.2 Note the historical market volatility’s graph on the left has a scale
two orders of magnitude smaller than the one for implied volatility on the right.
(a) Volatility of Libor forward rates σ (year−1/2) versus remaining time to maturity,
both from data (unbroken line) and from formula with fitted parameters (dotted
line). The data are from 29 January 2003 to 29 April 2003. The normalized root
mean square error is 2.76%. (b) Historical volatility σH (year−1/2) (dashed line)
and implied volatility σI (year−1/2) (unbroken line) fitted from caplet data, for
12 September 2003–4 February 2004, versus time to maturity.

Following Bouchaud and Matacz [27], a parametric formula for volatility is
assumed as follows4

σH (θ) = 0.00055 − 0.00026 exp(−0.71826(θ − θmin))

+ 0.0006(θ − θmin) exp(−0.71826(θ − θmin)) (10.10)

where θmin = 3 months. The market fit for the volatility of Libor, following the
analysis developed in Section 7.3, is given in Figure 10.2(a); The parameters are
fixed using the data set used for obtaining the parameters given in Table 10.1.
Historical and implied σI volatility are shown in Figure 10.2(b).

The empirical values of the three parameters μ, λ, η for the stiff Lagrangian are
obtained by fitting the propagator to the forward interest rates taken from Libor

4 σH denotes the volatility obtained from historical Libor rates.
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Table 10.2 The best fit for parameters λ, μ, and b of a Libor caplet obtained by
minimizing the overall root mean square of the fit. The value of η = 0.34 is fixed
from earlier data on the forward interest rates’ correlator.

Parameters for Libor caplet with fixed η = 0.34

λ̃ μ̃ b rms error for the entire fit

1.354/year 0.847/year 0.727 2.83%

Figure 10.3 Correlation of Libor forward interest rates versus time to maturity,
with daily data selected from 29 January 2003 to 29 April 2003.

data, which run from 29 January 2003 to 29 April 2003. The results are given in
Table 10.1. The empirical correlation given in Figure 10.3 shows that the underlying
Libor interest rates are not perfectly correlated.

The parameters are given in Table 10.1 and are different from the earlier estimates
for Libor obtained in Section 7.6. This is because an earlier Libor data set for the
period 1990–1996 was used for estimating the parameters. Another fit can be done
for the stiff propagator in which the market time index η is taken to be equal to the
one obtained from the older data from the period 1990–1996, for which η = 0.34.
One then obtains the ‘best’ fit given in Table 10.2, but with larger errors than the fit
with η = 0.04.

Data for a relatively short time period of only three months, that is from 29
January 2003 to 29 April 2003, were used for finding the stiff parameters. This
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Figure 10.4 Caplet prices that mature at 12 December 2004 versus time t0
(12 September 2003–7 May 2004): market (unbroken line) and model (dashed
line). (a) Prices computed using historical volatility and correlation; the normal-
ized root mean square error is 17.39%. (b) The effective volatility q is computed
directly from Libor rates. The normalized root mean square error is 17.89%.

partly explains the significant changes in the parameters as one varies the market
time index η – as can be seen by comparing the results obtained in Tables 10.1
and 10.2.

When the covariance is used as an input in a calculation, such that the propagator
D̃(x, x′; t) is normalized to unity, that is D(x, x′; t) = D̃(x, x′; t)/ε, the effective
volatility q is then given by

q2 = q2(t0, t∗, Tn)

= 1
ε

∫ t∗

t0

dt

∫ Tn+	

Tn

dxdx′σH (t , x)D̃(x, x′; t)σH (t , x′) (10.11)

Using the initial forward rates curve and volatility, as well as correlation as an
input and from the pricing formula, one obtains the empirical linear caplet price. It
can be seen from Figure 10.4(a) that the computed caplet price does not match the
market value very well, with the normalized root mean square error being 17.39%.

10.4 Linear caplet price: market correlator

Note the parametric fit for σH , as given in Eq. (10.10), and the propagator combine
to yield the covariance given by

M(x, x′; t) = σ(t , x)D(x, x′; t)σ (t , x′)

Although the parameters for the propagator D(x, x′; t) provide insights on the
linear pricing model, one can also obtain M(t , x, x′) directly from data without
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fitting any of the parameters and this in turn is sufficient to determine the effective
volatility q. From Eq. (7.6) one has

M(x, x′; t) = 1
ε
〈δf (t , x)δf (t , x′)〉c = M(x − t , x′ − t) (10.12)

Libor data can be interpolated since they depend only on θ = x− t . Furthermore,
caplets are instruments that have short duration, being based on the three-month
Libor. The formula for q2 can be re-expressed in the following manner

q2 =
∫ t∗

t0

dt

∫ Tn+	−t

Tn−t
dθdθ ′M(θ , θ ′) (10.13)

The integration on time requires the future numerical values of M; since M is a
function of remaining future time θ and θ ′, the average block ofM(θ , θ ′) is shifted
back to its historical values. For calculating q2, one needs to do one integration
on t , which is reduced to a summation of the average value on different blocks
of historical Libor data; the difference among the parallelogram blocks is only a
horizontal shift and all of them end at time t0. A detailed discussion is given in
Section 12.7 on how to evaluate Eq. (10.13).

Libor data are expressed in Eq. (10.13) as an integral over θ and θ ′; two inte-
grations can be saved by directly using the Libor ZCYC without approximating
Libor by the forward interest rates as in Eq. (10.8). The caplet price can hence be
evaluated by directly obtaining q2 from the ZCYC data; this is more efficient and
more accurate than first finding the forward interest rates. Market data yield q2 via
the following correlator

q2 =
∫ t∗

t0

dt〈δY (t , Tn)δY (t , Tn)〉c (10.14)

where the ZCYC data yield

Y (t , Tn) =
∫ Tn+	

Tn

dxf (t , x)

= ln(1 + 	L(t , Tn)) (10.15)

The computed caplet prices are given in Figure 10.4(b). The linear caplet price
does not match the market price very well, with the normalized root mean square
error still being 17.89%, which is approximately as in the previous case given in
Figure 10.4(a).
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10.5 Effective volatility: parametric fit

Note that q was computed by both fitting the parameters of the linear caplet pricing
model and by directly using the market correlator – both of which use historical
Libor data.

Another alternative is to directly fit q from the market caplet prices, thus yielding
the implied volatility σI . Recall that, in contrast, σH is obtained by empirically
evaluating E[(δf (t , θ))2]c.

The first approximate fit for the effective volatility, which is both accurate and
simple, is to fit q as a linear function q = bθ and implied volatility is then a square
root function of future time.5

The linear fit q = bθ , in remaining future time θ = x − t , obviously cannot
explain the behavior of implied volatility since it diverges linearly as remaining
future time increases indefinitely. However, for the market price of a caplet over
only a short duration, the square root of volatility provides a very good fit.

For time far into the future, the implied volatility is directly fitted with an expo-
nential formula, as in Eq. (10.10). The fitting is for the first 100 days in the same
data set, from 12 September 2003 to 4 February 2004. The best fit for σI is given
in Figure 10.2, and is the following

σI (θ) = 0.00144 − 0.00122 exp(−0.71826(θ − θmin))

+ 0.00014(θ − θmin) exp(−0.71826(θ − θmin)) (10.16)

The effective volatility is fitted using the first 100 days to price the remaining 168
days caplet prices using the linear caplet pricing formula Eq. (10.1) Caplet prices,
both market and model, are shown in Figure 10.5(a), with their difference yielding
a normalized root mean square error of 6.67%; similarly floorlet prices are shown
in Figure 10.5(b), with a normalized root mean square error of 7.9%.

Given in Table 10.3 is the normalized root mean square error of the above three
approaches for fitting the linear caplet price. The best fit is given by implicit volatil-
ity σI (θ), but the errors are still large, almost 7%. Figure 10.6(a) shows the linear
fit for the linear caplet pricing formula.

10.5.1 Parametric fit and Black’s formula

The price of a caplet is equivalent to an effective value for Black’s implied volatility
σB , and one obtains a daily implied volatility from the caplet price; σB is shown in

5 Fitting effective volatility is much easier than fitting a correlator from caplet price data. Furthermore, the impact
of changing correlation is insignificant compared with changing effective volatility; the reason being that a
caplet only involves the correlation between two neighboring forward interest rates within the range of a single
caplet, and hence over a maximum future time difference of 90 days; to a good approximation, for x, x′ differing
by 	 = 90 days, D(x, x′) � 1.
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Figure 10.5 Both the market (unbroken line) and model (dashed line) are fitted
with implied volatility directly from first 100 days caplet prices. (a) Caplet prices
mature at 12 December 2004 versus time t0 (12 September 2003–7 May 2004).
The normalized root mean square error is 6.67%. (b) Floorlet prices mature at
12.12.2004 versus time t0 (12 September 2003–7 May 2004). The normalized root
mean square error is 7.9%.

E
ffe

ct
iv

e 
vo

la
til

ity
 q

(t
0)

0.0034
0.0032
0.0030
0.0028
0.0026
0.0024
0.0022
0.0020
0.0018
0.0016
0.0014

Time series

(a)

−20 0 20 40 60 80 100 120 140 160 180

t
x = t

0.25 1 2 X
1 year cap

2 year cap

(b)

Figure 10.6 (a) Effective volatility q for caplet which matures at 12 December
2004 versus time t0 (12 September 2003–7 May 2004). (b) Domain for one-year
and two-year caps. For a one-year cap, three caplets are involved. Seven caplets
are required for a two-year cap.

Table 10.3 The normalized root mean square (rms) error is given by the rms error
divided by the price of the caplet.

σH from Libor Market correlator σI from caplet

Normalized rms 17.39% 17.89% 6.67%
error in caplet price
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Table 10.4

Cap prices from implied volatility σI and market correlator

cap(t0,2) from σI cap(t0,3) from σI cap(t0,3) from
market correlator

Normalized rms 6.7% 5.54% 5.59%
error in cap price

Figure 8.3. The shape of Black’s implied volatility is very irregular and cannot be
fitted well by any smooth formula. No prediction can be made for the future value
of Black’s volatility and hence one cannot make a prediction for the future price of
a caplet.

One can sacrifice expressing the caplet’s market price in terms of an implied σB ,
and instead do a best fit for σB similar to the fit done to obtain an implicit volatility
of σI . The error for a parametric fit for σB is about 6% and is comparable to the
error obtained for σI .

10.6 Pricing an interest rate cap

Caps and floors are important financial instruments for managing interest rate risk.
However, the multiple payoffs underlying these contracts complicate their pricing
as the Libor term structure dynamics are not perfectly correlated.

The linear caplet pricing formula is applied to the pricing of an interest rate cap
and, in particular, a cap with a fixed maturity is analyzed. The market price of a
cap for 494 trading days, which matures one, two, and three years in the future, is
compared to the linear cap price.

Fixed maturity interest rate cap is a sum of interest rate caplets and is given as
follows

cap(t0, TN) =
N−1∑
n=1

caplet(t0, Tn) (10.17)

The caplet price is based on a three-month Libor, and the first caplet matures in
three months. A one-year cap can be expressed as a sum of three caplets, a two-year
cap is a sum of seven caplets. The domain of the forward interest rates required for
pricing a cap is given in Figure 10.6(b).

The linear caplet implied volatility σI is evaluated from the fixed maturity date
cap for the same period and is then used for pricing the two-year and three-year
caps. The computed and market prices are shown in Figure 10.7(a). Since there is
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Figure 10.7 Cap price that matures three years in the future versus time t0
(12 September 2003–7 May 2004) with market cap prices (unbroken line) and
linear model prices (dashed line). (a) Diagram shows the cap price using effective
volatility computed directly from historical Libor rates. The normalized root mean
square error is 5.54%. (b) Diagram shows the cap price computed directly from
historical Libor rates. The normalized root mean square error is 5.59%.

a new instrument everyday, one can always improve accuracy by fitting a moving
effective volatility directly from the one-, two-, and three-year caps.6

The price of a three-year cap, from Eq. (10.14) and using historical Libor data,
is shown in Figure 10.7(b). The normalized root mean square error in cap price is
the value of the root mean square normalized by the price of the cap. The errors
for interest rate caps are smaller than those for caplets in Figures 10.4(a), 10.4(b),
and 10.5; this is due to the price of the cap being much larger than the caplet
price.

10.7 Summary

Interest rate caplets are one of the simplest interest rate options and provide a useful
theoretical ‘laboratory’for studying the properties of interest rate options. The bond
forward interest rates have deterministic drift and volatility; for this reason, exact
calculations can be carried out for the linear price of many instruments, including
the caplet.

The effective volatility q for the linear caplet pricing formula can be derived from
the underlying historical Libor rate, and hence the linear caplet pricing formula
yields a prediction for the caplet price: given the input of Libor data, the linear

6 q needs to be fitted at Libor times only.



10.7 Summary 237

caplet model generates the daily caplet prices. The effective volatility q can also
be used to price other Libor-based options.

The current practice of the financial markets is that Black’s model fixes an implied
σB based on existing market caplet prices. Black’s formula, in effect, is a (nonlinear)
representation of the market price, with a one-to-one relation between market price
and implied Black volatility σB .

Historical caplet prices served to obtain a best fit for the effective volatility q,
which was then used for predicting the linear caplet’s price – including the prices
of caplets in the distant future. The empirical study demonstrated that the accuracy
of the linear model for pricing interest rate caps is not very accurate, with errors
larger than 6%.

The empirical study of the linear caplet pricing formula used three alternative
approaches; for all of the three approaches, the empirical errors remain substan-
tial. The fit for q2 was done only once and used for pricing the whole time
series. One can always do a daily moving fit for q2 to improve the accuracy
of the calculation, but this procedure is not expected to lead to any signifi-
cant improvement since the main reason for the inaccuracy of the predicted
prices is the linear caplet pricing formula, which neglects the problem’s inherent
nonlinearities.

The empirical studies of Libor in Eq. (7.32) showed that v(t , x), the stochastic
volatility of Libor forward interest ratesfL(t , x), has the largest fluctuations of about
1.5 years in remaining future time x − t . Predictions of linear caplet model prices
based on the bond forward interest rates yield caplet prices with errors larger than
17%. The large errors in caplet prices are most likely due to replacing stochastic
volatility v(t , x) by the deterministic volatility σ(t , x) of bond forward interest
rates.

In the Libor Market Model, caplet prices are a function of the log Libor rate
φ(t , x)’s volatility function γ (t , x). The order of magnitude for implied volatility
σI given in Figure 10.2(b) is about 0.02, which is the same as that of 	γ , as given
in Figure 7.7(b). This is an empirical indication that the caplet market prices are
better described by the quantum finance Black’s formula than by the linear caplet
price.

There should be a significant improvement in the accuracy of caplet prices based
on the dynamics of φ(t , x) as these rates are a representation of the nonlinear Libor
forward interest rates fL(t , x) and, hence, are expected to describe Libor options
more accurately.

The main conclusion of the study of caplet prices is that the nonlinear effects of
the Libor forward interest rates are important for caplet pricing – with nonlinearities
accounting for at least 15% of the caplet’s price. The methods used for finding
effective q for the linear caplet pricing formula can also be applied to Black’s case.
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σB can be determined from Eq. (8.13) as follows

σ 2
B = 1

t∗ − t0

∫ t∗

t0

dt

∫ Tn+1

Tn

dx

∫ Tn+1

Tn

dx′Mγ (x, x′; t)

Once Mγ (x, x′; t) is determined from historical Libor data, the quantum finance
generalization of Black’s formula can be used for predicting caplet prices and should
yield errors less than a few percent.



11
Coupon bond European and Asian options

European options on coupon bonds are studied in the framework of bond forward
interest rates f (t , x) studied in Chapter 5 as a linear (Gaussian) quantum field
[9, 40].1 One of the advantages of the Gaussian formulation is that the coupon bond
option has a representation that is tractable and allows for various analytical approx-
imation schemes. More precisely, including the payoff function for the coupon
bond option into the path integral for the option price makes it nonlocal and
nonlinear. A perturbation expansion using Feynman diagrams gives a closed-
form approximation for the price of European and Asian coupon bond options.
The approximate bond option is studied for two limiting cases, namely (a) the
industry standard one-factor exponential volatility HJM formula and (b) the
BGM–Jamshidian model’s swaption price.

11.1 Introduction

Coupon bonds and interest rate swaps are the most important derivatives of the
debt markets and options on these instruments are widely traded. The pricing of
European options on coupon bonds is studied in some detail using the quantum
finance approach. The volatility of the forward interest rates is a small quantity,
of the order of 10−2/year, and hence provides a small parameter for obtaining a
volatility expansion for the option price. A perturbation expansion for the option
price is developed, using Feynman diagrams, in a power series to fourth power in
the forward interest rates’ volatility.

A perturbative study of the coupon bond option price has been discussed in
Section 8.5 for the Libor forward interest rates similar to the one that is the main
focus of this chapter. The objective of repeating the Libor calculation for the bond
forward interest rates is two fold.

1 In this chapter, only the bond forward interest rates are discussed and the term ‘bond’ is used only if necessary
so as to avoid repetition.
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• The volatility expansion in Section 8.5 was carried out for the nonlinear Libor Market
Model to only second order in the volatility function γ . One would like to develop the
volatility expansion to higher order so as to more clearly understand the nature of the
perturbation expansion. The bond forward interest rates are Gaussian and hence a high-
order calculation is far simpler than a similar high-order computation for the Libor Market
Model.

• A comparison of the linear and nonlinear models of the forward interest rates, as encoded
in the bond and Libor forward interest rates is of intrinsic interest. In particular, one would
like to be able to have a better understanding of the role that nonlinearities play in interest
rate option pricing.

The approximate coupon bond price is verified to yield the correct limiting price
for the zero coupon bond. An approximate price for the Asian coupon bond option
is obtained in the same framework as the European option, and, as expected, yields
a price less than the European case. The HJM and BGM–Jamshidian limits are
taken of the approximate European coupon bond option price and it is seen that
there is a loss of crucial nontrivial correlations for these two limiting cases.

11.2 Payoff function’s volatility expansion

The coupon bond option payoff is a nonlinear function of the forward interest rates
and is fairly intractable. To leverage on the smallness of σ(t , x), the coupon bond
option payoff is re-expressed in a manner that can generate a volatility expansion,
as in Section 3.14, for the coupon bond option prices.

The forward bond numeraire has been discussed in Section 9.3 and is the most
suitable for calculations in this chapter. Call and put options for the coupon bonds,
using the forward bond numeraire B(t , t∗), are given by Eq. (3.8) as follows

C(t0, t∗,K) = B(t0, t∗)E
[
P∗
]

P (t0, t∗,K) = B(t0, t∗)E

⎡⎣(K −
N∑
i=1

ciB(t∗, Ti)

)
+

⎤⎦
P∗ =

(
N∑
i=1

ciB(t∗, Ti)−K

)
+

(11.1)

where E[. . .] refers to the expectation being evaluated using the forward bond
measure. The payoff function P∗ includes, as a special case, the swaption payoff
given in Eq. (4.32), with the coefficients cn and strike priceK taking specific values.
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(t0, t0)
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0

Figure 11.1 The shaded area is the domain of integration Ri .

Recall from Eq. (5.2) that the bond forward interest rates can be written as

f (t , x) = f (t0, x)+
∫ t

t0

dt ′α∗(t ′, x)+
∫ t

t0

dt ′σ(t ′, x)A(t ′, x)

The drift for the forward numeraire, from Eq. (9.3), is given by

α∗(t , x) =
∫ x

t∗
dx′M(x, x′; t): forward drift (11.2)

and yields the following for the zero coupon bond2

B(t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t∗, x)

}
= e−αi−QiFi(t0, t∗, Ti) (11.3)

where

Fi = F(t0, t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t0, x)

}
; αi =

∫
Ri

α∗(t , x) (11.4)

Qi =
∫
Ri

σ (t , x)A(t , x) ≡
∫ t∗

t0

dt

∫ Ti

t∗
dxσ (t , x)A(t , x) (11.5)

The domain of integration Ri is given in Figure 11.1.
The coefficient αi , the integrated form of the forward measure drift, is

αi =
∫
Ri

α∗(t , x) ≡ 1
2

∫ t∗

t0

dt

∫ Ti

t∗
dxdx′M(x, x′; t) (11.6)

2 Recall from Eq. (2.14) that Fi ≡ F(t0, t∗, Ti) is the forward price, at time t0, of a zero coupon bond B(t∗, T )
that is to be issued at time t∗ > t0 in the future and matures at future calendar time Ti .
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The price of the coupon bond is re-written as

N∑
i=1

ciB(t∗, Ti) =
N∑
i=1

ciFi +
N∑
i=1

ci[B(t∗, Ti)− Fi]

≡ F + V (11.7)

The break-up of the coupon bond into F +V is based on the fact that all deviations
of the coupon bond from its forward price F are due to fluctuations in the forward
interest rates that are controlled by its volatility σ(t , x). In fact, V has an order of
magnitude equal to O(σ), and hence an expansion in power of V would, in effect,
result in the volatility expansion that one is aiming for.

From Eq. (11.3), the following are a few definitions.

Ji ≡ ciFi ; Fi = exp
{
−
∫ Ti

t∗
dxf (t0, x)

}
(11.8)

F ≡
N∑
i=1

ciFi =
N∑
i=1

Ji (11.9)

V ≡
N∑
i=1

ci[B(t∗, Ti)− Fi] =
N∑
i=1

Ji
[
e−αi−Qi − 1

]
(11.10)

The payoff function is given by[
N∑
i=1

ciB(t∗, Ti)−K

]
+

=
[
F +

N∑
i=1

Ji(e
−αi−Qi − 1)−K

]
+

(11.11)

= [
F + V −K

]
+

and is re-written using Eq. (A.7) as follows3

(
N∑
i=1

ciB(t∗, Ti)−K

)
+

= 1
2π

∫ +∞

−∞
dQdηeiη(V−Q)(F +Q−K

)
+

The price of the call option, from Eq. (11.1), can be written as

C(t0, t∗,K) = B(t0, t∗)
1

2π

∫ +∞

−∞
dQdη

(
F +Q−K

)
+e

−iηQZ(η) (11.12)

3 The integration variable Q should not be confused with Qi .
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with the partition function given by

Z(η) = 1
Z

∫
DAeSeiηV ; Z =

∫
DAeS (11.13)

All the random terms are contained in Z(η). A perturbation expansion is developed
that evaluates the partition functionZ(η) as a series in the volatility function σ(t , x).

11.2.1 Put–call parity

To see how put–call parity is expressed in terms of the partition functionZ(η), note
from Eqs. (4.15), (11.1), and (11.12)

C(t0, t∗,K)− P (t0, t∗,K) = B(t0, t∗)
2π

∫ +∞

−∞
dQdη

(
F +Q−K

)
e−iηQZ(η)

(11.14)

The integration over the variableQ in the equation above can be performed exactly
and, from Eq. (A.7), yields a Dirac-delta function and its derivative in the ηvariable;
hence, one obtains from Eq. (11.14) that

C(t0, t∗,K)− P (t0, t∗,K)

= B(t0, t∗)
∫ +∞

−∞
dη
[(
F −K

)
δ(η)+ i

∂

∂η
δ(η)

]
Z(η)

= B(t0, t∗)
[(
F −K

)
Z(0)− i

∂

∂η
Z(η)|η=0

]
(11.15)

Comparing Eqs. (4.23) and (11.15) yields the following two conditions

Z(0) = 1;
∂

∂η
Z(η)|η=0 = 0 (11.16)

⇒ Z(η) = 1 +O(η2)

Any approximation scheme for evaluating the partition function Z(η) must
satisfy the put–call parity given above in Eq. (11.16).

11.3 Coupon bond option: Feynman expansion

In general, computing the coupon bond European option price is a nonlinear
problem that needs to be studied numerically or perturbatively. In this section,
an analytic expansion for the approximate price of the coupon bond option is
derived [9].
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From Figure 7.1 the volatility of the forward interest rates is a small quantity, of
the order of σ(t , x) � 10−2/year. The volatility expansion yields the price of the
coupon bond option as a power series in σ(t , x) and, in effect, provides a rapidly
convergent series for the partition function Z[η].

The partition function of the coupon bond option price can be written more
explicitly. Recall from Eq. (11.13)

Z(η) = 1
Z

∫
DAeiηV eS[A] (11.17)

The effective action for the pricing of the coupon bond option, from Eqs. (11.10)
and (11.17), is given by

SEffective ≡ S[A] + iηV (11.18)

= S[A] + iη

N∑
i=1

Ji
[
e−αi−Qi − 1

]
= S[A] + iη

N∑
i=1

Ji
[
e−αie−

∫
Ri
σA − 1

]
(11.19)

Eq. (11.19) yields a highly nonlinear and nonlocal two-dimensional quantum
field theory, with the coupon bond option payoff function providing an effective
nonlocal exponential potential for the quantum field A(t , x).

Nonlinear quantum field theories are usually intractable, and the best that one
can do is to develop a consistent perturbation expansion for the partition function
Z(η). Feynman diagrams provide the standard technique in quantum field theory for
perturbatively studying nonlinear systems [95]. The quantum finance formulation
of the forward interest rates provides a Feynman perturbation expansion of the
partition function.

A cumulant expansion [95] of the partition function in a power series in η yields

Z(η) = eiηC1− 1
2η

2C2−i 1
3!η3C3+ 1

4!η4C4+... (11.20)

The coefficients C1,C2,C3,C4, . . . are evaluated using Feynman diagrams.
From the put–call parity constraint given in Eq. (11.16), the first condition

Z(0) = 1 is satisfied automatically, and the second condition implies that C1 = 0.
Hence any approximate scheme for Z(η) that fulfills the put–call parity relation
must yield

Z(η) = e−
1
2η

2C2−i 1
3!η

3C3+ 1
4!η

4C4... (11.21)
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Expanding the right-hand side of Eq. (11.17) in the power series to fourth order in
η yields

Z(η) = 1
Z

∫
DAeiηV eS[A]

= 1
Z

∫
DAeS[A][1 + iηV + 1

2!(iη)
2V 2

+ 1
3!(iη)

3V 3 + 1
4!(iη)

4V 4 + . . .
]

(11.22)

Comparing Eqs. (11.20) and (11.22) yields, in the notation of Eq. (3.66) and to
fourth order in η, the following

C1 = E[V ] (11.23)

C2 = E[V 2] − C2
1 (11.24)

C3 = E[V 3] − C3
1 (11.25)

C4 = E[V 4] − 3C2
2 − C4

1 (11.26)

The coefficient C1 is exactly zero since the martingale condition for the forward
measure yields

C1 = E[V ] =
N∑
i=1

Ji
[
EF
(
e−αi−Qi

)− 1
] = 0 (11.27)

Put–call parity is satisfied in the approximation scheme since C1 = 0; one can see
that the martingale condition is essential in the realization of put–call parity.

Define the dimensionless forward bond price correlator by

Gij ≡ Gij (t0, t∗, Ti , Tj ;σ)

=
∫ t∗

t0

dt

∫ Ti

t∗
dx

∫ Tj

t∗
dx′M(x, x′; t) (11.28)

= Gji : real and symmetric

where M(x, x′; t) = σ(t , x)D(x, x′; t)σ (t , x′). The integration domain for Gij is
illustrated in Figure 11.2(a), and Figure 11.2(b) shows its dependence on Ti and Tj .
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Figure 11.2 (a) The shaded domain of the forward interest rates contributes to
the correlator Gij = ∫ t∗

t0
dt
∫ Ti
t∗ dx

∫ Tj
t∗ dx ′M(x, x ′; t). For a typical point t in the

time integration the figure shows the correlation function M(x, x ′; t) connecting
two different values of the forward interest rates at future time x and x ′. (b) The
forward bond price correlator Gij = Gij (t0, t∗, Ti , Tj ), is plotted against Ti and
Tj with t∗ − t0 = 2 years. M(x, x ′; t) is taken from swaption data.

Gij is the forward bond propagator that expresses the correlation in the fluctuations
of the forward bond prices Fi = F(t0, t∗, Ti) and Fj = F(t0, t∗, Tj ).

For any application of the coupon bond option price to the financial markets, one
has to take into account market future time defined by Eq. (5.25) and given by

∂f (t , t + θ)

∂t
= α(t , z(θ))+ σ(t , z(θ))A(t , z(θ))

θ = x − t; z = θν

The forward interest rates’ correlator has the property that, for a given period
of time, the market’s correlator depends only on remaining future time; that is,
M(x, x′; t) = M(x − t , x′ − t). The market correlator for the forward bond prices
is then given by

GMarket
ij ≡ GMarket

ij (t0, t∗;σ ; ν)

=
∫ t∗

t0

dt

∫ Ti−t

t∗−t
dθ

∫ Tj−t

t∗−t
dθ ′M(z(θ), z(θ ′))
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11.4 Cumulant coefficients

A computation for the cumulant’s coefficients is carried out in Section 11.12 and
yields the following result

C2 =
N∑
ij=1

JiJj [eGij − 1] (11.29)

C3 =
N∑

ijk=1

JiJjJk[eGij+Gjk+Gki − eGij − eGjk − eGki + 2] (11.30)

and

C4 =
N∑

ijkl=1

JiJjJkJl

[
eGij+Gik+Gil+Gjk+Gjl+Gkl

− eGij+Gjk+Gki − eGij+Gjl+Gli − eGik+Gkl+Gli − eGjk+Gkl+Glj

− eGij+Gkl − eGjk+Gil − eGik+Gjl

+ 2(eGij + eGik + eGil + eGjk + eGjl + eGkl )− 6
]

(11.31)

The terms required to determine the coefficients rapidly proliferate.
As things stand, all coefficients C2,C3,C4, . . . seem to be of equal magnitude.

A consistent expansion is obtained if one assumes that σ(t , x) is small for all values
of its argument. For Libor, data indicate that σ(t , x) � 10−2/year; furthermore,
normalizing the propagator, as in Section 7.3, yields M(x, x; t) = σ(t , x)2 and
D(x, x′; t) ≤ 1 for all x, x′.
Gij is dimensionless and is of order of magnitude of σ 2, which yields that

Gij � 10−4. Hence Gij can be taken to be a small expansion parameter, with all
the coefficients C2,C3,C4, . . . being expressed as power series in Gij . Expanding
the exponential functions in Eqs. (11.29), (11.30), and (11.31) yields the following
result

C2 =
N∑
ij=1

JiJj

[
Gij + 1

2
G2
ij

]
+O(G3

ij ) (11.32)

C3 = 3
N∑

ijk=1

JiJjJkGijGjk +O(G3
ij )

C4 = 16
N∑

ijkl=1

JiJjJkJlGijGjkGkl +O(G4
ij ) (11.33)
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Denote the magnitude of the matrix elementsGij byG; using the fact thatG � σ 2,
the partition function Z has an order of magnitude expansion given by

Z(η) � e−
∑∞
l=2 alη

lGl−1

� e−
∑∞
l=2 alη

lσ 2l−2

= e−a2ζ
2−a3ζ

3σ−a4ζ
4σ 2+...; ζ = ση (11.34)

where all the coefficients al � O(1).
The quadratic term in the exponential for Z(η) fixes the magnitude of the fluc-

tuations of the ζ = ση variable to be of O(1); hence, the remaining terms are of
order σ , σ 2, and so on to higher and higher order. The perturbation expansion for
the partition function Z(η) is consistent, with the higher-order terms in η being
smaller than the lower-order ones. One can obtain any degree of accuracy in the
expansion parameter G, or equivalently in σ , by going to high enough order and
self-consistently terminating the expansion at that order.

The perturbation expansion for the partition function Z(η) has an intuitive
representation using Feynman diagrams. The forward bond propagator Gij that

i jG i jPropagator:

C2

C3
C4

Fj

Fl

(a)

FiF2F1

1+
2

Fj

FiF2F1
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Fj Fj

Fk Fk

Fj

Fj
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(i) (ii)
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(b)
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Fk

Fj

Fk

F1

F1 F2

F1 F2

F2

Figure 11.3 (a) Feynman diagrams for the partition functionZ(η). In the diagrams
the dots represent the forward bond prices Fi and Fj and the wavy lines are
their correlators Gij . Coefficient C2 is evaluated by the sum of two diagrams;
coefficients C3 and C4 are each evaluated by a single diagram. (b) Disconnected
diagrams are ones in which some of the forward bond prices, indicated by the top
line, do not couple to the other forward bond prices. Figures (i), (ii), and (iii), are
second-, third-, and fourth-order disconnected diagrams that do not contribute to
ln(Z(η)) and, hence, to any of the coefficients.
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represents the correlation between forward bond price Fi and Fj is indicated with
wavy lines in Figure 11.3; note that all the diagrams for C2,C3,C4 that yield the
partition function Z(η) are connected, in that none of the forward bond prices
is decoupled from the forward bond propagator Gij . In contrast Figure 11.3(b)
has examples of disconnected Feynman diagrams; for example in Figure 11.3(b),
(i) none of the forward bond prices in the second line, denoted byFj , couples to the
propagator. It can be shown that, in general, only the connected diagrams contribute
to ln(Z(η)) [95].

11.5 Coupon bond option: approximate price

From Eqs. (11.12) and (11.25) expand the partition function up to the quartic terms
in η, and then perform the Gaussian integrations over η [9]. This yields

C(t0, t∗,K)

= B(t0, t∗)
1

2π

∫ +∞

−∞
dQdη

(
F +Q−K

)
+e

−iηQe−
1
2η

2C2−i 1
3!η3C3+ 1

4!η4C4+...

= B(t0, t∗)
1√
2π

∫ +∞

−∞
dQ(F +Q

√
C2 −K)+f (∂Q)e−

1
2Q

2 +O(σ 4) (11.35)

where, for ∂Q ≡ ∂/∂Q, one has the following

f (∂Q) ≡ 1 −
(

C3

6C3/2
2

)
∂3
Q +

(
C4

24C2
2

)
∂4
Q + 1

2

(
C3

6C3/2
2

)2

∂6
Q +O(σ 4)

C2 � O(σ 2);
C3

C
3/2
2

� O(σ);
C4

C2
2

� O(σ 2) (11.36)

Due to the properties of�(x), the Heaviside theta function given in Eq. (A.3), the
second derivative of the payoff is equal to the Dirac-delta function, namely

∂2
Q(F +Q

√
C2 −K)+ = √

C2δ(Q−X) (11.37)

X = K − F√
C2

: Dimensionless (11.38)

Using the equation above and Eqs. (11.35) and (11.36) yields to O(σ 4), after an
integration by parts, the following

C(t0, t∗,K) = B(t0, t∗)
1√
2π

∫ +∞

−∞
dQ

⎡⎣(F +Q
√
C2 −K)+
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+√C2δ(Q−X)

⎧⎨⎩− C3

6C3/2
2

∂Q + C4

24C2
2
∂2
Q + 1

2

(
C3

6C3/2
2

)2

∂4
Q

⎫⎬⎭
⎤⎦ e− 1

2Q
2

(11.39)

where, as in Eq. (3.70)

I (X) =
∫ +∞

−∞
dQ(Q−X)+e−

1
2Q

2 = e−
1
2X

2 + √
2πX[N(X)− 1] (11.40)

Hence the price of the coupon bond is given by

C(t0, t∗,K) = B(t0, t∗)
√
C2

2π
I(X)+O(σ 4) (11.41)

+B(t0, t∗)
√
C2

2π

[
C3

6C3/2
2

X + C4

24C2
2
(X2 − 1)+ 1

72
C2

3

C3
2
(X4 − 6X2 + 3)

]
e−

1
2X

2

The leading behavior of option price C(t0, t∗,K) is graphed in Figure 11.4(a); the
surface is smooth because variables X and A are varied continuously.

For the coupon bond and swaption, at the money is given by F = K; hence,
the option’s price close to at the money has X ≈ 0 and to leading order, from
Eq. (3.72), yields the price to be

C(t0, t∗,K) ≈ B(t0, t∗)
√
C2

2π
− 1

2
B(t0, t∗)(K − F)+O(X2) (11.42)

11.5.1 Put–call parity for approximate option price

The approximate price of the coupon bond call option in Eq. (11.41), expressed in
terms of the expansion coefficients, can be written symbolically as C(t0, t∗,K) ≡
C[t0,t∗,K](C2,C3,C4,X). The put option is given by an expression similar to
Eq. (11.35) for the call option, namely

P (t0, t∗,K)

= B(t0, t∗)
1

2π

∫ +∞

−∞
dQdη

(
K − F −Q

)
+e

−iηQe−
1
2η

2C2−i 1
3!η3C3+ 1

4!η4C4+...

= C[t0,t∗,K](C2, −C3,C4, −X)
For the put and call options’ approximate price, sinceX = (K−F)/√C2, put–call
parity yields

C(t0, t∗,K)− P (t0, t∗,K)
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Figure 11.4 (a) The value of the swaption C(t0, t∗,K)/B(t0, t∗) = √
C2/2πI(X)

+O(σ 2), plotted as a function ofC2 andX. (b) The price of a 1x3 swaption, which
has three years’duration that matures one year in the future. The floating payments
are made at 90-day intervals and fixed payments are made at 180-day intervals.
The x-axis is the par value RP and time is plotted along the y-axis.

= C[t0,t∗ ,K](C2,C3,C4,X)− C[t0,t∗,K](C2, −C3,C4, −X)

= B(t0, t∗)
√
C2

2π
×
(

−2
√
π

2
X

)
+O(σ 4) = B(t0, t∗)[F −K]

=
∑
i

ciB(t0, Ti)−KB(t0, t∗)

Hence, the volatility expansion in σ yields an approximate price for the call and
put option that obeys put–call parity order by order.

11.5.2 Numerical price of swaptions

The swaption price is given by Eq. (11.41), with the factor of B(t0, t∗) for the case
of coupon bonds replaced by VB(t0, T0). Putting cn to be equal to its values for the
swaption coefficients, as given in Eq. (4.32), and setting the strike price of K = 1
in Eq. (11.41) yield the price of the swaption CL(t0, T0,RS) at time t0.

Figure 11.4(b) shows the time series for the price of a swaption on Libor with
values for the fixed interest rate being equal to the daily par value RP given by
Eq. (4.36). The surface shown in Figure 11.4(b) is rough compared to the surface in
Figure 11.4(a) because the par interest rateRP in the market varies discontinuously,
leading to sharp changes in the price of the swaption.
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11.6 Zero coupon bond option price

An exact quantum finance result for the option price of a zero coupon bond is given
in [12]. For the approximate price of the coupon bond option to be consistent, it
has to reproduce the price of the zero coupon bond option as one of its limiting
cases. In this section the fourth-order result obtained for the price of a coupon bond
option is shown to correctly reproduce to order O(q4), the known exact result of
the zero coupon bond option.

The zero coupon bond is a special case of the coupon bond when only one of
the coefficient functions ci is nonzero. Let c1 = 1 and T1 = T , with the rest of the
coupon payments being zero, that is ci = 0, i = 2, 3, . . . ,N . From Eq. (11.1) the
payoff function, the forward price for the zero coupon bond, and the propagator are
as follows

P(t∗) = (
B(t∗, T )−K

)
+

F = c1F1 = exp
{
−
∫ T

t∗
dxf (t0, x)

}
G11 ≡ q2 =

∫ t∗

t0

dt

∫ T

t∗
dx

∫ T

t∗
dx′M(x, x′; t) (11.43)

The coefficients in the expansion for the price of the coupon bond option yield

C2 = F 2
1

[
G11 + 1

2
G2

11

]
= F 2

[
q2 + 1

2
q4
]

+O(q6) (11.44)

C3

C
3/2
2

= 3F 3
1G

2
11

A3/2 = 3q +O(q3);
C4

C2
2

= 16F 4
1G

3
11

A2 = 16q2 +O(q4)

X = K − F

qF
+O(q)

Note that the expansion for coefficient C2 has to be kept toO(q4); since the square
root of C2 appears in the payoff function, the O(q4) term yields the next leading
order term for the payoff function, which is a term ofO(q3).

The price of the coupon bond call option, from Eqs. (11.39) and (11.44), simplifies
in the case of the zero coupon option to

Czcb(t0, t∗,K) (11.45)

= B(t0, t∗)
qF√
2π

[1
2
qX + 2

3
q2(X2 − 1)+ 1

8
q2(X4 − 6X2 + 3)

]
e−

1
2X

2
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+ B(t0, t∗)
1√
2π

∫ +∞

−∞
dQ

(
F + qF (1 + 1

4
q2)Q−K

)
+e

− 1
2Q

2 +O(q4)

Consider the following Taylor’s expansion of the payoff function to O(q3)

{
F + qF

(
1 + 1

4
q2
)
Q−K

}
+

�
(

1 + 1
4
q2Q∂Q

) (
F + qFQ−K

)
+

(11.46)

Inserting Eq. (11.46) into the last term in Eq. (11.45), doing an integration by
parts usingQe−Q2/2 = −∂Qe−Q2/2 and from Eq. (11.37)

B(t0, t∗)
1√
2π

∫ +∞

−∞
dQe−

1
2Q

2
(

1 + 1
4
q2Q∂Q

) (
F + qFQ−K

)
+

= B(t0, t∗)
1√
2π

∫ +∞

−∞
dQ

[(
F + qFQ−K

)
+ + 1

4
q3Fδ

(
Q−X

)]
e−

1
2Q

2

= B(t0, t∗)
qF√

2π

[
I (X)+ 1

4
q2e−

1
2X

2]
(11.47)

I (X) is given in Eq. (3.70). Hence from Eqs. (11.45) and (11.47), the price of the
zero coupon bond option, after some simplifications, is given by

Czcb(t0, t∗,K) = B(t0, t∗)
qF√
2π

[1
2
qX + 1

6
q2(X2 − 1)+ 1

8
q2(X2 − 1)2

]
e−

1
2X

2

+ B(t0, t∗)
qF√

2π
I(X)+O(q4) (11.48)
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It is shown in Section 11.13 that the exact result for the zero coupon bond option
price, when expanded in a power series in q2, yields the same result as the one
obtained in Eq. (11.48).

11.6.1 Zero coupon bond option numerical estimate

The accuracy of the volatility expansion of the zero coupon bond option price is
studied by comparing the approximate expression for the call option price given
in Eq. (11.48) with the exact expression for the zero coupon bond option given in
Eq. (11.66). The zero coupon bond option has been derived in [12] based on the
bond forward interest rates and is given by

C(t0, t∗, T ,K) = B(t0, t∗)[F(t0, t∗, T )N(d+)−KN(d−)] (11.49)

F ≡ F(t0, t∗, T ) = exp
{
−
∫ T

t∗
dxf (t0, x)

}
; d± = 1

q

[
ln
F

K
± q2

2

]
The normalized difference of the exact and approximate option prices, namely

(CExactzcb −CApproxzcb )/CExactzcb , is plotted in Figure 11.5(a) for various values ofX =
(K − F)/qF and for different values of q2; the result shows that the approximate
value of the option price has a negligible normalized error of about 10−5 for 0 ≤ q2

≤ 0.01. The (normalized) root mean square is computed for the entire fit, and is
given in Figure 11.5(b); the normalized error is again about 10−5 over the same
range of q2.

For the coupon bond with N -coupons, the effective expansion is approximately
Nq2; from the results of the zero coupon bond, one can estimate that as long as
Nq2 ≤ 0.01 the approximation has an accuracy of about 10−3; for a typical value
of q2 � 10−3, one can conservatively conclude that, for the coupon bond option,
the perturbation expansion is valid for N � 100.

11.7 Coupon bond Asian option price

The path integral formulation of option pricing is ideally suited for studying the
Asian option since its payoff is a function of all the values (‘paths’) that the under-
lying security takes, from its initial to its final value. The coupon bond option is a
particularly complex instrument since the payoff is an exponential function of the
underlying forward interest rates.

Suppose a coupon bond is issued at time t∗

B(t∗) =
N∑
i=1

ciB(t∗, Ti)
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Figure 11.5 (a) The normalized difference of the exact and approximate option
prices for the zero coupon bond, namely (CExactzcb −CApproxzcb )/CExactzcb , for various
values of q2 and strike price X = (K − F)/qF . (b) The normalized root mean

square error
√

var
(
(CExactzcb − C

Approx

zcb )/CExactzcb

)
of the fit for the entire zero

coupon bond option price, as a function of effective volatility q2.

with Ti > t∗ for all i. The forward coupon bond price, at time t < t∗, is given by

F(t) =
N∑
i=1

ciF (t , t∗, Ti); F(t , t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t , x)

}
; t0 < t < t∗

The payoff of the Asian call option, issued at time t0, maturing at t∗ and with
strike price K , is given by

PAsn =
[ 1
t∗ − t0

∫ t∗

t0

dtρ(t)F(t) −K
]
+ (11.50)

where ρ(t) is a weighting function, equal to 1 for the arithmetic average; if one
wants to place greater emphasis on the price of a coupon bond near the maturity of
the option one can take ρ(t) = exp{−λ(t − t∗)}. The forward interest rates domain
of the Asian coupon bond option is shown in Figure 5.2(b).

The Asian option price, using the forward bond measure, is given by Eq. (3.8) as

C(t0, t∗,K) = B(t0, t∗)E[PAsn]
E[PAsn] = 1

Z

∫
DAeS[A]PAsn

The Asian coupon bond option is studied using the bond forward interest rates
defined by Eq. (5.1). A Feynman perturbation expansion for the Asian option price,
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similar to the European option case, is generated in powers of σ 2(t , x), the volatil-
ity of the forward interest rates. One expects that all fluctuations of the payoff
function from its initial value should be small, governed by the value of σ 2(t , x);
hence, one re-writes the payoff function by subtracting its initial forward value.
Eq. (11.50) yields

PAsn =
[ 1
t∗ − t0

∫ t∗

t0

dtρ(t)F(t) − Fρ + Fρ −K
]
+

Fρ = F(t0)
[

1
t∗ − t0

∫ t∗

t0

dtρ(t)

]
(11.51)

From Eq. (5.2)

f (t , x) = f (t0, x)+
∫ t

t0

dt ′α∗(t ′, x)+
∫ t

t0

dt ′σ(t ′, x)A(t ′, x)

and yields, as in Eqs. (11.4) and (11.5), the following forward prices of the zero
coupon bonds

F(t , t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t , x)

}
= e−Qi(t)−βi (t)F (t0, t∗, Ti)

Qi(t) =
∫ t

t0

dt ′
∫ Ti

t∗
dxσ (t ′, x)A(t ′, x); βi(t) =

∫ t

t0

dt ′
∫ Ti

t∗
α∗(t ′, x)

Similar to the European case, the random term in the payoff function is VAsn and
is re-written as follows

VAsn ≡ 1
t∗ − t0

∫ t∗

t0

dtρ(t)F(t) − Fρ

= 1
t∗ − t0

∫ t∗

t0

dt
∑
i

Ji(t)[e−Qi(t)−βi (t) − 1]; Ji(t) = ciρ(t)F (t0, t∗, Ti)

One needs to evaluate, similar to Eq. (11.17), the following functional integral

ZAsn(η) = 1
Z

∫
DAeiηVAsneS[A]

To illustrate the new features of the Asian option vis-à-vis the European option it
is sufficient to carry out the calculation to only O(σ 2); a calculation to fourth or
higher order can be carried out, using the technology of Feynman diagrams, in a
manner very similar to the European case.
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The martingale property, given in Eq. (11.6), namely that

βi(t) = 1
2

∫ t∗

t0

dt

∫ Ti

t∗
dxdx′M(x, x′; t)

yields the following

C0 = E[1] = 1; C1 = E[VAsn] = 0

The nontrivial coefficient is given by

C2 = E[V 2
Asn]

= 1
(t∗ − t0)2

∫ t∗

t0

dtdt ′
∑
ij

Ji(t)Jj (t
′)E

[
[e−Qi(t)−βi(t)−1][e−Qj (t ′)−βj (t ′)−1]

]

≡ 1
(t∗ − t0)2

∫ t∗

t0

dtdt ′
∑
ij

Ji(t)Jj (t
′)[eHij (t ,t ′) − 1] (11.52)

The martingale property for βi(t), given in Eq. (11.6), yields

Hij (t , t ′) =
∫ Ti

t∗
dx

∫ Tj

t∗
dx′

∫ t

t0

dτ

∫ t ′

t0

dτ ′M(x, x′; τ )δ(τ − τ ′)

=
∫ t

t0

dτGij (τ )θ(t
′ − τ ) (11.53)

Gij (τ ) =
∫ Ti

t∗
dx

∫ Tj

t∗
dx′M(x, x′; τ ) (11.54)

Hence, to leading order in σ 2, one has

C2 = 1
(t∗ − t0)2

∫ t∗

t0

dtdt ′
∑
ij

Ji(t)Jj (t
′)Hij (t , t ′)+O(σ 3)

= 1
(t∗ − t0)2

∫ t∗

t0

dtdt ′
∑
ij

Ji(t)Jj (t
′)
∫ t

t0

dτGij (τ )θ(t
′ − τ )

= 1
(t∗ − t0)2

∫ t∗

t0

dt ′
∫ t ′

t0

dt
∑
ij

Ji(t)Jj (t
′)
∫ t

t0

dτGij (τ ) (11.55)

The ρ(t) = 1 limit yields, similar to Eq. (8.43), the following

C2 = 1
(t∗ − t0)2

∑
ij

JiJj

∫ t∗

t0

dt(t − t0)(t∗ − t)Gij (t); Ji = ciF (t0, t∗, Ti)
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Once one has evaluated the coefficients C0,C1, and C2, the price of the Asian
option can be obtained from Eq. (3.69).

The HJM limit for ρ(t) = 1 is taken in Section 11.10 in order to gain some
insight into the approximate price of the Asian coupon bond option.

11.8 Coupon bond European option: HJM limit

In Section 4.11, the limiting cases for the quantum finance formulation of coupon
bonds and interest rates were discussed. The HJM and BGM–Jamshidian models
are special cases of forward interest rates being exactly correlated and correspond
to the propagator being a constant. The limit of D(x, x′; t) → 1 for all x, x′ in turn
yields M(x, x′; t) = σ(x − t)D(x, x′; t)σ (x′ − t) → σ(x − t)σ (x′ − t).

The limit of D(x, x′; t) → 1 is studied in order to determine the importance of
having a nontrivial correlation for the forward interest rates.

Taking σ(x − t) equal to the market volatility of the forward interest rates, the
percentage difference between the daily price of a 2 by 10 swaption at the money and
its HJM limit of D(x, x′; t) → 1 is plotted in Figure 11.6(a); the daily HJM option
price CHJM is seen to be overpriced by 4–9% in comparison with the correlated
quantum finance option price CQF . This result shows the important role of the
nontrivial correlations in pricing coupon bond options.
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Figure 11.6 (a) The percentage difference of a 2 by 10 swaption daily price, at the
money, for the quantum finance model’s priceCQF and of its HJM limitCHJM . The
volatility function σ(t ,x) is taken from the Libor market as are the daily forward
bond prices Fi . Note the HJM model systematically overprices the swaption by
4–9%. (b) The difference of the swaption price, at the money, as a function of σ0, of
the one-factor HJM model and the quantum finance model with D(x, x ′; t) → 1;
the volatility function is σ0e

−λ(x−t ) with λ = 0.1/year.
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The quantum finance option price has been derived as a perturbation expansion
in the volatility. From Eq. (3.72), to leading order, the option price is given by

C(t0, t∗,K) = B(t0, t∗)
√
C2

2π
− 1

2
B(t0, t∗)(K − F)+O(X2, σ 2)

To lowest order, from Eqs. (11.8), (11.28), and (11.32)

C2 =
N∑
ij=1

JiJjGij

Gij =
∫ t∗

t0

dt

∫ Ti

t∗
dx

∫ Tj

t∗
dx′σ(t , x)D(x, x′; t)σ (t , x′)

Taking the HJM limit of D(x, x′; t) → 1 and for exponential volatility σ(t , x) =
σ0e

−λ(x−t) yields, from Eq. (4.43), the following

Gij → σ 2
0

∫ t∗

t0

dt

∫ Ti

t∗
dxe−λ(x−t)

∫ Tj

t∗
dx′e−λ(x′−t) = σ 2

EY (t∗, Ti)Y (t∗, Tj )

⇒ √
C2 =

√√√√σ 2
E

N∑
ij=1

JiJjY (t∗, Ti)Y (t∗, Ti) = σE

N∑
i=1

JiY (t∗, Ti)

Hence, the HJM limit of the quantum finance option price is given by

C(t0, t∗,K) � B(t0, t∗)
[√

1
2π
σE

N∑
i=1

JiY (t∗, Ti)− 1
2
(K − F)

]
+O((K − F)2, σ 2

0 ) (11.56)

From Eq. (4.48), to leading order in σ0, Eq. (11.56) is seen to be equal to
CHJM(t0, t∗,K).

Figure 11.6(b) shows the result of a numerical evaluation of both the HJM and
the HJM limit of the quantum finance option price with K = F (at the money) –
with exponential volatility σ0e

−λ(x−t) and for fixed forward bond prices Fi ; only
σ0 is allowed to vary. Figure 11.6(b) shows that the HJM limit of the approximate
quantum coupon bond price starts to deviate from the HJM price for σ0 ≥ 0.1;
this is to be expected since the quantum finance approximation, in the first place,
is expected to hold for only small values of σ 2

0 � 10−2.
The result of Figure 11.6(b) does not mean that the HJM model price is as acc-

urate as the correlated quantum finance model for small σ0; rather the result shows
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that the HJM approximation of the quantum finance model agrees, for small σ0,
with the result of the one factor HJM model. In fact, as shown in Figure 11.6(a),
the best version of the HJM model, which uses the market volatility and forward
interest rates that are taken to be exactly correlated, systematically overprices the
actual market price of the swaption, with the quantum finance approximation being
more accurate.

The HJM limit shows a number of special features of the HJM option price.

• The one-factor HJM coupon bond option price for exponential volatility is given by a
single sum, each term of which is similar to the zero coupon bond option price given
in Eq. (11.49); the single sum is due to the specific exponential form chosen for the
volatility.

• The quantum finance and one-factor HJM option prices are seen to be equal in the limit
of D(x, x ′; t) → 1, at the money, and to lowest order in the exponential volatility.

• For a general volatility, which in particular is not an exponential, the limit of
D(x, x ′; t) → 1 does not remove the square root on C2.

11.9 Coupon bond option: BGM–Jamshidian limit

The correlation of the Libor rates Ln(t) in the BGM–Jamshidian model, as a
function of future time Tn, is given by Eq. (6.9) as

E

[
dL(t , Tn)

dt

dL(t , Tn′)

dt

]
c

= γn(t)γn′(t)E[R(t)R(t ′)]

= γn(t)γn′(t)δ(t − t ′) (11.57)

As in the HJM case, in the BGM–Jamshidian formulation of the Libor Market
Model, changes in the Libor rates are exactly correlated; that is,DBGM(t , T , T ′) = 1.
Future time runs over Libor time Tn = T0+n	; hence, the quantum finance formula
for the coupon bond option has the following BGM–Jamshidian limit

N∑
ij=1

JiJjGij →
N∑
ij=1

JiJj

∫ T0

t0

dt

∫ Ti

T0

dx

∫ Tj

T0

dx′γ (t , x)γ (t , x′)DBGM(t , x, x′)

�
N∑
ij=1

JiJj

∫ T0

t0

dt

i−1∑
n=n0

j−1∑
m=n0

γn(t)γn′(t) =
N∑
ij=1

JiJj

∫ T0

t0

dt

i∑
n=n0

j∑
m=n0

�mn

where

γn(t) =
∫ Tn+1

Tn

dxγ (t , x);
∫ T0

t0

dtγn(t)γm(t) = �mn
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The BGM–Jamshidian approximation, as given in Eq. (8.50), yields the following

�mn � �m�n

and this leads to the following factorization of Gij [34]

N∑
ij=1

JiJjGij →
[
N∑
k=1

k−1∑
n=n0

Ji�n

]2

Collecting all the above results, one obtains that, for small volatility, the BGM–
Jamshidian model limit of the quantum finance pricing formula is given by

B(t0, T0)√
2π

√√√√ N∑
i,k=1

JiJjGij → B(t0, T0)√
2π

N∑
k=1

ciF (t0, T0, Tk)
k−1∑
n=n0

�n(t0, T0, Tn)

� CBGM(t0;T0,K)

The BGM–Jamshidian approximation yields a factorization of
√
C2 quite distinct

from the factorization of the HJM model with exponential volatility.

11.9.1 BGM–Jamshidian approximation for exponential volatility

Similar to the HJM model, the BGM–Jamshidian approximation can be explicitly
evaluated for the case of exponential volatility.

γ (t , x) = γ0 exp{−λ(x − t)}; γn(t) = γ0

λ
eλ(t−n	)[1 − e−λ	]

The matrix �mn factorizes exactly; for T0 = n0	, one has

�mn = �n�m

�n = γLe
−(n−n0)λ	[1 − e−λ	]; γ 2

L = γ 2
0

2λ3 [1 − e−2λ(t0−T0)]

Hence, for exponential volatility the BGM–Jamshidian approximate price is

CBGM(t0;T0,K) � γL√
2π
B(t0, T0)

N∑
k=1

ckF (t0, T0, Tk)
k−1∑
n=n0

�n

= γL√
2π
B(t0, T0)

N∑
k=1

ckF (t0, T0, Tk)[1 − exp{−(k − n0)λ	}]



262 Coupon bond European and Asian options

In summary:

• For the HJM and BGM–Jamshidian models, the bond forward interest rates and Libors,
in the future time direction, are exactly correlated and result in DHJM(t , x, x ′) = 1 =
DBGM(t , x, x ′). The forward bond correlator Gij is, consequently, factorized, that is
Gij → �i�j .

