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Abstract. We consider the problem of a learning mechanism (robot,
or algorithm) that learns a parameter while interacting with either a
stochastic teacher or a stochastic compulsive liar. The problem is modeled
as follows: the learning mechanism is trying to locate an unknown point
on a real interval by interacting with a stochastic environment through
a series of guesses. For each guess the environment (teacher) essentially
informs the mechanism, possibly erroneously, which way it should move
to reach the point. Thus, there is a non-zero probability that the feed-
back from the environment is erroneous. When the probability of correct
response is p > 0.5, the environment is said to be Informative, and we
have the case of learning from a stochastic teacher. When this probability
is p < 0.5 the environment is deemed Deceptive, and is called a stochastic
compulsive liar.

This paper describes a novel learning strategy by which the unknown pa-
rameter can be learned in both environments. To the best of our knowl-
edge, our results are the first reported results which are applicable to
the latter scenario. Another main contribution of this paper is that the
proposed scheme is shown to operate equally well even when the learn-
ing mechanism is unaware whether the environment is Informative or
Deceptive. The learning strategy proposed herein, called CPL-ATS, par-
titions the search interval into three equi-sized sub-intervals, evaluates
the location of the unknown point with respect to these sub-intervals
using fast-converging e-optimal Lp; learning automata, and prunes the
search space in each iteration by eliminating at least one partition. The
CPL-ATS algorithm is shown to be provably converging to the unknown
point to an arbitrary degree of accuracy with probability as close to
unity as desired. Comprehensive experimental results confirm the fast
and accurate convergence of the search for a wide range of values for the
environment’s feedback accuracy parameter p. The above algorithm can
be used to learn parameters for non-linear optimization techniques.
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1 Introduction

Consider the problem of a robot (algorithm, learning mechanism) moving along
the real line attempting to locate a particular point A\*. To assist the mech-
anism, we assume that it can communicate with an Environment (“Oracle”)
which guides it with information regarding the direction in which it should go.
If the Environment is deterministic the problem is the “Deterministic Point Lo-
cation Problem” which has been studied rather thoroughly [1]. In its pioneering
version [1] the problem was presented in the setting that the Environment could
charge the robot a cost which was proportional to the distance it was from the
point sought for. The question of having multiple communicating robots locate
a point on the line has also been studied [1, 2]. In the stochastic version of this
problem, we consider the scenario when the learning mechanism attempts to
locate a point in an interval with stochastic (i.e., possibly erroneous) instead
of deterministic responses from the environment. Thus when it should really be
moving to the “right” it may be advised to move to the “left” and vice versa.

Apart from the problem being of importance in its own right, the stochas-
tic point location problem also has potential applications in solving optimization
problems. In many optimization solutions — for example in image processing, pat-
tern recognition and neural computing [5, 9, 11, 12, 14, 16, 19], the algorithm
works its way from its current solution to the optimal solution based on informa-
tion that it currently has. A crucial question is one of determining the parameter
which the optimization algorithm should use. In many cases the parameter of the
scheme is related to the second derivative of the criterion function, which results
in a technique analogous to a Newton’s root solving scheme. The disadvantages
of the latter are well known — if the starting point of the algorithm is not well
chosen, the scheme can diverge. Additionally, if the second derivative is small,
the scheme is ill-defined. Finally, such a scheme requires the additional compu-
tation involved in evaluating the (matrix of) second derivatives [14, 16, 19]. To
tackle this problem we suggest that our strategy to solve the stochastic point
location problem can be invoked to learn the best parameter to be used in any
algorithm.

The results that are claimed here are stated in the body of the paper. Sketches
of their proofs are included in the Appendix. The more detailed proofs are found
in the unabridged version of the paper [15].

2 The Stochastic Point Location Problem

The goal of the learning mechanism is to determine the optimal value of some
parameter A\* € [0,1). Although the mechanism does not know the value of
A*, we assume that it has responses from an intelligent environment E which is
capable of informing it whether the current estimate A is too small or too big. To
render the problem both meaningful and distinct from its deterministic version,
we would like to emphasize that the response from this environment is assumed
“faulty”. Thus, E may tell us to increase A when it should be decreased, and vice
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versa with a non-zero probability 1 — p. Note that the quantity p reflects on the
“effectiveness” of the environment, E . Thus, whenever A< A*, the environment
correctly suggests that we increase A with probability p. It could as well have
incorrectly recommended that we decrease A\ with probability 1 — p. Similarly,
whenever \ > A*, the environment tells us to decrease A with probability p, and
to increase it with probability (1 — p).

