

Matlab:
a Practical Introduction to
Programming and Problem Solving

Matlab:
a Practical Introduction to
Programming and Problem
Solving
By

Stormy Attaway
College of Engineering, Boston University

Boston, MA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Butterworth-Heinemann is an imprint of Elsevier

This page intentionally left blank

Butterworth-Heinemann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2009, Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-75-068762-1

For information on all Butterworth-Heinemann publications
visit our Web site at www.elsevierdirect.com

Printed in Canada
08 09 10 9 8 7 6 5 4 3 2 1

Attribution
MATLAB® and Handle Graphics® are registered trademarks
of The MathWorks, Inc.

Dedication
This book is dedicated to my two mentors at Boston University: the late

Bill Henneman of the Computer Science Department, and the late Merrill Ebner
of the Department of Manufacturing Engineering.

Stormy Attaway

This page intentionally left blank

vii

Preface .. xiii

Part I Programming and Problem Solving
Using MATLAB .. 1

ChAPTer 1 Introduction to MaTLaB ... 3
 1.1 Getting into MaTLaB .. 4
 1.2 Variables and assignment Statements 6
 1.2.1 Initializing, Incrementing, and Decrementing 8
 1.2.2 Variable Names ... 8
 1.3 expressions .. 10
 1.3.1 The Format function and ellipsis 10
 1.3.2 Operators ... 11
 1.3.3 Built-In functions and Help 12
 1.3.4 constants ... 14
 1.3.5 Types .. 14
 1.3.6 random Numbers ... 16
 1.4 characters and encoding .. 18
 1.5 Vectors and Matrices ... 20
 1.5.1 creating row Vectors ... 21
 1.5.2 creating column Vectors ... 24
 1.5.3 creating Matrix Variables .. 24
 1.5.4 Dimensions .. 28
 1.5.5 Using functions with Vectors and Matrices 33
 1.5.6 empty Vectors ... 33

ChAPTer 2 Introduction to MaTLaB Programming 41

 2.1 algorithms .. 42
 2.2 MaTLaB Scripts ... 43
 2.2.1 Documentation .. 45
 2.3 Input and Output ... 46

Contents

Contentsviii

 2.3.1 Input function ... 46
 2.3.2 Output Statements: disp and fprintf 48
 2.4 Scripts with Input and Output .. 53
 2.5 Scripts to Produce and customize Simple Plots 54
 2.5.1 The Plot function ... 54
 2.5.2 Simple related Plot functions 57
 2.6 Introduction to file Input/Output (Load and Save) 59
 2.6.1 Writing Data to a file .. 60
 2.6.2 appending Data to a Data file 61
 2.6.3 reading from a file ... 61
 2.7 User-Defined functions that return a Single Value.......... 64
 2.7.1 function Definitions ... 65
 2.7.2 calling a function ... 66
 2.7.3 calling a User-Defined function from a

Script .. 67
 2.7.4 Passing Multiple arguments 67
 2.7.5 functions with Local Variables.................................. 68

ChAPTer 3 Selection Statements ... 79

 3.1 relational expressions .. 80
 3.2 The if Statement... 82
 3.2.1 representing Logical True and false........................ 86
 3.3 The if-else Statement .. 87
 3.4 Nested if-else Statements .. 88
 3.5 The Switch Statement ... 93
 3.6 The Menu function ... 96
 3.7 The is functions in MaTLaB .. 98

ChAPTer 4 Looping ... 109

 4.1 The for Loop ... 110
 4.1.1 finding Sums and Products 111
 4.1.2 combining for Loops with if Statements 118
 4.1.3 for Loops that Do Not Use the Iterator

Variable in the action ... 119
 4.1.4 Input in a for Loop .. 120
 4.2 Nested for Loops .. 122
 4.2.1 Nested Loops and Matrices 126
 4.2.2 combining Nested for Loops and if

Statements ... 130
 4.3 Vectorizing .. 131
 4.3.1 Logical Vectors .. 133
 4.3.2 Vectors and Matrices as function arguments140

ixContents

 4.4 While Loops.. 143
 4.4.1 Multiple conditions in a While Loop 145
 4.4.2 reading from a file in a While Loop 145
 4.4.3 Input in a While Loop ... 147
 4.4.4 counting in a While Loop .. 148
 4.4.5 error-checking User Input in a While Loop 149

ChAPTer 5 MaTLaB Programs .. 161

 5.1 More Types of User-Defined functions 162
 5.1.1 functions that return More than

One Value .. 162
 5.1.2 functions that accomplish a Task

Without returning Values .. 166
 5.1.3 functions that return Values Versus

Printing .. 167
 5.1.4 Passing arguments to functions 168
 5.2 MaTLaB Program Organization 170
 5.2.1 Modular Programs ... 170
 5.2.2 Subfunctions .. 172
 5.3 application: Menu-Driven Modular Program 174
 5.4 Variable Scope .. 182
 5.4.1 Persistent Variables .. 184
 5.5 Debugging Techniques ... 185
 5.5.1 Types of errors .. 186
 5.5.2 Tracing ... 188
 5.5.3 editor/Debugger.. 189
 5.5.4 function Stubs .. 190

ChAPTer 6 String Manipulation ... 197

 6.1 creating String Variables .. 198
 6.1.1 Strings as Vectors ... 198
 6.2 Operations on Strings .. 200
 6.2.1 concatenation ... 200
 6.2.2 creating customized Strings 202
 6.2.3 removing Whitespace characters 206
 6.2.4 changing case .. 207
 6.2.5 comparing Strings .. 207
 6.2.6 finding, replacing, and Separating

Strings .. 209
 6.2.7 evaluating a String ... 213
 6.3 The is function for Strings .. 214
 6.4 converting between String and Number Types 215

Contentsx

ChAPTer 7 Data Structures: cell arrays and Structures 223

 7.1 cell arrays .. 224
 7.1.1 creating cell arrays ... 224
 7.2 Structures ... 229
 7.2.1 creating and Modifying Structure

Variables .. 229
 7.2.2 Passing Structures to functions 231
 7.2.3 related Structure functions 232
 7.2.4 Vectors of Structures... 234
 7.2.5 Nested Structures ... 241
 7.2.6 Vectors of Nested Structures 243

ChAPTer 8 advanced file Input and Output 253

 8.1 Lower Level file I/O functions ... 254
 8.1.1 Opening and closing a file 254
 8.1.2 reading from files .. 255
 8.1.3 Writing to files .. 262
 8.1.4 appending to files.. 264
 8.2 Writing and reading Spreadsheet files........................... 264
 8.3 Using MaT-files for Variables .. 266
 8.3.1 Writing Variables to a file .. 266
 8.3.2 appending Variables to a MaT-file 267
 8.3.3 reading from a MaT-file .. 267

ChAPTer 9 advanced functions .. 273

 9.1 anonymous functions ... 273
 9.2 Uses of function Handles .. 275
 9.2.1 function functions ... 276
 9.3 Variable Numbers of arguments 278
 9.3.1 Variable Number of Input arguments 279
 9.3.2 Variable Number of Output arguments 280
 9.4 Nested functions ... 284
 9.5 recursive functions... 287

Part II Applications .. 295

ChAPTer 10 MaTLaB Plots .. 297

 10.1 Plot functions ... 297
 10.1.1 Matrix of Plots ... 298
 10.1.2 Plot Types .. 299
 10.2 animation ... 302
 10.3 Three-Dimensional Plots ... 303
 10.4 customizing Plots .. 304

xiContents

 10.5 Graphics Properties ... 306
 10.6 Plot applications .. 308
 10.6.1 Plotting from a function 308
 10.6.2 Plotting file Data ... 309

ChAPTer 11 Solving Systems of Linear algebraic equations 321

 11.1 Matrix Definitions .. 322
 11.1.1 Matrix Properties... 322
 11.1.2 Square Matrices ... 324
 11.1.3 Matrix Operations ... 328
 11.1.4 Matrix Multiplication .. 330
 11.1.5 Vector Operations ... 334
 11.2 Matrix Solutions to Systems of Linear

algebraic equations .. 336
 11.2.1 Solving 2 ´ 2 Systems of equations 338
 11.2.2 Gauss, Gauss-Jordan elimination 341
 11.2.3 reduced row echelon form 347
 11.2.4 finding a Matrix Inverse by reducing

an augmented Matrix ... 348
 11.3 Symbolic Mathematics ... 348
 11.3.1 Symbolic Variables and expressions 349
 11.3.2 Simplification functions 350
 11.3.3 Displaying expressions .. 351
 11.3.4 Solving equations.. 352

ChAPTer 12 Basic Statistics, Searching, and Sorting 361

 12.1 Statistical functions .. 362
 12.1.1 Mean ... 363
 12.1.2 Variance and Standard Deviation 366
 12.1.3 Mode ... 367
 12.1.4 Median ... 368
 12.2 Set Operations .. 368
 12.3 Sorting ... 372
 12.3.1 Sorting Vectors of Structures 374
 12.3.2 Sorting Strings ... 377
 12.4 Indexing .. 379
 12.4.1 Indexing into Vectors of Structures 381
 12.5 Searching .. 382
 12.5.1 Sequential Search .. 382
 12.5.2 Binary Search .. 383

ChAPTer 13 Sights and Sounds ... 393

 13.1 Sound files ... 393

Contentsxii

 13.2 Introduction to Handle Graphics 395
 13.2.1 Graphics Objects and Their Properties 395
 13.3 Image Processing ... 400
 13.4 Introduction to Graphical User Interfaces 405

ChAPTer 14 advanced Mathematics .. 421

 14.1 fitting curves to Data ... 421
 14.1.1 Polynomials .. 422
 14.1.2 curve fitting.. 423
 14.1.3 Interpolation and extrapolation 423
 14.1.4 Least Squares .. 426
 14.2 complex Numbers ... 429
 14.2.1 equality for complex Numbers 431
 14.2.2 adding and Subtracting complex Numbers431
 14.2.3 Multiplying complex Numbers 432
 14.2.4 complex conjugate and absolute Value 433
 14.2.5 complex equations represented as

Polynomials .. 433
 14.2.6 Polar form .. 434
 14.2.7 Plotting ... 434
 14.3 calculus: Integration and Differentiation 435
 14.3.1 Trapezoidal rule .. 435
 14.3.2 Differentiation.. 437
 14.3.3 calculus in Symbolic Math Toolbox 438

 Index .. 447

xiii

Motivation
The purpose of this book is to teach basic programming concepts and skills
needed for basic problem solving, all using MATLAB® as the vehicle. MATLAB
is a powerful software package that has built-in functions to accomplish a
diverse range of tasks, from mathematical operations to three-dimensional
imaging. Additionally, MATLAB has a complete set of programming constructs
that allows users to customize programs to their own specifications.

There are many books that introduce MATLAB. There are two basic flavors
of these books: those that demonstrate the use of the built-in functions in
MATLAB, with a chapter or two on some programming concepts, and those that
cover only the programming constructs without mentioning many of the built-
in functions that make MATLAB efficient to use. Someone who learns just the
built-in functions will be well-prepared to use MATLAB, but would not under-
stand basic programming concepts. That person then would not be able to learn
a language such as C++ or Java without taking another introductory course, or
reading another book, on the programming concepts. Conversely, anyone who
learns only programming concepts first (using any language) would tend to
write highly inefficient code using control statements to solve problems, not
realizing that in many cases these are not necessary in MATLAB.

This book instead takes a hybrid approach, introducing both the programming
and the efficient uses. The challenge for students is that it is nearly impossi-
ble to predict whether they will in fact need to know programming concepts
later on or whether a software package such as MATLAB will suffice for their
careers. Therefore, the best approach for beginning students is to give them
both—the programming concepts and the efficient built-in functions. Since
MATLAB is very easy to use, it is a perfect platform for this approach to teaching
 programming and problem solving.

Since programming concepts are critically important to this book, emphasis
is not placed on the time-saving features that evolve with every new MATLAB
release. For example, in current versions of MATLAB statistics on variables are

Preface

Prefacexiv Preface

available readily in the Workspace window. This is not shown in any detail in
the book, since whether this feature is available depends on the version of the
software, and because of the desire to explain the concepts in the book.

Key Features
side-by-side Programming Concepts and Built-in
Functions
The most important, and unique, feature of this book is that it teaches program-
ming concepts and the use of the built-in functions in MATLAB side by side.
It starts with basic programming concepts such as variables, assignments, input/
output, selection, and loop statements. Then, throughout the rest of the book,
often a problem will be introduced and then solved using the “ programming
concept” and also using the “efficient method.”

systematic approach
Another key feature is that the book takes a very systematic, step-by-step
approach, building on concepts throughout the book. It is very tempting in a
MATLAB text to show built-in functions or features early on with a note that
says “we’ll do this later.” This book does not do that; all functions are covered
before they are used in examples. Additionally, basic programming concepts
will be explained carefully and systematically. Very basic concepts such as loop-
ing to calculate a sum, counting in a conditional loop, and error-checking are
not found in many texts but will be covered here.

File input/output
Many applications in engineering and the sciences involve manipulating large
data sets that are stored in external files. Most MATLAB texts at least mention
the save and load functions, and in some cases also some of the lower level
file input/output functions. Since file input and output is so fundamental to
so many applications, this book will cover several low-level file input/output
functions, as well as reading from and writing to spreadsheet files. Later chap-
ters will also deal with audio and image files. These file input/output concepts
are introduced gradually: first load and save in Chapter 2, then lower level
functions in Chapter 8, and finally sound and images in Chapter 13.

user-Defined Functions
User-defined functions are a very important programming concept, and yet
many times the nuances and differences between types of functions, function
calls versus function headers, and so on, can be very confusing to beginning
programmers. Therefore these concepts are introduced gradually. First, arguably

xvPreface

the easiest type of functions to understand, those that calculate and return one
single value, are demonstrated in Chapter 2. Later, functions that return no
values and functions that return multiple values are introduced in Chapter 5.
Finally, advanced function features are shown in Chapter 9.

advanced Programming Concepts
In addition to the basics, some advanced programming concepts such as string
manipulation, data structures, recursion, anonymous functions, and variable
number of arguments to functions are covered. Sorting, searching, and index-
ing are also addressed. All these are again approached systematically; for exam-
ple, cell arrays are covered before they are used in file input functions and as
labels on pie charts.

Problem-solving tools
In addition to the programming concepts, some basic mathematics necessary
for solving many problems will be introduced. These will include statistical
functions, solving sets of linear algebraic equations, and fitting curves to data.
The use of complex numbers and some calculus (integration and differentia-
tion) will also be introduced. The basic math will be explained and the built-in
functions in MATLAB to perform these tasks will be described.

Plots, imaging, and Guis
Simple two-dimensional plots are introduced very early in the book (Chapter
2) so that plot examples can be used throughout. Chapter 10 shows more plot
types, and demonstrates customizing plots and how the graphics properties
are handled in MATLAB. This chapter makes use of strings and cell arrays to
customize labels. Also, there is an introduction to image processing and the
basics necessary to understand programming Graphical User Interfaces (GUIs)
in Chapter 13.

Layout oF text
This text is divided into two parts: Part I covers the programming constructs
and demonstrates the programming versus efficient use of built-in functions
to solve problems. Part II covers some applications, including plotting, image
processing, and mathematics needed in basic problem solving. The first four
chapters cover the very basics in MATLAB and in programming, and are all
 prerequisites for the rest of the book. After that, many chapters in the applica-
tions section can be introduced when desired, to produce a customized flow of
topics in the book. This is true to an extent, although the order of the chapters
has been chosen carefully to ensure that the coverage is systematic.

Prefacexvi Preface

Part i: ProGraMMinG anD ProBLeM soLvinG
usinG MatLaB
Chapter 1: Introduction to MATLAB covers expressions, operators, characters,

variables, and assignment statements. Scalars, vectors, and matrices are
introduced, as are many built-in functions that manipulate them.

Chapter 2: Introduction to MATLAB Programming introduces the idea of
algorithms and scripts. This includes simple input and output, and comment-
ing. Scripts are then used to create and customize simple plots, and to do file
input and output. Finally, the concept of a user-defined function is introduced
with just the type of function that calculates and returns a single value.

Chapter 3: Selection Statements introduces relational expressions and their
use in if statements, with else and elseif clauses. The switch statement
also is demonstrated, as is the concept of choosing from a menu. Also,
 functions that return logical true or false are introduced.

Chapter 4: Looping introduces the concepts of counted and conditional
loops. Many common applications such as summing, counting, and
 error-checking are covered. Nested loops and combining loops and selec-
tion statements are systematically introduced. In this chapter, the idea of
vectorizing code is introduced, which essentially means rewriting code that
uses loops to more efficiently make use of built-in functions, and the fact
that operations can be done on vectors and matrices in MATLAB.

Concepts explained in the first four chapters are assumed throughout the rest
of the book.

Chapter 5: MATLAB Programs covers more on scripts and user-defined
 functions. User-defined functions that return more than one value as
well as those that do not return anything are introduced. The concept
of a program in MATLAB that consists of a script that calls user-defined
 functions is demonstrated with examples. A longer menu-driven program
is shown as a reference, but could be omitted. Subfunctions and scope of
variables are also introduced, as are some debugging techniques.

The concept of a program is used throughout the rest of the book.

Chapter 6: String Manipulation covers many built-in string manipulation
functions as well as converting between string and number types. Several
examples include using custom strings in plot labels and input prompts.

Chapter 7: Data Structures introduces two main data structures: cell arrays
and structures. Once basic structures are covered, more complicated data
structures such as nested structures and vectors of structures also are
 introduced. Cell arrays are used in several applications in later chapters,

xviiPreface

such as file input in Chapter 8, variable number of function arguments
in Chapter 9, and plot labels in Chapter 10, and therefore are considered
important and are covered first.

Chapter 8: Advanced File Input and Output covers lower level file input/
output statements that require opening and closing the file. Functions that
can read the entire file at once as well as those that require reading one
line at a time are demonstrated. Additionally, reading from and writing to
spreadsheet files and also .mat files that store MATLAB variables are intro-
duced. Cell arrays and string functions are used extensively in this chapter.

Chapter 9: Advanced Functions covers more advanced features and types of
functions, such as anonymous functions, nested functions, and recursive
functions. Function handles, and their use both with anonymous functions
and function functions are introduced. The concept of having a variable
number of input and output arguments to a function is introduced; this
is implemented using cell arrays. String functions also are used in several
examples in this chapter.

Part ii: aPPLiCations
Chapter 10: MATLAB Plots continues with more on the plot functions intro-

duced in Chapter 2. Different plot types such as pie charts are introduced,
as are customizing plots using cell arrays and string functions. The notion
of handle graphics is covered, and some graphics properties such as line
width and color are introduced. Applications that involve reading data
from files and then plotting use both cell arrays and string functions.

Chapter 11: Solving Systems of Linear Algebraic Equations introduces the
two basic methods that can be used in MATLAB to solve these systems of
equations: using a matrix representation, and using symbolic mathematics.
First, matrix and vector operations and matrix definitions are described. This
section can be covered at any point after Chapter 4. Then, matrix solutions
using the Gauss-Jordan and Gauss-Jordan elimination methods are described.
Finally, some Symbolic Math Toolbox functions are shown including those
that solve equations. This method returns a structure as a result.

Chapter 12: Basic Statistics, Searching, and Sorting starts with some of
the built-in statistical and set operations in MATLAB. Since some of these
require a sorted data set, methods of sorting are described. Finally, the
concepts of indexing into a vector and searching a vector are introduced.
Sorting a vector of structures and indexing into a vector of structures are
described, but these sections can be omitted if desired. A recursive binary
search function can also be omitted.

Prefacexviii Preface

Chapter 13: Sights and Sounds builds on some handle graphics material
from Chapter 10. It also briefly discusses sound files, and introduces image
processing. An introduction to programming GUIs is also given. Nested
functions are used in the GUI examples. A patch function example uses a
structure.

Chapter 14: Advanced Mathematics covers three basic topics: curve fitting,
complex numbers, and integration and differentiation in calculus.
Symbolic expressions are used in several sections in this chapter.

PeDaGoGiCaL Features
There are several pedagogical tools that are used throughout this book that are
intended to make it easier to learn.

First, the book takes a conversational tone with sections called “Quick
Question!” These are designed to stimulate thought about the material that
has just been covered. The question is posed, and then the answer is given.
It will be most beneficial if you think about the question before reading the
answer! In any case, they should not be skipped over because the answers often
contain very useful information.

“Practice!” problems are given throughout the chapters. These are very simple
problems that drill the material just covered.

When some problems are introduced, they are solved using both “The
Programming Concept” and “The Efficient Method.” This facilitates under-
standing the efficient ways of using MATLAB, and also the programming
 concepts used in these efficient functions and operators.

The End of Chapter Summary contains, where applicable, several sections:

■■ Common Pitfalls: A list of common mistakes that are made, and how
to avoid them.

■■ Programming Style Guidelines: In order to encourage “good”
programs, which others can actually understand, the programming
chapters will have guidelines that will make programs easier to read and
understand and therefore easier to work with and to modify.

■■ Key Terms: A list of the key terms covered in the chapter, in sequence.
■■ MATLAB Functions and Commands: A list of the MATLAB built-in
functions and commands covered in the chapter, in the order covered.
Throughout the text, these are given in bold type.

■■ MATLAB Operators: A list of the MATLAB operators covered in the
chapter, in the order covered.

■■ Exercises: A comprehensive set of exercises, ranging from the rote to
more engaging applications.

xixPreface

aDDitionaL BooK resourCes
A companion web site with additional teaching resources is available for fac-
ulty using this book as a text for their course(s). Please visit www.textbooks.
elsevier.com/9780750687621 to register for access to:

Instructor solutions manual for end-of-chapter problems■■

Electronic figures from the text for creation of lecture slides■■

Downloadable M-files for all examples in the text■■

Other book-related resources will also be posted there from time to time.

aCKnowLeDGMents
I am indebted to many, many family members, colleagues, mentors, and
students.

Throughout the last 22 years of coordinating and teaching the basic computa-
tion courses for the College of Engineering at Boston University, I have been
blessed with many fabulous students as well as graduate teaching fellows and
undergraduate teaching assistants (TAs). There have been hundreds of TAs over
the years, too many to name individually, but I thank them all for their support.
In particular the following TAs have been very helpful in the last year reviewing
drafts of this text and suggesting examples: Edy Tan, Megan Smith, Brandon
Phillips, Carly Sherwood, Ashmita Randhawa, Mike Green, Kevin Ryan, and
Brian Hsu. Kevin Ryan created the script to produce the cover illustration.

A number of colleagues have been very encouraging throughout the years. In
particular, I would like to thank Tom Bifano for his support and for his GUI
example suggestions.

I would like to thank all the reviewers of the proposal and drafts of this book.
Their comments have been extremely helpful and I hope I have incorporated
their suggestions to their satisfaction. They include Mark Cawood, Clemson
University; Dieter Schmidt, University of Cincinnati; Matthew Verleger,
Purdue University; Peter Orono, Indiana University–Purdue University
Indianapolis; James Kang, California State Polytechnic University–Pomona;
David Rockstraw, New Mexico State University; and James Holloway,
University of Michigan.

Also, I thank those at Elsevier who helped to make this book possible including
Tim Pitts, Joseph Hayton, Publisher; Maria Alonso, Assistant Editor; Christie
Jozwiak, Production Manager; and Eric Decicco, Cover Designer/Illustrator.

Finally, thanks go to all my family. My parents encouraged me at an early age
to read and to write. Thanks also to my husband Ted de Winter of Boston

Prefacexx

University’s Department of Mechanical Engineering for his encouragement
and good-natured taking care of the Saturday shopping and gardening while I
worked on this project!

The photo of Ted fishing in the image processing section was taken by Wes
Karger.

1Part

Programming and Problem
Solving Using MATLAB

This page intentionally left blank

3

Contents

© 2009, 2003,1999 Elsevier Inc.

1.1 Getting into
MATLAB 4

1.2 Variables
and Assignment
Statements 6

1.3 Expressions10

1.4 Characters and
Encoding 18

1.5 Vectors and
Matrices 20

prompt

programs

script files

variables

assignment statement

assignment operator

user

initializing

incrementing

decrementing

identifier names

reserved words

mnemonic

default

unary

operand

binary

precedence

associativity

nesting

call a function

arguments

returning values

constants

types

classes

floating point

characters

strings

type casting

saturation arithmetic

random numbers

seed

pseudo-random

character encoding

character set

vectors

matrices

row vector

column vector

scalar

elements

array

array operations

iterate

step value

concatenating

index

subscript

index vector

transposing

unwinding a matrix

linear indexing

vector of variables

empty vector

deleting elements

Key Words

ChaPter 1

Introduction to MATLAB

ChaPter 1 Introduction to MatLaB4

MATLAB® is a very powerful software package that has many built-in tools for
solving problems and for graphical illustrations. The simplest method for
using the MATLAB product is interactively; an expression is entered by the
user and MATLAB immediately responds with a result. It is also possible to
write programs in MATLAB, which are essentially groups of commands that are
 executed sequentially.

This chapter will focus on the basics, including many operators and built-in
functions that can be used in interactive expressions. Means of storing values,
including vectors and matrices, will also be introduced.

1.1 GettInG Into MatLaB
MATLAB is a mathematical and graphical software package; it has numerical,
graphical, and programming capabilities. It has built-in functions to do
many operations, and there are toolboxes that can be added to augment
these functions (e.g., for signal processing). There are versions available for
different hardware platforms, and there are both professional and student
editions.

When the MATLAB software is started, a window is opened: the main part is
the Command Window (see Figure 1.1). In the Command Window, there is a
statement that says:

In the Command Window, you should see:

>>

The >> is called the prompt. In the Student Edition, the prompt appears as:

EDU>>

In the Command Window, MATLAB can be used interactively. At the prompt,
any MATLAB command or expression can be entered, and MATLAB will imme-
diately respond with the result.

It is also possible to write programs in MATLAB, which are contained in script
files or M-files. Programs will be introduced in Chapter 2.

There are several commands that can serve as an introduction to MATLAB and
allow you to get help:

NN info will display contact information for the product

NN demo has demos of several options in MATLAB

NN help will explain any command; help help will explain how help
works

NN helpbrowser opens a Help Window

51.1 Getting into MATLAB

NN lookfor searches through the help for a specific string (be aware that
this can take a long time)

To get out of MATLAB, either type quit at the prompt, or choose File, then Exit
MATLAB from the menu.

In addition to the Command Window, there are several other windows that
can be opened and may be opened by default. What is described here is the
default layout for these windows, although there are other possible configu-
rations. Directly above the Command Window, there is a pull-down menu
for the Current Directory. The folder that is set as the Current Directory is
where files will be saved. By default, this is the Work Directory, but that can
be changed.

Figure 1.1
MATLAB Command Window.

ChaPter 1 Introduction to MatLaB6

To the left of the Command Window, there are two tabs for Current Directory
Window and Workspace Window. If the Current Directory tab is chosen, the
files stored in that directory are displayed. The Command History Window
shows commands that have been entered, not just in the current session
(in the current Command Window), but previously as well. This default con-
figuration can be altered by clicking Desktop, or using the icons at the top-right
corner of each window: either an “x,” which will close that particular window;
or a curled arrow, which in its initial state pointing to the upper right lets you
undock that window. Once undocked, clicking the curled arrow pointing to
the lower right will dock the window again.

1.2 VarIaBLes and assIGnMent stateMents
In order to store a value in a MATLAB session, or in a program, a variable is
used. The Workspace Window shows variables that have been created. One
easy way to create a variable is to use an assignment statement. The format of
an assignment statement is

variablename = expression

The variable is always on the left, followed by the assignment operator, = (unlike
in mathematics, the single equal sign does not mean equality), followed by an
expression. The expression is evaluated and then that value is stored in the vari-
able. For example, this is the way it would appear in the Command Window:

>> mynum = 6
mynum =

6
>>

Here, the user (the person working in MATLAB) typed mynum = 6 at the
prompt, and MATLAB stored the integer 6 in the variable called mynum, and
then displayed the result followed by the prompt again. Since the equal sign is
the assignment operator, and does not mean equality, the statement should be
read as “mynum gets the value of 6” (not “mynum equals 6”).

Note that the variable name must always be on the left, and the expression on
the right. An error will occur if these are reversed.

>> 6 = mynum
??? 6 = mynum

 |
Error: The expression to the left of the equals sign is not

a valid target for an assignment.
>>

Putting a semicolon at the end of a statement suppresses the output. For example,

71.2 Variables and Assignment Statements

>> res = 9 – 2;
>>

This would assign the result of the expression on the right side, the value 7,
to the variable res; it just doesn’t show that result. Instead, another prompt
appears immediately. However, at this point in the Workspace Window the
variables mynum and res can be seen.

Note: In the remainder of the text, the prompt that appears after the result will
not be shown.

The spaces in a statement or expression do not affect the result, but make it
easier to read. The following statement that has no spaces would accomplish
exactly the same thing as the previous statement:

>> res = 9–2;

MATLAB uses a default variable named ans if an expression is typed at the
prompt and it is not assigned to a variable. For example, the result of the
expression 6 3 is stored in the variable ans:

>> 6 + 3
ans =

9

This default variable is reused any time just an expression is typed at the prompt.

A short-cut for retyping commands is to press the up-arrow , which will go
back to the previously typed command(s). For example, if you decided to
assign the result of the expression 6 3 to the variable res instead of using the
default ans, you could press the up-arrow and then the left-arrow to modify the
command rather than retyping the whole statement:

>> res = 6 + 3
res =

9

This is very useful, especially if a long expression is entered with an error, and
you want to go back to correct it.

To change a variable, another assignment statement can be used that assigns
the value of a different expression to it. Consider, for example, the following
sequence of statements:

>> mynum = 3
mynum =

3
>> mynum = 4 + 2
mynum =

6

ChaPter 1 Introduction to MatLaB8

>> mynum = mynum + 1
mynum =

7

In the first assignment statement, the value 3 is assigned to the variable mynum.
In the next assignment statement, mynum is changed to have the value of the
expression 4 2, or 6. In the third assignment statement, mynum is changed
again, to the result of the expression mynum 1. Since at that time mynum had
the value 6, the value of the expression was 6 1, or 7.

At that point, if the expression mynum 3 is entered, the default variable ans
is used since the result of this expression is not assigned to a variable. Thus, the
value of ans becomes 10 but mynum is unchanged (it is still 7). Note that just
typing the name of a variable will display its value.

>> mynum + 3
ans =

10
>> mynum
mynum =

7

1.2.1 Initializing, Incrementing, and decrementing
Frequently, values of variables change. Putting the first or initial value in a vari-
able is called initializing the variable.

Adding to a variable is called incrementing. For example, the statement

mynum = mynum + 1

increments the variable mynum by 1.

1.2.2 Variable names
Variable names are an example of identifier names. We will see other examples
of identifier names, such as filenames, in future chapters. The rules for identi-
fier names are:

QuICK QuestIon!

How can 1 be subtracted from the value of a variable called
num?

answer:
num = num – 1;

This is called decrementing the variable.

91.2 Variables and Assignment Statements

NN The name must begin with a letter of the alphabet. After that, the name
can contain letters, digits, and the underscore character (e.g., value_1),
but it cannot have a space.

NN There is a limit to the length of the name; the built-in function
namelengthmax tells how many characters this is.

NN MATLAB is case-sensitive. That means that there is a difference between
upper- and lowercase letters. So, variables called mynum, MYNUM, and
Mynum are all different.

NN There are certain words called reserved words that cannot be used as
variable names.

NN Names of built-in functions can, but should not, be used as variable names.

Additionally, variable names should always be mnemonic, which means they
should make some sense. For example, if the variable is storing the radius of a
circle, a name such as “radius” would make sense; “x” probably wouldn’t.

The Workspace Window shows the variables that have been created in the cur-
rent Command Window and their values.

The following commands relate to variables:

NN who shows variables that have been defined in this Command Window
(this just shows the names of the variables)

NN whos shows variables that have been defined in this Command
Window (this shows more information on the variables, similar to what
is in the Workspace Window)

NN clear clears out all variables so they no longer exist

NN clear variablename clears out a particular variable

If nothing appears when who or whos is entered, that means there aren’t
any variables! For example, in the beginning of a MATLAB session, variables
could be created and then selectively cleared (remember that the semicolon
 suppresses output):

>> who
>> mynum = 3;
>> mynum + 5;

>> who
Your variables are:
ans mynum

>> clear mynum

ChaPter 1 Introduction to MatLaB10

>> who
Your variables are:
ans

1.3 exPressIons
Expressions can be created using values, variables that have already been cre-
ated, operators, built-in functions, and parentheses. For numbers, these can
include operators such as multiplication, and functions such as trigonometric
functions. An example of such an expression would be:

>> 2 * sin(1.4)
ans =

1.9709

1.3.1 the Format Function and ellipsis
The default in MATLAB is to display numbers that have decimal places with
four decimal places, as already shown. The format command can be used to
specify the output format of expressions. There are many options, including
making the format short (the default) or long. For example, changing the for-
mat to long will result in 15 decimal places. This will remain in effect until the
format is changed back to short, as demonstrated with an expression and with
the built-in value for pi.

>> format long
>> 2 * sin(1.4)
ans =

1.970899459976920

>> pi
ans =

3.141592653589793

>> format short
>> 2 * sin(1.4)
ans =

1.9709

>> pi
ans =

3.1416

The format command can also be used to control the spacing between the
MATLAB command or expression and the result; it can be either loose (the
default) or compact.

111.3 Expressions

>> format loose
>> 2^7

ans =

128

>> format compact
>> 2^7
ans =

128

Especially long expressions can be continued on the next line by typing three (or
more) periods, which is the continuation operator, or the ellipsis. For example,

>> 3 + 55 – 62 + 4 – 5 . . .
+ 22 – 1

ans =
16

1.3.2 operators
There are in general two kinds of operators: unary operators, which operate on
a single value or operand; and binary operators, which operate on two values
or operands. The symbol “–”, for example, is both the unary operator for nega-
tion and the binary operator for subtraction.

Here are some of the common operators that can be used with numeric
expressions:

+ addition
– negation, subtraction
* multiplication
/ division (divided by e.g. 10/5 is 2)
\ division (divided into e.g. 5\10 is 2)
^ exponentiation (e.g., 5^2 is 25)

1.3.2.1 Operator Precedence Rules
Some operators have precedence over others. For example, in the expression
4 5 * 3, the multiplication takes precedence over the addition, so first 5 is
 multiplied by 3, then 4 is added to the result. Using parentheses can change
the precedence in an expression:

>> 4 + 5 * 3
ans =

19

>> (4 + 5) * 3
ans =

27

ChaPter 1 Introduction to MatLaB12

Within a given precedence level, the expressions are evaluated from left to right
(this is called the associativity).

Nested parentheses are parentheses inside of others; the expression in the inner
parentheses is evaluated first. For example, in the expression 5 –(6 *(4 + 2)),
first the addition is performed, then the multiplication, and finally the subtrac-
tion to result in -31. Parentheses can also be used simply to make an expression
clearer. For example, in the expression ((4 +(3 * 5))–1) the parentheses
are not necessary, but are used to show the order in which the expression will
be evaluated.

For the operators that have been covered so far, the following is the precedence
(from the highest to the lowest):

() parentheses
^ exponentiation
– negation
*, /, \ all multiplication and division
+, – addition and subtraction

1.3.3 Built-In Functions and help
There are many, many built-in functions in MATLAB.
The help command can be used to find out what
functions MATLAB has, and also how to use them. For
example, typing help at the prompt in the Command
Window will show a list of help topics, which are

groups of related functions. This is a very long list; the most elementary help
topics are in the beginning.

For example, one of these is listed as matlab\elfun; it includes the elementary
math functions. Another of the first help topics is matlab\ops, which shows
the operators that can be used in expressions.

To see a list of the functions contained within a particular help topic, type help
followed by the name of the topic. For example,

>> help elfun

will show a list of the elementary math functions. It is a very long list, and is
broken into trigonometric (for which the default is radians, but there are equiv-
alent functions that instead use degrees), exponential, complex, and rounding
and remainder functions.

To find out what a particular function does and how to call it, type help and
then the name of the function. For example,

>> help sin

will give a description of the sin function.

PraCtICe 1.1
Think about what the results would
be for the following expressions, and
then type them to verify your answers:

4 ^ 2 – 1
4 ^ (2 – 1)
2\3
4 * 2 – 9/3
5 – – 3

131.3 Expressions

To call a function, the name of the function is given followed by the argument(s)
that are passed to the function in parentheses. Most functions then return
value(s). For example, to find the absolute value of –4, the following expres-
sion would be entered:

>> abs(–4)

which is a call to the function abs. The number in the parentheses, the –4, is
the argument. The value 4 would then be returned as a result.

In addition to the trigonometric functions, the elfun help topic also has some
rounding and remainder functions that are very useful. Some of these include
fix, floor, ceil, round, rem, and sign.

The rem function returns the remainder from a division; for example 5 goes
into 13 twice with a remainder of 3, so the result of this expression is 3:

>> rem(13,5)
ans =

3

QuICK QuestIon!

What would happen if you use the name of a function, for
example sin, as a variable name?
answer:
This is allowed in MATLAB, but then sin could not be used as
the built-in function, until the variable is cleared. For example,
try the following sequence:

>> sin(3.1)
ans =
 0.0416
>> sin = 45
sin =
 45
>> sin(3.1)

??? Subscript indices must either be real positive integers or
logicals.

>> who
Your variables are:
ans sin

>> clear sin
>> who
Your variables are:

ans
>> sin(3.1)
ans =
 0.0416

QuICK QuestIon!

What would happen if you reversed the order by mistake, and
typed the following:

rem(5,13)

answer:
The rem function is an example of a function that has two
 arguments passed to it. The rem function divides the second
argument into the first. In this case, the second argument, 13,
goes into 5 zero times with a remainder of 5, so 5 would be
returned as a result.

ChaPter 1 Introduction to MatLaB14

PraCtICe 1.2
Use the help function to find out what
the rounding functions fix, floor, ceil,
and round do. Experiment with them by
passing different values to the functions:
some negative, some positive, some
with fractions less than 0.5 and some
greater. It is very important when testing
functions that you thoroughly test by
trying different kinds of arguments!

Another function in the elfun help topic is the sign
function, which returns 1 if the argument is positive, 0
if it is 0, and –1 if it is negative. For example,

>> sign(–5)
ans =

–1

>> sign(3)
ans =

1

1.3.4 Constants
Variables are used to store values that can change, or that are not known ahead
of time. Most languages also have the capacity to store constants, which are val-
ues that are known ahead of time, and cannot possibly change. An example of
a constant value would be pi, or , which is 3.14159…. In MATLAB, there are
functions that return some of these constant values. Some of these include:

pi 3.14159….
i 1
j 1
inf infinity
NaN stands for “not a number”; e.g., the result of 0/0

1.3.5 types
Every expression, or variable, has a type associated with it. MATLAB supports
many types of values, which are called classes. A class is essentially a combina-
tion of a type and the operations that can be performed on values of that type.
For example, there are types to store different kinds of numbers.

For float or real numbers, or in other words numbers with a decimal place (e.g.,
5.3), there are two basic types: single and double. The name of the type dou-
ble is short for double precision; it stores larger numbers than single. MATLAB
uses a floating point representation for these numbers.

QuICK QuestIon!

There is no built-in constant for e (2.718), so how can that value
be obtained in MATLAB?
answer:
Use the exponential function exp; e is equivalent to exp(1).

>> exp(1)
ans =
 2.7183

151.3 Expressions

For integers, there are many integer types (e.g., int8, int16, int32, and int64).
The numbers in the names represent the number of bits used to store values
of that type. For example, the type int8 uses eight bits altogether to store the
integer and its sign. Since one bit is used for the sign, this means that seven
bits are used to store the actual number. Each bit stores the number in binary
(0’s or 1’s), and 0 is also a possible value, which means that 2 ^ 7 – 1 or 127
is the largest number that can be stored. The range of values that can be stored
in int8 is actually from –128 to 127. This range can be found for any type by
passing the name of the type as a string (which means in single quotes) to the
functions intmin and intmax. For example,

>> intmin(‘int8’)
ans =

–128
>> intmax(‘int8’)
ans =

127

The larger the number in the type name, the larger the number that can be
stored in it. We will for the most part use the type int32 when an integer type
is required.

The type char is used to store either single characters (e.g., ‘x’) or strings, which
are sequences of characters (e.g., ‘cat’). Both characters and strings are enclosed
in single quotes.

The type logical is used to store true/false values.

If any variables have been created in the Command Window, they can be seen
in the Workspace Window. In that window, for every variable, the variable
name, value, and class (which is essentially its type) can be seen. Other attri-
butes of variables can also be seen in the Workspace Window. Which attributes
are visible by default depends on the version of MATLAB. However, when the
Workspace Window is chosen, clicking View allows the user to choose which
attributes will be displayed.

By default, numbers are stored as the type double in MATLAB. There are,
however, many functions that convert values from one type to another.
The names of these functions are the same as the names of the types just
shown. They can be used as functions to convert a value to that type. This
is called casting the value to a different type, or type casting. For example,
to convert a value from the type double, which is the default, to the type
int32, the function int32 would be used. Typing the following assignment
statement:

>> val = 6+3

ChaPter 1 Introduction to MatLaB16

would result in the number 9 being stored in the variable val, with the default
type of double, which can be seen in the Workspace Window. Subsequently,
the assignment statement

>> val = int32(val);

would change the type of the variable to int32, but would not change its value.
If we instead stored the result in another variable, we could see the difference
in the types by using whos.

>> val = 6 + 3;
>> vali = int32(val);
>> whos

Name Size Bytes Class Attributes
val 1x1 8 double
vali 1x1 4 int32

One reason for using an integer type for a variable is to save space.

PraCtICe 1.3
1. Calculate the range of integers that can

be stored in the type int16. Use intmin
and intmax to verify your results.

2. Enter an assignment statement and
view the type of the variable in the
Workspace Window. Then, change
its type.

1.3.6 random numbers
When a program is being written to work with data,
and the data is not yet available, it is often useful to
test the program first by initializing the data variables
to random numbers. There are several built-in func-
tions in MATLAB that generate random numbers,
some of which will be illustrated in this section.

Random number generators or functions are not truly
random. Basically, the way it works is that the process

QuICK QuestIon!

What would happen if you go beyond the range for a particu-
lar type? For example, the largest integer that can be stored in
int8 is 127, so what would happen if we type cast a larger inte-
ger to the type int8?

>> int8(200)

answer:
The value would be the largest in the range, in this case 127.
If we instead use a negative number that is smaller than the

lowest value in the range, its value would be –128. This is an
example of what is called saturation arithmetic.

>> int8(200)
ans =
 127
>> int8(-130)
ans =
 –128

171.3 Expressions

starts with one number, called a seed. Frequently, the initial seed is either
a predetermined value or it is obtained from the built-in clock in the com-
puter. Then, based on this seed, a process determines the next random num-
ber. Using that number as the seed the next time, another random number is
generated, and so forth. These are actually called pseudo-random; they are not
truly random because there is a process that determines the next value each
time.

The function rand can be used to generate random real numbers; calling it
generates one random real number in the range from 0 to 1. There are no
arguments passed to the rand function. Here are two examples of calling the
rand function:

>> rand
ans =

0.9501

>> rand
ans =

0.2311

The seed for the rand function will always be the same each time MATLAB is
started, unless the state is changed, for example, by the following:

rand(‘state’,sum(100*clock))

This uses the current date and time that are returned from the built-in clock
function to set the seed. Note: this is done only once in any given MATLAB ses-
sion to set the seed; the rand function can then be used as shown earlier any
number of times to generate random numbers.

Since rand returns a real number in the range from 0 to 1, multiplying the
result by an integer N would return a random real number in the range from 0
to N. For example, multiplying by 10 returns a real in the range from 0 to 10,
so this expression

rand*10

would return a result in the range from 0 to 10.

To generate a random real number in the range from low to high, first create the
variables low and high. Then, use the expression rand*(high–low) low. For
example, the sequence

>> low = 3;
>> high = 5;
>> rand*(high–low)+low

would generate a random real number in the range from 3 to 5.

ChaPter 1 Introduction to MatLaB18

the Programming Concept
In most programming languages, the random function returns a real number,
so the real number would then have to be rounded to generate a random
integer. For example,

>> round(rand*10)

would generate one random integer in the range from 0 to 10 (rand*10 would
generate a random real in the range from 0 to 10; from that rounding will
return an integer). Or, to generate a random integer in a range:

>> low = 2;
>> high = 6;
>> round(rand*(high–low)+low)

This would generate a random integer in the range from 2 to 6.

the efficient Method
However, in MATLAB, there is another built-in function that specifically
generates random integers, randint. Calling the function with randint(1,1,n)
generates one random integer in the range from 0 to N – 1. The first two
arguments essentially specify that one random integer will be returned; the
third argument gives the range of that random integer. For example,

>> randint(1,1,4)

generates a random integer in the range from 0 to 3. Note: Even though this
creates random integers, the type is actually the default type double.

A range can also be passed to the randint function. For example, the following
specifies a random integer in the range from 1 to 20:

>> randint(1,1,[1,20])

1.4 CharaCters and enCodInG
A character in MATLAB is represented using single
quotes (e.g., ‘a’ or ‘x’). The quotes are necessary to
denote a character; without them, the letter would
be interpreted as a variable name. Characters are put
in an order using what is called a character encod-
ing. In the character encoding, all characters in the
computer’s character set are placed in a sequence

and given equivalent integer values. The character set includes all letters of
the alphabet, digits, punctuation marks, and more; basically, all the keys on
a keyboard are characters. Special characters such as the Enter key are also
included. So, ‘x’, ‘!’, and ‘3’ are all characters. With quotes, ‘3’ is a character,

PraCtICe 1.4
Generate a random:

NN Real number in the range from 0 to 1

NN Real number in the range from 0 to 50

NN Real number in the range from 10 to 20

NN Integer in the range from 1 to 10

191.4 Characters and Encoding

not a number. The most common character encoding is the American
Standard Code for Information Interchange, or ASCII. Standard ASCII has
128 characters, which have equivalent integer values from 0 to 127. The first
32 (integer values 0 through 31) are nonprinting characters. The letters of
the alphabet are in order, which means ‘a’ comes before ‘b,’ then ‘c,’ and so
forth.

The numeric functions can be used to convert a character to its equivalent
numeric value (e.g., double will convert to a double value, int32 will convert
to an integer value using 32 bits, etc.). For example, to convert the character ‘a’
to its numeric equivalent, the following statement could be used:

>> numequiv = double(‘a’)
numequiv =

97

This stores the double value 97 in the variable numequiv, which shows that the
character ‘a’ is the ninety-eighth character in the character encoding (since the
equivalent numbers begin at 0). It doesn’t matter which number type is used
to convert ‘a’, for example,

>> numequiv = int32(‘a’)

would also store the integer value 97 in the variable numequiv. The only differ-
ence between these will be the type of the resulting variable (double in the first
case, int32 in the second).

The function char does the reverse; it converts from any number type to the
type char:

>> char(numequiv)
ans =
a

Note that the quotes are not printed.

Since the letters of the alphabet are in order, the character ‘b’ has the equivalent
value of 98, ‘c’ is 99, and so on. Math can be done on characters. For example,
to get the next character in the collating sequence, 1 can be added either to the
integer or the character:

>> numequiv = double(‘a’);
>> char(numequiv + 1)
ans =
b
>> ‘a’ + 2
ans =

99

ChaPter 1 Introduction to MatLaB20

MATLAB also handles strings, which are a sequence of characters in single
quotes. For example, using the double function on a string will show the
equivalent numerical value of all characters in the string:

>> double(‘abcd’)
ans =

97 98 99 100

To shift the characters of a string up in the character encoding, an integer value
can be added to a string. For example, the following expression will shift
by one:

>> char(‘abcd’+ 1)
ans =
bcde

1.5 VeCtors and MatrICes
Vectors and matrices are used to store sets of values, all
of which are the same type. A vector can be either a
row vector or a column vector. A matrix can be visual-
ized as a table of values. The dimensions of a matrix
are r × c, where r is the number of rows and c is the

number of columns. This is pronounced “r by c.” If a vector has n elements, a
row vector would have the dimensions 1 × n, and a column vector would have
the dimensions n × 1. A scalar (one value) has the dimensions 1 × 1. Therefore,
vectors and scalars are actually just subsets of matrices. Here are some dia-
grams showing, from left to right, a scalar, a column vector, a row vector, and
a matrix:

The scalar is 1 × 1, the column vector is 3 × 1 (3 rows by 1 column), the row
vector is 1 × 4 (1 row by 4 columns), and the matrix is 3 × 3. All the values
stored in these matrices are stored in what are called elements.

MATLAB is written to work with matrices; the name MATLAB is short for
“matrix laboratory.” For this reason, it is very easy to create vector and matrix
variables, and there are many operations and functions that can be used on
vectors and matrices.

A vector in MATLAB is equivalent to what is called a one-dimensional array in
other languages. A matrix is equivalent to a two-dimensional array. Usually,
even in MATLAB, some operations that can be performed on either vectors or

5
8
2
3

33
7

113885

4
5
9 6

7
3

4

PraCtICe 1.5
1. Find the numerical equivalent of the

character ‘t’.

2. Find the character equivalent of 112.

211.5 Vectors and Matrices

matrices are referred to as array operations. The term array also frequently is
used to mean generically either a vector or a matrix.

1.5.1 Creating row Vectors
There are several ways to create row vector variables. The most direct way is
to put the values that you want in the vector in square brackets, separated by
either spaces or commas. For example, both of these assignment statements
create the same vector v:

>> v = [1 2 3 4]
v =

1 2 3 4
>> v = [1,2,3,4]
v =

1 2 3 4

Both of these create a row vector variable that has four elements; each value is
stored in a separate element in the vector.

1.5.1.1 The Colon Operator and Linspace Function
If, as in the earlier examples, the values in the vector are regularly spaced, the
colon operator can be used to iterate through these values. For example, 1:5
results in all the integers from 1 to 5:

>> vec = 1:5
vec =

1 2 3 4 5

Note that in this case, the brackets [] are not necessary to define the vector.

With the colon operator, a step value can also be specified with another colon,
in the form (first:step:last). For example, to create a vector with all integers
from 1 to 9 in steps of 2:

>> nv = 1:2:9
nv =

1 3 5 7 9

QuICK QuestIon!

What happens if adding the step value would go beyond the
range specified by the last, for example,

1:2:6

answer:
This would create a vector containing 1, 3, and 5 and then add-
ing 2 to the 5 would go beyond 6, so the vector stops at 5; the
result would be

1 3 5

ChaPter 1 Introduction to MatLaB22

Similarly, the linspace function creates a linearly spaced vector; linspace(x,y,n)
creates a vector with n values in the inclusive range from x to y. For example,
the following creates a vector with five values linearly spaced between 3 and
15, including the 3 and 15:

>> ls = linspace(3,15,5)
ls =

3 6 9 12 15

Vector variables can also be created using existing variables. For example, a new
vector is created here consisting first of all the values from nv followed by all
values from ls:

>> newvec = [nv ls]
newvec =

1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concatenat-
ing the vectors.

1.5.1.2 Referring to and Modifying Elements
A particular element in a vector is accessed using the name of the vector variable
and the element number (or index, or subscript) in parentheses. In MATLAB,
the indices start at 1. Normally, diagrams of vectors and matrices show the
indices; for example, for the variable newvec created earlier the indices 1–10 of
the elements are shown above the vector:

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9 3 6 9 12 15

For example, the fifth element in the vector newvec is a 9.

>> newvec(5)
ans =

9

QuICK QuestIon!

How can you use the colon operator to generate the follow-
ing vector?

9 7 5 3 1

answer:

9:–2:1

The step operator can be a negative number, so the resulting
sequence is in descending order.

231.5 Vectors and Matrices

A subset of a vector, which would be a vector itself, can also be obtained using
the colon operator. For example, the following statement would get the fourth
through sixth elements of the vector newvec, and store the result in a vector
variable b:

>> b = newvec(4:6)
b =

7 9 3

Any vector can be used for the indices in another vector, not just one created
using the colon operator. For example, the following would get the first, fifth,
and tenth elements of the vector newvec:

>> newvec([1 5 10])
ans =

1 9 15

The vector [1 5 10] is called an index vector; it specifies the indices in the origi-
nal vector that are being referenced.

The value stored in a vector element can be changed by specifying the index or
subscript. For example, to change the second element from the vector b to now
store the value 11 instead of 9:

>> b(2) = 11
b =

7 11 3

By using an index, a vector can also be extended. For example, the following
creates a vector that has three elements. By then referring to the fourth element
in an assignment statement, the vector is extended to have four elements.

>> rv = [3 55 11]
rv =

3 55 11

>> rv(4) = 2
rv =

3 55 11 2

If there is a gap between the end of the vector and the
specified element, 0’s are filled in. For example, the
following extends the variable created earlier again:

>> rv(6) = 13
rv =

3 55 11 2 0 13

PraCtICe 1.6
Think about what would be produced by
the following sequence of statements and
expressions, and then type them in to
verify your answers:

pv = 2:2:8

pv(4) = 33

pv(6) = 11

prac = pv(3:5)

linspace(4,12,3)

ChaPter 1 Introduction to MatLaB24

1.5.2 Creating Column Vectors
One way to create a column vector is by explicitly putting the values in square
brackets, separated by semicolons:

>> c = [1; 2; 3; 4]
c =

1
2
3
4

There is no direct way to use the colon operator described earlier to get a col-
umn vector. However, any row vector created using any of these methods can
be transposed to get a column vector. In general, the transpose of a matrix is
a new matrix in which the rows and columns are interchanged. For vectors,
transposing a row vector results in a column vector, and transposing a column
vector results in a row vector. MATLAB has a built-in operator, the apostrophe,
to get a transpose.

>> r = 1:3;
>> c = r
c =

1
2
3

1.5.3 Creating Matrix Variables
Creating a matrix variable is really just a generalization of creating row and col-
umn vector variables. That is, the values within a row are separated by either
spaces or commas, and the different rows are separated by semicolons. For
example, the matrix variable mat is created by explicitly typing values:

>> mat = [4 3 1; 2 5 6]
mat =

4 3 1
2 5 6

There must always be the same number of values in each row. If you attempt to
create a matrix in which there are different numbers of values in the rows, the
result will be an error message; for example:

>> mat = [3 5 7; 1 2]
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

251.5 Vectors and Matrices

Iterators can also be used for the values on the rows using the colon operator;
for example:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

Different rows in the matrix can also be specified by pressing the Enter key
after each row instead of typing a semicolon when entering the matrix values;
for example:

>> newmat = [2 6 88
33 5 2]

newmat =

 2 6 88
33 5 2

Matrices of random numbers can be created using the rand and randint func-
tions. The first two arguments to the randint function specify the size of the
matrix of random integers. For example, the following will create a 2 × 4 matrix
of random integers, each in the range from 10 to 30:

>> randint(2,4,[10,30])
ans =

29 22 28 19
14 20 26 10

For the rand function, if a single value n is passed to it, an n × n matrix will
be created, or passing two arguments will specify the number of rows and
columns:

>> rand(2)
ans =

0.2311 0.4860
0.6068 0.8913

>> rand(1,3)
ans =

0.7621 0.4565 0.0185

MATLAB also has several functions that create special matrices. For exam-
ple, the zeros function creates a matrix of all zeros. Like rand, either one
argument can be passed (which will be both the number of rows and col-
umns), or two arguments (first the number of rows and then the number of
columns).

ChaPter 1 Introduction to MatLaB26

>> zeros(3)
ans =

0 0 0
0 0 0
0 0 0

>> zeros(2,4)
ans =

0 0 0 0
0 0 0 0

We will see examples of other special matrix functions in Chapter 11.

1.5.3.1 Referring to and Modifying Matrix Elements
To refer to matrix elements, the row and then the column indices are given in
parentheses (always the row index first and then the column). For example,
this creates a matrix variable mat, and then refers to the value in the second
row, third column of mat:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

>> mat(2,3)
ans =

5

It is also possible to refer to a subset of a matrix. For example, this refers to the
first and second rows, second and third columns:

>> mat(1:2,2:3)
ans =

3 4
4 5

Using a colon for the row index means all rows, regardless of how many, and
using a colon for the column index means all columns. For example, this refers
to the entire first row:

>> mat(1,:)
ans =

2 3 4

and this refers to the entire second column:

>> mat(:, 2)
ans =

3
4

271.5 Vectors and Matrices

If a single index is used with a matrix, MATLAB unwinds the matrix column by
column. For example, for the matrix intmat created here, the first two elements
are from the first column, and the last two are from the second column:

>> intmat = randint(2,2,[0 100])
intmat =

100 77
 28 14

>> intmat(1)
ans =

100

>> intmat(2)
ans =

28

>> intmat(3)
ans =

77

>> intmat(4)
ans =

14

This is called linear indexing. It is usually much better style when working with
matrices to refer to the row and column indices, however.

An individual element in a matrix can be modified by assigning a value.

