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Foreword

Knowledge discovery from sensor data (Sensor-KDD ) is important due to many appli-
cations of crucial importance to our society. For example, articles in this book explore
applications domains like national security, environment (e.g., water resource man-
agement), energy (e.g., electricity distribution grids), smart homes, and so on. This
is only a humble beginning and I foresee a much broader set of application domains
in the coming years. It is quite likely that Sensor-KDD will be a key element of so-
lutions to many challenges facing humanity [1] including sustainable development,
clean water, management of infectious diseases, and so on.

Intellectual foundations for the emerging field of Sensor-KDD emerge from the
intersection of foundations for two mature though still evolving areas, namely, knowl-
edge discovery and sensors. Knowledge discovery is broadly concerned with algorith-
mic and/or manual methods of identifying useful, interesting, and nontrivial patterns
from very large datasets. Commonly explored pattern families include anomalies,
classification models, clusters, association, and others. These knowledge discovery
techniques may be useful in the context of many sensor datasets. For example, data
from thousands of sensors monitoring vehicular traffic on major highways in the
Minneapolis—St. Paul metropolitan area is analyzed for anomalies, for example, sen-
sors whose readings are often significantly different from those from upstream and
downstream neighbors. Such anomalies may indicate malfunctioning sensors or an
unusual traffic source or sinks nearby. This information may be used to reduce man-
ual labor required to design, operate, and manage large sensor networks, as well as
analyze their observations.

In addition, sensor datasets represent unique opportunities for not only applying
but also advancing the science and engineering behind cutting-edge knowledge dis-
covery techniques. Traditionally, knowledge discovery and data mining methods are
based on classical statistical theories with assumptions like independences of data
samples. In contrast, the spatio-temporal embedding of sensor data items may not
be independent of each other and instead exhibit spatio-temporal auto-correlation.
This may cause many classical knowledge discovery techniques to perform poorly on
spatio-temporal sensor data. Novel knowledge discovery methods need to be explored
to accommodate spatio-temporal auto-correlation. While this may appear to be a sim-
ple issue, a deeper examination reveals the need for novel deep thinking due to the
lack of theories to represent, manage, analyze, and query spatio-temporal data items.
For example, there is no common ontology for spatio-temporal data items. Statisti-
cal theories for spatio-temporal data and phenomena are far from mature. Database
management systems for efficiently storing and querying spatio-temporal data have
few robust software implementations.

Another major challenge arises from the streaming nature of many sensor datasets,
since traditional knowledge discovery techniques assume that the entire input is avail-
able at invocation. However, in a streaming environment, inputs arrive periodically
forever and newer data items may change the results based on older data items sub-
stantially. Clearly, the knowledge discovery algorithms and data structures need to



evolve to deal with the major shift in assumptions about inputs as elaborated by a few
chapters in this book.

A recent trend in the sensors world is the issue of power. Traditional sensor
networks often assumed availability of power; however, recent DARPA initiatives
have proposed alternative paradigms where the amount of power available to some of
the sensors may be severely limited, which may impose constraints on computation,
communication, sensing, and others. Novel algorithms and data structures are needed
to use available power in judicious ways in the context of the goals of sensor networks.
A few chapters in this book explore this issue. Of course, many other challenges arise
in the context of sensor networks.

Traditionally, sensors were distinct from computers. However, sensor networks
provide opportunities to explore new arrangements of the fundamental elements like
computing, data-storage, communications, sensing, and so on. Developments like
motes, tinyOS, and others are exploring sensor nodes with some amount of computing,
data storage, and so on.

This book is a wonderful first step in exploring the exciting topic of Sensor-KDD
and building a community of researchers interested in meeting the new challenges
in context of applications of importance to humanity. I congratulate the editors and
their sponsors—Computational Sciences and Engineering Division, Oak Ridge Na-
tional Laboratory (ORNL) and European Project KDUbiq-WG3, Information Society
Technology, European Union—on providing leadership to organize workshops and
putting together this book to help develop this area.

Shashi Shekhar
McKnight Distinguished University Professor
University of Minnesota
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1. Global Challenges for Humanity, Excerpt from 2007 State of the Future, J. C.
Glenn and T. J. Gordon (ISBN - 0-9722051-6-0 — http://www.millennium-project.org/
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Preface

Providing a personal perspective on the broad area of knowledge discovery from sen-
sor data is a difficult challenge. Sensors may refer to remote sensors like satellites
and radar, wide-area wired or wireless sensor networks, or human-based “sensors”
such as databases. Large-scale sensor systems need to process heterogeneous and
multisource information from diverse types of instruments. An example of this can
be found in the discipline of environmental sustainability. Here, sensors are being
utilized for a wide variety of applications ranging from weather observations for air
traffic control and predictive insights about natural hazards to climate change and
ecological monitoring. The METAR system used by the Federal Aviation Adminis-
tration (FAA) and described in this book is but one example. Other examples include
the earth observing satellites of the National Aeronautical and Space Administration
(NASA), the array of sensors used by the National Ecological Observatory Network
(NEON), global or national-scale hurricane-, tsunami-, and earthquake-warning sys-
tems, as well as sensor test-beds for climate research like the U.S. Department of
Energy (DOE)-sponsored Atmospheric Radiation Measurement (ARM) project. Yet
another area where sensors are being widely utilized is the global war on terror. A
sensor test-bed for transportation security is described in this book. Other military
or security-related applications include battlefield monitoring, geo-locating enemy
positions, perimeter surveillance, and early warning systems for hazards caused by
technological issues or sabotage. Besides environmental sustainability and security
against terror, sensors are being deployed widely in engineering, medical, and busi-
ness applications, as demonstrated by some of the chapters in this book and the cited
references. The key question, however, is the following: are the current generation
of computational, statistical, or data mining capabilities ready to meet the challenge
of processing the massive volumes of heterogeneous, multisource, geographically
distributed, and dynamic information from sensors to inform tactical decision mak-
ers and strategic policy? Certainly, the challenge is increasingly being recognized in
recent years, both by the domain-specific or decision-making communities who need
the solutions, as well as by the sensor and knowledge discovery communities who can
provide them. My personal feeling is that there is a need for greater urgency to further
develop mathematical and statistical solutions that can support knowledge discovery
from sensor data. Examples of these include novel methods to combine modeling
and simulation with computational data sciences to understand the incremental value
of new or existing sensor information and hence solve the space-time sampling or
sensor design problems; advanced statistical and data mining approaches for massive
volumes of temporal, spatial, and spatio-temporal data for off-line and online anal-
yses; enhanced capabilities to develop predictive insights about relevant extremes,
anomalies, changes, unusual behavior, and nonlinear processes from dynamic and
heterogeneous information streams; and innovative multidisciplinary techniques to
make the predictive insights actionable by human experts and decision makers, per-
haps based on operational research techniques and/or by providing contextual or
domain-specific information in the learning processes. Personally, I believe this book

Xi
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is timely and relevant in view of the urgency and growing demand in the area of
sensor fusion and information exploitation. The methodologies, application domains,
and case studies provide useful examples. I believe this area will develop rapidly in
the years to come and hope this book will provide an additional impetus to the knowl-
edge discovery and sensor communities to come together with domain scientists and
end-users for developing useful and usable solutions.

Wendy L. Martinez
Office of Naval Research

Disclaimer: The opinions and views expressed in the Preface are those of the author
alone and do not necessarily represent those of her organization (Office of Naval
Research), or the United States Department of Defense, or of any United States
Government agency. The perspectives offered in the Preface should not be construed to
recommend any specific research problem or solution, or any particular organization
or agency. The author would like to thank her collaborators and colleagues for their
contributions over the years, which no doubt contributed to the perspectives presented
here.
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Introduction

Wide-area sensor infrastructures, remote sensors, and wireless sensor networks yield
massive volumes of disparate, dynamic, and geographically distributed data. As sen-
sors are becoming ubiquitous, a set of broad requirements is beginning to emerge
across high-priority applications including disaster preparedness and management,
adaptability to climate change, national or homeland security, and the management
of critical infrastructures. The raw data from sensors need to be efficiently managed
and transformed to usable information through data fusion, which in turn must be
converted to predictive insights via knowledge discovery, ultimately facilitating auto-
mated or human-induced tactical decisions or strategic policy. The challenges for the
Knowledge Discovery community are immense. On one hand, dynamic data streams
or events require real-time analysis methodologies and systems, while on the other
hand centralized processing through high end computing is required for generating
off-line predictive insights, which in turn can facilitate real-time analysis. Problems
ranging from mitigating hurricane impacts, preparing for abrupt climate change, pre-
venting terror attacks, and monitoring improvised explosive devices require knowl-
edge discovery solutions designed to detect and analyze anomalies, change, extremes
and nonlinear processes, and departures from normal behavior.

There is a clear and present need to bring together researchers from academia, gov-
ernment, and the private sector in the following broad areas of knowledge discovery
from sensor data:

DATA MINING TECHNIQUES

1. Sensor data preprocessing, representation, and transformation.

2. Scalable and distributed classification, prediction, and clustering algo-
rithms.

3. Space-time sampling techniques.

OFFLINE KNOWLEDGE DISCOVERY

1. Predictive analysis from geographically distributed heterogeneous data.

2. Mining unusual patterns from massive and disparate spatio-temporal data.

3. Real-time updates to large-scale computational models based on sensor
data assimilation.

ONLINE KNOWLEDGE DISCOVERY

1. Real-time extraction and analysis of dynamic and distributed data.

2. Mining continuous streams and ubiquitous data.

3. Resource-aware algorithms for distributed mining.

4. Real-time event detection, visualization, and alarm generation algorithms.

XV



XVi

DEecisiON AND PoLiCcY AIDS

1. Coordinated offline discovery and online analysis with feedback loops.
2. Combination of knowledge discovery and decision scientific processes.
3. Facilitation of faster and reliable tactical and strategic decisions.

CASE STUDIES

1. Success stories for national or global priorities.
2. Real-world problem design and knowledge discovery requirements.

The need to process sensor data efficiently and meaningfully leads to several
interesting challenges for the knowledge discovery community. The challenges have
been described by various researchers and research leaders, as exemplified below:

Professor Pedro Domingos of the University of Washington at Seattle: “In many
domains, data now arrives faster than we are able to mine it. To avoid wasting this
data, we must switch from the traditional ‘one-shot’ data mining approach to systems
that are able to mine continuous, high-volume, open-ended data streams as they
arrive.”

Professor Joydeep Ghosh of the University of Texas at Austin: “Sensory data
is often gathered simultaneously from geographically disparate sources. Such sit-
uations also often impose constraints stemming from data ownership, or computa-
tional/memorylpower limitations that prevent all the data from being gathered at a
central location before standard data mining tools can be applied. Moreover, all data
attributes may not be available at each data site.”

Professor Hillol Kargupta of the University of Maryland at Baltimore County:
“Data intensive sensor networks are starting to emerge in academic literature and
commercial applications. Data mining in such sensor networks offers challenges for
researchers and practitioners on several grounds—algorithmic, systems, and market-
ing. Solutions that work in practice often pay close attention to the needs from each
of these domains.”

Dr. Brian Worley of the Oak Ridge National Laboratory: “Knowledge discovery
may need to be defined in a new way when applied to the problem space of massive
volumes of dynamic, distributed and heterogeneous data obtained from sensors in
physical and cyber space. Emerging national and societal requirements in national
security and consequence management have led to new challenges in areas like au-
tomated hypothesis generation and real-time knowledge discovery.”

This book is a first step to address several of the above issues through illus-
trative and novel solutions or case studies, presented as ten independent chapters.
Joydeep Ghosh takes us through an intriguing journey in the first chapter entitled
“A Probabilistic Framework for Mining Distributed Sensory Data under Data Shar-
ing Constraints.” The dual requirements of developing a global view of the sensed
environment while satisfying computational, memory, power, or data ownership is-
sues by remaining local are elegantly reconciled through a probabilistic viewpoint. A
semisupervised learning approach is utilized to develop a generic framework which



Xvii

is not excessively influenced by domain constraints. The second chapter by Pedro
Domingos and Geoff Hulten entitled “A General Framework for Mining Massive
Data Streams” develops a generic framework for mining massive data streams. The
framework adapts learning algorithms like decision tree induction, Bayesian network
learning, k-means clustering, and the EM algorithm for the mixture of Gaussians. The
models learned on the stream are effectively indistinguishable from models developed
with infinite data, as long as the data are independent and identically distributed. The
third chapter, “A Sensor Network Data Model for the Discovery of Spatio-Temporal
Patterns,” by Betsy George, James Kang, and Shashi Shekhar presents a new data
model called Spatio-Temporal Sensor Graphs (STSG), which is designed to model
sensor data on a graph by allowing the edges and nodes to be modeled as time se-
ries of measurement data. Case studies illustrate the ability of the STSG model to
find patterns like hotspots in sensor data. Clustering is one of the most widely used
data mining techniques. In traditional application domains, clustering is performed
on static data, meaning that the data is available beforehand and is fixed. However, in
sensor network environments, data is gathered in a continuous fashion, so traditional
clustering algorithms need to be extended or new algorithms need to be developed
for efficiently clustering data streams. In Chapter 4 (“Requirements for Clustering
Streaming Sensors”), Pedro Rodrigues, Joao Gama, and Luis Lopes present a set of
issues and requirements for clustering data from sensor streams. A clear understand-
ing of the requirements is a very important first step in designing useful algorithms
that address the domain peculiarities well. We hope this chapter will provide the
reader with a firsthand account of issues and research requirements for clustering
streaming data. In a typical setup of sensor networks, data are transmitted to a data
gathering node where they are archived and processed. However, it is very appealing
and often beneficial to do some of the processing directly within the distributed sen-
sor networks. Communication costs can often be reduced by processing data within
the sensor network, and secondly, power consumption can be reduced by intelligent
processing and communication of the data. In the fifth chapter called “Principal Com-
ponent Aggregation for Energy-Efficient Information Extraction in Wireless Sensor
Networks,” Yann-Ael Le Borgne and Gianluca Bontempi present a principal compo-
nent analysis based aggregation service for distributed data compression in sensor
networks. This approach effectively reduced the network load while keeping the ac-
curacies within reasonable thresholds. In Chapter 6 entitled “Anomaly Detection in
Transportation Corridors Using Manifold Embedding,” Amrudin Agovic, Arindam
Banerjee, Auroop R Ganguly, and Vladimir Protopopescu study the problem of de-
tecting anomalous trucks and truck cargoes based on sensor readings in truck weigh
stations. A multivariate characterization of the trucks is developed based on sen-
sor readings and unsupervised approaches are used to detect anomalies. The chapter
shows the relevance of appropriate feature representation for anomaly detection meth-
ods in high-dimensional data and noisy domains. The authors empirically show the
usefulness of manifold embedding methods for feature representation in these prob-
lems. The seventh chapter entitled “Fusion of Vision Inertial Data for Automatic
Georeferencing,” by Duminda Randeniya, Sudeep Sarkar, and Manjriker Gunaratne
presents an interesting procedure to fuse vision and inertial sensor data in an attempt
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to mitigate intermittent loss of the GPS signal. The experiments successfully demon-
strate the effectiveness of the proposed approach. “Electricity Load Forecast Using
Data Stream Techniques” is the focus of Chapter 8. In this chapter, Joao Gama and
Pedro Rodrigues present novel methodological adaptations for data streams in the
context of a real-world application domain, specifically, electricity load forecasting
based on distributed and dynamic sensor information. Incremental algorithms are de-
veloped or utilized for clustering and change detection, learning of neural networks
for predicting at multiple lead times, and improving predictive accuracy based on
Kalman filters. The experimental evaluation, which utilizes data from 2500 sensors
spread out over the electrical network, compares the proposed approach to a traditional
method through standard performance measures. The value of the work is twofold.
First, the online techniques for data streams, which include an adaptive cluster of
correlated sensors and a predictive model for sensor value at multiple forecast hori-
zons, may be generalized to other applications related to sensor-based data streams.
Second, the application to electricity load forecasting can be useful as companies
make buy or sell decisions based on load profiles and forecasts. Nithya Vijayakumar
and Beth Plale propose a Kalman filter-based prediction method to handle missing
events within a SQL-based events processing system in Chapter 9: “Missing Event
Prediction in Sensor Data Streams Using Kalman Filters.” The methodology was
tested on METAR (defined by the Federal Aviation Administration as an aviation
routine weather report) data, which in turn is generated by the National Weather Ser-
vice by combining information from a variety of remote and in situ weather sensors.
The new approach for sensor-based missing event prediction is evaluated against
traditional approaches like reservoir sampling and histograms. The Kalman filter ap-
proach, implemented as a one-pass streaming operator, outperforms the traditional
methods, results in a low overhead operator, and predicts missing METAR observa-
tions with good accuracy. In the tenth and final chapter, Vikramaditya Jakkula and
Diane Cooke present a framework to discover temporal rules in smart homes. These
rules are discovered from time series data that is generated from sensors that the home
is equipped with. This time series data represents the activities of home residents. The
framework is based on temporal logic developed by Allen in 1994. Temporal logic
describes scenarios using time intervals rather than points. The authors used the tem-
poral relations discovered from time series data for prediction and anomaly detection.
The proposed framework has been validated using both real and synthetic datasets.
The chapter is entitled “Mining Temporal Relation in Smart Environment Data Using
TempAl.”

The Knowledge Discovery and Data Mining (KDD) 2007 conference organized by
American Computing Machinery (ACM) provided a widely visible and high-quality
venue to bring together researchers and practitioners in the area through the First In-
ternational Workshop on Knowledge Discovery from Sensor Data (Sensor-KDD’07)
held in San Francisco, CA, USA, in August 2007. We hope to continue these efforts
through ongoing workshops in these and other venues. The second workshop was be
held in conjunction with KDD 2008 in Las Vegas on August 24, 2008. Please visit
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the workshop website at http://www.ornl.gov/sci/knowledgediscovery/sensorKDD-
2008/ for more information.

Auroop R Ganguly, ORNL, USA

Joao Gama, U. Porto, Portugal

Olufemi A Omitaomu, ORNL, USA

Mohamed Gaber, CSIRO ICT Center, Australia
Ranga Raju Vatsavai, ORNL, USA
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ABSTRACT

In sensor networks one often desires a global view of the environment being recorded
based on sensory data gathered simultaneously from geographically disparate sources.
However, such situations also often impose constraints stemming from data owner-
ship or computational/memory/power limitations that prevent all the data from being
gathered at a central location before standard data mining tools can be applied. In
this chapter we argue that one can adopt a probabilistic viewpoint to reconcile these
conflicting goals and constraints, and outline a general framework based on this view-
point that efficiently allows (semi-) supervised learning in sensor networks without
being substantially affected by the domain constraints. The proposed approach has
implications for design and analysis of future large-scale, distributed sensor networks.

PROBLEM SETTING AND FRAMEWORK

Data mining and pattern recognition algorithms invariably operate on centralized data,
usually in the form of a single flat file. But in a sensor network, data is acquired and
possibly stored in geographically distributed locations. Centralization of such data
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before analysis may not be desirable because of computational or bandwidth costs.
In some cases, it may not even be possible due to a variety of real-life constraints in-
cluding security, privacy, or proprietary nature of data/sensors and the accompanying
ownership and legal issues. A fundamental issue to be addressed in such situations
is how to do meaningful data mining on such distributed data while respecting the
constraints on data sharing. Another closely related issue is how to quantify the loss in
quality of the mined results because of the imposed restrictions. Note that restrictions
will have at least one of these two flavors: (a) the amount of sharable data is restricted,
for example, due to bandwidth or energy limitations; or (b) the nature of the shared in-
formation may be constrained, for example, actual values of certain attributes cannot
be conveyed because of privacy restrictions.

Ideally, one would like to have a framework that (a) applies to a broad class
of data mining procedures, and to a variety of data types, including binary, vector,
and time series data; (b) incurs minimal loss for a given set of constraints; and (c)
gracefully degrades as the constraints (e.g., available bandwidth) become more and
more stringent, rather than collapsing abruptly at a critical point. In this chapter
we argue that a probabilistic approach is natural for satisfying all three properties
mentioned above.

The above objectives have led to the emergence of distributed data mining tech-
niques [JK99, SG02] that extract high-quality information from distributed sources
with limited interactions among the data sites. Rising concerns on informational pri-
vacy have also resulted in an increased focus on privacy-preserving distributed data
mining techniques [LP00, VCO03]. Most of these approaches are not that suited to
sensor network data because of their high computational/bandwidth costs or because
they assume homogeneous data at each site. For example, some notable works are
applicable only to scenarios where the data is either vertically partitioned (different
sites contain different attributes/features of a common set of records/objects) or hor-
izontally partitioned (objects are distributed among different sites, but have the same
set of features). In real life, however, there are a number of more complex situations
where the different sites contain overlapping sets of sensed objects and sensor types,
that is, the data is neither vertically nor horizontally partitioned.

A different approach to the problem was taken in [MGO03] where the goal was
to obtain a suitable characterization (such as joint probability distribution) of the
distributed data based only on high-level, low-volume information sent from each
local site. This work provides the basic probabilistic mechanism that is advocated
here. So let us examine it briefly, and outline how this approach can be built on to
apply for a large sensor network in the next section.

The framework of Merugu and Ghosh [MGO3] takes an approach of building
models locally and then combining them at a central location to obtain a more accu-
rate, global model. This approach enables easy analysis of privacy and communication
costs in terms of the complexity of the local models that are communicated to the
central location. The key is to characterize the data at each site using a probabilis-
tic (generative) model such as a mixture of Gaussians, and transmit only the model
parameters to a central site, where “virtual samples” can now be generated using
Markov chain Monte Carlo (MCMC) sampling techniques and used to form a com-
bined model. For interpretability, the global model is typically specified as a mixture
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model based on a given parametric family (e.g., mixture of Gaussians). Note that
since generative models are available for a wide range of data types, from vectors to
variable length sequences and graphs [CGS00, ZG03], this approach is quite general.
However, it assumes that each site acquires the same set of features. It also assumes
static rather than streaming data.

A general task is to obtain a parametric probabilistic model of the distributed
data. If such a model is available, then clustering, classification, regression, and oth-
ers can be readily carried out, so it is not restrictive. The approach builds local mixture
models with parameters {A;}?_,, at the n local sites, and transmits only the sets of
parameter vectors to a central site. The Expectation Maximization (EM)-divergence
is a suitable distance measure for comparing a pair of generative models, since it is
linearly related to the average log-likelihood of the data generated by one model with
respect to the other. A suitable goal then would be to derive a common probability
model of the data with parameters A} such that the (weighted, if need be) aver-
age pairwise EM-divergence with each of the local data distributions is minimized,
that is,

n
% .

)‘c = a{fglell}n ZZZI Vi DKL()H s )"c) (11)
where {A;}/_, are the local models based on different data sources with nonneg-
ative weights {v;}?_, summing to 1, and Dk, is the EM-divergence loss function.
Remarkably, it can be shown using Jensen’s inequality that this optimal model is
nothing but a certain “mean model,” with parameter vector X, where A is such that
pi(x) = .1, v ps,(x). In other words the mean model is nothing but a weighted
combination of the local distributions. Note that since the true model A° is unknown,
itis not possible to find out which of the models {A;}7_, is more accurate. But one can
guarantee that the mean model will always provide an improvement over the average
quality of the available models.

However, the mean model may not have a suitable form. For example, if each of
10 local sensor datasets is modeled by a mixture of 3 multivariate Gaussians, then the
mean model in general would be a mixture of 30 multivariate Gaussians, which is too
complex and not that interpretable. Rather, we would like to find a global solution
from a given family, say a mixture of Gaussians with up to five components. This
can be achieved as follows: First generate a dataset X’ following the mean model X,
using MCMC sampling techniques [Nea93]. Then apply the algorithm to this dataset
to obtain a model in the desired family of solutions that maximizes Xs likelihood of
being observed.

Looking at resource requirements, the local processors only need to transmit their
own model parameters, which is typically just linear or quadratic in the number of
features being recorded, and linear in the number of components used in local mixture
modeling. But it is independent of the number of records that contribute to a single
model. Note that a model with more components can send more detailed information,
leading to a more accurate global model, but this results in greater bandwidth require-
ment and an increased loss of privacy. This is a fundamental trade-off, but it turns out
that even fairly low-resolution local models typically yield a good global model. Thus
the approach is viable even under fairly restrictive bandwidth/privacy requirements.
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A quantification of this claim based on an information theoretic measure of privacy
is given for several datasets in [MGO03].

The central processor needs to create virtual samples and then apply EM (which
is linear in size of X’ per iteration). Simulation results in [MGO03] show that a few
thousand samples are adequate for fairly complex models. The memory requirements
can be further reduced by running an online version of EM, so that each virtual sample
is used right after generation and then discarded. Finally, we note that “X” can include
class labels, that is, the above approach can be easily applied to classification problems
where a joint distribution of input and class labels is modeled.

TOWARD DISTRIBUTED LEARNING IN CONSTRAINED,
DISTRIBUTED ENVIRONMENTS

The approach outlined above needs to be extended in several ways for it to be ap-
plicable to a wide range of distributed sensor data mining problems. In this section
we outline how such extensions can be done for heterogeneous data sources and for
nonstationary environments.

HETEROGENEOUS DATA SOURCES

As mentioned in the introduction, most approaches to privacy-preserving distributed
data mining assume that the data is either vertically partitioned (different sites con-
tain different attributes/features of a common set of records/objects) or horizontally
partitioned (objects are distributed among different sites, but have the same set of fea-
tures). In contrast, for large-scale sensor networks, one expects that not all “objects”
are monitored by a given sensor type, and the same object may be observed by quali-
tatively different sensors. Thus in general, different sites will acquire data on different
(but possibly overlapping) sets of objects measured by nonidentical sets of features,
that is, the data is neither vertically nor horizontally partitioned.

For this general setting, let us assume that there exists a meaningful, underlying
distribution over the union of all features, which captures the information content in the
different data sources. The individual data sources provide only partial views that need
to be effectively integrated in order to reconstruct the original underlying distribution.
Then the probabilistic framework can be applied using maximum likelihood and
maximum entropy formulations.

Let {A;}_, be n datasets with feature sets {F;}/_,. Let {1;}/_, be the local models
obtained from these datasets such that the probability distributions {p;,}!_; closely
approximate the true distributions on the corresponding datasets as well as satisfy any
local privacy or bandwidth constraints. The global “complete” model is defined on
the feature set F., which is the union of the local feature sets {#;};_,. Then the data
likelihoods p; (&;), [i]] can be viewed as the incomplete likelihoods obtained by
considering the unavailable feature values as missing data. Now, using the well-known
relation between log-likelihood and cross entropy [CT91], it can be shown that the
incomplete data log-likelihood with respect to a complete model is linearly related to
the EM-divergence or the relative entropy of true distribution on X with respect to the
corresponding marginal distribution of the complete model. Moreover, maximizing



A Probabilistic Framework for Mining Distributed Sensory Data 5

the average data likelihood is equivalent to minimizing the EM-divergence between
the data distribution py and the appropriate marginal density, that is, the maximum
likelihood principle corresponds to a minimum EM-divergence principle. This leads

to a cost function:
n

Cre(e) =Y viKL(ps,11p)) (1.2)
i=1

which should be minimized over all models (1.) defined over the full feature set F.
Note that the measure of loss between the global model and a specific local model is
the KL-divergence of the projection of the global model on the feature space of the
local one, with the local model. Furthermore, since the EM-divergence cost [Eq. (1.2)]
is a convex optimization problem, the set of minimizers is also a convex set. Further,
since entropy is strictly convex, the overall model integration problem has a unique
minimizer.

This approach is further explored in [MGO05], where two model integration scenar-
ios are considered. For discrete domains, efficient iterative algorithms are obtained
for the exact solution. For continuous domains or where it is desirable to have an
interpretable global model even if it is less accurate than the optimal one, the ap-
proach of obtaining virtual samples and then doing parameter estimation via EM still
applies. Together, these techniques allow the probabilistic approach to be extensible
for heterogeneous data sets in a mathematically sound way.

NONSTATIONARY ENVIRONMENTS

If the sensed environment is nonstationary, then both local models and global models
should change with time. How can one achieve this using efficient distributed compu-
tation? We first note that efficient online versions of EM exist [NH98]. Such a version
can be applied to the local models. To save on bandwidth, parameters can be transmit-
ted to the central processor after a suitable number of EM iterations rather than after
every M-step. Whenever such updates are received, the mixture model generating the
virtual samples gets modified, thereby affecting future virtual samples. Note that the
updates from local models can be asynchronous since one does not need to update all
components of the mixture model simultaneously.

A final issue is how to avoid using a specific central processor for determining the
global model. This may be undesirable for several reasons, including lack of fault-
tolerance, and uneven loading at the center. Fortunately, there is a large literature
on how a global computation that is done multiple times can be distributed among
multiple processors, so that the time-averaged load is uniformly spread over the
processors [GG94]. For example, one can impose a tree structure on the processors
capable of carrying out the central processor functions, and then apply a scheme
from [GG94] to spread the computation evenly and also achieve fault-tolerance.

CONCLUDING REMARKS

This chapter provides a broad framework for efficient mining of data from distributed
sensor networks that may be heterogeneous and be observing nonstationary environ-
ments. Since it uses a probabilistic framework, it can apply to any type of data for
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which a suitable generative model can be prescribed. So it conceptually has a very
broad scope. To fully understand its potential as well as limitations, one needs to
apply it to specific data mining operations on data from real-world sensor networks.
This task is the most relevant future work that needs to be carried out.
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ABSTRACT

In many domains, data now arrives faster than we are able to mine it. To avoid wasting
this data, we must switch from the traditional “one-shot” data mining approach to
systems that are able to mine continuous, high-volume, open-ended data streams as
they arrive. In this extended abstract we identify some desiderata for such systems,
and outline our framework for realizing them. A key property of our approach is that
it minimizes the time required to build a model on a stream, while guaranteeing (as
long as the data is i.i.d.) that the model learned is effectively indistinguishable from
the one that would be obtained using infinite data. Using this framework, we have
successfully adapted several learning algorithms to massive data streams, including
decision tree induction, Bayesian network learning, k-means clustering, and the EM
algorithm for mixtures of Gaussians. These algorithms are able to process on the
order of billions of examples per day using off-the-shelf hardware. They are available
in the open-source VFML library (http://www.cs.washington.edu/dm/vfml/), which
also includes primitives for building further stream-mining algorithms.

THE PROBLEM

Many (or most) organizations today produce an electronic record of essentially every
transaction they are involved in. When the organization is large, this results in tens or
hundreds of millions of records being produced every day. For example, in a single
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day Wal-Mart records 20 million sales transactions, Google handles 150 million
searches, and AT&T produces 275 million call records. Scientific data collection
(e.g., by earth-sensing satellites or astronomical observatories) routinely produces
gigabytes of data per day. Data rates of this level have significant consequences for
data mining. For one, a few months’ worth of data can easily add up to billions of
records, and the entire history of transactions or observations can be in hundreds
of billions. Current algorithms for mining complex models from data (e.g., decision
trees, sets of rules) cannot mine even a fraction of this data in useful time. Further,
mining a day’s worth of data can take more than a day of CPU time, and so data
accumulates faster than it can be mined. As a result, despite all our efforts in scaling
up mining algorithms, in many areas the fraction of the available data that we are
able to mine in useful time is rapidly dwindling toward zero. Overcoming this state
of affairs requires a shift in our frame of mind from mining databases to mining data
streams. In the traditional data mining process, the data to be mined is assumed to
have been loaded into a stable, infrequently updated database, and mining it can then
take weeks or months, after which the results are deployed and a new cycle begins.
In a process better suited to mining the high-volume, open-ended data streams we
see today, the data mining system should be continuously on, processing records at
the speed they arrive, incorporating them into the model it is building even if it never
sees them again. A system capable of doing this needs to meet a number of stringent
design criteria:

1. It must require small constant time per record, otherwise it will inevitably
fall behind the data, sooner or later.

2. It must use only a fixed amount of main memory, irrespective of the total
number of records it has seen.

3. It must be able to build a model using at most one scan of the data, since
it may not have time to revisit old records, and the data may not even be
available in secondary storage at a future point in time.

4. It must make a usable model available at any point in time, as opposed
to only when it is done processing the data, since it may never be done
processing.

5. It should ideally produce a model that is equivalent (or nearly identical)
to the one that would be obtained by the corresponding ordinary database
mining algorithm, operating without the above constraints.

6. When the data-generating phenomenon is changing over time (i.e., when
concept drift is present), the model at any time should be up-to-date, but
also include all information from the past that has not become outdated.

At first sight, it may seem unlikely that all these constraints can be satisfied
simultaneously. However, we have developed a general framework for mining mas-
sive data streams that satisfies all six [5]. Within this framework, we have designed
and implemented massivestream versions of decision tree induction [1,6], Bayesian
network learning [5], k-means clustering [2], and the EM algorithm for mixtures of
Gaussians [3]. For example, our decision tree learner, called VFDT, is able to mine
on the order of a billion examples per day using off-the-shelf hardware, while pro-
viding strong guarantees that its output is very similar to that of a “batch” decision
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tree learner with access to unlimited resources. We have developed the open-source
VEML library (http://www.cs.washington.edu/dm/vfml/) to allow implementation of
arbitrary stream-mining algorithms with no more effort than would be required to
implement ordinary learners. The goal is to automatically achieve the six desiderata
above by using the primitives we provide and following a few simple guidelines.
More specifically, our framework helps to answer two key questions:

1. How much data is enough? Even if we have (conceptually) infinite data
available, it may be the case that we do not need all of it to obtain the best
possible model of the type being mined. Assuming the data-generating
process is stationary, is there some point at which we can “turn off” the
stream and know that we will not lose predictive performance by ignoring
further data? More precisely, how much data do we need at each step of
the mining algorithm before we can go on to the next one?

2. If the data-generating process is not stationary, how do we make the trade-
off between being up-to-date and not losing past information that is still
relevant? In the traditional method of mining a sliding window of data,
a large window leads to slow adaptation, but a small one leads to loss
of relevant information and overly simple models. Can we overcome this
trade-oft?

In the remainder of this extended abstract we describe how our framework ad-
dresses these questions. Further aspects of the framework are described in Hulten and
Domingos [5].

THE FRAMEWORK

A number of well-known results in statistics provide probabilistic bounds on the
difference between the true value of a parameter and its empirical estimate from finite
data. For example, consider a real-value random variable x whose range is R. Suppose
we have made n independent observations of this variable, and computed their mean
x. The Hoeffding bound [4] (also known as additive Chernoff bound) states that, with
probability at least 1 — §, and irrespective of the true distribution of x, the true mean
of the variable is within € of X, where

_ [R?I(2/5)
VT

Put another way, this result says that, if we only care about determining x to within €
of its true value, and are willing to accept a probability of § of failing to do so, we need
gather only n = 1/2[(R/€)?log(2/8)] samples of x. More samples (up to infinity)
produce in essence an equivalent result. The key idea underlying our framework is to
“bootstrap” these results, which apply to individual parameters, to similar guarantees
on the difference (loss) between the whole complex model mined from finite data and
the model that would be obtained from infinite data in infinite time. The high-level
approach we use consists of three steps:
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1. Derive an upper bound on the time complexity of the mining algorithm, as
a function of the number of samples used in each step.

2. Derive an upper bound on the relative loss between the finite-data and
infinite-data models, as a function of the number of samples used in each
step of the finite-data algorithm.

3. Minimize the time bound (via the number of samples used in each step)
subject to user-defined limits on the loss.

Where successful, this approach effectively allows us to mine infinite data in finite
time, “keeping up” with the data no matter how much of it arrives. At each step of
the algorithm, we use only as much data from the stream as required to preserve the
desired global loss guarantees. Thus the model is built as fast as possible, subject
to the loss targets. The tighter the loss bounds used, the more efficient the resulting
algorithm will be. (In practice, normal bounds yield faster results than Hoeffding
bounds, and their general use is justifiable by the central limit theorem.) Each data
point is used at most once, typically to update the sufficient statistics used by the
algorithm. The number of such statistics is generally only a function of the model
class being considered, and is independent of the quantity of data already seen. Thus
the memory required to store them, and the time required to update them with a single
example, are also independent of the data size.

When estimating models with continuous parameters (e.g., mixtures of
Gaussians), the above procedure yields a probabilistic bound on the difference be-
tween the parameters estimated with finite and infinite data. (By “probabilistic,” we
mean a bound that holds with some confidence 1 — §*, where §* is user-specified.
The lower the §*, the more data is required.) When building models based on dis-
crete decisions (e.g., decision trees, Bayesian network structures), a simple general
bound can be obtained as follows. At each search step (e.g., each choice of split in
a decision tree), use enough data to ensure that the probability of making the wrong
choice is at most §. If at most d decisions are made during the search, each among
at most b alternatives, and c checks for the winner are made during each step, by the
union bound the probability that the total model produced differs from what would
be produced with infinite data is at most §* = bcd4. For specific algorithms and with
additional assumptions, it may be possible to obtain tighter bounds (see, for example,
Domingos & Hulten [1]).

TIME-CHANGING DATA

The framework just described assumes that examples are i.i.d. However, in many data
streams of interest this is not the case; rather, the data-generating process evolves over
time. Our framework handles time-changing phenomena by allowing examples to be
forgotten as well as remembered. Forgetting an example involves subtracting it from
the sufficient statistics it was previously used to compute. When there is no drift, new
examples are statistically equivalent to the old ones and the mined model does not
change, but if there is drift a new best decision at some search point may surface. For
example, in the case of decision tree induction, an alternate split may now be best. In
this case we begin to grow an alternative subtree using the new best split, and replace
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the old subtree with the new one when the latter becomes more accurate on new data.
Replacing the old subtree with the new node right away would produce a result similar
to windowing, but at a constant cost per new example, as opposed to O(w), where
w is the size of the window. Waiting until the new subtree becomes more accurate
ensures that past information continues to be used for as long as it is useful, and to
some degree overcomes the trade-off implicit in the choice of window size. However,
for very rapidly changing data the pure windowing method may still produce better
results (assuming it has time to compute them before they become outdated, which
may not be the case). An open direction of research that we are beginning to pursue is
to allow the “equivalent window size” (i.e., the number of time steps that an example
is remembered for) to be controlled by an external variable or function that the user
believes correlates with the speed of change of the underlying phenomenon. As the
speed of change increases, the window shrinks, and vice versa. Further research in-
volves explicitly modeling different types of drift (e.g., cyclical phenomena, or effects
of the order in which data is gathered), and identifying optimal model updating and
management policies for them. Example weighting (instead of “all or none” window-
ing) and subsampling methods that approximate it are also relevant areas for research.

CONCLUSION

In many domains, the massive data streams available today make it possible to build
more intricate (and thus potentially more accurate) models than ever before, but this is
precluded by the sheer computational cost of model-building; paradoxically, only the
simplest models are mined from these streams, because only they can be mined fast
enough. Alternatively, complex methods are applied to small subsets of the data. The
result (we suspect) is often wasted data and outdated models. In this extended abstract
we outlined some desiderata for data mining systems that are able to “keep up” with
these massive data streams, and some elements of our framework for achieving them.
A more complete description of our approach can be found in the references below.
Our algorithms and stream-mining primitives are available in the open-source VFML
library (http://www.cs.washington.edu/dm/vfml/).
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ABSTRACT

Developing a model that facilitates the representation and knowledge discovery on
sensor data presents many challenges. With sensors reporting data at a very high
frequency, resulting in large volumes of data, there is a need for a model that is memory
efficient. Sensor networks have spatial characterstics which include the location of
the sensors. In addition, sensor data incorporates temporal nature, and hence the
model must also support the time dependence of the data. Balancing the conflicting
requirements of simplicity, expressiveness, and storage efficiency is challenging. The
model should also provide adequate support for the formulation of efficient algorithms
for knowledge discovery. Though spatio-temporal data can be modeled using time
expanded graphs, this model replicates the entire graph across time instants, resulting
in high storage overhead and computationally expensive algorithms. In this chapter,
we discuss a data model called Spatio-Temporal Sensor Graphs (STSG) to model
sensor data, which allows the properties of edges and nodes to be modeled as a time
series of measurement data. Data at each instant would consist of the measured value
and the expected error. Also, we present several case studies illustrating how the
proposed STSG model facilitates methods to find interesting patterns (e.g., growing
hotspots) in sensor data.