We further distinguish between two types of environments — Informative and
Deceptive. An environment is said to be “Informative” if the probability p of its
giving a correct feedback is greater than 0.5. If p < 0.5, the environment is said
to be “Deceptive”. Thus a Deceptive environment is more likely to give erroneous
feedback than an Informative environment. This together with the fact that the
learning mechanism is not aware of the nature of the environment complicates
the learning process and its convergence.

3 Related Work

Oommen [9] proposed and analyzed an algorithm that operates by discretiz-
ing the search space while interacting with an Informative environment. This
algorithm takes advantage of the limited precision available in practical im-
plementations to restrict the probability of choosing an action to only finitely
many values from the interval [0, 1). Its main drawback is that the steps are al-
ways very conservative. If the step size is increased the scheme converges faster,
but the accuracy is correspondingly decreased. Bentley and Yao [3] solved the
deterministic point location problem of searching in an unbounded space by ex-
amining points f(7) and f(i + 1) at two successive iterations between which the
unknown point lies, and doing a binary search between these points. Although
it may appear that similar binary search can be applied in the stochastic point
location problem, the faulty nature of the feedback from the environment may
affect the certainty of convergence of the search, and hence a more sophisticated
search strategy is called for. Thus, whereas in Bentley’s and Yao’s algorithm we
could confidently discard regions of the search space, we have to now resort to
stochastic methods, and work so that we minimize the probability of rejecting
an interval of interest. This is even more significant and sensitive when the learn-
ing mechanism is unaware whether the environment is Informative or Deceptive.
A novel strategy combining learning automata and pruning was used in [10] to
search for the parameter in the continuous space when interacting with an Infor-
mative environment. In this paper we extend the results of [10] further to operate
also in the continuous space, but to work equally well for both Informative and
Deceptive environments. To the best of our knowledge this is the first reported
result for learning in a Deceptive environment.

A completely different approach to locating a point will be to partition the
search space into intervals and choose the mid-point of each interval repeatedly
as an estimate for the unknown point, and use a majority voting scheme on the
feedbacks obtained to eliminate one interval. Applying Chernoff bounds would
then allow us to precisely compute the number of steps sufficient for ensuring
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correct pruning with a certain level of confidence [13]. The difference between
such an “estimation” approach and a learning automaton approach such as ours
is that in the former case, a fixed number of sampling steps has to be done
irrespective of how strong the feedback is, before determining the pruning. In
contrast, in a learning automata approach, when one of the actions is superior,
the reinforcement mechanism ensures that this action is sampled more frequently
than the other. Thus the better an action is with respect to another, the faster
it’s optimality is determined. Another drawback with the simple majority voting
scheme is that in each epoch it can prune at most one partition. On the other
hand, our scheme allows more than two thirds of the search space to be pruned
in a single epoch. A third and most compelling drawback of the former scheme in
our problem setting is that it will not be feasible to detect a point in a deceptive
environment where the probability of correct feedback p < 0.5.

4 Continuous Point Location
with Adaptive Tertiary Search

The solution presented in this paper is based on the Continuous Point Location
with Adaptive Tertiary Search (CPL-ATS) strategy introduced in [10]. The basic
idea behind both the solutions is to systematically explore a current interval for
the parameter. This exploration is a series of guesses, each one more accurate
than the previous one. Initially, we guess the mid-point of the given interval to
be our estimate. We then partition the given interval into disjoint sub-intervals,
eliminating at least one of the subintervals from further search and recursively
searching the remaining interval until the search interval is at least as small as
the required resolution of estimation. Crucial to the CPL-ATS scheme is the
construction of partitions and the elimination process.

The given search interval is divided into three partitions. Each of these three
partitions is independently explored using an e-optimal fast converging two-
action learning automaton where the two actions are those of selecting a point
from the left and right half of the partition under consideration. The elimination
process then utilizes the the e-optimality property of the underlying automata
and the monotonicity of the intervals to systematically eliminate at least one
of the partitions. The resultant is a new pruned interval consisting of at most
two contiguous partitions from the original three. At each stage the mid-point
of the remaining interval is taken to be the estimate of A\*. We shall assume
that the individual learning automaton used is the well-known Lp; scheme with
parameter 6, although any other e-optimal scheme can be used just as effectively.

