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Abstract. We describe general conditions for data classification which
can serve as a unifying framework in the study of kernel based Machine
Learning Algorithms. From these conditions we derive a new algorithm
called SBC (for Similarity Based Classification), which has attractive
theoretical properties regarding underfitting, overfitting, power of gener-
alization, computational complexity and robustness. Compared to classi-
cal algorithms, such as Parzen windows and non-linear Perceptrons, SBC
can be seen as an optimized version of them. Finally it is a conceptu-
ally simpler and a more efficient alternative to Support Vector Machines
for an arbitrary number of classes. Its practical significance is illustrated
through a number of benchmark classification problems.

1 Introduction

Research in Machine Learning has recently received considerable attention due
to massive proliferation of data in Bioinformatics and the Internet. In particular,
Support Vector Machines (SVM) have been shown to play a major role in mi-
croarray data analysis [1], and web data classification [7]. We refer the reader to
[B] for a thorough treatment and further references regarding the wide range of
applications of SVM. The main significance of Support Vector Machines is their
theoretical underpinning and their handling of non-linear decision functions. The
key to this significance is the use of kernels, as was done with Parzen windows
and the non-linear Perceptron [6]. A thorough study on kernel methods can be
found in [I3]

In this paper we initially introduce a unifying framework to describe these “clas-
sical” and show that they are different stages of refinement of the same decision
function ; the only difference across is the way the training set itself is classified:
Parzen windows do not require that the decision function separate correctly the
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training sets, the non linear Perceptron will be seen as a version of Parzen win-
dows that requires that the training set be properly classified, while SVM will
be seen as a version of the non linear Perceptron that gives an optimal solution
to that classification. From this unifying framework we gain two major insights:
the first is that all these algorithms, Parzen windows, SVM, non linear Percep-
tron, SBC, and arguably other algorithms based on the concept of maximizing
similarity, assuming appropriate normalization of the data, converge to the same
solution, as the “tightness” of the similarity measure increases. This property is
established at the mathematical level and verified empirically. The other main
insight we derive is the SBC algorithm, which in a sense subsumes these three
algorithms and is an answer we propose to the open problem of finding a suitable
“direct” multi-class SVM [2]. This is because we replace the concept of maximal
margin, which is essentially a binary concept, by a concept of robustness of the
decision function which is independent of the number of classes (but equivalent
to the maximal margin in the binary case).

This paper discusses the issues of underfitting, overfitting, power of generaliza-
tion, computational complexity and robustness within a simple framework using
basic definitions of similarity matrix and tightness of similarity measures. We
also compare at the mathematical level, the asymptotic behavior of these vari-
ous algorithms and show that they converge with increasing tightness, assuming
some normalization of the data, towards the same solution: the Maxsim formula.
The SBC algorithm, derived from this study, uses naturally introduced similarity
functions (not requiring mappings in high-dimensional Hilbert spaces), and opti-
mizes “ala” SVM but without the need to solve the problem in a dual space with
a complex quadratic objective function and more importantly with the ability
to handle large multi-class problems. All this comes with a small penalty in the
binary case, as the SVM decision function is smaller than the corresponding SBC
function. In a concluding section we report briefly on an empirical validation of
our claims, a full study is the object of a forthcoming paper.

2 Similarity Matrix

As in [T3] we introduce the problem of classifying an object X by comparing its
similarity to sets of previously classified training objects; X will be assigned to
the class whose objects are most similar to X.

Given a set of I class-labeled training objects {X;, £(X;)}, ¢ = 1..I, where £(X;)
is the class of X;, and for an unclassified object X, we define the class similarity
of X with respect to a class C' as

So(X) =Y ons(Xi, X) (1)
Xpel

Where s is the similarity function and «y > 0 reflects the relative importance
given to each X with respect to the classification.
We can therefore predict the class of X using the following decision function:

(X)) = arge{maz(Sc(X))} (2)
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Or the strong version, which requires that not only X be more similar to class
C than it is to any other class, but also be more similar to class C' than it is to
the union of any other collection of classes.

