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Abstract. Wrapper methods look for the selection of a subset of features or 
variables in a data set, in such a way that these features are the most relevant for 
predicting a target value. In chemoinformatics context, the determination of the 
most significant set of descriptors is of great importance due to their contribu-
tion for improving ADMET prediction models. In this paper, a comprehensive 
analysis of descriptor selection aimed to physicochemical property prediction is 
presented. In addition, we propose an evolutionary approach where different 
fitness functions are compared. The comparison consists in establishing which 
method selects the subset of descriptors that best predicts a given property, as 
well as maintaining the cardinality of the subset to a minimum. The perform-
ance of the proposal was assessed for predicting hydrophobicity, using an en-
semble of neural networks for the prediction task. The results showed that the 
evolutionary approach using a non linear fitness function constitutes a novel 
and a promising technique for this bioinformatic application. 
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1   Motivation 

In the pharmaceutical industry, when a new medicine has to be developed, a ‘serial’ 
process starts where drug potency (activity) and selectivity are examined first [1]. 
Many of the candidate compounds fail at later stages due to ADMET (absorption, 
distribution, metabolism, excretion and toxicity) behavior in the body. ADMET prop-
erties are related to the way that a drug interacts with a large number of macromole-
cules and they correspond to the principal cause of failure in drug development [1]. In 
this way, a compound can be promising at first based on its molecular structure, but 
other factors such as aggregation, limited solubility or limited uptake in the human 
organism turn it useless as a drug. 

Nowadays, the failure rate of a potential drug before reaching the market is still 
high. The main problem is that most of the rules that govern ADMET behavior in the 
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human body are unknown. For these reasons, interest in Quantitative Structure-
Activity Relationships (QSAR) and Quantitative Structure-Property Relationships 
(QSPR) given by the scientific and industrial community has grown considerably in 
the last decades. Both of these approaches comprise the methods by which chemical 
structure parameters (known as descriptors) are quantitatively correlated with a well 
defined process, such as biological activity or any other experiment. QSAR has 
evolved over a period of 30 years from simple regression models to different compu-
tational intelligence models that are now applied to a wide range of problems [2], [3]. 
Nevertheless, the accuracy of the ADMET property estimations remains as a chal-
lenging problem [4]. 

In this context, hydrophobicity is one of the most extensively modeled physico-
chemical properties since the difficulty of experimentally determine its value, and 
also because it is directly related to ADMET properties [2], [5]. This property is tradi-
tionally expressed in terms of the logarithm of the octanol-water partition coefficient 
(logP). 

QSAR methods developed by computer means are commonly named as in silico 
methods. These in silico methods, clearly cheaper than in vitro experiments, allow to 
examine thousands of molecules in shorter time and without the necessity of intensive 
laboratory work. Although in silico methods are not pretended to replace high-quality 
experiments at least in the short term, some computer methods have demonstrated to 
obtain as good accuracy as well-established experimental methods [6]. Moreover, one 
of the most important features of this approach is that a candidate drug (or a whole 
library) can be tested before being synthesized. Due to the gains in saved labour time, 
in silico predictions considerably help to reduce the large percentage of leads that fail 
in later stages of their development, and to avoid the amount of time and money in-
vested in compounds that will not be successful. 

In this context, machine learning methods are most preferred given the great 
amount of existing data and the little understanding of the pharmacokinetic rules of 
xenobiotics in the human body. Jónsdottir et al. [3] detail an extensive review of the 
many machine learning methods applied to bio- and chemoinformatics. 

The major dilemma when logP is intended to be modeled by QSAR is that, thou-
sands of descriptors could be measured for a single compound and also there is no 
general agreement on which descriptors are relevant or influence the hydrophobic 
behavior of a compound. This is an important fact, because overfitting and chance 
correlation could occur as a result of using more descriptors than necessary [7], [8]. 
On the other hand, poor models come as a result, when less descriptors than necessary 
are used. From an Artificial Intelligence (AI) perspective, this topic constitutes a 
particular case of the feature selection (FS) problem. 