INTRODUCTION

Finding novel and interesting spatio-temporal patterns in the ever increasing collec-
tion of sensor data is an important problem in several scientific domains. Many of
these scientific domains collect sensor data in outdoor environments with underlying
physical interactions. For example, in environmental science, a timely response to an-
ticipated watershed/in-plant events (e.g., chemical spill, terrorism) to maintain water
quality is required. Such a case occurred in Milwaukee, W1, in 1993 where a harmful
pathogen (called Cryptosporidium parvum) outbreak occurred in the river streams
that infected more than 400,000 people with more than 100 deaths. The estimated
total cost for the treatment of outbreak-related illness was $96.2 million [7]. As was
the case in Milwaukee, such failures typically are detected long after the exposure
by observed spikes in doctor/hospital visits or sales of certain medicines. In addition
to unplanned “natural” events like the Cryptosporidium episode, another concern re-
garding water supplies is an act of terrorism. Clearly, when public health is at stake,
waiting for the illnesses and fatalities to arise is much too late and identifying and
modeling these spatio-temporal patterns such as hotspots and growing hotspots from
sensor graphs is important [14]. Other applications that generate similar sensor data
may be traffic road systems where measurements of traffic flow and congestion are
important, especially in emergency operations such as evacuations.
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FIGURE 3.1 Sensor networks periodically report time-variant traffic volumes on Twin Cities,
MN highways. (Best viewed in color, Source: Mn/DOT)
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A collection of sensors may be represented as a sensor graph where the nodes
represent the sensors and the edges represent selected relationships. For example,
sensors upstream and downstream in a river may have physical interactions via water
flow and related phenomenon such as plume propagation. Relationships can also be
geographical in nature, such as proximity between the sensor units. As an example,
Figure 3.1(a) shows a layout of traffic sensors in the Twin Cities, MN. The graph
representation of a part of this layout [given in Figure 3.1(b)] is shown in Figure 3.1(c).
The nodes of the graph represent the sensors and the edges represent the physical
relationships between the various sensors. In this example, the edges are based on the
proximity between the sensors.

Formulation of a model to represent a sensor graph that supports mining useful
information from data poses some significant challenges. Since the volume of data is
large, the model used to represent the sensor graph must be storage efficient. It should
also provide sufficient support for the design of correct and efficient algorithms for
data analysis. Second, the sensor graph characteristics modeled as pairs, <measured
value, error>, can be time-dependent (e.g., the flow rate in a river stream). The model
used to represent a time-dependent graph should be able to represent the time-variance,
simultaneously maintaining the storage efficiency.

A sensor graph is spatio-temporal in nature since the relative locations of the
sensor nodes and the time-dependence of their characteristics are significant. Spatio-
temporal graphs can be modeled as time-expanded graphs, where the entire network
is replicated for every time instant [17]. The changes in the graph can be very frequent
and for modeling such frequent changes, the time expanded networks would require
a large number of copies of the original network, thus leading to network sizes that
are too memory expensive. Moreover, while modeling sensor graphs that involve no
physical flow, a direct application of this model might not be possible.

A Spatio-Temporal Sensor Graph (STSG) models the changes in a spatio-temporal
graph by collecting the node and edge attributes into a set of time series. The model
can also account for the changes in the topology of the network. The edges and nodes
can disappear from the network during certain instants of time and new nodes and
edges can be added. A Spatio-Temporal Sensor Graph keeps track of these changes
through a time series attached to each node and edge that indicates their presence at
various instants of time. The stochastic nature of the physical relationships between
the sensors (e.g., the flow rate of the river stream that connects the sensors) is ac-
counted for by expressing each element in the attribute time series as a pair of values
(i.e., <measured value, error>). Several case studies are also provided to validate the
model in the context of discovery of spatio-temporal patterns from sensor data. Anal-
ysis shows that this model is less memory expensive and leads to algorithms that are
computationally more efficient than those for the time-expanded networks.

APPLICATION DOMAIN

Modeling spatio-temporal graphs has significant applications in a number of sci-
entific application domains. Discovering knowledge from the large amount of data
collected from sensors can be used in predicting trends in domains such as enviro-
mental science, thus emphasizing the need for a model. Transportation network flow
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FIGURE 3.2 Spatio-temporal data mining in transformative water quality.

patterns are being increasingly monitored by sensors. The data can be used to find
routes that are frequently congested and can be used in network planning. Since vary-
ing levels of congestion can lead to time-dependent travel times on road segments,
the road network represented by a spatio-temporal graph might give more accurate
results for routing queries such as shortest paths. Accounting for time dependence in
transportation networks would make evacuation-planning algorithms in emergency
planning generate results that are more accurate.

The role of spatio-temporal data mining in the environmental sciences is shown
in Figure 3.2. The figure gives an example of the water flow starting from a water
treatment plant to a sensor network collecting data throughout the watershed. The data
collected from the sensor network is handled in two parts: (a) the collected data are
analyzed for any interesting patterns (e.g., anomalies) and if any are found, a diagnosis
and prognosis are made; and (b) the collected data are used for learning of any new and
interesting spatio-temporal patterns (e.g., growing hotspots) resulting in the refine-
ment of the diagnosis and prognosis rule base. Based on the prognosis, the treatment
plant can readjust any necessary parameters for the plant control system and plant
models. Such a spatio-temporal data mining system could be used to issue warnings
to recreational users of water resources (e.g., beach closings) and to optimize water
treatment conditions to protect the public and sensitive water treatment infrastructure.
For example, similar to weather forecasts, a water quality prediction for beaches could
be provided (e.g., 30% likelihood that coliform levels will be exceeded).

Similarly, if a spike in pathogen or hazardous chemical concentration is predicted,
water intake could be suspended temporarily, processes could be adjusted in real time,
or an additional treatment process could be brought online. The discovery of interest-
ing patterns within sensor data for outdoor application domains is often arduous and
complex. Many challenges [6,8,18,21] and hurdles need to be overcome. One chal-
lenge is to support remote monitoring of sensor networks distributed over an area,
to check the overall functioning of the system as well as to detect interesting events
related to measurements. Examples include the tasks of identifying malfunctioning
sensors or interesting events.

In general, there are two types of outdoor sensor networks [1,6,8,11,13,18,21].
The first type is a wired sensor network, for example, traffic management center at
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the Minnesota Department of Transportation [25,26] that consists of the following:
(a) sensors that are wired within the Twin Cities, MN highway system and (b) a
very large network containing over 4000 sensors across a 20-mile radius in the Twin
Cities and sampled every 5 minutes, and [1] a real-life application in a metropolitan
area. The second type is a wireless sensor network, for example, the one used by
the Water Resources community that has been recently deployed at the Minnehaha
Creek in Minnesota that consists of the following: (a) a set of sensors placed in the
environment communicating wirelessly among each other, (b) an initial deployment
of ahandful of sensors and a future goal of increasing the number of sensors to monitor
the Mississippi River, and (c) a live application in the natural environment [14].

RELATED WORK

Models have been proposed for sensor data [2,4] where the characteristics of the
sensor devices are classified as stored data and the data collected is represented as are
time series. These models do not fully represent the connectivity among the sensors.
Graphs have been used to represent collection of sensors and to formulate algo-
rithms for applications such as routing and location tracking [12,19]. Recent research
in spatial anomaly detection proposed in [25,26] used sensor datasets structured as
graphs. An accurate representation of sensors should include the spatial attributes
and time-dependent parameters of the graph. Most graph representations ignore the
time-dependence of the attributes. Some knowledge discovery algorithms are limited
due to the ignoring of spatial relationships [3,15]. Some work has focused on manag-
ing the datasets produced by wired and wireless sensor networks using “spatial time
series” [27].

Traditionally, spatio-temporal networks such as transportation networks have been
modeled using time-expanded graphs [16,17,20]. This method duplicates the original
network for each discrete time unit ¢ = [0, 1, ..., T'], where T represents the extent
of the time horizon. The expanded network has edges connecting a node and its
copy at the next instant in addition to the edges in the original network, replicated
for every time instant. This approach significantly increases the network size and
is very expensive with respect to memory. Because of the increased problem size
due to replication of the network, the computations become expensive. In addition,
time-expanded graphs cannot model sensor networks in cases where there is no flow
parameter involved. In such cases, the cross edges that represent a flow from one node
to another lose significance.

A model called Time Aggregated Graph (TAG) was proposed to represent spatio-
temporal networks [9,10]. This model aggregates time-depedendent paramaters on
edges and nodes to time-series attributes rather than replicate the entire graph for
each time instant. TAG can also model topological changes that could occur in the
graph (e.g., disappearance of an edge during a time interval) over time. This model
has been used in formulating routing algorithms for transportation networks with
time-dependent travel times, such as shortest path computation and best start time
computation [9]. Analysis shows that the model is more memory efficient than time-
expanded graphs. According to the analysis in [23], the memory requirement for a
time-expanded network is O (nT) + O(n + m)T, where n is the number of nodes
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and m is the number of edges in the original graph. The memory requirement for
the time-aggregated graphs would be O(m + n)T . Since the physical relationships
among sensors are stochastic in nature, there is a need to model the probabilistic
characteristics of edges and nodes, which is not modeled in TAG. Spatio-Temporal
Sensor Graph represents stochastic parameters by specifying the measurement and
the expected error. Each attribute value would be a pair, <measured value, error>.
The STSG model can been used as the basis for algorithms for hotspot discovery and
growing hotspot detection.

The chapter presents a model called Spatio-Temporal Sensor Graph to represent
sensor data. Time aggregated graphs are generalized to include probability parameters
to incorporate the stochastic nature of sensor graphs.

BASIC CONCEPTS

Traditionally graphs have been extensively used to model spatial networks [24];
weights assigned to nodes and edges are used to encode additional information. For
example, the spatial location of a sensor can be represented using the attribute assigned
to the node that represents the sensor and the flow rate of a river stream between two
sensors can be represented by an attribute of the edge connecting the nodes. In a
real-world scenario, it is not uncommon for these parameters to be time-dependent.
This section discusses a graph based model that can capture the time-dependence
of network parameters. In addition, the model captures the possibility of edges and
nodes being absent during certain instants of time.

SPATIO-TEMPORAL SENSOR GRAPH

A graph G = (N, E) consists of a finite set of nodes N and edges E between the nodes
in N. If the pair of nodes that determine the edge is ordered, the graph is directed;
if it is not, the graph is undirected. In most cases, additional information is attached
to the nodes and the edges. In this section, we discuss how the time dependence of
these edge/node parameters are handled in the proposed model, the Spatio-Temporal
Sensor Graph.

The Spatio-Temporal Sensor Graph is defined as follows:

STSG = (N, E,TF,
fioo S g8,
(nwy, ney) ... (nwy, ney,),
(ewr, eey)...(ew,, eep), |
fi:N - R g : E > R,
nw; :N—)RTF,ne,- : N — PD,
ewi:E—>RTF,ee,-:E—>IP’]D))
where N is the setof nodes, E is the set of edges, TF is the length of the entire time inter-

val, fi ... fi are the mappings from nodes to the time series associated with the nodes
(e.g., the time instants at which the node is present), g; . . . g; are mappings from edges
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FIGURE 3.3 Spatio-Temporal Sensor Graph and snapshots at various instants.

to the time series associated with the edges, and (ewy, eey) ... (ew,, ee,) indicate the
time-dependent attribute on the edges. PD indicates a probabilistic error. These at-
tributes are the quantitative descriptors of the physical relationship between the nodes.
To represent the stochastic nature of the measured values of physical phenomena, each
attribute is a pair that represents the measured value and the associated error.

Example A graph representation of a network at three instants of time is shown in
Figure 3.3(a), including temporal changes in connectivity and edge properties (e.g.,
flow rate). Each edge atttribute is a pair <measured value, error>. The first parameter
in the pair is the measured value and the second is the expected error. For example,
the edge from node N3 to node N4 disappears at the time instant ¢+ = 2 and reappears
att = 3, and the attribute on the edge N3-N4 changes from (1,0.5) att = 1,to (4,0.5)
at t = 3. Figure 3.3(b) shows the Spatio-Temporal Sensor Graph. This is encoded
in the time-aggregated graph using the edge attribute series of N3-N4, which is
[(1,0.5),00,(4,0.5)]; the entry “co0” indicates that the edge is absent at the time instant
r=2.

A time-expanded graph would need copies of the entire graph. The number of
nodes is larger by a factor of T, where T is the number of time instants and the
number of edges is also larger in number compared to the STSG. Typically the value
of T is very large in a spatial network such as a sensor graph since the changes in the
network are quite frequent. Figure 3.4 shows the time-expanded graph representation
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FIGURE 3.4 Time-aggregated graph vs. time-expanded graph.

for the STSG shown in Figure 3.3(b), assuming that the edge attributes are non-
probabilistic. This would result in time-expanded networks that are enormously large
and would make the computations slow. Though flow-based physical phenomena can
be modeled using the cross edges between the copies in a time-expanded graph, it
might not be possible to represent every type of physical relationship between the
sensors. Moreover, it might not be possible to represent probabilistic edge parameters
in a time-expanded graph.

CASE STUDIES

This section presents three case studies using the Spatio-Temporal Sensor Graph
(STSG) to discover interesting patterns. First, anomaly detection is presented that
generates a set of time series at each sensor node where each time interval is identified
as an anomaly. The second case study is the discovery of basic hotspots using the STSG
model and the time series that was discovered in the unanticipated anomaly case study.
Finally, a case study on the discovery of growing hotspots using the STSG model
is presented. The case studies addressing unanticipated anomaly detection, basic
hotspot, and growing hotspots are presented in the coming sections. The algorithms
presented do not consider the probabilistic parameters in discovering and predicting
hotspots. Prediction is done assuming that the physical model of the edge parameter
is accurate. However, the algorithms can be extended to incorporate the stochastic
nature of the edge parameters.

ANOMALY DETECTION
Definition

The problem of anomaly detection can be generally described as identifying a
set of observations that are inconsistent or generated from a different mechanism
than the rest of the dataset [24]. In general, anomaly detection can be catego-
rized in five different groups: (a) global anomalies where a data point may be
different from the entire dataset and is often used in several traditional aggregate
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approaches, (b) spatial anomalies where a data point may be different when compar-
ing against its physical neighbors, (c) temporal anomalies which are similar to spatial
anomalies except that the neighborhood region is based on its temporal neighbors,
(d) spatio-temporal anomalies where a data point is different based on the neighbor-
hood of both space and time, and (e) network anomalies where a data point is different
based on the neighboring connected nodes.

Application

Several interesting applications can utilize anomaly detection such as the monitoring
of watersheds and in-plant systems using a sensor network. However, challenges
arise in such situations. For example, in a watershed, a level of normality needs to
be defined to determine the types of anomalies. Normality may be based on domain
models (e.g., physics-based differential equation governing fluid flow, see [5,22]
for more information) using some form of an aggregate on historical data gathered
by the sensor network. The historical dataset may be broken into several slices (or
by month) based on the seasonality. Another challenge includes change detection
between sensors in a watershed. For example, suppose we have sensors in place
within the length of a river with a train track running along the side of it. Suppose a
train carrying harmful contaminants causes a spill into the river stream. The sensors
within this part of the river will start observing measurements that are significantly
different from domain models as well as in the upstream section of the river. Thus,
an anomaly can be detected to warn the water treatment plant.

Method

Algorithm 1 presents the pseudocode to detect spatio-temporal anomalies from a
sensor network. There are three types of input to this approach. The first is a set of
nodes within the sensor network where each node contains information about the
measurements gathered at a time interval. The second is a model defined by the
domain scientists to determine the predicted output under normal conditions. Third
is the maximum number of time intervals recorded within the sensor network. The
output of this approach consists of a set of time series for each node where an anomaly
was detected. These time series will be needed as inputs for the case studies discussed
in “Basic Hotspot Detection” and “Growing Hotspot Detection.”

Algorithm 1 consists of two phases to detect anomalies within a sensor network.
In Phase I, a domain science model is used to calculate the predicted output under
normal conditions for each node (Lines 2—7 of Algorithm 1). The input is based
on the current node and the predicted output is for the successor nodes, based on a
domain model [5,22]. The predicted output is stored at the successor node (Line 5
of Algorithm 1). This process is computed for all time intervals for each node in the
sensor graph.

Phase II of Algorithm 1 identifies the anomalies based on the domain science
model and the actual measurements from the sensor graph (Lines 8—14 of Algo-
rithm 1). Every node is investigated for anomalies except the first node because the
predicted output generated by the domain science model is calculated based on its
predecessor node (Lines 8 of Algorithm 1). An anomaly is identified when the actual
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Algorithm 1 Pseudocode for Anomaly Detection

1: Function ANOMALY(set Nodelds, model m, int maxTime)
{Phase I: Domain Science Model}

2: for each node n € Nodelds do
3:  for time # = 1 to maxTime do
4: Calculate predicted output o using m for n.measurements at ¢
5: successorNode.predicted.t = o
6:  end for
7: end for
{Phase II: Identify Anomalies}
8: for node n = 1 to Nodelds.size() do
9:  for time 7 = 1 to maxTime do
10: if n.measurements # n.predicted at ¢ then
11: n.anomaly = n.anomaly U ¢
12: end if
13:  end for
14: end for

measurements at a node and the predicted output for a time interval are different or the
difference is greater than some threshold (Line 10 of Algorithm 1). If an anomaly is
found, then the time interval ¢ is assigned to a set of time series for the node (Lines 11
of Algorithm 1). This information is intended for the STSG model which will be used
in the next two sections.

Execution Trace

Table 3.1 presents an example dataset containing a set of measurements found in a
sensor network. The values depicted in this example use a simple prediction model;
for further information on differential models, see [5,22]. In this example, we have
five nodes running along a river where the node ID increases based on the direction
of the water flow. In each node, there are three time intervals and a corresponding
measurement at that sensor (e.g., concentration of a chemical in the water).

InPhase I of Algorithm 1, the predicted outputs are calculated for each node having
a predecessor node. An example of these predicted outputs is shown in Table 3.1.
Notice that there are no predicted values for node 1 because a predecessor node (e.g.,
node 0) does not exist in the dataset.

TABLE 3.1
Execution Trace of Anomaly Detection Algorithm

Nodes 1 2 3 4 5

Time Slot 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Measure 10 20 30 20 50 50 40 50 50 80 100 50 160 200 50
Predicted 20 40 60 40 100 100 80 100 100 160 200 100
Anomaly {t2, 13} {t2, 13} {13} {t3}
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In Phase II of Algorithm 1, the anomalies are identified by having a set of time
series when the predicted values and the actual sensor measurements differ. Table 3.1
gives an example where nodes 2 and 3 have anomalies occurred at {t,, #3} and nodes
4 and 5 have anomalies at {t3}. Figure 3.5(b) gives an illustration of the STSG model
with the anomaly time series found in this execution trace.

Computational Complexity

Algorithm 1 has two phases: (Phase 1) the predicted output for each node calculated
for all time intervals having the complexity of O (nT) where n is the number of nodes
and T is the total number of time intervals; and (Phase 2) the anomalies are detected
by examining (n — 1) nodes (the boundary nodes are not checked) for all time intervals
and having the complexity of O[(n — 1)T']. Thus, the total computational complexity
of both phases 1 and 2 is O[nT + (n — 1)T] = O(nT).

Basic HOTsPOT DETECTION
Definition

The problem of hotspot detection is to discover the sensor nodes that display signifi-
cant differences between observed values and expected “standard” values.

Application

In application domains such as river systems where chemical levels are constantly
monitored, sensors are deployed to detect the changes. In this context, a hotspot is
indicated by a sensor reporting an anomaly (as discussed in “Anomaly Detection”).
We discuss a method to discover hotspots using the STSG model. The nodes in the
STSG represent the sensors. An edge is added between the nodes if and only if
there is a physical relationship between the nodes. The presence of a hotspot at a
node at various time instants is indicated by a node time series. In addition, the time
dependence of the physical relationships modeled by the edges can be represented by
time series attributes. Figure 3.5 illustrates the graph model for the sensor graph. For
the sake of simplicity, edge attributes are not shown in Figure 3.5. Figure 3.5(a) shows
an example network. The nodes that are active at time instants t = 2 and r = 3 are
shown in Figure 3.5(b) and (c). The Spatio-Temporal Sensor Graph representation is
shown in Figure 3.5(d). The time series attributes on the nodes indicate the hotspots
at various time instants. For example, the time series 2, 3 on the node N2 indicates
that the node is a hotspot at r = 2, 3.

Method

Given a sensor graph called the source node, the hotspot at any time instant is the
set of nodes where an anomaly has been detected at the given time instant. We use a
modifed breadth-first strategy to find the nodes that indicate the hotspots at any time
instant. The pseudocode is provided in Algorithm 2.

The algorithm finds the hotspots using the STSG model. Each node has a time
series attribute that encodes the information about the time instants at which the node
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FIGURE 3.5 Spatio-Temporal Sensor Graph model to detect hotspots.

Algorithm 2 Hotspot Algorithm

1: Function BASICHOTSPOTS(Graph G(N, E), set N, set E, node source)
2: fort =1,T do

3:  mark source as visited;

4 enqueue(Q,source);

5. if ¢t in node_time_series of source then
6: hotspots[t] = source;

7 end if

8:  while Q not empty do

9 u = Dequeue();

10: For every node v such that uv € E and if ¢ in node_time_series
11: if v is not marked then

12: mark v as visited.

13: enqueue(Q,v);

14: hotspots[t] = hotspots[t] | v;

15: end if

16:  end while
17: end for
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has an anomaly. For example, the time series [1,2] at node N2 in Figure 3.5(d) indicates
that the node is a hotspot at t+ = 2, 3. The algorithm searches the graph starting at
(any) given node for each value of time 7 and finds the hotspots. The search uses
a breadth-first strategy, modified to incorporate the fact that each node has a time
series that needs to be checked. When each node is visited, the algorithm checks to
see whether it is a hotspot by checking the node time series. The node time series is
assumed to be sorted. The output of the algorithm is the set of hotspots at every time
Instant.

Execution Trace

Table 3.2 shows the trace of the algorithm for the STSG shown in Figure 3.5(d). The
search starts at node N1 at = 1 and detects no hotspots. At ¢ = 2, the search finds
that the nodes N2 and N3 are hotspots based on the entry “2” (indicating the presence
of a hotspot at ¢+ = 2) in their node time series [1,2]. The algorithm performs another
iteration for ¢+ = 3 and finds the hotspots at N2, N3, N4, and N5. The execution trace
is summarized in Table 3.2.

Computational Complexity

The algorithm visits every node of the STSG at every time instant ¢ and searches the
node time series to detect the hotspots. The algorithm performs O (n) steps to visit all
nodes. At each step, the presence of the node at the given time instant is checked. If
the time series is sorted, this look-up is O (log T') since the length of the time series is
atmost T where T is the length of the time period. At each node this operation has a
complexity of degree (node) -log T . The cost over all the nodes is hence O (m log T)
where m is the number of edges in the graph. Since the search is performed at every
instant, the computational complexity is O[(n + m log T)T ], where n is the number
of nodes, m is the number of edges, and T is the length of the time period.

GROWING HOTSPOT DETECTION
Definition

The problem of growing hotspot detection is to predict expanding patterns that may
lead to significant differences between some observations and the rest of the data set.
This problem is different from anomaly detection, where a growing pattern may not
be identified as an outlier due to the lack of severity at the early stages of growth,
for example, slow leakage from buried chemical drums to the ground water supply.
Domain knowledge (e.g., flow rate, plume model) is incorporated in Spatio-Temporal
Sensor Graph (STSG) representation to predict the growing hotspots.

TABLE 3.2
Execution Trace of the Hotspot Algorithm

Time t t2 t3
Hotspot Nodes ¢ {N2,N3} {N2,N3,N4,N5}
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Application

In application domains such as river systems where chemical levels are constantly
monitored, sensors may be deployed to detect the changes. In this context, a growing
hotspot is indicated by the increase in the number of sensors reporting an anomaly,
over time. We discuss a method to discover growing hotspots using a model called the
STSG, which predicts the spread of hotspots. The nodes in the STSG represent the
sensors. The edges in the STSG are quantified with the descriptors that represent the
propagation of the cause of anomaly. For example, parameters that model the fluid
flow between two sensors can be modeled as an edge attribute. Each attribute is a
pair that consists of the measured value and the expected error. If the attribute is
time-dependent, STSG will represent the attribute as a time series.

Figure 3.6 shows a Spatio-Temporal Sensor Graph that represents a collection of
sensors. Nodes represent the sensors and the edges indicate that they are connected
(e.g., by fluid flow). The edge parameters represent the characteristics of the under-
lying connection. In this example, for the sake of simplicity, the edge parameters are
shown to be constants, though Spatio-Temporal Sensor Graphs can represent time-
varying edge attributes. Figure 3.6(a) shows the state of the sensors at t = 1, where
the node N1 is active. Figure 3.6(b) and 3.6(c) show the predicted active sensor nodes
att = 2, 3. For example, at r = 2, node N2 is predicted to be a hotspot and at t = 3,
N11 is expected to be active. The predicted hotspots are shown as shaded circles in
the figure.

Method

Given a set of sensor nodes (called the source nodes), the hotspots at any future
time instant can be predicted from the Spatio-Temporal Sensor Graph using the edge
attributes that describe the propagation between the sensor nodes. The algorithm finds
the nodes that are reachable from the source nodes within the interval between two
time instants. These nodes are discovered based on the edge attribute values that
quantify the physical relationship between the nodes. Pseudocode of the algorithm
is provided in Algorithm 3. Though the model represents each attribute as a pair of
values that indicate the measured value and the associated error, this algorithm does
not consider the error parameter in its computations. The error values are omitted
from Figure 3.6, for the sake of simplicity.

Execution Trace

Table 3.3 gives the trace of the algorithm for a stream network shown in Figure 3.6.
For the sake of simplicity, it is assumed that every segment (represented by an edge)
has the same length. The edge attributes are the flow rates. The algorithm lists the
nodes reachable from every node for each time instant. At = 1, node N1 is a hotspot.
Since the flow rate on edge N1-N2 is 1 unit, flow is predicted to reach N2 at r = 2
and N2 is added to the list of hotspots at + = 2. Similarly, flow is predicted to reach
N3 at ¢t = 2. Since the rate is faster, the flow moves through N3 and reaches N5 at
t = 2, adding both N3 and NS5 to the list at t = 2.
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(a) =1 (b) t=2

(c) t=3

FIGURE 3.6 Detecting growing hotspots.
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Algorithm 3 Growing Hotspot Algorithm

1: Function SPREADINGHOTSPOTS(Graph G(N, E), set N, set E, set
source_nodes )

2: Enqueue(Q,S);

3: for t=1, T do

4:  time_elapsed[u]= AT for all nodes;

5:  while Queue O not Empty do

6 u = Dequeue();

7: For every node v such that uv € E

8 if v is not marked && v is reachable based on d(u, v) then

9 mark v as visited.

10: enqueue(Q,v);

11: decrement time_elapsed[v];
12: Add v to hotspots][t];

13: return hotspots;

14 end if

15:  end while

16: end for

Computational Complexity

This algorithm finds the nodes that are reachable from a source node at every time
instant. The algorithm performs O (n) steps for each source node. The worst case
complexity for each time instant would hence be O (n?). Since the search is performed
for each time step, the computational complexity is O (n>T'), where n is the number
of nodes and T is the length of the time period.

CONCLUSION AND FUTURE WORK

The discovery of spatio-temporal patterns in a sensor graph raises several important
questions that need to be answered before further analysis. First, how can we model
space and time on a sensor graph? Second, can we determine any new or unusual
patterns in the sensor graph? Third, which areas in the sensor graph have similar
behavior? Finally, how can we predict which nodes in the sensor graph will have
similar behavior?

TABLE 3.3
Trace of the Growing Hotspot Algorithm

Time 1 12 t3
Predicted N1 NIN2,N3,N4 NI1,N2,N3,N4,N5
Hotspots N7,N9 N7,N9,N10,N11
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In this chapter, we discuss a Spatio-Temporal Sensor Graph (STSG) model to
represent sensor data to answer all of these questions. Three case studies utilizing the
STSG model to discover different types of patterns are presented. First, an anomaly
detection algorithm that generates a set of time series of where anomalies occur within
the STSG is discussed. Second, a basic hotspot discovery algorithm that uses STSG
to identify centralized locations at each time interval is described. Third, a growing
hotspot method is proposed using STSG to predict nodes that may be hotspots at
future time intervals.

The sensor graphs discussed in this chapter emphasized physical networks such
as road or river networks. However, the Spatio-Temporal Sensor Graph might be
applicable to other types of sensor graphs and this aspect needs investigation. Though
the model can incorporate the stochastic nature of sensor graphs, the algorithms
currently do not consider the probabilities in computations. Appropriate modifications
in the algorithms to account for the stochastic nature of the attributes can be explored.
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ABSTRACT

Most of the work in incremental clustering of data streams has been widely concen-
trated on example clustering rather than variable clustering. The data stream paradigm
imposes that variable clustering should also be addressed as an online procedure, not
only due to the dynamics inherent to streams but also because the relations between
them can change over time. Moreover, streams may be produced in a distributed
environment. The task that emerges from this setting is better known as clustering
of streaming sensors, since the data is often produced in wide sensor networks. We
overview previous attempts to address this problem and clarify where, in our per-
spective, these attempts may have failed to deal with it. We try to summarize the
characteristics that systems addressing this task should observe and their implica-
tions for future research. The main goal of this exposure is to discuss the definition
of clear requirements for an emerging task in machine learning.

Keywords: data clustering, streaming sensors, foundations and requirements.

INTRODUCTION

The traditional knowledge discovery environment, where data and processing units are
centralized on controlled laboratories and servers, is now completely transformed into
a web of sensorial devices, some of them enclosing processing ability. This scenario
represents now a new knowledge extraction environment, possibly not completely
observable, that is much less controlled by both the human user and a common
centralized control process.

A UBIQUITOUS ENVIRONMENT

Clustering is probably the most frequently used data mining algorithm, used as ex-
ploratory data analysis. However, in recent real-world applications, the usually known
workbench, where all data is available at all times, is now outdated. Data flows contin-
uously from data streams at high speed, producing examples over time, which would
make a traditional data-gathering process create databases with tendentiously infinite
length. Traditional database management systems are not designed to directly support
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the continuous queries required by these applications [17]. Moreover, data-gathering
and analysis have become ubiquitous, in the sense that our world is evolving into a
setting where all devices, as small as they may be, will be able to include sensing
and processing ability. Thus, if data is to be gathered centrally, this scenario also
points to databases with tendentiously infinite width. Hence, new techniques must be
defined, or adaptations of known methods should appear, in order to deal with this
new ubiquitous streaming setting.

CLUSTERING DATA STREAMS

Most of the work in incremental clustering of data streams has been widely concen-
trated on example clustering rather than variable clustering. Considering the dynamic
behavior usually enclosed in streams, clustering data produced by streaming sensors
should be addressed as an online and incremental procedure, in order to enable faster
adaptation to new concepts and produce better models through time. Traditional mod-
els cannot adapt to the high speed arrival of new examples in this setting, so algorithms
have been developed to deal with this fast scenario and usually aim to process data in
real time. With respect to clustering analysis, these algorithms should be capable of,
at each given moment, supplying a compact data description or synopsis to reduce
dimensionality, and process each example in constant time and memory, in order to
keep track of the dynamic evolution of the streams [5]. However, detecting concept
changes on one variable, usually called concept drift detection [15], is not the same as
detecting concept changes on the clustering structure of several streams [36]. Thus,
concept drift detection in clustering structures, or structural drift detection, introduces
a new level of problems to the data mining community.

SENSORS AND SENSOR DATA

Sensors are usually small, low-cost devices capable of sensing some attribute of
a physical phenomenon. These devices are most of the time interconnected in a
distributed network which, due to the ubiquitous setting, creates new obstacles to the
common data mining tasks. Data gathered by these devices is often noisy and faulty.
Nonetheless, the speed at which the sensors produce their streams of data is not only
extremely high, but can also be different for sensors belonging to the same network.
These features create a new setup, proposing different approaches for common data
mining problems.

A FIRST LOOK AT SENSOR DATA CLUSTERING

Most works on clustering analysis for sensor networks actually concentrate on cluster-
ing the sensors by their geographical position [8] and connectivity, mainly for power
management [43] and network routing purposes [23]. However, in this chapter we
are interested in clustering techniques for data produced by the sensors, instead. The
motivation for this is all around us. As networks and communications spread out, so
does the distribution of novel and advanced measuring sensors. The networks created
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by this setting can easily include thousands of sensors, each one being capable of
measuring, analyzing, and transmitting data. From another point of view, given the
evolution of hardware components, these sensors act now as fast data generators,
producing information in a streaming environment.

Given the extent of common sensor networks, the old client-server model is es-
sentially useless to help the process of clustering data streams produced on sensors.
Distributed data mining methods have been proposed such that communication be-
tween nodes of the network is enhanced to allow the exchange of useful information
about the process. In fact, clustering techniques for ad hoc sensor networks also
include this ability as communication with a centralized server is not available. Meth-
ods that aim to cluster sensor network data must consider these techniques in order
to achieve good results without centralizing data.

In this chapter we introduce the problem of clustering streaming sensors, so called
because the data usually encountered in these problems is often produced by wide
sensor networks. In the next section, we start by presenting the ubiquitous setting
where this new task becomes relevant. “Clustering Streaming Series” focuses on the
validity and efficiency requirements which, in our opinion, a system willing to ad-
dress the centralized task of clustering streaming series must observe. This way, we
argue why the usual methods addressing clustering of examples over data streams
and batch clustering of time series cannot cope with this new data mining problem.
We also overview some existing approaches to that task, discussing their advantages
and drawbacks. We then discuss the task of, “Clustering Streaming Sensors,” gen-
erated by a different setting, and some implications of this new machine learning
task to future research, considering its application to real-world problems. A dis-
cussion with possible future paths is finally presented in, summarizing the whole
exposition.

SENSOR DATA AND NETWORKS

Common applications of sensor networks gather huge loads of data produced by
each of the enclosed sensors. This data is often the object of analysis, including
knowledge extraction, for a wide range of purposes. This way, we should inspect the
characteristics emerging from this ubiquitous setting, which focus on a new area of
research in the data mining community.

SENSOR DEVICES

Sensors are usually small, low-cost devices capable of sensing some attribute of a
physical phenomenon. In terms of hardware development, the state-of-the-art is well
represented by a class of multipurpose sensor nodes called motes [10], which were
originally developed at the University of California, Berkeley, and are being deployed
and tested by several research groups and start-up companies. In most of the current
applications [10], the sensor nodes are controlled by module-based operating systems
such as TinyOS [1] and are programmed using arguably somewhat ad hoc languages
such as nesC [18] or TinyScript/Maté [30]. Recent middleware developments such as
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Deluge [22] and Agilla [13], and programming languages and environments such as
Regiment [33] and EnviroSuite [31], provide higher level programming abstractions
including massive code deployment where needed.

SENSOR NETWORKS

Sensor networks are composed of a variable number of sensors (depending on the
application), which have several features that put them in an entirely new class when
compared to other wireless networks, namely: (a) the number of nodes is potentially
very large and thus scalability is a problem, (b) the individual sensors are prone to
failure given the often challenging conditions they experiment in the field, (c) the
network topology changes dynamically, (d) broadcast protocols are used to route
messages in the network, (e) limited power, computational, and memory capacity,
and (f) lack of global identifiers [2].

SENSOR DATA MANAGEMENT

Sensor network applications are, for the most part, data-centric in that they focus on
gathering data about some attribute of a physical phenomenon. Routing can be based
on the data-centric approach. Two main approaches are used: (a) sensors broadcast
advertisements for the availability of the data and wait for interested nodes, or (b)
sinks broadcast interest in the data and wait for replies from the sensors. The queries
for data are usually done using attribute-based naming, that is, using the attributes of
the phenomenon being measured. The data is usually returned in the form of streams
of simple data types without any local processing. In some cases more complex data
patterns or processing is possible. Data aggregation is used to solve routing problems
(e.g., implosion, overlap) in data-centric networks [2]. In this approach, the data
gathered from a neighborhood of sensor nodes is combined in a receiving node along
the path to the sink. Data aggregation uses the limited processing power and memory
of the sensing devices to process data online.

CLUSTERING STREAMING SERIES

The task of clustering variables over data streams, or streaming time series, is not
widely studied, so we should start by formally introducing it. Data streams usually
consist of variables producing examples continuously over time. The basic idea behind
it is to find groups of variables that behave similarly through time, which is usually
measured in terms of time series similarities. Let X = (xy, x2, ..., x,,) be the complete
setof n streams and X’ = (x], xé, ..., X!) be the example containing the observations
of all streams x; at the specific time ¢. The goal of an incremental clustering system
for streaming time series is to find (and make available at any time ¢) a partition P of
those streams, where streams in the same cluster tend to be more alike than streams in
different clusters. In partitional clustering, searching for & clusters, the result at time
t should be a matrix P of n x k values, where each P;; is one if stream x; belongs
to cluster ¢; and zero otherwise. Specifically, we can inspect the partition of streams



40 Knowledge Discovery from Sensor Data

in a particular time window from starting time s until current time ¢, using examples
X*-', which would give a temporal characteristic to the partition. In a hierarchical
approach to the problem, the same possibilities exist, with the benefit of not having
to previously define the target number of clusters, thus creating a structured output of
the hierarchy of clusters.

DOMAINS OF APPLICATION

Clustering time series has been already studied in various fields of real-world appli-
cations. Many of them, however, could benefit from (and even require) a data stream
approach. For example, in electrical supply systems, clustering demand profiles (e.g.
industrial or urban) decreases the computational cost of predicting each individual
subnetwork load [16]; in medical systems, clustering medical sensor data (such as
ECG, EEQG, etc.) is useful to determine correlation between signals [38]; and in finan-
cial markets, clustering stock prices evolution helps prevent bankruptcy [32]. All of
these problems address data coming from a stream at a high rate. Hence, data stream
approaches should be considered to solve them.

RELATED AREAS OF RESEARCH

Clustering streaming time series is an emerging area of research that is closely con-
nected to two other fields: clustering of time series, for its application in the variable
domain, and clustering of streaming examples, for its applications to data flowing
from high-speed streams. Although a lot of research has been done on clustering
subsequences of time series (which raised some controversy in the data mining com-
munity [24,28]), clustering streaming time series approaches whole clustering instead,
so most of the existing techniques can be successfully applied, but only if incremental
versions are possible. Clustering streaming examples is also widely spread in the data
mining community as a technique used to discover structures in data over time [5,20].
This task also requires high-speed processing of examples and compact representa-
tion of clusters. Moreover, clustering examples over time presents adaptivity issues
that are also required when clustering streaming series. Evolutionary clustering tries
to optimize these techniques [7]. However, the need to detect and track changes in
clusters is not enough, and it is also often required to provide some information about
the nature of changes [39]. Unfortunately, few of the previously proposed models can
be adapted to our new task.

REQUIREMENTS FOR CLUSTERING STREAMING SERIES

The basic requirements usually defended when clustering examples over data streams
are that the system must possess a compact representation of clusters, must process
data in a fast and incremental way, and should clearly identify changes in the clus-
tering structure [5]. Clustering streaming time series has obviously strong connec-
tions to example clustering, so this task shares the same distrusts and, therefore, the
same requirements. However, there are some conceptual differences when addressing
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multiple streams. Nevertheless, systems that aim to cluster streaming time series
should:

» Process with constant update time and memory.

+ Enable an anytime compact representation.

« Include techniques for structural drift detection.

« Enable the incorporation of new relevant streams.
o Operate with adaptable configuration.

The next sections try to explain the extent to which these features are required to
efficiently cluster streaming time series.

Constant Update Time and Memory

Given the usual dimensionality of data streams, an exponential or even linear growth
in the number of computations with the number of examples would make the system
lose its ability to cope with streaming data. Therefore, systems developed to address
data streams must always have constant update time. A perfect setting would be to
have a system becoming faster with new examples. Moreover, memory requirements
should never depend on the number of examples, as these are tendentiously infinite
in number. From another point of view, when applying variable clustering to data
streams, a system could never be supported on total knowledge of available data. Since
data is always evolving and multiple passes over it are impossible, all computations
should be incrementally conceived. Thus, information is updated continuously, with
no increase in memory, and this update requires low time consumption.

