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Abstract. Component-based development makes heavy use of Object
Oriented features which have motivated a major re-evaluation of soft-
ware testing strategies. This chapter introduces the basic concepts of
software testing focusing on the state-of-the-art and on the state-of-the-
practice of this relevant area in the context of component-based software
development.

1 Introduction

Software testing is a crucial activity in the software development process. Its
main goal is to reveal the existence of faults in the product under testing: a
program unit or a component. It is known as one of the most expensive ac-
tivities in software development that can take up to 50% of the total cost in
software development projects [I]. Besides its main objective—to reveal faults—
the data collected during the testing phases are also important for debugging,
maintenance, and reliability assessment.

Before software testing starts it is necessary to identify the characteristics of
the input and output data required to make the component run (for instance,
type, format and valid domain of that data), as well as how the components
behave, communicate, interact and coordinate with each other. The Testing
Plan is a document in a Test Design Specification that defines the inputs and
expected outputs and related information like expected execution time for each
run, format of the output and testing environment. Any anomaly found during
testing should be reported and documented in a Test Incident Report.

In order to perform software testing in a systematic way and on a sound
theoretical basis, testing techniques and criteria have been investigated. Testing
techniques are classified as functional, structural, fault based, and state based,
depending on the source used to determine the required elements to be exer-
cised (the test requirements). Testing techniques and criteria are the mechanisms
available to assess testing quality.
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Concerning the functional (black box) technique, testing requirements are
obtained from the software specification. The structural technique uses imple-
mentation features to obtain such requirements, and the fault-based technique
uses information about common errors that can occur during the development.
In the state-based technique the requirements are obtained from a state-based
specification like a Finite State Machine [2] or a Statechart [3]. These testing
techniques are complementary and the question to be answered is not “Which
one to use?” but “How to use them in a coordinated way, taking advantage of
each one?”

According to Freedman [4], the research in software testing has been concen-
trated on two main problems:

— Test effectiveness: What is the best selection of test data?
— Test adequacy: How do we know that sufficient testing was performed?

Each of the above mentioned techniques has several criteria that define spe-
cific requirements that should be satisfied by the test data. In this way, re-
quirements determined by a testing criterion can be used either for test data
evaluation or test data generation. Since exhaustive testing, i.e., executing the
product under test with its entire input domain, is not possible in general, test
effectiveness is related with to task of creating the smallest test set for which
the output indicates the largest set of faults. Testing adequacy is related to the
determination of the effectiveness of a test criterion [].

The object oriented (OO) paradigm has been extensively used, in particular
because of its potential to promote component reuse. In general, component
development uses much of the OO terminology. It is possible, though, to have
components implemented according to the procedural paradigm, for instance, as
COBOL procedures or C libraries, although, currently, most parts of software
components are developed by using OO methodologies and languages.

As defined in [5], a software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties. Reusable components exist in several different types. In general,
a software component can be as simple as an individual class or module, or as
sophisticated as a JavaBeans, Enterprise JavaBeans [6] or COM objects [7]. It
can be observed that software components inherit many characteristics of the
OO paradigm, but the notion of components transcends the notion of objects.
Reuse in OO in general means reuse of class library, in a specific programming
language. Components can be reused without knowledge of the programming
language or environment in which they have been developed [8] [9].

Encapsulation, inheritance, polymorphism, and dynamic binding bring ben-
efits to software design and coding but, on the other hand, introduce new chal-
lenges to software testing and maintenance [10]. Software testing should incor-
porate the intrinsic characteristics of OO and component-based development.
Considering specifically the component-based approach, two points of view re-
lated to testing can be observed: the provider’s and the user’s point of view.
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Component providers test their components without knowledge about the con-
text of their applications. Component users in their turn test their applications
possibly without access to the component source code or data about the testing
performed on them by the providers.

In the last decade, several tools and criteria have been developed for program
testing [IT) 12]. In the 90’s researchers also started to concentrate on investigat-
ing approaches to test OO programs and components [I3] [I4]. With the adoption
of component technology, component users observed that the quality of their
component-based systems was dependent on the quality of the components they
used and on the effectiveness of the testing activity performed by the component
providers.

Software components may range from in-house components to Commercial
Off-The-Shelf (COTS) components. The former allow clients to have complete
access and control, including the development process. For the latter, on the
other hand, knowledge about the development or testing processes may not be
accessible. In this chapter we consider components implemented by using the
OO approach. This implies that, from the provider point of view, the problems
related to component testing are similar to those for OO program testing, in ad-
dition to the intrinsic problems related to the component technology. Therefore,
since the component provider has access to the component source code, func-
tional, structural, fault-based and/or state-based testing technique can be used.
From the client point of view, when the source code of the component is not
available, only functional and/or state-based testing techniques can be applied.

As highlighted by Weyuker [T3], it is necessary to develop new methods to test
and maintain components to make them reliable and reusable in a large range
of software projects, products and software environments. Harrold [I] restates
that the test of component-based systems, the development of effective testing
processes and the demonstration of the effectiveness of testing criteria constitute
the main directions to the software testing area.

In this chapter we present an overview on testing of OO software and compo-
nents. In this section the basic concepts and terminology related to component
testing were presented. In Section P the testing phases are discussed, compar-
ing procedural and OO /component approaches. In Section [J a classification of
testing techniques is presented, as well as the definition of some testing criteria
representative of each technique. Section M discusses more questions related to
the testing of OO programs and components. In Section [B some testing criteria
specifically for OO/component testing are described. Also in Section Bl the prob-
lems to component testing automation are discussed and some existent testing
tools are described. Section [6] presents an example about how to use one of the
testing criteria described earlier. In Section [f] the conclusions are presented.

2 Testing Phases

As the development process is divided into several phases, allowing the system
engineer to implement its solution step by step, the testing activity is also di-
vided into distinct phases. The tester can concentrate on different aspects of
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Fig. 1. Required environment for unit testing

the software and use different testing criteria in each one [I5]. In the context of
procedural software the testing activity can be divided into three incremental
phases: unit, integration and system testing [16]. Variations in this pattern are
identified for OO and component-based software, as discussed later.

