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Abstract. Frequent pattern discovery has become a popular solution to many 
scientific and industrial problems in a range of different datasets. Traditional 
algorithms, developed for binary (or Boolean) attributes, can be applied to such 
data with a prerequisite of transforming non-binary (continuous or categorical) 
attribute domains into binary ones. As a consequence of this binarization, the 
discovered patterns no longer reflect the associations between attributes but the 
relations between their binned independent values, and thus, interactions be-
tween the original attributes may be lost. In this paper we propose to overcome 
this limitation by introducing the concept of mining frequent attribute profiles 
that describes the relationships between the original attributes. By this concept, 
previously hidden interactions can be discovered and redundant patterns that are 
identified by traditional methods are eliminated. A novel algorithm, called 
MAP, has been developed for mining attribute profiles that can be potentially 
applied to diverse data domains. The effectiveness of the proposed method is 
shown by using gene expression or microarray data. 

1   Introduction 

The problem of association pattern discovery (APD) originates from market basket 
analysis which aims at finding interesting relationships hidden in large datasets. Such 
relationships can be represented in the form of frequent itemsets and association rules. 
APD is a two-step process: the first and most time-consuming step is to find frequent 
sets of items (called itemsets) that occur together in at least as many transactions as a 
given support threshold. The support of an itemset is the number of transactions that 
contain the itemset. The number of potential frequent itemsets is exponential to the 
number of items, which presents the main problem of the first step. The second step 
generates association rules from the frequent itemsets. Based on the mining strategy by 
which frequent itemsets are discovered, two types of algorithm can be distinguished: 
breadth-first search and depth-first search. The most commonly used breadth-first 
search algorithm is Apriori [2,14] and its variants [4,8]; whereas Eclat [16] and FP-
growth [9] are popular depth-first search algorithms. For other APD algorithms together 
with precise descriptions and analyses, see [10]. 
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Since its introduction, APD has been successfully applied not only to market bas-
ket analysis but to many other scientific and industrial problems, and more recently to 
gene expression data [5,7,12]. In market basket analysis an item is purchased or not 
purchased in a transaction, which requires the data to be represented by binary attrib-
utes. Real-world datasets, however, often contain continuous and categorical values. 
In gene expression data, for instance, a real value is assigned to each gene that speci-
fies its expression level in a given tissue or condition. Applying conventional pattern 
mining algorithms to such datasets requires a preliminary transformation of non-
binary attributes to binary ones [15], which can only partly discover association pat-
terns. This limitation of traditional methods can be highlighted by a simple example 
taken from a gene expression experiment as shown in Table 1. The expression values 
of gene A, gene B, gene C and gene D were determined for four different conditions 
as significantly repressed (1), significantly expressed (2), or neither significantly re-
pressed nor expressed (3). 

Table 1. Sample gene expression data 

 gene A gene B gene C gene D 
cond1 2 3 2 3 
cond2 1 2 1 2 
cond3 1 1 1 2 
cond4 2 1 2 3 

The research problem in such data is to find relationships between co-regulated 
genes, or in other words, to discover frequent combinations and associations of genes 
that display co-occuring changes condition by condition. Using the traditional meth-
ods, first the sample data is transformed into binary data before any of the frequent 
pattern mining algorithms can be applied. Table 2 summarizes the frequent patterns 
and their supports for the binned data. 

Table 2. Frequent patterns vs. frequent profiles 

support Frequent patterns Frequent profiles 
4 - A{0}C{1}D  and its 3 subsets 
3 - - 
2 {A:1, C:1, D:2}, {A:2, C:2, D:3} 

and their 6 subsets 
A{1}B{-1}C{1}D 
and its 8 subsets 

The highest co-occurrence that can be identified by traditional methods is 50% and 
it is satisfied by two frequent patterns: {A:1, C:1, D:2} for condition 2 and 3, and 
{A:2, C:2, D:3} for condition 1 and 4. However, the data in Table 1 show that there is 
a real association between genes A, C and D for all conditions. Where the expression 
level of one of the genes is affected in a particular way (repressed, expressed or no 
change) the expression values of the other two genes are affected in the same way in 
all conditions. This allows for the identification of genes whose expression profiles 
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follow the same patterns in response to different conditions. Intriguingly, traditional 
techniques are unable to identify the relationship even between genes A and C despite 
the fact that they have identical expression values in all conditions because of the low 
support of their binned values. Moreover, with support threshold 2, an accurate 
method should result in a single pattern for genes A, C and D thus reducing the num-
ber of “redundant” patterns (patterns containing the same genes with different binned 
values). 