Anytime Compact Representation

Data streams reveal an issue that imposes the definition of a compact representation
of the data used to perform the clustering: it is impossible to store all previously
seen data, even considering clipping the streams [3]. In example clustering, a usual
compact representation of clusters is either the mean or the medoid of the elements
associated with that cluster. This way, only a few examples are required to be stored
in order to perform comparisons with new data. However, clustering streaming time
series is not about comparing new data with old data, but determining and monitoring
relations between the streams. Hence, a compact representation must focus on suffi-
cient statistics, used to compute the measures of similarity between the streams, that
can be incrementally updated at each new example arrival.

Structural Drift Detection

Streams present inherent dynamics in the flow of data that are usually not considered
in the context of usual data mining. The distribution generating the examples of each
stream may (and in fact often does) change over time. Thus, new approaches are
needed to consider this possibility of change and new methods have been proposed to
deal with variable concept drift. However, detecting concept drift as usually conceived
for one variable is not the same as detecting concept drift on the clustering structure of
several streams [36]. Structural driftis a point in the stream of data where the clustering
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structure gathered with previous data is no longer valid, since it no longer represents
the new relations of proximity and dissimilarity between the streams. Systems that
aim at clustering streaming time series should always include methods to detect (and
adapt to) these changes in order to maintain an up-to-date definition of the clustering
structure through time.

Incorporate New Relevant Streams

In current data streams, the number of streams and the number of interesting corre-
lations can be large. However, almost all data mining approaches, especially dealing
with streaming data, consider incoming data with fixed width, that is, only the number
of examples increases with time. Moreover, current problems include an extra diffi-
culty as new streams may be added to the system through time. Given the nature of the
task here at hand, a clear process of incorporating new streams in a running process
must be used, so that the usual growth in data sources is accepted by the clustering
system. Likewise, as data sources arise from all sorts of applications, their impor-
tance also fades out as dissemination and redundancy increase, becoming practically
irrelevant to the clustering process. A clear identification of these streams should also
increase the quality of dissimilarities computed within each cluster.

Adaptable Configuration

From the previous requirements, it becomes obvious that the clustering structure and,
even more, the number of clusters in the universe of the problem may change over
time. This way, approaches with a fixed number of target clusters, though still useful
in several problems, should be considered only in that precise scope. In general,
approaches with an adaptable number of target clusters should be favored for the task
of clustering streaming time series. Moreover, hierarchical approaches present even
more advantages as they inherently conceive a hierarchical relation of sub-clusters,
which can be useful to locally detect changes in the structure.

EXAMPLES OF CENTRALIZED APPROACHES

The problem of clustering streaming series assuming data is gathered by a centralized
process, while it is becoming available for online analysis, was already targeted by
recent research. Rather than an exhaustive review, we shall make a quick overview
on some of the most recent approaches to the problem. Wang and Wang introduced
an efficient method for monitoring composite correlations, that is, conjunctions of
highly correlated pairs of streams among multiple time series [41]. They use a simple
mechanism to predict the correlation values of relevant stream pairs at the next time
position, using an incremental computation of the correlation, and rank the stream
pairs carefully so that the pairs that are likely to have low correlation values are
evaluated first. Beringer and Hiillermeier proposed an online version of k-means for
clustering parallel data streams (Online KM), using a Discrete Fourier Transform
approximation of the original data [6]. The basic idea is that the cluster centers
computed at a given time are the initial cluster centers for the next iteration of k-
means, applying a procedure to dynamically update the optimal number of clusters
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TABLE 4.1
Methods’” Compliance with Requirements for Clustering
Streaming Series

Online KM [6] COD [11] ODAC [36]

Data representation DFT Wavelet Dissimilarities
Model generation k-Means On demand Hierarchical
Constant time/memory  Yes Yes Yes

Anytime representation  Yes Data only Yes
Structural drift Fuzzy Human Local
New/relevant No No No
Adaptable Stepwise Off-line Hierarchical

at each iteration. Clustering On Demand (COD) is another framework for clustering
streaming series which performs one data scan for online statistics collection and has
compact multiresolution approximations, designed to address the time and the space
constraints in a data stream environment [11]. It is divided in two phases: a first online
maintenance phase providing an efficient algorithm to maintain summary hierarchies
of the data streams and retrieve approximations of the sub-streams; and an off-line
clustering phase to define clustering structures of multiple streams with adaptive
window sizes. Rodrigues et al. [36] proposed the Online Divisive-Agglomerative
Clustering (ODAC) system, a hierarchical procedure which dynamically expands and
contracts clusters based on their diameters. It constructs a treelike hierarchy of clusters
of streams, using a top-down strategy based on the correlation between streams. The
system also possesses an agglomerative phase to enhance a dynamic behavior capable
of structural change detection. The splitting and agglomerative operators are based on
the diameters of existing clusters and supported by a significance level given by the
Hoeffding bound [21]. The main characteristics and compliance of these systems with
the previously defined requirements is sketched in Table 4.1. Although complying
with most of the requirements for clustering streaming series, the previously proposed
approaches to the problem assume data is gathered by a centralized process before
it is available for analysis. However, in the real world this is often not the case.
Data is produced and processed by sensor networks in a distributed fashion. In the
next section we explore the new features of the ubiquitous setting created by sensor
networks where, rather than performing centralized streaming analysis, data must
be considered spread across the network, enabling and even compelling the use of
distributed procedures.

CLUSTERING STREAMING SENSORS

Clustering streaming time series has already been targeted by researchers, in order to
cope with the tendentiously infinite amount of data produced at high speed. However,
if this data is produced by sensors on a wide network, the proposed algorithms tend
to deal with them as a centralized multivariate stream. They process without taking
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into account the locality of data, the limited bandwidth and processing resources, and
the breach in the quality of transmitted data. All of these issues are usually motivated
by energy efficiency demands of sensor devices. Moreover, these algorithms tend
to be designed as a single process of analysis without the necessary attention on the
distributed setting (already addressed on some example clustering systems [9]) which
creates high levels of data storage, processing, and communication.

Distributed data mining appears to have the necessary features to apply clustering
to streaming data produced on sensor networks [34]. Although few works were di-
rectly targeted at data clustering on sensor networks, some distributed techniques are
obvious starters of this area of research. Distributed implementations of well-known
algorithms may produce both valuable and impractical systems, so the path to them
should be carefully inspected.

CLUSTERING SERIES ON SENSOR NETWORKS

Considering the main restrictions of sensor networks, the analysis of clusters of
multiple sensor streams should comply not only with the requirements for clustering
multiple streaming series but also with the available resources and setting of the
corresponding sensor network.

If a distributed algorithm for clustering streaming sensors is to be integrated on
each sensor, how can local nodes process data and the network interact in order to
cluster similar behaviors produced by sensors far from each other, without a fully
centralized monitoring process? If communication is required, how should this be
done in order to avoid the previously referred to problems of data communication on
sensor networks, prone to implosion and overlap? For example, a network of wireless
integrated network sensors (WINS) has to support large numbers of sensors in a local
area with short range and low average bit-rate communication [35]. Moreover, what
is the relationship between sensor data and the geographical location of sensors?
Common sensor networks data aggregation techniques are based on the Euclidean
distance (physical proximity) of sensors to perform summaries on a given neighbor-
hood [8]. However, the clustering structure definition of the series of data produced
by the sensors is orthogonal to the physical topology of the network, as stressed in the
example presented in Figure 4.1. These and other questions should be considered in
the development of new techniques to efficiently and effectively perform clustering
of streaming sensors, as massive sensor networks produce high levels of data pro-
cessing and transmission, reducing not only the ability to feedback, in useful time,
the information to the system, but also the uptime of sensors themselves, due to high
energy consumptions.

REQUIREMENTS FOR CLUSTERING STREAMING SENSORS

The main idea behind this task is the following: some (or all) of the sensors enclosed
in the network should perform some kind of processing over the data gathered by
themselves or/and by their neighbors, in order to achieve an up-to-date clustering
structure definition of the sensors. However, different sub-tasks need to be defined so
that a clear path in the development can be drawn.
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FIGURE 4.1 Example of a mote-sensor network (a), with links of possible transmission rep-
resented by straight lines and physical subnetworks (represented by IDs) separated by dashed
lines, and a possible clustering definition of the series produced by each sensor (b). This il-
lustrative example shows the orthogonality that is expected to exist between network topology
and the sensors’ data clustering structure.

Global Clustering Structure

The main question that must be answered is how can a distributed system develop
and learn the global clustering structure of streaming sensors data, even though com-
munication between sensors is limited (and even nonexistent to some extent). The
handicap on processing streams is the impossibility of total knowledge of each se-
ries data. One of the most suitable solutions to this problem is the application of
approximate algorithms [17]. The handicap is reinforced in ubiquitous settings as, for
a given processing unit, total knowledge of the complete set of sensors’ data is also
improbable. Hence, approximate algorithms must be considered in this direction also.

A first approach could consist of a centralized process that would gather data
from sensors, even if just a small sample, analyzing it afterward in a unique multi-
variate stream. As previously stated, this model tends to be unapplicable as sensor
networks grow unbounded. Thus, different techniques must be developed. On one
side, the data clustering structure could be defined locally, possibly restricted by the
network clustering structure, in order to confine communications to nearby sensors.
Afterward, these local structures would be combined by top-level processing units to
define a global clustering structure. For example, a strategy of cluster ensembles [40]
would operate in this way. On the other hand, sensors could be able to define repre-
sentative data or summary information that would be used by any top-level process
to define a single clustering structure, even if roughly approximated. For example,
Kargupta et al. presented a collective principal component analysis (PCA), and its
application to distributed cluster analysis [26]. In this algorithm, each node performs
PCA, projecting the local data along the principal components, and applies a known
clustering algorithm on this projection. Then, each node sends a small set of repre-
sentative data points to the central site, which performs PCA on this data, computing
global principal components. Each site projects its data along the global principal
components, which were sent back by the central node to the rest of the network, and
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applies its clustering algorithm. A description of local clusters is resent to the central
site which combines the cluster descriptions using, for example, nearest neighbor
methods.

However, these techniques still consider a centralized process to define the clus-
ters, which could become overloaded if sensors were required to react to the definition
of clusters, forcing the server to communicate with all sensors. Klusch et al. proposed
a kernel density-based clustering method over homogeneous distributed data [29],
which, in fact, does not find a single clustering definition for all data sets. It defines
local clustering for each node, based on a global kernel density function, approxi-
mated at each node using sampling from signal processing theory. These techniques
present a good feature as they perform only two rounds of data transmission through
the network. Other approaches using the k-means algorithm have been developed for
peer-to-peer environments and sensor network settings [4,12].

Learning localized alternative cluster ensembles is a related problem recently
targeted by researchers. Wurst et al. developed the LACE algorithm [42], which
collaboratively creates a hierarchy of clusters, in a distributed way. This trade-off
between global and local knowledge is now the key point for clustering procedures
over sensor networks. Cormode et al. [9] proposed different strategies, with local and
global computations, in order to balance the communication costs. They considered
techniques based on the furthest point algorithm [19], which gives an approximation
for the radius and diameter of clusters with a guaranteed cost of two times the cost of
the optimal clustering. They also present the parallel guessing strategy, which gives
a slightly worse approximation but requires only a single pass over the data. They
conclude that, in actual distributed settings, it is frequently preferable to track each
site locally and combine the results at the coordinator site.

Coping with Restricted Resources

Sensors are usually small, low-cost devices capable of sensing some attribute and of
communicating with other sensors. These characteristics imply resource restrictions
which narrow the possibilities for high-load computation while operating under a
limited bandwidth.

Taking into account the lack of resources usually encountered on sensor networks,
resource-aware clustering [14] was proposed as a stream clustering algorithm, for
example, clustering that can adapt to the changing availability of different resources.
The system is integrated in a generic framework that enables resource-awareness in
streaming computation, monitoring main resources like memory, battery, and CPU
usage, in order to achieve scalability in distributed sensor networks, by adapting the
parameters of the algorithm. Data arrival rate, sampling, and number of clusters are
examples of parameters that are controlled by this monitoring process.

The main requirement for sensor processing is to minimize power consumption on
a general basis, balancing local computation with data acquisition and transmission.

Data Processing

Although sensor networks usually operate with limited bandwidth, due to energy
restrictions, the amount of data produced by these networks can become unbounded
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due to the large number of sensors and their fast sensing abilities. This can turn out to
be an important bottleneck and force some nodes to spend more energy on relaying
information to the sink [35].

The key objective of sensor data processing is to maintain information incremen-
tally, in such a way that the system can cope with high-speed production of data.
Sufficient statistics can basically be computed for a sensor and its neighbors, comply-
ing with the first two requirements defined in “Requirements for Clustering Streaming
Series.” However, the ubiquitous setting of sensor networks narrows the possibility
of communication between all the sensors, which is usually required by clustering
methods. Even ODAC, which performs local computations on different levels of the
hierarchy, would require global referencing of sensors to allow communication be-
tween sensors that, although highly correlated, could be several hops away from each
other.

Given the processing abilities of each sensor, clustering results should be prefer-
ably localized on the sensors where this information becomes an asset. Thus, infor-
mation query and transmission should only be considered on a restricted sensor space,
either using flooding-based approaches, where communication is only considered be-
tween sensors within a spherical neighborhood of the querier/transmitter, or trajectory-
based approaches, where data is transmitted step-by-step on a path of neighbor
sensors. A mixture of these approaches is also possible for query retransmission [37].

These features reveal a key problem to be solved. If for centralized clustering
procedures, sufficient statistics are used to define a proximity basis between sensors,
in a distributed setup the proximity basis between sensors should also help to deter-
mine whether sufficient statistics for these sensors should continue to be maintained.
Data stream mining on sensor networks needs to operate under a limited bandwidth,
reducing the capability to represent and transmit the data mining models over the
network [27], which creates an even thicker barrier to an efficient handling of the
continuous flow of data. Previous works tend to concentrate a small part of com-
putation on local PDAs which may communicate with a centralized control station.
An example is the VEDAS system, which aims at mobile vehicle monitoring [25].
In this case, the distributed system monitors several characteristics of the vehicles,
alerting for significant changes in their behavior, based on local data mining models.
The system may also interact with the control station to alert the network or improve
its model.

Mobile Human Interaction

Ubiquitous activities such as clustering of streaming sensors usually imply mobile data
access and management, in the sense that even sensor networks with static topology
could be queried by transient devices, such as PDAs, laptops, or other embedded
devices. Thus, the clustering structure definition should also be accessible from these
mobile and embedded devices, so that information is more accurate on a subnetwork
enclosing the querying device. Of course, this would give more relevance to the
network topology while preserving the proximity basis between sensors all over the
network.

In this setup, mining data streams in a mobile environment raises an additional
challenge to intelligent systems, as model analysis and corresponding results need
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to be visualized on a small screen, requiring alternate multimedia-based human—
computer interaction. A previous work which took into account this issue was de-
veloped for stock market mining. MobiMine [27] is a mobile data mining system
that allows intelligent monitoring of time-critical financial data, enabling quick re-
actions to events on the market. Although this application is still somehow based
on the client—server model, or at least relies on the centralized processing of some
data, the mobile restrictions to the interface apply in the same way to sensor network
applications.

Adaptivity to Changes

With respect to adaptivity of the system to changes in the data clustering structure
definition, or structural drift detection (as defined in “Requirements for Clustering
Streaming Series”), the detection and reaction to changes must be adapted to the new
distributed setting. However, while it may seem straightforward to adapt previously
developed techniques, since changes can only be monitored if statistics are maintained
to support that decision, there is another change that must be monitored, with even
more control: network topology changes.

Sensor networks are often wireless and ubiquitous. Sensors are organized by
wireless links, possibly without centralized control. This way, the network topology
is highly volatile, evolving with time due to, for example, sensor movement, broken
links, or sensor failures. Abrupt changes in the short-range links (e.g., a gateway is
permanently shut down) can occur unexpectedly, forcing the global system to adapt
the clustering structure. Smoother changes may also occur, for example, with the
deployment of new sensors, or their deactivation, creating an expansion or contraction
behavior.

On top of all these issues, the deployment of moving sensors is an emergent
technique, used in numerous applications. Examples of dynamic systems creating
transient settings for sensor networks are the deployment of sensors for ocean cur-
rent monitoring, river flooding alert, atmospheric phenomena sensing, etc. In these
contexts, requirements for distributed clustering systems become extreme. Given the
emergence of these techniques, streaming sensor clustering on these networks be-
comes even more relevant for research.

FUTURE PATHS

As previously stated, centralized models to perform streaming sensor clustering tend
to be unapplicable as sensor networks grow unbounded, becoming overloaded if
sensors are required to react to the definition of clusters, forcing the server to com-
municate with all sensors. The ubiquitous setting created by sensor networks implies
different requirements for clustering methods. We can overview the features that act
both as requirements for clustering streaming sensors and future paths to research in
this area:

» The requirements for clustering of streaming series must always be ad-
dressed, with even more emphasis on the adaptability of the whole system.
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» However, single processing of one multivariate stream of data is impossible;
thus, processing must be distributed and synchronized on local neighbor-
hoods or querying nodes.

* Nevertheless, although the physical topology of the network may be useful
for data management purposes, the main focus should be on finding similar
sensors irrespective of their physical location; the data clustering structure
definition should be orthogonal with the sensor network topology.

» Concerning efficiency issues, sensors are usually limited in terms of en-
ergy, bandwidth, and processing power; minimizing different resources
(mainly energy) consumption is a major requirement in order to achieve
high uptime.

» A compact representation of both the data and the generated models must
be considered, enabling fast and efficient transmission and access from
mobile and embedded devices.

¢ The relevance of sensors in the clustering definition can also be based on
geographical position if the querying entity’s interest is focused on a local
area.

» Even though processing may be concentrated on local computations and
short-range communication, the final goal is to infer a global clustering
structure of all relevant sensors; hence, approximate algorithms should be
considered to prevent global data transmission.

Distributed data mining appears to have most of the necessary features to address
this problem. On one hand, the development of global frameworks that are capable of
mining data on distributed sources is rising, taking into account the lack of resources
usually encountered on sensor networks. Several parameters can then be controlled
by the monitoring process in order to minimize energy consumption. On the other
hand, given the processing abilities of each sensor, clustering results should be prefer-
ably localized on the sensors where this information becomes an asset. Information
query and transmission should only be considered on limited situations. The trade-off
between global and local knowledge is now the key point for clustering procedures
over sensor networks.

SUMMARY

The data stream paradigm imposes that variable clustering should also be addressed as
an online procedure, not only due to the dynamics inherent to streams but also because
the relations between them can change over time. Moreover, one could be interested
in inspecting the structure of clusters and their relations and transitions through time,
especially when streams may be produced in a distributed environment. The task that
emerges from this setting is better known as clustering of streaming sensors, since
the data is often produced in wide sensor networks.

In this chapter we have shown how the task of clustering streaming sensors dif-
fers from previously studied traditional tasks in its neighborhood, such as clustering
streaming series and clustering of streaming examples. An overview of previous
attempts to address clustering of streaming series is presented and we have tried to
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clarify to what extent these attempts are not suitable for the new task of clustering
streaming sensors. We have pointed out the main restrictions implied by sensor net-
work characteristics, such as limited power, bandwidth and possibly high mobility.
We have tried to summarize the requirements that systems addressing this task should
observe and its implications for future research.

Future research developments are requested to address these issues, and surely
researchers will focus on distributed data mining utilities for large sensor networks
streaming data analysis, as sensors and their respective data become more and more
ubiquitous and embedded in everyday life.
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INTRODUCTION

An efficient in-network data processing is a key factor to enable a wireless sensor
network (WSN) to extract insightful or critical information. Therefore, an important
amount of research has been devoted over the last years to the development of data
processing techniques suitable for sensor networks [16,39]. WSN is known to be con-
strained by limited resources, in terms of energy, network data throughput, and com-
putational power. The communication module is a particularly constrained resource
since the amount of data that can be routed out of the network is inherently limited
by the network capacity [32]. Also, wireless communication is an energy-consuming
task and it is identified in many situations as the primary factor of lifetime reduc-
tion [1]. The design of data gathering schemes that limit the amount of transmitted
data is therefore recognized as a central issue for wireless sensor networks [16,28,32].

An attractive framework for the processing of data within a WSN is provided
by data aggregation services, such as those developped at University of California,
Berkeley (TinyDB and TAG projects) [23,24], Cornell University (Cougar) [38], or
EPFL (Dozer) [4]. These services aim at aggregating data within the network in
a time- and energy-efficient manner and are suitable for networks connected to a
base station, from which queries on sensor measurements are issued. In TAG or
TinyDB, for instance, SQL-like queries interrogate the network to receive raw data
or aggregates at regular time intervals. The underlying architecture is a synchronized
routing tree, along which data is processed and aggregated from the leaves to the root
(i.e., the base station) [23,24]. The interest of the approach is related to the ability
of computing, within the network, some common operators like average, min, max,
or count, thereby greatly decreasing the amount of data that needs to be transmitted
over the network.

In this chapter, we show that the aggregation service principle can be used to
implement a distributed data compression scheme based on principal component
analysis (PCA) [15]. PCA is a classic, multivariate data analysis technique which
allows us to represent data samples in a basis called the principal component basis
(PC basis), where data samples are uncorrelated. When sensor measurements are
correlated, which is often the case in sensor networks, PC basis allows us to represent
the sensor measurements variations with a reduced set of coordinates. This feature
inspired recent work in the domain of data processing for sensor networks where
PCA is used for tasks like approximate monitoring [22], feature prediction [2,11],
and event detection [13,20]. However, it is worth noting that what is common to all
these approaches is that the transformation of the sensed data in the PC basis takes
place in a centralized manner in the base station.

What we propose here is a principal component aggregation (PCAg) scheme
where the coordinates of the measurements in the PC basis are computed in a dis-
tributed fashion by means of the aggregation service. This approach extends previous
work on data aggregation operators and presents the following advantages. First, PCA
provides varying levels of compression accuracies, ranging from constant approxi-
mations to full recovery of original data. It can therefore be used to trade application
accuracy for network load, thus making the PCA scheme scalable with the network
size. Second, the PCAg scheme demands all sensors send exactly the same number of
packets during each transmission, thereby balancing the network load among sensors.
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Given that network load is strongly related to the energy consumption [30], we will
show that the balanced loading increases the network lifetime as well.

The PCAg procedure is implemented as a three-stage process. First, a set of N
measurements is collected at the sink from the whole set of sensors. Second, a set of
q principal components is computed at the sink and distributed in the network. The
third step is the sensing itself where each node computes the principal component
scores in a distributed fashion along the routing tree. Experimental results based on
a real-world temperature measurement campaign illustrate that the PCAg allows a
recovery of 90% of the data variance at the base station, while reducing the network
load by a factor of 4.

The remainder of this chapter is organized as follows. “Data Aggregation in Sensor
Networks” introduces the notation and describes the principle of a WSN aggregation
service. “Principal Component Aggregation” presents the PCA and details its imple-
mentation in an aggregation service. “Network Load and Energy Efficiency” analyzes
the trade-offs between network load, network lifetime, and accuracy of approxima-
tions. A set of experimental results based on a real-world data set is reported and
discussed in “Experimental Results”. Related work and possible extensions are pre-
sented in “Related Works and Extensions” while finally “Conclusion” summarizes
the chapter.

DATA AGGREGATION IN SENSOR NETWORKS

NETWORK ARCHITECTURE

Let us consider a sensor network architecture of p nodes whose task is to collect sensor
measurements at regular intervals. Data is forwarded to a destination node referred to
as sink or base station, assumed to benefit from higher resources (e.g., a desktop PC).
Let ¢ € N denote the discretized time variable and x;[¢] be the measurement collected
by the sensor i, | <i < p, at time . At each time #, the p resulting measurements
form a vector x[¢] € R”. The sampling period is referred to as an epoch.

Since the communication range of the nodes is limited, the sink will generally
not be in range of all the sensors. Therefore, the information has to be relayed from
sources to the sink by means of intermediate nodes. Figure 5.1 presents an example of
a routing tree that collects the data from a set of sensors and forwards them to a sink.

DATA AGGREGATION SERVICE

This section presents an overview of TAG, a data aggregation service developed at the
University of California, Berkeley [23,24]. TAG stands for Tiny AGgregation and is
an aggregation service for sensor networks which has been implemented in TinyOS,
an operating system with a low memory footprint specifically designed for wire-
less sensors [33]. TAG aims at aggregating the data within the network in a time- and
energy-efficient manner. To that end, an epoch is divided into time slots, in such a way
that the activities of the sensors are synchronized as a function of their depth in the rout-
ing tree. Any algorithm can be used to design the routing tree, as long as (a) it allows
the data to flow in both directions of the tree, and (b) it avoids sending duplicates [23].
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FIGURE 5.1 Illustration of a routing tree connecting sensor nodes to a sink. Radio range is
10 meters.

The goal of TAG is to minimize the amount of time spent by sensors in powering
their different components and to maximize the time spent in the idle mode, in which
all electronic components are switched off. Indeed, the energy consumption is several
orders of magnitude lower in the idle mode than in a mode where the CPU or the
radio is active. This synchronization allows us to significantly extend the lifetime of
the sensors. An illustration of the activities of the sensors during an epoch is given in
Figure 5.2, for a network of four nodes with a routing tree of depth three.

Once a routing tree is set up and the nodes synchronized, data can be aggregated
along the routing tree, from the leaves to the root. TAG relies on a set of three
primitives [23,24]:

1. An initializer init, which preprocesses a value measured by a sensor.

2. An aggregation operator f, which inserts the contribution of a node in the
data flow.

3. An evaluator e, which applies a final transformation on the data.

Each node includes its contribution in a partial state record X which is propagated
along the routing tree. Partial state records are merged when two (or more) of them
arrive at the same node. When the eventual partial state record is delivered by the
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FIGURE 5.2 Activities carried out by sensors depending on their depth in the routing tree
(adapted from [23]).

root node to the base station, the desired result is obtained thanks to the evaluator.
Partial state records may be any data structures. However, when partial state records
are scalars or vectors, the three operators defined above may be seen as functions.

Example The “average” aggregate can be computed with a partial state record
(x) = (SUM, COUNT) consisting of the sum of sensor measurements collected by
nodes traversed, together with the number of nodes that contributed to the sum. The
three generic functions would be implemented as follows:

init(x;[t]) = (x;i[t], 1)
f((S1,C1), (82, C2)) = (S1 + 52, C1 + C2)
e((S,C)) =S/C

Note that without this aggregation process, all the measurements would be routed to
the base station. The root node would therefore have to send p packets per epoch.
Instead, using this scheme, each node is required to send only two pieces of data.

PRINCIPAL COMPONENT AGGREGATION

PRINCIPAL COMPONENT ANALYSIS

The principal component analysis (PCA) is a classic technique in statistical data
analysis, data compression, and image processing [18,25]. Given ¢ < p and a set
of N centered* multivariate measurements x[¢] € R?, it aims at finding a basis

* Measurements are centered so that the origin of the coordinate system coincides with the centroid of the
set of measurements. This translation is desirable to avoid a biased estimation of the basis {wk}1<x<4 of
R” towards the centroid of the set of measurements [18].
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of ¢ orthonormal vectors {Wi}i<x<, of R”, such that the mean squared distances
between x[¢] and their projections X[t] = ZZ:] wiWi ! x[¢] on the subspace spanned
by the basis {Wk}{<k<, is minimized. The corresponding optimization function can
be expressed as:

Jy (X[, W) Ix[¢] — R[]I

2

q
x[t] — Z Wi x[1] (5.1)

k=1

Under the constraint of orthonormal {wy}(<x<4, this expression can be minimized
using the Lagrange multiplier technique [15]. The minimizer of Equation (5.1) is the
set of the ¢ first eigenvectors {wy} of the covariance matix, ordered for convenience
by decreasing eigenvalues A;. These eigenvectors are called the principal components
and form the principal component basis. Eigenvalues quantify the amount of variance
conserved by the eigenvectors, and their sum equals the total variance of the original
set of centered observations X, that is,

p

N
> ke =N2mwf

k=1
The proportion P of retained variance within the first ¢ principal components can be
expressed as:
D=1 A
k=1 "k

P
Ek:l Ak
Ranging columnwise the set of vectors {Wi}i<x<4 in a W, matrix, the approxima-
tions X[t] of x[#] in the subspace R” are given by

P(q) = (5-2)

K[t] = WWTx[r] = Wz[t] (5.3)
where
Zf:] Ww;1X; p W;1X;
2t = Wix[t] = ( Z
p
i=1 WigXi i=l wquz

denotes the column vector of the coordinates of X[t] in {Wi} <k, also referred to as
the g principal component scores.

Example Figure 5.3 plots a set of N = 50 observations in a three-dimensional data
space x1, X2, x3 where x1, x, and x3 denote three data sources. Note that the correlation
between x; and x; is high, while the x3 signal is independent of x; and x,. The set of
principal component (PC) basis vectors {w;, wy, w3}, the two-dimensional subspace
spanned by {w;, w,} and the projections (crosses) of the original measurements on
this subspace are illustrated in the figure. We can observe that the original set of
three-variate measurements can be well approximated by the two-variate projections
in the PC space, because of the strong correlations between the values x;[¢] and the
values x,[?].
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FIGURE 5.3 Tllustration of the transformation obtained by the principal component analysis.
Circles denote the original observations while crosses denote their approximations obtained
by projecting the original data on the two-dimensional subspace {w, w,} spanned by the first
two principal components.

IMPLEMENTATION IN A DATA AGGREGATION SERVICE

The computation of the g principal component scores z[t] can be performed by
an aggregation service if each node i is aware of the elements w;y, ..., w;, of the
principal component basis. These elements are made available to each sensor during
an initialization stage. The initialization consists in gathering at the sink a set of
measurements from which an estimate of the covariance matrix is computed. The
first ¢ principal components are then derived and delivered to the network, so that
each node i stores the elements w;y, ..., w;, (see Figure 5.4).

Note that the capacity of the principal components to properly span the signal sub-
space is dependent on the stationarity of the signal, and on the quality of the covariance
matrix estimate. Failure to meet these two criteria may lead to poor approximations.

Once the components are made available to the network, the principal component
scores are computed by the aggregation service, by summing along the routing tree the

vectors (w;x;[t], ..., wi,x;[t]) available at each node. The aggregation primitives
are
init(x;[t]) = (wirx;[t]; .. .5 wigx;[2])
SUxs5xg), s yg)) = (-5 xg 1 Yg)

Partial state records are vectors of size ¢. The main characteristic of this approach is
that each nodes sends exactly the same amount of data, that is, the set of ¢ coordinates
zx[7].
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FIGURE 5.4 Aggregation service at work for computing the projections of the set of mea-
surements on the first principal component.

REMOTE APPROXIMATION OF THE MEASUREMENTS

An approximation %, of the measurements over the whole sensor field can be obtained
at the base station by transforming the vector of coordinates z, back to the original
basis by using Equation (5.3). The evaluator function is then the function

e(zilt], ..., zglt) = Gulrl, ..., X,[2])
= WTz[1]

which returns the approximation of the p-variate sensor measurements by using the
q principal components. Note that if p = ¢, the evaluation steps return the exact
set of sensor measurements. Otherwise, if the number of coordinates ¢ is less than
p, the evaluation will return an optimal approximation to the real measurements
in the mean square sense [Equation (5.1)]. Since sensor measurements are often
correlated, it is therefore likely that a number ¢ < p of coordinates can provide good
approximations.

It is worth noting that a simple procedure can be set up to check the accuracy of
approximations with respect to a user defined threshold. According to Equation (5.3)
the approximation &;[#] of the ith (1 < i < p) sensor measure at time ¢ is given by

q
£i[1] =) zlt] % wi
k=1

Since the terms {w;;} are assumed to be available at each node, each sensor is able
to compute locally the approximation retrieved at the sink, and in case to send a
notification when the approximation error is greater than some user defined €. This
scheme, dubbed supervised compression in [21], guarantees that all data eventually
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obtained at the sink are within £e of their actual measurements, and provides a way
to decide when to update the principal components in case of nonstationary signals.

NETWORK LOAD AND ENERGY EFFICIENCY

This section presents an analysis of the impact of the principal component aggregation
on the overall network performances. More precisely, we focus on the network traffic
load, the distribution of the energy depletion among the nodes, and the scalability
of the proposed solution. The scalability is defined as the capacity of the considered
networking architecture to expand and adapt to an increasing number of sensor nodes
[12]. This notion is of importance when considering large-scale deployments or very
dense sensing scenarios. Also, in most networking systems, it is found to be a limiting
issue [19] and should therefore to be carefully evaluated.

In “Trade-off between Accuracy and Network Load” We first address the trade-
off between the accuracy of the PCAg scheme and the gain in terms of network
load. Next, we analyze in “Distribution of the Network Load” the distribution of the
network load in the case of the classical approach (i.e., store-and-forward) and with
the PCAg. Finally, in “Scalability Analysis” we conduct a detailed computation of
the energy consumption in a scenario where a hierarchical routing topology [14,35] is
used. A quantification of the expected gains, in terms of network load and scalability,
is also presented in this section.

TRADE-OFF BETWEEN ACCURACY AND NETWORK LOAD

As discussed in “Remote Approximation of the Measurements” the data reconstruc-
tion carried out at the network sink provides an approximation of the sensed mea-
surements. The precision of this approximation depends on the number g of principal
components retained. At the same time, since ¢ is also the number of components
which need to be transmitted over the wireless network by the aggregation service,
the value of g has a direct impact on the network load.

In quantitative terms, Equation (5.2) illustrates the relation between the percentage
of retained variance and the number of principal components:

D it M
D1 Mk

As eigenvalues are necessarily positive, the function P(g) varies monotonically with
the value of g. Therefore, any decrease of the number of principal components results
into a lower network load at the cost of an accuracy loss. On the other hand, an increase
in the number of principal components has a positive effect on the amount of retained
variance (and consequently on the sensing accuracy) but demands additional data to
be transmitted. Therefore, the PCA scheme incurs a trade-off between the reduction
of the network load and the sensing accuracy.

Before detailing further how to formulate this trade-off, we recall that the amount
of information retained by a set of principal components depends on the degree of cor-
relation among the data sources. Whenever nearby sensors collect correlated measure-
ments, a small set of principal components is likely to support most of the variations

P(gq) =
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observed by the network. As an example, we refer the reader to the Figure 5.10 in
the experimental section, which illustrates the relation between the percentage of
variance retained and the number of principal components.

In practical settings, the benefits obtained in accuracy by adding a component
must be weighted by the cost incurred in terms of network load. The weighting is
necessarily application dependent, and can be formulated by means of an optimization
function. Its optimum may be determined for example at the sink, by means of a cross
validation procedure on the measurements collected during the initialization stage.

Finally, we emphasize that the principal component aggregation scheme is not
appropriate when sensor measurements are not correlated, or if the number of compo-
nents required by the application is too high. We detail this aspect in the next section,
and derive an upper bound on the number of principal components above which the
default scheme should be preferred.

DISTRIBUTION OF THE NETWORK LOAD

Let us consider a generic routing tree, where each node of the topology relays the
information from its children.

We begin by analyzing a classical store-and-forward (S/F) routing protocol [36]
where each node receives Rx (0 < Rx < p — 1) packets from its children and p is
the total number of nodes in the network. In particular, if the node is a leaf it does
not receive any packet to forward (Rx = 0) while if the node is fully connected it
receives Rx = p — 1 measurements per epoch.

After the reception of Rx measurements, a node adds its own data and forwards
the whole set to its parent node. It will therefore forward Tx = Rx + 1 packets, where
1 < Tx < p. It follows that the upper bound on the network load for all nodes of the
topology is given by

L = max {Rx; + Tx;}

, (5.4)
=(p-D+p=2p—1

where the subscript i refers to the ith node in the network. The upper bound for the
network load is a network metric that characterizes the minimum throughput required
at network nodes for avoiding congestion issues [5].

Let us consider now what happens when the PCAg is adopted. Each node receives
g components from each of its neighbours. The total number of packets received by all
nodes in the network is therefore ¢ Cpin < RX < ¢Cpax, Where Cpy, and Cpy,x stand
for the minimum and the maximum number of children of nodes in the network. Since
the data received by a node is combined with its sensed observation into a g-sized
vector, the total number of packets forwarded by a node is equal to ¢g. It follows that
the upper bound on the network load of a node by using the PCA is

L® = max {Rx; + Tx;}
= quax +q = q(Cmax + 1)

(5.5)

Figure 5.5 reports bar plots of the per-node network load sustained for two different
routing trees, and compares the network load distribution entailed by the S/F and
the PCAg approaches. More precisely, Figure 5.5(a) illustrates the repartition of the
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FIGURE 5.5 Histogram of the per-node load in different routing topologies. The store-and-
forward and PCAg approaches are compared.

network loads in the case of a linear chain, while Figure 5.5(b) refers to a more
generic, hierarchical network tree. We remark that in the S/F approach the network
loads sustained by the nodes are very heterogeneous. In fact, the load depends on the
node position in the routing tree: aleaf node transmits only its own sensing information
while the other nodes have to relay the packets coming from their children as well. As
a consequence, while some nodes process a single packet, others process a number
of packets that is proportional to the number of nodes in the network.

In the PCAg approach, the network load sustained by sensors is proportional to
the number g of retained principal components and their number of children in the
routing tree. An interesting feature of the PCAg approach is therefore that the network
load is more uniformly distributed, and is independent of the network size.

Letus now study under which conditions the adoption of the PCA routing approach
is convenient. From Equations (5.5) and (5.6) we derive the following condition on
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the number ¢ of principal components:

LP < [ & g(Cpax +1) < 2p — 1

2p—1
eqg< P (5.6)

where g < p. It follows that if the network size p is sufficiently higher than the
topology dependent term C,,x, the PCAg strategy outperforms a conventional SF
strategy.

Equation (5.6) is relevant also if we assess the approach in terms of time to
first failure (TTFF). The time to first failure is a commonly used metric of network
lifetime [8]. It is defined [5,31] as the elapsed time before a node in the network runs
out of energy:

TTFFnetwork = Ilrél‘;l {TTFFL }

where V is the set of nodes in the network and TTFF, is the time at which node i runs
out of energy. TTTF is dependent on the network load since the radio communication
module in a sensor node is the most energy-consuming element (typically at least one
order* more consumption than the CPU) [16,29,39].

In the store-and-forward approach, each node has to relay an amount of informa-
tion that depends on its depth in the routing tree. Therefore, TTFF will mostly depend
on the lifetime of the nodes closer to the sink since these nodes concentrate most of
the network load.

On the other hand, in a PCAg scenario, each node relays a comparable amount
of information (notably the number ¢ of principal components times the number of
children C;). The energy depletion is therefore better distributed in the network and
the TTFF does not depend any more on the size of the network.

In order to better support these preliminary considerations, we detail in the next
section the distribution of the network loads on a routing tree inspired from a hierar-
chical routing topology [35]. We will advocate by means of this particular topology
that the overall energy consumption with the PCAg scheme can be reduced by up to
an order of magnitude.

SCALABILITY ANALYSIS

Let us consider the routing topology of Figure 5.1 where p sensors are uniformly
distributed over a square area of A [unit: (m?)]. The nodes on a same vertical line are
chained together and all chains are connected by means of a single horizontal chain.
Moreover, a specific node on the last chain is connected to the data collection sink. If
we denote by p the density of the sensors [unit: (m~2)], the total number of nodes is
p = pA and the side of the grid in Figure 5.1 contains ,/p nodes.

*This ratio is expressed in terms of energy consumption. More specifically, it is worth noting that sending
1 bit of data consumes as much energy as 2000 CPU cycles, and, therefore, a packet length of 30 bytes
(the average packet length in TinyOS) is equivalent to 480000 CPU cycles [30].
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(a) Amount of packets transferred in the specific case (b) Summary of the total number of
of a hierarchical routing topology transmitted (Tx) and received (Rx)
packets on a single branch of the grid

FIGURE 5.6 Summary of the network load in a sensor using a hierarchical routing topology
and with S/F relaying of the packets.