Unit testing focuses on each unit, to ensure that the algorithmic aspects of
each of them are correctly implemented. The goal is to identify faults related to
logic and implementation in each unit. In this phase, structural testing is widely
used, requiring the execution of specific elements of the control structure in each
unit. Mutation testing is also an alternative to unit testing. In this phase it is
common to need to develop drivers and stubs (Fig.[Tl). Considering F' the unit to
be tested, the driver is responsible for coordinating the testing of F. It gathers
the data provided by the tester, passes them to F' in the form of arguments,
collects the results produced by F' and shows them to the tester. A stub is a
unit that replaces, during unit testing, another unit used (called) by F'. Usually,
a stub is a unit that simulates the behavior of the used unit with a minimum of
computation effort or data manipulation. The development of drivers and stubs
may represent a high overhead to unit testing.

After each unit has been tested, the integration phase begins and in con-
sequence, the integration testing. But why shouldn’t a program that was built
from tested units that individually work as specified function adequately? The
answer is that unit testing presents limitations and cannot ensure that each unit
works in every single possible situation. For example, a unit may suffer from the
adverse influence of another unit. Sub-functions when combined may produce
unexpected results and global data structures may present problems.

After being integrated, the software works as a whole and should be sub-
mitted to system testing. The goal is to ensure that the software and the other
elements that are part of the system (hardware and database, for instance) are
adequately combined and the function and performance are obtained. Functional
testing has been most used in this phase [16].

Fig.[2illustrates the three phases as mentioned above, as well as the elements
used in each of them, either for procedural or OO programs. According to the
IEEE 610.12-1990 (R2002) [17] standard, a unit is a software component that
cannot be divided. In this way, considering that testing is a dynamic activity, a
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Testing Phases
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Fig. 2. Relationship between unit, integration and system testing: procedural and OO
programs

unit in procedural programs is a subroutine or procedure. In OO programs, the
smallest part to be tested is a method. The class to which the method belongs
is seen as the driver of that method because without the class it is not possible
to execute the method. In the procedural paradigm, unit testing is also called
intra-procedural, and in the OO it is called intra-method [1§]. By definition, a
class gathers a set of attributes and methods. In this way, taking in consideration
a single class it is possible to think about integration testing. Methods of the
same class may interact to implement certain functionality—what characterizes
the kind of integration that should be tested. This is inter-method [I§] testing.
In the procedural paradigm this phase is also called inter-procedural.
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Table 1. Relationship between procedural and OO testing phases

l Smallest Unit: Method ‘

l Phase [Procedural Testing[ Object Oriented Testing ‘
Unit Intra-procedural Intra-method
Integration| Inter-procedural Inter-method, Intra-class and Inter-class
System Entire System Entire System
| Smallest Unit: Class ‘
l Phase ‘Procedural Testing‘ Object Oriented Testing ‘
Unit Intra-procedural |Intra-method, Inter-method and Intra-class
Integration| Inter-procedural Inter-class
System Entire System Entire System

Harrold and Rothermel [I8] define two other types of OO testing: intra-class
and inter-class. The former is used to test public method interactions through
different sequences of calls to such methods. The goal is to identify possible
sequences that lead the object to an invalid state. According to the authors, since
the user may invoke the public method in many different orders, the intra-class
testing gives one the confidence that different sequences of calls act correctly.
In the inter-class testing the same concept is applied to public methods but
not only those in a single class, i.e., the test requires calls among methods in
different classes. After integration testing, system testing may commence. Since
system testing is generally based on functional criteria, there is no fundamental
difference in this phase from procedural and OO software.

A few variations regarding the testing phases for OO software are identified
in the literature. Some authors understand that the smallest unit of an OO
program is a class [19] 20) 10} [T4]. In this way, a unit test would be composed
of intra-method, inter-method and intra-class testing, and integration testing
would be the same as inter-class.

Table [l summarizes the types of testing that may be applied in each phase,
either for procedural or OO software, taking either a method or a class as the
smallest unit.

3 Techniques and Criteria for Software Testing

According to Howden [21], testing may be classified as specification-based or
program-based testing. Such classification suggests that functional and state-
based techniques are specification-based, and structural and fault-based are
program-based.

In the specification-based testing the objective is to reveal faults related to
the external functionality, to the communication interfaces between modules, to
the required constraints (pre- and post-conditions) and to the program behavior.
The problem is that often the existing specification is not formal, which makes
harder the creation of test sets able to systematically exercise the component [19].
However, the specification-based criteria can be used in any context (procedural
or O0) and in any testing phase without any fundamental adaptation.
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Program-based testing, on the other hand, requires code handling and selec-
tion of test sets that exercise specific pieces of the code, not its specification [T9].
The goal is to identify faults in the internal structure and in the component
behavior. The disadvantage is that this approach may be dependent on several
factors like target programming language and the need to have access to the
source code. In the case of COTS, for instance, this is not always possible.

3.1 Functional Testing

Functional or black box testing (specification-based) has this name because the
software is handled as a box from which the content is not known. Only the
external side is visible. In this way the tester uses basically the specification
to obtain the testing requirements or the test data, without any concern about
the implementation [IT]. A high-quality specification that matches the client’s
requirements is fundamental to support the application of functional criteria.
Examples of such criteria are [16]: 1) Equivalency Partition, 2) Boundary Value,
3) Cause-Effect Graph, and 4) Category-Partition Method [22].

Statistical software testing can also be considered as functional testing since it
is also based on the product specification. Example of such criteria are presented
in [23, 241 25 [26]. The idea behind these criteria is to exercise a program with
inputs that are randomly generated according to a given distribution over the
input domain, the key of its effectiveness being the derivation of a distribution
that is appropriate to enhance the program failure probability. Basically, as
defined in [23], the statistical test sets are defined by two parameters: (1) the
test profile, or input distribution, from which the inputs are randomly drawn;
and (2) the test size, or equivalently the number of inputs (i.e. of program
executions) that are generated.

The use of the functional technique may make it difficult to quantify the
testing activity. That is because it is not possible to ensure that certain essential
parts of the product’s implementation have been exercised. Another problem is
that (non formal) specifications may be incomplete and so will be the test set
created based on them.