5 Notations and Definitions

Let A = [0,7) s.t. 0 < A* < 7 be the current search interval containing \* whose
left and right (smaller and greater) boundaries on the real line are o and 7 respec-
tively. We partition A into three equi-sized disjoint partitions A7, j € {1,2,3},
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such that, A7 = [07,47). To formally describe the relative locations of intervals
we define an interval relational operator < such that, A7 < AF iff 49 < oF.
Since points on the real interval are monotonically increasing, it is easy to see
that, A! < A% < A3, For every partition A7 , we define L’ and R’ as its left

half and right half respectively as:
L ={z|0’ <z <mid(A)},andR’ = {2 |mid(A7) <z < 47},

where mid(A7) is the mid point of the partition A7. A point x € L/ will be
denoted by 27, and a point z € R’ by x’,.

To relate the various intervals to A\* we introduce the following relational
operators.

N Q) AT ff N < ol i.e., \* is to the left of the interval A7.
MO AT A > A7, i.e., \* is to the right of the interval A7.
MO A iff oF <\ <A, i.e., \* is contained in the interval A7.

MR AT iff \* @ AT or N*@ A7 i.e., \* is either to the left of or inside A7,
QAT f O AT or \*@ AY ie., \* is either to the right of or inside A7,

These operators can be shown to satisfy the usual laws of transitivity.

6 Construction of the Learning Automata

In the CPL-ATS strategy, with each partition A’ we associate a 2-action Lr; au-
tomaton A7 (X7, I17, 7,77, §27) where, X7 is the set of actions, IT7 is the set of
action probabilities, I'7 is the set of feedback inputs from the environment, 77
is the set of action probability updating rules and (27 is the set of possible deci-
sion outputs of the automaton at the end of each epoch. The environment E is
characterized by the probability of correct response p which is later mapped to
the penalty probabilities ¢), for the two actions of the automaton AJ. The over-
all search strategy CPL-ATS, in addition uses a decision table A to prune the
search interval by comparing the output decisions 27 for the three partitions.
Thus A7, j € {1,3}, together with E and A completely define the CPL-ATS
strategy.

1. The set of actions of the automaton(X7) ‘
The two actions of the automaton are 0‘?@:0 1» where, of corresponds to

selecting the left half L7 of the partition A7, and a{ corresponds to selecting
the right half R7.

2. The action probabilities(I117) _
P[(n) represent the probabilities of selecting action aj_, , at step n. Ini-
tially, P/(0) = 0.5, for k = 0, 1.

3. The feedback inputs from the environment to each automaton (I'7)
It is important to recognize a subtle, but crucial point in the construction of
the learning automata in CPL-ATS. From the automaton’s point of view,
the two actions are those of selecting either the left or the right half from
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its partition. However, from the environment’s point of view, the automaton
presents a current guess for the true value of \* | and it gives a feedback
based on the relative position (or direction) of the guessed value with respect
to A*. Thus there is a need to map the intervals to a point value and the
feedback on the point value to the feedback on the choice of the intervals.
Let the automaton select either the left or right half of the partition and then
pick a point randomly (using a continuous uniform probability distribution)
from this sub-interval which is presented as the current estimate for A*. Then
the feedbacks B(n) at step n are defined by the conditional probabilities,

Pr(B(n) = O\x]L € Lji and xJL >\ =p
Prif(n) =1|zy € L7 and 27, < \*| =p (1)
PriB(n) =0|zy € RJ: and 2, < A =p
Prif(n) =1|x% € R and 2}, > \*] =p

Note that, the condition xi € L7 indicates that the action a% was selected,
and the condition xg{ € RJ indicates the other action o] was selected.

. The action probability updating rules (Y7)

First of all, since we are using the Lg; scheme, we ignore all the penalty
responses. Upon reward, we obey the following updating rule :

If af_, , was rewarded then,

Pl [n+1] —6.P_,[n
Plln+1] —1—-P] ,[n+1]

where 0 < 0 < 1 is the Ly reward parameter.

. The decision outputs at each epoch (§27)

From the action probabilities we infer the decision 27 of the Lg; automaton
A7 after a fixed number N, of iterations. Typically, N, is chosen so as to
be reasonably sure that the automaton has converged. 27 indicates that the
automaton has inferred whether \* is to the left, right or inside the partition.
The set of values that 27 can take and the preconditions are given by:

‘ Left if P(Noo) > 1—e.
{2 = ¢ Right if P/(Noo)>1—e.
Inside Otherwise.