In this way, this work presents a sound approach for inferring the subset of the 
most influential descriptors for physicochemical properties. The righteousness of the 
selection is assessed by the construction of a prediction model. Our technique is based 
in the application of a genetic algorithm (GA) where: different fitness functions, a 
different number of descriptors selected by GA and a different number of descriptors 
considered by the prediction method are compared. This work is organized as follows: 
next section discusses related issues of feature selection in AI and in chemoinformat-
ics in particular. Section 3 expands the aforementioned idea by introducing the ge-
netic algorithm proposed for descriptor selection. In Section 4, applied data and 
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methods are presented, followed by the obtained results. Finally, in Section 5, main 
conclusions and future work are discussed. 

2   Introduction to Feature Selection 

Feature selection is the common name used to comprise all the methods that select 
from or reduce the set of variables or features used to describe any situation or activ-
ity in a dataset. Some authors differentiate variables from features, assuming that 
variables are the raw entry data, whereas features correspond to processed variables. 
However, variables, features or descriptors will be used here without distinction.  

Nowadays, FS is a current research area, given that applications with datasets of 
many (even hundreds or thousands) variables have become frequent. Most usual cases 
where this technique is applied are gene selection from microarray data [9], [10], [11] 
and text categorization [12], [13], [14]. Confronting dimensionality carries some rec-
ognized advantages like: reducing the measurement and storage requirements, facili-
tating visualization and understanding of data, diminishing training and predicting 
times and also improving prediction performance. 

Special care has to be taken with the distinction between relevant or useful and re-
dundant. As it can be elucidated, selecting most relevant variables may be suboptimal 
for a predictor, especially when relevant variables are redundant. On the other hand, a 
subset of useful variables for a predictor may exclude redundant, but relevant, vari-
ables [15], [16], [17]. Therefore, in FS it is important to know whether developing a 
predictor is a final objective or not. 

FS methods may be applied in two main ways, in terms of whether variables are 
individually or globally evaluated. That is, the first of them, works ranking each vari-
able in an isolated way, i.e. these methods rank variables according to their individual 
predictive power. However, a variable that is useless by itself could be useful in con-
sideration with others variables [17]. In this way, more powerful learning models are 
obtained, when the FS model selects subsets of variables that jointly have good pre-
dictive capacity.  

A refined division of FS methods, especially applied to the latter defined group, is 
commonly used. They are often divided into filters, wrappers and embedded methods. 
When variables are selected according to data characteristics (e.g. low variance or 
correlated variables) they correspond to filter-type FS methods. Wrappers utilize a 
learning machine technique of interest as a black box, as a pre-processing step, to 
score subsets of variables in terms of their predictive ability. Finally, embedded meth-
ods carry out FS in the process of the training of a learning method and are usually 
tailored to the applied learning method [17], [18].  

A wrapper-based FS method generally consists of two parts: the objective function, 
which may be a learning (regression or classification) method and a searching func-
tion that selects variables to be evaluated by the objective function. The results of the 
learning method are used to guide the searching procedure in the selection of descrip-
tors. Consequently, the selection procedure is closely tied to the learning algorithm 
used, whether in quality of selection or execution time. For instance, we may get very 
different behaviors whether we are using linear models or nonlinear techniques [18]. 
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2.1   Feature Selection Applied to QSAR 

Many several papers successfully applied the FS strategy in bioinformatics related 
areas, like: drug discovery, QSAR and gene expression patterns analysis. We decided 
to apply descriptor selection in our work in order to detect which and how many de-
scriptors are the most useful ones for the prediction of logP. We agreed on the use of 
GAs as the searching function, given that they offer a parallel search of solutions, 
potentially avoiding local minima. Moreover, with a correct design of a fitness func-
tion, GA inherently guides the different generations of individuals to a good if not 
optimal solution. In this context, the objective function corresponds to the function 
used for the fitness of GA. 

In this way, and as a result of the review about the related work in the area, we 
found some inspiring papers. In ref. [9], [18], [19], [20], [21], [22] different fitness 
functions are tested within a GA to determine a subset reduction. In [18], [23], [24] 
FS is applied using a neural network (NN) for the fitness function. However, we find 
that this proposal has the drawback of the great amount of time required by the NN 
for training and thus the execution time becomes prohibitive when the number of 
combination of feasible selections is large.  