On the other hand, since functional criteria are based solely in the specifica-
tion, they can be used to test procedural, OO programs and software components

as well [27, 2R (22, 201 30, [T0) (31,

3.2 Structural Testing

The structural testing technique, also known as white box (in opposition to
“black box”) fits in the class of program-based testing, since it takes into con-
sideration implementation aspects to determine the testing requirements. Most
of the criteria of the structural technique use a Control Flow Graph—CFG (also
called Program Graph) to represent the program under test. A program P repre-
sented by a CFG has a correspondence between the nodes of the graph and blocks
of code and between the edges of the graph and possible control-flow transfer
between two blocks of code. From the CFG it is possible to select elements to
be exercised during testing, characterizing the structural testing.
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Structural testing faces several constraints and disadvantages as the need
to determine unfeasible testing requirements such as unfeasible paths and as-
sociations [2T], 32, [33, B4]. These constraints pose serious problems to testing
automation. Nevertheless, this technique is seen as complementary to functional
testing [16] and information obtained with its application is also relevant to main-
tenance, debugging and software reliability estimation [35], B6] 16l B7] [38, [T, [39].

The first structural criteria were based exclusively on control-flow structures.
The most known are all-nodes, all-edges, and all-paths [40]. In the middle 70’s
appeared the dataflow-based criteria [41], that require interactions amongst vari-
able definitions and variable uses to be exercised [41],[42), [43],[44]. The reasoning
behind such an approach is the indication that even for small programs, control-
flow-based testing is not effective for revealing even trivial faults. The use of
data-flow criteria provides a hierarchy of criteria from all-edges to all-paths,
trying to make the testing a more rigorous activity. Amongst the best known
data-flow criteria are those introduced by Rapps and Weyuker in the middle
80’s, for instance, all-defs, all-uses, all-du-paths and all-p-uses [34].

At the beginning of the 90’s Maldonado [45] presented a family of criteria
named Potential-Uses and the corresponding feasible criteria, obtained with the
elimination of unfeasible associations. These criteria are based on associations
between a variable definition and the possible points in the program where it
can be used, not necessarily requiring the actual use of it.

Several extensions of data-flow criteria can be found in the literature, ei-
ther for integration testing of procedural programs [46], 47 [48] or for unit and
integration of OO programs [46].

3.3 Fault-Based Testing

The fault-based technique uses information about faults frequently found in soft-
ware developments and also about specific types of faults that one may want to
uncover [49]. Two criteria that typically concentrate on faults are Error Seeding
and Mutation Testing.

Error seeding introduces in the program under test a known number of artifi-
cial faults before it is tested. After the test, from the total number of faults found
and the rate between natural / artificial faults found, it is possible to estimate
the number of remaining natural faults. The problems with this approach are 1)
artificial faults may hide natural faults; 2) in order to obtain a statically reliable
result it is necessary to use programs that can have 10,000 faults or more; and
3) it is based on the assumption that faults are uniformly distributed in the
program, which in general is not the case—real programs present long pieces
of simple code with few faults and small pieces with high complexity and high
concentration of faults .

Mutation testing appeared in the 70’s at Yale University and the Georgia
Institute of Technology. It was strongly influenced by a classical method for
digital circuit testing known as “single fault test model” [51]. One of the first
papers describing mutation testing was published in 1978 [49]. This criterion
uses a set of products slightly different from the product P under test, called
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mutants, to evaluate the adequacy of a test set 7. The goal is to find a set of test
cases able to reveal the differences between P and its mutants, making them to
behave differently [49]. When a mutant has a behavior diverse from P it is said
to be “dead”; otherwise it is a “live” mutant. A live mutant must be analyzed
to check whether it is equivalent to P or it can be killed by a new test case,
promoting in this way the improvement of 7'

Mutants are created based on mutant operators, which are rules that define
the (syntactic) changes to be done in P to create the mutants. It is known
that one of the problems with mutation testing is related to the high cost to
execute a large number of mutants. Besides, there is also the problem of deciding
mutant equivalence, which in the general case is undecidable. Extensions of this
criterion have also been proposed for integration testing as well as for program
specifications. Delamaro et al. defined the Interface Mutation criterion that
applies the mutation concept to the integration testing phase. With that criterion
a new set of mutant operators that model integration errors was proposed.

In the context of test specifications, mutation can be used to test Petri
Nets [53], [54], Statecharts [53,[56], Finite state machines [57, [58] and Estelle [59]

60].

Recently, researchers have also been investigating the use of mutation test-
ing for the OO paradigm. Kim et al. [61] proposed the use of a technique called
Hazard and Operability Studies (HAZOP) to determine a set of mutant oper-
ators for Java. In general, this approach does not significantly differ from the
traditional mutation with respect to mutant operators’ creation, but introduces
a more rigorous and disciplined way to do it. The technique identifies in the tar-
get language grammar those point candidates for mutation and then the mutant
operators are created based on some predefined “guide words.” A more extensive
set of mutant operators for Java (inter-class mutant operators), that includes the
ones proposed in [61], is defined in [62].

Researchers have also explored mutation testing in the context of distributed
components communicating through CORBA [63, [64]. Yet, Delamaro et al. [65]
define a set of mutant operators to deal with concurrency aspects of Java pro-
grams.

3.4 State-Based Testing

State-based testing uses a state-based representation of the unit or component
under test. Based on this model, criteria to generate test sequences are used to
ensure its correct behavior. One of these criteria, based on Finite State Machines
(FSM), is the criterion W [2]. Other similar criteria can be found in the literature,
as DS [66], UIO [67] and WP [6§]. As mentioned before, mutation testing has
also been used in test case generation for FSM [57, [58].

Criteria based on FSM are also widely used in OO context to represent the
behavioral aspect of objects [31, [T4] and in the context of
software components since they only require a state-based representation to
be applied. As can be observed, there are a large number of criteria available
to evaluate a test set for a given program against a given specification. One
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important point to be highlighted is that the testing criteria and techniques are
complementary and a tester may use one or more of these criteria to assess the
quality of a test set for a program and enhance the test set, if it is the case, by
constructing additional test cases needed to fulfil the testing requirements.