. The decision table for pruning the search space (A)

Once the individual automata for the three partitions have made a decision
regarding where they reckon A* to be, the CPL-ATS reduces the size of the
search interval by eliminating at least one of the three partitions. The new
pruned search interval A" for the subsequent learning phase (epoch) is
generated according to the pruning decision table A shown in Table 1.
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Table 1. Decision table(A) to prune the search space based on the automata
outputs 27

|| [0k | 2? | 23 |New Sub-interval A”‘”"H

Left | Left | Left Al
Inside| Left | Left Al
Right| Left | Left AU A?
Right |Inside| Left A?
Right | Right | Left ATu A3
Right | Right |Inside A3
Right | Right | Right A3

Theorem 1. If the automaton A7 =(X7 117, 'V, Y7 () interacts with the en-
vironment E and gets feedbacks obeying Equatwn (1) then the effective penalty
probabilities cJ —01 for the two actions ], _ 0.1 are gwen by:

= ( p)+ (2p—1). PT(IJI-/ < M | a)) was chosen) (2)
c —(2p-1). Pr(a:R < M\ | o was chosen) (3)

(From the theory of learning automata [0, 8], we know that the for any 2-
action Lp; scheme, if 3k € {0,1} such that ¢ < ¢]_,, then the action o, is

optimal and for this action P,g(NOO) — 1.

By the construction of the automaton, once the left or right sub-interval is
chosen, a point is picked from this interval using a uniform probability distri-
bution. Therefore, the cumulative probability distributions for picking a guess
value in a selected interval are given by:

0 _ if x < o7

Pr(zy <w|wy € L) = § (a5, Ho s v < midd) (4)
1 if & > mid(A47).
0 if 2 < mid(AY)

Pr(:cg;z <zl a:;% €ER)= deAAJ) if mid(AY) <z <7 (5)
1 if x >~7

By substituting A* for x, in the above equations, we get Pr(w% <A |£CJL eLl)
and Pr(zj < \* |2} € R7) in Equations (2) and (3) respectively.

7 Properties of CPL-ATS in an Informative Environment

We shall now state some results about how CPL-ATS behaves in an Informative
Environment.

Lemmas 1 and 2 essentially use the e-optimality property of Lz automata to
prove that they produce the correct decision output for each partition under an
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Informative environment. Lemma 3 uses the monotonicity of the real interval to
establish some restrictions on the combination of decision outputs for adjacent
partitions. These are then used in Theorem 2 to prove that the decision table in
Table 1 is complete for the Informative environment. Theorem 3 establishes that
after elimination of one or more partitions, the remaining interval still contains
A*, thereby assuring convergence. It should be borne in mind that these are
still probabilistic results, although the probability is shown to be potentially
as close to unity as we want, provided that we choose the parameters for the
Lrr automata appropriately.

Lemma 1. For an Informative environment E, given the Lrr scheme with a
parameter 6 which is arbitrarily close to unity, the following is true:

If (\*Q A7), then Pr(£2 = Left) — 1.
If (W@ A7), then Pr(£2 = Right) — 1.
If & AY), then Pr(£27 = {Left, Inside or Right}) — 1.

Lemma 2. For an Informative environment E, given the Lgr; scheme with a
parameter 8 which is arbitrarily close to unity, the following is true:

If (7 = Left) then Pr(V*Q A7) — 1
If (£ = Right) then Pr(\*@ A7) — 1
If (£ = Inside) then Pr(\*@ A7) — 1

Lemma 3. In an Informative environment E, if the CPL-ATS learning mecha-
nism uses the same Ly scheme at all levels of the recursion, and the parameter
0 is arbitrarily close to unity, the following is true:

If (§29 = Left) then Pr(27F = Left) — 1
If (£ = Inside) then Pr(£27t1 = Left) — 1
If (£ = Right) then Pr(§29+! = {Left, Right or Inside}) — 1.

Theorem 2. If the environment is Informative and if the partitions use the
same Ly scheme with parameters 0 as close to unity as needed, then the decision
table given in Table 1 is complete.