The communication costs can be obtained as follows. Each node has to (a) relay
the information originating from the previous nodes on the chain and (b) send its own
measurement. In particular, the first node sends one packet, the second one receives
one packet and sends two packets, the third receives two packets and sends three
packets, and so on (Figure 5.6). Therefore, along a chain of length n = |/p], the
total amount of transmitted (Tx) and received (Rx) packets is

nn—+1)

2 5.7
_ (n—1n
==

Rx

Furthermore, we can denote by the value £ the average energy cost to transmit or
receive a single packet [dimension: (J/pck)]. According to [16], these two values
are about the same in wireless sensor networks. For instance, a typical value for the
transmission of 1 bit is £ >~ 20 uJ for the MicaZ board, and £ =~ 50 uJ for the
IMote2. Therefore, from Equation (5.7), we can derive the order of magnitude of the
relaying cost (in terms of energy) on a single chain, with respect to the length n of
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this transmission chain:

Ery = 5@ — 0(n?)
Ery = 5@ =0m?

Echain = E1x + Erx = O(n*) + O(n*) = O(n?)

The same approach applies to the computation of the relaying cost on the horizontal
chain in Figure 5.6. Each node of this chain receives k = (n — 1)n/2 packets from the
vertical chains. Thus, the first node on the horizontal chain transmits k packets, the
following chain receives the k packets and adds its k packets, and so on. Therefore,
the cumulative number of packets relayed on the entire horizontal chain is

Tx® — kn(n + 1) _ nn+ nn+1) — ot
2 2 2
knn—1) nn+Dnn—1)
H _ — — 4
Rx™ = > = 7 5 =0(n")

and the order of magnitude of energy cost for the relaying on the entire horizontal
chain can be expressed as

Ehnorizontal = ETxW + ERxM = O(”l4)

The order of magnitude for the energy required to relay the information of the whole
network of sensors is

Enelwork = Ehorizontal + nEchain
= 0(n*) +no(*)
=0 =00 (5.8)

We obtain that the energy required to transport the information using a hierarchical
routing in a wireless sensor network increases as the square of the number of nodes.

Let us now analyze the cost for the PCAg scheme. In this case each node sends
q < p packets per epoch, where p is the total number of nodes. Figure 5.7 shows the
number of packets transferred on a hierarchical routing topology made of p nodes and
Figure 5.7(b) details the path of the ¢ components on a specific chain. The number
Tx of transmitted packets and the number Rx of received packets along a chain of
length 7 is:

Tx = ng
Rx=(@m—1l)g

The order of magnitude of energy consumption along a chain of length # is then:

Erx = Eng = O(ng)
Erx =& —1)g = O(ng)
Echain = E1x + Erx = O(nq) + O(nq) = O(nq), g <n*
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(a) Amount of packets transferred in the specific case (b) Summary of the total number of

of the PCAG compression transmitted (Tx) and received (Rx)
packets on a single chain in an architec-
ture using PCAg compression

FIGURE 5.7 Summary of the network load in a sensor grid topology and with PCAg relaying
of the packets.

On the horizontal chain, each node receives ng components from its corresponding
chain. It merges its own sensing information and forwards the packet. This packet is
made of ng components and requires nq transmissions. The numbers of transmitted
and received packets are

X" = n(ng) = 0(n*q)
Rx® = (n — Dng = 0(n’q)
and, in terms of energy:
Enorizontal = ETX® + ERxM = 0(n?q)

Finally, the order of magnitude of the whole energy spent to propagate the values of
the sensor by using the PCA compression technique is

Enetwork = Ehorizontal + nEchain
= 0(n*q) +nO(nq)
=0(m’q)=0(pg), q=<p (5.9)

Equations (5.8) and (5.9) show that the adoption of the PCA strategy allows an order
of magnitude reduction of the energy consumption.

We can conclude this section by summarizing the added value of the adoption
of the principal component aggregation scheme in a network architecture: (a) the
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availability of a traffic control policy which guarantees the maximum of retained
information for a given traffic, (b) an enhanced distribution of the energy depletion,
(c) a significant reduction of the TTFF.

EXPERIMENTAL RESULTS

This section illustrates experimentally the different trade-offs incurred by the princi-
pal component aggregation scheme, and compares them to the default S/F scheme.
Experiments are based on a set of real-world temperature measurements, which we
detail in “Data”. Instances of network routing trees are generated according to a sim-
ple algorithm described in “Network Simulations”. Results related to the tradeoffs
between approximation errors and network load are presented in “Principal Compo-
nent Aggregations.” “Communication Costs” then illustrates the ability of the princi-
pal component aggregation to better distribute the network load among the sensors.

DATA

Experiments were carried out using a set of 5 days of temperature readings obtained
from a 54 Mica2Dot sensor deployment at the Intel research laboratory at Berkeley
[37]. The sensors 5 and 15 were removed as they did not provide any measurement. The
readings were originally sampled every 31 seconds. A preprocessing stage where data
was discretized in 30 second intervals was applied to the dataset. After preprocessing,
the dataset contained a trace of 14400 readings from 52 different sensors. The code
associated with the preprocessing and the network simulation was developed in R, an
open source statistical language, and is available from the authors’ Web site [26].
An example of temperature profile is reported in Figure 5.8, and an illustration
of the dependency between sensor measurements is given in Figure 5.9. The sensors
21 and 49 were the least correlated ones over that time period, with a correlation

LT
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20 - \ \ \

1 2 3 4 5 6
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FIGURE 5.8 Temperature measurements collected by sensor 21 over a 5-day period.
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FIGURE 5.9 Examples of the dependencies between the measurements of sensor 21 and
sensor 49.

coefficient of 0.59. They were situated on opposite sides of the laboratory. Temperature
over the whole set of data ranged from about 15°C to 35°C.

NETWORK SIMULATIONS

The positions of the sensors are provided in [37], and the distribution of the sensors
in the laboratory can be seen in Figure 5.1. We analyzed the communication costs
incurred by different routing trees which were generated in the following way. The
root node was always assumed to be the top-right sensor node in Figure 5.1 (node 16
in [37]). The routing trees were generated on the basis of the sensor positions and the
radio range was varied from 6 m (minimum threshold such that all sensors could find
a parent) to 50 m (all sensors in radio range of the root node). Starting from the root
node, sensors were assigned to their parent in the routing tree using a shortest path
metric, until all sensors were connected. An illustration of the routing tree obtained
for a maximum communication range of 10 m is reported in Figure 5.1.

PRINCIPAL COMPONENT AGGREGATION

The average amount of information retained by the first 25 principal components is
reported in Figure 5.10. We relied on a cross-validation technique to estimate the
amount of variance that could be retained from the dataset. Cross-validation was
used to simulate the fact that only part of the data is used to compute the principal
components, and was implemented as follows. The dataset was splitin 10 consecutive
blocks (1440 observations — i.e., half a day of measurements). Each of the 10 blocks
was used as the training set to compute the covariance matrix and its eigenvectors,
and the remaining observations, referred to as fest set, were used to estimate the
percentage of retained variance.

Figure 5.10 provides the average retained variance on the 10 test sets for the
first 25 principal components. The upper line gives the amount of variance retained



72 Knowledge Discovery from Sensor Data

1004 e m e mmmmm—— = -

95 !

- - Testset
— Cross validation

Percentage of Variance Retained

75

70 +

T T T T T
5 10 15 20 25

Number of Principal Components

FIGURE 5.10 Minimal amount of principal components required in order to retain a given
measurement variance.

when principal components are computed with the test sets, while for the lower
curve the components are computed with the training set. This figure shows that
the first principal component accounts on average for almost 80% of the variance,
while 90% and 95% of variance are retained with 4 and 10 components, respectively.
The confidence level of these estimates (not reported for clarity) was about £5%.
Additional experiments, not reported for space constraints, were run using k-cross
validation with k ranging from 2 to 30. The percentages of retained variance on the
test data blocks tended to decrease with k. Gains of a few percent were observed
for k lower than 5 (more than 1 day of training data), and losses of a few percent
were observed for k higher than 15 (less than 9 hours of data). It should be stressed,
however, that the important point in collecting observations for extracting the principal
components is not so much in the number of observations collected, but in their ability
to properly capture the covariances between sensor measurements.

The amount of retained variance increases very fast with the first principal com-
ponent, and becomes almost linear after about 10 components. A linear increase of
retained variance with the number of principal components reflects the fact that the
components obtained by PCA are actually no better than random components [18].
From Figure 5.10, it therefore seems that from 10 or 15 components onward, the
remaining variations can be considered as white noise.

Figure 5.11 illustrates the approximations obtained during the first round of the
cross validation (i.e., principal components are computed from the first 12 hours of
measurements) for the sensor 49, using 1, 5, and 10 principal components. A single
principal component provides rough approximations, which cannot account for the
specifities of some of the sensor’s measurements. For example, the stabilization of
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FIGURE 5.11 Approximations obtained on the test set for the sensor 49 using 1, 5, and 10
principal components respectively.

the temperature around 20°C around noon during the second, third, and fourth days
(probably due to the activation of an air-conditioning system at a location close to
sensor 49) are not rendered by the approximations.

Increasing the number of principal components allows us to better approximate
the local variations, and passing to 5 components provides, for example, a much better
approximation of the measurements of the sensor 49. Note, however, that the quality
of obtained approximations may not be the same for each sensor. For example, for
sensor 22 (results not reported due to space constraints), the gain in approximation
accuracy was much higher when passing from 5 to 10 components.

COMMUNICATION COSTS

We now compare the communication costs incurred by the default and PCAg schemes
for different types of routing trees. We illustrate the impact of the routing tree structure
on the number of packets routed in the network by varying the communication range
of the radio (see Figure 5.12). Given that the sensors choose as their parent the
sensor within radio range that is the closest to the base station, increasing the radio
communication range leads the routing tree to have a smaller depth, and its nodes to
have an average higher number of children.

For the default scheme (Figure 5.12(a)), increasing the radio range reduces the
average sensor network load but does not reduce the maximum network load. The
latter is supported by the root node. A radio range of 50 m allows all nodes to
communicate with one another. The resulting routing tree is of depth 1, and contains
51 leaf nodes and 1 root node. The root node is therefore still required to receive and
forward 51 packets, and to transmit its own measurements. The maximum network
load therefore remains at 103 packets processed per epoch.
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FIGURE 5.12 Comunication costs incurred by the default scheme (a) and the aggregation
scheme (b), as a function of the radio range.

For the PCAg scheme, we first illustrate the communication costs incurred by
the computation of one component (Figure 5.12(b)), and will then generalize to the
costs incurred by the computation of several components. It is interesting to see that
increasing the radio range in the PCA scheme tends to increase the network load.
This is the opposite effect than the one observed for the default scheme, and is a
direct consequence of the increased number of children induced by routing trees with
smaller depths. Eventually, for a fully interconnected network, we observe the same
effect as for the default scheme, where all sensors send only 1 packet, while the root
node sustains the higher network load due to the forwarding task. However, note that
while the root node receives 51 packets, it only has to send 1 packet thanks to the
aggregation process. This therefore bounds the maximum network load to 52 packets
per epoch.

The extraction of one component is therefore always beneficial for the network
load incurred at the root node, and performances increase as the communication
range diminishes. Extracting more components may, however, be detrimental to the
network compared to the S/F scheme. The extraction of k components implies k
times the number of receptions and transmissions required for one component. The
network load incurred by k components is therefore obtained by multiplying the
figures in Figure 5.12 by k.

This is illustrated in Figure 5.13 where the number of packets processed (received
and sent) is reported as a function of the number of principal components extracted
for a radio range of 10. In this routing tree, the maximum number of children is 6 (see
Figure 5.1). For the extraction of one PC, the maximum network load will therefore
be 7, that is, 6 receptions and 1 transmission, to be compared with the maximum
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FIGURE 5.13 Comparison of the communication costs incurred by the default scheme and
the aggregation scheme as 1, 5, and 15 principal components are retrieved. Radio range is
10 m. The maximum network load is reduced if the number of principal components is less
than 15.

network load of 101 for the root node. However, extracting more than 15 components
leads the maximum network load to be higher than in the default scheme, as the sensor
node aggregating the packets from its 6 children will sustain a network load of 105
packets per epoch.

RELATED WORK AND EXTENSIONS

The application of the PCA to extract features out of wireless sensor data has been
suggested at several occasions in the recent literature on data processing techniques
for sensor networks. In [22], the authors proposed relying on principal component
scores in order to (a) compress vibration sensor data and (b) detect events in vibration
patterns. Event detection based on principal components has also been addressed
in [13], where the authors proposed applying the PCA on network statistics, which
were considered as sensors’ internal state measurements. Their approach was shown
to provide a way to detect network anomalies that would not be detected at the sensor
scale. PCA has also been suggested as a way to perform event classification in [11],
where the application was aimed at classifying vehicles on the basis of vibration sensor
data. Finally, the authors in [2] proposed relying on the PCA as a preprocessing step
in a data mining architecture for sensor networks.

Contrary to the scheme presented in this chapter, these approaches rely on clusters
of sensors. The computation of the principal component scores is carried out at the
cluster level, by means of a coordinating node that gathers measurements in each
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cluster for computing the scores. The computation is therefore only distributed at
the cluster level, whereas the scheme proposed in this chapter allows us to distribute
this computation at the level of wireless sensors. The proposed scheme and cluster-
based approaches are therefore not exclusive, but open the way to hybrid systems that
rely on clustered networks where the principal component aggregation is used within
clusters. We note that in these approaches, the stationarity of the signal is an important
assumption, and that failure to meet this assumption may lead to potentially high and
unexpected error rates in the compression. A possible research direction to handle
nonstationarity can be to rely on adaptive PCA techniques [7,15], and to update
the principal components over time to keep on tracking the subspace containing
the signal. The communication overhead caused by the updates may, however, be
important, particularly if the data distribution changes frequently.

The aggregation principle underlying the compression scheme proposed in this
chapter is readily extensible to any basis transformation. Related work on the use
of basis change for sensor networks has been addressed in [10], where the authors
investigated the use of random bases to project sensor measurements. The work is
analyzed in the context of compressed sensing, an emerging field in signal process-
ing (see also [9]). Their work is, however, mainly focused on the theoretical ability
of random bases to retain the sensor measurements’ variations. The possibility of a
synchronized routing tree was mentioned, but no further analysis on the trade-offs
between the communication costs and the signal reconstruction accuracy was pro-
vided. Among other basis transformations of interest, we stress that the independent
component analysis (ICA), also known as blind source separation [15], is particularly
appealing. ICA aims at determining a basis, which not only decorrelates signals, but
also gets them independent. ICA has, for example, proven particularly efficient in
speech processing for separating the set of independent sources composing an audio
signal.

We finally refer the reader to [23,24] for additional optimization schemes that can
be designed to improve the efficiency of aggregation services, particulary in terms of
resilience to sensor failure and robustness to missing measurements. In the proposed
scheme, missing measurements entail an incomplete computation of the principal
component scores, which may lead to unexpectedly poor approximations of the sensor
measurements at the base station. As discussed in [23,24], a common approach for
managing missing values is to use inference models based on past observations.
More specifically, techniques proposed for sensor networks include caching [6,23,27],
where missing data is simply replaced with the latest observed value. More complex
inference models such as autoregressive models [3,34] or Kalman filters [17], for
example, have also been proposed, allowing better approximations at the price of
higher computational costs.

CONCLUSION

In this chapter we proposed a distributed data compression scheme based on the prin-
cipal component analysis. This approach, called principal component aggregation,
allows us to evenly distribute among the sensor nodes the computation of the principal
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component coordinates. The approach was shown to benefit from the following two
properties. First, as a by-product of aggregation, the network load is distributed among
the sensors and scales with the network size. Second, thanks to the principal compo-
nent analysis, the linear redundancies between sensor measurements are removed.

A thorough analysis of the trade-offs involved was conducted, both analytically
and experimentally. It showed that, in the case of correlated measurements, the PCA
allows us to significantly reduce the energy consumption and the network load. Exper-
iments based on real-world temperature measurements illustrated the fact that 90%
of the variance of the data could be recovered at the base station while, at the same
time, reducing the network load by a factor of 4.
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ABSTRACT

The formation of secure transportation corridors, where cargoes and shipments from
points of entry can be dispatched safely to highly sensitive and secure locations, is a
high national priority. One of the key tasks of the program is the detection of anoma-
lous cargo based on sensor readings in truck weigh stations. Due to the high vari-
ability, dimensionality, and/or noise content of sensor data in transportation corridors,
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appropriate feature representation is crucial to the success of anomaly detection meth-
ods in this domain. In this chapter, we empirically investigate the usefulness of man-
ifold embedding methods for feature representation in anomaly detection problems
in the domain of transportation corridors. We focus on both linear methods, such as
multi-dimensional scaling (MDS), as well as nonlinear methods, such as locally linear
embedding (LLE) and isometric feature mapping (ISOMAP). Our study indicates that
such embedding methods provide a natural mechanism for keeping anomalous points
away from the dense/normal regions in the embedding of the data. We illustrate the
efficacy of manifold embedding methods for anomaly detection through experiments
on simulated data as well as real truck data from weigh stations.

INTRODUCTION

Anomaly detection has remained one of the most difficult tasks in data mining due to
the inherent difficulty in precisely defining and quantifying the notion of anomaly. Un-
like other data mining tasks such as classification, clustering, and association analysis,
anomaly detection has to be typically customized to the application domain, since
its definition is domain-dependent. Nevertheless, with several emerging application
domains (particularly in the realm of national and homeland security) that rely heavily
on anomaly detection, the need for a careful study of such methods is more urgent
than ever before.

Over the past several years, significant research effort has gone into the design of
anomaly detection methods that are appropriate in unsupervised [3], semisupervised
[20,32], and fully supervised [22,31] settings. A comprehensive survey of existing
methods can be found in [30]. Several of these methods implicitly assume that the
input data has a representation appropriate for anomaly detection. In reality, there is
little or no control over the features, and the features, in their original representation,
may not be appropriate for the anomaly detection algorithm. Thus, a natural question
to ask is: can the existing anomaly detection methods benefit from feature extrac-
tion? Unlike the classification/prediction literature, where feature extraction is the
norm, few results exist on appropriate feature representation for anomaly detection
problems. In this chapter, we study the application of manifold-embedding methods
for feature representation in anomaly detection problems, specifically in the context
of secure transportation corridors, where the goal is to safely dispatch cargoes and
shipments from points of entry to highly sensitive and secure locations. The formation
of transportation corridors is a high national priority, and at this stage, one of the key
tasks of the program is to be able to detect anomalous cargo based on sensor readings
at truck weigh stations. While (nonlinear) manifold-embedding methods have been
around for over a decade [4,24], the novelty of our study stems from the fact that
the (nonlinear) embedding methods have not been applied to the emerging anomaly
detection problems in the domain of transportation corridors.

We argue that manifold embeddings, particularly the more recent nonlinear ap-
proaches such as ISOMAP [4] and LLE [24], are surprisingly natural for effective
representations of data for anomaly detection purposes. In proximity-based anomaly
detection methods [6,17,18], one typically makes use of the intuition that normal
points are usually close to and anomalous points are far away from the declared
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“normal” points. In particular, one often looks at what fraction of a point’s k-nearest
neighbors view the point under consideration to be their k-nearest neighbor [6]. On
the other hand, ISOMAP approximates geodesic distances using the k-nearest neigh-
bors. Outlier points will have larger geodesic distances to all other points, and hence,
will lie far away from the normal points in the manifold embedding. An intuition for
the usefulness of LLE embedding can be similarly obtained. Thus, manifold embed-
dings can result in an appropriate representation of the data, which ensures outliers to
stay away from the normal points. Through extensive experimentation, we illustrate
that this simple intuition is useful in practice, and has the potential of significantly
improving the effectiveness of existing methods for anomaly detection.

Anomaly detection problems are typically not solved in a fully automated way, and
often involve human experts in the loop. In fact, it is often desirable to be able to tune
the performance of an anomaly detection method based on the false-positive and false-
negative rates. In light of such desiderata, finding appropriate low-dimensional feature
representations using manifold embedding (a) can give valuable information about
the structure of the data, which can be used for visualization and tuning purposes,
and (b) can be directly fed into any standard anomaly detection method, such as
thresholded Parzen window density estimators [11] and one-class support vector
machines [25,28]. In fact, visualization of the embedding can give valuable clues
about potential anomalies off-the-shelf anomaly detection methods may not detect.

The main contribution of our work is the application of manifold embedding—
based anomaly detection methodology to transportation corridors. We apply this
methodology to real weigh station sensor data collected over several months and
uncover important structure in such data, including potential anomalous behavior as
well as group structure among normal trucks. The domain-specific insights obtained
from the analysis are proving valuable for planning the future work on transportation
corridors.

The rest of this chapter is organized as follows. In “Anomaly Analysis Using
Manifold Embedding” we review linear and nonlinear manifold-embedding methods,
and discuss the rationale behind anomaly detection with manifold embedding. We
present experimental results on simulated datasets in “Experiments on Artificial Data.”
“Application to Transportation Corridors” discusses the anomaly detection problem in
transportation corridors and presents experimental results on real life data. A summary
of the results is given in “Discussion.”

DEFINITION OF KEY TERMS

Anomaly detection: Finding unusual/anomalous data points in a given data
set. Manifold embedding: Methods for obtaining low-dimensional manifold
structure of high-dimensional observations.

ANOMALY ANALYSIS USING MANIFOLD EMBEDDING

In this section, we review three widely used manifold embedding methods, namely,
multidimensional scaling (MDS), locally linear embedding (LLE), and isometric
feature mapping (ISOMAP), and discuss their applicability for anomaly detection
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purposes. In particular, we argue that while these methods were originally designed
for obtaining low-dimensional manifold structure of high-dimensional observations,
they also provide a natural way to ensure that points that are away from the dense
regions in the high-dimensional observations stay away from the dense regions even
in the embedding. As a result, such embedding methods could be very useful for
anomaly detection.

For the purpose of our discussion of embedding methods, we consider a set of
high-dimensional observations X = {xi,..., x,}, where x; € Rii=1,...,n
Further, we assume that the data is centered at the origin. The primary goal of
manifold-embedding methods is to compute n corresponding data points ¥; € R™,
where m < d, while preserving important “structure” in the data. The structure to be
preserved determines to a certain extent the choice of the dimensionality reduction
approach. We consider three popular methods—MDS, LLE, and ISOMAP. MDS is a
linear-embedding method, which has been studied over several decades now, whereas
LLE and ISOMAP are more recent nonlinear-embedding methods. Choosing an ap-
propriate target dimension can be a challenge. In our case we require that the results
can be easily visualized.

METRIC MULTIDIMENSIONAL SCALING (MDS)

Given a n x n dissimilarity matrix D and a distance measure, the goal of MDS is to
perform dimensionality reduction in a way that will preserve dot products between
data points as closely as possible [5]. We consider a particular form of MDS called
classical scaling. In classical scaling, the Euclidean distance measure is used and the
following objective function is minimized:

Ewps= Y (x[xj—ylv,)’= Y D 6.1)

i i ] b i#]

The first step of the method is to construct the Gram matrix X X” from D. This can
be accomplished by double centering D? [1]:
1
xijz_i[pfj—pﬁ—n?ﬁp%] (6.2)

where

] n 1 n 1 n n
Df=;ZDfa D§=;ZD§1 D.%:;ZZD;
a=1 b=1 e=1 d=1
The minimizer of the objective function is computed from the spectral decomposition
of the Gram matrix. Let V denote the matrix formed with the first m eigenvectors
of XT X with corresponding eigenvalue matrix A that has positive diagonal entries
{A:}7_;. The projected data point in the lower-dimensional space is the rows of VVA,
that is,
VAV =, 9l

The output of classical scaling maximizes the variance in the data set while re-
ducing dimensionality. Distances that are far apart in the original data set will tend
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to remain far apart in the projected data set. Since Euclidean distances are used, the
output of the above algorithm is equivalent to the output of PCA [1, 15, 29]. However,
other variants of metric MDS are also possible where, for example, non-Euclidean
distance measures or different objective functions are used. Further, in recent years,
PCA has been extended to work with exponential family distributions [8] and their
corresponding Bregman divergences [2, 13]. Recent results [21] apply distributed
nonlinear PCA for visualization of network data and suggest the possibility of using
such a methodology for anomaly detection.

LOCALLY LINEAR EMBEDDING (LLE)

LLE is a graph-based dimensionality reduction method which attempts to preserve
the local linear structure [24]. Given a graph, LLE linearly approximates each point
on the manifold with its closest neighbors. This is done by solving a least squares
regression problem on local neighborhoods. A lower-dimensional representation is
obtained by reconstructing each point based on its neighbors.

The first step of LLE is to compute k-nearest neighbors. In the second step a
weight matrix W is computed which allows the representation of each point as a
linear combination of its neighbors. LLE treats each point as being sampled from
a local region. The weight matrix W is computed by minimizing the reconstruction
error:

Ew =Y llxi=>_ Wix;| (6.3)
i j

subject to the constraints: W;; = 0 when x; and x; are not neighbors, and > W;; = 1.

J
The last step of the LLE algorithm is to compute a lower-dimensional represen-
tation of the data. The output of the algorithm is obtained by minimizing:

Ey =Y | — > Wil (6.4)
i J

n
subject to the constraints: Y ¥; = 0 and W' W = L.

While the computationl olf W is carried out locally, the reconstruction of the points
is computed globally in one step. As a result, data points with overlapping neighbor-
hoods are coupled. This way LLE can uncover global structure as well. The constraints
on the optimization problems in the last two steps force the embedding to be scale and
rotation invariant. LLE is a widely used method that has been successfully used on
certain applications [24, 27] and has motivated several methods including supervised
[9] and semisupervised [33] extensions, as well as other embedding methods [10].
One can use it to uncover nonlinearities which cannot be detected with MDS. LLE
has been used in conjunction with k-means in [16] to detect anomalies in hyperspec-
tral images. Unlike [16] we use dimensionality reduction alone for preprocessing of
features and apply it to transportation corridors.
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ISOMETRIC FEATURE MAPPING (ISOMAP)

ISOMAP is another graph-based embedding method [4, 26]. The idea behind
ISOMAP is to embed points by preserving geodesic distances between data points.
The method attempts to preserve the global structure in the data as closely as pos-
sible. Given a graph, geodesic distances are measured in terms of shortest paths
between points. Once geodesic distances are computed, MDS is used to obtain an
embedding.

The algorithm consists of three steps. The first step is to construct a graph by
computing k-nearest neighbors. In the second step, one computes pairwise distances
D;; between any two points. This can be done using Dijkstra’s shortest path algorithm.
The last step of ISOMAP is to run the metric MDS algorithm with D;; as input. The
resulting embedding will give ||y; — ¥ j||2 approximately equal to Dl.zi for any two
points. By using a local neighborhood graph and geodesic distances, the ISOMAP
method exploits both local and global information. In practice, this method works
fairly well on a range of problems. One could prove [4] that as the density of data
points is increased the graph distances converge to the geodesic distances. ISOMAP
has been used in a wide variety of applications [19, 23] and has recently motivated
several extensions [14, 33, 34].

The success of anomaly detection methods often depends on the representation
of the data. Existence of irrelevant features makes it hard to understand the true
structure of the data, and can make the task of anomaly detection significantly harder.
In a general sense, manifold-embedding methods uncover the true structure in the
data in low dimensions. A low-dimensional representation is often desirable since
(a) one can do visualization-based analysis, which can be very effective in practice,
and (b) certain anomaly detection techniques, for example, based on nonparametric
density estimates [12], are more effective in low dimensions. In addition to the general
benefits, embedding methods can be particularly effective for anomaly detection in
that they have a natural mechanism to keep the anomalous points away from the
dense/normal regions even in the embedding of the data.

EXPERIMENTS ON ARTIFICIAL DATA

To illustrate the advantage of transformation/embedding methods in anomaly detec-
tion, we create two high-dimensional simulated data sets. Both data sets are em-
bedded onto a two-dimensional space using ISOMAP and MDS. We compare the
performance of anomaly detection on the original data set against the embedded data
sets. For anomaly detection we use the popular one-class SVM algorithm. One-class
SVM [25] computes a hyperplane in the feature space such that a predefined fraction
of the training data lies on one side of the separating hyperplane. Outlier points end
up on the side facing the origin. The objective function of the method maximizes
the margin between the hyperplane and the origin. For our experiments we use the
LIBSVM [7] implementation of the algorithm. We ran experiments on two sets of
artificial data:
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DataSet 1: Normal data is sampled from three nonoverlapping Gaussians in R,
with each Gaussian having an identity covariance matrix. The anomalous
points are randomly generated. The coordinates of the first two dimensions
are scaled such that they lie within the same range as the Gaussian data.
The remaining 48 dimensions are scaled to be further away from the normal
points. DataSet 1 contains 3300 points, out of which 300 are anomalies.

DataSet 2: In this case all data is sampled from a Gaussian in R*°. Anomalous
points are generated by taking one half of the points, and setting the first
three dimensions such that they form a Swiss roll. Data sets resembling a
Swiss roll are common in dimensionality reduction literature [24, 26]. The
size of DataSet 2 is 1200.

We ran a fivefold cross validation on both data sets. During cross-
validation training was performed only on normal points, while testing was
done on both the current fold and the anomalous points.

REsuULTS

For DataSet 1, both MDS and ISOMAP embeddings keep outliers away from the
normal points (Figure 6.1). Thus, in the embedding, anomalies and normal data points
are not difficult to detect. However, in the original data set the separation appears to be
a more difficult task. The error rate for one-class SVM is 12.3% on the original data
set, while it is 6.1% on the MDS embedding and 3.6% on the ISOMAP embedding.

DataSet 2 illustrates clearly what happens when anomalies adhere to some struc-
ture (Figure 6.2). In this case the structure is a Swiss roll in the first three dimensions.
The error rate of 16.7% on the original data set is the highest. Running one-class
SVM on the embedded data sets results in an improved performance. The error rate
on the MDS embedding is with 5.5% the lowest. On the ISOMAP embedding it is
somewhat higher with 11.3%, but still better in comparison to the original data set.
While both embed dings appear to keep most anomalies as outliers, [SOMAP seems
to be more effective in uncovering the structure of the data. While MDS shows the
Swiss roll from a top view, in ISOMAP the Swiss roll appears to be unfolded. The
unfolding allows one to analyze anomalies at different ends of the Swiss roll.

The projected points for DataSet 1 appear rather separable, yet the error rates for
it are not zero. In addition one can also notice a better performance on DataSet 2 for
MDS-projected data. These observations can be explained by the way the experiments
were conducted. One-class SVM had to be run on both projected data and high-
dimensional data. To be fair to all scenarios four sets of SVM parameters were used
when running cross validation. The reported results are based on the best performing
parameter set for each scenario. Given the same conditions, our objective was to
evaluate how the one-class SVM algorithm would perform on each scenario.

The summary of results is shown in Table 6.1. Our experiments illustrate that one
can indeed benefit from using embedding methods prior to performing anomaly detec-
tion. In particular, using (nonlinear) embedding methods can reveal structure within
anomalies, which can make a significant difference in real-life anomaly detection
tasks.
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FIGURE 6.1 Two-dimensional embedding of dataset using (a) MDS, and (b) ISOMAP.
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FIGURE 6.2 Two-dimensional embedding of dataset 2 using (a) MDS, and (b) ISOMAP.
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TABLE 6.1
Error Rate on Anomaly Detection
Using Manifold Embedding

Embedding Method  DataSet 1  DataSet 2

None (original data) 12.3% 16.7%
MDS 6.1% 5.5%
ISOMAP 3.6% 11.3%

APPLICATION TO TRANSPORTATION CORRIDORS

The formation of secure transportation corridors, where cargoes and shipments from
points of entry can be dispatched safely to highly sensitive and secure locations, is
a high national priority. The primary objective is to ensure rapid intermodal cargo
movement, specifically focusing on large trucks along the nation’s highways, in a
manner that ensures supply-chain security without disrupting commerce. This could
be achieved through a network of truck weigh stations equipped with state-of-the-art
sensor infrastructures. In this context, sensors are defined to include weigh-in-motion
scales, static scales, radiation sensors, RFID scanners, cameras, video, text scanners
for truck manifests, as well as OCR-based scanners of truck license plates and DOT
number plates. The massive volumes of disparate data gathered from sensors are useful
in the context of their end-use, which is to detect cargoes that represent plausible safety
or security hazards.

The automated discovery of hazards is especially challenging as such events, that
is, trucks carrying contraband or dangerous cargo, are extremely rare. The current
practice is to detain a truck for manual inspection when certain alarm thresholds are
exceeded. In general, this approach tends to err on the side of caution, which results in
too many false or nuisance alarms. Nuisance alarms can, in turn, be rather expensive
in terms of human resources, for example, in the time spent by the law enforcement
agent in manual inspection of trucks, and may lead to traffic delays. On the other
hand, given the high cost of missed detections, the alarm thresholds cannot be set
too low lest suspicious trucks pass by unchecked. The critical need to set an optimal
threshold and hence balance false alarm rates with the probability of detection is a
motivating factor for the development of more advanced anomaly detection methods.

As a part of the SensorNet program, the Oak Ridge National Laboratory (ORNL)
is currently performing pilot studies at a few weigh stations, one of which is located
near Watt Road along the 1-40 highway in eastern Tennessee near Knoxville. In this
chapter, we analyze what is called “static scale data” collected from the Watt Road
weigh stations over several months. This data includes truck lengths, weights at three
locations, number of axles, vehicle speeds at the weigh station, and vehicle on road
distance, that is, the distance of the vehicle from the sensor. Such static-scale data is
the focus of our analysis since they were generated from the initial pilot studies in a
usable form, and because they happen to be unclassified and generally available once
specific truck information has been abstracted.
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EXPERIMENTAL RESULTS

We analyzed the weigh-station data using manifold embedding, followed by a simple
Parzen density estimator [11] to get density contours. We display the results for
each of the 3 months: September, 2005 (Figure 6.3), October, 2005 (Figure 6.4),
and November, 2005 (Figure 6.5). The axes for the figures are the first two spectral
dimensions. For each month, we plot the embedding in two dimensions and the Parzen
density contours on the projected data. As a simple approach, any data point below
a certain density contour level can be declared as an outlier or anomaly. The plots
clearly show that for the features we used, the normal set is almost always a central big
blob, with the anomalous points either scattered around individually or even forming
small clusters in some cases. Studying the properties of the small anomalous groups
will be instructive in differentiating normal from anomalous.

Several additional experiments were run to study the relationship between the pro-
jections of MDS, ISOMAP, and LLE. Figure 6.6 shows a direct comparison between
the MDS and ISOMAP projections. It is clear from the color-coding that potential out-
liers detected by MDS [Figure 6.6(a)] are also detected by ISOMAP [Figure 6.6(b)].
Similar plots comparing MDS with LLE are shown in Figure 6.7.

The potential value of nonlinear dimensionality-reduction methods over MDS
is demonstrated in Figure 6.8. We consider a particular truck that has one of the
highest axle counts and a somewhat uncommon weight distribution on its axles. LLE
detects this particular truck as a potential outlier as it is far away from the rest of the
group [Figure 6.8(a)]. On the contrary, MDS projects the truck among the main group
of “normal” points [Figure 6.8(b)]. While it is not clear if this truck can be called
anomalous in the application domain, the example demonstrates the capability of the
nonlinear methods capturing subtle oddities in the observed measurements/features,
that can be valuable in the context of anomaly detection.

Since some features, such as vehicle speed, have obvious outliers (e.g., a truck
moving at 70 mph through the weigh station), we applied box constraints on each
feature to get rid of the obvious outliers. After visualizing each feature, threshold val-
ues were selected to create the box constraints. As shown in Figure 6.11(d), the MDS
projection of the boxed data does not have any obvious outliers. Further, MDS cannot
reveal any interesting structure in the data after the removal of the obvious outliers us-
ing box constraints. We applied ISOMAP and LLE to the original as well as the boxed
data. As shown in Figure 6.11, both ISOMAP and LLE show that there are broadly
three groups of trucks in the boxed data. A similar structure in the data is revealed
for the other months as well. Detailed investigation of the properties of these groups,
possibly using additional data, will be an important item for future investigation.

A more detailed comparison between ISOMAP and MDS applied to the boxed
data is presented in Figure 6.12. We locate points in each of the three groups found by
ISOMAP in the MDS projection. Clearly, MDS is unable to find this subtle structure.
Itis interesting to note that the three groups are actually located in three parts of the big
point cloud projection of MDS. However, most anomaly detection methods applied on
the MDS projection will unlikely be able to differentiate between the groups, as all are
part of the same big point cloud. In Figure 6.9, we compare the potential outliers in the
boxed ISOMAP projection and corresponding points in the boxed MDS projection.
The potential outliers detected by ISOMAP are spread all over the MDS projection.
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FIGURE 6.3 Results on September, 2005: (a) spectral projection of data, (b) Parzen estimator
for anomaly detection.
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Spectral projection for October 05
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FIGURE 6.4 Results on October, 2005: (a) spectral projection of data, (b) Parzen estimator
for anomaly detection.
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Spectral projection for November 05
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FIGURE 6.5 Results on November, 2005: (a) spectral projection of data, (b) Parzen estimator
for anomaly detection.
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FIGURE 6.6 Comparison between MDS and ISOMAP projections. One can see that all out-
liers given by MDS are also outliers in ISOMAP.
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FIGURE 6.7 Comparison between MDS and LLE projections.
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FIGURE 6.8 Example of a truck which is an outlier in LLE, but not in MDS. This particular
truck has one of the highest axle counts and a not very common weight distribution.
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FIGURE 6.9 Comparison between outliers in boxed ISOMAP and corresponding points in
boxed MDS. The potential outliers detected by ISOMAP are spread all over the MDS projection.



Anomaly Detection in Transportation Corridors Using Manifold Embedding 929

Data plot (September 05) method:ISOMAP
5 I T 1 1 1 I 1

Spectral dimension 2

-8 -6 —4 -2 0 2 4 6 8
Spectral dimension 1

FIGURE 6.10 ISOMAP embedding using only three features: axle count, vehicle on road
distance, and vehicle length.

As aresult, detecting such potentially anomalous points from the MDS representation
can be significantly more difficult.

We also take a simplistic first-cut look at the three groups detected by the nonlinear
algorithms. In Figure 6.10, we show the ISOMAP embedding of the boxed points
based on only three features: axle count, vehicle on road distance, and vehicle length.
We wanted to see which set of features is causing the formation of three groups in the
original ISOMAP embedding. Any single feature or pair of features did not explain
the structure in the data. It seems that the relationships between axle count, vehicle on
road distance, and vehicle length are responsible for the three groups. More detailed
experiments will be needed to determine the nature of these relationships.

While our preliminary data analysis has revealed interesting structure in the weigh
station data, incorporating additional data about the trucks as well as domain knowl-
edge (say, in terms of rules, box-constraints, etc.) would make our current data mining
methodology significantly more effective in practice.

DISCUSSION

This paper presents a nontraditional approach to anomaly detection based on adap-
tation of linear and nonlinear dimensionality reduction techniques. The primary
insights obtained from the study can be roughly categorized into two classes:



100 Knowledge Discovery from Sensor Data

(a) methodological and (b) domain-specific. First, we focus on the methodological
insights:

1. Dimensionality reduction approaches can be adapted to anomaly detection
and may be especially useful in situations where labeled data are not avail-
able for training. Preliminary results show the value of these approaches,
which represent new or emerging adaptations of nontraditional approaches
for unsupervised learning, in the context of anomaly detection. However,
further developments are necessary, especially in the areas of providing
confidence bounds for the anomalies as well as in the ability to incorpo-
rate inputs from end users during the definition of the anomalies or while
specifying the significance of the indicators thereof.

2. Box constraints have exhibited the potential to significantly enhance the
structure in the data and hence emphasize the anomalies, or abnormalities,
in the data. Box constraints exclude outliers or exceptionally large values in
the univariate space. Therefore, once these constraints have been applied,
the data abnormalities that result purely from a combination of variables,
rather than due to any one variable alone, appear to get prominence.

3. Nonlinear dimensionality-reduction approaches demonstrate the potential
to enhance the “distance” between the unusual data patterns, or anomalies,
and the usual patterns, thus differentiating more finely between the normal
and abnormal events. Nonlinear dimensionality-reduction methods, such
as ISOMAP, measure the geodesic distance on the manifold, and since the
manifold captures better the structure in the data than to a Euclidean space,
these approaches are capable of producing a better representation of the
data.