4 Issues Related to Component Testing

Component testing and component-based system testing face a series of partic-
ular issues, as will be discussed in this section. According to Harrold et al. [70],
it is possible to analyze the problem from two points of view: the component
user and the component provider.

4.1 Perspectives of Component-Based Testing

User’s Perspective

Component users are those that develop systems by integrating third-part com-
ponents. To help them, there are several initiatives to adapt traditional analysis
and testing techniques to be used in the component development. However, there
are issues that make this task difficult. First, the code of the components is not
always accessible. Techniques and criteria based on the program implementation
as data-flow-based criteria and mutation testing need the source code to deter-
mine their testing requirements. When the component source is not available to
the user, such criteria cannot be used or at least an alternative setting between
the parts is needed. Second, in component-based systems, even if the code is
available, the components and the component-based system may have been de-
veloped in different languages and a tool to analyze/test the entire system may
fail to analyze the components.

Third, a software component frequently offers more functionality than the
client application needs. In this way, without the identification of the piece of
the functionality that is actually required by the user, a testing tool will pro-
vide useless reports. For example, structural criteria evaluate how much a test
set covers the required elements, but in a component-based system the unused
part of the components should be excluded from this evaluation, otherwise the
coverage assessed by the tool would be low even if the test set was a good one
for the used portion of the code [71].

Developer’s Perspective

The component provider implements and tests the component independently
of what kind of application will use it. Unlike the user, the provider has ac-
cess to the source code. Thus, testing the component is the same as traditional
unit/integration testing. However, traditional criteria like control-flow-based cri-
teria may not be enough to test the components due to its inefficiency to reveal
faults [[72]. Correcting a fault in a component after it is released has a high cost,
many times higher than if the fault had been found during integration testing
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in a non-component based system because the component will probably be used
in many applications.

The provider has to have mechanisms to solve two problems: first, the provider
must effectively test the components as independent software units. Doing so,
the provider increases the user’s confidence in the component quality and re-
duces the testing cost for the user. Rosenblum [71] describes an approach for
component unit testing that depends on the application context and so is more
relevant to the user than to the provider. The second approach, proposed by
Harrold et al. [70], separates the analysis and testing of the user application
from the analysis and testing of the components.

A fundamental aspect for component or application testing is their testa-
bility. According to Freedman [4], the component’s testability usually has two
aspects: observability and controllability. The latter shows how easy it is to con-
trol the component in relation to its input, operation, output and behavior. The
former indicates how easy it is to observe the program behavior according to its
operational behavior and its output as function of its input.

As mentioned before, the features of OO programs bring a series of obsta-
cles to the testing activity. In the next section the impact of such features in
the testability of OO programs and components will be discussed. For further
information the reader may refer to [T9] 14l [73].

4.2 The Impact of OO on Software Testability

Encapsulation

Encapsulation means a control access mechanism that determines the visibility
of methods and attributes in a class. With the access control, undesirable de-
pendencies between client and a server class are avoided, making visible to the
client only the class interface, and hiding implementation details. Encapsulation
aids in the information hiding and in the design of a modular structure.

Although encapsulation does not directly contribute to the introduction of
faults, it may be an obstacle to the testing activity, reducing the controllability
and observability. Program-based testing requires a complete report about the
concrete and abstract state of an object, as well as the possibility to change
that state easily [I4]. OO languages make it harder to get or set the state of an
object. In the case of C++, for instance, friend functions have been developed to
solve this problem. However, in the case of languages that do not provide such
mechanism, other solutions must be adopted. Harrold |1] says that the solution
would be the implementation of methods get and set for every attribute in a
class. Another alternative would be the use of reflection (although, as highlighted
by Rosa and Martins not every language allows the reflection of private
methods) or metadata] [76].

! Metadata are used by the component provider to include additional information
about the component without revealing the source code or other sensitive details of
the component. In general, as defined in [75], metadata are data about components
that can be retrieved or calculated by metamethods.
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Inheritance

Inheritance is essential to OO development and component-based development.
It permits the reuse by sharing features present in classes previously defined.
However, Binder [14] highlights the fact that inheritance weakens encapsulation
and may create a problem similar to the use of global variables in procedural
programs. When implementing a class that uses inheritance it is important to
know the details about the ancestor classes. Without that, it may happen that
the class seems to work but it actually violates implicit constraints of the ancestor
classes. Large class chains make it more difficult to understand the program,
increase the chance for faults, and reduce testability.

Offutt and Irvine [22] comment that inheritance may lead to a false conclusion
that aspects already tested in the super-classes do not need to be retested in the
subclasses. Perry and Kaiser [19] state that even if a method is inherited from
a super-class, without any modification, it has to be retested in the subclass
context.

Harrold et al. [77] use the results from Perry and Kaiser [I9] and develop
an incremental testing strategy based on the class hierarchy. They propose to
identify which inherited methods have to be tested with new test cases and
which can be retested by using the same test cases used to test the super-class.
With this strategy the testing effort can be reduced since many test cases can
be reused in the subclasses. In addition, the way inheritance is implemented
changes from one language to another and this can also have some influence on
the testing strategy.

Multiple Inheritance

Multiple inheritance allows a class to receive characteristics from two or more
super-classes that in their turn may have common features (attributes or meth-
ods with the same name, for instance). Perry and Kaiser [19] state that although
multiple inheritance leads to small syntactic changes in programs, it can lead
to high semantic changes, which can make the testing activity for OO programs
even more difficult.

Polymorphism

Polymorphism is the ability to refer to different types of objects using the same
name or variable. Static polymorphism makes such association at compilation
time. For example, generic classes (C++ templates for instance) allow static
polymorphism. Dynamic polymorphism allows different types of associations at
execution time. Polymorphic methods use dynamic binding to determine at exe-
cution time which method should answer to a given message, based on the type
of the object and on the arguments sent with the message.

Polymorphism can be used to produce elegant and extensible code but a few
drawbacks can be realized in its use. For example, a method z in a super-class
needs to be tested. This method is overwritten in a subclass. The correction of
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z in the subclass cannot be assessed because the pre- and post-conditions in the
subclass may not be the same as in the super-class [14].