• The factorization of Gij results in the following√√√√ N∑
ij=1

JiJjGij →
N∑
i=1

�iJi

• Since Ji = ciF (t0, T0, Ti), the factorization leads to a crucial loss of correlations between
the Fis, leading to systematic inaccuracies in option pricing.

11.10 Coupon bond Asian option: HJM limit

The coefficient C2 yields the Asian coupon bond option price from Eq. (3.69) and
is given in full generality by Eq. (11.52) as follows

C2 = 1
(t∗ − t0)2

∫ t∗

t0

dt ′
∫ t ′

t0

dt
∑
ij

Ji(t)Jj (t
′)
∫ t

t0

dτGij (τ )

Gij (τ ) =
∫ Ti

t∗
dx

∫ Tj

t∗
dx′M(x, x′; τ ); Ji(t) = ciF (t0, t∗, Ti)ρ(t)

For definiteness, let ρ(t) = 1. The HJM limit for the one-factor model, with
σ(t , x) = σ0 exp{−λ(x − t)}, yields

M(x, x′; τ ) = σ 2
0 e

2λτ e−λ(x+x′); Y (t∗, Ti) ≡ 1
λ
[1 − e−λ(Ti−t∗)]

⇒ Gij (τ ) = σ 2
0 e

−2λ(t∗−τ)Y (t∗, Ti)Y (t∗, Tj )

and hence

C2 = σ 2
Asn

[
N∑
i=1

JiY (t∗, Ti)

]2

; Ji = ciF (t0, t∗, Ti)

⇒ σ 2
Asn = σ 2

0
(t∗ − t0)2

e−2λt∗
∫ t∗

t0

dt ′
∫ t ′

t0

dt

∫ t

t0

dτe2λτ

= σ 2
0

8λ3(t∗ − t0)2

[
1 − 2

{
λ2(t∗ − t0)

2 − λ(t∗ − t0)+ 1
2

}
e−2λ(t∗−t0)

]
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< σ 2
E ; σ 2

E = σ 2
0

2λ
[1 − exp{−λ(t∗ − t0)}] (11.58)

Note σ 2
E is the corresponding volatility for the European option given in

Eq. (4.47).4 The only difference between the HJM limit of the European and Asian
coupon bond options lies in the functions σ 2

A and σ 2
E and, as expected, the

Asian option price has a volatility lower than the European case. In particular,
for the case of λ = 0 it is the extra integrations used in defining the average of the
coupon bond that lowers the value of σ 2

A below σ 2
E .

The BGM–Jamshidian approximation of the coupon bond Asian option can be
taken in a straightforward manner and yields results that are similar to the HJM
case.

11.11 Summary

Coupon bond options and swaptions are amongst the most complex of financial
instruments, and the pricing and hedging of these is of great interest for the debt
market.

The quantum finance formalism of bond forward interest rates provides a scheme
for approximately evaluating the price of coupon bond options and swaptions. The
empirical value of the forward interest rates’ volatility is a small parameter and
was used for developing a power series expansion for the price of the coupon bond
options.

In the earlier second-order volatility expansion for the coupon bond option carried
out in Section 8.5 for the Libor Market Model, there were only a few terms in the
expansion and they did not need to be organized in any particular manner. One
of the main lessons of this chapter is that in a high-order perturbation expansion
the terms proliferate and need to be organized in a systematic manner. Feynman
diagrams provided a graphical representation of the increasingly complex terms
generated by higher and higher orders of the expansion.

The perturbation expansion using Feynman diagrams was realized by expanding
the nonlinear terms in the partition function and performing the path integral, order
by order, using Gaussian path integrations. The approximate coupon bond option
price shows that the nontrivial correlation between forward prices of the zero
coupon bonds of different maturities plays a crucial role in yielding an accurate
price for the swaptions. This result agrees with our intuition since it is the interaction
between the various forward bond prices that should determine the price of a coupon
bond option.

4 In the limit of λ → 0, σ 2
Asn

→ σ 2
0 (t∗ − t0)/6 and σ 2

E
→ σ 2

0 (t∗ − t0)/2 > σ 2
Asn

.
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The Feynman expansion was carried out to fourth order so as to demonstrate
a very general advantage of the quantum finance formulation: the price of many
debt instruments can be evaluated to a high order of accuracy by systematically
computing higher- and higher-order Feynman diagrams. The high-order coupon
bond option price computation is an exemplar for the nature of the expansion that
holds true for many of the instruments. In most cases, however, the second-order
result suffices, as the expansion parameter tends to be small.

There are other instruments, such as the coupon bond American and barrier
options, that do not lend themselves to a Feynman expansion. Numerical and
analytical techniques are discussed in later chapters for addressing these options.

The coupon bond option price obtained for the Libor Market Model in Section 8.5
is very different from the results obtained in this chapter using the bond forward
interest rates. Similar to the study of caplet pricing, an empirical study needs to be
carried out to compare the predictions of the two models of the forward interest
rates. In particular, the empirical study would be able to determine the domain of
applicability, if at all, of the two approaches to the modeling of forward interest rates.

The case of the one-factor HJM swaption price with exponential volatility was
seen to be a particular limit of the quantum finance formula. The HJM limit of an
exactly correlated bond forward interest rate was seen to be inaccurate, leading to
a systematic overpricing of the swaptions.

It is seen that the formalism of quantum finance can solve problems that other-
wise would be analytically intractable and only amenable to numerical analysis.
In particular, in the conventional formulation of finance, relying heavily as it does
on stochastic calculus, the techniques developed in quantum finance are far from
obvious. In conclusion, the formalism of quantum finance is a useful, flexible, and
transparent theoretical tool that yields accurate results for coupon bond options.

11.12 Appendix: Coupon bond option price

A detailed field theory derivation is given of the coefficients C2,C3,C4. Since
C1 = 0, Eqs. (11.24), (11.25), and (11.26) yield the following

C2 = E[V 2] (11.59)

C3 = E[V 3] (11.60)

C4 = E[V 4] − 3C2
2 (11.61)
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The computation for the coefficient C2 is carried in complete detail. Writing out
the expression for C2 yields

C2 =
N∑

i,j=1

JiJj

∫
DA

[
e−αi−Qi−αj−Qj − e−αi−Qi − e−αj−Qj + 1

]
eS[A]/Z

=
N∑

i,j=1

JiJj

∫
DA

[
e−αi−Qi−αj−Qj − 1

]
eS[A]/Z

since E[e−αi−Qi ] = 1 due to the martingale condition for the forward bond
measure.5 Note from the definition of Qi given in Eq. (11.5)

Qi +Qj =
∫
Ri

σA +
∫
Rj

σA =
∫ t∗

t0

dt

∫ ∞

t∗
(hi + hj)(t , x)A(t , x)

≡
∫
Rij

(hi + hj)A (11.62)

On performing the Gaussian integration over the quantum field A(t , x) using
Eq. (5.21) one obtains, in abbreviated notation

C2 =
N∑

i,j=1

JiJj [e−αi−αj+
1
2
∫
Rij
(hi+hj )(t ,x)D(x,x′;t)(hi+hj )(t ,x′) − 1]

=
N∑

i,j=1

JiJj [eGij − 1] (11.63)

⇒ Gij =
∫
Rij

hi(t , x)D(x, x′; t)hj (t , x′)

=
∫ t∗

t0

dt

∫ Ti

t∗
dx

∫ Tj

t∗
dx′M(x, x′; t) (11.64)

Note
∫
Ri
hi(t , x)D(x, x′; t)hi(t , x′) and

∫
Rj
hj (t , x)D(x, x′; t)hj (t , x′) in Eq. (11.63)

are the diagonal terms that cancel against the drift terms αi ,αj terms respectively.
The cross term Gij = ∫

Rij
hi(t , x)D(x, x′; t)hj (t , x′) yields the final result for the

coefficient C2.
A similar calculation yields the coefficient C3 given in Eq. (11.25). To evaluate

coefficient C4 note, from Eq. (11.61) and writing out the coefficient C2
2 using

5 Field theorists will recognize that e−αi−Qi is equal to the normal ordered expression e−Qi :.
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Eq. (11.59) in a symmetric form, one obtains

C4 = 〈V 4〉 − 3C2
2

=
〈

N∑
ijkl=1

JiJjJkJl
[
e−αi−Qi − 1

][
e−αj−Qj − 1

][
e−αk−Qk − 1

][
e−αl−Ql − 1

]〉

−
N∑

ijkl=1

JiJjJkJl
[
eGij+Gkl + eGjk+Gli + eGik+Gjl − 3

]
Doing a calculation similar to the one carried out for the C2 coefficient, and using
the martingale condition for the forward bond measure, yields

C4 =
N∑

ijkl=1

JiJjJkJl

[
eGij+Gik+Gil+Gjk+Gjl+Gkl

− eGij+Gjk+Gki − eGij+Gjl+Gli − eGik+Gkl+Gli − eGjk+Gkl+Glj

− eGij+Gkl − eGjk+Gil − eGik+Gjl

+ 2(eGij + eGik + eGil + eGjk + eGjl + eGkl )− 6
]

(11.65)

To understand the significance of the various terms for coefficient C4 in
Eq. (11.65), consider the case of the forward bond propagator Gij being a small
parameter; an expansion of the coefficient C4 as a power series in Gij yields

C4 = 16
N∑

ijkl=1

JiJjJkJlGijGjkGkl +O(G4
ij )

One sees that the terms in Eq. (11.65) combine to cancel terms that are of lower
order than the cubic term in the propagator, yielding the leading term to be of
O(G3

ij ). Furthermore, all the disconnected Feynman diagrams, generically repre-
sented in Figure 11.3(b), are canceled out by the terms appearing after the leading
term. The final result is the leading-order quartic term that consists of only the
connected Feynman diagram given in Figure 11.3(a).

In general, for all quantum field theories, the partition function Z(η) is given by
the sum of all Feynman diagrams, both connected and disconnected, whereas the
log of the partition function ln(Z(η)) is given by the sum of only the connected
Feynman diagrams [95]. For this reason, all the coefficientsC2,C3,C4, . . . are given
by only the connected Feynman diagrams given in Figure 11.3(a).
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11.13 Appendix: Zero coupon bond option price

The exact zero coupon bond option price is given by [12]

Czcb(t0, t∗,K) = B(t0, t∗)√
2πq2

∫ +∞

−∞
dQe

− 1
2q2 (Q+∫ Tt∗ dxf (t0,x)+ q2

2 )
2

(eQ −K)+

(11.66)

The explicit expression forCzcb(t0, t∗,K) given in Eq. (11.49) is obtained by doing
the integration over Q. Eq. (11.66) is a convenient form of the zero coupon bond
price for deriving the volatility expansion.

Making a change of variable yields

Czcb(t0, t∗,K) = B(t0, t∗)
1√
2π

∫ +∞

−∞
dQe−

1
2Q

2
(F eqQ− q2

2 −K)+

(11.67)

where F ≡ exp(− ∫ T
t∗ dxf (t0, x)). A Taylor’s expansion in the Q-variable for the

payoff function to O(q4), for X = (K − F)/qF , yields

(F eqQ− q2
2 −K)+ = (F + qFQ−K)+ + qF

[{
q

2
(Q2 − 1)

+ q2

6
(Q3 − 3Q)

}
∂Q(Q−X)+ + q2

8
(Q2 − 1)2∂2

Q(Q−X)+
]

(11.68)

Using (Q2 − 1)e− 1
2Q

2 = ∂2
Qe

− 1
2Q

2
and (Q3 − 3Q)e− 1

2Q
2 = −∂3

Qe
− 1

2Q
2
, doing

integrations by parts and using Eqs. (11.68) and (11.37), yields

Czcb(t0, t∗,K)

= B(t0, t∗)√
2π

∫ +∞

−∞
dQ

[
(F + qFQ−K)+e−

1
2Q

2
]

+ qFδ(Q−X)

{
−q

2
∂Qe

− 1
2Q

2 + q2

6
∂2
Qe

− 1
2Q

2 + q2

8
(Q2 − 1)2e−

1
2Q

2
}

+O(q4)

= B(t0, t∗)
qF√
2π
I(X) (11.69)

+ B(t0, t∗)
qF√
2π

[1
2
qX + 1

6
q2(X2 − 1)+ 1

8
q2(X2 − 1)2

]
e−

1
2X

2 +O(q4)

where I (X) is given in Eq. (11.40). The result obtained above agrees with the zero
coupon bond limit of the coupon bond option price given in Eq. (11.48).
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Empirical analysis of interest rate swaptions

The pricing formulas for coupon bond options derived in Chapter 11 are employed
for an empirical study. This chapter studies the realization of swaptions as a special
case of coupon bond options. Similar to the analysis of interest rate caplets in
Chapter 10, by considering swaptions as a special case of coupon bonds, one in effect
is using bond forward interest rates to model the swaptions. An empirical study of
the swaption market is carried out in some detail and an efficient computational
procedure is developed for analyzing swaption data [18]. Empirical results of the
swaption price, swaption volatility, and swaption correlation are compared with the
predictions of the quantum finance model that generates, up to a scaling factor,
the market swaption prices to an accuracy of over 90% [19, 40].

12.1 Introduction

Interest rate swaptions have a deep and liquid market and arguably are today the
most liquid option on interest rates; one of their major components is the highly
liquid European swaptions. Swaption pricing is a nonlinear problem that has been
widely studied using numerical techniques [38, 42, 44, 51, 84].

The swaption market is studied within the quantum finance framework. The
theoretical price of a swaption can be modeled in terms of two distinct ways.

• In Section 4.9 the swaption price was shown to be equivalent to a specific case of a coupon
bond option. As discussed in Chapters 5 and 11, one can consistently model (zero) coupon
bonds using a Gaussian model of the bond forward interest rates, given in Eqs. (2.12) and
(5.1), as follows

B(t , T ) = exp
{
−
∫ T

t

dxf (t , x)
}

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x)

268
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• In Section 8.6 the swaption price was derived entirely in terms of observed Libor rates
L(t , Tn) that, from Eqs. (6.1) and (6.10), can be expressed as follows

B(t , T ) = exp
{
−
∫ T

t

dxfL(t , x)
}

∂fL(t , x)
∂t

= μ(t , x)+ v(t , x)AL(t , x)

• Due to their complexity, the prices of Libor and coupon bond options can only be evaluated
perturbatively and one needs to decide on a consistent scheme for working out these
approximations. If one is evaluating coupon bond options, a consistent approximation is
to use the bond forward interest rates for f (t , x). For studying Libor options one needs
to study the nonlinear Libor forward interest rates given by fL(t , x).

• In this chapter, swaption pricing is analyzed using its equivalence to a coupon bond
option. All prices are derived by considering f (t , x) to be the bond forward interest rates
discussed in Chapter 5. The empirical techniques used for obtaining the swaption price
are also valid for coupon bond options.

• Swaptions have been studied in Section 8.6 in the framework of the Libor Market Model.
Swaption pricing, based of the LMM representation of Libor, is quite distinct from pricing
obtained using the equivalence of a swaption to a coupon bond option. In this chapter,
the LMM swaption price is not empirically studied.

12.2 Swaption price

Recall from Section 4.2 that interest rate swaps are derivatives in which one party
pays the floating interest rate, determined by the prevailing three month Libor at the
time of the payment, with the other party paying at a pre-fixed interest rate RS . The
swaps that are being considered have floating interest rate payments that are paid at
	 = 3-month intervals and fixed rate payments that are paid at intervals of 2	 = 6
months. There are N floating rate payments, at times T0 + n	 for n = 1, 2, . . . ,N ,
made at three-monthly intervals. For six-monthly fixed rate payments there are only
N/2 payments of amount 2RS , made at times T0 + 2n	 , n = 1, 2, . . . ,N/2.1

Recall from Section 4.9 that the payoff function for a fixed rate receiver
swaption – in which the holder of the option receives at the fixed rate and pays
at the floating rate – is given by

CF (T0;RS) = V

⎡⎣B(T0, T0 +N	)+ 2	RS
N/2∑
n=1

B(T0, T0 + 2n	)− 1

⎤⎦
+

1 Suppose the swap has a duration such that N is even. Note N = 4 for a year-long swap.
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= V

⎡⎣N/2∑
n=1

cnB(T0, T0 + 2n	)− 1

⎤⎦
+

(12.1)

where B(t , T ) is the price of a zero coupon bond at time t that matures at time
T > t . The coefficients and strike price for a swaption are hence, from Eq. (4.35),
given by

cn = 2	RS ; n = 1, 2, . . . , (N − 2)/2; payment at time T0 + 2n	

cN/2 = 1 + 2	RS; payment at time T0 + N	

K = 1 (12.2)

The fixed interest rate par value RP , at time t0, is such that the interest rate swap
has zero value. From Eq. (4.37)

2	RP (t0) = B(t0, T0)− B(t0, T0 + N	)∑N/2
n=1 B(t0, T0 + 2n	)

(12.3)

The price of a coupon bond option C(t0, t∗,RS) at time t0 < t∗, using the money
market measure and discounting the value of the payoff function using the spot
interest rate r(t) = f (t , t), is given from Eq. (12.1) by

C(t0, t∗,RS) = VE

⎡⎣e− ∫ t∗
t0
dtr(t)

⎛⎝N/2∑
n=1

cnB(t∗, t∗ + 2n	)− 1

⎞⎠
+

⎤⎦ (12.4)

where V is the notional deposit on which the interest is calculated; the swaption
prices quoted by the market are for V = US$1 million.

The coupon bond European option price has been derived in Section 11.5. Since
σ(t , x), the volatility of the forward interest ratesf (t , x) isO(10−2), only the lowest
order result in the perturbation expansion needs to be retained for the empirical
study; hence, from Eq. (11.41)

C(t0, t∗,RS) = B(t0, t∗)
√
C2

2π
I(X)+O(σ 2) (12.5)

I (X) = e−
1
2X

2 + √
2πXN(X); X = K − F√

C2

Fi ≡ Fi(t0, t∗, Ti) = exp
{
−
∫ Ti

t∗
dxf (t0, x)

}

F =
N∑
i=1

Ji ; Ji ≡ ciFi (12.6)
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Fi are the forward bond prices; coefficients ci and strike price K are given in
Eq. (Eq. (12.2)) in terms of the fixed interest rate Rs . For a swaption initialized at
time t0 to be at the money, the fixed interest rateRs is equal to the par valueRP (t0).

The coefficients in the option price are given in Eq. (11.32) as follows

C2 =
N∑
ij=1

JiJj

[
Gij + 1

2
G2
ij

]
+O(G3

ij )

The market correlatorGij of the forward bond prices is given in Eq. (11.28).Gij
for different quantities is defined over different domains of the forward interest rates
and this results in the integration of the forward interest rates’ correlation function
over different integration limits. The exact form of the various integrations will be
discussed later, together with the correlators that are required for the computation
of swaption volatility.

12.3 Swaption price ‘at the money’

Recall that for the par value RP (t0) of the fixed interest payments, the value of the
swap at time t0 is zero. From Eqs. (12.6) and (12.3), the fixed interest rate par value,
namely RS = RP , implies the following

F ≡ F(t0) =
N/2∑
i=1

ciF (t0, T0, T0 + 2i	)

=
N/2∑
i=1

2	RPF (t0, T0, T0 + 2i	)+ F(t0, T0, T0 +N	)

Hence, from Eq. (12.3)

F = B(t0, T0)− B(t0, T0 +N	)∑N/2
n=1 B(t0, T0 + 2n	)

N/2∑
i=1

F(t0, T0, T0 + 2i	)+ F(t0, T0, T0 + N	)

⇒ F = 1: at the money

In the coupon bond option pricing formula,X = (F −K)/√C2 and for swaptions,
K = 1. Hence when the fixed interest rate RS for the swaption is at the money
F = 1 and this leads toX = (F −K)/√C2 = 0. To leading order, from Eq. (3.72),
the swaption price close to ‘at the money’, is given by

C(t0, t∗,RP ) � B(t0, t∗)
√
C2

2π
+ 1

2
B(t0, t∗)(F −K)+ 0(X2) (12.7)
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12.4 Volatility and correlation of swaptions

The volatility and correlation of swaption prices are important quantities since they
are indicators of the market’s direction and provide insights into portfolio behavior.

Consider the volatility and correlation of the change of swaption price for
infinitesimal time steps. Let CI ≡ C(t0, t1,R1) and CII ≡ C(t0, t2,R2) denote
two swaptions. Introduce the notation

√
2πC(t0, tI ,RI ) � B(t0, tI )

√
C2,I +

√
π

2
B(t0, tI )(FI −KI)+ 0(X2

I ) (12.8)

and a similar expression for CII .
Denote the time derivative by an upper dot; for infinitesimal time step ε

〈ĊI ĊII 〉c = 1
ε2 〈(CI (t0 + ε)− CI (t0))(CII (t0 + ε)− CII (t0))〉c

= 1
ε2 〈δCI (t0)δCII (t0)〉c (12.9)

where recall that the connected correlator is defined by 〈AB〉c ≡ 〈AB〉− 〈A〉〈B〉.2
The swaption prices CI ,CII depend on the forward bond prices Fi , which

take random values every day. Random changes in the price of the forward bond
prices lead to random changes in the price of a swaption. The correlation func-
tion 〈δCI (t0)δCII (t0)〉c can be evaluated by a historical average over the daily
swaption prices, considered as the random outcomes of the swaption price. Hence,
a historical average of the correlator of changes in the swaption price, taken over
the random fluctuations of the forward bond prices, can be equated to the ensemble
average of the correlators.

Eqs. (5.1) and (5.22) yield the following bond forward interest rate covariance

〈ḟ (t , x)ḟ (t , x′)〉c = 1
ε
M(x, x′; t) (12.10)

From the pricing formula given in Eq. (12.8), the swaption’s rate of change at
the money – namely for XI = 0 – is given by the following

√
2π
dC(t0, tI ,RI )

dt0
= dB(t0, tI )

dt0

√
C2,I + B(t0, tI )

2
√
C2,I

dC2,I

dt0
+
√
π

2
B(t0, tI )

dFI

dt0

= DI − C(t0, tI ,RI )
∫ tI

t0

dxḟ (t0, x)− B(t0, tI )√
C2,I

NI∑
ij=1

JiJjGij

∫ Tj

tI

dxḟ (t0, x)

2 To simpify the notation, in the chapter this notation for expectation value, namely E[A] will be denoted by 〈A〉.
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−
√
π

2
B(t0, tI )

NI∑
i=1

Ji

∫ Ti

tI

dxḟ (t0, x) (12.11)

where tI denotes t1 and NI denotes N1. DI contains all the deterministic (non-
stochastic) factors that are subtracted out in forming the connected correlation
functions. One can obtain the expression for the other swaption by replacing I by
II ; tII denotes t2 and NII denotes N2.

To determine ĊI , as in the equation above, one needs ḟ (t0, x), namely the evo-
lution equation of the quantum field f (t , x) given in Eq. (5.1); hence, together with
Eqs. (12.10) and (12.11), the correlator 〈ĊI ˙CII 〉 is given by

2πε〈δCI (t0)δCII (t0)〉c = CICII

∫ t1

t0

dx

∫ t2

t0

dx
′
M(t0, x, x′)

+ B(t0, t2)√
C2,II

CI

N2∑
jj

′=1

G
jj

′JjJj ′
∫ t1

t0

dx

∫ Tj

t2

dx′M(t0, x, x′)

+ B(t0, t1)√
C2,I

CII

N1∑
ii

′=1

G
ii

′JiJi′
∫ t2

t0

dx

∫ Ti

t1

dx′M(t0, x, x′)

+ B(t0, t1)B(t0, t2)√
C2,IC2,II

CICII

N1∑
ii

′=1

N2∑
jj

′=1

G
ii

′JiJi′Gjj ′JjJj ′
∫ Ti

t1

dx

∫ Tj

t2

dx′M(t0, x, x′)

+
√
π

2
B(t0, t2)CI

N2∑
j=1

Jj

∫ t1

t0

dx

∫ Tj

t2

dx′M(t0, x, x′)

+
√
π

2
B(t0, t1)CII

N1∑
i=1

Ji

∫ t2

t0

dx

∫ Ti

t1

dx′M(t0, x, x′)

+
√
π

2
B(t0, t1)B(t0, t2)√

C2,I

N1∑
ii

′=1

N2∑
j=1

G
ii

′JiJi′Jj

∫ Ti

t1

dx

∫ Tj

t2

dx′M(t0, x, x′)

+
√
π

2
B(t0, t1)B(t0, t2)√

C2,II

N1∑
i=1

N2∑
jj

′=1

JiGjj ′JjJj ′
∫ Ti

t1

dx

∫ Tj

t2

dx′M(t0, x, x′)

+ π

2
B(t0, t1)B(t0, t2)

N1∑
i=1

N2∑
j=1

JiJj

∫ Ti

t1

dx

∫ Tj

t2

dx′M(t0, x, x′) (12.12)
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Table 12.1 The various domains of integration for evaluating the integral I =∫ m1
t0
dt
∫ d1
m2 dx

∫ d2
m3 dx

′M(x, x ′; t) that are required for computing the coefficients
in the swaption price and correlators.

I m1 m2 m3 d1 d2

Gij t∗ t∗ t∗ Ti Tj
Gii′ t1 t1 t1 Ti Ti′
Gjj ′ t2 t2 t2 Tj Tj ′

where C2,I and C2,II denote the coefficient C2 for the two swaptions CI and CII
respectively.

In Eq. (12.12) the indices i, i′ refer to CI and j , j ′ refer to CII . For the swaption
correlation, options mature at two different times t2 ≥ t1, and hence two indices i, j
have the range i = 1, 2, . . . ,N1 and j = a, a+ 1, . . . ,N2 where the last payments
are made at TN1 and TN2 respectively. In the next section, data is examined in detail
in order to compute the swaption price.

12.4.1 Market correlator

The forward bond price correlator Gij , the swaption correlator, and volatility are
all computed, with various integration limits, from a set of three-dimensional inte-
grations on M(x, x′; t). For a single swaption, the swaption maturity is at t∗ and
the two indices i and j run from 1 to N , with the last payment being made at TN .

A general form of all the integration is given as follows

I =
∫ m1

t0

dt

∫ d1

m2
dx

∫ d2

m3
dx′M(x, x′; t) (12.13)

and the limits of integration are listed in Table 12.1.

12.5 Data from swaption market

The input data that are required for computing the swaption price consist of the
underlying empirical forward interest rates, the coupon bond price, the forward
bond price, and the fixed rate par value RP . The swaption market provides daily
data for X by Y swaptions. These swaptions mature X years from today, with the
underlying swap starting at timeX and the last payment being paidX+ Y years in
the future. The domain for the swaption instrument is given in the time and future
time x − tplane in Figure 12.1(a).

All the prices are presented with interest rates in basis points (100 basis points =
1% annual interest rate) and have to be multiplied by the notional value of one
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Figure 12.1 (a) The shaded area is the domain of the forward interest rates for
evaluating the price of a swaption. For 2by10 swaption t∗ = t0 + 2 years and
TN = t∗ + 10 years. (b) Zero coupon yield curve data on lines of constant θ ; the
θ interval is three months with θN = 30 years.

million Dollars. The swaption analysis uses Bloomberg data for the ZCYC, deno-
ted by Z(t0, T ), from 29 January 2003 to 28 January 2005, and yields, in total,
523 daily ZCYC data. Daily swaption prices are quoted only for ‘at the money’. In
order to get accurate results, actual days in the 12 calendar months are divided by
360, since the convention for total number of days in a calendar year is 360.

12.6 Zero coupon yield curve

In order to generate swaption prices and swaption correlation from the model, both
the historical and current forward interest rates are required. The value of the coupon
bonds and forward bond prices as well as the par fixed rate RP are computed from
the current forward interest rates, as encoded in the ZCYC. The integrand of the
forward bond correlatorGij , namelyM(x, x′; t), is derived from historical forward
interest rates’ data.

The ZCYC is necessary for evaluating long duration swaptions since ZCYC data
with maturity of up to 30 years is available. The ZCYC is given in the θ = x− t =
constant direction, as shown in Figure 12.1(b), with the interval of θ between two
data points not being a constant. Cubic spline is used for interpolating the data to
a three-month interval.

From the discussion in Section 2.11, the zero coupon bond is given by3

B(t0, T ) = 1

(1 + 1
c
Z(t0, T ))c[T−t0] (12.14)

3 The number of years in the time interval T − t is given by integer [T − t] = (T − t)/1 year.
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where c represents how many times the bond is compounded per year. For the
ZCYC, c is given as half yearly, and hence c = 2/year.

The definition of the zero coupon bond yields, from Eq. (2.28), the following∫ T

t0

f (t0, x)dx = c[T − t] ln
(
1 + 1

c
Z(t0, T )

)
Note the important fact that the bond market directly provides the ZCYC, which

is the integral of the forward interest rates over future time x. One can numerically
differentiate the ZCYC to extract f (t , x); this procedure does indeed yield an
estimate of f (t , x), but with such large systematic errors that it makes the estimate
quite useless for empirically analyzing swaption pricing. Hence all the numerical
procedures are directly based on the ZCYC [18].

All the data required for calculating a swaption’s price can be obtained directly
from the ZCYC data. The interpolation of ZCYC data and the convention used
by Bloomberg have been empirically tested by comparing the computed value of
RP , using Eq. (12.3), with the value given by the market; the result confirms the
correctness of the computation.

12.7 Evaluating I: the forward bond correlator

The market value of the forward bond price correlator I , given in Eq. (12.10), can
be derived from ZCYC data. From Eq. (12.10) and for discrete time ḟ � δf /ε the
correlation for changes in the forward interest rates is given by [12]

M(x, x′; t) = 1
ε
〈δf (t , x)δf (t , x′)〉c ; δf (t , x) = f (t + ε, x)− f (t , x) (12.15)

Thus, the forward bond correlator is given by the following

I = 1
ε

∫ m1

t0

dt

∫ d1

m2
dx

∫ d2

m3
dx′〈δf (t , x)δf (t , x′)〉c (12.16)

From Table 12.1, it can be seen that none of the limits on the integrations over x, x′
depends on the time variable t; hence, the calendar time finite difference operator
δ can be moved out of the x, x′ integrations and yields

I = 1
ε

∫ m1

t0

dt

〈[
δ

∫ d1

m2
dxf (t , x)

][
δ

∫ d2

m3
dx′f (t , x′)

]〉
c

(12.17)

The x and x′ integration variables are directly used instead of changing them
to θ and θ ′ since, as discussed earlier, ZCYC data directly yield the integrals of
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forward interest rates over future time x. The numerical values of
∫ d1
m2 dxf (t , x)

and
∫ d2
m3 dx

′f (t , x′) are obtained from the market values of the ZCYC.
To evaluate the market correlator I one needs to know the value of the correlator

M(x, x′; t) for future calendar time; the reason being that the time integration t in
I runs from present calendar time t0 to future calendar timem1 > t0. The problem
of obtaining the future values of M(x, x′; t) can be solved by assuming that the
correlation function, for changes in the forward interest rates, is invariant under
time translations; that is

M(x, x′; t) = M(x − a, x′ − a; t − a) (12.18)

The assumption of time translation invariance of the forward rates correlation
function has been empirically tested in [28]; although this assumption cannot be
indefinitely extended, a two-year shift is considered to be reasonable [28].

12.7.1 Shifting integration over calendar time

The integration on the t axis can be converted into a summation by discretizing
time into a lattice with spacing ε′; Eq. (12.17) yields

t = t0 + tk ; tk = kε′

⇒ I = ε′
m1−t0∑
tk=0

∫ d1

m2
dx

∫ d2

m3
dx′M(t0 + tk, x, x′) (12.19)

Consider the following change of variables for Eq. (12.19)

x = y + tk ; x′ = y′ + tk

Hence, from Eq. (12.19)

I = ε′∑
tk

∫ d1−tk

m2−tk
dy

∫ d2−tk

m3−tk
dy′M(t0 + tk, y + tk , y′ + tk)

= ε′∑
tk

∫ d1−tk

m2−tk
dy

∫ d2−tk

m3−tk
dy′M(t0, y, y′) (12.20)

where the condition given in Eq. (12.18) has been used to obtain Eq. (12.20). The
shift of the future time integration to the present and the domain used for doing the
averages for the correlator are illustrated in Figure 12.2.

The integration on future calendar time has been replaced by a summation on
the current value ofM(t0, x, x′), with x, x′ taking values on various intervals. The
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Figure 12.2 The expectation value
〈
δY (t0 + tk , t∗, T )δY (t0 + tk , t∗, T )

〉
for future

calendar time is shifted back to t0 using the invariance under time translations
and yields an equivalent expression that is evaluated at present calendar time t0,
namely

〈
δY (t0, t∗ − tk , T − tk)δY (t0, t∗ − tk , T − tk)

〉
. A historical average is done

over the rectangular area B, which is in the past calendar time of t0; the optimum
days for evaluating the historical averages is tA = 180 days.

current value ofM(t0, x, x′) in turn is evaluated by taking averages of the correlator
over its past values.

From above and Eqs. (12.16), (12.17), and (12.20) one has

I = ε′

ε

∑
tk

〈∫ d1−tk

m2−tk
δf (t0, y)dy

∫ d2−tk

m3−tk
δf (t0, y′)dy′

〉
c

= ε′

ε

∑
tk

〈[
δ

∫ d1−tk

m2−tk
f (t0, y)dy

][
δ

∫ d2−tk

m3−tk
f (t0, y′)dy′

]〉
c

As discussed earlier, in order to directly use the ZCYC data the finite time difference
operator δ is taken outside the future time integrations. Note ε′ is the time integration
interval and is equal to ε; for the time summation with daily intervals ε = ε′ =
1/260 (since 260 is the actual number of trading days in one year).

Re-expressing I in terms of the ZCYC data yields

I = ε′

ε

∑
tk

〈
δY (t0,m2 − tk , d1 − tk)δY (t0,m3 − tk, d2 − tk)

〉
c

where, from Eq. (2.28)

Y (t0, t∗, T ) =
∫ T

t∗
f (t0, x)dx =

∫ T

t0

f (t0, x)dx −
∫ t∗

t0

f (t0, x)dx

= log[(1 + Z(t0, T )/c)(T−t0)c] − log[(1 + Z(t0, t∗)/c)(t∗−t0)c]
(12.21)
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The forward bond price correlator’s present value (at time t0) is obtained by
averaging the correlator

〈
δY (t0,m2 − tk , d1 − tk)δY (t0,m3 − tk, d2 − tk)

〉
over the

last t0 − tA days with tA = 180 days. The program was run by adding 30 days to
the time averaging for evaluating the expectation values of the correlators; the best
fit is given when the averaging is done over the past 180 days; see Section 12.8.
Since the computation requires the value of δY for different future time intervals
x, x′, one has to use cubic splines to interpolate ZCYC for obtaining daily values
of the ZCYC.

12.8 Empirical results

The 2by10 and 5by10 swaptions are priced for time series 6 April 2004–28 January
2005 using the pricing formula from Section 12.3. When computing the forward
interest rates’ correlatorM(x, x′; t) the daily swaption prices are stable when more
than 270 days of historical data for ZCYC were used; but a 270-day average does
not give the best fit of the predictions of model swaption price with the swaption’s
market value. This may be due to too much old information creating large errors
in the predictions for the present-day swaption prices. However, averaging on less
historical data causes the swaption price curve to fluctuate strongly since it is likely
that new information dominates swaption pricing and makes the price too sensitive
to small changes.

The empirical study showed that a moving averaging of 180 days of historical
data gives the best result for this period. One can most likely improve the accuracy
by higher frequency sampling of 180 days of historical data.

The results obtained from the quantum finance model are compared with daily
market data and are shown in Figures 12.3(a) and 12.3??; the normalized root mean
square of errors are 3.31% and 6.31% respectively. The perturbative model result
given in Eq. (12.5) had to be rescaled by an overall factor of 1/

√
π to match it with

the market swaption values [18]; the explanation of this single overall factor needs
further analysis.

The results for the swaption volatility and correlation discussed in Section 12.4
are derived for the change on the same instruments. From Eq. (12.9)

δCI ≡ CI (t0 + ε)− CI (t0) ≡ CI (t0 + ε,Rs)− CI (t0,Rs) (12.22)

whereCI (t0 +ε) andCI (t0) are the same contract being traded on successive days.
Par fixed interest rate RP is determined when the contract is initiated at time t0,
and the swaption CI (t0) is at the money. However, in general, CI (t0 + ε) is away
from the money; the reason being that the swaption depends on the forward bond
prices Fi , and these change every day and hence there is a daily change in the par
fixed rate RP .
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Figure 12.3 (a) 2by10 swaption price versus time t0 (6 April 2004–28 January
2005), for both market (unbroken line) and the quantum finance model (dashed
line). Normalized root mean square error = 3.31%. (b) 5by10 swaption price
versus time t0 (6 April 2004–28 January 2005), both market (unbroken line) and
model (dashed line). The normalized root mean square error = 6.31%.
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Figure 12.4 (a) Swaption variance 〈Ċ2
1 〉c, 〈Ċ2

2 〉c and covariance 〈Ċ1Ċ2〉c versus
time t0 (15 June 2004–27 January 2005) computed from the quantum finance
model, with the value of the forward bond prices taken from market data. The
unbroken line is the variance of a 2by10 swaption, the dashed line is the variance
of a 5by10 swaption, and the dotted line is the covariance of the two swaptions.
(b) 2by10 swaption price, at the money, from the market (unbroken line), from the
quantum finance model (large dashes), and from the HJM model (dotted line). Time
t0 is in the interval (6 April 2004–28 January 2005). The normalized root mean
square error for HJM = 18.87% compared with the far more accurate quantum
finance swaption formula with error = 3.31%.

Bloomberg provides historical daily data only for the prices of the swaptions at
the money; swaption prices ‘in the money’ and ‘out of the money’ are not quoted.
Hence, only the swaption volatility and correlation computed from the model are
shown in Figure 12.4(a), without any comparison made with the market value for
these quantities.
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12.9 Swaption pricing and HJM model

In order to see how the quantum finance model compares with the industry standard
one-factor HJM model, the HJM model swaption price was empirically studied. By
considering the volatility function to have the special form of σ(t , x) = σ0e

−λ(x−t),
the one-factor HJM model yields the following explicit expression, given in
Eq. (4.47), for the coupon bond option

CHJM(t0, t∗,K) =
N∑
i=1

ciB(t0, Ti)N(di)−KB(t0, t∗)N(d)

di ≡ r ′

σR
+W(t∗, Ti)σR; d = r ′

σR

W(t∗, Ti) ≡ 1
λ

[
1 − e−λ(Ti−t∗)

]
; σ 2

E = σ 2
0

2λ
[1 − e−2λ(t∗−t0)]

As shown in Section 11.8, to leading order in σ0 the HJM limit of the quantum
finance pricing formula with exponential volatility yields the HJM pricing formula.

The HJM swaption price is evaluated for exponential volatility σ(t , x) = σ0
exp{−λ(x − t)} and using the daily forward bond prices obtained from ZCYC; σ0
and λ are estimated from historical ZCYC data. The HJM pricing formula for the
swaption price is shown in Figure 12.4(b) together with the market price and the
quantum finance swaption price.

The results show that the HJM model is inadequate for pricing swaptions since
it systematically over prices the swaption by a large amount. The highly jagged
(nondifferentiable) shape of the one-factor HJM swaption price will give incorrect
results if one tries to take derivatives that are required for hedging the swaption.

Instead of using the HJM formula for pricing the coupon bond options, practi-
tioners may consider representing the price of the swaption by an implied volatility
using the HJM pricing formula. However, unlike the case for the price of caplets
where this procedure is possible, the entire swaption curve cannot be fitted by adjust-
ing only one quantity σ0. Furthermore, the implied volatility σ(t , x) in the first place
may not be able to fit the price of all swaptions, and, secondly, it will depend on
time; it is quite impractical to numerically evaluate daily implied volatility from
daily swaption prices.

12.10 Summary

The quantum finance swaption pricing formula was empirically tested by comparing
its predictions with the market values. There is over 90% agreement of the theoret-
ical predictions for the swaption’s price with its market value, with errors around
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6% for most swaptions and with an accuracy of about 3% for the shorter maturity
swaptions. The quantum finance formulation directly uses the market correlator
M(x, x′; t) and all the market information is fully accounted for in the swaption
price.

If one needs to price swaptions that are far in the future, such as a 2by10 swaption,
one cannot evaluateM(x, x′; t) from the market because data on swaption historical
prices are not available over a sufficiently long time period. For such long-dated
swaptions, the only way to price them is to first obtain the best fit for volatility
σ(t , x) from market data and then use the quantum finance model for the propagator
D(t , x, x′) to construct the correlator M(x, x′; t) = σ(t , x)D(t , x, x′)σ (t , x′).

The necessity of using an overall scale factor equal to 1/
√
π to match the theoret-

ical swaption price with that of the market remains inexplicable. Further analysis is
required to fully understand the coupon bond option approach to swaption pricing.

The HJM model is not suited for pricing swaptions because the volatility para-
meter that goes into the pricing formula cannot be extracted from the swaption
data. A comparison of quantum finance and the HJM model for the swaption price
shows that the quantum finance model gives a more accurate and stable result than
the HJM model.

The quantum finance swaption pricing formula provides an approximate ana-
lytical result that can in turn be used to analytically compute the correlation and
volatility of swaptions; based on these analytical results one can construct and
hedge interest rate portfolios.

The swaption price derived, in Section 8.6, from the Libor Market Model, is
not considered. Further empirical studies need to be carried out to decide whether,
within the framework of quantum finance, the coupon bond option approach or the
Libor Market Model approach is more accurate for pricing swaptions.
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Correlation of coupon bond options

The correlation of two different coupon bond options is studied in the framework
of bond forward interest rates discussed in Chapter 5. Coupon bond options are
discounted using the money market numeraire. The correlation is studied for illus-
trating the mathematics required for pricing more complex instruments, including
a more general version of the volatility expansion. The correlation of coupon bonds
can lead to the definition of new derivative instruments. This chapter is based on
the results of [21].

13.1 Introduction

Exotic equity options often combine a basket of equities that are correlated; the price
of the options reflect the effects of equity correlations, which are also required for
hedging a portfolio of equities.

The correlation of coupon bond options has many new features not present in the
pricing of a single coupon bond option. The calculation for the coupon bond option
correlation generalizes the pricing formula obtained for the coupon bond option.
The correlation results extend in a straightforward manner to the correlation of
swaptions.

A major new feature of the coupon bond option correlation is that – not being
traded in the financial markets – it does not have a martingale evolution; in parti-
cular, the drift is not fixed by the martingale condition. Instead, the drift for the
individual coupon bond option has to be evaluated from market data.

The forward bond numeraire can no longer be used to simplify the option price
calculations since the two coupon bond options, in principle, have different matu-
rities. It turns out that the most efficient approach for evaluating the correlation
function is to use the money market numeraire for discounting the value of the
individual coupon bond options.

283
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13.2 Correlation function of coupon bond options

The volatility expansion developed in Section 3.14 is used for calculating the corre-
lation of two different coupon bond options. The coupon bond options are correlated
since they are driven by the same underlying bond forward interest rates. Let the
options expire at times t2 ≥ t1, respectively; in a notation that generalizes the payoff
function given in Eq. (4.20) let the payoff functions for the coupon bond options
be given as below

P1 =
(
N1∑
i=1

ciB(t1, Ti)−K1

)
+

P2 =
⎛⎝ N2∑
j=a

ciB(t2, Tj )−K2

⎞⎠
+

(13.1)

where Ti = T0 + i	 are the fixed times for the coupon payments.
The first payoff function P1 matures at time T1, with the zero coupon bond

maturing earliest at time T1 > t0 and the last zero coupon bond maturing at time
TN1. Similarly, the second payoff function P2 matures at time t2, with the earliest
zero coupon bond maturing at Ta > t2 and the last zero coupon bond maturing at
time TN2. The domain of each of the two payoff functions is similar to the domain
for a single coupon bond option given in Figure 4.10(a); their joint domain is given
in Figure 13.1.

t

x

Ta

T1

t0

t0 T1 Ti Ta Tk TN2Tj

R1

0

R2

TN1

Figure 13.1 The rectangular domainsR1 andR2 for the bond forward interest rates
that determine M: the correlation function of two coupon bond options. Domains
R1 and R2 overlap, and the dashed line at time Tj indicates that both the options
have bonds maturing at Tj and out to TN1.
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The connected correlation function of the discounted coupon bond options is
given by

M = M(t0, t1, t2,K1,K2) = 〈
e
− ∫ t1

t0
dtr(t)P1e

− ∫ t2
t0

dtr(t)P2
〉
c

(13.2)

≡ 〈
e
− ∫ t1

t0
dtr(t)P1e

− ∫ t2
t0

dtr(t)P2
〉− 〈

e
− ∫ t1

t0
dtr(t)P1

〉 〈
e
− ∫ t2

t0
dtr(t)P2

〉
≡ M12 − M1M2 (13.3)

The correlator of two swaptions is not a traded financial instrument and hence
one does not expect its numerical value to be the price of a financial instrument. The
expectation value of the correlator consequently need not be evaluated using the
martingale measure, and could equally consistently be evaluated using the market
evolution of the underlying forward interest rates with the market drift of the forward
interest rates not being equal to the martingale drift. The precise probability measure
used for performing the averaging 〈. . .〉 need not, for now, be completely specified.

The quantities M1, M2 are similar to the price of a coupon bond option, except
that, unlike the coupon bond option, they need to be evaluated using the market
drift. The new piece for the connected correlator is given by M12; to evaluate it, a
natural generalization of the notation of Eq. (11.12) yields

M12 = B(t0, t2)B(t0, t1)
(

1
2π

)2 ∫ +∞

−∞
dW1dη1dW2dη2

(
F1 +W1 −K1

)
+

× (
F2 +W2 −K2

)
+e

−i(η1W1+η2W2)Z(η1, η2) (13.4)

The correlator partition function for the two bond options, namely Z(η1, η2), is
given by the appropriate generalization of Eq. (11.13), as follows

Z(η1, η2) = 〈M1e
iη1V1M2e

iη2V2〉 (13.5)

The terms F1, F2, M1, M2, V1, V2 are defined in Section 13.4.

13.3 Perturbation expansion for correlator

To leading order, the perturbation expansion for the partition function, from
Eq. (13.5), yields

Z(η1, η2) = 〈M1M2〉 eia1η1+ia2η2− 1
2

∑2
ij=1 ηiAij ηj +O(η3

1, η3
2) (13.6)

The explicit expressions for the coefficients a1, a2, and matrix Aij are given in
Eqs. (13.17)– (13.20). The coefficients are evaluated for both the martingale and
the market drift.
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From Eqs. (13.4), (13.5), and (13.6), the correlation function, after performing
the η1, η2 integrations and some simplifications, is given by

M12 = M0
1√

1 − ρ2

∫ +∞

−∞
dW1dW2

(
W1 −X1

)
+
(
W2 −X2

)
+

× e
− 1

2(1−ρ2)

(
W 2

1 +W 2
2 −2ρW1W2

)
(13.7)

where

M0 = 1
2π
B(t0, t1)B(t0, t2)A

A = 〈M1M2〉
√
A11A22

ρ = A12√
A11A22

X1 = K1 − F1 − a1√
A11

;

X2 = K2 − F2 − a2√
A22

(13.8)

The correlator M12 has two possible expansions, namely the case where:

• X1, X2 are small and ρ is arbitrary
• ρ is small and X1, X2 are arbitrary

13.3.1 Expansion in X1, X2

Expanding the payoff function about X � 0 yields

(W −X)+ � (W −X)θ(W)+ X2

2
δ(W)+O(X3)

Hence, performing the integrations in Eq. (13.7) using the properties of the error
function yields

M12 = M0
[
m0 +m1(X1 +X2)+m2X1X2 +m3(X

2
1 +X2

2)
]

+O(X3
1,X3

2)
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Figure 13.2 Graph of m0, with ρ plotted along the x-axis and value of m0 along
the y-axis.

with the coefficients being given by

m0 =
⎧⎨⎩ ρ

[
π +

√
1−ρ2

ρ2 − tan−1
(√

1−ρ2

ρ2

)]
; ρ ≥ 0

|ρ|
[√

1−ρ2

ρ2 − tan−1
(√

1−ρ2

ρ2

)]
; ρ ≤ 0

m1 =
√
π

2
(1 + ρ)

m2 =
⎧⎨⎩ π − tan−1

(√
1−ρ2

ρ2

)
; ρ ≥ 0

tan−1
(√

1−ρ2

ρ2

)
; ρ ≤ 0

m3 = 1
2

√
1 − ρ2

Note that M12 is a continuous function of ρ, with the graph of m0 given in
Figure 13.2.

13.3.2 Expansion in ρ

To O(ρ2), the W1,W2 integrations in Eq. (13.7) completely factorize. Expanding
M12 in a power series in ρ yields

M12 = M0

∫ +∞

−∞
dW1dW2

[
1 + ρW1W2 +O(ρ2)

]
× (

W1 −X1
)
+
(
W2 −X2

)
+e

− 1
2 (W

2
1 +W 2

2 )

= M0
[
I (X1)I (X2)+ ρJ (X1)J (X2)

]+O(ρ2) (13.9)
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where I (X) is given in Eq. (3.70) and

J (X) =
∫ +∞

−∞
dW

(
W −X

)
+We

− 1
2W

2

= √
2πN(X)− 2Xe−

X2
2 (13.10)

13.4 Coefficients for martingale drift

The explicit expressions for the coefficients a1, a2, and matrix Aij required for
obtaining M12 are computed.

For the purpose of illustrating the computation required, the calculation for the
correlated coupon bond option is analytically carried out using the money market
numeraire [11] given by exp(

∫ t
t0
dt ′r(t ′)), which yields a martingale measure for

all zero coupon bonds. All expectation values in this section are defined using the
money market numeraire, and the martingale condition states, from Eq. (3.4), that

〈e−
∫ t
t0
dt ′r(t ′)

B(t , T )〉 ≡ E[e−
∫ t
t0
dt ′r(t ′)

B(t , T )] = B(t0, T ) (13.11)

The money market numeraire drift velocity, as derived in Section 9.2, is given by

α(t , x) =
∫ x

t

dx′M(x, x′; t) (13.12)

The money market numeraire is the most suitable numeraire for finding the
correlation function as it treats both the payoff functions on an equal basis.

The correlator partition function from Eq. (13.5) is given by

Z(η1, η2) = 〈M1e
iη1V1M2e

iη2V2〉 (13.13)

with the following definitions1

M1 = e
− ∫ t1

t0
dtr(t)

/B(t0, t1); M2 = e
− ∫ t2

t0
dtr(t)

/B(t0, t2)

F1 =
N1∑
i=1

ciF1i ; F2 =
N2∑
j=a

ciF2i ; J1i = c1iF1i ; J2i = c2iF2i

V1 =
N1∑
i=1

J1i
[
e−α1i−Q1i − 1

]
; V2 =

N2∑
j=a

J2j
[
e−α2j−Q2j − 1

]
1 Generalizing the notation of Eq. (11.3), namely that

B(t∗, Ti) = exp

{
−
∫ Ti

t∗
dxf (t∗, x)

}
= e−αi−Qi F(t0, t∗,Ti) (13.14)



13.4 Coefficients for martingale drift 289

The two payoff functions are shown in Figure 13.3.
Using the money market drift velocity given in Eq. (13.12) yields

α1i =
∫ t1

t0

dt

∫ Ti

t1

dxα(t , x) =
∫ t1

t0

dt

∫ Ti

t1

dx

∫ x

t

dx′M(x, x′; t)

Q1i =
∫
Ri

σ (t , x)A(t , x) =
∫ t1

t0

dt

∫ Ti

t1

dxσ (t , x)A(t , x)

α2j =
∫ t2

t0

dt

∫ Tj

t2

dx

∫ x

t

dx′M(x, x′; t)

Q2j =
∫
Rj

σ (t , x)A(t , x) =
∫ t2

t0

dt

∫ Tj

t2

dxσ (t , x)A(t , x) (13.15)

and the discount factors yield, from Eq. (5.1) and for i = 1, 2, the following

Mi = e
− ∫

�i
α−∫�i σA∫

�i

α =
∫ ti

t0

dt

∫ ti

t

dxα(t , x)∫
�i

σA =
∫ ti

t0

dt

∫ ti

t

dxσ (t , x)A(t , x)

Domains Ri , Rj , �1, �2 are given in Figure 13.3.
The partition function for the correlation function of two swaptions, from

Eq. (13.5), is given by

Z(η1, η2) = 〈M1M2〉 eia1η1+ia2η2− 1
2

∑2
ij=1 ηiAij ηj +O(η3

1, η3
2) (13.16)

(a)

t

t1

t0
(t0, t0)

Δ1 Ri

t0 t1 Ti x0
(b)

(t0, t0)

Δ2

Rj

t0 t1 t2 Tj x

t

t2

t1

t0

0

Figure 13.3 (a) Payoff P1 matures at time t1, with a typical bond maturing at time
Ti . (b) Payoff P2 matures at time t2, with a typical bond maturing at time Tj .



290 Correlation of coupon bond options

Using the fact that for the money market numeraire 〈M1〉 = 〈M2〉 = 1 the coef-
ficients up to terms of O(η3

1, η3
2) are given, from Eqs. (13.5) and (13.16), by the

following

a1 = 1
〈M1M2〉 〈M1M2V1〉 (13.17)

a2 = 1
〈M1M2〉 〈M1M2V2〉 (13.18)

Aii = 1
〈M1M2〉 〈M1M2V

2
i

〉− a2
i ; i = 1, 2 (13.19)

A12 = 1
〈M1M2〉 〈M1M2V1V2〉 − a1a2 = A21 (13.20)

All the calculations for the coefficients of η1, η2 are given by Gaussian path
integrations, as was the case for evaluating the price of the coupon bond option.
The path integrals for evaluating the coefficients a1, a2, and Aij are carried out on
the various sub-domains of R1,R2 shown in Figure 13.1.

The definition of M1 and M2 yields the following

〈M1M2〉 = e�12 (13.21)

�12 =
∫
T12

M(x, x′; t) ≡
∫ t1

t0

dt

∫ t1

t

dx

∫ t2

t

dx′M(x, x′; t)

The domain T12 is given in Figure 13.4(a). Furthermore, Gaussian integrations yield

a1 = 1
〈M1M2〉 〈M1M2V1〉 = e−�12〈M1M2V1〉 =

N1∑
i=1

Ji
(
e�2i − 1

)
where

�2i =
∫
�2Ri

M =
∫ t1

t0

dt

∫ t2

t

dx

∫ Ti

t1

dx′M(x, x′; t)

Similarly, since 〈M2V2〉 = 0, the coefficient a2 is given by

a2 =
N2∑
j=a

Jj
(
e�1j − 1

)
(13.22)

where �1j =
∫
�1Rj

M =
∫ t1

t0

dt

∫ t1

t

dx

∫ Tj

t2

dx′M(x, x′; t)
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Figure 13.4 (a) Domain T12 for evaluating �12 = ∫
T12
M(x, x ′; t). (b) γij =∫

RiRj
M = ∫ t1

t0
dt
∫ Ti
t1
dx
∫ Tj
t2
dx ′M(x, x ′; t) is evaluated on domains Ri and Rj .

The coefficients Aij are now evaluated in a manner similar to the derivation of
Eqs. (11.24) and (11.29). Since Eq. (13.12) yields 〈M1V1〉 = 0, one obtains the
following

〈M1V
2
1 〉 =

N1∑
ii′=1

JiJi′
(
eGii′ − 1

)
(13.23)

〈M2V
2
2 〉 =

N2∑
jj ′=a

JjJj ′
(
e
Gjj ′ − 1

)
(13.24)

with Gii′ =
∫
RiRi′

M =
∫ t1

t0

dt

∫ Ti

t1

dx

∫ Ti′

t1

dx′M(x, x′; t)

Gjj ′ =
∫
RjRj ′

M =
∫ t2

t0

dt

∫ Tj

t2

dx

∫ Tj ′

t2

dx′M(x, x′; t)

The indices i, i′ refer to payoff P1 and indices j , j ′ refer to P2.
Consider the expectation values

〈M1M2V
2
1
〉 = e�12

N1∑
ii′=1

JiJi′
(
e�2i+�2i′+Gii′ − e�2i − e�2i′ + 1

)
〈M1M2V

2
2
〉 = e�12

N2∑
jj ′=a

JjJj ′
(
e
�1j+�1j ′+Gjj ′ − e�1j − e

�1j ′ + 1
)
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〈M1M2V1V2
〉 = e�12

N1∑
i=1

N2∑
j=a

JiJj
(
e�1j+�2i+γij − e�2i − e�1j + 1

)
with γij =

∫
RiRj

M =
∫ t1

t0

dt

∫ Ti

t1

dx

∫ Tj

t2

dx′M(x, x′; t)

The domain RiRj for evaluating the coefficient γij is shown in Figure 13.4(b).
From the e quations above and from Eqs. (13.21)– (13.24) th e c o e ffi c ie n tsAij are

explicitly given by

A11 =
N1∑
ii′=1

JiJi′
(
eGii′ − 1

)
A22 =

N2∑
jj ′=a

JjJj ′
(
e
Gjj ′ − 1

)

A12 = A21 =
N1∑
i=1

N2∑
j=a

JiJj
(
eγij − 1

)
where

Ji = Jie
�1i ; i = 1, 2, . . . ,N1

Jj = Jj e
�2j ; j = a, a + 1, . . . ,N2

To compute M = M12 − M1M2, one needs to determine M1 and M2. For
the martingale measure, M1 and M2 are simply the coupon bond option prices,
and hence

M1 = C1(t0, t1;K1)

M2 = C2(t0, t2;K2)

The result obtained for the correlator of two coupon bond optionsM in Eq. (13.2)
contains the special case of the variance of the swaptions. For t1 = t2,K1 =
K2,N = N1 = N2, and a = 1, one has P1 = P2. The auto-correlation of P̃1 is
given by

σ 2(P̃1) = 〈P̃2
1 〉 − (〈P̃1〉

)2
= M(t0, t1, t1,K1,K1)

with P̃1 = e
− ∫ t1

t0
dtr(t)P1 (13.25)
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Note, P̃2 = e
− ∫ t2

t0
dtr(t)P̃2 yields a similar expression for σ 2(P̃2).

