

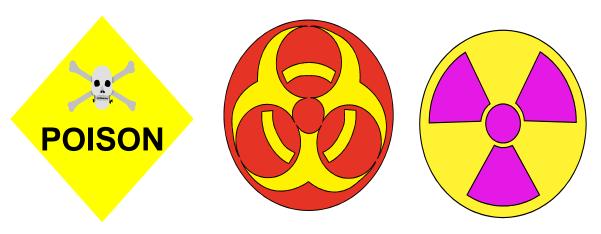
Venkata K. Lanka
Director/Radiation Safety Officer

Definition of Terrorism

"Premeditated, politically motivated violence perpetrated against non combatant targets by sub-national groups or clandestine agents!!"

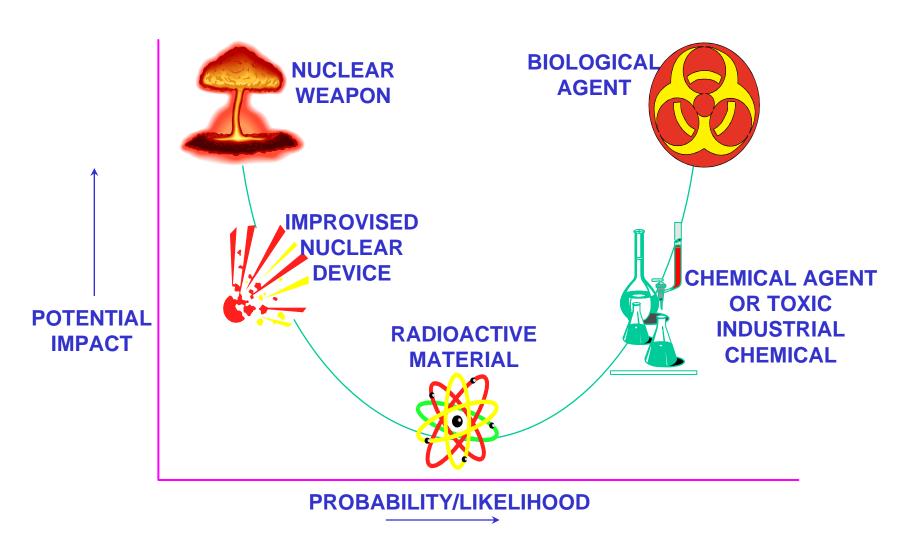
Abraham R. Wagner Director - DARPA

11 September - WTC


Source: www.thaibase.com/news/ wtc/ASCE

GOAL

Destroy will! Surrender principle! Save your hide!


Dr. Lana Kass April 04

Focus - NBC

- Radiological Devices
- Biological Weapons
- Chemical Weapons

Potential Probability vs. Impact

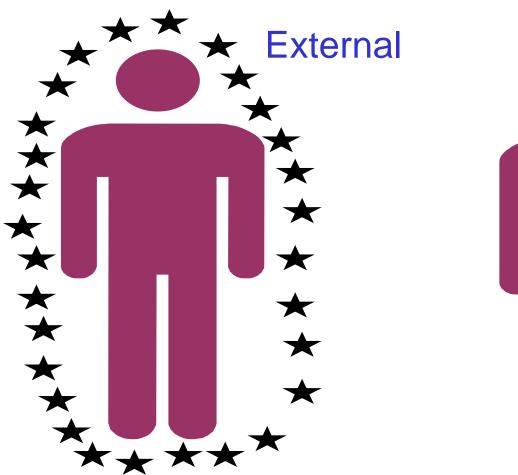
Why NBC Terrorism?

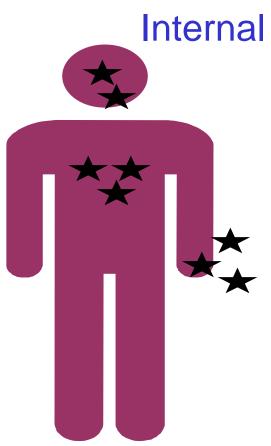
- Agents are available & relatively easy to manufacture
- Large amount not needed in enclosed space
- NBC incident difficult to recognize
- Easily spread over large areas
- Psychological impact
- Can overwhelm existing resources