Each possible binding in a polymorphic message is a unique computation.
The fact that several polymorphic bindings work correctly together does not
ensure that all will work correctly. A polymorphic object with dynamic bindings
may easily result in sending improper messages to the wrong class, and it can
be difficult to have all possible binding combinations.

Dynamic Binding

Dynamic binding allows a message to be sent to a server class that implements
that message. Since server classes are frequently developed and reviewed without
further concern about the client code, some methods that usually work correctly
in a client class may lead to unexpected results. A client class may require a
method that is no longer part of a server class, incorrectly use the methods
available, or call the methods with wrong arguments.

Besides these problems, Binder [I4] reports errors related to the state of
the objects and sequences of messages. The packaging of methods in a class is
fundamental to OO; as a consequence, messages have to be executed in some
sequence, leading to the question: “Which message sequences are valid?”

Objects are created at execution time, taking memory space. Each new con-
figuration this memory space assumes is a new state of such object. Thus, besides
the behavior encapsulated by an object it also encapsulates states.

Analyzing how the execution of a method can change the state of an object,
four possibilities are observed [10]:

1. It can leave the object in the same state;

2. It can take the object to a new, valid state;

3. It can take the object to an undetermined state; or
4. Tt can change the object to an inappropriate state;

Possibilities 3 and 4 characterize erroneous states. Possibility 1 characterizes
an error if the method is supposed to behave as in possibility 2 and vice-versa.

4.3 Other Issues in Component Testing

Specifically for component testing, one additional issue that has to be consid-
ered is the kind of information that has to be included/delivered with or within
the component to help, as much as possible, the testing on the user’s side. As
mentioned by Orso et al. [T5], the drawbacks of component-based software tech-
nologies arise because of the lack of information about externally provided com-
ponents.

Although existing component standards, including DCOM [[7] and Enterprise
JavaBeans [0], already provide additional information about a component by the
use of metadata that are packaged with the component, it is necessary to define
a standard such that, independently of the component provider, the compo-
nent user can always consider that a given set of information will be available.



112 Auri Marcelo Rizzo Vincenzi et al.

Moreover, such a standard makes easier the job of component testing tool devel-
opers by providing a common interface to access component features requested
to perform the testing activity on a single component or on a component-based
system.

Gao [78] defined a maturity model to evaluate the maturity level of a given
process in an organization. The maturity model is composed by four levels focus-
ing on the standardization of the component testing, testing criteria, manage-
ment procedures and measurement activities. Although published almost five
years ago, this reference is still up-to-date because not much has been done
in this direction. Changes will only occur when the component user demands
high-quality or certified components [79].

To achieve either a high maturity level or a certified component, the compo-
nent provider has to use an incremental testing strategy that combines testing
criteria of different testing techniques such as functional, structural and be-
havioral aspects of the component being tested. The next section presents a
summary of the most relevant criteria developed for testing OO programs and
software components considering both sides: component providers and compo-
nent users.

5 Component-Based Testing Criteria

Testing techniques and criteria have been investigated with the aim of establish-
ing a systematic and rigorous way to select sub-domains of the input domain able
to reveal the presence of possible faults, respecting the time and cost constraints
determined in a software project.

When discussing testing criteria for software components we need to consider
the two perspectives of component development, because, in general, structural
testing can only be performed by the component provider since such criteria re-
quire the availability of the source code. When the source code of the component
is not available, the component user has to use functional and/or state-based
testing criteria to perform component/system testing. Below we present differ-
ent testing criteria that can be used by the component provider, component user
or both.

According to Binder [80], the biggest challenge of OO testing is to design test
sets to exercise combinations of sequences of messages and state interactions that
give confidence that the software works properly. In some cases, test sets based
on sequences of messages or states are enough. However, Binder warns that the
state-based testing is not able to reveal all kinds of faults requiring also the
use of program-based criteria [I4]. Methods in a class make use of the same
instance variables and should cooperate with the correct behavior of the class,
considering all the possible activation sequences. The visibility of the instance
variables for all the methods in the class creates a fault hazard similar to the use
of global variables in the procedural languages. Since the methods in a super-
class are not explicit when a subclass is coded, this may lead to an inconsistent
use of the instance variables. In order to reveal this kind of fault it is necessary
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Table 2. Criteria for testing components and OO programs

Technique ‘ Criteria

e
=y
15}
jos)
e | @

Functional |Category-Partition Method [22]

Structural |Data-flow [I85]

Structural |FREE [§1]

Structural |Modal Testing [30]

Fault-Based|Class Mutation [61] [82]

Fault-Based|Mutation on Distributed Programs(CORBA Interface) [63]
Fault-Bases | Mutation on Concurrent Programs (Java) [65]
State-Based |FREE [&1]

State-Based |Modal Testing [80]

(AN AN AN BN BNes

o ®6/0o 0 0|0 O 0| O —

T Testing Phases: Unit (U), Integration (I) and System (S).

to use control-flow and data-flow criteria that ensure the inter-method (or intra-
class) coverage. Table 2] shows some well known criteria to test OO programs
identified in the literature, and the respective phases they are applied in.

As can be observed, functional criteria, including statistical software test-
ing [23, 24, 25], can be applied indiscriminately to procedural, OO programs
and components [I1] since the testing requirements are obtained from the prod-
uct specification. A case study investigating the Category-Partition Method in
detecting faults on OO programs is described in [22]. The method provides guide-
lines to identify, from the product specification, different categories related to
the input domain and the specific functionality that should be in the domain
of these categories. Statistical software testing, in which inputs are randomly
sampled based on a probability distribution representing expected field use, is
also based on the specification and can also be used for testing software compo-
nents [23, [24], 25]. Therefore, as mentioned in Section B the major problem with
the functional testing technique is that, since it is based on the specification,
its criteria can not assure that essential parts of the implementation have been
covered.

In the case of structural testing, important work has been done by Harrold
and Rothermel [I8] who extended data-flow testing to class testing. The authors
comment that data-flow criteria, designed for procedural programs, can be ap-
plied to OO programs both for a single method test and for interacting methods
in the same class [34, 46]. They do not consider tough data-flow interactions when
the users of a class make sequences of calls in an arbitrary order. To solve this
problem they present an approach to test different types of interactions among
methods in the same class. To test the methods that are accessible outside the
class a new representation named class control flow graph was developed. From
this representation new inter-method and intra-class associations can be derived.
An example that illustrates this criterion is presented in the next section.