>> mat = [2:4; 3:5];
>> mat(1,2) = 11
mat =

2 11 4
3 4 5

An entire row or column could also be changed. For example, the following
replaces the entire second row with values from a vector:

>> mat(2,:) = 5:7
mat =

2 11 4
5 6 7

Notice that since the entire row is being modified, a vector with the correct
length must be assigned.

To extend a matrix, an individual element could not be added since that would
mean there would no longer be the same number of values in every row.
However, an entire row or column could be added. For example, the following
would add a fourth column to the matrix:

ChaPter 1 Introduction to MatLaB28

>> mat(:,4) = [9 2]’
mat =

2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the
row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =

2 11 4 9
5 6 7 2
0 0 0 0
2 4 6 8

1.5.4 dimensions
The length and size functions in MATLAB are used to find array dimensions.
The length function returns the number of elements in a vector. The size func-
tion returns the number of rows and columns in a matrix. For a matrix, the
length function will return either the number of rows or the number of col-
umns, whichever is largest. For example, the following vector, vec, has four ele-
ments so its length is 4. It is a row vector, so the size is 1 × 4.

>> vec = -2:1
vec =

-2 -1 0 1

>> length(vec)
ans =

4

>> size(vec)
ans =

1 4

For the matrix mat shown next, it has three rows and two columns, so the size
is 3 × 2. The length is the larger dimension, 3.

>> mat = [1:3; 5:7]’
mat =

1 5
2 6
3 7

>> size(mat)
ans =

3 2

291.5 Vectors and Matrices

>> length(mat)
ans =

3

>> [r c] = size(mat)
r =

3
c =

2

Note: The last example demonstrates a very important and unique concept in
MATLAB: the ability to have a vector of variables on the left-hand side of an
assignment.

The size function returns two values, so in order to capture these values in sep-
arate variables we put a vector of two variables on the left of the assignment.
The variable r stores the first value returned, which is the number of rows, and
c stores the number of columns.

MATLAB also has a function, numel, which returns the total number of ele-
ments in any array (vector or matrix):

>> vec = 9:–2:1
vec =

9 7 5 3 1

>> numel(vec)
ans =

5

>> mat = randint(2,3,[1,10])
mat =

7 9 8
4 6 5

>> numel(mat)
ans =

6

QuICK QuestIon!

How could you create a matrix of zeros with the same size as
another matrix?
answer:
For a matrix variable mat, the following expression would
accomplish this:

zeros(size(mat))

The size function returns the size of the matrix, which is then
passed to the zeros function, which then returns a matrix of
zeros with the same size as mat. It is not necessary in this case
to store the values returned from the size function.

ChaPter 1 Introduction to MatLaB30

For vectors, this is equivalent to the length of the vector. For matrices, it is the
product of the number of rows and columns.

MATLAB also has a built-in expression end that can be used to refer to the
last element in a vector; for example, v(end) is equivalent to v(length(v)). For
matrices, it can refer to the last row or column. So, using end for the row index
would refer to the last row. In this case, the element referred to is in the first
column of the last row:

>> mat = [1:3; 4:6]’
mat =

1 4
2 5
3 6

>> mat(end,1)
ans =

3

Using end for the column index would refer to the last column (e.g., the last
column of the second row):

>> mat(2,end)
ans =

5

This can be used only as an index.

1.5.4.1 Changing Dimensions
In addition to the transpose operator, MATLAB has several built-in functions
that change the dimensions or configuration of matrices, including reshape,
fliplr, flipud, and rot90.

The reshape function changes the dimensions of a matrix. The following matrix
variable mat is 3 4, or in other words it has 12 elements.

>> mat = randint(3,4,[1 100])
mat =

14 61 2 94
21 28 75 47
20 20 45 42

These 12 values instead could be arranged as a 2 6 matrix, 6 2, 4 3, 1
12, or 12 1. The reshape function iterates through the matrix columnwise.
For example, when reshaping mat into a 2 6 matrix, the values from the first
column in the original matrix (14, 21, and 20) are used first, then the values
from the second column (61, 28, 20), and so forth.

311.5 Vectors and Matrices

>> reshape(mat,2,6)
ans =

14 20 28 2 45 47
21 61 20 75 94 42

The fliplr function “flips” the matrix from left to right (in other words the
left-most column, the first column, becomes the last column and so forth),
and the flipud functions flips up to down. Note that in these examples mat
is unchanged; instead, the results are stored in the default variable ans each
time.

>> mat = randint(3,4,[1 100])
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)
ans =

94 2 61 14
47 75 28 21
42 45 20 20

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)
ans =

20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so for
example the value in the top-right corner becomes instead the top-left corner
and the last column becomes the first row:

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)

ChaPter 1 Introduction to MatLaB32

ans =

94 47 42
2 75 45
61 28 20
14 21 20

The function repmat can also be used to create a matrix; repmat(mat,m,n)
creates a larger matrix, which consists of an m × n matrix of copies of mat. For
example, here is a 2 × 2 random matrix:

>> intmat = randint(2,2,[0 100])
intmat =

100 77
 28 14

The function repmat can be used to replicate this matrix six times as a 3 × 2
matrix of the variable intmat.

>> repmat(intmat,3,2)
ans =

100 77 100 77
 28 14 28 14
100 77 100 77

QuICK QuestIon!

Is there a rot180 function? Is there a rot-90 function (to rotate
clockwise)?
answer:
Not exactly, but a second argument can be passed to the rot90
function, which is an integer n; the function will rotate 90*n
degrees. The integer can be positive or negative. For example,
if 2 is passed, the function will rotate the matrix 180 degrees
(so, it would be the same as rotating the value of ans another
90 degrees).

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat,2)
ans =

42 45 20 20
47 75 28 21
94 2 61 14

If a negative number is passed for n, the rotation would be in
the opposite direction, in other words, clockwise.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat,–1)
ans =

20 21 14
20 28 61
45 75 2
42 47 94

331.5 Vectors and Matrices

 28 14 28 14
100 77 100 77
 28 14 28 14

1.5.5 using Functions with Vectors and Matrices
Since MATLAB is written to work with vectors and matrices, an entire vector or
matrix can be passed as an argument to a function. MATLAB will evaluate the
function on every element, and return as a result a vector or matrix with the
same dimensions as the original. For example, we could pass the following vec-
tor, vec, to the abs function in order to get the absolute value of every element.

>> vec = –3:4
vec =

–3 –2 –1 0 1 2 3 4

>> abs(vec)
ans =

 3 2 1 0 1 2 3 4

The original vector vec has eight elements, and since the abs function is evalu-
ated for every element, the resulting vector also has eight elements.

This also would be the case for matrices:

>> mat = randint(2,3,[–5,5])
mat =

–5 -1 0
 3 5 -1

>> abs(mat)
ans =

5 1 0
3 5 1

We will see much more on operations and functions of arrays (vectors and
matrices) in Chapters 4 and 11.

1.5.6 empty Vectors
An empty vector, or, in other words, a vector that stores no values, can be cre-
ated using empty square brackets:

>> evec = []
evec =

[]

>> length(evec)
ans =
0

ChaPter 1 Introduction to MatLaB34

Then, values can be added to the vector by concatenating, or adding values
to the existing vector. The following statement takes what is currently in evec,
which is nothing, and adds a 4 to it.

>> evec = [evec 4]
evec =

4

The following statement takes what is currently in evec, which is 4, and adds
an 11 to it.

>> evec = [evec 11]
evec =

4 11

This can be continued as many times as desired, in order to build a vector up
from nothing.

Empty vectors can also be used to delete elements from arrays. For example, to
remove the third element from an array, the empty vector is assigned to it:

>> vec = 1:5
vec =

1 2 3 4 5

>> vec(3) = []
vec =

1 2 4 5

The elements in this vector are now numbered 1 through 4.

Subsets of a vector could also be removed; for example:

>> vec = 1:8
vec =

1 2 3 4 5 6 7 8

>> vec(2:4) = []
vec =

1 5 6 7 8

Individual elements cannot be removed from matrices, since matrices always
have to have the same number of elements in every row.

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(1,2) = [];
??? Indexed empty matrix assignment is not allowed.

35Summary

However, entire rows or columns could be removed
from a matrix. For example, to remove the second
column:

>> mat(:,2) = []
mat =

7 8
4 5

suMMary

Common Pitfalls
It is common when learning to program to make sim-
ple spelling mistakes and to confuse the necessary
punctuation. Following are examples of very common
errors:

NN Putting a space in a variable name
NN Confusing the format of an assignment statement as

expression = variablename

rather than

variablename = expression

The variable name must always be on the left.

NN Using a built-in function name as a variable name, and then trying to use the
function

NN Confusing the two division operators / and \
NN Forgetting the operator precedence rules
NN Confusing the order of arguments passed to functions, for example, to find the

remainder of dividing 3 into 10 using rem(3,10) instead of rem(10,3)
NN Not using different types of arguments when testing functions
NN Attempting to create a matrix that does not have the same number of values on

each row
NN Forgetting to use parentheses to pass an argument to a function; for example,

fix 2.3 instead of fix(2.3). MATLAB returns the ASCII equivalent for each character
when this mistake is made. (What happens is that is that it is interpreted as the
function of a string; for example, fix(‘2.3’)).

Programming style Guidelines
Following these guidelines will make your code much easier to read and under-
stand, and therefore easier to work with and modify.

NN Use mnemonic variable names (names that make sense; for example, radius instead
of xyz).

PraCtICe 1.7
Think about what would be produced by
the following sequence of statements and
expressions, and then type them to verify
your answers.

m = [1:4; 3 11 7 2]
m(2,3)
m(:,3)
m(4)
size(m)
numel(m)
reshape(m,1,numel(m))
vec = m(1,:)
vec(2) = 5
vec(3) = []
vec(5) = 8
vec = [vec 11]

ChaPter 1 Introduction to MatLaB36

NN Do not use names of built-in functions as variable names.
NN If different sets of random numbers are desired, set the seed for the rand function.
NN Do not use just a single index when referring to elements in a matrix; instead, use

both the row and column indices.
NN To be general, never assume that the dimensions of any array (vector or matrix) are

known. Instead, use the function length to determine the number of elements in a
vector, and the function size for a matrix, for example:

len = length(vec);
[r c] = size(mat);

MATLAB Functions and Commands

info
demo
help
lookfor
namelengthmax
who
whos
clear
format
sin
abs
fix

floor
ceil
round
rem
sign
pi
i
j
inf
exp
NaN
single

double
int8
int16
int32
int64
intmin
intmax
char
logical
rand
clock
randint

linspace
zeros
length
size
numel
end
reshape
fliplr
flipud
rot90
repmat

MATLAB Operators

assignment =
addition
subtraction –

multiplication *
exponentiation ^
divided by /

divided into \
parentheses ()
negation -

colon:
transpose ‘

exercises
 1. Create a variable, myage, and store your age in it. Subtract one from the value of

the variable. Add two to the value of the variable.
 2. Use the built-in function namelengthmax to find out the maximum number of

characters that you can have in an identifier name under your version of MATLAB.
 3. Explore the format command in more detail. Use help format to find options.

Experiment with format bank to display dollar values.
 4. Find a format option that would result in the following output format:

>> 5/16 + 2/7
ans =

67/112

 5. Think about what the results would be for the following expressions, and then
type them to verify your answers.
25 / 4 * 4

37Exercises

3 + 4 ^ 2
4 \ 12 + 4

3 ^ 2
(5 – 2) * 3

 6. Create a variable, pounds, to store a weight in pounds. Convert this to kilograms
and assign the result to a variable kilos. The conversion factor is 1 kilogram = 2.2
pounds.

 7. The combined resistance RT of three resistors R1, R2, and R3 in parallel is given by

1
RT =

1

1 1 + +
R1 R2 R3

 Create variables for the three resistors and store values in each, and then calculate
the combined resistance.

 8. Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert
this to degrees Celsius and store the result in a variable ctemp. The conversion
factor is C = (F – 32) * 5/9.

 9. The function sin calculates and returns the sine of an angle in radians. Use
help elfun to find the name of the function that returns the sine of an angle
in degrees. Verify that calling this function and passing 90 degrees to it results
in 1.

 10. A vector can be represented by its rectangular coordinates x and y or by its
polar coordinates r and . The relationship between them is given by the
equations:

x = r * cos()
y = r * sin()

 Assign values for the polar coordinates to variables r and theta. Then, using
these values, assign the corresponding rectangular coordinates to variables x
and y.

 11. Wind often makes the air feel even colder than it is. The Wind Chill Factor (WCF)
measures how cold it feels with a given air temperature T (in degrees Fahrenheit)
and wind speed (V, in miles per hour). One formula for the WCF is:

WCF=35.7+0.6T–35.7(V0.16)+0.43T(V0.16)

 Create variables for the temperature T and wind speed V, and then using this
formula calculate the WCF.

 12. Use help elfun or experiment to answer the following questions:

NN Is fix(3.5) the same as floor(3.5)?
NN Is fix(3.4) the same as fix(-3.4)?
NN Is fix(3.2) the same as floor(3.2)?
NN Is fix(-3.2) the same as floor(-3.2)?
NN Is fix(-3.2) the same as ceil(-3.2)?

ChaPter 1 Introduction to MatLaB38

 13. Find MATLAB expressions for the following:
 19
31.2

tan()
 14. Use intmin and intmax to determine the range of values that can be stored in

the types int32 and int64.
 15. Are there equivalents to intmin and intmax for real number types? Use help to

find out.
 16. Store a number with a decimal place in a double variable (the default). Convert

the value of that variable to the type int32 and store the result in a new variable.
 17. Generate a random:

NN Real number in the range from 0 to 1
NN Real number in the range from 0 to 20
NN Real number in the range from 20 to 50
NN Integer in the range from 0 to 10
NN Integer in the range from 0 to 11
NN Integer in the range from 50 to 100

 18. Get into a new Command Window, and type rand to get a random real number.
Make a note of the number. Then, exit MATLAB and repeat this, again making
note of the random number; it should be the same as before. Finally, exit MATLAB
and again get into a new Command Window. This time, change the seed before
generating a random number; it should be different.

 19. In the ASCII character encoding, the letters of the alphabet are in order: ‘a’ comes
before ‘b’ and also ‘A’ comes before ‘B’, for example. However, which comes first:
lower- or uppercase letters?

 20. Shift the string ‘xyz’ up in the character encoding by two characters.
 21. Using the colon operator, create the following vectors

3 4 5 6
1.0000 1.5000 2.0000 2.5000 3.0000
5 4 3 2

 22. Using the linspace function, create the following vectors:

 4 6 8
–3 –6 –9 –12 –15
 9 7 5

 23. Create the following vectors twice, using linspace and using the colon operator:

1 2 3 4 5 6 7 8 9 10
2 7 12

 24. Create a variable, myend, which stores a random integer in the range from 8 to
12. Using the colon operator, create a vector that iterates from 1 to myend in
steps of 3.

39Exercises

 25. Using the colon operator and the transpose operator, create a column vector that
has the values –1 to 1 in steps of 0.2.

 26. Write an expression that refers to only the odd numbered elements in a vector,
regardless of the length of the vector. Test your expression on vectors that have
both an odd and even number of elements.

 27. Create a vector variable, vec; it can have any length. Then, write assignment
statements that would store the first half of the vector in one variable and the
second half in another. Make sure that your assignment statements are general,
and work whether vec has an even or odd number of elements (hint: use a
rounding function such as fix).

 28. Using colon operators for the rows, create the matrix:

7 6 5
3 5 7

 29. Generate a 2 × 3 matrix of random

NN Real numbers, each in the range from 0 to 1
NN Real numbers, each in the range from 0 to 10
NN Integers, each in the range from 5 to 20

 30. Create a variable, rows, which is a random integer in the range from 1 to 5. Create
a variable, cols, which is a random integer in the range from 1 to 5. Create a matrix
of all zeros with the dimensions given by the values of rows and cols.

 31. Find an efficient way to generate the following matrix:
 mat =

 7 8 9 10
12 10 8 6

NN Then, give expressions that will, for the matrix mat,
NN Refer to the element in the first row, third column
NN Refer to the entire second row
NN Refer to the first two columns

 32. Create a matrix variable, mymat, which stores the following:
 mymat =

2 5 8
7 5 3

 Using this matrix, find a simple expression that will transform the matrix into each
of the following:

2 7
5 5
8 3

ChaPter 1 Introduction to MatLaB40

2 5
7 8
5 3

8 5 2
3 5 7

8 3
5 5
2 7

2 5 8 2 5 8
7 5 3 7 5 3

 33. Create a 4 × 2 matrix of all zeros and store it in a variable. Then, replace the second
row in the matrix with a 3 and a 6.

 34. Create a vector, x, which consists of 20 equally spaced points in the range from –
to + . Create a y vector that is sin(x).

 35. Create a 3 × 5 matrix of random integers, each in the range from –5 to 5. Get the
sign of every element.

 36. Create a 4 × 6 matrix of random integers, each in the range from –5 to 5; store it in
a variable. Create another matrix that stores for each element the absolute value of
the corresponding element in the original matrix.

 37. Create a 3 × 5 matrix of random real numbers. Delete the third row.
 38. The built-in function clock returns a vector that contains six elements: the first

three are the current date (year, month, day) and the last three represent the
current time in hours, minutes, and seconds. The seconds is a real number, but
all others are integers. Store the result from clock in a variable called myc. Then,
store the first three elements from this variable in a variable called today, and the
last three elements in a variable called now. Use the fix function on the vector
variable called now to get just the integer part of the current time.

41

Contents

© 2009, 2003,1999 Elsevier Inc.

2.1 Algorithms 42

2.2 MATLAB
Scripts 43

2.3 Input and
Output 46

2.4 Scripts with
Input and Output 53

2.5 Scripts to Produce
and Customize
Simple Plots 54

2.6 Introduction
to File Input/Output
(load and save) 59

2.7 User-Defined
Functions that Return
a Single Value 64

computer program

script

algorithm

top-down design

external file

user

default input device

prompting

default output device

execute/run

high-level language

machine language

executable

compiler

source code

object code

interpreter

script file

documentation

comment

input/output (I/O)

empty string

error message

formatting

format string

placeholder

conversion character

field width

leading blank

trailing blank

exponential notation

plot symbols

markers

line type

toggle

mode

appending

control

user-defined function

function definition

function header

function body

output argument

input argument

local variable

Key Words

Chapter 2

Introduction to MATLAB Programming

We have now used the MATLAB® product interactively in the Command
Window. That is sufficient when all that is needed is a simple calculation.
However, in many cases, many steps are required before the final result can be
obtained. In those cases, it is more convenient to group statements together in
what is called a computer program.

Chapter 2 Introduction to MatLaB programming42

In this chapter, we will introduce the simplest MATLAB® programs, called
scripts. Examples of scripts that customize simple plots will illustrate the con-
cept. Input will be introduced, both from files and from the user. Output, to
files and to the screen, will also be introduced. Finally, user-defined functions
that calculate and return values will be described. These topics serve as an intro-
duction to programming, which will be explored further in Chapter 5.

2.1 aLgorIthMs
Before writing any computer program, it is useful to first outline the steps that
will be necessary. An algorithm is the sequence of steps needed to solve a prob-
lem. In a modular approach to programming, the problem solution is broken
down into separate steps, and then each step is further refined until the result-
ing steps are small enough to be manageable tasks. This is called the top-down
design approach.

As a simple example, consider the problem of calculating the area of a cir-
cle. First, it is necessary to determine what information is needed in order to
solve the problem, which in this case is the radius of the circle. Next, given
the radius of the circle, the area of the circle would be calculated. Last, once
the area has been calculated, it has to be displayed in some way. So, the basic
algorithm is:

NN Get the input: the radius

NN Calculate the result: the area

NN Display the output

Even with an algorithm this simple, it is possible to refine each of the steps fur-
ther. When a program is written to implement this algorithm, the steps would
be:

1. Where does the input come from? Two possible choices would be from
an external file on a disk, or from the user (the person who is running
the program), who enters the number by typing it from the keyboard.
For every system, one of these will be the default input device (which
means, if not specified otherwise, this is where the input comes from).
If the user is supposed to enter the radius, the user has to be told to
type it (and, in what units). Telling the user what to enter is called
prompting. So, the input step actually becomes two steps: prompt the
user to enter a radius, and then read it into the program.

2. To calculate the area, the formula is needed. In this case, the area of the
circle is multiplied by the radius squared. So, that means the value of

 is needed in the program, which is an example of a constant.

432.2 MATLAB Scripts

3. Where does the output go? Two possibilities are (1) to an external file, or
(2) to a window on the screen. Depending on the system, one of these
will be the default output device. When displaying the output from the
program, it should always be as informative as possible. In other words,
instead of just printing the area (just the number), it should be printed
in a nice sentence format. Also, to make the output even more clear, the
input should be printed. For example, the output might be the sentence:
“For a circle with a radius of 1 inch, the area is 3.1416 inches squared.”

For most programs, the basic algorithm consists of the three steps just outlined:

1. Get the input(s).

2. Calculate the result(s).

3. Display the result(s).

As can be seen here, even the simplest problem solutions can then be further
refined.

2.2 MatLaB sCrIpts
Once a problem has been analyzed, and the algorithm for its solution has been
written and refined, the algorithm then is translated into a particular program-
ming language. A computer program is a sequence of instructions, in a given
language, that accomplishes a task. To execute, or run, a program is to have the
computer actually follow these instructions.

High-level languages have English-like commands and functions, such as “print
this” or “if x < 5 do something.” The computer, however, can interpret com-
mands only written in its machine language. Programs that are written in high-
level languages must therefore be translated into machine language before the
computer can actually execute the sequence of instructions in the program. A
program that does this translation from a high-level language to an executable
file is called a compiler. The original program is called the source code, and the
resulting executable program is called the object code.

By contrast, an interpreter goes through the code line-by-line, executing each
command as it goes. MATLAB uses either what are called script files or M-files
(the reason for this is that the extension on the filename is .m). These script
files are interpreted, rather than compiled. Therefore, the correct terminology
is that these are scripts, and not programs. However, the terms are somewhat
loosely used by many people, and the documentation in MATLAB itself refers
to scripts as programs. In this book, we will reserve the use of the word “pro-
gram” to mean a set of scripts and functions, as described briefly later in this
chapter and then in more detail in Chapter 5.

Chapter 2 Introduction to MatLaB programming44

A script is a sequence of MATLAB instructions that is stored in a file and saved.
The contents of a script can be displayed in the Command Window using the
type command. The script can be executed, or run, by simply entering the
name of the file (without the .m extension).

To create a script, click File, then New, then M-file. A new window will appear
called the Editor. To create a new script, simply type the sequence of statements
(notice that line numbers will appear on the left).

When finished, save the file using File and then Save. Make sure that the exten-
sion .m is on the filename (this should be the default). The rules for filenames
are the same as for variables (they must start with a letter, after that there can
be letters, digits, or the underscore, etc.). By default, scripts will be saved in the
Work Directory. If you want to save the file in a different directory, the Current
Directory can be changed.

For example, we will now create a script called script1.m that calculates the area
of a circle. It assigns a value for the radius, and then calculates the area based
on that radius.

In this text, scripts will be displayed in a box with the name on top.

script1.m

radius = 5
area = pi * (radius^2)

In the Command Window, the contents of the script can be displayed, and
the script can be executed. The type command shows the contents of the file
named script1.m (notice that the .m is not included):

>> type script1
radius = 5
area = pi * (radius^2)

There are two ways to view a script once it has been written: either open the
Editor Window to view it, or use the type command as shown here to display
it in the Command Window.

To actually run or execute the script, the name of the file is entered at the
prompt (again, without the .m). When executed, the results of the two
 assignment statements are displayed, since the output was not suppressed for
either statement.

>> script1
radius =

5
area =

78.5398

452.2 MATLAB Scripts

Once the script has been executed, you may find that you want to make changes
to it (especially if there are errors!). To edit an existing file, there are several
methods to open it. The easiest are:

NN Click File, then Open, then click the name of the file.

NN Click the Current Directory tab (if it is not already shown), then double-
click the name of the file.

2.2.1 documentation
It is very important that all scripts be documented well, so that people can
understand what the script does and how it accomplishes that. One way of
documenting a script is to put comments in it. In MATLAB, a comment is any-
thing from a % to the end of that particular line. Comments are completely
ignored when the script is executed. To put in a comment, simply type the %
symbol at the beginning of a line, or select the comment lines and then click
Text and then Comment and the Editor will put in the % symbols for you.

For example, the previous script to calculate the area of a circle could be modi-
fied to have comments:

script1b.m

% This program calculates the area of a circle

% First the radius is assigned

radius = 5

% The area is calculated based on the radius

area = pi * (radius^2)

The first comment at the beginning of the script describes what the script does.
Then, throughout the script, comments describe different parts of the script (not
usually a comment for every line, however!). Comments don’t affect what a script
does, so the output from this script would be the same as for the previous version.

The help command in MATLAB works with scripts as well as with built-in func-
tions. The first block of comments (defined as contiguous lines at the begin-
ning) will be displayed. For example, for script1b:

>> help script1b
This program calculates the area of a circle

The reason that a blank line was inserted in the script between the first two com-
ments is that otherwise both would have been interpreted as one contiguous
comment, and both lines would have been displayed with help. The very first com-
ment line is called the H1 line; it is what the function lookfor searches through.

Chapter 2 Introduction to MatLaB programming46

2.3 Input and output
The previous script would be much more useful if it
were more general; for example, if the value of the
radius could be read from an external source rather
than being assigned in the script. Also, it would be bet-

ter to have the script print the output in a nice, informative way. Statements
that accomplish these tasks are called input/output statements, or I/O for short.
Although for simplicity examples of input and output statements will be shown
here from the Command Window, these statements will make the most sense
in scripts.

2.3.1 Input Function
Input statements read in values from the default or standard input device. In
most systems, the default input device is the keyboard, so the input statement
reads in values that have been entered by the user, or the person who is run-
ning the script. In order to let the user know what he or she is supposed to
enter, the script must first prompt the user for the specified values.

The simplest input function in MATLAB is called input. The input function is
used in an assignment statement. To call it, a string is passed, which is the prompt
that will appear on the screen, and whatever the user types will be stored in the
variable named on the left of the assignment statement. To make it easier to read
the prompt, put a colon and then a space after the prompt. For example,

>> rad = input(‘Enter the radius: ’)
Enter the radius: 5
rad =

5

If character or string input is desired, ‘s’ must be added after the prompt:

>> letter = input(‘Enter a char: ’,‘s’)
Enter a char: g
letter =
g

Notice that although this is a string variable, the quotes are not shown. However,
they are shown in the Workspace Window.

If the user enters only spaces or tabs before pressing the Enter key, they are
ignored and an empty string is stored in the variable:

>> mychar = input(‘Enter a character: ’, ‘s’)
Enter a character:
mychar =

‘’

praCtICe 2.1
Write a script to calculate the area of a
rectangle. Be sure to comment the script.

472.3 Input and Output

Notice that in this case the quotes are shown, to demonstrate that there is
nothing inside of the string.

However, if blank spaces are entered before other characters, they are included
in the string. In this example, the user pressed the space bar four times before
entering “go”:

>> mystr = input(‘Enter a string: ’, ‘s’)
Enter a string: go
mystr =

 go
>> length(mystr)
ans =

6

It is also possible for the user to type quotation marks around the string rather
than including the second argument ‘s’ in the call to the input function:

>> name = input(‘Enter your name: ’);
Enter your name: ‘Stormy’

However, it is better to signify that character input is desired in the input func-
tion itself.

Normally, the results from input statements are suppressed with a semicolon at the
end of the assignment statements, as shown here. Notice what happens if string
input has not been specified, but the user enters a letter rather than a number:

>> num = input(‘Enter a number: ’)
Enter a number: t
??? Error using ==> input

QuICK QuestIon!

What would be the result if the user enters blank spaces after
other characters? For example, the user here entered “xyz ”
(four blank spaces):

>> mychar = input(‘Enter chars:’, ‘s’)
Enter chars: xyz
mychar =
xyz

answer:
The space characters would be stored in the string variable.

It is difficult to see in this example, but is clear from the length
of the string.

>> length(mychar)
ans =

 7
The length can be seen in the Command Window by using

the mouse to highlight the value of the variable; the xyz and
four spaces will be highlighted.

Chapter 2 Introduction to MatLaB programming48

Undefined function or variable ‘t’.
Enter a number: 3
num =

3

MATLAB gave an error message and repeated the prompt. However, if t is the
name of a variable, MATLAB will take its value as the input:

>> t = 11;
>> num = input(‘Enter a number: ’)
Enter a number: t
num =

11

Separate input statements are necessary if more than one input is desired. For
example

>> x = input(‘Enter the x coordinate: ’);
>> y = input(‘Enter the y coordinate: ’);

2.3.2 output statements: disp
and fprintf
Output statements display strings and the results of
expressions, and can allow for formatting, or custom-
izing how they are displayed. The simplest output
function in MATLAB is disp, which is used to display
the result of an expression or a string without assign-
ing any value to the default variable ans. However,
disp does not allow formatting. For example,

>> disp(‘Hello’)
Hello
>> disp(4^3)
 64

Formatted output can be printed to the screen using the fprintf function. For
example,

>> fprintf(‘The value is %d, for sure!\n’,4^3)
The value is 64, for sure!

To the fprintf function, first a string (called the format string) is passed, which
contains any text to be printed as well as formatting information for the expres-
sions to be printed. In this example, the %d is an example of format informa-
tion. The %d is sometimes called a placeholder; it specifies where the value
of the expression that is after the string is to be printed. The character in the
placeholder is called the conversion character, and it specifies the type of value

praCtICe 2.2
Create a script that would prompt the
user for a temperature, and then ‘F’ or
‘C’, and store both inputs in variables.
For example, when executed it would
look like this (assuming the user enters
85 and then F):

Enter the temperature: 85
Is that F or C?: F

492.3 Input and Output

that is being printed. There are others, but what follows is a list of the simple
placeholders:

%d integers (it actually stands for decimal integer)
%f floats
%c single characters
%s strings

Don’t confuse the % in the placeholder with the symbol used to designate a
comment.

The character ‘\n’ at the end of the string is a special character called the new-
line character; when it is printed the output moves down to the next line.

QuICK QuestIon!

What do you think would happen if the newline character were
omitted from the earlier fprintf statement?
answer:
Without it, the next prompt would end up on the same line as
the output. It is still a prompt, and so an expression can be
entered, but it looks messy, as shown here:

>> fprintf(‘The value is %d, surely!’,...
4^3)
The value is 64, surely!>> 5 + 3

ans =
 8

Note that with the disp function, however, the prompt will
always appear on the next line:

>> disp(‘Hi’)
Hi
>>

Note: The newline character can also be used in the prompt in the input state-
ment; for example:

>> x = input(‘Enter the \nx coordinate: ’);
Enter the
x coordinate: 4

QuICK Ques tIon!

How can you get a blank line in the output?
answer:
Have two newline characters in a row.

>> fprintf(‘The value is %d, \n\nOK!\n’, 4^3)
The value is 64,

OK!

This also points out that the newline character can be any-
where in the string; when it is printed, the output moves down
to the next line.

Chapter 2 Introduction to MatLaB programming50

However, that is the only formatting character allowed in the prompt in input.

A field width can also be included in the placeholder in fprintf, which specifies
how many characters total are to be used in printing. For example, %5 d would
indicate a field width of 5 for printing an integer and %10 s would indicate a field
width of 10 for a string. For floats, the number of decimal places can also be speci-
fied; for example, %6.2 f means a field width of 6 (including the decimal point and
the decimal places) with two decimal places. For floats, just the number of decimal
places can also be specified; for example, %.3 f indicates three decimal places.

>> fprintf(‘The int is %3 d and the float is %6.2f\n’,5,4.9)
The int is 5 and the float is 4.90

Note that if the field width is wider than necessary, leading blanks are printed, and
if more decimal places are specified than necessary, trailing zeros are printed.

QuICK QuestIon!

What would happen if you use the %d conversion character
but you’re trying to print a real number?
answer:
MATLAB will show the result using exponential notation:

>> fprintf(‘%d\n’,1234567.89)
1.234568e+006

note: If you want exponential notation, this is not the cor-
rect way to get it; instead, there are conversion characters that
can be used. Use the help browser to see this option as well
as many others!

There are many other options for the format string. For example, the value
being printed can be left-justified within the field width using a minus sign.
The following example shows the difference between printing the integer 3
using %5 d and using %–5 d. The x’s are just used to show the spacing.

QuICK QuestIon!

What do you think would happen if you tried to print 1234.5678
in a field width of 3 with two decimal places, for example
using

>> fprintf(‘%3.2f\n’, 1234.5678)

answer:
It would print the entire 1234, but round the decimals to two
places, for example:

1234.57

If the field width is not large enough to print the number,
the field width will be increased. Basically, to cut the number
off would give a misleading result, but rounding the decimal
places does not change the number by much.

512.3 Input and Output

>> fprintf(‘The integer is xx%5dxx and xx%-5dxx\n’,3,3)
The integer is xx 3xx and xx3 xx

Also, strings can be truncated by specifying decimal places:

>> fprintf(‘The string is %s or %.4s\n’, ‘truncate’,...
‘truncate’)
The string is truncate or trun

There are several special characters that can be printed in the format string in
addition to the newline character. To print a slash, two slashes in a row are
used, and also to print a single quote two single quotes in a row are used.
Additionally, \t is the tab character.

>> fprintf(‘Try this out: tab\t quote ‘‘ slash \\ \n’)
Try this out: tab quote ‘ slash \

2.3.2.1 Printing Vectors and Matrices
For a vector, if a conversion character and the newline character are in the for-
mat string, it will print in a column regardless of whether the vector itself is a
row vector or a column vector.

>> vec = 2:5;
>> fprintf(‘%d\n’, vec)
2
3
4
5

Note that this was a row vector. A column vector would print exactly the same
way, as a column. Without the newline character, it would print in a row but
the next prompt would appear on the same line:

>> fprintf(‘%d’, vec)
2345>>

However, in a script, a separate newline character could be printed to avoid
this problem.

printvec.m

% This demonstrates printing a vector

vec = 2:5;

fprintf(‘%d’,vec)

fprintf(‘\n’)

>> printvec
2345
>>

Chapter 2 Introduction to MatLaB programming52

If the number of elements in the vector is known, that many conversion char-
acters can be specified and then the newline:

>> fprintf(‘%d %d %d %d\n’, vec)
2 3 4 5

This is not very general, however, and is therefore not preferable.

For matrices, MATLAB unwinds the matrix column by column. For example,
consider the following random 2 × 3 matrix:

>> mat = randint(2,3,[1,10])
mat =

5 9 8
4 1 10

Specifying one conversion character and then the newline character will print
the elements from the matrix in one column. The first values printed are from
the first column, then the second column, and so on.

>> fprintf(‘%d\n’, mat)
5
4
9
1
8
10

If three of the %d conversion characters are specified, the fprintf will print
three numbers across on each line of output, but again the matrix is unwound
column by column. It again prints first the two numbers from the first column
(across on the first row of output), then the first value from the second col-
umn, and so on.

>> fprintf(‘%d %d %d\n’, mat)
5 4 9
1 8 10

If the transpose of the matrix is printed, however, using the three %d conver-
sion characters, the matrix is printed as it appears when created.

>> fprintf(‘%d %d %d\n’, mat’) % Note the transpose
5 9 8
4 1 10

For vectors and matrices, even though formatting cannot be specified, the disp
function may be easier to use in general than fprintf because it displays the
result in a straightforward manner. For example,

532.4 Scripts with Input and Output

>> mat = randint(2,3,[5 15])
mat =

15 11 14
7 10 13

>> disp(mat)
15 11 14
7 10 13

>> vec = 2:5
vec =

2 3 4 5

>> disp(vec)
2 3 4 5

2.4 sCrIpts WIth Input and output
Putting all this together, we can implement the algorithm from the beginning
of this chapter. The following script calculates and prints the area of a circle. It
first prompts the user for a radius, reads in the radius, and then calculates and
prints the area of the circle based on this radius.

script2.m

% This script calculates the area of a circle

% It prompts the user for the radius

% Prompt the user for the radius and calculate

% the area based on that radius

radius = input(‘Please enter the radius: ’);

area = pi * (radius^2);

% Print all variables in a sentence format

fprintf(‘For a circle with a radius of %.2f,’,radius)

fprintf(‘the area is %.2f\n’,area)

Executing the script produces the following output:

>> script2
Please enter the radius: 3.9
For a circle with a radius of 3.90, the area is 47.78

Notice that the output from the first two assignment statements is suppressed by
putting semicolons at the end. That is frequently done in scripts, so that the exact
format of what is displayed by the program is controlled by the fprintf functions.

Chapter 2 Introduction to MatLaB programming54

2.5 sCrIpts to produCe and
CustoMIze sIMpLe pLots
MATLAB has many graphing capabilities. In many
cases, customizing plots is desired and this is easiest to
accomplish by creating a script rather than typing one
command at a time in the Command Window. For that
reason, simple plots and how to customize them will be
introduced in this chapter on MATLAB programming.

Typing help will display the help topics that contain graph functions, includ-
ing graph2d and graph3d. Typing help graph2d would display some of the
two-dimensional graph functions, as well as functions to manipulate the axes
and to put labels and titles on the graphs.

2.5.1 the plot Function
For now, we’ll start with a very simple graph of one point using the plot function.

The following script, plotonepoint, plots one point. To do this, first values are
given for the x and y coordinates of the point in separate variables. The point is
then plotted using a red*. The plot is then customized by specifying the mini-
mum and maximum values on first the x- and then y-axis. Labels are then put
on the x-axis, the y-axis, and the graph itself using the function xlabel, ylabel,
and title. All this can be done from the Command Window, but it is much easier
to use a script. The following shows the contents of the script plotonepoint that
accomplishes this. The x-coordinate represents the time of day (e.g., 11am) and
the y-coordinate represents the temperature in degrees Fahrenheit at that time:

plotonepoint.m

% This is a really simple plot of just one point!

% Create coordinate variables and plot a red ‘*’

x = 11;

y = 48;

plot(x,y,‘r*’)

% Change the axes and label them

axis([9 12 35 55])

xlabel(‘Time’)

ylabel(‘Temperature’)

% Put a title on the plot

title(‘Time and Temp’)

praCtICe 2.3
Write a script to prompt the user for a character and
a number, and print the character in a field-width of
4 and the number left-justified in a field width of 5
with two decimal places. Test this by entering num-
bers with varying widths.

552.5 Scripts to Produce and Customize Simple Plots

In the call to the axis function, one vector is passed.
The first two values are the minimum and maximum
for the x-axis, and the last two are the minimum and
maximum for the y-axis. Executing this script brings
up a Figure Window with the plot (see Figure 2.1).

To be more general, the script could prompt the user
for the time and temperature, rather than just assign-
ing values. Then, the axis function could be used based
on whatever the values of x and y are, for example,

axis([x–2 x+2 y–10 y+10])

In order to plot more than one point, x and y vectors
are created to store the values of the (x,y) points. For
example, to plot the points

(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)

first an x vector is created that has the x values (since
they range from 1 to 6 in steps of 1, the colon operator
can be used) and then a y vector is created with the y values. This will create (in
the Command Window) x and y vectors and then plot them (see Figure 2.2).

>> x = 1:6;
>> y = [1 5 3 9 11 8];
>> plot(x,y)

Notice that the points are plotted with straight lines
drawn in between. Also, the axes are set up accord-
ing to the data; for example, the x values range from
1 to 6 and the y values from 1 to 11, so that is how
the axes are set up.

Also, notice that in this case the x values are the indi-
ces of the y vector (the y vector has six values in it, so
the indices iterate from 1 to 6). When this is the case,
it is not necessary to create the x vector. For example,

>> plot(y)

will plot exactly the same figure without using an x
vector.

9 9.5 10 10.5 11 11.5 12
35

40

45

50

55

Time

T
em

pe
ra

tu
re

Time and Temp

Figure 2.1
Plot of one data point.

praCtICe 2.4
Modify the script plotonepoint to prompt the user
for the time and temperature, and set the axes based
on these values.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

8

9

10

11

Figure 2.2
Plot of data points from
vectors.

Chapter 2 Introduction to MatLaB programming56

2.5.1.1 Customizing a Plot: Color, Line Types, Marker Types
Plots can be done in the Command Window, as shown here, if they are really
simple. However, many times it is desirable to customize the plot with labels,
titles, and such, so it makes more sense to do this in a script. Using the help
function for plot will show the many options for the line types, colors, and so
on. In the script plotonepoint, earlier, the string ‘r*’ specified a red star for the
point type. The possible colors are:

b blue
c cyan
g green
k black
m magenta
r red
y yellow

The plot symbols, or markers, that can be used are:

o circle
d diamond
h hexagram
p pentagram
+ plus
. point
s square
* star
v down

triangle
< left

triangle
> right

triangle
^ up triangle
x x-mark

Line types can also be specified by the following:

-- dashed
-. dash dot
: dotted
- solid

If no line type is specified, a solid line is drawn between the points, as seen in
the last example.

572.5 Scripts to Produce and Customize Simple Plots

2.5.2 simple related plot Functions
Other functions that are useful in customizing plots are clf, figure, hold, leg-
end, and grid. Brief descriptions of these functions are given here; use help to
find out more about them:

clf clears the Figure Window by removing everything from it.

figure creates a new, empty Figure Window when called without any
arguments. Calling it as figure(n) where n is an integer is a way of creat-
ing and maintaining multiple Figure Windows, and of referring to each
individually.

hold is a toggle that freezes the current graph in the Figure Window, so
that new plots will be superimposed on the current one. Just hold by itself
is a toggle, so calling this function once turns the hold on, and then the
next time turns it off. Alternatively, the commands hold on and hold off
can be used.

legend displays strings passed to it in a legend box in the Figure Window,
in order of the plots in the Figure Window.

grid displays grid lines on a graph. Called by itself, it is a toggle that turns
the grid lines on and off. Alternatively, the commands grid on and grid
off can be used.

Also, there are many plot types. We will see more in Chapter 10, but another
simple plot type is a bar chart.

For example, the following script creates two separate Figure Windows. First, it
clears the Figure Window. Then, it creates an x vector and two different y vec-
tors (y1 and y2). In the first Figure Window, it plots the y1 values using a bar
chart. In the second Figure Window, it plots the y1 values as black lines, puts
hold on so that the next graph will be superimposed, and plots the y2 values as
black o’s. It also puts a legend on this graph and uses a grid. Labels and titles
are omitted in this case since it is generic data.

plot2figs.m

% This creates 2 different plots, in 2 different

% Figure Windows, to demonstrate some plot features

clf

x = 1:5; % Not necessary

y1 = [2 11 6 9 3];

y2 = [4 5 8 6 2];

% Put a bar chart in Figure 1

(Continued)

Chapter 2 Introduction to MatLaB programming58

figure(1)

bar(x,y1)

% Put plots using different y values on one plot

% with a legend

figure(2)

plot(x,y1,‘k’)

hold on

plot(x,y2,‘ko’)

grid on

legend(‘y1’,‘y2’)

Running this script will produce two separate Figure Windows. If there aren’t
any other active Figure Windows, the first, which is the bar chart, will be in the
one titled in MATLAB Figure 1. The second will be in Figure 2. See Figure 2.3
for both plots.

Notice that the first and last points are on the axes,
which makes them difficult to see. That is why the axis
function is frequently used—to create space around
the points so that they are all visible.

The ability to pass a vector to a function and have
the function evaluate every element of the vector can

Figure 2.3
(A) Bar chart produced by script. (B) Plot produced by script, with a grid and legend.

1 2 3 4 5
0

2

4

6

8

10

12

A

1 1.5

B

2 2.5 3 3.5 4 4.5 5
2

3

4

5

6

7

8

9

10

11
y1
y2

praCtICe 2.5
Modify the script using the axis function so that all
points are easily seen.

592.6 Introduction to File Input/Output (Load and Save)

be very useful in creating plots. For example, the following script graphically
 displays the difference between the sin and cos functions:

sinncos.m

% This script plots sin(x) and cos(x) in the same Figure

% Window for values of x ranging from 0 to 2*pi

clf

x = 0: 2*pi/40: 2*pi;

y = sin(x);

plot(x,y,‘ro’)

hold on

y = cos(x);

plot(x,y,‘b+’)

legend(‘sin’, ‘cos’)

title(‘sin and cos on one graph’)

The script creates an x vector; iterating through all
the values from 0 to 2* in steps of 2* /40 gives
enough points to get a good graph. It then finds the
sine of each x value, and plots these points using
red o’s. The command hold on freezes this in the
Figure Window so the next plot will be superim-
posed. Next, it finds the cosine of each x value and
plots these points using blue +’s. The legend func-
tion creates a legend; the first string is paired with
the first plot, and the second string with the second
plot. Running this script produces the plot seen in
Figure 2.4.

2.6 IntroduCtIon to FILe
Input/output (LOAD and SAVe)
In many cases, input to a script will come from a data
file that has been created by another source. Also, it is
useful to be able to store output in an external file that
can be manipulated and/or printed later. In this section,
we will demonstrate how to read from an external data
file, and also how to write to an external data file.

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
sin and cos on one graph

sin
cos

Figure 2.4
Plot of sin and cos in one
Figure Window with a legend.

praCtICe 2.6
Write a script that plots exp(x) and log(x) for values
of x ranging from 0.5 to 2.5.

Chapter 2 Introduction to MatLaB programming60

There are basically three different operations, or modes, on files. Files can be:

NN Read from

NN Written to

NN Appended to

Writing to a file means writing to a file, from the beginning. Appending to a file
is also writing, but starting at the end of the file rather than the beginning. In
other words, appending to a file means adding to what was already there.

There are many different file types, which use different filename extensions.
For now, we will keep it simple and just work with .dat or .txt files when work-
ing with data or text files. There are several methods for reading from files and
writing to files; for now we will use the load function to read and the save func-
tion to write to files. More file types and functions for manipulating them will
be discussed in Chapter 8.

2.6.1 Writing data to a File
The save function can be used to write data from a matrix to a data file, or to
append to a data file. The format is:

save filename matrixvariablename –ascii

The -ascii qualifier is used when creating a text or data file. The following cre-
ates a matrix and then saves the values of the matrix variable to a data file
called testfile.dat:

>> mymat = rand(2,3)
mymat =

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

>> save testfile.dat mymat –ascii

This creates a file called testfile.dat that stores the numbers

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

The type command can be used to display the contents of the file; notice that
scientific notation is used:

>> type testfile.dat
4.5646767e–001 8.2140716e–001 6.1543235e–001
1.8503643e–002 4.4470336e–001 7.9193704e–001

Note: If the file already exists, the save function will overwrite it; save always
begins writing from the beginning of a file.

612.6 Introduction to File Input/Output (Load and Save)

2.6.2 appending data to a data File
Once a text file exists, data can be appended to it. The format is the same as pre-
viously, with the addition of the qualifier -append. For example, the following
creates a new random matrix and appends it to the file just created:

>> mymat = rand(3,3)
mymat =

0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

>> save testfile.dat mymat –ascii –append

This results in the file testfile.dat containing

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

Note: Although technically any size matrix could be appended to this data file,
in order to be able to read it back into a matrix later there would have to be the
same number of values on every row.

2.6.3 reading from a File
Once a file has been created (as previously), it can
be read into a matrix variable. If the file is a data file,
the load function will read from the file filename.ext
(e.g., the extension might be .dat) and create a matrix
with the same name as the file. For example, if the
data file testfile.dat had been created as shown in the
previous section, this would read from it:

>> clear
>> load testfile.dat
>> who
Your variables are:
testfile
>> testfile
testfile =

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

praCtICe 2.7
Prompt the user for the number of rows and columns
of a matrix, create a matrix with that many rows and
columns of random numbers, and write it to a file.

Chapter 2 Introduction to MatLaB programming62

Note: The load command works only if there are
the same number of values in each line, so that the
data can be stored in a matrix, and the save com-
mand only writes from a matrix to a file. If this is not
the case, lower-level file I/O functions must be used;
these will be discussed in Chapter 8.

2.6.3.1 Example: Load from a File and
Plot the Data
As an example, a file called timetemp.dat stores two
lines of data. The first line is the times of day, and
the second line is the recorded temperature at each
of those times. The first value of 0 for the time rep-
resents midnight. For example, the contents of the
file might be:

 0 3 6 9 12 15 18 21
55.5 52.4 52.6 55.7 75.6 77.7 70.3 66.6

The following script loads the data from the file into a matrix called timetemp.
It then separates the matrix into vectors for the time and temperature, and then
plots the data using black + symbols.

timetempprob.m

% This reads time and temperature data for an afternoon

% from a file and plots the data

load timetemp.dat

% The times are in the first row, temps in the second row

time = timetemp(1,:);

temp = timetemp(2,:);

% Plot the data and label the plot

plot(time,temp,‘k+’)

xlabel(‘Time’)

ylabel(‘Temperature’)

title(‘Temperatures one afternoon’)

Running the script produces the plot seen in Figure 2.5.

Notice that it is difficult to see the point at time 0 since it falls on the y-axis.
The axis function could be used to change the axes from the defaults shown
here.

0 5 10 15 20 25
50

55

60

65

70

75

80

Time

T
em

pe
ra

tu
re

Temperatures one afternoon

Figure 2.5
Plot of temperature data
from a file.

632.6 Introduction to File Input/Output (Load and Save)

praCtICe 2.8
The sales (in billions) for two separate divisions of
the XYZ Corporation for each of the four quarters of
2007 are stored in a file called salesfigs.dat:

1.2 1.4 1.8 1.3
2.2 2.5 1.7 2.9

1. Create this file (just type the numbers in
the editor, and Save As salesfigs.dat).

2. Load the data from the file into a matrix.

3. Write a script that will

– separate this matrix into two vectors

– create the plot seen in Figure 2.6
(which uses o’s and +’s as the plot
symbols):

1 1.5 2 2.5 3 3.5 4
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Quarter

S
al

es
 (

bi
lli

on
s)

XYZ Corporation Sales: 2007

Division 1
Division 2

Figure 2.6
Plot of sales data from file.

QuICK QuestIon!

Sometimes files are not in the format that is desired. For exam-
ple, a file expresults.dat has been created that has some exper-
imental results, but the order of the values is reversed in the file:

7 55.2
6 51.9
5 49.5
4 53.4
3 44.3
2 50.0
1 55.5

How could we create a new file that reverses the order?
answer:
We can load from this file into a matrix, use the flipud func-
tion to “flip” the matrix up-to-down, and then save this matrix
to a new file:

>> load expresults.dat
>> expresults
expresults =

7.0000 55.2000
6.0000 51.9000
5.0000 49.5000
4.0000 53.4000
3.0000 44.3000
2.0000 50.0000
1.0000 55.5000

>> correctorder = flipud(expresults)
correctorder =

1.0000 55.5000
2.0000 50.0000
3.0000 44.3000
4.0000 53.4000
5.0000 49.5000
6.0000 51.9000
7.0000 55.2000

>> save neworder.dat correctorder – ascii

Chapter 2 Introduction to MatLaB programming64

2.7 user-deFIned FunCtIons that return a
sIngLe VaLue
We have already seen the use of many functions in MATLAB. We have used
many built-in functions such as sin, fix, abs, double, and so on. In this section,
user-defined functions will be introduced. These are functions that the program-
mer defines, and then uses, in either the Command Window or in a script.

Functions can return different types of results. For now, we will concentrate on
the kind of function that calculates and returns a single result, much like built-
in functions such as sin and abs. Other types of functions will be introduced
in Chapter 5.

First, let us review some of what we already know about functions, including
the use of built-in functions. Although the use of these functions is straightfor-
ward by now, explanations will be given in some detail here in order to com-
pare and contrast the use of user-defined functions.

The length function is an example of a built-in function that calculates a single
value; it returns the length of a vector. As an example,

length(vec)

is an expression; it represents the number of elements in the vector vec. This
expression could be used in the Command Window or in a script. Typically,
the value returned from this expression might be assigned to a variable:

>> vec = 1:3:10;
>> lv = length(vec)
lv =

4

Alternatively, the length of the vector could be printed

>> fprintf(‘The length of the vector is %d\n’, length(vec))
The length of the vector is 4

The call to the length function consists of the name of the function, followed
by the argument in parentheses. This function takes the argument, and returns
a result. What happens when the call to the function is encountered is that con-
trol is passed to the function itself (in other words, the function begins execut-
ing). The argument(s) are also passed to the function. The function executes its
statements and does whatever it does (the actual contents of the built-in func-
tions are not generally known or seen by the programmer) in order to deter-
mine the number of elements in the vector. Since the function is calculating a
single value, this result is then returned, and it becomes the value of the expres-
sion. Control is also passed back to the expression that called it in the first

652.7 User-Defined Functions that Return a Single Value

place, which then continues (e.g., in the first example the value would then be
assigned to the variable lv, and in the second example the value was printed).

2.7.1 Function definitions
There are different ways to organize scripts and functions, but for now every
function that we write will be stored in a separate M-file, which is why they are
commonly called M-file functions.

A function in MATLAB that returns a single result consists of

NN The function header (the first line); this has

– the reserved word function

– since the function returns a result, the name of the output argument
followed by the assignment operator =

– the name of the function (Important: This should be the same as the
name of the M-file in which this function is stored in order to avoid
confusion)

– the input arguments in parentheses; these correspond to the argu-
ments that are passed to the function in the function call

NN A comment that describes what the function does (this is printed if help
is used)

NN The body of the function, which includes all statements and eventually
must assign a value to the output argument

The general form of a function definition for a function that calculates and
returns one value looks like this:

functionname.m

function outputargument = functionname(input arguments)

% Comment describing the function

Statements here; these must include assigning a value to
the output argument

For example, the following is a function called calcarea, which calculates and
returns the area of a circle; it is stored in a file called calcarea.m.

calcarea.m

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad * rad;

Chapter 2 Introduction to MatLaB programming66

A radius of a circle is passed to the function to the input argument rad;
the function calculates the area of this circle and stores it in the output argu-
ment area. In the function header, we have the reserved word function, then
the output argument area followed by the assignment operator =, then the
name of the function (the same as the name of the M-file), and then the input
argument rad, which is the radius. Since there is an output argument in the
function header, somewhere in the body of the function we must assign a value
to this output argument. This is how a value is returned from the function. In
this case, the function is simple and all we have to do is assign to the output
argument area the value of the built-in constant pi multiplied by the square of
the input argument rad.

The function can be displayed in the Command Window using the type
command.

>> type calcarea
function area = calcarea(rad)
% This function calculates the area of a circle
area = pi * rad * rad;

2.7.2 Calling a Function
Here is an example of a call to this function in which the value returned is
stored in the default variable ans:

>> calcarea(4)
ans =

50.2655

Technically, calling the function is done with the name of the file in which
the function resides. In order to avoid confusion, it is easiest to give the func-
tion the same name as the filename, so that is how it will be presented in this
book. In this example, the function name is calcarea and the name of the file is
calcarea.m. The result returned from this function can also be stored in a vari-
able in an assignment statement; the name could be the same as the name of
the output argument in the function itself but that is not necessary; for exam-
ple, either of these assignments would be fine:

>> area = calcarea(5)
area =

78.5398
>> myarea = calcarea(6)
myarea =

113.0973

The value returned from the calcarea function could also be printed using
either disp or fprintf:

672.7 User-Defined Functions that Return a Single Value

>> disp(calcarea(4))
50.2655

>> fprintf(‘The area is %.1f\n’, calcarea(4))
The area is 50.3

Notice that the printing is not done in the function itself; rather, the function
returns the area and then a print statement can print or display it.

Using help with the function displays the contiguous block of comments under
the function header:

>> help calcarea
This function calculates the area of a circle

2.7.3 Calling a user-defined Function from a script
Now, we’ll modify our script that prompts the user for the radius and calculates
the area of a circle, to call our function calcarea to calculate the area of the circle
rather than doing this in the script.

script3.m

% This script calculates the area of a circle

% It prompts the user for the radius

radius = input(‘Please enter the radius:’);

% It then calls our function to calculate the

% area and then prints the result

area = calcarea(radius);

fprintf(‘For a circle with a radius of %.2f,’,radius)

fprintf(‘the area is %.2f\n’,area)

So, the program consists of the script script3 and the function calcarea.

Running this will produce the following:

>> script3
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54

2.7.4 passing Multiple arguments
In many cases it is necessary to pass more than one argument to a function. For
example, the volume of a cone is given by

V = 1

3

 r2h

Chapter 2 Introduction to MatLaB programming68

praCtICe 2.10
For a project, we need some material
to form a rectangle. Write a function
calcrectarea that will receive the length
and width of a rectangle as input
arguments, and will return the area of
the rectangle. Call the function as shown
and store the result in a variable ra, and
then use the fprintf function to print
the amount of material required as an
integer.

>> ra = calcrectarea(3.1, 4.4)
ra =
 13.6400
>> fprintf(‘need %d sq in\n’,...
ceil(ra))
need 14 sq in

where r is the radius of the circular base and h is the height of the cone. Therefore, a
function that calculates the volume of a cone needs both the radius and the height:

conevol.m

function outarg = conevol(radius, height)

% Calculates the volume of a cone

outarg = (pi/3) * radius * radius * height;

Since the function has two input arguments in the function header, two val-
ues must be passed to the function when it is called. The order makes a dif-
ference. The first value that is passed to the function is stored in the first input
argument (in this case, radius), and the second argument in the function call is
passed to the second input argument in the function header.