The variance of the coupon bond option prices is derived in Section 13.8 and
provides a check for the correlation function M.

13.5 Coefficients for market drift

Recall, as discussed earlier, the explicit expressions for the coefficients a1, a2, and
matrix Aij required for obtaining M12 can also be evaluated from the market
evolution, in particular using the market drift, of the underlying empirical forward
interest rates.

The drift terms need to be redefined in order to account for the market drift

α1i =
∫ t1

t0

dt

∫ Ti

t1

dxα(t , x)

α2j =
∫ t2

t0

dt

∫ Tj

t2

dxα(t , x) (13.26)

where α(t , x) is the market drift which has to be computed from the empirical
forward interest rates.

The coefficients in Eq. (13.16) are now given by the following

a1 = 1
〈M1M2〉 c

[〈M1M2V1〉 − 〈M1V1〉〈M2〉
]

(13.27)

a2 = 1
〈M1M2〉 c

[〈M1M2V2〉 − 〈M2V2〉〈M1〉
]

(13.28)

Aii = 1
〈M1M2〉 c

[〈M1M2V
2
i 〉 − 〈MiV

2
i 〉〈Mj 〉

]− a2
i ; j �= i (13.29)

A12 = 2
〈M1M2〉 c

[〈M1M2V1V2〉 − 〈M1V1〉〈M2V2〉
]− 2a1a2 (13.30)

= A21

The definition of Mi for nonmartingale drift yields the following

〈Mi〉 = e
− ∫

�i
α+ 1

2

∫
�i
M(x,x′;t)

i = 1, 2 (13.31)

〈M1M2〉 = e
�12−

∫
�1
α−∫�2

α+ 1
2

∫
�1
M(x,x′;t)+ 1

2

∫
�2
M(x,x′;t) (13.32)

〈M1M2〉c = 〈M1M2〉 − 〈M1〉〈M2〉 (13.33)

where ∫
�i

α =
∫ ti

t0

dt

∫ ti

t

dxα(t , x)
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�i

M(x, x′; t) =
∫ ti

t0

dt

∫ ti

t

dx

∫ ti

t

dx′M(x, x′; t)

�12 =
∫
T12

M(x, x′; t) ≡
∫ t1

t0

dt

∫ t1

t

dx

∫ t2

t

dx′M(x, x′; t)

Gaussian path integrations yield

〈M1M2V1〉 = 〈M1M2〉
N1∑
i=1

Ji
(
e
−α1i+ 1

2Gii′+�1i+�2i − 1
)

(13.34)

where �1i =
∫
�1Ri

M =
∫ t1

t0

dt

∫ t1

t

dx

∫ Ti

t1

dx′M(x, x′; t)

�2i =
∫
�2Ri

M =
∫ t1

t0

dt

∫ t2

t

dx

∫ Ti

t1

dx′M(x, x′; t)

Gii′ =
∫
RiRi′

M =
∫ t1

t0

dt

∫ Ti

t1

dx

∫ Ti′

t1

dx′M(x, x′; t)

Similarly

〈M1M2V2〉 = 〈M1M2〉
N2∑
j=a

Jj
(
e
−α2j+ 1

2Gjj ′+�1j+�2j − 1
)

(13.35)

where �1j =
∫
�1Rj

M =
∫ t1

t0

dt

∫ t1

t

dx

∫ Tj

t2

dx′M(x, x′; t)

�2j =
∫
�2Rj

M =
∫ t1

t0

dt

∫ t2

t

dx

∫ Tj

t2

dx′M(x, x′; t)

Gjj ′ =
∫
RjRj ′

M =
∫ t2

t0

dt

∫ Tj

t2

dx

∫ Tj ′

t2

dx′M(x, x′; t)

and

〈M1V1〉 = 〈M1〉
N1∑
i=1

Ji
(
e
−α1i+ 1

2Gii′+�1i − 1
)

(13.36)

〈M2V2〉 = 〈M2〉
N2∑
j=a

Jj
(
e
−α2j+ 1

2Gjj ′+�2j − 1
)

(13.37)

Coefficients a1 and a2 can now be evaluated by Eqs. (13.27) and (13.28), given
the above explicit expressions. The coefficients Aij are now evaluated in a similar
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manner.

〈M1V
2
1 〉 = 〈M1〉

N1∑
i,i′=1

JiJi′
(
e
−α1i−α1i′+ 1

2Gii+ 1
2Gi′i′+Gii′+�1i+�1i′

− e
−α1i+ 1

2Gii+�1i − e
−α1i′+ 1

2Gi′ i′+�1i′ + 1
)

(13.38)

〈M2V
2
2 〉 = 〈M2〉

N2∑
j ,j ′=a

JjJj ′
(
e
−α2j−α2j ′+ 1

2Gjj+ 1
2Gj ′j ′+Gjj ′+�2j+�2j ′

− e
−α2j+ 1

2Gjj+�2j − e
−α2j ′+ 1

2Gj ′j ′+�2j ′ + 1
)

(13.39)

and

〈M1M2V
2
1 〉 = 〈M1M2〉

N1∑
i,i′=1

JiJi′
(
e
−α1i−α1i′+�+ 1

2Gii+ 1
2Gi′i′+Gii′ +�1i+�1i′+�2i+�2i′

− e
−α1i+�+ 1

2Gii+�1i+�2i − e
−α1i′+�+ 1

2Gi′i′+�1i′+�2i′ + 1
)

(13.40)

〈M1M2V
2
2 〉 = 〈M1M2〉

N2∑
j ,j ′=a

JjJj ′
(
e
−α2j−α2j ′ +�+ 1

2Gjj+ 1
2Gj ′j ′ +Gjj ′ +�1j+�1j ′+�2j+�2j ′

− e
−α2j+�+ 1

2Gjj+�1j+�2j − e
−α2j ′ +�+ 1

2Gj ′j ′ +�1j ′+�2j ′ + 1
)

(13.41)

〈M1M2V1V2〉 = 〈M1M2〉
N1∑
i=1

N2∑
j=a

JiJj
(
e
−α1i−α2j+�+ 1

2Gii+ 1
2Gjj+Gij+�1i+�1j+�2i+�2j

− e
−α1i+�+ 1

2Gii+�1i+�2i − e
−α2j+�+ 1

2Gjj+�1j+�2j + 1
)

(13.42)

Furthermore, M1 and M2 are not the coupon bond option prices if one
consistently uses the market drift. Different from the one derived in [9], one has

Di = 1
〈Mi〉 〈MiVi〉 (13.43)

Ai = 1
〈Mi〉 〈MiV

2
i 〉 −D2

i ; i = 1, 2 (13.44)

13.6 Empirical study

The correlation and auto-correlation of coupon bond options have been evaluated
for both martingale and nonmartingale evolution of the bond forward interest rates
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Table 13.1 Evaluating I = ∫ m1
t0
dt
∫ d1
m2 dx

∫ d2
m3 dx

′M(t , x, x ′) for different limits
of integration. When an entry has the value of t , it means it is not a fixed value and
depends on the t integration.

I �∗i Gij �1i �2i �2j �2j Gii′ Gjj ′ γij

m1 t∗ t∗ t1 t1 t1 t1 t1 t2 t1
m2 t t∗ t t t t t1 t2 t1
m3 t∗ t∗ t1 t1 t2 t2 t1 t2 t2
d1 t∗ Ti t1 t2 t1 t2 Ti Tj Ti
d2 Ti Tj Ti Ti Tj Tj Ti′ Tj ′ Tj

by using analytical techniques; these results are now studied empirically. The struc-
ture of the ZCYC data and computational procedures discussed in Chapter 12 carry
over to the empirical study of this section.

The analytical results show that all the computations finally boil down to a set
of three-dimensional integrations on M(x, x′; t)

M(x, x′; t) = σ(t , x)D(x, x′; t)σ (t , x′)

with various integration limits. A general form for all the integrations, similar to
Eq. (12.13), is given by

I =
∫ m1

t0

dt

∫ d1

m2
dx

∫ d2

m3
dx′M(x, x′; t) (13.45)

with the limits of integrations being listed in the Table 13.1.
The evaluation I , given in Eq. (13.45), is similar to the computation carried out

in Section 12.7, except now, as can be seen from Table 13.1, the limits on I are
more complicated.

Aset of two-dimensional integrations onα(t , x) is required for evaluating market
drift and which has the general form

D =
∫ m1

t0

dt

∫ d1

m2
dxα(t , x) (13.46)

with the limits of integration being listed in Table 13.2.
As discussed in Section 4.9 swaptions are equivalent to a special class of coupon

bond options. Swaption data will be used to empirically study the formulae obtained
for the correlation of coupon bond options. A swaption’s price is equivalent to a
coupon bond option, which will be taken to mature at t∗; the indices i and j run from
1 toN , with the last payment being made at TN . For the correlation, swaptions will
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Table 13.2 Limits of integration for evaluating D = ∫ m1
t0
dt
∫ d1
m2 dxα(t , x). When

m2 has the value of t , it means it is not a fixed value and depends on the t integration.

D α�1 α�2 α1i α2j

m1 t1 t2 t1 t2
m2 t t t1 t2
d1 t1 t2 Ti Tj

mature at two different times t2 ≥ t1 and the two indices i and j have the following
rages: i = 1, 2, . . . ,N1 and j = a, a + 1, . . . ,N2; the last payments are made at
TN1 and TN2 respectively.

Since

M(x, x′; t) = 1
ε
〈δf (t , x)δf (t , x′)〉c (13.47)

one has, similar to Eq. (12.16), the following

I = 1
ε

∫ m1

t0

dt

∫ d1

m2
dx

∫ d2

m3
dx′〈δf (t , x)δf (t , x′)〉c (13.48)

A shift on integration domain, as discussed in Section 12.7, converts integration
on future data into a summation on current and past data as follows (t = t0 + tk ;
tk = kε′)

I = ε′

ε

∑
tk

∫ d1−tk

m2−tk
dy

∫ d2−tk

m3−tk
dy′M(y + tk , y′ + tk; t0 + tk)

= ε′

ε

∑
tk

∫ d1−tk

m2−tk
dy

∫ d2−tk

m3−tk
dy′M(y, y′; t0)

= ε′

ε

∑
tk

〈 ∫ d1−tk

m2−tk
δf (t0, y)dy

∫ d2−tk

m3−tk
δf (t0, y′)dy′〉 (13.49)

The shift in the integration over future calendar time is shown in Figure 12.2.
In order to use the ZCYC data directly, the operator δt0 needs to be taken outside

the integration. As can be seen from the list of integration limits given in Table 13.1,
one of the lower limits of integration can be the integration variable t; hence, unlike
the case analyzed in Section 12.7, two different results are possible and are shown
below.
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• When both the lower limit of y and y ′ are fixed

I = ε′

ε

∑
tk

〈
δY (t0,m2 − tk , d1 − tk)δY (t0,m3 − tk , d2 − tk)

〉
where2

Y (t0, t∗, T ) =
∫ T

t∗
f (t , x)dx =

∫ T

t0

f (t0, x)dx −
∫ t∗

t0

f (t0, x)dx

= log

((
1 + 1

c
Z(t , T )

)c[T−t ])
− log

((
1 + 1

c
Z(t0, t∗)

)c[t∗−t0])
• When one of the lower limits is not fixed, say m2 = t

I = ε′

ε

∑
tk

〈 ∫ d1−tk

t0

δf (t0, y)dy
∫ d2−tk

m3−tk
δf (t0, y ′)dy ′〉 (13.50)

since ∫ T

t0

δt0f (t , x)dx = δt0

∫ T

t0

f (t0, x)+ εf (t0, t0) (13.51)

this yields

I = ε′

ε

∑
tk

〈{
δY (t0, t0, d1 − tk)+ εf (t0, t0)

}
δY (t0,m3 − tk , d2 − tk)

〉
Similarly, the market drift can be derived from ZCYC data as

α(t , x) = 1
ε
〈δf (t , x)〉 (13.52)

From Eq. (13.46), by using the technique of shifting the calendar time integration,
integrating over future calendar time is converted to an integration on current and
past data and yields

D = ε′

ε

∑
tk

〈 ∫ d1−tk

m2−tk
δf (t0, y)dy

〉
(13.53)

2 Recall from Eq. (2.28), the future integral of the forward interest rates is given in terms of the ZCYC as follows

B(t , T ) = 1

[1 + 1
c Z(t , T )]c[T−t] = exp

{
−
∫ T

t
dxf (t , x)

}

⇒
∫ T

t
dxf (t , x) = c[T − t] ln

[
1 + 1

c
Z(t , T )

]
where integers [T − t] = (T − t)/1 year and [t∗ − t] = (t∗ − t)/1 year.
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Again, there are two different results as shown below:

• When the lower limit of y is fixed

I = ε′

ε

∑
tk

〈
δY (t0,m2 − tk , d1 − tk)

〉
• The lower limit is not fixed, say m2 = t

I = ε′

ε

∑
tk

〈 ∫ d1−tk

t0

δf (t0, y)dy
〉

(13.54)

and this yields

I = ε′

ε

∑
tk

〈
δY (t0, t0, d1 − tk)+ εf (t0, t0)

〉
The average 〈. . .〉 for the case of variable t0 is done by a moving average over

the last 180 historical days with fixed future time value x. Cubic spline is used for
interpolating ZCYC to a daily interval. The whole shift process is illustrated as
Figure 12.2.

The auto-correlation was first evaluated, which is a special case of the coupon
bond option correlation for t1 = t2; the numerical results verified that the correlation
reduces to the auto-correlation. The results for correlation and auto-correlation
of coupon bond options are plotted in Figure 13.5(a) for martingale drift and in
Figure 13.5(b) for market drift.
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Figure 13.5 The curve on top is the auto-correlation of the 5by10 swaption and the
lower curve that of the 2by10 swaption. The curve in the middle is the covariance
of the two swaptions. (a) Correlated coupon bond options with martingale drift,
computed from the model, plotted versus time t0 (15 June 2004–27 January 2005).
(b) Correlated coupon bond options with market drift, computed from the model,
plotted versus time t0 (15 June 2004–27 January 2005).
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13.7 Summary

The quantum finance formulation of bond forward interest rates provides a scheme
for approximately evaluating the correlation of coupon bond options and swap-
tions. The empirical value of the bond forward interest rates’ volatility is a small
parameter and was used for developing a volatility expansion for the correlation.
The perturbation expansion was realized by expanding the nonlinear terms in the
partition function, and performing the path integral using Gaussian integrations.

The forward bond measure is an efficient measure for pricing options, whereas the
money market numeraire is the appropriate measure for evaluating the correlation
of two coupon bond options. The nonmartingale market drift was studied to examine
how an instrument with market drift can be analyzed in the framework of quantum
finance.

13.8 Appendix: Bond option auto-correlation

The auto-correlation of a coupon bond option is the limit of taking the two coupon
bonds in the correlated case to be identical, that for P1 = P2 ≡ P. Since the
computation of auto-correlation is a bit simpler than the case for the correlator,
the computation is carried out for its own interest and for providing a check on the
correlated case.

With the notation of the correlation function of two coupon bond options (swap-
tions) in mind, let the option P1 mature at time t1. The option’s volatility is defined
using the martingale measure; unlike the computation for the price of a coupon
bond option in Chapter 11, where the forward measure was used, the money market
numeraire is used as it yields a more symmetric drift.

The volatility of the swaption price P1, not to be confused with the volatility of
the forward rates σ(t , x), is given by

σ 2(P̃1) = 〈[e− ∫ t1
t0

dtr(t)P1]2〉− [〈e− ∫ t1
t0

dtr(t)P1〉
]2 (13.55)

= 〈[
e
− ∫ t1

t0
dtr(t)P1

]2〉− C2(t0, t1;K) (13.56)

P̃1 = e
− ∫ t1

t0
dtr(t)P1

since, from Eq. (12.4), the price of the option is given by C(t0, t1;K) =
〈e−

∫ t1
t0
dtr(t)P1〉.

From Eq. (A.3) the � function has the property that �2(x) = �(x) and this
leads to a major simplification for the computation of σ 2(P1); the payoff function,
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given in Eq. (13.1), yields the following

P1 =
(
N1∑
i=0

ciB(t1, Ti)−K1

)
+

= (F + V −K)�(F + V −K)

⇒ P2
1 = (F + V −K)2�(F + V −K)

where, recall from Eq. (11.10), that V = ∑N
i=1 Ji(e

−αi−Qi − 1).
Since there is only one � function in the expectation value needed to evaluate

the coupon bond option’s volatility, it can be evaluated in a manner similar to the
price of the option. Similar to Eqs. (11.12) and (11.13), one has

〈[e− ∫ t1
t0
dtr(t)P1]2〉 = 1

2π

∫ +∞

−∞
dWdη(F +W −K)2

×�(F +W −K)e−iηWZVol(η) (13.57)

where the volatility partition function, from Eq. (5.3), is given by

ZVol(η) = 〈e−2
∫ t1
t0
dtr(t)

eiηV 〉 (13.58)

Similar to Eq. (11.20), performing the average over the forward interest rates, and
factoring out a pre-factor, yields to second order

ZVol(η) = 〈
e
−2

∫ t1
t0
dtr(t)〉

e
iηDV− 1

2η
2AV+... (13.59)

where 〈
e
−2

∫ t1
t0
dtr(t)〉 = B2(t0, t1)e�; � =

∫
�1

M

Similar to Eq. (11.20) the coefficients are given by

DV = 1
B2(t0, t1)e�

〈e−2
∫ t1
t0
dtr(t)

V 〉 (13.60)

AV = 1
B2(t0, t1)e�

〈e−2
∫ t1
t0
dtr(t)

V 2〉 −D2 (13.61)

The coefficientDV is consequently given by

DV = 1
B2(t0, t1)e�

N∑
i=1

Ji〈e−2
∫ t1
t0
dtr(t)

(e−αi−Qi − 1)〉
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=
N∑
i=1

Ji[e2
∫
�1Ri

M − 1] (13.62)

since 〈
e
−2

∫ t1
t0
dtr(t)〉 = B2(t0, t1)e�

The domain of integration�1 andRi are shown in Figure 13.3(a). Note�1Ri ≡
�1 ∪ Ri .

Similarly, the coefficient AV , from Eqs. (13.61) and (13.62), is given by

AV = 1
B2(t0, t1)e�

N∑
i,j=1

JiJj 〈e−2
∫ t1
t0
dtr(t)

(e−αi−Qi − 1)(e−αj−Qj − 1)〉 −D2

=
N∑

i,j=1

J̃i J̃j [eGij − 1]; J̃i = Jie
2
∫
�1Ri

M (13.63)

Collecting the results from Eqs. (13.57) and (13.58) yields the following result
for the second moment of the coupon bond option price

〈[e− ∫ t1
t0
dtr(t)P1]2〉 = B2(t0, t1)e�AV√

2π

×
∫ +∞

−∞
dW(W −XV )

2�(W −XV )e
− 1

2W
2

= B2(t0, t1)e�AV
2

H(XV ) (13.64)

where

H(XV ) = √
2(1 +X2

V )N(XV )−
√

2
π
XV e

− 1
2X

2
V (13.65)

XV = K − F −DV√
AV

(13.66)

13.8.1 Monte Carlo simulation

Options can be evaluated numerically. Consider a coupon bond option maturing at
t∗ with payoff function, given from Eq. (13.1) as follows

P =
(
N1∑
i=0

ciB(t∗, Ti)−K1

)
+
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The price of the option is given by the expectation value of the discounted payoff

C(t0, t∗;K) = E[P̃]
P̃ = e

− ∫ t∗
t0
dtr(t)P

One can generateN random configurations A(p)(t , x) of the quantum field A(t , x)
with probability distribution given by eS/Z, where S is the stiff action given in
Eq. (5.25) [2]. The price of the option is then given by

C(t0, t∗;K) = 1
N

N∑
p=1

P̃[A(p)] ± Statistical error

Statistical error = σ(P̃)√
N

where σ(P̃) is the auto-correlation of the discounted payoff function given in
Eq. (13.55).

For Monte Carlo simulations of the option price, the auto-correlation σ(P̃) pro-
vides an estimate of the statistical error. Having an analytical expression for it, as
in Eq. (13.55), provides further checks on the accuracy of the simulation.



14
Hedging interest rate options

Hedging is one of the chief tools for managing risk and is a driving force for the
invention and development of financial derivatives. Interest rate instruments are
much more complicated to hedge compared to equity since there are virtually an
unlimited number of interest rates that need to be hedged against.

Hedging Libor derivatives is discussed in the framework of quantum finance
[20, 24, 40]. To exemplify the subtleties in hedging interest rate instruments, one
of the simplest interest rate options, namely an interest rate caplet is analyzed in
some detail. A portfolio is studied in which the fluctuations of a caplet’s price are
canceled by the negatively correlated movement of Libor futures contract(s).

Interest rates and Libor are modeled by bond forward interest rates f (t , x) that
are described by a Gaussian quantum field, as discussed in Chapter 5. Eq. (5.1)
yields the following dynamics for f (t , x)1

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x); −∞ ≤ f (t , x) ≤ +∞

1 + 	L(t , Tn) = exp
{∫ Tn+	

Tn

dxf (t , x)
}

The forward numeraire B(t , t∗) yields a drift α(t , x), given by Eq. (9.3) as follows

α(t , x) = σ(t , x)
∫ x

t∗
dx′D(x, x′; t)σ (t , x′)

1 In the Libor Market Model, Libor is represented by the Libor forward interest rates fL(t , x)

1 + 	L(t , Tn) = exp

{∫ Tn+	
Tn

dxfL(t , x)

}
; fL(t , x) ≥ 0

Since fL(t , x) is nonlinear, exact analytical results for it are hard to obtain; hence, the analysis in this chapter
is based on the bond forward interest rates.

304
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Gaussian bond forward interest rates are employed for this chapter due to their
mathematical tractability.As was the case in the analysis of the caplet’s linear pricing
formula in Chapter 10 and coupon bond option in Chapter 11, many analytical
calculations are possible for the Gaussian model that illustrate important and general
features of financial instruments.

New and novel features of hedging interest rate derivatives are obtained in this
chapter using Gaussian bond forward interest rates. In particular, delta and gamma
hedge parameters are derived for hedging the linear caplet formula, discussed in
Chapter 10, against fluctuations in underlying forward interest rates. The results
are empirically analyzed to gauge the influence of interest rate correlations in the
hedging of caplets.

14.1 Introduction

Quantum finance models provide flexible computational schemes for hedging inter-
est rate instruments. Current research in hedging interest rates instruments are
mostly focused on the applications of the HJM and BGM–Jamshidian models
[32, 56, 62], for which forward interest rates are exactly correlated. Quantum
finance provides a parsimonious alternative to the existing theories of interest
rates.

The following two methods are studied for hedging interest rate instruments.

• Stochastic hedging. Interest rate instruments are written, conditioned on the occurrence
of a particular value for pre-specified forward interest rates. The interest rate caplet is
delta and gamma hedged against the movement of pre-specified forward interest rates.

• Residual variance. The portfolio’s residual variance is minimized against all fluctuations
of the forward interest rates. Minimizing residual variance suppresses all changes in the
value of a portfolio.

The impact of correlation on a portfolio of interest rate instruments is examined;
the delta hedge parameters for a portfolio as well as its residual variance are derived.
This chapter extends the concept of stochastic delta hedging developed in [12] to
the case of hedging Libor derivatives.

It is shown that the results obtained can be empirically implemented in a straight-
forward manner; the implications of correlation on the hedge parameters are
analyzed. The data used for the empirical study consist of daily closing prices
for quarterly Eurodollar futures contracts as described in [27, 29].
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14.2 Portfolio for hedging a caplet

Consider a portfolio �(t) composed of a midcurve caplet(t , t∗, T ), discussed in
Section 4.3 and N Libor futures contracts, which are chosen to ensure fluctuations
in the value of the portfolio are minimized. The Libor futures are given by

FL(t , Ti) = V [1 − 	L(t , Ti)]

The price of a caplet, from Eq. (4.11), is given by

caplet(t , t∗, T ) = 	VE
[
e
− ∫ t∗

t0
r(t)
B(t∗, T + 	)

[
L(t∗, T )−K

]
+
]

(14.1)

where V is the principal, B(t∗, T + 	) is a zero coupon bond,K is the interest rate
cap, and 	 = three months.

The bond forward interest rates f (t , x) yield the linear price of the caplet given,
from Eq. (9.33), as follows

caplet(t , t∗, T ) =
∫ +∞

−∞
dG�(G, T , T + 	)(X − e−G)+ (14.2)

where

�(G, T , T + 	) = Ṽ B(t , t∗)√
2πq2(T − t)

× exp

{
−1

2q2(T − t)

(
G−

∫ T+	

T

dxf (t∗, x)− q2(T − t)

2

)2}
(14.3)

Ṽ = V (1 + 	K); q2 =
∫ t∗

t

dt

∫ T+	

T

dxdx′σ(t , x)D(x, x′; t)σ (t , x′)

(14.4)

The portfolio to be hedged is equal to

�(t) = caplet(t , t∗, T )−
N∑
i=1

ηi(t)FL(t , Ti) , (14.5)

where ηi(t) represents the hedge parameter for the ith futures contract included in
the portfolio. The parameters ηi(t) are chosen so as to ensure that movements in the
caplet and futures contracts ‘offset’ one another so as to minimize the fluctuations
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in �(t). Re-writing the portfolio yields2

�(t) = caplet(t , t∗, T )+ 	V

N∑
i=1

ηi(t)L(t , Ti ) (14.6)

14.3 Delta-hedging interest rate caplet

Stochastic hedging of interest rate derivatives has been introduced in [12], where the
specific case of hedging zero coupon bonds was considered in detail. This technique
is applied to the hedging of a Libor caplet against fluctuations in the bond forward
interest rates f (t , x).

Consider a portfolio �(t) composed of a caplet(t , t∗, T ) and one Libor futures
contract. Setting N = 1 in Eq. (14.6) yields3

�(t) = caplet(t , t∗, T )+ 	V η1(t)L(t , T1) (14.7)

The instantaneous change in the value of this portfolio, at instant time, t is given
by a functional Taylor’s expansion. Let �t ≡ ε = 1/360 year and �f (t , x) =
f (t + ε, x)− f (t , x); this yields4

��[t , f (t , x)] ≡ �[t + ε, f (t , x)+�f (t , x)] −�[t , f (t , x)]
= ∂�

∂t
�t +

∫
dx

δ�

δf (t , x)
�f (t , x)

+ 1
2

∫
dxdx′ δ2�

δf (t , x)δf (t , x′)
�f (t , x)�f (t , x′)+O(δf 3) (14.8)

Only the lowest order term in ε is retained for the purpose of hedging, with higher
orders of ε being negligible. Taking the limit of ε → 0 yields the following portfolio
dynamics;��/�t → d�/dt and�f (t , x)/�t → ∂f (t , x)/∂t ≡ ḟ (t , x); hence,
the generalization of Eq. (3.15) yields

d�[t , f (t , x)]
dt

= ∂�

∂t
+
∫
dx

δ�

δf (t , x)
ḟ (t , x) (14.9)

+ ε

2

∫
dxdx′ δ2�

δf (t , x)δf (t , x′)
ḟ (t , x)ḟ (t , x′)+O(ε)

2 A constant term equal to V
∑N
i=1 ηi (t) has been dropped in Eq. (14.6) since it is irrelevant to the hedging

analysis.
3 Recall from Eq. (10.7) that 	L(t , Ti) = exp

{∫ Ti+	
Ti

f (t , x)
}

− 1.
4 Functional differentiation with respect to the function f (t , x), t = constant, denoted by δ/δf (t , x) is discussed

in Appendix A.5.
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Similar to the simpler case discussed in Eq. (3.15), the instantaneous changes
in forward interest rates given by ḟ (t , x) are singular for equal time; this is due
to the Gaussian quantum field A(t , x) having a singular quadratic product given
in Eq. (5.46), which yields ḟ (t , x)ḟ (t , x′) ∼ 1/ε; hence the second-order term in
d�/dt is as important as the first-order term.5

Consider delta hedging. The portfolio is required to be invariant to small changes
in the forward interest rates that take place due to small changes in time. Thus, from
Eq. (14.9), delta hedging the portfolio is given by the following generalization of
Eq. (3.27)

Delta hedging :
δ�(t)

δf (t , x)
= 0 for each x; t : fixed (14.10)

Delta hedging involves a first-order approximation to the change in a portfolio’s
value as a result of forward interest rates’ fluctuations. If the delta hedge parameter
has a large variation in time, one needs to gamma hedge the portfolio. In quantum
finance, from Eq. (14.9) and similar to the case of equity given in Eq. (3.22), gamma
hedging is given by the following

Gamma hedging :
δ2�(t)

δf (t , x)δf (t , x′)
= 0 for each x, x′; t : fixed (14.11)

14.4 Stochastic hedging

In quantum finance, for each time t , there are infinitely many random variables
driving the forward interest rates, indexed by x. Therefore, a portfolio with a finiteN
number of instruments can never be perfectly delta hedged since to fulfill Eq. (14.10)
one needs infinitely many instruments. The best alternative is to delta hedge on the
average, and this scheme is referred to as stochastic delta hedging [12].

To implement stochastic delta hedging, one considers the conditional expectation
value of the portfolio�(t), namely, conditioned on the occurrence of some specific
value of a forward interest rate fh ≡ f (t∗, xh), where t∗ is the maturity time for
the caplet. The price of a midcurve caplet, given that the value of f (t∗, xh) is
pre-specified, is given by generalizing Eq. (9.32), as follows

caplet(t , t∗, T ;fh) = B(t , t∗)E[caplet(t∗, t∗, T )|fh] (14.12)

= Ṽ B(t , t∗)EF
[(
X − exp

{
−
∫ T+	

T

dxf (t∗, x)
})

+
|f (t∗, xh)

]
5 Normal (nonstochastic) calculus retains only the first-order term since the second-order derivative term is

nonsingular and vanishes as ε → 0.
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From [12], the conditional probability of a caplet is given by6

caplet(t , t∗, T ;fh) = Ṽ B(t , T )
∫ ∞

−∞
dG(X − e−G)+�(G|fh) (14.13)

�(G|fh) =
∫
Dfδ

( ∫ T+l
T

dxf (t∗, x)−G
)
δ
(
f (t∗, xh)− fh

)
eS∫

Dfδ
(
f (t∗, xh)− fh

)
eS

(14.14)

A conditional Libor futures is defined by

L̃(t , T1;fh) = E[L(t∗, T1)|fh] (14.15)

with the conditional probability being given by

L̃(t , T1;fh) =
∫ ∞

−∞
dGeG�(G|fh; t , T1) (14.16)

�(G|fh; t , T1) =
∫
Dfδ

(
G− ∫ T1+	

T1
f (t∗, x)dx

)
δ
(
f (t∗, xh)− f

)
eS∫

Dfδ
(
f (t∗, xh)− fh

)
eS

(14.17)

Generalizing the portfolio given in Eq. (14.7), conditioned on the occurrence of
fh, yields

�(t ;fh) = caplet(t , t∗, T ;fh)+ η1L(t , T1;fh) (14.18)

Stochastic delta hedging entails that the hedged portfolio be independent of changes
in all the forward interest rates. Approximate Eq. (14.10) by the following equation

∂

∂fh
�(t ;fh) = 0 (14.19)

The hedged portfolio is independent of the small changes of only one forward
interest rate fh. From Eqs. (14.9) and (14.19), stochastic delta hedging yields

η1(t) = −∂ caplet(t , t∗, T ;fh)
∂fh

/
∂L(t , T1;fh)

∂fh
(14.20)

Thus, changes in the delta hedged portfolio �(t , xh) are, on average and to lowest
order, insensitive to fluctuations in one forward interest rate, namely f (t , xh).

6 The denominator in Eq. (14.14) is the required normalization for the constrained expectation value in the
numerator to be a conditional probability [12].
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The conditional probabilities given in Eqs. (14.13) and (14.16), along with
the hedge parameter η1, are evaluated explicitly in Section 14.11. Nontrivial
correlations appear in all the terms. The final result, from Eq. (14.39), is7

η1 = C

eG1+Q2
1

2 B1

[
caplet(t , t∗, T ;fh)− η′

C

]

η′ = −BχṼ
⎡⎣XN ′

(d+)
Q

+ e−G0+Q2
2 N(d−)− e−G0+Q2

2 N
′
(d−)

Q

⎤⎦
The HJM limit of the hedging results is analyzed Section 14.13.

Furthermore, one can gamma hedge the same forward interest rate. The second-
order gamma hedge recognizes that large movements in the forward interest rates
may cause the first-order delta approximation to be inaccurate. In particular, if hedg-
ing is not performed frequently, the delta hedge parameter can become outdated.
Gamma evaluates changes in the delta hedge parameter as the forward rate term
structure evolves over time.

To gamma hedge against the ∂2�(t)/∂f 2
h fluctuations, one needs to form a

portfolio with two Libor futures contracts that minimize the change in the value of
E[�(t)|fh] by both delta and gamma hedging. Suppose a caplet needs to be hedged
against the fluctuations of two forward interest rates, namely fh for h = 1, 2. The
conditional probabilities for the caplet and Libor futures, with two forward rates
fixed at fh, are

caplet(t , t∗, T ;f1, f2) = B(t , t∗)E[caplet(t∗, t∗, T )|f1, f2]
L(t , T1;f1, f2) = E[L(t∗, T1)|f1, f2]

A portfolio of two Libor futures contracts with different maturities Ti �= T and
conditioned on two forward interest rates f1, f2 is defined as follows

�(t ;f1, f2) = caplet(t , t∗, T ;f1, f2)+
2∑
i=1

ηi(t)L(t , Ti ;f1, f2) (14.21)

The hedging of this portfolio, at time t , is given by

��(t , f1, f2) = ∂�

∂t
�t +

2∑
i=1

∂�

∂fi
�fi + 1

2

2∑
i=1

∂2�

∂f 2
i

(�fi)
2

+ ∂2�

∂f1∂f2
�f1�f2 +O(ε2) (14.22)

7 The notation is defined in Section 14.11.
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The stochastic delta and gamma hedging conditions are given by the following
five constraint equations.

1 Two conditions for stochastic delta hedging

∂

∂fh
�(t ; f1, f2) = 0 for h = 1, 2

2 Stochastic gamma hedging requires two conditions

∂2

∂f 2
h

�(t ; f1, f2) = 0 for h = 1, 2

3 Cross gamma hedging is given by the single condition

∂2

∂f1∂f2
�(t ; f1, f2) = 0

Intuitively, one expects that the portfolio that is hedged most effectively should include
cross gamma hedging.

Cross gamma hedging makes sense only in the framework of quantum finance,
since movements in any number of specific forward interest rates, in particular
against f1, f2, can be hedged. In contrast, cross gamma hedging in the one-factor
HJM model is not possible – one needs at least a two-factor HJM model.

For the portfolio being considered, it can be analytically shown that delta hedge
parameters for the two forward rates differ only by a pre-factor A2/A12, that is

∂

∂f1
�(t ;f1, f2) = − A2

A12

∂

∂f2
�(t ;f1, f2) (14.23)

where A2 and A12 are defined in Section 14.12. Therefore, delta hedging against
two forward interest rates only determines the portfolio’s hedge parameters for one
Libor future. Gamma hedging two forward rates are also equal except for a pre-
factor A2/A12. Hence, for hedging against two forward interest rates, we are left
with only three independent constraints from the above five constraints.

In order to study the effect of each set of constraints separately, a portfolio is
formed that includes two Libor futures, and the following hedging strategies are
adopted that involve only two constraint equations.

• The first strategy implements one delta and one gamma hedge against a single forward
rate. Namely

∂

∂f1
�(t ; f1, f2) = 0 = ∂2

∂f1
2�(t ; f1, f2)
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• The second strategy fixes the two hedge parameters by one delta hedge and an additional
cross gamma hedge. Namely

∂

∂f1
�(t ; f1, f2) = 0 = ∂2

∂f1∂f2
�(t ; f1, f2)

The parameters for each choice of the Libor futures and forward interest rates
being hedged are chosen to minimize, by varying the maturity of the Libor futures,
the following

2∑
i=1

|ηi | (14.24)

This choice of ηis defines the optimal portfolio. The additional constraint given
by Eq. (14.24) finds the most effective futures contracts measured by requiring the
smallest number of contracts and hence minimum transaction costs.

In summary, the optimal portfolio is found by first fixing the two hedge parameters
and then minimizing

∑2
i=1 |ηi |.

14.5 Residual variance

Hedging a caplet using Libor futures contracts can also be accomplished by mini-
mizing the residual variance of the hedged portfolio [12, 20, 24]. The instantaneous
change in the portfolio value is stochastic; the volatility of this change is computed
to ascertain the efficacy of the hedging strategy.

To simplify the notation, consider a caplet that matures when it becomes opera-
tional; that is, t∗ = T ; denote the price of the caplet by caplet(t , T ); let the portfolio
given in Eq. (14.6) be denoted by

�(t) = caplet(t , T )+
N∑
i=1

�iL(t , Ti)

The variance of the portfolio fluctuations Var[d�(t)/dt] is given by8

V ar

[
d�(t)

dt

]
= V ar

[
d caplet(t , T )

dt

]
+ V ar

[
N∑
i=1

�i
L(t , Ti)
dt

]

8 Note the variance of
∑N
i=1 ciXi , where Xi are random variables, is given by V ar[∑N

i=1 ciXi ] =∑N
i=1 c

2
i
V ar[Xi ] +∑N

ij=1 cicjE[XiXj ]c.
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+
N∑
i=1

�iE

[
d caplet(t , T )

dt

L(t , Ti)
dt

]
c

(14.25)

A detailed calculation for determining the hedge parameters and portfolio vari-
ance is carried out in Section 14.10. The following notation is introduced for
simplicity

Ki = χL̂(t , Ti)
∫ T+	

T

dx

∫ Ti+	

Ti

dx′σ(t , x)σ (t , x′)D(x, x′; t) (14.26)

Mij = L̂(t , Ti)L̂(t , Tj )
∫ Ti+	

Ti

dx

∫ Tj+	

Tj

dx′σ(t , x)σ (t , x′)D(x, x′; t)

Equation (14.26) allows the residual variance given in Eq. (14.25) to be succinctly
expressed as follows

Var
[
d�(t)

dt

]
= χ2

∫ T+	

T

dx

∫ T+	

T

dx′σ(t , x)σ (t , x′)D(x, x′; t)

+ 2
N∑
i=1

�iKi +
N∑
i=1

N∑
j=1

�i�jMij (14.27)

The value of χ , derived in Eq. (14.33), is given below and is useful for the
empirical analysis of residual variance.

χ = VB(t , T )

[
1√

2πq2
e−d2+/2 +

(
F

X

){
N(d−)− 1√

2πq2
e−d2−/2

}]

where d± = (
ln X

F
± q2/2

)
/q and F = exp{− ∫ T+	

T
dxf (t , x)}.

The value of χ for at-the-money options has X = F , d± = ±q/2 and yields

χ(t , T )|at-the-money = VB(t , T )N(d−)

The residual variance depends on the correlations between forward interest rates
that are described by the propagator. Ultimately, the effectiveness of the hedge port-
folio is an empirical question since perfect hedging is not possible. This empirical
question is addressed in Section 14.6, with the propagator being calibrated from
market data.

The hedge parameters �i that minimize the portfolio’s residual variance, as in
Eq. (14.27), are given by

�i = −
N∑
j=1

KjM
−1
ij (14.28)
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Eq. (14.28) is derived by differentiating Eq. (14.27) with respect to �i and setting
the result to zero. The �i parameters represent the optimal amounts of the futures
contracts that need to be included in the hedged portfolio.

The variance of the hedged portfolio is obtained by substituting parameters given
in Eq. (14.28) into Eq. (14.27) and yields

VR=χ2
∫ T+	

T

dx

∫ T+	

T

dx′σ(t , x)σ (t , x′)D(x, x′; t)−
N∑
ij=1

KiM
−1
ij Kj (14.29)

As expected, portfolio variance VR declines monotonically as N increases.
The residual variance in Eq. (14.29) enables the effectiveness of the hedging

strategy to be evaluated and is the basis for studying the impact of including different
Libor futures contracts in the hedged portfolio. For N = 1, there is only a single
Libor maturing at T1; the residual variance in Eq. (14.29) simplifies

χ2

⎡⎢⎣∫ T+	

T

dx

∫ T+	

T

dx′σ(t , x)σ (t , x′)D(x, x′; t)

−
(∫ T+	
T

dx
∫ T1+	
T1

dx′σ(t , x)σ (t , x′)D(x, x′; t)
)2

∫ T1+	
T1

dx
∫ T1+	
T1

dx′σ(t , x)σ (t , x′)D(x, x′; t)

⎤⎥⎦ (14.30)

The second term in Eq. (14.30) represents the reduction in variance attributable
to the hedging strategy. To obtain the HJM limit, the propagator is constrained to
equal one, namely D(x, x′; t)→ 1; as shown below, the residual variance VR in
Eq. (14.30) reduces to zero as follows

χ2

⎡⎣(∫ T+	

T

dxσ (t , x)
)2

−
( ∫ T+	
T

dx
∫ T1+	
T1

dx′σ(t , x)σ (t , x′)
)2∫ T1+	

T1
dx
∫ T1+	
T1

dx′σ(t , x)σ (t , x′)

⎤⎦ = 0

(14.31)

The HJM limit is consistent with our intuition that the residual variance should be
identically zero for any Libor maturity since all forward interest rates are perfectly
correlated. This result is also shown empirically in Section 14.8. Results from
hedging with two Libor futures contracts in the HJM model are not presented since
a one-factor model cannot be hedged with two instruments. Indeed,M−1

ij is singular
for the one-factor HJM model.
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Figure 14.1 Hedge parameter η1 for stochastic hedging of caplet(t , 1, 4) for port-
folio �(t ; fh) = caplet(t , 1, 4) + η1(t)F(t , T1). (a) η1 as a function of time to
maturityxh of forward interest rate f (t , xh)with fixed Libor futures contract matu-
rity T1; dashed line is for T1 = 3 months and unbroken line is for T1 = 4 years.
(b) Hedge parameter η1 as a function of time to maturity of Libor future T1, with
fixed f (t , t + δ), where δ = 3 months.

14.6 Empirical analysis of stochastic hedging

This section illustrates the implementation of stochastic hedging strategies and
provides preliminary results on the impact of correlation on the hedge parameters.
The term structure of the volatility, σ(θ) as well as the parameters η, λ, and μ for
the stiff propagator are evaluated using Libor and caplet data [27, 29].

Stochastic hedging mitigates the risk of fluctuations in the pre-specified forward
interest rates. The focus of this section is on the stochastic hedge parameters ηi .
The optimum portfolio is chosen so that the sum of the hedging parameters, namely∑N

i=1 |ηi |, is minimized. The best hedging strategy entails finding the optimal
portfolio for which the portfolio has the smallest possible long and short positions
on Libor futures.

14.6.1 Hedging caplet with futures for interest rate

Consider a portfolio with one Libor future and one caplet that is to be hedged against
a single forward interest rate f (t , xh). The portfolio is given by

�(t) = caplet(t , t∗, T )+ η1(t)F(t , T1) (14.32)

The hedging strategy is to stochastic delta hedge the portfolio against forward
interest rate fh = f (t , xh) using ∂�(t;fh)/∂fh = 0.

The η1 hedge parameter’s dependence on xh and T1 is shown in Figure 14.1 for
caplet(t , 1, 4); present time is t (which is set equal to zero), midcurve caplet option
maturity time is t∗ = 1 year, and caplet operational time is T = 4 years. The
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Figure 14.2 Hedge parameter η1 for stochastic delta hedging of caplet(t , 1, 4)
using Libor futures with maturity T1 and against fluctuations of the forward interest
rate f (t , xh). The portfolio is �(t) = caplet(t , 1, 4) + η1(t)F(t , T1). (a) Quan-
tum finance model (b) The HJM limit of D(x, x ′; t) = 1; as expected, the hedge
parameter η1 is constant for all xh since all forward interest rates are perfectly
correlated.

dependence of the hedge parameter η1 on xh and T1 is plotted in Figure 14.1(a) and
on Libor maturity time T1 is plotted in Figure 14.1(b). Figure 14.1(a) shows how
the hedge parameter η1 depends on xh for two specific values of Libor maturity
time, namely T1 = δ = 1

4 year (three months) and T1 = 16 × δ = 4 years are
chosen. It is found that xh = δ is always the most important forward interest rate
to hedge against.

Figure 14.1(b) shows the dependence of the hedge parameter η1 on different
values of T1, with a fixed value of xh = δ. The maximun of the hedge parameter
η1 is at T1 � 1.5 years and reflects the maximum of σ(t , x) around the same future
time. Figure 14.2(a) plots the hedge parameter η1 against the Libor futures maturity
T1 and the forward interest rate maturity xh that is being hedged. This figure can
be used to select the Libor futures for the optimum portfolio that requires the least
number of long and short positions.

The midcurve caplet(t , t∗, T ) can be hedged, in general, for different t∗ and
T values; it is found that, although the value of the parameter changes slightly,
the shape of the parametric surfaces are almost identical to the results shown in
Figures 14.1 and 14.2(a).

14.6.2 Hedging in quantum finance models compared to HJM

The comparison is carried out for the portfolio given in Eq. (14.32), where one
forward interest rate f (t , xh) is hedged by one Libor future.
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To illustrate the contrast between the quantum finance and the single-factor HJM
model, the same hedging parameter is plotted in the D(x, x′; t) → 1 HJM limit.
From Figure 14.2(b), the HJM hedge parameter η1 is independent of the forward
interest rate maturity xh, which is expected since in the HJM model all forward
rates f (t , xh) are perfectly correlated. Therefore, it makes no difference which of
the forward interest rates is being hedged against.

14.7 Hedging caplet with two futures for interest rate

The portfolio with two Libor futures is given by

�(t) = caplet(t , t∗, T )+
2∑
i=1

ηi(t)F(t , Ti )

Figure 14.3(a) plots the sum
∑2
i=1 |ηi | for hedging the portfolio against one forward

interest rate by employing both delta and gamma hedging.
Stochastic delta and gamma hedging are given by

∂

∂f1
�(t ;f1) = 0 = ∂2

∂f 2
1
�(t ;f1)

A hedge against f (t , δ) can be constructed such that one obtains an optimal
portfolio involving the least amount of short and long positions. The diagonal axis
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Figure 14.3 Summation of absolute hedge parameters |η1| + |η2| for two Libor
futures, T1 and T2. The portfolio is �(t) = caplet(t , 1, 4)+∑2

i=1 ηi(t)F(t , Ti).
(a) Stochastic hedge against one forward interest rate with delta and gamma hedg-
ing. (b) Stochastic hedging against two forward interest rates, with delta and cross
gamma hedging.
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Table 14.1 Parameters for hedging one forward rate with two Libor futures.

T1 T2 xh1 η1 η2

1.5 year 0.25 year 0.25 year −38 71

Table 14.2 Parameters for hedging two forward rates with two Libor futures and
forming an optimum portfolio.

T1 T2 xh1 xh2 η1 η2

3.75 year 0.75 year 0.25 year 0.5 year 45 −25

in Figure 14.3(a) has the two Libor futures with the same maturity and hence reduces
to delta hedging with one Libor future. The data from which Figure 14.3(a) is plotted
have an optimal portfolio in which one sells 38 contracts of L(t , t + 6δ) and buys
71 contracts of L(t , t + δ). The variables in the optimal portfolio are summarized
in Table 14.1.

If one chooses the hedged portfolio by minimizing
∑2
i=1 ηi (note no absolute

values on the ηis), then the portfolio requires 1500 contracts (long the short maturity
and short their long maturity counterparts).

14.7.1 Hedging caplet against two forward interest rates
with two Libor futures

Consider hedging the fluctuations in two forward interest rates. Specifically, con-
sider a portfolio given by two Libor futures and one caplet, namely �(t) =
caplet(t , t∗, T ) + ∑2

i=1 ηi(t)F(t , Ti ) where the parameters ηi are fixed by delta
hedging and cross gamma hedging; this yields

∂

∂f1
�(t ;f1, f2) = 0 = ∂2

∂f1∂f2
�(t ;f1, f2)

The result is displayed in Figure 14.3(b) where the portfolio is hedged against
two short maturity forward interest rates, namely f (t , δ) and f (t , 2δ). The data
from which Figure 14.3(b) is plotted have an optimal portfolio formed by buying
45 contracts of L(t , t + 15δ) and selling 25 contracts of L(t , t + 3δ). The hedging
parameters for the optimal portfolio are given in Table 14.2.

Figure 14.3 results from minimizing the sum of the absolute values of the hedge
parameters, as in Eq. (14.24), which depend on the maturities of the Libor futures
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Ti . The corresponding empirical results are consistent with the earlier discussion
on the importance of forward interest rates in the near future.

14.8 Empirical results on residual variance

The reduction in a portfolio’s variance by hedging a caplet with Libor futures is
studied empirically for the following portfolio

�(t) = caplet(t , T )+
N∑
i=1

�i(t)F(t , Ti )

A hedging strategy to minimize the variance Var [d�(t)/dt] of changes in a port-
folio’s value is considered. The residual variance for hedging a one- and four-year
caplet with a Libor future is shown in Figure 14.4(a), along with its HJM coun-
terpart. Observe that the residual variance drops to exactly zero when the same
maturity Libor future is used to hedge the caplet. The HJM residual variance is
always zero due to the exact correlation of all forward interest rates.

The residual variance for hedging a four-year caplet with two Libor futures is
plotted in Figure 14.4(b). It is interesting to note that hedging with two instruments,
even with similar maturities, entails a significant decrease in residual variance
compared to hedging with one future contract. This is illustrated in Figure 14.4(b),
where θ = θ

′
represents hedging with one Libor future. The residual variance
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Figure 14.4 (a) Residual variance Var[d�(t)/dt] for �(t) = caplet(t , T ) +
�1(t)F(t , T1). A one- and four-year caplet is hedged using a Libor future with
maturity T1. The dotted line is the residual variance for a caplet that matures in
four years time and the dashed line for a one-year caplet. The unbroken horizontal
line is the residual variance in the HJM limit for both caplets. (b) Residual variance
for portfolio�(t) = caplet(t , 4)+∑2

i=1�i(t)F(t , Ti) in which a four-year caplet
is hedged using two Libor futures with maturities Ti .
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in this situation is higher than nearby points, and increases in a discontinuous
manner.

One can vary the parameters λ and μ of the stiff propagator D(x, x′; t) and
examine the changes of residual variance. It is found that the neighboring points in
parameter space have almost the same residual variance and one cannot tell which
parameter offers the better hedge. An explanation of this effect is that forward
interest rates with similar maturities are strongly correlated. The HJM residual
variance for hedging a one-year and a four-year caplet are both identical to zero
and this is consistent with the analytical result obtained in Eq. (14.31).

14.9 Summary

Libor-based interest rate caplets and floorlets are important financial instruments.
The quantum finance model implies that all markets are incomplete since exactly
hedging interest rate instruments is not possible. An infinite number of forward
interest rates need to be hedged that, in principle, need infinitely many securities.
A partial solution is to approximately hedge interest rate instruments. The cor-
relation structure between the forward interest rates was exploited to define an
approximate form of hedging, namely stochastic hedging.

Interest rate instruments are hedged against the movement of a particular forward
interest rate; such hedging is useful in practice and is an important part of managing
interest rate risk. In the path integral formulation of the forward interest rates, the
expectation value of an instrument – conditioned on the value of a particular forward
interest rate – was obtained by introducing an appropriately normalized Dirac-delta
function constraint in the integrand of the functional integral. The quantum finance
formulation, hence, provides a transparent definition of conditional expectation
values of the instruments and yields the results needed for delta and gamma hedging.

An analytical and empirical analysis of hedging against two pre-specified forward
interest rates was carried out to demonstrate the utility and flexibility of the quantum
finance formulation. One can proceed further and hedge a portfolio againstN for-
ward interest rates, which leads to a system of N simultaneous equations that
determine theN hedge parameters. In general, stochastic delta and gamma hedging
for increasing N rapidly becomes more and more complicated and closed-form
solutions are difficult to obtain.

The residual variance of a portfolio was studied in order to obtain a hedging
strategy that minimizes the portfolio’s fluctuations. The volatility of the hedged
portfolio can be reduced to any degree of accuracy by increasing the number of
forward interest rates being hedged against. The empirical study showed that a port-
folio of a caplet hedged with only a few Libor futures is enough to yield a residual
variance with a very small value. One of the main limitations of reducing residual
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variance is that this procedure ends up suppressing all interest rate fluctuations,
including the ‘good’ fluctuations that increase the portfolio’s value. Instead, the
ideal strategy would consist of hedging against only a subset of forward interest
rate movements that decreases the value of a portfolio.

14.10 Appendix: Residual variance

Consider the variance of a caplet. The delta parameter for the caplet, given in
Eq. (14.3), is defined by forward bond priceF = exp{− ∫ T+	

T
dxf (t , x)} as follows

χ ≡ ∂ caplet(t , T )
∂F

= −VB(t , T )
∫ +∞

−∞
dG√
2πq2

1
q2

(
G−

∫ T+	

T

dxf (t , x) − q2

2

)

×
⎧⎨⎩e− 1

2q2

(
G−∫ T+	

T dxf (t ,x)− q2
2

)2

(X − e−G)+

⎫⎬⎭
= VB(t , T )

{
1√

2πq2
e−d2+/2 +

(
F

X

)[
N(d−)− 1√

2πq2
e−d2−/2

]}
(14.33)

where d± = (
ln(X/F )± q2/2

)
/q. Eq. (14.33) yields the following

1
χF

d caplet(t , T )
dt

= 1
χF

∂ caplet(t , T )
∂F

∂F

∂t

= −
∫ T+	

T

∂f (t , x)
∂t

dx

= −
∫ T+	

T

dxα(t , x)−
∫ T+	

T

dxσ (t , x)A(t , x)

E[A(t , x)] = 0 yields that E[d caplet(t , T )/dt] = −χF ∫ T+	
T

dxα(t , x).
Therefore

d caplet(t , T )
dt

−E

[
d caplet(t , T )

dt

]
= −χF

∫ T+	

T

dxσ (t , x)A(t , x)

The variance is given by squaring this expression and taking its expectation value.
From Eq. (5.22)E[A(t , x)A(t , x′)] = δ(0)D(x, x′; t) = 1

ε
D(x, x′; t)9 results in the

9 On discretizing time t = nε, one has that dt = ε and δ(0) = 1/dt = 1/ε. The quantity ε signifies a small step
forward in time.
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instantaneous caplet price variance being given by

Var
[
d caplet(t , T )

dt

]
= 1
ε
χ2F 2

∫ T+	

T

dx

∫ T+	

T

dx′σ(t , x)D(x, x′; t)σ (t , x′)

Consider the following Libor portfolio �̂(t) = 	V
∑N
i=1�iL(t , Ti); its instant-

aneous variance is

d�̂(t)

dt
−E

[
d�̂(t)

dt

]
=

N∑
i=1

�iL̂(t , Ti)
∫ Ti+	

Ti

dxσ (t , x)A(t , x) (14.34)

where L̂(t , Ti) = 	V exp{∫ Ti+	
Ti

f (t , x)dx} and

Var

[
d�̂(t)

dt

]
= 1
ε

N∑
i=1

N∑
j=1

�i�j L̂(t , Ti)L̂(t , Tj )

×
∫ Ti+	

Ti

dx

∫ Tj+	

Tj

dxσ (t , x)D(x, x′; t)σ (t , x′) (14.35)

The (residual) variance of the hedged portfolio

�(t) = caplet(t , T )+
N∑
i=1

�iF(t , Ti)

can be computed in a straightforward manner. Equation (14.35) implies the hedged
portfolio’s variance equals

χ2
∫ T+	

T

dx

∫ T+	

T

dx′σ(t , x)σ (t , x′)D(x, x′; t) (14.36)

+ 2χ
N∑
i=1

�iL̂(t , Ti)
∫ T+	

T

dx

∫ Ti+	

Ti

dx′σ(t , x)σ (t , x′)D(x, x′; t)

+
N∑
i=1

N∑
j=1

�i�j L̂(t , Ti)L̂(t , Tj )
∫ Ti+	

Ti

dx

∫ Tj+	

Tj

dx′σ(t , x)σ (t , x′)D(x, x′; t)

14.11 Appendix: Conditional probability for interest rate

Using the results of the bond forward interest rates given in Chapter 5, after a
straightforward but tedious calculation, Eqs. (14.14) and (14.17) yield the following
results
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�(G|fh) =
∫
Dfδ(

∫ T+l
T

dxf (t∗, x)−G)δ(f (t∗, xh)− fh)e
S∫

Dfδ(f (t∗, xh)− fh)e
S

= χ√
2πQ2

exp
[
− 1

2Q2 (G−G0)
2
]

�(G|fh; t , T1) =
∫
Dfδ(G− ∫ T1+	

T1
f (t∗, x)dx)δ(f (t∗, xh)− f )eS∫

Dfδ(f (t∗, xh)− fh)e
S

= 1√
2πQ2

1

exp

[
− 1

2Q2
1
(G−G1)

2

]

The parameters for �(G|fh) are given below.