Next, we focus of the domain-specific insights:

1. Three distinct groups of trucks were observed for each month, from both
the linear and nonlinear dimensionality-reduction approaches, once box
constraints were applied. The three groups of trucks appeared to be fairly
consistent month to month and hence may represent a fundamental group-
ing based on static scale information. The domain insight may be that there
are probably three categories of truck type and loading pattern combina-
tions. This is subject to validation.

2. The relationships between three variables, specifically axle count, vehi-
cle length, and vehicle on road distance, appeared to primarily cause (i.e.,
were observed to be necessary and sufficient conditions for) the distinctive
patterns obtained via the nonlinear embeddings (ISOMAP). This result
appears to partially validate the observations in the previous discussion
point, but then provides a couple of unexpected insights. The first two
variables which dominate the data patterns, namely, axle count and vehi-
cle length, do seem to be surrogates for the vehicle type and hence appear to
validate the previous suppositions. However, the first surprise is that
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Spectral Dimension 2

FIGURE 6.11 Normal and boxed data for September, 2005 projected using MDS, ISOMAP,
and LLE.
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weights or weight profiles are not among these variables. One possible
reason may be that the weight profile may be captured on the average by a
combination of the other two variables, length and axle count, although this
does not appear too likely. One other possibility may be that the weights
and loading profiles can vary significantly even when all other variables
remain the same, and hence do not convey meaningful information when
the interrelationships among variables are considered. Further studies may
be needed to understand this matter in depth. The influence of the variable
called “vehicle on road distance” is the most unexpected. The measurement
of this variable is supposed to be among the (if not the) least accurate, and
the variable itself is not thought to be much relevant other than perhaps
as a potential indicator for the accuracy of the readings. The fact that this
apparently unimportant and inaccurate variable is a necessary ingredient for
the patterns, and also happens to be one of three variables that sufficiently
or dominantly explain the features in the data, is surprising. Further studies
are needed to explore either the domain significance or the spurious nature
of this specific insight.
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ABSTRACT

Intermittent loss of the GPS signal is a common problem encountered in intelligent
land navigation based on GPS integrated inertial systems. This issue emphasizes the
need for an alternative technology that would ensure smooth and reliable inertial nav-
igation during GPS outages. This paper presents the results of an effort where data
from vision and inertial sensors are integrated. However, for such integration one has
to first obtain the necessary navigation parameters from the available sensors. Due to
the variety in the measurements, separate approaches have to be utilized in estimat-
ing the navigation parameters. Information from a sequence of images captured by
a monocular camera attached to a survey vehicle at a maximum frequency of three
frames per second was used in upgrading the inertial system installed in the same
vehicle for its inherent error accumulation. Specifically, the rotations and translations
estimated from point correspondences tracked through a sequence of images were
used in the integration. Also a prefilter is utilized to smooth out the noise associ-
ated with the vision sensor (camera) measurements. Finally, the position locations
based on the vision sensor are integrated with the inertial system in a decentralized
format using a Kalman filter. The vision/inertial integrated position estimates are
successfully compared with those from inertial/GPS system output. This success-
ful comparison demonstrates that vision can be used successfully to supplement the
inertial measurements during potential GPS outages.

Keywords
Multisensor fusion, inertial vision fusion, intelligent transportation systems.

INTRODUCTION

Inertial navigation systems (INS) utilize accelerometers and gyroscopes in measuring
the position and orientation by integrating the accelerometer and gyroscope readings.
Long-term error growth, due to this integration, in the measurements of inertial sys-
tems is a major issue that limits the accuracy of inertial navigation. However, due to
the high accuracy associated with inertial systems in short-term applications, many
techniques, such as differential global positioning systems (DGPS), camera (vision)
sensors, and others have been experimented with by researchers to be used in con-
junction with inertial systems and overcome the long-term error growth [1, 2, 3]. But
intermittent loss of the GPS signal is a common problem encountered in intelligent
land navigation based on GPS integrated inertial systems [3]. This issue emphasizes
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the need for an alternative technology that would ensure smooth and reliable inertial
navigation during GPS outages.

Meanwhile, due to the advances in computer vision, potentially promising studies
that involve vision sensing are being carried out in the areas of intelligent transporta-
tion systems (ITS) and Automatic Highway Systems (AHS). The above studies are
based on the premise that a sequence of digital images obtained from a forward-
view camera rigidly installed on a vehicle can be used to estimate the rotations and
translations (pose) of that vehicle [4]. Hence, a vision system can also be used as a
supplementary data source to overcome the issue of time dependent error growth in in-
ertial systems. Therefore, a combination of vision technology and inertial technology
would be a promising innovation in intelligent transportation systems.

Furthermore, researchers [5] have experimented with combining inertial sensors
with vision sensors to aid navigation using rotations and translations estimated by the
vision algorithm. Roumeliotis et al. [6] designed a vision inertial fusion system for
use in landing a space vehicle using aerial photographs and an Inertial Measuring Unit
(IMU). The system was designed using an indirect Kalman filter, which incorporates
the errors in the estimated position estimation, for the input of defined pose from
camera and IMU systems. However, the fusion was performed on the relative pose
estimated from the two sensor systems and due to this reason a much simpler inertial
navigation model was used. Testing was performed on a gantry system designed in the
laboratory. Chen et al. [7] attempted to investigate the estimation of a structure of a
scene and motion of the camera by integrating a camera system and an inertial system.
However, the main task of this fusion was to estimate the accurate and robust pose
of the camera. Foxlin et al. [8] used inertial vision integration strategy in developing
a miniature self-tracker, which uses artificial fiducials. Fusion was performed using
a bank of Kalman filters designed for acquisition, tracking, and finally performing a
hybrid tracking of these fiducials. The IMU data was used in predicting the vicinity
of the fiducials in the next image. On the other hand, You et al. [9] developed an
integration system that could be used in augmented reality (AR) applications. This
system used a vision sensor in estimating the relative position whereas the rotation
was estimated using gyroscopes. No accelerometers were used in the fusion. Dial
et al. [10] used an IMU and a vision integration system in navigating a robot under
indoor conditions. The gyroscopes were used in getting the rotation of the cameras
and the main target of the fusion was to interpret the visual measurements. Finally,
Huster et al. [4] used the vision inertial fusion to position an autonomous underwa-
ter vehicle (AUV) relative to a fixed landmark. Only one landmark was used in this
process making it impossible to estimate the pose of the AUV using a camera so that
the IMU system is used to fulfill this task.

The approach presented in this paper differs from the above mentioned work in
many respects. One of the key differences is that the vision system used in this paper
has a much slower frame rate, which introduces additional challenges in autonomous
navigation tasks. In addition, the goal of this work is to investigate a fusion technique
that would utilize the pose estimation of the vision system in correcting the inherent
error growth in an IMU system in a GPS deprived environment. Therefore, this system
will act as an alternative navigation system until the GPS signal reception is recovered.
Itis obvious from this objective that this system must incorporate the absolute position
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FIGURE 7.1 FDOT multipurpose survey vehicle.

in the fusion algorithm rather than the relative position of the two-sensor systems.
However, estimating the absolute position from cameras is tedious but the camera data
can be easily transformed to the absolute position knowing the initial state. Also in
achieving this, one has to carry out more complex IMU navigation algorithm and error
modeling. The above developments differentiate the work presented in this chapter
from the previously published work. Furthermore, the authors successfully compare
a test run performed on an actual roadway setting in validating the presented fusion
algorithm.

MULTISENSOR SURVEY VEHICLE

The sensor data for this exercise was collected using a survey vehicle owned by the
Florida Department of Transportation (FDOT) (Figure 7.1) that is equipped with a
cluster of sensors. Some of the sensors included in this vehicle are

» Navigational grade Inertial Measuring Unit (IMU)
» Two DVC1030C monocular vision sensors
» Two global positioning system (GPS) receivers

The original installation of sensors in this vehicle allows almost no freedom for
adjustment of the sensors, which underscores the need for an initial calibration.

Inertial Measuring Unit (IMU)

The navigational grade IMU installed in the vehicle (shown in Figure 7.1) contains
three solid state fiber-optic gyroscopes and three solid state silicon accelerometers
that measure instantaneous accelerations and rates of rotation in three perpendicular
directions. The IMU data is logged at any frequency in the range of 1 Hz—200 Hz.

Due to its high frequency and the high accuracy, at least in short time intervals,
in data collection IMU acts as the base for acquiring navigational data. However, due
to the accelerometer biases and gyroscope drifts, which are unavoidable, the IMU
measurements diverge after a short time. Therefore, in order for the IMU to produce
reliable navigational solutions its error has to be corrected frequently.
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Forward-View and Side-View Cameras

The FDOT survey vehicle also uses two high resolution (1300 x 1030) digital area-
scan cameras for front-view and side-view imaging at arate up to 11 frames per second.
This enables capturing of digital images up to an operating speed of 60 mph. The
front-view camera with a 16.5 mm nominal focal length lens captures the panoramic
view, which includes pavement markings, number of lanes, roadway signing, work
zones, traffic control and monitoring devices, and other structures.

PREPROCESSING OF RAW DATA

The raw data collected from the different sensors of the vehicle needs to be transformed
into useful inputs for the fusion algorithm. In this work two main sensor systems are
used, namely the vision system and the IMU. As described in “Multisensor Survey
Vehicle” it is understood that these sensor systems need preprocessing to extract the
vital navigation parameters such as translations, orientations, velocities, accelerations,
and others. Therefore, in this section the most relevant preprocessing techniques in
extracting the navigation parameters are illustrated.

INERTIAL NAVIGATION FUNDAMENTALS

The IMU in the vehicle is of strap-down type with three single degree of freedom
silicon, or MEMS, accelerometers, and three fiber optic gyroscopes aligned in three
mutually perpendicular axes. When the vehicle is in motion the accelerometers mea-
sure the specific forces while the gyroscopes measure the rates of change of rotations
of the vehicle [11, 12]. Therefore, it is clear that in order to geo-locate the vehicle,
one has to integrate the outputs of the accelerometers and gyroscopes with a known
initial position.

The angular rates measured by the gyroscopes are rates of change of rotations in
the b-frame, which has its origin at a predefined location on the sensor and has its first
axis toward the forward direction of the vehicle, the third axis toward the direction of
gravity, and the second axis toward the right side of the navigation system composing
a right-handed coordinate frame, with respect to the i-frame, which is a right-handed
coordinate frame based on Newtonian mechanics [11, 12], that is, wibb. The n-frame is
defined with the third axis of the system aligned with the local normal to the earth’s
surface and in the same direction as gravity while the first axis is set along the local
tangent to the meridian (north) and the second axis is placed toward the east setting
up a right-handed frame. These can be transformed to rotation with respect to the
n-frame [11] by

b _ b b _n
Wpp = Wip — anin (7.1)

where, w?, = (@ wy w3)! and !, in Equation (7.1) is the angular rate of the b-frame
(IMU) with respect to the i-frame given in the b-frame and n, b represent the n-frame
and the b-frame, respectively. The term C? denotes the coordinate transformation
matrix from the n-frame to the b-frame. The angular rates of the n-frame with respect



112 Knowledge Discovery from Sensor Data

n
mn’

to the i-frame, w! , can be estimated using geodetic coordinates as:

ol = [(h + @) cos(n) —i —(h + w,) sin(n)]" (7.2)

where, 4 and 7 denote the rates of change of the longitude and latitude during vehicle
travel and w, is the earth’s rotation rate. Transformation, Cf , between the n-frame
and the b-frame can be found, in terms of quaternions, using the following time
propagation equation of quaternions:

1
1 =-A :
q=744 (7.3)

where ¢ is any unit quaternion that expresses C” and the skew-symmetric matrix A
can be given as:

0 w1 w7 w3
—w 0 w —w
A= ! 3 2 (7.4)
—wy —w3 0 w1
—w3 w7 —w1 0

Finally, using Equations (7.1) to (7.4) one can obtain the transformation (C f,’)
between the n-frame and the b-frame from the gyroscope measurements in terms of
Euler angles. But due to problems inherent in Euler format, such as singularities at
poles and the complexity introduced due to trigonometric functions, quaternions are
commonly preferred in deriving the differential equation [Equation 7.3].

On the other hand, the accelerometers in the IMU measure the specific force,
which can be given as:

= gi(xi) + al (7.5)

where, a' is the specific force measured by the accelerometers in the inertial frame
and gi (x") is the acceleration due to the gravitational field, which is a function of the
position x'. From the C? estimated from gyroscope measurement in Equations (7.3)
and (7.4) and the specific force measurement from accelerometers in Equation (7.5),
one can deduce the navigation equations of the vehicle in any frame. Generally, what is
desired in terrestrial navigation are (a) final position, (b) velocity, and (c) orientations
be given in the n-frame although the measurements are made in another local frame,
b-frame. This is not possible since the n-frame also moves with the vehicle making the
vehicle horizontally stationary on this local coordinate frame. Therefore, the desired
coordinate frame is the fixed e-frame, defined with the third axis parallel to the mean
and fixed polar axis, first axis as the axis connecting the center of mass of the earth and
the intersection of prime meridian (zero longitude) with the equator, and the second
axis making this frame a right-handed coordinate frame. Hence, all the navigation
solutions are given in the e-frame but along the directions of the n-frame. For a more
detailed description of formulation and explanations please refer to [11, 12].

Since both frames considered here (e-frame and n-frame) are noninertial frames,
that is, frames that rotate and accelerate, one must consider the fictitious forces that
affect the measurements. Considering the effects of these forces the equation of motion
can be written in the navigation frame (n-frame) [11, 12] as:



Fusion of Vision Inertial Data for Automatic Georeferencing 113

Acceleration
—v" =a" — (Q, + Q)" +¢" (7.6)

Velocity

d
E.Xn =" (77)

The second and third terms in Equation (7.6) are respectively the Coriolis accel-
eration and the gravitational acceleration of the vehicle. The vector multiplication of
the angular rate denoted as €2 has the following form [11]:

w1 0 —ws3 w?
Q=[wx]=]| @ | x= w3 0 —wi (7.8)
w3 —wy; W 0

On the other hand, the orientation of the vehicle can be obtained [11, 12] by:
d

EC,’; =Cp2, (7.9)

In Equation (7.9), Q”, can be obtained using the ), estimated in Equation (7.1)
and then written in the form given in Equation (7.8). Therefore, once the gyroscope
and accelerometer measurements are obtained one can set up the complete set of navi-
gation equations by using Equations (7.6) to (7.9). Then one can estimate the traveling
velocity and the position of the vehicle by integrating Equations (7.6) and (7.7). The
gravitational acceleration can be estimated using the definition of the geoid given in
WGS1984 [13]. Then the velocity of the vehicle at any time step (k4 1) can be given as:

Vs = Vg T AV" (7.10)

where, Av is the increment of the velocity between the kth and (k + 1)th time inter-
val. The positions can be obtained by integrating Equation (7.10), which then can be
converted to the geodetic coordinate frame as:

(va)kAl

= — 7.11

P+ = b + Myt 70 (7.11)
(V) At

A = A _— 7.12

WD =20 F N ) cos(n) (7.12)

haevry = hay — (vp At (7.13)

where, vy, Vg, vp are, respectively, the velocities estimated in Equation (7.10) in the
n-frame while, ¢, A, and h, are, respectively, the latitude, longitude, and height. More-
over, M and N are, respectively, the radii of curvature of the earth at the meridian
and the prime vertical passing through the point on earth where the vehicle is located.
They are given as follows [11]:

p
N=—oo© 7.14
V(1 = e2sin’ ¢) 719

2
M= Pa=e) (7.15)

3
(1 —e2sin®¢)h
where p is the semimajor axis of the earth and e is the first eccentricity of the ellipsoid.
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FIGURE 7.2 Point correspondences tracked in two consecutive images.

ESTIMATION OF Pose FROM VISION

When the vehicle is in motion, the forward-view camera can be set up to capture
panoramic images at a specific frequency, which will result in a sequence of im-
ages. Therefore, the objective of the vision algorithm is to estimate the rotation and
translation of the rigidly fixed camera, which are assumed to be the same as those
of the vehicle. In this work, pose from the vision sensor, that is, forward camera
of the vehicle, is obtained by the eight-point algorithm. Pose estimation using point
correspondences is performed in two essential steps described below.

Extraction of Point Correspondents from a Sequence of Images

In order to perform this task, first it is necessary to establish the feature (point)
correspondence between the frames, which will form a method for establishing a
relationship between two consecutive image frames. The point features are extracted
using the well known KLT (Kanade-Lucas-Tomasi) [14] feature tracker. These point
features are tracked in the sequence of images with replacement. Of these feature cor-
respondences only the ones that are tracked in more than five images are identified and
used as an input to the eight-point algorithm for estimating the rotation and translation.
Thus these features become the key elements in estimating the pose from the eight-
point algorithm. Figure 7.2 illustrates this feature tracking in two consecutive images.

Estimation of the Rotation and Translation of the Camera between Two Consecutive
Image Frames Using the Eight-Point Algorithm

The algorithm, eight-point algorithm, used to estimate the pose requires at least eight
noncoplanar point correspondences to estimate the pose of the camera between two
consecutive images. A description of the eight-point algorithm follows.

Figure 7.3 shows two images captured by the forward-view camera at two con-
secutive time instances (1 and 2). Point p (in three dimensions) is an object captured
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FIGURE 7.3 Schematic diagram for eight-point algorithm.

by both images, and O; and O, are the camera coordinate frame origins at the above
two instances. Points p; and p; are, respectively, the projections of point p on the two
image planes. The epipoles [15], which are points where the lines joining the two
coordinate centers and the two image planes intersect, are denoted by e; and e,, re-
spectively. On the other hand, the lines e;p; and e,p, are termed epipolar lines. If
the rotation and translation between the two images are denoted as R and T and the
coordinates of points pjand p; are denoted as (xy, y1, z1) and (x3, y2, z2), respectively,
then the two coordinate sets can be related as:

(x2 y» z2)' =R(xi y1 z)' +T (7.16)

From Figure 7.3 it is clear that the two lines joining p with the camera centers
and the line joining the two centers are on the same plane. This constraint, which
is geometrically illustrated in Figure 7.3, can be expressed in algebraic form [15] in
Equation (7.17). Since the three vectors lie on the same plane:

pl o (T x Rp,) =0 (7.17)

where p; and p; are the homogeneous coordinates of the projection of p onto the
two image planes, respectively. Both T, R(e %?) are in three-dimensional space, and
hence there will be nine unknowns (three elements to represent T in x, y, and z
coordinate axes and three elements to represent R about x, y, and z coordinate axes)
involved in Equation (7.17). Since all the measurements obtained from a camera
are scaled in depth, one has to solve for only eight unknowns in Equation (7.17).
Therefore, in order to find a solution to Equation (7.17) one should meet the criterion:

Rank(T x R) > 8 (7.18)

Let E =T x R, the unknowns in E be considered as [e; e, €3 €4 €5 €6 €7 €3] and
the scaled parameter be assumed as 1. Then, one can set up Equation (7.17) as

AE =0 (7.19)
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where A = (x;x2 X1y, xif y;x2 y;y, y,f fxo fy, f%)isaknownn x
9 matrix, n being the number of points correspondences established between two
images, and € = [ 1 e e €3 €4 €5 €¢ €7 €g | is an unknown vector. Once a sufficient
number of correspondence points are obtained, Equation (7.18) can be solved and
€ can be estimated. Once the matrix E is estimated it can be utilized to recover
translations and rotations using the relationship E = T x R. The translations and
rotations can be obtained as:

T=c x¢
(TeTDR=ET—TxE (7.20)
where, c; = T x r;(fori = 1, 2, 3) and the column vectors of the R matrix are

given as r. Also, E*is the matrix of cofactors of E. In this chapter, in order to estimate
the rotations and translations, a correspondence algorithm that codes the procedure
described in Equations (7.16) to (7.20) is used.

DETERMINATION OF THE TRANSFORMATION BETWEEN
VISION-INERTIAL SENSORS

Since the vision and the IMU systems are rigidly fixed to the vehicle there exist
unique transformations between these two sensor systems. This unique transforma-
tion between the two sensor coordinate frames can be determined using a simple
optimization technique. In this work it is assumed that the two frames have the same
origin but different orientations. First, the orientation of the vehicle at a given posi-
tion measured with respect to the inertial and vision systems are estimated. Then an
initial transformation can be obtained from these measurements. At the subsequent
measurement locations, this transformation is optimized by minimizing the total error
between the transformed vision data and the measured inertial data. The optimization
produces the unique transformation between the two sensors.

In extending the calibration procedures reported in [16] and [17] modifications
must be made to the calibration equations in [16] and [17] to incorporate the orienta-
tion measurements, that is, roll, pitch, and yaw, instead of three-dimensional position
coordinates. The transformations between each pair of the right-handed coordinate
frames considered are illustrated in Figure 7.4. In addition, the time-dependent trans-
formations of each system relating the first and second time steps are also illustrated in
Figure 7.4. It is shown below how the orientation transformation between the inertial
and vision sensors (Ry;) can be determined by using measurements, which can easily
be obtained at an outdoor setting.

In Figure 7.4 OG, OI, and OV denote origins of global, inertial, and vision co-
ordinate frames, respectively. xk, yk, and zk define the corresponding right-handed
three-dimensional—axis system with k representing the respective coordinate frames
(i-inertial, v-vision, and g-global). Furthermore, the transformations from the global
frame to the inertial frame, global frame to the vision frame, and inertial frame to the
vision frame are defined, respectively, as R;g, Ryg, and Ry;.

If P, denotes the position vector measured in the global coordinate frame, the fol-
lowing equations can be written considering the respective transformations between
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FIGURE 7.4 Three coordinate systems associated with the alignment procedure and the re-
spective transformations.

the global frame and both the inertial and the vision frames.
Poany = RiganyPiany (7:21a)
Pyi1) = RyganyPvan) (7.21b)
and considering the transformation between the inertial (OI) and vision systems (OV):
Pi11) = RviPy (7.22)

Substituting Equations (7.21a) and (7.21b) into Equation (7.22), the required
transformation can be obtained as:

Ryi = Ry Ruga) (7.23)

Although the transformation between global-inertial and global-vision is time
variant, the transformation between the inertial system and the vision system (Ry;) is
time invariant due to the fact that the vision and inertial systems are rigidly fixed to
the vehicle. Once the pose estimates for IMU and vision are obtained, the correspond-
ing rotation matrices (in the Euler form) can be formulated considering the rotation
sequence of “zyx.” Thus, Equation (7.23) provides a simple method of determining
the required transformation R,;. Then the Euler angles obtained from this step can be
used in the optimization algorithm as initial angle estimates. These estimates can then
be optimized as illustrated in the ensuing section to obtain more accurate orientations
between x, y, and z axes of the two-sensor coordinate frames.

Optimization of the Vision-Inertial Transformation

If @, B, and y are the respective orientation differences between the axes of the
inertial sensor frame and the vision sensor frame, then the transformation R,; can be
explicitly represented in the Euler form by Ry;(«, B, ¥). Using Equation (7.23) the
rotation matrix for the inertial system at anytime t' can be expressed as

r) = R RS (@, B, %) (7.24)
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Ry can be determined from a sequence of images obtained using the algorithm
described in “Estimation of pose from Vision™ and Ri,, can be estimated using
Equation (7.24) for any given set («, 8, ). On the other hand, Rjyy) can also be
determined directly from the IMU measurements. Then a nonlinear error function (e)
can be formulated in the form:

2@ B.v) = [Rigeypg — Rise)pq]” (7.25)

wherep (=1, 2, 3) and q (= 1, 2, 3) are the row and column indices of the R;; matrix
respectively. Therefore, the sum of errors can be obtained as

E=Y"> el (@p.y) (7.26)
P q

Finally, the optimum «, 8, and y can be estimated by minimizing Equation (7.26):

L%I;{E} = ;I}SH;{Z Z [(Rig)pq - (Rig(l’))pq]z} (727)
" " P q

Minimization can be achieved by gradient descent [Equation (7.28)] as follows:
Xi = Xi—; — AE'(Xi—1) (7.28)

where, X; and x;_; are two consecutive sets of orientations, respectively, while A is
the step length and E’(x;_1) is the first derivative of E evaluated at x;_;:

E'(xi_;) = 3E§24) 3E§;ﬁ1) 3E({(;;71) (7.29)

Once the set of angles («, B, y) corresponding to the minimum E in Equa-
tion (7.27) is obtained, for time step t’, the above procedure can be repeated for a
number of time steps t”, t”/, and so on. When it is verified that the set («, 8, y) is
invariant with time it can be used in building the unique transformation (Ry;) matrix
between the two-sensor systems. A detailed elaboration of this calibration technique
could be found in [18].

SENSOR FUSION
IMU ERROR MODEL

The IMU navigation solution, described in “Inertial Navigation Fundamentals,” was
derived from the measurements obtained from gyroscopes and accelerometers, which
suffer from measurement, manufacturing, and bias errors. Therefore, in order to de-
velop an accurate navigation solution it is important to model the system error char-
acteristics. In this chapter only the first-order error terms are considered implying that
the higher-order terms [13] contribute to only a minor portion of the error. In addition,
by selecting only the first-order terms, the error dynamics of the navigation solution
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can be made linear with respect to the errors [11, 12] enabling the use of Kalman
filtering for the fusion.

Error dynamics used in this work were obtained by differentially perturbing the
navigation solution [11] by a small increment and then considering only the first-order
terms of the perturbed navigation solution. Therefore, by perturbing Equations (7.6),
(7.7), and (7.9) one can obtain the linear error dynamics for the IMU in the following
form [12]:

8x = —w! x 8x" + 8¢ x v" + §V" (7.30)

en
where § denotes the small perturbation introduced to the position differential equation
[Equation (7.7)] and ¢ denotes the rotation vector for the position error. And “ < is the
vector multiplication of the respective vectors. Similarly, if one perturbs Equation (7.6)
the following first-order error dynamic equation can be obtained:

Sv" = Cpda" +Cla" x e +8g" — (o, + o)) x 8v" — (8w, + 8l ) x v"  (7.31)

where, ¢ denotes the rotation vector for the error in the transformation between the
n-frame and the b-frame. The first two terms on the right-hand side of Equation (7.31)
are, respectively, due to the errors in specific force measurement and errors in trans-
formation between the two frames, that is, errors in gyroscope measurements. When
Equation (7.9) is perturbed one obtains:

SV = —0!', x & + ), — Céat, (7.32)

Equations (7.30) to (7.32) are linear with respect to the error of the navigation
equation. Therefore, they can be used in a linear Kalman filter to statistically optimize
the error propagation.

DESIGN OF THE KALMAN FILTER

In order to minimize the error growth in the IMU measurements, the IMU readings
have to be updated by an independent measurement at regular intervals. In this work,
vision-based translations and rotations and a master Kalman filter are used to achieve
this objective. Since the error dynamics of the IMU are linear, the use of a Kalman
filter is justified for fusing the IMU and the vision sensor systems. The architecture
for this Kalman filter is illustrated in Figure 7.5.

Design of Vision Only Kalman Filter

The pose estimated from the vision sensor system is corrupted due to the various
noises present in the pose estimation algorithm. Thus it is important to minimize
these noises and optimize the estimated pose from the vision system. The vision
sensor predictions obtained can be optimized using a local Kalman filtering. Kalman
filters have been developed to facilitate prediction, filtering, and smoothing. In this
context it is only used for smoothing the rotations and translations predicted by the
vision algorithm. A brief description of this local Kalman filter for the vision system
is outlined in this section and a more thorough description can be found in [19].

The states relevant to this work consist of translations, rates of translations, and
orientations. Due to the relative ease of formulating differential equations, associated
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FIGURE 7.5 Schematic diagram of the fusion procedure.

linearity, and the ability to avoid “Gimble-lock,” the orientations are expressed in
quaternions. Thus, the state vector can be given as

Xy = [Ty, Tr, x1" (7.33)

where, T} is the translation, g, is the orientation, given in quaternions, and Ty is the
rate of translation, at time k. Then the updating differential equations for translations
and quaternions can be given as

g1
Tir1 =T + / Tydt
73
1
qk+1 = (5) Agy (7.34)

where A is given in Equation (7.4). Then the state transition matrix can be obtained
as
Iz Stlzes 0344
Or =] 033 I3xz 034 (7.35)

04x3 043 Aya

where I and 0 are the identity and null matrices of the shown dimensions, respec-
tively, and &t represents the time difference between two consecutive images. The
measurements in the Kalman formulation can be considered as the translations and
rotations estimated by the vision algorithm. Therefore, the measurement vector can
be expressed as

Yie = [T, qi]” (7.36)

Hence, the measurement transition matrix will take the form

_— Lz 03x3 0404 a.37)
FT 055 05 Lig ’
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FIGURE 7.6 Illustration of master Kalman filter.

Once the necessary matrices are set up using Equations (7.33) to (7.37), and the
initial state vector and the initial covariance matrix are obtained, the vision outputs can
be smoothed using the Kalman filter equations. Given initial conditions can be defined
conveniently based on the IMU output at the starting location of the test section.

Design of Master Kalman Filter

The Kalman filter designed to fuse the IMU readings and vision measurements contin-
uously evaluates the error between the two sensor systems and statistically optimizes
it. Since the main aim of the integration of the two systems is to correct the high-
frequency IMU readings for their error growth, the vision system is used as the updated
or precision measurement. Hence, the IMU system is the process of the Kalman filter
algorithm. The system architecture of this master Kalman filter is shown in Figure 7.6.

The typical inputs to update the master Kalman filter consist of positions (in the
e-frame) and the orientations of the b-frame and the c-frame with respect to the n-
frame. Since the vision system provides rotations and translations between the camera
frames, one needs the position and orientation of the first camera location. These can
be conveniently considered as, respectively, the IMU position in the e-frame, and the
orientation between the b-frame and the n-frame. The IMU used in the test vehicle
is a navigational grade IMU, which has been calibrated and aligned quite accurately.
Therefore, the main error that could occur in the IMU measurements is due to biases
of gyroscopes and accelerometers. A more detailed explanation of inertial system
errors and the design of state equation for the master Kalman fusion algorithm can
be found in [20].

Since the IMU error analysis, illustrated in “IMU Error Model,” is linear, standard
Kalman filter equations can be utilized in the fusion process. There are 16 system
states used for the Kalman filter employed in the IMU/vision integration. These are
(a) three states for the position, (b) three states for the velocity, (c) four states for the
orientation, which is given in quaternions, and (d) six states for accelerometer and
gyroscope biases. Therefore, the state vector for the system (in quaternions) takes the
following form:

Xy =1[8¢ A 8h v, Sv. Svy qu qx qdy 4: Dax bay ba: ng bgy bgz]T
(7.38)
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where 6 denotes the estimated error in the state and vy, vg, vp are, respectively, the
velocity components along the n-frame directions, while ¢, A, and & are the latitude,
longitude, and height, respectively. The error in the orientation is converted to the
quaternion form and its elements are represented as ¢; where i = w, x, y, z. And
the bias terms in both accelerometers and gyroscopes, that is, i = a, b, along three
directions, j = x, y, and z, are given as b;;. The state transition matrix for this
filter would be a 16 x 16 matrix with the terms obtained from Equations (7.30) to
(7.32). The measurements equation is obtained similarly considering the measurement
residual.

Vi = [ (Pyis — Pimu) (Wyis — Yimu) 17 (7.39)

where P; and \V; represent the position vector (3 x 1) given in geodetic coordinates
and the orientation quaternion (4 x 1), respectively, measured using the ith sensor
system with i = vision or IMU. Then the measurement sensitivity matrix would take

the form:
Iiyz 0 0 0 0

H, = (7.40)
0 0 Ly, 0 O

The last critical step in the design of the Kalman filter is to evaluate the process
(Ry) and measurement (Q;) variances of the system. These parameters are quite
important in the respect that these define the dependability, or the trust, of the Kalman
filter on the system and the measurements. The optimum values for these parameters
must be estimated on accuracy of the navigation solution or otherwise the noisy input
will dominate the filter output making it erroneous. In this work, to estimate R; and
O\, the authors used a separate data set: one of the three trial runs on the same section
that was not used for the computations performed in this paper. The same Kalman
filter was used as a smoother for this purpose. This was important specifically for the

vision measurements since it involves more noise in its measurements.

RESULTS

EXPERIMENTAL SETUP

The data for the fusion process was collected on a test section on eastbound State Road
26 in Florida. The total test section was divided into two separate segments: one short
run and one relatively longer run. The longer section was selected in such a way that
it would include the typical geometric conditions encountered on a roadway, such as
straight sections, horizontal curves, and vertical curves. This data was used for the vali-
dation purpose of IMU/Vision system with IMU/DGPS system data. The short section
was used in estimating the fixed transformation between the two sensor systems.

TRANSFORMATION BETWEEN INERTIAL AND VISION SENSORS

Table 7.1 summarizes the optimized transformations obtained for the inertial-vision
system. It shows the initial estimates used in the optimization algorithm [Equa-
tion (7.24)] and the final optimized estimates obtained from the error minimization
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TABLE 7.1
Orientation Difference between Two Sensor
Systems Estimated at Short Section

Initial angle Optimized angle
Point 1
Roll (rad) —0.00401 —0.03304
Pitch (rad) —0.00713 0.01108
Yaw (rad) 1.23723 —0.08258
Point 2
Roll (rad) —0.03101 —0.03304
Pitch (rad) —0.00541 0.01108
Yaw (rad) 1.34034 —0.08258
Point 3
Roll (rad) —0.01502 —0.03304
Pitch (rad) —0.00259 0.01108
Yaw (rad) 1.32766 —0.08258

process at three separate test locations (corresponding to times t', t’, and t”). It is
clear from Table 7.1 that the optimization process converges to a unique (o, 8, ¥)
set irrespective of the initial estimates provided. Since the two sensor systems are
rigidly fixed to the vehicle, the inertial-vision transformation must be unique. There-
fore, the average of the optimized transformations can be considered as the unique
transformation that exists between the two sensor systems.

RESULTS OF THE VISION/IMU INTEGRATION

The translations and rotations of the test vehicle were estimated from vision sensors
using the point correspondences tracked by the KLT tracker on both sections. In order
to estimate the pose from the vision system, the correspondences given in Figure 7.2
were used. Figures 7.7(a)-7.7(c) compare the orientations obtained for both the vision
system and the IMU after the vision only Kalman filter.

Similarly, the normalized translations are also compared in Figures 7.8(a)-7.8(c).

Itis clear from Figures 7.7 and 7.8 that the orientations and normalized translations
obtained by both IMU and filtered vision system match reasonably well. Hence, the
authors determined that both sets of data are appropriate for a meaningful fusion and
upgrade. These data were then used in the fusion process, described in “Design of
Master Kalman Filter,” to obtain positions shown in Figure 7.9.

Figure 7.9 compares the vision-inertial fused system with GPS-inertial system
and inertial system only. It is obvious from the position estimates, that is, latitude
and longitude, that the two systems, vision-inertial and GPS-inertial systems, provide
almost the same results with very minute errors. On the other hand, the inertial only
measurement deviates as time progresses showing the error growth of the inertial
system due to integration of the readings.
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TABLE 7.2
Maximum Errors Estimated between IMU/GPS, Vision/IMU, and IMU-Only
Measurements

Compared to IMU-Vision

IMU-Vision IMU-Only X
IMU-GPS Percent Discrepancy of IMU
Value Value Difference Value Difference Only with IMU-GPS
Latitude 0.51741  0.51741 1.496E-07  0.51741 3.902E-07 61.67661
Longitude —1.44247 —1.44247 4.531E-07 —1.44247 4.183E-07 8.31251

Table 7.2 summarizes the maximum errors shown, in graphical form, in Figure 7.9
between the three sensor units, GPS/IMU, vision/IMU, and IMU-only. For this test
run, which lasted only 14 seconds, given in the last column of Table 7.2, the respective
latitude and longitude estimates of the IMU/vision system are 61.6% and 8% closer to
the IMU/GPS system than the corresponding estimates of IMU-only system. The error
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FIGURE 7.8 Comparison of translations (a) x-direction, (b) y-direction, and (c) z-direction.

estimated from the Kalman filter is given in Figure 7.10. It is clear from Figure 7.10
that the error in the fusion algorithm minimizes as the time progresses indicating that
the fusion algorithm has acceptable performances.

Figure 7.9 shows that the position, i.e., latitude and longitude, estimated by the
vision/IMU integration agrees quite well with that given by the IMU/DGPS integra-
tion. Thus, these results clearly show that the vision system can supplement the IMU
measurements during a GPS outage. Furthermore, the authors have investigated the
error estimation of the vision/IMU fusion algorithm in Figure 7.10. Figure 7.10 shows
that the Kalman filter used for fusion achieves convergence and also that the error
involved in the position estimation reduces with time. These results are encouraging
since it further signifies the potential use of the vision system as an alternative to GPS
in updating IMU errors.

CONCLUSION

This work addresses two essential issues that one would come across in the process
of fusing vision and inertial sensors: (a) estimating the necessary navigation param-
eters, and (b) fusing the inertial sensor and the vision sensor in an outdoor setting.
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The fixed transformation between the two sensor systems was successfully estimated,
Table 7.1, and validated by comparing with the IMU measurements. The results also
showed that the vision data can be used successfully in updating the IMU measure-
ments against the inherent error growth. The fusion of vision/IMU measurements was
performed for a sequence of images obtained on an actual roadway and compared
successfully with the IMU/DGPS readings. The IMU/DGPS readings were used as
the basis for comparison since the main task of this work was to explore an alternative
reliable system that can be used successfully in situations where the GPS signal is
unavailable.
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ABSTRACT

Sensors distributed all around electrical-power distribution networks produce streams
of data at high speed. From a data mining perspective, this sensor network problem
is characterized by a large number of variables (sensors), producing a continuous
flow of data, in a dynamic nonstationary environment. Companies make decisions
to buy or sell energy based on load profiles and forecast. In this work we analyze
the most relevant data mining problems and issues: continuously learning clusters
and predictive models, model adaptation in large domains, and change detection and
adaptation. The goal is to maintain in real-time a clustering model, defining profiles,
and a predictive model able to incorporate new information at the speed data arrives,
detecting changes and adapting the decision models to the most recent information.
We present experimental results in a large real-world scenario, illustrating the ad-
vantages of the continuous learning and its competitiveness against wavelets based
prediction.

Keywords: Electricity demand forecast, data streams, sequential clustering, incre-
mental neural networks.

MOTIVATION

Electricity distribution companies usually set their management operators on
SCADA/DMS products (supervisory control and data acquisition/distribution man-
agement systems). One of their important tasks is to forecast the electrical load (elec-
tricity demand) for a given subnetwork of consumers. Load forecast is a relevant aux-
iliary tool for operational management of an electricity distribution network, since
it enables the identification of critical points in load evolution, allowing necessary
corrections within available time. In SCADA/DMS systems, the load forecast func-
tionality has to estimate, on an hourly basis, and for a near future, certain types of
measures, which are representative of a system’s load: active power, reactive power,
and current intensity. In the context of load forecast, near future is usually defined
in the range of next hours to the limit of 7 days, for what is called short-term load
forecast. Given its practical application and strong financial implications, electricity
load forecast has been targeted by numerous works, mainly relying on the nonlinearity
and generalizing capacities of neural networks, which combine a cyclic factor and an
auto-regressive one to achieve good results [10]. Nevertheless, static iteration-based
training, usually applied to estimate the best weights for network connections, is not
adequate for the high speed production of data usually encountered.

On current real applications, data are being produced in a continuous flow at high
speed [5]. In this context, faster answers are usually required, keeping an anytime
model of the data, enabling better decisions. This is the case of the application under
study in this work. Learning techniques from fixed training sets using some type of
sampling strategy, and generating static models are obsolete in this context. Data is
generated at high speed from thousands of sensors distributed all around the network.
The sequences of data points are not independent, and are not generated by stationary
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distributions. We need dynamic models that evolve over time and are able to adapt to
changes in the distribution generating examples [7].

The chapter is organized as follows. In the next sections we present the gen-
eral architecture of the system, main goals, and preprocessing problems with sensor
data. In “Incremental Clustering of Data Streams” we present the clustering module,
while “Incremental Learning of Neural Networks” describes the incremental pre-
dictive models. “Experimental Evaluation” presents the evaluation methodology and
preliminary results using real data from an electricity network. The main features
of the system, strong and weak points, are discussed in “Strengths and Limitations,”
while conclusions and future work appear in “Conclusions and Future Issues.”