This is very important: The arguments in the function
call must correspond one-to-one with the input argu-
ments in the function header.

Here is an example of calling this function. The result
returned from the function is simply stored in the
default variable ans.

>> conevol (4,6.1)
ans =
 102.2065

In the next example, the result is printed instead with
a format of two decimal places.

>> fprintf(‘The cone volume is %.2f\n’,...
conevol(3, 5.5))

The cone volume is 51.84

2.7.5 Functions with Local Variables
The functions we’ve seen so far have been very simple.
However, in many cases the calculations in a function are
more complicated, and may require the use of extra vari-
ables within the function; these are called local variables.

For example, a closed cylinder is being constructed of a
material that costs a dollar amount per square foot. We
will write a function that will calculate and return the
cost of the material, rounded up to the nearest square
foot, for a cylinder with a given radius and a given
height. The total surface area for the closed cylinder is

praCtICe 2.9
Write a script that will prompt the
user for the radius and height, call
the function conevol to calculate the
cone volume, and print the result in a
nice sentence format. So, the program
will consist of a script and the conevol
function that it calls.

69Summary

SA = 2 rh + 2 r2

For example, for a cylinder with a radius of 32 inches and a height of 73 inches,
and a cost per square foot of the material of $4.50, the calculation would be
given by the following algorithm:

NN Calculate the surface area SA = 2 * * 32 * 73 + 2 * * 32 * 32 inches
squared

NN Calculate the SA in square feet = SA/144

NN Calculate the total cost = SA in square feet * cost per square foot

The function includes local variables to store the intermediate results.

cylcost.m

function outcost = cylcost(radius, height, cost)

% Calculates the cost of constructing a closed

% cylinder

% The radius and height are in inches

% The cost is per square foot

% Calculate surface area in square inches

surf_area = 2 * pi * radius * height + 2 * pi * radius ^ 2;

% Convert surface area in square feet and round up

surf_areasf = ceil(surf_area/144);

% Calculate cost

outcost = surf_areasf * cost;

Here are examples of calling the function:

>> cylcost(32,73,4.50)
ans =

661.5000

>> fprintf(‘The cost would be $%.2f\n’, cylcost(32,73,4.50))
The cost would be $661.50

suMMary

Common pitfalls

NN Putting a space in a variable name

NN Spelling a variable name different ways in different places in a script or
function

Chapter 2 Introduction to MatLaB programming70

NN Forgetting to add the second ‘s’ argument to the input function when
character input is desired.

NN Not using the correct conversion character when printing

NN Confusing fprintf and disp—remember that only fprintf can format

programming style guidelines

NN Especially for longer scripts and functions, start by writing an algorithm.

NN Use comments to document scripts and functions:

– a block of contiguous comments at the top to describe a script

– a block of contiguous comments under the function header for
functions

– comments throughout any M-file (script or function) to describe each
section

NN Make sure that the H1 comment line has useful information.

NN Use mnemonic identifier names (names that make sense, e.g., radius
instead of xyz) for variable names and for filenames.

NN Make all output easy to read and informative.

NN Put a newline character at the end of every string printed by fprintf so
that the prompt appears on the line below.

NN Put informative labels on the x- and y-axes and a title on all plots.

NN Keep functions short; normally not longer than one page in length.

NN Suppress the output from all assignment statements in a function.

NN Functions that return a value do not normally print the value; it should
simply be returned by the function.

MATLAB Functions and Commands

type
input
disp
fprintf

plot
xlabel
ylabel
title

axis
clf
figure
hold

legend
grid
bar

load
save

MATLAB Operators

comment %

71exercises

exercises
1. Write a simple script that will calculate the volume of a hollow sphere that is ,

3 34
()

3 0 ir r
p

- where ri is the inner radius and ro is the outer radius. Assign a value to a

variable for the inner radius, and also assign a value to another variable for the outer
radius. Then, using these variables, assign the volume to a third variable. Include
comments in the script.

2. The atomic weight is the weight of an atom of a chemical element. For example, the
atomic weight of oxygen is 15.9994 and the atomic weight of hydrogen is 1.0079.
Write a script that will calculate the molecular weight of hydrogen peroxide, which
consists of two atoms of hydrogen and two atoms of oxygen. Include comments in
the script. Use help to view the comment in your script.

3. Write an input statement that will prompt the user for a string. Then, find the
length of the string.

4. Write an input statement that will prompt the user for a real number, and store it
in a variable. Then, use the fprintf function to print the value of this variable using
two decimal places.

5. The input function can be used to enter a vector; for example,

>> vec = input(‘Enter a vector:’)
Enter a vector: 4:7
vec =

4 5 6 7
 Experiment with this, and find out how the user can enter a matrix.

6. Experiment, in the Command Window, with using the fprintf function for real
numbers. Make a note of what happens for each. Use fprintf to print the real
number 12345.6789

NN without specifying any field width
NN in a field width of 10 with four decimal places
NN in a field width of 10 with two decimal places
NN in a field width of 6 with four decimal places
NN in a field width of 2 with four decimal places

7. Experiment, in the Command Window, with using the fprintf function for integers.
Make a note of what happens for each. Use fprintf to print the integer 12345

NN without specifying any field width
NN in a field width of 5
NN in a field width of 8
NN in a field width of 3

8. Create the following variables:

x = 12.34;
y = 4.56;

Chapter 2 Introduction to MatLaB programming72

 Then, fill in the fprintf statements using these variables that will accomplish the
following:

>> fprintf(
x is 12.340
>> fprintf(
x is 12
>> fprintf(
y is 4.6
>> fprintf(
y is 4.6 !

 9. Write a script to prompt the user for the length and width of a rectangle, and print
its area with two decimal places. Put comments in the script.

 10. Write a script called echoname that will prompt the user for his or her name, and
then echo print the name in a sentence in the following format (use %s to print it):

>> echoname
What is your name? Susan
Wow, your name is Susan!

 11. Write a script called echostring that will prompt the user for a string, and will echo
print the string in quotes:

>> echostring
Enter your string: hi there
Your string was: ‘hi there’

 12. Write a script that will prompt the user for an angle in degrees. It will then
calculate the angle in radians, and then print the result. Note: radians = 180 °.

 13. On average, people in a region spend 8 to 10% of their income on food. Write a
script that will prompt the user for an annual income. It will then print the range
that would typically be spent on food annually. Also, print a monthly range.

 14. Wing loading, which is the airplane weight divided by the wing area, is an
important design factor in aeronautical engineering. Write a script that will prompt
the user for the weight of the aircraft in kilograms, and the wing area in meters
squared, and will calculate and print the wing loading of the aircraft in kg/m2.

 15. Write a script that assigns values for the x-coordinate and then y-coordinate of a
point, and then plots this using a green +.

 16. Plot exp(x) for values of x ranging from –2 to 2 in steps of 0.1. Put an appropriate
title on the plot, and label the axes.

 17. Create a vector x with values ranging from 1 to 100 in steps of 5. Create a vector
y that is the square root of each value in x. Plot these points. Now, use the bar
function instead of plot to get a bar chart instead.

 18. Create a y vector that stores random integers in the range from 1 to 100. Create an
x vector that iterates from 1 to the length of the y vector. Experiment with the plot
function using different colors, line types, and plot symbols.

73exercises

 19. Plot sin (x) for x values ranging from 0 to (in separate Figure Windows):

NN using 10 points in this range
NN using 100 points in this range

 20. Atmospheric properties such as temperature, air density, and air pressure are
important in aviation. Create a file that stores temperatures in degrees Kelvin at
various altitudes. The altitudes are in the first column and the temperatures in the
second. For example, it may look like this:

1000 288
2000 281
3000 269
5000 256
10000 223

 Write a script that will load this data into a matrix, separate it into vectors, and
then plot the data with appropriate axis labels and a title.

 21. Create a 3 × 6 matrix of random integers, each in the range from 50 to 100. Write
this to a file called randfile.dat. Then, create a new matrix of random integers, but
this time make it a 2 × 6 matrix of random integers, each in the range from 50 to
100. Append this matrix to the original file. Then, read the file in (which will be to a
variable called randfile) just to make sure that it worked!

 22. Create a file called testtan.dat that has two lines, with three real numbers on
each line (some negative, some positive, in the range from –1 to 3). The file
can be created from the editor, or saved from a matrix. Then, load the file into
a matrix and calculate the tangent of every element in the resulting matrix.

 23. A file called hightemp.dat was created some time ago that stores, on every line,
a year followed by the high temperature at a specific site for each month of that
year. For example, the file might look like this:

89 42 49 55 72 63 68 77 82 76 67
90 45 50 56 59 62 68 75 77 75 66
91 44 43 60 60 60 65 69 74 70 70

etc.

 As can be seen, only two digits were used for the year (which was common in the
last century). Write a script that will read this file into a matrix, create a new matrix
which stores the years correctly as 19xx, and then write this to a new file called
y2ktemp.dat. (Hint: Add 1900 to the entire first column of the matrix.) This file, for
example, would look like this:

1989 42 49 55 72 63 68 77 82 76 67
1990 45 50 56 59 62 68 75 77 75 66
1991 44 43 60 60 60 65 69 74 70 70

etc.

Chapter 2 Introduction to MatLaB programming74

 24. Write a function calcrectarea that will calculate and return the area of a rectangle.
Pass the length and width to the function as input arguments.

 25. Write a function degf_to_K that will convert a temperature from degrees
Fahrenheit (F) to Kelvin (K). It will receive one input argument that is degrees
Fahrenheit, and it will return the temperature in K. Here are conversions from F to
Celsius and from C to K:

C = (F – 32) * 5/9
K = C + 273.15

 Here are examples of calling this function:

>> ktemp = degf_to_k(33.3)
ktemp =

273.8722
>> fprintf(‘%.2f degrees F is %.2f degrees K\n’, −15.3, ...
degf_to_k(−15.3))
−15.30 degrees F is 246.87 degrees K

 26. The hyperbolic sine for an argument x is defined as:

hyperbolicsine(x) = (ex – e−x)/ 2

 Write a function hypsin to implement this. The function should receive one
input argument x and return the value of the hyperbolic sine of x. Here are some
examples of using the function:

>> hypsin(2.1)
ans =
4.0219
>> help hypsin

Calculates the hyperbolic sine of x
>> fprintf(‘The hyperbolic sine of %.1f is %.1f\n’,...
1.9,hypsin(1.9))
The hyperbolic sine of 1.9 is 3.3

 27. The velocity of an aircraft typically is given in either miles/hour or meters/second.
Write a function that will receive one input argument that is the velocity of an
airplane in miles per hour and will return the velocity in meters per second. The
relevant conversion factors are: one hour = 3600 seconds, one mile = 5280 feet, and
one foot = .3048 meters.

 28. If a certain amount of money (called the principal P) is invested in a bank account,
earning an interest rate i compounded annually, the total amount of money Tn that
will be in the account after n years is given by:

 Tn = P(1+i)n

 Write a function that will receive input arguments for P, i, and n, and will return the
total amount of money Tn. Also, give an example of calling the function.

75exercises

 29. The Body Mass Index, or BMI, for a person is defined, using US units, as

 BMI = 703*
weight

 height2

 where the weight is in pounds and the height is in total inches. Write a function
called findbmi that would receive the weight and height as input arguments, and
would return the BMI. For example, to find the BMI for a person who weighs 170
pounds and is 5 11 tall (so 71 inches tall), here are two examples of function calls:

>> findbmi(170,71)
ans =

23.7076
>> bmi = findbmi(170,71)
bmi =

23.7076

 30. The velocity of a moving fluid can be found from the difference between the total
and static pressures Pt and Ps. For water, this is given by V = 1.016 Pt−Ps. Write a
function that will receive as input arguments the total and static pressure and will
return the velocity of the water.

 31. For a project, some biomedical engineering students are designing a device that
will monitor a person’s heart rate while on a treadmill. The device will let the
subject know when the target heart rate has been reached. A simple calculation of
the target heart rate (THR) for a moderately active person is

 THR = (220−A)*.6

 where A is the person’s age. Write a function that will calculate and return the
THR.

 32. An approximation for a factorial can be found using Stirling’s formula:

 Write a function to implement this, passing the value of n as an argument.
 33. The conversion depends on the temperature and other factors, but an

approximation is that 1 inch of rain is equivalent to 6.5 inches of snow. Write a
script that prompts the user for the number of inches of rain, calls a function to
return the equivalent amount of snow, and prints this result. Write the function
also!

 34. Write a function called pickone that will receive one input argument x, which is a
vector, and will return one random element from the vector. For example,

>> pickone(4:7)
ans =

5
>> disp(pickone(−2:0))

!
n

nn
e
æ ö
ç ÷
è ø

» 2pn

Chapter 2 Introduction to MatLaB programming76

1 1.5 2 2.5 3 3.5 4 4.5 5
600

700

800

900

1000

1100

1200

1300

Quarter

Company Costs and Sales

Costs
Sales

Figure 2.7
Plot of Cost and Sales data.

−1
>> help pickone
pickone(x) returns a random element from vector x

 35. A function can return a vector as a result. Write a function vecout that will receive
one integer argument and will return a vector that increments from the value of
the input argument to its value plus 5, using the colon operator. For example,

>> vecout(4)
ans =

4 5 6 7 8 9

 36. If the lengths of two sides of a triangle and the angle between them are known,
the length of the third side can be calculated. Given the lengths of two sides (b
and c) of a triangle, and the angle between them in degrees, the third side a is
calculated as:

 a2 = b2 + c2 − 2b c cos()

 Write a script thirdside that will prompt the user and read in values for b, c, and
(in degrees), and then calculate and print the value of a with three decimal places.
(note: To convert an angle from degrees to radians, multiply the angle by /180.)
The format of the output from the script should look exactly like this:

>> thirdside
Enter the first side: 2.2
Enter the second side: 4.4
Enter the angle between them: 50
The third side is 3.429

For more practice, write a function to calculate the third
side, so the script will call this function.
 37. A part is being turned on a lathe. The diameter of

the part is supposed to be 20000 mm. The diameter
is measured every 10 minutes and the results are
stored in a file called partdiam.dat. Create a data
file to simulate this. The file will store the time in
minutes and the diameter at each time. Plot the
data.

 38. A file called costssales.dat stores for a company
some cost and sales figures for the last n quarters
(n is not defined ahead of time). The costs are in the
first column, and the sales are in the second column.
For example, if five quarters were represented, there
would be five lines in the file and it might look like
this:

77exercises

1100 800
1233 650
1111 1001
1222 1300
 999 1221

Write a script called salescosts that will read the data from this file into a matrix.
When the script is executed, it will do three things: (1) It will print how many
quarters were represented in the file, for example,

>> salescosts
There were 5 quarters in the file

(2) It will plot the costs using black o’s and sales using black *’s in a Figure Window
with a legend (using default axes) as seen in Figure 2.7.

(3) It will write the data to a new file called newfile.dat in a different order. The sales
will be the first row, and the costs will be the second row. For example, if the file is as
shown, the resulting file will store:

 800 650 1001 1300 1221
1100 1233 1111 1222 999

It should not be assumed that the number of lines in the file is known.

This page intentionally left blank

79

Contents

© 2009, 2003,1999 Elsevier Inc.

3.1 Relational
Expressions 80

3.2 The If
Statement 82

3.3 The If-else
Statement 87

3.4 Nested If-else
Statements 88

3.5 The Switch
Statement 93

3.6 The Menu
Function 96

3.7 The is Functions in
MATLAB 98

selection statement

branching statement

condition

Boolean expression

relational expression

logical expression

action

temporary variable

logical true

logical false

relational operator

logical operator

truth table

nesting if-else statement

cascading if-else

statement

is function

Key Words

Chapter 3

Selection Statements

So far, in the scripts and functions we’ve seen, every statement was executed
in sequence. That is not always desired, and in this section we’ll see how to
make choices as to whether statements are executed or not, and how to choose
between or among them. The statements that accomplish this are called selec-
tion or branching statements.

The MATLAB® software has two basic statements that allow choices: the if state-
ment and the switch statement. The if statement has optional else and elseif
clauses for branching. The if statement uses expressions that are logically true
or false. These expressions use relational and logical operators. MATLAB also
has is functions that ask whether something is true or false; these functions
will be covered at the end of this chapter.

Chapter 3 selection statements80

3.1 relatIonal expressIons
Conditions in if statements use expressions that are conceptually, or logically,
either true or false. These expressions are called relational expressions, or some-
times Boolean or logical expressions. These expressions can use both relational
operators, which relate two expressions of compatible types, and logical opera-
tors, which operate on logical operands.

The relational operators in MATLAB are:

Operator Meaning

> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
= inequality

All concepts should be familiar, although the operators used may be different
from those used in other programming languages, or in mathematics classes.
In particular, it is important to note that the operator for equality is two con-
secutive equal signs, not a single equal sign (recall that the single equal sign is
the assignment operator).

For numerical operands, the use of these operators is straightforward. For exam-
ple, 3 < 5 means “3 less than 5,” which is conceptually a true expression. However,
in MATLAB, as in many programming languages, logical true is represented by
the integer 1, and logical false is represented by the integer 0. So, the expression
3 < 5 actually has the value 1 in MATLAB. Displaying the result of expressions
like this in the Command Window demonstrates the values of the expressions.

>> 3 < 5
ans =

1
>> 9 < 2
ans =

0

However, in the Workspace Window, the value shown for the result of these
expressions would be true or false. The type of the result is logical.

Mathematical operations could be performed on the resulting 1 or 0.

>> 5 < 7
ans =

1

813.1 Relational Expressions

>> ans + 3
ans =

4

Comparing characters, for example ‘a’ < ‘c’, is also possible. Characters are
compared using their ASCII equivalent values. So, ‘a’ < ‘c ’ is conceptually a
true expression, because the character ‘a’ comes before the character ‘c’.

>> ‘a’ < ‘c’
ans =

1

The logical operators are:

Operator Meaning

ı ı or for scalars
&& and for scalars
~ not

All logical operators operate on logical or Boolean operands. The not operator
is a unary operator; the others are binary. The not operator will take a Boolean
expression, which is conceptually true or false, and give the opposite value. For
example, (3 < 5) is conceptually false since (3 < 5) is true. The or operator has
two Boolean expressions as operands. The result is true if either or both of the
operands are true, and false only if both operands are false. The and operator
also operates on two Boolean operands. The result of an and expression is true
only if both operands are true; it is false if either or both are false.

In addition to these logical operators, MATLAB also has a function xor, which
is the exclusive or function. It returns logical true if one (and only one) of the
arguments is true. For example, in the following only the first argument is true,
so the result is true:

>> xor(3 < 5, ‘a’ > ‘c’)
ans =

1

In this example, both arguments are true so the result is false:

>> xor(3 < 5, ‘a’ < ‘c’)
ans =

0

Given the logical values of true and false in variables x and y, the truth table (see
Table 3.1) shows how the logical operators work for all combinations. Note that
the logical operators are commutative (e.g., x || y is the same as y || x).

Chapter 3 selection statements82

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 3.2 shows the rules for the operators that have been covered
so far, in the order of precedence.

3.2 the IF stateMent
The if statement chooses whether or not another statement, or group of state-
ments, is executed. The general form of the if statement is:

if condition
 action
end

table 3.2 Operator Precedence Rules

Operators Precedence

parentheses () highest
transpose and power’, ^
unary negation (−), not (~)
multiplication, division *,/,\
addition, subtraction +, −
colon operator:
relational <, <=, >, >=, ==, ~=
and &&
or | |
assignment = lowest

QuICK QuestIon!

Assume that there is a variable x that has been initialized.
What would the value of the expression

3< x < 5
be if the value of x is 4? What if the value of x is 7?
answer: The value of this expression will always be logical
true, or 1, regardless of the value of the variable x. Although
this is a valid expression, it is probably not what was logi-
cally intended. Expressions are evaluated from left to right.
So, first the expression 3 < x will be evaluated. There are only

two possibilities: either this will be conceptually true or false—
which means that either the expression will have the value 1 or
0. Then, the rest of the expression will be evaluated, which will
be either 1 < 5 or 0 < 5. Both of these expressions are concep-
tually true. So, the value of x does not matter: the expression 3
< x < 5 would be true regardless of the value of the variable x.
This is a logical error; it would not enforce the desired range. If
we wanted an expression that was logically true only if x was
in the range from 3 to 5, we could write 3 < x && x < 5.

table 3.1 Truth Table for Logical Operators

x y x x || y x && y xor(x,y)

true true false true true false
true false false true false true
false false true false false false

833.2 The If Statement

A condition is a relational expression that is con-
ceptually, or logically, either true or false. The
action is a statement, or a group of statements,
that will be executed if the condition is true. When
the if statement is executed, first the condition is
evaluated. If the value of the condition is concep-
tually true, the action will be executed, and if not,
the action will not be executed. The action can
be any number of statements until the reserved
word end; the action is naturally bracketed by the
reserved words if and end. (Note: This is different
from the end that is used as an index into a vector
or matrix.)

For example, the following if statement checks to see
whether the value of a variable is negative. If it is, the value is changed to a
positive number by using the absolute value function; otherwise nothing is
changed.

if num < 0
num = abs(num)

end

If statements can be entered in the Command Window, although they generally
make more sense in scripts or functions. In the Command Window, the if line
would be entered, then the Enter key, then the action, the Enter key, and finally
end and Enter; the results will immediately follow. For example, the previous
if statement is shown twice here. Notice that the output from the assignment
is not suppressed, so the result of the action will be shown if the action is exe-
cuted. The first time the value of the variable is negative so the action is executed
and the variable is modified, but in the second case the variable is positive so
the action is skipped.

>> num = −4;
>> if num < 0

num = abs(num)
end
num =

4
>> num = 5;
>> if num < 0

num = abs(num)
end
>>

praCtICe 3.1
Think about what would be produced by
the following expressions, and then type
them to verify your answers.

4 > 3 + 1
‘e’ == ‘d’ + 1
3 < 9 – 2
(3 < 9) – 2
4 == 3 + 1 && ‘d’ > ‘c’
3 >= 2 || ‘x’ == ‘y’
xor(3 >= 2,‘x’ == ‘y’)
xor(3 >= 2,‘x’ ~= ‘y’)

Chapter 3 selection statements84

This may be used, for example, to make sure that the square root function is
not used on a negative number. The following script prompts the user for a
number, and prints the square root. If the user enters a negative number, the if
statement changes it to positive before taking the square root.

sqrtifexamp.m

% Prompt the user for a number and print its sqrt

num = input(‘Please enter a number: ’);

% If the user entered a negative number, change it

if num < 0

num = abs(num);

end

fprintf(‘The sqrt of %.1f is %.1f\n’,num,sqrt(num))

Here are two examples of running this script:

>> sqrtifexamp
Please enter a number: −4.2
The sqrt of 4.2 is 2.0

>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

In this case, the action of the if statement was a single assignment statement.
The action can be any number of valid statements. For example, we may
wish to print a note to the user to say that the number entered was being
changed.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt

num = input(‘Please enter a number: ’);

% If the user entered a negative number, tell

% the user and change it

if num < 0

disp(‘OK, we’’ll use the absolute value’)

num = abs(num);

end

fprintf(‘The sqrt of %.1f is %.1f\n’,num,sqrt(num))

853.2 The If Statement

>> sqrtifexampii
Please enter a number: −25
OK, we’ll use the absolute value
The sqrt of 25.0 is 5.0

Notice the use of two single quotes in the disp state-
ment in order to print one single quote.

praCtICe 3.2
Write an if statement that would print
“No overtime for you!” if the value of a
variable hours is less than 40. Test the if
statement for values of hours both less
than and greater than 40.

QuICK QuestIon!

Let’s say that we want to create a vector of increasing values
from mymin to mymax. We will write a function createvec that
will receive two input arguments, mymin and mymax, and will
return a vector with values from mymin to mymax in steps of 1.
First, we would make sure that the value of mymin is less than
the value of mymax. If not, we would need to exchange their val-
ues before creating the vector. How would we accomplish this?
answer: To exchange values, a third, temporary variable is
required. For example, let’s say that we have two variables a
and b, storing the values:

a = 3;
b = 5;

To exchange values, we could not just assign the value of b
to a, as follows:

a = b;

If that was done, then the value of a (3), is lost! Instead, we
need to assign the value of a first to a temporary variable so
that the value is not lost. The algorithm would be:

■■ Assign the value of a to temp
■■ Assign the value of b to a
■■ Assign the value of temp to b

>> temp = a;
>> a = b
a =
 5
>> b = temp
b =
 3

Now, for the function: An if statement is used to determine
whether or not the exchange is necessary.

createvec.m

function outvec = createvec(mymin, mymax)

% Create a vector that iterates from mymin to mymax

% If the minimum isn’t smaller than the maximum,

% exchange the values using a temporary variable

if mymin > mymax

 temp = mymin;

 mymin = mymax;

 mymax = temp;

end

% Use the colon operator to create the vector

outvec = mymin:mymax;

(Continued)

Chapter 3 selection statements86

3.2.1 representing logical true and False
It has been stated that expressions that are conceptually true actually have the
integer value of 1, and expressions that are conceptually false actually have
the integer value of 0. Representing the concepts of logical true and false in
MATLAB is slightly different: the concept of false is represented by the integer
value of 0, but the concept of true can be represented by any nonzero value
(not just the integer 1). This can lead to some strange Boolean expressions. For
example, consider the following if statement:

>> if 5
disp(‘Yes, this is true!’)

end
Yes, this is true!

Since 5 is a nonzero value, it is a way of saying true. Therefore, when this
Boolean expression is evaluated, it will be true, so the disp function will be
executed and “Yes, this is true” is displayed. Of course, this is a pretty bizarre if
statement, one that hopefully would not ever be encountered!

However, a simple mistake in an expression can lead to this kind of result. For
example, let’s say that the user is prompted for a choice of Y or N for a yes/no
question:

letter = input(‘Choice (Y/N): ’,‘s’);

In a script we might want to execute a particular action if the user responded
with ‘Y’. Most scripts would allow the user to enter either lower- or uppercase
(e.g., either ‘y’ or ‘Y’) to indicate yes. The proper expression that would return
true if the value of letter was ‘y’ or ‘Y’ would be

letter == ‘y’ || letter == ‘Y’

However, if by mistake this was written as:

letter == ‘y’ || ‘Y’

this expression would always be true, regardless of the value of the variable
 letter. This is because ‘Y’ is a nonzero value, so it is a true expression. The first
part of the expression may be false, but since the second expression is true the
entire expression would be true.

Here are examples of calling the function:

>> createvec(4,6)
ans =
 4 5 6

>> createvec(7,3)
ans =
 3 4 5 6 7

873.3 The If-else Statement

3.3 the IF-ELSE stateMent
The if statement chooses whether an action is executed or not. Choosing
between two actions, or choosing from several actions, is accomplished using
if-else, nested if, and switch statements.

The if-else statement is used to choose between two statements, or sets of state-
ments. The general form is:

if condition
action1

else
action2

end

First, the condition is evaluated. If it is conceptually
true, then the set of statements designated as action1
is executed, and that is it for the if-else statement. If
instead the condition is conceptually false, the second
set of statements designated as action2 is executed, and
that’s it. The first set of statements is called the action
of the if clause; it is what will be executed if the expres-
sion is true. The second set of statements is called the
action of the else clause; it is what will be executed if
the expression is false. One of these actions, and only
one, will be executed—which one depends on the
value of the condition.

For example, to determine and print whether or not a
random number in the range from 0 to 1 is less than
0.5, an if-else statement could be used:

if rand < 0.5
disp(‘It was less than .5!’)

else
disp(‘It was not less than .5!’)

end

One application of an if-else statement is to check for
errors in the inputs to a script. For example, an earlier
script prompted the user for a radius, and then used
that to calculate the area of a circle. However, it did
not check to make sure that the radius was valid (e.g.,
a positive number). Here is a modified script that
checks the radius:

praCtICe 3.3
Write a script printsindegorrad that will:

■■ Prompt the user for an angle.

■■ Prompt the user for (r)adians or (d)
egrees, with radians as the default.

■■ Use the sind function to get the sine
of the angle in degrees if the user
entered ‘d’; otherwise, use the sin
function. Which sine function to use
will be based solely on whether the
user entered a ‘d’ or not: a ‘d’ means
degrees, so sind is used; otherwise,
for any other character the default of
radians is assumed so sin is used.

■■ Print the result.

Here are examples of running the script:

>> printsindegorrad
Enter the angle: 45
(r)adians (the default) or
(d)egrees: d
The sin is 0.71

>> printsindegorrad
Enter the angle: pi
(r)adians (the default) or
(d)egrees: r
The sin is 0.00

Chapter 3 selection statements88

checkradius.m

% This script calculates the area of a circle

% It error-checks the user’s radius

radius = input(‘Please enter the radius: ’);

if radius <= 0

 fprintf(‘Sorry; %.2f is not a valid radius\n’,radius)

else

 area = calcarea(radius);

 fprintf(‘For a circle with a radius of %.2f,’,radius)

 fprintf(‘the area is %.2f\n’,area)

end

Examples of running this script when the user enters invalid and then valid
radii are shown here:

>> checkradius
Please enter the radius: −4
Sorry; −4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions: printing an
error message, or actually using the radius to calculate the area, and then print-
ing out the result. Notice that the action of the if clause is a single statement,
whereas the action of the else clause is a group of three statements.

3.4 nested IF-ELSE stateMents
The if-else statement is used to choose between two statements. In order to
choose from more than two statements, the if-else statements can be nested,
one inside of another. For example, consider implementing the following con-
tinuous mathematical function y = f(x):

y = 1 for x < −1
y = x2 for −1 ≤ x ≤ 2
y = 4 for x > 2

The value of y is based on the value of x, which could be in one of three pos-
sible ranges. Choosing which range could be accomplished with three separate
if statements, as follows:

893.4 Nested If-else Statements

if x < −1
 y = 1;
end
if x > = −1 && x < = 2
 y = x^2;
end
if x > 2
 y = 4;
end

Since the three possibilities are mutually exclusive, the value of y can be
determined by using three separate if statements. However, this is not very
efficient code: all three Boolean expressions must be evaluated, regardless of
the range in which x falls. For example, if x is less than –1, the first expres-
sion is true and 1 would be assigned to y. However, the two expressions in
the next two if statements are still evaluated. Instead of writing it this way,
the expressions can be nested so that the statement ends when an expression
is found to be true:

if x < −1
 y = 1;
else
 % If we are here, x must be > = −1
 % Use an if-else statement to choose
 % between the two remaining ranges
 if x > = −1 && x < = 2

 y = x^2;
 else

 % No need to check
 % If we are here, x must be > 2
 y = 4;

 end
end

By using a nested if-else to choose from among the three possibilities, not all
conditions must be tested as they were in the previous example. In this case, if
x is less than –1, the statement to assign 1 to y is executed, and the if-else state-
ment is completed so no other conditions are tested. If, however, x is not less
than –1, then the else clause is executed. If the else clause is executed, then
we already know that x is greater than or equal to –1 so that part does not
need to be tested. Instead, there are only two remaining possibilities: either x
is less than or equal to 2, or it is greater than 2. An if-else statement is used to
choose between those two possibilities. So, the action of the else clause was
another if-else statement. Although it is long, this is one if-else statement,
a nested if-else statement. The actions are indented to show the structure.

Chapter 3 selection statements90

Nesting if-else statements in this way can be used to choose from among three,
four, five, six, or more options—the possibilities are practically endless!

This is actually an example of a particular kind of nested if-else called a cascad-
ing if-else statement. In this type of nested if-else statement, the conditions
and actions cascade in a stair-like pattern.

the Elseif Clause

the programming Concept
In most programming languages, choosing from multiple options means
using nested if-else statements. However, MATLAB has another method of
accomplishing this, using the elseif clause.

the efficient Method
To choose from among more than two actions, the elseif clause is used. For
example, if there are n choices (where n > 3 in this example), the following
general form would be used:

if condition1
 action1
elseif condition2
 action2
elseif condition3
 action3
% etc: there can be many of these
else
 actionn % the nth action
end

The actions of the if, elseif, and else clauses are naturally bracketed by the
reserved words if, elseif, else, and end.
For example, the previous example could be written using the elseif clause
rather than nesting if-else statements:

if x < −1
 y = 1;
elseif x > = −1 && x < = 2
 y = x^2;
else
 y = 4;
end

So, there are three ways of accomplishing this task: using three separate if
statements, using nested if-else statements, and using an if statement with
elseif clauses, which is the simplest.

913.4 Nested If-else Statements

This could be implemented in a function that receives a value of x and returns
the corresponding value of y:

calcy.m

function y = calcy(x)

% This function calculates y based on x:

% y = 1 for x < −1

% y = x2 for −1 ≤ x ≤ 2

% y = 4 for x > 2

if x < −1

 y = 1;

elseif x >= −1 && x <=2

 y = x^2;

else

 y = 4;

end

>> x = 1.1;
>> y = calcy(x)
y =
 1.2100

QuICK QuestIon!

How could you write a function to determine whether an input
argument is a scalar, a vector, or a matrix?
answer: To do this, the size function can be used on the
input argument. If both the number of rows and columns is
equal to 1, then the input argument is a scalar. If, on the other

hand, only one dimension is 1, the input argument is a vector
(either a row or column vector). If neither dimension is 1, the
input argument is a matrix. These three options can be tested
using an if-else statement. In this example, the word ‘scalar’,
‘vector’, or ‘matrix’ is returned from the function.

findargtype.m

function outtype = findargtype(inputarg)

% This function determines whether the input

% argument is a scalar, vector, or matrix

[r c] = size(inputarg);

if r == 1 && c == 1

(Continued)

Chapter 3 selection statements92

Another example demonstrates choosing from more
than just a few options. The following function receives
an integer quiz grade, which should be in the range
from 0 to 10. The program then returns a correspond-
ing letter grade, according to the following scheme: a
9 or 10 is an ‘A’, an 8 is a ‘B’, a 7 is a ‘C’, a 6 is a ‘D’, and
anything below that is an ‘F’. Since the possibilities are

mutually exclusive, we could implement the grading scheme using separate
if statements. However, it is more efficient to have one if-else statement with
multiple elseif clauses. Also, the function returns the value ‘X’ if the quiz grade
is not valid. The function does assume that the input is an integer.

letgrade.m

function grade = letgrade(quiz)

% This function returns the letter grade corresponding

% to the integer quiz grade argument

% First, error-check

if quiz < 0 || quiz > 10

 grade = ‘X’;

% If here, it is valid so figure out the

% corresponding letter grade

elseif quiz == 9 || quiz == 10

praCtICe 3.4
Modify the function findargtype to return
either ‘scalar’, ‘row vector’, ‘column
vector’, or ‘matrix’, depending on the
input argument.

 outtype = ‘scalar’;

elseif r == 1 || c == 1

 outtype = ‘vector’;

else

 outtype = ‘matrix’;

end

Notice that there is no need to check for the last case: if the
input argument isn’t a scalar or a vector, it must be a matrix!

Here are examples of calling this function:

>> findargtype(33)
ans =
scalar

>> findargtype(2:5)
ans =
vector
>> findargtype(randint(2,3))
ans =
matrix

(Continued)

933.5 The Switch Statement

 grade = ‘A’;

elseif quiz == 8

 grade = ‘B’;

elseif quiz == 7

 grade = ‘C’;

elseif quiz == 6

 grade = ‘D’;

else

 grade = ‘F’;

end

Here are three examples of calling this function:

>> quiz = 8;
>> lettergrade = letgrade(quiz)
lettergrade =
B

>> quiz = 4;
>> letgrade(quiz)
ans =
F

>> quiz = 22;
>> lg = letgrade(quiz)
lg =
X

In the part of this if statement that chooses the appropriate letter grade to
return, all the Boolean expressions are testing the value of the variable quiz to
see if it is equal to several possible values, in sequence (first 9 or 10, then 8,
then 7, etc.). This part can be replaced by a switch statement.

3.5 the sWItCh stateMent
A switch statement can often be used in place of a nested if-else or an if state-
ment with many elseif clauses. Switch statements are used when an expression
is tested to see whether it is equal to one of several possible values.

The general form of the switch statement is:

switch switch_expression
 case caseexp1
 action1

Chapter 3 selection statements94

 case caseexp2
 action2
 case caseexp3
 action3
 % etc: there can be many of these
 otherwise
 actionn
end

The switch statement starts with the reserved word switch, and ends with
the reserved word end. The switch_expression is compared, in sequence, to
the case expressions (caseexp1, caseexp2, etc.). If the value of the switch_
expression matches caseexp1, for example, then action1 is executed and
the switch statement ends. If the value matches caseexp3, then action3 is
executed, and in general if the value matches caseexpi, where i can be any
integer from 1 to n, then actioni is executed. If the value of the switch_
expression does not match any of the case expressions, the action after the
word otherwise is executed.

For the previous example, the switch statement can be used as follows:

switchletgrade.m

function grade = switchletgrade(quiz)

% This function returns the letter grade corresponding

% to the integer quiz grade argument using switch

% First, error-check

if quiz < 0 || quiz > 10

 grade = ‘X’;

else

 % If here, it is valid so figure out the

 % corresponding letter grade using a switch

 switch quiz

 case 10

 grade = ‘A’;

 case 9

 grade = ‘A’;

 case 8

 grade = ‘B’;

(Continued)

953.5 The Switch Statement

 case 7

 grade = ‘C’;

 case 6

 grade = ‘D’;

 otherwise

 grade = ‘F’;

 end

end

Here are two examples of calling this function:

>> quiz = 22;
>> lg = switchletgrade(quiz)
lg =
X

>> quiz = 9;
>> switchletgrade(quiz)
ans =
A

Note that it is assumed that the user will enter an integer value. If the user
does not, either an error message will be printed or an incorrect result will be
returned. Methods for remedying this will be discussed in Chapter 4.

Since the same action of printing ‘A’ is desired for more than one case, these
can be combined as follows:

switch quiz
 case {10,9}
 grade = ‘A’;
 case 8
 grade = ‘B’;
 % etc.

(The curly braces around the case expressions 10 and 9 are necessary.)

In this example, we error-checked first using an if-else statement, and then
if the grade was in the valid range, used a switch statement to find the corre-
sponding letter grade.

Sometimes the otherwise clause is used instead for the error message. For
example, if the user is supposed to enter only a 1, 3, or 5, the script might be
organized as follows:

Chapter 3 selection statements96

Figure 3.1
Menu Figure Window.

switcherror.m

% Example of otherwise for error message

choice = input(‘Enter a 1, 3, or 5: ’);

switch choice

 case 1

 disp(‘It’’s a one!!’)

 case 3

 disp(‘It’’s a three!!’)

 case 5

 disp(‘It’’s a five!!’)

 otherwise

 disp(‘Follow directions next time!!’)

end

In this case, actions are taken if the user correctly enters one of the valid options.
If the user does not, the otherwise clause handles printing an error message.
Note the use of two single quotes within the string to print one.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!

3.6 the MENU FunCtIon
MATLAB also has a built-in function called menu that will display a Figure
Window with push buttons for the choices. The first string passed to the
menu function is the heading, and the rest are labels that appear on the push
buttons. The function returns the number of the button that is pressed. For
example,

>> mypick = menu(‘Pick a pizza’,‘Cheese’,‘Shroom’,‘Sausage’);

will display the Figure Window seen in Figure 3.1 and store the result of the
user’s button press in the variable mypick.

There are three buttons, whose equivalent values are 1, 2, and 3. For example,
if the user presses the Sausage button, mypick would have the value 3:

>> mypick
mypick =
3

973.6 The Menu Function

Note that the strings ‘Cheese’, ‘Shroom’, and ‘Sausage’ are just labels on the
buttons. The actual value of the button press in this case would be 1, 2, or 3.

A script that uses this menu function then would use either an if-else statement or
a switch statement to take an action based on the button pressed. For example, the
following script simply prints which pizza to order, using a switch statement.

pickpizza.m

%This script asks the user for a type of pizza

% and prints which type to order using a switch

mypick = menu(‘Pick a pizza’,‘Cheese’,‘Shroom’,‘Sausage’);

switch mypick

 case 1

 disp(‘Order a cheese pizza’)

 case 2

 disp(‘Order a mushroom pizza’)

 case 3

 disp(‘Order a sausage pizza’)

 otherwise

 disp(‘No pizza for us today’)

end

Here is an example of running this script and clicking the Sausage button:

>> pickpizza

Order a sausage pizza

QuICK QuestIon!

How could the otherwise action get executed in this switch
statement?

answer: If the user clicks the red X on the top-right of
the menu box instead of one of the three buttons, the value
returned from the menu function will be 0, which will cause the
otherwise clause to be executed:

>> pickpizza
No pizza for us today

Instead of using a switch statement in this script, an alternative method would
be to use an if-else statement with elseif clauses.

Chapter 3 selection statements98

pickpizzaifelse.m

%This script asks the user for a type of pizza

% and prints which type to order using if-else

mypick = menu(‘Pick a pizza’,‘Cheese’,‘Shroom’,‘Sausage’);

if mypick == 1

 disp(‘Order a cheese pizza’)

elseif mypick == 2

 disp(‘Order a mushroom pizza’)

elseif mypick == 3

 disp(‘Order a sausage pizza’)

else

 disp(‘No pizza for us today’)

end

3.7 the IS FunCtIons In MatlaB
There are a lot of functions that are built into MATLAB
that test whether or not something is true; these func-
tion names begin with the word is. Since these func-
tions are frequently used in if statements, they are
introduced in this chapter. For example, the function
called isletter returns logical 1 if the argument is a let-
ter of the alphabet, or 0 if it is not:

>> isletter(‘h’)
ans =

1

>> isletter(‘4’)
ans =

0

This result could also be found by comparing a character’s position within the
character encoding, for example, for lower case letters.

the programming Concept
mychar >= ‘a’ && mychar <= ‘z’

the efficient Method
isletter(mychar)

praCtICe 3.5
Write a function that will receive one
number as an input argument. It will use
the menu function to display ‘Choose
a function’ and will have buttons
labeled ‘fix’, ‘floor’, and ‘abs’. Using
a switch statement, the function will
then calculate and return the requested
function (e.g., if ‘abs’ is chosen, the
function will return the absolute value
of the input argument). Choose a fourth
function to return if the user does not
push a button, as described earlier.

993.7 The is Functions in MATLAB

The function isempty returns logical true if a variable is empty, and logical false
if it has a value, or an error message if the variable does not exist. Therefore,
it can be used to determine whether a variable has a value yet or not. For
example,

>> clear
>> isempty(evec)
??? Undefined function or variable ‘evec’.

>> evec = [];
>> isempty(evec)
ans =

1

>> evec = [evec 11];
>> isempty(evec)
ans =

0

The isempty function will also determine whether or not a string variable is
empty. For example, this function can be used to determine whether the user
entered a string in the input function:

>> istr = input(‘Please enter a string: ’,‘s’);
Please enter a string:
>> isempty(istr)
ans =

1

The function iskeyword will determine whether or not
a name is a keyword in MATLAB, and therefore some-
thing that cannot be used as an identifier name. By
itself (with no arguments), it will return the list of all
keywords. Notice that the names of functions like sin
are not keywords, so their values can be overwritten if
used as an identifier name.

>> iskeyword(‘sin’)
ans =

0

>> iskeyword(‘switch’)
ans =

1

>> iskeyword
ans =

‘break’

praCtICe 3.6
Prompt the user for a string, and then
print either the string that the user
entered or an error message if the user
did not enter anything.

Chapter 3 selection statements100

‘case’
‘catch’
% etc.

There are many other is functions; the list can be found in the Help browser.

suMMary

Common pitfalls

■■ Using = instead of == for equality

■■ Not using quotes when comparing a string variable to a string; for
example,

letter == y

instead of

letter == ‘y’

■■ Confusing && and ||

■■ Confusing || and xor

■■ Putting a space in two-character operators; for example, typing < = instead
of <=

■■ Not spelling out an entire Boolean expression; for example, typing

radius || height <= 0

instead of

radius <= 0 || height <= 0

or typing

letter == ‘y’ || ‘Y’

instead of

letter == ‘y’ || letter == ‘Y’

Note that these are logically incorrect, but would not result in error messages.
Note also that the expression letter == ‘y’ || ‘Y’ will always be true, regardless of
the value of the variable letter, since ‘Y’ is a nonzero value and therefore a true
expression.

■■ Using an if statement instead of an if-else statement for error-checking; for
example,

101Summary

if error occurs
print error message

end
continue rest of program

instead of

if error occurs
print error message

else
continue rest of program

end

In the first example, the error message would be printed but then the program
would continue anyway.

programming style Guidelines

■■ Use indentation to show the structure of a script or function. In particular,
the actions in an if statement should be indented.

■■ When the else clause isn’t needed, use an if statement rather than an
if-else. For example,

if unit == ‘i’
 len = len * 2.54;
else
 len = len; % this does nothing so skip it!
end

Instead, just use:

if unit == ‘i’
 len = len * 2.54;
end

■■ Do not put unnecessary conditions on else or elseif clauses. For example,
the following prints one thing if the value of a variable number is equal to 5,
and something else if it is not.

if number == 5
 disp(‘It is a 5’)
elseif number = 5
 disp (‘It is not a 5’)
end

The second condition, however, is not necessary. Either the value is 5 or not, so
just the else would handle this:

Chapter 3 selection statements102

MATLAB Operators

less than <
greater than >
less than or equals
<=

greater than or
equals >=
equality ==

inequality =
or for scalars

and for scalars &&
not

exercises
 1. What would be the result of the following expressions?

‘b’ >= ‘c’ - 1
3 == 2 + 1
(3 == 2) + 1
xor(5 < 6, 8 > 4)

 2. Write a script that tests whether the user can follow instructions. It prompts the
user to enter an x. If the user enters anything other than an x, it prints an error
message; otherwise, the script does nothing.

 3. Write a function nexthour that will receive one integer argument, which is an
hour of the day, and will return the next hour. This assumes a 12-hour clock, so for
example the next hour after 12 would be 1. Here are two examples of calling this
function.

>> fprintf(‘The next hour will be %d.\n’,nexthour(3))
The next hour will be 4.
>> fprintf(‘The next hour will be %d.\n’,nexthour(12))
The next hour will be 1.

 4. Write a script to calculate the volume of a pyramid, which is 1/3 * base * height,
where the base is length * width. Prompt the user to enter values for the length,
width, and the height and then calculate the volume of the pyramid. When the user

MATLAB Functions and Commands

xor
sind
menu

isletter
isempty
iskeyword

if
if-else

switch
elseif clause

if number == 5
 disp(‘It is a 5’)
else
 disp (‘It is not a 5’)
end

■■ When using the menu function, make sure that the possibility that the user
clicks the red X on the menu box rather than pushing one of the buttons is
handled.

103Exercises

enters each value, he or she will then be prompted also for either i for inches, or c
for centimeters. (Note: 2.54 cm = 1 inch). The script should print the volume in cubic
inches with three decimal places. As an example, the format will be:

This program will calculate the volume of a pyramid.
Enter the length of the base: 50
Is that i or c? i
Enter the width of the base: 6
Is that i or c? c
Enter the height: 4
Is that i or c? i
The volume of the pyramid is xxx.xxx cubic inches.

 5. Write a script that will ask the user “Are you an engineer? (Y/N)” and then print an
appropriate response based on the user’s answer. Decide what is appropriate!

 6. Write a script to prompt the user for a character, and then print whether or not it is
a letter of the alphabet.

 7. Write a script that will prompt the user for a numerator and a denominator for a
fraction. If the denominator is 0, it will print an error message saying that division
by 0 is not possible. If the denominator is not 0, it will print the result of the fraction.

 8. The systolic and diastolic blood pressure readings are found when the heart is
pumping and the heart is at rest, respectively. A biomedical experiment is being
conducted on only subjects whose blood pressure is optimal. This is defined as a
systolic blood pressure less than 120 and a diastolic blood pressure less than 80.
Write a script that will prompt for the systolic and diastolic blood pressures of a
person, and will print whether or not that person is a candidate for this experiment.

 9. The continuity equation in fluid dynamics for steady fluid flow through a stream
tube equates the product of the density, velocity, and area at two points that have
varying cross-sectional areas. For incompressible flow, the densities are constant
so the equation is A1V1 = A2V2 . If the areas and V1 are known, V2 can be found as

1

2

A

A
 V1. Therefore, whether the velocity at the second point increases or decreases
 depends on the areas at the two points. Write a script that will prompt the user

for the two areas in feet squared, and will print whether the velocity at the second
point will increase, decrease, or remain the same as at the first point.

 10. Write a function createvec_m_to_n that will create and return a vector of integers
from m to n (where m is the first input argument and n is the second), regardless of
whether m is less than n or greater than n. If m is equal to n, the vector will just be
1 × 1 or a scalar. Here are some examples of calling the function:

>> createvec_m_to_n(8,5)
ans =
 8 7 6 5
>> createvec_m_to_n(6,6)
ans =
 6

Chapter 3 selection statements104

>> result = createvec_m_to_n(4,5)
result =
 4 5
>> help createvec_m_to_n
Creates a vector of integers from m to n

 11. In a script, the user is supposed to enter either a ‘y’ or ‘n’ in response to a prompt.
The user’s input is read into a character variable called letter. The script will print
"OK, continuing" if the user enters either a ‘y’ or ‘Y’ or it will print "OK, halting"
if the user enters an ‘n’ or ‘N’, or it will print "Error" if the user enters anything else.
Put this statement in the script first:

letter = input(‘Enter your answer: ’, ‘s’);

Write the script using a single nested if-else statement (elseif clause is permitted).
 12. Write the script from the previous exercise using a switch statement instead.
 13. In aerodynamics, the Mach number is a critical quantity. It is defined as the

ratio of the speed of an object (such as an aircraft) to the speed of sound. If the
Mach number is less than one, the flow is subsonic. If the Mach number is equal
to one, the flow is transonic. If the Mach number is greater than one, the flow is
supersonic. Write a script that will prompt the user for the speed of an aircraft and
the speed of sound at the aircraft’s current altitude and will print whether the
condition is subsonic, transonic, or supersonic.

 14. Write a script that will prompt the user for a temperature in degrees Celsius, and then
an F for Fahrenheit or K for Kelvin. The script will print the corresponding temperature
in the scale specified by the user. For example, the output might look like this:

Enter the temp in degrees C: 29.3
Do you want F or K? F
The temp in degrees F is 84.7

The format of the output should be exactly as specified here. The conversions are:

F = 9

5

C+32

K = C+273.15

 15. Write a function isdivby4 that will receive an integer input argument, and will return
logical 1 for true if the input argument is divisible by 4, or logical false if it is not.

 16. Write a script that will generate one random integer, and will print whether the
random integer is an even or an odd number. Hint: An even number is divisible by
2, whereas an odd number is not, so check the remainder after dividing by 2.

 17. Write a function isint that will receive a number input argument innum, and will
return 1 for true if this number is an integer, or 0 for false if not. Use the fact that
innum should be equal to int32(innum) if it is an integer. Unfortunately, due to
round-off errors, it is possible to get 1 for true if the input argument is close to an
integer. For example,

105 Exercises

>> isint(4)
ans =

1
>> isint(4.9999)
ans =

0
>> isint(4.9999999999999999999999999999)
ans =

1

 18. A Pythagorean triple is a set of positive integers (a,b,c) such that a2 + b2 = c2.
Write a function ispythag that will receive three positive integers (a, b, c in
that order) and will return 1 for true if they form a Pythagorean triple, or 0 for
false if not.

 19. Whether a storm is a tropical depression, tropical storm, or hurricane is determined
by the average sustained wind speed. In miles per hour, a storm is a tropical
depression if the winds are less than 38 mph. It is a tropical storm if the winds are
between 39 and 73 mph, and it is a hurricane if the wind speeds are > = 74 mph.
Write a script that will prompt the user for the wind speed of the storm, and will
print which type of storm it is.

 20. Hurricanes are categorized based on wind speeds. The following table shows the
Category number for hurricanes with varying wind ranges and what the storm
surge is (in feet above normal).

1 74–95 4–5
2 96–110 6–8
3 111–130 9–12
4 131–155 13–18
5 >155 >18

Write a script that will prompt the user for the wind speed, and will print the hurri-
cane category number and the typical storm surge.

 21. Clouds are generally classified as high, middle, or low level. The height of the cloud
is the determining factor, but the ranges vary depending on the temperature. For
example, in tropical regions the classifications may be based on the following
height ranges (given in feet):

low 0–6500
middle 6500–20000
high > 20000

Write a script that will prompt the user for the height of the cloud in feet, and print
the classification.

 22. Rewrite the following switch statement as one nested if-else statement (elseif
clauses may be used). Assume that there is a variable letter and that it has been
initialized.

Chapter 3 selection statements106

switch letter
case ‘x’

disp(‘Hello’)
case {‘y’, ‘Y’}

disp(‘Yes’)
case ‘Q’

disp(‘Quit’)
otherwise

disp(‘Error’)
end

 23. Rewrite the following nested if-else statement as a switch statement that
accomplishes exactly the same thing. Assume that num is an integer variable that
has been initialized, and that there are functions f1, f2, f3, and f4. Do not use any
if or if-else statements in the actions in the switch statement, only calls to the
four functions.

if num < −2 || num > 4
f1(num)

else
if num < = 2

if num > = 0
f2(num)

else
f3(num)

end
else

f4(num)
end

end

 24. In a certain city, there are five different trolley lines; they have the codes A, B, C, D,
and E. Assume that code is a char variable that has been initialized. The following
nested if-else statement prints the frequency with which a given line is supposed
to run:

if (code > ‘A’ && code < ‘E’)
if (code == ‘C’)

fprintf(‘Every 10 minutes\n’)
else

fprintf(‘Every 7 minutes\n’)
end

else
if (code == ‘A’)

fprintf(‘This line is now obsolete!\n’)

107Exercises

else
if (code = ‘E’)

fprintf(‘Error - there is no such trolley!\n’)
else

fprintf(‘Every 12 minutes\n’)
end

end
end

This is confusing! Rewrite this as a switch statement that does exactly what the
above nested if-else statement does, for any given value of the variable code. Do
not use any if or if-else statements (there should only be fprintf statements in the
switch). Put this in a script that will test the solution.

 25. Write a script area_menu that will print a list consisting of cylinder, circle, and
rectangle. It prompts the user to choose one, and then prompts the user for the
appropriate quantities (e.g., the radius of the circle) and then prints its area. If the
user enters an invalid choice, the script simply prints an error message. The script
should use a nested if-else statement to accomplish this. Here are two examples
of running it (units are assumed to be inches).

>> area_menu
Menu
1. Cylinder
2. Circle
3. Rectangle
Please choose one: 2
Enter the radius of the circle: 4.1
The area is 52.81

>> area_menu
Menu
1. Cylinder
2. Circle
3. Rectangle
Please choose one: 3
Enter the length: 4
Enter the width: 6
The area is 24.00

 26. Modify the area_menu function to use a switch statement to decide which area
to calculate.

 27. Modify the area_menu function (either version) to use the built-in menu function
instead of printing the menu choices.

 28. Write a script that prompts the user for a value of a variable x. Then, it uses the menu
function to present choices between sin(x), cos(x), and tan(x). The script will print
whichever function of x the user chooses. Use an if-else statement to accomplish this.

Chapter 3 selection statements108

 29. Modify the preceding script to use a switch statement instead.
 30. Write a function that will receive one number as an input argument. It will use the

menu function that will display “Choose a function” and will have buttons labeled
ceil, round, and sign. Using a switch statement, the function will then calculate
and return the requested function (e.g., if round is chosen, the function will return
the rounded value of the input argument).

 31. Modify the previous function to use a nested if-else statement instead.

109

Contents

© 2009, 2003,1999 Elsevier Inc.

4.1 The for Loop 110

4.2 Nested for
Loops 122

4.3 Vectorizing 131

4.4 While Loops 143

looping statement

counted loop

conditional loop

action

iterate

loop or iterator variable

running sum

running product

factorial

preallocate

echo-printing

nested loop

outer loop

inner loop

vectorizing

array operator

logical vector

infinite loop

counting

error-checking

Key Words

Chapter 4

Looping

Consider the problem of calculating the area of a circle with a radius of 0.3
centimeters—a MATLAB® program certainly is not needed to do that; you’d use
your calculator instead, and punch in * 0.3 2. However, if a table of circle areas
is desired, for radii ranging from 0.1 centimeters to 100 centimeters in steps of
0.05 (e.g., 0.1, 0.15, 0.2, etc.), it would be very tedious to use a calculator and
write it all down. This is one of the great uses of a computer—the ability to
repeat a process such as this.

This chapter will cover statements in MATLAB that allow other statement(s) to
be repeated. The statements that do this are called looping statements, or loops.
There are two basic kinds of loops in programming: counted loops, and condi-
tional loops. A counted loop is one that repeats statements a specified number
of times (e.g., ahead of time it is known how many times the statements are
to be repeated). In a counted loop, for example, you might say “repeat these

Chapter 4 Looping110

statements 10 times.” A conditional loop also repeats statements, but ahead of
time it is not known how many times the statements will need to be repeated.
With a conditional loop, for example, you might say “repeat these statements
until this condition becomes false.” The statement(s) that are repeated in any
loop are called the action of the loop.