X = 1
1 + 	K

; Ṽ = (1 + 	K)V

ln(χ) = −
∫ Tn

th

dxf (t0, x)−
∫
M1

α(t , x)+ 1
2
E

+ C

A

(
f (t0, xh)+

∫ th

t0

dtα(t , xh)− fh − C

2

)
d+ = (lnX +G0)/Q; d− = (lnX +G0 −Q2)/Q

G0 =
∫ Tn+	

Tn

dxf (t0, x)− F − B

A

(
f (t0, xh)− C − fh +

∫ th

t0

dtα(t , xh)
)

+ q2

2

Q2 = q2 − B2

A

The parameters for �(G|fh; t , T1) are given below.

G1 =
∫ Tn1+	

Tn1

dxf (t0, x)+
∫
M3

α(t , x)− B1

A

(
f (t0, xh)−

∫ th

t0

dtα(t , xh)− fh

)
Q2

1 = D − B2
1
A

A =
∫ th

t0

dtσ (t , xh)2D(t , xh, xh;TFR)

B =
∫
M2

σ(t , xh)D(t , xh, x;TFR)σ (t , x)

B1 =
∫
M̃1

σ(t , xh)D(t , xh, x;TFR)σ (t , x)
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C =
∫
M1

σ(t , xh)D(t , xh, x;TFR)σ (t , x)

D =
∫
Q̃1

σ(t , x)D(t , x, x′;TFR)σ (t , x′)

Caplet volatility is given by

q2 =
∫
Q2+Q4

σ(t , x)D(t , x, x′;TFR)σ (t , x′)

and

E =
∫
Q1

σ(t , x)D(t , x, x′;TFR)σ (t , x′)

F =
∫ th

t0

dt

∫ Tn

th

dx

∫ Tn+	

Tn

dx′σ(t , x)D(t , x, x′;TFR)σ (t , x′) .

The domains of integration are given in Figure 14.5. It can be seen that the uncon-
ditional probability distribution for the caplet and Libor futures yield volatilities
q2 and D respectively. Hence the conditional expectation reduces the volatility of
the caplet by B2/A, and by B2

1/A for the Libor futures. This result is expected since
the constraint imposed by the requirement of a conditional probability reduces the
allowed fluctuations of the instruments.

It could be the case that there is a special maturity time xh, which causes the
largest reduction in conditional variance. The answer is found by minimizing the

t

t*

t*

th

M1

(a)

M4

M2

0 Tn Tn+ x

t0

t0 th

t

th

0 Tnj Tn j + x

t0

t0 th
(b)

Mj

Figure 14.5 (a) Domains of integrationM1, M2, and for the integration cube Q1,
Q2,Q4 where the x ′ axis has the same limit as its correspondingx axis. (b) Domain
of integration M̃j and integration cube Q̃j where the x ′ axis has the same limit as
its corresponding x axis.
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conditional variance

caplet(th, t∗, Tn;fh) = χṼ
{
XN(d+)− e

−G0+Q2

2 N(d−)
}

(14.37)

L̃(th, Tn1;fh) = e
G1+Q2

1
2 (14.38)

Recall the hedging parameter η1(t) is given by Eq. (14.20). Using Eq. (14.38) and
setting t0 = t , th = t+ε, yields an (instantaneous) stochastic delta hedge parameter
η1(t) given by

η1 = C

eG1+Q2
1

2 B1

[
caplet(t , t∗, T ;fh)− η′

C

]
(14.39)

η′ = −BχṼ
⎡⎣XN ′

(d+)
Q

+ e−G0+Q2
2 N(d−)− e−G0+Q2

2 N
′
(d−)

Q

⎤⎦
14.12 Appendix: Conditional probability – two interest rates

When hedging against two forward interest rates, Eqs. (14.13) and (14.16) require
the conditional probability of a caplet given by

�(G|f1, f2) =
∫
Dfδ(

∫ T+l
T

dxf (t∗, x)−G)
∏2
i=1 δ(f (th, xi)− fi)e

S∫
Df

∏2
i=1 δ(f (th, xi)− fi)e

S

The conditional probability of Libor, for j = 1, 2, is given by

�(G|f1, f2, Tnj ) =
∫
Dfδ

(
G− ∫ Tnj+	

Tnj
f (th, x)dx

)∏2
i=1 δ

(
f (th, xi)− fi

)
eS∫

Df
∏2
i=1 δ

(
f (th, xi)− fi

)
eS

A long and tedious calculation yields

�(G|f1, f2) = χ√
2πQ2

exp
[
− 1

2Q2 (G−G0)
2
]

�(G|f1, f2, Tnj ) = 1√
2πQ̃2

j

exp

[
− 1

2Q̃2
j

(G− G̃j )
2

]

The distributions for�(G|f1, f2) and�(G|f1, f2, Tnj ) are given by the following
expressions

X = 1
1 + 	k

; Ṽ = (1 + 	k)V
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χ = exp
{
−
∫ Tn

th

dxf (t0, x)−
∫
M1

α(t , x)+ 1
2
E + C12

Ã12
(R12 − C12

2
)

}
d+ = (ln x +G0)/Q; d− = (ln x +G0 −Q2)/Q

G0 =
∫ Tn+	

Tn

dxf (t0, x)− F − B12

Ã12
(R12 − C12)+ q2

2

Q2 = q2 − B2
12

Ã12

G̃j =
∫ Tnj+	

Tnj

dxf (t0, x)+
∫
M̃j

α(t , x)− B̃12j

Ã12
R12 j = 1, 2

Q̃2
j = Dj − B̃2

12j

Ã12
j = 1, 2

Ri = f (t0, xi)+
∫ th

t0

dtα(t , xi)− fi i = 1, 2

R12 = R1 − A12

A2
R2

Ai =
∫ th

t0

dtσ (t , xi)2D(t , xi , xi ;TFR) i = 1, 2

A12 =
∫ th

t0

dtσ (t , x1)D(t , x1, x2;TFR)σ (t , x2)

Ã12 = A1 − A12

A2

Bi =
∫
M2

σ(t , xi)D(t , xi , x;TFR)σ (t , x) i = 1, 2

B12 = B1 − A12

A2
B2

B̃ij =
∫
M̃j

σ (t , xi)D(t , xi , x;TFR)σ (t , x) i = 1, 2; j = 1, 2

B̃12j = B̃1j − A12

A2
B̃2j j = 1, 2, . . . , 5

Ci =
∫
M1

σ(t , xi)D(t , xi , x;TFR)σ (t , x) i = 1, 2



14.13 Appendix: HJM limit of hedging functions 327

Furthermore

C12 = C1 − A12

A2
C2

Dj =
∫
Q̃j

σ (t , x)D(t , x, x
′
;TFR)σ (t , x

′
) j = 1, 2

q2 =
∫
Q2+Q4

σ(t , x)D(t , x, x
′
;TFR)σ (t , x

′
)

E =
∫
Q1

σ(t , x)D(t , x, x
′
;TFR)σ (t , x

′
)

F =
∫ th

t0

dt

∫ Tn

th

dx

∫ Tn+	

Tn

dx
′
σ(t , x)D(t , x, x

′
;TFR)σ (t , x

′
) (14.40)

The domains of integration are given in Figure 14.5.
The conditional expectation of a caplet and Libor are given by

caplet(th, t∗, Tn;f1, f2) = χṼ
(
XN(d+)− e−G0+Q2

2 N(d−)
)

(14.41)

L(th, Tnj ;f1, f2) = eG̃j+
Q̃2
j

2 (14.42)

14.13 Appendix: HJM limit of hedging functions

The HJM limit of the hedging functions, defined by taking the limit of the propagator
D(t , x, x′) → 1 is analyzed for the specific exponential function considered by
Jarrow and Turnbull [65]

σHJM(t , x) = σ0e
β(x−t) (14.43)

It can be shown that

A = σ 2
0

2β
e−2βxh(e2βth − e2βt0)

B = σ 2
0

2β2 e
−βxh(e−βTn − e−βTn+	)(e2βth − e2βt0)

B1 = σ 2
0

2β2 e
−βxh(e−βTn1 − e−βTn1+	)(e2βth − e2βt0)

C = σ 2
0

2β2 e
−βxh(e−βth − e−βTn)(e2βth − e2βt0)
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D = σ 2
0

2β3 (e
−βTn1+	 − e−βTn1)2(e2βth − e2βt0)

E = σ 2
0

2β3 (e
−βTn − e−βth)2(e2βth − e2βt0)

F = σ 2
0

2β3 (e
−βTn+	 − e−βTn)(e−βTn − e−βth)(e2βth − e2βt0)

The exponential volatility function given in Eq. (14.43) has the remarkable property,
similar to the case found for the hedging of zero coupon bonds in [12], that

Q2
1(HJM) = DHJM − B2

1HJM
AHJM

≡ 0 (14.44)

Hence, the conditional probability for the Libor futures given in Section 4.11 is
deterministic. Indeed, once the forward rate fh is fixed, the following identity is
valid

LHJM(th, Tn1;fh) ≡ L(th, Tn1)

In other words, for the volatility function in Eq. (14.43), the Libor futures for the
HJM model are exactly determined by only one of the forward interest rates.

However, in general the conditional probability for the caplet is not deterministic
since the volatility from th to t∗, before the caplet’s expiration, is not compensated
for by fixing one forward interest rate.



15
Interest rate Hamiltonian and option theory

The Hamiltonian is a differential operator that acts on an underlying state space
[70].1 A Hamiltonian formulation of option theory is discussed and shown to be
equivalent to the Black–Scholes approach. In particular, it is shown that the Black–
Scholes equation is mathematically identical to the (imaginary time) Schrodinger
equation of quantum mechanics [70].

The Hamiltonian formulation of quantum field theory is equivalent to, and inde-
pendent of, the framework based on the Feynman path integral and the Lagrangian
discussed in Chapter 5.AHamiltonian formulation of interest rates provides another
perspective on option theory and interest rates. There are many advantages of having
multiple formulations, since for some problems calculations based on the Hamil-
tonian are more transparent and tractable than using the Lagrangian approach. In
particular, the Hamiltonian formulation is useful for exactly solving nonlinear mar-
tingale conditions as well as for studying a specific class of debt instruments options,
which includes American and barrier options.

15.1 Introduction

The Hamiltonian is introduced by considering option theory for a single equity.
Option theory is shown to have a Hamiltonian formulation in which the option
price is a function of the matrix elements of the exponential of the Hamiltonian.
The Black–Scholes option price is given a Hamiltonian derivation starting from
first principles that are reasonable and intuitive.

The interest rate state space and Hamiltonian are derived from the forward inter-
est rates Lagrangian and are a natural generalization of a similar Black–Scholes
analysis for equities. However, unlike the case for equity, the interest rate state
space and Hamiltonian are time dependent and the Hamiltonian is a differential
operator in infinitely many variables.

1 The concepts of state space and operators are briefly reviewed in Appendix A.6.

329
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The martingale condition for interest rates is given a Hamiltonian formulation
and the drift is derived for the various choices of numeraires. In the Libor Market
Model, the drift is a nonlinear function of the Libors. In the path integral for-
mulation, a nonlinear drift leads to a nonlinear path integral – which, in general,
cannot be exactly evaluated due to its computational intractability. In contrast, using
the Hamiltonian approach, nonlinear Libor drift is computed exactly – from first
principles and in a parsimonious manner.

The Hamiltonians of the coupon bond and Libor are derived from the interest
rate and bond Hamiltonians. The price of the coupon bond and Libor European and
barrier options are computed from the Hamiltonian.

15.2 Hamiltonian and equity option pricing

The central problem in option pricing is the following: given the payoff function P
of some security S at future time T , what is the price of the option at an earlier time
t < T , namely C(t , S(t))? The standard approach for addressing option pricing
in mathematical finance is based on stochastic calculus [65] and was expressed
in the formalism of quantum mechanics in [12]. A derivation of option pricing,
in the framework of quantum mechanics from first principles, is given in [7] and
summarized in this section.

A stock S of a company is never negative; the owner of a stock has none of the
company’s liabilities but a right to dividends and pro rata ownership of a company’s
assets. Hence S = ex ≥ 0; − ∞ ≤ x ≤ +∞. The stock price, at each instant,
is considered to have a random value, making it mathematically identical to a
quantum particle that at each instant has a random position (when it is not being
observed). The real variable x, similar to a quantum system, can consequently be
considered to be a degree of freedom describing the behavior of the stock price.
The completeness equation for a degree of freedom is discussed in Appendix A.6
and, from Eq. (A.47), is given by

∫ ∞

−∞
dx|x〉〈x| = I : completeness equation (15.1)

|x〉 is a coordinate basis for the state space, denoted by V , which is an infinite-
dimensional linear vector space. 〈x| is the basis of the dual state space, denoted by
VD. I is the identity operator on the tensor product state space V ⊗ VD .

Option pricing in the framework of quantum mechanics is based on the following
assumptions.
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• All financial instruments, including the price of the option, are elements of a state space
V discussed in Appendix A.6. The stock price |S〉 has the following representation

|S〉 =
∫ ∞

−∞
dxex|x〉〈x|

S = 〈x|S〉 = ex

• The final value of an option, at future time T , is given by a payoff function |P〉 that is
an element of the state space V . The option price |C, t〉 and the payoff function have a
coordinate representation

|P〉 =
∫ ∞

−∞
dxP(x)|x〉〈x|; |C, t〉 =

∫ ∞

−∞
dxC(t , x)|x〉〈x|

C(t , x) = 〈x|C, t〉; P(x) = 〈x|P〉

Unlike quantum mechanics, the state space V is larger than a normalizable Hilbert space
since fundamental financial instruments such as the stock price S are not normalizable.

• The option price is evolved by a HamiltonianH , which is a linear operator acting on the
state space V . Due to the necessity of fulfilling put–call parity, H evolves all options on
an equity, including both the call and put options.

• The price of the option satisfies the (imaginary time) Schrödinger equation

H |C, t〉 = ∂

∂t
|C, t〉 (15.2)

with the final value fixed by the payoff function as follows

|C, T 〉 = |P〉; T > t (15.3)

It should be emphasized that option pricing is a classical stochastic problem.
Unlike the wave function of quantum mechanics, the option priceC(t , x) is directly
observable; furthermore, there is no concept of a quantum measurement in option
theory. The similarity of option pricing with quantum mechanics, at this stage, is
purely mathematical: both can be described by an infinite-dimensional linear vector
space V and linear operators like H acting on this vector space.

Integrating Eq. (15.2) yields the following

|C, t〉 = etH |C, 0〉

The final value condition given in Eq. (15.3) yields

|C, T 〉 = eTH |C, 0〉 = |P〉 ⇒ |C, 0〉 = e−TH |P〉
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Hence

|C, t〉 = e−(T−t)H |P〉
or, more explicitly, for remaining time τ = T − t

C(τ , x) = 〈x|C, t〉 = 〈x|e−τH |P〉 (15.4)

The expression given in Eq. (15.4) shows that the option price is the matrix element
of the operator e−τH, taken between the payoff |P〉 and the current price of the stock,
namely 〈x|.2

The option price was obtained earlier in Eq. (3.7) as the expectation value of the
payoff function P, discounted by the money market numeraire, and given by

C(τ , x) = E[e−rτP]
The expectation value in the equation given above is conditioned on the stock price
having the value of S = ex at earlier calendar time t . The conditional expectation
value, in the mathematics of quantum mechanics, is represented by the matrix
element of the evolution operator e−τH; hence

C(τ , x) = E[e−rτP] = 〈x|e−τH |P〉 (15.5)

The Hamiltonian includes the term e−rτ that arises due to the choice of the money
market numeraire.

15.3 Equity Hamiltonian and martingale condition

The fundamental theorem of finance states that for option price to be free from
arbitrage opportunities, the HamiltonianH must yield a martingale evolution [59].
The martingale condition is the mathematical expression, in probability theory, of
a fair game in which, on the average, a gambler leaves the casino with the money
with which she or he enters.

Mathematically, a martingale – discussed in Appendix A.2 – states the following.
A (random) stochastic process is a martingale if the expectation value of its future
value is equal to its present value. For the money market numeraire, the discounted
stock price, namely, S(t)/ert is a martingale for the risk-free evolution required
for pricing options. From Eqs. (3.3) and (15.5), the martingale condition for the
discounted stock price S(t)/ert is given by

S = E[e−rτS] = 〈x|e−τH |S〉 (15.6)

2 Unlike quantum mechanics, where only the absolute value of the matrix elements are physically observable, for
the option price the matrix elements of e−τH are directly observable, being the price of options.
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Eq. (15.6) can be re-written in state space notation and yields [12]

〈x|S〉 = 〈x|e−τH |S〉; ⇒ e−τH |S〉 = |S〉
⇒ H |S〉 = 0 : martingale condition (15.7)

The requirement of martingale evolution places a condition on the Hamiltonian
that it must annihilate the security S. This condition has far-reaching consequences
in finance since it holds for more complicated systems such as the forward interest
rates.

15.4 Pricing kernel and Hamiltonian

The pricing kernel determines the option price for all European options and clearly
displays the central role of the Hamiltonian in the theory of option pricing. The
pricing kernel is more complicated for interest rates compared to the case for equity
and has been discussed in Section 5.9. It will be seen, in chapter 16, that the pricing
kernel for infinitesimal time is required for evaluating the price of all path dependent
options, including the case for equity and interest rates.

Using the completeness equation given in Eq. (15.1) yields

C(t , x) =
∫ ∞

−∞
dx′〈x|e−τH |x′〉〈x′P〉

=
∫ ∞

−∞
dx′p(x, x′; τ )P(x′) (15.8)

where the pricing kernel is given by

p(x, x′; τ ) = 〈x|e−τH |x′〉 (15.9)

The pricing kernelp(x, x′; τ ) is the conditional probability, that, given the value ex
′

at future time T = t+τ , the stock at time t will have the value ex. Eq. (15.9) shows
that the pricing kernel is the matrix element of the differential operator exp{−τH }.

The pricing kernel has been discussed in detail in [12, 15]. The path integral
representation for the option price has been discussed in Section 3.11. For action
SBS and Lagrangian LBS, the pricing kernel has the following realization

p(x, x′; τ ) =
∫
DXeSBS ; SBS =

∫ τ

0
dtLBS (15.10)

Boundary conditions: x(0) = x′; x(τ ) = x

For an infinitesimal time step ε, SBS � εLBS ; the path integral collapses – resulting
in no integrations – and yields, for normalizationN , the following Dirac–Feynman
relation [12]
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p(x, x′; ε) = N eεLBS = 〈x|e−εH |x′〉 (15.11)

The action and Lagrangian depend on the system being studied, and, for example,
Eq. (3.36) is appropriate for N -correlated equities.

The pricing kernel yields the price of the call and put European options which,
for strike price K , are given below

Call(τ , x) =
∫ ∞

−∞
dx′〈x|e−τH |x′〉(ex′ −K)+

Put(τ , x) =
∫ ∞

−∞
dx′〈x|e−τH |x′〉(K − ex

′
)+ (15.12)

15.4.1 Martingale and put–call parity

Using the completeness equation given in Eq. (15.1) one can re-write the martingale
condition Eq. (15.7). From Eq. (15.9), the pricing kernelp(x, x′; τ ) = 〈x|e−τH |x′〉
and ex = 〈x|S〉 yields

〈x|e−τH |S〉 = 〈x|S〉 = 〈x|e−τH
∫ ∞

−∞
dx′|x′〉〈x′|S〉

⇒ ex =
∫ ∞

−∞
dx′p(x, x′; τ )ex′

: martingale condition (15.13)

Put–call parity is the result of very general properties that all option Hamiltonians
must satisfy. From Eq. (15.5), if the payoff is a constant equal to say K , then it
factorizes out of the expectation value and yields

e−rτK = E[e−rτK] = 〈x|e−τH |K〉 (15.14)

From Eq. (4.15)

[ex −K]+ − [K − ex]+ = ex −K

Hence, from Eqs. (15.12), (15.13), and (15.14)

Call(τ , x)− Put(τ , x) =
∫ ∞

−∞
dx′〈x|e−τH |x′〉(ex′ −K)

= ex − 〈x|e−τH |K〉
= S − e−rτK

which is the result given in Eq. (3.1).
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15.5 Hamiltonian for Black–Scholes equation

What should be the form of the Hamiltonian driving the option price of an equity
S = ex? Assume that H has the following fairly general form

H = −σ
2(x)

2
∂2

∂x2 + b
∂

∂x
+ a (15.15)

where σ 2(x) is an arbitrary function of x. The parameter σ 2(x) is the volatility of
the stock price, and indicates the degree to which the evolution of the stock price
is random.

Consider for starters the price of a put option. Suppose the strike priceK → +∞;
then the payoff function has the following limit h(S) = (K −S)+ → K: constant.
Hence, from Eqs. (15.4) and (15.15)

Put(t , x) = 〈x|e−τH |h〉 → 〈x|e−τH |K〉 = e−aτK

For K → +∞, the put option is certain to be exercised since the holder of the put
option, in exchange for the stock, is certain to be paid an amount K at future time
T . The present-day value of the put option, from the principle of no-arbitrage, must
be the value ofK discounted to the present by the risk-free spot interest rate. Hence

Put(t , x) → e−rτK ⇒ a = r

The martingale condition given in Eq. (15.7) yields

H |S〉 = 0 ⇒ b = σ 2(x)

2
− r

Collecting the results yields the famous Black–Scholes Hamiltonian [7, 12]

HBS = −σ
2(x)

2
∂2

∂x2 +
(
σ 2(x)

2
− r

)
∂

∂x
+ r �= H

†
BS (15.16)

The Black–Scholes Hamiltonian HBS is not Hermitian; this is a general feature of
all Hamiltonians in finance, the root cause for which arises from the requirement
of satisfying the martingale condition.

Note that the Black–Scholes Hamiltonian makes no reference to the market
value of the drift of the stock price, which is determined by its rate of return. The
reason being the price of the option can only reflect the risk-free rate of return
given by r , since otherwise it would be open to arbitrage opportunities [59, 65].
The martingale condition allows the volatility σ 2 to be an arbitrary function of the
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stock price S = ex, a fact that can be derived by a more standard analysis based on
stochastic calculus.

The evolution for the option price, in terms of remaining time τ = T − t , is
given, from Eq. (15.2), by the Black–Scholes–Schrodinger equation3

∂C(τ , x)
∂τ

= −〈x|H |C〉

= σ 2(x)

2
∂2C(τ , x)
∂x2 −

(
σ 2(x)

2
− r

)
∂C(τ , x)
∂x

− rC(τ , x)

In terms of the variable S = ex and calendar time t , the Black–Scholes–
Schrodinger equation for option pricing is given by

∂C(t , x)
∂t

= −1
2
σ 2(S)S2 ∂

2C(t , x)
∂S2 − rS

∂C(t , x)
∂S

+ rC(t , x)

This is the famous Black–Scholes equation derived earlier in Eq. (3.24); it appears
in this form since S is taken to be the variable of choice in most of the literature in
finance.

The Hamiltonian for N degrees of freedom can be obtained from the Black–
Scholes equation forN equities given in Eq. (3.29); in terms of logarithmic degrees
of freedom zi defined by Si = ezi; i = 1, 2, . . . ,N

∂C

∂t
= HNC

HN = −1
2

N∑
ij=1

σiσjρij
∂2

∂zi∂zj
+

N∑
i=1

(
1
2
σ 2
i ρii − r

)
∂

∂zi
+ r (15.17)

Each equity SI is a martingale for HN since

HNSI =
⎡⎣−1

2

N∑
ij=1

σiσjρij δi−I δj−I +
N∑
i=1

(
1
2
σ 2
i ρii − r

)
δi−I + r

⎤⎦ SI = 0

⇒ HNSI = 0: for each I (15.18)

The equity Hamiltonian HN is non-Hermitian due to the necessity of having a
martingale time evolution for the underlying security SI . HN acts on the space of

3 In physics, there is an additional factor of i in the Schrodinger equation that can be removed by analytically
continuing time to a negative imaginary variable. This analytical continuation is well known in physics and is
a precursor for numerically studying the path integral.
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functions of z1, z2, . . . , zN , which forms an N -dimensional state (function) space
that is time independent – unlike the case for interest rates discussed in Section 15.6
below.

15.6 Interest rate state space Vt

The Hamiltonian and the state space of a system are two independent properties of
a quantum theory; the Lagrangian is a result of these two ingredients. The essential
features of the interest rates’ Hamiltonian and state space are reviewed; a detailed
discussion is given in [12].

The state space of a quantum field theory, similar to all quantum systems, is a
linear vector space – denoted by Vt – that consists of all functionals of the field
configurations at some fixed time t . The dual space of Vt – denoted by Vt ,Dual –
consists of all linear mappings from Vt to the complex numbers, and is also a linear
vector space. The Hamiltonian Ht is an operator – the quantum analog of energy –
that is an element of the tensor product space Vt ⊗Vt ,Dual and maps the state space
to itself, that is Ht : Vt → Vt .

The Hamiltonians for log Libor φ(t , x) and bond forward interest rates f (t , x)
are far more complicated than the case for equity, discussed in Section 15.5; since
x ∈ [t , t + TFR] the quantum fields φ(t , x) and f (t , x) exists only for future time,
that is for x > t . In particular, the interest rates’ quantum field has a distinct state
spaceVt for every instant t . For brevity of notation let f (t , x) denote both log Libor
φ(t , x) as well as bond forward interest rates f (t , x). In all the derivations of this
chapter it is assumed that −∞ ≤ f (t , x), φ(t , x) ≤ +∞.4

For each time slice, the state space is defined for interest rates with x > t ,
as shown in Figure 15.1(a). The state space has a nontrivial structure due to the
underlying trapezoidal domain T of the xt space. On composing the state space for
each time slice, the trapezoidal structure for finite time, as shown in Figure 15.1(b),
is seen to emerge from the state space defined for each time slice.

The state space at time t is labeled by Vt , and the state vectors in Vt are denoted
by |ft >. For fixed time t , the state spaceVt consists of all possible functions of the
interest rates, with future time x ∈ [t , t + TFR]. The elements of the state space of
the forward interest rates Vt includes all possible debt instruments that are traded
in the market at time t . In continuum notation, the basis states of Vt are tensor
products over the future time x and satisfy the following completeness equation

4 As discussed in Section 6.9, Libor forward interest rates fL(t , x) ≥ 0 are nonlinear and positive and will not be
discussed in this chapter.
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x

t

t0 t0+TFR

(a)

t2+TFR

t1+TFR
t1

t2

(b)

Tf

Ti
Ti  +TFR xTf +TFR

t

Figure 15.1 The domain of the state space of the interest rates. (a) In the figure
the state space Vt is indicated for two distinct calendar times t1 and t2. (b) The
trapezoidal domain T of the forward interest rates required for computing the
transition amplitude< finitial|T

{
exp − ∫ Tf

Ti
H(t) dt

}
|ffinal >.

|ft > =
∏

t≤x≤t+TFR
|f (t , x) >

It =
∏

t≤x≤t+TFR

∫ +∞

−∞
df (t , x)|ft 〉〈ft | ≡

∫
Dft |ft 〉〈ft | (15.19)

Figure 15.1 shows the domain of the state space as a function of time t .
The time-dependent interest rate Hamiltonian H(t) is the backward Fokker–

Planck Hamiltonian and propagates the interest rates backwards in time, taking the
final state |ffinal > given at future calendar time Tf backwards to an initial state
< finitial| at the earlier time Ti .

The transition amplitude Z for a time interval [Ti , Tf ] can be constructed from
the Hamiltonian and state space by applying the time slicing method. Since the state
space and Hamiltonian are both time-dependent one has to use the time-ordering
operator T to keep track of the time dependence: H(t) for earlier time t is placed
to the left of H(t) that refers to later time. The transition amplitude between a final
(coordinate basis) state |ffinal > at time Tf to an arbitrary initial (coordinate basis)
state <finitial| at time Ti is given by the following [12]

Z = 〈
finitial|T

{
exp −

∫ Tf

Ti

H(t) dt
}
|ffinal

〉
(15.20)

Due to the time dependence of the state spaces Vt , the forward interest rates that
determine Z form a trapezoidal domain shown in Figure 15.1.
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The transition from equity Hamiltonian to interest rates is equivalent to the tran-
sition from quantum mechanics to quantum field theory; this is briefly discussed in
Appendix A.7.

15.6.1 Coupon and zero coupon bond state vector

The coupon and zero coupon bond are important state vectors in the theory of
forward interest rates. Consider a risk-free zero coupon bond that matures at time
T with a payoff of $1. Recall from Eq. (2.12) that the price of a zero coupon bond
at time t < T is given by

B(t , T ) = e−
∫ T
t f (t ,x)dx

The ket state vector |B(t , T ) > is an element of the state space Vt . The zero
coupon bond state vector is written as follows

B(t , T ) ≡ <ft |B(t , T ) >= e−
∫ T
t f (t ,x)dx (15.21)

The coupon bond |B > is a state vector, with fixed coupons of amount ci paid at
times Ti , and with a final payoff of L at time T . In the state space language, the
coupon bond is the following linear superposition of the zero coupon bonds

|B(t) >=
∑
i

ci |B(t , Ti) > +L|B(t , T ) >

15.7 Interest rate Hamiltonian

Consider the Lagrangian density Lφ(t , x) for the log Libor field φ(t , x) given by
Eq. (6.61)

Lφ(t , x) = −1
2

[
∂φ(t , x)/∂t − ρ̃(t , x)

γ (t , x)

]
D−1
L (t , x, x′)

[
∂φ(t , x′)/∂t − ρ̃(t , x′)

γ (t , x′)

]
ρ̃ = −1

2
�(t , x)+ ρ(t , x); −∞ ≤ φ(t , x) ≤ +∞

The volatility γ (t , x) is deterministic and ρ is a stochastic and nonlinear drift term
defined in Eq. (6.59). Similarly, a general Lagrangian density for the bond forward
interest rates, from Eqs. (5.25) and (5.1), is given by

Lf (t , x) = −1
2

[
∂f (t , x)/∂t − α(t , x)

σ (t , x)

]
D−1(t , x, x′)

[
∂f (t , x′)/∂t − α(t , x′)

σ (t , x′)

]
−∞ ≤ f (t , x) ≤ +∞
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Neumann boundary conditions, given in Eqs. (5.10) and (6.62), have been incor-
porated into the expression for (both) the Lagrangians. The derivation for the
Hamiltonian is done for an arbitrary propagator D−1(t , x, x′), although for most
applications a specific choice, such as the stiff propagator, is made.

Discretizing time into a lattice of spacing ε yields t → tn = nε. The Lagrangian
L(tn) is given by

L(tn) ≡
∫ tn+TFR

tn

dxL(tn, x) = − 1
2ε2

∫
x

A(tn, x)D−1(t , x, x′)A(tn, x) (15.22)

A(tn, x) = (ftn+ε − ftn − εαtn)(x)

σ (tn, x)
or

(φtn+ε − φtn − ερtn)(x)

γ (tn, x)
(15.23)∫

x

≡
∫ tn+TFR

tn

dx (15.24)

where f (tn, x) ≡ ftn(x); φ(tn, x) ≡ φtn(x) has been written to emphasize that
time tn is a parameter for the interest rate Hamiltonian.

The Dirac–Feynman formula relates the Lagrangian L(tn) to the Hamiltonian
operator by a generalization of Eq. (15.11) and yields

< ftn |e−εHf |ftn+ε > = N eεL(tn) (15.25)

whereN is a normalization. From the discussion on the pricing kernel in Section 5.9
and, in particular, from Eq. (5.41) a Hamiltonian representation of the interest rates’
pricing kernel is provided by Eq. (15.25).

Eq. (15.22) is re-written using Gaussian integration and (ignoring henceforth
irrelevant constants), using notation∏

x

∫ +∞

−∞
dp(x) ≡

∫
Dp

yields

eεL(tn) =
∫
Dpe

− ε
2
∫
x,x′ p(x)D(t ,x,x′)p(x′)+i ∫x p(x)A(x) (15.26)

The propagator D(t , x, x′) is the inverse of D−1(t , x, x′).
Consider for concreteness the derivation of the Hamiltonian for log Libor

φ(t , x). Re-scaling the variable p(x) → γ (t , x)p(x), Eqs. (15.22) and (15.23)
yield (up to an irrelevant constant)5

eεL(t) =
∫
Dpe

i
∫
x p(x)(φt+ε−φt−ερt )(x)− ε

2
∫
x,x′ γ (t ,x)p(x)D(x,x′;t)γ (t ,x′)p(x′) (15.27)

5 Since only two time slices are henceforth considered, the subscript n on tn is dropped as it is unnecessary.
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Hence, the Dirac–Feynman formula given in Eq. (15.25) yields the Hamiltonian
as follows

N eεL(t) = < φt |e−εHφ |φt+ε > (15.28)

= e−εHt (δ/δφt )

∫
Dpei

∫
x p(φt−φt+ε) (15.29)

The Hamiltonian is written in terms of functional derivatives in the coordinates of
the dual state space variables φt . For each instant of time, there are infinitely many
independent interest rates (degrees of freedom) represented by the collection of
variables φt(x), x ∈ [t , t + TFR]. Hence, one needs to use functional derivatives,
discussed in Appendix A.5, to represent the Hamiltonian as a differential operator.

The degrees of freedom φt(x) refer to time t only through the domain on which
the Hamiltonian is defined. Unlike the action S[f ] that spans all instants of time
from the initial to the final time, the Hamiltonian is an infinitesimal generator in
time, and refers to only the instant of time at which it acts on the state space. This is
the reason that in the Hamiltonian the time index t can be dropped for the variables
φt (x) and replaced by φ(x) with t ≤ x ≤ t + TFR .

The Hamiltonian for log Libor interest rates, from Eqs. (15.27), (15.28), and
(15.29), is given by

Hφ(t) = −1
2

∫ t+TFR

t

dxdx′Mγ (x, x′; t) δ2

δφ(x)δφ(x′)

−
∫ t+TFR

t

dxρ̃(t , x)
δ

δφ(x)
(15.30)

Mγ (x, x′; t) = γ (t , x)DL(x, x′; t)γ (t , x′)

Similarly, the Hamiltonian for bond forward interest rates is given by

Hf (t) = −1
2

∫ t+TFR

t

dxdx′Mσ(x, x′; t) δ2

δf (x)δf (x′)

−
∫ t+TFR

t

dxα(t , x)
δ

δf (x)
(15.31)

Mσ(x, x′; t) = σ(t , x)D(x, x′; t)σ (t , x′)
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The derivation only assumes that the volatilities σ(t , x) and γ (t , x) are determin-
istic. The drift terms α(t , x) and ρ(t , x) in the Hamiltonian are completely general
and can be any (nonlinear) functions of the interest rates.6

General considerations related to the existence of a martingale measure rule out
any potential terms for the interest rates Hamiltonian [12].7 The entire dynamics
is contained in the kinetic term with the function M(x, x′; t) encoding the model
chosen for the interest rates; a wide variety of such models have been discussed
in [12]. The drift term is completely fixed by the martingale condition and, in
particular, by M(x, x′; t).

The quantum fields φ(t , x) and f (t , x) are more fundamental than the velocity
quantum field A(t , x); the Hamiltonian cannot be written in terms of the A(t , x)
degrees of freedom. The reason being that the dynamics of the forward interest
rates are contained in the time derivative terms in the Lagrangian, namely terms
containing ∂φ(t , x)/∂t and ∂f (t , x)/∂t ; in going to the Hamiltonian representa-
tion, these time derivatives essentially become differential operators δ/δφ(t , x) and
δ/δf (t , x).8

15.7.1 Future market time

Future market time is defined by the nonlinear maturity variable z ≡ z(θ) = θν ;
θ = x − t . One can also view θ as a function of z since θ(z) = z1/ν . The market
time Hamiltonian is given by

Hf ,z(t) = −1
2

∫ z(TFR)

z(0)
dzdz′σ(t , z)D(z, z′)σ (t , z′) δ2

δf (θ(z))δf (θ(z′))

−
∫ z(TFR)

z(0)
dzα(t , z)

δ

δf (θ(z))
(15.32)

The θ = θ(z) variable is the label of the forward rate functional derivative δ/δf (θ),
but is otherwise replaced everywhere by the nonlinear variable z(θ). These features
of the Hamiltonian are a reflection of the defining equation for market future time
discussed in Section 5.6.

6 Drift is fixed by the choice of the numeraire (to be discussed in the next section). The Libor forward interest
rate fL(t , x) that is equivalent to the log Libor rate φ(t , x) has nonlinear drift as well as stochastic volatility.
The Hamiltonian derived in this chapter is for the case of f (t , x) that has deterministic volatility and is valid
for bond forward interest rates and for log Libor rate φ(t , x).

7 A potential term is a function only of φ(t , x) or f (t , x); the interest rate Hamiltonian can only depend on the
δ/δφ(t , x) or δ/δf (t , x).

8 If one wants to use the velocity degrees of freedom A(t , x) in the state space representation, one needs to use
the formalism of phase space quantization [95].
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For simplicity of notation all derivations requiring the Hamiltonian are carried
out for ν = 1; it is fairly straightforward to re-introduce market time as and when
required.

15.7.2 Interest rate and equity Hamiltonians

Interest rate Hamiltonians Hφ(t),Hf (t) are far more complex and qualitatively
different from HN , the Hamiltonian for N equities given in Eq. (15.17).9 The
following is a comparison of the two Hamiltonians.

• Both the Hamiltonians are non-Hermitian, as is typical for the the case of finance.
• Both Hamiltonians have only derivative terms, which is typical of the Fokker–Planck

Hamiltonians that arise from ‘white noise’ [95].
• Both have a kinetic term containing second derivatives and a first derivative ‘carrying’

the drift term.
• The covariance of the interest rate Hamiltonian, for example Mφ(x, x ′; t) =
γ (t , x)D(x, x ′; t)γ (t , x ′) is similar to the covariance for equity, namely σiσjρij . The con-
tinuous index x reflects infinitely many independent random variables that drive interest
rates and is fundamentally different from the discrete and finite ranged index i for equity.
The propagator D(x, x ′; t) is the generalization of the correlation matrix ρij .

• A fundamental difference between the interest rate and equity Hamiltonians lies in the
time dependence of the interest rate Hamiltonian, which reflects the time dependence of
its state space. The interest rate state space Vt is time dependent and ‘moves’ in time,
whereas the state space of equity V is fixed and time independent.

15.8 Interest rate Hamiltonian: martingale condition

The existence of a martingale measure is central to the theory of arbitrage-free
pricing of financial instruments, and a path integral formulation of this principle has
been discussed in Section 5.8. The bond forward interest rate Gaussian Lagrangians
discussed in Chapter 5 are quadratic in the fields, and hence the martingale condition
for the bond forward interest rates could be solved exactly, as in Section 5.8, by
performing a Gaussian path integration.

For the case of nonlinear interest rates, the Lagrangian is nonlinear and hence
finding the risk-neutral measure entails the exact evaluation of a nonlinear path
integral – in general, an intractable problem. For this reason, the derivation of the
risk-neutral measure is reformulated using the Hamiltonian. The Hamiltonian for-
mulation, even for the nonlinear theory of the interest rates with stochastic volatility,

9 For easy reference, recall HN is given by

HN = − 1
2

N∑
ij=1

σiσj ρij
∂2

∂zi ∂zj
+

N∑
i=1

(
1
2
σ 2
i ρii − r

)
∂

∂zi
+ r
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provides an exact solution for the martingale measure [12]. The nonlinear Libor
Market Model will be studied in detail using the Hamiltonian approach and the
nonlinear Libor drift will be evaluated exactly [3].

Eq. (15.7) shows that the existence of a martingale measure is equivalent to a
(risk-free) equity Hamiltonian that annihilates the underlying security S. A similar
condition holds for interest rate Hamiltonians, but with a number of complications
arising from the nontrivial structure of the time dependent state space Vt and the
fact that the spot rate r(t) = f (t , t) is itself a stochastic quantity.

Consider the money market numeraire exp{∫ t∗
t0
dtr(t)}. The martingale condition

for the money market numeraire, given in Eq. (3.4), states that the price of the zero
coupon bond B(t∗, T ) at some future time T > t∗ > t is equal to the price of
the bond at time t , discounted by the risk-free interest rate r(t) = f (t , t). In other
words

B(t , T ) = E[e−
∫ t∗
t r(t)dtB(t∗, T )] (15.33)

where E[X] denotes the average value of X over all the stochastic variables in the
time interval [t , t∗].

In terms of the Feynman path integral, Eq. (15.33) yields

B(t , T ) = 1
Z

∫
Df e−

∫ t∗
t r(t)dt eS[f ]B(t∗, T ) (15.34)

In the path integral given in Eq. (15.34), there are two domains; namely the domain
for the zero coupon bond that is nested inside the domain of the forward interest
rates. These domains are shown in Figure 15.2.

The martingale condition given in Eq. (15.34) is written in an integral form.
However, similar to the case of a single security, it is clearly a differential condition

t

t*
t

Ti Ti+TFRT x

Tf

Figure 15.2 Domains for deriving the martingale condition on zero coupon bonds
B(t∗, T ). The horizontal lines at t∗ and t represent B(t∗, T ) and B(t , T ) respec-
tively. The vertical line at T represents the maturity time of zero coupon bonds.
The trapezoid enclosing the zero coupon bonds is the domain for all the forward
interest rates.
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since it holds for any value of t∗. Hence take t∗ = t+ε. The reason that one considers
only an infinitesimal change for the interest rates is because the HamiltonianH(t) is
a differential operator. For an infinitesimal evolution in time, the functional integral
in Eq. (15.34) collapses to an integration over the final time variables f̃t+ε on one
time slice t∗ = t + ε. Writing f (t , x) = ft (x) yields

B(t , T ) = N
∫
Df̃t+εe−εft (t)eε

∫
L[f ,f̃ ]B[f̃t+ε , T ] (15.35)

The above equation is re-written in the language of state vectors. The completeness
equation Eq. (15.19) and the Dirac–Feynman relation given in Eq. (15.25) yield
the following

< ft |B(t , T ) >
=
∫
Df̃t+ε < ft |e−εf (t ,t)e−εH|f̃t+ε >< f̃t+ε |B(t + ε, T ) > (15.36)

The completeness equation, from Eq. (15.19), is the following

It+ε =
∫
Df̃t+ε|f̃t+ε >< f̃t+ε | (15.37)

Hence from Eq. (15.36)

< ft |B(t , T ) >=< ft |e−εf (t ,t)e−εH(t)|B(t + ε, T ) > (15.38)

⇒ |B(t , T ) >= e−εf (t ,t)e−εH(t)|B(t + ε, T ) > (15.39)

It can be verified, using the explicit representation of the zero coupon bond given
in Eq. (15.21), that

e+εf (t ,t)|B(t , T ) > = |B(t + ε, T ) > (15.40)

The discounting factor e−εf (t ,t) plays the remarkable role of matching the zero
coupon bonds at two different time slices and yields the following eigenvalue
equation

|B(t + ε, T ) > = e−εH(t)|B(t + ε, T ) > (15.41)

⇒ H(t)|B(t + ε, T ) > = 0 (15.42)

Since there is nothing special about the bond that is being considered, one arrives at
the differential formulation of the risk-neutral measure, namely that all zero coupon
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bonds – and consequently all coupon bonds – are eigenfunctions of the Hamiltonian
H that are annihilated by H, that is have zero eigenvalue.10 That is

H(t)|B(t , T ) > = 0 for all t , T (15.43)

or more explicitly

< ft |H(t)|B(t , T ) > = H(t)e−
∫ T
t dxft (x) = 0 (15.44)

The above equation is the field theory generalization of the case of a single security
given in Eq. (15.7).

15.9 Numeraire and Hamiltonian

As discussed in Chapter 9, one can choose to discount all financial instruments
by any positive valued instrument, and then choose the drift velocity to make the
discounted instrument into a martingale. The main results obtained in Chapter 9 are
re-derived in the Hamiltonian framework; in particular, it is shown how the various
choices of numeraires yield different drift terms.

15.9.1 Money market and forward bond numeraire

The numeraire is exp
∫ t
t0
r(t ′)dt ′ and one fixes the drift so that the combination

B(t , T )/ exp
∫ t
t0
r(t ′)dt ′ is a martingale. Hence the drift α for the bond forward

interest rate Hamiltonian Hf (t), given in Eq. (15.31), is fixed by the martingale
condition as in Eq. (15.44), namely11

Hf (t)B(t , T ) = 0

⇒ α(t , x) =
∫ x

t

dx′M(x, x′; t)

Similarly, for the forward bond numeraire B(t , t∗) with t∗ fixed, the combination
B(t , T )/B(t , t∗) is a martingale. Hence, from Eq. (15.44)

Hf (t)

[
B(t , T )
B(t , t∗)

]
= 0

⇒ α(t , x) =
∫ x

t∗
dx′M(x, x′; t) (15.45)

10 Zero coupon bonds are state vectors of the forward interest rates’ state space that are not normalizable.
11 A detailed derivation is given in [12].
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15.9.2 Linear Libor market and forward numeraire

The Libor rate 1 + 	L(t , Tn + 	) = exp{∫ Tn+	
Tn

dxf (t , x)}, for the linear Libor
market measure, is a martingale for each Tn = n	, where 	 = 3 months. To fix
the drift term, the martingale condition is imposed on L(t , Tn + 	) using the bond
forward interest rate Hamiltonian given in Eq. (15.31); hence

0 = H(t)L(t , Tn + 	)

⇒ 0 = −
[

1
2

∫ t+TFR

t

dxdx′M(x, x′; t)+
∫ ∞

t

dxαL(t , x)
]
e
∫ Tn+	
Tn

dxf (t ,x)

⇒ αL(t , x) = −
∫ x

Tn

dx′M(x, x′; t); Tn ≤ x < Tn + 	 (15.46)

The result stated in Eq. (15.46) has been obtained earlier in Eq. (9.28).
The forward numeraire is chosen to make the forward value of a bond, namely

F(t , Tn) = exp{− ∫ Tn+1
Tn

dxf (t , x)}, into a martingale for each Tn; one can see this
measure is very similar to the Libor market measure. Using the martingale condition
for the bond forward interest rates Hamiltonian yields the following

0 = H(t)FL(t , Tn)

=
[
−1

2

∫ t+TFR

t

dxdx′M(x, x′; t) +
∫ t+TFR

t

dxαF (t , x)
]
e
− ∫ Tn+1

Tn
dxf (t ,x)

⇒ αF (t , x) =
∫ x

Tn

dx′M(x, x′; t) = −αL(t , x); Tn ≤ x < Tn + 	 (15.47)

The equation above gives the expected result derived earlier in Eq. (9.14).

15.10 Hamiltonian and Libor Market Model drift

Libor Market Model drift ρ(t , x) derived in Section 6.4 is given an independent
derivation in this section based directly on the Libor Market Model Hamiltonian
[5]. The derivation for Libor drift ζ(t , Tn) for the Libor Market Model given in
Section 6.7 was quite circuitous; the Libor forward interest rates fL(t , x) were
used as scaffolding and it was not clear why one could not evaluate Libor drift
directly using only Libor L(t , Tn). The result is also quite opaque, with the drift
having summations and minus signs that do not have a clear explanation. In con-
trast, the Hamiltonian framework yields a transparent derivation of Libor drift
directly using Libor variables L(t , Tn) and the result is intuitively clear.

As in Section 6.4, choose the zero coupon bond B(t , TI+1) to be the forward
bond numeraire; hence, from Eq. (6.13), for all n

Xn(t) ≡ L(t , Tn)B(t , Tn+1)

B(t , TI+1)
: martingale
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is chosen to be a martingale. Libor time Tn can be less, equal, or greater than TI
and is shown in Figure 6.3.

The drift ρ(t , x) is fixed in the Hamiltonian framework, as in Eq. (15.43), by
imposing the martingale condition on Xn(t), namely that

Hφ(t)

[
L(t , Tn)B(t , Tn+1)

B(t , TI+1)

]
= 0 (15.48)

Libor maturity is defined at Libor time Tn = 	n, where 	 = 90 days; for
notational ease, define Lk = L(t , Tk). Write

Xn(t) ≡ L(t , Tn)B(t , Tn+1)

B(t , TI+1)
= Ln

B(t , Tn+1)

B(t , TI+1)

Let t be a Libor time; from the definition of the zero coupon bond given in Eq. (6.5)

B(t , Tn+1) =
n∏
k=0

(
1

1 + 	Lk

)
(15.49)

The following are the three cases for Xn(t):

• n = I

XI (t) = LI = L(t , TI ) (15.50)

• n > I

Xn(t) = Ln

n∏
k=I+1

(
1

1 + 	Lk

)
= Ln exp

⎧⎨⎩−
n∑

k=I+1

ln(1 + 	Lk)

⎫⎬⎭ (15.51)

• n < I

Xn(t) = Ln

I∏
k=n+1

(1 + 	Lk) = Ln exp

⎧⎨⎩+
I∑

k=n+1

ln(1 + 	Lk)

⎫⎬⎭ (15.52)

Eq. (15.48) requires the calculation of δ/δφ acting on Xn(t), which in turn needs
the following computation

	L(t , Tn) ≡ 	Ln = exp
{∫ Tn+1

Tn

dxφt(x)

}
≡ eφn

⇒ δ

δφ(x)
Lk = Hk(x)Lk (15.53)
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where, as in Eq. (6.58) and shown in Figure 6.8, the characteristic function is

Hk(x) =
⎧⎨⎩

1 Tk ≤ x < Tk+1

0 x �∈ [Tk , Tk+1)

Recall that the log Libor Hamiltonian is given by Eqs. (15.30) and (6.54); for
notational convenience, the drift ρ̃(t , x) is written such that a ‘kinetic’ piece of the
drift is subtracted out and its dependence on the future Libor time interval Hn(x)
is written out as ρn(t , x). Hence12,13

Hφ(t) = −1
2

∫
x,x′

Mγ (x, x′; t) δ2

δφ(x)δφ(x′)

+ 1
2

∫
x

�(t , x)
δ

δφ(x)
−
∫
x

ρ(t , x)
δ

δφ(x)
(15.54)

ρ(t , x) =
∞∑
n=0

Hn(x)ρn(t , x);
∫
x

≡
∫ +∞

t

dx (15.55)

�(t , x) =
∞∑
n=0

Hn(x)

∫ Tn+1

Tn

dx′Mγ (x, x′; t) (15.56)

Case (i) n = I

As a warm-up for the general derivation, consider a rather detailed derivation
for the special case for n = I which yields the martingale condition for χI = LI .
From Eqs. (15.48), (15.53), (15.55), and (15.56),

0 = HφLI =
[

− 1
2

∫
x,x′

Mγ (x, x′; t)HI (x)HI (x′)

+ 1
2

∫
x

�(t , x)HI (x)−
∫
x

ρ(t , x)HI (x)
]
LI

From Eqs. (15.55) and (15.56)∫
x,x′

Mγ (x, x′; t)HI (x)HI (x′) =
∫ TI+1

TI

dx�I(t , x)∫
x

ρ(t , x)HI (x) =
∫ TI+1

TI

dxρI (t , x);
∫
x

�(t , x)HI (x) =
∫ TI+1

TI

dx�I (t , x)

12 Henceforth, for notational convenience, the limit of TFR → +∞ is taken.
13 The explicit expression for the function ρn(t , x) is given in Eq. (6.56).
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Hence

0 = HφLI =
[
−
∫ TI+1

TI

dxρI (t , x)
]
LI

⇒ ρI (t , x) = 0 (15.57)

Case (ii) n > I

For the case of Xn(t), n > I , Eqs. (15.51) and (15.53) yield

1
Xn(t)

δXn(t)
δφ(x)

= Hn(x)−
n∑

k=I+1

eφkHk(x)

1 + eφk
(15.58)

Note the summation term above is due to the discounting by the forward numeraire
B(t , TI+1). The second functional derivative yields

1
Xn(t)

δ2Xn(t)
δφ(x)δφ(x′)

=
⎡⎣Hn(x)− n∑

j=I+1

eφjHj (x)

1 + eφj

⎤⎦⎡⎣Hn(x′)−
n∑

k=I+1

eφkHk(x
′)

1 + eφk

⎤⎦
−

n∑
j=I+1

eφjHj (x)Hj (x
′)

1 + eφj
+

n∑
j=I+1

[
eφj

1 + eφj

]2

Hj(x)Hj(x
′) (15.59)

On applying the log Libor Hamiltonian on Xn(t), n > I , Eqs. (15.56), (15.58), and
(15.59) yield, after a few obvious cancellations

1
Xn(t)

HφXn(t) = 1
2

n∑
j=I+1

[
eφj

1 + eφj

]2

�jj −
n∑

j=I+1

eφj

1 + eφj
�jn

+ 1
2

n∑
j ,k=I+1

eφj+φk
[1 + eφj ][1 + eφk ]�jk + ζn −

n∑
j=I+1

eφj

1 + eφj
ζj (15.60)

where, from Eq. (6.35)

�mn =
∫ Tm+1

Tm

dx

∫ Tn+1

Tn

dx′Mγ (x, x′; t)

and recall from Eq. (6.55)

ζn ≡ ζ(t , Tn) =
∫ Tn+1

Tn

dxρn(t , x) (15.61)
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Inspecting the result in Eq. (15.60) leads to the following ansatz

ζn =
n∑

j=I+1

eφj

1 + eφj
�jn (15.62)

Hence

n∑
j=I+1

eφj

1 + eφj
ζj =

n∑
j=I+1

eφj

1 + eφj

j∑
k=I+1

eφk

1 + eφk
�jk (15.63)

The remarkable identity

n∑
j=I+1

j∑
k=I+1

Ajk = 1
2

n∑
j ,k=I+1

Ajk + 1
2

n∑
j=I+1

Ajj (15.64)

applied to Eq. (15.63) leads to the cancellation of all the terms on the right-hand
side of Eq. (15.60) and yields the final result

HφXn(t) = 0 : martingale (15.65)

From Eq. (15.61), which states that
∫ Tn+1
Tn

dxρn(t , x) ≡ ζ(t , Tn), and Eq. (15.62),
Libor drift is given by∫ Tn+1

Tn

dxρn(t , x) =
n∑

j=I+1

eφj (t)

1 + eφj (t)

∫ Tn+1

Tn

dx

∫ Tj+1

Tj

dx′M(x, x′; t)

⇒ ρn(t , x) =
n∑

j=I+1

eφj (t)

1 + eφj (t)

∫ Tj+1

Tj

dx′M(x, x′; t) (15.66)

=
n∑

j=I+1

eφj (t)

1 + eφj (t)
�j (t , x); Tn ≤ x < Tn+1

Case (iii) n < I
A derivation similar to Case (ii) yields the result for Xn(t), n < I . One needs

to keep track of the relative negative sign in χn, given in Eqs. (15.51) and (15.52)
arising from the difference in the discounting factor. The following is the final result

ρn(t , x) = −
I∑

j=n+1

eφj (t)

1 + eφj (t)

∫ Tj+1

Tj

dx′M(x, x′; t) (15.67)
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The exact results given in Eqs. (15.62), (15.66), and (15.67) yield Libor drift,
derived earlier in Eq. (6.56), as follows

ρ(t , x) =
∞∑
n=0

Hn(x)ρn(t , x)

where

ρn(t , x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
m=I+1

eφm(t)

1+eφm(t) �m(t , x) n > I

0 n = I

−∑I
m=n+1

eφm(t)

1+eφm(t) �m(t , x) n < I

15.10.1 Libor Market Model: Hamiltonian, Lagrangian, and AL(t, x)

Libor drift has been obtained in a fairly transparent and direct manner compared to
the rather roundabout approach adopted in Section 6.7. The summation that appears
in the drift term is due to expressing the ratioB(t , Tn)/B(t , TI ) as a product of Libor
variables L(t , Tk). The relative minus sign in the summation term of the drift for
n < I and n > I arises from the ratio B(t , Tn)/B(t , TI ) being either the product
of 1 + 	L(t , Tk) or of its inverse.

The derivation of Libor drift given in Section 6.7 follows the general spirit of
the BGM–Jamshidian derivation. The martingale condition was first expressed in
terms of the Libor forward interest rates fL(t , x) defined in Eq. (6.10); one then
did a change of variables and re-expressed the drift in terms of the Libor variables.
To carry out this change of variables for the quantum finance case, the Wilson
expansion for the velocity quantum field AL(t , x) was crucial in capturing the
nontrivial correlation terms.

In contrast, in the Hamiltonian derivation of Libor drift, there is no need to employ
the AL(t , x) field and all the correlation effects are produced by the Hamiltonian.
The Libor Hamiltonian is expressed directly in terms of log Libor variables φ(t , x),
making no reference to fL(t , x). The martingale condition is expressed directly in
terms of the Hamiltonian Hφ and leads to an exact derivation of Libor drift. The
fact that the Jacobian of the transformation from AL(t , x) to φ(t , x) is a constant,
as shown in Section 6.14, is essential for obtaining the log Libor Hamiltonian; a
nontrivial Jacobian would give rise to new terms.