3   Wrapper Method 

We implemented a GA for searching the space of the multiple feasible selections. We 
propose three appropriate fitness functions for guiding the search of GA, namely: 
decision trees, k-nearest neighbors (KNN) and a polynomic non linear function. Ac-
cording to the previous classification, our proposed FS method belongs to a wrapper 
method because statistical or machine learning methods are used in the fitness func-
tion for assessing the prediction capability of the selected subset. 

3.1   Main Characteristics of GA 

Binary strings are used to represent the individuals. Each string of length m stands for 
a feasible descriptor selection, where m is the number of considered descriptors. A 
nonzero value in the ith bit position means that the ith descriptor is selected. We have 
constrained to a model where p bits are active for each individual. In other words, 

each chromosome encodes its choice of the p selected descriptors. 

The initial population is randomly generated by imposing the described restriction 
of exactly p active descriptors on each individual. A one-point crossover is used for 

the recombination [25]. Non feasible individuals could take place after crossover, 
because the number of nonzero bits may be different than p . This problem is solved 

by randomly setting or resetting bit locations as needed to be up to p active bits. Since 

the crossover scheme inherently incorporates bit-flip mutation, we abstained to use an 
additional scheme of mutation.  

We did different experiments and we concluded that tournament method is appro-
priate for the selection of parents. Furthermore, this method is preferred than others 
because it is particularly easy to implement and its time complexity is O(n) [25]. We 
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also included elitism, which protects the fittest individuals in any given generation, by 
moving them to the next generation.  

3.2   Fitness Function 

Taking into account that the GA objective is to determine the most relevant set of 
p descriptors for predicting a physicochemical property, the fitness function should 

estimate the accuracy of a prediction method when only the p descriptors are used. In 

particular, the general form of the fitness function employed is presented in the equa-
tion 1. This formula computes the mean square error of prediction (MSE): 
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Where: 

 Z is a matrix that represents a compound dataset, where each row and column 
corresponds to a compound and a descriptor respectively. The last column of Z 
stores the experimental target values for each compound. This column vector is 
denoted as y.    

 ZP is a statistical method trained with the dataset Z. In the same way, )(xZP is 

the output for the ZP method when the case x is presented. 

 Z1 and Z2 are compound databases used as learning and validation sets respec-
tively with corresponding sizes n1 ×m and n2 ×m. 

 Zj,k is a filtered dataset in accordance with the descriptor selection encoded by 
the kth individual. In other words, Zj,k only contains those variables of Zj whose 
values in the corresponding locations  of the kth individual’s chromosome are 1. 

 ix  is a vector that represents the values of the descriptors for the ith compound 

of a given dataset.  
 yi is the target value for the ith compound of a given dataset.  

 
The first argument of the fitness function is the statistical method applied to a 

given learning set, while the second argument corresponds to a validation set, from 
where fitness value is calculated. In this work, three different predictor techniques 
were tested. The first one corresponds to decision trees (DT) (as regression trees) 
using Gini's diversity index for the splitting criteria and without using any kind of 
pruning [26]. The second is KNN regression as used in ref [9]. Both methods are local 
and usually applied for prediction or for FS purposes [27]. 

A non linear regression model was also applied in this paper as the first argument 
of the fitness function. A nonlinear expression is established where their coefficients 

( ji ,β ) are adjusted with a nonlinear least-squares fitting by the Gauss-Newton 

method [28]. The corresponding and nonlinear regression model formula is presented 

in Equation 2, where ix  corresponds to the value of the ith descriptor for any given 

compound. Non linear models are not generally applied given that they need the con-
struction of a mathematical formula. Nevertheless, we propose it as an alternative for 
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NN, so that non linear regressions could be carried out. It is worth mentioning that 
this approach circumvent the necessity of a manual tuning of the architecture and 
training parameters as is the case with NN. 
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4   Methodology and Analysis of Results 

Our proposal consists in the search of a selection of descriptors that minimizes the 
prediction error when they are used as input of a predictor method. This selection is 
fulfilled with the GA previously described. Moreover, a fair comparison is intended to 
be established in order to determine which fitness function works best with GA. It is 
worth mentioning that, as well as minimizing error, it is important to obtain relevant 
descriptors in a subset of minimal size. 