Radiological Terrorism Possible Scenarios

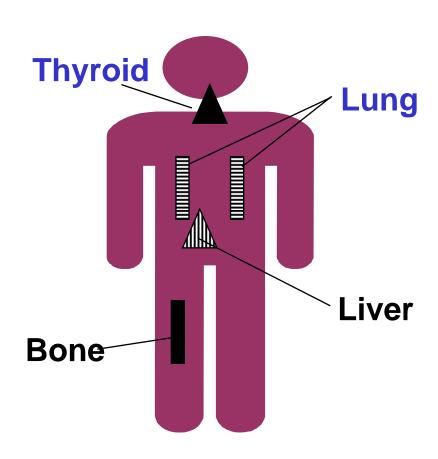
- Nuclear power plant incident
- Hidden source
- "Dirty bomb"
- Improvised nuclear device
- Nuclear weapon

Why Use RDD?


- An RDD poses the fewest technical barriers
- Radiological material is readily available
 - In nearly every country
 - Concealable
 - Portable
- Massive economic impact
 - Resulting in area denial
 - Potentially the most expensive environmental decontamination cleanup in US history
- Portray the government as powerless and weak
- Coerce a population through fear or traumatization


Source: Gerald Holton, Reflections on Modern Terrorism (2002)

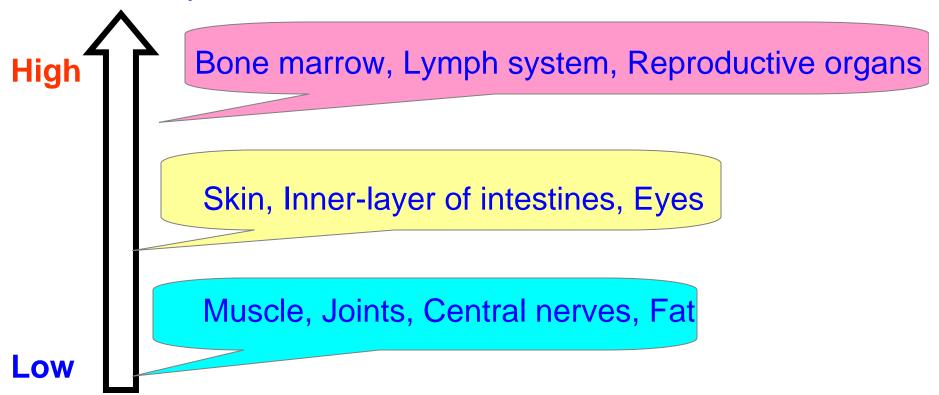
CAUSING PANIC and FEAR



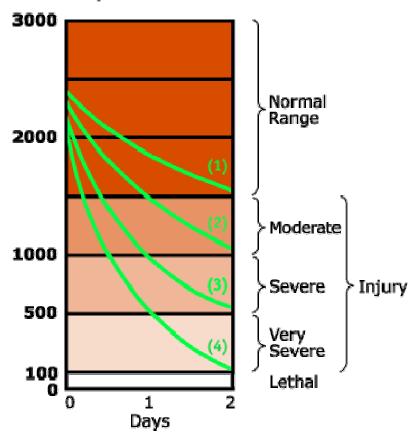
Contamination

Localization of Internal Contamination

Biological Effects


Cellular Sensitivity

 Not all living cells are equally sensitive


Biological Effects

Typically young and rapidly growing cells are more sensitive to radiation

Sensitivity

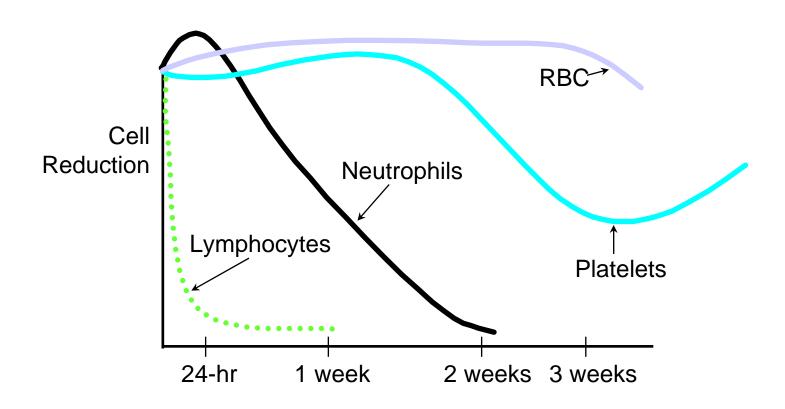
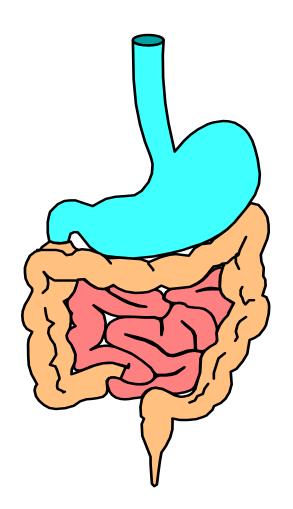
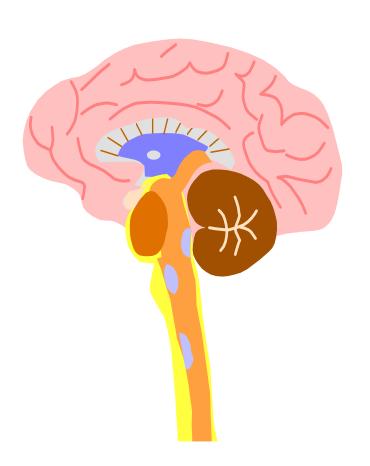