&(X) = arge{max(Sc(X Z Sp(X (3)
D#C

In order to compare our approach with classical Machine Learning algorithms
that deal with binary classification, we will also consider the problem of super-
vised classification of objects from only two different classes A and B. In this
case, () can be rewritten as:

SA(X)— Sp(X) >0 €(X)=A
Sa(X)—Sp(X)<0—=¢X) =B
Sa(X)—Sp(X)=0—¢&(X) is not defined

Let a be the vector of coefficients «;. The problem of a classification algorithm
is to choose the criteria to compute these coefficients. In that respect some al-
gorithms will be satisfied with finding a simply empirically acceptable solution,
as Parzen windows do, while others will want a solution that satisfies predefined
criteria, as the Perceptron does with a requirement of linear separability, and
finally others, such as Support Vector Machines will find an optimal solution to
these criteria. But all share a decision function with the structure of ().
Among the many possible similarity measures, we will use mainly Radial Basis
functions and polynomial kernels. This is because they are among the most pop-
ular and efficient, and also because they are the main ones used in SVM and the
non-linear Perceptron, making comparisons more meaningful.

The Radial Basis Function (RBF in short): s(z,y) = elX=YI?/29* can be viewed
as a similarity measure between two points in ", as it is a measure of the inverse
of the distance between two points, its range is the interval (0,1) instead of an
infinite range.

Depending on the applications, the data is represented by points in R™, or nor-
malized vectors. In this last case we consider bs; that is similarities based on a
measure of the angle between two vectors of length 1. Those are quite suitable
for many applications, such as text processing [7]

In any case it is easy conceptually, and trivial algebraically, to approximate a
hyperplane by a spherical area, given a radius of sufficient magnitude. We just
need to add a value corresponding to the radius of the sphere to the list of coeffi-
cients of each point, and normalize. So we can still address general classification
problems of points in R, where we use vectors of uniform length to approximate
the points.

Representatives of similarity measures for vectors of uniform length are the poly-
nomial functions: s(X,Y) = || X,Y||" and of course the RBF.

We will say that similarity measure s is tighter than similarity measure t iff
Vi, jel, s(X;, X;) <t(X;,Y;). The similarity matriz is defined as:

S = [0s(Xi, X;)] (4)
Where § =1 if {(X;) = {(X}), and 6 = —1 otherwise.
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3 Fitting Conditions

We would like our decision function to satisfy two “fitting conditions”, the first
one simply expresses that the training vectors are properly classified. The second
deals with parameterized measures, like RBF’s ¢ parameter and the polynomial
kernel’s degree, which allow the user to control tightness. The condition essen-
tially reflects the fact that extreme values of these parameters correspond to
extreme tightness and overfitting, or no tightness at all and underfitting.

3.1 No Underfitting Condition

Sa > 0,a >0 is solvable (5)

As each row of the system expresses that a training vector’s similarity to its own
class is superior to its similarity to the union of all other classes, we have:

Proposition 1: The strong decision function correctly classifies the training
vectors if and only if the set of constraints in {3) is solvable.
We will say that a solution « (fits) the training data if and only if it satisfies
the (no underfitting condition).

3.2 Absolute Over/Under Fitting Condition

We assume that the similarity functions are parameterized using a tightness
parameter ¢, which allows the user to control the tightness of the similarity
measure, and have the following properties:

dq, Vi,j EI/Sq(Xi,Xj) =1
3 q,Vi,j € I/8,(Xi, X;) =1 <= i=3jAS,(Xi,X;) =0fori#j

At one extreme setting the parameter q will make all objects equally similar.
This corresponds to a situation where we have no means of comparing the
objects, and leads to a decision function that assigns an object systematically
to the class with the largest number of objects. This case we call absolute
underfitting. At the other extreme q will make the similarity function become
tighter and tighter until it becomes the identity step function. As the similarity
function converges towards the identity step function, the decision function
converges towards absolute overfitting; that is it will classify correctly only the
training objects.

Both conditions are met by the RBF, or by polynomial kernels when the data
has been normalized to vectors of length one.

The motivation for this condition, which is not fundamentally restrictive in
nature, is that we find that the similarity matrix, which is a square symmetric
matrix, has interesting theoretical and computationally advantageous properties
as the tightness of the similarity measure increases:
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Proposition 2: As the tightness of the similarity measure increases, the simi-
larity matriz becomes positive definite and consequently invertible.
Proof (sketch):
We use Rayleigh’s conditions and assume for sake of simplicity that the vec-
tors are not duplicated. As the tightness increases the matrix S converges to
the identity matrix and therefore min %, the smallest eigenvalue, is

strictly positive as the vector SX will be close to the vector X.