GENERAL DESCRIPTION

The objective of this work is twofold. The system must continuously provide a com-
pact description of clusters of consumers and continuously maintain the cluster struc-
ture in real time. The system must predict the value of each individual sensor with a
given temporal horizon, that is, if at moment #; we receive an observation of a sensor,
the system must execute a prediction for the value of each variable (sensor) for the
moment #; + k. In this scenario, each variable is a time series and each new example
included in the system is the value of one observation of all time series for a given
moment.

The online clustering system applies a divisive strategy, with the leaves represent-
ing the sensor clusters. The two main operations over the cluster structure are: expan-
sion by generating two new clusters and aggregation by merging two clusters in the
case of changes in the correlation structure. The predictive models are neural networks
based. For each sensor, and for each desired horizon forecast, we continuously train a
neural network. Overall, the system predicts all variables in real-time, with incremen-
tal training of neural networks and continuous monitoring of the clustering structure.

PREPROCESSING DATA

The electrical network spreads out geographically. Sensors send information at dif-
ferent time scales and formats: some sensors send information every minute, others
send information each hour, and so on. Some send the absolute value of the variable
periodically, while others only send information when there is a change in the value
of the variable. All this happens in adverse conditions where they are prone to noise,
weather conditions, battery conditions, and so on. The available information is there-
fore noisy. To reduce the impact of noise, missing values, and different granularity,
data is aggregated and synchronized in time windows of 15 minutes. This is done in a
server, in a preprocessing stage. This option was motivated by the fact that it allows us
to instantiate sensor values for around 80% of the sensors. With the increasing quality
of sensors the time window should decrease for values around 1 m. Data comes in
the form of tuples: <date, time, sensor, measure, value>. All preprocessing stages
(agglomeration and synchronization) are computed in an incremental way, requiring
a single scan over the incoming data.



134 Knowledge Discovery from Sensor Data

INCREMENTAL CLUSTERING OF DATA STREAMS

Data streams usually consist of variables producing examples continuously over time
at high speed. The basic idea behind clustering time series is to find groups of vari-
ables that behave similarly through time. However, when applying variable clustering
to data streams, dissimilarities must be computed incrementally. The goal of an in-
cremental clustering system for streaming time series is to find (and make available
at any time t) a partition of the streams, where streams in the same cluster tend
to be more alike than streams in different clusters. In electrical networks there are
clear clusters of demands (like sensors placed near towns or in countryside), which
evolve smoothly over time. This information allows companies to identify consumers’
profiles.

We believe that a top-down hierarchical approach to the clustering problem is
the most appropriate as we do not need to define a priori the number of clusters
and allow an analysis at different granularity levels. The system uses the ODAC
clustering algorithm [20], which includes an incremental dissimilarity measure based
on the correlation between time series, calculated with sufficient statistics gathered
continuously over time. There are two main operations in the hierarchical structure of
clusters: expansion that splits one cluster into two new clusters and aggregation that
aggregates two clusters. Both operators are based on the diameters of the clusters,
and supported by confidence levels given by the Hoeffding bounds [12]. The system
monitors the evolution over time of those diameters.

INCREMENTAL DISSIMILARITY MEASURE

ODAC uses Pearson’s correlation coefficient [18] between time series as a similarity
measure, as done by [16]. Deriving from the correlation between two time series a and
b calculated in [22], the factors used to compute the correlation can be updated incre-
mentally, achieving an exact incremental expression for the correlation. The sufficient
statistics needed to compute the correlation are easily updated at each time step. In
ODAC, the dissimilarity between variables a and b is measured by an appropriate
metric, the rmomc(a, b) = /[1 — corr(a, b)]/2. We consider the cluster’s diameter
to be the highest dissimilarity between two time series belonging to the same cluster,
or the variable variance in the case of clusters with single variables.

GROWING THE STRUCTURE

For each cluster, the system chooses two variables that define the diameter of that
cluster (those that are less correlated). If a given heuristic condition is met on this
diameter, the system splits the cluster in two, assigning each of those variables to
one of the two new clusters. Afterward, the remaining variables are assigned to the
cluster that has the closest pivot (first assigned variables). The newly created leaves
start new statistics, assuming that only the future information will be useful to decide
if the cluster should be split.
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CHANGE DETECTION

A requirement to process data streams is change detection [8]. Data is collected over
time, and the structure correlation among variables evolves. In electrical networks and
for long-term conditions, the correlation structure evolves smoothly. The clustering
structure must adapt to this type of change. In a hierarchical structure of clusters,
considering that the data streams are produced by a stable concept, the intra-cluster
dissimilarity should decrease with each split. ODAC adopts a simple strategy that
merges two sibling leaves whenever the diameter of the leaves starts increasing. For
each given cluster Cy, the system verifies if the older split decision still represents the
structure of data, testing the diameters of Cy, Cy’s sibling, and Cy’s parent. Whenever
the diameters increase above the parent’s diameter, this is an indication that the
correlation structure has changed in the most recent data. When this happens, the
system aggregates the leaves, restarting the sufficient statistics for that group. The
number of clusters decreases, assuming that previous division no longer reflects the
best structure of data. This characteristic increases the system’s ability to react to
changes in the correlation structure of the data.

DiscussION

The presented clustering procedure is oriented toward processing high-speed data
streams [2]. The main characteristics of the system are constant memory and constant
time in respect to the number of examples. In ODAC, system space complexity is
constant on the number of examples, even considering the infinite amount of examples
usually present in data streams. An important feature of this algorithm is that every
time a split is performed on a leaf with n variables, the global number of dissimilarities
needed to be computed at the next iteration diminishes at least n — 1 (worst case
scenario) and at most n2/2 (best case scenario). The time complexity of each iteration
of the system is constant given the number of examples, and decreases with every split
occurrence, being therefore capable of addressing data streams. Figure 8.1 presents
the resulting hierarchy of the clustering procedure.

INCREMENTAL LEARNING OF NEURAL NETWORKS

In this section we describe the predictive module of our system. Each sensor in the
network has a multilayered perceptron (MLP) neural network attached, which was
initially trained with a time series representing the global load of the sensor network,
using only past data. The neural network is incrementally trained with incoming data,
being used to predict future values of the sensor.

A general overview of the MLP learning procedure is as follows. At each moment
t;, the system executes two actions: one is to predict the moment #;; the other is
to back-propagate in the model the error, obtained by comparing the current real
value with the prediction made at time #;,_;. The error is back-propagated through
the network only once, allowing the system to cope with high speed streams. There
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FIGURE 8.1 Illustrative example of the clustering hierarchy in the electrical network (~2500
sensors in one year data).

are several relevant advantages of this training procedure: fast train and robustness
to overfitting, because each example is propagated through the network and the error
back-propagated only once, smoothly adjusting to gradual changes in the behavior of
the environment (sensor).

HORI1ZON FORECASTING

The goal of our system is to continuously maintain a prediction for three time horizons:
next hour, one day ahead, and one week ahead. This means that after a short initial
period, we have three groups of predictions: prediction for the next hour, 24 predictions
for the next 24 hours, and 168 predictions for the next week. For the purposes of this
application in particular, all predictions are hourly based. For all the horizon forecasts,
the clustering hierarchy is the same but the predictive model at each cluster may be
different.

The predictive model for the next hour is a feed-forward neural network, with 10
inputs, 4 hidden neurons (tanh-activated), and a linear output. The input vector for
predicting time series ¢ at time k is k minus {1, 2, 3, 4} hours and k minus {7, 14}
days*. As usual [15], we consider also 4 cyclic variables, for hourly and weekly
periods (sin and cos). The choice of the network topology and inputs was mainly
motivated by experts, suggestions, autocorrelation analysis, and previous work with
batch approaches [10]. One implication of the chosen inputs is that we no longer
maintain the property of processing each observation once’. The training of neural
networks requires the use of some historical values of each variable to predict. Thus,
we introduce a buffer (window with the most recent values) strategy. The size of the
buffer depends on the horizon forecast and data granularity and is at most 2 weeks.
Figure 8.2 presents a general description of the procedure executed at each new
example.

*The choice of these inputs and those used for other horizon forecasts were suggested by an expert in
the domain based on his experience in batch training of neural networks. The results we present in this
chapter justify maintaining these options.

T A property that the clustering algorithm satisfies.
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FIGURE 8.2 Buffered online predictions: 1. new real data arrives (r) at time stamp i, substi-
tuting previously made predictions (0); 2. define the input vector to predict time stamp i; 3.
execute prediction (t) for time stamp i; 4. compute error using predicted (t) and real (r) values;
5. back-propagate the error one single time; 6. define input vector to predict time stamp i plus
one hour; 7. execute prediction of next hour (p); 8. discard oldest real data (d).

OVERFITTING AND VARIANCE REDUCTION

Artificial neural networks are powerful models that can approximate any continuous
function [17] with arbitrary small error with a three layer network. The mauvaise
reputation of neural networks comes from slower learning times. Two other known
problems of the generalization capacity of neural networks are overfitting and large
variance.

In our approach the impact of overfitting is reduced due to two main reasons.
First we use a reduced number of neurons in the hidden layer. Second, each training
example is propagated and the error back-propagated through the network only once,
as data are abundant and flow continuously.The main advantage of the incremental
method used to train the neural network is the ability to process an infinite number
of examples at high speed. Both operations of propagating the example and back-
propagating the error through the network are very efficient and can follow high-speed
data streams. Another advantage is the smooth adaptation in dynamic data streams
where the target function evolves over time. Craven and Shavlik [4] argue that the
inductive bias of neural networks is the most appropriate for sequential and temporal
prediction tasks.

The flexibility of the representational power of neural networks implies error vari-
ance. In stationary data streams the variance shrinks when the number of examples
goes to infinity. In our case, in a dynamic environment where the target function
changes smoothly and even abrupt changes can occur, the variance of predictions is
problematic. An efficient variance reduction method is the dual perturb and com-
bine [9] method. It consists of perturbing each test example several times, adding
white noise to the attribute values, and predicting each perturbed version of the test
example. The final prediction is obtained by aggregating (usually by averaging) the
different predictions. The method is directly applicable in the stream setting because
multiple predictions only involve test examples, which is an advantage over other
variance reduction methods like bagging. In our case we use the dual perturb and
combine method with three goals: as a method to reduce the variance exhibited by
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FIGURE 8.3 A study on the autocorrelation computed for the sensor data used to train the
scratch network shows high values for time lags of 1 hour, and multiples of 24 hours. However,
weekly horizons are even more autocorrelated in the electrical network. In the plot, the x-axis
represents the x time horizon (1 hour-2 weeks), while the y-axis presents the autocorrelation
between current time ¢ and time ¢ — x.

neural networks, as a method to estimate a confidence for predictions (users seem
more comfortable with both a prediction and a confidence estimate on the prediction),
and as a robust prevention of the uncertainty in information provided by sensors in
noisy environments. For example, if a sensor reads 100, most of the time the real
value is around 100: it could be 99 or 101. Perturbing the test example and aggregat-
ing predictions also reduce the uncertainty associated with the measurement sent by
the sensor.

IMPROVING PREDICTIVE ACCURACY USING KALMAN FILTERS

Our target function is a continuous and derivable function over time. For these types of
time series, one simple prediction strategy, reported elsewhere to work well, consists
of predicting for time ¢ the value observed at time ¢ — k. A study on the autocorrelation
(Figure 8.3) in the time series used to train the scratch neural network reveals that for
next hour forecasts k = 1 is the most autocorrelated value, while for next day and
next week the most autocorrelated one is the corresponding value one week before
(k = 168). This very simple predictive strategy is used as a default rule and as a
baseline for comparisons.

The Kalman filter is widely used in engineering for two main purposes: for com-
bining measurements of the same variables but from different sensors, and for com-
bining an inexact forecast of a system’s state with an inexact measurement of the
state [14]. We use a Kalman filter to combine the neural network forecast with the ob-
served value at time ¢ — k, where k depends on the horizon forecast as defined above.
The one-dimensional Kalman filter works by considering y; = $;—1 + K(y; — ¥i—1),
where 0? = (1 — K)o | and K = 0%, /0%, + o>

EXPERIMENTAL EVALUATION

The electrical network we are studying contains more than 2500 sensors spread out
over the network, although some of them have no predictive interest. The measures
of interest are active power (P), reactive power (Q), and current intensity (I). The
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TABLE 8.1
Data Distribution by Measure/Type of Sensor

| P Q
(n=2493) (n=761) (n=680)

Sensor, n (%)

High Tension 565 (22.7) 386 (50.7) 339 (49.9)

Mean Tension 1629 (65.3) 14 (1.8) 11 (1.6)

Transformers 299 (12.0) 361 (47.5) 330(48.5)

distribution of the measures and sensor type (high tension, mean tension, and power
transformers) is explained in Table 8.1.

For all of these measures, we consider around 3 years of data, aggregated on an
hourly basis, unless a fault was detected, although for the clustering procedure the
aggregation is made every 15 minutes.

CLUSTERING SYSTEM PERFORMANCE

The clustering system was extensively evaluated in [20]. The performance evaluation
is nonetheless relevant to report here as an indication of the applicability of the system
to real-world problems, since the predictive system operates with linear complexity.
Figure 8.4 plots system performance indicators in the electrical network experiments:
2-years data of about 2500 sensors. The plots present the evolution during 1 year
of the corresponding quantities, average on a weekly-basis (x-values omitted for
readability).

Figure 8.4 plots the evolution of the speed at which the system processes examples
averaged per week, the evolution of the speed at which the system updates the sufficient
statistics, and the evolution of the memory usage. The plots evidence the general
trend of the system: as the clustering structure grows, the space (in terms of memory)
decreases, and the speed at which examples are processed increases.

PREDICTIVE SYSTEM EVALUATION

The analysis of results was done for each dimension (I, P, and Q) separately, and
aggregated by month. For the three measures the system makes forecasts for next
hour, one day ahead, and one week ahead. At each time point ¢, the user can consult
the forecast for next hour, next 24 hours, and all hours for the next week.

The system has been implemented in the very fast machine learning frame-
work [11]. The neural network algorithm used was the i Rprop [13]. All experiments
reported here ran in an AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+ (2 GHz).
The system processes around 30000 points per second. The running time for all the
experiments reported here is about 2 hours.

All evaluation measures are computed as follow. At time i the system makes a
prediction for a specific measure and sensor for time i 4 k. k hours later, we observed
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FIGURE 8.4 Evolution of the speed at which ODAC processes examples and updates sufficient
statistics, and the evolution of memory usage in the Electrical Network (~2500 sensors in one
year data).

the real value provided by the sensor. The quality measure usually considered in
electricity load forecast is the MAPE (mean absolute percentage error) defined as
MAPE = Y[ |(3: — yi)/yil/n, where y; is the real value of variable y at time i
and y; is the corresponding predicted value. In this work, we prefer to use as quality
measure the MEDAPE (median absolute corresponding error), the corresponding
median of the MAPE measure, to reduce sensibility to extreme values [1].
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The design of the experimental evaluation in streams is not an easy task. We are
faced with a high dimensional problem: number of sensors, evaluation over 2 years,
three measures of interest. The evaluation metrics must reflect the evolution of the
system over time. For each point in time, measure and sensor we have an estimate
of the error. This estimate evolves over time. To have insights about the quality of
the model these estimates must be aggregated. In this particular application, there
are natural time windows for aggregations: week windows and month windows. For
all time horizons, we aggregate the error estimates by month, by type of sensor, and
measure, for a 1-year test period.

ONE HOUR AHEAD LOAD FORECAST

From previous work results, not only the ability to learn a model with the centroid
of the group is confirmed, but also the continuously applied incremental learning is
shown to favor not only the model fitting but, more important, the model adaptation
to dynamic behaviors [19]. Table 8.2 presents global results for predicting the next
hour load, over all dimensions on all sensors. We can stress that the system is stable
over time, with acceptable performance. In some cases there are no results available
(represented by NA, meaning lack of sensor measurements, due to faults in the sensors
Or receptors).

ONE DAY AHEAD LOAD FORECAST

Electricity load demand has a clear daily pattern, where we can identify day and night,
lunch and dinner time. We have implemented two strategies. At each time point 7,
the simplest strategy makes a single forecast 24 hours ahead, the second outputs 24
predictions for the next 24 hours. In our lab experiments, using 3 years of data, the
first strategy consistently exhibited slightly better results even when compared with
wavelets. This conclusion must be taken with care due to the different complexities of
neural nets topology. In the long term, the conclusion could be reversed. For a single
forecast at time #, the historical inputs are: t — {244, (168 —24)h, 168k, 169k, (168 +
24)h, 336h}. The results for the 24 hours ahead forecast are also presented in Table 8.2.
In comparison with the 1 hour forecast, the level of degradation in the predictions
is around 2-3%. Exceptions appear for predictions of the reactive power, which is
known to be harder to predict as longer-term forecasts are requested.

ONE WEEK AHEAD LOAD FORECAST

The standard profile for a week load demand is well defined: 5 quite similar week days,
followed by 2 weekend days. As for the 24 hours forecast, several strategies could be
designed for 1 week ahead forecast. Again, our lab experiments pointed out consistent
advantages using the simplest strategy of a single forecast using the historical inputs
t —{168h, 169h, (336 — 24)h, 336h, (336 4 24)h, (336 4 168)h}. The results for the
1 week ahead forecast are also presented in Table 8.2. Again, when comparing these
results with the 1 hour ahead forecast, one can observe a degradation of around 2%,
with worse results on reactive power predictions. At this point we can state that our
strategy roughly complies with the requirements presented by the experts.
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TABLE 8.2
Median of MEDAPE for All Sensors by Month, for One Hour, One Day, and One
Week Ahead Load Forecast

1 Hour Ahead 1 Day Ahead 1 Week Ahead

HT MT TP All HT MT TP All HT MT TP All
L % L % L %
Jan 434 498 460 463 Jan 661 652 698 644 Jan 595 610 6.50 5.95
Feb 424 507 474 473 Feb 697 683 7.4 673 Feb 681 687 695 6.68
Mar 424 501 4.60 466 Mar 7.23 7.09 774 7.03 Mar 7.14 749 7.69 7.27
Apr 446 538 5.08 498 Apr 805 771 9.2 775 Apr 7.3 731 810 7.17
May 3.90 4.77 445 438 May 679 642 746 641 May 557 617 632 597
Jun 393 491 458 455 Jun 723 721 856 721 Jun 622 679 7.02 658
Jul 387 462 425 426 Jul 7.3 698 777 695 Jul 7.02 738 740 7.1
Aug 3.68 430 3.89 398 Aug 697 620 7.06 622 Aug 7.99 811 9.10 7.96
Sep 433 493 442 459 Sep 699 683 746 680 Sep 6.14 669 686 6.46
Oct 450 5.19 4.67 484 Oct 803 738 825 741 Oct 641 640 694 631
Nov 3.89 4.66 432 437 Nov 7.17 687 786 687 Nov 639 597 649 591
Dec 434 5.18 4.65 4.84 Dec 862 802 873 7.96 Dec 9.02 858 8.85 8.48

P, % P, % P, %

Jan 379 NA 4.18 399 Jan 529 NA 652 6.18 Jan 539 NA 587 5.69
Feb 401 NA 453 432 Feb 607 NA 7.13 670 Feb 572 NA 6.61 6.33
Mar 380 NA 438 4.18 Mar 569 NA 728 677 Mar 592 NA 759 7.02
Apr 407 NA 463 444 Apr 655 NA 812 7.61 Apr 6.00 NA 690 6.52
May 356 NA 4.11 397 May 5.13 NA 650 6.13 May 440 NA 532 499
Jun 3.64 NA 417 400 Jun 623 NA 7.1 692 Jun 5.18 NA 6.02 575
Jul. 346 NA 383 374 Jul 625 NA 680 646 Jul 573 NA 628 6.07
Aug 320 NA 370 353 Aug 558 NA 600 579 Aug 6.68 NA 802 7.68
Sep 393 1.76 4.10 397 Sep 596 321 632 616 Sep 494 339 587 5.56
Oct 427 403 440 434 Oct 680 747 7.17 17.02 Oct 531 774 577 5.68
Nov 3.64 385 394 384 Nov 6.06 571 637 626 Nov 556 735 557 556
Dec 4.15 569 433 431 Dec 793 763 781 779 Dec 881 925 802 8.14

Q, % Q, % Q, %
Jan 285 4.15 921 8.02 Jan 274 1123 13.61 1091 Jan 1.75 553 11.59 9.28
Feb 4.14 5.00 1037 8.62 Feb 7.12 990 15.02 1233 Feb 3.85 5.62 1272 10.40
Mar 643 429 9.74 846 Mar 8.65 8.11 1397 12.07 Mar 5.18 6.89 1343 11.08
Apr 551 432 890 7.85 Apr 877 697 1526 1286 Apr 439 8.65 1446 11.25
May 4.81 332 7.52 697 May 6.60 5.74 12.62 10.84 May 423 6.76 12.11 9.79
Jun 501 324 837 7.15 Jun 828 6.10 14.22 1227 Jun 478 7.41 13.09 10.93
Jul 549 182 7.65 674 Jul 8.61 5.63 13.23 1146 Jul 7.47 455 1353 11.59
Aug 420 075 6.15 537 Aug 7.65 349 11.09 9.67 Aug 434 557 14.82 1251
Sep 5.51 1.64 798 6.69 Sep 7.71 247 1325 10.79 Sep 291 6.56 13.21 10.76
Oct 6.58 046 9.17 798 Oct 949 5.08 1434 1250 Oct 6.75 5.77 1251 9.96
Nov 571 0.17 7.84 7.02 Nov 796 121 13.13 11.19 Nov 5.69 098 1138 9.64
Dec 7.41 0.19 8.71 8.03 Dec 12.70 3.55 1545 14.13 Dec 1243 334 142 13.62

The measures are current intensity (I), active power (P), and reactive power (Q).
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COMPARISON WITH ANOTHER PREDICTOR

To assess the quality of prediction, we have compared with another predictive system.
We have conducted experiments where, for the given year, the quality of the system
in each month is compared with wavelets [21] on two precise variables of current
intensity sensors, chosen as relevant predictable streams (by an expert) but exhibiting
either low or high error. Results are shown on Table 8.3, for the 24 variables, over the
three different horizons. For the difference of the medians, the Wilcoxon [3] test was
applied, and the corresponding p-value is shown (we consider a significance level of
5%). The relevance of the incremental system using neural networks is exposed, with
lower error values on the majority of the studied variables. Moreover, we noticed an
improvement in the performance of the system, compared to the predictions made
using wavelets, after failures or abnormal behavior in the streams. Nevertheless,
weaknesses arise that should be considered by future work.

STRENGTHS AND LIMITATIONS

The system is robust to smooth and gradual changes in the target function. The clus-
tering algorithm incorporates mechanisms to detect changes by monitoring clusters
diameters, and reacts to changes by agglomerating clusters. Moreover, the incremen-
tal training of neural networks naturally allows adaptation to the most recent data.
The system is designed for long-term monitoring of the evolution of the electrical
network. The main difficulties are abrupt or sudden changes, such as special events,
charge transfers, network scratches, and others. All these events modify, during a
short period of time, the normal behavior of parts of the network. These events can
perturb the regular behavior of the predictive system triggering the change detection
mechanisms, and introducing entropy in the system. We need to implement specific
mechanisms to deal with special events.

Incremental learning tends to need more examples than batch training in order
to reach neural network convergence. However, with the recent evolution of sensor
networks, more and more data are being produced, hence supporting this technique.
Moreover, the system represents an improvement on electrical distribution industry,
in the sense that the online management of sensor clustering and predictive models
training releases the users from the burden of batch processing, which usually involves
weeks or months of several experts, work. This is, in fact, the key aspect supporting
our approach.

CONCLUSIONS AND FUTURE ISSUES

This chapter introduces a twofold online system: an adaptive cluster defining groups
of correlated sensors, and a predictive model for predicting sensor values within spe-
cific horizons. The system incrementally constructs a hierarchy of clusters and fits
a predictive model for each leaf. The main setting of the clustering system is the
monitoring of existing clusters’ diameters. The main setting of the predictive strategy
is the buffered online prediction of each individual variable. The system incremen-
tally computes the dissimilarities between time series, maintaining and updating the
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sufficient statistics at each new example arrival with a single scan. Experimental
results show that the system is able to produce acceptable predictions for different
horizons. Focus is given by experts on overall performance of the complete system.
The main contribution of this work is the reduction of the human effort needed to
maintain the predictive models over time, eliminating the batch cluster analysis and
the periodic neural network training, while keeping the forecast quality at acceptable
levels.

Directions for future work are the inclusion of background knowledge such as
temperature, holiday, and special events into the learning process, as these variables
are known to modify the electricity consumption and cannot be inferred from sensors
before the events. We believe this is a fundamental issue to further improvements in
the quality of neural network basic accuracy. Also, considering the sensor network
setting, the networks spread out geographically. The topology of the network and the
position of the electrical-measuring sensors are known. From the geo-spacial infor-
mation included in sensors we could also infer constraints in the admissible values
of the electrical measures. Nevertheless, the framework we present here is extensible
to other quite similar problems, such as water distribution, natural gas distribution,
and so on. Other more theoretical aspects include the definition of global evaluation
strategy for data stream prediction and the comparison with other online learning
techniques. The goal is the definition of metrics and significance statistical tests for
sequential predictions. The geo-spacial information can be used by sensors them-
selves. Sensors would become smart devices, although with limited computational
power, that could detect and communicate with neighbors. Data mining in this context
becomes ubiquitous and distributed. Moreover, sensor network data is distributed in
nature, suggesting the study of ubiquitous and distributed computation.
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ABSTRACT

Data from sensors and instruments is playing an ever larger role in scientific investi-
gation as sensor technology matures. However, sensor networks and instruments and
their delivery networks are prone to disruption due to intrusion attacks, node failures,
link failures, or problems with the instruments themselves. Missing data can cause
prediction inaccuracies or problems in the continuous events processing process. Esti-
mation techniques can be used to approximate missing data in a stream, thus enabling
a continuous flow of data during a temporary interruption of the stream. Compared
to reservoir sampling or histograms, a Kalman-filtering approach when used with a
dynamic linear model can provide an accurate prediction of missing events in sen-
sor streams while showing a low root-mean-square error. The Kalman filter-based
prediction technique is introduced into an SQL-based events processing system as
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a new query operator. Experimental analysis shows that the prediction operator has
low overhead and is effective in estimating missing events in weather data streams,
specifically, the METAR streams.

INTRODUCTION

Sensor networks and instruments are an important source of real-time data. Small
sensors measure a single value or a small subset of values repeatedly in regular
time intervals. In the weather community, data is generated continuously by a wide
range of instruments whose data products vary widely in size and rate of arrival.
METAR [32] data, for instance, is generated by nearly 1300 sites comprising of
surface observations from National Weather Service, ships, and buoys. The METAR
data captures the surface characteristics like wind speed, temperature, and visibility.
The data rate is between 1 and 3 eV/h per instrument.

Sensor networks and instruments can be unreliable sources of data [33,34]. Even
old, reliable dissemination systems and instruments suffer occasional outages. For
instance, the WSR-88D Doppler radar dissemination network that gathers real-time
information from the 100+ Doppler radars throughout the United States regularly
suffers outages for short periods of time for unknown reasons. In the months of
April and May 2007, the Internet-based NEXRAD Level II data delivery system,
IRADS [35], experienced around 11 outages, lasting between 28 minutes and 189
minutes, and averaging about 90 minutes. Further, the dissemination network might
introduce delays or burstiness into the streams that is independent of the rates of the
generating instrument.

Different approaches exist to events processing over indefinite data streams, the
main two being rule based approaches and query based approaches [36]. In query
based approaches, a user specifies behavior to be detected in a declarative query lan-
guage, often a form of SQL with extensions for stream and time-based processing.
These queries are run continuously over multiple input streams, carrying out opera-
tions like comparing one stream’s data to another, or aligning two streams based on
time. If a stream has no data, the operators block, waiting for the next event to arrive.
When a stream has no data because of an outage in a localized part of the dissemi-
nation network, this could mean the event processing system grinds to a halt over a
small regional problem, which is a very undesirable behavior. A suitable alternative
to blocked events processing is provisioning for a steady output stream by means of
using approximated data in the emergency situation that none is available.

We address the problem of intermittent missing events in sensor and instrument
streams, and propose a model based on Kalman filters [37] for modeling the input
sensor streams as a time series and predict the missing events. We restrict our scope
in this chapter to univariate time series consisting of single (scalar) observations
recorded sequentially over equal time increments [38]. In “multivariate time series”
each time series observation is a vector of numbers [38]. The approach described here
can be extended to multivariate time series using specialized models.

A Kalman filter is an optimal recursive data processing and mathematical esti-
mation algorithm that has been used for data assimilation and data prediction [39].
The Kalman filter incorporates historical information to estimate the current value of
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the variables of interest. A Kalman filter can be initialized with different state models
like exponential models and dynamic linear models. We propose the dynamic linear
model [24] as it is simple to use, has few parameters to be initialized, and dynamically
updates its state. The dynamic linear model models the difference in values of events
over time. Along with Kalman filters, this model enables real-time one pass predic-
tion of incoming events. In the presence of events in a stream, the filter continuously
predicts and updates itself with the successive events. In the absence of a stream, the
filter output is passed as the events of the stream.

We implemented and evaluated our solution in the Calder [28,36] stream-
processing system. Calder supports monotonic time-sequenced SQL Select-From-
Where queries. The user submits SQL-like queries through the Calder’s web service
interface. The query planner service of Calder optimizes and distributes queries and
query fragments to computational nodes based on local and global optimization cri-
teria. Running at each computational node in the network is a query processing en-
gine that dynamically accepts queries as scripts and deploys them as compiled code.
Queries are deployed as directed acyclic graph of operators into the computational
nodes.

The novelty of our approach lies in our adaptation of Kalman filters into a new
query operator, the Kalman filter operator (KF operator), in the query based event
processing Calder system. Kalman filter monitoring is carried out on a per stream
basis. The operator detects missing events in a stream and substitutes them with the
Kalman filter output.

We experimentally evaluated the Kalman filter approach against reservoir sam-
pling and histogram-based prediction approaches for five datasets obtained from
publicly available time series archives [5,27,38]. In our comparative analysis, the
Kalman filter approach performed better than sampling and histograms in four of the
five cases. We found that the KF operator adds a low overhead of 0.0386 s to the
query service time under steady state conditions. We also validated our approach by
applying it to prediction of METAR data collected over the Indianapolis region.

This chapter is organized as follows. Related approaches for data estimation are
discussed in “Related Work.” “Kalman Filters” describes the background on Kalman
filters. The proposed solution and its implementation as the KF operator in the Calder
system are described in “Architecture.” In “Experimental Analysis,” we discuss the
results of our comparative analysis, and examine the overhead of the KF operator as a
measure of the service time and the prediction accuracy of Kalman filters on METAR
streams. “Conclusions” are discussed at the end of the chapter.

RELATED WORK

Sensor-data processing has gained a lot of importance in the recent years. Estimating
and interpolating missing data in sensor streams has generated interest in the stream
processing community. We discuss work related to missing stream prediction and
data approximation techniques as adopted by the stream processing community. Data
approximation techniques like sampling, histograms, and wavelets have widely been
used for the problem of selectivity estimation in database literature. We found that
some of the techniques used for selectivity estimation like sampling and histograms
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can be leveraged for use in missing stream prediction. More recent techniques use
neural networks and rule mining in event stream prediction. We discuss these ap-
proaches in detail here.

Rodrigues et al. in [23] describe a neural network based real-time system for
online prediction in large sensor networks, where each variable is a time series and
each new example that is fed to the system is the value of an observation of all time
series in a particular time step. The goal of this system is to predict the value of
each variable in time stamp ;.. There are two components to the system. The first
one is an online clustering algorithm able to aggregate variables that exhibit high
correlation in the previous recent period. The second component is a set of neural
networks, each one being associated with one cluster. At each given moment, the
system supplies a compact data description and process each example in constant
time and memory. All the variables in the same cluster are highly correlated, so they
have similar gradients. Since their system models the first-order differences, each
prediction is the expected variation from time #; to #;;. To obtain the real predicted
value, the authors sum the predictions with the last known value of each variable
within the cluster, independently, to achieve the final result.

Halatchev et al. in [8] estimate missing data in sensor networks using association
rule mining. The authors derive a technique for dealing with the case of a missing,
corrupted, or late reading from a particular sensor (i.e., missing tuple in a data stream)
in the presence of other data streams that are possibly related to the stream with the
missing tuple. To estimate the values of the missing tuples, the authors first use
association rule data mining to identify the sensors that are related to the sensors
with the missing tuples. Then the current readings of the related sensors are used to
calculate the missing values in the current round. [10] addresses the issues of data
stream association rule mining.

All sampling methods that process the file in one pass can be characterized as
reservoir algorithms. The seminal work on reservoir sampling was done in [29]. A
reservoir algorithm developed by Alan Waterman works as follows: when the (z + 1)st
record in the file is being processed, for ¢ > n, the n candidates form a random sample
of the first # records. The (¢ 4 1)st record has a n /(¢ 4+ 1) chance of being in a random
sample of size n of the first # 4 1 records, and so it is made a candidate with probability
n/(t + 1). The candidate it replaces is chosen randomly from the »n candidates. It is
easy to see that the resulting set of n candidates forms a random sample of the first
t+ 1 records. For join queries, [1] proposes the use of precomputed samples of a small
set of distinguished joins referred to as join synopses in order to compute approximate
join aggregates.

Histograms are bar charts that show the distribution of a variance. They also show
deviations from the norm, that is, they show a snapshot. They are used to measure the
frequency with which something occurs. In databases, histograms have been widely
used in the context of selectivity estimation [20]. Selectivity estimation is the problem
of estimating the result size of the query. loannadis et al. use histograms to obtain
approximations to nonaggregate queries involving join and select in [9]. The authors
also contributed an error metric for quantifying the quality of an approximate set
valued answer. A stream-processing system is used to inspect data as it flows by
and perform necessary computation for purposes of analysis without storing most of
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the data. Effectively approximating the distribution of continuous streams of data is
essential for approximate query answering. Thaper and Guha address the problem
of computing and maintaining dynamic histogram structures in a continuous query
context in [26]. The authors support a multidimensional histogram to approximate
data streams using sketching techniques.

Wavelets are functions that satisfy certain mathematical requirements and are used
in representing data or other functions [7]. The fundamental idea behind wavelets
is to analyze according to scale. Wavelets are mathematical functions that cut up
data into frequency components and then study each component with a resolution
matched to scale. When a dataset is decomposed using wavelets, the result is a set
of wavelet coefficients. The decomposing is done using a repeated averaging and
differencing technique. Chakrabarti et al. [4] have developed an approximate query
processing engine that can execute general purpose query processing entirely in the
wavelet coefficient domain. That is, the inputs and outputs are compact collections
of wavelets capturing the underlying relational data. Gilbert et al. [6] introduce the
idea of using wavelets for solving aggregate queries on data streams. The authors
address the problem of summarizing the data streams in a small amount of space so
that accurate estimates can be provided for basic aggregates. Some applications may
be interested in obtaining data at different time scales (periodicity) from the rate of
the data stream.

Supporting periodic queries and queries over a time interval using wavelets are
discussed in [25]. In [25], data streams are passed through wavelets that capture the
information in a compressed form. Time scale queries are run on the wavelet represen-
tation. This is a computationally inexpensive approach and provides sufficient data to
answer the query. Thus, the authors use wavelets to decouple stream providers (sen-
sors, instruments, etc.) from applications. Wavelets have been used in the construction
of histograms as well [18,19]. The AForecast algorithm [15] based on the theory of
interpolating wavelets forecasts a single attribute value of item in a single stream. It
also determines multiple forecasting steps based on the change ratio of stream value
and forecasts random-variant stream value using relative precise predictions of deter-
ministic components of data streams. The linear Kalman-filtering method is used in
the AForecast algorithm to approximately generate optimal forecasting precision.

Kalman filters [37,39] have been used in a wide variety of prediction applica-
tions. Some of the interesting applications that use Kalman filters and where stream
processing could be potentially applied are listed below. (More information on the
applications of the Kalman filter can be found in [12].)

o Weather modeling: Mackenzie in [16] used an ensemble (a collection) of
Kalman filters in predicting the outcome of weather models with slightly
different inputs. The Ensemble Kalman Filter (EnKF) [40] is a sophisticated
sequental data assimilation method. It applies an ensemble of model states
to represent the error statistics of the model estimate, applies ensemble
integrations to predict the error statistics forward in time, and uses an
analysis scheme, which operates directly on the ensemble of model states
when observations are assimilated. The EnKF has proven to efficiently
handle strongly nonlinear dynamics and large state spaces and is now used
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in realistic applications with primitive equation models for the ocean and
atmosphere.

o Financial prediction: An adaptive Kalman filter was used in predicting
market data in [17]. The market data was represented as a time series, that
is, as any set of numbers in chronological order, with the same time interval
between any neighboring pair of numbers. An adaptive Kalman filter was
used to predict data and indicators used to measure the success of the filter
in its prediction.

e Tracking: The Kalman filter has been used extensively for tracking in in-
teractive computer graphics. An example of using a single-constraint-at-a-
time Kalman filter is the HiBall Tracking System discussed in [31].

» Network synchronization: [3] describes a Kalman filtering algorithm for
end-to-end time synchronization between a client computer and a server
of “true” time (e.g., a GPS source) using messages transmitted over packet
switched networks, such as the Internet.

We investigate Kalman filters for predicting missing events in a sensor stream.
Kalman filters have been previously found successful in predicting time series data in
weather modeling [16], economics [17], tracking [31], and many other applications.
The dynamic linear model along with Kalman smoothing [24] emerged as the winning
solution in the CATS benchmark competition [14] for time series prediction. In our
comparative analysis provided in a later section, the Kalman filter approach with a
dynamic linear state model resulted in overall lower root-mean-squared error (RMSE)
than the other approaches.

KALMAN FILTER

The data streams under consideration are events occurring at regular intervals (a time
series). The main distinction in how a Kalman filter operates compared to sampling,
histograms, and wavelets is that the Kalman filter is a data prediction tool while
the others are data summarization techniques. The Kalman filter also maintains an
estimate of the accuracy of the prediction, which is based on its historical accuracy,
and is reported as the standard deviation of the prediction. In this section we discuss
Kalman filters in detail.

A Kalman filter tracks a time series using a two-stage process [17,30]. These two
stages shown in Figure 9.1 are described as follows: at every point in the time series, a
prediction is made of the next value based on a few of the most recent estimates, and on
the data model contained in the Kalman filter equations; then, the next actual data point
is read, and a compromise value between the predicted and actual value is calculated
based on the amount of noise in the time series. Kalman filters take into consideration
the knowledge of the system, the dynamics of the measuring device used, the noise
in the system, the uncertainty in the models, and any available information about
initial conditions [39]. Thus a Kalman filter incorporates all information provided to
estimate the current value of the variables of interest.

The Kalman filter is based on the assumption of a continuous system that can be

modeled as a normally distributed random process X, with mean X (the state) and
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Time update Measurement update
(“predict”) (“correct”)

FIGURE 9.1 Kalman filter algorithm.

variance P (the error covariance). In other words:
X ~N(X, P).

Kalman filters are based on linear dynamical systems discretized in the time
domain. The basic Kalman filter is thus limited to a linear assumption. We use the
extended Kalman filter, which linearizes all nonlinear models so that the traditional
linear Kalman filter can be applied [11]. The following state equations for a linear
process are described in [30]. The Kalman filter addresses the general problem of
trying to estimate the state x € R" of a discrete time-controlled process that is
governed by the linear stochastic difference equation,

Xy = Fx_1 + Bup + wi_q 9.1)
with a measurement z € R™ that is,
Zk = H)Ck + vk (92)

where
F is the n x n matrix that relates the state at the previous time step to the
state at the current step, in the absence of either a driving function or
process noise.
is the n x 1 matrix that relates the optional control input u; to the state x.
is the m x n matrix that relates the state to the measurement zy.
is the input control vector
wy and vy are random variables that represent the process and measurement
noise, respectively.

S Tw

They are assumed to be independent of each other, white, and with normal probability
distributions.