A consequence of this theorem is that any entry not shown in the decision
table is said to be inconsistent in the sense that for an Informative environment
and appropriate 6, the probability of occurrence of this entry is arbitrarily close
to zero.

Theorem 3. If the algorithm wuses the same Lg; scheme at all levels of the
recursion with a parameter 6 arbitrarily close to unity and Noo sufficiently large,
then for an Informative environment, the unknown \* is always contained in the
new search-interval A™" resulting from the application of the decision rules of

Table 1.
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8 Properties of CPL-ATS in a Deceptive Environment

Let E be an environment of a 2-action learning automaton. Let ciyeqo,1 be the

penalty probabilities of the two actions ajego 13 of any automaton A’ that op-

erates in this environment. Then another environment E* with penalty proba-

bilities C;ce{O,l}’ is said to be the dual of E if and only if under E*, ¢}, =1 — ¢4.
The following lemma is a natural corollary of the above definition.

Lemma 4. If ai is the e-optimal action for an Lr; automaton A7 under a given

environment E, then o] is the e-optimal action under its dual environment E*,
and vice versa.

Lemma 5. Let E be an environment with the probability of correct feedback p
and coresponding penalty probabilities C?cG{O.l} respectively. If E* is a new envi-
ronment constructed such that its probability of correct feedback p' =1 —p, then
the penalty probabilities c;c]e{O,l} for its two actions afee{o)l} are cg =1—¢.

The above lemma follows easily by substituting 1 — p in place of p in Equa-
tions (2) and (3) respectively. Thus we arrive at a dual of a given environment
merely by complementing its parameter p.

Let E be the given Deceptive environment. By definition then, we have its
probability of correct response p < 0.5. We now construct a dual E* of this
environment with a corresponding probability of correct response p’ = 1 — p.
Then this dual environment is Informative since, p’ > 0.5. Thus if the learning
autmaton can somehow determine whether a given environment is Deceptive,
then Lemma 4 and 5 assure us that by interchanging the actions (or equivalently
the penalties and rewards), the automaton will still be able to converge to the
optimal action with as high a probability as we want.

The following results are quite straightforward.

Theorem 4. Given a Deceptive environment E,

If (\* Q) AY), then Pr(£27 = Right) — 1
If V@ A7), then Pr(f27 = Left) — 1
If (A& A7), then Pr(£27 = {Left, Inside or Right}) — 1.

Theorem 5. Suppose it is given that \*@ A', \*& A% and \* Q) A3. Then
under a Deceptlive environment, the decision output vector 2 for the three au-
tomata A7, j € {1,2,3}, will be inconsistent with the decision table of Table 1.
Conversely, if for the given environment and X* as above, the decision output
vector §2 of the automata is inconsistent with the decision table for large Noo
and 0 — 1, then the environment is Deceptive.

Theorem 5 suggests a simple mechanism for determining whether or not an
environment is Deceptive.

Theorem 6. Let T= [0,1) be the original search interval in which \* is to be
found. Let T' = [—1,2) be the initial search interval used by CPL-ATS. Then,
CPL-ATS always determines whether or not an environment is Deceptive after
a single epoch.
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Theorem 6 gives us a simple and practical mechanism for detecting Deceptive
environments. Thus, we start with an initial search interval Z' = [~1,2), equi-
partition it and run the three Lz; automata A7, j = 1,2, 3. for one epoch. At the
end of the epoch, we use Table 1 to check if the decision vector §2 has an entry.
By appealing to Theorem 6, we conclude that the environment is Informative
or Deceptive accordingly. If the environment was found to be Deceptive, we
simply flip the probability update rules. i.e., we essentially treat every reward
as a penalty and vice versa. Lemma 4 guarantees that we will then converge to
the optimal action. If instead, the environment was found to be Informative we
simply proceed with the search.

Note that the expanded interval Z’ is needed only for the first epoch, to detect
the environment’s nature. Once this is detected, we use the original interval Z to
search for \*. It is assumed that the fact that we use the expanded intervals
[—1,0) and [1,2) does not affect the responses given by the environment.