4.1   Data Sets 

Our FS method was applied to a data set of 440 organic compounds compiled from 
the literature [29] where their logP values at 25ºC conform the modeled target vari-
able. The choice of the data set was supported by the possibility of comparison with 
the previous work and also for the heterogeneous compounds that it comprises (e.g. 
hydrocarbons, halogens, sulfides, anilines, alcohols, carboxylic acids amongst others).  

Each compound was characterized by 73 molecular descriptors commonly used for 
logP [30], [31], [32]. Dragon 5.4 [33] was used for calculating descriptors of the: 
constitutional (41), functional groups (16), properties (2) and empiricals (3) families 
and we completed with 11 descriptors from [29] (Table 3). Previous to the use of the 
data, all descriptors were normalized, so each descriptor has a standard deviation of 1. 

4.2   Genetic Algorithm Parameters 

In order to assess the stability of the GA in the selection and to explore the sensitivity 
of the choice of p in the prediction, 45 independent runs were carried out for each 

choice of p , where p was set to 10, 20 and 30. This same procedure was made for 

the three considered fitness functions, making a total of 405 runs for the GA. 
The chromosome size m is 73 according to the number of calculated descriptors. 

For the GA runs we used typical parameter values: population size=45; crossover 
probability=0.8; tournament size=3, elite members=2. A phenotypic stopping crite-
rion is used; the GA stops when the highest fitness of the population does not improve 
during 15 generations or when the improvement of the average fitness of the popula-
tion is less than a given tolerance value.  

4.3   Prediction Method 

NNs are probably one of the most widely used methods for QSAR modelling [2], [6], 
[34]. In order to evaluate the suitability of the selection, we used a neural network 
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ensemble (NNE) as an independent prediction method, i.e. it measures the accuracy of 
prediction for each proposed wrapper method. The number of descriptors ( d ) used as 
input for this independent prediction method is not necessarily the same as 
the p genes selected by the GA. With the intention of establishing a suitable (minimal 

cardinality and error) subset of descriptors this value was settled to 10 different val-
ues: 11, 12, 15, 20, 25, 30, 40, 50, 60 and 73. The d descriptors used for the predictor 
are selected from a ranking of the most selected descriptors obtained in the 45 re-runs 
of the GA. Each ensemble consists of three NNs, and all of them are of type feed-
forward back-propagation. The specific architecture of each NN, was established 
according to the number picked for d . Principal Component Analysis (PCA) is ap-
plied prior to the training of the NNE, so the descriptors that contribute less than a 
0.2% of the total variance are discarded and considered as redundant. 

4.4   Results  

With the purpose of evaluating the performance in the prediction achieved by the afore-
mentioned fitness functions, we trained NNEs for each presented configuration of the 
GA and we obtained error prediction for different choices of d (Table 1, Fig. 1).  

It is worth mentioning that it is not straightforward to obtain logP related works 
from the bibliography that allows a reproducibility or benchmarking of the results of 
the work, as it is the case of ref [29]. So, to enable a direct comparison with this work, 
the data set was identically divided into training, validation and test set, also using the 
same compounds in each set.  

Our results were obtained after several different NN configurations and replicas, 
and the tendency was rather similar. Each reported error is an average over 5 replicas 
(15 NNs) applied to the test set.  

In comparison with the backpropagation NN proposed in ref. [29], which obtains a 
0.23 MAE and where similar conditions apply, our model of NNE with the assistance 
of the FS method has improved the accuracy of logP prediction, even when using one 
less descriptor (NL, p =10 fitness function). 

Decision trees as fitness function have a better behavior in their variant 
with 20=p descriptors, but with few descriptors for d , the performance is quite far 

from optimal. In the case of KNN, it looks like few descriptors for p is not appropri-

ate at least when less than 20 descriptors are used for the NNE. For NL, the behavior 
is quite good when 10=p . As expected, in all models similar results are obtained 

when more than 25 descriptors are considered for d . 
Considering the best alternative of p for each fitness function (Fig. 1 (d)) we high-

light the performance of NL. It has a roughly equal behavior along all d values and 
takes a minimal prediction error when 25=d . KNN’s behavior is similar to NL, 
except for the lowest values of d . In the case of the DT-based predictions, although 

they have a better performance than the previous two cases for large d , the bad per-
formance with small d values, makes it not so valuable as an FS technique, at least for 
the present example. 
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Table 1. Prediction errors in terms of MAE, MSE and variance on 5 runs 