There are two different loop statements in MATLAB: the for statement and the
while statement. In practice, the for statement usually is used as the counted
loop, and the while is used as the conditional loop. To keep it simple, that is
how they will be presented here.

Finally, although loops are extremely useful in most programming applica-
tions, in MATLAB they are frequently not necessary, especially when dealing
with arrays. The concept of vectorizing will be introduced, which is the term
used in MATLAB for rewriting code that was written using loops in a traditional
programming language to matrix operations in MATLAB.

4.1 the for Loop
The for statement, or the for loop, is used when it is necessary to repeat
statement(s) in a script or function, and when it is known ahead of time how
many times the statements will be repeated. The statements that are repeated
are called the action of the loop. For example, it may be known that the action
of the loop will be repeated five times. The terminology used is that we iterate
through the action of the loop five times.

The variable that is used to iterate through values is called a loop variable, or an
iterator variable. For example, the variable might iterate through the integers
1 through 5 (e.g., 1, 2, 3, 4, and then 5). Although variable names in general
should be mnemonic, it is common for an iterator variable to be given the
name i (and if more than one iterator variable is needed, i, j, k, l, etc.) This is
historical, and is because of the way integer variables were named in Fortran.
However, in MATLAB both i and j are built-in values for 1- , so using either as
a loop variable will override that value. If that is not an issue, then it is accept-
able to use i as a loop variable.

The general form of the for loop is:

for loopvar = range
action

end

where loopvar is the loop variable, range is the range of values through which
the loop variable is to iterate, and the action of the loop consists of all
statements up to the end. The range can be specified using any vector, but nor-
mally the easiest way to specify the range of values is to use the colon operator.

1114.1 The For Loop

As an example, to print a column of numbers from 1 to 5:

for i = 1:5
fprintf(‘%d\n’,i)

end

This loop could be entered in the Command Window, although like if and
switch statements, loops will make more sense in scripts and functions. In the
Command Window, the results would appear after the for loop:

>> for i = 1:5
fprintf(‘%d\n’,i)

end
1
2
3
4
5

What the for statement accomplished was to print the value of i and then the
newline character for every value of i, from 1 through 5 in steps of 1. The first
thing that happens is that i is initialized to have the value 1. Then, the action of
the loop is executed, which is the fprintf statement that prints the value of i (1),
and then the newline character to move the cursor down. Then, i is incremented
to have the value of 2. Next, the action of the loop is executed, which prints 2 and
the newline. Then, i is incremented to 3 and that is printed, then i is incremented
to 4 and that is printed, and then finally i is incremented to 5 and that is printed.
The final value of i is 5; this value can be used once the loop has finished.

4.1.1 Finding sums and products
A very common application of a for loop is to calculate sums and products. For
example, instead of just printing the integers 1 through 5, we could calculate

QuiCK Question!

How could you print this column of integers?

 0
 50
100
150
200

answer: In a loop, you could print these values starting at 0,
incrementing by 50 and ending at 200. Each is printed using a
field width of 3.

>> for i = 0:50:200
 fprintf(‘%3d\n’,i)
 end

Chapter 4 Looping112

praCtiCe 4.1
Write a function sum_m_to_n that is
similar to the previous function but will
calculate the sum of the integers from m
to n. for example, if the integers
4 and 7 are passed to the function, it will
calculate 4 + 5 + 6 + 7:

>> sum_m_to_n(4,7)
ans =

22

the sum of the integers 1 through 5 (or, in general, 1 through n, where n is any
positive integer). Basically, we want to implement

or calculate the sum 1 + 2 + 3 + … + n.

In order to do this, we need to add each value to a running sum. A running sum
is a sum that will keep changing; we keep adding to it. First the sum has to be
initialized to 0, then in this case it will be 1 (0 + 1), then 3 (0 + 1 + 2), then 6
(0 + 1 + 2 + 3), and so forth.

In a function to calculate the sum, we need a loop or iterator variable i, as
before, and also a variable to store the running sum. In this case we will use the
output argument runsum as the running sum. Every time through the loop, the
next value of i is added to the value of runsum. This function will return the end
result, which is the sum of all integers from 1 to the input argument n stored
in the output argument runsum.

sum_1_to_n.m

function runsum = sum_1_to_n(n)

% This function returns the sum of

% integers from 1 to n

runsum = 0;

for i = 1:n

 runsum = runsum + i;

end

As an example, if 5 is passed to be the value of the input argument n, the
 function will calculate and return 1 + 2 + 3 + 4 + 5, or 15:

>> sum_1_to_n(5)
 ans =
 15

Note that the output was suppressed when initializing
the sum to 0 and when adding to it during the loop.

Another very common application of a for loop is to
find a running product. For example, instead of finding
the sum of the integers 1 through n, we could find the
product of the integers 1 through n. Basically, we want
to implement

1

n

i

i
=
å

1134.1 The For Loop

or calculate the product 1 * 2 * 3 * 4 *… * n, which is called the factorial of
n, written n!.

the programming Concept
In order to do this, the basic algorithm is similar to finding a sum, except we
need to multiply each value of the loop variable to a running product. The
difference is that while a running sum variable is initialized to 0, a running
product variable must be initialized to 1. This is so that the first time a value is
multiplied by it, it does not change the original value.

myfact.m

function runprod = myfact (n)

% This function returns the product of

% integers from 1 to n, or n!

runprod = 1;

for i = 1:n

 runprod = runprod * i;

end

Any positive integer argument could be passed to this function, and it will
calculate the factorial of that number. for example, if 5 is passed, the function
will calculate and return 1 * 2 * 3 * 4 * 5, or 120:

>> myfact(5)
ans =
 120

the efficient Method
MATLAB has a built-in function, factorial, that will find the factorial of an
integer n:

>> factorial(5)
ans =
 120

4.1.1.1 Sums and Products with Vectors
The previous examples found either the sum or product of values at regular
intervals, for example from 1 to an integer n. Frequently, however, we wish to

1

n

i

i
=
Õ

Chapter 4 Looping114

find the sum and/or product of the elements in a vector, regardless of what
those values might be. For example, we will write a function to sum all the
 elements in a vector.

the programming Concept
The vector is passed as an argument to the function. The function loops
through all the elements of the vector, from 1 to the length of the vector, to add
them all to the running sum.

myvecsum.m

function outarg = myvecsum(vec)

% This function sums the elements in a vector

outarg = 0;

for i = 1:length(vec)

 outarg = outarg + vec(i);

end

Any vector could be passed to this function; for example, just specifying
values for the elements in square brackets:

>> myvecsum([5 9 4])
ans =

 18

the efficient Method
MATLAB has a built-in function, sum, that will sum all values in a vector.
Again, any vector can be passed to the sum function:

>> sum([5 9 4])
ans =

 18

The function myvecsum illustrates a very important concept: looping through all
the elements in a vector in order to do something with each one. In this case, we
are adding every element in the vector to a running sum, which is stored in the
output argument outarg. Notice that the loop variable, i, is used as the index into
the vector. The first time through the loop, when i has the value 1, the value of
vec(1), which is 5, is added to the value of outarg (so it is 0 + 5, or 5). The second
time through the loop, when i has the value 2, vec(2) or 9 is added to outarg (so
it now stores 0 + 5 + 9, or 14). Then, the third and final time through the loop
vec(3) or 4 is added, so outarg now stores 0 + 5 + 9 + 4, or 18.

This is in fact one reason to store values in a vector. Values in a vector typically
represent “the same thing”, so in a program typically the same operation would

1154.1 The For Loop

be performed on every element. The general form of a for loop to accomplish
this is:

for i = 1:length(vectorvariable)
do something with vectorvariable(i)

end

The loop variable iterates through all elements in the vector, from 1 through
the end (given by length(vectorvariable)), doing something with each element,
specified as vectorvariable(i).

As another example, we will write a function to find the product of all the ele-
ments in a vector.

the programming Concept
The vector is passed as an argument to the function. The function loops
through all the elements of the vector, from 1 to the length of the vector, to
multiply them all by the running product.

myvecprod.m

function outarg = myvecprod(vec)

% This function finds the product of

% the elements in a vector

outarg = 1;

for i = 1:length(vec)

 outarg = outarg * vec(i);

end

>> myvecprod(1:5)
ans =
 120
>> myvecprod([5 9 4])
ans =
 180

the efficient Method
MATLAB has a built-in function, prod, that will return the product of all values
in a vector.

>> prod([5 9 4])
 ans =

 180

Chapter 4 Looping116

QuiCK Question!

How could we write a function prod_m_to_n to calculate and
return the product of the integers m to n without assuming a
specific order of the arguments? In other words, both the func-
tion calls prod_m_to_n(3,6) and prod_m_to_n(6,3) would
return the result of 3 * 4 * 5 * 6 or 360.

answer: the programming Concept
To loop from the smaller value to the larger, we would first have
to compare their values and exchange them if necessary.

the efficient Method
Instead of exchanging the values of m and n, we could use the
colon operator with steps of either +1 or –1 to create a vector.

Also, instead of looping to calculate a running product, we
could use the prod function.

prod_m_to_n.m

function runprod = prod_m_to_n(m,n)

% Product of m to n using a for loop

% Make sure m is less than n

if m > n

 temp = m;

 m = n;

 n = temp;

end

% Loop to calculate the running product

runprod = 1;

for i = m:n

 runprod = runprod * i;

end

prod_m_to_nii.m

function outprod = prod_m_to_nii(m,n)

% Product of m to n using : and prod

if m < n

 outprod = prod(m:n);

else

 outprod = prod(m:-1:n);

end

1174.1 The For Loop

Additionally, MATLAB has functions cumsum and cumprod that return a vec-
tor of the running sums or products. For example, for the following vector the
first value is 5, so that is the first value in the vector returned by cumsum. Then
the next value is 9 so 5 + 9 is 14, and finally 14 4 is 18.

>> vec = [5 9 4];
>> cumsum(vec)
ans =

 5 14 18

The cumulative product function cumprod instead calculates 5, then 5 * 9,
and finally 5 * 9 * 4:

>> cumprod(vec)
ans =

 5 45 180

4.1.1.2 Preallocating a Vector
There are essentially two programming methods that could be used to simulate
the cumsum function. One method is to start with an empty vector and con-
catenate each running sum value to the vector. Extending a vector, however, is
very inefficient. A better method is to preallocate the vector to the correct size
and then change the value of each element to be successive running sums. Both
methods will be shown here.

In the following function, the output argument is initialized to the empty vec-
tor []. Then, every time the next element in the vector is added to the running
sum, this new sum is appended to the vector.

myveccumsum.m

function outvec = myveccumsum(vec)

% This function imitates cumsum for a vector

outvec = [];

runsum = 0;

for i = 1:length(vec)

 runsum = runsum + vec(i);

 outvec = [outvec runsum];

end

Here is an example of calling the function:

>> myveccumsum([5 9 4])
ans =
 5 14 18

Chapter 4 Looping118

The first time in the loop, outvec will be [5]. Then the second time, runsum will
be 14 and outvec will store [5 14]. Finally, runsum will be 18 and outvec will
store [5 14 18].

Although this method works, it is inefficient. Another method involves refer-
ring to each index in the output vector, and placing each partial sum into the
next element in the output vector. As each value of vec(i) is added to the run-
ning sum, this new sum is stored in outvec(i).

myveccumsumii.m

function outvec = myveccumsumii(vec)

% This function imitates cumsum for a vector

% It preallocates the output vector

outvec = zeros(size(vec));

runsum = 0;

for i = 1:length(vec)

 runsum = runsum + vec(i);

 outvec(i) = runsum;

end

Although initializing the output vector outvec to all zeros is not strictly necessary,
it greatly improves the efficiency of the function. Initializing this vector to all
zeros with the same size as the input argument preallocates that much memory
for outvec. Then, each element is changed in the loop to its correct value. On the
other hand, when building a vector up one element at a time, as in the previous
example, MATLAB has to find new memory each time the vector is extended.

MATLAB has many other functions that work with vectors. Many, which are
statistical in nature, will be seen in Chapter 12.

4.1.2 Combining for Loops with if statements
Another example of a common application on a vector is
to find the minimum or maximum value in the vector.

the programming Concept
for example, to find the minimum value in a vector, the
algorithm is:

■■ The minimum so far is the first element in the vector
■■ Loop through the rest of the vector
– If any element is less than the minimum found so far, then that

element is the new minimum so far

praCtiCe 4.2
Write a function that imitates the
cumprod function. Use the method of
preallocating the output vector.

1194.1 The For Loop

The following function implements this algorithm, and returns the minimum
value found in the vector.

myminvec.m

function outmin = myminvec(vec)

% Finds the minimum value in a vector

outmin = vec(1);

for i = 2:length(vec)

 if vec(i) < outmin

 outmin = vec(i);

 end

end

>> vec = [3 8 99 −1];
>> myminvec(vec)
ans =

 –1

>> vec = [3 8 99 11];
>> myminvec(vec)
ans =

 3

Note the use of an if statement in the loop rather than an if-else statement. If
the value of the next element in the vector is less than outmin, then the value of
outmin is changed; otherwise, no action is necessary.

the efficient Method
MATLAB has functions min and max, which find the minimum and maximum
values in a vector.

>> vec = [5 9 4];
>> min(vec)
ans =

 4

4.1.3 For Loops that do not use the
iterator Variable in the action
In all the examples that we have seen so far, the value
of the loop variable has been used in some way in the action of the for loop:
we have printed the value of i, or added it to a sum, or multiplied it by a run-
ning product, or used it as an index into a vector. It is not always necessary to

praCtiCe 4.3
Write a function to find and return the
maximum value in a vector.

Chapter 4 Looping120

actually use the value of the loop variable, however. Sometimes the variable is
simply used to iterate, or repeat, a statement a specified number of times. For
example,

for i = 1:3
 fprintf(‘I will not chew gum\n’)

end

produces the output:

I will not chew gum
I will not chew gum
I will not chew gum

The variable i is necessary to repeat the action three times, even though the
value of i is not used in the action of the loop.

4.1.4 input in a for Loop
The following script repeats the process of prompting the user for a number,
and echo printing the number (which means simply printing it back out). A
for loop specifies how many times this is to occur. This is another example in
which the loop variable is not used in the action, but instead just specifies how
many times to repeat the action.

forecho.m

% This script loops to repeat the action of

% prompting the user for a number and echo-printing it

for iv = 1:3

 inputnum = input(‘Enter a number: ’);

 fprintf(‘You entered %.1f\n’,inputnum)

end

QuiCK Question!

What would be the result of the following for loop?

for i = 4:2:8
fprintf(‘I will not chew gum\n’)

end

answer: Exactly the same output as before! It doesn’t mat-
ter that the loop variable iterates through the values 4, then 6,
then 8, instead of 1, 2, 3. Since the loop variable is not used in
the action, this is just another way of specifying that the action
should be repeated three times. Of course, using 1:3 makes
more sense!

1214.1 The For Loop

>> forecho
Enter a number: 33
You entered 33.0
Enter a number: 1.1
You entered 1.1
Enter a number: 55
You entered 55.0

In this example, the loop variable iv iterates through
the values 1 through 3, so the action is repeated three
times. The action consists of prompting the user for a
number and echo-printing it with one decimal place.

Instead of simply echo-printing the numbers, it is often necessary to store them in
a vector. One way of accomplishing this is to start by preallocating the vector and
then putting values in each element, as we saw in a previous example. Here is a
function that does this, and returns the resulting vector. The function receives an
input argument n, and repeats the process n times.

forinputvec.m

function numvec = forinputvec(n)

%Prompts the user and puts the numbers into a vector

numvec = zeros(1,n);

for iv = 1:n

 inputnum = input(‘Enter a number: ’);

 numvec(iv) = inputnum;

end

Here is an example of calling this function and storing the resulting vector in
a variable called myvec.

>> myvec = forinputvec(3)
Enter a number: 44
Enter a number: 2.3
Enter a number: 11
myvec =

44.0000 2.3000 11.0000

praCtiCe 4.4
Modify the forecho script to sum the
numbers that the user enters and print
the result.

QuiCK Question!

If you need to just print the sum or average of the numbers
that the user enters, would you need to store them in a vec-
tor variable?

answer: No. You could just add each to a running sum as you
read them in a loop.

Chapter 4 Looping122

4.2 nested for Loops
The action of a loop can be any valid statement(s). When the action of a loop
is another loop, this is called a nested loop.

As an example, a nested for loop will be demonstrated in a script that will print
a box of *’s. Variables in the script will specify how many rows and columns
to print. For example, if rows has the value 3, and columns has the value 5, the
output would be:

Since lines of output are controlled by printing the newline character, the basic
algorithm is:

■■ For every row of output,

– Print the required number of *’s
– Move the cursor down to the next line (print the ‘\n’)

printstars.m

% Prints a box of stars

% How many will be specified by 2 variables

% for the number of rows and columns

rows = 3;

columns = 5;

% loop over the rows

for i=1:rows

 % for every row loop to print *’s and then one \n

 for j=1:columns

QuiCK Question!

What if you wanted to calculate how many of the numbers that
the user entered were greater than the average?
answer: Yes, then you would need to store them in a vec-
tor because you would have to go back through them to

count how many were greater than the average (or, alter-
natively, you could go back and ask the user to enter them
again!!).

(Continued)

1234.2 Nested For Loops

 fprintf(‘*’)

 end

 fprintf(‘\n’)

end

Running the script displays the output:

>> printstars

The variable rows specifies the number of rows to print, and the variable col-
umns specifies how many *’s to print in each row. There are two loop variables:
i is the loop variable for the rows, and j is the loop variable for the columns.
Since the number of rows and columns are known (given by the variables rows
and columns), for loops are used. There is one for loop to loop over the rows,
and another to print the required number of *’s. The values of the loop vari-
ables are not used within the loops, but are used simply to iterate the correct
number of times. The first for loop specifies that the action will be repeated
rows times. The action of this loop is to print *’s and then the newline char-
acter. Specifically, the action is to loop to print columns *’s across on one line.
Then, the newline character is printed after all five stars to move the cursor
down for the next line.

The first for loop is called the outer loop; the second for loop is called the inner
loop. So, the outer loop is over the rows, and the inner loop is over the col-
umns. The outer loop must be over the rows because the program is printing a
certain number of rows of output. For each row, a loop is necessary to print the
required number of *’s; this is the inner for loop.

When this script is executed, first the outer loop variable i is initialized to 1.
Then, the action is executed. The action consists of the inner loop, and then
printing the newline character. So, while the outer loop variable has the value
1, the inner loop variable j iterates through all its values. Since the value of col-
umns is 5, the inner loop will print a * five times. Then, the newline character
is printed and the outer loop variable i is incremented to 2. The action of the
outer loop is then executed again, meaning the inner loop will print five *’s,
and then the newline character will be printed. This continues, and in all, the
action of the outer loop will be executed rows times.

Notice the action of the outer loop consists of two statements (the for loop
and an fprintf statement). The action of the inner loop, however, is only a
single statement.

Chapter 4 Looping124

The fprintf statement to print the newline character must be separate from the
other fprintf statement that prints the *. If we simply had

fprintf(‘*\n’)

as the action of the inner loop, this would print a long column of 15 *’s, not
a box.

In these examples, the loop variables were used just to specify the number of
times the action is to be repeated. These same loops could be used instead
to produce a multiplication table by multiplying the values of the loop
variables.

The following function multtable calculates and returns a matrix that is a multi-
plication table. Two arguments are passed to the function, which are the num-
ber of rows and columns for this matrix.

QuiCK Question!

How could this program be modified to print a triangle of *’s
instead of a box? For example,

*
**

answer: In this case, the number of *’s to print in each row is
the same as the row number; for example, one * is printed in
row 1, two *’s in row 2, and so on. So, it is not necessary to use
a value for the number of columns; the inner for loop does not
loop to columns, but to the value of the row loop variable:

printtristars.m

% Prints a triangle of stars

% How many will be specified by a variable

% for the number of rows

rows = 3;

for i=1:rows

 % inner loop just iterates to the value of i

 for j=1:i

 fprintf(‘*’)

 end

 fprintf(‘\n’)

end

>> printtristars
*
**

1254.2 Nested For Loops

multtable.m

function outmat = multtable (rows, columns)

% Creates a matrix which is a multiplication table

% Preallocate the matrix

outmat = zeros(rows,columns);

for i = 1:rows

 for j = 1:columns

 outmat(i,j) = i * j;

 end

end

In the following example, the matrix has three rows and five columns:

>> multtable(3,5)
ans =
 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15

Notice that this is a function that returns a matrix; it does not print anything.
It preallocates the matrix to zeros, and then replaces each element. Since the
number of rows and columns are known, for loops are used. The outer loop
loops over the rows, and the inner loop loops over the columns. The action
of the nested loop calculates i * j for all values of i and j. First, when i has the
value 1, j iterates through the values 1 through 5, so first we are calculating
1 * 1, then 1 * 2, then 1 * 3, then 1 * 4, and finally 1 * 5. These are the values
in the first row (first in element (1,1), then (1,2), then (1,3), then (1,4), and
finally (1,5)). Then, when i has the value 2, the elements in the second row
of the output matrix are calculated, as j again iterates through the values from
1 through 5. Finally, when i has the value 3, the values in the third row are
calculated (3 * 1, 3 * 2, 3 * 3, 3 * 4, and 3 * 5).

This function could be used in a script that prompts the user for the number
of rows and columns, calls this function to return a multiplication table, and
writes the resulting matrix to a file:

createmulttab.m

% Prompt the user for rows and columns and

% create a multiplication table to store in

% a file mymulttable.dat

(Continued)

Chapter 4 Looping126

num_rows = input(‘Enter the number of rows: ’);

num_cols = input(‘Enter the number of columns: ’);

multmatrix = multtable(num_rows, num_cols);

save mymulttable.dat multmatrix -ascii

Here is an example of running this script, and then loading from the file into a
matrix in order to verify that the file was created:

>> createmulttab
Enter the number of rows: 6
Enter the number of columns: 4
>> load mymulttable.dat
>> mymulttable
mymulttable =

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24

4.2.1 nested Loops and Matrices
Nested loops often are used when it is necessary to loop through all the
elements of a matrix.

As an example, we will calculate the overall sum of the elements in a matrix.

the programming Concept
The matrix is passed as an input argument to the function. The function then
uses the size function to determine the number of rows and columns in the
matrix. It then loops over all elements in the matrix by using a nested loop:
one loop over the rows, and one loop over the columns, adding each element
to the running sum. Notice that the loop variables i and j are used as the
indices into the matrix: first the row index, and then the column index.

mymatsum.m

function outsum = mymatsum(mat)

% Calculates the overall sum of the elements

% in a matrix

[row col] = size(mat);

outsum = 0;

(Continued)

1274.2 Nested For Loops

% The outer loop is over the rows

for i = 1:row

 for j = 1:col

 outsum = outsum + mat(i,j);

 end

end

>> mat = [3:5; 2 5 7]
mat =
 3 4 5
 2 5 7
>> mymatsum(mat)
ans =
 26

the efficient Method
MATLAB has a built-in function sum, as we have seen. for matrices, like many
built-in functions, the sum function operates columnwise, meaning that it will
return the sum of each column.

>> mat
mat =
 3 4 5
 2 5 7
>> sum(mat)
ans =
 5 9 12

So, to get the overall sum, it is necessary to sum the column sums!

>> sum(sum(mat))
ans =
 26

In this example, the outer loop was over the rows, and the inner loop was over
the columns. This order could easily be switched, however, so that the outer
loop is over the columns and the inner loop is over the rows:

mymatsumb.m

function outsum = mymatsumb(mat)

% Calculates the overall sum of the elements

% in a matrix

(Continued)

Chapter 4 Looping128

[row col] = size(mat);

outsum = 0;

% The outer loop is over the columns

for i = 1:col

 for j = 1:row

 outsum = outsum + mat(j,i);

 end

end

>> mat = [3:5; 2 5 7]
mat =
 3 4 5
 2 5 7
>> mymatsumb(mat)
ans =
 26

The order of the loops does not matter in this example, since all that is required
is to add each element to the overall sum. Notice that when referring to an ele-
ment in the matrix, the row index is always given first, and then the column
index, regardless of the order of the loops.

QuiCK Question!

How would we sum each individual column, rather than just
getting an overall sum?

answer: The programming method would require a nested
loop in which the outer loop is over the columns. For example,
we will modify the previous function to sum each column and

return a row vector containing the results.

matcolsum.m

function outsum = matcolsum(mat)

% Calculates the sum of every column in a matrix

% Returns a vector of the column sums

[row col] = size(mat);

% Preallocate the vector to the number of columns

outsum = zeros(1,col);

% Every column is being summed so the outer loop

(Continued)

1294.2 Nested For Loops

Note that since the built-in sum function sums each
column, one way of using sum to find the sum of each
row is to transpose the matrix:

>> sum(mat’)
ans =
 12 14

For matrices, the cumsum function returns a matrix
consisting of the first row of the matrix argument, then
the sum of the values in the first and second rows (for
a matrix that has two rows).

>> cumsum(mat)
ans =
 3 4 5
 5 9 12

The functions min and max also operate columnwise; these functions find the
minimum or maximum values in each column.

Notice that the output argument will be a row vector contain-
ing the same number of columns as the input argument matrix.
Also, since the function is calculating a sum for each column,
the runsum variable must be initialized to 0 for every column,
so it is initialized inside of the outer loop.

>> mat = [3:5; 2 5 7]
mat =
 3 4 5
 2 5 7

>> matcolsum(mat)
ans =
 5 9 12

Of course, the built-in sum function in MATLAB would
accomplish the same thing, as we have already seen.

% has to be over the columns

for i = 1:col

 % Initialize the running sum to 0 for every column

 runsum = 0;

 for j = 1:row

 runsum = runsum + mat(j,i);

 end

 outsum(i) = runsum;

end

praCtiCe 4.5
Modify this function; create a function
matrowsum to calculate and return a
vector of all the row sums, instead of
column. for example, calling it and
passing the previous mat variable would
result in the following:

>> matrowsum(mat)
ans =
 12 14

Chapter 4 Looping130

>> mat
mat =
 3 4 5
 2 5 7
>> max(mat)
ans =
 3 5 7

4.2.2 Combining nested for Loops and if statements
The statements inside of a nested loop can be any valid statement, including
any selection statement. For example, there could be an if or if-else statement
as the action, or part of the action, in a loop.

As an example, there is a file called datavals.dat, which has results recorded
from an experiment. However, some were erroneously recorded. The numbers
are all supposed to be positive. The following script reads from this file into a
matrix. It prints the sum from each row of only the positive numbers. We will
assume that the file contains integers but will not assume how many lines are
in the file nor how many numbers per line.

sumonlypos.m

% Sums only positive numbers from file

% Reads from the file into a matrix and then

% calculates and prints the sum of only the

% positive numbers from each row

load datavals.dat

[r c] = size(datavals);

for i = 1:r

sumrow = 0;

for j = 1:c

if datavals(i,j) >=0

sumrow = sumrow + datavals(i,j);

end

end

fprintf(‘The sum for row %d is %d\n’,i,sumrow)

end

1314.3 Vectorizing

For example, if the file contains:

33 −11 2
 4 5 9
22 5 −7
 2 11 3

the output from the program would look like this:

>> sumonlypos
The sum for row 1 is 35
The sum for row 2 is 18
The sum for row 3 is 27
The sum for row 4 is 16

The file is loaded into a matrix variable. The script
finds the size of the matrix and then loops through
all the elements in the matrix by using a nested loop;
the outer loop iterates through the rows and the
inner loop iterates through the columns. For each
element, an if-else statement determines whether the element is positive or
not. It only adds the positive values to the row sum. Since the sum is found
for each row, the sumrow variable is initialized to 0 for every row, meaning
inside the outer loop.

4.3 VeCtorizing
In many cases in MATLAB, loops are not necessary. Since MATLAB is written spe-
cifically to work with vectors and matrices, many operations can be done and
functions can be called with vectors and matrices. In fact, the term vectorizing

QuiCK Question!

Would it matter if the order of the loops was reversed in this
example, so the outer loop iterates over the columns and the
inner loop over the rows?

answer: Yes, since we want a sum for every row the outer
loop must be over the rows.

praCtiCe 4.6
Write a function mymatmin that finds
the minimum value in each column of a
matrix argument and returns a vector
of the column minimums. Here is an
example of calling the function.

>> mat = randint(3,4,[1 20])
mat =

15 19 17 5
 6 14 13 13
 9 5 3 13

>> mymatmin(mat)
ans =

 6 5 3 5

QuiCK Question!

Would the function mymatmin also work for a vector
argument?

answer: Yes, it should, since a vector is just a subset of a
matrix. In this case, one of the loops would repeat only one
time (for the rows if it is a row vector, or for the columns if it
is a column vector).

Chapter 4 Looping132

is used in MATLAB for rewriting code using loops in a traditional program-
ming language to matrix operations in MATLAB.

In most programming languages, when performing an operation on a vector,
a for loop is used to loop through the entire vector. For example, in MATLAB
assuming there is a vector variable vec:

for i = 1:length(vec)
% do something with vec(i)

end

Similarly, for an operation on a matrix, a nested loop would be required; for
example, assuming a matrix variable mat:

[r c] = size(mat);
for row = 1:r

for col = 1:c
% do something with mat(row,col)

end
end

Usually in MATLAB, this is not necessary.

Numerical operations can be done on entire vectors or matrices. For example,
let’s say that we want to multiply every element of a vector v by 3, and store the
result back in v, where v is initialized as follows:

>> v = [3 7 2 1];

the programming Concept
To accomplish this, we can loop through all the elements in the vector and
multiply each element by 3. In the following, the output is suppressed in the
loop, and then the resulting vector is shown:

>> for i = 1:length(v)
v(i) = v(i) * 3;

end
>> v
v =

9 21 6 3

the efficient Method
In MATLAB, we can simply multiply v by 3 and store the result back in v in an
assignment statement:

>> v = v*3
v =

9 21 6 3

1334.3 Vectorizing

As another example, we can divide every element by 2:

>> v= [3 7 2 1];
>> v/2
ans =

1.5000 3.5000 1.0000 0.5000

For a matrix, numerical operations can also be performed on every element.
For example, to multiply every element in a matrix by 2 with most languages
would involve a nested loop, but in MATLAB it is automatic.

>> mat = [4:6; 3: -1:1]
mat =

 4 5 6
 3 2 1

>> mat * 2
ans =

 8 10 12
 6 4 2

However, for the exponentiation operator, .^ must be used when working with vec-
tors and matrices, rather than just the ̂ . This is true actually when using any operator
based on multiplication (which means multiplication, division, and exponentia-
tion) and any vector or matrix term-by-term. Squaring a vector, for example, means
multiplying each element by itself so the .^ operator must be used.

>> v ^ 2
??? Error using ==> mpower
Matrix must be square.

>> v .^ 2
ans =

9 49 4 1

The operators .^, .*, ./, and .\ are called array operators.

4.3.1 Logical Vectors
The relational operators can also be used with vec-
tors and matrices. For example, let’s say that there is a
vector, and we want to compare every element in the
vector to 5 to determine whether it is greater than 5
or not. The result would be a vector (with the same
length as the original) with logical true or false values.
Assume a variable vec as shown here.

>> vec = [5 9 3 4 6 11];

praCtiCe 4.7
■■ Create a vector variable and add 2 to

every element in it.

■■ Create a matrix variable and divide
every element by 3.

■■ Create a matrix variable and square
every element.

Chapter 4 Looping134

the programming Concept
To accomplish this using the programming method, we would have to loop
through all the elements of the vector and compare each element with 5 to
determine whether the corresponding value in the result would be logical true
or false.

the efficient Method
In MATLAB, this can be accomplished automatically by simply using the
relational operator >.

>> isg = vec > 5
isg =

0 1 0 0 1 1

Notice that this creates a vector consisting of all logical true or false values.
Although this is a vector of ones and zeros, and numerical operations can be
done on the vector isg, its type is logical rather than double.

>> doubres = isg + 5
ans =

5 6 5 5 6 6

>> whos

Name Size Bytes Class
doubres 1x6 48 double

array
isg 1x6 6 logical

array
vec 1x6 48 double

array

To determine how many of the elements in the vector vec were greater than 5,
the sum function could be used on the resulting vector isg:

>> sum(isg)
ans =

3

The logical vector isg can also be used to index into the vector. For example, if
only the elements from the vector that are greater than 5 are desired:

>> vec(isg)
ans =

9 6 11

1354.3 Vectorizing

Because the values in the vector must be logical 1’s and 0’s, the following func-
tion that appears at first to accomplish the same operation using the program-
ming method, actually does not. The function receives two input arguments:
the vector, and an integer with which to compare (so it is somewhat more gen-
eral). It loops through every element in the input vector, and stores in the result
vector either a 1 or 0 depending on whether vec(i) > n is true or false.

testvecgtn.m

function outvec = testvecgtn(vec,n)

% Compare each element in vec to see whether it

% is greater than n or not

% Preallocate the vector

outvec = zeros(size(vec));

for i = 1:length(vec)

 % Each element in the output vector stores 1 or 0

 if vec(i) > n

 outvec(i) = 1;

 else

 outvec(i) = 0;

 end

end

Calling the function appears to return the same vector as simply vec > 5, and
summing the result still works to determine how many elements were greater
than 5.

>> notlog = testvecgtn(vec,5)
notlog =

0 1 0 0 1 1

QuiCK Question!

Why doesn’t this work?

>> vec([0 1 0 0 1 1])
??? Subscript indices must either be
real positive integers or logicals.

answer: The difference between the vector in this example
and isg is that isg is a vector of logicals (logical 1’s and 0’s),
whereas [0 1 0 0 1 1] by default is a vector of double values.
Only logical 1’s and 0’s can be used to index into a vector.

Chapter 4 Looping136

>> sum(notlog)
ans =

 3

However, as before, it could not be used to index into a vector because the ele-
ments are double, not logical:

>> vec(notlog)
??? Subscript indices must either be real positive integers
or logicals.

4.3.1.1 Logical Built-In Functions
There are built-in functions in MATLAB that are useful in conjunction with vec-
tors or matrices of all logical true or false values; two of these are the functions
any and all. The function any returns logical true if any element in a vector is
logically true, and false if not. The function all returns logical true only if all
elements are logically true. Here are some examples. For the variable vec1, all
elements are logical true so both any and all return true.

>> vec1 = [1 3 1 1 2];
>> any(vec1)
ans =

1
>> all(vec1)
ans =

1

For vec2, some elements are logical true so any returns true but all returns
false.

>> vec2 = [1 1 0 1]
vec2 =

1 1 0 1
>> any(vec2)
ans =

1

QuiCK Question!

How could we remedy this? How can we assign logical values
rather than doubles?
answer: We can use the logical function to make the out-
put argument vector the type logical rather than double. In
the function, the only statement that needs to be modified is

the statement that preallocates the vector; in this case, it also
changes the type of the vector to logical.

 outvec = logical(zeros(size(vec)));

1374.3 Vectorizing

>> all(vec2)
ans =

0

QuiCK Question!

How could we accomplish the same thing by using loops and
if statements?

answer: For the equivalent to the any function, we would
start by assuming that the result is logical false; that is, that
none of the elements are logical true, and then loop through the
elements, setting the result instead to logical true if anything in

the vector is found to be logically true.

myany.m

function logresult = myany(vec)

% Simulates the built-in function any

% Assume 0 for the result

logresult = logical(0);

for i = 1:length(vec)

 % if any value is not false, the result will be 1

 if vec(i) = 0

 logresult = logical(1);

 end

end

>> vec2 = [1 1 0 1];
>> myany(vec2)
ans =
 1
>> vec3 = [0 0 0];
>> myany(vec3)
ans =
 0

This works, but it is inefficient in that it checks every
element in the vector even if a value has already been
found that is logically true. (We will see how to fix this in

the next section using a conditional loop instead of the
for loop.)

For the equivalent to the all function, we must make sure that all the elements in
the vector are logically true. One way of doing this is to count how many elements
are true, and then compare the count to the number of elements in the vector.
Recall that any nonzero value can be used to represent the concept of true.

Chapter 4 Looping138

The function find returns the indices of a vector that meet some criteria. For
example, to find all the elements in a vector that are greater than 5:

>> vec = [5 3 6 7 2]
vec =
 5 3 6 7 2
>> find(vec > 5)
ans =
 3 4

myall.m

function logresult = myall(vec)

% Simulates the built-in function all

% count how many values are true

count = 0;

for i = 1:length(vec)

 if vec(i) = 0

 count = count + 1;

 end

end

% if all were true, return 1 else return 0

if count == length(vec)

 logresult = logical(1);

else

 logresult = logical(0);

end

>> myall(vec1)
ans =

1

>> myall(vec2)
ans =

0

>> myall(vec3)
ans =

0

1394.3 Vectorizing

Also, the function isequal is useful in comparing vectors. In MATLAB, using
the equality operator with arrays will return 1 or 0 for each element; the all
function could then be used on the resulting array to determine whether all
elements were equal or not. The built-in function isequal also accomplishes
this:

>> vec1 = [1 3 −4 2 99];
>> vec2 = [1 2 −4 3 99];
>> vec1 == vec2
ans =

1 0 1 0 1

>> all(vec1 == vec2)
ans =

0

>> isequal(vec1,vec2)
ans =

0

MATLAB also has or and and operators that work elementwise for matrices:

Operator Meaning

| elementwise or for matrices

& elementwise and for matrices

These operators will compare any two vectors or matrices, as long as they are
the same size, element-by-element, and return a vector or matrix of the same
size of logical 1’s and 0’s. The operators | | and && are used only with scalars,
not matrices. For example,

>> v1 = [3 0 5 1];
>> v2 = [0 0 2 0];
>> v1 & v2
ans =

0 0 1 0

>> v1 | v2
ans =

1 0 1 1

>> v1 && v2
??? Operands to the || and && operators must be convertible
to logical scalar values.

Chapter 4 Looping140

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 4.1 shows the rules for the operators that have been covered
so far, in the order of precedence.

4.3.2 Vectors and Matrices as Function arguments
Using most programming languages, if it is desired to evaluate a function on
every element in a vector or a matrix, a loop would be necessary to accom-
plish this. However, as we have already seen, in MATLAB an entire vector or
matrix can be passed as an argument to a function; the function will be evalu-
ated on every element. This means that the result will be the same size as the
argument.

the programming Method
for example, let us find the sine in radians of every element of a vector vec.
The algorithm would be to loop through the elements of the vector and get the
sine of each one. To store the results in a new vector, the most efficient way
would be to preallocate it.

>> vec = −2:1
vec =
 −2 −1 0 1
>> sinvec = zeros(size(vec));

table 4.1 operator Precedence rules

Operators Precedence

parentheses () highest

transpose and power ‘, ^, .^

unary negation (–), not ()

multiplication, division *,/,\,.*,./,.\

addition, subtraction +, −

colon operator :

relational <, <=, >, >=, ==, =

element-wise and &

element-wise or |

and &&

or | |

assignment = lowest

1414.3 Vectorizing

>> for i = 1:length(vec)
 sinvec(i) = sin(vec(i));
 end
>> sinvec
sinvec =
 −0.9093 −0.8415 0 0.8415

the efficient Method
The sin function will automatically return the sine of each individual
element and the result will also be a vector with a length of four (in this
case, in ans).

>> sin(vec)
ans =
 –0.9093 −0.8415 0 0.8415

For a matrix, the resulting matrix will have the same size as the input argument
matrix. For example, the sign function will find the sign of each element in a
matrix:

>> mat = [0 4 −3; −1 0 2]
mat =
 0 4 −3
 −1 0 2
>> sign(mat)
ans =
 0 1 −1
 −1 0 1

the programming Method
To write our own signum function that accomplishes exactly the same thing as
the built-in sign function, nested loops would be required.

signum.m

function outmat = signum(mat)

% This function imitates the sign function

[r c] = size(mat);

for i = 1:r

 for j = 1:c

 if mat(i,j) > 0

 outmat(i,j) = 1;

 elseif mat(i,j) == 0

(Continued)

Chapter 4 Looping142

 outmat(i,j) = 0;

 else

 outmat(i,j) = −1;

 end

 end

end

To test this function, we will create a matrix of random integers in a range
from –8 to 8, and pass this to the function. Here are some examples of using
this function:

>> mat = randint(2,4,[-8 8])
mat =

−2 7 −3 2
 0 2 0 −6

>> signum(mat)
ans =

−1 1 −1 1
 0 1 0 −1

>> signmat = signum(mat)
signmat =

−1 1 −1 1
 0 1 0 −1

>> help signum
This function imitates the sign function

Vectors or matrices can be passed to user-defined functions as well, as long
as the operators used in the function are correct. For example, we previously
defined a function that calculates the area of a circle:

>> type calcarea
function area = calcarea(rad)
% This function calculates the area of a circle
area = pi * rad * rad;

This function was written assuming that the argument was a scalar, so calling it
with a vector instead would produce an error message:

>> calcarea(1:3)
??? Error using ==> mtimes
Inner matrix dimensions must agree.
Error in ==> calcarea at 3

area = pi * rad * rad;

1434.4 While Loops

This is because the * was used for multiplication in the function, but .* must
be used when multiplying vectors term-by-term. Changing this in the function
would allow either scalars or vectors to be passed to this function:

calcareaii.m

function area = calcareaii(rad)

% This function calculates the area of a circle

% The input argument can be a vector of radii

area = pi * rad .* rad;

>> calcareaii(1:3)
ans =
 3.1416 12.5664 28.2743
>> calcareaii(4)
ans =
 50.2655

4.4 WHILe Loops
The while statement is used as the conditional loop in MATLAB; it is used to
repeat an action when ahead of time it is not known how many times the action
will be repeated. The general form of the while statement is:

while condition
action

end

The action, which consists of any number of statement(s), is executed as long
as the condition is true. The condition must eventually become false to avoid
an infinite loop. (If this happens, Ctrl-C will exit the loop.)

The way it works is that first the condition is evaluated. If it is logically true, the
action is executed. So, to begin with it is just like an if statement. However, at
that point the condition is evaluated again. If it is still true, the action is executed
again. Then, the action is evaluated again. If it is still true, the action is executed
again. Then, the action is… eventually, this has to stop! Eventually something
in the action has to change something in the condition so it becomes false.

As an example of a conditional loop, we will write a function that will find the first
factorial that is greater than the input argument high. Previously, we wrote a func-
tion to calculate a particular factorial. For example, to calculate 5! we found the
product 1 * 2 * 3 * 4 * 5. In that case a for loop was used, since it was known that
the loop would be repeated five times. Now, we do not know how many times the
loop will be repeated. The basic algorithm is to have two variables, one that iterates

Chapter 4 Looping144

through the values 1, 2, 3, and so on, and one that stores the factorial of the itera-
tor at each step. We start with 1, and 1 factorial, which is 1. Then, we check the
factorial. If it is not greater than high, the iterator variable will then increment to 2,
and find its factorial (2). If this is not greater than high, the iterator will then incre-
ment to 3, and the function will find its factorial (6). This continues until we get to
the first factorial that is greater than high. So, the process of incrementing a variable
and finding its factorial is repeated until we get to the first value greater than high.
This is implemented using a while loop:

factgthigh.m

function facgt = factgthigh(high)

% Finds the first factorial > high

i=0;

fac=1;

while fac <= high

 i=i+1;

 fac = fac * i;

end

facgt = fac;

Here is an example of calling the function, passing 5000 for the value of the
input argument high.

>> factgthigh(5000)
ans =

5040

The iterator variable i is initialized to 0, and the running product variable fac,
which will store the factorial of each value of i, is initialized to 1. The first time
the while loop is executed, the condition is conceptually true: 1 is less than
or equal to 5000. So, the action of the loop is executed, which is to increment
i to 1 and fac to 1 (1 * 1). After the execution of the action of the loop, the
condition is evaluated again. Since it will still be true, the action is executed:
i is incremented to 2, and fac will get the value 2 (1 * 2). The value 2 is still
<= 5000, so the action will be executed again: i will be incremented to 3, and
fac will get the value 6 (2 * 3). This continues until the first value of fac is found
that is greater than 5000. As soon as fac gets to this value, the condition will be
false and the while loop will end. At that point the factorial is assigned to the
output argument, which returns the value.

The reason that i is initialized to 0 rather than 1 is that the first time the loop action
is executed, i becomes 1 and fac becomes 1 so we have 1 and 1!, which is 1.

Notice that the output of all assignment statements is suppressed in the function.

1454.4 While Loops

4.4.1 Multiple Conditions in a While Loop
In the previous section, we wrote a function myany that imitated the built-in
any function by returning logical true if any value in the input vector was logical
true, and logical false otherwise. The function was inefficient because it looped
through all the elements in the input vector, even though once one logical true
value is found it is no longer necessary to examine any other elements. A while
loop will improve on this. Instead of looping through all the elements, what
we really want to do is to loop until either a logical true value is found, or until
we’ve gone through the entire vector. Thus, we have two parts to the condition in
the while loop. In the following function, we initialize the output argument to
logical false, and an iterator variable i to 1. The action of the loop is to examine
an element from the input vector: if it is logical true, we change the output argu-
ment to be logical true. Also in the action the iterator variable is incremented.
The action of the loop is continued as long as the index has not yet reached the
end of the vector, and as long as the output argument is still logical false.

myanywhile.m

function logresult = myanywhile(vec)

% Simulates the built-in function any

% Uses a while loop so that the action halts

% as soon as any true value is found

logresult = logical(0);

i = 1;

while i <= length(vec) && logresult == 0

 if vec(i) = 0

 logresult = logical(1);

 end

 i = i + 1;

end

The output produced by this function is the same as the myany function, but it
is more efficient because now as soon as the output argument is set to logical
true, the loop ends.

4.4.2 reading from a File in a While Loop
The previous example demonstrated using an if statement in a while loop.
Although in many languages the combination of a loop and an if statement
would be necessary to determine whether or not the elements in a vector are
logical true, MATLAB has built-in functions such as any, all, and find to accom-
plish these tasks.

Chapter 4 Looping146

For example, data from an experiment has been recorded in a file called ‘experd.
dat’. The file has some numbers followed by a –99 and then more numbers, all
on the same line. The only data values that we are interested in, however, are
those before the –99. The algorithm for the script will be:

1. Read the data from the file into a vector.

2. Create a new vector variable newvec that has the data values only up to
but not including the –99.

3. Plot the new vector values, using black o’s.

For example, if the file has the following:

3.1 11 5.2 8.9 −99 4.4 62

the plot produced would look like Figure 4.1.

For simplicity, we will assume that the file format is as specified.
Using load will create a vector with the name experd, which con-
tains the values from the file. Also, since this is generic data we
will omit the plot labels and titles for simplicity.

the programming Concept
Using the programming method, we would loop through
the vector until the –99 is found, creating the new vector by
storing each element from experd in the vector newvec.

findvalwhile.m

% Reads data from a file, but only plots the numbers

% up to a flag of −99. Uses a while loop.

load experd.dat

i = 1;

while experd(i) = −99

 newvec(i) = experd(i);

 i = i + 1;

end

plot(newvec,‘ko’)

the efficient Method
Using the find function, we can locate the index of the element that stores the
–99. Then, the new vector is all the original vector from the first element to the
index before the index of the element that stores the –99.

1 1.5 2 2.5 3 3.5 4
3

4

5

6

7

8

9

10

11

Figure 4.1
Plot of some (but not all)
data from a file.

1474.4 While Loops

findval.m

% Reads data from a file, but only plots the numbers

% up to a flag of −99. Uses find and the colon operator.

load experd.dat

where = find(experd == −99);

newvec = experd(1:where-1);

plot(newvec,‘ko’)

4.4.3 input in a While Loop
The following script repeats the process of prompting the user, reading in a
positive number, and echo-printing it, as long as the user correctly enters posi-
tive numbers when prompted. As soon as the user types in a negative number,
the program will print OK and end.

whileposnum.m

% Prompts the user and echo prints the numbers entered

% until the user enters a negative number

inputnum=input(‘Enter a positive number: ’);

while inputnum >= 0

 fprintf(‘You entered a %d.\n\n’,inputnum)

 inputnum = input(‘Enter a positive number: ’);

end

fprintf(‘OK!\n’)

When the program is executed, the input/output might look like this:

>> whileposnum
Enter a positive number: 6
You entered a 6.

Enter a positive number: −2
OK!

If the user enters a negative number the first time, no values would be echo-
printed:

>> whileposnum
Enter a positive number: −33
OK!

This illustrates a very important feature of while loops: it is possible that the
action will not be executed at all, if the value of the condition is false the first
time it is evaluated.

Chapter 4 Looping148

As we have seen before, MATLAB will give an error message if a character is
entered rather than a number.

>> whileposnum
Enter a positive number: a
??? Error using ==> input
Undefined function or variable ‘a’.

Enter a positive number: −4
OK!

However, if the character is actually the name of a variable, it will use the value
of that variable as the input. For example:

>> a = 5;
>> whileposnum
Enter a positive number: a
You entered a 5.

Enter a positive number: −4
OK!

4.4.4 Counting in a While Loop
When it is not known ahead of time how many values will be entered into a
script, it is frequently necessary to count the number of values that are entered.
For example, if numbers are read into a script, and then the average of the num-
bers is desired, the script must add them together, and keep track of how many
there are, in order to calculate the average. The following variation on the previ-
ous script counts the number of numbers that the user successfully enters:

countposnum.m

% Prompts the user for positive numbers and echo prints as

% long as the user enters positive numbers

% Counts the positive numbers entered by the user

counter=0;

inputnum=input(‘Enter a positive number: ’);

while inputnum >= 0

 fprintf(‘You entered a %d.\n\n’,inputnum)

 counter = counter + 1;

 inputnum = input(‘Enter a positive number: ’);

end

fprintf(‘Thanks, you entered %d positive numbers\n’,counter)

1494.4 While Loops

The script initializes a variable counter to 0. Then, in the while loop action,
every time the user successfully enters a number, the program increments the
counter variable. At the end of the script, it prints the number of numbers that
were entered.

>> countposnum
Enter a positive number: 4
You entered a 4.

Enter a positive number: 8
You entered a 8.

Enter a positive number: 11
You entered a 11.

Enter a positive number: −4
Thanks, you entered 3 positive numbers

4.4.5 error-Checking user input in a
While Loop
In most applications, when the user is prompted to
enter something, there is a valid range of values. If the
user enters an incorrect value, rather than having the
program carry on with an incorrect value, or just print-
ing an error message, the program should repeat the
prompt. The program should keep prompting the user,
reading the value, and checking it, until the user enters
a value that is in the correct range. This is a very com-
mon application of a conditional loop, looping until
the user correctly enters a value in a program. This is
called error-checking.

For example, the following script prompts the user to enter a positive num-
ber, and loops to print an error message and repeat the prompt until the user
finally enters a positive number.

readonenum.m

% Loop until the user enters a positive number

inputnum=input(‘Enter a positive number: ’);

while inputnum < 0

 inputnum = input(‘Invalid! Enter a positive number: ’);

end

fprintf(‘Thanks, you entered a %.1f \n’,inputnum)

praCtiCe 4.8
Write a script aveposnum that will repeat
the process of prompting the user for
positive numbers, until the user enters
a negative number, as earlier. Instead of
echo-printing them, however, the script
will print the average (of just the positive
numbers). If no positive numbers are
entered, the script will print an error
message instead of the average. Here are
examples of executing this script:

>> aveposnum
Enter a positive number: −5
No positive numbers to
average.

>> aveposnum
Enter a positive number: 8
Enter a positive number: 3
Enter a positive number: 4
Enter a positive number: −6
The average was 5.00

Chapter 4 Looping150

Here is an example of running this script:

>> readonenum
Enter a positive number: −5
Invalid! Enter a positive number: −2.2
Invalid! Enter a positive number: c
??? Error using ==> input
Undefined function or variable ‘c’.

Invalid! Enter a positive number: 44
Thanks, you entered a 44.0

Note that MATLAB itself catches the character input and prints an error mes-
sage and repeats the prompt when the c was entered.

QuiCK Question!

How could we vary this example, so that the script asks the
user to enter positive numbers n times, where n is an integer
defined to be 3?

answer: Every time the user enters a value, the script checks
and in a while loop keeps telling the user that it’s invalid until
a valid positive number is read. By putting the error-check in
a for loop that repeats n times, the user is forced eventually to
enter three positive numbers.

readnnums.m

% Loop until the user enters n positive numbers

n=3;

fprintf(‘Please enter %d positive numbers\n\n’,n)

for i=1:n

 inputnum=input(‘Enter a positive number: ’);

 while inputnum < 0

 inputnum = input(‘Invalid! Enter a positive number: ’);

 end

 fprintf(‘Thanks, you entered a %.1f \n’,inputnum)

end

>> readnnums
Please enter 3 positive numbers

Enter a positive number: 5.2
Thanks, you entered a 5.2

Enter a positive number: 6
Thanks, you entered a 6.0
Enter a positive number: −7.7
Invalid! Enter a positive number: 5
Thanks, you entered a 5.0

1514.4 While Loops

4.4.5.1 Error-Checking for Integers
Since MATLAB uses the type double by default for all values, to check to make
sure that the user has entered an integer, the program has to convert the input
value to an integer type (e.g., int32) and then check to see whether that is equal
to the original input. The following examples illustrate the concept.

If the value of the variable num is a real number, converting it to the type int32
will round it, so the result is not the same as the original value.

>> num = 3.3;
>> inum = int32(num)
inum =

3

>> num == inum
ans =

0

If, on the other hand, the value of the variable num is an integer, converting it
to an integer type will not change the value.

>> num = 4;
>> inum = int32(num)
inum =

4
>> num == inum
ans =

1

The following script uses this idea to error-check for integer data; it loops until
the user correctly enters an integer.

readoneint.m

% Error-check until the user enters an integer

inputnum = input(‘Enter an integer: ’);

num2 = int32(inputnum);

while num2 = inputnum

 inputnum = input(‘Invalid! Enter an integer: ’);

 num2 = int32(inputnum);

end

fprintf(‘Thanks, you entered a %d \n’,inputnum)

Here are examples of running this script:

>> readoneint
Enter an integer: 9.5

Chapter 4 Looping152

Invalid! Enter an integer: 3.6
Invalid! Enter an integer: −11
Thanks, you entered a −11

>> readoneint
Enter an integer: 5
Thanks, you entered a 5

Putting these ideas together, the following script loops until the user correctly
enters a positive integer. There are two parts to the condition, since the value
must be positive and must be an integer.

readoneposint.m

% Error checks until the user enters a positive integer

inputnum = input(‘Enter a positive integer: ’);

num2 = int32(inputnum);

while num2 = inputnum || num2 < 0

 inputnum = input(‘Invalid! Enter a positive integer: ’);

 num2 = int32(inputnum);

end

fprintf(‘Thanks, you entered a %d \n’,inputnum)

>> readoneposint
Enter a positive integer: 5.5
Invalid! Enter a positive integer: −4
Invalid! Enter a positive integer: 11
Thanks, you entered a 11

suMMary

Common pitfalls

■■ Forgetting to initialize a running sum or count variable to 0.

■■ Forgetting to initialize a running product variable to 1.

■■ In cases where loops are necessary, not realizing that if an action is required
for every row in a matrix, the outer loop must be over the rows (and if
an action is required for every column, the outer loop must be over the
columns).

■■ Attempting to use an array of double 1’s and 0’s to index into an array
(must be logical, instead).

praCtiCe 4.9
Modify this script to read n positive
integers, instead of just one.

153Summary

■■ Forgetting that for array operations based on multiplication, the dot
must be used in the operator. In other words, for multiplying, dividing,
or raising to an exponent term-by-term, the operators are .*, ./, and .^.

■■ Attempting to use | | or && with arrays; always use | and & when working
with arrays; | | and && are used only with scalars.

■■ Not realizing that it is possible that the action of a while loop will never be
executed.

■■ Not error-checking input into a program.

programming style guidelines

■■ Use loops for repetition only when necessary:

– for statements as counted loops

– while statements as conditional loops

■■ Do not use i or j for iterator variable names if the use of the built-in
constants i and j is desired.

■■ Indent the action of a loop.

■■ If the loop variable is being used just to specify how many times the action
of the loop is to be executed, use the colon operator 1:n where n is the
number of times the action is to be executed.

■■ Preallocate vectors and matrices whenever possible (when the size is known
ahead of time).

■■ When data is read in a loop, store it in an array only if it will be necessary
to access the individual data values again.

■■ Vectorize code whenever possible. If it is not necessary to use loops in
MATLAB, don’t!

■■ Use the array operators .*, ./, .\, and .^ in functions so that the input
arguments can be arrays and not just scalars.

MatLaB Functions and Commands

while
for
end
factorial

sum
prod
cumsum

cumprod
min
max

any
all
find

Chapter 4 Looping154

exercises
 1. Write a for loop that will print the column of real numbers from 1.1 to 2.9 in steps

of 0.1.
 2. Write a function sumsteps2 that calculates and returns the sum of 1 to n in steps

of 2, where n is an argument passed to the function. For example, if 11 is passed, it
will return 1 + 3 + 5 + 7 + 9 + 11. Do this using a for loop. Calling the function will
look like this:

>> sumsteps2(11)
ans =
 36

 3. Write a function prodby2 that will receive a value of a positive integer n and will
calculate and return the product of the odd integers from 1 to n (or from 1 to n–1 if
n is even).