9 Experimental Results

The parameter learning mechanism, CPL-ATS, described in this paper was ex-
perimentally evaluated to verify the validity of our analytic results and to ex-
amine its rate of convergence. To verify the power of the scheme and to study
its effectiveness for various conditions, simulation experiments were conducted
for various values of 0 , the reward factor of the Lr; automata, and for various
values of p, the probability of the environment correctly providing the feed back.
In all the experiments it was assumed that A* € [0,1). In each case, a single
screening epoch was run using the expanded interval [—1,2) to detect whether
or not the environment is Informative. After that, the given original search inter-
val [0,1) was used as the starting point. Each epoch consisted of 250 iterations
(Ns) of the three Lg; automata. At the end of each epoch the decision table
Table 1 was consulted to prune the current search interval and the algorithm
was recursively evoked. The recursion was terminated when the width of the
interval was less than twice the desired accuracy.

The results of our experiments are truly conclusive and confirm the power of
the CPL-ATS scheme. Although several experiments were conducted using vari-
ous \* and parameter values, we report for brevity sake, only one set of results,
namely, those for A\* = 0.9123. For this value, several independent replications
with different random number streams were performed to minimize the variance
of the reported results. The reported results are averaged over the replications.

The mean asymptotic value of the estimate for \* are shown in Table 2 for
various values of p and . The final estimates agree with the true value 0.9123 of
A*to the first three decimal places for all values of p shown in the table. Figure 1
shows the convergence of the algorithm for p = 0.1, 0.35 and 0.8. This figure plots
the running estimate at the end of each epoch. The values shown are actually
the averaged over 50 replications for each set of parameters.

We first note that the convergence of the algorithm is almost identical for
p = 0.1 and p = 0.8 even though the former represents a highly unreliable
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Table 2. Asymptotic value of E[A(Ny)] as it varies with p and 6. In all the
cases, \* = 0.9123, No, = 250 and ¢ = 0.005. The values shown are averaged
over 50 independent experiments

lp [6=08 [0=085]0=0.9 |
0.10[0.912298[0.912273[0.912194
0.15[0.912312[0.912298]0.912222
0.20[0.912193[0.912299[0.912236
0.80[0.912317[0.912284[0.912234
0.85[0.912299[0.912275[0.912202
0.90[0.912302[0.912275[0.912202

Convergence of CPL-ATS
0.96 | | \ | |

0.94

0.92

0.9

EX(n)] 0.88 -
0.86

0.84 |f

0.82 - -

2 4 6 8 10 12 14 16
Epoch n

Fig.1. Convergence of estimate E[A(n)] for # = 0.8. The value shown are
averaged over 50 replications. The unknown parameter \* = 0.9123

environment whereas the latter is a highly reliable environment. This is not
surprising because, after having detected in epoch 0 that the environment is not
Informative, the CPL—ATS strategy switches the reward and penalty feedbacks,
effectively behaving as p’ = 1—p. Thus, even in the very first epoch a value of 0.83
is achieved which is within 9 percent error of the true value of A* = 0.9123. In
two more epochs, for all the four p values shown, the estimate is 0.925926 which
is within 1.5 percent error. Note however, that for p = 0.35 the convergence
is relatively sluggish. It took 25 epochs for it to reach the terminal value of
0.906453 which is within 0.64 percent of the true A*. Thus, as p is increasingly
closer to 0.5, @ must be set close to unity and N (the number of iterations
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per epoch) has to be increased to achieve convergence.! Thus, a p value very
close to 0.5 represents a highly inconsistent feedback wherein half the time the
environment directs the learning mechanism in one direction and the rest of the
time in another.

10 Conclusions

In this paper we have considered the problem of a learning mechanism locating
a point on a line when it is interacting with a random stationary environment
which essentially informs it, possibly erroneously, which way it should move to
reach the point being sought. The first reported paper to solve this problem [9]
presented a solution which operated in a discretized space. Later in [10], we
presented a new scheme by which the point can be learned using a combination
of various learning principles. The heart of this strategy involved performing
a controlled random walk on the underlying space using the Lr; updating rule
and then intelligently pruning the space using an adaptive tertiary search. The
overall learning scheme is shown to be e-optimal. We have also shown that the
results of [10] can also be generalized to the cases when the environment is
a stochastic compulsive liar (i.e., is Deceptive). Although the problem is solved in
its generality, its application in non-linear optimization has also been suggested.
We are currently investigating how our scheme can be utilized to catalyze the
convergence of various optimization problems including those involving neural
networks as described in [9, 11, 19].
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Appendix

In the following we provide only sketches of proof for major lemmas and theorems
due to limitations of space. The complete proofs for all the lemmas and theorems
stated in this paper can be found in the unabridged version which is also available
as a technical report [15].