Patterns of early lymphocyte response in relation to dose.

Figure. Classical Andrews lymphocyte depletion curves and accompanying clinical severity ranges. According to the data presented in this paper, curves 1-4 correspond roughly to the following whole-body doses: curve (1) 3.1 Gy; curve (2) 4.4 Gy; curve (3) 5.6 Gy; curve (4) 7.1 Gy.


From Goans, Ronald E., Holloway, Elizabeth C., Berger, Mary Ellen, and Ricks, Robert C. "Early Dose Assessment Following Severe Radiation Accidents." *Health Physics* 72(4): 1997.

Hematopoietic System-Blood Count

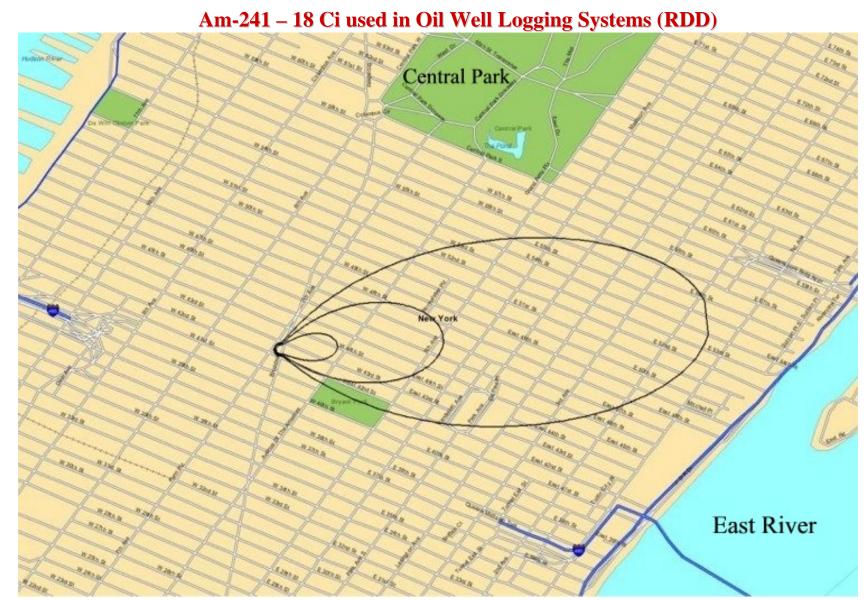

ARS - Gastrointestinal Syndrome

- Seen with radiation doses > 600 rads
- Damages intestinal lining
- Nausea and vomiting within the first 2 4 hours
- May develop diarrhea
- Associated with sepsis and opportunistic infections
- At 10 days could develop bloody diarrhea resulting in death

ARS - Central Nervous System

- Seen with radiation dose > 1,000 rads
- Microvascular leaks edema
- Elevated intracranial pressure
- Death within hours

ARS with Cutaneous Syndrome: A case of beta-gamma exposure (Chernobyl accident) with injury of 50% of the skin surface.