In this paper we tackle these problems by introducing the concept of mining fre-
quent attribute profiles. Attribute profiles consider the original attributes without the 
need for binarization, and present their “trends” that are not visible when only binary 
values are used. By this concept, associations between the original attributes can be 
discovered that remain hidden to traditional approaches. 

Since traditional frequent itemset mining algorithms cannot be applied to discover 
the introduced attribute profiles, in this paper we propose an efficient depth-first 
search attribute profile mining algorithm. More precisely, the original data set is first 
compressed into an attribute distance tree structure where information about the 
trends (distances) of attributes is stored. Secondly, a recursive searching technique 
identifies and collects all of the frequent attribute profiles from the attribute distance 
tree. The effectiveness of the proposed method is demonstrated for a real-world, gene 
expression dataset in Section 4. 

2   Frequent Attribute Profiles 

Our starting point is that continuous attributes are only discretized and the data has as 
many fields as the number of attributes. 

Let X and Y be two attributes and let d denote the difference between two attribute 
values of X and Y in a transaction t such that d = t[Y] – t[X]. The formula X{d}Y is 
called an attribute profile between attributes X and Y. It is also called attribute profile 
of length 2 since it contains two attributes. The support of an attribute profile p ⊆ P in 
dataset T is the number of transaction that contains the profile in T: 

supp(p) = |{ t | p ⊆ t, t ∈ T}| 

The frequency of an attribute profile p in T is the probability of p occurring in a trans-
action t ∈ T: 

freq(p) = supp(p) / |T| 

An attribute profile p is called frequent if its support (frequency) is greater than or 
equal to a (user defined) minimum support (frequency) threshold σsupp (σfreq): 

supp(p) ≥ σsupp   (freq(p) ≥ σfreq) 

The research problem of attribute profile mining is to find all attribute profiles with 
sufficient support (frequency). Table 2 summarizes the frequent attribute profiles and 
their supports for the data given in Table 1. 

In contrast to the frequent itemset mining which is unable to identify the associa-
tion between genes A, C and D in the example from Section 1, attribute profile mining 
can discover this relation, even when a high (100%) frequency threshold is set. More-
over, we can easily see the trends (distances) of attributes from the frequent attribute 
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profile. Note that each frequent pattern discovered by traditional methods can be 
obtained from frequent attribute profiles. For example, the two frequent patterns {A:1, 
C:1, D:2} and {A:2, C:2, D:3} with support values 2 are included in the attribute pro-
file A{0}C{1}D with support value 4. 

To summarize the advantages of attribute profile mining over frequent itemsets 
mining, we can conclude that 

1. Attribute profiles describe relationships between the entire attributes in contrast 
to traditional patterns, which identify associations between independent binned 
attribute values. 

2. By the definition of attribute profiles, trends or distances of non-binned attrib-
utes are taken into account in order to identify associations between the entire 
attributes having non-frequent binned values but frequent trends transaction by 
transaction. Thus, previously hidden (lost) patterns of related attributes can be 
discovered, which are not found among the patterns produced by traditional 
APD methods. 

3. By discovering attribute profiles, a considerable number of redundant associa-
tions can be eliminated. By using traditional methods, redundant associations 
can appear, when the binned expression values of a set of particular genes have 
sufficient frequency in more than one condition (or sample). 

Note that the distance between two attributes, introduced in this section, can be de-
fined in different ways based on the data domains. Therefore, the distance can be 
symmetric or asymmetric. Applying symmetric distance measure, patterns of nega-
tively (inversely) correlated genes can be also discovered by attribute profiles that are 
hidden by traditional patterns. Also note that our distance measure is close to the se-
mantics of functional (multivalued) dependencies, see [1, 13]. 

3   Mining Attribute Profiles 

In this section we present our Mining Attribute Profile algorithm (MAP). The proposed 
algorithm can be characterized as a depth first search, divide-and-conquer algorithm, 
such as FP-growth [9]. We chose this type of searching strategy in order to reduce the 
number of database scans and avoid the costly set-containment-test operation that can 
be the case in applying the breadth-first search strategy, such as Apriori [2]. 