The Hamiltonian derivation of Libor drift leads to some general conclusions in
the context of the Libor Market Model. The martingale condition that the Hamil-
tonian annihilates the underlying security was first introduced in Eq. (15.7) and
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then extended to N -securities in Eq. (15.18). The martingale condition subse-
quently had a nontrivial extension for interest rate instruments due to the need
to treat the discounting factor as being stochastic [12] and was given by Eq. (15.65)
for the Libor Market Model. The martingale condition was verified in this section
by the nontrivial derivation of the nonlinear Libor drift.

In Chapter 6, and Eq. (6.10) in particular, the Libor Market Model was given a
differential formulation employing AL(t , x); the Libor drift was then derived. The
next step was a nonlinear change of variables from AL(t , x) to log Libor φ(t , x),
which yielded the log Libor Lagrangian and path integral; and, finally, the log Libor
Hamiltonian was derived from the Lagrangian. The Hamiltonian formulation of
the martingale exactly reproduces the earlier result for Libor drift; thus closing the
circle, so to speak.

The Hamiltonian derivation of Libor drift provides independent proof of the
correctness of the earlier derivation of Libor drift in Section 6.7, which crucially
hinged on the Wilson expansion. The Hamiltonian result shows that the Wilson
short distance expansion for a Gaussian quantum field is the correct generalization
of Ito’s calculus and opens the way to applications in theoretical finance.

In summary, the Libor Market Model has been given three different and consistent
formulations, namely employing AL(t , x), L[φ], and Hφ(t); thus displaying the
versatility and flexibility of quantum finance.

15.11 Interest rate Hamiltonian and option pricing

Recall from Eq. (15.5), for the money market numeraire, the option price is given
by the following (τ = T − t)

C(τ , x) = E[e−rτP] = 〈x|e−τH |P〉 (15.68)

For the money market numeraire, the option price follows from the following
martingale condition given in Eq. (3.6)

C(t , ·)
exp(rt)

= E

[
C(T , ·)
exp(rT )

]
= E

[ P
exp(rT )

]
The Hamiltonian formulation of option pricing discussed in Section 15.2 needs to
be generalized to the case of interest rates. For the coupon bond case, the forward
numeraire is given by B(t , t∗); hence, the coupon bond option price, maturing at
calendar future time t∗, is given by the following martingale condition

C(t0, t∗, T ,K)
B(t0, t∗)

= E

[ P∗
B(t∗, t∗)

]
= E [P∗]

⇒ C(t0, t∗, T ,K) = B(t0, t∗)E [P∗] (15.69)



354 Interest rate Hamiltonian and option theory

The option price at time t0 depends on the current value of the interest rates and is
given by propagating the payoff function |P∗〉 – maturing at time t∗ – backwards in
time, as given in Eq. (15.20), to present time t0 and discounted by the deterministic
zero coupon bond B(t0, t∗). The initial and final state vectors and payoff function
are given as follows

|final〉 = |P∗〉
〈initial| = 〈φ(0)| =

∏
t0≤x≤∞

〈f (x)|

P∗[f∗] = (
B(t∗, T )−K

)
+ = 〈f∗|P∗〉

The European coupon bond option price, from Eqs. (15.20) and (15.69), is hence
given by

CE(t0, t∗, T ,K) = B(t0, t∗)E[(B(t∗, T )−K
)
+]

= B(t0, t∗)〈f (0)|T
{

exp −
∫ t∗

t0

dtH(t)
}
|P∗〉 (15.70)

Note that time is flowing backwards. Using the completeness equation for the state
space V∗

I =
∫
Df∗|f∗〉〈f∗| (15.71)

yields

〈f (0)|T
{

exp −
∫ t∗

t0

dtH(t)
}
|P∗〉

=
∫
Df∗〈f (0)|T

{
exp −

∫ t∗

t0

dtH(t)
}
|f∗〉〈f∗|P∗〉 (15.72)

The payoff function state vector |P∗〉 is an element of the state space V∗ at future
time t∗; in terms of the coordinate basis eigenstate of the dual state space V∗,Dual

〈f∗| ≡
∏

t∗≤x≤∞
〈f (x)| (15.73)

the payoff function is given by

〈f∗|P∗〉 = P∗[f∗] =
(

N∑
i=1

ciB(t∗, Ti)−K

)
+

(15.74)



15.11 Interest rate Hamiltonian and option pricing 355

To make the content of the payoff function P∗ more explicit, note that

〈f∗|P∗〉 =
⎧⎨⎩
(∑N

i=1 ciB(t∗, Ti)−K
)
+, t∗ ≤ x ≤ T

0, x > T

≡ P[f∗]

From above, it can be seen that the payoff function |P∗〉 has nonzero components
in the future direction x only in the interval t∗ ≤ x ≤ T .

The domain R required for computing the matrix element in Eq. (15.72) is given
in Figure 5.2(b). The domain R has the important feature that the state spaces Vt
for all t ∈ [t0, t∗] are fixed in time and are all identical and equal to V∗, spanned by
variables f (x) with x ∈ [t∗, T ]. Moreover, on domain R, the Hamiltonian com-
mutes for different times [H∗(t),H∗(t ′)] = 0 since only the coefficientsM(x, x′; t)
and α(t , x) are time dependent.

For these reasons, the forward bond numeraire makes the time ordering in
Eq. (15.72) unnecessary and T can be removed. H∗(t) is consistently restricted
to the domain R by limiting the range of x ∈ [t∗, T ]; at each instant t , H∗(t) acts
on the state space V∗. Hence

Hf (t)|R = −1
2

∫ T

t∗
dxdx′Mσ(x, x′; t) δ2

δf (x)δf (x′)
−
∫ T

t∗
dxα(t , x)

δ

δf (x)

The operator driving the option price is given by a new time integrated operator,
namely the evolution operator Wf acting on state space V∗.

Wf ≡
∫ t∗

t0

dtH∗(t)|R; Wf : V∗ → V∗ (15.75)

⇒ Wf = −1
2

∫ T

t∗
dxdx′Mσ(x, x′) δ2

δf (x)δf (x′)
−
∫ T

t∗
α(x)

δ

δf (x)

Mσ (x, x′) =
∫ t∗

t0

dtσ (t , x)D(x, x′; t)σ (t , x′); α(x) =
∫ t∗

t0

dtα(t , x) (15.76)

Hence, the option price is given

CE(t0, t∗, T ,K)
B(t0, t∗)

= 〈f (0)|T
{

exp −
∫ t∗

t0

dtH(t)
}

|P∗〉

= 〈f∗|e−Wf |P∗〉 (15.77)
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The option price is completely determined by the matrix elements of e−Wf taken
between two vectors 〈f∗| and |P∗〉 and both belong to the same state space V∗. For
barrier options, the price is determined by the same matrix element but with the
barrier being imposed on the eigenfunctions ofWf .

If, instead of the forward bond numeraire B(t0, t∗), the money market numeraire
exp(− ∫ t∗

t0
dtr(t)) is used – where r(t) = f (t , t) – the domain for evaluating

the matrix element in Eq. (15.72) is the trapezoidal domain given in Figure 5.2(a).
Since the discounting factor r(t) is a random quantity, it is inside the time-ordering,
and the discounting factor thus extends the nonzero overlap of the basis state 〈ft |
with exp(− ∫ t∗

t0
dtr(t))|P∗〉 to the interval x ∈ [t , T ]. This in turn means that the

time-ordering symbol T cannot be ignored since the underlying state space and
Hamiltonian would now be time dependent; one would need to do a separate (and
more complicated) calculation for each t ∈ [t0, t∗].

The choice of the appropriate numeraire for a particular problem greatly simpli-
fies all calculations and is analogous to choosing a (coordinate) basis that respects
the symmetries of the problem.

15.12 Bond evolution operator

The European coupon bond option price, from Eq. (15.77), is given by

CE(t0, t∗, T ,K) = B(t0, t∗)〈f∗|e−Wf |P∗〉
The calculation is carried out at calendar time t0 and all the effects coming from

future calendar time from t0 to t∗ are carried by the coefficientsM(x, x′) and α(x)
as in Eq. (15.76). In other words, the option price calculation is carried out in the
fixed state space V∗. Wf is a differential operator that contains the correlations of
the interest rates in future time direction x.

The state vector e−Wf |P∗〉 is the price of the option at time t0. The operatorWf

is the evolution operator and e−Wf evolves the payoff state vector, defined at future
calendar time t∗, backwards in time to its present value at time t0.

The natural coordinates for the evolution operator in studying coupon bonds and
swaptions is the integral of the bond forward interest rates. The dimensionless bond
variable g(x) is defined by the following

B(t∗, x) = e−g(x); g(x) =
∫ x

t∗
dyf (y)

δg(x)

δf (y)
=
∫ x

t∗
dy′δ(x − y′) = θ(x − y); x, y ≥ t∗ (15.78)

⇒ δ

δf (y)
=
∫ T

t∗
dx
δg(x)

δf (y)

δ

δg(x)
=
∫ T

y

dx
δ

δg(x)
(15.79)
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where Eq. (A.42) and the chain rule of functional differentiation given in Eq. (A.46)
have been used to obtain the above results.

From Eqs. (15.75) and (15.79) and after some simplifications

Wg = −1
2

∫ T

t∗
dx

∫ T

t∗
dx′G(x, x′) δ2

δg(x)δg(x′)
−
∫ T

t∗
dxβ(x)

δ

δg(x)

G(x, x′) =
∫ x

t∗
dy

∫ x′

t∗
dy′

∫ t∗

t0

dtMσ (y, y′; t)

β(x) =
∫ x

t∗
dy

∫ t∗

t0

dtα(t , y) = 1
2
G(x, x) (15.80)

Consider a subspace of the full state space composed of B(t∗, Ti), namely zero
coupon bonds that are issued at time t∗ and mature at Libor time Ti and their linear
span, which includes coupon bonds B(t∗) issued at t∗. The evolution operator Wg

simplifies when it acts on only this subspace. From Eq. (A.42)

δg(x)

δg(x′)
= δ(x − x′); x, x ∈ [t∗, T ]

and this yields, for an arbitrary function of the bond variables R[g1, . . . , gN ] =
R[g], the following

δ

δg(x)
R[g] =

N∑
i=1

δg(Ti)

δg(x)

∂R[g]
∂gi

=
N∑
i=1

δ(Ti − x)
∂R[g]
∂gi

The delta functions reduce the integrations over
∫
dx to sums over the bond variables∑

i . In particular, the evolution operatorWg reduces onR[g] to a partial differential
operator with respect to the bond variables gi . In symbols

WgR[g] =
⎡⎣−1

2

∫ T

t∗
dx

∫ T

t∗
dx′

N∑
i,j=1

Gij δ(Ti − x)δ(Tj − x′) ∂2

∂gi∂gj

−
∫ T

t∗
dx

N∑
i=1

βiδ(Ti − x)
∂

∂gi

⎤⎦R[g] (15.81)

≡ WR[g]
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Hence, from Eqs. (15.81) and (15.80)

W = −1
2

N∑
i,j=1

Gij
∂2

∂gi∂gj
−

N∑
i=1

βi
∂

∂gi
(15.82)

where

Gij = G(Ti , Tj ); βi = β(Ti) = 1
2
Gii

Note Gij is the forward bond propagator given in Eq. (11.28) and appears in the
price of a coupon bond European option; it is plotted in Figure 11.2.

The coupon bond variables g = (g1, g2, . . . , gN), at time t∗, express all the bonds
as well as satisfy the completeness equation

B(t∗, Ti) = exp
{
−
∫ Ti

t∗
f (t∗, x)dx

}
= e−gi

B(t∗, T ) =
∑
i

ciB(t∗, Ti) =
∑
i

cie
−gi = 〈g|B(t∗, T )〉 = B(t∗, T )[g]

gi ≡ g(Ti) =
∫ Ti

t∗
dxf (x);

∫
g
|g〉〈g| = I;

∫
g

≡
N∏
i

∫ +∞

−∞
dgi

15.12.1 Martingale and bond evolution operator

The martingale condition has a particularly simple realization for the bond evolution
operator. A general coupon bond at time t has the representation

B =
∑
I

cI e
−gI

The forward bond numeraire B(t , t∗) requires that

F(t , t∗, TI ) = B(t , TI )
B(t , t∗)

= e−gI

be a martingale for all TI .
The evolution operator W given in Eq. (15.82) yields, as expected

We−gI = cI

[
−1

2
GII + βI

]
e−gI = 0

The time integrated Hamiltonian operator W annihilates F(t , t∗, TI ), the forward
price of zero coupon bondB(t∗, TI ), as required for the evolution to be martingale.
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15.12.2 Coupon bond Lagrangian

Since the coupon bond evolution operatorW is the time integral of the Hamiltonian,
calendar time is already contained inW ; in particular, the correlation matrixGIJ is
the time integral of the coefficients in the Hamiltonian.

The Lagrangian and action are mathematical means for expressing e−TW ; the
‘time’integrations in SCB is not calendar time; but rather an artifact for constructing
a path integral representation of the matrix elements of e−TW . For option pricing,
only the special value of T = 1 is required.
W is mathematically identical to the Hamiltonian HN for N -equities given in

Eq. (15.17), with r = 0 and having the opposite sign for the drift term. Hence, the
Lagrangian, action and path integral for coupon bonds, similar to Eq. (3.36), are
given by

ZCB =
∫
DgeSCB ; SCB =

∫ T

0
dtLCB

LCB = −1
2

N∑
IJ=1

G−1
IJ

[
dgI (t)

dt
+ 1

2
GII

] [
dgJ (t)

dt
+ 1

2
GJJ

]
∫
Dg =

T∏
t=0

N∏
I=1

∫ +∞

−∞
dgI (t)

The matrix element 〈g|e−W |P∗〉 required for finding the price of an option can
be evaluated by the above path integral by putting appropriate boundary conditions
of the space of paths that goes into defining

∫
Dg.

15.12.3 Zero coupon bond European option

The option price obtained in Section 11.13 is re-derived to demonstrate the utility
of the evolution operator.

The payoff function is given by

P∗[g] = 〈g|P∗〉 = (
e−g −K

)
+ (15.83)

g =
∫ T

t∗
dxf (t∗, x) (15.84)

The zero coupon bond evolution operator simplifies to

W = −1
2
G
∂2

∂g2 − β
∂

∂g
(15.85)
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G =
∫ T

t∗
dy

∫ T

t∗
dy′

∫ t∗

t0

dtM(y, y′; t); β = 1
2
G

The eigenfunctions and eigenvalues ofW are given by

eipg = 〈g|p〉
Weipg =

(
1
2
Gp2 − iβp

)
eipg

and completeness, from Eqs. (A.8) and (A.9), by

I =
∫ +∞

−∞
dp

2π
|p〉〈p| ; 〈g|p〉 = eipg; 〈p|g〉 = e−ipg

The option price, for f = ∫ T
t∗ dxf (t0, x), is given, from Eq. (15.77), by the

following

C(t0, t∗,K) = B(t0, t∗)〈f |e−W |P∗〉
= B(t0, t∗)

∫ +∞

−∞
dp

2π
〈f |e−W |p〉

∫ +∞

−∞
dg〈p|g〉〈g|P∗〉

= B(t0, t∗)
∫ +∞

−∞
dp

2π

∫ +∞

−∞
dge−

1
2Gp

2+iβpei(f−g)P∗(g)

= B(t0, t∗)
1√

2πG

∫ +∞

−∞
dge−

1
2G(f−g+β)2(e−g −K

)
+

Since G = q2 = 2β, the price obtained is equal to the result given in Eq. (11.69).

15.13 Libor evolution operator

Similar to the discussion in Section 15.12, the forward bond numeraire leads to the
same simplification for the log Libor Hamiltonian. The operator driving the option
price is given by a time integrated operator, namely the Libor evolution operator
Uφ acting on Libor state space V∗. From Eq. (15.54)

Uφ ≡
∫ t∗

t0

dtHφ(t)|R; Uφ : V∗ → V∗

⇒ Uφ = −1
2

∫ T

t∗
dxdx′Mγ (x, x′) δ2

δφ(x)δφ(x′)
−
∫ T

t∗
ρ̃(x)

δ

δφ(x)
(15.86)

Mγ (x, x′) =
∫ t∗

t0

dtγ (t , x)D(x, x′; t)γ (t , x′); ρ̃(x) =
∫ t∗

t0

dt
[
ρ(t , x)− 1

2
�(t , x)

]
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Similar to the evolution operator W for the coupon bond sector – derived from
the bond forward interest rate Hamiltonian – the log Libor Hamiltonian simplifies
when acting on only Libor variables. ConsiderUφ acting only on functions of Libor,
which are of the form R[φ0(t),φ1(t), . . . ,φn(t), . . .]; the log Libor variable φn(t)
has been defined in Eq. (6.47). Since the forward bond numeraire yields a fixed state
space V∗, in the Hamiltonian framework the variable t in φn(t) can be dropped;
hence, from Eq. (A.42), for Libor time starting at T0

φn =
∫ Tn+1

Tn

dxφ(x) (15.87)

⇒ δ

δφ(x)
=

∞∑
n=0

δφn

δφ(x)

∂

∂φn
=

∞∑
n=0

Hn(x)
∂

∂φn
(15.88)

where the characteristic function Hn(x) is defined in Eq. (6.57). Substituting
Eq. (15.88) into Eq. (15.86) yields, for UφR[φn] ≡ UR[φn]

U = −1
2

∑
mn

�mn
∂2

∂φm∂φn
−
∑
n

(
ρn − 1

2
�nn

)
∂

∂φn

ρn =
∫ t∗

t0

dt

∫ Tn+1

Tn

dxρ(t , x)

�mn =
∫ Tm+1

Tm

∫ Tn+1

Tn

dxdx′Mγ (x, x′)

=
∫ t∗

t0

dt

∫ Tm+1

Tm

∫ Tn+1

Tn

dxdx′γ (t , x)D(x, x′; t)γ (t , x′) (15.89)

A straightforward derivation yields, from Eqs. (6.56), (15.86), and (15.88)

ρn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
m=I+1

eφm

1+eφm �mn Tn > TI

0 Tn = TI

−∑I
m=n+1

eφm

1+eφm �mn Tn < TI

(15.90)

15.13.1 Caplet price

Aderivation is given of the caplet price using the Libor evolution operatorU , which
is similar to the derivation of the zero coupon bond option price using the evolution
operatorW given in Section 15.12.
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The payoff function for a caplet maturing at t∗, from Eq. (4.10), is given by

	VB(t∗, TI + 	)
[
L(t∗, TI )−K

]
+

For the forward bond numeraire, from Eq. (8.8) the price of a caplet is given by

caplet(t0, t∗, TI )
B(t0, TI+1)

= VE
[
	L(t∗, TI )− 	K

]
+ (15.91)

Define the effective caplet payoff function by

P∗[φI ] = 〈φI |P∗〉 = V
[
eφI − 	K

]
+ (15.92)

	L(t∗, TI ) = eφI ; φI =
∫ TI+1

TI

dxφ(x) (15.93)

For the caplet price, the Libor evolution operator U depends only on ∂/∂φI . From
Eq. (15.90) ρI = 0 and hence

U = −1
2
q2
I

∂2

∂φ2
I

+ 1
2
q2
I

∂

∂φI

q2
I = �II =

∫ TI+1

TI

dx

∫ TI+1

TI

dx′
∫ t∗

t0

dtMφ(x, x′; t)

where q2
I has been defined earlier in Eq. (8.10).

The Libor evolution operator U is identical to the Black–Scholes Hamiltonian
given in Eq. (15.16) for the case of r = 0; in contrast, the bond evolution operator
W given in Eq. (15.85) has the opposite sign for the drift term compared to HBS
andU . The reason that the Libor and Black–Scholes cases are similar is because in
both cases the value of the security is compounded as time increases; in contrast,
future cash flows of a bond are discounted by the bond evolution operator and hence
the present-day value of the bond decreases as time increases.

The eigenfunctions and eigenvalues of U are given by

eipφI = 〈φI |p〉
UeipφI = 1

2
q2
I (p

2 + ip)eipφI

Completeness is given by Eqs. (A.8) and (A.9) as follows

I =
∫ +∞

−∞
dp

2π
|p〉〈p|; 〈φI |p〉 = eipφI ; 〈p|φI 〉 = e−ipφI
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The option price at time t0, for 	L(t0, TI ) ≡ eφ , from Eq. (15.77), is given by
the following

caplet(t0, t∗, TI )
B(t0, tI+1)

= V 〈φ|e−U |P∗〉

= V

∫ +∞

−∞
dp

2π
〈φ|e−U |p〉

∫ +∞

−∞
dg〈p|g〉〈g|P∗〉

= V

∫ +∞

−∞
dp

2π

∫ +∞

−∞
dge−

1
2q

2
I (p

2+ip)eip(φ−g)P∗(g)

= V
1√

2πq2
I

∫ +∞

−∞
dge

− 1
2q2
I

(φ−g− 1
2 q

2
I )

2(
eg − 	K

)
+

= V
1√

2πq2
I

∫ +∞

−∞
dge

− 1
2q2
I

g2(
eφ+g− 1

2q
2
I − 	K

)
+

= 	V
1√

2πq2
I

∫ +∞

−∞
dge

− 1
2q2
I

g2(
L(t0, TI )e−

1
2 q

2
I+g −K

)
+(15.94)

The caplet price obtained in Eq. (15.94) is equal to the result given in Eq. (8.11)
and yields Black’s caplet formula.

15.14 Summary

A complete description of financial instruments is provided by the Hamiltonian
that determines the dynamics of the underlying security, together with the security’s
state space.

The Black–Scholes option pricing theory was expressed completely in terms
of the equity Hamiltonian and yields the Black–Scholes equations as a particular
realization of the Schrodinger equation of quantum mechanics.

Interest rate state space and Hamiltonian were derived from the forward interest
rate Lagrangian and action. The state space is infinite dimensional and the Hamil-
tonian is a second-order functional differential operator. Both, the bond forward
interest rates f (t , x) and the log Libor ratesφ(t , x) have a well-defined Hamiltonian
since their volatility is deterministic.

The Hamiltonian realization of the martingale evolution of equities entails that
the equity be annihilated by the Hamiltonian. The martingale condition for interest
rates leads to a result similar to the case of equities: the interest rate Hamiltonian
must annihilate all interest rate instruments that have a martingale evolution. The
drifts for various choices of numeraires, fixed by the martingale condition, were
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evaluated using the Hamiltonian approach. The Hamiltonian is the appropriate
framework for imposing the martingale condition for nonlinear interest rates and,
in particular, yields the exact expression for the Libor Market Model’s nonlinear
drift.

A new feature of the interest rates dynamics is that, unlike the case for equity, the
interest rates’state space and Hamiltonian are time dependent; this leads to a number
of new features for the Hamiltonian and, in particular, that the evolution operator is
defined by a time-ordered product. Choosing the forward bond numeraire leads to a
major simplification: the interest rates’ state space for the forward bond numeraire
is equivalent to a fixed state space and one can dispense with time ordering, leading
to a time independent evolution operator.

The interest rate evolution operator simplifies for the coupon bond as well as
for the Libor sectors, respectively, and in both cases reduces to a second-order
partial differential operator, which is equivalent to an N -equity Hamiltonian. The
exact price of a zero coupon bond European option and a Libor caplet’s price were
obtained using the evolution operator.



16
American options for coupon bonds

and interest rates

American options for interest rate caps and coupon bonds are analyzed numerically
in the formalism of quantum finance [17, 40]. The main purpose of the analysis is
to develop efficient algorithms for analyzing path dependent American options for
debt instruments. Managing the proliferation of forward interest rates is the main
challenge for algorithms calculating American options. All calculations are carried
out using the linear (Gaussian) bond forward interest rates f (t , x), which – due to
their simplicity – allows one to focus on the main computational complexities. The
algorithms developed for the bond forward interest rates can be extended to the
nonlinear Libor Market Model.

Zero coupon bonds, from Eq. (2.12), are given as follows

B(t , T ) = exp
{
−
∫ T

t

dxf (t , x)
}

The forward interest rates f (t , x) are allowed to take all real values, namely −∞ ≤
f (t , x) ≤ +∞; as discussed earlier, this approximation is consistent with all bond
prices being strictly positive. The dynamics off(t , x) are given by Eq. (5.1), namely
that

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x)

where A(t , x) is the velocity Gaussian quantum field. The drift α(t , x) is fixed by
the forward numeraire and is given from Eq. (9.14) as follows

α(t , x) = σ(t , x)
∫ x

Tn

dx
′D(x, x

′
; t)σ (t , x

′
); Tn ≤ x < Tn+	

The interest rate caplet is expressed in terms of the bond forward interest rates
f (t , x). Hence, the linear pricing formula given in Eq. (10.1) is used for the testing

365
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European caplet prices obtained from the numerical algorithms developed in this
chapter.

Calendar and future time are discretized to yield a lattice field theory of bond
forward interest rates that provides an efficient numerical algorithm for evaluating
the price of American options. The algorithm is shown to hold over a wide range
of strike prices and coupon rates. All the theoretical constraints that American
options have to obey are shown to hold for the numerical prices of American
interest rate caplets and coupon bond options. Nontrivial correlations between the
different interest rates are efficiently incorporated into the numerical algorithm.
New inequalities are conjectured for American coupon bond options, based on the
results of numerical studies [17, 40].

16.1 Introduction

American options for debt instruments such as interest rate and coupon bond options
are widely traded. An accurate and arbitrage free pricing of American interest rate
options has far-reaching applications. American options for the debt instruments
are complex since, at any moment in time, there are a large number of future interest
rates that exist in the market. All of the interest rates evolve randomly and have
strong correlations with the other interest rates.

In the simple case of a European option on equity, the Black–Scholes equation
can be explicitly solved to obtain an analytical formula for the price of the option
[59]. When one considers financial derivatives that allow anticipated early exercise
or depend on the history of the underlying assets, numerical approaches need to be
used. Various numerical procedures have been developed in the literature to price
exotic financial derivatives on equity with path-dependent features, as discussed
in detail in [59]. These procedures involve the use of Monte Carlo simulations,
binomial tree (and their improvements), and finite difference methods.

The pricing of European and American options for debt instruments is far more
complicated than for equity options. In order to price derivatives of debt instru-
ments, one needs to model the underlying interest rate dynamics. The leading
model at present for modeling forward interest rates and their derivatives is the
HJM model; for the N -factor model, the interest rates at every instant are driven
by N random variables [59, 63]. Numerical techniques for pricing American inte-
rest rates options [63] are all based on the generalization of the binomial tree
approach [72].

To price American options for equity an efficient computational algorithm, using
path integrals, has been developed by Montagna and Nicrosini [76]. The quantum
field theory describing the bond forward interest rates is discretized and yields a
lattice field theory model; an algorithm that generalizes the path integral approach
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of [76] to the case of debt instrument options is obtained using the lattice field
theory.

16.2 American equity option

The path integral algorithm for pricing American equity options is analyzed as a
preparation for the rather complex derivation of the price of American caplets and
coupon bond options.

Consider an option on an underlying equity S(t) that matures at some future
calendar time t∗, with present time given by t0; in this chapter t0 = 0. Calendar
time is discretized into a lattice, with discrete time t → tn = εn, n = 0, 1, . . . ,M;
the payoff function matures at future calendar time t∗ = εM . See Figure 16.1.

Since the payoff is specified at future time t∗, the numerical algorithm is a recur-
sion equation that evolves the payoff function backwards in time – with the origin
of the calendar time lattice being placed at t∗ – so as to produce the option price at
earlier time t0. For this reason, it is convenient to define remaining time τ = t∗ − t

that runs backwards, decreasing in value as calendar time increases. In terms of
remaining time τ , option pricing becomes an initial value problem.

The Black–Scholes Lagrangian, for asset price S = ez and remaining time τ =
T − t , is given by Eq. (3.39) as follows

LBS = − 1
2σ 2

[
dz(τ )

dτ
+ α

]2

(16.1)

where α = r − σ 2/2.
Remaining time is discretized into a lattice τn = ε(M − n), n = 0, 1, . . . ,M ,

with t∗ − t0 = εM . Hence, τ0 = t∗ is the expiration time of the option and present
time is τM = 0 = t0; Figure 16.2 shows the time lattice, with the lattice sites
labeled by remaining time τn.

Define zi ≡ z(τi); discretized velocity for remaining time is defined, as in
Eq. (3.33), by the finite backward difference dz/dτ � (zi − zi−1)/ε. The lattice
Lagrangian is given by

LBS(i − 1) = − 1
2σ 2

(
zi − zi−1

ε
+ α

)2

− r (16.2)

0 1 2 MM –1

Figure 16.1 The lattice for discrete calendar time t → tn = εn, n = 0, 1, . . . ,M
with t∗ = εM . Calendar time increases to the right.
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012M M –1 M –2

Figure 16.2 The lattice for remaining discrete time τn = ε(M − n) with t∗ = εM
and t → tn = εn, n = 0, 1, . . . ,M . Calendar time increases to the right and the
decreasing numbering of the lattice points are for remaining time.

Let the boundary conditions be given by z0 = z; zM = z′; from Eq. (3.39), the
lattice action is given by

SBS = ε

M−1∑
i=0

LBS(i) =
M−1∑
i=0

L(i)

L(i) = εLBS(i) = − 1
2s2 (zi − zi+1 − α̃)2

with dimensionless parameters s2 = εσ 2, α̃ = εα.
The pricing kernel is defined by Eq. (15.9) and from Eqs. (15.10) and (15.11)

yields the following [12]

p(z′, z;M) = 〈z′|e−εMH |z〉 = Ñ
M−1∏
i=0

∫
dzie

SBS

∣∣∣
z(0)=z′;z(τ)=z

p(z′, z; 1) = 〈z′|e−εH |z〉 = N exp{L}

=
√

1
2πs2 exp

{
− 1

2s2

(
z− z′ − α̃

)2} (16.3)

Consider a European put optionPE with strike priceK and payoff function given
by (K − ez)+. The option matures at timeMε = t∗ in the future, with present time
labeled by t0 = 0.1 Since remaining time is running backwards, the pricing kernel,
from Eq. (3.43), gives the price of the European put option at time m = M by the
following equation

PE(z
′,M) = e−Mr̃

∫ +∞

−∞
dzp(z′, z;M)(K − ez)+ (16.4)

where r̃ = εr .
Consider the case of an American put option with possibility of an early exercise.

The payoff of the American option is the same as the European option, with the
additional freedom that the holder of the option can exercise the option anytime

1 The price of an American call option, for a nondividend paying stock, can be shown to be equal to the European
call option [59].
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from the present time t0 to its maximum maturity date t∗. Time is divided into short
intervals of spacing ε and early exercise of the option can only take place at the
discrete time instants ti = iε.

To find the price of the American optionP (t), one propagates the payoff function
backwards in time. At time slice τi the American option has a price given by P (τi).
To determine the option price at next (earlier) instant τi+1, one propagates P (τi)
(backwards in time) to obtain a trial value of the American option at τi+1, called
PI (τi+1). The actual value of the American option at τi+1 is given by the maximum
of the (nondiscounted) payoff function and PI (τi+1); that is

P (τi+1) = Max{PI (τi+1), (K − ezi+1)+} (16.5)

In the path integral approach the pricing kernel is used for computing the trial option
price PI (τi+1); Eqs. (16.3) and (16.4) yield

PI (τi+1, z′) = e−r̃
∫ +∞

−∞
dzp(z′, z; 1)P (τi, z) = e−r̃N

∫ +∞

−∞
dzeL(z

′,z)P (τi , z)

= e−r̃
√

1
2πs2

∫ +∞

−∞
dz exp

{
− 1

2s2

(
z− z′ − α̃

)2}
P (τi, z) (16.6)

Almost all cases of interest have fairly small volatility, that is s � 0; for small
s, the most efficient procedure for evaluating the integral in Eq. (16.6) is to Taylor
expand the functionP (τi , z) about the very sharp maximum of the Gaussian part of
the integrand located at the point z′ + α̃ ≡ z̄. Denoting differentiation with respect
to z by prime yields the Taylor expansion

P (τi , z) = P (τi , z̄)+ (z− z̄)P ′(τi , z̄)+ 1
2
(z− z̄)2P ′′(τi , z̄)+ . . . (16.7)

Using the fact that√
1

2πs2

∫ +∞

−∞
dze

− 1
2s2
(z−z̄)2 = 1;

√
1

2πs2

∫ +∞

−∞
dze

− 1
2s2
(z−z̄)2

(z− z̄) = 0√
1

2πs2

∫ +∞

−∞
dze

− 1
2s2
(z−z̄)2

(z− z̄)2 = s2 (16.8)

yields, from Eqs. (16.6), (16.7), and Eq. (16.8), the following recursion equation

PI (τi+1, z′) = e−r̃
[
P (τi, z̄)+ 1

2
s2P ′′(τi , z̄)

]
+O(s4) (16.9)
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Discretizing the values of z̄ into a grid of spacing δ of O(s) yields

PI (τi+1, z′) � e−r̃
[
P (τi, z̄)+ 1

δ2 [P (τi , z̄+ δ)− 2P (τi, z̄)+ P (τi, z̄− δ)]
]

(16.10)

To obtain the value of PI (τi+1, z′), as in Eq. (16.10), one needs the values of option
prices at the earlier time at three distinct values of z̄, namely P (τi , z̄),P (τi, z̄± δ).
By induction, it follows that, for each step one recurses (back in time), one loses two
points that are on the boundary of the stock price tree; hence, the number of stock
values at which the option price can be obtained collapses into a single value. This
structure of the recursion equation is shown in Figure 16.3, where the tree reduces
to a single point in remaining time. The single point corresponds to a specific value
of the stock price, which in Figure 16.3 is indicated by z0

M .
The purpose of the recursion is to find the option price at some particular value of

the stock ezM and at present calendar time, denoted by remaining time τM . Hence,
one needs to create a tree with specific values zm of the stock price for each time
step; for these specific values of the stock price, the recursion equation evaluates
the price of the option; the tree is illustrated in Figure 16.3.

As shown in Figure 16.3, the points on the tree grow linearly with each step in
time. The stock values zi on the tree are taken to have a spacing of δ = s so that
the spread of the zi values on the tree can span the interval required for obtaining

Stock price

0 1 M–2
Remaining time t = mε

M–1 M m

Z 2
M–2

Z 1
M–1

Z 0
M

Z 0
M–1

Z 1
M–2

Z 0
M–2

Z –1
M–2 Z –1

M–1

Z –2
M–2

Figure 16.3 Tree of stock values zkm at remaining time lattice τ = mε, with number
of points growing linearly with maturity time. The figure indicates how three points
on the tree are required, by the recursion equation, for determining the option price
at the next remaining time lattice point.
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Table 16.1 Numerical prices of American and European put options as a function
of the possible present time stock prices S. The parameters are t∗ = 0.5 year,
r = 0.1/year, σ = 0.4/

√
year, K = 10, ε = t∗/100.

Black–Scholes
S American Put Numerical European Put European Put

6.0 4.00 3.558 3.558
8.0 2.095 1.918 1.918

10.0 0.922 0.870 0.870
12.0 0.362 0.348 0.348
14.0 0.132 0.128 0.128

an accurate result from the integration. The tree at time τi has the following values
for zi , namely

z(k)m
.= zM + α̃ + ks, k = −(M −m), . . . , +(M −m) (16.11)

At remaining time τm, the tree consists of 2(M −m)+ 1 values of zm(k), centered
on the S = ezM . For m = M , this reduces to the value of z(0)M = zM + α̃, namely
the value of the stock at initial time for which the price of the American option is
being computed.

The algorithms expressed in Eqs. (16.5) and (16.10) were numerically tested and
yield results, given in Table 16.1, that are fairly accurate as well as consistent with
those obtained in [76].

The American and European put option prices, together with the payoff function
for the put option, are shown in Figure 16.4(a) and are seen to be consistent with
the discussions in [59]; in particular, note that the American put option is always
more expensive than the European put option, as indeed it must be since it has more
choice; furthermore, the American put option, for small values of the stock price
S, has the same slope as the payoff function, hence smoothly joining it.

From [59], the inequalities obeyed by the price of American call and put options
C and P respectively, on a stock with stock price S, strike price K , and maturing
at future time T , are given by the following

S −K ≤ C − P ≤ S − e−rT K (16.12)

The put–call inequality for American option of a stock is seen in Figure 16.4(b) to
hold for the numerical option prices.

All the basic features of the algorithm for pricing an American equity put option
appear in the more complex algorithm required for pricing the American coupon
bond and interest rate options.
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Figure 16.4 (a) Price of theAmerican stock option (dashed line) versus stock price
S; the unbroken line is the payoff function and the dotted line is the European
option price. (b) Put–call inequality for the American stock option. Unbroken line
is C − P , dashed line is S −K, and dotted line is S − e−rτK .

16.3 American caplet and coupon bond options

In the numerical studies of both the caplets and coupon bond options, for simplicity,
only options that mature when the instrument becomes operational are studied.2

To define the numerical algorithm the time interval [t0, t∗] is discretized; note
t0 = 0 and t∗ = Mε. Define remaining lattice time by τm = t∗ − (m − 1)ε =
(M − m + 1)ε, m = 1, 2, . . . ,M + 1, where t1 = t∗ = Mε; present time t0 = 0
yields for lattice time τM+1 = 0. In other words, the option can only be exercised
at time t1 = Mε, t2 = Mε − ε, t3 = Mε − 2ε, . . . , tM = Mε − (M − 1)ε = ε.
The numerical algorithm recurses ‘forward’ in remaining time with τ1 → τ2 . . . →
τm, . . . , τM+1.

Let C(τm, t∗) denote the price of both caplet and coupon bond American
option.3 Choose the forward measure with numeraireB(τm, t∗), for which g(τm) =
C(τm, t∗)/B(τm, t∗) is a martingale. The trial value of the American option at later
remaining time τm+1, denoted by g̃(τm+1), is given from the option price at time
τm by the martingale property, which from Eq. (3.8), yields the following

g̃(τm+1) = E

[
C(τm, t∗)
B(τm, tm)

]
= E[g(τm)] (16.13)

The tilde in g̃(τm+1) denotes the initial trial value of the American option at
τm+1. The trial option price is compared with the payoff function (divided by

2 Midcurve options are widely traded in the market. All the numerical procedures developed in this chapter can
be generalized in a straightforward manner to the midcurve case.

3 Since the caplet matures at T = t∗, the third argument in caplet(τi , t∗, T ) is suppressed.
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the appropriate numeraire) and yields the actual value of the option at time τm+1,
which is equal to the maximum of the two [59].

From Eq. (16.13) it can be seen that in all computations, the quantity g(τm) is
always equal to the option price C(τm, t∗) divided by the numeraire B(τm, t∗). For
the American option, the trial option price needs to be compared with the payoff,
with the greater value being retained. Hence, the payoff at intermediate time –
between maturity and present time – needs to be defined. At intermediate time τm,
the scaled payoff is defined by dividing the payoff by the numeraire, to match a
similar division in defining g(τm). All zero coupon bond prices in the payoff are
replaced by the forward bond prices at time τm, as is required for the American
option.

16.3.1 Caplet

Consider an interest rate caplet that matures at t∗ and caps the interest rate atK for
the period T to T + 	.4 The payoff of the caplet, from Eq. (9.32) is given in terms
of f (t , x), by

Ṽ B(t∗, T )
[
X − F(t∗, T , T + 	)

]
+ (16.14)

where

X = 1
1 + 	K

; Ṽ = (1 + 	K)V ; F(t∗, T , T + 	) = exp
{
−
∫ T+	

T

dxf (t∗, x)
}

Figure 16.5 shows the forward interest rates that define the caplet payoff function
at different times t∗, ti , t0. For the caplet the scaled payoff at remaining time τm is
given by

Ṽ
F (τm, t∗, T ) [X − F(τm, T , T + 	)]+

B(τm, t∗)

The important point to note is that the form of the payoff does not change with
time. The discounting factor at time t∗ that appears in the payoff at maturity, namely
the bond price B(t∗, T ), is changed into the forward bond F(τm, t∗, T ) as one
moves to an intermediate time τm, as shown in Figure 16.5; there is no additional
discounting factor. The American option price at time τi+1 is equal to the maximum

4 In the numerical study, only the special case of T = t∗, will be considered; for now, the midcurve caplet is
analyzed as the formulas are more transparent.
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Figure 16.5 Ṽ F [τi , t∗, T )(X − F(τi , T , T + 	)]+/B(τi , t∗): the scaled payoff
function for the caplet at intermediate time ti ∈ [t0, t∗].

of the initial trial option value gI (τm+1) and the payoff function at time τm+1; hence

C(τm+1, t∗)
B(τm+1, t∗)

= g(τm+1)

= Max
[
g̃(τm+1), Ṽ

F (τm+1, t∗, T ) [X − F(τm+1, T , T + 	)]+
B(τm+1, t∗)

]
(16.15)

Note from Eq. (16.15) that, in effect, the option priceC(τi+1, t∗) is being compared
with the payoff function Ṽ F (τi+1, t∗, T ) (X − F(τi+1, T , T + 	))+.

16.3.2 Coupon bond

The coupon bond payoff function, from Eq. (4.20), is given by

[
N∑
i=1

ciB(t∗, Ti)−K

]
+

The scaled coupon bond payoff, at time τi , is given by

[∑N
j=1 cjF (τi , t∗, Tj )−K

]
+

B(τi , t∗)

As is the case for the interest rate caplet, at intermediate time τm ∈ [t0, t∗] the bond
price B(t∗, Tj ) at time t∗, in the payoff function has been replaced, at time τm, by
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the forward bond price F(τm, t∗, Tj ). The American option price at time τm+1 is
given by

C(τi+1, t∗)
B(τm+1, t∗)

= g(τm+1)

= Max

[
g̃(τm+1),

[∑N
j=1 cjF (τm+1, t∗, Tj )−K

]
+

B(τm+1, t∗)

]
(16.16)

Note the important fact that for both the caplet and coupon bond, the payoff
function at each time τm is identical to the form of the payoff function at maturity
time t∗. In particular, the payoff function is scaled when it is compared with the trial
option price g̃(τm+1) and this results in the option price being directly compared
to the payoff function at intermediate time τm+1.

16.4 Forward interest rates: lattice theory

The quantum field theory of forward interest rates is defined on the trapezoidal
domain in the continuous xt plane, as shown in Figure 5.1. To obtain a numerical
algorithm, the xt plane is discretized into a lattice consisting of a finite number of
points. The calendar time direction, as mentioned earlier, is discretized into a lattice
with spacing ε and future time direction x is discretized into a lattice with spacing a.

Recall, from Eqs. (5.4) and (5.6), the stiff action for continuous calendar and
future time is given by5

S = −1
2

∫
dt

∫
dx

[(
∂f /∂t − α

σ

)2

+ 1
μ2

{
∂

∂x

(
∂f /∂t − α

σ

)}2

+ 1
λ4

{
∂2

∂x2

(
∂f /∂t − α

σ

)}2]
(16.17)

The time lattice is defined as discussed in Section 16.3, with t0 = 0. Future time,
similar to calendar time, is labeled running backwards, with the origin of future
time being placed at the payoff function. In other words, continuous calendar time
and future time labels (t , x) are discretized so that lattice remaining time is defined
by t∗ − t and lattice future remaining time is defined by T − x, where T is the
maturity time of the underlying instrument. For the caplet, maturity time is when
the interest cap becomes operational, whereas for the coupon bond it is the time of
the last coupon payment, which is also the time of the principal’s payment.

5 Market time is not considered in this chapter since the focus is on developing numerical algorithms and not
applications to the financial markets.
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Figure 16.6 The axis labels t and x are calendar and future time, whereas labels τ
and x̃ are for remaining calendar and remaining future time. Forward interest rates
on the lattice, with each dot representing a forward interest rate f (t , x) → fmn;
an arrow indicates that a forward interest rate exp{fmn} connects lattice (mn)
to (m, n + 1). The lattice points take values in the range m = 1, 2, . . . ,M + 1
and n = 1, 2, . . . ,N + m. (a) Payoff function for a caplet. (b) Payoff for the
coupon bond.

Given the trapezoidal shape of the forward interest rates domain defined by x ≥ t

and plotted in Figure 16.6, the range of discretized xn depends on discretized time
τm. The calendar and future time lattice have spacing ε and a respectively. At
maturity time t∗, future time is taken to have N = (T − t∗)/a number of lattice
points – corresponding to N forward interest rates that define the payoff function.

Hence, for t ∈ [0, t∗], the discretized calendar and future time are given by6

t → τm = [M −m+ 1]ε; m = 1, 2, . . . ,M + 1

⇒ 0 ≤ τm ≤ Mε; τ1 = t∗ = Mε; τM+1 = 0

τm : x → x̃n = mε + [N − n+ 1]a; n = 1, 2, . . . ,N +m

a ≤ x̃n ≤ (N +m)a; T − t∗ = Na (16.18)

The total number of lattice sites is equal to N(M + 1)+M(M + 1)/2; for most
numerical calculations one usually takes ε = a.

Note the payoff is placed at remaining calendar time τ1 = t∗, which implies
from Eq. (16.18) that m = 1; the payoff is always placed at remaining future time
x̃N+m = a. Figures 16.6(a) and 16.6(b) show the lattice on which the forward
interest rates and the payoff for the caplet and coupon bond are defined.

To define the lattice theory, one needs to rescale the field f (t , x) and all the
parameters so that only dimensionless quantities appear in the lattice action. Define

6 A more accurate notation is x → x̃n(m) since the range of x̃n(m) depends onm. However, to avoid cumbersome
notation, the index m is assumed for x̃n.



16.4 Forward interest rates: lattice theory 377

the following dimensionless lattice quantities

fmn = af (τm, x̃n) = af
([M −m+ 1]ε,Mε + [N − n+ 1]a)

α̃mn = aεα(τm, x̃n); smn = √
εaσ (τm, x̃n)

μ̃ = aμ; λ̃ = aλ

The dimensionless quantum field variables fmn yield the following discretizations

f (t , x)
∂t

� 1
aε
(fm,n − fm+1,n) ≡ 1

aε
δtfmn

f (t , x)
∂x

� 1
a2 (fm,n − fm,n+1) ≡ 1

a2 δxfmn

Thus, from Eq. (16.17), one obtains the following lattice action S, expressed
completely in terms of dimensionless field variables and parameters

SL = −1
2

∑
m,n

[(
δtf − α̃

smn

)2

+ 1
μ̃2

(
δx

(
δtf − α̃

smn

))2

+ 1

λ̃4

(
δ2
x

(
δtf − α̃

smn

))2
]

(16.19)

Doing an integration by parts, the action in Eq. (16.19) yields

SL = −1
2

M+1∑
m=1

N+m∑
n=1

(
δtf − α̃

s

)
mn

D̃−1
m,nn′

(
δtf − α̃

s

)
mn′

(16.20)

where D̃−1
m,nn′ is the dimensionless inverse of the propagagtor with dimension-

less parameters μ̃, λ̃. The dimensionless lattice Lagrangian is given from S by the
following

SL =
M+1∑
m=1

L[fm+1; fm]

L[fm+1; fm] = −1
2

N+m∑
n,n′=1

(
δtf − α̃

s

)
mn

D̃−1
m,nn′

(
δtf − α̃

s

)
mn′

(16.21)

where fm = (fm1, fm2, . . . , fm,N+m). Note the number of components of the
forward interest rate vector fm depends on the time lattice m and has N + m-
components; the reason being that forward interest rates are defined for all x ≥ t ,
which on the lattice implies that the number of forward interest rates depends on τm.
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The functional integral is discretized and yields the lattice field theory of forward
interest rates with the following lattice partition function ZL

Z =
∫
DfeS → ZL = Ñ

M+1∏
m=1

N+m∏
n=1

∫ +∞

−∞
dfmne

SL (16.22)

Ñ is a normalization constant.

16.5 American option: recursion equation

For the sake of concreteness, the recursion equation for the caplet American option
is discussed in the framework of the lattice theory; the analysis carries over without
any change to the coupon bond case.

The payoff function of the caplet in Eq. (16.14) is defined for discretized time;
at maturity time t∗, the discretized caplet is denoted by C1 ≡ C(t∗, t∗, T ). From
Eq. (16.18), the convention being used for remaining future lattice time is that for
all τm, the last payment of the payoff is given by T → x̃1, that is the minimum value
of the future lattice index x̃n; hence, the zero coupon bond in the payoff function
is given by

B(t∗, T ) � B(τm, x̃1) ≡ B(τm, 1) = exp

{
−
N+m∑
n=1

fmn

}
(16.23)

For simplicity and because Libor data are given only on a future time lattice with
spacing 	, one takes a = 	. On the lattice, Libor is given by

1 + 	L(t , T ) � 1 + 	L(τm, x̃1) = exp
{
	

a
fm1

}
= exp{fm1}

Hence

caplet(t∗, t∗, T ) = Ṽ B(t∗, T )(X − F∗)+ ≡ C1

⇒ C1 = Ṽ exp

⎧⎨⎩−
N+1∑
j=1

f1j

⎫⎬⎭ (X − e−f11)+ (16.24)

= C1(f11, f12, . . . , f1,N+1) ≡ C1(f1)

The payoff function is evolved backwards in time to obtain the price of the option
from the payoff function. To illustrate the general procedure, consider the first step
backwards; one starts from the payoff function at time t∗ = τ1 and finds the value
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of the option at time τ2 by recursing backwards. Since remaining calendar time
runs in the opposite direction of calendar time, the index of remaining (lattice)
calendar time increases as one goes backwards in calendar time. In taking one step
backwards in calendar time, the number of independent forward interest rates on
the lattice increases by one forward interest rate as follows

fm → fm+1

(fm,1, fm,2, . . . , fm,N+m) → (fm+1,1, fm+1,2, . . . , fm+1,N+m+1)

Hence the option price evolves in the following manner

C(fm) = Cm(fm,1, fm,2, . . . , fm,N+m)
→ C(fm+1) = Cm+1(fm+1,1, fm+1,2, . . . , fm+1,N+m+1)

The expression N exp{L[fi+1, fi]} is the pricing kernel for the forward interest
rates, analogous to the pricing kernel for the (simpler) case of equity given in
Eq. (16.3). The pricing kernel yields, similar to Eq. (16.6) for equity options, the
option price Ci+1(fi+1) at earlier time τi+1 from option price Ci(fi ) by taking one
step backward in time, and generates the initial trial value for the option C̃i+1(fi+1).
From the results derived in Section 15.11 and, in particular, applying Eq. (15.77)
to an infinitesimal time step, yields the following

C̃m+1(fm+1)

B(τm+1, 1)
=
∫
dfm〈fm+1|e−εH |fm〉Cm(fm)

Bm,1

= N
∫
dfm eL[fm+1,fm] Cm(fm)

B(τm, 1)
(16.25)

= N
[
N+m∏
n=1

∫ +∞

−∞
dfmn

]
Cm(fm)
B(τm, 1)

× exp

⎛⎝−1
2

N+m∑
jk=1

(
fm,j − f̄m+1,j

smj

)
D̃−1
m;jk

(
fmk − f̄m+1,k

smk

)⎞⎠ (16.26)

with

f̄m+1,n ≡ fm+1,n + α̃m+1,n; B(τm, 1) = exp

{
−
N+m∑
n=1

fmn

}
(16.27)

Note D̃−1
m;jk is the lattice approximation of the continuum propagator and B(τm, 1)

has been defined in Eq. (16.23).
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The American option price at time τm+1, from Eq. (16.16) is given by

C(τi+1, 1)
B(τm+1, 1)

= Max

[
C̃m+1(fm+1)

B(τm+1, 1)
,

[∑N
j=1 cjF (τm+1, 1, x̃j )−K

]
+

B(τm+1, 1)

]

Similar to the case of an American option for an equity discussed in Section 16.2,
the interest rate’s dimensionless volatility smn is quite small, that is smn � 0. Hence
in the fij integrations given in Eq. (16.26), the path integral will be dominated by
values fij that are close to f̄i+1,j = fi+1,j + α̃i+1,j . The most accurate way for
evaluating the functional integral in Eq. (16.26) is to Taylor expand the function
gm = Cm/Bτm,1 about f̄m+1 = (f̄m+1,1, . . . , f̄m+1,N+m+1) and yields, for ḡm ≡
gm(f̄m+1), the following

gm = ḡm +
N+m∑
n=1

(fmn − f̄m+1,n)
∂ḡm

∂fmn

+ 1
2

N+m∑
jk=1

∂2ḡm

∂fmj∂fmk
(fmj − f̄m+1,j )(fmk − f̄m+1,k)+ . . .

The Gaussian integrations over the forward interest rates fij are carried out using
the following results

N
N+i∏
n=1

∫ +∞

−∞
dfmne

L[fi+1,fi ] = 1;
N+i∏
n=1

∫ +∞

−∞
dfmn e

L[fi+1,fi ](fij − f̄i+1,j ) = 0

N
N+i∏
n=1

∫ +∞

−∞
dfmne

L[fi+1,fi ](fij − f̄i+1,j )(fik − f̄i+1,k) = sij D̃i;jksik (16.28)

Hence, Eqs. (16.26) and (16.28) yield the result that

C̃m+1 = Bm+1,1

⎡⎣ḡm + 1
2

N+m∑
jk=1

∂2ḡm

∂fmj∂fmk
smjD̃m;jksmk

⎤⎦+ . . . (16.29)

Recall that gm = gm[fm] depends on the vector fm = (fm,1, fm,2, . . . , fm,N+m).
The value of ḡm = ḡm[f̄m+1,n] depends on the entire forward interest rate tree
at time τm+1. Since gm[fm] is being differentiated with respect to only two of
the components, namely fmj , fmk, only these (two) components will be explicitly
indicated, with the rest of the components in gm[fm] being suppressed.

The second derivative ofgi is numerically estimated using the symmetric second-
order difference. Thefis are discretized with spacing δ, which is taken to beO(s), as
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dictated by the Lagrangian in Eq. (16.26). The symmetric second-order derivative,
using

δ
j
+g(fm) = 1

δ
[g(fmj + δ)− g(fm)]

δ
j
−g(fm) = 1

δ
[g(fm)− g(fmj − δ)]

yields the following discretization

∂2ḡm

∂fmj∂fmk
≡ ∂2gm

∂fmj∂fmk
|fmn=f̄m+1,n

= 1
2
(δ
j
−δk+ + δk+δ

j
−)gi |fmn=f̄m+1,n

= 1
2δ2

[
gm(f̄m+1,j + δ, f̄m+1,k)− 2gm(f̄m+1,j , f̄m+1,k)

− gi(f̄m+1,j + δ, f̄m+1,k − δ)+ g(f̄m+1,j , f̄m+1,k − δ)

+ g(f̄m+1,j , f̄m+1,k + δ)− gm(f̄m+1,j − δ, f̄m+1,k + δ)

+ gi(f̄m+1,j − δ, f̄m+1,k)
]

(16.30)

Figure 16.7(a) is a graphical representation of the seven terms required for the
computation of ∂2ḡm/∂fmj∂fmk . Figure 16.7(b) gives a planar cross-section of the
points on the forward interest rate tree.

To evaluate ∂2ḡm/∂fmj∂fik , one needs to know the values of gm at the points
fmj = f̄m+1,j , for all fmj , j = 1, 2, . . . ,N + m. Moreover, as required by
Eq. (16.30), the forward interest rate tree at time τm+1 must also contain the follow-
ing three points, namely f̄m+1,j , f̄m+1,j ± δ. This feature of the recursion equation

(a) (b)

Figure 16.7 Calendar time increases upwards and future time increases to the
right; the greater the future time, the longer it takes for the tree to terminate. (a)
Tree structures for the forward interest rates fmn. Each initial value of the initial
forward interest rates evolves as an independent tree, as indicated in the diagram.
Each point on the tree is the source of a new set of points. (b) A view of the planar
points of the trees of points.
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is a reflection of a similar property for the case of the American option for equity
as in Eq. (16.10) and shown in Figure 16.3.

The price of the European option for caplets and coupon bonds can be obtained by
repeating the backward recursion up to the present time. In Sections 16.8 and 16.9
the numerical price of the European option will be compared with the approximate
results obtained from the same algorithm as the American option, so as to assess
the accuracy of the algorithm. For the American option, one needs to perform, for
each step up to the present time, a comparison of the trial option price with the
payoff as given in Eqs. (16.15) and (16.16).

16.6 Forward interest rates: tree structure

To minimize the computational complexity and the time of execution, it is manda-
tory to limit, as far as possible, the number of possible forward interest rates for
which the option price is computed.

The definition of the martingale of the forward numeraire yields the following
drift

α(t , x) = σ(t , x)
∫ x

Tp

dx′D(x, x′; t)σ (t , x′); Tp ≤ x < Tp + 	

For the American option, future time is discretized as x = na and Libor interval
a = 	; hence Tp = p	 = pa lies on the future time lattice with xp = Tp. This in
turn, from the above equation, yields as in Eq. (9.15)

α(t , xn) = 0; xn = Tn (16.31)

There is no drift for the lattice on which the American option is being computed.
In fact, this simplification is the main reason for taking a = 	.