 4. Write a function called geomser that will receive values of r and n, and will
calculate and return the sum of the geometric series:

1 + r + r2 + r3 + r4 + ... + rn

The following examples of calls to this function illustrate what the result should be:

>> geomser(1,5)
ans =

6
>> disp(geomser(2,4))

31

 5. Prompt the user for an integer n and print “I love this stuff!” n times.
 6. In the Command Window, write a for loop that will iterate through the integers

from 32 to 255. For each, show the corresponding character from the character
encoding.

 7. In the Command Window, write a for loop that will print the elements from a
vector variable in sentence format. For example, if this is the vector:

>> vec = [5.5 11 3.45];

this would be the result:

Element 1 is 5.50.
Element 2 is 11.00.
Element 3 is 3.45.

MatLaB operators

element-wise or for matrices |
element-wise and for matrices &

155exercises

The for loop should work regardless of how many elements are in the vector.
 8. Create a 1 × 6 vector of random integers, each in the range from 1 to 20. Use

built-in functions to find the minimum and maximum values in the vector. Also
create a vector of cumulative sums using cumsum.

 9. Write a relational expression for a vector variable that will verify that the last value
in a vector created by cumsum is the same as the result returned by sum.

 10. Type this script and be amazed by the results! Try more points to get a clearer
picture, but don’t go overboard—it might take a while on your computer.

clear
clf
x = rand;
y = rand;
plot(x,y)
hold on
for it = 1:2000
 choic = round(rand*2);
 if choic == 0
 x = x/2;
 y = y/2;
 elseif choic == 1
 x = (x+1)/2;
 y = y/2;
 else
 x = (x+0.5)/2;
 y = (y+1)/2;
 end
 plot(x,y)
 hold on
end

 11. A sound engineer has recorded a sound signal from a microphone. The sound signal
was sampled, meaning that values at discrete intervals were recorded (rather than a
continuous sound signal). The units of each data sample are volts. The microphone
was not on at all times, however, so that data samples below a certain threshold
are considered to be data values that were samples when the microphone was not
on, and therefore not valid data samples. The sound engineer would like to know
the average voltage of the sound signal. Write a script that will ask the user for the
threshold and the number of data samples, and then for the individual data samples.
The program will then print the average and a count of the valid data samples, or
an error message if there were no valid data samples. An example of what the input
and output would look like in the Command Window is shown:

Please enter the threshold below which samples will be
considered to be invalid:

Chapter 4 Looping156

3.0
Please enter the number of data samples to be entered:
7

Please enter a data sample: 0.4
Please enter a data sample: 5.5
Please enter a data sample: 5.0
Please enter a data sample: 2.1
Please enter a data sample: 6.2
Please enter a data sample: 0.3
Please enter a data sample: 5.4

The average of the 4 valid data samples is 5.53 volts.

Note: If there had been no valid data samples, the program would print an error
message instead of the last line shown.

 12. Write a script that will load data from a file into a matrix. Create the data file first,
and make sure that there is the same number of values on every line in the file so
that it can be loaded into a matrix. Using a for loop, it will then create as many
Figure Windows as there are rows in the matrix, and will plot the numbers from
each row in a separate Figure Window. For example, if the file contains:

 4 9 22
30 18 4

two Figure Windows would be created, as seen in Figure 4.2.
 13. A machine cuts N pieces of a pipe. After each cut, each piece of pipe is weighed

and its length is measured; these two values are then stored in a file called ‘pipe.
dat’ (first the weight and then the length on each line of the file). Ignoring units,
the weight is supposed to be between 2.1 and 2.3, inclusive, and the length
is supposed to be between 10.3 and 10.4, inclusive. The following is just the

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
4

6

8

10

12

14

16

18

20

22

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

Figure 4.2
Number of plots from data file specified in a for loop.

157exercises

beginning of what will be a long script to work with this data. For now, the script
will just count how many rejects there are. A reject is any piece of pipe that has an
invalid weight and/or length. For a simple example, if N is 3 (meaning three lines in
the file) and the file stores:

2.14 10.30
2.32 10.36
2.20 10.35

there is only one reject, the second one, which weighs too much. The script would
print:

There were 1 rejects.

 14. Write a function that will receive a matrix as an input argument, and will calculate
and return the overall average of all numbers in the matrix. Use loops, not built-in
functions, to calculate the average.

 15. We have seen that by default, when using built-in functions like sum, prod,
and such on matrices, MATLAB will perform the function on each column.
A dimension can also be specified when calling these functions; MATLAB refers
to the columns as dimension 1 and the rows as dimension 2, for example,

>> sum(mat,1)
>> sum(mat,2)

Create a matrix and find the product of each row and column using prod.
 16. Create a vector of five random integers, each in the range from –10 to 10. Perform

each of the following two ways: using built-in functions, and also using loops (with
if statements if necessary):

■■ Subtract 3 from each element.
■■ Count how many are positive.
■■ Get the absolute value of each element.
■■ Find the maximum.

 17. Create a 3 × 5 matrix. Perform each of the following two ways: using built-in
functions, and also using loops (with if statements if necessary):

■■ Find the maximum value in each column.
■■ Find the maximum value in each row.
■■ Find the maximum value in the entire matrix.

 18. Write a script that will print the following multiplication table:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25

Chapter 4 Looping158

 19. The Wind Chill Factor (WCF) measures how cold it feels with a given air
temperature T (in degrees Fahrenheit) and wind speed (V, in miles per hour). One
formula for it is

 WCF = 35.7 + 0.6 T − 35.7 (V0.16) + 0.43 T (V0.16)

 Write a function to receive the temperature and wind speed as input arguments,
and return the WCF. Using loops, print a table showing wind chill factors for
temperatures ranging from –20 to 55 in steps of 5, and wind speeds ranging from
0 to 55 in steps of 5. Call the function to calculate each wind speed.

 20. Instead of printing the wind chill factors in the previous problem, create a matrix
of wind chill factors and write them to a file.

 21. Generate a random integer n, create a vector of the integers 1 through n in steps of
2, square them, and plot the squares.

 22. A vector v stores for several employees of the Green Fuel Cells Corporation their
hours worked one week followed for each by the hourly pay rate. For example, if
the variable stores

>> v
v =
 33.0000 10.5000 40.0000 18.0000 20.0000 7.5000

 that means the first employee worked 33 hours at $10.50 per hour, the second
worked 40 hours at $18 an hour, and so on. Write code that will separate this into
two vectors, one that stores the hours worked and another that stores the hourly
rates. Then, use the array multiplication operator to create a vector, storing in the
new vector the total pay for every employee.

 23. The mathematician Euler proved the following:

 Rather than finding a mathematical proof for this, try to verify whether the
conjecture seems to be true or not. Note: There are two basic ways to
approach this: either choose a number of terms to add, or loop until the sum is
close to /6.

 24. Write a script that will prompt the user for the radius and height of a cone, error-
check the user’s input for the radius and the height, and then calculate and print
the volume of the cone.

 25. Write a script (for example, called findmine) that will prompt the user for minimum
and maximum integers, and then another integer that is the user’s choice in the
range from the minimum to the maximum. The script will then generate random
integers in the range from the minimum to the maximum, until a match for the
user’s choice is generated. The script will print how many random integers had to
be generated until a match for the user’s choice was found. For example, running
this script might result in this output:

p
= + + + +

2 1 1 1
1 ...

6 4 9 16

159exercises

>> findmine
Please enter your minimum value: −2
Please enter your maximum value: 3
Now enter your choice in this range: 0
It took 3 tries to generate your number

 26. Write a script that will prompt the user for N integers, and then write the positive
numbers (>= 0) to an ASCII file called pos.dat and the negative numbers to an
ASCII file called neg.dat. Error-check to make sure that the user enters N integers.

 27. Write a script that will continue prompting the user for positive numbers, and
storing them in a vector variable, until the user types a negative number.

 28. Write a script that will use the menu function to present the user with choices
for functions fix, floor, and ceil. Error-check by looping to display the menu
until the user pushes one of the buttons (an error could occur if the user clicks
the X on the menu box rather than pushing one of the buttons). Then, generate a
random number and print the result of the user’s function choice of that number
(e.g., fix(5)).

 29. Write a script echoletters that will prompt the user for letters of the alphabet
and echo-print them until the user enters a character that is not a letter of the
alphabet. At that point, the script will print the nonletter, and a count of how many
letters were entered. Here are examples of running this script:

>> echoletters
Enter a letter: T
Thanks, you entered a T
Enter a letter: a
Thanks, you entered a a
Enter a letter: 8
8 is not a letter
You entered 2 letters

>> echoletters
Enter a letter: !
! is not a letter
You entered 0 letters

The format must be exactly as shown.
 30. Write a script called prtemps that will prompt the user for a maximum Celsius

value in the range from –16 to 20; error-check to make sure it’s in that range. Then,
print a table showing degrees F and degrees C until this maximum is reached. The
first value that exceeds the maximum should not be printed. The table should start
at 0 degrees F, and increment by 5 degrees F until the max (in C) is reached. Both
temperatures should be printed with a field width of 6 and one decimal place. The
formula is C = 5/9 (F – 32). For example, the execution of the script might look like
this (the format should be exactly like this):

Chapter 4 Looping160

>> prtemps
When prompted, enter a temp in degrees C in range −16
to 20.
Enter a maximum temp: 30
Error! Enter a maximum temp: 9

 F C
 0.0 −17.8
 5.0 −15.0
10.0 −12.2
15.0 −9.4
20.0 −6.7
25.0 −3.9
30.0 −1.1
35.0 1.7
40.0 4.4
45.0 7.2

 31. Create an x vector that has integers 1 through 10, and set a y vector equal to x.
Plot this straight line. Now, add noise to the data points by creating a new y 2
vector that stores the values of y ±0.25. Plot the straight line and also these noisy
points.

 32. A blizzard is a massive snowstorm. Definitions vary, but for our purposes we will
assume that a blizzard is characterized by both winds of 30 mph or higher and
blowing snow that leads to visibility of a half-mile or less, sustained for at least
four hours. Data from a storm one day has been stored in a file stormtrack.dat.
There are 24 lines in the file, one for each hour of the day. Each line in the file has
the wind speed and visibility at a location. Create a sample data file. Read this
data from the file and determine whether blizzard conditions were met during this
day or not.

Chapter 5

161

ContentsKey Words

© 2009, 2003,1999 Elsevier Inc.

5.1 More Types of
User-Defined
Functions 162

5.2 MATLAB Program
Organization 170

5.3 Application:
Menu-Driven Modular
Program 174

5.4 Variable Scope .. 182

5.5 Debugging
Techniques 185

functions that return

more than one value

functions that do not

return any values

call-by-value

modular program

main program

primary function

subfunction

menu-driven program

variable scope

base workspace

local variable

global variable

persistent variable

bug

debugging

syntax error

run-time error

logical error

tracing

breakpoint

function stub

Key Words

Chapter 5

MATLAB Programs

Chapter 2 introduced scripts and user-defined functions. In that chapter, we
saw how to write script files, which are sequences of statements that are stored
in an M-file and then executed. We also saw how to write user-defined func-
tions, also stored in M-files, that calculate and return a single value. In this
chapter, we will expand on these concepts, and introduce other kinds of user-
defined functions. We will show how MATLAB® programs consist of combina-
tions of scripts and user-defined functions. The mechanisms for interactions of
variables in M-files and the Command Window will be explored. Finally, tech-
niques for finding and fixing mistakes in programs will be reviewed.

Chapter 5 MatLaB programs162

5.1 More types of User-defined fUnCtions
We already have seen how to write a user-defined function, stored in an M-file,
that calculates and returns one value. This is just one type of function. It is also
possible for a function to return multiple values, and it is possible for a func-
tion to return nothing. We will categorize functions as follows:

■■ Functions that calculate and return one value

■■ Functions that calculate and return more than one value

■■ Functions that just accomplish a task, such as printing, without
returning any values

So, although many functions calculate and return values, some do not. Some
functions instead just accomplish a task. Regardless of what kind of func-
tion it is, all functions must be defined, and all function definitions consist
of the header and the body. Also, the function must be called in order for it
to be utilized. Categorizing the functions is somewhat arbitrary, but there are
 differences between these three types of functions, including the format of the
function headers and also the way in which the functions are called.

In general, any function in MATLAB consists of

■■ The function header (the first line); this has:

– the reserved word function

– (if the function returns values, the name(s) of the output argument(s)
followed by the assignment operator =)

– the name of the function (Important: This should be the same as the
name of the M-file in which this function is stored in order to avoid
confusion)

– the input arguments in parentheses, if there are any (separated by
commas if there is more than one)

■■ A comment that describes what the function does (this is printed if help
is used)

■■ The body of the function, which includes all statements, including
assigning values to all output arguments if there are any

5.1.1 functions that return More than one Value
Functions that return one value have one output argument, as we have seen
in Section 2.7. Functions that return more than one value must instead have
more than one output argument in the function header, in square brackets.
That means that in the body of the function, values must be assigned to all

1635.1 More Types of User-Defined Functions

output arguments listed in the function header. The general form of a function
definition for a function that calculates and returns more than one value looks
like this:

functionname.m

function [output arguments] = functionname(input arguments)

% Comment describing the function

Statements here; these must include assigning values to
all of the output arguments listed in the header

In the vector of output arguments, the output argument names by convention
are separated by commas.

For example, here is a function that calculates two values, both the area and the
circumference of a circle; this is stored in a file called ‘areacirc.m’:

areacirc.m

function [area, circum] = areacirc(rad)

% This function calculates the area and

% the circumference of a circle

area = pi * rad .* rad;

circum = 2 * pi * rad;

Since this function is calculating two values, there are two output arguments
in the function header (area and circum), which are placed in square brack-
ets []. Therefore, somewhere in the body of the function, values have to be
assigned to both. Since the function is returning two values, it is important to
capture and store them in separate variables when the function is called, just
as both the number of rows and the number of columns would be captured
from the size function. In this case, the first value returned, which is the area
of the circle, is stored in a variable a and the second value returned is stored in
a variable c.

>> [a c] = areacirc(4)
a =
 50.2655
c =
 25.1327

If this is not done, only the first value returned is retained; in this case, the
area:

>> disp(areacirc(4))
 50.2655

Chapter 5 MatLaB programs164

Note that in capturing the values the order matters. In this case, the function
returns first the area and then the circumference of the circle. The order in
which values are assigned to the output arguments within the function, how-
ever, does not matter.

The help function shows the comment listed under the function header:

>> help areacirc
 This function calculates the area and
 the circumference of a circle

The areacirc function could be called from the Command Window as shown
here, or from a script. Here is a script that will prompt the user for the radius
of just one circle, call the areacirc function, to calculate and return the area and
circumference of the circle, and print the results:

calcareacirc.m

% This script prompts the user for the radius of a circle,

% calls a function to calculate and return both the area

% and the circumference, and prints the results

% It ignores units and error-checking for simplicity

radius = input(‘Please enter the radius of the circle: ’);

[area circ] = areacirc(radius);

fprintf(‘For a circle with a radius of %.1f,\n’, radius)

fprintf(‘ the area is %.1f and the circumference is %.1f\n’,. . .

area, circ)

QUiCK QUestion!

What would happen if a vector of radii was passed to the
function?
answer: Since the .* operator is used in the function to
square rad, a vector can be passed to the input argument rad.
Therefore, the results will also be vectors, so the variables on
the left-hand side of the assignment operator would become
vectors of areas and circumferences.

>> [a c] = areacirc(1:4)
a =
 3.1416 12.5664 28.2743 50.2655
c =
 6.2832 12.5664 18.8496 25.1327

1655.1 More Types of User-Defined Functions

As another example, consider a function that calculates and returns three output
arguments. The function will receive one input argument representing a total
number of seconds, and returns the number of hours, minutes, and remaining
seconds that it represents. For example, 7515 total seconds is 2 hours, 5 min-
utes, and 15 seconds because 7515 = 3600 * 2 + 60 * 5 + 15.

The algorithm is:

■■ Divide the total seconds by 3600, which is the number of seconds in an
hour. For example, 7515/3600 is 2.0875. The integer part is the number
of hours, for example, 2.

■■ The remainder of the total seconds divided by 3600 is the remaining
number of seconds; it is useful to store this in a local variable.

>> calcareacirc
Please enter the radius of the circle: 5.2
For a circle with a radius of 5.2,

the area is 84.9 and the circumference is 32.7

praCtiCe 5.1

Write a function perimarea that calculates and returns the perimeter and
area of a rectangle. Pass the length and width of the rectangle as input
arguments. For example, this function might be called from this script:

calcareaperim.m

% Prompt the user for the length and width of a rectangle,

% call a function to calculate and return the perimeter

% and area, and print the result

% For simplicity it ignores units and error-checking

length = input(‘Please enter the length of the rectangle: ’);

width = input(‘Please enter the width of the rectangle: ’);

[perim area] = perimarea(length, width);

fprintf(‘For a rectangle with a length of %.1f and a’, length);

fprintf(‘ width of %.1f,\nthe perimeter is %.1f,’, width, perim);

fprintf(‘ and the area is %.1f\n’, area)

Chapter 5 MatLaB programs166

■■ The number of minutes is the remaining number of seconds divided by
60 (again, the integer part).

■■ The number of seconds is the remainder of this division.

breaktime.m

function [hours, minutes, secs] = breaktime(totseconds)

% This function breaks a total number of seconds into

% hours, minutes, and remaining seconds

hours = floor(totseconds/3600);

remsecs = rem(totseconds, 3600);

minutes = floor(remsecs/60);

secs = rem(remsecs,60);

Here is an example of calling this function:

>> [h m s] = breaktime(7515)
h =
 2
m =
 5
s =
 15

As before, it is important to store all values that the function returns in
variables.

5.1.2 functions that accomplish a task Without
returning Values
Many functions do not calculate values, but rather accomplish a task such as
printing formatted output. Since these functions do not return any values,
there are no output arguments in the function header.

The general form of a function definition for a function that does not return any
values looks like this:

functionname.m

function functionname(input arguments)

% Comment describing the function

Statements here

Notice what is missing in the function header: there are no output arguments,
and no assignment operator.

1675.1 More Types of User-Defined Functions

For example, the following function just prints the number arguments passed
to it in a sentence format:

printem.m

function printem(a,b)

% This function prints two numbers in a sentence format

fprintf(‘The first number is %.1f and the second is %.1f\n’,a,b)

Since this function isn’t calculating anything, there aren’t any output
arguments in the function header, and no =. An example of a call to the
function is:

>> printem(3.3, 2)
The first number is 3.3 and the second is 2.0

Note that since the function isn’t returning any value, it cannot be called from
an assignment statement. Any attempt to do this would result in an error, for
example,

>> x = printem(3, 5) % Error!!
??? Error using ==> printem
Too many output arguments.

We can therefore think of the call to a function that does not return values as
a statement by itself, in that the function call cannot be imbedded in another
statement such as an assignment statement or an output statement.

5.1.3 functions that return Values
Versus printing
A function that calculates and returns values (through
the output arguments) does not normally also print
them; that is left to the calling script or function. It is
good programming practice to separate these tasks.

If a function just prints a value, rather than returning
it, the value cannot be used later on in other calcula-
tions. For example, here is a function that just prints
the circumference of a circle:

calccircum1.m

function calccircum1(radius)

% displays the circumference of a circle but does not

% return the value

disp(2 * pi * radius)

praCtiCe 5.2
Write a function that receives a vector
as an input argument and prints the
elements from the vector in a sentence
format.

>> printvecelems([5.9 33 11])
Element 1 is 5.9
Element 2 is 33.0
Element 3 is 11.0

Chapter 5 MatLaB programs168

Calling this function prints the circumference, but there is no way to store the
value so that it can be used in subsequent calculations:

>> calccircum1(3.3)
 20.7345

Since no value is returned by the function, it would be an error to try to store
the value in a variable:

>> c = calccircum1(3.3)
??? Error using ==> calccircum1
Too many output arguments.

By contrast, the following function calculates and returns the circumference, so
that it can be stored and used in other calculations. For example, if the circle is
the base of a cylinder, and we wish to calculate the surface area of the cylinder, we
would need to multiply the result from the calccircum2 function by the height
of the cylinder.

calccircum2.m

function circle_circum = calccircum2(radius)

% calculates and returns the circumference of a circle

circle_circum = 2 * pi * radius;

>> circumference = calccircum2(3.3)
circumference =
 20.7345

>> height = 4;
>> surf_area = circumference * height
surf_area =
 82.9380

5.1.4 passing arguments to functions
In all these function examples so far, at least one argument was passed in
the function call to be the value(s) of the corresponding input argument(s)
in the function header. The method used has been the call-by-value method
of passing the values of the arguments to the input arguments in the
functions.

In some cases, however, it is not necessary to pass any arguments to the
 function. Consider, for example, a function that simply prints a random real
number with two decimal places:

1695.1 More Types of User-Defined Functions

printrand.m

function printrand()

% This function prints one random number

fprintf(‘The random # is %.2f\n’,rand)

Here is an example of calling this function:

>> printrand()
The random # is 0.94

Since nothing is passed to the function, there are no arguments in the paren-
theses in the function call, and none in the function header, either. In fact, the
parentheses are not even needed in either the function or the function call; this
works, also:

printrandnp.m

function printrandnp

% This function prints one random number

fprintf(‘The random # is %.2f\n’,rand)

>> printrandnp
The random # is 0.52

This was an example of a function that did not receive any input arguments
nor did it return any output arguments; it simply accomplished a task.

Here is another example of a function that does not receive any input argu-
ments, but in this case it does return a value. The function prompts the user for
a string and returns the value entered.

stringprompt.m

function outstr = stringprompt

% Prompt the user for a string and return it

disp(‘When prompted, enter a string of any length.’)

outstr = input(‘Enter the string here: ’, ‘s’);

>> mystring = stringprompt
When prompted, enter a string of any length.
Enter the string here: Hi there
mystring =
Hi there

praCtiCe 5.3
Write a function that will prompt the user
for a positive number, loop to error-check
to make sure that the number is positive,
and return the positive number.

Chapter 5 MatLaB programs170

5.2 MatLaB prograM organization
A MATLAB program typically consists of a script that calls functions to do the
actual work.

5.2.1 Modular programs
In a modular program, the solution is broken down into modules, and each is
implemented as a function. The script is typically called the main program.

In order to demonstrate the concept, we will use the very simple example of
calculating the area of a circle. In the next section, a much longer and more
realistic example will be given. For this example, there are three steps in the
algorithm to calculate the area of a circle:

■■ Get the input (the radius)

■■ Calculate the area

■■ Display the results

In a modular program, there would be one main script that calls three separate
functions to accomplish these tasks:

■■ A function to prompt the user and read in the radius

■■ A function to calculate the area of the circle

■■ A function to display the results

QUiCK QUestion!

It is important that the number of arguments in the call to a
function be the same as the number of input arguments in the
function header, even if that number is zero. Also, if a function
returns more than one value, it is important to capture all val-
ues by having an equivalent number of variables in a vector
on the left-hand side of an assignment statement. Although
it is not an error if there aren’t enough variables, the values
returned will be lost. The following question is posed to high-
light this.

Given the following function header (note: this is just the
function header, not the entire function definition):

function [outa, outb] = qq1(x, y, z)

which of the following proposed calls to this function would
be valid?

a) [var1 var2] = qq1(a, b, c);
b) answer = qq1(3, y, q);
c) [a b] = myfun(x, y, z);
d) [outa outb] = qq1(x, z);

answer: The first proposed function call, (a), is valid. There are
three arguments that are passed to the three input arguments
in the function header, the name of the function is qq1, and
there are two variables in the assignment statement to store
the two values returned from the function. Function call (b) is
valid, although only the first value returned from the function
would be stored in answer; the second value would be lost.
Function call (c) is invalid because the name of the function is
given incorrectly. Function call (d) is invalid because only two
arguments are passed to the function, but there are three input
arguments in the function header.

1715.2 MATLAB Program Organization

Since both scripts and functions are stored in M-files, there would be four sepa-
rate M-files altogether for this program; one M-file script and three M-file func-
tions, as follows:

calcandprintarea.m

% This is the main script to calculate the

% area of a circle

% It calls 3 functions to accomplish this

radius = readradius;

area = calcarea(radius);

printarea(radius,area)

readradius.m

function radius = readradius

%This function prompts the user and reads the radius

disp(‘When prompted, please enter the radius in inches.’)

radius = input(‘Enter the radius: ’);

calcarea.m

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad * rad;

printarea.m

function printarea(rad,area)

% This function prints the results

fprintf(‘For a circle with a radius of %.2f inches,\n’,rad)

fprintf(‘the area is %.2f inches squared.\n’,area)

When the program is executed, the following steps will take place:

■■ The script calcandprintarea begins executing.

■■ calcandprintarea calls the readradius function:

■■ readradius executes and returns the radius.

■■ calcandprintarea resumes executing and calls the calcarea function,
passing the radius to it:

■■ calcarea executes and returns the area.

Chapter 5 MatLaB programs172

■■ calcandprintarea resumes executing and calls the printarea function,
passing both the radius and the area to it:

■■ printarea executes and prints.

Running the program would be accomplished by typing the name of the script;
this would call the other functions:

>> calcandprintarea
When prompted, please enter the radius in inches.
Enter the radius: 5.3
For a circle with a radius of 5.30 inches,
the area is 88.25 inches squared.

Notice how the function calls and the function headers match up. For example:

readradius function:
function call: radius = readradius;
function header: function radius = readradius

In the function call, no arguments are passed so there are no input arguments
in the function header. The function returns one output argument so that is
stored in one variable.

calcarea function:
function call: area = calcarea(radius);
function header: function area = calcarea(rad)

In the function call, one argument is passed in parentheses so there is one
input argument in the function header. The function returns one output argu-
ment so that is stored in one variable.

printarea function:
function call: printarea(radius,area)
function header: function printarea(rad,area)

In the function call, there are two arguments passed, so there are two input argu-
ments in the function header. The function does not return anything, so the call to
the function is a statement by itself; it is not in an assignment or output statement.

Of course, the readradius function should really error-check the user’s input.

5.2.2 subfunctions
So far, we have put each function in a separate M-file.
However, it is possible to have more than one func-
tion in a given M-file. For example, if one function
calls another, the first (calling) function would be the
primary function, and the function that is called is a
subfunction. These functions both would be stored in
the same M-file—first the primary function and then

praCtiCe 5.4
Modify the readradius function to error-
check the user’s input to make sure that
the radius is valid. The function should
ensure that the radius is a positive number
by looping to print an error message until
the user enters a valid radius.

1735.2 MATLAB Program Organization

the subfunction. The name of the M-file would be the same as the name of the
primary function, to avoid confusion.

To demonstrate this, a program that is similar to the previous one, but calculates
and prints the area of a rectangle, is shown here. The script, or main program, first
calls a function that reads the length and width of the rectangle, and then calls a
function to print the results. This function calls a subfunction to calculate the area.

rectarea.m

% This program calculates & prints the area of a rectangle

% Call a fn to prompt the user & read the length and width

[length, width] = readlenwid;

% Call a fn to calculate and print the area

printrectarea(length, width)

readlenwid.m

function [l,w] = readlenwid

% This function prompts the user for the length and width

l = input(‘Please enter the length: ’);

w = input(‘Please enter the width: ’);

printrectarea.m

function printrectarea(len, wid)

% This function prints the rectangle area

% It calls a subfunction to calculate the area

area = calcrectarea(len,wid);

fprintf(‘For a rectangle with a length of %.2f\n’,len)

fprintf(‘and a width of %.2f, the area is %.2f\n’, …

 wid, area);

function area = calcrectarea(len, wid)

% This function calculates the rectangle area

area = len * wid;

This is an example of running this program:

>> rectarea
Please enter the length: 6
Please enter the width: 3
For a rectangle with a length of 6.00
and a width of 3.00, the area is 18.00

Chapter 5 MatLaB programs174

Notice how the function calls and function headers match up. For example:

readlenwid function:
function call: [length, width] = readlenwid;
function header: function [l,w] = readlenwid

In the function call, no arguments are passed so there are no input arguments
in the function header. The function returns two output arguments so there is
a vector with two variables on the left-hand side of the assignment statement
in which the function is called.

printrectarea function:
function call: printrectarea(length, width)
function header: function printrectarea(len, wid)

In the function call, there are two arguments passed, so there are two input
arguments in the function header. The function does not return anything, so
the call to the function is a statement by itself; it is not in an assignment or
output statement.

calcrectarea subfunction:
function call: area = calcrectarea(len,wid);
function header: function area = calcrectarea(len, wid)

In the function call, two arguments are passed in parentheses so there are
two input arguments in the function header. The function returns one output
 argument so that is stored in one variable.

The help command can be used with the script rectarea, the function readlen-
wid, and the primary function printrectarea. To view the first comment in the
subfunction, since it is contained within the printrectarea.m file, the operator
> is used to specify both the primary and subfunctions:

>> help rectarea
 This program calculates & prints the area of a rectangle
>> help printrectarea
 This function prints the rectangle area
 It calls a subfunction to calculate the area
>> help printrectarea>calcrectarea
 This function calculates the rectangle area

5.3 appLiCation: MenU-driVen ModULar
prograM
Many longer, more involved programs that have interaction with the user are
menu-driven, which means that the program prints a menu of choices and then
continues to loop to print the menu of choices until the user chooses to end

1755.3 Application: Menu-Driven Modular Program

the program. A modular menu-driven program typically would have a function
that presents the menu and gets the user’s choice, as well as functions to imple-
ment the action for each choice. These functions may have subfunctions. Also,
the functions would error-check all user input.

As an example of such a menu-driven program, we will write a program to
explore the constant e.

The constant e, called the natural exponential base, is used extensively in math-
ematics and engineering. There are many diverse applications of this constant.
The value of the constant e is approximately 2.1718. Raising e to the power of
x, or ex, is so common that this is called the exponential function. In MATLAB,
as we have seen, there is a function for this, exp.

One way to determine the value of e is by finding a limit.
1

1lim
®¥

æ ö= +ç ÷
è ø

n

n
e

n

As the value of n increases toward infinity, the result of this expression
approaches the value of e.

praCtiCe 5.5
For a right triangle with sides a, b, and c, where c is the hypotenuse and is
the angle between sides a and c, the lengths of sides a and b are given by:

a = c cos()
b = c sin()

Write a script righttri that calls a function to prompt the user and read
in values for the hypotenuse and the angle (in radians), and then calls a
function to calculate and return the lengths of sides a and b, and a function
to print out all values in a nice sentence format. For simplicity, ignore units.
Here is an example of running the script; the output format should be
exactly as shown here:

>> righttri
Enter the hypotenuse: 5
Enter the angle: .7854
For a right triangle with hypotenuse 5.0
 and an angle 0.79 between side a & the hypotenuse,
 side a is 3.54 and side b is 3.54

For extra practice, do this using two different program organizations:

■■ One script that calls three separate functions

■■ One script that calls two functions; the function that calculates the
lengths of the sides will be a subfunction to the function that prints

Chapter 5 MatLaB programs176

An approximation for the exponential function can be found using what is
called a Maclaurin series:

1 2 3

1 ...
1! 2! 3!

» + + + +x x x x
e

We will write a program to investigate the value of e and the exponential func-
tion. It will be menu-driven. The menu options will be:

■■ Print an explanation of e.

■■ Prompt the user for a value of n, and then find an approximate value for
e using the expression (1 + 1/n)n.

■■ Prompt the user for a value for x. Print the value of exp(x) using the
built-in function. Find an approximate value for ex using the Maclaurin
series just given.

■■ Exit the program.

The algorithm for the script main program is:

■■ Call a function eoption to display the menu and return the user’s choice.

■■ Loop until the user chooses to exit the program. If the user has not
chosen to exit, the action of the loop, depending on the user’s choice,
either is to:

– Call a function explaine to print an explanation of e

– Call a function limite that will prompt the user for n and calculate an
approximate value for e

– Prompt the user for x and call a function expfn that will print both an
approximate value for ex and the value of the built-in exp(x). (Note:
Any value for x is acceptable so the program does not need to error-
check this value.)

■■ Call the function eoption to display the menu and return the user’s
choice again.

The algorithm for the eoption function is:

■■ Use the menu function to display the four choices.

■■ Error-check (an error would occur if the user clicks the X on the menu
box rather than pressing one of the four buttons) by looping to display
the menu until the user presses one of the buttons.

■■ Return the integer value corresponding to the button press.

The algorithm for the explaine function is:

1775.3 Application: Menu-Driven Modular Program

■■ Print an explanation of e, the exp function, and how to find
approximate values.

The algorithm for the limite function is:

■■ Call a subfunction askforn to prompt the user for an integer n.

■■ Calculate and print the approximate value of e using n.

The algorithm for the subfunction askforn is:

■■ Prompt the user for a positive integer for n.

■■ Loop to print an error message and reprompt until the user enters a
positive integer.

■■ Return the positive integer n.

The algorithm for the expfn function is:

■■ Receives the value of x as an input argument.

■■ Prints the value of exp(x).

■■ Assigns an arbitrary value for the number of terms n (an alternative
method would be to prompt the user for this).

■■ Call a subfunction appex to find an approximate value of exp(x) using a
series with n terms.

■■ Prints this approximate value.

The algorithm for the appex subfunction is:

■■ Receives x and n as input arguments.

■■ Initializes a variable for the running sum of the terms in the series (to 1
for the first term) and for a running product, which will be the factorials
in the denominators.

■■ Loops to add the n terms to the running sum.

■■ Returns the resulting sum.

The entire program consists of the following M-file script and four M-file
functions:

eapplication.m

% This script explores e and the exponential function

% Call a function to display a menu and get a choice

choice = eoption;

(Continued)

Chapter 5 MatLaB programs178

% Choice 4 is to exit the program

while choice = 4

 switch choice

 case 1

 % Explain e

 explaine;

 case 2

 % Approximate e using a limit

 limite;

 case 3

 % Approximate exp(x) and compare to exp

 x = input(‘Please enter a value for x: ’);

 expfn(x);

 end

 % Display menu again and get user’s choice

 choice = eoption;

end

eoption.m

function choice = eoption

% Print the menu of options and error-check

% until the user pushes one of the buttons

choice = menu(‘Choose an e option’, ‘Explanation’, ...

 ‘Limit’, ‘Exponential function’, ‘Exit Program’);

% If the user closes the menu box rather than

% pushing one of the buttons, choice will be 0

while choice == 0

 disp(‘Error - please choose one of the options.’)

 choice = menu(‘Choose an e option’, ‘Explanation’, ...

 ‘Limit’, ‘Exponential function’, ‘Exit Program’);

end

1795.3 Application: Menu-Driven Modular Program

explaine.m

function explaine

% This function explains a little bit about e

fprintf(‘The constant e is called the natural’)

fprintf(‘ exponential base.\n’)

fprintf(‘It is used extensively in mathematics and’)

fprintf(‘ engineering.\n’)

fprintf(‘The value of the constant e is ~ 2.1718\n’)

fprintf(‘Raising e to the power of x is so common that’)

fprintf(‘ this is called the exponential function.\n’)

fprintf(‘An approximation for e is found using a limit.\n’)

fprintf(‘An approximation for the exponential function’)

fprintf(‘ can be found using a series.\n’)

limite.m

function limite

% Approximates e using a limit

% Call a subfunction to prompt user for n

n = askforn;

fprintf(‘An approximation of e with n = %d is %.2f\n’, ...

 n, (1 + 1/n) ^ n)

function outn = askforn

% This subfunction prompts the user for n

% It error-checks to make sure n is a positive integer

inputnum = input(‘Enter a positive integer for n: ’);

num2 = int32(inputnum);

while num2 = inputnum num2 < 0

 inputnum = input(‘Invalid! Enter a positive integer: ’);

 num2 = int32(inputnum);

end

outn = inputnum;

Chapter 5 MatLaB programs180

expfn.m

function expfn(x)

% Compares the built-in function exp and a

% series approximation

fprintf(‘Value of built-in exp(x) is %.2f\n’,exp(x))

% n is arbitrary number of terms

n = 10;

fprintf(‘Approximate exp(x) is %.2f\n’, appex(x,n))

function outval = appex(x,n)

% Approximates e to the x power using terms up to

% x to the nth power

% Initialize the running sum to 1 (for the first term)

outval = 1;

runprod = 1;

for i = 1:n

 runprod = runprod * i;

 outval = outval + (x^i)/runprod;

end

Running the script will bring up the menu seen in Figure 5.1.

Then, what happens will depend on which button(s) the user pushes. Every
time the user pushes a button, the appropriate function will be called and
then this menu will appear again. This will continue until the user presses the
 button Exit Program. Examples will be given here of running the script, with

different sequences of button presses.

In the following example, the user

■■ Closed the menu window, which caused the error message and brought
up a new menu.

■■ Chose Explanation.

■■ Chose Exit Program.

>> eapplication
Error - please choose one of the options.
The constant e is called the natural exponential base.
It is used extensively in mathematics and engineering.
The value of the constant e is ~ 2.1718

Figure 5.1
Menu Figure Window for
eapplication program.

1815.3 Application: Menu-Driven Modular Program

Raising e to the power of x is so common that this is
called the exponential function.
An approximation for e is found using a limit.
An approximation for the exponential function can be found
using a series.

In the following example, the user

■■ Chose Limit;

– when prompted for n, entered two invalid values before finally
entering a valid positive integer.

■■ Chose Exit Program.

>> eapplication
Enter a positive integer for n: –4
Invalid! Enter a positive integer: 5.5
Invalid! Enter a positive integer: 10
An approximation of e with n = 10 is 2.59

In order to see the difference in the approximate value for e as n increases, the
user kept choosing Limit and entering larger and larger values each time in the
following example:

>> eapplication
Enter a positive integer for n: 4
An approximation of e with n = 4 is 2.44
Enter a positive integer for n: 10
An approximation of e with n = 10 is 2.59
Enter a positive integer for n: 30
An approximation of e with n = 30 is 2.67
Enter a positive integer for n: 100
An appoximation of e with n = 100 is 2.70

In the following example, the user

■■ Chose Exponential function;

– when prompted, entered 4.6 for x.

■■ Chose Exponential function again;

– when prompted, entered –2.3 for x.

■■ Chose Exit Program.

>> eapplication
Please enter a value for x: 4.6
Value of built-in exp(x) is 99.48
Approximate exp(x) is 98.71

Chapter 5 MatLaB programs182

Please enter a value for x: –2.3
Value of built-in exp(x) is 0.10
Approximate exp(x) is 0.10

5.4 VariaBLe sCope
The scope of any variable is the workspace in which it is valid. The workspace
created in the Command Window is called the base workspace.

As we have seen before, if a variable is defined in any function it is a local vari-
able to that function, which means that it is known and used only within that
function. For example, in the following function that calculates the sum of the
elements in a vector, there is a local loop variable i.

mysum.m

function runsum = mysum(vec)

% This function sums a vector

runsum = 0;

for i=1:length(vec)

 runsum = runsum + vec(i);

end

Running this function does not add any variables to the workspace, as
demonstrated:

>> clear
>> who
>> disp(mysum([5 9 1]))
 15
>> who
>>

Also, variables that are defined in the Command Window cannot be used in
a function.

However, scripts (as opposed to functions) do interact with the variables that
are defined in the Command Window. For example, the function is changed to
be a script mysummfile.

mysummfile.m

% This script sums a vector

vec = 1:5;

runsum = 0;

(Continued)

1835.4 Variable Scope

for i=1:length(vec)

 runsum = runsum + vec(i);

end

disp(runsum)

The variables defined in the script do become part of the workspace:

>> clear
>> who
>> mysummfile
 15
>> who
Your variables are:
i runsum vec

Variables that are defined in the Command Window can be used in a script, but
cannot be used in a function. For example, the vector vec could be defined in
the Command Window (instead of in the script), but then used in the script:

mysummfileii.m

% This script sums a vector from the Command Window

runsum = 0;

for i=1:length(vec)

 runsum = runsum + vec(i);

end

>> clear
>> vec = 1:7;
>> who
Your variables are:
vec
>> mysummfileii
>> who
Your variables are:
i runsum vec
>> runsum
runsum =
 28

This, however, is very poor programming style. It is much better to pass the vec-
tor vec to a function.

It is possible, in MATLAB as well in other languages, to have global variables
that can be shared by functions. Although there are some cases in which using
global variables is efficient, it is generally regarded as poor programming style.

Chapter 5 MatLaB programs184

5.4.1 persistent Variables
Normally, when a function stops executing, the local variables from that func-
tion are cleared. That means that every time a function is called, memory is
allocated and used while the function is executing, but released when it ends.
With variables that are declared as persistent variables, however, the value is
not cleared so the next time the function is called, the variable still exists and
retains its former value.

The following program demonstrates this. The script calls a function func1,
which initializes a variable count to 0, then increments it, and then prints
the value. Every time this function is called, the variable is created, initial-
ized to 0, changed to 1, and then cleared when the function exits. The script
then calls a function func2, which first declares a persistent variable count.
If the variable has not yet been initialized, which will be the case the first
time the function is called, it is initialized to 0. Then, like the first func-
tion, the variable is incremented and the value is printed. With the second
function, however, when the function exits, the variable remains with its
value, so the next time the function is called the variable is incremented
again.

persistex.m

% This script demonstrates persistent variables

% The first function has a variable count

fprintf(‘This is what happens with a normal variable:\n’)

func1

func1

% The second fn has a persistent variable count

fprintf(‘\nThis is what happens with a persistent variable:\n’)

func2

func2

func1.m

function func1

% This function increments a variable count

count = 0;

count = count + 1;

fprintf(‘The value of count is %d\n’,count)

1855.5 Debugging Techniques

func2.m

function func2

% This function increments a persistent variable count

persistent count

if isempty(count)

 count = 0;

end

count = count + 1;

fprintf(‘The value of count is %d\n’,count)

The functions can be called from the script or from the Command Window,
as shown here. For example, the functions are called first from the script. With
the persistent variable, the value of count is incremented. Then, func1 is called
from the Command Window, and func2 is also called from the Command
Window. Since the value of the persistent variable had the value 2, this time it
is incremented to 3.

>> persistex
This is what happens with a normal variable:
The value of count is 1
The value of count is 1
This is what happens with a persistent variable:
The value of count is 1
The value of count is 2
>> func1
The value of count is 1
>> func2
The value of count is 3

As can be seen here, every time the function func1 is called, whether from per-
sistex or from the Command Window, the value of 1 is printed. However, with
func2 the variable count is incremented every time it is called. It is first called in
this example from persistex twice, so count is 1 and then 2. Then, when called
from the Command Window, it is incremented to 3.

Of course, the numbering of the error messages will continue if the function
is executed again.

5.5 deBUgging teChniQUes
Any error in a computer program is called a bug. This term is thought to
date back to the 1940s, when a problem with an early computer was found

Chapter 5 MatLaB programs186

to have been caused by a moth in the computer’s circuitry! The process of
finding errors in a program, and correcting them, is still called debugging.

5.5.1 types of errors
There are several different kinds of errors that can occur in a program, which
fall into the categories of syntax errors, run-time errors, and logical errors.

Syntax errors are mistakes in using the language. Examples of syntax errors are
missing a comma or a quotation mark, or misspelling a word. MATLAB itself

praCtiCe 5.6
The following function posnum prompts the user to enter a positive
number and loops to error-check. It returns the positive number entered
by the user. It calls a subfunction in the loop to print an error message.
The subfunction has a persistent variable to count the number of times an
error has occurred. Here is an example of calling the function:

>> enteredvalue = posnum
Enter a positive number: –5
Error 1 ... Follow instructions!
Does –5.00 look like a positive number to you?
Enter a positive number: –33
Error 2 ... Follow instructions!
Does –33.00 look like a positive number to you?
Enter a positive number: 6
enteredvalue =
 6

Fill in the following subfunction to accomplish this.

posnum.m

function num = posnum
% Prompt user and error-check until the
% user enters a positive number
num = input(‘Enter a positive number: ’);
while num < 0
 errorsubfn(num)
 num = input(‘Enter a positive number: ’);
end

function errorsubfn(num)

1875.5 Debugging Techniques

will flag syntax errors and give an error message. For example, the following
string is missing the end quote:

>> mystr = ‘how are you;
??? mystr = ‘how are you;
 │
Error: A MATLAB string constant is not terminated
properly.

Another common mistake is to spell a variable name incorrectly, which
MATLAB will also catch.

>> value = 5;
>> newvalue = valu + 3;
??? Undefined function or variable ‘valu’.

Run-time, or execution-time, errors are found when a script or function is
executing. With most languages, an example of a run-time error would be
attempting to divide by zero. However, in MATLAB, this will generate a warn-
ing message. Another example would be attempting to refer to an element in
an array that does not exist.

runtime_ex.m

% This script shows an execution-time error

vec = 3:5;

for i = 1:4

 disp(vec(i))

end

This script initializes a vector with three elements, but then attempts to refer to
a fourth. Running it prints the three elements in the vector, and then an error
message is generated when it attempts to refer to the fourth element. Notice
that it gives an explanation of the error, and it gives the line number in the
script in which the error occurred.

>> runtime_ex
 3
 4
 5
??? Attempted to access vec(4); index out of bounds because
numel(vec)=3.
Error in ==> runtime_ex at 6
 disp(vec(i))

Logical errors are more difficult to locate, because they do not result in any error
message. A logical error is a mistake in reasoning by the programmer, but it is not

Chapter 5 MatLaB programs188

a mistake in the programming language. An example of a logical error would be
dividing by 2.54 instead of multiplying in order to convert inches to centimeters.
The results printed or returned would be incorrect, but this might not be obvious.

All programs should be robust and should wherever possible anticipate poten-
tial errors, and guard against them. For example, whenever there is input into
a program, the program should error-check and make sure that the input is in
the correct range of values. Also, before dividing, the denominator should be
checked to make sure that it is not zero.

Despite the best precautions, there are bound to be errors in programs.

5.5.2 tracing
Many times, when a program has loops and/or selection statements and is not
running properly, it is useful in the debugging process to know exactly which
statements have been executed. For example, here is a function that attempts
to display In Middle Of Range if the argument passed to it is in the range from
3 to 6, and Out Of Range otherwise.

testifelse.m

function testifelse(x)

% This function will test the debugger

if 3 < x < 6

 disp(‘In middle of range’)

else

 disp(‘Out of range’)

end

However, it seems to print In Middle Of Range for all values of x:

>> testifelse(4)
In middle of range
>> testifelse(7)
In middle of range
>> testifelse(–2)
In middle of range

One way of following the flow of the function, or tracing it, is to use the echo
function. The echo function, which is a toggle, will display every statement as it
is executed as well as results from the code. For scripts, just echo can be typed,
but for functions, the name of the function must be specified, for example,

echo functionname on/off
>> echo testifelse on

1895.5 Debugging Techniques

>> testifelse(–2)
% This function will test the debugger
if 3 < x < 6
 disp(‘In middle of range’)
In middle of range
end

We can see from this result that the action of the if clause was executed.

5.5.3 editor/debugger
MATLAB has many useful functions for debugging, and debugging can also be
done through its editor, called the Editor/Debugger.

Typing help debug at the prompt in the Command Window will show some
of the debugging functions. Also, in the Help Browser, clicking the Search tab
and then typing debugging will display basic information about the debugging
processes.

It can be seen in the previous example that the action of the if clause was
executed and it printed In Middle Of Range, but just from that it cannot be
determined why this happened. There are several ways to set breakpoints in a
file (script or function) so that the variables or expressions can be examined.
These can be done from the Editor/Debugger, or commands can be typed from
the Command Window. For example, the following dbstop command will
set a breakpoint in the fifth line of this function (which is the action of the if
clause), which allows us to type variable names and/or expressions to examine
their values at that point in the execution. The function dbcont can be used
to continue the execution, and dbquit can be used to quit the debug mode.
Notice that the prompt becomes K>> in debug mode.

>> dbstop testifelse 5
>> testifelse(–2)
5 disp(‘In middle of range’)
K>> x
x =
 –2
K>> 3 < x
ans =
 0
K>> 3 < x < 6
ans =
 1
K>> dbcont
In middle of range
end
>>

Chapter 5 MatLaB programs190

By typing the expressions 3 < x and then 3 < x < 6, we can determine that the
expression 3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the
expression will always be true, regardless of the value of x!

5.5.4 function stubs
Another common debugging technique, which is used when there is a script main
program that calls many functions, is to use function stubs. A function stub is a
placeholder, used so that the script will work even though that particular function
hasn’t been written yet. For example, a programmer might start with a script main
program that consists of calls to three function that accomplish all the tasks.

mainmfile.m

% This program gets values for x and y, and

% calculates and prints z

[x, y] = getvals;

z = calcz(x,y);

printall(x,y,z)

The three functions have not yet been written, however, so function stubs
are put in place so that the script can be executed and tested. The function
stubs consist of the proper function headers, followed by a simulation of what
the function will eventually do (e.g., it puts arbitrary values in for the output
arguments).

getvals.m

function [x, y] = getvals

x = 33;

y = 11;

calcz.m

function z = calcz(x,y)

z = 2.2;

printall.m

function printall(x,y,z)

disp(‘Something’)

Then, the functions can be written and debugged one at a time. It is much
easier to write a working program using this method than to attempt to write
everything at once—then, when errors occur, it is not always easy to determine
where the problem is!

191Summary

sUMMary

Common pitfalls

■■ Not matching up arguments in a function call with the input arguments in
a function header

■■ Not having enough variables in an assignment statement to store all the
values returned by a function through the output arguments

■■ Attempting to call a function that does not return a value from an
assignment statement, or from an output statement

■■ Not using the same name for the function and the file in which it is stored

■■ Not thoroughly testing functions for all possible inputs and outputs

■■ Forgetting that persistent variables are updated every time the function
in which they are declared is called, whether from a script or from the
Command Window

programming style guidelines

■■ If a function is calculating one or more values, return these value(s) from
the function by assigning them to output variable(s).

■■ Give the function and the file in which it is stored the same name.

■■ Function headers and function calls must correspond. The number of
arguments passed to a function must be the same as the number of
input arguments in the function header. If the function returns values,
the number of variables in the left-hand side of an assignment statement
should match the number of output arguments returned by the function.

■■ If arguments are passed to the function in the function call, do not replace
these values by using input in the function itself.

■■ Functions that calculate and return value(s) will not normally also print
them.

■■ Functions should not normally be longer than one page in length.

■■ Do not declare variables in the Command Window and then use them in a
script, or vice versa.

■■ Pass all values to be used in functions to input arguments in the functions.

■■ When writing large programs with many functions, start with the main
program script and use function stubs, filling in one function at a time
while debugging.

Chapter 5 MatLaB programs192

exercises
 1. Write a function that will receive as an input argument a temperature in degrees

Fahrenheit, and will return the temperature in both degrees Celsius and Kelvin.
The conversion factors are: C = (F – 32) * 5/9 and K = C + 273.15.

 2. Write a function that will receive as an input argument a length in feet and will
return the length in both yards and centimeters. One yard is equal to 3 feet. One
inch is equal to 2.54 centimeters, and there are 12 inches in a foot.

 3. A vector can be represented by its rectangular coordinates x and y or by its polar
coordinates r and . The conversions from polar to rectangular are x = r cos() and
y = r sin(). Write a function to receive the polar coordinates as input arguments
and return the corresponding rectangular coordinates.

 4. A vector can be represented by its rectangular coordinates x and y or by its
polar coordinates r and . For positive values of x and y, the conversions from
rectangular to polar coordinates in the range from 0 to 2 are = +2 2r x y and

 = arctan(y/x). Write a function to receive as input arguments the rectangular
coordinates and return the corresponding polar coordinates.

 5. Write a function to calculate the volume and surface area of a hollow
cylinder. It receives as input arguments the radius of the cylinder base and
the height of the cylinder. The volume is given by r2 h, and the surface area
is 2 r h.

 6. Hurricanes are categorized based on the winds. The following table shows the
category number for hurricanes with varying wind ranges and what the storm
surge is (in feet above normal).

1 74–95 4–5
2 96–110 6–8
3 111–130 9–12
4 131–155 13–18
5 >155 >18

Write a function that will receive as an input argument the wind speed, and
will return the category number and the minimum value of the typical storm
surge.

 7. Write a function that will receive the radius of a circle and will print both the
radius and diameter of the circle in a sentence format. This function will not return
any value; it simply prints.

 8. Write a function that will receive as input arguments a length in inches, and will
print in sentence format the length in both inches and centimeters (1 inch = 2.54
centimeters). Note that this function will not return any value.

MATLAB Functions and Commands

echo
dbstop

dbcont
dbquit

193 Exercises

 9. Write a function that will receive an integer n and a character as input arguments,
and will print the character n times.

 10. Convert the printstars script from Chapter 4 to a function that receives as inputs
the number of rows and columns, and prints a box of asterisks with the specified
number of rows and columns.

 11. Convert the multtable function from Chapter 4 to a function that receives as input
arguments the number of rows and columns and prints a multiplication table
(rather than returning the matrix).

 12. Write a function that will receive a matrix as an input argument, and prints it in a
table format.

 13. Write a function that receives a matrix as an input argument, and prints a random
row from the matrix.

 14. Write a function that receives a count as an input argument, and prints the
value of the count in a sentence that would read “It happened 1 time.” if the
value of the count is 1, or “It happened xx times.” if the value of count (xx) is
greater than 1.

 15. Write a function that will print an explanation of temperature conversions. The
function does not receive any input arguments; it simply prints.

 16. Write a function that prompts the user for a value of an integer n, and returns the
value of n. No input arguments are passed to this function.

 17. Write a function that prompts the user for a value of an integer n, and returns a
vector of values from 1 to n. The function should error-check to make sure that the
user enters an integer. No input arguments are passed to this function.

 18. Write a script that will

■■ Call a function to prompt the user for an angle in degrees
■■ Call a function to calculate and return the angle in radians

(note: radians = 180 °
■■ Call a function to print the result

Note that the solution to this problem involves four M-files: one that acts as a main
program, and three for the functions.

 19. Modify the preceding program so that the function to calculate the angle is a
subfunction to the function that prints.

 20. Write a program to calculate and print the area and circumference of a circle. There
should be one script and three functions to accomplish this (one that prompts for
the radius, one that calculates the area and circumference, and one that prints).

 21. The lump sum S to be paid when interest on a loan is compounded annually is
given by S = P(1 + i)n, where P is the principal invested, i is the interest rate, and n
is the number of years. Write a program that will plot the amount S as it increases
through the years from 1 to n. The main script will call a function to prompt the
user for the number of years (and error-check to make sure that the user enters
a positive integer). The script will then call a function that will plot S for years 1
through n. It will use 0.05 for the interest rate and $10,000 for P.

Chapter 5 MatLaB programs194

 22. Write a program to write a length conversion chart to a file. It will print lengths
in feet, from 1 to an integer specified by the user in one column, and the
corresponding length in meters (1 foot = 0.3048 meters) in a second column. The
main script will call one function that prompts the user for the maximum length
in feet; this function must error-check to make sure that the user enters a valid
positive integer. The script then calls a function to write the lengths to a file.

 23. The resistance R in ohms of a conductor is given by =R ,
E
I

 where E is the

potential in volts and I is the current in amperes. Write a script that will

■■ Call a function to prompt the user for the potential and the current.
■■ Call a function that will print the resistance; this will call a subfunction to
calculate and return the resistance.

 24. The power in watts is given by P = EI. Modify the preceding program to calculate
and print both the resistance and the power. Modify the subfunction so that it
calculates and returns both values.

 25. The distance between any two points (x1,y1) and (x2,y2) is given by:

() ()2 2
1 2 1 2distance = x x y- + - y

The area of a triangle is:

() () ()= - - -area s * s a * s b * s c

where a, b, and c are the lengths of the sides of the triangle, and s is equal to half the
sum of the lengths of the three sides of the triangle. Write a script that will prompt
the user to enter the coordinates of three points that determine a triangle (e.g., the x
and y coordinates of each point). The script will then calculate and print the area of
the triangle. It will call one function to calculate the area of the triangle. This func-
tion will call a subfunction, which calculates the length of the side formed by any
two points (the distance between them).

 26. Write a program to write a temperature conversion chart to a file. The main script
will:

■■ Call a function that explains what the program will do.
■■ Call a function to prompt the user for the minimum and maximum temperatures
in degrees Fahrenheit, and return both values. This function checks to make
sure that the minimum is less than the maximum, and calls a subfunction to
swap the values if not.

■■ Call a function to write temperatures to a file: the temperature in degrees
F from the minimum to the maximum in one column, and the corresponding
temperature in degrees Celsius in another column. The conversion is
C = (F – 32) * 5/9.

 27. Write a script that will ask the user to choose his or her favorite science class,
and print a message regarding that course. It will call a function to display a
menu of choices (using the menu function); this function will error-check to

195 Exercises

make sure that the user presses one of the buttons. The function will return the
number corresponding to the user’s choice. The script will then print a message.

