FLIRT: A Flexible Image Registration Toolbox

Bernd Fischer and Jan Modersitzki

Institute of Mathematics
University of Liibeck, 23560 Liibeck, Germany
{fischer,modersitzki}@math.uni-luebeck.de
http://wuw.math.uni-luebeck.de

Abstract. Image registration is central to many challenges in medical
imaging today and has a vast range of applications. The purpose of this
note is to provide a toolbox for intensity based non-rigid registration
problems. To do so, we review some of the most promising non-linear
registration strategies currently used in medical imaging and show that
all these techniques may be phrased in terms of a variational problem
and allow for a unified treatment.

Depending on the application at hand, it is often desirable to constrain
the wanted deformation. The idea is to incorporate higher level infor-
mation about the expected deformation. We examine the most common
constraints and show again that they may be conveniently phrased in a
variational setting.

As a consequence, all of discussed modules allow for fast implementa-
tions and may be combined in any favorable order. We discuss individual
methods for various applications, including the registration of histologi-
cal serial sections of a human brain.

1 Introduction

In the last two decades, computerized non-rigid image registration has played
an increasingly important role in medical imaging, see for example MAINTZ &
VIERGEVER [I4], FITZPATRICK ET AL. [11], and references therein. The prob-
lem of registration arises whenever images acquired from different subjects, at
different times, or from different scanners need to be combined for analysis or
visualization.

Due to the wide range of applications a variety of different registration
techniques has been developed. Here, we focus on so-called intensity-driven ap-
proaches. These schemes aim to match intensity patterns between a deformed
scan and the target based on a rigorous mathematical criterion. Depending on
the application, different strategies may be employed. From a practical point of
view, it is desirable to incorporate properties of the underlying problem into the
registration scheme. Here, we provide a toolbox of registration routines which
enables the user to choose in a consistent way building blocks for schemes which
cover a wide range of applications. The idea is to phrase each individual block
in terms of a variational formulation. This not only allows for a unified treat-
ment but also for fast and reliable implementation. The various building blocks
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comprises three categories: smoother and internal forces, distances and external
forces, and “hard” or “soft” constraints. The internal forces, are defined for the
wanted displacement field itself and are designed to keep the displacement field
smooth during deformation. In contrast, the external forces are computed from
the image data and are defined to drive the displacement in order to arrive at
the desired registration result. Whereas the internal forces implicitly constrain
the displacement to obey a smoothness criterion, the additional constraints force
the displacement to satisfy explicit criteria, like for example landmark or volume
preserving imposed constraints.

The paper is organized as follows. In Section 2l we summarize the most pop-
ular choices for the above outlined building blocks. Furthermore, we set up a
general and unified framework for automatic non-rigid registration. In Section [
we show in more detail, how these building blocks can be translated into a varia-
tional setting. It is this formulation, which allows for a fast and reliable numerical
treatment. In Section F] we indicate on how to actually implement the registra-
tion schemes. An example in Section [5l highlights the importance of having more
than one regularizer at hand.

2 A Flexible Image Registration Toolbox

Registration is the determination of a geometrical transformation that aligns
points in one view of an object with corresponding points in another view of
the same object or a similar object. There exist many instances in a medical
environment which demand for a registration, including the treatment verifica-
tion of pre- and post-intervention images, study of temporal series of cardiac
images, and the monitoring of the time evolution of an agent injection subject
to patient motion. Another important area is the need for combining informa-
tion from multiple images, acquired using different modalities, like for example
computer tomography (CT) and magnetic resonance imaging (MRI).

To be successful, each individual application should be treated by a specific
registration technique. It is the purpose of this note to provide a toolbox for non-
linear registration schemes, which may be adapted to the special problem class
under consideration. The main building blocks of this toolbox resemble typical
user demands and may be assembled in a consistent and intuitive fashion.

Given two images, a reference R and a template T', the aim of image regis-
tration is to find a global and/or local transformation from 7" onto R in such a
way that the transformed template matches the reference. Ideally there exists a
coordinate transformation u such that the reference R equals the transformed
template T),. Given such a displacement u, the registration problem reduces to a
simple interpolation task. However, in general it is not possible to come up with
a perfect u, and the registration problem is to compute an application conformal
transformation u, given the reference and template image.

It should be pointed out, that apart from the fact that a solution may not
exist, it is not necessarily unique. For an example, see MODERSITZKI [15]. In
other words, intensity based registration is inherently an ill-posed problem.
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A displacement u which does produce a perfect or nearly perfect alignment
of the given images is not necessarily a “good” displacement. For example, a
computed displacement which interchanges the eyes of one patient when regis-
tered to a probabilistic atlas in order to produce a nearly perfect alignment, has
obviously to be discarded. Also, folding and cracks introduced by the displace-
ment are typically not wanted. Therefore it is desirable to have a possibility to
incorporate features into the registration model, such that the computed dis-
placement u does resemble the properties of the acquisition, like for example the
elastic behavior of a human brain. To mimic the elastic properties of the ob-
jects under consideration is a striking example for internal forces. These forces
constrain the displacement to physically meaningful movements.