Accident in Thailand: Radiation burns on the hands of P1/JC, taken February 23, 2000.

Accident at Yanango: Radionecrotic lesions of the distal left leg and ankle (Apr. 28, 2000).

Accident at Yanango: Perineal area with fibrosis and urethral fistula (February 2001).

Inner Ring: Current guidelines state that all persons must recieve medical supervision

Middle Ring: Maximum annual dose for radiation workers exceeded

Outer Ring: Current guidelines state that the area should be evacuated before radiation cloud passes

Treatment of Internal Contamination

Element	Immediate Action	Drugs to consider
Americium (Am)	DTPA	DTPA
Arsenic (As)	Consider Lavage	Dimercaprol
Barium (Ba)	Consider Lavage & Purgatives	
Calcium (Ca)	DTPA, Consider Lavage & Purgatives, & Calcium	DTPA

Treatment of Internal Contamination

Element	Immediate Action	Drugs to consider
Carbon (C)		No Treatment available
Cesium (Cs)	Prussian Blue, Consider Lavage & Purgatives	Prussian Blue
Chromium (Cr)	Consider Lavage & Purgatives	No Treatment available for anionic forms, DTPA or DFOA for cations.
Iodine (I)	KI, Consider Lavage	KI

Treatment of Internal Contamination

<u>Element</u>	Immediate Action	Drugs to consider
Plutonium (Pu)	DTPA	DTPA
Polonium (Po)	Consider Lavage & Purgatives	Dimercaprol
Potassium (K)	Consider Purgatives, Diuretics, Aluminum Hydroxide	Diuretics
Radium (Ra)	Magnesium, Sulfate Consider Lavage & Purgatives	

Biological weapons: the agents, the threat & the response

Characteristics

- Do not penetrate unbroken skin
- Non-volatile
- More toxic than chemicals by weight
- Undetectable by senses
- Limited field detection
- Disseminate as aerosols

CHEMICAL-BIOLOGICAL AGENTS

- Chemical Agents
 - Phosgene, mustard gas, nerve agents, chlorine
 - Violent disease syndromes within minutes at the site of exposure
 - Emergency personnel at the site of exposure
 - No propagation of syndrome outside of affected area
 - Time-limited
- Biological Agents
 - Incubation periods
 - Delayed recognition
 - Physicians
 - Disease syndromes rarely seen may be initially misdiagnosed
 - Propagated spread of infection widespread dissemination

IMPACT ON HEALTH CARE SYSTEM

- Unprecedented Numbers of Patients
- Overwhelming Resource Demands
 - Hospital resources
 - Beds and equipment
 - Intensive care demands
 - Personnel
 - Medications/Immunizations
 - Effect of quarantine on routine ops
 - Varicella/smallpox scenario
 - Protection
 - Health care personnel
 - Laboratory personnel

Domestic terrorism

- 1984, Bhagwan Shree Rajneesh, Oregon, salmonellosis (>700 cases, 0 deaths)
- 1995, Patriot's Council, Minnesota, ricin weapon
- 1995, Larry Wayne Harris, Ohio, Aryan Nation, illegal acquisition of plague
- 1996, Texas microbiology lab workers, *Shigella dysenteriae* type 2
- 2001, anthrax attackes via US mail

BIOLOGICAL WARFARE AGENTS

- Anthrax (Bacillus anthracis)
- Brucellosis (Brucella spp.)
- Plague (Yersinia pestis)
- Q Fever (Coxiella burnetii)
- Tularemia (Francisella tularensis)
- Smallpox (Monkeypox)
- Glanders (Burkholderia mallei)
- Influenza

- Viral encephalitides (Venezuelan, Eastern, and Western Equine encephalitis viruses)
- Viral hemorrhagic fevers (e.g. Rift Valley Fever, Dengue, Hantavirus)
- Botulinum toxins (Clostridium botulinum)
- Staphylococcal Enterotoxin B (Staphylococcus aureus)
- Multidrug-resistant tuberculosis (Mycobacterium tuberculosis)