The mining is carried out in two steps in which the first step constructs a compact 
data structure called a Frequent Attribute Distance Tree (or FAD-tree), and the second 
step extracts the frequent attribute profiles directly from this FAD-tree structure. 

3.1   Constructing a Frequent Attribute Distance Tree 

In order to construct a compact data structure for efficient attribute profile mining, we 
apply the idea of building a frequent pattern tree (FP-tree) [9]. Similar to the FP-tree, 
the FAD-tree is constructed by reading the database transaction by transaction and 
mapping each transaction onto a path in the FAD-tree. A path compression occurs 
when two or more transactions have the same attribute profiles starting from the first 
attribute. The main difference between our FAD-tree and the original FP-tree is that 
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while the FAD-tree is built by the entire attributes (each node is a frequent attribute), 
the FP-tree is constructed by binned attribute values as single items. Moreover, the 
FAD-tree considers and stores attribute distances (or trends) between two successive 
attributes. 

3.2   Mining Frequent Attribute Profiles Using the FAD-Tree 

The MAP algorithm generates frequent attribute profiles from the constructed FAD-
tree by exploring the tree in a top-down and recursive manner. It splits the problem 
into sub-problems by decomposing the FAD-tree into disjoint sub-FAD-trees and the 
header table into sub-header tables. This decomposition is carried out attribute by at-
tribute in a stepwise manner. For each attribute node, a parent distance is calculated 
between the node and the root of the FAD-tree by summing the distance values of in-
tervening nodes. Nodes with calculated equivalent distances are grouped together. For 
each group with a sufficient support value, a sub-FAD-tree is constructed, i.e. rooted 
by that attribute. A corresponding sub-header table is also constructed in which the 
child of the rooted attribute forms the first position. Note that the nodes in the FAD-
tree are gathered by using the linked lists in the header table. During the decomposi-
tion process, paths with the same parent distance are merged. 

The above procedure is applied in a recursive way so that each sub-FAD-tree is 
used as a FAD-tree in the next recursion. During the decomposition, the roots of sub-
FAD-trees are stored as frequent profiles. If the constructed sub-FAD-tree has only a 
single branch, then there is no need to build a new sub-FAD-tree, all frequent attribute 
profiles can be enumerated directly from the single branch. 

A high-level pseudo-code of the MAP algorithm is given in the following: 
 
 

Algorithm MAP – Mining Attribute Profiles 
Input: FAD-tree T, header table H, support threshold σsupp 

Output: The complete set of frequent attribute profiles 
Description: 
 1: // Check whether T has only a single path. 
 2: if T has only a single path then  
 3:   enumerate frequent attribute profiles from FAD-tree T 
 4: else 
 5:   // Main loop for each attribute in the header table 
 6:   // with sufficient support value. 
 7:   for all attribute a ∈ H, a.supp ≥ σsupp do 
 8:      // Calculate parent distance between the nodes and the 
 9:      // root. 
10:      for all n ∈ a.nodes do 
11:         calculate n.parent_dist (the distance between n and 
12:         the T.root) 
13:      Group nodes with same equivalent parent distances 
14:      // For each group with sufficient support, create  
15:      // sub-FAD-tree and sub-header table. 
16:      for each set of a.nodes with same parent_dist and  
17:      sufficient support do 
18:         create sub_FAD-tree sub_T and sub_header table sub_H 
19:         update set of frequent attr. profiles by sub_T.root 
20:         call MAP(sub_T, sub_H, σsupp) 
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A sub-FAD-tree rooted by attribute A is used to demonstrate how the MAP algorithm 
works for the sample data (Table 1), where the support threshold is set to 2 (Figure 1). 

 

B (1)

0

C (1)

0

D (1)
1

B (1)

-1

C (1)

1

D (1)

1

B (2)

C (2)

-1

D (2)

1

1Header table

A (4)root =

B (4)

D (4)

C (4)
C (2)

D (2)

1

-1Header table

A{1}B (2)root =

C (2)

D (2)

Header table
root =

D (4)

1
D (4)

A{0}C (4)

A{1}B (2), A{0}C (4), A{1}D (4)Frequent profiles:

A{1}B{-1}C (2)

A{1}B{-1}C{1}D (2)

A{1}B{0}D (2)

A{0}C{1}D (4)

Frequent profiles:

Frequent profiles:

STEP 1: STEP 2:

STEP 3:

 

Fig. 1. Applying the MAP algorithm to the FAD-tree rooted by attribute A 

4   Experimental Results 

In this section, we demonstrate the usability and efficiency of our proposed attribute 
profile mining method (MAP) by comparing the performance of MAP and the tradi-
tional frequent itemset mining method (FIM) when applied to the gene expression 
data set of Hughes et al. [11]. This data contains information about the expression lev-
els of 6316 genes throughout 300 diverse yeast mutants or wild type yeast challenged 
with different chemical treatments. 