 28. Write a menu-driven program to convert a time in seconds to other units
(minutes, hours, etc.). The main script will loop to continue until the user
chooses to exit. Each time in the loop, the script will generate a random time in
seconds, call a function to present a menu of options, and print the converted
time. The conversions must be made by individual functions (e.g., one to convert
from seconds to minutes). All user entries must be error-checked.

 29. Write a menu-driven program to investigate the constant . Model it after the
program that explores the constant e. Pi () is the ratio of a circle’s circumference
to its diameter. Many mathematicians have found ways to approximate . For
example, Machin’s formula is:

p æ ö æ ö= -ç ÷ ç ÷4 è ø è ø
1 1

4 arctan arctan
5 239

Leibniz found that can be approximated by:

p = - + - + - +
4 4 4 4 4 4

...
1 3 5 7 9 11

This is called a sum of a series. There are six terms shown in this series. The first
term is 4, the second term is –4/3, the third term is 4/5, and so forth. For example, the
menu-driven program might have the following options:

■■ Print the result from Machin’s formula.
■■ Print the approximation using Leibniz’ formula, allowing the user to specify how

many terms to use.
■■ Print the approximation using Leibniz’ formula, looping until a good

approximation is found.
■■ Exit the program.

 30. Modify the function func2 from the text that has a persistent variable count.
Instead of having the function print the value of count, the value should be
returned.

 31. Write a function per2 that receives one number as an input argument. The
function has a persistent variable that sums the values passed to it. Here are the
first two times the function is called:

>> per2(4)
ans =
 4
>> per2(6)
ans =
 10

 32. What would be the output from the following program? Think about it, write down
your answer, and then type it in to verify.

Chapter 5 MatLaB programs196

testscope.m

answer = 5;

fprintf(‘Answer is %d\n’,answer)

pracfn

pracfn

fprintf(‘Answer is %d\n’,answer)

printstuff

fprintf(‘Answer is %d\n’,answer)

pracfn.m

function pracfn

persistent count

if isempty(count)

 count = 0;

end

count = count + 1;

fprintf(‘This function has been called %d times.\n’,count)

printstuff.m

function printstuff

answer = 33;

fprintf(‘Answer is %d\n’,answer)

pracfn

fprintf(‘Answer is %d\n’,answer)

197

Contents

© 2009, 2003,1999 Elsevier Inc.

6.1 Creating String
Variables 198

6.2 Operations on
Strings 200

6.3 The is Functions
for Strings 214

6.4 Converting
Between String and
Number Types 215

string

substring

control character

whitespace character

leading blank

trailing blank

vectors of characters

empty string

string concatenation

delimiter

token

Key Words

Chapter 6

String Manipulation

A string in the MATLAB® software consists of any number of characters and
is contained in single quotes. Actually, strings are treated as vectors in which
every element is a single character, which means that many of the vector opera-
tions and functions that we have seen already work with strings. MATLAB also
has many built-in functions that are written specifically to manipulate strings.
In some cases, strings contain numbers, and it is useful to convert from strings
to numbers and vice versa; MATLAB has functions to do this, also.

There are many applications for using strings, even in fields that are predom-
inantly numerical. For example, when data files consist of combinations of
numbers and characters, it is often necessary to read each line from the file as
a string, break the string into pieces, and convert the parts that contain num-
bers to number variables that can be used in computations. In this chapter the
string manipulation techniques necessary for this will be introduced, and in
Chapter 8 applications in file input/output will be demonstrated.

Chapter 6 string Manipulation198

6.1 Creating string Variables
A string consists of any number of characters (including, possibly, none). These
are examples of strings:

‘’
‘x’
‘cat’
‘Hello there’
‘123’

A substring is a subset or part of a string. For example, ‘there’ is a substring
within the string ‘Hello there’.

Characters include letters of the alphabet, digits, punctuation marks, white
space, and control characters. Control characters are characters that cannot be
printed, but accomplish a task (such as a backspace or tab). Whitespace char-
acters include the space, tab, newline (which moves the cursor down to the
next line), and carriage return (which moves the cursor to the beginning of the
current line). Leading blanks are blank spaces at the beginning of a string, for
example, ‘ hello’, and trailing blanks are blank spaces at the end of a string.

There are several ways that string variables can be created. One is using assign-
ment statements:

>> word = ‘cat’;

Another method is to read into a string variable. Recall that to read into a string
variable using the input function, the second argument ‘s’ must be included:

>> strvar = input(‘Enter a string: ’, ‘s’)
Enter a string: xyzabc
strvar =
xyzabc

If leading or trailing blanks are typed by the user, these will be stored in the string.
For example, in the following the user entered four blanks and then ‘xyz’:

>> s = input(‘Enter a string: ’,‘s’)
Enter a string: xyz
s =

xyz

6.1.1 strings as Vectors
Strings are treated as vectors of characters—or in other words, a vector in which
every element is a single character—so many vector operations can be per-
formed. For example, the number of characters in a string can be found using
the length function:

1996.1 Creating String Variables

>> length(‘cat’)
ans =

3
>> length(‘ ’)
ans =

1
>> length(‘’)
ans =

0

Notice that there is a difference between an empty string, which has a length of
zero, and a string consisting of a blank space, which has a length of one.

Expressions can refer to an individual element (a character within the string),
or a subset of a string or a transpose of a string:

>> mystr = ‘Hi’;
>> mystr(1)
ans =
H
>> mystr’
ans =
H
i
>> sent = ‘Hello there’;
>> length(sent)
ans =

11
>> sent(4:8)
ans =
lo th

Notice that the blank space in the string is a valid character within the
string.

A matrix can be created, which consists of strings in each row. So, essentially it
is created as a column vector of strings, but the end result is that this would be
treated as a matrix in which every element is a character:

>> wordmat = [‘Hello’;‘Howdy’]
wordmat =
Hello
Howdy
>> size(wordmat)
ans =

2 5

This created a 2 5 matrix of characters.

Chapter 6 string Manipulation200

With a character matrix, we can refer to an individual element, which is a char-
acter, or an individual row, which is one of the strings:

>> wordmat(2,4)
ans =
d
>> wordmat(1,:)
ans =
Hello

Since rows within a matrix must always be the same length, the shorter strings
must be padded with blanks so that all strings have the same length, otherwise
an error will occur.

>> greetmat = [‘Hello’; ‘Goodbye’]
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.
>> greetmat = [‘Hello ’; ‘Goodbye’]
greetmat =
Hello
Goodbye
>> size(greetmat)
ans =
2 7

6.2 operations on strings
MATLAB has many built-in functions that work with
strings. Some of the string manipulation functions that
perform the most common operations will be described
here.

6.2.1 Concatenation
String concatenation means to join strings together. Of course, since strings
are just vectors of characters, the method of concatenating vectors works for
strings, also. For example, to create one long string from two strings, it is pos-
sible to join them by putting them in square brackets:

>> first = ‘Bird’;
>> last = ‘house’;
>> [first last]
ans =
Birdhouse

The function strcat does this also horizontally, meaning that it creates one
 longer string from the inputs.

praCtiCe 6.1
Prompt the user for a string. Print the
length of the string and also the last
character in the string. Make sure that
this works regardless of what the user
enters.

2016.2 Operations on Strings

>> first = ‘Bird’;
>> last = ‘house’;
>> strcat(first,last)
ans =
Birdhouse

There is a difference between these two methods of concatenating, however,
if there are leading or trailing blanks in the strings. The method of using the
square brackets will concatenate the strings, including all leading and trailing
blanks.

>> str1 = ‘xxx ’;
>> str2 = ‘ yyy’;
>> [str1 str2]
ans =
xxx yyy
>> length(ans)
ans =

 12

The strcat function, however, will remove trailing blanks (but not leading blanks)
from strings before concatenating. Notice that in these examples, the trailing
blanks from str1 are removed, but the leading blanks from str2 are not:

>> strcat(str1,str2)
ans =
xxx yyy
>> length(ans)
ans =

9
>> strcat(str2,str1)
ans =
 yyyxxx
>> length(ans)
ans =

9

The function strvcat will concatenate vertically, meaning that it will create a
column vector of strings.

>> strvcat(first,last)
ans =
Bird
house
>> size(ans)
ans =

2 5

Chapter 6 string Manipulation202

Note that strvcat will pad with extra blanks automatically, in this case to make
both strings have a length of 5.

6.2.2 Creating Customized strings
There are several built-in functions that create custom-
ized strings, including char, blanks, and sprintf.

We have seen already that the char function can be used to
convert from an ASCII code to a character, for example:

>> char(97)
ans =
a

The char function can also be used to create a matrix
of characters. When using the char function to create a

matrix, it will automatically pad the strings within the rows with blanks as necessary
so that they are all the same length, just like strvcat.

>> clear greetmat
>> greetmat = char(‘Hello’,‘Goodbye’)
greetmat =
Hello
Goodbye
>> size(greetmat)
ans =

2 7

The blanks function will create a string consisting of n blank characters—
which are kind of hard to see here! However, in MATLAB if the mouse is moved
to highlight the result in ans, the blanks can be seen.

>> blanks(4)
ans =

>> length(ans)
ans =

4

Usually this function is most useful when concatenating strings, and you want
a number of blank spaces in between. For example, this will insert five blank
spaces in between the words:

>> [first blanks(5) last]
ans =
Bird house

Displaying the transpose of the blanks function can also be used to move the
cursor down. In the Command Window, it would look like this:

praCtiCe 6.2
Create the following string variables:

v1 = ‘Mechanical’;
v2 = ‘Engineering’;

Then, get the length of each string.
Create a new variable, v3, which is a
substring of v2 that stores just ‘Engineer’.
Create a matrix consisting of the values
of v1 and v2 in separate rows.

2036.2 Operations on Strings

>> disp(blanks(4)’)

>>

This is useful in a script or function to create space in output, and is essentially
equivalent to printing the newline character four times.

The sprintf function works exactly like the fprintf function, but instead of
printing it creates a string. Here are several examples in which the output is not
suppressed so the value of the string variable is shown:

>> sent1 = sprintf(‘The value of pi is %.2f’, pi)
sent1 =
The value of pi is 3.14
>> sent2 = sprintf(‘Some numbers: %5d, %2d’, 33, 6)
sent2 =
Some numbers: 33, 6
>> length(sent2)
ans =

23

In the following example, on the other hand, the output of the assignment is
suppressed so the string is created including a random integer and stored in the
string variable. Then, some exclamation points are concatenated to that string.

>> phrase = sprintf(‘A random integer is %d’, . . .
randint(1,1,[5,10]));

>> strcat(phrase, ‘!!!’)
ans =
A random integer is 7!!!

All the conversion specifiers that can be used in the fprintf function can also
be used in the sprintf function.

6.2.2.1 Applications of Customized Strings: Prompts, Labels,
Arguments to Functions
One very useful application of this is to include numbers in strings, which are used
for plot titles and axis labels. For example, assume that a file ‘expnoanddata.dat’
stores an experiment number, followed by the experiment data. In this case the
experiment number is 123, and then the rest of the file consists of the actual data.

123 4.4 5.6 2.5 7.2 4.6 5.3

The following script would load this data and plot it with a title that includes
the experiment number.

Chapter 6 string Manipulation204

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
Data from experiment 123

Figure 6.1
Customized title in plot
using sprintf.

plotexpno.m

% This script loads a file that stores an experiment #

% followed by the actual data. It plots the data and puts

% the experiment # in the plot title

load expnoanddata.dat

exper_no = expnoanddata(1);

data = expnoanddata(2:end);

plot(data,‘ko’)

title(sprintf(‘Data from experiment %d’, exper_no))

The script loads all numbers from the file into a row
vector. It then separates the vector; it stores the first
element, which is the experiment number in a vari-
able exper_no, and the rest of the vector in a variable
data (the rest being from the second element to the
end). It then plots the data, using sprintf to create the
title that includes the experiment number as seen in
Figure 6.1.

praCtiCe 6.3
In a loop, create and print strings with
filenames file1.dat, file2.dat, and so on for
file numbers 1 through 5.

QuiCK Question!

How could we use the sprintf function in customizing prompts
for the input function?

answer: For example, if you want the contents of a string
variable printed in a prompt, sprintf can be used:

>> username = input(‘Please enter your name: ’, ‘s’);
Please enter your name: Bart
>> prompt = sprintf(‘%s, Enter your id #: ’,username);
>> id_no = input(prompt)
Bart, Enter your id #: 177
id_no =

177

2056.2 Operations on Strings

Another way of accomplishing this (in a script or function) would be:

fprintf(‘%s, Enter your id #: ’,username);
id_no = input(‘’);

Notice that the calls to the sprintf and fprintf functions are identical except
that the fprintf prints (so there is no need for a prompt in the input function)
whereas the sprintf creates a string that can then be displayed by the input
function. In this case using sprintf seems cleaner than using fprintf and then
having an empty string for the prompt in input.

As another example, the following program prompts the user for endpoints (x1,
y1) and (x2, y2) of a line segment, and calculates the midpoint of the line seg-
ment, which is the point (xm, ym). The coordinates of the midpoint are found
by:

m 1 2 m 1 2

1 1
x = (x + x) y = (y +y)

2 2

The script midpoint.m calls a function entercoords to separately prompt the user
for the x- and y-coordinates of the two endpoints, calls a function findmid
that calculates separately the x- and y-coordinates of the midpoint, and then
prints this midpoint. When the program is executed, the output looks like
this:

>> midpoint
Enter the x coord of the first endpoint: 2
Enter the y coord of the first endpoint: 4
Enter the x coord of the second endpoint: 3
Enter the y coord of the second endpoint: 8
The midpoint is (2.5, 6.0)

In this example, the word ‘first’ or ‘second’ is passed to the entercoords func-
tion so that it can use whichever word is passed in the prompt. The sprintf
function generates this customized prompt.

midpoint.m

% This program finds the midpoint of a line segment

[x1, y1] = entercoords(‘first’);

[x2, y2] = entercoords(‘second’);

midx = findmid(x1,x2);

midy = findmid(y1,y2);

fprintf(‘The midpoint is (%.1f, %.1f)\n’,midx,midy)

Chapter 6 string Manipulation206

entercoords.m

function [xpt, ypt] = entercoords(word)

% Prompts the user for the coordinates of an endpoint

% Two different methods are used to customize the

% prompt to show the difference

fprintf(‘Enter the x coord of the %s endpoint: ’, word)

xpt = input(‘’);

prompt = sprintf(‘Enter the y coord of the %s endpoint: ’, . . .

word);

ypt = input(prompt);

findmid.m

function mid = findmid(pt1,pt2)

% Calculate a coordinate (x or y) of the

% midpoint of a line segment

mid = 0.5 * (pt1 + pt2);

6.2.3 removing Whitespace Characters
MATLAB has functions that will remove trailing blanks from the end of a string
and/or leading blanks from the beginning of a string.

The deblank function will remove blank spaces from the end of a string. For
example, if some strings are padded in a string matrix so that all are the same
length, it is frequently preferred to then remove those extra blank spaces in
order to actually use the string.

>> names = char(‘Sue’, ‘Cathy’,‘Xavier’)
names =
Sue
Cathy
Xavier
>> name1 = names(1,:)
name1 =
Sue
>> length(name1)
ans =

6
>> name1 = deblank(name1);
>> length(name1)
ans =

3

2076.2 Operations on Strings

Note: The deblank function removes only trailing blanks from a string, not
leading blanks.

The strtrim function will remove both leading and trailing blanks from a
string, but not blanks in the middle of the string. In the following example, the
three blanks in the beginning and four blanks in the end are removed, but not
the two blanks in the middle. Selecting the result in MATLAB with the mouse
would show the blank spaces.

>> strvar = [blanks(3) ‘xx’ blanks(2) ‘yy’ blanks(4)]
strvar =
 xx yy
>> length(strvar)
ans =

13
>> strtrim(strvar)
ans =
xx yy
>> length(ans)
ans =

6

6.2.4 Changing Case
MATLAB has two functions that convert strings to all uppercase letters, or all
lowercase, called upper and lower.

>> mystring = ‘AbCDEfgh’;
>> lower(mystring)
ans =
abcdefgh
>> upper(ans)
ans =

ABCDEFGH

6.2.5 Comparing strings
There are several functions that compare strings and
return logical true if they are equivalent, or logical false
if not. The function strcmp compares strings, charac-
ter by character. It returns logical true if the strings are
completely identical (which infers that they must be
of the same length, also) or logical false if the strings
are not the same length or any corresponding charac-
ters are not identical. Here are some examples of these
comparisons:

praCtiCe 6.4
Assume that these expressions are typed
sequentially in the Command Window.
Think about it, write down what you
think the results will be, and then verify
your answers by actually typing them.

wxyzstring = ...
‘123456789012345’;
longstring = ‘ abc de f ’
length(longstring)
shortstring =
strtrim(longstring)
length(shortstring)
upper(shortstring)
news = sprintf(‘The first part is %s’, . . .

shortstring(1:3))

Chapter 6 string Manipulation208

>> word1 = ‘cat’;
>> word2 = ‘car’;
>> word3 = ‘cathedral’;
>> word4 = ‘CAR’;
>> strcmp(word1,word2)
ans =

0
>> strcmp(word1,word3)
ans =

0
>> strcmp(word1,word1)
ans =

1
>> strcmp(word2,word4)
ans =

0

The function strncmp compares only the first n characters in strings and ignores
the rest. The first two arguments are the strings to compare, and the third argu-
ment is the number of characters to compare (the value of n).

>> strncmp(word1,word3,3)
ans =

1
>> strncmp(word1,word3,4)
ans =

0

QuiCK Question!

How can we compare strings, ignoring whether the characters
in the string are uppercase or lowercase?
answer: See the Programming Concept and Efficient Method
below.
the programming Concept
Ignoring the case when comparing strings can be done
by changing all characters in the strings to either upper-
or lowercase; for example, in MATLAB using the upper
or lower function:

>> strcmp(upper(word2),upper(word4))
ans =

1

the efficient Method
The function strcmpi compares the strings but ignores the
case of the characters.

>> strcmpi(word2,word4)
ans =

1

2096.2 Operations on Strings

There is also a function strncmpi that compares n characters, ignoring the
case.

6.2.6 Finding, replacing, and separating strings
There are several functions that find and replace strings, or parts of strings,
within other strings and functions that separate strings into substrings.

The function findstr receives two strings as input arguments. It finds all
occurrences of the shorter string within the longer, and returns the sub-
scripts of the beginning of the occurrences. The order of the strings does
not matter with findstr; it will always find the shorter string within the
longer, whichever that is. The shorter string can consist of one character,
or any number of characters. If there is more than one occurrence of the
shorter string within the longer one, findstr returns a vector with all indi-
ces. Note that what is returned is the index of the beginning of the shorter
string.

>> findstr(‘abcde’, ‘d’)
ans =

4
>> findstr(‘d’,‘abcde’)
ans =

4
>> findstr(‘abcde’, ‘bc’)
ans =

2
>> findstr(‘abcdeabcdedd’, ‘d’)
ans =

4 9 11 12

The function strfind does essentially the same thing, except that the order of
the arguments does make a difference. The general form is strfind(string, sub-
string); it finds all occurrences of the substring within the string, and returns the
subscripts.

>> strfind(‘abcdeabcde’,‘e’)
ans =

5 10

For both strfind and findstr, if there are no occurrences, the empty vector is
returned.

>> strfind(‘abcdeabcde’,‘ef’)
ans =

[]

Chapter 6 string Manipulation210

Let’s expand this, and write a script that creates a vector of strings that are
phrases. The output is not suppressed so that the strings can be seen when
the script is executed. It loops through this vector and passes each string to a
function countblanks. This function counts the number of blank spaces in the
string, not including any leading or trailing blanks.

phraseblanks.m

% This script creates a column vector of phrases

% It loops to call a function to count the number

% of blanks in each one and prints that

phrasemat = char(‘Hello and how are you?’, . . .

‘Hi there everyone!’, ‘How is it going?’, ‘Whazzup?’)

[r c] = size(phrasemat);

for i = 1:r

% Pass each row (each string) to countblanks function

howmany = countblanks(phrasemat(i,:));

fprintf(‘Phrase %d had %d blanks\n’,i,howmany)

end

countblanks.m

function num = countblanks(phrase)

% Counts the number of blanks in a trimmed string

num = length(strfind(strtrim(phrase), ‘ ’));

QuiCK Question!

How can you find how many blanks there are in a string (e.g.,
‘how are you’)?
answer: The strfind function will return an index for every
occurrence of a substring within a string, so the result is a vec-
tor of indices. The length of this vector of indices would be the
number of occurrences. For example, the following finds the
number of blank spaces in phrase.

>> phrase = ‘Hello, and how are you doing?’;
>> length(strfind(phrase,‘ ’))

ans =
5

If you want to get rid of any leading and trailing blanks first (in
case there are any), the strtrim function would be used first.

>> phrase = ‘ Well, hello there! ’;
>> length(strfind(strtrim(phrase),‘ ’))
ans =

2

2116.2 Operations on Strings

For example, running this script would result in:

>> phraseblanks
phrasemat =
Hello and how are you?
Hi there everyone!
How is it going?
Whazzup?
Phrase 1 had 4 blanks
Phrase 2 had 2 blanks
Phrase 3 had 3 blanks
Phrase 4 had 0 blanks

The function strrep finds all occurrences of a substring within a string, and replaces
them with a new substring. The order of the arguments matters. The format is:

strrep(string, oldsubstring, newsubstring)

The following example replaces all occurrences of the substring ‘e’ with the
substring ‘x’:

>> strrep(‘abcdeabcde’,‘e’,‘x’)
ans =
abcdxabcdx

All strings can be any length, and the lengths of the old and new substrings do
not have to be the same.

In addition to the string functions that find and replace, there is a function that
separates a string into two substrings. The strtok function breaks a string into
pieces; it can be called several ways. The function receives one string as an input
argument. It looks for the first delimiter, which is a character or set of charac-
ters that act as a separator within the string. By default, the delimiter is any
whitespace character. The function returns a token, which is the beginning of
the string, up to (but not including) the first delimiter. It also returns the rest
of the string, which includes the delimiter. Assigning the returned values to a
vector of two variables will capture both of these. The format is

[token rest] = strtok(string)

where token and rest are variable names. For example,

>> sentence1 = ‘Hello there’
sentence1 =
Hello there
>> [word rest] = strtok(sentence1)
word =
Hello

Chapter 6 string Manipulation212

rest =
there
>> length(word)
ans =

5
>> length(rest)
ans =

6

Notice that the rest of the string includes the blank space delimiter.

By default, the delimiter for the token is a whitespace character (meaning that
the token is defined as everything up to the blank space), but alternate delimit-
ers can be defined. The format

[token rest] = strtok(string, delimeters)

returns a token that is the beginning of the string, up to the first character con-
tained within the delimiters string, and also the rest of the string. In the follow-
ing example, the delimiter is the character ‘l’.

>> [word rest] = strtok(sentence1,‘l’)
word =
He
rest =
llo there

Leading delimiter characters are ignored, whether it is the default
whitespace or a specified delimiter. For example, the leading blanks are
ignored here:

>> [firstpart lastpart] = strtok(’ materials science’)
firstpart =
materials
lastpart =
science

QuiCK Question!

What do you think strtok returns if the delimiter is not in the
string?
answer: The first result returned will be the entire string, and
the second will be the empty string.

>> [first rest] = strtok (‘ABCDE’)
first =
ABCDE
rest =
Empty string: 1-by-0

2136.2 Operations on Strings

6.2.7 evaluating a string
The function eval is used to evaluate a string as a func-
tion. For example, in the following, the string ‘plot(x)’
is interpreted to be a call to the plot function, and it
produces the plot shown in Figure 6.2.

>> x = [2 6 8 3];
>> eval(‘plot(x)’)

This would be useful if the user entered the name of
the type of plot to use. In this example, the string that the
user enters (in this case ‘bar’) is concatenated with the
string ‘(x)’ to create the string ‘bar(x)’; this is then eval-
uated as a call to the bar function as seen in Figure 6.3.
The name of the plot type is also used in the title.

praCtiCe 6.5
Think about what would be returned by the follow-
ing sequence of expressions and statements, and
then type them into MATLAB to verify your results.

strcmp(‘hello’, ‘height’)
strncmp(‘hello’, ‘height’,2)
strncmpi(‘yes’, ‘YES’, 1)
name = ‘Smith, Carly’;
ind = findstr(name,‘,’)
first = name(1:ind–1)
last = name(ind+2:end)
[f rest] = strtok(name, ‘,’)
l = rest(3:end)

QuiCK Question!

The function date returns the current date as a string; for exam-
ple, ‘07-Feb-2008’. How could we write a function to return the
day, month, and year as separate output arguments?
answer: We could use strrep to replace the ‘-’ charac-
ters with blanks, and then use strtok with the blank as the
default delimiter to break up the string (twice), or more simply
we could just use strtok and specify the ‘-’ character as the
delimiter.

Since we need to separate the string into three parts, we
need to use the strtok function twice. The first time the string
is separated into ‘07’ and ‘-Feb-2008’ using strtok. Then, the
second string is separated into ‘Feb’ and ‘-2008’ using strtok.
(Since leading delimiters are ignored the second ‘-’ is found as

separatedate.m

function [todayday, todaymo, todayyr] = separatedate()

% This function separates the current date into day,

% month, and year

[todayday rest] = strtok(date,‘-’);

[todaymo todayyr] = strtok(rest,‘-’);

todayyr = todayyr(2:end);

the delimiter in ‘-Feb-2008’.) Finally, we need to remove the ‘-’
from the string ‘-2008’; this can be done by just indexing from
the second character to the end of the string.

Here is an example of calling this function:

>> [d m y] = separatedate()
d =
07
m =
Feb
y =
2008

Notice that no input arguments are passed to the
function; instead, the date function returns the current
date as a string.

Chapter 6 string Manipulation214

>> x = [2 6 8 3];
>> whatplot = input(‘What type of plot?: ’, ‘s’);
What type of plot?: bar
>> eval([whatplot ‘(x)’])
>> title(whatplot)

6.3 the is FunCtions For strings
There are several is functions for strings, which return logical true or false. The
function isletter returns logical true if the character is a letter of the alphabet.
The function isspace returns logical true if the character is a whitespace charac-
ter. If strings are passed to these functions, they will return logical true or false
for every element, or, in other words, every character.

>> isletter(‘a’)
ans =

1
>> isletter(‘EK127’)
ans =

1 1 0 0 0
>> isspace(‘a b’)
ans =

0 1 0

The ischar function will return logical true if an array is a character array, or
logical false if not.

1 1.5 2 2.5 3 3.5 4
2

3

4

5

6

7

8

Figure 6.2
Plot type passed to the eval function.

1 2 3 4
0

1

2

3

4

5

6

7

8
bar

Figure 6.3
Plot type entered by the user.

praCtiCe 6.6
Create an x vector. Prompt the user for
‘sin’, ‘cos’, or ‘tan’ and create a string
with that function of x (e.g., ‘sin(x)’ or
‘cos(x)’). Use eval to create a y vector
using the specified function.

2156.4 Converting Between String and Number Types

>> vec = ‘EK127’;
>> ischar(vec)
ans =

1
>> vec = 3:5;
>> ischar(vec)
ans =

0

6.4 ConVerting betWeen string and nuMber
types
MATLAB has several functions that convert numbers to strings in which each charac-
ter element is a separate digit, and vice versa. (Note: these are different from the func-
tions char, double, etc., that convert characters to ASCII equivalents and vice versa.)

To convert numbers to strings, MATLAB has the functions int2str for integers
and num2str for real numbers (which also works with integers). The function
int2str would convert, for example, the integer 4 to the string ‘4’.

>> rani = randint(1,1,50)
rani =

38
>> s1 = int2str(rani)
s1 =
38
>> length(rani)
ans =

1
>> length(s1)
ans =

2

The variable rani is a scalar that stores one number, whereas s1 is a string that
stores two characters, ‘3’ and ‘8’.

Even though the result of the first two assignments is 38, notice that the inden-
tation in the Command Window is different for the number and the string.

The num2str function, which converts real numbers, can be called in several
ways. If only the real number is passed to the num2str function, it will create a
string that has four decimal places, which is the default in MATLAB for display-
ing real numbers. The precision can also be specified (which is the number of
digits), and format strings can also be passed, as shown:

>> str2 = num2str(3.456789)
str2 =

Chapter 6 string Manipulation216

3.4568
>> length(str2)
ans =
 6
>> str3 = num2str(3.456789,3)
str3 =
3.46
>> str = num2str(3.456789,‘%6.2f’)
str =
3.46

Note that in the last example, MATLAB removed the
leading blanks from the string.

The function str2num does the reverse; it takes a string
in which a number is stored and converts it to the type
double:

>> num = str2num(‘123.456’)
num =
 123.4560

If there is a string in which there are numbers separated by blanks, the str2num
function will convert this to a vector of numbers (of the default type double).
For example,

>> mystr = ‘66 2 111’;
>> numvec = str2num(mystr)
numvec =

66 2 111
>> sum(numvec)
ans =

179

praCtiCe 6.7
Think about what would be returned by
the following sequence of expressions
and statements, and then type them into
MATLAB to verify your results.

isletter (‘?’)
isspace(‘Oh no!’)
str = ‘12 33’;
ischar(str)
v = str2num(str)
ischar(v)
sum(v)
num = 234;
size(num)
snum = int2str(num);
size(snum)

QuiCK Question!

Let’s say that we have a string that consists of an angle fol-
lowed by either ‘d’ for degrees or ‘r’ for radians. For example, it
may be a string entered by the user:

degrad = input(‘Enter angle and d/r: ’, ‘s’);
Enter angle and d/r: 54r

How could we separate the string into the angle and the
character, and then get the sine of that angle using either
sin or sind, as appropriate (sin for radians or sind for
degrees)?

answer: First, we could separate this string into its two parts:

>> angle = degrad(1:length(degrad)–1)
angle =
54
>> dorr = degrad(end)
dorr =
r

Then, using an if-else statement, we would decide whether
to use the sin or sind function, based on the value of the

(Continued)

2176.4 Converting Between String and Number Types

angle_d_or_r.m

% Prompt the user for angle and ‘d’ for degrees

% or ‘r’ for radians; print the sine of the angle

% Read in the response as a string and then

% separate the angle and character

degrad = input(‘Enter angle and d/r: ’, ‘s’);

angle = degrad(1:length(degrad)-1);

dorr = degrad(end);

% Error–check to make sure user enters ‘d’ or ‘r’

while dorr = ‘d’ & dorr = ‘r’

 disp(‘Error! Enter d or r with the angle.’)

 degrad = input(‘Enter angle and d/r: ’, ‘s’);

 angle = degrad(1:length(degrad)–1);

 dorr = degrad(end);

end

% Convert angle to number

anglenum = str2num(angle);

fprintf(‘The sine of %.1f ’, anglenum)

% Choose sin or sind function

if dorr == ‘d’

 fprintf(‘degrees is %.3f.\n’, sind(anglenum))

else

 fprintf(‘radians is %.3f.\n’, sin(anglenum))

end

variable dorr. Let’s assume that the value is ‘r’ so we want to
use sin. The variable angle is a string so the following would
not work:

>> sin(angle)
??? Function ‘sin’ is not defined
for values of class ‘char’.
>>

Instead, we could use either str2num to convert the string
to a number, or concatenation to create a string ‘sin(54)’ (or

whatever the value of the variable angle is) and pass that to
the eval function:

>> eval([‘sin(‘ angle ’)’])
ans =
 −0.5588
>> sin(str2num(angle))
ans =
 −0.5588

A complete script to accomplish this is shown here.

(Continued)

Chapter 6 string Manipulation218

>> angle_d_or_r
Enter angle and d/r: 3.1r
The sine of 3.1 radians is 0.042.
>> angle_d_or_r
Enter angle and d/r: 53t
Error! Enter d or r with the angle.
Enter angle and d/r: 53d
The sine of 53.0 degrees is 0.799.

suMMary

Common pitfalls

■■ Putting arguments to strfind in incorrect order (the order matters for
strfind but not for findstr).

■■ Confusing sprintf and fprintf. The syntax is the same, but sprintf creates a
string whereas fprintf prints.

■■ Trying to create a vector of strings with varying lengths (the easiest way is to
use strvcat or char, which will pad with extra blanks automatically).

■■ Forgetting that when using strtok, the second argument returned (the rest
of the string) contains the delimiter.

■■ When breaking a string into pieces, forgetting to convert the numbers in the
strings to actual numbers that can then be used in calculations.

programming style guidelines

■■ Trim trailing blanks from strings stored in matrices before using.

■■ Make sure the correct string comparison function is used; for example,
strcmpi if ignoring case is desired.

strcat
strvcat
blanks
sprintf
deblank
strtrim

upper
lower
strcmp
strncmp
strcmpi
strncmpi

findstr
strfind
strtok
strrep
date
eval

isletter
isspace
ischar
int2str
num2str
str2num

MATLAB Functions and Commands

219Exercises

exercises
 1. Write a script that will prompt the user to enter a word, and then print the first

character in the word. For example, the output might look like this:

>> Enter a word: howdy
The word howdy starts with the letter ‘h’

 2. Write a function that will receive a name and department as separate strings and will
create and return a code consisting of the first two letters of the name and the last
two letters of the department. The code should be uppercase letters. For example,

>> namedept(‘Robert’,‘Mechanical’)
ans =
ROAL

 3. Write a function that will prompt the user separately for a first and last name and
will create and return a string with the form ‘last, first’.

 4. Write a function that will prompt the user separately for a filename and extension
and will create and return a string with the form ‘filename.ext’.

 5. Write a script that will, in a loop, prompt the user for four course numbers. Each
will be a string of length 5 of the form ‘CS101’. These strings are to be stored in a
character matrix.

 6. Write a function that will receive one input argument, which is an integer n. The
function will prompt the user for a number in the range from 1 to n (the actual value
of n should be printed in the prompt) and return the user’s input. The function
should error-check to make sure that the user’s input is in the correct range.

 7. Write a script that will create x and y vectors. Then, it will ask the user for a color (‘red’,
‘blue’, or ‘green’) and for a plot style (‘o’, ‘*’). It will then create a string pstr that contains
the color and plot style, so that the call to the plot function would be plot(x,y,pstr).
For example, if the user enters ‘blue’ and ‘*’, the variable pstr would contain ‘b*’.

 8. Write a script that will generate a random integer, ask the user for a field width, and
print the random integer with the specified field width. The script will use sprintf to
create a string such as ‘The # is %4d\n’ (if, for example, the user entered 4 for the field
width), which is then passed to the fprintf function. In order to print (or create a string
using sprintf) either the ‘%’ or ‘\’ character, there must be two of them in a row.

 9. What does the blanks function return when a 0 is passed to it? A negative
number? Write a function myblanks that does exactly the same thing as the
blanks function. Here are some examples of calling it:

>> fprintf(‘Here is the result:%s!\n’, myblanks(0))
Here is the result:!
>> fprintf(‘Here is the result:%s!\n’, myblanks(7))
Here is the result: !

 10. Write a function that will receive two strings as input arguments, and will return
a character matrix with the two strings in separate rows. Rather than using the

Chapter 6 string Manipulation220

char function to accomplish this, the function should pad with extra blanks as
necessary and create the matrix using square brackets.

 11. The functions that label the x and y axes and title on a plot expect string
arguments. These arguments can be string variables. Write a script that will
prompt the user for an integer n, then create an x vector with integer values from
1 to n, a y vector that is x^2, and then plot with a title that says x^2 with n values
where the number is actually in the title.

 12. Load files named ‘file1.dat’, ‘file2.dat’, and so on in a loop. To test this, create just
two files with these names in your current directory first.

 13. Write a script trimblanks that will prompt the user for a string, and then remove
the leading and trailing blanks. It will print the string, with quotes, both with and
without the leading and trailing blanks. Here is an example of calling it:

>> trimblanks
Enter a string: abcde fg
You entered ‘ abcde fg ’
Without blanks, it is ‘abcde fg’

 14. Write a function that will receive two input arguments: a character matrix that is
a column vector of strings, and a string. It will loop to look for the string within the
character matrix. The function will return the row number in which the string is
found if it is in the character matrix, or the empty vector if not.

 15. If the strings passed to strfind or findstr are the same length, what are the only
two possible results that could be returned?

 16. Either in a script or in the Command Window, create a string variable that
stores a string in which numbers are separated by the character ‘x’, for example
‘12x3x45x2’. Create a vector of the numbers, and then get the sum (e.g., for the
example given it would be 62 but the solution should be general).

 17. Assembly language instructions frequently are in the form of a word that
represents the operator and then the operands separated by a comma. For
example, the string ‘ADD n,m’ is an instruction to add n + m. Write a function
assembly_add that will receive a string in this form and will return the sum
of n + m. For example,

>> assembly_add(‘ADD 10,11’)
ans =
 21

 18. In cryptography, the intended message sometimes consists of the first letter of
every word in a string. Write a function crypt that will receive a string with the
encrypted message and return the message.

>> estring = ‘The early songbird tweets’;
>> m = crypt(estring)
m =
Test

221Exercises

 19. Write a function rid_multiple_blanks that will receive a string as an input
argument. The string contains a sentence that has multiple blank spaces in
between some of the words. The function will return the string with only one blank
in between words. For example,

>> mystr = ‘Hello and how are you?’;
>> rid_multiple_blanks(mystr)
ans =
Hello and how are you?

 20. Words in a sentence variable (just a string variable) called mysent are separated by
/’s instead of blank spaces. For example, mysent might have this value:

‘This/is/not/quite/right’

Write a function slashtoblank that will receive a string in this form and will return
a string in which the words are separated by blank spaces. This should be general
and work regardless of the value of the argument. No loops are allowed in this
function; the built-in string function(s) must be used.

>> mysent = ‘This/is/not/quite/right’;
>> newsent = slashtoblank(mysent)
newsent =
This is not quite right

 21. Create the following two variables:

>> var1 = 123;
>> var2 = ‘123’;

Then, add 1 to each of the variables. What is the difference?

 22. A filename is supposed to be in the form ‘filename.ext’. Write a function that will
determine whether a string is in the form of a name followed by a dot followed by
a three-character extension, or not. The function should return 1 for logical true if
it is in that form, or 0 for false if not.

 23. The built-in clock function returns a vector with six elements representing the year,
month, day, hours, minutes, and seconds; the first five elements are integers whereas
the last is a double value, but calling it with fix will convert all to integers. The
built-in date function returns the day, month, and year as a string. For example,

>> fix(clock)
ans =
 2008 4 25 14 25 49
>> date
ans =
25-Apr-2008

Write a script that will call both of these built-in functions, and then compare
results to make sure that the year is the same. The script will have to convert

Chapter 6 string Manipulation

one from a string to a number, or the other from a number to a string in order to
compare.

 24. Find out how to pass a vector of integers to int2str or real numbers to num2str.
 25. Write a function wordscramble that will receive a word in a string as an input

argument. It will then randomly scramble the letters and return the result. Here are
examples of calling the function:

>> wordscramble(‘fantastic’)
ans =
safntcait
>> sc = wordscramble(‘hello’)
sc =
hleol

 26. Using the functions char and double, you can shift words. For example, you can
convert from lowercase to uppercase by subtracting 32 from the character codes:

>> orig = ‘ape’;
>> new = char(double(orig)-32)
new =
APE
>> char(double(new)+32)
ans =
ape

We’ve encrypted a string by altering the character codes. Figure out the original
string. Try adding and subtracting different values (do this in a loop) until you deci-
pher it:

Jmkyvihmxsyx$}ixC

 27. Two variables store strings that consist of a letter of the alphabet, a blank space,
and a number (in the form ‘r 14.3’). Write a script that would initialize two such
variables. Then, use string manipulating functions to extract the numbers from the
strings and add them together.

 28. Write a script that will first initialize a string variable that will store x and y
coordinates of a point in the form ‘x 3.1 y 6.4’. Then, use string manipulating
functions to extract the coordinates and plot them.

 29. Modify the script in the previous example to be more general: the string could
store the coordinates in any order; for example, it could store ‘y 6.4 x 3.1’.

 30. Write a script that will be a temperature converter. The script prompts the user for
a temperature in degrees Fahrenheit, and then uses the menu function to let the
user choose whether to convert that temperature to degrees Celsius or degrees
Kelvin. The user’s temperature should be in the title of the menu. The script will
then print the converted temperature. The conversions are C = (F – 32) * 5/9 and
K = C + 273.15.

222

223

Contents

© 2009, 2003,1999 Elsevier Inc.

7.1 Cell Arrays 224

7.2 Structures 229

data structure

structure

field

database

record

cell array

vector of structures

nested structure

Key Words

Chapter 7

Data Structures: Cell Arrays and Structures

Data structures are variables that store more than one value. In order for it to
make sense to store more than one value in a variable, the values should some-
how be logically related. There are many different kinds of data structures. We
have already been working with one kind, arrays (e.g., vectors and matrices).
An array is a data structure in which all the values are logically related in that
they are of the same type, and represent in some sense the same thing. So far,
that has been true for the vectors and matrices that we have used.

A cell array is a kind of data structure that stores values of different types. Cell arrays
can be vectors or matrices; the different values are stored in the elements of the
array. One very common use of a cell array is to store strings of different lengths.

Structures are data structures that group together values that are logically
related, but are not the same thing and not necessarily the same type. The dif-
ferent values are stored in separate fields of the structure.

One use of structures is to set up a database of information. For example, for a class
a professor might want to store information for every student in the class: the stu-
dent’s name, university ID number, grades on all assignments and quizzes, and so

Chapter 7 data structures: Cell arrays and structures224

on. In many programming languages and database programs, the terminology is
that within a database file, there would be one record of information for each stu-
dent; each separate piece of information (name, quiz 1 score, etc.) would be called
a field of the record. In the MATLAB® software these records are called structs.

7.1 Cell arrays
One type of data structure that MATLAB has but is not found in many pro-
gramming languages is a cell array. A cell array in MATLAB is an array, but
unlike the vectors and matrices we have used so far, elements in cell arrays can
store different types of values.

7.1.1 Creating Cell arrays
There are several ways to create cell arrays. For example, we will create a cell
array in which one element will store an integer, one element will store a char-
acter, one element will store a vector, and one element will store a string. Just
as with the arrays we have seen so far, this could be a 1 4 row vector, a 4 1
column vector, or a 2 2 matrix. The syntax for creating vectors and matrices
is the same as before. Values within rows are separated by spaces or commas,
and rows are separated by semicolons. However, for cell arrays, curly braces are
used rather than square brackets. For example, the following creates a row vec-
tor cell array with the four different types of values:

>> cellrowvec = {23, ‘a’, 1:2:9, ‘hello’}
cellrowvec =
 [23] ‘a’ [1x5 double] ‘hello’

To create a column vector cell array, the values are instead separated by semicolons:

>> cellcolvec = {23; ‘a’; 1:2:9; ‘hello’}
cellcolvec =

[23]
‘a’
[1x5 double]
‘hello’

This method creates a 2 2 cell array matrix:

>> cellmat = {23 ‘a’; 1:2:9 ‘hello’}
cellmat =

[23] ‘a’
[1x5 double] ‘hello’

Another method of creating a cell array is simply to assign values to specific array
elements and build it up element by element. However, as explained before,
 extending an array element by element is a very inefficient and time-consuming

2257.1 Cell Arrays

method. It is much more efficient, if the size is known ahead of time, to preallo-
cate the array. For cell arrays, this is done with the cell function. For example, to
preallocate a variable mycellmat to be a 2 2 cell array, the cell function would
be called as follows:

>> mycellmat = cell(2,2)
mycellmat =

[] []
[] []

Note that this is a function call so the arguments to the function are in paren-
theses. This creates a matrix in which all the elements are empty vectors. Then,
each element can be replaced by the desired value. How to refer to each ele-
ment in order to accomplish this will be explained next.

7.1.1.1 Referring to and Displaying Cell Array Elements
and Attributes
Just as with the other vectors we have seen so far, we can refer to individual ele-
ments of cell arrays. The only difference is that curly braces are used for the sub-
scripts. For example, this refers to the second element of the cell array cellrowvec:

> cellrowvec{2}
ans =
a

Row and column indices are used to refer to an element in a matrix (again
using curly braces), for example,

>> cellmat{1,1}
ans =

23

Values can be assigned to cell array elements. For example, after preallocating
the variable mycellmat in the previous section, the elements can be initialized:

>> mycellmat{1,1} = 23
mycellmat =

[23] []
[] []

When an element of a cell array is itself a data structure, only the type of the
element is displayed when the cell array contents are shown. For example, in
the cell arrays just created, the vector is shown just as 1 5 double. Referring to
that element specifically would display its contents, for example,

>> cellmat{2,1}
ans =

 1 3 5 7 9

Chapter 7 data structures: Cell arrays and structures226

Since this element is a vector, parentheses are used to refer to its elements. For
example, the fourth element of the preceding vector is:

>> cellmat{2,1}(4)
ans =

 7

Notice that the index into the cell array is given in curly braces, and then paren-
theses are used to refer to an element of the vector.

We can also refer to subsets of cell arrays, for example,

>> cellcolvec{2:3}
ans =
a
ans =

 1 3 5 7 9

Notice, however, that MATLAB stored cellcolvec{2} in the default variable ans,
and then replaced that with the value of cellcolvec{3}. This is because the two
values are different types, and therefore cannot be stored together in ans.
However, they could be stored in two separate variables by having a vector of
variables on the left-hand side of an assignment.

>> [c1 c2] = cellcolvec{2:3}
c1 =
a
c2 =

 1 3 5 7 9

There are several methods of displaying cell arrays. The celldisp function dis-
plays all elements of the cell array:

>> celldisp(cellrowvec)
cellrowvec{1} =

 23
cellrowvec{2} =
a
cellrowvec{3} =

 1 3 5 7 9
cellrowvec{4} =
hello

The function cellplot puts a graphical display of the cell array in a Figure
Window; however, it is a high-level view and basically just displays the same
information as typing the name of the variable (e.g., it wouldn’t show the con-
tents of the vector in the previous example).

Many of the functions and operations on arrays that we have already seen also
work with cell arrays. For example, here are some related to dimensioning:

2277.1 Cell Arrays

>> length(cellrowvec)
ans =

 4
>> size(cellcolvec)
ans =

 4 1
>> cellrowvec{end}
ans =
hello

It is not possible to delete an individual element from a cell array. For example,
assigning an empty vector to a cell array element does not delete the element,
it just replaces it with the empty vector:

>> cellrowvec
mycell =

 [23] ‘a’ [1x5 double] ‘hello’
>> length(cellrowvec)
ans =

 4
>> cellrowvec{2} = []
mycell =

 [23] [] [1x5 double] ‘hello’
>> length(cellrowvec)
ans =

 4

However, it is possible to delete an entire row or column from a cell array by
assigning the empty vector (Note: use parentheses rather than curly braces to
refer to the row or column):

>> cellmat
mycellmat =

 [23] ‘a’
 [1x5 double] ‘hello’

>> cellmat(1,:) = []
mycellmat =

 [1x5 double] ‘hello’

7.1.1.2 Storing Strings in Cell Arrays
One good application of a cell array is to store strings of different lengths.
Since cell arrays can store different types of values in the elements, that
means strings of different lengths can be stored in the elements.

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’}
names =

 ‘Sue’ ‘Cathy’ ‘Xavier’

Chapter 7 data structures: Cell arrays and structures228

This is extremely useful, because unlike vectors of strings created using char or
strvcat, these strings do not have extra trailing blanks.

The length of each string can be displayed using a for loop to loop through the
elements of the cell array:

>> for i = 1:length(names)
disp(length(names{i}))

 end
3
5
6

It is possible to convert from a cell array of strings to a character array, and vice
versa. MATLAB has several functions that facilitate this. For example, the func-
tion cellstr converts from a character array padded with blanks to a cell array
in which the trailing blanks have been removed.

>> greetmat = char(‘Hello’,‘Goodbye’);
>> cellgreets = cellstr(greetmat)
cellgreets =

‘Hello’
‘Goodbye’

The char function can convert from a cell array to a character matrix:

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’};
>> cnames = char(names)
cnames =
Sue
Cathy
Xavier
>> size(cnames)
ans =

 3 6

The function iscellstr will return logical true if a cell array is a cell array of all
strings, or logical false if not.

>> iscellstr(names)
ans =

 1
>> iscellstr(cellcolvec)
ans =

 0

We will see several examples of cell arrays containing strings of varying lengths
in the coming chapters, including advanced file input functions and customizing
plots.

229

7.2 struCtures
Structures are data structures that group together values
that are logically related in what are called fields of the
structure. An advantage of structures is that the fields are
named, which helps to make it clear what the values are
that are stored in the structure. However, structure vari-
ables are not arrays. They do not have elements, so it is
not possible to loop through the values in a structure.

7.2.1 Creating and Modifying structure
Variables
Creating structure variables can be accomplished by
simply storing values in fields using assignment state-
ments, or by using the struct function.

The first example that will be used is that the local Computer Super Mart wants
to store information on the software packages that it sells. For every one, they
will store:

■■ The item number

■■ The cost to the store

■■ The price to the customer

■■ A code indicating the type of software

An individual structure variable for one software package might look like this:

package

item_no cost price code

123 19.99 39.95 ‘g’

The name of the structure variable is package; it has four fields called item_no,
cost, price, and code.

One way to initialize a structure variable is to use the struct function, which
preallocates the structure. The field names are passed to the struct in quotes,
following each one with the value for that field:

>> package = struct(‘item_no’,123,‘cost’,19.99,. . .
‘price’,39.95,‘code’,‘g’)

package =
item_no: 123

cost: 19.9900
price: 39.9500
code: ‘g’

7.2 Structures

praCtiCe 7.1
Write an expression that would display
a random element from a cell array
(without assuming that the number of
elements in the cell array is known).
Create two different cell arrays and try
the expression on them to make sure that
it is correct.

For more practice, write a function
that will receive one cell array as an input
argument and will display a random
element from it.

Chapter 7 data structures: Cell arrays and structures230

Typing the name of the structure variable will display the names and contents
of all fields:

>> package
package =

item_no: 123
cost: 19.9900

price: 39.9500
code: ‘g’

Notice that in the Workspace Window, the variable package is listed as a 1 1
struct. MATLAB, since it is written to work with arrays, assumes the array for-
mat. Just as a single number is treated as a 1 1 double, a single structure is
treated as a 1 1 struct. Later in this chapter we will see how to work more gen-
erally with vectors of structs.

An alternative method of creating this structure, which is not as efficient,
involves using the dot operator to refer to fields within the structure. The name
of the structure variable is followed by a dot, or period, and then the name of
the field within that structure. Assignment statements can be used to assign
values to the fields.

>> package.item_no = 123;
>> package.cost = 19.99;
>> package.price = 39.95;
>> package.code = ‘g’;

By using the dot operator in the first assignment statement, a structure variable
is created with the field item_no. The next three assignment statements add
more fields to the structure variable.

Adding a field to a structure later is accomplished as shown earlier, by using an
assignment statement.

An entire structure variable can be assigned to another. This would make sense,
for example, if the two structures had some values in common. Here, for exam-
ple, the values from one structure are copied into another and then two fields
are selectively changed.

>> newpack = package;
>> newpack.item_no = 111;
>> newpack.price = 34.95
newpack =

item_no: 111
cost: 19.9900

price: 34.9500
code: ‘g’

2317.2 Structures

To print from a structure, the disp function will display either the entire struc-
ture or a field.

>> disp(package)
item_no: 123

cost: 19.9900
price: 39.9500
code: ‘g’

>> disp(package.cost)
19.9900

However, using fprintf, only individual fields can be printed; the entire struc-
ture cannot be printed.

>> fprintf(‘%d %c\n’, package.item_no, package.code)
123 g

The function rmfield removes a field from a structure. It returns a new struc-
ture with the field removed, but does not modify the original structure (unless
the returned structure is assigned to that variable). For example, the following
would remove the code field from the newpack structure, but store the resulting
structure in the default variable ans. The value of newpack remains unchanged.

>> rmfield(newpack, ‘code’)
ans =

item_no: 111
cost: 19.9900
price: 34.9500

>> newpack
newpack =

item_no: 111
cost: 19.9000
price: 34.9500
code: ‘g’

To change the value of newpack, the structure that results
from calling rmfield must be assigned to newpack.

>> newpack = rmfield(newpack, ‘code’)
newpack =

item_no: 111
cost: 19.9000
price: 34.9500

7.2.2 passing structures to Functions
An entire structure can be passed to a function, or
individual fields can be passed. For example, here are

praCtiCe 7.2
A silicon wafer manufacturer stores,
for every part in their inventory, a part
number, how many are in the factory, and
the cost for each.

onepart

part_no quantity costper

123 4 33

Create this structure variable using
struct. Print the cost in the form $xx.xx.

Chapter 7 data structures: Cell arrays and structures232

two different versions of a function that calculates the profit on a software
package. The profit is defined as the price minus the cost.

In the first version, the entire structure variable is passed to the function, so
the function must use the dot operator to refer to the price and cost fields of the
input argument.

calcprof.m

function profit = calcprof(packstruct)

% Calculates the profit for a software package

% The entire structure is passed to the function

profit = packstruct.price – packstruct.cost;

>> calcprof(package)
ans =

19.9600

In the second version, just the price and cost fields are passed to the function
using the dot operator in the function call. These are passed to two scalar input
arguments in the function header, so there is no reference to a structure vari-
able in the function itself, and the dot operator is not needed in the function.

calcprof2.m

function profit = calcprof2(oneprice, onecost)

% Calculates the profit for a software package

% The individual fields are passed to the function

profit = oneprice – onecost;

>> calcprof2(package.price, package.cost)
ans =

19.9600

It is important, as always with functions, to make sure that the arguments in
the function call correspond one-to-one with the input arguments in the func-
tion header. In the case of calcprof, a structure variable is passed to an input
argument, which is a structure. For the second function calcprof2, two individ-
ual fields, which are double values, are passed to two double arguments.

7.2.3 related structure Functions
There are several functions that can be used with structures in MATLAB. The
function isstruct will return 1 for logical true if the variable argument is a struc-
ture variable, or 0 if not. The isfield function returns logical true if a fieldname
(as a string) is a field in the structure argument, or logical false if not.

2337.2 Structures

>> isstruct(package)
ans =

1
>> isfield(package,‘cost’)
ans =

1

The fieldnames function will return the names of the fields that are contained
in a structure variable.

>> pack_fields = fieldnames(package)
pack_fields =

‘item_no’
‘cost’
‘price’
‘code’

Since the names of the fields are of varying lengths, the fieldnames function
returns a cell array with the names of the fields.

Curly braces are used to refer to the elements, since pack_fields is a cell array.
For example, we can refer to the length of one of the strings:

>> length(pack_fields{2})
ans =

4

QuiCK Question!

How can we ask the user for a field in a structure and either
print its value or an error if it is not actually a field?
answer: The isfield function can be used to determine
whether or not it is a field of the structure. Then, by concat-

enating that field name to the structure variable and dot, and
then passing the entire string to eval, the expression would
be evaluated to the actual field in the structure. The follow-
ing code

inputfield = input(‘Which field would you like to see: ‘,‘s’);
if isfield(package, inputfield)

fprintf(‘The value of the %s field is: %s\n’, . . .
inputfield, eval([‘package.’ inputfield]))

else
 fprintf(‘Error: %s is not a valid field\n’, inputfield)
end

would produce this output (assuming the package variable was initialized as shown earlier):

Which field would you like to see: code
The value of the code field is: g

Chapter 7 data structures: Cell arrays and structures234

7.2.4 Vectors of structures
In many applications, including database applications, information normally
would be stored in a vector of structures, rather than in individual structure variables.
For example, if the Computer Super Mart is storing information on all the software
packages that it sells, it would likely be in a vector of structures, for example,

packages

item_no cost price code

1 123 19.99 39.95 ‘g’

2 456 5.99 49.99 ‘l’

3 587 11.11 33.33 ‘w’

In this example, packages is a vector that has three elements. It is shown as a
column vector. Each element is a structure consisting of four fields, item_no,
cost, price, and code. It may look like a matrix with rows and columns, but it is
instead a vector of structures.

This can be created several ways. One method is to create a structure variable,
as shown earlier, to store information on one software package. This can then
be expanded to be a vector of structures.

>> packages = struct(‘item_no’,123,‘cost’,19.99,. . .
‘price’,39.95,‘code’,‘g’);

>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,. . .
‘price’,49.99,‘code’,‘l’);

>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,. . .
‘price’,33.33,‘code’,‘w’);

The first assignment statement shown here creates the first structure in the
structure vector, the next one creates the second structure, and so on. This actu-
ally creates a 1 3 row vector.

Alternatively, the first structure could be treated as a vector to begin with, for
example,

>> packages(1) = struct(‘item_no’,123,‘cost’,19.99,. . .
‘price’,39.95,‘code’,‘g’);

>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,. . .
‘price’,49.99,‘code’,‘l’);

>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,. . .
‘price’,33.33,‘code’,‘w’);

Both of these methods, however, involve extending the vector. As we have
already seen, preallocating any vector in MATLAB is more efficient than
extending it. There are several methods of preallocating the vector. By start-
ing with the last element, MATLAB would create a vector with that many

2357.2 Structures

elements. Then, the elements from 1 through end-1 could be initialized. For
example, for a vector of structures that has three elements, start with the third
element.