 

 

Fig. 1. NNE prediction error in terms of mean absolute error (MAE) considering different 
number of descriptors as input, and also for different GA-based selection methods: (a) decision 
trees, (b) k-nearest neighbors and (c) non linear (d) best fitness functions 

Table 2. Two-way ANOVA for MAE of prediction of the three best methods and when few 
descriptors are used (d = 11, d = 12 and d = 15) 

Source of Var. Sum of Squares D.F. M.S. F p
BETWEEN 0,015629 8 0,0019536 14,7950419 2,622E-09
d factor 0,000056 2 0,0000279 0,21117041 0,8106
wrapper factor 0,015003 2 0,0075014 56,8094222 7,306E-12
Interaction 0,000570 4 0,0001426 1,0797875 0,3809
WITHIN 0,004754 36 0,0001320
TOTAL 0,020383 44  

In order to formally support preceding facts, we analyze whether significant discrep-
ancies exist among the different models by using a two-way ANOVA test (Table 2). 
The two involved factors are the FS method and the choice of d . Our comparison is 
focused on finding significant differences on the methods when using few descriptors  
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Fig. 2. NNE prediction error in terms of mean absolute error (MAE) considering different 
number of descriptors as input, and also for different random-based selections  

Table 3. List of ranked descriptors according to wrapper method NL, 10=p . Descriptors 
with * are scaled on carbon atoms. 

 

for the NNE ( 12,11 == dd and 15=d ). Given that there is not strong evidence of 

an interaction factor, we can separately analyze both factors. The ANOVA test shows 
that there is no evidence of differences on using 11, 12 or 15 descriptors for one same 
wrapper method ( d factor near 1), and also that significant differences are found for the 
choice of the method for feature selection (p-value of wrapper factor ≈ 0). Finally, we 
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also apply Bonferroni multiple comparison procedure to determine which method dif-
fers from which. With a global level of error 03.0=α  we found that all methods 
differ from each other (data not shown). 

Besides, in order to evidence the advantages and the differences of the application 
of a FS technique, we analyzed the performance when a random selection is carried 
out (Fig. 2). As expected, the prediction error decreases when more descriptors are 
considered for the NNE. On the other hand, with large d values, error is not so bad 
given that all descriptors are related with the target property. 

Our last analysis of results is about which descriptors were selected by GA, and 
their frequency of selection. Table 3 shows the list of descriptors, ranked according to 
NL – 10=p criteria, with the percentage of the times selected in the 45 runs of the 

GA. From a chemical perspective, it is interesting to note that the first three top-
ranked descriptors are considered as reasonably influential for logP [32]. 

5   Conclusions 

The present work proposes a methodology to detect which descriptors are the most 
influential to the prediction of the molecule hydrophobicity. This detection of relevant 
features allows a decrease in the prediction error and also a better understanding of the 
structure-property relationships. The key contributions of our work are the proposal of a 
non linear function adjusted with least squares in the fitness function and the rigorous 
comparison carried out by the different combinations of the wrapper variants.  

Despite the unknown of the general form of the function that governs the structure-
property relationship, the fourth-order polynomial function works well for the 
wrapper, since it captures the nonlinearity of the model, as well as it maintains an 
acceptable execution time performance. Besides, the GA’s behavior is quite stable 
given the low variance of the prediction errors and the high frequency associated with 
the top-ranked descriptors. 

According to the authors’ knowledge, we did not find previous works with a 
ranked list of relevant features for predicting hydrophobicity. It is worth noting that in 
the FS step, relevant but redundant variables can be selected. However, since PCA is 
applied before the training of the NNE, any redundant feature is thus discarded.  

Our proposal is not restricted to logP, because this method could also be applied to any 
physicochemical property. It would be interesting to experiment this proposal with the 
aggregation of other descriptor families. In this context, we are evaluating other descrip-
tors that express interactions between functional groups in molecules. Moreover, the GA 
could also be developed to directly detect the most adequate number of descriptors in a 
multi-objective way, instead of fixing to a specific number. At this moment, we are also 
planning to extend the comparison with other combinations of AI methods. 
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