The option price is fixed by, among other parameters, the initial forward interest
rate curve f (t0, x). The option price for only those intermediate (virtual) values of
the forward interest rates need to be considered that contribute to the final option
price. For a given initial forward interest rate curve, what this means is that the
option price needs to be evaluated only for those values of the forward interest
rates that lie on the forward interest rate tree [also called a grid], similar to the tree
for equity given in Figure 16.3.

In order to ascertain the forward interest rates grid, it is necessary to start from the
initial forward interest rate curve, which from Eq. (16.18) is given by f (t0, x) →
fM+1,n, where n = 1, 2, . . . ,N + M + 1. Similar to the case for the American
equity option discussed in Section 16.2, each initial value of the forward interest
rates generates an independent tree. Recall that, starting from the initial forward
interest rates fM+1,n, to reach the forward interest rates at calendar time m, with
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forward interest rates fmn, one needs to takeM+1−m steps. Hence the numerical
values of the forward interest rates on the forward interest rate tree is given by

f kmn
.= fM+1,n + kδ, −(M + 1 −m) ≤ k ≤ +(M + 1 −m) (16.32)

At lattice timem the forward interest rate tree has 2(M+1−m)+1 = 2(M−m)+3
number of values for fmn, centered on the initial forward interest rate fM+1,n. The
spacing of the tree is taken to have a fixed value δ, which is ofO(s). A fixed value
of δ is required to obtain a re-combining tree; conversely, if δ is taken to vary with
time, one gets a dense tree with exponentially more points than the recombining
tree [65].

The same result as given in Eq. (16.32) is obtained if one recurses backwards
from the payoff at calendar time t∗ to the initial forward interest rates at t0. The
reason being that for zero drift, that is α(t , x) = 0, one has from Eq. (16.30) that
the values of the function gm at the values of the forward interest rates on the grid
fmn, fm+1,n, fm+1,n ± δ are required to obtain the value of gm+1; if one recurses
backwardsM + 1 −m times, one hits the initial forward interest rate curve and in
effect obtains the result given in Eq. (16.32).

The forward interest rate tree is illustrated in Figure 16.7. Compared with the
tree for equity given in Figure 16.3, the forward interest rate at a lattice point (with
fixed time t and future time x) has been expanded into a tree structure in a direction
orthogonal to the xt lattice. The full forward interest rates simultaneously have
infinitely many tree structures and all these tree structures are correlated by the
action S given in Eq. (16.19).

As one recurses backwards from the payoff function, at any intermediate time
the price of the option needs to determined for the forward interest rates only on the
grid points. From Eqs. (16.15), (16.16), and (16.30), the initial trial values g̃(τm)
that one needs are the option values from the previous step, with the values of the
forward interest rates taken only from the tree structure for lattice time τm.

16.7 American option: numerical algorithm

Given the initial forward interest rates, the tree structure from Section 16.6 can be
formed and yields the grid of the forward interest rates up to the expiration date
of the option. To get the option price today, one starts from expiration time t∗ and
evolves backwards in calendar time. All computations are carried out using the
lattice theory given in Eq. (16.22).7

Lattice points are labeled by i, j with i labeling calendar time and j labeling
future time. Maturity time t∗ is labeled by τ1, that is i = 1, as shown in Figure 16.6.

7 Note that t0 = 0.
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The scaled payoff function g1 is, in general, a function of all forward interest rates
f1j with future time taking N + 1 values, as shown in Figure 16.6, being labeled
as j = 1, 2, . . . ,N + 1. Thus, g1, which depends on N + 1 forward interest rates,
can be represented as g1 = g1(f11, . . . , f1i , . . . , f1,N+1).

Since the step size ε is fixed, the total number of backwards steps in time M =
t∗/ε is consequently fixed. At remaining calendar time τm the number of tree points
for each forward interest rate is given by 2(M − (m− 1))+ 1 = 2(M −m) + 3;
there are N +m number of independent forward interest rates. Since each forward
interest rate tree has 2(M −m)+ 3 points, this leads to the total number of points
of the tree at timem being given by (2(M−m)+3)N+m. The tree is organized into
a multidimensional array,8 with option price g[2(M −m)+ 3]N+i , being a N + i

dimensional array with each index running from 1, 2, . . . , 2(M −m)+ 3.
The size of the multidimensional array for realistic cases can be very big, requir-

ing a large amount of computer memory and leading to codes for the American
option that are inefficient. In order to develop an efficient algorithm the multidi-
mensional array is mapped into a vector array with a length of (2(M− i)+ 3)N+i .
The multidimensional matrix representation of the tree has some advantages since
the index of each forward interest rate is presented explicitly. Hence in the recursive
steps required for evaluating Eqs. (16.15), (16.16), and (16.30), the matrix repre-
sentation is the most transparent way of keeping track of the grid points from the
previous step that are required for deriving the trial option price for the present step.

To go from the matrix representation to the vector array one needs an algorithm
for mapping the indices of the matrix to the index of the vector array; in particular,
the multidimensional matrix array g[jN+i ] . . . [jp] . . . [j2][j1] needs to be mapped
into a vector array g[j ]. For time i let the matrix indices [jN+i] . . . [jp] . . . [j2][j1]
be assigned specific numerical values; the corresponding vector index j is given
by the following mapping.

g[jN+i ] . . . [jp] . . . [j2][j1] = g[j ]
with the mapping of the multi-dimensional indices to the integer j given by

[jN+i] . . . [jp] . . . [j2][j1] → j =
N+i∑
p=1

(jp − 1)[2(M − (i − 1))+ 1]p−1

(16.33)

One should note that the matrix representation is never used in writing the codes for
this algorithm. The vector array is used for avoiding the use of the multidimensional

8 g[M]N ≡ g [M][M] . . . [M]︸ ︷︷ ︸
N

.
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matrix; the indices of the matrix are only needed as an intermediate step to address
grid points in the recursion process.

To find the matrix indices, in particular those that are nearest neighbor and
next nearest neighbor as required in evaluating Eq. (16.30), one needs the inverse
mapping from the vector array index to matrix indices, which is given by the fol-
lowing. The notation being used is that the vector index j is recursively updated to
j (1), j(2), . . . , j(p), . . . , j(N+i); recall the notation j1, j2, . . . , jp, . . . , jN+i are the
indices labeling the multidimensional matrix. The inverse mapping is composed
of a two-step algorithm, with the matrix index jp being determined and the vector
index j being updated to j(p).

More precisely, the following is the mapping.

g[j ] → g[jN+i ] . . . [jp] . . . [j2][j1]

Using modular arithmetic for carrying out the mapping from a one-dimensional
vector array to the matrix indices yields the following{

jN+m = Integer[(j − 1)/(2(M −m)+ 3)N+m−1] + 1
j(1) = j − Integer[j/(2(M −m)+ 3)N+m−1]
...{
jp = Integer[(j (p−1) − 1)/(2(M −m)+ 3)p−1] + 1
j(p) = j(p−1) − Integer[j(p−1)/(2(M −m)+ 3)p−1]
...{
j1 = j(N+m−1)

j (N+m) = j(N+m−1) − j(N+m−1) = 0
(16.34)

Note the inverse mapping stops after N +m steps, as indeed it must as this is the
total number of forward interest rates at calendar time m. The inverse map returns
all theN +m indices jp of the matrix representation g[jN+m] . . . [j2][j1] from the
vector index j of the vector array g[j ].

In summary, at step m, the values of American option prices are evaluated and
stored in a vector array gm[(2(M−m)+3)N+m]. Evolving one step from τm to τm+1,
in order to evaluate the trial value of gm+1[j ], one needs to first map the vector index
j to matrix indices jp, p = 1, 2, . . . ,N +m using Eq. (16.34). The matrix indices
are needed for tracking those option prices at step m that are required for deriving
gm+1[j ] on the grid points. Then, one reverts back to the vector array index from
these matrix indices by Eq. (16.33), and, furthermore, we obtain the corresponding
option values at stepm. The recursion process in Eqs. (16.15), (16.16), and (16.30)
is then performed to obtain the trial value of gm+1[j ].
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Completing one recursion step results in trial values gI [2(M − m) + 3]N+m
for the (m + 1)th step. The grid points are dynamic in nature since one more
forward interest rate, namely fm+1,N+m+1, has to be added at the (m+ 1)th step,
as shown in Figure 16.6. The dimension of the matrix of trial values has to be
increased from N + m to N + m + 1 dimensions, that is g[jN+m] . . . [j1] →
g[jN+m+1][jN+m] . . . [j1]. The new forward interest rate does not directly influence
the option values, but enters only through the scaling function B(τm+1, 1).

The expanded matrix has to be assigned numerical values for the new index
jN+m+1 in the range of 1 to 2(M − ((m+ 1)− 1))+ 1 = 2(M −m)+ 1. The way
this is done is to make the values of the expanded matrix independent of the new
forward interest rate; in other words, the following assignment is made for the initial
trial option price

g[jN+m+1][jN+m] . . . [j1] ≡ g[jN+m] . . . [j1]
1 ≤ jN+m+1 ≤ 2(M −m)+ 1 (16.35)

For vector array representation, j now takes additional values from [2(M − m)

+ 1]N+m + 1 to [2(M −m)+ 1]N+m+1. The option values of the vector array for
the new values of j , similar to Eq. (16.35), are made independent of the new value
of j ; hence

g[j ] ≡ g[j − [2(M −m)+ 1]N+m]
where [2(M −m)+ 1]N+m + 1 ≤ j ≤ [2(M −m)+ 1]N+m+1 (16.36)

The mapping in Eq. (16.36), in going from the left-hand to the right-hand side
of the equation, shifts, by a constant, the argument of the new index j and thus
brings it back into the old range; as j runs through the (additional) new values, the
expanded vector takes values from the old array that are a constant shift from the
new values of j . It can be seen by inspection that Eq. (16.36) assigns values to
the expanded vector array consistent with the labeling of the new matrix elements
given in Eq. (16.35).

The trial option value is compared with the payoff value at the (m + 1)th step.
The final value of g[jN+m+1][jN+m] . . . [j1] at the (m+ 1)th step is the higher of
the two values, which is the American option at the grid points.

The price of the American option at present time is obtained by repeating the
recursion until m = M + 1. The European option price is given by the same
algorithm, but without making the comparison with the payoff value at each step
of the recursion.
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To start the numerical algorithm, the initial forward interest rates and all the
parameters in the lattice Lagrangian have to be specified. The numerical algorithm
is given as follows:

• Input initial forward interest rate curve and parameters.
• Generate the payoff for maturity time i = 1 and store, for European andAmerican options,

in the vector arraysGeold and Gaold , respectively.
• For i = 2 to M + 1

1 Recurse one step back from Geold and Gaold to get trial values Genew and Ganew
using Eqs. (16.15), (16.16), and (16.30).

2 Expand Genew and Ganew from N + i − 1 to N + i dimension so as to address the
dynamics of the grid using Eq. (16.36).

3 Compute the payoff value at step i without discounting and store the result in Gaold .
4 CompareGaold withGanew and store the larger one inGaold . Replace values inGeold

with values in Genew .
5 End for.

Option values are assigned to a vector array for each point in the forward interest
rate grid. The length of the vector array can be very large, and frequently addressing
the elements of the array may cause problems of over the stack or even give wrong
values. However, programming languages, in particular C++, have a feature of
dynamically addressing the location of the vector array, which helps to avoid these
problems.

Note that the first-order term of the recursion contributes significantly to the
final value. Furthermore, the drift in forward bond measure is zero at three monthly
lattice of points. The tree structure has to be wide enough to include information
about the changes in the value of the forward interest rates. One has the freedom
to increase the width of the tree by setting the pre-factor of δ = O(s). Since σ is
the volatility for a daily change of the forward interest rate, to obtain the lattice
volatility s the real days in each step must be multiplied into σ .

The above numerical algorithm yields, for both the American option and the
European option, the price for only one value of the initial forward interest rates.
In order to get values for a time series or values depending on different values of
the various parameters, the entire algorithm needs to be repeated.9

9 The European option price is always evaluated (at the same time as the American option) for carrying out
consistency checks on the numerical results.
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16.8 American caplet: numerical results

A caplet on Libor and maturing when the caplet becomes operational is analyzed.
The initial forward interest rates as well as the volatility function are taken from
the Libor market; the propagator D̃m,jk is assigned numerical values taken from
caplet data.10 For simplicity, take the time lattice ε = 3 months. The present time
for the caplet is taken to be from 12 September 2003 to 7 May 2004, with maturity
at fixed time on 12 December 2004. The American option on the caplet is allowed
early exercise at only five fixed times.

ForM time steps andN+1 forward interest rates in the first step, at stepm there
are Q = (2(M −m) + 3)N+m option prices that need to be determined. The total
number of option prices for the whole algorithm isO = ∑M+1

m=1 (2(M−m)+3)N+m.
Thus for a caplet at 12 September 2003, N = 0 and M = 5 (since M = t∗/ε
and ε = 3 months), the number of option prices that need to be determined is
O = 1, 304. The total number of option prices O increases rapidly with increasing
M , with O = 14, 758, 719 for M = 10.

The caplet tree of the (relevant) forward interest rates is built with δ = 2s; all
computations are carried out only for the values of the forward interest rates taking
values in the tree. Caplet volatility is taken from the market by moving average on
the historical data, and at 12 September 2003 is given in Figure 10.2.

In Chapter 10, the daily prices, from 12 September 2003 to 7 May 2004 of a
caplet (option on Eurodollar futures contracts) expiring on 13 December 2004 with
a strike price of $98, were computed. The same instrument is studied numerically
using the lattice theory of bond forward interest rates [19].

Both European andAmerican caplets are numerically computed.The linear caplet
price, given in Eq. (9.36), as well as the numerical algorithm for the American
option are derived from the same model of bond forward interest rates. Hence, the
analytical expression for the linear European caplet price is used for checking the
accuracy of the numerical algorithm.

The American option can be exercised at any time before its expiry day. In
principle, one should make the time step ε very small and hence M very big;
however, doing so would require a huge memory and a very long time to run the
program since the possible option values Q for each step would be very large. In
Figure 16.8(a) the numerical results of caplet price are shown, and it is seen that
the numerical results are quite accurate even for a large value of ε = 3 months; for
this value of ε the program generates 167 daily prices by running for less than two
seconds on a desktop. The floorlet numerical price is shown in Figure 16.8(b).

10 Market data are used for pricing caplets to illustrate the empirical application of the numerical algorithm for
evaluating the American option.
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Figure 16.8 (a) American and European caplet prices for fixed maturity at 12
December 2004 versus time t0 (12 September 2003–7 May 2004). European caplet
prices are from the linear caplet formula and the numerical algorithm. The normal-
ized root mean square error for the European caplet price between the numerical
value and formula is 7.3%. (b) American and European floorlet prices for fixed
maturity at 12 December 2004 versus time t0 (12 September 2003–7 May 2004)
(European floorlet from formula and algorithm). The normalized root mean square
error of the European floorlet price from numerical algorithm and formula for
floorlet is 8.8%.

Besides accuracy, the numerical results need to be consistent with the general
properties of the various options. In particular, the American caplet (put option)
must always be more expensive than the European caplet since the American option
includes the European option as a special case; however, the American floorlet (call
option), in the absence of a dividend, is always equal to the European floorlet [65].

The normalized difference between American and European caplet and floorlet
options is shown in Figure 16.9(a). The results are seen to be consistent with the
general properties of theAmerican and European options; the normalized difference
between the American and European caplet is strictly positive, showing that the
American caplet is always more expensive than the European caplet; however, the
gap between theAmerican and European floorlet can have negative values, showing
that, within the accuracy of the numerical algorithm, their difference is zero.

Although the interval for the time steps ε is set equal to three months, one can
always decrease this interval to get more accurate results. The American option is
more expensive on decreasing the interval ε since one needs to pay more to have
an option that can be exercised on more occasions before the expiry date.

One can consider the American option being exercised at fixed instants of time as
a Bermudan option. A Bermudan option can be exercised at a number of pre-fixed
times and is equal to a basket of European options, with the difference that once the
Bermudan option is exercised, all the remaining European options become invalid.
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Figure 16.9 (a) The (%) normalized difference between the American and Euro-
pean options for both caplet (unbroken line) and floorlet (dotted line) versus time
t0 (12 September 2003–7 May 2004). Within the numerical accuracy of the com-
putation, the European and American floorlet prices are equal, whereas the caplet
prices for the European case are always less than the American case, as expected.
(b) Caplet prices versus time t0 for the European and American options, with four
and seven possible exercise times. As required by no-arbitrage, the options with
more possible exercise times have higher prices.

A Bermudan option is always cheaper than an American option but more expensive
than a European option. Some numerical results for the European, Bermudan, and
American caplets are shown in Figure 16.9(b), and are seen to be consistent with
the general requirement for these options.

Put–call parity for the European caplet and floorlet are given by Eq. (4.16) as
follows

caplet(t0, t∗)− f loorlet(t0, t∗) = 	VB(t0, t∗ + 	)[L(t0, t∗)−K] (16.37)

The third argument T , indicating when the caplet becomes operational, is sup-
pressed since the numerical algorithm only studies the price of a caplet and floorlet
for t∗ = T . The result in Figure 16.10(a) verifies that put–call parity is valid for the
European option prices generated by the numerical algorithm.

16.9 Numerical results: American coupon bond option

Numerical results for the American coupon bond option are discussed. The main
focus of the study of the American coupon bond option is not empirical, but instead
is to develop efficient and accurate numerical algorithms. Given the complexity of
the instrument, a model is assumed for the volatility of the forward interest rates
as well as for the initial value of the forward interest rates. The numerical study
analyzes the accuracy of the algorithm.
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Figure 16.10 (a) Put–call parity for the European caplet and floorlet versus time
t0 (12 September 2003–7 May 2004). The unbroken line is caplet(t0, t∗) −
f loorlet(t0, t∗) and the dashed line is 	VB(t0, t∗ + 	)[L(t0, t∗) − K]; the graph
shows they are approximately equal, as required by put–call parity. The normal-
ized root mean square error is 3.2%. (b) Prices of a coupon bond American and
European put option with payoff function

[
K− 0.05B(1, 1.25)− 0.05B(1, 1.5)

]
+

versus strike price K; the dotted line is the American option, dashed line is the
European option from the algorithm, and the unbroken line is from the approxi-
mate formula. The normalized root mean square error between the numerical value
and the formula for the European option is 0.17%.

For the coupon bond American option, the forward interest rate tree is built with
the value of δ = 6s; this tree has more elements than the caplet due to the fact that
the coupon bond is composed of two zero coupon bonds.

The inital lattice forward interest rate is taken as below

fmn = f0(1 − e−λ(n−m)) (16.38)

where f0 is a pre-factor used to make the magnitude the same as the market forward
interest rates; let f0 = 0.1 and choose λ = 1 so that fmn is of the order of 10−2.

Following Bouchaud and Matacz [27], for θ = x − t , the volatility is taken
to have the following form (the parameters are fixed by historical forward interest
rate data)

σ(θ) = 0.00055 − 0.00026 exp(−0.71826(θ − θmin))

+ 0.0006(θ − θmin) exp(−0.71826(θ − θmin)) (16.39)

where θmin = 3 months. The volatility of the daily changes in the forward interest
rates is given from historical data by σ 2(t , θ) = 〈δf 2(t , θ)〉c, δf (t , θ) = f (t+1, θ)
− f (t , θ). Thus, in building the tree, where each step ε is three months, the
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actual number of days in three months has to be multiplied into σ(θ) to obtain
the dimensionless volatility smn.

From the definitions of the lattice variables θ = x − t → (N − n+m)ε. Since
the number of trading days in three months is 65 days and ε = a = 3/12 = 0.25
years, the dimensionless volatility for the case of the coupon bond option is given
by (θmin = ε)

smn = 65
√

0.25
√

0.25 σ(
√

0.25(N − n+m))

= 16.25
[
0.00055 − 0.00026 exp(−0.35913(N − n+m− 1),

+ 0.0003(N − n+m− 1) exp(−0.35913(N − n+m− 1))
]

The stiff propagator was used with parameters taken to have the following
values λ̃ = 1.790/year; μ̃ = 0.403/year; η = 0.34.

The numerical study considers c1B(t∗, 1/4)+ c2B(t∗, 1/2) as the coupon bond
option that matures in one year’s time, that is t∗ − t0 = t∗ = 1 year and the coupon
bond has a duration of six months with three-monthly coupons paid twice; the fixed
coupon rate is taken to be equal to c and the principal amount equal to 1. Thus the
put option payoff function at time t∗ = 1 year is given by

P(t∗) =
(
K −

2∑
i=1

ciB(t∗, Ti)

)
+

(16.40)

where T1 = 1.25 year, T2 = 1.5 year, c1 = c, and c2 = c+1. Taking the c = 0 limit
converts the coupon bond into a zero coupon bond. For this coupon bond option,
N = 2 and set M = 4; hence, the total number of option prices to be evaluated is
equal to O = 1, 293. This number increases more rapidly than for the caplet case,
and for M = 10 it reaches O = 118, 507, 277.

Comparing the numerical value of the European coupon bond option with the
approximate formula given in Eq. (11.39) provides a check on the numerical result.
The approximate formula is an expansion in the volatility of the forward interest
rates smn, and as long as this volatility is small, the numerical and approximate
results should agree.

For the coupon bond option that is being studied numerically the coefficient C2
is given by Eq. (11.32); the approximate price for the European coupon bond option
is given by Eq. (11.39) as follows

C2 =
2∑

ij=1

JiJj

[
Gij + 1

2
G2
ij

]
+O(G3

ij ) (16.41)

Note Ji = ciFi , with F1 = 0.982321 and F2 = 0.963426.
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Table 16.2 The correlatorsGij between different forward bond prices.

Gij i = 1 i = 2

j = 1 1.669 × 10−8 3.624 × 10−8

j = 2 3.624 × 10−8 7.924 × 10−8
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Figure 16.11 Prices of the American coupon bond (dotted line), which are always
greater than the European option, from approximate formula (unbroken line) and
algorithm (dashed line) are shown. (a) Payoff given by

[
1.3 − cB(1, 1.25) −

(c + 1)B(1, 1.5)
]
+ versus coupon rate c. The normalized root mean square error

between the numerical result and formula for the European option is 0.73%. (b)
Prices for a zero coupon bond with payoff

[
K−B(1, 1.5)

]
+ versus strike priceK .

The normalized root mean square error between the numerical value and formula
for the European option is 0.16%.

The numerical values for Gij , the correlator of the forward bond prices, are
computed using Eq. (11.28), with the results given in Table 16.2.

Numerical results for the American coupon bond option prices with changing
strike price K and coupon rate c are given in Figures 16.10(b) and 16.11(a). The
numerical value of the European coupon bond option is close to the approximate
formula given in Eq. (11.39). As required by consistency, the American put option
always has a higher price than the European put option. For completeness, the
special case of the American option on a zero coupon bond, obtained by setting
c = 0 in Eq. (16.40), is given in Figure 16.11(b) and shows all the features required
by the consistency of the option prices.

The algorithm has been checked for internal consistency by plotting the prices
of the American and European coupon bond put options against the coupon rate c
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Figure 16.12 (a) The coupon bond payoff function (unbroken line), the American
(dashed line), and European (dotted line) coupon bond put option prices versus
the underlying coupon bond value B(t0) = ∑2

i=1 ciB(t0, Ti). (b) Graph of the
put–call parity for numerical prices of the European coupon bond options versus
coupon rate. CE(t0, t∗,K) − PE(t0, t∗,K) is shown by the unbroken line and
B(t0) − KB(t0, t∗) by the dashed line. The normalized root mean square error
for put–call parity is 1.53%.

and B(t0). The price of the coupon bond at t0 is given by

B(t0) ≡
2∑
i=1

ciB(t0, Ti)

Figure 16.12(a) shows that the results are consistent with the general properties of
these options, with the price of the American option always being higher than the
European option; the American option joins the payoff with the same slope as the
payoff function for small coupon bond value B(t0); for large values of B(t0), as
expected [59], the American option tends to the European option.

Another check of the algorithm is the put–call parity for European coupon bond
options, which obeys the following equation

CE(t0, t∗,K)− PE(t0, t∗,K) = B(t0)−KB(t0, t∗) (16.42)

The numerical results in Figure 16.12(b) show that the numerical algorithm satisfies
put–call parity with a normalized root mean square error of 1.53%.

16.10 Put–call for American coupon bond option

In analogy with Eq. (16.42) and the inequalities for the case of equity given in
Eq. (16.12), one can consider the following inequalities for the case of American
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coupon bond put PA and call CA options

B(t0)−K ≤ CA(t0, t∗,K)− PA(t0, t∗,K) ≤ B(t0)− B(t0, t∗)K : incorrect

(16.43)

On plotting the three expressions in the above equation, as shown in Figure 16.13(a),
it is seen that the put–call inequalities are incorrect.

Instead of the above incorrect inequality, a conjecture is made that the American
coupon bond options satisfy the following modified inequalities. The coupon bond
value B(t0) at time t0 in Eq. (16.43) is replaced by the forward price of the payoff
function, namely F(t0) – the payoff function at time t0 – given by

F(t0) ≡
N∑
i=1

ciF (t0, t∗, Ti)

The following inequalities have been conjectured in [17]

F(t0)−K ≤ CA(t0, t∗,K)− PA(t0, t∗,K) ≤ F(t0)−KB(t0, t∗) (16.44)
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Figure 16.13 (a) Numerical result showing the incorrectness of put–call inequali-
ties for American coupon bond options. CA(t0, t∗,K)−PA(t0, t∗,K) is shown by
the unbroken line, B(t0) −K is shown by a dashed line, and B(t0) − B(t0, t∗)K
is shown by the dotted line. The dotted line crossing the unbroken line violates
the inequality given in Eq. (16.43). (b) Numerical result confirming the conjec-
tured put–call inequalities of the American coupon bond option. CA(t0, t∗,K) −
PA(t0, t∗,K) is shown by the unbroken line, F(t0) − K by the dashed line, and
F(t0)−KB(t0, t∗) by the dotted line. The fact that the lines do not cross verifies
the conjectured inequalities in Eq. (16.44).
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As shown in Figure 16.13(b), the numerical results show theAmerican coupon bond
options do, in fact, satisfy the conjectured inequalities. A no-arbitrage argument can
be shown to yield inequalities given in Eq. (16.44).

In analogy with the American coupon bond options, the following inequalities
were conjectured in for the American caplet and floorlet [17]

F(t0, t∗, t∗ + 	)[L(t0, t∗)−K] ≤ caplet(t0, t∗)− f loorlet(t0, t∗)
≤ F(t0, t∗, t∗ + 	)[L(t0, t∗)− B(t0, t∗)K] (16.45)

which can also be expressed as follows

caplet(t0, t∗)− f loorlet(t0, t∗)− F(t0, t∗, t∗ + 	)[L(t0, t∗)−K] ≥ 0

F(t0, t∗, t∗ + 	)[L(t0, t∗)− B(t0, t∗)K] − caplet(t0, t∗)− f loorlet(t0, t∗) ≥ 0

Figure 16.14(a) shows that the conjectured inequalities do, indeed, hold for the
numerical prices of the American caplet options.

The conjecture for the American caplet and floorlet is not as significant as the
one for the American coupon bond option since the numerical prices also satisfy
the inequalities that are similar to the equity inequalities in Eq. (16.12), namely

B(t0, t∗ + 	)[L(t0, t∗)−K] ≤ caplet(t0, t∗)− f loorlet(t0, t∗)
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Figure 16.14 From both the diagrams one can see that all the expressions are
positive, as is required for the two conjectured put–call inequalities to hold. (a)
caplet(t0, t∗) − f loorlet(t0, t∗) − F(t0, t∗, t∗ + 	)[L(t0, t∗) − K] is plotted as
the unbroken line and F(t0, t∗, t∗ + 	)[L(t0, t∗) − B(t0, t∗)K] − caplet(t0, t∗)
−f loorlet(t0, t∗) is shown by the dotted line. (b) caplet(t0, t∗)−f loorlet(t0, t∗)
− B(t0, t∗ + 	)[L(t0, t∗) − K] is plotted as the unbroken line and B(t0, t∗
+ 	)[L(t0, t∗) − B(t0, t∗)K] − caplet(t0, t∗) − f loorlet(t0, t∗) is shown by the
dotted line.
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≤ B(t0, t∗ + 	)[L(t0, t∗)− B(t0, t∗)K] (16.46)

The numerical results for the American caplet and floorlet show that they obey the
inequalities as shown in Figure 16.14(b).

16.11 Summary

The procedures that are presently widely used by practitioners for calculating
American coupon bond options are all based on the HJM model and use vari-
ants of the binomial tree to build the tree for the interest rates and coupon bonds;
the complexity of the tree in the HJM model is determined by how many factors
are driving the interest rates [63].

The approach of quantum finance for evaluatingAmerican (coupon bond) options
is radically different. One starts with the Hamiltonian and its pricing kernel, for
which a model is written from first principles. The payoff function for the American
option is propagated (backwards) on a time lattice using the pricing kernel. Prop-
agating the payoff an infinitesimal step backwards in calendar time requires the
Hamiltonian. Taking an infinitesimal time step entails numerically performing the
path integral, which generates the trial values of the American option on a tree
of forward interest rates. At each step, the trial American option value obtained is
compared with the payoff function.

The bond forward interest rates defined in Chapter 5 were the basis of all calcula-
tions; the simplicity of the Gaussian bond forward interest rates allowed the issues
linked to the path dependence of American options to be analyzed without addi-
tional complications that arise in studying options in the nonlinear Libor Market
Model. The (lattice) forward interest rates f (t , x) → fmn are directly involved in
the recursion equation. fmn cannot be replaced by a collection of white noise, as is
the case for the HJM model, or by the velocity quantum fieldA(t , x) – as this would
invalidate the entire numerical algorithm. The nontrivial correlations between the
changes in the forward interest rates, encoded in the propagator D̃m,jk, are eas-
ily incorporated into the recursion equation, as can be seen from Eq. (16.29). The
prices of the American option for caplets and coupons were shown to be consistent,
obeying all the constraints that follow from the principles of finance.

The comparison of the numerical values of the European caplet and coupon
bond options with the analytical linear caplet formula and the approximate coupon
bond option formula, respectively, showed that the numerical algorithm is not
very accurate for caplets but reaches an accuracy of 99% for the coupon bond
options. The numerical results provide an estimate of the accuracy of the volatility
perturbation expansion for the coupon bond option price.

The entire computation was carried out on a desktop computer and on a small
lattice of about 10 to 20 points; computing the option price for each set of parameters
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required only a few seconds of computation time. The crude approximations used
gave excellent results, showing the possibility of using such algorithms for practical
applications.

A conjecture for the put–call inequalities was made for the American coupon
bond option and caplet – based on the analysis of the numerical results. The fact
that these inequalities seem to hold quite robustly for the numerical results provides
evidence for the conjecture.

In conclusion, quantum finance provides a useful and practical framework for
developing and implementing efficient and accurate numerical algorithms for
pricing American interest rate and coupon bond options.



17
Hamiltonian derivation of coupon bond options

Coupon bond European and barrier options are studied in the Hamiltonian frame-
work of quantum finance. In this chapter, the bond forward interest rates’ state
space and Hamiltonian are used for calculating coupon bond barrier option price.
The bond forward interest rates f (t , x) are given by Eq. (5.1)

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x)

All the options studied in this chapter mature at a fixed future time t∗. The forward
bond numeraire B(t , t∗), is the most suitable choice; from Eqs. (9.3) and (15.45),
the forward bond numeraire yields the following drift

α(t , x) = σ(t , x)
∫ x

t∗
dx′D(x, x′; t)σ (t , x′)

For the forward bond numeraire, the price of option C(t0, t∗, T ,K) that matures at
t∗, from Eq. (3.8), is given by

C(t0, t∗, T ,K) = B(t0, t∗)E
[
P∗
]

(17.1)

where P∗ is the payoff function.
The coupon bond European and barrier options are calculated using the bond

evolution operator, which is the time integrated bond Hamiltonian discussed in
Section 15.12. The bond barrier option is encoded in the state space and eigen-
functions of the bond evolution operator. A calculation, using an overcomplete set
of bond eigenfunctions, yields an approximate price for the coupon bond barrier
option. Many derivations in this chapter hinge on some remarkable properties of
the Dirac-delta function.

399
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17.1 Introduction

The Hamiltonian framework for option pricing has been discussed in Chapter 15
and, in this chapter, this approach is extended to the (more complex) case of coupon
bond European and barrier options.

The double barrier option, discussed in Section 3.4, is ‘knocked out’ (terminated
with zero value) if the price of the underlying instrument exceeds or falls below
pre-set limits. It is shown that, in general, the constraint function for a coupon bond
barrier option can – to a good approximation – be linearized.

The volatility σ 2(t , x) of the bond forward interest rates f (t , x) is a small quan-
tity, of the order of 10−4/year. Hence, as discussed in Section 3.14,σ 2(t , x)provides
a small parameter for generating a volatility expansion for the coupon bond barrier
options. The volatility expansion is carried out only to O(σ 2) as this is sufficient
for developing the techniques that are required for carrying out a computation in
the Hamiltonian framework.1

The volatility perturbation expansion of the European and barrier option price
has the following steps.

• Obtaining the volatility expansion of the payoff function and option price.
• Finding the eigenfunctions of the bond evolution operator. The barrier option is realized

by imposing boundary conditions on the eigenfunctions of the bond evolution operator.
• Finding the coefficients for the perturbation expansion of the option price.

17.2 Coupon bond European option price

The European coupon bond option price is derived using the Hamiltonian formu-
lation as a warm-up exercise for the more complex derivation of the barrier option.
The price of the coupon bond European option has been obtained to O(σ 4) in
Chapter 11 using a Feynman perturbation expansion and provides a check for the
calculations of this section.

17.2.1 Volatility expansion

The European coupon bond option matures at t∗ with strike price K; its price at
earlier t0 is given by CE(t0, t∗, T ,K). The coupon bond payoff function P∗ is re-
written to isolate the leading term from terms that are higher order inO(σ). Similar

1 There is also an empirical basis for computing the option price only toO(σ 2). In Chapter 12, an empirical study
of the Libor market swaption price, retaining only the second-order O(σ 2) term of the expansion, showed that
the result has a root mean square error of less than 3%.
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to the perturbation expansion in Section 11.2, the zero coupon bond B(t∗, TI ) is
expanded about F(t0, t∗, TI ), its forward price at t0.

P∗ =
(

N∑
I=1

cIB(t∗, TI )−K

)
+

= (
F + V −K

)
+ (17.2)

V =
N∑
I=1

JI [B(t∗, TI )efI − 1] =
N∑
I=1

JI [e−gI+fI − 1] (17.3)

B(t∗, TI ) = e−gI ; gI =
∫ TI

t∗
dxf (t∗, x)

F (t0, t∗, TI ) = e−fI ; fI =
∫ TI

t∗
dxf (t0, x)

JI = cI e
−fI ; F =

∑
I

JI

From Eq. (17.2) the payoff is re-written, as in Eq. (3.64), as follows

P∗ = (
F + V −K

)
+

=
∫
Q,η

eiη(V−Q)(F +Q−K
)
+;

∫
Q,η

≡
∫ +∞

−∞
dQ

dη

2π

V is of O(σ), from Eq. (17.3), and is the only random quantity in the payoff
function; consider the following expansion of the payoff in powers of σ

P∗ �
∫
Q,η

e−iηQ
(
F +Q−K

)
+

{
1 + iηV − 1

2
η2V 2 +O(σ 3)

}
(17.4)

Eqs. (17.1) and (17.4), similar to the analysis in Section 3.14, yield the following
expansion for the coupon bond option price

C(t0, t∗, T ,K)
B(t0, t∗)

= E
[
P∗
]

�
∫
Q,η

e−iηQ
(
F +Q−K

)
+

{
E[1] + iηE[V ] − 1

2
η2E[V 2] +O(σ 3)

}
�
∫
Q,η

e−iηQ
(
F +Q−K

)
+

{
C0 + iηC1 − 1

2
η2C2 +O(σ 3)

}
(17.5)

Option price given by Eq. (17.5) holds for a wide class of options and, in particular,
for both the European and barrier coupon bond options.
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The coefficients of the expansion, from Eq. (17.3), are given by

C0 = E[1] (17.6)

C1 = E[V ] =
N∑
I=1

JIE[e−gI+fI − 1]

=
N∑
I=1

JI (CI − C0); CI = E[e−gI+fI ] (17.7)

C2 = E[V 2] = E

⎡⎣{ N∑
I=1

JI (e
−gI+fI − 1)

}2⎤⎦
=

N∑
I ,K=1

JI JK(CIK − 2CI + C0); CIK = E[e−gI−gK+fI+fK ] (17.8)

17.2.2 Bond evolution operator and eigenfunctions

The European coupon bond option price at time t0, from Eq. (15.77), is given by

CE(t0, t∗, T ,K , f) = B(t0, t∗)E
[
P∗
]

= B(t0, t∗)〈f|e−W |P∗〉 (17.9)

The evolution operatorW driving the bond price is expressed in terms of the bond
variables gI ; I = 1, 2, . . . ,N and is given, from Eq. (15.82), as follows

W = −1
2

N∑
i,j=1

Gij
∂2

∂gi∂gj
−

N∑
i=1

βi
∂

∂gi
(17.10)

Gij = G(Ti , Tj ); βi = β(Ti) = 1
2
Gii (17.11)

The dual vector 〈f| is constructed from F(t0, t∗, Ti), the forward bond prices at t0,
as follows

fi ≡
∫ Ti

t∗
dxf (t0, x); 〈f| ≡ 〈f1, f2, . . . , fN | =

N∏
i=1

〈fi| (17.12)
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The eigenfunctions of W are given by

ψp[f] = ei
∑
i pifi ≡ eipf = 〈f|p〉

Wψp[f] = 〈f|W |p〉 =
(
SE − i

N∑
i=1

βipi

)
ψp[f]

SE ≡ SE(p) = −1
2

N∑
ij=1

piGijpj (17.13)

The orthogonality and completeness of the eigenfunctions for the ‘momentum’ p,
from Eq. (A.8) and of the bond basis g, from Eq. (A.6) are given by

|p〉 = |p1,p2, . . . ,pN 〉;
∫

p
|p〉〈p| = I;

∫
p

≡
N∏
i=1

∫ +∞

−∞
dpi

2π
(17.14)

|g〉 = |g1, g2, . . . , gN 〉;
∫

g
|g〉〈g| = I;

∫
g

≡
N∏
i=1

∫ +∞

−∞
dgi (17.15)

〈p|p′〉 =
N∏
i=1

[2πδ(pi − p′
i )]; 〈g|g′〉 =

N∏
i=1

δ(gi − g′
i )

Inserting, in Eq. (17.9), the completeness equation for both the |p〉 and |g〉 yields

CE(t0, t∗, T ,K) = B(t0, t∗)〈f|e−W |P∗〉
= B(t0, t∗)

∫
p,g

〈f|e−W |p〉〈p|g〉〈g|P∗〉

= B(t0, t∗)
∫

p,g
eSEei(f+β−g)pP∗[g]

The coefficients for the European option are denoted by CE,0, CE,1, and CE,2. The
expansion for E[P∗] given in Eq. (17.5) yields the following expression for the
coefficients

CE,0 = E[1] =
∫

p,g
eSEei(f+β−g)p (17.16)
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CE,1 = E[V ] =
∫

p,g
eSEei(f+β−g)pV (17.17)

CE,2 = E[V 2] =
∫

p,g
eSEei(f+β−g)pV 2 (17.18)

V =
N∑
I=1

JI [e−gI+fI − 1]

17.2.3 Coefficients of perturbation expansion

The expansion coefficients required for evaluating the option price, as given in
Eq. (17.5), are computed from the bond evolution eigenfunctions.

The first coefficient is given from Eq. (17.16)

CE,0 =
∫

p,g
eSEei(f+β−g)p

=
∫

p
eSE,0ei(f+β)p

∏
i

[2πδ(pi)] = eS̃E,0

S̃E,0 = SE(pi = 0) = 0

⇒ CE,0 = 1

The second coefficient, from Eq. (17.17) is given by

CE,1 =
∑
I

JI

∫
p,g
eSE,1ei(f+β−g)p[e−gI+fI − 1]

=
∑
I

JI

∫
p,g
eSE,1[e−igpe−gI−βI − CE,0]

=
∑
I

JI

∫
p
eSE,1e−βI

⎧⎨⎩∏
i �=I

[2πδ(pi)]2πδ(pI + i)− 1

⎫⎬⎭
= eS̃E,1−βI

S̃E,1 = SE(pI = −i;pj = 0, j �= I ) = 1
2
GII

⇒ CE,1 =
∑
I

JI [e 1
2GII e−βI − 1] = 0
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since, from Eq. (17.11), βI = GII/2. The third coefficient, from Eq. (17.18), is
given by

CE,2 =
∑
IK

JI JK

∫
p,g
eSE,2ei(f+β−g)p[e−gI+fI − 1][e−gK+fK − 1]

=
∑
IK

JI JK

∫
p,g
eSE,2e−igp[e−gI−gK−βI−βK − e−gI−βI − e−gK−βI + 1]

Using the results for CE,0 and CE,1 yields

CE,2 =
∑
IK

JI JK

{∫
p,g
eSE,2e−igpe−gI−gK−βI−βK − 1

}

=
∑
IK

JI JK

⎧⎨⎩
∫

p
eSE,2e−βI−βK

∏
i �=I ,K

[2πδ(pi)]2πδ(pI+i)2πδ(pK+i)−1

⎫⎬⎭
=
∑
IK

JI JK
[
eS̃E,2−βI−βK − 1

]
The momentum delta functions yield pI = −i = pK with all other components
pi = 0; i �= I ,K . Hence, from Eq. (17.13),

S̃E,2 = SE,2(pI = −i = pK)

= −1
2

N∑
ij=1

piGijpj = GIK + 1
2
GII + 1

2
GKK (17.19)

Combining Eq. (17.19) with βI = GII/2 yields, from Eq. (17.19)

CE,2 =
∑
IK

JI JK
[
eGIK − 1

] �
∑
IK

JI JKGIK +O(σ 3) (17.20)

The results agree, as expected, with the expression given in Eq. (11.29) that was
obtained by path integration.

Collecting all the results yields

CE,0 = 1; CE,1 = 0; CE,2 =
∑
IK

JI JKGIK +O(σ 3)

Once the coefficients have been computed, the European coupon option price is
given by Eq. (3.69).
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17.3 Coupon bond barrier eigenfunctions

As discussed in Section 3.4, barrier options are either knock-out or knock-in. The
price of only the knock-out options will be evaluated, since the price of the knock-in
can be obtained using the relation given in Eq. (3.2).

A double barrier knock-out option has the same payoff |P∗〉 as an European
option. The option has the additional conditions that the option is terminated with
zero payoff if, at any instant before the option matures, the price of the underlying
coupon bond B(t∗, T ) exceeds a certain maximum value, say U or falls below a
minimum value, say L. Figure 17.1 shows the payoff function of the coupon bond
barrier option from time t0 till it matures at time t∗.

The price of the coupon bond barrier option is given by

CB(t0, t∗, T ,K , f) = B(t0, t∗)〈f|e−W |P∗〉
∣∣
Barrier (17.21)

L ≤
N∑
i=1

ciF (t , t∗, Ti) ≤ U ; t0 ≤ t ≤ t∗

A coupon bond that is allowed to have its price only in the range of [L,U ] is
identical to a quantum particle confined in an interval [a, b]. In quantum mechanics,
the particle’s position, denoted by g, is confined by putting the particle inside an
infinite potential well such that the potential U(g) is infinite for position g outside
the interval [a, b], as shown in Figure 17.2.U(g) should not be confused with upper
barrier U. A particle permanently confined inside a potential well is described by
eigenfunctions that are zero for all values of the position outside the interval [a, b].

U

L

K

B0

Coupon bond

Time t*

Knocked out

Knocked out

Figure 17.1 The payoff function for a barrier option, with strike price K and
maturity time t∗. The initial coupon bond valueB0 ∈ [L,U ] lies within the barrier,
and the option is knocked out if the coupon bond, at any time before maturity
at t∗, takes values outside the barrier. Only trajectories that lie within the barrier
contribute to the price of the barrier option.
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g

Potential

a b

Figure 17.2 The potential well that confines the position of a quantum particle to
be inside the interval [a, b].

The barrier condition is incorporated into the barrier option pricing formula –
similar to a quantum particle confined to a potential well – by imposing the appro-
priate boundary conditions on the eigenfunctions of the W operator [12, 22]. In
particular, for the coupon bond option, let 〈g|ψn〉 ≡ ψn[g] be a complete set of
eigenfunctions of W that satisfy

W |ψk〉 = −Sk|ψk〉;
∑
k

|ψk〉〈ψk| = I

The barrier option is realized by imposing the following two boundary conditions
on the eigenfunctions

B ≡
∑
i

cie
−gi

B.C. : ψk[g] = 0 for B ≥ L and B ≤ U

The price of the barrier option is then given by

CB(t0, t∗, T ,K) = B(t0, t∗)〈f|e−W |P∗〉
∣∣
Barrier

⇒ CB(t0, t∗, T ,K) = B(t0, t∗)
∑
k

〈f|e−W |ψk〉〈ψk|P∗〉 (17.22)

= B(t0, t∗)
∑
k

eSkψk[f]〈ψk|P∗〉

17.4 Zero coupon bond barrier option price

The zero coupon bond barrier option is the simplest case that illustrates the spe-
cific features of the barrier. The option is calculated based on the eigenfunction
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realization of the barriers. The payoff function is given by

P∗ = (e−g −K)+

g =
∫ T

t∗
dxf (t∗, x); e−g ∈ [e−b, e−a] ⇒ g ∈ [a, b]

The barrier option is given, from Eq. (17.22), as follows

CB(t0, t∗,K) = B(t0, t∗)
∑
k

eSkψk[f ]〈ψk|P∗〉; f =
∫ T

t∗
dyf (t0, y)

Wψk(g) = −Skψk(g); ψk(a) = 0 = ψk(b); a ≤ g ≤ b

The evolution operator, given by Eqs. (17.10) and (15.80), simplifies to

W = −1
2
G
∂2

∂g2 − β
∂

∂g

G =
∫ T

t∗
dy

∫ T

t∗
dy′

∫ t∗

t0

dtM(y, y′; t); β =
∫ T

t∗
dy

∫ t∗

t0

dtα(t , y) = 1
2
G

To incorporate the barrier one solves the Schrodinger eigenfunction equation

(W + U(g))ψk(g) = −Skψk(g)
where the potential, as shown in Figure 17.2, is given by

U(g) =
{

0 a ≤ g ≤ b

∞ g ≤ a; g ≥ b

Consider the following ansatz for the eigenfunction

〈g|ψk〉 = ψk(g) ∼
{
e(ik−γ )(g−a) a ≤ g ≤ b

0 g ≤ a; g ≥ b

Wψk(g) = [1
2
G(k2 − γ 2)+ ik(Gγ − β)+ βγ ]ψk(g)

γ is chosen to eliminate the term linear in k, which then yields two degenerate
solutions ψ±k. Hence

γ = β

G
; ψ±k(g) ∼ ei(±k+iγ )(g−a)

Wψ±k(g) = −Skψ±k(g); − Sk = 1
2

(
Gk2 + β2

G

)
(17.23)
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To impose the barrier option boundary conditions one superposes the degenerate
solutions ψ±k(g) to obtain2

〈g|ψk〉 =
√

2
b − a

e−γ g sin k(g − a); 〈ψk|g〉 =
√

2
b − a

eγg sin k(g − a)

k ≡ kn = πn

(b − a)
; n = 1, 2, . . .+ ∞; ψk(a) = 0 = ψk(b)

Hence, the eigenfunction for all values of g can be written as follows3

�k(g) = [θ(g − a)− θ(g − b)]ψk(g); − ∞ ≤ g ≤ +∞ (17.24)

where

θ(g − a)− θ(g − b) =
{

1 a < g < b

0 g ≤ a; g ≥ b

The eigenfunctions are orthonormal since

〈ψkn |ψkn′ 〉 = 2
b − a

∫ b

a

sin kn(g − a) sin kn′(g − a)dg = δn−n′ (17.25)

The Poisson summation formula, given by

∞∑
n=−∞

e2πinx =
∞∑

n=−∞
δ(x − n) (17.26)

yields the following

∑
k

〈g|ψk〉〈ψk|g′〉 = 2
b − a

e−γ (g−g′)
∞∑
n=1

sin kn(g − a) sin kn(g′ − a)

= 1
2(b − a)

e−γ (g−g′)
∞∑

n=−∞

{
exp

inπ

b − a
(g − g′)− exp

inπ

b− a
(g + g′ − 2a)

}

= 1
2(b − a)

e−γ (g−g′)
∞∑

n=−∞

[
δ

(
g − g′

2(b− a)
− n

)
− δ

(
g + g′ − 2a

2(b − a)
− n

)]

= 1
2(b − a)

e−γ (g−g′)δ

(
g − g′

2(b− a)

)
since a < g, g′ < b

2 Note the evolution operator W is not Hermitian; hence, under the duality operation that takes the |ψk〉 to its
dual vector 〈ψk |, the term e−γ g switches its sign to e+γ g .

3 Since ∂θ(g − a)/∂g = δ(g − a), it follows that �k(g) is an eigenfunction of W with eigenvalue −Sk .
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= δ(g − g′) (17.27)

Hence, the eigenfunctions satisfy the completeness equation given by∑
k

|ψk〉〈ψk| = I (17.28)

Insert both the completeness equation given in Eq. (17.28) as well as the
completeness equation for the coordinate eigenstate given by∫ +∞

−∞
dg|g〉〈g| = I

into the expression for the barrier option given in Eq. (17.21). Then, for f =∫ T
t∗ dyf (t0, y) ∈ [a, b], the following is the exact barrier option price

CB(t0, t∗,K , f )
B(t0, t∗)

= 〈f |e−W |P∗〉
∣∣
Barrier

=
∑
kn

∫ +∞

−∞
dg〈f |e−W |ψk〉〈ψk|g〉〈g|P∗〉

= 2
(b − a)

∫ b

a

dg
∑
kn

eSkeγ (g−f ) sin kn(f − a) sin kn(g − a)P∗(g)

= e−
β2
2G

2(b − a)

∫ b

a

dg

+∞∑
n=−∞

eγ (g−f )e−
1
2Gk

2
n [eikn(f−g) − eikn(f+g−2a)]P∗(g)

where recall that kn = πn/(b − a). Hence, since γ = β/G, the exact price of the
zero coupon barrier option is given by

CB(t0, t∗,K) = B(t0, t∗)e−
β2
2G

∫ b

a

dge
β
G (g−f )Q[g, f ;G; a, b]P∗(g) (17.29)

where Q[g, f ;G; a, b] is the barrier function discussed in Section 17.5.
The price of a zero coupon bond barrier option obtained in Eq. (17.29) is similar

to the barrier option for equity since both have only one independent degree of
freedom [12, 22].

17.5 Barrier function

The barrier function, for kn = πn/(b − a), is defined by the following equation

Q[g, f ;G; a, b]= 1
2(b− a)

+∞∑
n=−∞

e−
1
2Gk

2
n[eikn(f−g)−eikn(f+g−2a)] (17.30)
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The barrier function has another representation that is useful for G ∼ 0. The
Poisson summation formula given by Eq. (17.26) yields

1
2(b− a)

+∞∑
n=−∞

exp

{
−1

2
G

(
πn

b − a

)2

+ i
πnφ

b − a

}

=
√

1
2πG

+∞∑
n=−∞

exp
{
− 1

2G
[φ − 2(b − a)n]2

}
The representation of the barrier function, which is rapidly convergent for an
expansion around G = 0, is given by

Q[g, f ;G; a, b] = 1√
2πG

+∞∑
n=−∞

[
exp − 1

2G
[f − g − 2(b− a)n]2

− exp − 1
2G

[f + g − 2a − 2(b− a)n]2
]

The barrier function is not a smooth function of its arguments, especially for the
case of G � 0. To illustrate the key feautures of Q[g, f ;G; a, b] the following
cases are plotted.

• In Figure 17.3(a), Q[g, f ;G; a, b] is plotted forG = 0.01; it can be seen that the barrier
function is an irregular function of the arguments f and g.

• In Figure 17.3(b), Q[g, f ;G; a, b] is plotted for G = 0.6 and the function varies very
smoothly as a function of f and g.
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Figure 17.3 Barrier function Q[g, f ;G; a, b] for a = 1; b = 1.1 with (a) G =
0.01 and (b) G = 0.6.
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Figure 17.4 Barrier function for a = 1; b = 1.1. The values of f = g are plotted
for different values of G.

• Figure 17.4 plots Q[g, f ;G; a, b] as a function ofG and for the diagonal case of f = g;
it is seen that the barrier function is a very irregular function of G going through sharp
changes.

The barrier function figures show that any hedging as a function of volatil-
ity G needs to be considered very carefully due to the irregular dependence of
Q[g, f ;G; a, b] on G.

17.5.1 Limiting cases of Q[g, f ;G; a, b]
The zero coupon bond European option is a special case of the double barrier option,
for which a → −∞ and b → +∞; only the n = 0 term in the first sum survives
and Q[g, f ;G; −∞, +∞] = QE[g, f ;G], where

QE[g, f ;G] =
√

1
2πG

exp
{
− 1

2G
(f − g)2

}
(17.31)

The function QE[g, f ;G] yields the option price, given in Eq. (11.49), as follows

CB(t0, t∗,K , f ) → B(t0, t∗)
e−

β2
2G√

2πG

∫ +∞

−∞
dge

β
G
(g−f )e−

1
2G (f−g)2(e−g −K)+

= B(t0, t∗)
1√

2πG

∫ +∞

−∞
dge−

1
2G (f+β−g)2(e−g −K)+ = CE(t0, t∗,K , f )
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Potential

a Coupon bond
(a)

Potential

b
(b)

Coupon bond

Figure 17.5 (a) Barrier optio n for a knock-out optio n for valu es of payoff b elow a
minimum value of a . (b) Barrier option for a knock-out option for values of payoff
greater than a m aximum value o f b .

As expected, on removing the barriers, the barrier option reduces to the zero coupon
bond European option.

A s ingle barrier on the left at the position a , a s s hown in Figure 17.5(a ), is g iv e n
by ta king b → +∞; only the n = 0 for the firs t term and n = 0 for the s econd
te rm s u rv iv e in Q[g , f ;G ; a , +∞] = Qa[g, f ;G] where

Qa[g, f ;G] =
√

1
2πG

[
exp

{
− 1

2G
(f − g)2

}
− exp

{
− 1

2G
(f − g − 2a)2

}]

Simila rly, a s ingle barrier on the right at b , s hown in Figure 17.5 (b), is obtained by
taking a → −∞; only the terms with n = 0 for the first term and n = 1 for the
second term survive in Q[g, f ;G; −∞, b] = Qb[g, f ;G] and yield

Qb[g, f ;G] =
√

1
2πG

[
exp

{
− 1

2G
(f − g)2

}
− exp

{
− 1

2G
(f − g − 2b)2

}]

17.6 Barrier linearization

The exact price of the zero coupon bond barrier option could be obtained because
the barrier is a linear function of the forward interest rates. In contrast, the case
of the coupon bond is far more complicated due to the nonlinear nature of the barrier.
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(a)

Payoff = L

g1

g
2

Payoff = U
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g1

Linearized
payoffs

Figure 17.6 (a) The nonlinear barrier condition. The coupon bond trajectories,
from time t0 to t∗, take values only in the (unshaded) permitted domain – lying
in-between U and L; all other trajectories do not contribute to the option price.
(b) Linearized barrier constraint.

Recall, from Eqs. (15.82) and (17.22), the evolution operator and eigenfunctions
for the barrier option are given by

W = −1
2

N∑
i,j=1

Gij
∂2

∂gi∂gj
−

N∑
i=1

βi
∂

∂gi
(17.32)

Wψk[g] = −Skψn[g]

B.C. : ψk[g] = 0 for
N∑
I=1

cI e
−gI ≥ L and

N∑
I=1

cI e
−gI ≤ U

The evolution operator W is similar to the Laplacian operator in N Euclidean
dimensions, and the barriers define two N − 1-dimensional subspaces via the non-
linear constraint equations

∑
I cI e

−gI = L and
∑
I cI e

−gI = U . The nonlinear
barriers for the coupon bond are shown in Figure 17.6(a).

The boundary conditions that the eigenfunctions of the coupon bond are zero
on these two N − 1-dimensional subspaces require that the eigenfunctions of the
W operator are zero on the nontrivial and nonlinear subspaces – in general, an
intractable problem. For these reasons, analytically finding the exact price of a
coupon bond barrier option is, in practice, almost impossible.

Due to the specific form of the coupon bond price an approximate solution for
the bond barrier option can be found that is leading order in σ(t , x), the forward
interest rate volatility.
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A small value of forward interest rate volatility σ implies that the fluctuations
of the coupon bond about its initial value are of O(σ); this was the reason that
the initial value of the coupon bond was subtracted from the payoff function in the
volatility expansion given in Eq. (3.62). Hence, a similar subtraction of the initial
coupon bond price should yield O(σ) fluctuations for the payoff function.