3.3 The Tight Fitting Zone

As the tightness increases the matrix S converges to the identity matrix and we
have absolute overfitting. Then, of course the no underfitting condition becomes
satisfied, as the unit vector (all coefficients equal to one) is a trivial solution to
the system Ia > 0, a > 0.

Now da, Sa > 0 is equivalent to stating that the vectors which are the rows of
the matrix S are all on the same side of the hyperplane ¥ whose normal vector
is a. As the tightness increases these vectors tend towards the vectors that form
a basis of the vector space. Clearly they will pass, in general, on the same side
of the hyperplane ¥, defined by the unit vector, well before they reach the basis
vectors. Furthermore, we also see that the unit vector provides a solution which
is more and more b the basis. As a consequence we will say that a similarity
measure is tight fitting when the unit vector is a solution to the no underfitting
condition.

This brief analysis suggests that a similarity measure will be tight fitting, and
consequently will admit a trivially computed decision function that satisfies the
no underfitting condition, well before it becomes overfitting. This analysis also
suggests that as we have data of increasingly complex shape/distribution, we
have to use similarity measures of increased tightness, and as a consequence
move closer to overfitting, but then the unit solution becomes closer to an optimal
solution. This claim will be justified in later sections. It is an important claim
as it essentially states that as the structure of the data becomes increasingly
complex, a straightforward solution becomes more acceptable.

This solution is represented by the MaxSim (for Maximum Similarity) formula,
which is the decision function [[l with the unit vector:

§(X) = argo{max()_ S(Xy, X))} (6)

keC

4 Asymptotic Behavior and Maximum Similarity

We proceed to formally establish how the MaxSim formula is related to some
classification algorithms that we have used here as motivating examples.
Specifically, we will show that the behavior of these algorithms converge
asymptotically to equation ()
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4.1 Parzen Windows

The connection with Parzen windows is immediate, as the Maxsim formula (@)
is a clear generalization of Parzen windows, and, as a corollary to proposition 2
we can see that Parzen windows become closer to SBC as the tightness of the
similarity measure increases:

Proposition 3: As the tightness of the similarity measure increases, Parzen
windows will satisfy the no underfitting condition.

4.2 Non-linear Perceptron

The Perceptron algorithm dates from 1956, designed by Rosenblatt at Cornell
University. It provided the algorithmic foundation for the area of Neural Nets.
As opposed to the notion of maximum similarity, the Perceptron uses the notion
of linear separability, which we briefly describe: The issue is to find a hyperplane
V¥ separating two clouds of points in Rn, assuming that they are separable. ¥
will then be used as a decision function; a new point is assigned to the cloud
which is on the same side of the hyperplane as the point.

There is a very elegant proof due to Novikov showing that when the two sets
are separable the algorithm is guaranteed to find a solution, see [5] where the
authors stress the significance of a dual view of the Perceptron. We use here this
duality to show that the Perceptron satisfies the framework that we introduced
in the previous section.

We know that the solution to the Perceptron algorithm can be expressed as
Mto, which is as a linear combination of input vectors; from this remark and
assuming a normalization of the input data, one can show:

Proposition 4: (Solving the system MX > 0 is equivalent to solving its dual
MM« > 0. The notion of linear separability is equivalent to the notion of
no underfitting).

MM? is a similarity matrix with the dot product as similarity measure.
This means that the Perceptron algorithm classifies a test point according
to a weighted sum of its similarities with the training points.

Corollary Replacing the dot product by an appropriate similarity measure we
generalize the dual form of the Perceptron algorithm to a non linear multi-
class version whose decision function converges to the Maxsim formula as
the tightness of the similarity measure increases.