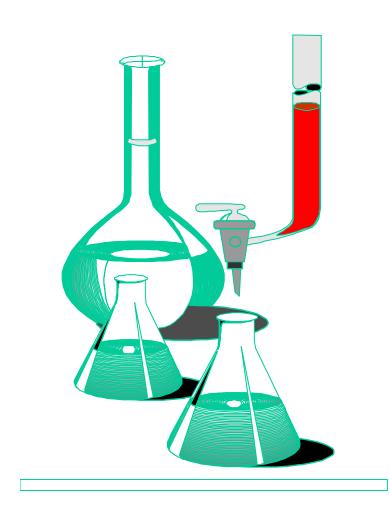
ANTHRAX as a Bioweapon

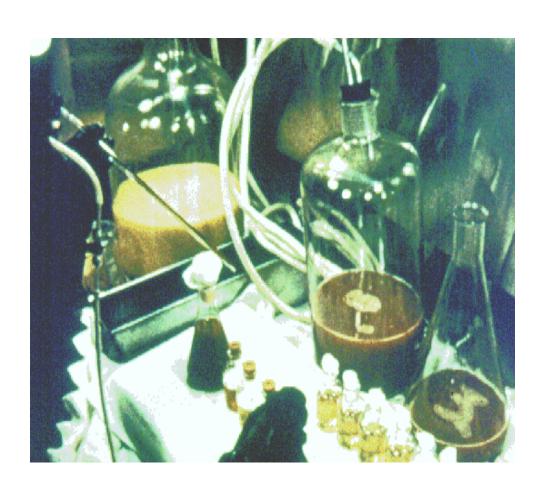
- Aircraft release of 50kg over urban population of 5 million*
 - 250,000 causalities
 - 100,000 deaths without treatment
- Aerosolized release of 100kg upwind of Washington DC†
 - Between 130,000 and 3 million deaths
 - Lethality matching or exceeding that of a hydrogen bomb
- Economic model developed by CDC‡
 - \$26.2 billion per 100,000 persons exposed

WHO. Health Aspects of Chemical and Biological Weapons. Geneva, Switzerland: WHO; 1970:98-99

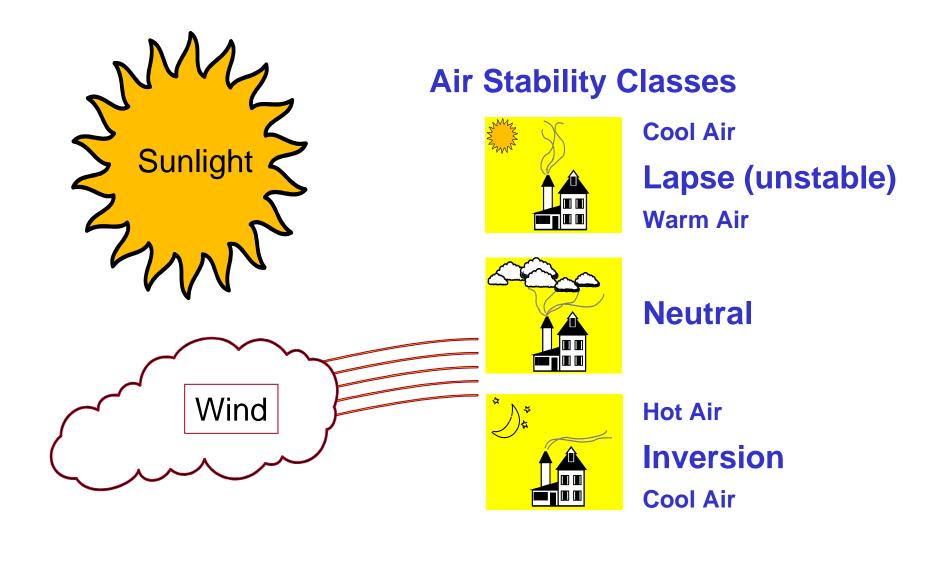
† Office of Technology Assessment, US Congress. *Proliferation of Weapons of Mass Destruction*. Washington DC; 1993:53-55. Publication OTA-ISC-559.