>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,. . .
‘price’,33.33,‘code’,‘w’);

>> packages(1) = struct(‘item_no’,123,‘cost’,19.99,. . .
‘price’,39.95,‘code’,‘g’);

>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,. . .
‘price’,49.99,‘code’,‘l’);

Another method is to create one element with the values from one structure,
and use repmat to replicate it to the desired size. Then, the remaining elements
can be modified. The following creates one structure and then replicates this
into a 1 3 matrix.

>> packages = repmat(struct(‘item_no’,587,‘cost’,. . .
11.11, ‘price’,33.33,‘code’,‘w’), 1,3);

>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,. . .
‘price’,49.99,‘code’,‘l’);

>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,. . .
‘price’,33.33,‘code’,‘w’);

Typing the name of the variable will display only the size of the structure vector
and the names of the fields:

>> packages
packages =
1x3 struct array with fields:

item_no
cost
price
code

The variable packages is now a vector of structures, so each element in the vector
is a structure. To display one element in the vector (one structure), an index into
the vector would be specified. For example, to refer to the second element:

>> packages(2)
ans =

item_no: 456
 c ost: 5.9900

 price: 49.9900
 code: ‘l’

To refer to a field, it is necessary to refer to the particular structure, and then
the field within it. This means using an index into the vector to refer to the
structure, and then the dot operator to refer to a field. For example:

Chapter 7 data structures: Cell arrays and structures236

>> packages(1).code
ans =
g

So, there are essentially three levels to this data structure. The variable packages
is the highest level, which is a vector of structures. Each of its elements is an
individual structure. The fields within these individual structures are the low-
est level. The following loop displays each element in the packages vector.

>> for i = 1:length(packages)
disp(packages(i))

end
 item_no: 123

cost: 19.9900
price: 39.9500
code: ‘g’

 item_no: 456
cost: 5.9900

price: 49.9900
code: ‘l’

 item_no: 587
cost: 11.1100

price: 33.3300
code: ‘w’

To refer to a particular field for all structures, in most programming languages it
would be necessary to loop through all elements in the vector and use the dot oper-
ator to refer to the field for each element. However, this is not the case in MATLAB.

the programming Concept
For example, to print all of the costs, a for loop could be used:

>> for i=1:3
fprintf(‘%f\n’,packages(i).cost)

end
19.990000
5.990000
11.110000

the efficient Method
However, fprintf would do this automatically in MATLAB:

>> fprintf(‘%f\n’,packages.cost)
19.990000
5.990000
11.110000

2377.2 Structures

Using the dot operator in this manner to refer to all values of a field would
result in the values being stored successively in the default variable ans:

>> packages.cost
ans =

19.9900
ans =

5.9900
ans =

11.1100

However, the values can all be stored in a vector:

>> pc = [packages.cost]
pc =

19.9900 5.9900 11.1100

Using this method, MATLAB allows the use of functions on all the same fields
within a vector of structures. For example, to sum all three cost fields, the vec-
tor of cost fields is passed to the sum function:

>> sum([packages.cost])
ans =

37.0900

For vectors of structures, the entire vector (e.g., packages) could be passed to a
function, or just one element (e.g., packages(1)), which would be a structure, or
a field within one of the structures (e.g., packages(2).price).

Here is an example of a function that receives the entire vector of structures as
an input argument, and prints all of it in a nice table format.

printpackages.m

function printpackages(packstruct)

% This function prints a table showing all

% values from a vector of packages structures

fprintf(‘\nItem # Cost Price Code\n\n’)

no_packs = length(packstruct);

for i = 1:no_packs

fprintf(‘%6d %6.2f %6.2f %3c\n’, . . .

packstruct(i).item_no, . . .

packstruct(i).cost, . . .

packstruct(i).price, . . .

packstruct(i).code)

end

Chapter 7 data structures: Cell arrays and structures238

The function loops through all the elements of the vector, each of which is a
structure, and uses the dot operator to refer to and print each field. Here is an
example of calling the function:

>> printpackages(packages)

Item Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 l
587 11.11 33.33 w

praCtiCe 7.3
A silicon wafer manufacturer stores, for every part in their inventory, a part
number, how many are in the factory, and the cost for each. First, create a vector
of structs called parts so that when displayed it has the following values:

>> parts
parts =
1x3 struct array with fields:

partno
quantity
costper

>> parts(1)
ans =

partno: 123
quantity: 4
costper: 33

>> parts(2)
ans =

partno: 142
quantity: 1
costper: 150

>> parts(3)
ans =

partno: 106
quantity: 20
costper: 7.5000

Next, write general code that will, for any values and any number of
structures in the variable parts, print the part number and the total cost
(quantity of parts multiplied by the cost of each) in a column format. For
example, if the variable parts stores the values shown, the result would be:

123 132.00
142 150.00
106 150.00

239

The previous example involved a vector of structs. In the next example, a some-
what more complicated data structure will be introduced: a vector of structs in
which some fields are vectors themselves. The example is a database of infor-
mation that a professor might store for his or her class. This will be imple-
mented as a vector of structures. The vector will store all the class information.
Every element in the vector will be a structure, representing all information
about one particular student. For every student, the professor wants to store
(for now, this would be expanded later):

■■ Name (a string)

■■ University ID number

■■ Quiz scores (a vector of 4 quiz scores)

The vector variable, called student, might look like this:

student

 name id_no quiz

 1 2 3 4

1 C, Joe 999 10.0 9.5 0.0 10.0

2 Hernandez, Pete 784 10.0 10.0 9.0 10.0

3 Brownnose, Violet 332 7.5 6.0 8.5 7.5

Each element in the vector is a struct with three fields (name, id_no, quiz). The
quiz field is a vector of quiz grades. The name field is a string.

This data structure could be defined as follows.

>> student(3) = struct(‘name’,‘Brownnose, Violet’,. . .
‘id_no’,332,‘quiz’, [7.5 6 8.5 7.5]);

>> student(1) = struct(‘name’,‘C, Joe’,. . .
 ‘id_no’,999,‘quiz’, [10 9.5 0 10]);
>> student(2) = struct(‘name’,‘Hernandez, Pete’,. . .
 ‘id_no’,784,‘quiz’, [10 10 9 10]);

Once this data structure has been initialized, in MATLAB we could refer to dif-
ferent parts of it. The variable student is the entire array; MATLAB just shows the
names of the fields.

>> student
student =
1x3 struct array with fields:

name
id_no
quiz

7.2 Structures

Chapter 7 data structures: Cell arrays and structures240

To see the actual values, we would have to refer to individual structures and
fields.

>> student(1)
ans =

name: ‘C, Joe’
id_no: 999
quiz: [10 9.5000 0 10]

>> student(1).quiz
ans =

10.0000 9.5000 0 10.0000
>> student(1).quiz(2)
ans =

9.5000
>> student(3).name(1)
ans =
B

With a more complicated data structure like this, it is important to be able
to understand different parts of the variable. The following are examples of
expressions that refer to different parts of this data structure:

■■ student is the entire data structure, which is a vector of structs

■■ student(1) is an element from the vector, which is an individual struct

■■ student(1).id_no is the id_no field from the structure, which is a double
value

■■ student(1).quiz is the quiz field from the structure, which is a vector of doubles

■■ student(1).quiz(1) is an individual double quiz grade

One example of using this data structure would be to calculate and print the
quiz average for each student. The following function accomplishes this. The
student structure, as just defined, is passed to this function. The algorithm in
the function is:

■■ Print column headings.

■■ Loop through the individual students. For each,

– Sum the quiz grades

– Calculate the average

– Print the student’s name and quiz average

With the programming method, a second (nested) loop would be required to
find the running sum of the quiz grades. However, as we have seen, the sum

2417.2 Structures

function can be used to sum the vector of all quiz grades for each student. The
function is defined as:

print_aves.m

function print_aves(student)

% This function prints the average quiz grade

% for each student in the vector of structs

fprintf(‘%-20s %-10s\n’, ‘Name’, ‘Average’)

for i = 1:length(student)

qsum = sum([student(i).quiz]);

no_quizzes = length(student(i).quiz);

ave = qsum / no_quizzes;

fprintf(‘%-20s %.1f\n’, student(i).name, ave);

end

Here is an example of calling the function:

>> print_aves(student)
Name Average
C, Joe 7.4
Hernandez, Pete 9.8
Brownnose, Violet 7.4

7.2.5 nested structures
A nested structure is a structure in which at least one member is itself a
structure.

For example, a structure for a line segment might consist of fields representing
the two points at the ends of the line segment. Each of these points would be
represented as a structure consisting of the x- and y-coordinates.

lineseg

endpoint1 endpoint2

x y x y

2 4 1 6

This shows a structure variable called lineseg that has two fields, end-
point1 and endpoint2. Each of these is a structure consisting of two fields,
x and y.

One method of defining this is to nest calls to the struct function:

Chapter 7 data structures: Cell arrays and structures242

>> lineseg = struct(‘endpoint1’,struct(‘x’,2,‘y’,4), . . .
‘endpoint2’,struct(‘x’,1,‘y’,6))

This method is the most efficient. However, another method is to build the
nested structure one field at a time. Since this is a nested structure with one
structure inside of another, the dot operator must be used twice here to get to
the actual x- and y-coordinates.

>> lineseg.endpoint1.x = 2;
>> lineseg.endpoint1.y = 4;
>> lineseg.endpoint2.x = 1;
>> lineseg.endpoint2.y = 6;

Once the nested structure has been created, we can refer to different parts of the
variable lineseg. Just typing the name of the variable shows only that it is a structure
consisting of two fields, endpoint1 and endpoint2, each of which is a structure.

>> lineseg
lineseg =
 endpoint1: [1x1 struct]
 endpoint2: [1x1 struct]

Typing the name of one of the nested structures will display the field names
and values within that structure:

>> lineseg.endpoint1
ans =
 x: 2
 y: 4

Using the dot operator twice will refer to an individual coordinate, for
example,

>> lineseg.endpoint1.x
ans =
 2

QuiCK Question!

How could we write a function strpoint that returns a string
(x,y) containing the x- and y-coordinates? For example, it

might be called separately to create strings for the two end-
points and then printed as shown here:

>> fprintf(‘The line segment consists of %s and %s\n’, . . .
 strpoint(lineseg.endpoint1), . . .
 strpoint(lineseg.endpoint2))
The line segment consists of (2, 4) and (1, 6)

answer: Since an endpoint structure is passed to the
 function to an input argument, the dot operator is used within

the function to refer to the x- and y-coordinates. The sprintf
 function is used to create the string that is returned.

(Continued)

243

strpoint.m

function ptstr = strpoint(ptstruct)

% This function receives the struct containing x and y

% coordinates and returns a string ‘(x,y)’

ptstr = sprintf(‘(%d, %d)’, ptstruct.x, ptstruct.y);

A nested structure variable for a line segment could also be created by creating
structure variables for the points first, and then storing these in the two fields
of a line segment variable. For example:

>> pointone = struct(‘x’, 5, ‘y’, 11);
>> pointtwo = struct(‘x’, 7, ‘y’, 9);
>> myline = struct(‘endpoint1’, pointone,. . .

‘endpoint2’, pointtwo)

myline =
 endpoint1: [1x1 struct]
 endpoint2: [1x1 struct]

Then, referring to different parts of the variable would work the same:

>> myline.endpoint1
ans =
 x: 5
 y: 11

>> myline.endpoint2.x
ans =
 7

7.2.6 Vectors of nested structures
Combining vectors and nested structures, it is possible to have a vector of struc-
tures in which some fields are structures themselves. Here is an example in
which a company manufactures cylinders from different materials for indus-
trial use. Information on them is stored in a data structure in a program. The
variable cyls is a vector of structures, each of which has fields code, dimensions,
and weight. The dimensions field is a structure itself consisting of fields rad and
height for the radius and height of each cylinder.

 cyls

 code dimensions

 rad height

weight

1 ‘x’ 3 6 7

2 ‘a’ 4 2 5

3 ‘c’ 3 6 9

7.2 Structures

Chapter 7 data structures: Cell arrays and structures244

Here is an example of initializing the data structure by preallocating:

>> cyls(3) = struct(‘code’, ‘c’, ‘dimensions’,. . .
 struct(‘rad’, 3, ‘height’, 6), ‘weight’, 9);
>> cyls(1) = struct(‘code’, ‘x’, ‘dimensions’,. . .
 struct(‘rad’, 3, ‘height’, 6), ‘weight’, 7);
>> cyls(2) = struct(‘code’, ‘a’, ‘dimensions’,. . .
 struct(‘rad’, 4, ‘height’, 2), ‘weight’, 5);

Alternatively, it could be initialized by using the dot operator:

>> cyls(3).code = ‘c’;
>> cyls(3).dimensions.rad = 3;
>> cyls(3).dimensions.height = 6;
>> cyls(3).weight = 9;
>> cyls(1).code = ‘x’;
>> cyls(1).dimensions.rad = 3;
>> cyls(1).dimensions.height = 6;
>> cyls(1).weight = 7;
>> cyls(2).code = ‘a’;
>> cyls(2).dimensions.rad = 4;
>> cyls(2).dimensions.height = 2;
>> cyls(2).weight = 5;

There are several layers in this variable. For example,

■■ cyls is the entire data structure, which is a vector of structs

■■ cyls(1) is an individual element from the vector, which is a struct

■■ cyls(2).code is the code field from the struct cyls(2); it is a character

■■ cyls(3).dimensions is the dimensions field from the struct cyls(3); it is a
struct itself

■■ cyls(1).dimensions.rad is the rad field from the struct cyls(1).dimensions; it
is a double number

For these cylinders, one desired calculation may be the volume of each cylin-
der, which is defined as * r2 * h, where r is the radius and h is the height. The
function printcylvols prints the volume of each cylinder, along with its code for
identification purposes. It calls a subfunction to calculate each volume.

printcylvols.m

function printcylvols(cyls)

% This function prints the volumes of each cylinder

% It calls a subfunction to calculate each volume

for i = 1:length(cyls)

(Continued)

245Summary

 vol = cylvol(cyls(i).dimensions);

 fprintf(‘Cylinder %c has a volume of %.1f\n’, …

 cyls(i).code, vol);

 end

function cvol = cylvol(dims)

% Calculates the volume of a cylinder

cvol = pi * dims.rad ^ 2 * dims.height;

Here is an example of calling this function:
>> printcylvols(cyls)
Cylinder x has a volume of 169.6
Cylinder a has a volume of 100.5
Cylinder c has a volume of 169.6

Notice that the entire data structure, cyls, is passed to the function. The func-
tion loops through every element, each of which is a structure. It prints the code
field for each, which is given by cyls(i).code. In order to
calculate the volume of each cylinder, only the radius
and height are needed, so rather than passing the entire
structure to the subfunction cylvol (which would be
cyls(i)), only the dimensions field is passed (cyls(i).
dimensions). The function then receives the dimensions
structure as an input argument, and uses the dot opera-
tor to refer to the rad and height fields within it.

suMMary

Common pitfalls

■■ Trying to use parentheses rather than curly braces for a cell array

■■ Forgetting to index into a vector using parentheses or referring to a field of
a structure using the dot operator

programming style Guidelines

■■ Use arrays when values are the same type and represent in some sense the
same thing.

■■ Use cell arrays or structures when the values are logically related but not the
same type or the same thing.

■■ Use cell arrays rather than character matrices when storing strings of
different lengths.

praCtiCe 7.4
Modify the function cylvol to calculate the
surface area of the cylinder in addition to
the volume.

Chapter 7 data structures: Cell arrays and structures246

■■ Use cell arrays rather than structures when you want to loop through the
values.

■■ Use structures rather than cell arrays when you want to use names for the
different values rather than indices.

MATLAB Functions and Commands

cell
celldisp
cellplot

cellstr
iscellstr
struct

rmfield
isstruct
isfield

fieldnames

exercises
 1. Create a cell array that stores phrases, for example,

exclaimcell = {‘Bravo’, ‘Fantastic job’};

Pick a random phrase to print.

 2. Create the following cell array:

>> ca = {‘abc’, 11, 3:2:9, zeros(2)}

Use the reshape function to make it a 2 × 2 matrix. Then, write an expression that would
refer to just the last column of this cell array.

 3. Create a 2 × 2 cell array by using the cell function to preallocate and then put
values in the individual elements. Then, insert a row in the middle so that the cell
array is now 3 × 2. Hint: Extend the cell array by adding another row and copying
row 2 to row 3, and then modify row 2.

 4. Create three cell array variables that store people’s names, verbs, and nouns. For
example,

names = {‘Harry’, ‘Xavier’, ‘Sue’};
verbs = {‘loves’, ‘eats’};
nouns = {‘baseballs’, ‘rocks’, ‘sushi’};

Write a script that will initialize these cell arrays, and then print sentences using
one random element from each cell array, for example, ‘Xavier eats sushi’.

 5. Write a script that will prompt the user for strings and read them in, store them in
a cell array (in a loop), and then print them out.

 6. Create a row vector cell array to store the string ‘xyz’, the number 33.3, the vector 2:6,
and the logical expression ‘a’ < ‘c’. Use the transpose operator to make this a column
vector, and use reshape to make it a 2 × 2 matrix. Use celldisp to display all elements.

MATLAB Operators

cell arrays {} dot operator for structs.

247

 7. Create a cell array variable that would store for a student his or her name,
university ID number, and GPA. Print this information.

 8. Create a structure variable that would store for a student his or her name,
university ID number, and GPA. Print this information.

 9. A complex number is a number of the form a + ib, where a is called the real part,
b is called the imaginary part, and = -i 1 . Write a script that prompts the user
separately to enter values for the real and imaginary parts, and stores them in a
structure variable. It then prints the complex number in the form a + ib. The script
should just print the value of a, then the string '+ i', and then the value of b. For
example, if the script is named compnumstruct, running it would result in:

>> compnumstruct
Enter the real part: 2.1
Enter the imaginary part: 3.3
The complex number is 2.1 + i3.3

(note: This is just a structure exercise; MATLAB can handle complex numbers
automatically as will be seen in Chapter 14.)

 10. Modify the previous script to call a function to prompt the user for the real and imaginary
parts of the complex number, and also call a function to print the complex number.

 11. Write the code in MATLAB that would create the following data structure, and put
the following values into the variable:

experiments

 num code weights height

 1 2 feet inches

1 33 ‘x’ 200.34 202.45 5 6

2 11 ‘t’ 111.45 111.11 7 2

The variable is called experiments, which is a vector of structs. Each struct has four
fields: num, code, weights, and height. The field num is an integer, code is a char-
acter, weights is a vector with two values (both of which are double values), and
height is a struct with fields feet and inches (both of which are integers). Write the
statements that would accomplish this, so that typing the following expressions in
MATLAB would give the results shown:

>> experiments
experiments =
1x2 struct array with fields:
 num
 code
 weights
 height

>> experiments(2)

Exercises

Chapter 7 data structures: Cell arrays and structures248

ans =
num: 11

code: ‘t’
weights: [111.4500 111.1100]
height: [1x1 struct]

>> experiments(1).height
ans =

feet: 5
inches: 6

 12. Create a data structure to store information about the elements in the periodic
table of elements. For every element, store the name, atomic number, chemical
symbol, class, atomic weight, and a seven-element vector for the number of
electrons in each shell. Create a structure variable to store the information, for
example for lithium:

Lithium 3 Li alkali-metal 6.94 2 1 0 0 0 0 0

 13. A team of engineers is designing a bridge to span the Podunk River. As part of the
design process, the local flooding data must be analyzed. The following information
on each storm that has been recorded in the last 40 years is stored in a file: the
location of the source of the data, the amount of rainfall (in inches), and the duration
of the storm (in hours), in that order. For example, the file might look like this:

321 2.4 1.5

111 3.3 12.1

etc.

■■ Create a data file.
■■ Write the first part of the program: design a data structure to store the storm data

from the file, and also the intensity of each storm. The intensity is the rainfall amount
divided by the duration. Write a function to read the data from the file (use load),
copy from the matrix into a vector of structs, and then calculate the intensities. Write
another function to print all the information in a neatly organized table.

■■ Add a function to the program to calculate the average intensity of the
storms.

■■ Add a function to the program to print all the information given on the most
intense storm. Use a subfunction for this function that will return the index of
the most intense storm.

 14. A script stores information on potential subjects for an experiment in a vector of
structures called subjects. The following show an example of what the contents
might be:

>> subjects
subjects =
1x3 struct array with fields:

249Exercises

 name
 sub_id
 height
 weight

>> subjects(1)
ans =
name: ‘Joey’
 sub_id: 111
 height: 6.7000
 weight: 222.2000

For this particular experiment, the only subjects who are eligible are those whose
height or weight is lower than the average height or weight of all subjects. The
script will print the names of those who are eligible. Create a vector with sample
data in a script, and then write the code to accomplish this. Don’t assume that the
length of the vector is known; the code should be general.

 15. Quiz data for a class is stored in a file. Each line in the file has the student ID
number (which is an integer) followed by the quiz scores for that student. For
example, if there are four students and three quizzes for each, the file might look
like this:

44 7 7.5 8

33 5.5 6 6.5

37 8 8 8

24 6 7 8

First create the data file, and then store the data in a script in a vector of struc-
tures. Each element in the vector will be a structure that has two members: the
integer student ID number and a vector of quiz scores. The structure will look like
this:

students

 id_no quiz

 1 2 3

1 44 7 7.5 8

2 33 5.5 6 6.5

3 37 8 8 8

4 24 6 7 8

To accomplish this, first use the load function to read all information from the file
into a matrix. Then, using nested loops, copy the data into a vector of structures as
specified previously. Then, the script will calculate and print the quiz average for
each student; for example, if the file is as just shown:

Chapter 7 data structures: Cell arrays and structures250

Student Quiz Ave

44 7.50

33 6.00

37 8.00

24 7.00

 16. Create a nested struct to store a person’s name, address, and phone numbers. The
struct should have three fields for the name, address, and phone. The address fields
and phone fields will be structs.

 17. Design a nested structure to store information on constellations for a rocket design
company. Each structure should store the constellation’s name and information on
the stars in the constellation. The structure for the star information should include
the star’s name, core temperature, distance from the sun, and whether it is a binary
star or not. Create variables and sample data for your data structure.

 18. Create a data file to store information on hurricanes. Each line in the file should
have the name of the hurricane, its speed in miles per hour, and the diameter of
its eye, in miles. Then, write a script to read this information from the file and
create a vector of structures to store it. Print the name and area of the eye for each
hurricane.

 19. Create a data file to store blood donor information for a biomedical research
company. For every donor, store their name, blood type, Rh factor, and blood
pressure information. The blood type is either A, B, AB, or O. The Rh factor
is + or –. The blood pressure consists of two readings: systolic and diastolic (both
are double numbers). Write a script to read from your file into a data structure and
print the information from the file.

 20. Quality control involves keeping statistics on the quality of products. A company
tracks its products and any failures that occur. For every imperfect part, a record
is kept that includes the part number, a character code, a string that describes the
failure, and the cost of both labor and material to fix the part. Create a vector of
structures and create sample data for this company. Write a script that will print
the information from the data structure in an easy-to-read format.

 21. Create a data structure to store information on the planets in our solar system.
For every planet, store its name, distance from the sun, and whether it is an inner
planet or an outer planet.

 22. A manufacturer is testing a new machine that mills parts. Several trial runs are
made for each part, and the resulting parts that are created are weighed. A file
stores, for every part, the part identification number, the ideal weight for the part,
and also the weights from five trial runs of milling this part. Create a file in this
format. Write a script that will read this information and store it in a vector of
structures. For every part print whether the average of the trial weights was less
than, greater than, or equal to the ideal weight.

251Exercises

 23. Write a script that creates a vector of line segments (where each is a nested
structure as shown in this chapter). Initialize the vector using any method. Print a
table showing the values, for example,

Line From To

 1 (3, 5) (4, 7)
 2 (5, 6) (2, 10)
 etc.

 24. Investigate the built-in function cell2struct that converts a cell array into a vector
of structs.

 25. Investigate the built-in function struct2cell that converts a struct to a cell array.
 26. The following program stores information on boxes that have been made by the

Acme Manufacturing Company. Unfortunately, many are rejects. The volume of each
box is supposed to be above a certain threshold. The program checks this, and prints
information on the boxes that do not meet this criterion. The program consists of a
script that calls two functions: one that initializes a vector of nested structures with the
box information, and a function that prints the rejects (this one calls a third function
that calculates the volume of a box). Fill in the function that calculates the volume
(length*width*height). For example, the output from the program might begin as:

>> acmebox
The following boxes are rejects:
Code Volume

22 30.0
33 6.0

acmebox.m

% This script initializes box structs and then calls a

% function to test for rejects based on a volume

% threshold of 55

box = initbox();

boxlims(box,55)

initbox.m

function box = initbox()

% Initializes a vector of box structs

box(1).code = 11;

box(1).dimensions.length = 3;

box(1).dimensions.width = 4;

box(1).dimensions.height = 5;

(Continued)

Chapter 7 data structures: Cell arrays and structures252

box(1).weight = 3.3;

box(2).code = 22;

% etc.

% Initialize several structures here but don’t

% assume you know how many are initialized

boxlims.m

function boxlims(box, thresh)

% Prints the reject boxes

fprintf(‘The following boxes are rejects:\n’)

fprintf(‘Code Volume\n’)

for i = 1:length(box)

 bv = boxvol(box(i).dimensions);

 if bv < thresh

 fprintf(’ %d %.1f\n’, box(i).code,bv)

 end

end

253

Contents

© 2009, 2003,1999 Elsevier Inc.

8.1 Lower Level File
I/O Functions 254

8.2 Writing and
Reading Spreadsheet
Files 264

8.3 Using MAT-Files
for Variables 266

file input and output

file types

lower level file I/O

function

open the file

close the file

file identifier

end of the file

Key Words

Chapter 8

Advanced File Input and Output

This chapter extends the input and output concepts that were introduced in
Chapter 2. In that chapter, we saw how to read values entered by the user using
the input function, and also the output functions disp and fprintf, which dis-
play information in windows on the screen. For file input and output (file I/O),
we used the load and save functions, which can read from a data file into a
matrix, and write from a matrix to a data file. We also saw that there are three
different operations that can be performed on files: reading from files, writing
to files (implying writing to the beginning of a file), and appending to a file
(writing to the end of a file).

There are many different file types, which use different filename extensions. So
far, using load and save, we have worked with files in the ASCII format, which
typically use either the extension .dat or .txt. The load command works only if
there are the same number of values in each line and the values are the same
type, so that the data can be stored in a matrix; the save command writes only
from a matrix to a file. If the data to be written or file to be read is in a different
format, lower level file I/O functions must be used.

Chapter 8 advanced File Input and output254

The MATLAB® software has functions that can read and write data from different
file types such as spreadsheets; typically Excel spreadsheets have the filename
extension .xls. It also has its own binary file type, which uses the extension .mat.
These are usually called MAT-files, and can be used to store variables that have
been created in MATLAB.

In this chapter, we will introduce lower level file input and output functions, as
well as functions that work with different file types.

8.1 LoWer LeveL FILe I/o FunCtIons
When reading from a data file, the load function works as long as the data
in the file is “regular”—in other words, the same kind of data on every line
and in the same format on every line—so that it can be read into a matrix.
However, data files are not always set up in this manner. When it is not pos-
sible to use load, MATLAB has what are called lower level file input functions
that can be used. The file must be opened first, which involves finding or cre-
ating the file and positioning an indicator at the beginning of the file. When
the reading has been completed, the file must be closed.

Similarly, the save function can write matrices to a file, but if the output is not
a simple matrix there are lower level functions to write to files. Again, the file
must be opened first and closed when the writing has been completed.

The steps involved are:

■■ Open the file.

■■ Read from the file, write to the file, or append to the file.

■■ Close the file.

First, the steps involved in opening and closing the file will be described.
Several functions that perform the middle step of reading from or writing to
the file will be described subsequently.

8.1.1 opening and Closing a File
Files are opened with the fopen function. By default, the fopen function opens
a file for reading. If another mode is desired, a permission string is used to spec-
ify which mode (e.g., writing or appending). The fopen function returns 1
if it is not successful in opening the file, or an integer value, which becomes the
file identifier if it is successful. This file identifier is then used to refer to the file
when calling other file I/O functions. The general form is:

fid = fopen(‘filename’, ‘permission string’);

The permission strings include:

2558.1 Lower Level File I/O Functions

r reading (this is the default)
w writing
a appending

See help fopen for others.

After the fopen is attempted, the value returned should be tested to make sure
that the file was successfully opened. For example, if the file does not exist, the
fopen will not be successful. Since the fopen function returns 1 if the file was
not found, this can be tested to decide whether to print an error message or to
carry on and use the file. For example, if it is desired to read from a file ‘samp.
dat’:

fid = fopen(‘samp.dat’);
if fid == –1
 disp(‘File open not successful’)
else
 % Carry on and use the file!
end

Files should be closed when the program has finished reading from or writ-
ing to them. The function that accomplishes this is the fclose function, which
returns 0 if the file close was successful, or 1 if not. Individual files can be
closed by specifying the file identifier, or if more than one file is open, all open
files can be closed by passing the string ‘all’ to the fclose function. The general
forms are:

closeresult = fclose(fid);
closeresult = fclose(‘all’);

This should also be checked with an if-else statement to make sure it was
successful.

8.1.2 reading from Files
There are several lower level functions that read from files. The function fscanf
reads formatted data into a matrix, using conversion formats such as %d for
integers, %s for strings, and %f for floats (double values). The textscan function
reads text data from a file and stores it in a cell array. The fgetl and fgets func-
tions both read strings from a file one line at a time; the difference is that the
fgets keeps the newline character if there is one at the end of the line, whereas
the fgetl function gets rid of it. All these functions require first opening the file,
and then closing it when finished.

Since the fgetl and fgets functions read one line at a time, these functions are
typically in some form of a loop. The fscanf and textscan functions can read
the entire data file into one data structure. In terms of level, these two functions

Chapter 8 advanced File Input and output256

are somewhat in between the load function and the lower level functions such
as fgetl. The file must be opened using fopen first, and should be closed using
fclose after the data has been read. However, no loop is required; they will read
in the entire file automatically but into a data structure.

We will concentrate first on the fgetl function, which reads strings from a file
one line at a time. The fgetl function affords more control over how the data is
read than other input functions. The fgetl function reads one line of data from a
file into a string; string functions can then be used to manipulate the data. Since
fgetl reads only one line, it normally is placed in a loop that keeps going until
the end of the file is reached. The function feof returns logical true if the end of
the file has been reached. The function call feof(fid) would return logical true
if the end of the file has been reached for the file identified by fid, or logical false
if not. A general algorithm for reading from a file into strings would be:

■■ Attempt to open the file; check to make sure the file open was
successful.

■■ If opened, loop until the end of the file is reached. For each line in the
file,

– read it into a string

– manipulate the data

■■ Attempt to close the file; check to make sure the file close was
successful.

The generic code to accomplish this is:

fid = fopen(‘filename’);
if fid == –1
 disp(‘File open not successful’)
else
 while feof(fid) == 0
 % Read one line into a string variable
 aline = fgetl(fid);
 % Use string functions to extract numbers, strings,
 % etc. from the line
 % Do something with the data!
 end
 closeresult = fclose(fid);
 if closeresult == 0
 disp(‘File close successful’)
 else
 disp(‘File close not successful’)
 end
end

2578.1 Lower Level File I/O Functions

The permission string could be included in the call to the fopen function, for
example,

fid = fopen(‘filename’, ‘r’);

but is not necessary since reading is the default. The condition on the while
loop can be interpreted as saying “while the file end-of-file is false.” Another
way to write this is

while feof(fid)

which is interpreted as “while we’re not at the end of the file.”

For example, assume that there is a data file ‘subjexp.dat’, which has on each
line a number followed by a character code. The type function can be used to
display the contents of this file (since the file does not have the default exten-
sion .m, the extension on the filename must be included).

>> type subjexp.dat
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b

The load function would not be able to read this into a matrix since it contains
both numbers and text. Instead, the fgetl function can be used to read each line
as a string and then string functions are used to separate the numbers and char-
acters. For example, the following just reads each line and prints the number
with 2 decimal places and then the rest of the string:

fileex.m

% Reads from a file one line at a time using fgetl

% Each line has a number and a character

% The script separates and prints them

% Open the file and check for success

fid = fopen(‘subjexp.dat’);

if fid == –1

 disp(‘File open not successful’)

else

 while feof(fid) == 0

 aline = fgetl(fid);

 % Separate each line into the number and character

(Continued)

Chapter 8 advanced File Input and output258

 % code and convert to a number before printing

 [num charcode] = strtok(aline);

 fprintf(‘%.2f %s\n’, str2num(num), charcode)

 end

 % Check the file close for success

 closeresult = fclose(fid);

 if closeresult == 0

 disp(‘File close successful’)

 else

 disp(‘File close not successful’)

 end

end

Here is an example of executing this script:

>> fileex
5.30 a
2.20 b
3.30 a
4.40 a
1.10 b
File close successful

In this example, in the loop each time the fgetl function reads one line into
a string variable. The string function strtok is then used to store the number
and the character in separate variables, both of which are string variables. The
function str2num must then be used to convert the number stored in the
string variable into a double variable so that calculations could be performed
on it.

Instead of using the fgetl function to read one line,
once a file has been opened the fscanf function could
be used to read in from this file directly into a matrix.
However, the matrix must be manipulated somewhat
to get it back into the original form from the file.
The format of using the function is:

mat = fscanf(fid, ‘format’, [dimensions])

The fscanf reads into the matrix variable mat columnwise from the file identi-
fied by fid. The ‘format’ includes conversion characters much like those used
in the fprintf function. The dimensions specify the desired dimensions of

praCtICe 8.1
Modify the script fileex to sum the
numbers from the file. Create your own
file in this format first.

2598.1 Lower Level File I/O Functions

mat; if the number of values in the file is not known, inf can be used for
the second dimension. For example, the following would read in the same
file specified earlier, which has on each line a number, then a space, then a
character.

>> fid = fopen(‘subjexp.dat’);
>> mat = fscanf(fid,‘%f %c’,[2 inf])
mat =
 5.3000 2.2000 3.3000 4.4000 1.1000
 97.0000 98.0000 97.0000 97.0000 98.0000
>> fclose(fid);

The fopen opens the file for reading. The fscanf then reads from each line one
double and one character, and places each pair in separate columns in the
matrix. The dimensions specify that the matrix is to have two rows, by however
many columns are necessary (equal to the number of lines in the file). Since
matrices store values that are all the same type, the characters are stored as their
ASCII equivalents in the character encoding (e.g., ‘a’ is 97). Once this matrix
has been created, it may be more useful to separate the rows into vector vari-
ables and to convert the second back to characters, which can be accomplished
as follows:

>> nums = mat(1,:);
>> charcodes = char(mat(2,:))
charcodes =
abaab

Of course, the results from fopen and fclose should
be checked but were omitted here for simplicity.

Another option for reading from a file is to use the textscan function. The textscan
function reads text data from a file and stores it in a cell array. The textscan func-
tion is called, in its simplest form, as

cellarray = textscan(fid, ‘format’);

praCtICe 8.2
Write a script to read in this file using
fscanf, and sum the numbers.

QuICK QuestIon!

Instead of using the dimensions [2 inf] in the fscanf function,
could we use

[inf 2]?

answer: No, [inf 2] would not work; since fscanf reads each
row from the file into a column in the matrix. That means that
the number of rows in the resulting matrix is known but the
number of columns is not.

Chapter 8 advanced File Input and output260

where the ‘format’ includes conversion characters much like those used in the
fprintf function. For example, to read the file ‘subjexp.dat’ just shown, we could do
the following (again, for simplicity, omitting the error-check of fopen and fclose):

>> fid = fopen(‘subjexp.dat’);
>> subjdata = textscan(fid,‘%f %c’);
>> fclose(fid)

The format string ‘%f %c’ specifies that on each line there is a double value fol-
lowed by a space followed by a character. This creates a 1 2 cell array variable
called subjdata. The first element in this cell array is a column vector of doubles
(the first column from the file); the second element is a column vector of char-
acters (the second column from the file), as shown here:

>> subjdata
subjdata =
 [5x1 double] [5x1 char]
>> subjdata{1}
ans =
 5.3000
 2.2000
 3.3000
 4.4000
 1.1000
>> subjdata{2}
ans =
a
b

QuICK QuestIon!

Is the space in the conversion string ‘%f %c’ important, or
would the following also work?

>> mat = fscanf(fid,‘%f %c’,[2 inf])

answer: No, that would not work. The conversion string ‘%f %c’
specifies that there is a real number, then a space, then a char-
acter. Without the space in the conversion string, it would
specify a real number immediately followed by a character
(which would be the space in the file). Then, the next time it
would be attempting to read the next real number but the file
position indicator would be pointing to the character on the
first line; the error would cause the fscanf function to halt.
Here is the end result:

>> fid = fopen(‘subjexp.dat’);
>> mat = fscanf(fid,‘%f %c’,[2 inf])
mat =
 5.3000
 32.0000

The 32 is the numerical equivalent of the space character ‘ ’,
as seen here.

>> double(‘ ’)
ans =
 32

2618.1 Lower Level File I/O Functions

a
a
b

To refer to individual values from the vector, it is necessary to index into the
cell array using curly braces and then index into the vector using parentheses.
For example, to refer to the third number in the first element of the cell array:

>> subjdata{1}(3)
ans =
 3.3000

A script that reads in this data and echo-prints it is shown here:

textscanex.m

% Reads data from a file using textscan

fid = fopen(‘subjexp.dat’);

if fid == –1

 disp(‘File open not successful’)

else

 % Reads numbers and characters into separate elements

 % in a cell array

 subjdata = textscan(fid,‘%f %c’);

 len = length(subjdata{1});

 for i= 1:len

 fprintf(‘%.1f %c\n’,subjdata{1}(i),subjdata{2}(i))

 end

 closeresult = fclose(fid);

 if closeresult == 0

 disp(‘File close successful’)

 else

 disp(‘File close not successful’)

 end

end

Executing this script produces the following results:

>> textscanex
5.3 a
2.2 b
3.3 a

Chapter 8 advanced File Input and output262

4.4 a
1.1 b
File close successful

To summarize, we have now seen four methods of
reading from a file. The function load will work only
if the values in the file are all the same type and there
is the same number on every line in the file, so that
they can be read into a matrix. If this is not the case,
lower level functions must be used. To use these, the

file must be opened first and then closed when the reading has been com-
pleted. The fscanf function will read into a matrix, converting the characters to
their ASCII equivalents. The textscan function will instead read into a cell array
that stores each column from the file into separate column vectors of the cell
array. Finally, the fgetl function can be used in a loop to read each line from
the file as a separate string; string manipulating functions must then be used to
break the string into pieces and convert to numbers.

8.1.3 Writing to Files
There are several lower level functions that can write to files. We will concen-
trate on the fprintf function, which can be used to write to a file and also to
append to a file.

To write one line at a time to a file, the fprintf function can be used. Like the
other low-level functions, the file must be opened first for writing (or append-
ing) and should be closed once the writing has been completed. We have, of
course, been using fprintf to write to the screen. The screen is the default out-
put device, so if a file identifier is not specified, the output goes to the screen;
otherwise, it goes to the specified file. The default file identifier number is 1 for
the screen. The general form is:

fprintf(fid, ‘format’, variable(s));

The fprintf function actually returns the number of bytes that was written to
the file, so if you do not want to see that number, suppress the output with a

praCtICe 8.3
Modify the script textscanex to
calculate the average of the column of
numbers.

QuICK QuestIon!

If a data file is in the following format, which file input
function(s) could be used to read it in?

48 25 23 23
12 45 1 31
31 39 42 40

answer: Any of the file input functions could be used, but
since the file consists of only numbers, the load function
would be the easiest.

2638.1 Lower Level File I/O Functions

semicolon as shown here. (Note: When writing to the screen, the value returned
by fprintf is not seen, but could be stored in a variable.)

Here is an example of writing to a file named ‘tryit.txt’:

>> fid = fopen(‘tryit.txt’, ‘w’);
>> for i = 1:3
 fprintf(fid,‘The loop variable is %d\n’, i);
end
>> fclose(fid);

The permission string in the call to the fopen function specifies that the
file is opened for writing to it. Just as when reading from a file, the results
from fopen and fclose should really be checked to make sure they were suc-
cessful. The fopen function attempts to open the file for writing. If the file
already exists, the contents are erased so it is as if the file had not existed.
If the file does not currently exist (which would be the norm), a new file is
created. The fopen could fail, for example, if there isn’t space to create this
new file.

To see what was written to the file, we could then open it (for reading) and
loop to read each line using fgetl:

>> fid = fopen(‘tryt.txt’);
>> while feof(fid)
 aline = fgetl(fid)
 end
aline =
The loop variable is 1
aline =
The loop variable is 2
aline =
The loop variable is 3
>> fclose(fid);

Here is another example in which a matrix is written to a file. First, a random
2 4 matrix is created, and then it is written to a file using the format string
‘%d %d\n’, which means that each column from the matrix will be written as
a separate line in the file.

>> mat = randint(2,4,[5 20])
mat =
 20 14 19 12
 8 12 17 5
>> fid = fopen(‘randmat.dat’,‘w’);
>> fprintf(fid,‘%d %d\n’,mat);
>> fclose(fid);

Chapter 8 advanced File Input and output264

Since this is a matrix, the load function can be used to read it in.

>> load randmat.dat
>> randmat
randmat =
 20 8
 14 12
 19 17
 12 5
>> randmat’
ans =
 20 14 19 12
 8 12 17 5

Transposing the matrix will display in the form of the original matrix. If you
want this to begin with, the matrix variable mat can be transposed before using
fprintf to write to the file. (Of course, it would be much simpler in this case to
just use save instead!)

8.1.4 appending to Files
The fprintf function can also be used to append
to an existing file. The permission string is ‘a’, for
example,

fid = fopen(‘filename, ‘a’);

Unlike text files, data doesn’t have to be in the
same format as what is already in the file when
appending.

8.2 WrItIng and readIng spreadsheet FILes
The MATLAB functions xlswrite and xlsread will write to and read from spread-
sheet files that have the extension .xls. For example, the following will create a
5 3 matrix of random integers, and then write it to a spreadsheet file called
‘ranexcel.xls’ that has five rows and three columns:

>> ranmat = randint(5,3,[1 100])
ranmat =
 96 77 62
 24 46 80
 61 2 93
 49 83 74
 90 45 18
>> xlswrite(‘ranexcel’,ranmat)

praCtICe 8.4
Create a 3 × 5 matrix of random integers,
each in the range from 1 to 100. Write
this to a file called ‘myrandmat.dat’ in a
3 × 5 format using fprintf, so that the file
appears identical to the original matrix.
Load the file to confirm that it was
created correctly.

2658.2 Writing and Reading Spreadsheet Files

The xlsread function will read from a spreadsheet file. For example, to read
from the file just created:

>> ssnums = xlsread(‘ranexcel’)
ssnums =
 96 77 62
 24 46 80
 61 2 93
 49 83 74
 90 45 18

In both cases the .xls extension on the filename is the default, so it can be omitted.

These are shown in their most basic forms, when the matrix or spreadsheet con-
tains just numbers and the entire spreadsheet is read or matrix is written. There
are many qualifiers that can be used for these functions, however. For example,
the following would read from the spreadsheet file ‘texttest.xls’ that contains:

a 123 Cindy
b 333 Suzanne
c 432 David
d 987 Burt

>> [nums, txt] = xlsread(‘texttest.xls’)
nums =
 123
 333
 432
 987
txt =
 ‘a’ ‘’ ‘Cindy’
 ‘b’ ‘’ ‘Suzanne’
 ‘c’ ‘’ ‘David’
 ‘d’ ‘’ ‘Burt’

This reads the numbers into a double vector variable nums and the text into a
cell array txt (the xlsread function always returns the numbers first and then the
text). The cell array is 4 3. It has three columns since the file had three col-
umns, but since the middle column had numbers (which were extracted and
stored in the vector nums), the middle column in the cell array txt consists of
empty strings.

>> txt{1,2}
ans =
 ‘’
>> txt{1,3}
ans =
Cindy

Chapter 8 advanced File Input and output266

A loop could then be used to echo-print the values from the spreadsheet in the
original format:

>> for i = 1:length(nums)
 fprintf(‘%c %d %s\n’, txt{i,1}, ...
 nums(i), txt{i,3})
 end
a 123 Cindy
b 333 Suzanne
c 432 David
d 987 Burt

8.3 usIng Mat-FILes For varIabLes
In addition to the data file types, MATLAB has functions that allow reading
and saving variables from files. These files are called MAT-files (because the
extension on the file name is .mat), and they store the names and contents of
variables. Variables can be written to MAT-files, appended to them, and read
from them.

Note: MAT-files are very different from the data files that we have worked with
so far. Rather than just storing data, MAT-files store variable names and their
values.

8.3.1 Writing variables to a File
The save command can be used to write variables to a file, or to append vari-
ables to a MAT-file. By default, the save function writes to a MAT-file. It can
either save the entire current workspace (all variables that have been created),
or a subset of the workspace (including, for example, just one variable). The
save function will save the file in the current directory, so it is important to set
that correctly first.

To save all workspace variables in a file, the command is:

save filename

The .mat extension is added automatically to the filename. The contents of the
file can be displayed using who with the -file qualifier:

who –file filename

For example, in the following session in the Command Window, three vari-
ables are created; these are then displayed using who. Then, the variables are
saved to a file named ‘sess1.mat’. The who function is then used to display the
variables stored in that file.

2678.3 Using MAT-Files for Variables

>> mymat = rand(3,5)
mymat =
 0.9501 0.4860 0.4565 0.4447 0.9218
 0.2311 0.8913 0.0185 0.6154 0.7382
 0.6068 0.7621 0.8214 0.7919 0.1763
>> x = 1:6;
>> y = x.^2;
>> who
Your variables are:
mymat x y
>> save sess1
>> who -file sess1
Your variables are:
mymat x y

To save just one variable to a file, the format is:

save filename variablename

For example, just the matrix variable mymat is saved in a file called sess2:

>> save sess2 mymat
>> who -file sess2
Your variables are:
mymat

8.3.2 appending variables to a Mat-File
Appending to a file adds to what has already been saved in a file, and is accom-
plished using the –append option. For example, assuming that the variable
mymat already has been stored in the file ‘sess2.mat’ as shown earlier, this
would append the variable x to the file:

>> save -append sess2 x
>> who -file sess2
Your variables are:
mymat x

Without specifying variable(s), just save –append would add all variables from
the Command Window to the file. When this happens, if the variable is not in
the file, it is appended. If there is a variable with the same name in the file, it is
replaced by the current value from the Command Window.

8.3.3 reading from a Mat-File
The load function can be used to read from different types of files. As with the
save function, by default the file will be assumed to be a MAT-file, and load
can load all variables from the file or only a subset. For example, in a new

Chapter 8 advanced File Input and output268

Command Window session in which no variables have been created yet, the
load function could load from the files created in the previous section:

>> who
>> load sess2
>> who
Your variables are:
mymat x

A subset of the variables in a file can be loaded by specifying them in the
form

load filename variable list

suMMary

Common pitfalls

■■ Misspelling a filename, which causes a file open to be unsuccessful

■■ Using a lower level file I/O function, when load or save could be used

■■ Forgetting that fscanf reads columnwise into a matrix—so every line in the
file is read into a column in the resulting matrix

■■ Forgetting that fscanf converts characters to their ASCII equivalents

■■ Forgetting that textscan reads into a cell array (so curly braces are necessary
to index)

■■ Forgetting to use the permission string ‘a’ for appending to a file (which
means the data already in the file would be lost!)

programming style guidelines

■■ Use load when the file contains the same kind of data on every line and in
the same format on every line.

■■ Always close files that were opened.

■■ Always check to make sure that files were opened and closed successfully.

■■ Make sure that all data is read from a file; for example, use a conditional
loop to loop until the end of the file is reached rather than using a for
loop.

■■ Be careful to use the correct formatting string when using fscanf or
textscan.

■■ Store groups of related variables in separate MAT-files.

269Exercises

exercises
 1. Write a script that will read from a file x and y data points in the following format:

x 0 y 1
x 1.3 y 2.2
x 2.2 y 6
x 3.4 y 7.4

The format of every line in the file is the letter x, a space, the x value, space, the letter y,
space, and the y value. First, create the data file with 10 lines in this format. Do this
by using the Editor/Debugger, then File Save As xypts.dat. The script will attempt
to open the data file and error-check to make sure it was opened. If so, it uses a for
loop and fgetl to read each line as a string. In the loop, it creates x and y vectors for
the data points. After the loop, it plots these points and attempts to close the file.
The script should print whether or not the file was successfully closed.

 2. Modify the script from the previous problem. Assume that the data file is in exactly
that format, but do not assume that the number of lines in the file is known. Instead
of using a for loop, loop until the end of the file is reached. The number of points,
however, should be in the plot title.

 3. For a biomedical experiment, the names and weights of some patients have been
stored in a file ‘patwts.dat’. For example, the file might look like this:

Darby George 166.2
Helen Dee 143.5
Giovanni Lupa 192.4
Cat Donovan 215.1

Create this data file first. Then, write a script readpatwts that will first attempt to
open the file. If the file open is not successful, an error message should be printed. If
it is successful, the script will read the data into strings, one line at a time. Print for
each person the name in the form ‘last, first’ followed by the weight. Also, calculate
and print the average weight. Finally, print whether or not the file close was suc-
cessful. For example, the result of running the script would look like this:

>> readpatwts
George,Darby 166.2
Dee,Helen 143.5
Lupa,Giovanni 192.4
Donovan,Cat 215.1
The ave weight is 179.30
File close successful

MATLAB Functions and Commands

fopen
fclose
fscanf

fgetl
fgets
feof

textscan
fprintf
xlswrite

xlsread

Chapter 8 advanced File Input and output270

 4. Create a file ‘parts_inv.dat’ that stores on each line a part number, cost, and
quantity in inventory, for example:

123 5.99 52
456 3.97 100
333 2.22 567

Use fscanf to read this information, and print the total $ amount of inventory (the
sum of the cost multiplied by the quantity for each part).

 5. Create a file that stores on each line a letter, a space, and a real number. For
example, it might look like this:

e 5.4
f 3.3
c 2.2
f 1.1
c 2.2

Write a script that uses textscan to read from this file. It will print the sum of the
numbers in the file. The script should error-check the file open and close, and print
error messages as necessary.

 6. Create a file, ‘phonenos.dat’, of phone numbers in the following form:

6012425932
6178987654
8034562468

Read the phone numbers from the file and print them in the form:

601–242–5932

Use load to read the phone numbers.
 7. Create the file ‘phonenos.dat’ as before. Use textscan to read the phone numbers,

and then print them in the preceding format.
 8. Create the file ‘phonenos.dat’ as before. Use fgetl to read the phone numbers in a

loop, and then print them in the preceding format.
 9. Write a script to read in division codes and sales for a company from a file that has

the following format:

A. 4.2
B. 3.9

Print the division with the highest sales.
 10. Modify any of the previous scripts to write the phone numbers in the new format

to a new file.
 11. Write a script that will loop to prompt the user for n circle radii. The script will call

a function to calculate the area of each circle, and will write the results in sentence
form to a file.

271Exercises

 12. The Wind Chill Factor (WCF) measures how cold it feels with a given air
temperature (T, in degrees Fahrenheit) and wind speed (V, in miles per hour). One
formula for the WCF is

WCF = 35.7 0.6T − 35.7 (V0.16) 0.43T(V0.16)

Create a table showing wind chill factors for temperatures ranging from –20 to 55 in steps
of 5, and wind speeds ranging from 0 to 55 in steps of 5. Write this to a file ‘wcftable.dat’.

 13. Create a data file that has points in a three-dimensional space stored in the
following format:

x 2.2 y 5.3 z 1.8

Do this by creating x, y, and z vectors and then use fprintf to create the file in the
specified format.

 14. Create a file that has some college department names and enrollments. For
example, it might look like this:

Aerospace 201
Civil 45
Mechanical 66

Write a script that will read the information from this file and create a new file that
has just the first four characters from the department names, followed by the enroll-
ments. The new file will be in this form:

Aero 201
Civi 45
Mech 66

 15. A software package writes data to a file in a format that includes curly braces
around each line and commas separating the values. For example, a data file
mm.dat might look like this:

{33, 2, 11}
{45, 9, 3}

Use the fgetl function in a loop to read this data. Create a matrix that stores just the
numbers, and write the matrix to a new file. Assume that there are the same number
of numbers in each line of the original file.

 16. A file stores sales data (in millions) by quarters. For example, the format may look
like this:

2007Q1 4.5
2007Q2 5.2

Create this file and then append the next quarter’s data to it.
 17. Create a spreadsheet that has on each line an integer student identification

number followed by three quiz grades for that student. Read that information from
the spreadsheet into a matrix, and print the average quiz score for each student.

Chapter 8 advanced File Input and output272

 18. The xlswrite function can write the contents of a cell array to a spreadsheet.
A manufacturer stores information on the weights of some parts in a cell array.
Each row stores the part identifier code followed by weights of some sample parts.
To simulate this, create the following cell array:

>> parts = {‘A22’, 4.41 4.44 4.39 4.39
‘Z29’, 8.88 8.95 8.84 8.92}

Then, write this to a spreadsheet file.
 19. A spreadsheet, ‘popdata.xls’, stores the population every 20 years for a small town

that underwent a boom and then a decline. Create this spreadsheet (include the
header row) and then read the headers into a cell array and the numbers into a
matrix. Plot the data using the header strings on the axis labels.

Year Population

1920 4021
1940 8053
1960 14994
1980 9942
2000 3385

 20. Create a multiplication table and write it to a spreadsheet.
 21. Read numbers from any spreadsheet file, and write the variable to a MAT-file.
 22. Clear out any variables that you have in your Command Window. Create a matrix

variable and two vector variables.

■■ Make sure that you have your current directory set.
■■ Store all variables to a MAT-file.
■■ Store just the two vector variables in a different MAT-file.
■■ Verify the contents of your files using who.

 23. Create a set of random matrix variables with descriptive names (e.g., ran2by2int,
ran3by3double, etc.) for use when testing matrix functions. Store all of these in a
MAT-file.

 24. A data file is created as a char matrix and then saved to a file, for example,

>> cmat = char(‘hello’, ‘ciao’, ‘goodbye’)
cmat =
hello
ciao
goodbye
>> save stringsfile.dat cmat –ascii

Can the load function be used to read this? What about textscan?
 25. Create a file of strings as before, but create the file by opening a new M-file, type in

strings, and then save it as a data file. Can the load function be used to read this?
What about textscan?

273

Contents

© 2009, 2003,1999 Elsevier Inc.

9.1 Anonymous
Functions 273

9.2 Uses of Function
Handles 275

9.3 Variable Numbers
of Arguments 278

9.4 Nested
Functions 284

9.5 Recursive
Functions 287

anonymous function

function handle

function function

nested function

recursive function

variable number of

arguments

outer function

inner function

recursion

infinite recursion

Key Words

Chapter 9

Advanced Functions

Functions were introduced in Chapter 2, and then expanded on in Chapter 5.
In this chapter, several advanced features of functions and types of functions
will be described. Anonymous functions are simple one-line functions that are
called using their function handle. Other uses of function handles will also be
demonstrated, including function functions. All the functions that we have seen
so far have had a well-defined number of input and output arguments, but
we will see that the number of arguments can be varied. Nested functions also
are introduced, which are functions contained within other functions. Finally,
recursive functions are functions that call themselves. A recursive function can
return a value, or may simply accomplish a task such as printing.

9.1 anonymous FunCtions
An anonymous function is a very simple, one-line function. The advantage of
an anonymous function is that it does not have to be stored in an M-file. This
can greatly simplify programs, since often calculations are very simple, and the

Chapter 9 advanced Functions274

use of anonymous functions reduces the number of M-files necessary for a pro-
gram. Anonymous functions can be created in the Command Window or in
any script. The syntax for an anonymous function is:

fnhandle = @ (arguments) functionbody

where fnhandle stores the function handle; it is essentially a way of referring to
the function. The handle is assigned to this name using the @ operator. The
arguments, in parentheses, correspond to the argument(s) that are passed
to the function, just like any other kind of function. The functionbody is
the body of the function, which is any valid MATLAB® expression. For exam-
ple, here is an anonymous function that calculates and returns the area of a
circle:

>> cirarea = @ (radius) pi * radius .^2;

The function handle name is cirarea. One argument is passed to the input argu-
ment radius. The body of the function is the expression pi * radius .^2. The .^
operator is used so that a vector of radii can be passed to the function.

The function is then called using the handle and passing arguments to it. The
function call using the function handle looks just like a function call using a
function name.