4.3 Support Vector Machines

MAXSIM and SVM are classifiers of a different nature. In the former all vectors
play an equal role, in the latter as many as possible are eliminated. It does not
seem evident that they could have similar behavior. However [6] have shown
that the non-linear Perceptron can give results that are similar in accuracy to
the SVM. Our version of the non-linear Perceptron might therefore also give
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similar results. Furthermore [7] in his study of SVM for large scale applications
indicates that a number of support vectors have their coefficients «; equal to their
limit C. It is also clear mathematically, and verified in practice, that when one
increases the dimension (by using kernels of greater non linearity), the number of
support vectors increases. It seems that with increasing complexity of the data,
and therefore increasing non linearity, the number of coefficients «; that take
non-zero values increases, which seems to indicate that the behavior of the SVM
in such cases tends towards the behavior of the Maxsim formula.

We will give a formal proof of this, under the following conditions:

— The training vectors are all different (no duplicates)

— The training vectors have been normalized to length one.

— The kernels are polynomial and we consider increasing powers, or the kernels
are radial Basis Functions and we consider decreasing O in which case the
preceding normalization is not compulsory.

— The two subsets of the training set that have to be separated should have
the same size.

These restrictions do not affect the generality of our argument, as we know that
the existence of duplicate vectors can affect the execution of the SVM, making
the matrix singular, the normalization is done in many applications, and can be
done easily in all cases, the kernels mentioned are used in most applications, and
the property we will use may well be shared with other kernels. We require that
the two subsets have the same size to make the presentation clearer, it is not
needed otherwise.

Under these conditions we will establish the following proposition:

Proposition 5: In the limit of non-linearity, the decision function of Support
Vector Machines converges to the Mazsim formula.
Proof (sketch):
There are a number of equivalent mathematical formulations of the SVM,
we will choose one from [3] and [4].
min(a'Qa)
0<a; <1
eta = vl
yla =0
And the decision function is:

sgn(> y%(k(Xi, X) +)) (7)

Under our hypothesis, the matrix @ is equal to a similarity matrix
[0k(X;, X;)]. For polynomial kernels with degrees tending to infinity, or for
a RBF whose parameter ¢ tends to 0, the matrix ¢ converges to the identity
matriz.

The solution of the SVM is then the point on the plane e‘a = vl, whose
distance to the origin is minimum, that is a point such that all coordinates
«; are equal, and as the two subsets have the same number of vectors, the
last equality is trivially verified.
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5 The SBC Algorithm

As a consequence of Proposition 2, we know that by choosing a tight enough
similarity measure, the No Underfitting condition will be satisfied. We also know
that the unit vector may or may not provide a solution, but even if it does, there
will be infinitely many weight vectors to choose from. As we have seen in the
last section, Parzen Windows and Non-linear perceptrons are only two possible
choices for these vectors; on the other hand, SVM provides an optimal solution
by finding a maximal margin hyperplane. In our case, we also would like to
find a solution which is optimal in some sense. We will justify our proposed
optimization in two ways:

— Robustness: we want the decision function to give similar values for two
vectors of similarities that are very close to each other (similar points should
be similarly classified). So its values should not vary too steeply.

— Power of generalization: the less it varies (and provided the no underfitting
conditions are met), the more points can be safely assigned to any given
class.

As a consequence we want to minimize the norm of the gradient, which controls
the variations of the values of the decision function. We give now a more geomet-
ric justification, which also shows a link with the SVM’s choice of maximizing
the margin.

First, we replace the condition Sa > 0 by the equivalent Sa > 1.

We also assume, for sake of simplicity, that the rows of S have been normalized
to length 1.

A row of the system now reads as:

1
[lev]

Where 6;, is the angle between the ith row vector and the weight vector
a. A robust solution is one for which small changes in the weight vector will
still give a weight vector solving the system. Therefore a more robust solution is
achieved when one minimizes ||«||. These considerations lead us to the following
quadratic program, which determines the values of the weight vectors of the
decision function, which we call SBC:

cos(biq) >

(®)

min([al)
Sa>1
a>0

5.1 Implementation Issues

This quadratic program has many attractive features from a computational point
of view. The objective function is a very simple convex function, the underlying
quadratic form uses the identity matrix, and according to proposition 2, as the
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tightness increases, the system of linear constraints admits a trivial solution (the
unit vector). So it will run well with standard quadratic programming software
such as MatLab, but there is much scope for more efficient implementations. For
instance, because the objective function is convex, one can use the Karush-Kuhn-
Tucker conditions to compute the optimal solution via a simple modification to
the simplex algorithm [10]. Also, we can remark that the program computes the
distance of a polyhedral set to the origin, so one could derive an algorithm based
on such geometrical consideration, in a way inspired by [§], which computes the
maximal margin as the distance between two polytopes.