‡Kaufman AF, et al. The economic impact of a bioterrorist attack. Emerg Infect Dis. 1997;3:83-94

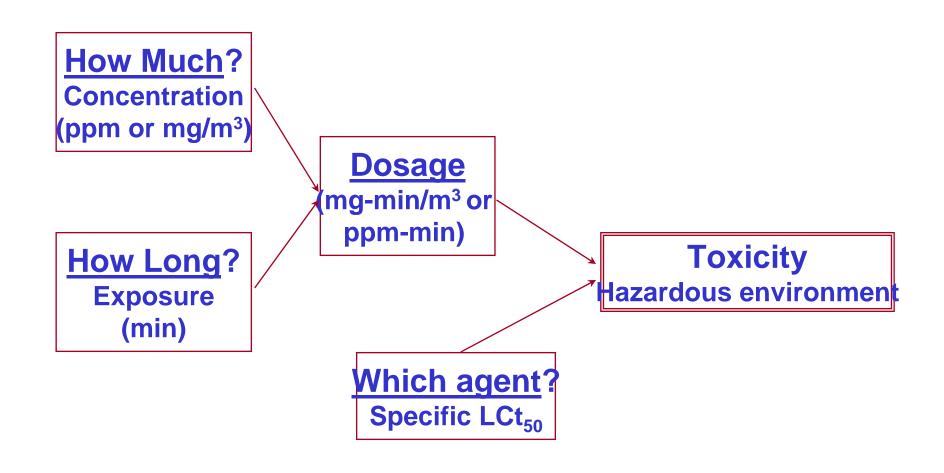

Defense Against Biological Weapons


- Vaccines: technical difficulties
 - anticipating strain
 - too many agents
 - availability: too many doses required
- Solution:
 - broad spectrum protection
 - therapeutic and preventive approaches