Considering the fault-based criteria, a point to be highlighted is the flexibility
to extend the concepts of mutation testing to different executable entities. The
criterion, initially developed for unit testing of procedural programs, has been
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extended to OO programs [63] [61), 62], to FSM specifications [57, B8], Petri
Nets [53] b4], Statecharts [55] B6] and Estelle [59, [60].

Specifically, for OO programs mutation testing has been used to exercise as-
pects concerning concurrency, communications and testing of Java programs at
unit and integration level: 1) Kim et al. [61] used a technique named HAZOP
(Hazard and Operability Studies) to define a set of mutant operators for Java
programs; 2) Ghosh et al. [63] defined a set of mutant operators aiming at test-
ing the communications interfaces between distributed (CORBA) components;
and 3) Delamaro et al. [65] defined mutant operators specific for concurrent
Java programs. Since structural and fault-based criteria require the component
source code, alternative criteria, that do not require the source code, have been
proposed. Such criteria are based on metadata [76] and metacontent [75], reflec-
tion [83], built-in testing [84] R3], polymorphism [85] and state-based testing [69].

Computational reflection enables a program to access its internal structure
and behavior and this is beneficial for testing by automating the execution of
tests through the creation of instances of classes and the execution of different
sequences of methods. In component testing, computational reflection has been
used to load a class into a testing tool extracting some of the methods and
invoking them with the appropriate parameters. Therefore, reflection can be
used to build test cases by extracting the needed characteristics of classes [76].
Rosa and Martins [R6] propose the use of reflexive architecture to validate OO
applications.

Another solution, like a wrapper, is proposed by Soundarajan and Tyler [85]
considering the use of polymorphism. Given the component’s formal specifica-
tion containing the set of pre- and post-conditions that have to be satisfied for
each method invocation, polymorphic methods are created such that, before
the invocation of the real method (the one implemented by the component) the
polymorphic version checks if the pre-conditions are satisfied, collects method in-
vocation information (parameters values, for example), invokes the real method,
collects output information (return value, for example) and checks if the pos-
conditions are satisfied. The disadvantage of this approach is that it requires
formal specification and does not guarantee the code coverage. Moreover, to be
useful, requires the implementation of an automatic wrapper generator since,
once the specification changes (any pre- or post-condition), the set of polymor-
phic class/methods has to be regenerated /reevaluated.

Metadata are also used, in existing component models, to provide generic
usage information about a component (e.g. the name of its class, the name of
its methods) as well as information for testing. By using metadata, static and
dynamic aspects of the component can be accessed by the component user to
perform different tasks. The problem with this approach is that there is no
consensus about which information should be provided and how it should be
provided. Moreover, it demands more work by the component provider.

Other strategies propose an integrated approach for component-based testing
generation. They combine black- and white-box information from a formal/semi-
formal component’s specification. The idea is to construct a graphical represen-
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tation of the component using control-flow and data-flow information gathered
from the specification and, from this graphical representation, control-flow- and
data-flow-based criteria can be applied. The problem is that since the structural
testing criteria are obtained from the component’s specification, satisfying such
criteria does not assure component code coverage but only component specifi-
cation coverage. Moreover, they require that the component has a formal/semi-
formal specification to be applied [87] [69].

The concept of auto-testable components has also been explored. The idea
is to provide components with built-in testing capabilities that can be enabled
and disabled, depending on when the component is working in the normal oper-
ation mode or in the maintenance mode [84] [73][76]. Edwards [76] discusses how
different kinds of information can be embedded into the component. He propose
a reflexive metadata wrapper that can be used to pack more than the compo-
nent itself. It also includes the component specification (formal/semi-formal), its
documentation, verification history, violation checking services, self-test services,
etc. Such an approach, although very useful, requires more work for the com-
ponent provider since she/he has to collect and include all of this information
inside the component. Moreover, which information should be provided and how
it should be provided is not yet standardized, making difficult the development
of a testing tool that uses such information during testing.

In general, from the user point of view, when no source code is available, only
functional or state-based testing criteria can be used. This implies that, except
when the component has built-in test or metacontent capabilities, no information
about the coverage of that component with respect to its implementation can
be obtained.

Java components, such as applets or JavaBeans, this situation can be over-
come by carrying out the testing directly on the Java class file (.class) instead
of on the Java source file (.java). The so called “class file” is a portable binary
representation that contains class related data such as class name, its superclass
name, information about the variables and constants and the bytecode instruc-
tions for each method.

Bytecode instructions resemble an assembly-like language, but a class file
retains very high-level information about a program such that it is possible
to identify control-flow- and data-flow-data dependency on Java bytecode [8§].
Working at the bytecode level, both component provider and component user can
use the same underlined representation to perform the testing activity. Moreover,
the user can evaluate how much of the bytecode of a given component has been
covered by a given test set, i.e, he/she can evaluate the quality of his functional
test set on covering structural elements of the component [89] 90].

Besides the criteria described above, other examples can be found in the lit-
erature, among them, the work of McGregor [91], Rosenblum [7I] and Harrold
et al. [70]. Bhor [92] also carried out a survey that includes other testing tech-
niques for component-based software. Independently of the testing criterion, it
is essential that testing tools support its application. In the next section the
aspects related to testing automation are discussed.
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5.1 Issues on Component Testing Automation

Software component testing, as testing in general, requires several types of sup-
porting tools: test case generators, drivers, stubs and an environment for com-
ponent testing (component test bed). Taking the developer’s point of view, most
testing tools for test case generation can be used to support component testing.
The main problems in component testing automation are also related with the
lack of information embedded into the component by the component providers.
The lack of a standard is a drawback since the development of a generic testing
environment, in the sense that it would be able to deal with components from
different providers and implemented in different languages, would be more diffi-
cult. Nevertheless, there are some tools in the literature that automate as much
as possible the testing of a component-based system.