Theorem 1 If the automaton AI =(X7 17,17, Y7, §27) interacts with the envi-
ronment E gets feedbacks obeying equation 1, then the effective penalty probabil-
ities ¢]._q ; for the two actions o _, , are given by:

¢ =(1—p)+(2p—1).Pr(z) < X\* |aj was chosen)
1 =p—(2p—1).Pr(z}, < \* | o] was chosen)
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Proof: By definition of the penalty probability we have,

¢ = Pr(B(n) = 1|sub-interval L7 is chosen at step n)
= Pr(B(n) = 1|} € Li,x) < X\*).Pr(z}, < |2}, € LY)
Pr(B(n) =1|a € L7, 2} > X*).Pr(z}, > X\ |2} € L)
= p.Pr(z), < X\ |z} € L) 4 (1 — p).(1 — Pr(z, < \* |2}, € L)) (by eq. 1)
= (1—p)+ 2p—1).Pr(z} <\ |z} € LY)
=(1—p)+(2p—1).Pr(z} < \*|af was chosen).

_|_

In the same line of reasoning for the action af we can derive c]. 0

Lemma 1 For an Informative environment E, given the Lgr; scheme with a
parameter 8 which is arbitrarily close to unity, the following is true:

If (\* Q) AY), then Pr(§29 = Left) — 1.
If (\*© A7), then Pr(29 = Right) — 1.
If (\*@ AY), then Pr(§29 = {Left, Inside or Right}) — 1.

Proof: Consider first the case A\* & A/, From Equation (4) and (5), we get
Pr(z}, < A*) = Pr(azj < A*) = 0. Substituting these in equations 2 and 3 we
get the values c% =1—pand le = p. Since for an informative environment
p > 0.5, we immediately have c(j) < c{ Learning automata theory then assures
that for any e-optimal scheme such as the Lg; scheme used here for each A7, a%
is the optimal action and hence PJ[Nu,] — 1. Similar arguments for A\*@© Aflead
to the conclusion P/(Ny,) — 1.

Now consider the third case when \*& A7. By the definition of © we have,
o) < X\* < ~J. Consider first the possibility, 07 < A\* < mid(A7). In this case, by
Equations (4), (5) we get

i1 _ D
06 =1-p+(2p 1).mid(AJ)7aJ'
q=p

Since 0.5 < p < 1 in the above expressions for c% and c{, we can see that c% <
], and hence ) is the optimal action and for an e-optimal scheme PJ[N] — 1.

Similarly when mid(A7) < \* < o7, we get,

& =p |
i o 1y A —mid(A7)

aq=p—2p 1)~77j_mid(m) :
Since p > 0.5, it follows that (2p—1) > 0 and ¢, > ¢/, and therefore, q{ is the op-
timal action, and from the e-optimality of the Lr; scheme, we get P![Ny] — 1.

When A\* = mid(A7), ¢} = ¢] and so there is no optimal action and hence
€ < PJ[Nx], P{[Nso] <1 —€.

The lemma immediately follows from the decision output rule (£27) in the
construction of the automaton A7 based on the above values for PJ[Nu]. O
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Lemma 2 For an Informative environment E, given the Lrr scheme with a
parameter 8 which is arbitrarily close to unity, the following is true:

If (7 = Left) then Pr(N*Q A7) — 1
If ({7 = Right) then Pr(\*@ A7) — 1
If ({27 = Inside) then Pr(\*© A7) — 1

Proof: By the first hypothesis 7 = Left, we have Pr({ = Left) = 1,
Pr(§2 = Right) = 0, and Pr({ = Inside) = 0. Therefore,

PrV QA7) = Pr(NQ AY | 27 = Left). (6)
But by Baye’s rule for conditional probabilities,

Pr(N QAT | = Left) = (7)

Pr( = Left| \*Q A7).Pr(\*Q AY)
Pr($7 = Left | \*Q AY).Pr(NQ A%) + Pr(2 = Left | \*@ AY).Pr(\*© AY)

By Lemma 1, the product in the second term of the denominator tends to zero
giving us
PrVQ AT | = Left) — 1.

When this is substituted in Equation (6), it leads to : Pr(\*@ A7) — 1. By
similar arguments (which we omit here in the interest of brevity), the lemma
can be shown to hold for the other two hypotheses. O

Theorem 2 If the environment is Informative and if the partitions use the same
L scheme with parameters 6 as close to unity as needed, then the decision table
given in Table 1 is complete.