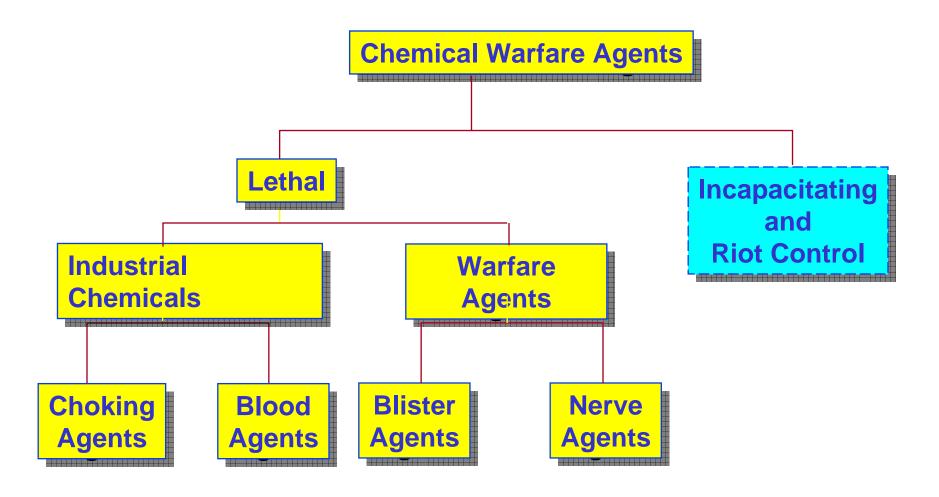
KITS



Chemical Agents



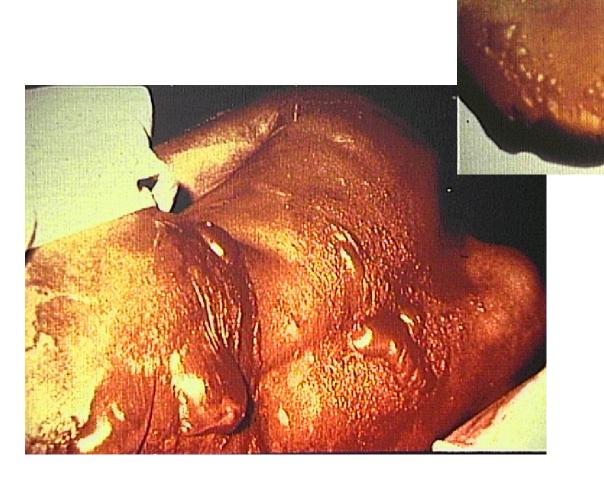
Influence of Weather



Chemical Agent Toxicity

for Gases and Aerosols

Classes of Chemical Agents



Chemical Warfare Agents

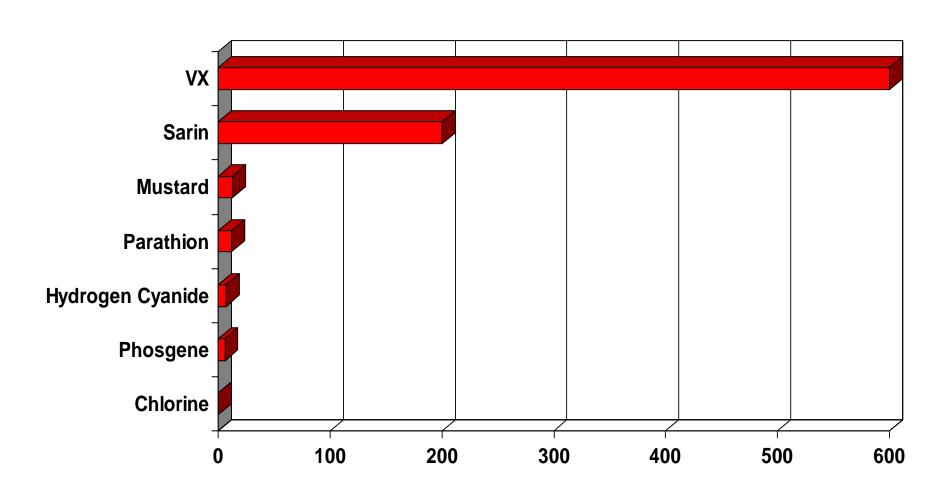
- Blister Agents
 - Sulfur Mustards
 - Nitrogen
 - **Mustards**
 - Arsenicals
 - Nettle Agents

- Nerve Agents
 - G- Agents
 - V- Agents
 - Others

Blister Agent Exposure

Blister Agent Points of Emphasis

- Sulfur mustard agent freezes at 57° F
- Mustard agent symptoms delayed NOT onset time of effects
- Lewisite/phosgene oxime cause immediate, severe pain
- Persistency of hours (desert) to days or even weeks (temperate)
- Suspected carcinogens
- Cumulative effects
- Vapor is skin hazard
- Blisters on over 50% of body can prove fatal

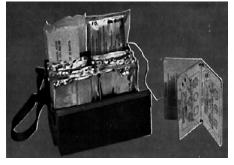

Nerve Agents

Common name /	Tabun (GA), Sarin (GB), Soman (GD)	V- Agents (VX) (Vx)	
Symbol Military Class	G-series	V-series	
Volatility (mg/m ³⁾	328 - 22,000	10.5	
Toxicity (ppm)	12 - 48	4 - 12	
Odor	Fruity (GA, GB), Camphor (G	D) Sulfur	
Symptoms	 Pinpointing of pupils Salivation Vomiting / diarrhea Difficulty breathing Tearing (lacrimation) Twitching / convulsions 		
Protection	Respiratory and skin		
First Aid	Atropine + 2-PAM Chloride		

How Much Sarin (GB) Does it Take?

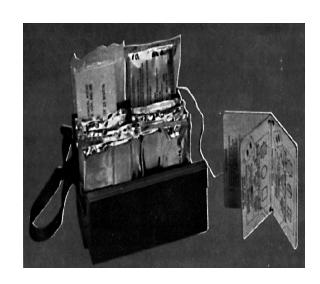
Structure Amount	Volume	Lethal Respiratory	Lethal Dose
Domed Stadium	1.07 x 10 ⁶ m ³	100 mg-min/m ³ 1	07 kg, about 26 gals
Movie Theater	12,000 m ³	100 mg-min/m ³ 1	.2 kg, about 5 cups
Conference Room (50-100 seating)	400 m ³	100 mg-min/m ³ 3	3 g, about 1 shot glass

Comparative Toxicity


Chemical Detection and Identification Suite

M256A1 Kit

• Capabilities:


- Detects nerve, blister, blood agents
- Detects below IDLH for most agents

• Limitations:

- Takes 15 minutes to use
- Hand manipulations
- Does not detect choking agents

• Best uses:

- Initial recon
- Verification of chemical detection

Personal Protective Equipment

Objectives

- Identify PPE recommendations for each category of NBC agent
- Be able to select the proper level of PPE based on the WMD situation

Levels of Protection

Greater Hazard

Level A

Level B Level C Level D

Bunker Gear ?