A component verification tool, named Component Test Bench (CTB), is
described in [93]. The tool provides a generic pattern that allows the component
provider to specify the test set used to test a given component. The test cases are
stored in standard XML files. The component user can reuse the same test set to
retest the component to determine whether the component performs according
to its specification. The tool does not yet provide testing criteria to help the test
set generation and evaluation. It only does the conformance testing on a given
component, i.e., evaluate if the component behaves as specified.

A similar approach is used by JTest [94], a tool that automatically run tests
on Java programs. The main difference is that JTest uses the JUnit frame-
work] [95] to store the test cases instead of XML file as in CTB.

Glass JAR Toolkit (GJTK) is a coverage testing tool that operates at the
bytecode level and does not require the source code to apply a white-box testing
criterion (statement or decision) on bytecodes. It can be used for testing both
compiled .jar and .class files [96].

We are also working on the implementation of a Java bytecode understanding
and testing tool, named JaBUTi[P. The idea is to provide a complete environment
that allows both component provider and component user to carry out white-
box testing on Java bytecode. Currently, the tool supports the application of
three structural testing criteria (all-nodes, all-edges and all-uses) that can be
used in an incremental testing strategy for component-based testing. The idea
is 1) to evaluate the coverage of a given functional test set and then, 2) based
on the coverage information with respect to the structural testing criteria, to
identify which area of the component requires additional test cases to be covered,
improving the quality of the test set [00].

2 JUnit is an open source Java testing framework used to write and run repeatable
tests. The basic idea is to implement some specific classes to store the informa-
tion about test case input and expected output. After each test case execution,
the expected output is compared with the current output. Any discrepancy can be
reported.

3 Interested readers can contact us by e-mail to obtain additional information about
JaBUTI.
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6 JaBUTi: Example of Component Testing
Criterion Usage

Most part of the tools developed for component-based testing focus on the func-
tional aspects of the component (black box testing) and do not guarantee state-
ment coverage of the component due to the unavailability of the corresponding
source code. JaBUTi supports coverage analysis to test Java programs and Java
components even if the Java source code is not available what enables the appli-
cation of white-box testing. It is designed to support test set adequacy evaluation
and to provide guidance in test case selection by using advanced control-flow-
dependence analysis.

In [I8] a set of testing criteria is defined based on a graphical representation
of a class called Class Control Flow Graph (CCFG). Basically, after each CFG
is constructed for each method, these CFGs are interconnected representing the
method calls inside the class, resulting in a CCFG. Based on the CCFG, the
authors consider three testing levels:

Intra-method: each method is tested alone. This level is equivalent to the unit
testing for procedural programs;

Inter-method: addresses public methods interacting with other methods in the
same class. This level is equivalent to the integration testing for procedural
programs; and

Intra-class: tests the interactions between public methods when they are called
in different sequences. Since the users of the class can call the methods in an
undetermined order, intra-class testing aims at building the confidence that
those invocation sequences do not put the object in an inconsistent state.
The authors warn that only a subset of the possible sequences can be tested,
since the complete set is infinity.

Based on these three levels, Harrold and Rotheermel [I8] establish def-use
pairs that allow the evaluation of data-flow relations in OO programs: Intra-
method pairs, Inter-method pairs and Intra-class pair. Currently, JaBUTi sup-
ports the application of two control-flow-based criteria (all-nodes and all-edges)
and one data-flow-based criterion (all-nodes) at intra-method level. We intent
to implement additional testing criteria to also cover the inter-method level.

In this section we will illustrate the application of the all-uses criterion on
a Java component considering the Java source code presented in Fig. [3 The
example, extracted from [75], illustrates a component, Dispenser, and an ap-
plication, VendingMachine, that uses the Dispenser component. Although not
required by JaBUTi, we are showing the Java source code in Fig.[3 to facilitate
the understanding of the example.

Fig. @lillustrates the main screen of JaBUTi showing part of the bytecode in-
struction set of the method Dispenser.available(int sel). Besides the byte-
code, the tool also displays the component’s source code (when available) as
well as the CFG for each method as illustrated in Figures [l and ] respectively.
Observe that in the CFG, by placing the mouse over a given CFG node, specific
information about the node is displayed such as: the node number, the first and
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01 package vending;

02

03

04 public class VendingMachine {

05

06 final private int COIN = 25;

07 final private int VALUE = 50;

08 private int totValue;

09 private int currValue;

10 private Dispenser d;

11

12 public VendingMachine() {

13 totValue = 0;

14 currValue = 0;

15 d = new Dispenser();

16}

17

18  public void insertCoin() {

19 currValue += COIN;

20 System.out.printin("Current value = " + currValue);
21

22

23 public void returnCoin() {

24 if (currValue == 0)

25 System.err.printin("no coins to return");
26 else {

27 System.out.printin("Take your coins");

28 currValue = 0;

29 }

30 }

31

32 public void vendltem(int selection) {

33 int expense;

34

35 expense = d.dispense(currValue, selection);
36 totValue += expense;

37 currValue -= expense;

38 System.out.printin("Current value =" + currValue);
39

}
40} // class VendingMachine

01 package vending;

02

03

04 public class Dispenser {

05 final private int MAXSEL = 20;

06 final private int VAL = 50;

07  private int[] availSelectionVals = {2, 3, 13};
08

09 public int dispense(int credit, int sel) {

10 intval =0;

1"

12 if (credit == 0)

13 System.err.printin("No coins inserted");

14 else if (sel > MAXSEL)

15 System.err.printin("Wrong selection " + sel);

16 else if (lavailable(sel))

17 System.err.printin("Selection " + sel + " unavailable");
18 else {

19 val = VAL;

20 if (credit < val) {

21 System.err.printin("Enter " + (val - credit) + " coins");
22 val =0;

23 }else

24 System.err.printin("Take selection");

25 }

26 return val;

27 )

28

29 private boolean available(int sel) {
30 for (inti = 0; i < availSelectionVals.length; i++)

31 if (availSelectionVals[i] == sel) return true;
32 return false;
33 }

34 }// class Dispenser

Fig. 3. Example of a Java component (Dispenser) and one application
(VendingMachine) [75]