In contrast, the external forces are designed to push the deformable template
into the direction of the reference. These forces are based upon the intensities of
the images. The idea is to design a similarity measure, which is ideally calculated
from all voxel values. An intuitive measure is the sum of squares of intensity dif-
ferences (SSD). This is a reasonable measure for some applications like the serial
registration of histological sections. If the intensities of corresponding voxels are
no longer identical, the SSD measure may perform poorly. However, if the inten-
sities are still linearly related, a correlation (CC) based measure is the measure
of choice for monomodal situations. In contrast, the mutual information (MI)
related measure is based on the cooccurrence of intensities in both images as
reflected by their joint intensity histogram. It appears to be the most successful
similarity measure for multimodal imaginary, like MR-PET; cf. e.g., ROCHE [16]
or Viora [19].

Finally, one may want to guide the registration process by incorporating addi-
tional information which may be known beforehand. Among these are landmarks
and fiducial markers. Sometimes it is also desirable to impose a local volume-
preserving (incompressibility) constraint which may, for example, compensate for
registration artifacts frequently observed by processing pre- and post-contrast
images. Depending on the application and the reliability of the specific informa-
tion, one may want to insist on a perfect fulfilment of these constraints or on a
relaxed treatment. For examples, in practise, it is a tricky (and time consuming)
problem to determine landmarks to subvoxel precision. Here, it does not make
sense to compute a displacement which produces a perfect one to one match
between the landmarks.

Summarizing, the general registration problem may be phrased as follows.

(IR) image registration problem:

Ju] = D[R, T;u] + aS[u] = min,
subject to  Cjlu] =0, j=1,2,...,m.

Here, D models the distance measure (external force, e.g., MI), S the smoother
(internal force, e.g., elasticity), and C explicit constraints (e.g., landmarks). The
regularization parameter a may be used to control the strength of the smoothness
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of the displacement versus the similarity of the images. In the following we will
discuss these building blocks in more detail.

3 Toolbox Building Blocks

Our approach is valid for images of any spatial dimension d, i.e., there is no
restriction to d = 2,3,4. The reference and template images are represented
by the compactly supported mappings R,T : 2 — R, where without loss of
generality, 2 =]0, 1[?. Hence, T'(x) denotes the intensity of the template at the
spatial position x, where for ease of discussion we set R(z) = bg and T'(z) = by
for all x & (2. Here, bg and by are appropriately chosen background intensities.
The overall goal is to find a displacement u, such that ideally T is similar
to R, where T, is the deformed image, i.e., T,(x) = T(z — u(z)). Note that
u = (uy,...,uq) denotes a vector field.

The starting point of our numerical treatment is the minimization of prob-
lem (IR). In order to compute a minimizer we apply a steepest descent method,
where we take advantage of the calculus of variations. To end up with an effi-
cient and fast converging scheme, we require to have explicit expressions of the
derivatives of building blocks D, S, and C. In the following subsections we will
exemplarily discuss the most popular building blocks as well as their derivatives.

Smoother and Internal Forces. The nature of the deformation depends
strongly on the application under consideration. For example, a slice of a paraf-
fin embedded histological tissue does deform elastically, whereas the deforma-
tion between the brains of two different individuals is most likely not elastically.
Therefore, it is necessary to supply a model for the nature of the expected de-
formation.

We now present some of the most prominent smoothers S and discuss exem-
plarily the GATEAUX-derivatives for two of them. An important point is, that we
are not restricted to a particular smoother S. Any smoother can be incorporated
into this toolbox, as long as it possesses a GATEAUX-derivative.

In an abstract setting, the GATEAUX-derivative looks like

aSfuio] = Jim 2T+ ol = S[u) = [ (A o) do

where A4 denotes the associated linear partial differential operator. Note that
for a complete derivation one also has to consider appropriate boundary con-
ditions. However, these details are omitted here for presentation purposes; see
MODERSITZKI [15] for details.

Elastic Registration. This particular smoother measures the elastic potential of
the deformation. In connection with image registration it has been introduced
by BroIT [B] and discussed by various image registration groups; see, e.g., BA-
Jesy & Kovacic [2] or FISCHER & MODERSITZKI [7]. The partial differential



FLIRT: A Flexible Image Registration Toolbox 265

operator is the well-known NAVIER-LAME operator. For this smoother, two nat-
ural parameters, the so-called LAME-constants can be used in order to capture
features of the underlying elastic body. A striking example, where the under-
lying physics suggests to look for deformations satisfying elasticity constraints,
is the three-dimensional reconstruction of the human brain from a histological
sectioning. Details are given in SCHMITT [18] and MODERSITZKI [15].