In practice, the process noise covariance and measurement noise covariance ma-
trices might change with each time step or measurement. In the problem we address,
we do not have knowledge of the input u;, to the model that generates the input stream.
Hence we only model the system matrix F as a dynamic linear model. The dynamic
linear model models the difference in values of events over time. The dynamic linear
model along with Kalman smoothing [24] emerged as the winning solution in the
CATS benchmark competition [14] for time series prediction. The discrete form of
the dynamic linear model is written as

X; I At %AIZ X1 11
X =10 1 At x|+ | 9240 9.3)
% 0 0 1 Xy q3,-1
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where the process noise, ¢ = (¢7,_1, 45 ,_1-95,_1)" , has zero mean and covariance

A5 At*)4 A3
Q1= | At*/4 A3 At?)2 | g°
At3/3 A2/2 At

where At is the time period between samples and ¢* defines the strength of the process
noise. The above equations are three-state extensions to the two-state model of the
equations used in [24] for CATS benchmark. We do not use Kalman smoothing used
in [24], as this involves multiple passes over the data. The implementation details of
stream modeling and prediction using Kalman filters in the Calder system described
in the next section.

ARCHITECTURE

The Calder stream-processing system [28,36] enables applications to submit long-
running continuously executing queries on data streams. The Calder system operates
over a realistic stream load generated by a computational science application, thus
providing a realistic framework in which to investigate a number of timely research
issues in stream query processing: query distribution that is sensitive to metrics such
as minimized global network bandwidth consumption; approximation of query re-
sults under conditions of stream bursts, stream discovery, and temporal and spatial
aggregation operators that minimize CPU and network bandwidth consumption. A
query can aggregate, filter, and transform one or more data streams on behalf of the
application, generating a new stream tailored to the needs of the application service.
Calder buffers the resulting stream enabling temporal synchronization between the
stream and the application service.

The Calder system supports a subset of SQL extended with special operators that
invoke user-defined functions during query execution. The query execution engine of
the Calder system executes queries as a directed acyclic graph (DAG) of operators [20].
In the Calder stream processing system, detection of missing streams is implemented
as part of the Kalman filter (KF) operator.

The KF operator has three main functions: monitoring the input stream to detect
missing events, maintain the Kalman filter on the values of interest to predict the
missing events, and stream the predicted events into the system at the same rate as
the original stream. The KF operator is implemented to take into consideration the
attributes of interest and estimate them in its absence. The KF operator detects when
a stream is not available and keeps predicting until its error estimate reaches a certain
threshold. If the stream is not resumed beyond this time, the Calder system is notified
of the missing stream and query plan changes are carried out. The KF operator is
configured at query submission time to identify the values of interest in an event
stream and a Kalman filter is initialized internally for each value to be modeled.

The Kalman filter used in Calder uses the Kalman filter implementation of the
Bayes—++ [2] software library. Bayes+-+- is a library of C4-4- classes that implement
a wide variety of numerical algorithms for Bayesian filtering of discrete systems
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FIGURE 9.2 Query showing integration of KF operator one per stream.

including Kalman filters. We used the Covariance filter class in Bayes++, which
implements the basic Kalman filter and extended Kalman filter.

An example query DAG for a join query is shown in Figure 9.2. Figure 9.2
provides an example of these operators and the data flow between them. The gate
operator receives only events of the type needed by the query from the input buffer,
in this case, input streams /; and I,. The KF operator is appended immediately
after the gate operator, one for each stream. Its functionality is as described above.
Events are then pushed through the join operator. Each join operator is appended
with a cost operator internally that samples the input streams to detect their rate, for
use in calculating the join window size [21]. Joins in Calder are a Cartesian product
followed by a time-based comparison. If a suitable match is found, the event is pushed
to the next operator as well as retained in the join window for subsequent matching.
The join operator produces an aggregate event comprising the input events. A select
operator executes relational operations on the attributes of one or more events. A
project operator extracts needed information from this aggregate event into a new
event of the type required by the act operator. An act operator is appended to all
queries as the last operator and executes the user defined function, if any.

Taking the approach of using a query operator, the KF operator, to instrument
code is a unique contribution to the literature of instrumentation in its own right. The
declarative language nature of SQL opens a door for inserting sensors without users
being aware. Declarative queries must undergo optimization and instantiation into a
procedural representation anyway, so inserting an additional operator or two into the
parse tree can be done without changing the semantic meaning of the query or the
results.

As mentioned before, we model the data stream as a time series. The data events
are an ordered sequence of values of a variable occurring at equally spaced time
intervals, that is, events arrive with a set inter-arrival time delay. Due to delays in the
generation source and network the inter-arrival time varies slightly. A naive approach
to detecting a missing stream is to wait for a preset period of time and if the data
doesn’t arrive in the specified time period, consider the stream missing. But this
approach does not generalize as the stream rates may change dynamically (STORM
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mode and CLEAR mode for weather sensors [21]) and single preset time may not be
relevant for different streams or even subsets of the same stream. It is reasonable to
assume that the inter-arrival time of a time series falls within a particular time range
averaging around the set generation time interval.

The KF operator maintains amoving average of the inter-arrival time across the last
few events. When a new event arrives its timestamp is compared with the previous
event’s timestamp to calculate the new average inter-arrival time. Each stream is
monitored independently using a KF operator and an associated timer. Thus inter-
arrival rate is updated dynamically whenever the rate of a stream changes. In our
configuration of the KF operator, if there has been no event in twice the inter-arrival
time calculated, the stream is considered to be missing. This is done by registering
the inter-arrival time with a timer and generating a trigger if twice the inter-arrival
time is passed without an incoming event.

The KF operator checks for events in the input stream. If there are input events ar-
riving periodically, the KF operator updates itself with the event data. In the absence of
events, the KF operator’s predicted result is sent in the place of the input stream event.
The predicted events are streamed into the system at the input rate previously mea-
sured by the KF operator and registered with the timer. The Kalman filter maintained
by the KF operator remains stable so long as there is sufficient excitation on the input
signal. When the input signal is nonexistent (missing stream), we feed the predicted
value with observation noise as the next observation. This will enable the Kalman
filter to predict events in the stream for the next few time periods. The Kalman filter
states the accuracy of its estimation as the estimation error covariance. However, in
the absence of a proper input signal, the state estimation covariance will grow linearly
and prolonged periods without excitation will destabilize the Kalman filter [22].

EXPERIMENTAL ANALYSIS

We conducted three sets of experiments to validate the use of Kalman filters for
predicting missing events in data streams. The first experiment uses five different
time series datasets for comparing Kalman filters with sampling and histogram-based
approaches discussed in “Related Work”. The second experiment quantifies the over-
head of the KF operator on the query service time under normal executing conditions
when the stream is available. The third experiment applies the Kalman filter to METAR
observations over the Indianapolis region on a single calendar day. Downtimes are
introduced into the METAR observations and the Kalman filter is used to predict the
observations during the downtimes.

The experiments were conducted on a Dell Precision workstation with dual 2.8
GHz 1786 CPUs and 2GB RAM, running RHEL 4.

COMPARATIVE ANALYSIS

The first set of experiments compares the prediction accuracy of Kalman filters
with dynamic linear model against reservoir-sampling and histogram-based predic-
tion techniques discussed in “Related Work.” We trained each approach with three-
fourths the input dataset for training. We tested the predictions made for the remaining
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one-fourth of the dataset. The root-mean-square-error (RMSE) was computed by tak-
ing the sum of the squares of the errors (difference between the predicted and actual
values), computing the average and then taking the square root as shown in Equation
9.4).

RMSE — > (predicted value — actual value)?

- 9.4)
number of elements predicted

Approaches

We used Kalman filter, reservoir-sampling, and histogram approaches in our com-
parative analysis. We selected sampling and histogram approaches to compare with
Kalman filters as all three are generic approaches that can be used for any univariate
stream. Wavelets are compression techniques that can store huge samples and his-
tograms in less space. The results for sampling and histograms are thus extensible to
the wavelet domain.

Kalman Filters

The Kalman filter state matrix was set up based on Equation (9.3). At is set to the
difference in timestamp of the input data. For this experiment, all the input datasets
are assumed to have discrete intervals of one time period. Hence At was set to 1. The
process noise covariance was initialized to 0.01 multiplied by a 3 x 3 identity matrix.
The observation size is 1 (a single integer or float value). The observation noise was
also initialized to 0.01.

Sampling

In the reservoir-sampling algorithm [29], when the (¢ + 1)st record in the file is being
processed, for ¢t > n, the n candidates form a random sample of the first 7 records.
The (¢ + 1)st record has a n/(t 4 1) chance of being in a random sample of size n of
the first ¢ + 1 records, and so it is made a candidate with probability n /(¢ + 1). The
candidate it replaces is chosen randomly from the n candidates. The resulting set of
n candidates forms a random sample of the first # 4 1 records. For our experiments,
the sample size was set to one-tenth of the number of elements in each dataset. For
the testing phase, a uniformly distributed random number generator was used to pick
one of the n sample elements to replace the missing event. The RMSE was calculated
using the predicted output and the actual value as shown in Equation (9.4).

Histogram

Histograms have been used widely for data approximation in the database literature.
We leveraged them to be used for prediction. For each dataset, we built a histogram
with 10 bins on the training dataset. The histogram was implemented in Matlab. The
Matlab implementation stores the number of elements in each bin and its center point.
After all the training data was entered, the percentage of total data in each bin was
used to build a cumulative probability distribution (CDF) of the histogram. During
the testing phase, when a data element had to be predicted, we generated a uniformly
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distributed random number distributed between 0.0 and 1.0. Based on the histogram’s
CDF, a corresponding bin was then selected and its center used as the next predicted
element. The RMSE was then calculated using the difference between the predicted
and actual value.

Datasets

We compared the above methods against five datasets described below. All the datasets
have measurements taken at discrete intervals. The actual timestamps associated with
these datasets are not relevant for our comparison and hence neglected. The inter-
arrival time At between input elements is set to 1. The approaches are trained with
three-fourths of the data sequence and their predictions tested for the remaining one-
fourth of the sequence. The actual number of elements in the predicted sequence thus
varies with each dataset.

1. Annual snowfall in Chicago from 1939 to 1978: Source Hipel and McLead
1994. This dataset is part of the Meteorology datasets available in the Time
series data library [27]. It measures the annual Chicago snowfall data for
40 years, total in inches, starting with 1939 and ending with 1978. The
total number of elements in this dataset is 40.

2. Temperatures in Melbourne from 1981 to 1990: Source Australian Bureau
of Meteorology. This dataset is part of the Meteorology datasets available
in the Time series data library [27]. It lists the daily maximum temperatures
in Melbourne, Australia from 1981 to 1990. The total number of elements
in this dataset is 3650.

3. Monthly mean CO; concentrations: This dataset contains selected monthly
mean CO, concentrations at the Mauna Loa Observatory from 1974 to
1987. This time series dataset was obtained from the Statistics Handbook
[38]. The CO, concentrations were measured by the continuous infrared
analyzer of the Geophysical Monitoring for Climatic Change division of
NOAA’s Air Resources Laboratory. The total number of elements in this
dataset is 161.

4. Southern oscillations: This dataset contains the southern oscillation, the
barometric pressure difference between Tahiti and the Darwin Islands at
sea level, for years 1955 to 1992. This time series dataset was obtained
from the Statistics Handbook [38]. The southern oscillation is a predictor
of El Nino, which in turn is thought to be a driver of world-wide weather.
Specifically, repeated southern oscillation values less than —1 typically
indicates an El Nino effect. The total number of elements in this dataset
is 456.

5. CPU load trace averaged hourly: This dataset contains the CPU load
measurements collected by Peter Dinda’s group at Northwestern Univer-
sity [5]. The CPU load was collected by monitoring computing nodes at the
Pittsburgh Supercomputing Center. Traces were collected for two time pe-
riods, late August 1997 and February to March 1998, on roughly the same
group of machines. The measurements were taken at 5 second intervals.
The total number of elements in the dataset is 1296000.
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TABLE 9.1
Comparative Analysis of Missing Stream Prediction Approaches

KF with Dynamic

Linear Model Sampling Histogram
Datasets (RMSE) (RMSE) (RMSE)
Annual snowfall 20.5486 23.3806 25.1332
in Chicago
Maximum temperature 7.0359 8.99643 8.7169
in Melbourne
Monthly mean CO, 8.3056 16.1868 10.6585
concentrations
Southern oscillations 1.8578 1.6144 1.6164
Hourly CPU load average 0.5860 0.7536 0.7493

Analysis

The results of our comparative experiments are given in Table 9.1. The Kalman filter-
based prediction approaches demonstrated an overall better prediction accuracy for
four out of five datasets tested. In reservoir sampling, the sample is representative of
the entire dataset seen so far. Histograms keep an account of the frequency of the data
values and not when they occurred in time. Hence neither sampling nor histograms
preserve locality of trend in data. Alternately, the Kalman filter-based approaches take
into consideration the current trend in the dataset. When the trend is not prominent
(dataset 4), the Kalman filter performs slightly worse than the other approaches. For all
the other datasets, the Kalman filter-based methods outperform the other approaches
considered in our experiments by a good margin.

OVERHEAD ANALYSIS

This experiment captures the overhead of the KF operator in Calder [36]. We measured
the service time of processing a select query on a single stream with and without the
KF operator. The input stream generated by a host load sensor comprises the CPU
and memory characteristics (usage, idle, available, etc.) of a host machine.

The data was streamed at a fixed rate of one event per second. The measurements
were taken at steady stream conditions without missing events in stream. This exper-
iment thus captures the overhead of the KF operator on the service time under normal
execution (when no events are missing).

SELECT * FROM HOST_CPU_MEM_INFO WHERE CPU_IDLE >= 0.0

The above select query was executed on the dataset. To capture the service time
of all events that enter, the selectivity of the query was kept at 100%. A KF operator
is introduced for the input sensor stream. We modeled the value of the CPU idle time
using a Kalman filter with the dynamic linear model described in Equation (9.3).
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FIGURE 9.3 Kalman filter operator overhead on service time.

To reduce the impact of other operations on the service time, the load on the
system was kept low and the query execution engine was executing just one query. The
results of the experiments are given in Figure 9.3. From Figure 9.3, we can see that the
overhead added by the KF operator is on the order of few microseconds. The average
service time of the query without the Kalman filter operator is 0.2316 s, while the
average service time with the addition of the Kalman filter operator is 0.2701 us.

From Table 9.2, we can see that the KF operator adds an overhead of approximately
0.0386 us to the query service time. The overhead is a product of the number of values
modeled in a univariate data stream. For a single value as in this case, the KF operator
introduces roughly a 17% increase in the service time, and remains fairly constant. It
needs to be noted that the query under consideration is a very simple select all query.
The service time increases with the complexity of the query and the user-defined
function executed, if any.

TABLE 9.2
Overhead of Kalman Filter Operator

Description Mean (us)  Std (us)
KF Operator Overhead 0.0386 0.0034
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TABLE 9.3
Prediction of METAR Data During (Artificial)
Downtime in a Day

Wind Speed Visibility
Measure (Knots) (Statute Miles)  Temperature (°C)

RMSE 1.1180 0 1.8028
Mean 9.25 10 23.75

PrReDICTION OF METAR DATA

METAR [32] data generated by the instrument sensors captures the surface charac-
teristics like wind speed, temperature, cloud height, and visibility, etc. It is generated
from nearly 1300 sites with a data rate of 1 to 3 eV/h. All the available METAR sites
covering United States are listed in [32]. The METAR data is received at Indiana
University using the Unidata LDM [13]. The Unidata Local Data Manager (LDM)
is a collection of cooperating programs that select, capture, manage, and distribute
arbitrary data products. The LDM was configured for event-driven data distribution.
The LDM was configured to receive and collect data from all METAR stations. We
conducted the following two experiments using METAR data collected over the In-
dianapolis region.

Predictions in a Calendar Day

For this experiment, we focused on the data generated over Indianapolis for a single
calendar day. On July 12, 2007, our LDM received 24 distinct readings in the 24-hour
time period. We streamed the data collected for this day into the Calder system and
executed SELECT ALL queries on it. We simulated a downtime of 4 hours in the
middle of the day.

Table 9.3 lists the RMSE value of predicted values and the mean of the actual
missing values for the downtime introduced in the METAR data. From Table 9.3, it can
be seen that the KF operator can predict the METAR data with low RMSE (within 12%
of the corresponding mean) for all three observations. Figures 9.4 through 9.6 plot
the wind speed, visibility, and temperature for the METAR data under consideration.
The graphs show the downtime (vertical dotted lines) and the predicted and actual
values during that time. We can see that the predicted values follow the trend in actual
values.

Prediction over a Calendar Week

For this experiment, we focused on the data generated over Indianapolis for a calendar
week from July 18, 2007 to July 24, 2007. We simulated three downtimes each
lasting 4 hours distributed across 7 days. We streamed the data collected for the given
week into the Calder system, executed SELECT ALL queries on it, and recorded the
predictions made by the Kalman filter operators during the downtimes.
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FIGURE 9.4 Prediction of windspeed during METAR station (artificial) downtime in a day.

Table 9.4 lists the RMSE value of predicted values and the mean of the actual miss-
ing values for the three downtimes introduced in the METAR data. From Table 9.4,
it can be seen that the KF operator can predict the METAR data with low RMSE.
Figures 9.7 through 9.9 plot the wind speed, visibility, and temperature from the
METAR measurements under consideration. The graphs show the downtimes (verti-
cal dotted lines) and the predicted and actual values during that time.

Prediction of METAR Data (Artificial) Downtimes

TABLE 9.4

Over a Week

Measure and  Wind Speed
Downtimes (Knots)
RMSE (Ist) 29155
Mean (1st) 14
RMSE (2nd) 4.4159
Mean (2nd) 3.50

RMSE (3rd) 4.6098
Mean (3rd) 5.25

Visibility
(Statute Miles)

0
10
0
10
0
10

Temperature (°C)

2.3979
27.25

2.0616
14.75

0.7071
18.50
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FIGURE 9.5 Prediction of visibility during METAR station (artificial) downtime in a day.
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CONCLUSION

In this chapter, we proposed the use of Kalman filters for prediction of missing events
in a stream. We evaluate the Kalman filter approach by applying it to many time
series datasets and show that it performs better than the traditionally used sampling
and histogram-based approaches. We implemented Kalman filtering as a one-pass
streaming operator as part of the Calder system. Our implementation resulted in a
low overhead operator. We also validated our approach by applying it to prediction of
METAR data and show that it predicts the missing observations with good accuracy.
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ABSTRACT

Smart homes offer a potential benefit for individuals who want to lead independent
lives at home and for loved ones who want to be assured of their safety. We have de-
signed algorithms to detect events and predict events based on sensor data collected in
a smart environment. In this chapter we explain how representing and reasoning about
temporal relations improves the performance of these algorithms and thus enhances
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the ability of smart homes to monitor the well-being of their residents. Technological
enhancements aid development and advanced research in smart homes and intelligent
environments. Discovered temporal knowledge can aid the process of prediction. To
address this challenge, we introduce an approach using a probability-based model
on temporal relations in smart home data and developed the TempAl tool. Tempo-
ral pattern discovery based on modified Allen’s temporal relations helped discover
interesting patterns and relations on smart home datasets. This chapter describes a
method of discovering temporal relations in smart home datasets and applying them
to perform activity prediction on the frequently occurring events. We also include
experimental results, performed on real and synthetic datasets.

Keywords. Smart homes, prediction, event prediction, temporal reasoning

INTRODUCTION

The problems of representing, discovering, and using temporal knowledge arise in a
wide range of disciplines, including computer science, philosophy, psychology, and
linguistics [1]. Temporal rule mining and pattern discovery applied to time series data
has attracted considerable interest over the last few years [2]. We consider the problem
of learning temporal relations between event time intervals in smart home data and
using these results to enhance prediction and to detect anomalies. The purpose of
this work is to identify interesting temporal patterns in order to improve prediction
of events based on observed temporal relations in a smart home environment and to
detect whether the event which occurred is an anomaly. A simple sensor can produce
an enormous amount of temporal information, which is difficult to analyze without
temporal data mining techniques that are developed for this purpose.

By 2040, a projected 26% of the U.S. population will be 60+ and at least 45% of
the populations of Japan, Spain, and Italy will be 60 or older by then. Approximately
13% of these older adults suffer from dementia and related disabilities [3]. Given
the costs of nursing home care and the importance residents place on remaining in
their current residence as long as possible, use of technology to enable residents with
cognitive or physical limitations to remain in their homes longer should be more cost
effective and promote a better quality of life. Thus we see a strong need for smart
homes in the near future. As a long-term outcome of this investigation we expect
to develop and to offer the community smart environment technologies with data
mining and machine learning algorithms that can effectively perform a variety of
health-monitoring and intervention strategies.

Data collected in smart environments has a natural temporal component to it, and
reasoning about such timing information is essential for performing tasks, such as
event prediction and anomaly detection. Usually, these events can be characterized
temporally and can be represented by time intervals. These temporal units can also
be represented using their start time and end time, which lead to form a time interval,
for instance when the cooker is turned on it can be referred to as the start time of
the cooker and when the cooker is turned off it can be referred to as the end time
of the cooker. The ability to provide and represent temporal information at different
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levels of granularity is an important research subfield in computer science, which
especially deals with large timestamp datasets. The representation and reasoning
about temporal knowledge is very essential for smart home applications. Particularly
people with disabilities, elder adults and chronically ill residents can take advantage
of applications that use temporal knowledge. In particular, we can model activities of
these individuals, use this information to distinguish normal activities from abnormal
activities, and help make critical decisions to ensure their safety.

We propose a framework to derive temporal rules from a time series representation
of observed resident activities in a smart home, and validate the algorithm using both
synthetic datasets and real data collected from the MavHome smart environment.
This framework is based on Allen’s temporal logic [1]. Allen suggested that it was
more common to describe scenarios by time intervals rather than by time points,
and listed thirteen relations formulating a temporal logic (before, after, meets, meet-
by, overlaps, overlapped-by, starts, started-by, finishes, finished-by, during, contains,
equals). These temporal relations play a major role in identifying temporal activities
which occur in a smart home [4]. The objective of this research is to identify temporal
relations among daily activities in a smart home to enhance prediction and decision
making with these discovered relations, and detect anomalies. We hypothesize that
machine learning algorithms can be designed to automatically learn models of resident
behavior in a smart home, and when these are incorporated with temporal information,
the results can be used to enhance prediction and to detect anomalies. We describe a
method of discovering temporal relations in smart home datasets and applying them to
perform anomaly detection on the frequently occurring events and enhance sequential
prediction by incorporating temporal relation information shared by the activity. We
validate our hypothesis using empirical studies based on the data collected from real
resident and synthetic data.

CURRENT RESEARCH TRENDS

“A physical world that is richly and invisibly interwoven with sensors, actuators, displays,
and computational elements, embedded seamlessly in the everyday objects of our lives,
and connected through a continuous network™

-Mark Weiser [5]

We define a smart environment as a small world where all kinds of smart devices
are continuously working to make residents’ lives more comfortable. Smart environ-
ments aim to satisfy the experience of residents in every environment, by replacing
the hazardous work, physical labor, and repetitive tasks with automated agents [6] and
also ensure security, comfort, and health and well-being of the resident. The general
features which are incorporated into most smart environments include home au-
tomation such as remote control of devices, inter-device communication, information
acquisition using sensors, enhanced services using intelligent devices, and task au-
tomations using prediction techniques and data mining algorithms. Smart environment
research efforts are by nature multidisciplinary projects, which make use of advances
in wireless communication, databases, algorithm design, speech recognition, image
processing, computer networks, mobile computing, ubiquitous computing, telehealth,
operating systems, assistive technologies, adaptive controls, sensor designs, software
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engineering, middleware architectures, parallel processing, pervasive computing, and
ambient intelligence [5].

Common goals of smart environments include adapting to the needs of residents,
providing services which are cost effective and reliable, and providing maximum
comfort and security to the resident. The contributions that have been offered by
smart environment research projects are the design and implementation of interfaces,
applications, and systems ranging from motion detection sensors to device automation
in homes, which can be used by residents, any time [7].

The sensors used for our data collection mainly consist of an X-10 sensor network
and an Argus sensor network. We have many X-10 sensor systems available in stores
today. In our environment, we have specifically used RF transceivers, computer in-
terface modules, light modules, appliance modules, motion detectors, and an HVAC
thermostat. Environment events are noted by the X-10 sensors, and are sent through
the power line to an awaiting receiver.

CHALLENGES

Current challenges in smart environments today include not only the need for innova-
tive, user-friendly applications and techniques, but also large amounts of interventions
to set up, maintain, and upgrade the environment, with new sensors, technologies, and
applications which suit our needs. We desire technologies which become a part of our
everyday life and dissolve into our life to the point where they become unnoticeable
but significantly improve our life and the way we lead it. Researchers are investigating
the intelligent environment frameworks that could recognize natural human behav-
iors, interpret and react to these behaviors, and adapt to residents in a nonintrusive
manner. These features of an intelligent environment present difficult challenges to
solve. Another challenge is to seamlessly integrate different fields of study and re-
search such as computer science, digital devices, and wireless and sensor networking
to create an intelligent environment. Some current challenges which are being ex-
plored are illustrated in Figure 10.1. These challenges belong to the domains of smart
devices (intelligent devices), virtual pets, human-computer interaction, healthcare,
sensor networks, learning and adaptation to users and their lifestyles [9—10].

With the convergence of supporting technologies in artificial intelligence and
pervasive computing, smart environment research is quickly maturing. The goals of
intelligent systems are to reason, predict, and make decisions that will automate a
person’s physical environment (e.g., home, workplace) in a way that adapts to the
resident’s life style and makes the environment more supportive.

The MavHome project treats an environment as an intelligent agent which per-
ceives the environment using sensors and acts on the environment using powerline
controllers [11]. At the core of its approach, MavHome observes resident activities as
noted by the sensors. These activities are mined to identify patterns and compression-
based predictors are employed to identify likely future activities [12]. Some current
challenges in this project are better human-computer interactive applications, health-
care focus, advanced sensor systems, and new algorithms for learning and adapting to
residents of a smart environment including new parameters, such as space and time.

Application of MavHome algorithms to healthcare includes anomaly detection
to check for outliers and concept drifts in smart home events [14]. This approach is
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FIGURE 10.1 Current challenges in smart environments (smart devices, robotics, HCI, health-
care, sensors and communication, and learning and adaptation).

based on regression and correlation on numerical-based health datasets and would not
apply to activities which consist of devices or actions, for instance, turning on and off
devices in smart home. Furthermore, this approach considers each event is occurring in
asingle instant, and therefore overlooks the time interval encompassed by an event. As
aresult, there is a need to design a more effective and more general anomaly detection
model. Prediction and decision making have experienced significant success and could
automate a resident’s activities, but this can be improved using time as a component.
Currently this project is looking toward new sensor systems and trying to address the
problem of multiple residents [13—18].

The MIT Media Lab is focused on specific implements of the future [20]. Many
of these projects could be incorporated into an intelligent environment to enhance the
resident’s experience, but they probably will not be commercially available for another
decade. The work in this thesis does not incorporate any MIT Media Lab technology
primarily due to their availability and the significant amount of engineering effort that
would be required to duplicate and integrate their work; however, specific ideas such as
those in the augmented reality kitchen, localized context awareness, and the interactive
nature of many of their projects could be incorporated into our environments.

The Place Lab developed by the MIT in House Consortium and TIAX, LLC cur-
rently is researching methods to validate performance of the activities of daily life and
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biometric monitoring. The rich sensing infrastructure of the Place Lab is being used
to develop techniques to recognize patterns of sleep, eating, socializing, recreation,
and so on. Particularly for the elderly, changes in baseline activities of daily living
are believed to be important early indicators of emerging health problems—often
preceding indications from biometric monitoring [21]. There work on recognition
of Activities of Daily Living in the Home Setting using Ubiquitous, Sensors when
applied with pattern classification and context-based Al algorithms which involve
time series based models can be considered [22].

Another group at MIT, called the agent-based intelligent reactive environments
group (AIRE) [23], conducted research on pervasive computing and people-centric
applications to construct intelligent spaces or zones. Their work included an intelligent
conference room, intelligent workspaces, kiosks, and oxygenated offices.

Intel Corporation’s Proactive Health Lab is exploring technologies to help seniors
“age in place” in order to help the increasing healthcare burden of the rapidly aging
population of the United States by anticipating resident needs through observation
with wireless sensors and taking action to meet those needs through available control
and interactive systems.

The goal of the Computer-Supported Coordinated Care (CSCC) project [24] at
Intel Research is to identify the characteristics and needs of the care networks for
elders who wish to remain at home (“age in place”). Ultimately, their goal is to
develop technology to help this population. In a three-phase study toward this end,
they developed an empirical approach focused on the wide range of people involved
with home elder care [25,26]. Response time and more generally using time as a
parameter is an important factor for most healthcare systems, though their current
work involves empirical approaches; data mining models should also be investigated.

The Gator Tech Smart home is built from the ground up as an assistive environ-
ment to support independent living for older people and residents with disabilities
[30]. Currently, the project uses a self-sensing service to enable remote monitoring
and intervention for caregivers of elderly persons living in the house. Their current
key contribution is the development of a middleware architecture, which includes
a physical layer of devices, a sensor platform layer to convert readings into service
information, a service layer to provide features and operators to components, a knowl-
edge layer that offers ontology and semantics, a context management layer to provide
context information, and an application layer to support a rich set of features for
resident living [31].

There are also anumber of systems which have been developed to help people com-
pensate for physical and sensory needs [27-29, 35,36]. We see that most of them rely
on computer-based technologies incorporating artificial intelligence techniques (e.g.,
schedule management using the Autominder system) [32]. A schedule management
system for the elderly helps people who suffer from memory decline—an impediment
that makes them forget their daily routine activities, such as taking medicine, eating
meals, or personal hygiene. Autominder [32], an intelligent cognitive orthotic system
for people with memory impairment, employs techniques, such as dynamic program-
ming and Bayesian learning, a web-based interface for plan initialization and update
to construct rich models of a resident’s activities—including constraints on the times
and ways in which activities should be performed to monitor the execution of those
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activities, detect discrepancies between what a person is expected to do and what he
or she is actually doing, and to reason about whether to issue reminders [33]. Assistive
technologies, when combined with the monitored information on daily activities of
the resident, can be used to measure the quality of a person’s performance of their
daily routine activities. A schedule management system such as this could generate
an improved resident lifestyle based on behavioral patterns designed to improve their
daily performance [34].

TEMPORAL REASONING AND MINING

Temporal mining is a reasonably new area of research in computer science and has
become more popular in the last decade due to the increased ability of computers
to store and process large datasets of complex data. Some work on temporal data
reasoning and mining has been done in the context of classical and temporal logic
and has been applied to real-time systems to artificial intelligence projects. In this
section, we give a general overview of some current research trends in temporal
reasoning and mining.

Morchen argued that Allen’s temporal patterns are not robust and small differences
in boundaries lead to different patterns for similar situations [37]. Morchen presents a
Time Series Knowledge Representation (TSKR), which expresses the temporal con-
cepts of coincidence and partial order. He notes that Allen’s temporal relations are
ambiguous in nature, making them not scalable and not robust. Morchen handles the
problem of using the ambiguous nature of Allen’s relations by applying constraints
to define the temporal relations. Although this method appears feasible and compu-
tationally sound, it does not suit our smart home application due to the granularity of
the time intervals in smart homes datasets. We need to note that the time granularities
here indicate the events in smart homes are instantaneous and some of them just oc-
cur for long periods and some just occur for a split second, whereas Morchen applies
TSKR to muscle reflection motion and other such areas where time intervals are con-
sistently similar in length. His approach does not involve ways to eliminate noise and
the smart home datasets are so huge that computational efficiency would not be the
only factor to be considered. Morchen also describes the temporal constraints using
their description language. Overall he proposed a logic-based approach to describe
temporal constraints with multiple time granularities related to events occurring in
smart homes. Morchen identified time and sensor granularities as sequences of time
points properly labeled with propositional symbols marking the starting and ending
points in each granule. Temporal constraints that are modeled describe temporal re-
lationships related to sensors providing the right control of the environment of smart
homes.

Bjorn et al. [38] also argue that space and time play essential roles in everyday
lives and introduce time and space calculi to reason about these dimensions. They
discuss several Al techniques for dealing with temporal and spatial knowledge in
smart homes, mainly focusing on qualitative approaches to spatio-temporal reason-
ing. Ryabov and Puuronen in their work on probabilistic reasoning about uncertain
relations between temporal points [39] represent the uncertain relation between two
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points by an uncertainty vector with three probabilities of basic relations (<, +, >).
They also incorporate inversion, composition, addition, and negation operations into
their reasoning mechanism. This model would not be suitable for a smart home sce-
nario as it would not go into final granularities to analyze instantaneous events. The
work of Worboys et al. [40] involves spatio-temporal-based probability models, the
handling of which is currently identified as future work. Dekhtyar et al.’s work on
probabilistic temporal databases [41] provides a framework which is an extension of
the relational algebra that integrates both probabilities and time. This work includes
some description of Allen’s temporal relations and some of these are incorporated in
this current work.

TEMPORAL RELATIONS

Activities in a smart home include resident activities as well as interactions with
the environment. These may include walking, sitting on a couch, turning on a lamp,
using the coffeemaker, and so forth. Instrumental activities are those which have some
interaction with an instrument which is present and used in a home. We see that these
activities are not instantaneous, but have distinct start and end times. We also see that
there are well-defined relationships between time intervals for different activities.
These temporal relations can be represented using Allen’s temporal relations and
can be used for knowledge and pattern discovery in day-to-day activities. These
discoveries can be used for developing systems which can act as reminder assistants
and help detect anomalies and aid us in taking preventive measures.

Allen listed thirteen relations (visualized in Table 10.1) comprising a temporal
logic: before, after, meets, meet-by, overlaps, overlapped-by, starts, started-by, fin-
ishes, finished-by, during, contains, and equals [42]. These temporal relations play
a major role in identifying time-sensitive activities which occur in a smart home.
Consider, for instance, a case where the resident turns the television on before sitting
on the couch. We notice that these two activities, turning on the TV and sitting on the
couch, are frequently related in time according to the “before” temporal relation.

Modeling temporal events in smart homes is an important problem and offers
advantages to residents of smarthomes. We see that the temporal constraints can model
causal activities; if a temporal constraint is not satisfied then a potential “abnormal”
or “critical” situation may have occurred. Similarly, they can be used to form rules
which can be used for prediction. For example, if there is a rule which states that
there is a large probability of turning on the television after having dinner we can use
it to predict turning on the television to be the next event and use this prediction to
automate the turning on of the television after dinner.

TeMPAL DEFINITION

TempAl (pronounced “temple”) is a suite of software tools which enrich smart envi-
ronment applications by incorporating temporal relationship information for various
applications including prediction and anomaly detection. In smart homes, the time
when an event takes place is known and is recorded. The previous model in our
smart home did not incorporate time for analysis purposes. We felt that including this
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TABLE 10.1

Temporal Relations Representation, Which Includes Allen’s Thirteen

Temporal Relations

Temporal Relations

X Before Y

X After Y

X During Y

X Contains Y

X Overlaps Y

X Overlapped-by Y

X Meets Y
X Met-by Y
X Starts Y

X Started-by Y

X Finishes Y

X Finished-by Y

X Equals Y

Pictorial Representation

=< = =
= =< < =< =<
= || =
=< = - =
<
» = >

Interval Constraints

StartTime(X)<StartTime(Y);
EndTime(X)<StartTime(Y)

StartTime(X)>StartTime(Y);
EndTime(Y)<StartTime(X)

StartTime(X)>StartTime(Y);
EndTime(X)<EndTime(Y)
StartTime(X)<StartTime(Y);
EndTime(X)>EndTime(Y)
StartTime(X)<StartTime(Y);
StartTime(Y)<EndTime(X);
EndTime(X)<EndTime(Y)
StartTime(Y)<StartTime(X);
StartTime(X)<EndTime(Y);
EndTime(Y)<EndTime(X)
StartTime(Y)=EndTime(X)
StartTime(X)=EndTime(Y)
StartTime(X)=StartTime(Y);
EndTime(X)7#EndTime(Y)
StartTime(Y)=StartTime(X);
EndTime(X)#EndTime(Y)
StartTime(X)#StartTime(Y);
EndTime(X)=EndTime(Y)
StartTime(X)#StartTime(Y);
EndTime(X)=EndTime(Y)
StartTime(X)=StartTime(Y);
EndTime(X)=EndTime(Y)

information would improve the strength of the smart home algorithms, which moti-
vated our contributions of storing, representing, and analyzing timing information.
The temporal nature of the data provides us with a better understanding of the nature
of the data. We see that using a time series model is a common approach to reason-
ing about residents’ time-based events. However, we consider events and activities
using time intervals rather than time points, which is appropriate for home scenarios
[43]. Thus we have designed a novel approach to solve the problem of incorporating
time for various smart home applications. We introduce the notion of temporal rep-
resentation, which is capable of expressing the relationship between interval-based
events. We develop methods for finding interesting temporal patterns as well as for
performing anomaly detection and prediction based on these patterns.
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The contribution of this work is a new means of temporal representation for smart
home activities and events, which help with reasoning-related tasks, including plan-
ning, explanations, and predictions. Our focus for this work is on anomaly detection
and prediction.

THE ROLE OF TEMPAL IN THE MAVHOME SMART HOME PROJECT

The existing system MavHome architecture contains the software components to
mine sequential event patterns [44], to predict upcoming events [45], and to learn
policies for automating the environment [46]. Inside this system framework exists
the core system architecture for our approach. In this section we outline the compo-
nents we utilize in TempAl and place those in the MavHome framework (shown in
Figure 10.2). The goals of our MavHome smart environments are to learn a model of
the inhabitants of the intelligent environment, automate devices to the fullest extent
possible using this model in order to maximize the comfort of the inhabitant while
maintaining safety and security, and adapt this model over time to maintain these
requirements. In order to accomplish these goals, we must first learn a model of in-
habitant activities, and then incorporate this into an adaptive system for continued
learning and control.

Decision making is performed in the ProPHeT [providing partially-observable
hierarchical (HMM/POMDP) based decision tasks] component [44]. The world rep-
resentation at this level is the Hierarchical Hidden Markov Model based upon a
hierarchy of episodes of activity mined from stored observations. We generate low-
level episode Markov chains and build the hierarchy of abstract episodes under the
direction of ProPHeT. Learning is performed by extending the HHMM to a hierarchi-
cal Partially Observable Markov Decision Process and applying temporal difference
learning [12].

The episode discovery (ED) data-mining algorithm [45,47] discovers interesting
patterns in a time-ordered data stream. ED processes a time-ordered sequence, discov-
ers the interesting episodes that exist within the sequence as an unordered collection,
and records the unique occurrences of the discovered patterns. These patterns also
represent the low-level episode chains that are used in the ProPHeT model.

An intelligent environment must be able to acquire and apply knowledge about
its residents in order to adapt to the residents and meet the goals of comfort and
efficiency. These capabilities rely upon effective prediction algorithms. Given a pre-
diction of resident activities, MavHome can decide whether or not to automate the
activity or even find a way to improve the activity to meet the system goals. Specif-
ically, the MavHome system needs to predict the inhabitant’s next action in order to
automate selected repetitive tasks for the inhabitant. The system will need to make this
prediction based only on previously seen inhabitant interaction with various devices.
It is essential that the number of prediction errors be kept to a minimum—not only
would it be annoying for the inhabitant to reverse system decisions, but prediction
errors can lead to excessive resource consumption. Another desirable characteristic of
a prediction algorithm is that predictions be delivered in real-time without resorting
to an off-line prediction scheme. MavHome uses the Active-LeZi algorithm (ALZ)
[48] to meet the prediction requirements.
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When issues of safety and security are of great importance in a system then there
is the need for an enforcer of safety and user preference rules before actions are
made. This system works by using a knowledge base of rules and evaluating each
action event against these rules to determine if the action violates them. Before an
action is executed it is checked against the policies in the policy engine, ARBITER
(a rule-based initiator of efficient resolutions). These policies contain user-provided
safety and security knowledge and resident preference rules [8].