Finally, as with “pure” SVM, this “pure” version of SBC is sensitive to noisy
data, even though it performs quite well on a number of simple KDD benchmark
data (see next section). This problem can be taken care of by adopting SVM’s
solution(s) to this problem [2] [5], for instance introducing a parameter C to
control the amount of allowed training data misclassifications.

6 Empirical Validation

We have chosen to compare experimentally the Maxsim formula and our more
refined SBC algorithm with Chang and Lin’s implementation of Support Vec-
tor Machines, LIBSVM (version 2.33) [3]. It is based on the formulation of the
quadratic programming optimization that was our basis for a theoretical com-
parison, but also it is an excellent implementation of SVM which won supervised
learning competitions, it also provides software for multi-class, density function
and other extensions of the SVM technology. We have chosen data sets which
are benchmarks in machine learning for classification and were found on the Sil-
icon Graphics site http://www.sgi.com/tech/mlcdb/index.html, which contains
a wealth of information about the origin, format, uses of these sets, and also
accuracy comparisons of various machine learning algorithms. It is worth men-
tioning that SVM edged out the other methods in most of the tests sets we used,
which is the reason we only considered SVM for comparison. Also, the reported
results in each case are the best we could obtain by trying different sets of pa-
rameters.

We provide here only a summary, as a complete and detailed treatment includ-
ing implementation issues and an analysis of the statistical significance of the
differences in accuracy is to be found in a forthcoming paper.

Surprisingly, the best fit between the Maxsim formula and the SVM was found for
small data sets: they achieved the same accuracy, up to two digits: 96.67% for the
wine recognition data; for the Pima Indians diabetes data, they both achieved
75%. Slight differences were found for the liver disorder data: for polynomial
kernels the SVM achieved 73.91% accuracy, while the Maxsim formula achieved
77.39%, while with RBF kernels, the SVM achieved 79% and the Maxsim for-
mula 77%. Similarly, for the satellite image recognition data, the SVM achieved
92% to 91% for Maxsim. For the letter recognition problem, Maxsim achieved
96.4% and SVM achieved 94.8% with polynomial kernels and 95.6% and SVM
96.7%, with RBF.
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The SBC gave either exactly the same results as the SVM, or slightly better.
We also have experimented with the classification of biological signals [11]. It
is known that present day data bases of genomic and proteomic data contain a
large number of errors (sometimes up to 25%), or hypothetic information solely
verified by visual inspection of patterns. In order to avoid interference of noisy or
unreliable data with our comparison, we have used data whose quality has been
experimentally confirmed. We performed two experiments: splice site detection
with the data set obtained from [14] and E. Coli start sites prediction with the
dataset obtained from [9] and stored in ECOGENE [12]. We found out by cross
validation that Maxsim, SVM and SBC give excellent results in the range of
92% to 100% depending on the sets, Maxsim was consistently slightly lower or
equal to SVM, while the SVM was consistently slightly lower or equal to SBC.
However for more noisy problems, the SBC has to be implemented with the same
considerations as the SVM; that is with a C parameter which controls noise and
avoids overfitting.

Finally, we also compared the SVM and Maxsim when given a large multi-class
problem. For this we derived a problem to recognize two-letter words. That is,
we have now 676 classes instead of 26 (as in the original letter-recognition prob-
lem). SVM took 17°01” to run, while Maxsim took 42” ; this difference is due
to the quadratic complexity of both training and testing phases of the SVM on
the number of classes.

7 Conclusion

We have described a general framework for the study of kernel-based machine
learning classification algorithms in a simple and systematic way. We also have
shown that these algorithms converge to the Maxsim formula (4.3), as the tight-
ness increases. In practice, the Maxsim formula seems to give another solution
‘in the middle’ with the added capability of handling multi-class problems in a
natural way. The SBC algorithm, described in section ] also handles multi-class
problems naturally and more importantly it gives a solution which is optimal.
The experiments confirmed this, as the performance of SBC was at least as good
as the SVM in all cases. We believe our main contribution is that we accom-
plished SVM-like accuracy numbers while maintaining a transparent and efficient
handling of multi-class problems.
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