Proof: In any decision table with three input variables and three possible values
for each of these variables, we expect a total of 27 potential entries. However,
Lemma 3 imposes constraints on the output value combinations of the automata.
A straightforward enumeration of these possibilities will show that the only
possible combinations of outputs for the three L z; automata are the seven entries
shown in the decision table. Consequently Table 1 is complete. O

Theorem 3 If the algorithm uses the same Ly scheme at all levels of the
recursion with a parameter 6 arbitrarily close to unity and N sufficiently large,
then for an Informative environment, the unknown X\* is always contained in the
new search-interval A™" resulting from the application of the decision rules of

Table 1.

Proof: Consider the first row of Table 1 where we see that 2! = Left, 22 =
Left and 22 = Left. Appealing to Lemma 2 for each of the automata outputs,
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we get Pr(\* Q@ Al — 1, Pr(\* @ A?) — 1 and Pr(\* @ A3) — 1. When we
consider the fact that A < A2 < A3, the above three reduce to the equivalent
predicate, Pr(A\* @ A') — 1. By the definition of @ we have the two possibilities
~ X Q) A! and \* @ Al. But, since \*© A and A = A' U A% U A3, we can
rule out \* Q) A!. Therefore, Pr(\*  A!) — 1. Thus, the partition Al that
remains after pruning still contains A\* with as high a probability as we want. The
same arguments can be repeated for each of the other entries, and are omitted
in the interest of brevity. O

Theorem 4 Given a Deceptive environment E,

If (\* Q AY), then Pr(§2 = Right) — 1
If (\*© A7), then Pr(29 = Left) — 1
If (\*@ AY), then Pr(§29 = {Left, Inside or Right}) — 1.

Proof: Since E is a Deceptive environment, the probability of it giving correct
responses is p < 0.5. Now construct a dual E* for this environment such that the
probability of its correct feedback (p" = 1—p) > 0.5. Clearly, E* is an Informative
environment, and hence we can apply Lemma 1 to it. Consequently, if we are
given that \* & A7, by Lemma 1, we know that for E* , Pr(f2 = Left) — 1.
Lemma 4 however tells us that if ai was the optimal action for E, then aJP &
is the optimal option for E* and vice versa. Therefore, we conclude that for E,
Pr(£2 = Right) — 1. Similar arguments hold good for the other two hypotheses.

O

Theorem 5 Suppose \* is such that \*@ A, \*@ A? and \* Q) A3. Then un-
der a Deceptive environment, the decision output vector §2 for the three automata
Al 5 =1,2,3, will be inconsistent with the decision table of Table 1. Conversely,
if for the given environment the decision output vector §2 of the automata is in-
consistent with the decision table for large Noo and 8 — 1, then the environment
18 Deceptive.

Proof: Applying Theorem 4 to each of \* @ A!, \* ©A? and \* K A3, we have,

Pr(2 = Left) — 1
Pr(02? = {Left, Inside or Right}) — 1
Pr($2® = Right) — 1

By inspecting the decision table (Table 1), we see that there are no entries for
this output vector §2 = [Left,{Left, Inside or Right}, Right] and hence the
entry is inconsistent with Table 1. The converse is proved by contradiction by
alluding to the completeness result of Theorem 2 for an Informative environment.
Therefore, whenever the decision output vector §2 is inconsistent with Table 1,
we can safely conclude that the environment is Deceptive. O

Theorem 6 Let Z= [0,1) be the original search interval in which \* is to be
found. Let T' = [—1,2) be the initial search interval used by CPL-ATS. Then,



40 B. John Oommen et al.

CPL-ATS always determines whether or not an environment is Deceptive after
a single epoch.

Proof: First of all, we can see that A\* € I’ because, Z C Z'. When we divide 7’
into three equi-partitions we get, A = [~1,0), A% = [0,1) and A® = [1,2). Since
A\ € T = A2 we have, *© A, \*@ A%, \* ) A3, which is the pre-condition
for Theorem 5. Hence, by appealing to Theorem 5 we see that if the environment
was Deceptive, we would get an inconsistent decision vector. If not, by Theorem 2
we would get a consistent decision vector. Thus, after one epoch we conclude
decisively about the nature of the environment. 0
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