TempAl, our temporal analyzer, is a suite of tools which are used for identifying
temporal information in smart home activities. The smart home uses this information
for anomaly detection and also to enhance activity prediction. TempAl’s prediction
component is an extension to the ALZ-based predictor. We see that TempAl uses the
raw sensor data and parses it to identify time intervals, using the constraints described
in Table 10.1; TempAl forms temporal relations, which later are used by the anomaly
detection or prediction components. This algorithm can be applied to online data or
live-streaming data, which makes this algorithm applicable in dynamic contexts. The
software flow is illustrated in Figure 10.2. This diagram gives us an overview of the
tools which together form TempAl. We see that the raw data is read and parsed to
identify interval data, which is later read by a temporal relations formulation tool to
find correlations in the time interval data and eventually forms temporal relations data.
This temporal relations data is later used by the anomaly detection component or the
prediction enhancing component, for achieving their goals and their basic functioning.

MAVHOME DATA COLLECTION

The sensors present in smart environments provide us information about the actions,
events, and activities happening in the smart space. Every time an event occurs the
corresponding sensor or device provides information about its current state and the
time when the information was observed, read, or collected. The algorithms described
here are part of the MavHome, which has been engaged in the creation of adaptive and
versatile home and workplace environments in the past few years [49]. The goal of the
MavHome project is to create a smart home that can act as an intelligent agent. The
home perceives the state of the environment and its residents using sensors, reasons
about the state and possible actions using machine learning algorithms, and acts on the
environment using power line controllers. In order to design a smart environment, we
need to design machine learning algorithms that can identify, predict, and reason about
resident behaviors. The objective of our initial MavHome study was to determine if our
algorithms could learn an automation policy that would reduce the number of manual
interactions the resident performed in a smart environment. Our machine learning
algorithms did accurately predict resident activities and substantially reduced the
average number of daily manual interactions [8, 48].

The MavHome algorithms are tested in two physical environments. One is a
smart apartment called the MavPad and another is a smart workplace environment,
the MavLab. Our experiments are based on 2 months of real activity data collected in
the MavLab working environment. During that time, a student volunteer performed
his normal daily work activities in this environment. All interactions with lights,
blinds, fans, and electronic devices were performed using X10 controllers, so that all
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Temporal Relation
Formation Tool

Database or
Live Stream

FIGURE 10.2 Architecture overview of TempAl.

sensor and interaction events could be captured in a text file. The layout of sensors
and controllers in the MavLab is shown in Figure 10.3. The data collection system
consists of an array of sensors and X10 power line controllers, connected using an
in-house sensor network. As shown in Figure 10.3, MavLab consists of a presentation
area, a kitchen, student desks, a lounge, and a faculty room. There are over 100 sensors
deployed in the MavLab that include motion, light, temperature, humidity, and reed
switches. An X-10 powerline-based controller is used to monitor and control electrical
outlet usage, light usage, and the overhead fan.

In addition, we created a synthetic data generator to further validate our approach.
The data generator allows us to input event sequences corresponding to frequent
activities, and specify when the sequences occur. Randomness is incorporated into
the time at which the events occur within a sequence using a Gaussian distribution.
We developed a model of a user’s pattern, which consists of a number of different
activities involving three rooms in an environment and eight devices. Our synthetic
data set contains about 4000 actions representing 2 months of resident activities.



Mining Temporal Relations in Smart Environment Data Using TempAl 183

Super | [ Master || | Super | Motion
Slave Slave | Master

Mini-
blind

®
o

®

®

G

€

)

® »

Master

3000

®
L

o]
© ot PPO'C b
() g
DHD @ ‘ e
(M) ‘ @ Master 3
Motion @ @
Master ! @ 2
Vo COD@ L omla
@ BLINDS BLINDS é
Mini- @ .
blind J £
Master @ ® i 3
blind
®© ® 9 © o
@ - S Key 9]
@ II\\/I/Iotlton @ Motion @ G
@ aster @ Light ovovovo
@ Temperature E
erAQAo @ Humidity W a
(®) Reed Switch

(c)

FIGURE 10.3 The MavLab smart workplace environment including (a) the smart kitchen, (b)
the lounge, and (c) the sensor layout.
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* Reminder System based on temporal relations.

« If pills are to be taken “After” food, we can notice
violation of this activity!

l

« If HVAC is down, based on the temporal relations
would it be used today and helps to decide should
we call emergency repair or a normal repair?

« If oven used for turkey, is turkey at home?

« Increase predictive accuracy by incorporating
additional temporal information.

FIGURE 10.4 The benefits of temporal relations include reminder assistance, anomaly detec-
tion, maintenance, temporary need analysis, and improvement of event prediction.

TEMPORAL RELATION FORMATION

Temporal relations provide beneficial insights in many ways. Reasoning about these
relationships aids the processes of reminder assistance, anomaly detection, and tem-
poral need analysis. In this chapter we focus on improving event prediction by in-
corporating temporal relation information. The benefits are illustrated in Figure 10.4,
with examples describing scenarios where temporal relations can be applied and are
most beneficial. They aid prediction, where given a description of a scenario, which
includes actions and events related by temporal relations, the smart home predicts
what event will happen next. Temporal relations can also aid planning, where given a
description of the world and a desired goal, we can find the course of action that will
most likely need to be taken to achieve that goal [51].

TABLE 10.2
Parameter Settings for Experimentation

Parameter Setting

No. of Different  No. of Intervals
Datasets  No. of Days  Events[Devices] Identified Size of Data

Synthetic 60 8 1729 106 KB
Real 60 17 1623 104 KB
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TABLE 10.3
Sample Display of Sensor Data Across Various Stages
of Temporal Relation Formation

Raw Sensor Data

Timestampsensor State Sensor ID
3/3/2003 11:18:00 AM OFF El6
3/3/2003 11:23:00 AM ON G12
3/3/2003 11:23:00 AM ON G11
3/3/2003 11:24:00 AM OFF G12
3/3/2003 11:24:00 AM OFF Gl1
3/3/2003 11:24:00 AM ON G13
3/3/2003 11:33:00 AM ON El6
3/3/2003 11:34:00 AM ON D16
3/3/2003 11:34:00 AM OFF El6

Identify Time Intervals
Date Sensor ID Start time End time
03/02/2003 Gl11 01:44:00 01:48:00
03/02/2003 G19 02:57:00 01:48:00
03/02/2003 G13 04:06:00 01:48:00
03/02/2003 G19 04:43:00 01:48:00
03/02/2003 H9 06:04:00 06:05:00
03/03/2003 P1 10:55:00 17:28:00
03/03/2003 El6 11:18:00 11:34:00
03/03/2003 G12 11:23:00 11:24:00

Temporal Relations

Date Sensor ID  Temporal relation ~ Sensor ID
3/3/2003 12:00:00 AM G12 DURING El6
3/3/2003 12:00:00 AM El6 BEFORE 114
3/2/2003 12:00:00 AM Gl11 FINISHESBY Gl11
4/2/2003 12:00:00 AM J10 STARTSBY J12

Sensor data from a smart environment can be represented and mined as sequences
or as time series data. A sequence is an ordered set of events, frequently represented
by a series of nominal symbols [59]. All the sequences are ordered on a time scale
and occur sequentially one after another. However, for some applications it is not only
important to have a sequence of these events, but also a time interval indicating the
span of time when these events occur. This is particularly true for smart homes. A
time series is a sequence of continuous real-value elements [17, 59]. This kind of data
is obtained from sensors, which continuously monitor parameters such as motion,
device activity, pressure, temperature, brightness, and so forth. Each time stamped
data point is characterized by specific properties. Table 10.2 describes the number of
days, number of events, and number of temporal intervals that were identified in the
synthetic and real datasets used for our experiments.

In Table 10.3, we illustrate a sample of raw data collected from the sensor and
include the data as it looks after it is processed and temporal intervals are identified.
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Temporal
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data

FIGURE 10.5 The steps involved in the processing of temporal relations formulations in
datasets.

Figure 10.5 shows the various stages involved in the conversion of the raw data to
a temporal relations dataset. The first step of the experiment is to process the raw
data to find the temporal intervals. This is done using a simple tool, which takes the
timestamp of the event that occurred and based on the state (ON or OFF) forms the
intervals. Later this data is passed through the temporal analyzer tool, which identifies
the temporal intervals.

PREDICTION USING TEMPORAL RELATIONS

In an event-driven system there is a need to predict the next action in order to provide a
clear understanding of the current state. The system will need to make this prediction
based only on previously acquired knowledge. The knowledge TempAl has available
is the history of sensor events that occurred up to the current point in time together
with whatever model has been learned. Here we consider two types of models that
TempAl can utilize to predict future sensor events.

SEQUENTIAL PREDICTION

Currently, we use the ActiveLeZi (ALZ) algorithm [12] as our sequential predictor.
ALZ is also inherently an online algorithm, since it is based on the incremental LZ78
data compression algorithm [48]. The pseudocode of the basic ALZ algorithm is given
in Algorithm 1.

Algorithm 1. Psuedocode for ALZ [48]
Initialize Max_LZ _length =0
Loop
Wait for next symbol v
If ((w.v) in dictionary):
Wi =W.V
Else
Add (w.v) to dictionary
Update Max_LZ_length if necessary
w: =null
Add v to window
If (Iength (window) > Max_LZ_length)
Delete window [0]
Update frequencies of all possible
Contexts within window that includes v
Forever
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FIGURE 10.6 Trie formed by the ALZ parsing of the sequence aaababbbbbaabccddcbaaaa.
The selected path acts as the phrase for the context of each probability computation [48].

In order to predict the next event of the sequence for which ALZ has built a model,
we calculate the probability of each state occurring in the sequence, and predict the
one with the highest probability as the most likely next action. In order to achieve
better convergence rates to optimal predictability, the predictor must “lock on” to the
minimum possible set of states that is representative of the sequence. For sequential
prediction, it has been shown that this is possible by using a “mixture” of all possible
order models (phrase sizes) to assign the next symbol to its probability estimate. To
consider different orders of models, we turn to the Prediction by Partial Match (PPM)
family of predictors. This has been used to great effect by Bhattacharya and Das [53]
for a predictive framework based on LZ78, but their method only concentrates on the
probability of the next symbol appearing in the LZ phrase, as opposed to the next
symbol in the sequence. Consider the sequence x, = aaababbbbbaabccddcbaaaa.
An LZ78 parsing of this string would yield the phrases as displayed in Figure 10.6.
As described above, this algorithm maintains statistics for all contexts seen within
the phrases w;. For example, the context a occurs five times (at the beginning of the
phrases a, aa, ab, abc, aaa) and the context bb is seen two times (phrases bb and
bba) [48].

As the Active LeZi algorithm parses the sequence, larger and larger phrases ac-
cumulate in the dictionary. As a result, the algorithm gathers the predictability of
higher and higher order Markov models, eventually attaining the predictability of the
universal model. Let us now look at how the probability is computed. Suppose we
need to compute the probability that the next symbol is an a. From Figure 10.6, we
see that an a occurs two out of the five times that the context aa appears, the other
cases producing two null outcomes and one b outcome. Therefore the probability
of encountering an a at the context aa is 2/5, and we now “escape” to the order-1
context (i.e., switch to the model with the next smaller order) with probability 2/5.
This corresponds to the probability that the outcome is null, which forms the context
for the next lower length phrase. At the order-1 context, we see an a five out of the ten
times that we see the a context, and of the remaining cases, we see two null outcomes.
Therefore we predict the a at the order-1 context with probability 5/10, and escape to
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the order-0 model with probability 2/10. Using the order 0 model, we see a ten times
out of the 23 symbols processed so far, and we therefore predict a with probability
10/23 at the null context. As a consequence, the blended probability of seeing an a
as the next symbol is computed as defined by Gopalratnam and Cook [48]:

2 2(5 2 /10
5+5{10+ 10 <23>}‘

Now we can enhance this probability calculation by incorporating the temporal
probabilities at higher-order levels. Here we add temporal information to the sequen-
tial information as at the higher order we should note that the temporal probability
holds more information than sequential probability. The resulting probability can be
the sum computed of both these probabilities as illustrated in Equation (10.1). Earlier
we looked at an instance of sequential probability being calculated. Now we look at
how the temporal probability is calculated. We enhance the ALZ prediction by com-

bining the temporal probability with the sequential probability at each higher-order
level of the phrase (for instance the phrase is BC) as shown:

P(C|B) = P(C|B)seg:0rder, + (Z P(C|B)TEMP0RAL:0rder,»> + P(C|B)skg:order,
i=1
(10.1)

Probabilities at the O context size are drawn from the ALZ trie. Similarly, probabil-
ities for context sizes greater than 1 are calculated from the ALZ trie. The probability
for the size 1 context, on the other hand, uses the TempAl calculation. The TempAl
formula uses all of the information available to ALZ plus the temporal relationship
information. The reason we fuse these two probabilities as we note that at the higher
order we see that temporal probability would include more information compared to
the sequential probability. The sequential probability will only include the “before”
temporal relation in the calculation but the temporal probability will include infor-
mation from all thirteen relationship types.

Consider the case where we want to combine evidence from multiple events that
have a temporal relationship with X, the phrase that belongs to the current context
window. In our example we have observed the start of event A and the start of event B,
and want to establish the likelihood of event X occurring. Equation (10.2) calculates
the evidence of B as

P(B|A) = (|After(B, A) + |During(B, A)| 4+ |OverlappedBy(B, A)|
+|MetBy(B, A)| + |Starts(B, A)| + |StartedBy(B, A)|
+|Finishes(B, A)| + |FinishedBy(B, A)| + +|Equals(B, A)|)/|A|

(10.2)

We also use this information to calculate the evidence of the most recently occurred
event. Similarly, when events occurred as follows: A B X, then the evidence of B is
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calculated as follows:

P(X|IAUB)=P(XN(AUB))/P(AUB)=P(XNA)UP(XNB)/P(A)
+ P(B) — P(AN B) (Distributed Rule)
= P(X|A)P(A)+ P(X|B)P(B)/P(A)+ P(B)
—P(AN B) (Multiplicative Rule) (10.3)

We can use the previously calculated evidence for calculating newer evidence,
based on Equation (10.2). We use the distributive and multiplicative rules to arrive
at the final formula shown in Equation (10.3), which includes the previously com-
puted evidences of occurred events. This evidence calculation aids in computing the
temporal probability of the event to occur. This evidence is used for the temporal
probability calculation, which is incorporated into the ALZ probability estimation.
Now we finally calculate the temporal probability using Equation (10.4).

Temporal Predictiony = P(X) (10.4)

Here we want to predict the event with greatest probability. We see that we have
combined the temporal information with the existing sequential predictor enriching it
to make better predictions. Similar to the above explanation of probability calculation
we add temporal probability for that particular activity.

We validate our algorithm by applying it to our real and synthetic datasets. We train
the model based on 59 days of data and test the model on 1 day of observed activities.
We use the training set to form association rules using Weka for the association
rule-based model of prediction and identify temporal relations shared between them.
The temporal relations formed in these data sets show some interesting patterns and
indicate relations that are of interest. The parameter settings pertaining to the training
set data are given in Table 10.4. The parameter settings pertaining to the test set data
are given in Table 10.5. These datasets are used for both prediction models in our
experiments.

ENHANCING PREDICTION USING MINED ASSOCIATION RULES

After the parameters are set and the training and testing data is identified, we next
identify the association rules using Weka [52], which in turn can be used for prediction.
The Weka implementation of an a priori-type algorithm is used, which iteratively
reduces the minimum support until it finds the required number of rules within a

TABLE 10.4
Parameter Settings for Training Set for Prediction Experiment

Parameter Setting

Datasets  No. of Days No. of Different Events  No. of Intervals Identified  Size of Data

Synthetic 59 8 1703 105 KB
Real 59 17 1523 103 KB
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TABLE 10.5
Parameter Settings for Test Set for Prediction Experiment

Parameter Setting

Datasets No. of Days No. of Different Events Size of Data
Synthetic 1 8 2 KB
Real 1 17 1 KB

given minimum confidence. Figure 10.7 summarizes the parameters that were set and
the number of rules generated with a given specified minimum confidence for the real
dataset. Figure 10.8 summarizes these parameter values for the synthetic dataset.

Confidence levels above 0.5 and support above 0.05 could not be used, as they
did not result in any viable rules due to the small size of the datasets being used. We
observe here that as the support is increased the number of rules generated decreases.
Because the datasets are small, we use the top rules generated with a minimum
confidence of 0.5 and a minimum support of 0.01. A sample of the rules that TempAl
generated is given in Table 10.6.

The final step involves calculating the evidence of the event occurrence, which
can be used for calculating the prediction on a moving window. This purpose of this
step is to detect whether the particular event satisfies the temporal relations, which
can be used for prediction given in a specified recent history of activities. Let us look
at an example where we have three frequent activities, which occur in the order of
turning a toaster, table lamp, and radio ON and OFF in the morning. We see that the
relation exhibited by them can be toaster “before” table lamp “finishes” radio. We
need to note that the intervals are formed when a complete cycle of a device from

Assosiation rule mining on real data

100
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No. best rules
Minimum confidence
Minimum support

4
Run number
1 2 3 4
® Minimum support 0 0.01 0.02 0.05
® Minimum confidence 0.5 0.5 0.5 0.5
™ No. best rules 100 6 2 1

FIGURE 10.7 Association rule mining in real datasets.
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Assosiation rule mining on synthetic data

No. best rules
Minimum confidence

Minimum support

4
Run number
1 2 3 4
= Minimum support 0.01 0.02 0.05
= Minimum confidence 0.5 0.5 0.5 0.5
= No. best rules 100 10 5 3

FIGURE 10.8 Association rule mining in synthetic datasets.

an ON to OFF or an OFF to ON state is pursued within a window of a single day.
Now when the toaster and the radio events occur without the table lamp event, we
can note that this is an activity anomaly and can use the same relation as when the
toaster occurred and table lamp occurred. We then can predict that the radio event is
going to occur in the near future before the table lamp is turned OFF. This method of
prediction is based entirely on normative behavior as observed in the past and a strong
rule is identified. As a result, the likelihood of prediction increases when there are
strong repetitions of resident patterns over time which are not anomalies. This method
is a probability-based model which involves calculating the evidence supporting the
currently occurring activity with respect to the previously occurred activates.
Finally, we enhance our ALZ predictor [48] by incorporating temporal relations
with the input data and compare the performance with and without these rules. We
notice that many situations demand that the prediction algorithm be capable of an-
alyzing information and delivering in real-time. We currently plan to run real-time
analysis over large sets of data in the near future. These rule-based systems pose a
challenge in terms of how we differentiate rules using an interestingness measure and

TABLE 10.6
Display of a Sample of Best Rules Generated

Sample of best rules observed in real datasets:

Activity=C11  Relation=CONTAINS 36 ==> Activity=A14 36
Activity=D15  Relation=FINISHES 32 ==> Activity=D9 32
Activity=D15  Relation=FINISHESBY 32 ==> Activity=D9 32
Activity=C14  Relation=DURING 18 ==> Activity=B9 18
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TABLE 10.7
Comparing ALZ-Based Prediction with and without
Temporal Rules in Real Datasets

Datasets Percentage Accuracy Percentage Error
Real (without rules) 55 45
Real (with rules) 56 44

also would push such rule-based systems into the domains of planning and reminder
assisting systems.

Tables 10.7 and 10.8 present the results of our prediction experiment. We need
to note that percentage accuracy is computed as the ratio of the count of number of
correct predictions to the total number of predictions. Both percentage accuracy and
percentage error are rounded to the nearest unit value. Illustrations of the observed ac-
curacy and error values in the real and synthetic datasets are visualized in Figures 10.9
and 10.10, respectively.

In the TempAl algorithm [54] we deal with leveraging association rules for predic-
tion, where we see that these rules are used in the form “if X then Y. The consequent
part of this rule (Y) can be predicted based on occurrence of X. The main reason for
a significant error rate is the smaller amount of data used. As the size of the datasets
increases the performance of the temporal relations-enhanced prediction would also
improve dramatically. Another cause of the error rate and means to better performance
is making the right trade-off while choosing the support and confidence levels for the
discovery of these association rules. The refinement of association rules by including
an interestingness factor would make the rules more precise and might result in better
prediction accuracy. From Tables 10.7 and 10.8 we see that there was a 1% prediction
performance improvement in the real data and a 7% improvement in the synthetic
data. This reflects an improvement of event prediction in a single day of the resident
in a smart environment.

The main reason for the error rate is the small amount of training data. With
larger datasets we would expect to see that the performance of the temporal relations-
enhanced prediction would also improve drastically over time. Overall we see a unique
application of temporal relations-based mining being applied. The basic idea of the
association rule-based prediction is to develop a rule-based system which enhances
performance of the event predictor.

TABLE 10.8
Comparing ALZ-Based Prediction with and without
Temporal Rules in Synthetic Datasets

Datasets Percentage Accuracy Percentage Error

Synthetic (without rules) 64 36
Synthetic (with rules) 69 31
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Accuracy vs. error (%) in real data
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FIGURE 10.9 Prediction percentage accuracy vs. percentage error in real datasets using as-
sociation rule mining.

A possible next step for this approach would be to evaluate these association rules
for interestingness, which involves applying spatial techniques along with temporal
analysis to determine which of the identified rules are of interest and would help
prioritize the generated rules that have equal confidence and support values.

ENHANCING PREDICTION BY ADDING TEMPORAL RELATIONS-
BASED PROBABILITY TO ALZ

In this experiment we leverage the existing prediction using temporal information
as an additional source to evaluate the next occurring event and thus aid prediction.
For this approach we validate our algorithm by applying it to our real and synthetic
datasets. We train the model based on 59 days of data and test the model on 1 day
of activities. The temporal relations formed in these data sets show some interesting
patterns and indicate relations that are of interest. The parameter settings pertaining
to the dataset are given in Table 10.9.

Accuracy vs. error (%) in synthetic data

~

-

Percentage error

= Synthetic (with rules)
I = Synthetic(without rules)
Percentage accuracy

- - -~ /
- - - - -

0 20 40 60 80
Percentage

FIGURE 10.10 Prediction percentage accuracy vs. percentage error in synthetic datasets using
association rule mining.
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TABLE 10.9
Dataset Descriptions of Training and Test Set
Used for Experimentation

Datasets No. of Days  Total no. of Events
Real (train) 59 750
Real (test) 1 40
Synthetic (train) 59 13900
Synthetic (test) 1 1500
Cross validation (real) 60 834
Cross validation (syn.) 60 15000

We see that Tables 10.10 and 10.11 present us with results observed in the pre-
diction experiment. We need to note that accuracy values are computed as the ratio
of the count of number of correct predictions to the total number of predictions. Here
we present the results from a ten-fold cross validation.

We observe that the ALZ enhanced with TempAl did perform similarly to the
original ALZ technique. This particular dataset did not make particular use of tem-
poral relationships. To illustrate the type of situation in which temporal analysis will
specifically aid event prediction we test TempAl on a carefully constructed test case,
which is described next.

ILLUSTRATIVE SCENARIO

We observe that the previous datasets do not highlight the true potential of leveraging
temporal relations for enhancing prediction. Thus we developed a scripted test case
to observe how the temporal relations would help make a better prediction. Let us
look at a small example where temporal information does enhance prediction. Let us
consider the example where the following events occur in the given sequence shown
as follows: (¢ ON), (a OFF), (@ ON), (b ON), (a ON), (b ON), (b ON), (b ON),

TABLE 10.10

Comparing Accuracy of Prediction Techniques Using TempAl on Real Datasets
Dataset

(Learning Algorithm) Train Test Correct Prediction Accuracy (%) Prediction Error (%)
Real (ALZ) 100 1 0 0 100
Real (ALZ+TempAl) 100 1 1 100 0
Real (ALZ) 100 10 6 60 40
Real (ALZ+TempAl) 100 10 6 60 40
Real (ALZ) 750 40 29 72.50 27.50
Real (ALZ+TempAl) 750 40 29 72.50 27.50
Cross validation (ALZ) 787 83 48 57.96 42.04

Cross validation (ALZ+TempAl) 787 83 49 58.92 41.08
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TABLE 10.11

Comparing Accuracy of Prediction Techniques Using TempAl on Synthetic Datasets
Dataset (Learning Algorithm) Train Test Correct Prediction accuracy (%) Prediction error (%)
Synthetic (ALZ) 100 1 1 100 0
Synthetic (ALZ+TempAl) 100 1 1 100 0
Synthetic (ALZ) 100 10 10 100 0
Synthetic (ALZ+TempAl) 100 10 10 100 0
Synthetic (ALZ) 1400 90 89 98.88 1.12
Synthetic (ALZ+TempAl) 1400 90 90 100 0
Synthetic (ALZ) 13905 1544 1532 99.22 0.78
Synthetic (ALZ+TempAl) 13905 1544 1532 99.22 0.78

Cross validation (ALZ) 13905 1544 1292 83.68 16.32

Cross validation (ALZ+TempAl) 13905 1544 1292 83.64 16.36

(b ON), (b ON), (a ON), (a ON), (b ON), (c ON), (c ON), (d ON), (d ON), (c ON),
(b ON), (a ON), (¢ OFF), (a OFF). In this scenario the next event that will occur is
(a ON). Now we see that when we run this training set on ALZ and then load the test
set ALZ predicts b to be the next event. We see that this is an incorrect prediction.
Now let us run the same experiment using ALZ with TempAl and we see that on the
test set it correctly predicts a as the next event. Although (b ON) occurs most often
overall, the temporal relationship of (¢ ON) after (a OFF) is prevalent and should
ultimately influence the predictor to output (@ ON) as the most likely next event to
occur. Thus when we leverage the temporal relations we can enhance the approach
and therefore improve the prediction accuracy (as shown in Figures 10.11 and 10.12).

Comparision of prediction accuracy in real datasets

using TempAl with ALZ.
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FIGURE 10.11 Percentage accuracy in real datasets in prediction experiment using ALZ with
TempAl.
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Comparision of accuracy in synthetic datasets
using TempAl with ALZ
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FIGURE 10.12 Percentage accuracy in synthetic datasets in prediction experiment using ALZ
with TempAl.

Let us look at this scenario in more detail. Table 10.12 gives us a description of the
training set, test set, and temporal relations formulation set.

In Table 10.12, when we use ALZ we see that it calculates b as the most likely
event based on overall frequency without temporal relationship information, resulting
in an incorrect prediction. When we incorporate temporal relations into the probability
calculation we see that it correctly predicts (¢ ON) as the next event. On the other
hand, it later fails to predict event (d OFF) because it did not occur significantly
anywhere in the training data, thus providing weaker temporal information. Thus this
simple example stands as an illustration to check the performance of TempAl and
ALZ. Figure 10.13 shows a screenshot of the raw output collected from ALZ on
the test case and Figure 10.14 shows a screenshot of the raw output collected from
TempAl + ALZ prediction.

DiscusSION

In the earlier prediction experiment we used rule-based prediction in which we gen-
erated rules where the antecedent of a rule is used to predict the consequent of the
rule. The latter experiment uses the temporal information to calculate the probability
of the next event to occur and leverages the existing sequential prediction technique
by adding temporal information. The dataset used for the experiment plays a major
role in the prediction experiments. We note that the main reason for a significant error
rate is the amount of data used, which is small and covers a smaller set of training
examples. As we have larger datasets we see that the performance of the temporal
relations enhanced prediction would also improve drastically over time. Tables 10.10
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TABLE 10.12

Training, Test Set, Temporal Relations for Test Case Scenario

Training Set:

a ON

a OFF

a ON

b ON

a ON

b ON

b ON

b ON

b ON

b ON

a ON

a ON

b ON

¢ ON

¢ ON

d ON

d OFF

¢ ON

b ON

a ON

¢ OFF

a OFF

Test Set:

a ON

d OFF

Temporal Relations in Training Set:

NOTE: Temporal relations are formed on com-
plete device cycle, i.e., complete cycle of a device
from an ON to OFF or an OFF to ON state is pur-
sued within a window of a single day to form an
event for associating temporal relation with an-

other event.

a BEFORE a, a BEFORE b, a BEFORE b,
a BEFORE b, a BEFORE a, a BEFORE b,
a BEFORE ¢, a BEFORE d, a BEFORE c,

a BEFORE a, a AFTER a, a OVERLAPS b,
a BEFORE b, a BEFORE b, a BEFORE a, a
BEFORE b, a BEFORE ¢, a BEFORE d,

a BEFORE ¢, a BEFORE a, b AFTER a,
b OVERLAPPEDBY a, b MEETS b,

b BEFORE b, b BEFORE a, b BEFORE b,

b BEFORE ¢, b BEFORE d, b BEFORE c,

b BEFORE a, b AFTER a, b AFTER a,

b AFTER b, b METBY b, b BEFORE a,

b BEFORE b, b BEFORE c, b BEFORE d,

b BEFORE c, b BEFORE a, a AFTER a,

a AFTER a, a AFTER b, a AFTER b,

a AFTER b, a BEFORE b, a BEFORE c,

a BEFORE d, a BEFORE c, a BEFORE a,

b AFTER a, b AFTER a, b AFTER b, b AFTER
b, b AFTER b, b AFTER a, b CONTAINS c,
b CONTAINS d, b OVERLAPS ¢, b BEFORE
a, c AFTER a, ¢ AFTER a, ¢ AFTER b,

¢ AFTER b, ¢ AFTER b, c AFTER a,

¢ DURING b, ¢ BEFORE d, ¢ BEFORE c,

¢ BEFORE a, d AFTER a, d AFTER a,

d AFTER b,d AFTER b, d AFTER b,d AFTER
a, d DURING b, d AFTER ¢, d BEFORE c,

d BEFORE a, ¢ AFTER a, ¢ AFTER a,

¢ AFTER b, c AFTER b, c AFTER b, c AFTER
a, ¢ DURING b, ¢ AFTER ¢, ¢ AFTER d,

¢ FINISHES a, a AFTER a, a AFTER a,

a AFTER b, a AFTER b, a AFTER b, a AFTER
a,a AFTER b, a AFTER ¢, a AFTER d,

a FINISHESBY ¢
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and 10.11 summarize the observed accuracy of the prediction performance on real
and synthetic datasets.

Another important point to discuss is that ALZ stores observed events with fre-
quencies in a trie. The temporal relations can also be stored using a graph-based
approach where events are related by a temporal relation and the weight of the link or
relation is the frequency of its occurrence. This approach can be further investigated
as future work.
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root@volkenturbo-laptop: fhomefvolkenturbofalz_originalfalzfrelease

File Edit View Terminal Tabs Help
root@volkenturbo-laptop:/home/volkenturbo/alz_original/alz/release# ./a.out in.t =
xt 22 2

MAX ID = 6

ON 1

OFF 2

ON 3

ON 4

ON 5

c OFF 6

Current Predictionb

Current Predictionb

No of Correct Predictions:®
No of Total Predictions:2
root@volkenturbo-laptop:/home/volkenturbo/alz_original/alz/release# .

anocw

FIGURE 10.13 Raw output on the test case dataset using ALZ.

SUMMARY AND CONCLUSIONS

Smart environments are essential today, because of the feasible technology and net-
worked computing, and also the need for home-based healthcare and assistance rapidly
rising [56]. In this work, we have proposed a technique for the discovery of temporal
rules in event sequences in a smart home. The aim of this study was to show the
feasibility of leveraging temporal relations in activities in a smart environment and to

svolkenturbo-laptop: fhomefvolkenturbo/alz_Temporal/release

File Edit Wiew Terminal Tabs Help

root@volkenturbo-laptop:/home/volkenturbo/alz Temporal/release# ./a.out in.txt 2 =
2

ON 1

OFF 2

ON 3

ON 4

ON 5

OFF &

OFF 7

naanowoN

Finished loading temporal relations
Predicted Eventa

Finished loading temporal relations

Predicted Eventb

# of Correct prediction 1

# of Total prediction 2
root@volkenturbo-laptop:/home/volkenturbo/alz _Temporal/release# I

FIGURE 10.14 Raw output on the test case dataset using ALZ + TempAl.
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propose a methodology for prediction and anomaly detection. The approach suggests
that in cases where the event information is too general, it is possible to expose it using
temporal interval representation and applying temporal relations. We have described
an approach using temporal relations to detect anomalies, aid prediction, and also
look for interesting patterns. We have shown that temporal relations between events
can be used effectively for smart home and smart environment domain problems. In
the case of anomaly detection, some anomalies may be detected without significant
use of resources or techniques. For some additional techniques may be needed based
on the resident (say the resident is an elderly individual and may have a very fixed
pattern of events or if a teenager, which results in irregular activity pattern).

The presented approach is a novel approach from a theoretical point of view and
also the preliminary results seem promising. Obviously, parts of the method need
some more polishing, and the need to extend the study to a larger data set for very
promising results is clearly visible. Provided we can collect more data, it would be easy
to improve the model by (at least local) optimization on the space of possible rules. We
hope that the measures of temporal information we have used will help in all aspects,
but we are also planning to further investigate the temporal relations properties and
that of other candidate measures not considered here for this current study. In this
work we presented an approach to temporal pattern mining. One application is the
prediction of events by using (temporal) association rules and incorporating temporal
information. Besides evaluation, future work on larger datasets will address further
ways to reduce complexity of these techniques.

Temporal reasoning enhances data mining in smart environments by adding in-
formation about expected temporal interactions between resident activities. Based on
our study, we conclude that the use of temporal relations provides us with an effective
new approach for anomaly detection. We tested our algorithm on relatively small
datasets, but will next target larger datasets with real activity data collected. Other
future directions of this work also include improving activity prediction using tempo-
ral relations in smart home data. One challenge this work introduces is determining
which observed events belong to the same activity (say we have two lamp events
back-to-back, the problem of grouping them as one or should we include them as
separate), and thus the same temporal interval. In this study we grouped events that
turned a device on together with those that turned the same device off. However, for
a more extensive study we need to determine a general method for grouping events.

Temporal rule-based pattern analysis is a niche area in the temporal mining world.
We notice that the use of temporal relations provides us with a unique approach for
anomaly detection. We will also expand the temporal relations by including more
temporal relations, such as until, since, next, and so forth, to create a richer collection
of useful temporal relations.

The goal of the association rule mining-based approach for prediction is to gen-
erate a rule-based prediction system, which can be integrated into a comprehensive
smart home architecture. We use the most recent observed event to identify which rules
to use for prediction. Once the rule or a set of rules is identified then the rules are used
for prediction. This approach showed some encouragement to use association rule
mining to enhance prediction. Some disadvantages of this system include identifying
interesting rules and also handling multiple rules with safe confidence levels.
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The next prediction experiment involved a method of enhancing an existing se-
quential prediction technique by incorporating temporal information to improve pre-
diction performance. We see that the fusion of the information is intuitively appro-
priate as the sequential prediction uses a trie-based prediction algorithm and this
implicitly incorporates the temporal relation “before” and uses order-based analysis
for computing the prediction probability. Now we also incorporate temporal infor-
mation into event probability calculations at context sizes greater than zero because
at the higher orders in the phrase we have all the temporal information which would
make it richer than the single existing “before” relation. Evaluation of this combined
prediction approach shows encouraging results and opens the field to new ideas such
as considering graph-based approaches and link analysis approaches for prediction
in smart environment domains. We also look at temporal mining for evaluating and
identifying patterns in multi-inhabitant environments [57].

Finally, it is worth remembering that human activities are need-based and are thus
clouded with the resident’s emotional state and the physical energy required for events
to be performed. As a result, smart home adaptive automation is by itself a difficult
task, with potentially a lot of disagreement between multiple residents or the influence
of a single resident through process. For now, our work is bound by a single resident.
We therefore have no measure of inter-resident or multiresident agreement, which
could serve as an upper bound of the performance of this system, although we are
currently planning and setting up this smart environment to do this on a larger scale.
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Electrical-power distribution networks
data mining in, 132
SCADA/DMS products in, 132
Electricity load forecasting
active power measures, 132
buffered online prediction, 137
change detection and, 135
cluster expansion and aggregation in, 133
clustering system performance, 139
comparison with wavelet predictors, 143
current intensity measures, 132
data preprocessing for, 133
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Gyroscopes, in multisensor survey 83, 86
vehicle, 110 comparison with MDS projection, 95
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Load forecast. See Electricity load forecast
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Locally linear embedding (LLE), 82, 83, 85
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normal and boxed data, 101
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relations mining, 173
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experiments on artificial data, 86-90
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Master Kalman filter, 121-122
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datasets for, 160
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related work, 151-154
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Multisensor fusion
acceleration equation, 113
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distribution with PCAg, 64—66
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scalability analysis with PCAg, 66-70
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overfitting and variance reduction with,
137-138
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Node attributes, and time variance, 18
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forecasting, 133
Nonlinear dynamics, in missing event
prediction, 153
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Nonstationary environments
distributed learning in, 5
electrical-power distribution networks,
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error rates in, 76
trade-offs with, 11
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Divisive-Agglomerative Clustering
(ODAC) system
processing and updating speed in
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One-shot data mining approach, 9
Online Divisive-Agglomerative Clustering
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compliance with requirements for
clustering streaming series, 43
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Open-ended data streams, 9
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MDS and ISOMAP projections, 87,
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MDS and LLE projections, 96, 97
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comparative analysis in missing event
prediction, 161-162
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162
Overlap, 39
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temporal rule-based, 199
using temporal rule mining, 172
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sensor communication with local, 47
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Place Lab, 175-176
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Plume propagation, 18
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Power limitations, 39
minimizing consumption with, 46
in sensor networks, 1
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Prediction
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Kalman filter-based vs. other methods, 161
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load forecasting, 139-141
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Sensor data management, 39
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Sensor fusion, 118
IMU error model, 118-119
with Kalman filter, 109
Kalman filter design for, 119-122
schematic diagram, 120
Sensor grid topology, 69
Sensor lifetime, extending with TAG
synchronization, 58
Sensor measurement dependencies, 71
Sensor network data model, for discovery of
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Sensor networks, 38, 39
adaptability to changes, 48
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operating systems and languages for, 38-39
remote monitoring of, 19
unreliability of, 150
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SensorNet program, 90
Sensors, 37
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on, 162
Shekhar, S., 32
Short-term load forecast, 132
Side-view camera, in multisensor survey
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Signal processing theory, sampling based on,
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Similar behavior, predicting in sensor nodes,
31
Similar sensors, locating, 49
Smart environment data
challenges in mining, 174-177
in MavLab smart workplace environment,
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synthetic and real datasets, 184
and TempAl in MavHome smart home
project, 180—181
temporal relations mining with, 171-173
Smart homes, 171
assistive technologies in, 177
goals of, 174
granularity issues, 177
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schedule management system for elderly,
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Smart workplace, 181
MavLab environment, 183
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Spatial networks, graphs of, 21
Spatio-temporal patterns, 16
sensor network data model for discovery
of, 15-18

Spatio-Temporal Sensor Graph (STSG) model,

16, 18, 21-23, 32
anomaly detection with, 23-26
application domain, 18-20
basic concepts, 21-23
basic hotspot detection with, 26-28
case studies, 23-31
example graph representation, 22
future work, 31-32
growing hotspot detection example, 30
growing hotspot detection with, 28-31
for hotspot detection, 27
instantaneous snapshots, 22
related work, 20-21
Spectral data projection, for anomaly
detection, 92-94
SQL-like querying, 156
in missing event prediction, 150
Static iteration-based training, in electricity
load forecasting, 132
Stochastic physical relationships, 18, 21
Stock market mining, 48
with Kalman filters, 154
Store-and-forward approach, 66
comparison with PCAg approach, 65
to network load distribution, 64
network load with hierarchical routing
topology, 67
Stored data, 20
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Streaming sensors, 36. See also Clustering
streaming sensors
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Structural drift detection, 37, 41-42
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analysis, 62
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TAG project, 56, 57
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TempAl, 172, 178-180
algorithm, 192
architecture overview, 182
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180-181
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Knowledge Discovery from Sensor Data

Temperature measurements, 163
missing event prediction, 160
with PCAg experiment, 57, 70
Temperature prediction, during METAR
station downtime, 165, 167
Temporal reasoning, 177-178
Temporal relation formation, 184—186
sample display of sensor data, 185
steps involved in, 186
Temporal relations-based probability, adding
to ALZ, 193-194
Temporal relations mining, 178. See also
Smart environment data
ALZ-based prediction with and without
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anomaly detection and, 184
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challenges in, 174-177
current research trends, 173—-174
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to ALZ, 193
experiment results, 196-197
illustrative scenario, 194—196
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improved event prediction with, 184
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percentage error, 193
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reminder assistance with, 184
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in smart environment data, 171-173
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and TempAl definition, 178-180
temporal reasoning and, 177-181
temporal relation formation, 184—186
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scenario, 197
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