We discretized each expression value of the normalized data to 3 integers 1, -1 and 
0 representing expressed, repressed and neither expressed nor repressed. This was 
achieved by assigning all expression values greater than 0.2 for the log base 10 of the 
fold change to a value of 1 (expressed), all values less than -0.2 to a value of -1 (re-
pressed) and those between -0.2 and 0.2 to 0 (neither expressed nor repressed). To 
limit the effect of noise, 0 is considered to be a missing value. For FIM, we needed an 
additional binarization step to bin the gene attributes of discretized data into single 
Boolean items. 

Both FIM and MAP methods were tested on 7 different support thresholds. As an 
example, here we analyze the lengths of the longest patterns (frequent itemsets and 
profiles with the greatest number of genes) and the number of maximal frequent pat-
terns. The reason for using the maximal patterns is to consider a hidden association 
only once, i.e. the longest one (as all subsets of a frequent pattern are frequent as 
well). Maximal frequent patterns are useful to identify a small representative set of 
patterns from which all other frequent patterns can be derived. A frequent pattern is 
called maximal if it has no superset that is frequent [3]. For example, in our sample 
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dataset, only the listed frequent itemsets and profiles are maximal (Table 2),  
i.e. having more than one gene. Table 3 summarizes the results for both methods. 
The frequency threshold values, σrel, were selected to keep the number of maximal 
frequent patterns manageable. 

Table 3. Comparison of FIM and MAP methods 

#genes in the 
longest patterns 

# max. patterns 
(itemsets/profiles) 

Running times 
(in seconds) σrel 

FIM MAP FIM MAP 

#max.hidden 
associations 

FIM MAP 
0.19 4 5 15 163 148 0.16 0.05 
0.18 4 6 27 303 276 0.2 0.11 
0.17 5 6 48 585 537 0.21 0.12 
0.16 6 8 96 1162 1066 0.25 0.19 
0.15 7 10 195 2330 2135 0.37 0.35 
0.14 8 13 425 4462 4037 1.55 3.45 
0.13 11 15 871 7374 6503 3.25 12.56 

For all support thresholds, MAP gives the longest and most associations. For ex-
ample, at a minimum frequency of 0.14 (equal to 42 treatments), the number of genes 
in the longest associations identified by FIM was 8 whilst MAP identified frequent 
associations between 13 genes. As a consequence, MAP discovered more maximal 
frequent patterns than FIM for the same threshold, where all of the associations rec-
ognized by FIM were also identified by MAP. The last column shows the number of 
maximal hidden associations, i.e. the associations that were identified by MAP and 
not by FIM. The result clearly shows that previously hidden associations can be dis-
covered by our introduced frequent profile mining method. 

To compare the running times of traditional FIM and the implemented MAP meth-
ods, we chose the FP-growth implementation, provided by Bart Goethals [6]. In situa-
tions when higher thresholds are set, MAP is the fastest, whereas in other cases it has 
the longest running time. However, this is due to the fact that it discovers much more 
co-regulations between genes for the same thresholds than are found by FIM methods. 
This is probably a general observation: more frequent profiles and thus, more candi-
date associations result in slower speed. Similar numbers of profiles and itemsets gen-
erate comparable running times. We also wish to point out that our implementation is 
an initial version with no additional enhancements to increase calculation speed. 

5   Conclusions 

In this paper, a novel attribute profile mining method was introduced for frequent pat-
tern discovery, as an improvement to the itemset mining approaches common today. 
The main idea of the method is that non-binary attributes are mined without a pre-
liminarily binarization. As a consequence, frequent patterns of entire attributes hidden 
to traditional methods can be discovered. An algorithm was developed for the pro-
posed problem and shown to perform effectively when applied to gene expression 
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data. We expect that the method could also be effectively applied to other large scale 
data in the area of systems biology, such as protein quantification data, single nucleo-
tide polymorphism data, and data from promoter studies. 
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