2 JaBUTi v. 1.0 -- E:\aurilMeus documentosil.aTeX-2003\unpublishedibook-chdlenglishMinalWendingMachinelcorrecticorr

Fig. 4. JaBUTi display: Hot-spot on bytecode
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File Tools Visualization Summary ~ TestCase  Properties -ﬂ

() Block (! Decision (@ All-Uses

o0o:

J+ 0009 +/ public int dispense(int credit, int sel) {

J+ 0010 */ int val = 0;

J+ 0011 +/

J+ 001z +/ if (eredit == 0)

J* 0013 */ System.err.printin("No coins inserted"”);

J/* 0014 +/ else if (sel > MAZSEL)

/* 0015 */ System.err.println("Wrong selection " + sel);
J* 0016 */ else if (lavailahle(sel})

J* 0017 </ System.err.println("Selection " + sel + " unavailable™);
J* oo1g */ else |

J* 0019 *+/ val = VAL;

S+ 0020 */ if (eredit < wal) {

S*oo0zi o/ System.err.println("Enter " + (val - credit] + " coins";
J* 0022 */ val = 0;

J* 0023 £/ } else

J* 0024 *+/ System.err.println("Take selection”);

J* 0025 */ }

J* 0026 */ return val;

J* 0027 +/ )

J+ 0028 */

J+ 0029 */ private boolean available{int sel) {

0031 +/ if [availSelectionVals[i] == sel] return true;
J* 0032 +/ return false;

/* 0033 +/

/* 0034 */ } // class Dispenser

JaBUTi: Coverage ‘ | File: v Dispenser | ‘ Line: 8 of 35 ‘ | Coverage: All-Uses ‘ | i All Priorized

Fig. 5. JaBUT:i display: Hot-spot on source code

the last bytecode instruction that compose the node, the set of defined and used
variables, etc. In any representation, the tool shows which part has the highest
weight [97] and should be covered first to increase the coverage with respect to
a given criterion, as much as possible. Observe that, if the tester considers that
another part of the component should be covered first, he/she can prioritize the
coverage of that specific part and later use the recomputed hints provided by the
tool to increase the coverage with respect to the other parts of the component.

For example, considering the all-uses criterion, the tool identifies the complete
set of testing requirements (def-use pairs) and shows, using different background
colors (weights), the set of instructions that contains a variable definition. By
right clicking on one of those instructions, a pop-up menu shows the names
of the defined variables at the corresponding bytecode instruction. As can be
observed in Fig.[4, the method Dispenser.available(int sel) is the one that
contains the definition with the highest weight. The same information can also
be obtained from the source code or the CFG, as illustrated in Figures[H and [G]
respectively.

By selecting a given definition, the def-use pairs associated with it are shown
and the graphical interface is updated. For example, considering Fig. [, by se-
lecting the definition of the local variable Ledd in the bytecode, the set of def-use
pairs with respect to this variable is shown as illustrated in Fig. [l

Observe that there are four def-use pairs with respect to L@2 defined at
CFG node 0: <L@2, 0,5>, <L@2, 0,17>, <L.@2, 0,(5, 15)> and <L@2, 0,(5,
17)>. The def-use pair with the highest weight is <L@2, 0,5>. By covering this

4 102 refers to local variable number two. In case of Figure @ Le2 corresponds to local
variable i.
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2 Control Flow Graphs: vending.Dispenser |Z||E|E|

availakble(L hd

0 1 3 5 7 9 11 13 -

%

node 17

Start PO 17: iinc[1327(3) 2 1
End PC: 17: iine[132]7(3) 2 1
Varishle uses LEZ P 17
Varishle definitions LEZ Po: 17
Children 20

J3R Instruction: null
Corresponding Source Lines:

30

[¥] Show Node Tips Show Decisions/Definitions

Fig. 6. JaBUTi display: Hot-spot on CFG

requirement, at least 16 other def-use pairs will be covered. For example, the test
case “insertCoin, vendItem 13” that represents that a given user inserted one
coin and requested the item 13 to be dispensed (a valid item) covers 38 out of
the 46 def-use pairs in the two classes under testing (the Dispenser component
and the VendingMachine application). By adding one more test case asking for
an invalid item (“insertCoin, vendItem 15”), all the testing requirements above
were covered.

The tool also generates coverage report with respect to each criterion, each
class file, each method and each test case. Fig. Blillustrates the summary with
respect to each test case. The tester can enable and disable different combinations
of test cases and the coverage is updated considering only the active test cases.
By using JaBUTi, the component user without familiarity with Java bytecode
can use the CFG to evaluate how well a given component has been tested. It is
also possible to identify which areas of the component code require more test
cases to increase the coverage and the confidence in the quality of the component.
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Fig. 7. JaBUTi display: Set of def-use pairs with respect to variable i defined at CFG
node 0

3 JaBUTi v. 1.0 -- Ex\auri\Meus documentosil aTeX-2003%unpublished\book-cbhdle.
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[v] Test Case 0001 38 of 46

[v] Test Case 0002 32 of 46

o cou | eon T

JaBUTi: Coverage | | Coverage: All-Uses | | Active Test Cases: 2 of 2 |

Fig. 8. Summary report by test case

7 Conclusions

This chapter highlighted the importance of the testing activity in the context
of component-based system development. The component technology aims at
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speeding up the development process by software reuse. However, in order to
ensure system quality it is necessary both to consider the concern of the developer
to provide mechanisms to promote the validation of their components in their
client’s applications and the concern of the clients to seek developers that offer
components with the quality and reliability that they demand.

In general, the client spends a large amount of time understanding how to use
and evaluate the component’s quality, making harder their reuse. In this way, for
effective reuse it is essential to develop tools to support component testing and to
encourage developers to make available, as much as possible, information about
the components, reducing the cost and effort required to test a component-based
system.

A large research field is open in this area, in particular in the development of
techniques, criteria, and tools for component testing. In addition, standards for
component communication, for documentation and for the development of built-
in test mechanisms are also required. The idea of maturity models for component
testing also represents an interesting research line, contributing to component
certification, what is fundamental for component systems quality assurance.

The real benefits of component reuse will be achieved to the extent that
components fulfill the needs of their clients in terms of quality and reliability
and can be easily identified, tracked and tested in the context of the client’s
applications.
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