The barrier constraint is linearized about the leading term in the barrier; consider
the following combination

gI − fI − βI =
∫ TI

t∗
dx[f (t∗, x)− f (t0, x)] − βI (17.33)

The representation of the bond forward interest rates given in Eq. (5.2) yields

f (t∗, x) = f (t0, x)+
∫ t∗

t0

dtα(t , x) +
∫ t∗

t0

dtσ (t , x)A(t , x)

with E
[
A(t , x)A(t ′, x′)

] = δ(t − t ′)D(x, x′; t)

Hence

gI = fI + βI +
∫ TI

t∗
dx

∫ t∗

t0

dtσ (t , x)A(t , x)

The variance is given by

E
[(
gI − fI − βI

)2] =
∫ t∗

t0

dt

∫ TI

t∗
dx

∫ TI

t∗
dx′σ(t , x)D(x, x′; t)σ (t , x′)

= GII ∼ O(σ 2)

The calculation above shows that all the fluctuations of the random quantity
gI − fI − βI are of O(σ); the βI term needs to be subtracted to account for the
drift of gI from time t0 to maturity time t∗. One has the following linearization of
the barrier condition

B(t∗, T ) =
∑
I

cI e
−gI =

∑
I

cI e
−fI−βI e−(gI−fI−βI )

=
∑
I

dI e
−(gI−fI−βI ) �

∑
I

dI (1 + fI + βI )−
∑
I

dI gI +O(σ 2)

where dI ≡ cI e
−fI−βI

Define the new barrier limits

a =
∑
I

dI (1 + fI + βI )− U ; b =
∑
I

dI (1 + fI + βI )− L (17.34)
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Figure 17.6(a) shows that for small values of the bond variables the linearization
of the barrier function yields a good approximation; the coefficients dI are chosen
to ensure that the linearization takes into account the leading value of the coupon
bond. Only fluctuations (configurations) that are near the leading value are small.

The new linearized barrier conditions are now defined by a ≤ gd ≤ b; more
precisely

B.C. : ψk[g] = 0 for gd ≤ a and gd ≥ b; gd ≡
∑
I

gI dI (17.35)

The barrier for the coupon bond is the same as given in Figure 17.2, except now
the linearized value of the coupon bond gd is constrained to takes values in the
interval [a, b].

Note that the linearization of the barrier cannot be systematically improved by,
say, expanding the barrier to quadratic or higher terms in the bond variables gi ; the
reason being that there are no systematic techniques that can generate the eigen-
functions on nontrivial domains that result from including higher-order nonlinear
terms of the barrier condition.

17.7 Overcomplete barrier eigenfunctions

The linearized barrier constraints can be implemented via eigenfunctions of W in
a manner similar to the one used for the zero coupon bond barrier option. There
is, however, an additional feature of coupon bonds that is not present for the zero
coupon case. For the coupon bond, the linear sum of all the bond variables, namely
gd = ∑

I dI gI , needs to be constrained. A symmetric combination of all the coor-
dinates implies that a change of variables from the gi ; i = 1, 2, . . . ,N to another
set ofN variables will, in general, not place all the gis on an equal footing. Hence,
a change of variables will not simplify the constraint equation.

One way out of this conundrum is to increase the space of complete eigenfunc-
tions by including another crucial eigenfunction of gd , namely the eigenfunction
that carries the barrier condition. This leads to more eigenfunctions than are required
for providing a complete basis for the state space and is compensated by adding a
constraint in the completeness equation – analogous to the construction of coherent
states in quantum mechanics [70].

Similar to the zero coupon bond case given in Eq. (17.24), consider the following
ansatz for the coupon bond eigenfunctions

〈g|�p,k〉 = �p,k(g) = eipgψk(gd); −∞ ≤ gi ≤ +∞ (17.36)

ψk(gd) ∼ [θ(gd − a)− θ(gd − b)]ei(k+iγ )(gd−a); −∞ ≤ gd ≤ +∞
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The eigenfunctions eipg form a complete basis, as given in Eq. (17.14), and including
the eigenfunction ψk(gd) makes the eigenfunctions �p,k(g) overcomplete.

The bond evolution operator W acting on the eigenfunctions, using a notation
for later convenience, yields the following

W [eipgψk(gd)] = −(S + iβp
)[eipgψk(gd)] (17.37)

−S = 1
2
pGp + v2

2
(k + iγ )2 + (k + iγ )pGd − ikβd + γβd

pGp ≡
N∑

I ,J=1

pIGIJpJ ; pGd ≡
N∑

I ,J=1

pIGIJ dJ

βd =
N∑
I=1

βIdI ; βp =
N∑
I=1

βIpI ; v2 ≡ dGd =
N∑

I ,J=1

dIGIJ dJ

As in the zero coupon bond case, γ is chosen to eliminate the terms in S that are
linear in k so that one can obtain two degenerate solutions ψ±k(gd). This yields

γ = 1
v2 (βd + ipGd) (17.38)

and which, in turn, gives the following result

− S = 1
2
pGp+ v

2

2
k2+ 1

v2

[
(βd)2−(pGc)2 + i(βd)pGd

]
; v2 ≡dGd (17.39)

To impose the barrier option boundary conditions, following the case of the zero
coupon bond, one superposes the degenerate solutions ψ±k(gd) to obtain, for a ≤
gd ≤ b, the following4

〈g|ψk〉 ≡ ψk(gd) = [θ(gd − a)− θ(gd − b)]
√

2
b− a

e−γ gd sin k(gd − a)

〈ψk|g〉 = [θ(gd − a)− θ(gd − b)]
√

2
b − a

eγgd sin k(gd − a) (17.40)

k ≡ kn = πn

(b − a)
; n = 1, 2, . . .+ ∞

Boundary conditions : ψk(gd)

∣∣∣
gd=a = 0 = ψk(gd)

∣∣∣
gd=b

4 As in the zero coupon bond case, the evolution operator W is not Hermitian. The duality operation takes |ψk〉
to its dual vector 〈ψk |; the term e−γ gd switches its sign and goes to e+γ gd .
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Unlike the case of the zero coupon bond barrier option, the constraint equa-
tion for the coupon bond involves N variables and is realized by the following
representation

θ(gd − a)− θ(gd − b) =
∫ b

a

dhδ(h− gd)

=
∫ b

a

dh

∫ +∞

−∞
dξ

2π
eiξ(h−gd) ≡

∫
h,ξ
eiξ(h−gd) (17.41)

The completeness equation is given by5

I =
(

N∑
i=1

di

)∫
p

2πδ

(
N∑
i=1

pi

) ∞∑
k=1

|�p,k〉〈�p,k| (17.42)

=
(

N∑
i=1

di

)∫
p

2πδ

(
N∑
i=1

pi

) ∞∑
k=1

|p〉|ψk〉〈ψk|〈p|

There is an extra
∑
k sum over the additional eigenfunctions |ψk〉 that gives rise

to overcompleteness. Unlike Eq. (17.14), the constraint (
∑N
i=1 di)δ(

∑N
i=1 pi) has

been introduced in the completeness equation given in Eq. (17.42) to compensate
for the overcomplete set of eigenfunctions.

To prove the completeness equation, consider the following

〈f|I|g〉 =
(

N∑
i=1

di

)∫
p

∞∑
k=1

2πδ

(
N∑
i=1

pi

)
〈f|p〉〈f|ψk〉〈ψk|g〉〈p|g〉

=
(

N∑
i=1

di

)∫
p

2πδ

(
N∑
i=1

pi

)
eip(f−g)F (17.43)

F =
∞∑
k=1

〈f|ψk〉〈ψk|g〉

= 2
b − a

∞∑
k=1

∫
h,ξ ,h′,ξ ′

eiξ(h−fd)eiξ ′(h′−gd)e−γ (f d−gd)

× sin(k(f d − a)) sin(k(gd − a))

5 Since k ≡ kn = πn
(b−a) ,

∑∞
k=1 means a sum over n, that is

∑∞
n=1.
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The bond state |g〉 is taken to be unrestricted. The initial state 〈f| of the coupon
bond is within the barrier; that is, a ≤ f d ≤ b as shown in Figure 17.1, and which
implies that

∫
h,ξ e

iξ(h−f d) = 1; from Eq. (17.27) and above

F = 2e−γ (f d−gd)

b − a

∞∑
k=1

sin(k(f d − a)) sin(k(gd − a))

∫
h,ξ
eiξ(h−gd)

= δ(f d − gd)

∫
h,ξ
eiξ(h−gd) (17.44)

Using the representation 2πδ(
∑N
i=1 pi) = ∫ +∞

−∞ dζ exp(iζ
∑N
i=1 pi), incorpo-

rating the result of Eq. (17.44) into Eq. (17.43) and doing the
∫

p integrations
yields

〈f|I|g〉 =
(

N∑
i=1

di

)∫ +∞

−∞
dζ

N∏
i=1

δ(fi − gi + ζ )

∫
h,ξ
eiξ(h−gd)δ(f d − gd)

=
(

N∑
i=1

di

)∫ +∞

−∞
dζ

N∏
i=1

δ(fi − gi + ζ )

∫
h,ξ
eiξ(h−gd)δ

(
ζ

N∑
i=1

di

)

=
∫
h,ξ
eiξ(h−gd)

N∏
i=1

δ(fi − gi)

=
N∏
i=1

δ(fi − gi) : completeness equation (17.45)

where the last equation above is a consequence of a ≤ f d ≤ b.
Hence, Eq. (17.45) confirms that the overcomplete set of eigenfunctions in

Eq. (17.42) yield the correct completeness equation. For the zero coupon bond bar-
rier options, Eq. (17.42) reduces to the one given in Eq. (17.28) since the constraint
δ(p) removes the extra eigenfunctions eipg .

The completeness equation requires only that the bond vector 〈f| must satisfy the
condition that a ≤ f d ≤ b, leaving the bond vector |g〉 completely free; this more
general result is required when the completeness equation Eq. (17.42) is used for
evaluating the coupon bond barrier option price.
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17.8 Coupon bond barrier option price

The coupon bond barrier option is given by Eqs. (17.22) and (17.42) as follows6

CB(t0, t∗, T ,K)
B(t0, t∗)

= 〈f|e−W |P∗〉
∣∣
Barrier

=
(

N∑
i=1

di

)∫
p

2πδ

(
N∑
i=1

pi

) ∞∑
k=1

〈f|e−W |�p,k〉〈�p,k|P∗〉

=
(

N∑
i=1

di

)∫
p,g

2πδ

(
N∑
i=1

pi

) ∞∑
k=1

〈f|e−W |�p,k〉〈�p,k|g〉〈g|P∗〉 (17.46)

⇒ CB(t0, t∗, T ,K)
B(t0, t∗)

≡
∫

g
K[f, g]P∗[g] (17.47)

where the last equation defines the pricing kernel K for the barrier option. The lin-
earized boundary conditions for the barrier option eigenfunctions, from Eq. (17.35),
are given by

boundary conditions: �p,k[g] = 0 for gd ≥ b and gd ≤ a

Consider an initial value of the coupon bond, as shown in Figure 17.1, that lies within
the barrier; the linearized approximation implies that a ≤ f d ≤ b; Eqs. (17.36),
(17.37), (17.39), (17.40), and (17.41) yield the following

〈f|e−W |�p,k〉 = eS+iβp〈f|�p,k〉

=
√

2
b − a

eS+i(β+f)p−γ f d sin k(f d − a)

S = −1
2
pGp − v2

2
k2 − 1

v2

[
(βd)2 − (pGc)2 + i(βd)pGd

]
〈�p,k|g〉 =

√
2

b − a
e−igp+γ gd sin k(gd − a)

∫
ξ ,h
eiξ(h−gd)

P∗[g] =
[∑

I

cI e
−gI −K

]
+

; v2 = dGd

6 Eq. (17.46) is obtained by using
∫

g |g〉〈g| = I .
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Eqs. (17.47) and (17.4) yield the following expansion for the barrier option

CB(t0, t∗, T ,K)
B(t0, t∗)

=
∫

g
K[f, g]P∗[g]

=
∫
Q,η

e−iηQ
(
F +Q−K

)
+

[
CB,0+iηCB,1− 1

2
η2CB,2+O(σ 3)

]
(17.48)

The coefficients of the expansion for the barrier option, from Eqs. (17.17), (17.7),
and (17.8), are given by

CB,0 = E[1]

CB,1 = E[V ] =
N∑
I=1

JI (CB,I − CB,0)

CB,2 = E[V 2] =
N∑

I ,K=1

JIJK(CB,IK − 2CB,I + CB,0) (17.49)

A detailed derivation of the coefficients is given in Section 17.11 and yields the
following results

CB,0 = E[1] =
∫

g
K[f, g]

= eSB,0

∫ b

a

dh exp
{

1
v2βd(h− f d)

}
Q[h, f d; v2; a, b] (17.50)

SB,0 = − 1
2v2 (βd)

2

Unlike the case of the European option, the coefficient CB,0 is not equal to 1; the
reason being that even in the absence of any payoff function, the barrier constrains
the allowed paths and reduces CB,0 from the unconstrained value of 1.

The second coefficient is given by

CB,I = E[e−gI+fI ] =
∫

g
K[f, g]e−gI+fI

= eSB,I

∫ b

a

dh exp

{
1
v2

(
βd −

∑
J

GIJ dJ

)
(h− f d)

}
Q[h, f d; v2; a, b]

(17.51)

SB,I = − 1
2v2

(
βd −

∑
J

GIJ dJ

)2
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The barrier function Q[h, f d; v2; a, b] is given in Eq. (17.31).
Unlike the case of the European option, the coefficient CB,1 is not equal to 1;

the reason being that the martingale condition that led to CB,1 is only valid for an
unconstrained path; the barrier constrains the expectation and reduces it from the
value of 1.

The third coefficient is given by

CB,IK = E[e−gI−gK+fI+fK ] =
∫

g
K[f, g]e−gI−gK+fI+fK

= eSB,IK

∫ b

a

dhQ[h, f d; v2; a, b] (17.52)

× exp

{
1
v2

(
βd −

∑
J

GIJ dJ −
∑
J

GKJdJ

)
(h− f d)

}

SB,IK = GIK − 1
2v2

(
βd −

∑
J

GIJ dJ −
∑
J

GKJ dJ

)2

To extract the perturbative expansion of the option price to O(σ) from the coef-
ficients CB,0,CB,1, and CB,2, the leading order term for the barrier option has to
be isolated. On inspecting the coefficients, it is clear that in fact CB,0 is a term of
O(1), with CB,1 and CB,2 being of order O(σ) and O(σ 2) respectively.

Collecting the results for the coefficients given in Eqs. (17.48), (17.49), (17.50),
(17.51), and (17.52) yields the following

CB(t0, t∗, T ,K)
B(t0, t∗)

= e
− 1

2v2 (βd)
2
∫ b

a

dh exp
{

1
v2βd(h− f d)

}
Q[h, f d; v2; a, b]

×
∫
Q,ξ

e−iQη
[

1 + iηD1 − 1
2
η2D2 +O(σ 3)

]
(Q+ F −K)+ (17.53)

where coefficientsD1 and D2 are given in Eqs. (17.54) and (17.55), respectively.
Eq. (17.53) is one of the most important results of this chapter, namely the barrier

option price is the integral of the following two factors:

• the function exp{− 1
2v2 (βd)

2} exp{ 1
v2βd(h − f d)}Q[h, f d; v2; a, b] that encodes the

properties of the barrier and
• the factor

∫
Q,ξ e

−iQη[1 + iηD1 − 1
2η

2D2 + O(σ 3)](Q + F − K)+ that encodes the
properties of the payoff function.

Each factor has been evaluated approximately and one can improve the price of
the barrier option by improving the approximation for each of these factors.
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The coefficientD1, to O(σ 3), is given by Eqs. (17.50), (17.51), and (17.53)

D1 =
∑
I

JI

[
eSB,I−SB,0e

− 1
v2 (

∑
J GIJ dJ )(h−f d) − 1

]
(17.54)

� − 1
v2

⎡⎣∑
I ,J

JIGIJ dJ

⎤⎦ (h− f d)+ �

� = βd

v2

∑
I ,J

JIGIJ dJ + 1
2v4

∑
I

JI

(∑
J

GIJ dJ

)2 [
(h− f d)2 − v2]

The coefficientD2, to O(σ 3), is given by Eqs. (17.48) to (17.52)

D2 =
∑
I ,K

JI JK

[
eSB,IK−SB,0e

− 1
v2 (
∑
J GIJ dJ+∑J GKJ dJ )(h−f d) (17.55)

− eSB,I−SB,0e
− 1
v2 (

∑
J GIJ dJ )(h−f d) − eSB,K−SB,0e

− 1
v2 (

∑
J GKJ dJ )(h−f d) + 1

]
�
∑
I ,K

JI JKGIK − 1
v2

[∑
IJ

JIGIJ dJ

]2

+ 1
v4

[∑
IJ

JIGIJ dJ

]2

(h− f d)2

The results for D1 and D2 yield

D2 −D2
1 �

∑
I ,K

JIJKGIK − 1
v2

[∑
IJ

JIGIJ dJ

]2

+ �

⎡⎣ 2
v2

∑
I ,J

JIGIJ dJ (h− f d)− �

⎤⎦+O(σ 3) (17.56)

Collecting all the terms yields, from Eq. (3.69), the following main result for the
approximate price of the barrier option

CB(t0, t∗, T ,K)
B(t0, t∗)

= e
− 1

2v2 (βd)
2

√
2π

∫ b

a

dh exp
{

1
v2βd(h− f d)

}
Q[h, f d; v2; a, b]

× I (X)

√
D2 −D2

1 +O(σ 3)

X = (K − F −D1)/

√
D2 −D2

1



424 Hamiltonian derivation of coupon bond options

From Eq. (3.71) one has I (X) = 1 +O(X) and this yields, to O(X), the leading
order price of the barrier option

CB(t0, t∗,K)
B(t0, t∗)

� e
− 1

2v2 (βd)
2

√
2π

×
∫ b

a

dh exp
{

1
v2βd(h− f d)

}
Q[h, f d; v2; a, b]

√
D2 −D2

1 (17.57)

17.9 Barrier option: limiting cases

The Hamiltonian formulation yields a derivation, as in Sections 17.2 and 17.4, of
the European option and zero coupon barrier option prices. The result of the coupon
bond barrier option is examined for the following limiting cases.

• The HJM limit of exactly correlated bond forward interest rates.
• The zero coupon bond barrier option.
• Coupon bond European option.

17.9.1 The one-factor HJM model

The HJM model [56, 65] of the forward interest rates is widely used in finance and
is a special case of the quantum finance model. In the HJM approach all the forward
interest rates, in the language of quantum finance, are exactly correlated and this
implies that D(x, x′; t) → 1 and henceM(x, x′, t) = σ(t , x)σ (t , x′). Furthermore,
in the one-factor HJM model the volatility function is taken to have an exponential
form given by σ(t , x) = σ0e

−λ(x−t).
Taking the HJM limit of the bond correlator yields

Gij =
∫ t∗

t0

dt

∫ Ti

t∗
dx

∫ Tj

t∗
dx′M(x, x′, t)

→ GHJMij = σ 2
0

∫ t∗

t0

dt

∫ Ti

t∗
dxe−λ(x−t)

∫ Tj

t∗
dx′e−λ(x′−t) = σ 2

RYiYj

Yi ≡ Y (t∗, Ti) = 1
λ
[1 − e−λ(Ti−t∗)]; σ 2

R = σ 2
0

2λ
[1 − e−2λ(t∗−t0)]

The first two terms in Eq. (17.56) cancel in the HJM limit and yield the following
result

[D2 −D2
1]HJM = �HJM

[
2
JY

Yd
(h− f d)− �HJM

]
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�HJM = βd

Yd
JY + 1

2
JY 2

(Yd)2

[
(h− f d)2 − σ 2

R(Yd)
2]

Yd =
∑
i

Yidi ; JY =
∑
i

JiYi ; JY 2 =
∑
i

JiY
2
i

17.9.2 Zero coupon bond barrier option

The coupon bond barrier option reduces to the zero coupon case when only one
coupon, say the final coupon, is nonzero; hence cN = 1 and ci = 0, i �= N .
For the barrier functions, the coefficients have the following limits dN = 1 and
di = 0, i �= N and yield

βd → β; v2 =
∑
IJ

dIGIJ dJ → GNN = G

∑
IJ

GIJ dJ → GNN = G; GIK → GNN = G

The martingale condition yields β = G/2 and hence

SB,0 → − β2

2G
; SB,I → −(β −G)2

2G
= − β2

2G

SB,IK → G− (β − 2G)2

2G
= − β2

2G

Q[h, f d; v2; a, b] → Q[h, f ;G; a, b]
P∗ → [J (e−(g−f ) − 1)+ F −K]+; J = e−f = F

Collecting the results above yields, from Eq. (17.53), the following zero coupon
limit of the coupon bond barrier option

CB(t0, t∗, T ,K) → B(t0, t∗)
∫
Q,η

e−iηQ
(
F +Q−K

)
+Z

Z = CB,0 + iηCB,1 − 1
2
η2CB,2 +O(σ 3)

= e−
β2
2G

∫ b

a

dgQ[g, f ;G; a, b]e βG (g−f )(1 + iη[Je−(g−f ) − 1]

− 1
2
η2[J 2e−2(g−f ) − 2Je−(g−f ) + 1])
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The results given above yield that

CB(t0, t∗, T ,K)
B(t0, t∗)

→ e−
β2
2G

∫ b

a

dge
β
G
(g−f )Q[g, f ;G; a, b]P∗(g)+O(σ 3)

This is the expected approximation of the exact result, which is given in Eq. (17.29).

17.9.3 Coupon bond European option limit

Consider the limit of a → −∞ and b → ∞; the function Q reduces to a single
term, namely

Q[h, f d; v2; a, b] → 1√
2πv2

exp
{
− 1

2v2 [h− f d]2
}

and
∫ b

a

dh →
∫ +∞

−∞
dh (17.58)

To show the perturbative barrier option – in the limit ofa → −∞ and b → +∞ –
to be equal to the European option toO(σ 3) one re-writes Eq. (17.53) by exchanging
the order of integration in the following manner

CB(t0, t∗, T ,K)
B(t0, t∗)

= e
− 1

2v2 (βd)
2

√
2πv2

∫
Q,ξ

e−iQη
∫ +∞

−∞
dh exp

{
1
v2βd(h− f d)

}

× exp
{
− 1

2v2 [h− f d]2
}[

1 + iηD1 − 1
2
η2D2 +O(σ 3)

]
(Q+ F −K)+

Performing the Gaussian integrations over h yields

CB,0 → e
− 1

2v2 (βd)
2

√
2πv2

∫ +∞

−∞
dh exp

{
1
v2βd(h− f d)

}
exp

{
− 1

2v2 [h− f d]2
}

= 1

CB,1 → e
− 1

2v2 (βd)
2

√
2πv2

∫ +∞

−∞
dh exp

{
1
v2βd(h− f d)

}
exp

{
− 1

2v2 [h− f d]2
}
D1

� 1
4

∑
I

JI (βd)
2 = 0 +O(σ 4)
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CB,2 → e
− 1

2v2 (βd)
2

√
2πv2

∫ +∞

−∞
dh exp

{
1
v2βd(h− f d)

}
exp

{
− 1

2v2 [h− f d]2
}
D2

�
∑
IK

JIJKGIK + 1
2v4

∑
IK

JIJK(βd)
2
∑
J

GIJ dJ
∑
J

GKJdJ

=
∑
IK

JIJKGIK +O(σ 4)

Hence, to O(σ 4)

CB,0 → 1 = CE,0

CB,1 → 0 = CE,1

CB,2 →
∑
I ,J

JI JKGIK = CE,2

and the European option is the limit of the barrier option; namely

CB(t0, t∗, T ,K) → CE(t0, t∗, T ,K)

17.10 Summary

The Hamiltonian formulation of the quantum field theory of bond forward inter-
est rates provides an efficient computational tool for analyzing the coupon bond
European and barrier options. The earlier result for the European coupon bond
option obtained in Chapter 11 is seen to emerge in a straightforward manner in the
Hamiltonian approach.

The zero coupon barrier option price was obtained exactly by imposing the con-
straint of the barrier on the eigenfunctions of the Hamiltonian, or more accurately,
of the bond evolution operator. The bond evolution operator was expressed in terms
of the ‘bond variables’ that are more natural for studying coupon bonds.

The computation of the coupon bond barrier option turned out to be fairly com-
plicated for two reasons: firstly, because the linear superposition of different zero
coupon bonds constitutes a coupon bond, thus making the constraint a function of
many variables and; secondly, because the barrier on the coupon bond imposes a
nonlinear constraint on the bond forward interest rates. It was shown that, under very
general conditions, the linearized payoff function yields the leading contribution to
the coupon bond barrier option price. An overcomplete set of eigenfunctions of the
evolution operator was used for imposing the linearized barrier on the evolution of
the bond variables.
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Eq. (17.57) shows that the entire calculation for the barrier option factorizes into
two connected and nontrivial components, one factor reflecting the properties of the
barrier and the other that of the payoff function. This feature of the barrier option
seems to be very general and could prove useful in analyzing options with more
complex barriers and payoffs.

The coupon bond barrier option price is an explicit function of the initial values
of the zero coupon bonds, the strike price, the duration of option, and the barrier;
hence all the hedging parameters can be (approximately) evaluated analytically
from the results obtained.

The approximate price of the coupon bond barrier option can be tested numer-
ically as well as be used for empirical studies. The various limiting cases for the
coupon bond barrier option provide useful formulas for testing numerical algo-
rithms that can then be used to explore the option’s nonperturbative and nonlinear
regimes.

The framework of quantum finance is a flexible and fruitful approach for com-
puting coupon bond barrier and European option prices. The nontrivial correlations
of the bond variables, encoded in the imperfect correlatorGIJ , determine the price
of the barrier option. Taking the bond variables to be exactly correlated, as is the
case with the HJM model, yields systematic errors for all pricing and hedging
parameters.

17.11 Appendix: Barrier option coefficients

The coefficients for the coupon bond barrier option are defined in Section 17.8
as follows

CB,0 = E[1] =
∫

g
K[f, g]; CB,I = E[e−gI+fI ] =

∫
g
K[f, g]e−gI+fI

CB,IK = E[e−gI−gK+fI+fK ] =
∫

g
K[f, g]e−gI−gK+fI+fK

The initial conditions imply that a ≤ f d ≤ b and Eqs. (17.36), (17.37), (17.39),
(17.40), and (17.41) yield the following

K[f, g] = 2
∑N
i=1 di

b − a

∑
k

∫
ξ ,h

∫
p,g

2πδ

(
N∑
i=1

pi

)
eiξ(h−gd)eS+i(β+f)p−igpeγ (gd−f d)

× sin k(f d − a) sin k(gd − a)
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=
∑N
i=1 di

2(b − a)

+∞∑
n=−∞

∫
ξ ,h

∫
p,g

2πδ

(
N∑
i=1

pi

)
eiξ(h−gd)eS+i(β+f)p−igpeγ (gd−f d)

× [
e−ikn(gd−f d) − eikn(gd+f d−2a)]

where k ≡ kn = πn/(b− a). Furthermore

S = −v
2

2
k2
n + Sp ; Sp ≡ −1

2
pGp − 1

v2

[
(βd)2 − (pGc)2 + i(βd)pGd

]
γ = 1

v2 (βd + ipGd); v2 = dGd

Some details are given of the derivation of the coefficients CB,IK ; the other
coefficients need a similar, but simpler, calculations. Shifting the variable gi →
gi + fi + βi in the expression for CB,IK and then performing the

∫
g integrations

yields the following

CB,IK =
∫

g
K[f, g]e−gI−gK

=
∑N
i=1 di

2(b − a)

+∞∑
n=−∞

e−
v2
2 k

2
n

∫
ξ ,h
eiξ(h−gd−f c−βd)

∫
p,g

2πδ

(
N∑
i=1

pi

)
eSpe−igp

× eγ (gd+βd)
[
e−ikn(gd+βd) − eikn(gd+βd+2f d−2a)]e−gI−gK

= 1
2(b − a)

+∞∑
n=−∞

e−
v2
2 k

2
n

∫
ξ ,h
eiξ(h−f d−βd)[Ae−iknβd − Beikn(βd+2f d−2a)]

(17.59)

where

A =
(

N∑
i=1

di

)∫
p
eSp+γβd2πδ

(
N∑
i=1

pi

)
δ(pK +�AdK − i)δ(pI +�AdI − i)

×
∏
i �=I ,K

δ(pi +�Adi)

�A = iγ + ξ + k (17.60)

and

B =
(

N∑
i=1

di

)∫
p
eSp+γβd2πδ

(
N∑
i=1

pi

)
δ(pK +�BdK − i)δ(pI +�BdI − i)
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×
∏
i �=I ,K

δ(pi +�Bdi)

�B = iγ + ξ − k

17.11.1 Dirac-delta functions

One needs to explicitly solve the delta functions and fix the values of pi , which
are required for determining the action S0 and the drift γ ; furthermore, the explicit
values of all the pis are required for carrying out the N -integrations, namely

∫
p so

as to evaluate A and B. The reason the delta functions apparently look intractable
is because the function γ appears in the delta functions and γ is itself a function
of all the pis: the delta functions, in effect, yield a set of (apparently intractable)
simultaneous equations for the pis.

However, by recursively solving the delta functions we have the rather remark-
able result that the delta functions explicitly fix, in the following manner, the value
of all the pis. Consider(

N∑
i=1

di

)
2πδ

(
N∑
i=1

pi

)
δ(pI +�AdI − i)δ(pK +�AdK − i)

×
∏
i �=I ,K

δ(pi +�Adi)

=
(

N∑
i=1

di

)
2πδ

(
�A

N∑
i=1

di − 2i

)
δ(pI +�AdI − i)δ(pK +�AdK − i)

×
∏
i �=I ,K

δ(pi +�Adi)

= 2πδ
(
�A − 2i∑

i di

)
δ

(
pI + 2idI∑

i di
− i

)
δ

(
pK + 2idK∑

i di
− i

)
×

∏
i �=I ,K

δ

(
pi + 2idi∑

i di

)
(17.61)

Eq. (17.61) uniquely fixes, within the delta functions, all the pis and, hence, one
can perform the

∫
p integration to explicitly obtain A. A similar result is obtained

for B with �B replacing�A; note the constraints on the pis do not depend on�A
and hence the values of Sp and γ are the same for coefficients A and B.

There areN+1 delta functions in Eq. (17.61) and performing the
∫

p integrations
leaves over one delta function, which for theA term is given by δ(�A−2i/

∑
i di) =

δ(iγ + ξ + k − 2i/
∑
i di), where γ has been fixed by Eq. (17.61) and given in
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Table 17.1 The drift and cross-terms of pis with dis for the different expansion
coefficients.

ipGd = i
∑
IJ pIGIJ dJ γ = 1

v2 (βd + ipGd)

CB,0: 0 1
v2βd

CB,I : v2∑
I dI

−∑J GIJ dJ
2
v2 (βd+ v2∑

I dI
−∑J GIJ dJ )

CB,IK : 2 v2∑
I dI

−∑J GIJ dJ−∑J GKJdJ
2
v2 (βd+2 v2∑

I dI
−∑J GIJ dJ−

∑
J GKJdJ )

Table 17.1. Using this delta function, and a similar one for the B term, to perform
the ξ integration in Eq. (17.59) yields the following

CIKB = eSIK+γβd

2(b − a)

∑
k

∫
h

e−
v2
2 k

2[e−i(k+iγ )(h−f d−βd)e−ikβd

− e−i(k−iγ )(h−f d−βd)eik(βd+2f d−2a)]
= eSIK

2(b− a)

∫
h

e
1
v2 (βd−

∑
J GIJ dJ−∑J GIKdJ )(h−f d)

+∞∑
n=−∞

e−
v2
2 k

2
n [e−ikn(h−f d) − eikn(h+f d−2a)]

= eSIK
∫ b

a

dhe
1
v2 (βd−

∑
J GIJ dJ−∑J GIKdJ )(h−f d)Q[h, f d , v2; a, b]

where recall k = kn = nπ/(b − a) and Q[h, f d , v2; a, b] is the barrier function
given by Eq. (17.30).

After a long and tedious calculation one obtains

SIK = GIK − 1
v2

(
βd −

∑
J

GIJ dJ −
∑
J

GIKdJ

)2

(17.62)

The results for the different coefficients are obtained in the same manner as
for CB,IK ; a remarkable result is that for all the coefficients the barrier function
Q[h, f d , v2; a, b] completely factorizes, leading to perturbative coefficientsD1 and
D2 that are evaluated in Section 17.8.

The main results required for evaluating CB,0,CB,1, and CB,2 are given in
Tables17.1 to 17.3; Tables17.1 and 17.2 yield the values for ipGd , γ , and pGp.
Sp, for the different coefficients, is given in Table 17.3.
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Table 17.2 Value of quadratic function of the pis for the different expansion coefficients.

pGp = ∑
IJ pIGIJpJ

CB,0: 0
CB,I : − v2∑

I dI
+ 2∑

I dI

∑
J GIJ dJ −GII

CB,IK : −2GIK −GII −GKK − 4( v2∑
i di
)2 + 4∑

i di
(
∑
i GiI di +

∑
i GiKdi)

Table 17.3 The value of the ‘action’ for the different expansion coefficients.

Sp = − 1
2pGp − 1

v2

[
(βd)2 − (pGd)2 + i(βd)pGd

]
SB,0= − 1

2v2 (βd)
2

SB,I= − 1
2v2 (βd −∑

J GIJ dJ )
2

SB,IK= GIK − 1
2v2 (βd −∑

J GIJ dJ −∑
J GIKdJ )

2



Epilogue

At present, mainstream theoretical finance is almost completely dominated by
stochastic calculus. Quantum finance [12], in contrast, presents a formulation of
finance that is completely independent of stochastic calculus. Quantum finance
addressed only a few problems of finance. The onus thus fell on me to demonstrate
that a wide class of problems of finance, which at present are understood in terms of
stochastic calculus, have a natural quantum finance formulation and generalization.
It needed to be established that the quantum formulation of finance is equivalent to
the one based on stochastic calculus and – if it is to be useful for the practitioners –
is conceptually transparent and computationally tractable. Furthermore, it needed
to be shown that quantum finance is not merely equivalent to stochastic calculus
but goes beyond it; namely, that models based on quantum finance are more general
than those based on stochastic calculus.

Interest rates and coupon bonds and their derivatives form a major component of
the debt market. They are, by far, the most complex and intricate types of financial
instruments that also have a rich mathematical structure. Debt instruments provided
an ideal testing ground for quantum finance. I gravitated to the study of interest rates
and coupon bonds, since these financial instruments provide an excellent arena for
exhibiting the main features of quantum finance – as well as for illustrating its point
of departure from stochastic calculus.

No attempt has been made to survey the subject of debt instruments, for which
there exists a vast corpus of literature. Instead, this book has focused on only
new results that have been obtained by applying quantum finance to debt instru-
ments. The single most important new result, from my point of view, is the
quantum formulation of the logarithmic Libor quantum field φ(t , x). In partic-
ular, the introduction of the nonlinear Hamiltonian, Lagrangian, and Feynman
path integral for φ(t , x) opens up a potentially new field of study by pro-
viding a comprehensive platform for analyzing and pricing all interest rate
instruments.

433
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As has been demonstrated by the multifarious calculations carried out in the
preceding chapters, the quantum formulation of finance allows for derivations that
are straightforward and yields analytical results that are readily calibrated. Predic-
tions made by quantum finance models are well suited to empirical studies and,
in general, are seen to be more accurate than similar models based on stochastic
calculus.

There are three quantum fields at the root of all calculations, namely the velocity
field A(t , x), the bond forward interest rates f (t , x) and log Libor φ(t , x).

The bond forward interest rates f (t , x) drive the coupon bond market, whereas
the Libor forward interest rates fL(t , x) and their associated logarithmic Libor rates
φ(t , x) determine interest rates for cash time deposits. Although both the forward
interest rates are based on the concept of discounting cash flows, these two are
fundamentally different; f (t , x) is modeled as a Gaussian quantum field, whereas
fL(t , x) is a nonlinear quantum field, having stochastic volatility and stochastic
drift.

The Libor forward interest rate fL(t , x) is related to log Libor φ(t , x) by
Eq. (10.7)

exp
{∫ Tn+	

Tn

dxfL(t , x)
}

= 1 + exp
{∫ Tn+	

Tn

dxφ(t , x)
}

The minimum tenor of 	 �= 0 for cash deposits gives rise to a nonlinear mapping
from the Libor forward interest rates fL(t , x) to φ(t , x). The nonlinear connection
between the Libor forward interest rates fL(t , x) and φ(t , x) is the reason that
modeling the two distinct sectors, namely bonds and interest rates, gives rise to
many interesting and challenging problems.

The velocity field A(t , x) is a two-dimensional quantum field that is a natural
generalization of white noise. Both f (t , x) and φ(t , x), from Eqs. (5.1) and 6.58,
can be expressed in terms of A(t , x) as follows

∂f (t , x)
∂t

= α(t , x)+ σ(t , x)A(t , x)

∂φ(t , x)
∂t

= ρ(t , x)+ γ (t , x)AL(t , x)

The dynamics of the velocity field A(t , x) are specified by the stiff Lagrangian
L[A] that incorporates market time. From Eq. (5.25)

L[A] = −1
2

{
A2(t , z)+ 1

μ2

(
∂A(t , z)
∂z

)2

+ 1
λ4

(
∂2A(t , z)
∂2z

)2}
z = (x − t)η
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The Libor velocity quantum field AL(t , x) has the same stiff action as A(t , x),
except the parameters μL, λL, and ηL have different empirical values.

The interest rate quantum fields f (t , x) and φ(t , x) are more fundamental than
the velocity field A(t , x). All calculations based on the path integral can be carried
out using eitherA(t , x) or the interest rate quantum fields, since they are related by a
change of variables. However, the interest rate state space and Hamiltonian operator
can be written only in terms of interest rates quantum fields f (t , x) or φ(t , x) and
not in terms of A(t , x). For path dependent options, such as the American and
barrier options, the numerical algorithms can only be defined in terms of f (t , x)
or φ(t , x). Since A(t , x) is a Gaussian quantum field, its entire content is encoded
in its propagator, which appears in the interest rate Hamiltonian. Hence, A(t , x) is
effectively incorporated into the Hamiltonian dynamics.

Theoretical finance is a rather unique subject, being the fusion and synthesis of
quantitative laws – the hallmark of the natural sciences – with the political economy
and psychology of human behavior. Quantum finance provides a meeting ground
of mathematical regularity, embodied in the modeling of financial instruments
by Lagrangians, Hamiltonians, and Feynman path integrals, with the subjective
dimension of human beings, represented by the parameters of the theory.

In conclusion, the principles formulated in quantum finance are deeply grounded
in the fundamentals of finance and firmly rooted in quantum mathematics; these
principles enrich the field of quantitative finance and provide powerful theoretical
and mathematical tools for analyzing financial instruments. This book, in particular,
has demonstrated that quantum finance yields many fruitful results in the study and
analysis of debt instruments.



Appendix A
Mathematical background

A few essential mathematical topics are discussed so as to have a complete and self-
contained presentation of all the material required for following the derivations in
the book.

A.1 Dirac-delta function

The Dirac-delta function is useful in the study of continuum spaces, and some of its
essential properties are reviewed. Dirac-delta functions are not ordinary Lebesgue
measureable functions since they have support on a measure zero set; rather they are
generalized functions also called distributions. In essence, the Dirac-delta function
is the continuum generalization of the discrete Kronecker-delta function.

Consider a continuous line labeled by coordinate x such that −∞ ≤ x ≤ +∞,
and let f (x) be an infinitely differentiable function. The Dirac-delta function,
denoted by δ(x − a), is defined by the following

δ(x − a) = δ(a − x) : even function

δ(c(x − a)) = 1
|c|δ(x − a)∫ +∞

−∞
dxf (x)δ(x − a) = f (a) (A.1)∫ +∞

−∞
dxf (x)

dn

dxn
δ(x − a) = (−1)n

dn

dxn
f (x)|x=a (A.2)
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The Heaviside step function �(t) is defined by

�(t) =
⎧⎨⎩

1 t > 0
1
2 t = 0
0 t < 0

(A.3)

From its definition �(t) + �(−t) = 1. The following is a representation of the
δ-function. ∫ b

−∞
δ(x − a) = �(b − a) (A.4)

⇒
∫ a

−∞
δ(x − a) = �(0) = 1

2
(A.5)

where the last equation is due to the Dirac-delta function being an even function.
From Eq. (A.4)

d

db
�(b − a) = δ(b − a)

A representation of the δ-function based on the Gaussian distribution is

δ(x − a) = lim
σ→0

1√
2πσ 2

exp
{
− 1

2σ 2 (x − a)2
}

(A.6)

Moreover

δ(x − a) = lim
μ→∞

1
2
μ exp

{− μ|x − a|}
The definition of Fourier transform yields a representation of the Dirac-delta func-
tion that is widely used in various chapters for representing the payoff of financial
instruments. It can be shown that

δ(x − a) =
∫ +∞

−∞
dp

2π
eip(x−a) (A.7)

A proof of Eq. (A.7) is found in many books on quantum mechanics [70]. One
can perform the following consistency check of Eq. (A.7). Integrate both sides of
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Eq. (A.7) over x as follows

L.H.S. =
∫ +∞

−∞
dxe−ikxδ(x − a) = e−ika

R.H.S. =
∫ +∞

−∞
dxe−ikx

∫ +∞

−∞
dp

2π
eip(x−a)

=
∫ +∞

−∞
dp

2π
e−ipa2πδ(p − k) = e−ika

where Eq. (A.7) was used in performing the x integration for the right-hand side.
Hence, one can see that Eq. (A.7) is self-consistent.

The scalar product of the basis state |x′〉 and its dual 〈x| is a Dirac-delta function;
the Fourier representation yields

〈x|x′〉 = δ(x − x′) =
∫ +∞

−∞
dp

2π
eip(x−x′)

=
∫ +∞

−∞
dp

2π
〈x|p〉〈p|x′〉

and hence, for momentum space basis |p〉, the completeness equation is given by

∫ ∞

−∞
dp

2π
|p〉〈p| = I (A.8)

The scalar product of the dual basis state 〈x| with the momentum basis state |p〉 is
given by

〈x|p〉 = eipx ; 〈p|x〉 = e−ipx (A.9)

To see the relation of the Dirac-delta function with the discrete Kronecker delta,
recall for n,m integers

δn−m =
{

0 n �= m

1 n = m
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Discretize continuous variable x into a lattice of discrete points x = nε, and let
a = mε; then f (x) → fn. Discretizing Eq. (A.1) gives∫ +∞

−∞
dxf (x)δ(x − a) → ε

+∞∑
n=−∞

fnδ(xn − am)

= fm =
+∞∑
n=−∞

δn−mfm

⇒ δ(x − a) → 1
ε
δn−m (A.10)

Taking the limit of ε → 0 in the equation above yields

δ(x − a) = lim
ε→0

1
ε
δn−m =

{
0 x �= a

∞ x = a

A.2 Martingale

A martingale refers to a special category of stochastic processes. An arbitrary dis-
crete stochastic process is a collection of random variables Xi , i = 1, 2, . . . ,N
that is described by a joint probability distribution function p(x1, x2, . . . , xN). The
stochastic process is a martingale if it satisfies

E
[
Xn+1|x1, x2, . . . , xn

] = xn : martingale (A.11)

In other words, the expected probability of the random variableXn+1 – conditioned
on the occurrence of xi for random variableXi , i = 1, 2, . . . , n – is simply xn itself.

One can think of the martingale as describing a gambling game; the given con-
dition xn is the amount of money that the gambler has on the conclusion of the nth
game, and the random variable Xn+1 represents the various possible outcomes of
the (n+ 1)th game. The martingale condition states that the expected value of the
gambler’s money at the end of the (n + 1)th game is equal to the money that he
enters the (n + 1)th game with, namely xn. Using Eq. (A.11), one can prove the
following result.

E
[
Xn+1

] =
∫
dx1dx2 . . . dxndxn+1E

[
Xn+1|x1, x2, . . . , xn

]
p(x1, x2, . . . , xn+1)

=
∫
dx1dx2 . . . dxndxn+1 xnp(x1, x2, . . . , xn+1) = E[Xn]

⇒ E
[
Xn+1

] = E
[
Xn
] = E

[
Xn−1

] = · · · = E
[
X1
]

⇒ E
[
Xn
] = E

[
X1
]

(A.12)
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Suppose there is a boundary condition specified for the stochastic process such that
X1 = x1 is fixed; hence E

[
X1
] = x1 and

E
[
Xn
] = E

[
X1
] = x1 (A.13)

In a fair game obeying the martingale condition, the gambler, on the average,
neither loses nor wins, and leaves the casino with the money that she or he came
in with, namely x1.

For the case of a security S(t), the random variable X(T ) = e−
∫ T

0 dtr(t)S(T )

follows a martingale process. From Eq. (A.13)

E[X(T )] = X(0) = S(0)

⇒ S(0) = E[e−
∫ T

0 dt r(t)S(T )|S(0)] (A.14)

The price of the security at t = 0, that is S(0), is usually taken as the initial
condition for the stochastic process. Eq. (A.14) plays a central role in determining
the risk-neutral martingale measure in finance.

Consider a general stochastic differential equation for a two-dimensional
function χ(t , x)

∂χ(t , x)
∂t

= d(t , x)+
∫
dx′G(x, x′; t)v(t , x′)A(t , x′) (A.15)

where A(t , x) is the Gaussian two-dimensional quantum field defined by the action
given in Eq. (A.4). G(x, x′; t) is a deterministic function and the quantities d(t , x)
and v(t , x) can, in general, depend on χ(t , x). Eq. (A.15) is a stochastic differential
equation that is encountered in Chapter 6 in the study of Libor.

An initial (or final) condition needs to be specified to obtain a solution for
Eq. (A.15); for applications in finance, the initial condition is specified as follows

Boundary condition : χ(t0, x) = fixed

Discretizing time in Eq. (A.15) yields, for infinitesimal ε

χ(t + ε, x) = χ(t , x)+ εd(t , x)+ ε

∫
dx ′G(x, x′; t)v(t , x′)A(t , x′) (A.16)

The martingale condition given in Eq. (A.11) requires that the expectation value
of χ(t + ε, x) is taken conditioned on χ(t , x) having a fixed value. In taking the
expectation value of Eq. (A.16), the functions d(t , x) and v(t , x) are deterministic,
since they depend only on χ(t , x) and hence can be taken outside the expectation



A.3 Gaussian integration 441

value. SinceE[A(t , x′)] = 0, taking the conditional expectation value of both sides
of Eq. (A.16) yields the following

E[χ(t + ε, x)|χ(t , x)] = χ(t , x)+ εd(t , x)

+ ε

∫
dx′G(x, x′; t)v(t , x′)E[A(t , x′)]

= χ(t , x)+ εd(t , x)

The martingale condition given in Eq. (A.11) requires E[χ(t + ε, x)|χ(t , x)] =
χ(t , x); hence, from Eqs. (A.11) and (A.12)

d(t , x) = 0 : martingale condition

⇒ E[χ(t + ε, x)] = E[χ(t , x)]
⇒ E

[
∂χ(t , x)
∂t

]
= 0 : martingale (A.17)

In summary, for χ(t , x) to be a martingale, it is sufficient that the drift is zero,
namely

d(t , x) = 0 : martingale condition (A.18)

⇒ ∂χ(t , x)
∂t

=
∫
dx′G(x, x′; t)v(t , x′)A(t , x′) (A.19)

Option theory hinges on the martingale property of option pricing. Suppose P is
the payoff of an option C(t) that matures at T . For numeraireM(t), the discounted
option C(t)/M(t) must follow a martingale evolution for its price to be free from
arbitrage opportunities. The martingale property given in Eq. (A.13) then requires
that the price at present time t0 is given by

C(t0)

M(t0)
= E

[
C(T )

M(T )

]
= E

[ P
M(T )

]
⇒ C(t0) = M(t0)E

[ P
M(T )

]
(A.20)

The prices of all options are obtained from the application of Eq. (A.20) to various
instruments and payoff functions.

A.3 Gaussian integration

Gaussian integration permeates all of theoretical finance, as well as forming one of
the foundations of quantum theory. One-dimensional and multi-dimensional Gaus-
sian integration are briefly reviewed. Gaussian integrals have the remarkable prop-
erty that they can be generalized to infinite dimensions, which is briefly discussed.
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A.3.1 One-dimensional Gaussian integral

Consider the one-dimensional definite Gaussian integral

Z[j ] = N
∫ +∞

−∞
e−

1
2λx

2+jxdx

All the moments of x can be obtained by

E
[
(xn)

] = dnZ[j ]
djn

∣∣∣
j=0

and hence Z[j ] is called the generating function for the Gaussian distribution.
The normalization constant N is chosen so that Z(0) = 1. Squaring Z[0], and

converting it to polar coordinates, gives

Z2[0] = N 2
∫ +∞

−∞

∫ +∞

−∞
e−

1
2λ(x

2+y2)dxdy = N 2
∫ ∞

0

∫ 2π

0
re−

1
2λr

2
drdθ

1 = N 22π
∫ ∞

0
dξe−λξ = N 2 2π

λ
⇒ N =

√
λ

2π

Shifting x → x − j

λ
leaves the integration measure invariant and yields the final

result

Z[j ] = e
1

2λ j
2N

∫ +∞

−∞
e−

1
2λx

2
dx

= e
1

2λ j
2

(A.21)

A.3.2 Higher-dimensional Gaussian integrals

Consider the generaln-dimensional Gaussian integral, with variablesx1, x2, . . . , xn.
The Gaussian integral can be written as

Z[J ] = N
∫ +∞

−∞
eSdx1dx1dx2 . . . dxn

S = −1
2

n∑
i,j=1

xiAij xj +
n∑
i=1

Jixi

Choose the normalization constant so that Z(0) = 1. In quantum theory S is called
the action.
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A is an n × n positive symmetric matrix can be diagonalized by an orthogonal
matrix M and yields

A = MT diag(λ1, λ2, . . . , λn)M

MMT = In×n

where In×n is an n× n unit matrix, and MT is the transpose of M .
Only matrices A with positive eigenvalues λi ≥ 0 are considered. A change of

variables

xi =
n∑
j=1

Mijzj

n∏
i=1

dxi = det(M)
n∏
i=1

dzi =
n∏
i=1

dzi

yields for the n-dimensional Gaussian integral

Z[J ] = N
n∏
i=1

[ ∫ +∞

−∞
dzie

− 1
2λiz

2
i+J̃izi

]

J̃i ≡
n∑
j=1

JjM
T
ji

The n-dimensional Gaussian integral has completely factorized into a product
of one-dimensional Gaussian integrals, all of which can be evaluated by the result
given in Eq. (A.21). Hence

Z[J ] = N
n∏
i=1

[√
2π
λi
e

1
2λi
J̃ 2
i

]
(A.22)

In matrix notation

N
n∏
i=1

√
2π
λi

= N (2π)n/2 1√
detA

= 1

n∑
i=1

1
λi
J̃ 2
i = J

1
A
J ≡ JA−1J

Hence, the final result can be written as

Z[J ] = exp
(

1
2
JA−1J

)
(A.23)
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A.3.3 Normal (Gaussian) random variable

The normal, or Gaussian, random variable – denoted by N(μ, σ) – is a variable x
that has a probability distribution given by

P (x) = 1√
2πσ 2

exp
{
− 1

2σ 2 (x − μ)2
}

(A.24)

From Eq. (A.21)

E[x] ≡
∫ +∞

−∞
xP (x) = μ : mean

E[(x − μ)2] ≡
∫ +∞

−∞
(x − μ)2P (x) = σ 2 : variance

Any normal random variable is equivalent to the N(0, 1) random variable via the
following linear transformation

X = N(μ, σ); Z = N(0, 1)

⇒ X = μ+ σZ

All the moments of the random variable Z = N(0, 1) can be determined by the
generating function given in Eq. (A.21); namely

E[zn] = dn

dJ n
Z[J ]|J=0

The cumulative distribution for the normal random variable N(x) is defined by

Prob(−∞ ≤ z ≤ x) = N(x) = 1√
2π

∫ x

−∞
e−

1
2 z

2
dz (A.25)

A sum of normal random variables is also another normal random variable

Z1 = N(μ1, σ1);Z2 = N(μ2, σ2); . . . ;Zn = N(μn, σn)

⇒ Z =
n∑
i=1

Zi = N(μ, σ) ⇒ μ =
n∑
i=1

μi ; σ 2 =
n∑
i=1

σ 2
i

The result above can be proved using the generating function given in Eq. (A.21).
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A.3.4 Infinite-dimensional Gaussian integrations

Consider a continuum number of integration variables x(t), with −∞ ≤ t ≤ +∞,
and with the “action” given by

S = −1
2

∫ +∞

−∞
dtdt ′x(t)D−1(t , t ′)x(t ′)+

∫ +∞

−∞
dtJ (t)x(t) (A.26)

By discretizing the variable t , following the steps taken in the derivation of the
n× n case, and then taking the limit of n → ∞ yields

Z[J ] = N
+∞∏
t=−∞

∫ +∞

−∞
dx(t)eS = exp

{
1
2

∫ +∞

−∞
dtdt ′J (t)D(t , t ′)J (t ′)

}
(A.27)

∫ +∞

−∞
dsD−1(t , s)D(s, t ′) = δ(t − t ′)

The normalization N is now a divergent quantity, that ensures the usual normaliza-
tion Z(0) = 1. In discussions on quantum theory, Eq. (A.27) plays a central role.

Consider the special case ofN continuous xi(t), with i = 1, 2, . . . ,N and action
given by

S = −1
2

N∑
ij

∫ +∞

−∞
dtD−1

ij xi(t)xj (t)+
N∑
i

∫ +∞

−∞
dtJi(t)xi(t) (A.28)

From Eq. (A.27), the generating functional is given by

Z[J ] = exp

⎧⎨⎩1
2

N∑
ij

∫ +∞

−∞
dtdt ′Ji(t)Dij (t , t ′)Jj (t ′)

⎫⎬⎭ (A.29)

E[xi(t)xj (t ′)] = 1
Z

∫
DXeSxi(t)xj (t

′)
∣∣∣
Ji=0

= Dij (t , t ′) (A.30)

The fundamental reason why Gaussian integration generalizes to infinite dimen-
sions is because the measure is invariant under translations, that is under x(t) →
x(t)+ξ(t); one can easily verify that this symmetry of the measure yields the result
obtained in Eq. (A.27).
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Consider the action of the ‘harmonic oscillator’ given by

S = −m
2

∫ +∞

−∞
dt

[(
dx(t)

dt

)2

+ ω2x2(t)

]
(A.31)

= −m
2

∫ +∞

−∞
dtx(t)

(
− d2

dt2
+ ω2

)
x(t)

⇒ D−1(t , t ′) = m

(
− d2

dt2
+ ω2

)
δ(t − t ′)

where an integration by parts was done, discarding boundary terms at ±∞, to obtain
the second equation above. The propagatorD(t , t ′) is given by

D(t , t ′) = 1
2πm

∫ +∞

−∞
dp
eip(t−t ′)

p2 + ω2

= 1
2m|ω|e

−|ω||t−t ′ |

The result above can be verified by using Eq. (A.7).

A.4 White noise

The salient properties of Gaussian white noise are reviewed. The defining equations
for white noise are the following

E[R(t)] = 0; E[R(t)R(t ′)] = δ(t − t ′) (A.32)

The random variables R(t) are shown in Figure A.1; each point t on the vertical
line represents one independent random variable R(t).

To write the probability measure forR(t), let time t ∈ [t1, t2] take discrete values
in the finite interval, which depends on the problem of interest; discretize t → mε,
with m = 1, 2, . . . ,M where M = [(t2 − t1)/ε], and with R(t) → Rm. From
Eqs. (A.32) and (A.10), the expectation value for white noise is given by

E[Rn] = 0; E[RmRn] = 1
ε
δm−n ⇒ E[R2

n] = 1
ε

(A.33)

The discussion in Section 5.10 can be reduced to the case of white noise and
explains in what sense a random quantity like R2(t) can be considered to be
deterministic.
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t

t1

t2

R(t )

Figure A.1 One independent (integration) random variable R(t) corresponds
to each point of the t-axis. The collection of independent variables constitutes
white noise.

White noise is singular for equal time, given by t = t ′, since δ(0) = ∞, and
gives rise to the results of Ito calculus [12]. From Eq. (A.33), the equal time product
of white noise, to leading order in ε is deterministic and yields

R2
n = 1

ε
+ random terms of O(1) (A.34)

From Eq. (A.33) it follows that for each n,Rn is an independent Gaussian random
variableN(0, 1/

√
ε). The joint probability distribution forM independent Gaussian

random variables from Eq. (A.24) is, hence, given by

P [R] =
[√

ε

2π

]M
exp

{
−ε

2

M∑
m=1

R2
m

}
∫
dR =

M∏
m=1

∫ +∞

−∞
dRm

⇒ E[RnRm] =
∫
dRP [R]RnRm = 1

ε
δn−m

The normalization of P [R] factorizes out of all calculations. In the path integral
formulation, the normalization is taken into account by defining an action S0 and
dividing out by the ‘partition function’ Z̃ as follows

S̃0 = −ε
2

M∑
m=1

R2
m;

∫
dR =

M∏
m=1

∫ +∞

−∞
dRm (A.35)
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⇒ E[RnRm] = 1

Z̃

∫
dReS̃0RnRm = 1

ε
δn−m (A.36)

Z̃ =
∫
dReS̃0

The continuum limit is obtained by taking ε → 0. For purposes of rigor, the
continuum limit needs to be taken by first rendering the path integral into discrete
multiple integrals as given above. For t1 < t < t2, ε → 0 yields

S̃0 → S0; Z̃ → Z (A.37)

S0 = −1
2

∫ t2

t1

dtR2(t) (A.38)

∫
dR →

∫
DR =

t2∏
t=t1

∫ +∞

−∞
dR(t) (A.39)

E[RnRm] → E[R(t)R(t ′)] = 1
Z

∫
DReS0R(t)R(t ′)

= δ(t − t ′)

The expression above forE[R(t)R(t ′)] is one of the simplest examples of a path
integral correlator.