Fluid Registration. Due to the fact that an elastic body memorizes its non-
deformed initial state (rubber band), elastic registration schemes are only able
to compensate for small deformations. The situation changes for the viscous
fluid model. Here the body adapts to its current state (honey) and consequently
is much more flexible than an elastic body. The viscous fluid approach was
introduced to image registration by CHRISTENSEN [4]. His derivation was based
on a specific linearization of the NAVIER-STOKES equation. However, there is
yet another derivation of the underlying partial differential equations, which
does fit into “design rules” of our toolbox. Roughly speaking, one obtains these
equations by considering the elastic potential of the velocity of the displacement
field. It should come as no surprise that the partial differential operator is again
the NAVIER-LAME operator, this time, however, applied to the velocity. The
wanted deformation is related to the velocity via the material derivative and is
straightforward to recover.

Since the viscous fluid approach is quite flexible, it is mainly used when
the focus is more on similarity than on a “natural deformation process”. For
example, for the design of a probabilistic brain atlas, a biophysical model for the
nature of the deformations is not available, but the fluid registration has been
proven to be a valuable tool; cf., e.g. D’AGOSTINO ET AL. [5].

Diffusion Registration. For image registration problems FISCHER & MODER-
SITZKI [8] introduced the so-called diffusion regularization

d
. 1
SH[y] .= 3 Z/Q |V ||? de, (1)
=1

which is well-known for optical flow applications; see HORN & SCHUNCK [L3].
The associated GATEAUX-derivative leads to the well-studied LAPLACE- opera-
tor, i.e., AU [u] = Au = (Auy, ..., Aug), where Aug = Oy py g + - + Oy U
The main reason for introducing this smoother was its exceptional computational
complexity. FISCHER & MODERSITZKI [8] devised an O(N) (!) implementation
of the registration scheme, where N denotes the number of image voxels. It
is based on an additive operator splitting scheme (which parallelizes in a very
natural way). Its outstanding computational speed makes the diffusion registra-
tion scheme to a very attractive option for high-resolution, high dimensional,
and/or time critical applications. Examples include the registration of a time
series of three-dimensional MRI’s or the online correction of the so-called brain
shift during surgery.
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Curvature Registration. As a last example, we present the curvature smoother

Scurv[u] — %E?:l f_() (AU()Z d,]j, (2)

introduced by F1SCHER & MODERSITZKI [9]. The design principle behind this
choice was the idea to make the non-linear registration phase more robust against
a poor (affine linear) pre-registration. Since the smoother is based on second
order derivatives, affine linear maps do not contribute to its costs, i.e.,

S[Cxz+b =0, forall CeR™ peR™

In contrast to other non-linear registration techniques, affine linear deformations
are corrected naturally by the curvature approach. This advantage is illustrated
by Figure [ where the results of a fluid and a curvature based registration
of two X-ray images are compared; see also Section [l Again the GATEAUX-
derivative is explicitly known and leads to the so-called bi-harmonic operator
AUV [y] = A2,

Distances and External Forces. Another important building block is the
similarity criterion. As for the smoothing operators, we concentrate on those
measures D which allow for differentiation. Moreover, we assume that there
exists a function f : R? x R — R?, the so-called force field, such that

1
dD[R, T;u;v] = %in% E(D[R’ T;u+ hv] — D[R, T;u])
—

:/ (f(R,T,z,u(z)),v(x))pa da.
Q

Again, we are not restricted to a particular distance measure. Any measure can
be incorporated into our toolbox, as long as it permits a GATEAUX-derivative.

The most common choices for distance measures in image registration are
the sum of squared differences, cross correlation, cross validation, and mutual
information. We give explicit formulae for only two of them; for more information
see, e.g., MODERSITZKI [15] or ROCHE [16].

Sum of Squared Differences. The measure is based on a point-wise comparison
of image intensities,

DSSPIR, T u] := 5 [, (R(z) — Tu(m))2 dz,

and the force-field is given by f55P(R, T, z,y) = (T(x—y)—R(x))-VT (z—y). This
measure is often used when images of the same modality have to be registered.

Mutual Information. Another popular choice is mutual information. It basically
measures the entropy of the joint density p™7, where p™7T(gy, g2) counts the
number of voxels with intensity ¢g; in R and g in T'. The precise formula is

R, Ty
DMUR, Ty u] := — [g p™7 log g d(915 92),
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where p® and p”» denote the marginal densities. Typically, the density is replaced
by a PARZEN-window estimator; see, e.g. VIOLA [19]. The associated force-field
is given by

MR, T, 2,y) :/Q[‘I/o*3g2LR’T“](R(I)7Tu($))'<VTu(l’),v($)>]Rd7

where LtTu .= 1 4 pfTu (log pftTu — log(pRpT=) and ¥ is the PARZEN-window
function; see, e.g., HERMOSILLO [I2] or D’AGOSTINO ET AL. [6]. This measure
is useful when images of a different modality have to be registered.