Higher Burden

PPE Selection Considerations

- NBC agent
- Solid, liquid, vapor, aerosol
- Agent concentration
- Equipment protection factor
- Weather

- Zone
- Topography/Construction
- Protection level available
- Certified filter canisters
- Duration of mission
- Other considerations

Structural Firefighter Gear with SCBA

- Excellent respiratory protection (PF ≥ 10,000)
- Limited liquid protection
- Estimated protection against skin absorption of vapors/aerosols (PF ~ 10)

Recommended *Initial* Protection Levels

AGENT CATEGORY MINIMUM INITIAL LEVEL OF PROTECTION

UNKNOWN LEVEL A¹

NERVE LEVEL A/B²

BLISTER LEVEL A/B²

BLOOD LEVEL B³

CHOKING LEVEL B³

FILTER⁴ w/LEVEL C

BIOLOGICAL FILTER4 W/LEVEL C

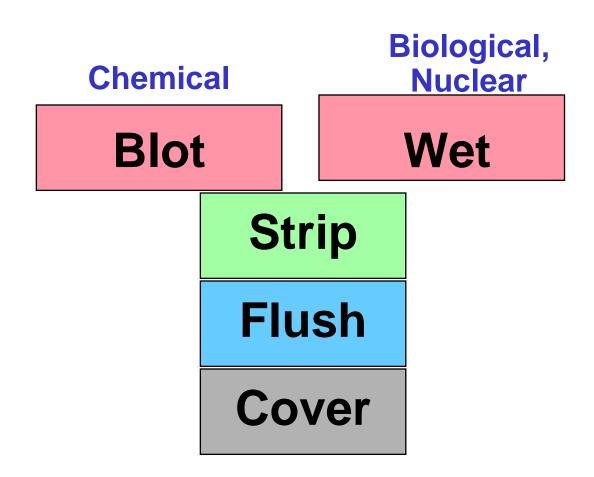
RADIOLOGICAL

¹ Typical "standard" employed by HAZMAT teams

² Level B: High vapor/aerosol concentrations or splash hazard may result in agent poisoning

³ Level A may be required in an enclosed area

⁴ 42 CFR 84 compliant


Downwind Hazard (DWH) Analysis

Factors Affecting DWH Prediction

FACTOR	UNFAVORABLE	MODERATE	FAVORABLE
Wind	12+ mph	8-11 mph	5-7 mph
Air stability	Unstable	Neutral	Stable
Temperature	< 40°F	40°-70°F	>70°F
Precipitation	Any	Transitional	None
Cloud Cover	Broken clouds (day)	Thick overcast	Broken clouds Clear sky (night)
Terrain	Hill tops, mountains wooded, urban	Rolling terrain	Flat; Open Water
Vegetation	Heavily wooded	Medium dense	Sparse
Agent	VX, Cyanide	Blister	Sarin
Dissemination	Liquid	Explosive	Spray

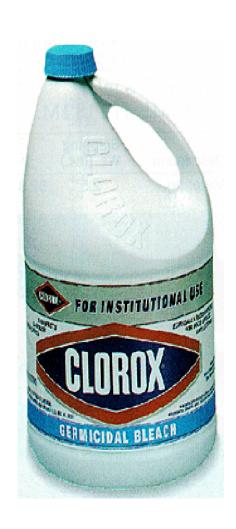
Emergency Mass Casualty Decontamination Process

Emergency Mass Casualty Decontamination Procedures

- Ambulatory decon
 - Communicate directions
 - Arms out, legs apart, head back
 - Top down wash
- Non-ambulatory decon
 - Cut off clothing
 - Use stretcher supports

Decontaminants of Choice (Personnel)

Water	Available, removes agent by mechanical action, no ill effects
Soap and water	Takes time to mix, extra cost, helps remove more agent, no ill effects
Bleach and water	Takes time to mix, extra cost, helps remove and neutralize more agent, can cause skin irritation or damage.


For emergency decon, benefits of quickly showering with water outweighs extra removal capacity of soap or bleach solutions.

Hypochlorite / Bleach

- Types: HTH, laundry bleach, household bleach
- Use: All chemical and biological agents
- Application: personnel, equipment, terrain
 - Requires mixing to 5% 0.5% solutions

• Risks:

- Corrosive, oxidizer
- Causes skin burns