The action functional S0 is ultra-local with all the variables being decoupled;
generically,

∫
DR stands for the (path) integration over all the random variables

R(t) which appear in the problem.
The path integral can be extended to N correlated Gaussian white noises Ri(t),

which are defined by

E[Ri(t)] = 0; E[Ri(t)Rj (t ′)] = ρij δ(t − t ′); 0 ≤ t , t ′ ≤ T

The path integral that yields the white noise correlators, from Eqs. (A.29) and
(A.30), given by

E[Ri(t)Rj (t ′)] = 1
Z

∫
DRRi(t)Rj (t

′)eS = ρij δ(t − t ′)

S =
∫ T

0
dtL; L = −1

2

N∑
ij=1

ρ−1
ij Ri(t)Rj (t) : Lagrangian (A.40)

∫
DR =

T∏
t=0

N∏
i=1

∫ +∞

−∞
dRi(t); Z =

∫
DReS
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All expectation values of financial instruments are evaluated using the path
integral. For an instrument O, its average is given as follows

E[O] = 1
Z

∫
DROeS0

A useful formula for the generating functional for R, obtained as a special case
of Eq. (A.27), is the following

Z[j ] = 1
Z

∫
DRe

∫ t2
t1
dtj(t)R(t)

eS0[R,t1,t2]

= exp
{

1
2

∫ t2

t1

dtj2(t)

}
(A.41)

A.5 Functional differentiation

Consider variables fn, n = 0, ±1, ±2, . . . , ±N that satisfy

∂fn

∂fm
= δn−m

Let t = nε, with N → ∞. The limit ε → 0 yields

∂fn

∂fm
→ δf (t)

δf (t)
′ ≡ lim

ε→0

1
ε

∂fn

∂fm

⇒ δf (t)

δf (t ′)
= lim

ε→0

1
ε
δn−m → δ(t − t ′) (A.42)

In general, the functional derivative of �[f ] – an arbitrary functional of f (t) – is
denoted by δ/δf (t) and is defined by

δ�[f ]
δf (t)

= lim
ε→0

�[f (t ′)+ εδ(t − t ′)] −�[f ]
ε

(A.43)

Note that ε has the dimensions of [f ] × [t]. In the notation of state space one has

〈
f | δ

δf (t)
|�
〉
= δ

δf (t)
〈f |�〉 = δ�[f ]

δf (t)
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• Consider the simplest function�[f ] = f (t0); then, from Eq. (A.43)

δ�[f ]
δf (t)

= δf (t0)

δf (t)
= lim
ε→0

f (t0)+ εδ(t − t0)− f (t0)

ε
= δ(t − t0)

• Let �[f ] = ∫
dτf n(τ ); from above

δ�[f ]
δf (t)

=
∫
dτnf n−1(τ )

δf (τ )

δf (t)
(A.44)

=
∫
dτnf n−1(τ )δ(t − τ ) = nf n−1(t) (A.45)

A.5.1 Chain rule

The chain rule for calculus of many variables has a generalization to functional
calculus. Consider a change of variables from fn to gn; the chain rule of calculus
yields

∂

∂fn
=

N∑
m=1

∂gm

∂fn

∂

∂gm

As before, let t = nε, t ′ = mε; re-write the above expression as follows

1
ε

∂

∂fn
= ε

N∑
m=1

[
1
ε

∂gm

∂fn

] [
1
ε

∂

∂gm

]
Taking the limit of N → ∞ and ε → 0 yields

lim
ε→0

1
ε

∂

∂fn
→ δ

δf (t)
=
∫
dt ′ δg(t

′)
δf (t)

δ

δg(t ′)
: Chain rule (A.46)

A.6 State space V
The option price C(t , x) on some underlying security S is an element of a linear
vector space – called a state space and denoted by V . The state space consists of
all possible functions of the security S. For the case when the security is a stock
price, S = ex , with x ∈ R, and the state space V consists of all possible functions
f (x), with x ∈ R.

The coordinate x is called a degree of freedom. The dual space of V – denoted
by Vdual – consists of all linear mappings from V to the complex numbers, and is
also a linear vector space.
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In Dirac’s bracket notation for state vectors, an element g of V is denoted by
the vector |g〉 and an element of Vdual by the dual vector 〈p|. The scalar product
is defined for any two vectors from the state space and its dual, and is given by a
complex number equal to 〈p|g〉 = 〈g|p〉∗, where ∗ stands for complex conjugation.
Both V and its dual Vdual are referred to as the state space of the system.

The state space in option pricing is of central importance since all option prices
belong to a state space defined by the underlying security. The simplest description
of the state space, similar to the description of a finite-dimensional vector space, is
to enumerate a complete set of basis vectors so that any arbitrary vector can then be
represented in terms of these basis states. The completeness equation is a statement
that one has a complete set of linearly independent basis vectors.

Consider the possible values of a stock price S = ex ; suppose for now that the
stock can have only a discrete set of values. Let x = na with lattice spacing a; since
−∞ ≤ x ≤ +∞, n can be any integer. The basis states are labeled by |n〉 and the
dual basis states by 〈n|. The discrete values of the stock price are represented by an
infinite column vector with the only nonzero entry being unity in the nth position.
Hence

|n〉 : n = 0, ±1, ±2, . . . , ±∞

|n〉 =

⎡⎢⎢⎢⎢⎣
. . .

0
1
0
. . .

⎤⎥⎥⎥⎥⎦ : nth position; 〈m|n〉 = δn−m ≡
{

1 n = m

0 n �= m

+∞∑
n=−∞

|n〉〈n| = I = diagonal(1, 1, . . .) : completeness equation

where I above is the infinite-dimensional unit matrix. The completeness is also
referred as the resolution of the identity since only a complete set of basis states,
taken together, can construct the identity operator on state space.

The allowed values of the stock price S correspond to x taking any real value,
that is x ∈ R, and hence the limit of a → 0 needs to be taken. The state vector for
the particle is given by the ‘ket vector’ |x〉, with its dual given by the ‘bra vector’
〈x|. In terms of the underlying lattice (x = na)

|x〉 = lim
a→0

1√
a
|n〉; − ∞ ≤ x ≤ ∞
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The scalar product, for x = na and x′ = ma, in the limit of a → 0, is given,
from Eq. (A.10), by the Dirac-delta function

〈x|x′〉 = 1
a
δm−n → δ(x − x′) ≡

{ ∞ x = x′
0 x �= x′

The completeness equation is given by

+∞∑
n=−∞

|n〉〈n| → a

+∞∑
n=−∞

|x〉〈x|

⇒
∫ +∞

−∞
dx|x〉〈x| = I : completeness equation

where I is the identity operator on (function) state space.
A more direct derivation of the completeness equation is to consider the scalar

product of two functions, namely

〈f |g〉 ≡
∫
dxf ∗(x)g(x)

= 〈f |
{∫ +∞

−∞
dx|x〉〈x|

}
|g〉

and this yields the completeness equation

I =
∫ +∞

−∞
dx|x〉〈x| (A.47)

The completeness equation given by Eq. (A.47) is a key equation that is central
to the analysis of the state space. For the case of two equities S = ex andQ = ey ,
the values x, y obey the completeness equation given by

I =
∫ +∞

−∞
dxdy|x, y〉〈x, y| (A.48)

where |x, y〉 ≡ |x〉 ⊗ |y〉. The generalization to N equities is straightforward.
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The vector |f 〉 and its dual 〈f | have the important property that they define
the ‘length’ 〈f |f 〉 of the vector. The completeness equation Eq. (A.47) yields the
following1

〈f |f 〉 =
〈
f

∫ +∞

−∞
|x〉〈x|f

〉
=
∫ +∞

−∞
f (x)∗f (x) ≥ 0

The bra and ket vectors 〈x| and |x〉 are the basis vectors of the Vdual and V
respectively.An element of the state spaceV is the ket vector |f 〉, and can be thought
of as an infinite-dimensional vector with components given by f (x) = 〈x|f 〉. The
vector |f 〉 can be mapped to a unique dual vector denoted by 〈f | ∈ Vdual. In
components f ∗(x) = 〈f |x〉. The vector |f 〉 has the following representation in the
|x〉 basis

|f 〉 =
∫ +∞

−∞
dx〈x|f 〉|x〉

=
∫ +∞

−∞
dxf (x)|x〉 (A.49)

A.6.1 Operators: Hamiltonian

An operator is defined as a linear mapping of the state space V onto itself, and
is an element of the tensor product space V ⊗ Vdual. For a two-state system, the
state space is a two-dimensional Euclidean space and operators are 2 × 2 matrices.
Consider a state space that consists of all functions of single (real) variable x,
namely V ≡ {f (x)|x ∈ �}, where 〈x|f 〉 = f (x); operators on this state space are
infinite-dimensional generalizations of N ×N matrices, with N → ∞.

One of the most important operators is the coordinate operator x̂ that simply
multiplies f (x) ∈ V by x, that is x̂f (x) ≡ xf (x). Another important operator is
the differential operator ∂/∂x that maps f (x) ∈ V to its derivative ∂f (x)/∂x. All
the operators that will be studied are functions of the operators x̂ and ∂/∂x.

Similar to a N × N matrix M that is fully specified by its matrix elements
Mij , i, j = 1, . . . ,N , an operator is also specified by its matrix elements. For the

1 In quantum mechanics, only the subspace of V consisting of state vectors that have unit norm, defined by
〈f |f 〉 = 1, correspond to physical systems and is called a Hilbert space. In finance the state space is larger than
the Hilbert space since many financial instruments are represented by state vectors, such as the price of a stock
given by ex , that do not have a finite norm.
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operators x̂ and ∂/∂x, in the notation of Dirac

x̂f (x) = xf (x)

⇒ 〈x|x̂|f 〉 = x〈x|f 〉 = xf (x)

〈x| ∂
∂x

|f 〉 = ∂f (x)

∂x

In other words, the matrix element 〈x|x̂|f 〉 of the operator x̂ is given by xf (x).
Choose the function |f 〉 = |x′〉 that yields

〈x|x̂|x′〉 = x〈x|x′〉 = xδ(x − x′)

Pursuing the analogy with matrices further, it is known that a matrix M has a
Hermitian conjugate defined by M†

ij ≡ M∗
j i . Similar to a matrix, the Hermitian

conjugate of an arbitrary operator O is defined by2

〈f |O†|g〉 ≡ 〈g|O|f 〉∗ (A.50)

Furthermore, similar to matrices, the Hermitian adjoint of a sum of operators is
given by (A+B + . . . )† = A† +B† . . . , and of a product of operators is given by
(AB . . .)† = . . . B†A†.

The state space, completeness equation, and operators are a generalization of
finite-dimensional linear algebra. Finite-dimensional vectors are generalized to
infinite-dimensional vectors with continuous labels such as |x〉; functions, such as
f (x), are interpreted as infinite-dimensional vectors with f (x) = 〈x|f 〉. Matrices
that act on finite-dimensional linear vector space are generalized into infinite-
dimensional differential operators, the most important of these being the coordinate
operator x̂ and the differential operator ∂/∂x; operators such as the Hamiltonian
are built out of these coordinate and differential operators.

In quantum finance, the Hamiltonians describing stochastic financial instruments
are not Hermitian. Furthermore, the state space of financial instruments on which
the Hamiltonian acts is not a positive normed Hilbert space, but, instead, is much
larger with many financial instruments having a divergent, infinite norm.

A.7 Quantum field

Interest rates, in the framework of quantum finance, are modeled as a two-
dimensional quantum field. The concept of a quantum field is discussed so that
its essential mathematical features can be addressed in some generality

2 The reason for studying Hermitian conjugation is because one needs to know the space that an operator acts on,
namely whether it acts on V or on its dual Vdual. For non-Hermitian operators, and these are the ones that occur
in finance, the difference is important.
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A classical field is a deterministic function of its arguments; in other words, it has
only one configuration. A typical example of a classical field is the density of air,
which has a unique value at every point in a room. A quantum field is the collection
of all possible configurations of the classical field; the quantum field corresponding
to air’s density is a collection of all possible densities at every point in the room.

A quantum field consists of all possible configurations of a classical field; the
natural question arises as to how does one describes such an object? Aquantum field
is taken to be a random function, with its different configurations having different
likelihoods of occurrence. How does one assign probabilities to the occurrence
of different configurations? The Lagrangian and Hamiltonian of a system are two
equivalent ways of assigning such probabilities.

A.7.1 Lagrangian formulation

Consider for example a nonrelativistic (one-dimensional) string, and let its dis-
placement from equilibrium at time t and at position x be denoted by φ(t , x), as
shown for a particular instant t0 in Figure A.2.

Let the string’s initial position at time t1 be given by φ1(x) = φ(t1, x), and its
final position at time t2 be given by φ2(x) = φ(t2, x). Suppose the string has mass
per unit length given by ρ, and string tension (energy per unit length) given by T .
A general expression for the action of the string, namely Sstring is given by [95]

S[φ] =
∫ t2

t1

dt

∫ +∞

−∞
dxL(t , x) (A.51)

≡ Skinetic + Spotential

F (t0, x)

x

Figure A.2 A typical string configuration.
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L(t , x) = − 1
2

[
ρ

(
∂φ

∂t

)2

+ T

(
∂φ

∂x

)2

+ V (φ)

]
(A.52)

L(t , x) is the Lagrangian density for φ and V (φ) is the potential (function) of the
field φ.

A classical string has a unique shape. The string quantum field, at each instant
of its evolution, can take all possible shapes. Hence, for example, to compute the
average values of functions of the quantum string one needs to integrate over all
possible values for the string’s position at each point x and for each instant t . The
quantum field theory of the string field φ(t , x) is defined by the Feynman path
integral, which is the functional integration over all possible configurations of the
quantum field. In particular, the correlation of the quantum string is heuristically
given by

E[φ(t , x)φ(t ′, x′)] ≡< φ(t , x)φ(t ′, x′) >

= 1
Z

∫
DφeS[φ]φ(t , x)φ(t ′, x′)

Z =
∫
DφeS[φ];

∫
Dφ =

t2∏
t=t1

+∞∏
x=−∞

∫ +∞

−∞
dφ(t , x)

∣∣∣φ(t2,x)=φ2(x)

φ(t1,x)=φ1(x)

The probability for the occurrence of different configurations for the quantum field
φ(t , x) is heuristically given by eS[φ]/Z; {φ(t , x)} is called a quantum field, since –
unlike a classical string which has a determinate and fixed value for every x and
t – the quantum field takes all possible values for each x and t [47].

A.7.2 Hamiltonian formulation

The dynamics of a quantum field can also be determined by the Hamiltonian of the
string, denoted by Ĥstring and which is derived from the string action Sstring. The
initial and final quantum state vectors of the (string) field are given by its initial
and final shapes |φ1〉 = ⊗

−∞<x<+∞ |φ(x)〉 and |φ2〉 = ⊗
−∞<x<+∞ |φ′(x)〉.

The transition amplitude is defined by [95]

Z ≡ 〈φ2|e−τĤstring |φ1〉 (A.53)

=
∫
Dφ exp(Sstring) (A.54)

with τ = t2 − t1 and boundary conditions given by φ1(x) = φ(t1, x) and φ2(x) =
φ(t2, x).
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For a single particle the state space of states for quantum mechanics depends on
one variable, given by |x〉, whereas for a single field φ, the quantum field’s state
space depends on infinitely many independent variables given by the infinite tensor
product |φ〉 = ⊗

−∞<x<+∞ |φ(x)〉.
Quantum mechanics is a system that, at a given instant in time, has only a finite

number of random variables; a quantum field, in contrast, is a system that, at a
given instant in time, has infinitely many independent random variables. This, in
essence, is the difference between quantum mechanics and quantum field theory.

From a more mathematical point of view there is no measure theoretic interpre-
tation of the expression

∏
t1<t<t2

∏
−∞<x<+∞

∫ +∞
−∞ dφ(t , x). The only rigorous

definition of Eq. (A.54) is to limit the volume of spacetime to be finite, and then
discretize spacetime so that the infinite-dimensional integration given in Eq. (A.54)
is reduced to an ordinary finite-dimensional multiple integral.

If the action S is only a quadratic function of the quantum field φ, the theory is
said to be a free (Gaussian) quantum field, and one can take the continuum limit
without having to address the problem of renormalization. The quantum field for
the bond forward interest rates f (t , x) is Gaussian. The quantum field for the Libor
forward interest rates fL(t , x) – and its representation by the log Libor quantum
field φ(t , x) in the Libor Market Model – is highly nonlinear and non-Gaussian.
The computational simplicity of the bond forward rates is the reason it has been
used extensively for illustrating various theoretical and empirical properties of the
forward interest rates. However, for all applications to the interest rate Libor and
Euribor markets, the nonlinear log Libor quantum field φ(t , x) has to be analyzed.

A.8 Quantum mathematics

Quantum mathematics originates in quantum physics, which treats all physical phe-
nomena as being intrinsically uncertain and random. In contrast, a classical system
is completely deterministic. Quantum mathematics is a theoretical and mathemat-
ical framework for describing the inherent uncertainty of nature. There are many
subtleties of quantum uncertainty that do not appear in any classical system; but
the quantum world has one common link with classical phenomena: if a classical
system has sufficient complexity so that it behaves like a random system, then this
random system can be described in a comprehensive and effective manner by the
mathematics of quantum physics.

Risk is fundamental to finance and financial instruments, since the future is
always uncertain. One may think of the uncertainty in finance as arising from a
classical phenomenon – namely, the social, economic, and financial system – that
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has become so complex that its future outcome is effectively random. It is precisely
this uncertainty, this randomness in what the future holds, that makes quantum
mathematics a natural and powerful formalism for analyzing finance.

One of the essential features of quantum mathematics is the synthesis of calculus
with linear algebra. To illustrate this synthesis, note that in linear algebra the
representation of a vector in N -dimensional Euclidean space �N is given in terms
of N linearly independent basis vectors ei . An arbitrary vector is expressed by its
components in the following manner

v =
N∑
i=1

viei ; ei · ej = δi−j

In quantum mathematics, an infinite-dimensional generalization of linear algebra
is made to functional analysis by generalizing Euclidean space �N to state space
V , which is a space of functions. There are now a continuous infinity of indepen-
dent basis vectors |x〉, where x is governed by rules of calculus. The ‘vector’ |f 〉
belonging to V , from Eq. (A.49), has the following representation in the |x〉 basis

|f 〉 =
∫ +∞

−∞
dxf (x)|x〉; 〈x|x′〉 = δ(x − x′)

The Dirac notation provides a transparent representation of the infinite-
dimensional generalization of linear algebra, which naturally combines it with
calculus. Function f (x) of a continuous variable x, the mainstay of calculus, in
quantum mathematics is endowed with a linear structure that is inherited from
state (function) space V . The Dirac-delta function plays a crucial role in creating
this synthesis. Section A.5 on functional differentiation shows how the concepts of
differentiation are generalized in quantum mathematics; the concept of state space
V leads to the infinite-dimensional generalization of matrices to operators acting on
the state space. The Feynman path integral is an infinite-dimensional generalization
of integration – consisting of summing over all paths between two points and is
equivalent to integrating over infinitely many independent integration variables.

Quantum field theory lifts quantum mathematics to an entirely new and higher
plane by introducing a state space that consists of the infinite tensor product of
the single particle state space V and entails studying functions of infinitely many
independent variables. The Hamiltonian is a functional differential operator, with
functional differentiation being the infinite-dimensional generalization of differ-
entiation. The path integral also generalizes to functional integration that consists
of summing over all possible functions defined on higher-dimensional underlying
manifolds. Many new features are present in quantum field theory, such as phase
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transitions, that are absent in quantum mechanics. For the case of finance, forward
interest rates are modeled as a quantum field that consists of all possible func-
tions on a two-dimensional trapezoidal manifold; functional integration consists of
summing over this collection of functions.

A parallel to the power of quantum mathematics is the case of calculus. Newton
discovered calculus in formulating his equations of motion; in subsequent centuries,
calculus came to permeate all fields of quantitative science. Quantum mathematics
is, similarly, finding applications in many fields – with finance being just one of
these [82].

The utility of quantum mathematics for solving problems beyond its original
domain has been increasing with every passing day. A precedent in using quantum
mathematics outside the quantum domain is the case of classical phase transitions,
which are the result of the fluctuations of classical random fields. Planck’s constant
�, which is present in all quantum phenomena, does not appear in classical phase
transitions. Nevertheless, the mathematical structure of renormalizable quantum
field theories accurately describes the fluctuations of the classical random field
and provides a microscopic explanation of phase transitions. In particular, field
theory calculations provide quantitative results that have been experimentally ver-
ified. Conversely, the theory of classical phase transitions throws new light on the
concept of renormalization – a procedure essential for making sense of nonlinear
relativistic quantum field theories [95]. All renormalizable quantum field theories
are the continuum limit of a lattice system undergoing a classical second-order
phase transition.



Appendix B
US debt markets

The US financial system has been going through major transformations during the
last 30 years and is thought to be a precursor of the changes that all mature financial
systems will go through. The US financial system has been an innovator of new and
novel financial instruments and the impact of these instruments on the economy
can be studied by examining their effect on the US economy.

The primary focus of this book is the debt market. The US debt markets are
analyzed as an exemplar of the characteristics of a global leader of the debt markets.

Another reason for studying the US debt market is that extensive data on financial
instruments and on the derivatives market are available in the public domain. All
the data for the graphs and diagrams in this appendix are taken from publicly listed
sources.

B.1 Growth of US debt market

One of major changes in the structure of the US economy during the last 30 years has
been the increasing importance of the financial sector in generating corporate earn-
ings. As shown in Table B.1, the fraction of corporate earnings from the financial
sector has grown almost 400% over the last 60 years and 50% over the last 20 years.

The total debt of the US, both internal and external, has undergone a dramatic
increase. As shown in Figure B.1(a) the total US public and private debt over the
last 30 years has grown from US$3 trillion in 1975 to US$42 trillion in 2005, close
to the entire world’s 2005 Gross Domestic Product (GDP) of about US$44 trillion.
In January 2007, the public debt of the United States in the form of US Treasury
Bonds stood at $5 trillion, of which 44% was owned by foreign countries. The
GDP of the US in 2005 was about US$12.5 trillion with the total debt being about
340% of GDP. The total US GDP in January 2008 was US$14 trillion, with US
federal debt standing at US$9.5 trillion, composed of US$5.3 trillion in Treasury
Bonds and US$4.2 trillion in intragovernment debt such as Social Security IOUs.

460
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Table B.1 Changes in the total earnings of US corporations from the domestic
manufacturing and financial sectors.

US corporate earnings

1950 1965 1990 2007

Financial sector 8% 12.5% 20% 35%
Domestic manufacturing – 50% 30% 12%

Figure B.1 (a) The growth of the total public and private debt in the United States
compared to the GDP. (b) The composition of private and public debt in the United
States.

Figure B.1(b) shows that from 1975 to 2005 the US financial sector has increased
its share of the total private and public debt from 10% to about 30%, an almost
300% rise. The debt issued by US financial companies in 2005 was about US$13
trillion with the US local, state and federal government issuing debt of about US$10
trillion (the US federal government’s debt in 2006 was US$3 trillion). The debt of
financial companies and of the US government is mostly in the form of bonds and
credit derivatives.

The developments in the US show the increasing importance of the financial
sector in generating profit for the private sector as well as being the repository of
the liquidity of the economy. The 2008 financial crisis, however, has been a major
setback to the ‘financialization’of the US economy. The expansion and profitability
of the financial sector is explained by some experts as a reflection of an enormous
financial bubble that has yet to run its full course [78]. It is doubtful if the two
decades long expansion of the US financial sector will be repeated. Rather, the US
financial sector is faced with a crisis of liquidity and credibility that may take a long
time to be reversed. Furthermore, as discussed in Section 2.3, in 2007 New York
lost its pre-eminence to London as the world’s leading center of finance. The US
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capital markets, greatly weakened by the 2008 economic crisis, have to now face
other competing, and new, centers of finance, as well as other factors that may
further erode the competitiveness and importance of the US capital markets.

B.2 2008 Financial meltdown: US subprime loans

It is well known that the September–October 2008 meltdown of the US capital
markets and financial institutions started in the subprime mortgage sector. IMF
estimates that the meltdown, as of January 2009, had wiped out about US$4 trillion
from the world’s stock markets, with about US$2.8 trillion being lost in the US
capital markets and economy and a loss of US$1.2 trillion in the rest of the world.
The current global financial crisis has yet to run its full course. The US subprime
mortgage loans are at the root of this crisis and are analyzed as an important exem-
plar of how such a bubble develops and bursts. Understanding the genesis of the
current crisis would hopefully lead to better models of such a rare and exceptional
financial instability. Such models could, hopefully, lead to a better understanding
of how, if possible, the global economy could forecast and preempt such a turn of
events.

Subprime refers to mortgage loans that have a higher risk of default than regular
residential mortgages. Subprime loans are loans given to borrowers who have a
patchy and opaque credit history, do not have regular employment, do not have any
significant financial assets, and would normally not qualify for a standard housing
mortgage. Subprime loans are thus lower in quality to prime housing loans. The
US subprime mortgage bubble began in 2000 and started to come apart in July
2007. The subprime mortgage loan crisis resulted from the coincidence of a global
savings glut with the explosion in financial innovations – made possible by ever-
more sophisticated mathematical models and by information technology. There was
a misplaced view of some investors that ‘risk management’ could handle all forms
of risk and this misconception fueled the bubble to new heights.

The 1997 East Asian financial crisis had taught a hard lesson to the affected
countries, namely that one needs to have substantial national savings if one is
not to be held hostage to Western ‘bailouts’. Most East Asian countries amassed
huge foreign currency reserves that were subsequently invested in the international
capital markets. The surplus capital that flooded the capital markets came, largely,
from East Asian economies and from the cash-flush oil and gas producers.

In 2007, the US residential mortgage market was worth about US$10 trillion,
with about 75% of it being repackaged securities – issued mostly by two US-
government sponsored mortgage giants Freddie Mac and Fannie Mae. During the
2006–2008 period, subprime US housing loans were thought to be worth about
US$650 billion, with some estimates putting it at US$1 trillion. Risky mortgages
as a whole accounted for about US$1.7 trillion.
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B.2.1 Five stages of the subprime loans bubble

The subprime crisis shows all the typical stages and features of a financial bubble
that has been postulated by Kindelberger and Aliber [68] – based on their the-
ory of financial instability. The following is a brief summary of the five distinct
phases of a financial bubble, with the subprime bubble being used as an exemplar
[69, 89].

1 A new financial instrument is introduced. In the case of subprime loans, most of
the mortgages were ‘securitized’ through a new instrument, namely collateralized
debt obligation (CDO) and sold off as coupon bearing bonds. The CDOs were
used for rating the different tranches of subprime bonds, with the best possible
rating of AAA being assigned to the least risky component and with the most risky
‘toxic’ component being retained by the bank. Rating agencies gave a AAA rating
to about 80% of these bonds [90]. The banks sold off all the securitized mortgages
to investors, retaining only the toxic component. These same AAA bonds later
were found, starting in 2007, to be as risky as the ‘toxic’ component, showing
the complicity of rating agencies in the subprime crisis. The investment grade
AAA rating allowed for a massive inflow of investments from insurance companies
and sovereign, pension, and hedge funds, and others. A large fraction of the AAA
mortgage tranche was sold off to European banks and pension funds.

Although some critics blame securitization for the subprime crisis, this is not
completely accurate. The rating of essentially junk bond category instruments,
which by right should have all been rated as BBB and below, were given AAA
rating by the incorrect view that separating ‘junk bonds’ into tranches could some-
how reduce their measure of risk. When the crisis struck, it was found that all the
subprime mortgage tranches, from AAA down to the ‘toxic’ component were all
strongly correlated, with defaults happening for all tranches with equal likelihood.
In short, securitization was carried out incorrectly, with corporate greed and quick
profits creating instruments that were doomed to fail.

2 The second stage was a rapid expansion of credit. The housing bubble expanded
due to extremely low interest rates – starting from about 6% in 2000 and reaching,
by July 2003, a post-Second World War record low of 1% – and staying there for
a full year. Securitization led to large-scale leveraging, with banks paying only
10% of an assets value, the rest being funded by low interest credit. Structured
investment vehicles (SIVs) were created by the banks to provide off-balance-sheet
funds to home buyers for making the initial down payment of about 15%; in effect,
a subprime mortgage could be obtained with no cash down payment and, due to
low interest rates, serviced by what would otherwise be monthly rentals. Numerous
borrowers, who normally would not be entitled to mortgage loans, entered the real
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estate market constantly inflating the housing bubble. Mortgage brokers and lenders
made a commission on completing a loan, but with no responsibility for the full
recovery of the loan, thus further fueling the bubble.

3 The bubble reached its peak during a speculative frenzy. The steady appreciation
of US real estate assets – 50% from 2000 to mid-2005 – attracted a diverse range
of investors, who were all betting on a continuing rise of housing prices. Many
households refinanced their loans and withdrew cash to spend on consumption and
to speculate on the housing market. It is estimated that by 2005, 40% of homes
were purchased for speculating on the real estate market – either by investors or
as second homes. By December 2005, at the height of the bubble, new mortgage
borrowings increased to US$1.11 trillion, almost 7% of the US GDP.

4 The bubble started its deflation in 2006, when US housing prices started to fall,
triggered by a rise in US interest rates, which had risen to 5.25% by June 2006. As
risk premiums had fallen and spreads between borrowing and lending narrowed,
central bankers and regulators warned of dangers to the mortgage market. What
could not be foreseen was that the collapse of US subprime mortgage lending would
be a catalyst for a sudden bust.

Investors began to have doubts about the sustainability of the housing ‘boom’.
Seeking to hedge their risks, investors sought protection in credit default swaps
(CDS), which is an instrument that swaps mortgage stream payments with payments
guaranteed by the banks. By 2007, a large number of CDS had been issued to cover
a notional value of real estate assets to the tune of US$42.5 trillion. When the bubble
burst, it was found that most of the CDS were worthless, leaving the investors with
no protection whatsoever.

5 Meltdown of the bubble, leading to fear and flight. In February 2007 HSBC
acknowledged a loss of US$10.8 billion in its US real estate portfolio. In July 2007,
two of Bears Stearn’s hedge funds defaulted on about US$10 billion of financial
obligations, wiping out US$1.5 billion of investors, money. By August 2007 there
was large-scale panic in the financial markets resulting in flight from the US real
estate market. Banks were no longer willing to provide liquidity to other banks
since it was not clear which financial institution was holding what quantity of
‘toxic’ subprime mortgages. British bank Northern Rock went bankrupt and was
nationalized in September 2007. Millions of homeowners in the US had defaulted on
their mortgage payments and were in danger of losing their property. The financial
panic spread throughout the world, having the worst impact on US and European
financial institutions.
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B.2.2 The 2008 financial crisis

By April 2008, US interest rates had been lowered to 2% and by November 2008 to
1%, but the crisis still showed no signs of abating. From April 2007 to July 2008,
US housing prices fell another 4.9%. Global financial losses due to the residential
mortgage meltdown of US subprime loans was estimated by the IMF, in June 2008,
to be about US$950 billion – as well as costing half a percentage of the 2008 world
economic growth. In July 2008, IndyMac Bancorp mortgage lender was taken over
by the US government, the second largest bankruptcy in US history, which was soon
eclipsed, in September 2008, by the much larger bankruptcy of Lehman Brothers,
one of the leading US investment banks.

The US government sponsored mortgage giants Freddie Mac and Fannie Mae
have issued about US$5.2 trillion of mortgage backed securities, almost half of
the total US home mortgage outstanding debt, with about US$1 trillion being held
by East Asian countries. In the year preceding July 2008, their share prices had
fallen by 87% and 79% respectively, with no end in sight. The US government’s
decision, taken in September 2008, to underwrite these mortgage giants, in effect
adds a liability of US$5 trillion to the US taxpayers and could even trigger a chain
reaction of financial bankruptcies [39].

In September 2008, the US government committed US$ 700 billion toward res-
cuing the leading financial institutions and injecting liquidity into the US economy.
Similar steps were taken by the UK and other European Union countries, thus
creating an enormous liability for the public. Furthermore, the US rescue pack-
age provided no support to either domestic or foreign investors who had suffered
massive losses due to the US financial meltdown.

Some market watchers predict that the worst will not be over until the end of 2009.
Of the 7 million subprime loans outstanding, if there is no state intervention, it is
estimated that by 2010, about 40% will default. The main holders of subprime loans
are the poorer sections of US society, with 54% of African American homeowners
holding subprime loans compared to 47% for Hispanic homeowners and 18% for
Caucasians [90]. The subprime mortgage loans have caused the value of the US
Dollar to decline thus creating an inflation worldwide in food and commodity
prices – since these are denominated in the US currency. Needless to say, the social
problems that have been created by the subprime loan crisis are enormous.

The large-scale infusion of liquidity into the capital markets need not, necessar-
ily, have resulted in a financial meltdown. It is thought by many experts that the
subprime crisis is a reflection of deep structural problems with the current global
financial system [90]. Be that as it may, what is clear is that corruption, manipu-
lative policies, and corporate greed of US financial institutions are the immediate
causes for the US financial meltdown and, in particular, of the mortgage loan crisis.
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Making credit available at historically low interest rates, allowing credit standards
to collapse, permitting mortgages to people with low or no credit ratings, creating
AAA ‘investment grade’ vehicles from what were essentially C grade junk bond
type of instruments – and all of this with the active connivance of bankers, mortgage
brokers, lawyers, and rating agencies – are just a few examples of the policies that
have all contributed to, if not caused, the current crisis.

Are derivative instruments responsible for the subprime crisis? Was the crisis
caused by CDOs, SIVs, and CDSs? The answer is clearly no. An instrument is only
as good as the assumptions that go into its formulation. If intrinsically high risk
loans are equated to AAA bonds by rating agencies, all the results that follow from
the model will be prone to failure. Investors holding CDSs had no direct knowledge
of the loan portfolios involved in the swap – they knew only what the banks told
them. With hindsight, the models were made mostly based on false premises.Amore
serious criticism is that financial instruments designed for the US housing market
have not been rigorous, not following a proper financial engineering approach that
is ex-ante (before the fact). Instead, most real estate models are constructed post-
facto, based on default rates of mortgages and hence are quite worthless for either
predicting or preventing a crisis such as the subprime one [46, 64, 74]. Investors
had no realistic idea of the liabilities the CDSs entailed and, once the crisis struck,
were quite unprepared for meeting their onerous financial obligations.

The view that ‘risk management’, using sufficiently complicated hedging instru-
ments, can protect the investor from all forms of risk is incorrect. Effective risk
management has to be based on an accurate representation of the real economy, and
models for estimating and hedging risks must respect this requirement. The lesson
from the subprime crisis for quantitative financial modeling is that one must first
get the basics correct before one embarks on any form of modeling, which needs
to be ex-ante and not post-facto.

Investors were hit particularly hard by the economic crisis. Since the US govern-
ment’s bail out plans did not offer any protection or compensation to the investors,
the financial crisis greatly eroded international and institutional investors’ confi-
dence in the US financial system and capital markets. From a long-term perspective,
the US financial meltdown has shown many fundamental flaws in the Anglo-
American model of capitalism. In particular, the rather one-sided and uncritical
view that unfettered and unregulated financial markets are the best way of achieving
an optimum allocation of capital has been shown to be incorrect. Left unregulated,
capital markets seem to invariably lead to the formation of financial bubbles –
leading to an equally inevitable ‘correction’that results in the large-scale destruction
of capital and to a long-running economic downturn.

It is worth recalling that the real estate bubble in Japan burst in the early 1990s
and, to date (2009), the Japanese economy has not yet fully recovered. Similar
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to Japan’s case, a collapse of the US housing market could cause a decade-long
US economic downturn – as is convincingly argued by Morris [78]. There are, of
course, differences between the US and Japan, a primary one being that the US
Dollar is an international reserve currency. However, an erosion of the US Dollar’s
value would lead to a flight of global savings to the Euro and other assests, leading
to a further intensification of the current US economic crisis. Furthermore, if China
goes into a recession due to the economic crisis in the US and Europe, then this
could possibly result in a prolonged global recession.

B.2.3 Open questions

The subprime crisis invariably points to the question of how should the financial
markets be regulated? How can the global capital markets serve the needs of the
world economy without spreading financial contagions that are outside international
regulations? How can society reap benefits from financial instruments without these
same instruments being used to obscure and hide the facts? How can the global
financial system be protected from corporate greed, from the manipulations of
unscrupulous lawyers, brokers, and bankers? The US and many European taxpayers
are faced with a fairly obvious question: why should the public’s money be spent on
paying for the losses made by unscrupulous and incompetent banks when the profit
these banks make is privately divided amongst their shareholders? This question,
at present, remains largely unanswered.



Glossary of physics terms

Action The time integral of the Lagrangian. The exponential of the action is
proportional to the probability of different random configurations.

Bra and ket vectors The notation with the ‘bra’vector 〈b| representing an element
of the dual state space and the ‘ket’ vector |k〉 representing a vector from the
state space, and with the inner product (‘bracket’) 〈b|k〉 being a complex
number.

Classical field A deterministic function of two or more variables, denoted by say
α(t , x); the classical field, in general, depends on time t as well as another
variable x.

Completeness equation An equation that results from the set of basis vectors
having a linear span that covers the entire state space.

Dual state space A space associated with a vector space, consisting of all
mappings of the state space into the complex numbers.

Eigenfunctions Special state vectors that are associated with an operator such that
under the action of this operator, they are only changed up to a multiplicative
constant, called the eigenvalue.

Functional A quantity that depends on a complete function, for example the
integral of a function is a functional.

Gaussian distribution Generic term for probability distributions that are given
by an exponential of a quadratic function of the random variables. The normal
distribution is the simplest example.

Generating functional A functional from which all the moments of random
variables can be produced by differentiation.

Hamiltonian A differential operator that acts on the state space; in particular,
it evolves the system in time. In finance the system is sometimes evolved
backwards in time, since this is required for obtaining the price of an option.

Hermitian conjugation The transposition and complex conjugation of operators.

468



Glossary of physics terms 469

Lagrangian A functional related to the probabilities for various occurrences of a
random path or a random field configuration.

Lattice quantum field theory A quantum field theory that is defined on an
underlying lattice of (discrete) points.

Linear quantum field theory Theories with a Lagrangian that is a quadratic
function of the quantum fields. Linear theories are also called free, or
Gaussian, quantum field theories.

Nonlinear quantum field theory Theories with a Lagrangian that has terms that
are cubic or higher in the quantum field. Also called interacting, or non-
Gaussian, quantum field theories.

Operators The generalization of matrices. Operators act on the elements of a
state space. In quantum mechanics, empirically observable quantities are
represented by operators.

Partition function The summation of the exponential of the action over all
possible configurations of a quantum field.

Path The trajectory followed by a quantity evolving in time, denoted by x(t),
where t is usually time.

Path integral A summation over all the possible random paths. For a field that
takes random values on say a plane, the path integral is an integration over
all possible functions on the plane. Path integration is also called functional
integration.

Potential A potential is a term that conditions the movement of a quantum par-
ticle or, more generally, the outcome of random variables – making some
configurations more favorable than others.

Potential barrier Potential barriers can be realized by imposing boundary condi-
tions of the eigenfunctions of the Hamiltonian.

Quantum field The collection of all possible configurations (functions) of a clas-
sical field. A quantum field is a random function that takes value on the plane
or higher-dimensional spaces.

Quantum field theory The theory of quantum fields; observable quantities are
obtained by averaging over all possible configurations of the quantum fields.

Quantum mechanics The theory of the atomic realm based on the concepts of
probability, with physical quantities being represented by state vectors and
operators.

Random path A collection of all possible deterministic paths.
State space A linear vector space, the generalization of a finite-dimensional vector

space, that describes the state of a quantum (random) system.
Wilson expansion The expansion of products of quantum fields that are at nearby

points.
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American option An option that can be exercised at any time before the pre-set
expiry date of the contract.

Arbitrage Gaining a risk-free profit, above the capital market’s risk-free return,
by simultaneously entering into two or more financial transactions.

Asian option An option that has a payoff function that depends on the average
value of the security for the duration of the option.

Barrier option An option that has a fixed maturity and is terminated with zero
value before maturity time if the security breaches pre-set limits to its value.

Bermudan option An option that is allowed early exercise before maturity time
only at pre-set times.

Bond forward interest rates A model of the forward interest rates driven by
Gaussian quantum fields without strictly positive rates.

Capital Economic value of real assets in society.
Capital market Market for trading in all forms of financial instruments; in

particular, for trading in equity, debt, and derivative instruments.
Coupon bond A promissory note for a pre-determined series of cash flows.
Derivative securities Financial assets that are derived from other financial assets.
Discounting A factor relating the future value of money to its present value.
Efficient market hypothesis For a financial market in equilibrium, changes in the

prices of all securities are random.
Equity A share in the ownership of a real asset, like a company.
European option An option that can be exercised only at a pre-set expiry date of

the contract.
Exotic option Options that are more complex than vanilla options, such as the

American, Asian, barrier options, and so on, are called exotic options.
Financial assets Paper that entitles its holder to a claim on a fraction of real assets,

and to the income (if any) that is generated by the underlying real assets.
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Financial instrument A specific form of a financial asset – be it a stock or a bond.
Financial market Market for buying and selling financial assets and instruments.
Fixed income securities Instruments of debt issued by corporations and govern-

ments that promise either a single fixed payment or a stream of fixed payments.
Also called bonds.

Forward bond price The forward bond price is the price – contracted and fixed
today – of a (zero coupon) bond that is to be issued some time in the future.

Forward contract An obligatory contract between a buyer and a seller, in which
the seller agrees to provide the commodity or financial instrument at some
future time for a price fixed at present time, with only a single cash flow when
the contract matures.

Forward interest rates The strictly positive forward interest rate f (t , x) is the
future interest rate for an overnight loan at a future time x, with the contract
being fixed at an earlier time t < x.

Futures contract A contract similar to a forward contract. A major difference is
that a futures contract, for the duration of the contract, is marked to the market
with a series of cash flows.

Hedging Ageneral term for the procedure of reducing and, if possible, eliminating
random fluctuations in the price of a financial instrument by including it in a
portfolio together with other related (correlated) instruments.

Ito calculus Another term for stochastic calculus.
Libor (Euribor) London (Euro) interbank offered rate.
Libor forward interest rates A model of strictly positive forward interest rates

fL(t , x) such that all Libor rates and coupon bonds are strictly positive.
Log Libor (Euribor) The logarithm of Libor (Euribor) yields logarithmic interest

rates φ(t , x) that can take any real value.
Market equilibrium For a market in equilibrium, all information has been assim-

ilated leading to all securities having their fair price. Theoretically, it is
expected that all trading ceases for a market in equilibrium.

Martingale process A martingale is a stochastic process such that the expectation
value at present, conditioned on the occurrence of a value of the random
variable in the previous step, is equal to the previous value. Martingale is the
mathematical formulation of a fair game.

Money market Market for trading in money market instruments, such as short-
term debt, cash, foreign currency transactions, and so on.

Numeraire The discounting factor used in computing the present value of money
from its future value.

Option A contract, with a fixed maturity, in which the buyer has the right to – but
is not obliged to – either buy or sell a security to the seller of the option at
some pre-determined (but not necessarily fixed) strike price. Options can be
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written on underlying financial instruments such as stocks and bonds as well
as on other options.

Pricing kernel The conditional probability for the final value of a financial
instrument, given its present value.

Principle of no arbitrage No risk-free financial instrument can yield a rate of
return above that of the market’s risk-free rate.

Random variable A variable that has no fixed value, but instead takes a whole
range of values. The likelihood of its various outcomes is given by a
probability distribution.

Real assets Capital goods, skilled management, raw material, land, labor force,
and so on, that are necessary for producing goods and services.

Return The profit obtained from an investment.
Risk The uncertainty in obtaining return on investment.
Security A financial asset.
Stochastic calculus Calculus of functions that depend on stochastic variables.
Stochastic process A (time-ordered) collection of random variables with out-

comes governed by a joint probability distribution. The collection may have
a discrete or a continuous labeling.

Stochastic variable Another term for a random variable.
Stochastic volatility Volatility of a random variable that is itself a stochastic

variable.
Stocks and shares Financial instruments representing equity.
Tenor Duration of a cash time deposit.
Treasury Bond A zero coupon bond with no risk of default, that is a risk-free

bond. Treasury Coupon Bonds are similarly risk-free coupon bonds.
Vanilla option A European option is also called a vanilla option.
Volatility The standard deviation (square root of variance) of any random variable

(including financial instruments).
White noise A set of random variables, indexed by time, that at every instant have

a probability distribution given by the normal distribution.
Zero coupon bond A financial instrument that is a promissory note for a pre-

determined single fixed payoff of say €1 at some future time T .
Zero coupon yield curve Provides simple interest earnings on a fixed deposit that

are annually or semi-annually compounded.



Symbols

Only new symbols introduced in a chapter are listed.Aconsistent system of notation
has been used as far as possible.

Chapter 2 Interest rates and coupon bonds

B(t , T ) zero coupon bond
B(t) coupon bond
f (t , T1, T2) forward interest rate, at calendar time t , for a deposit from

future time T1 to T2
f (t , x) forward interest rate, at calendar time t , for an instantaneous

deposit at future time x
F (t , T1, T2) forward price, at time t < T1, of a zero coupon bondB(T1, T2).
Z(t , T ) zero coupon yield curve (ZCYC)
y coupon bond yield to maturity
L(t;T1, T2) Libor, at time t , for deposit from future time T1 to T2

	 Libor tenor 	, usually taken to be 90 days
L(t;T ) Libor, at time t , for deposit from future time T to T + 	

s(t) average value of Libor at time t
w(t) white noise for Libor data at time t

Chapter 3 Options and option theory

S(t) stock price at time t
C(t , S(t)) call option price at time t
P (t , S(t)) put option price at time t
P option payoff function
R(t) white noise
α(t) drift of stock price S(t)
�(t , S(t)) portfolio
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� delta parameter
Si(t) ith stock price Si(t)
Ri(t) ith white noise
ρij white noise correlation
�H(t , S(t)) hedged portfolio
τ remaining time
zn(τ ) logarithm of nth stock price
zni Fourier coefficient of zn(τ )∫
DZ path integral over all zn

ZBS , ZMG Black–Scholes and Merton–Garman partition function
LBS , LMG Black–Scholes and Merton–Garman Lagrangian
SBS , SMG Black–Scholes and Merton–Garman action
α(t , x) drift of forward interest rates f (t , x)
σ (t , x) volatility of forward interest rates f (t , x)
I (X) function derived from normal cumulative distribution N(x)

Chapter 4 Interest rate and coupon bond options

RS fixed rate for interest rate swap
RP par rate for interest rate swap
�(x) Heaviside step function
F(t0) forward price of coupon bond B(t)
CL(t0, T0,RS) floating receiver swap option
CR(t0, T0,RS) fixed receiver swap option
CHJM(t0, t∗,K) HJM coupon bond call option
N(d) normal cumulative distribution
Y (t∗, Ti) HJM function
σE(t , x) HJM volatility function

Chapter 5 Quantum field theory of bond forward interest rates

TFR maximum future time
A(t , x) forward interest rate velocity quantum field
S[f ], L[f ] action and Lagrangian for forward interest rates
S[A], L[A] action and Lagrangian for A(t , x)
N (t , x, x′) general propagator for S[f ]
D(t , x, x′) forward interest rate propagator
Z[h] generating function for A(t , x)
θ = x − t remaining future time
z(θ) = θη market future time
η index for future time
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G(t , x, x′) forward interest rate stiff propagator
θ± = θ ± θ ′ combination of future time
M(t , x, x′) covariance of forward interest rates
αF (t , x) drift for forward numeraire
K[f (ti , ·), f (tf , ·)] pricing kernel of forward interest rates
L(t , Tk) Libor from Tk to Tk+1
ζk(t) Libor drift
γk(t) BGM–Jamshidian volatility
D(t∗, T ) discounted zero coupon bond B(t∗, T )

Chapter 6 Libor Market Model of interest rates

fL(t , x) Libor forward interest rates
μ(t , x) Libor forward interest rates’ stochastic drift
v(t , x) Libor forward interest rates’ stochastic volatility
AL(t , x) velocity quantum field for Libor Market Model
χn(t) martingale instrument
B(t , TI+1) zero coupon bond forward numeraire
μI (t , x) drift for forward numeraire B(t , TI+1)

Mv(t , x, x′) covariance of time deposit forward interest rates
ζ(t , x) Libor Market Model drift
�mn(t , x) Libor Market Model correlator
q2
n Libor Market Model kinematical drift
φ(t , x) logarithm of Libor
ρ(t , x) drift of logarithm of Libor
Hn(x) characteristic function for [Tn, Tn+1]
S[φ], L[φ] action and Lagrangian for φ(t , x)
J Jacobian of transformation AL(t , x) → φ(t , x)
μ0(t , x) drift for 	f (t , x) >> 1
ts , tf singular and crossover time of Libor forward interest rates

Chapter 7 Empirical analysis of forward interest rates

< O > expectation of O
< δf > daily changes of forward interest rates f (t , x)
σE(θ) empirical volatility of forward interest rates f (t , x)
ζ(θ) scaling factor
σ̃ (θ) rescaled volatility
C(θ , θ ′) normalized propagator
δL(t , θ) daily changes in L(t , θ)
δ lnL(t , θ) daily changes in the logarithm of L(t , θ)
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G(θ , θ ′) normalized stiff propagator
R(θ+) curvature of G(θ , θ ′)
Cz(z(θ), z(θ ′)) normalized propagator for market time z(θ)
z± = z(θ)± z(θ ′) combination of future market time
�D(θ , θ ′) difference in two normalized propagators
χ(θ) expectation value of 	L(t , θ)/[1 + 	L(t , θ)]

Chapter 8 Libor Market Model of interest rate options

σ 2
B

Black’s caplet volatility
βn integrated Libor drift
β
(0)
n Libor drift βn to O(γ 2)

An stochastic term in the expansion of zero coupon bond B(t , T )
V stochastic term in the expansion of an interest rate swap
C1, C2 expectation value of V and V 2

PAsn Asian swaption payoff
VAsn stochastic term in the expansion of an Asian swap
XAsn effective Asian strike price
K̃Asn modified Asian strike price
ζn(t) BGM–Jamshidian Libor drift
�n BGM–Jamshidian Libor correlation
Z(η) BGM–Jamshidian Libor partition function

Chapter 9 Numeraires for bond forward interest rates

M(t , t∗) money market numeraire
αM(t , x) money market interest rate drift
αI (t , x) forward numeraire interest rate drift
SM money market action
SI forward numeraire action
M domain for money market numeraire
αM(t , x) money market measure drift
αL(t , x) Libor market measure drift
αF (t , x) forward bond numeraire drift
�F (G) pricing kernel for forward bond numeraire
�L(G) pricing kernel for Libor measure

Chapter 10 Empirical analysis of interest rate caps
σH caplet historical volatility
σI caplet implied volatility
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�(t0) caplet and floorlet portfolio
Y (t , Tn) logarithm of 1 + 	L(t , Tn)

Chapter 11 Coupon bond European and Asian options

P∗ payoff for coupon bond option
α∗(t , x) drift for forward numeraire B(t , t∗)
Fi forward bond price of B(t∗, Ti)
Ri domain of forward interest rates
Qi integral over domain Ri of σA(t , x)
βi integral over domain Ri of α∗(t , x)
V stochastic terms in coupon bond payoff
Z(η) partition function for coupon bond option
C0,C1 . . . C4 coefficients in the expansion of lnZ(η)
M(x, x′; t) covariance of forward interest rates
F(t) forward coupon bond price
PAsn payoff for coupon bond Asian option
CBGM BGM–Jamshidian limit of coupon bond option

Chapter 12 Empirical analysis of interest rate swaptions

CI , CII swaptions on forward interest rates
δCI , δCII daily changes in CI , CII
CI ,2, CII ,2 second moments of CI , CII
I integral of forward interest rate covariance
m1,m2,m3 limits of integration for I
d1, d2 limits of integration for I
Y (t0, t∗, T ) logarithm of forward bond price F(t0, t∗, T )
W(t∗, Ti) HJM option function
z(t , x) analog of ZCYC for trial forward interest rates

Chapter 13 Correlation of coupon bond options

P1, P2 payoff functions for two coupon bonds
M12 connected discounted correlator
M1, M2 discounted expectation value of P1, P2
Z(η1, η2) partition function for two coupon bond options
ρ correlation coefficient
a1, a2 drift of coupon bonds
F1, F2 forward price of coupon bonds
X1, X2 rescaled and shifted strike price
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m0, . . . ,m3 coefficients in the expansion of M12
M1, M2 normalized discounting functions
V1, V2 stochastic terms in the payoff function
Aij correlation of discounted V1, V2
T12 domain for discounting two coupon bonds
�12 average of discounting over domain T12
J1, J2 rescaled values of J1, J2

σ 2(P1) coupon bond auto-correlation
P̃1 discounted coupon bond payoff function P1

Chapter 14 Hedging interest rate options

α(t , x) drift for Libor market measure
FF (t , Ti) Libor futures
�(G, T , T + 	) pricing kernel for caplet
�(t) portfolio for caplet hedging
δ�(t) daily changes in portfolio
�(G|fh) expectation value of G conditioned on the

occurrence of f (t∗, xh) = fh

L̃(t , T1, fh) Libor future conditioned on f (t , xh) = fh
�(G|fh, t , T1) expectation value of G conditioned on the

occurrence of L̃(t , T1, fh)
η1 stochastic delta hedging parameter
Ki ,Mij coefficients of variance of d�/dt
VR residual variance
χ coefficient of caplet delta parameter

Chapter 15 Interest rate Hamiltonian and option theory

〈x| bra vector
|x〉 ket vector
V state space
VD dual state space
I identity operator on state space
|C, t〉 option price state vector
〈x|C, t〉 option price state vector in x basis
|P〉 option payoff state vector
〈x|P〉 option payoff state vector in x basis
H Hamiltonian operator
H † Hermitian adjoint Hamiltonian
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|S〉 stock price state vector
HBS Black–Scholes Hamiltonian
HN Hamiltonian for N equities
|ft 〉 interest rate state vector
Vt interest rate state space at calendar time t
It identity operator on state space Vt at calendar time t
Z partition function for interest rates
|B(t , T )〉 zero coupon bond vector at time t
|B(t)〉 coupon bond vector at time t
Lφ(t , x) Lagrangian density for log Libor φ(t , x)
Lf (t , x) Lagrangian density for forward interest rates f (t , x)
L(tn, x) Lagrangian density
Hφ(t) Hamiltonian for log Libor φ(t , x)
Hf (t) Hamiltonian for forward interest rates f (t , x)
H∗(t) Hamiltonian for forward numeraire B(t , t∗)
φj integral of φ(t , x) over interval [Ti , Ti+1]
Wf evolution operator for forward interest rates f (t , x)
W evolution operator for coupon bonds
g(x) bond variable
gi bond variable B(t∗, Ti) = e−gi
G(x, x′) bond correlator
Zcb coupon bond partition function
Lcb coupon bond Lagrangian

Chapter 16 American options for coupon bonds and interest rates

p(z, z′; 1) pricing kernel for equity for time step ε
P (τi) American put option price
g(τi) American caplet or coupon bond price
m, n remaining calendar and future lattice time
Bm+1,1 lattice forward numeraire
fmn lattice forward interest rates
α̃mn lattice forward interest rate drift
smn lattice forward interest rate volatility
SL lattice forward interest rate action
L[fm+1, fm] lattice forward interest rate Lagrangian density
Cm(fmn) option price at remaining calendar time mε
C̃m(fmn) trial option price at remaining calendar time mε
f kmn values of the lattice forward interest rate tree
g[j ] American option price on the interest rate tree



480 List of symbols

Chapter 17 Hamiltonian derivation of coupon bond options

fI log of the forward zero coupon bond F(t0, t∗, TI ) = e−fI
CIK coefficients for option price
〈f| state vector basis states for initial coupon bond
W evolution operator
Gij correlation term in the evolution operator W
βi drift term in the evolution operatorW
�p[f] eigenfunction of the evolution operatorW
SE[p] real part of the eigenvalue of the evolution operatorW
CE European coupon bond option price
CE,0,CE,1,CE,2 coefficients for CE
CB coupon bond barrier option price
ψk(g) barrier eigenfunction for a zero coupon bond
ψk(gd) barrier eigenfunction for a coupon bond
Q barrier function
QE European limit of barrier function
Qa ,Qb single barrier limit of barrier function
a, b linearized barrier limits
�p,k overcomplete barrier eigenfunctions
K[f, g] barrier option pricing kernel
CB,0,CB,1,CB,2 expansion coefficients for barrier option CB
SB,0, SB,1, SB,2 real part of the eigenvalue of the

overcomplete barrier eigenfunctions
D1,D2 coefficients for barrier option price
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