Additional Constraints. Often it is desirable to guide the registration pro-
cess by incorporating additional information which may be known beforehand,
like for example markers. To incorporate such information, the idea is to add
additional constraints to the minimization problem. For example, to restrict the
deformation to volume preserving mappings, one has to add the quantity

Clu] == 1/ (det Vu)? dx
2Ja

to the smoother; see also ROHLFING & MAURER [I7]. Note that the JACOBIAN

det Vu(x) has to vanish, if the deformation at x is incompressible.

In other applications, one may want to incorporate landmarks or fiducial
markers. Let 7/ be a landmark in the reference image and 7 be the corresponding
landmark in the template image. The toolbox allows for either adding explicit
constraints

Cilu] ==u(t?) =t/ +17, j=1,2,...,m,

which have to be precisely fulfilled C;[u] = 0 (“hard” constraints), or by adding
an additional cost term

Clul =3~ Ay 1€ [ullIz

to the smoother (“soft” constraints, since we allow for deviations). For a more
detailed discussion, we refer to FISCHER & MODERSITZKI [10].

4 Numerical Treatment

As already pointed out, our numerical approach is based on the EULER- LA-
GRANGE equations for the problem (IR)

Alu](z) + f(R, T, z,u(z)) + Z AdCj[ul(z) =0 and Cjlu] =0, j=1,...,m,

where the A;’s are LAGRANGE parameter. Roughly speaking, all associated
GATEAUX-derivatives have to vanish. It remains to efficiently solve this sys-
tem of non-linear partial differential equations. After invoking a time-stepping
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approach and after an appropriate space discretization, we finally end up with
a system of linear equations. As it turns out, these linear systems have a very
rich structure, which allows one to come up with very fast and robust solution
schemes for all of the above mentioned building blocks. It is important to note
that the system matrix does not depend on the force field and the constraints.
Thus, changing the similarity measure or adding additional constraints does not
change the favorable computational complexity. Moreover, fast and parallel so-
lution schemes can be applied to even more reduce the computation time.

5 An Example: X-Rays of Hands

We present a synthetic example in order to demonstrate the fact, that changing
the smoother may dramatically affect the registration result. Here, we compare
the fluid and curvature smoother, both accompanied with the SSD measure.
In Figure [l a reference (a) and a template image (b) are displayed (modified
X-rays from human hands, images from AMIT [I]). Obviously, an affine linear
pre-registration (rotation of about 45 degrees and re-scaling) would improve the
similarity of the images considerably. However, in order to keep the issue of in-
terest clear, we did not apply any pre-registration. For the fluid registration we
end up with the deformed template displayed in Figure [[{e) and for the curva-
ture registration we obtain the result shown in Figure [{f) (Figure [d(c,d) show
intermediate results of the time-stepping scheme). As it is apparent from this
example, the fluid approach produced a miss-registration whereas the curvature
approach produced a satisfactory result.

The main point is that the fluid registration (as well as the other approaches)
does penalize affine linear deformations and may therefore privilege non-linear
deformations, as is clearly visible in Figure [[{c). Due to its flexibility, the fluid
method finally recovers the reference, where, however, the deformation field is
unnatural. In contrast, the curvature approach does not penalize affine linear
deformations as can be seen in Figure [[{d), which displays almost a rotated and
re-scaled template image. Note that the deformation is not completely linear and
note that this is an extreme example. For comparison reasons, we applied non-
optimized methods on a single scale (though all building blocks can be applied
in a multiscale resolution as well).

6 Conclusions

In this note we presented a general approach to image registration. Its flexibility
enables one to integrate and to combine in a consistent way various different reg-
istration modules.We discussed the use of different smoothers, distance measures,
and additional constraints. The numerical treatment is based on the solution of
a partial differential equation related to the EULER-LAGRANGE equations. These
equations are well studied and allow for fast, stable, and efficient schemes. Due
to page limits, we reported on only one example, showing the effect of different
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(a) reference R (b) template T

(¢) T%"4 | intermediate result (d) T, intermediate result

(e) T%4 final result (f) T, final result

Fig. 1. Two modified X-ray images of human hands; see also AMIT [I]]. (a) reference
image, (b) template image, (c) intermediate result of fluid registration, (d) interme-
diate result of curvature registration, (e) final result of fluid registration, and (f) final
result of curvature registration.

smoothers. We will report in a forthcoming paper on an exhaustive comparison
of the various building blocks.
Part of the software is available via http://www.math.uni-luebeck.de/SAFIR.
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