>> cirarea(4)
ans =

50.2655
>> cirarea(1:4)
ans =

3.1416 12.5664 28.2743 50.2655

Unlike functions stored in M-files, if no argument is passed to an anony-
mous function, the parentheses must still be in the function definition and
in the function call. For example, here is an anonymous function that prints
a random real number with two decimal places, as well as a call to this
function:

>> prtran = @ () fprintf(‘%.2f\n’,rand);
>> prtran()
0.95

Typing just the name of the function handle will display its contents, which is
the function definition.

>> prtran
prtran =

@ () fprintf(‘%.2f\n’,rand)

2759.2 Uses of Function Handles

This is why to call the function, even though no arguments are passed, the
parentheses must be used.

To save an anonymous function, it can be saved to a MAT-file, and then it can
be loaded when needed.

>> cirarea = @ (radius) pi * radius .^2;
>> save anonfns cirarea
>> clear
>> load anonfns
>> who
Your variables are:
cirarea

>> cirarea
cirarea =

@ (radius) pi * radius .^2

Other anonymous functions could be appended to this MAT-file. Even though
an advantage of anonymous functions is that they do not have to be saved in
individual M-files, it is frequently useful to save groups of related anonymous
functions in a MAT-file. If there are some anonymous functions that are fre-
quently used, they can be saved in a MAT-file and then loaded from this MAT-
file in every MATLAB Command Window.

9.2 uses oF FunCtion handles
Function handles can also be created for functions other
than anonymous functions, both built-in and user-
defined functions. For example, the following would cre-
ate a function handle for the built-in factorial function:

>> facth = @factorial;

The @ operator gets the handle of the function, which is then stored in a vari-
able facth.

The handle could then be used to call the function, just like the handle for the
anonymous functions, for example:

>> facth(5)
ans =

120

Using the function handle to call the function instead of using the name of the
function doesn’t in itself demonstrate why this is useful, so an obvious ques-
tion would be why function handles are necessary.

praCtiCe 9.1
Create your own anonymous functions to
calculate the areas of circles, rectangles,
and something else (you decide!). Store
these anonymous functions in a file called
‘myareas.mat’.

Chapter 9 advanced Functions276

9.2.1 Function Functions
One reason for using function handles is to be able to pass functions to other
functions—these are called function functions.

For example, let’s say we have a function that creates an x vector. The y vector is
created by evaluating a function at each of the x points, and then these points
are plotted.

fnfnexamp.m

function fnfnexamp(funh)

% Example of a function function. The handle of a function

% is passed and that function of x is plotted

x = 1:.25:6;

y = funh(x);

plot(x,y,‘ko’)

What we want is to be able to pass a function to be the value of funh, like sin,
cos, tan, and so on. It doesn’t work to just pass the name of the function:

>> fnfnexamp(sin)
??? Error using ==> sin
Not enough input arguments.

Instead, we have to pass the handle of the function:

>> fnfnexamp(@sin)

which creates the y vector as sin(x) and then brings
up the plot as seen in Figure 9.1.

Passing instead the handle to the cos function would
graph cosine instead of sine:

>> fnfnexamp(@cos)

We could also pass the handle of any user-defined or
anonymous function to the fnfnexamp function.1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Figure 9.1
Plot of sin created by
passing handle of function
to plot.

QuiCK Question!

How could you write a function to accomplish essentially the
same thing, but by passing the name of the function as a string?

answer: Pass the name of the function as a string to the func-
tion, and then use eval to evaluate the function.

(Continued)

2779.2 Uses of Function Handles

Another way of doing this is to use the built-in function str2func that will con-
vert a string to a function handle:

fnstrfn2.m

function fnstrfn2(funstr)

% A function name is passed as an argument to this

% function; it converts this to a function handle and

% then plots the function of x

x = 1:.25:6;

funh = str2func(funstr);

y = funh(x);

plot(x,y,‘bo’)

This also would be called by passing a string to the function, and again would
create the same plot:

>> fnstrfn2(‘sin’)

There is also a function func2str that will convert a function handle to a string.
This could be used to put the name of the function in the plot in Figure 9.1
(either in the title or on the y-axis label).

Although these methods also work, it seems simpler and cleaner to just pass
the function handle to the function.

fnstrfn.m

function fnstrfn(funstr)

% A function name is passed as an argument to this

% function; it evaluates and plots the function of x

x = 1:.25:6;

y = eval(strcat(funstr,‘(x)’));

plot(x,y,‘bo’)

In this case, the string ‘(x)’ has to be concatenated to the name
of the string to result in the string, for example, ‘sin(x)’, and then
that is evaluated as a function using eval. This would be called
by passing a string to the function, for example:

>> fnstrfn(‘sin’)

This would create the same plot as shown in the previous
example.

Chapter 9 advanced Functions278

3 2 1 0 1 2 3
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

MATLAB has some built-in function functions. One
built-in function function is fplot, which plots a func-
tion between limits that are specified. The form of the
call to fplot is:

fplot(fnhandle, [xmin xmax])

For example, to pass the sin function to fplot one
would pass its handle (see Figure 9.2 for the result).

>> fplot(@sin, [-pi pi])

The fplot function is a nice shortcut—it is not nec-
essary to create x and y vectors, and it plots a con-
tinuous curve rather than discrete points.

The function feval will evaluate a function handle
and execute the function for the specified argument.
For example, the following is equivalent to sin(3.2):

>> feval(@sin, 3.2)
ans =
 −0.0584

9.3 Variable numbers
oF arguments

So far, in the functions that we’ve written, there has been a fixed number of
input arguments and a fixed number of output arguments. For example, in the
following function that we defined previously, there is one input argument and
two output arguments:

areacirc.m

function [area, circum] = areacirc(rad)

% This function calculates the area and

% circumference of a circle

area = pi * rad .* rad;

circum = 2 * pi * rad;

However, this is not always the case. It is possible to have a variable number of
arguments, both input arguments and output arguments. A built-in cell array
varargin can be used to store a variable number of input arguments and a
built-in cell array varargout can be used to store a variable number of out-
put arguments. These are cell arrays because the arguments could be different
types, and only cell arrays can store different kinds of values in the different

Figure 9.2
Plot of sin created using
fplot.

praCtiCe 9.2
Write a function that will receive as input
arguments an x vector and a function
handle, and will create a vector y, which
is the function of x (whichever function
handle is passed) and will also plot the
data from the x and y vectors with the
function name in the title.

2799.3 Variable Numbers of Arguments

elements. The function nargin returns the number of input arguments that
were passed to the function, and the function nargout determines how many
output arguments are expected to be returned from a function.

9.3.1 Variable number of input arguments
For example, the following function areafori has a variable number of input
arguments, either 1 or 2. The name of the function stands for “area, feet or
inches.” If only one argument is passed to the function, it represents the radius
in feet. If two arguments are passed, the second can be a character ‘i’ indicating
that the result should be in inches (for any other character, the default of feet is
assumed). The function uses the built-in varargin, which stores as a cell array
any number of input arguments. The function nargin returns the number of
input arguments that were passed to the function. In this case, the radius is the
first argument passed so it is stored in the first element in varargin. If a second
argument is passed (if nargin is 2), it is to specify the units.

areafori.m

function area = areafori(varargin)

% Calculates and returns the area of a circle in feet

% The radius is passed, and potentially the unit of

% inches is also passed, in which case the result will be

% given in inches instead of feet

n = nargin; % number of input arguments

radius = varargin{1}; % Given in feet by default

if n == 2

 unit = varargin{2};

 % if inches is specified, convert the radius

 if unit == ‘i’

 radius = radius * 12;

 end

end

area = pi * radius ^ 2;

Notice that the curly braces are used to refer to the elements in the cell array
varargin.

Here are some examples of calling this function:

>> areafori(3)
ans =

Chapter 9 advanced Functions280

 28.2743
>> areafori(1,‘i’)
ans =
 452.3893

In this case, it was assumed that the radius will always be passed to the func-
tion. The function header can therefore be modified to indicate that the radius
will be passed, and then a variable number of remaining input arguments
(either none or one):

areafori2.m

function area = areafori2(radius, varargin)

% Calculates and returns the area of a circle in feet

% The radius is passed, and potentially the unit of

% inches is also passed, in which case the result will be

% given in inches instead of feet

n = nargin; % number of input arguments

if n == 2

 unit = varargin{1};

 % if inches is specified, convert the radius

 if unit == ‘i’

 radius = radius * 12;

 end

end

area = pi * radius ^ 2;

>> areafori2(1,‘i’)
ans =

 452.3893
>> areafori2(3)
ans =

 28.2743

Notice nargin returns the total number of input arguments, not just the num-
ber of arguments in the cell array varargin.

9.3.2 Variable number of output arguments
A variable number of output arguments can also be specified. For example, one
input argument is passed to the following function typesize. The function will
always return a character specifying whether the input argument was a scalar

2819.3 Variable Numbers of Arguments

(‘s’), vector (‘v’), or matrix (‘m’). This character is returned through the output
argument arrtype. Additionally, if the input argument was a vector the func-
tion returns the length of the vector, and if the input argument was a matrix
the function returns the number of rows and columns of the matrix. The out-
put argument varargout is used; it is a cell array. So, for a vector the length is
returned through varargout and for a matrix both the number of rows and
columns are returned through varargout.

typesize.m

function [arrtype, varargout] = typesize(inputval)

% Demonstrates a variable number of output arguments

[r c] = size(inputval);

if r==1 && c==1

 arrtype = ‘s’;

praCtiCe 9.3
The sum of a geometric series is given by

1 + r + r2 + r3 + r4 + ... + rn

Write a function called geomser, which will receive a value for r, and will
calculate and return the sum of the geometric series. If a second argument
is passed to the function, it is the value of n; otherwise, the function
generates a random integer for n (in the range from 5 to 30). Note that
loops are not necessary to accomplish this. The following examples of calls
to this function illustrate what the result should be:

>> geomser(1,5) % 1 + 11 + 12 + 13 + 14 + 15
ans =
 6
>> g = geomser(2,4) % 1 + 21 + 22 + 23 + 24
g =
 31
>> geomser(1) % 1 + 11 + 12 + 13 + ... ?
ans =
 12

Note that in the last example, a random integer was generated for n (which
must have been 11). Use the following header for the function, and fill in
the rest:

function sgs = geomser(r, varargin)

(Continued)

Chapter 9 advanced Functions282

elseif r==1 c==1

 arrtype = ‘v’;

 varargout{1} = length(inputval);

else

 arrtype = ‘m’;

 varargout{1} = r;

 varargout{2} = c;

end

>> typesize(5)
ans =
s

>> [arrtype, len] = typesize(4:6)
arrtype =
v
len =

 3

>> [arrtype, r, c] = typesize([4:6;3:5])
arrtype =
m

r =
2

c =
3

In the examples shown here, the user must actually know the type of the
argument in order to determine how many variables to have on the left-hand
side of the assignment statement. An error will result if there are too many
variables.

>> [arrtype, r,c] = typesize(4:6)
??? Error using ==> typesize
Too many output arguments.

The function nargout can be called to determine how many output arguments
were used to call a function. For example, in the function mysize, next, a matrix
is passed to the function. The function behaves like the built-in function size
in that it returns the number of rows and columns. However, if three variables
are used to store the result of calling this function, it also returns the total num-
ber of elements:

2839.3 Variable Numbers of Arguments

mysize.m

function [row col varargout] = mysize(mat)

% Demonstrates the use of nargout

[row col] = size(mat);

if nargout == 3

 varargout{1} = row*col;

end

>> [r c] = mysize(eye(3))
r =

3
c =

3
>> [r c elem] = mysize(eye(3))
r =

3
c =

3
elem =

9

Notice that nargout does not return the number of output arguments in the
function header, but the number of output arguments expected from the func-
tion (e.g., the number of arguments in the vector in the left-hand side of the
assignment statement when calling the function). In the first call to the mysize
function, the value of nargout was 2, so the function returned only the output
arguments row and col. In the second call, since there were three variables on
the left of the assignment statement, the value of nargout was 3 so the function
also returned the total number of elements.

QuiCK Question!

A temperature in degrees C is passed to a function called con-
verttemp. How could we write this function so that it converts
this temperature to degrees F, and possibly also to degrees K,
depending on the number of output arguments? The conver-
sions are:

F = 9—
5
 C+32

K = C+273.15

Here are possible calls to the function:

>> df = converttemp(17)
df =

62.6000
>> [df dk] = converttemp(17)
df =

62.6000
dk =

290.1500
(Continued)

Chapter 9 advanced Functions284

9.4 nested FunCtions
Just as we have seen that loops can be nested, meaning one inside of another,
functions can be nested. The terminology for nested functions is that an outer
function can have within it inner functions. When functions are nested, every
function must have an end statement (much like loops). The general format of
a nested function is as follows:

outer function header
 body of outer function
 inner function header

 body of inner function
 end % inner function
 more body of outer function

end % outer function

answer: We could write the function two different ways, using
two different function headers: one that has just varargout in

the function header, and one that has an output argument for
the degrees F and also varargout in the function header.

converttemp.m

function [degreesF, varargout] = converttemp(degreesC)

% Convert temperature to degrees F and maybe also K

degreesF = 9/5*degreesC + 32;

n = nargout;

if n == 2

 varargout{1} = degreesC + 273.15;

end

converttempii.m

function varargout = converttempii(degreesC)

% Convert temperature to degrees F and maybe also K

n = nargout;

varargout{1} = 9/5*degreesC + 32;

if n == 2

 varargout{2} = degreesC + 273.15;

end

2859.4 Nested Functions

The inner function can be in any part of the body of the outer function so there
may be parts of the body of the outer function before and after the inner func-
tion. There can be multiple inner functions.

The scope of any variable is the workspace of the outermost function in which
it is defined and used. That means that a variable defined in the outer function
could be used in an inner function. A variable defined in the inner function could
be used in the outer function, but if it is not used in the outer function the scope
is just the inner function.

For example, the following function calculates and returns the volume of a
cube. Three arguments are passed to it, for the length and width of the base of
the cube and also the height. The outer function calls a nested function that
calculates and returns the area of the base of the cube. Notice that it is not nec-
essary to pass the length and width to the inner function, since the scope of
these variables includes the inner function.

nestedvolume.m

function outvol = nestedvolume(len, wid, ht)

% Demonstrates a nested function

outvol = base * ht;

 function outbase = base

 outbase = len * wid;

 end % base function

end % nestedvolume function

Here is an example of calling this function:

>> v = nestedvolume(3,5,7)
v =

105

Output arguments are different from variables. The scope of an output argu-
ment is just the nested function; it cannot be used in the outer function. In this
example, outbase can be used only in the base function; its value, for example,
could not be printed from nestedvolume.

Also, if a variable is not used in an outer function, then the variable is local to
the nested function. The previous example has been modified to demonstrate
these scope rules. In the following example, the value of the output argument
outbase cannot be used by the function nestedvolume2 (because it is an output
argument, not a variable). Also, the variable bvar is local to the function
base since it is never used in nestedvolume2. On the other hand, cvar is used by

Chapter 9 advanced Functions286

nestedvolume2 (it is printed), so its scope is the workspace of nestedvolume2—
meaning, for example, that it can be printed by printstuff.

nestedvolume2.m

function outvol = nestedvolume2(len, wid, ht)

% Demonstrates scope within a nested function

disp(‘This function calculates a volume’)

% Call the base function, and calculate and

% print the volume

outvol = base * ht;

fprintf(‘outvol is %.1f\n’, outvol)

fprintf(‘cvar is %.1f\n’, cvar)

% Call the printstuff function

printstuff

% Not valid because it is an output argument:

% fprintf(‘outbase is %.1f\n’, outbase)

 function outbase = base

 bvar = len * wid;

 cvar = len * wid;

 outbase = bvar;

 end

 function printstuff

 fprintf(‘outvol is %.1f\n’, outvol)

 %Not valid because bvar is not used in nestedvolume2:

 % fprintf(‘bvar is %.1f\n’, bvar)

 fprintf(‘cvar is %.1f\n’, cvar)

 end

end

Here is an example of calling this modified function:

>> nestedvolume2(3,5,7)
This function calculates a volume
outvol is 105.0
cvar is 15.0

2879.5 Recursive Functions

outvol is 105.0
cvar is 15.0
ans =

 105

9.5 reCursiVe FunCtions
Recursion occurs when something is defined in terms of itself. In programming, a
recursive function is a function that calls itself. Recursion is used very commonly
in programming, although many simple examples (including some shown in
this section) are actually not very efficient and can be replaced by iterative meth-
ods (loops, or vectorized code in MATLAB). Nontrivial examples go beyond the
scope of this book, so the concept of recursion is simply introduced here.

The example used will be of a factorial. Normally, the factorial of an integer n
is defined iteratively:

n! = 1 * 2 * 3 * ... * n

For example, 4! = 1 * 2 * 3 * 4, or 24.

Another, recursive, definition is:

n! = n * (n − 1)! general case
1! = 1 base case

This definition is recursive because a factorial is defined in terms of another
factorial. There are two parts to any recursive definition: the general (or induc-
tive) case, and the base case. We say that in general the factorial of n is defined
as n multiplied by the factorial of (n – 1), but the base case is that the factorial
of 1 is just 1. The base case stops the recursion.

For example,

3! = 3 * 2!
2! = 2 * 1!
 1! = 1

= 2
= 6

The way this works is that 3! is defined in terms of another factorial, as 3 * 2!.
This expression cannot yet be evaluated, because first we have to find out the
value of 2!. So, in trying to evaluate the expression 3 * 2!, we are interrupted
by the recursive definition. According to the definition, 2! is 2 * 1!. Again, the
expression 2 * 1! cannot yet be evaluated because first we have to find the value
of 1!. According to the definition, 1! is 1. Since we now know what 1! is, we
can continue with the expression that was just being evaluated; now we know

Chapter 9 advanced Functions288

that 2 * 1! is 2 * 1, or 2. So, now we can finish the previous expression that was
being evaluated; now we know that 3 * 2! is 3 * 2, or 6.

This is the way that recursion always works. With recursion, the expressions are
put on hold with the interruption of the general case of the recursive defini-
tion. This keeps happening until finally the base case of the recursive definition
applies. This finally stops the recursion, and then the expressions that were put
on hold are evaluated in the reverse order. In this case, first the evaluation
of 2 * 1! was completed, and then 3 * 2!.

There must always be a base case to end the recursion, and the base case must
be reached at some point. Otherwise, infinite recursion would occur (theoreti-
cally, although MATLAB will stop the recursion eventually).

We have already seen the built-in function in MATLAB to calculate factorials,
called factorial and we have seen how to implement the iterative definition
using a running product. Now we will instead write a recursive function called
fact. The function will receive an integer n, which for simplicity we will assume is
a positive integer, and will calculate n! using the recursive definition just given:

fact.m

function facn = fact(n)

% This function recursively finds n!

if n == 1

 facn = 1;

else

 facn = n * fact(n−1);

end

The function calculates one value, using an if-else statement to choose between
the base and general cases. If the value passed to the function is 1, the function
returns 1 since 1! is equal to 1. Otherwise, the general case applies. According
to the definition, the factorial of n, which is what this function is calculating,
is defined as n multiplied by the factorial of (n–1). So, the function assigns
n * fact(n−1) to the output argument.

How does this work? Exactly the way the example was sketched for 3!. Let’s
trace what would happen if the integer 3 is passed to the function:

fact(3) tries to assign 3 * fact(2)
fact(2) tries to assign 2 * fact(1)

fact(1) assigns 1
fact(2) assigns 2

fact(3) assigns 6

2899.5 Recursive Functions

When the function is first called, 3 is not equal to 1, so the statement

facn = n * fact(n−1);

is executed. This will attempt to assign the value of 3 * fact(2) to facn,
but this expression cannot be evaluated yet and therefore a value cannot
be assigned yet because first the value of fact(2) must be found. Thus, the
assignment statement has been interrupted by a recursive call to the fact
function. The call to the function fact(2) results in an attempt to assign
2 * fact(1), but again this expression cannot yet be evaluated. Next, the
call to the function fact(1) results in a complete execution of an assign-
ment statement since it assigns just 1. Once the base case has been reached,
the assignment statements that were interrupted can be evaluated, in the
reverse order.

Calling this function yields the same result as the built-in factorial function:

>> fact(5)
ans =

 120

>> factorial(5)
ans =

 120

The recursive factorial function is a very common example of a recursive func-
tion. It is somewhat of a lame example, however, since recursion is not nec-
essary to find a factorial; a for loop can be used just as well in programming
(or, of course, the built-in function in MATLAB).

Another, better, example is of a recursive function that does not return any-
thing, but simply prints. The following function prtwords receives a sentence,
and prints the words in the sentence in reverse order. The algorithm for the
prtwords function is:

■■ Receive a sentence as an input argument.

■■ Use strtok to break the sentence into the first word and the rest of the
sentence.

■■ If the rest of the sentence is not empty (in other words, if there is more
to it), recursively call the prtwords function and pass to it the rest of the
sentence.

■■ Print the word.

The function definition is:

Chapter 9 advanced Functions290

prtwords.m

function prtwords(sent)

% This function recusively prints the words in a string

% in reverse order

[word, rest] = strtok(sent);

if ~isempty(rest)

 prtwords(rest);

end

disp(word)

Here is an example of calling the function, passing the sentence “what does
this do”:

>> prtwords(‘what does this do’)
do
this
does
what

What happens when the function is called here is outlined as follows.

The function receives ‘what does this do’
It breaks it into word = ‘what’, rest = ‘ does this do’
Since rest is not empty, calls prtwords, passing rest

The function receives ‘ does this do’
It breaks it into word = ‘does’, rest = ‘ this do’
Since rest is not empty, calls prtwords, passing rest

The function receives ‘ this do’
It breaks it into word = ‘this’, rest = ‘ do’
Since rest is not empty, calls prtwords, passing rest

The function receives ‘ do’
It breaks it into word = ‘do’, rest = ‘’
rest is empty so no recursive call
Print ‘do’

Print ‘this’

Print ‘does’

Print ‘what’

In this example, the base case is when the rest of the string is empty; in other
words, the end of the original sentence has been reached. Every time the func-

291Summary

tion is called, the execution of the function is inter-
rupted by a recursive call to the function, until the
base case is reached. When the base case is reached,
the entire function can be executed, including the
printing of the word (in the base case, the word ‘do’).
Once that execution of the function is completed, the
program returns to the previous version of the func-
tion in which the word was ‘this’, and finishes the
execution by printing the word ‘this’. This continues;
the versions of the function are finished in the reverse
order, so the program ends up printing the words from
the sentence in the reverse order.

summary

Common pitfalls

■■ Trying to pass just the name of a function to a function function; instead,
the function handle must be passed

■■ Thinking that nargin is the number of elements in varargin (it is not
necessarily; it is the total number of input arguments)

■■ Forgetting the base case for a recursive function

programming style guidelines

■■ Use anonymous functions whenever the function body consists of just a
simple expression.

■■ Store related anonymous functions together in one MAT-file.

■■ If some inputs and outputs will always be passed to/from a function, use
standard input arguments/output arguments for them. Use varargin and
varargout only when it is not known ahead of time whether other input/
output arguments will be needed.

■■ Use iteration instead of recursion when possible.

praCtiCe 9.4
For the following function:

recurfn.m

function outvar = recurfn(num)

if num < 0

 outvar = 4;

else

 outvar = 3 + recurfn(num−1);

end

What would be returned by the call to the
function recurfn(2.3)? Think about it, and
then type the function and test it.

MATLAB Functions and Commands

str2func
func2str
fplot

feval
varargin
varargout

nargin
nargout

end (for
 functions)

Chapter 9 advanced Functions292

exercises
 1. An approximation for a factorial can be found using Stirling’s formula:

 Write an anonymous function to implement this.
 2. Write an anonymous function to calculate and return the area of a rectangle.
 3. The velocity of sound in air is 49.02 T feet per second where T is the air

temperature in degrees Rankine. Write an anonymous function that will calculate
this. One argument, the air temperature in degrees R, will be passed to the
function and it will return the velocity of sound.

 4. The hyperbolic sine for an argument x is defined as:

hyperbolicsine(x) = (ex − e−x)/ 2

Write an anonymous function to implement this. Compare yours to the built-in
function sinh.

 5. Create a set of anonymous functions to do length conversions and store them in a
file lenconv.mat. Call them a descriptive name, for example, cmtoinch to convert
from centimeters to inches.

 6. Write a function that will receive data in the form of x and y vectors, and a handle
to a plot function and will produce the plot. For example, a call to the function
would look like wsfn(x,y,@bar).

 7. Write a function plot2fnhand that will receive two function handles as input
arguments, and will display in two Figure Windows plots of these functions, with
the function names in the titles. The function will create an x vector that ranges
from 1 to n (where n is a random integer in the range from 4 to 10). For example, if
the function is called as follows:

>> plot2fnhand(@sqrt, @exp)

 and the random integer is 5, the Figure Window 1 would display the sqrt
function of x from 1 to 5, and the second Figure Window would display exp(x)
for x = 1:5.

 8. Write an anonymous function to implement the following quadratic: 3x2 − 2x + 5.
Then, use fplot to plot the function in the range from –6 to 6.

 9. Use feval as an alternative way to accomplish the following function calls:

abs (-4)

size(zeros(4)) (Use feval twice for this one!)

 10. There is a built-in function function called cellfun that evaluates a function for
every element of a cell array. Create a cell array, then call the cellfun function,
passing the handle of the length function and the cell array in order to determine
the length of every element in the cell array.

æ ö» p ç ÷
è ø

! 2
nn

n n
e

293Exercises

 11. Write a function that will print a random integer. If no arguments are passed to
the function, it will print an integer in the range from 1 to 100. If one argument
is passed, it is the max and the integer will be in the range from 1 to max. If two
arguments are passed, they represent the min and max and it will print an integer
in the range from min to max.

 12. The velocity of sound in air is 49.02 T feet per second where T is the air
temperature in degrees Rankine. Write a function to implement this. If just one
argument is passed to the function, it is assumed to be the air temperature in
degrees Rankine. If, however, two arguments are passed, the two arguments would
be first an air temperature and then a character ‘f’ for Fahrenheit or ‘c’ for Celsius
(so this would then have to be converted to Rankine). note: degrees R = degrees
F + 459.67. Degrees F = 9/5 degrees C + 32.

 13. Write a function areaperim that will calculate both the area and perimeter of a
polygon. The radius r will be passed as an argument to the function. If a second
argument is passed to the function, it represents the number of sides n. If,
however, only one argument is passed, the function generates a random value
for n (an integer in the range from 3 to 8). For a polygon with n sides inscribed in a
circle with a radius of r, the area a and perimeter p of the polygon can be found by

 14. Write a function that will receive a variable number of input arguments: the
length and width of a rectangle, and possibly also the height of a box that has
this rectangle as its base. The function should return the rectangle area if just the
length and width are passed, or also the volume if the height is also passed.

 15. Write a function that will receive the radius r of a sphere. It will calculate and
return the volume of the sphere (4/3 p r3). If the function call expects two output
arguments, the function will also return the surface area of the sphere (4 p r2).

 16. The built-in function clock returns a vector with six elements representing, in
order, the year, month, day, hour, minutes, and seconds. Write a function whatday
that (using the clock function) will always return the current day. If the function
call expects two output arguments, it will also return the month. If the function
call expects three output arguments, it will also return the year.

 17. The built-in function date returns a string containing the day, month, and year.
Write a function (using the date function) that will always return the current day.
If the function call expects two output arguments, it will also return the month. If
the function call expects three output arguments, it will also return the year.

 18. Write a function to calculate the volume of a cone. The volume V is V = AH, where
A is the area of the circular base (A = pr2 where r is the radius) and H is the height.
Use a nested function to calculate A.

pæ ö= ç ÷
è ø

21
sin

2
a nr

n

pæ ö= p ç ÷
è ø

2 sinp r
n

Chapter 9 advanced Functions294

 19. The two real roots of a quadratic equation ax2 + bx + c = 0 (where a is nonzero) are
given by

- ±
2 *
b D

a

 where the discriminant D = b2 – 4 * a * c. Write a function to calculate and return
the roots of a quadratic equation. Pass the values of a, b, and c to the function. Use
a nested function to calculate the discriminant.

 20. A recursive definition of an where a is an integer and n is a nonnegative integer is:

an = 1 if n == 0
= a * an−1 if n > 0

 Write a recursive function called mypower, which receives a and n and returns the
value of an by implementing the above definition. Note: The program should not use
^ operator anywhere; this is to be done recursively instead! Test the function.

 21. What does this function do?

function outvar = mystery(x,y)
if y == 1
 outvar = x;
else
 outvar = x + mystery(x,y−1);
end

 Give one word to describe what this function does with its two arguments.
 22. The Fibonacci numbers is a sequence of numbers Fi:

0 1 1 2 3 5 8 13 21 34 ...

 where F0 is 0, F1 is 1, F2 is 1, F3 is 2, and so on. The sequence starts with 0 and 1.
All other Fibonacci numbers are obtained by adding the previous two Fibonacci
numbers. A recursive definition is:

F0 = 0
F1 = 1
Fn = Fn−2 + Fn−1 if n > 1

 Write a recursive function to implement this definition. The function will receive
one integer argument n, and it will return one integer value, which is the nth
Fibonacci number. Note that in this definition there is one general case but two
base cases. Then, test the function by printing the first 20 Fibonacci numbers.

 23. Use fgets to read strings from a file and recursively print them backward.
 24. Combinatorial coefficients can be defined recursively as follows:

C(n,m) = 1 if m = 0 or m = n
 = C(n−1, m−1) + C(n−1, m)otherwise

 Write a recursive function to implement this definition.

2Part

Applications

This page intentionally left blank

297

Contents

© 2009, 2003,1999 Elsevier Inc.

10.1 Plot
Functions 297

10.2 Animation 302

10.3 Three-
Dimensional Plots ... 303

10.4 Customizing
Plots 304

10.5 Graphics
Properties 306

10.6 Plot
Applications 308

histogram

stem plot

pie chart

area plot

bin

animation

plot property

object

object handle

hyteograph

inverse functions

Key Words

ChaPter 10

MATLAB Plots

In Chapter 2, we introduced the use of the function plot in the MATLAB® software to get
simple, two-dimensional plots of x and y points represented by two vectors, x and y.
We also have seen some functions that allow customization of these plots. In this
chapter we will explore other types of plots, ways of customizing plots, and some
applications that combine plotting with functions and file input. Additionally, ani-
mation, three-dimensional plots, and graphics properties will be introduced.

10.1 Plot FunCtions
So far, we have used plot to create two-dimensional plots and bar to create bar
charts. We have seen how to clear the Figure Window using clf, and how to
 create and number Figure Windows using figure. Labeling plots has been
accomplished using xlabel, ylabel, title, and legend, and we also have seen
how to customize the strings passed to these functions using sprintf. The axis
function changes the axes from the defaults that would be taken from the data

ChaPter 10 MatlaB Plots298

in the x and y vectors to the values specified. Finally, the grid and hold toggle
functions print grids or not, or lock the current graph in the Figure Window so
that the next plot will be superimposed.

10.1.1 Matrix of Plots
Another function that is very useful with any type of plot is subplot, which creates
a matrix of plots in the current Figure Window. Three arguments are passed to it
in the form subplot(r,c,n); where r and c are the dimensions of the matrix and n
is the number of the particular plot within this matrix. The plots are numbered
rowwise starting in the upper left corner. In many cases, it is useful to create a sub-
plot in a for loop so the loop variable can iterate through the integers 1 through n.
When the subplot function is called in a loop, the first two arguments will always
be the same since they give the dimensions of the matrix. The third argument will
iterate through the numbers assigned to the elements of the matrix. When the
subplot function is called, it makes that element the active plot; then, any plot
function can be used complete with axis labeling, titles, and such within that
element.

For example, the following subplot shows the difference, in one Figure Window,
between using 10 points and 20 points to
plot sin(x) between 0 and 2 * . The
subplot function creates a 1 × 2 row vec-
tor of plots in the Figure Window, so that
the two plots are shown side-by-side. The
loop variable i iterates through the val-
ues 1 and then 2. The first time through
the loop, when i has the value 1, 10*1 or
10 points are used, and the value of the
third argument to the subplot function
is 1. The second time through the loop,
20 points are used and the third argu-
ment to subplot is 2. Note that sprintf is
used to print how many points were used
in the plot titles. The resulting Figure
Window with both plots is shown in
Figure 10.1.

subplotex.m

%demonstrates subplot using a for loop

for i = 1:2

 x = linspace(0,2*pi,10*i);

 y = sin(x);

0 2 4 6 8
1

0.8

0.6

0.4

0.2

 0

0.2

0.4

0.6

0.8

 1

si
n(

x)

1

0.8

0.6

0.4

0.2

 0

0.2

0.4

0.6

0.8

 1

si
n(

x)

10 Points

0 2 4 6 8

20 Points

Figure 10.1
Subplot to demonstrate a
plot using 10 points and
20 points.

(Continued)

299 10.1 Plot Functions

 subplot(1,2,i)

 plot(x,y,‘ko’)

 ylabel(‘sin(x)’)

 title(sprintf(‘%d Points’,10*i))

end

10.1.2 Plot types
Besides plot and bar, there are other plot
types such as histograms, stem plots, area
plots and pie charts, as well as other func-
tions that customize graphs.

Described in this section are some of the
other plotting functions. The functions
bar, barh, area, and stem essentially dis-
play the same data as the plot function,
but in different forms. The bar function
draws a bar chart (as we have seen
before), barh draws a horizontal bar
chart, area draws the plot as a continu-
ous curve and fills in under the curve
that is created, and stem draws a stem
plot.

For example, the following script cre-
ates a Figure Window that uses a 2 × 2
subplot to demonstrate these four plot
types using the same x and y points (see Figure 10.2).

subplottypes.m

% Subplot to show plot types

x = 1:6;

y = [33 11 5 9 22 30];

subplot(2,2,1)

bar(x,y)

title(‘bar’)

subplot(2,2,2)

barh(x,y)

title(‘barh’)

1 2 3 4 5 6
 0

10

20

30

40
bar

0 10 20 30 40

1
2
3
4
5
6

barh

1 2 3 4 5 6
 0

10

20

30

40
area

0 2 4 6
 0

10

20

30

40
stem

Figure 10.2
Subplot to display bar,
barh, area, and stem
plots.

(Continued)

ChaPter 10 MatlaB Plots300

subplot(2,2,3)

area(x,y)

title(‘area’)

subplot(2,2,4)

stem(x,y)

title(‘stem’)

Notice that the third argument in the call to the subplot function is a single index
into the matrix created in the Figure Window; the numbering is rowwise (in con-
trast to the normal columnwise unwinding that MATLAB uses for matrices).

For a matrix, the bar and barh functions will group together the values in each
row. For example:

rm = randint(2,4,[1 50])
rm =

 8 19 43 25
35 44 30 45

bar(rm)

QuiCK Question!

Could we produce this subplot using a loop?
answer: Yes, we can store the names of the plots in a cell
array. These names are put in the titles, and also concatenated

with the string ‘(x,y)’ and passed to the eval function to evalu-

ate the function.

loopsubplot.m

% Demonstrates evaluating plot type names in order to

% use the plot functions and put the names in titles

x = 1:6;

y = [33 11 5 9 22 30];

titles = {‘bar’, ‘barh’, ‘area’, ‘stem’};

for i = 1:4

 subplot(2,2,i)

 eval([titles{i} ‘(x,y)’])

 title(titles{i})

end

301 10.1 Plot Functions

produces the plot shown in Figure 10.3.

Notice that MATLAB groups together the values in
the first row and then in the second row. It cycles
through colors to distinguish the bars. The ‘stack’
option will stack rather than group the values, so the
y value represented by the top of the bar is the sum
of the values from that row (seen in Figure 10.4).

bar(rm,‘stack’)

A histogram is a particular type of bar chart that
shows the frequency of occurrence of values within
a vector. Histograms use what are called bins to col-
lect values that are in given ranges. MATLAB has a
function to create a histogram, hist. Calling the
function with the form hist(vec) by default takes the values in the vector vec
and puts them into 10 bins (or, hist(vec,n) will put them into n bins) and
plots this, as seen in Figure 10.5.

>> vec = randint(1,12,[1 10])
vec =
10 8 2 5 10 10 5 9 1 4 9 1
>> hist(vec)

In this example, the numbers range from 1 to 10 in
the vector, so there are 10 bins in the range from 1 to
10. The heights of the bins represent the number of
values that fall within that particular bin. The hist
function actually returns values; the first returned is
a vector showing how many of the values from the
original vector fall into each of the bins:

>> c = hist(vec)
c =
2 1 0 1 2 0 0 1 2 3

The bins in a histogram are not necessarily all the same width. Histograms
are used for statistical analyses on data; more statistics will be covered in
Chapter 12.

MATLAB also has a function pie that will create a pie
chart. Calling the function with the form pie(vec)
draws a pie chart, using the percentage of each element
of vec of the whole (the sum). It shows these starting
from the top of the circle and going around counter-
clockwise. For example, the first value in the vector

1 2
 0

 5

10

15

20

25

30

35

40

45

Figure 10.3
Data from a matrix in a bar
chart.

PraCtiCe 10.1
Create a file that has two lines with n
numbers in each. Use load to read into a
matrix. Then, use subplot to show the
bar and stacked bar charts side-by-side.

1 2
 0

 20

 40

 60

 80

100

120

140

160

Figure 10.4
Stacked bar chart of matrix
data.

ChaPter 10 MatlaB Plots302

[3 10 5 2] , 3, is 15% of the sum, 10 is 50% of the sum, and so
forth, as seen in Figure 10.6.

>> pie ([3 10 5 2])

A cell array of labels can also be passed to the pie function; these
labels will appear instead of the percentages (seen in Figure
10.7).

 >> pie([3 10 5 2], {‘A’,‘B’,‘C’,‘D’})

10.2 aniMation
In this section we will examine
a couple of ways to animate a
plot. These are visuals, so the
results can’t really be shown
here; it is necessary to type these
into MATLAB to see the results.

We’ll start by animating a plot
of sin(x) with the vectors:

>> x = -2*pi : 1/100 : 2*pi;
>> y = sin(x);

This results in enough points that
we’ll be able to see the result
using the built-in comet function,

1 2 3 4 5 6 7 8 9 10
 0

0.5

 1

1.5

 2

2.5

 3

Figure 10.5
Histogram of data.

15%

50%

25%

10%

Figure 10.6
Pie chart showing percentages.

A

B

C

D

Figure 10.7
Pie chart with labels from a
cell array.

PraCtiCe 10.2
A chemistry professor teaches three
classes. These are the course numbers
and enrollments:

CH 101 111
CH 105 52
CH 555 12

Use subplot to show this information
using pie charts: the pie chart on the left
should show the percentage of students in
each course, and on the right, the course
numbers. Put appropriate titles on them.

303 10.3 Three-Dimensional Plots

which shows the plot by first showing the point (x(1),y(1)), and then moving on to
the point (x(2),y(2)), and so on, leaving a trail (like a comet!) of all the previous
points.

 >> comet(x,y)

The end result looks the same as plot(x,y).

Another way of animating is to use the built-in function movie, which dis-
plays recorded movie frames. The frames are captured in a loop using the
built-in function getframe, and are stored in a matrix. For example, the fol-
lowing script again animates the sin function. The axis function is used so
that MATLAB will use the same set of axes for all frames, and using the min
and max functions on the data vectors x and y will allow us to see all points.
It displays the movie once in the for loop, and then again when the movie
function is called.

sinmovie.m

% Shows a movie of the sin function

clear

x = -2*pi: 1/5 : 2*pi;

y = sin(x);

n = length(x);

for i = 1:n

 plot(x(i),y(i),‘r*’)

 axis([min(x)-1 max(x)+1 min(y)-1 max(y)+1])

 M(i) = getframe;

end

movie(M)

10.3 three-diMensional Plots
MATLAB has many functions that will display three-dimensional plots. Most of
these functions have the same name as the corresponding two-dimensional
plot function with a 3 at the end. For example, the three-dimensional line plot
function is called plot3. Other functions include bar3, pie3, and stem3.

Vectors representing x, y, and z coordinates are passed to the plot3 and stem3
functions. These functions show the points in three-dimensional space.
Clicking on the rotate 3D icon and then in the plot allows the user to rotate the
view to see the plot from different angles. Also, using the grid function makes
it easier to visualize, as seen in Figure 10.8.

ChaPter 10 MatlaB Plots304

1
2

3
4

5

5
0

5
10

15
 2

 4

 6

 8

10

>> x = 1:5;
>> y = [0 -2 4 11 3];
>> z = 2:2:10;
>> plot3(x,y,z,‘k*’)
>> grid

For the bar3 function, x and y vectors
are passed and the function shows three-
dimensional bars as seen in Figure
10.9.

>> x = 1:6;
>> y = [33 11 5 9 22 30];
>> bar3(x,y)

Similarly, the pie3 function shows data
from a vector as a three-dimensional pie
as seen in Figure 10.10.

>> pie3([3 10 5 2])

10.4 CustoMizing Plots
There are many ways to customize figures in the Figure Window. Clicking
on the Plot Tools icon will bring up the Property Editor and Plot Browser,
with many options for modifying the current plot. Additionally, there are
properties that can be modified from the default in the plot function itself.

Using the help facility with the function name will show all
the options for that particular plot function.

For example, the bar and barh functions by default put a width of
0.8 between bars. When called as bar(x,y), the width of 0.8 is used.
If instead a third argument is passed, it is the width, for example,

bar(x,y, width). The fol-
lowing script uses sub-
plot to show variations
on the width. A width of
0.6 results in more space
between the bars. A width
of 1 makes the bars touch
each other, and with a
width greater than 1.2,
the bars actually overlap.
The results are seen in
Figure 10.11.

Figure 10.8
Three-dimensional plot with
a grid.

1
2

3

4

5
6

0

10

20

30

40

Figure 10.9
Three-dimensional bar chart.

25%

50%

10%

15%

Figure 10.10
Three-dimensional pie chart.

305 10.4 Customizing Plots

barwidths.m

% Subplot to show varying bar widths

x = 1:6;

y = [33 11 5 9 22 30];

for i = 1:4

 subplot(1,4,i)

 % width will be 0.6, 0.8, 1, 1.2

 barh(x,y,0.4+i*.2)

 title(sprintf(‘Width = %.1f’,0.4+i*.2))

end

As another example of customizing plots, pieces of a pie chart can
be “exploded” from the rest. In this case, two vectors are passed to
the pie function: first the data vector, then a logical vector; the ele-
ments for which the logical vector is true will be exploded from
(separated from) the pie chart. A third argument, a cell array of
labels, can also be passed. The result is seen in Figure 10.12.

PraCtiCe 10.3
Use help area to find out how to change
the base level on an area chart.

A

B

C

D

Figure 10.12
Exploding pie chart.

0 20 40

1

2

3

4

5

6

0 20 40

1

2

3

4

5

6

0 20 40

1

2

3

4

5

6

0 20 40

1

2

3

4

5

6

Figure 10.11
Subplot demonstrates varying widths in a bar chart.

ChaPter 10 MatlaB Plots306

8 6 4 2 0 2 4 6 8 1

0.8

0.6

0.4

0.2

 0

0.2

0.4

0.6

0.8

 1 >> vec = [3 10 5 2];
>> which = (vec == 5)
which =
 0 0 1 0

>> pie(vec, which, {‘A’, ‘B’, ‘C’, ‘D’})

10.5 graPhiCs ProPerties
MATLAB uses what it calls Handle Graphics® in all its
figures. All figures consist of different objects, each of
which is assigned a handle. The object handle is a
unique real number that is used to refer to the
object.

The various plot functions return a handle for the plot object, which can then
be stored in a variable. In the following, the plot function plots a sin function
in a Figure Window (as seen in Figure 10.13) and returns a real number, which
is the object handle. (Don’t try to make sense of the actual number used for the
handle!) This handle will remain valid as long as the object exists.

 >> x = -2*pi: 1/5 : 2*pi;
 >> y = sin(x);
 >> hl = plot(x,y)
 hl =
 158.5420

Note: After getting the plot, the Figure Window should not be closed, as that
would make the object handle invalid since the object wouldn’t exist anymore!
The properties of that object can be displayed using the get function. This
shows properties such as the Color, LineStyle, LineWidth, and so on.

 >> get(hl)
 Color: [0 0 1]
 EraseMode: ‘normal’
 LineStyle: ‘-’
 LineWidth: 0.5000
 Marker: ‘none’
 MarkerSize: 6
 MarkerEdgeColor: ‘auto’
 MarkerFaceColor: ‘none’
 XData: [1x63 double]
 YData: [1x63 double]
 ZData: [1x0 double]
 BeingDeleted: ‘off’
 ButtonDownFcn: []

Figure 10.13
Plot of sin function with
default properties.

307 10.5 Graphics Properties

 Children: [0x1 double]
 Clipping: ‘on’
 CreateFcn: []
 DeleteFcn: []
 BusyAction: ‘queue’
 HandleVisibility: ‘on’
 HitTest: ‘on’
 Interruptible: ‘on’
 Selected: ‘off’
 SelectionHighlight: ‘on’
 Tag: ‘’
 Type: ‘line’
 UIContextMenu: []
 UserData: []
 Visible: ‘on’
 Parent: 157.5415
 DisplayName: ‘’
 XDataMode: ‘manual’
 XDataSource: ‘’
 YDataSource: ‘’
 ZDataSource: ‘’

A particular property can also be displayed, for example, to see the line width:

 >> get(hl,‘LineWidth’)
 ans =
 0.5000

To see the objects, their properties, what the properties mean, and the valid val-
ues, go to the MATLAB Help. Under the Contents tab, click Handle Graphics
Property Browser. Then, click Plot Objects; several options can be seen. Click
Lineseries, which is used to create figures using the plot function, to see a list
of the property names and a brief explanation of each.

For example, the Color property is a vector that stores the color of the line as
three separate values for the red, green, and blue intensities, in that order. Each
value is in the range from 0 (which means none of that color) to 1. In the pre-
vious example, the Color was [0 0 1], which means no red, no green, but full
blue—in other words, the line drawn for the sin function was blue. Here are
some more examples of possible values for the Color vector:

[1 0 0] is red
[0 1 0] is green
[0 0 1] is blue
[1 1 1] is white
[0 0 0] is black
[0.5 0.5 0.5] is a shade of grey

ChaPter 10 MatlaB Plots308

8 6 4 2 0 2 4 6 8
1

0.8

0.6

0.4

0.2

 0

0.2

0.4

0.6

0.8

 1 All the properties listed by get can be changed, using
the set function. The set function is called in the
format

set(objhandle, ‘PropertyName’, property value)

For example, to change the line width from the
default of 0.5 to 1.5:

>> set(hl,‘LineWidth’,1.5)

As long as the Figure Window is still open and this
object handle is still valid, the width of the line will
be increased.

The properties can also be set in the original function
call. For example, this will increase the line width as
seen in Figure 10.14.

>> hl = plot(x,y, ‘Linewidth’, 2.5);

10.6 Plot aPPliCations
In this section, we will show some examples that inte-
grate plots and many of the other concepts covered to
this point in the book. For example, we will have a
function that receives a y vector and a plot type as a
string and will generate the plot, and we will show
examples of reading data from a file and plotting it.

10.6.1 Plotting from a Function
The following function generates a Figure Window (seen in Figure 10.15) that
shows different types of plots for the same y vector. The vector is passed as an
input argument to the function, as is a cell array with the plot type names. The
function generates the Figure Window using the cell array with the plot type
names. It creates a function handle for each using the str2func function.

plotywithcell.m

function plotywithcell(y, rca)

% Shows different plot types, passed as a cell array

lenrca = length(rca);

for i = 1:lenrca

 subplot(1,lenrca,i)

Figure 10.14
Plot of sin function with
increased line width.

PraCtiCe 10.4
Create x and y vectors, and use the
plot function to plot the data points
represented by these vectors. Store the
handle in a variable, and don’t close
the Figure Window! Use get to
inspect the properties, and then set to
change the line width and color.

(Continued)

309 10.6 Plot Applications

 funh = str2func(rca{i});

 funh(y)

 title(upper(rca{i}))

end

For example, the function could be
called as follows:

 >> y = [1:2:9].^3
 y =
 1 27 125 343 729
 >> rca = {‘bar’, ‘area’, ‘plot’};
 >> plotywithcell(y, rca)

The function is general and works for
any number of plot types stored in the
cell array.

10.6.2 Plotting File data
It is often necessary to read data from a
file and plot it. Normally, this entails
knowing the format of the file. For exam-
ple, let us assume that a company has two
divisions, called A and B. The file ‘ab06.
dat’ has four lines in it (we will assume
this), with the sales figures (in millions) for the two divisions for each quarter of
the year 2006. For example, the file might look like this (the format will be exactly
like this):

A5.2B6.4
A3.2B5.5
A4.4B4.3
A4.5B2.2

The following script reads the data and plots in one Figure Window the data as
bar charts. The script prints an error message if the file open is not successful or
if the file close was not successful. The axis command is used to force the x-axis
to range from 0 to 3 and the y-axis from 0 to 8, which will result in the axes
shown here. The numbers 1 and 2 would show on the x-axis rather than the
division labels A and B by default. The set function changes the XTickLabel
property to use the strings in the cell array as labels on the tick marks on the
x-axis; gca returns the handle to the axes in the current figure (it stands for
“get current axes”).

1 2 3 4 5
 0

100

200

300

400

500

600

700

800
BAR

 0

100

200

300

400

500

600

700

800

2 4

AREA

 0

100

200

300

400

500

600

700

800

0 5

PLOT

Figure 10.15
Subplot showing different
file types with their names
as titles.

ChaPter 10 MatlaB Plots310

plotdivab.m

% Reads sales figures for 2 divisions of a company one

% line at a time as strings, and plots the data

fid = fopen(‘ab06.dat’);

if fid == -1

 disp(‘File open not successful’)

else

 for i = 1:4

 % Every line is of the form A#B#; this separates

 % the characters and converts the #’s to actual

 % numbers

 aline = fgetl(fid);

 aline = aline(2:length(aline));

 [compa rest] = strtok(aline,‘B’);

 compa = str2num(compa);

 compb = rest(2:length(rest));

 compb = str2num(compb);

 % Data from every line is in a separate subplot

 subplot(1,4,i)

 bar([compa,compb])

 set(gca, ‘XtickLabel’, {‘A’, ‘B’})

 axis([0 3 0 8])

 ylabel(‘Sales (millions)’)

 title(sprintf(‘Quarter %d’,i))

 end

 closeresult = fclose(fid);

 if closeresult = 0

 disp(‘File close not successful’)

 end

end

311 10.6 Plot Applications

Running this produces the subplot shown in Figure 10.16.

As another example, a data file called
‘compsales.dat’ stores sales figures (in
millions) for divisions in a company.
Each line in the file stores the sales num-
ber, followed by an abbreviation of the
division name, in the following format:

5.2 X
3.3 A
5.8 P
2.9 Q

The following script uses the textscan
function to read this information into a
cell array, and then uses subplot to pro-
duce a Figure Window that displays the
information in a bar chart and in a pie
chart (see Figure 10.17).

A B
0

1

2

3

4

5

6

7

8
S

al
es

 (
m

ill
io

ns
)

Quarter 1

0

1

2

3

4

5

6

7

8

S
al

es
 (

m
ill

io
ns

)

A B

Quarter 2

0

1

2

3

4

5

6

7

8

S
al

es
 (

m
ill

io
ns

)

A B

Quarter 3

0

1

2

3

4

5

6

7

8

S
al

es
 (

m
ill

io
ns

)
A B

Quarter 4

Figure 10.16
Subplot with customized x-axis tick labels.

Figure 10.17
Bar and pie charts with
labels from file data.

X A P Q
0

1

2

3

4

5

6

Division

S
al

es
 (

m
ill

io
ns

) X

A

P

Q

Sales in millions by division

ChaPter 10 MatlaB Plots312

compsalesbarpie.m

% Reads sales figures and plots as a bar chart and a pie chart

fid = fopen(‘compsales.dat’);

if fid == -1

 disp(‘File open not successful’)

else

 % Use textscan to read the numbers and division codes

 % into separate elements in a cell array

 filecell = textscan(fid,‘%f %s’);

 % plot the bar chart with the division codes on the x ticks

 subplot(1,2,1)

 bar(filecell{1})

 xlabel(‘Division’)

 ylabel(‘Sales (millions)’)

 set(gca, ‘XtickLabel’, filecell{2})

 % plot the pie chart with the division codes as labels

 subplot(1,2,2)

 pie(filecell{1}, filecell{2})

 title(‘Sales in millions by division’)

 closeresult = fclose(fid);

 if closeresult = 0

 disp(‘File close not successful’

 end

end

suMMary

Common Pitfalls

■■ Forgetting that subplot numbers the plots rowwise rather than
columnwise.

■■ Not realizing that the subplot function just creates a matrix within the
Figure Window. Each part of this matrix must then be filled with a plot,
using any type of plot function.

313Exercises

■■ Closing a Figure Window prematurely—the properties can be set only if the
Figure Window is still open!

Programming style guidelines

■■ Always label plots.

■■ Take care to choose the type of plot in order to highlight the most relevant
information.

MATlAb Functions and Commands

subplot
barh
area
stem

hist
pie
comet
movie

getframe
plot3
bar3
pie3

stem3
get
set

exercises
 1. Create a data file that has 10 numbers in it. Write a script that will load the vector from

the file, and use subplot to do an area plot and a stem plot with this data in the same
Figure Window. (note: a loop is not needed.) Prompt the user for a title for each plot.

 2. Use subplot to show the difference between the sin and cos functions. Create an
x vector with 100 linearly spaced points in the range from –2p to 2p, and then two
y vectors for sin(x) and cos(x). In a 2 × 1 subplot, use the plot function to
display them, with appropriate titles.

 3. Biomedical engineers are developing an insulin pump for diabetics. To do this, it is
important to understand how insulin is cleared from the body after a meal. The
concentration of insulin at any time t is described by the equation

 C = C0 e−30t/m

 where C0 is the initial concentration of insulin, t is the time in minutes, and m is
the mass of the person in kg. Write a script that will graphically show how the
weight of the person influences the time for insulin to be cleared from the body. It
will show in a 2 × 1 subplot the concentration of insulin for two subjects, one who
weighs 120 pounds, and one who weighs 300 pounds. For both, the time should
increment from 0 to 4 minutes in steps of 0.1 minute, and the initial concentration
should be 85. The concentration over time will be shown in each subplot, and
the weight of the person should be in the title. The conversion factor is 1 pound =
0.4536 kg. In order to better compare, use consistent axes for both plots.

 4. Write a function subfnfn that will receive two function handles as input
arguments, and will display in one Figure Window plots of these two functions,
with the function names in the titles. Use the default axes. The function will create
an x vector that ranges from 1 to n (where n is a random integer in the range from
4 to 10). For example, if the function is called as follows:

ChaPter 10 MatlaB Plots314

 >> subfnfn(@sqrt, @exp)

 and if the random integer for n was 9, the Figure Window would look like Figure
10.18.

 5. A file called ‘avehighs.dat’ stores for 3 locations the average high temperatures for
each month for a year (rounded to integers). There are three lines in the file; each
stores the location number followed by the 12 temperatures (this may be
assumed). For example, the file might store:

 432 33 37 42 45 53 72 82 79 66 55 46 41
 777 29 33 41 46 52 66 77 88 68 55 48 39
 567 55 62 68 72 75 79 83 89 85 80 77 65

 Write a script that will read this data and plot the temperatures for the three
locations separately in one Figure Window. A for loop must be used to accomplish
this. For example, if the data is as shown, the Figure Window would appear as
Figure 10.19.

 The axis labels and titles should be as shown.

 6. Sales (in millions) from two different divisions of a company for the four quarters of
2006 are stored in vector variables, for example,

 div1 = [4.2 3.8 3.7 3.8];
 div2 = [2.5 2.7 3.1 3.3];

0 5 10
 1

1.2

1.4

1.6

1.8

 2

2.2

2.4

2.6

2.8

 3
sqrt

0 5 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
exp

Figure 10.18
Subplot using function handles.

315Exercises

 Using subplot, show side-by-side the sales figures for the two divisions. What
kind of graph shows this in the best way? Why? In one graph, compare the two
divisions. What kind of graph shows this in the best way? Why?

 7. Create an x vector that has 30 linearly spaced points in the range from –2p to 2p,
and then y as sin(x). Do a stem plot of these points, and store the handle in a
variable. Use get to see the properties of the stem plot, and then set to change the
face color of the marker.

 8. When an object with an initial temperature T is placed in a substance that has
a temperature S, according to Newton’s law of cooling, in t minutes it will
reach a temperature Tt using the formula Tt = S + (T – S) e(-kt), where k is a
constant value that depends on properties of the object. For an initial
temperature of 100 and k = 0.6, graphically display the resulting temperatures
from 1 to 10 minutes for two different surrounding temperatures: 50 and 20.
Use the plot function to plot two different lines for these surrounding
temperatures, and store the handle in a variable. Notice that two function
handles are actually returned, and stored in a vector. Use set to change the
line width of one of the lines.

 9. Write a script that will draw the line y = x between x = 2 and x = 5, with a random
thickness between 1 and 10.

 10. In hydrology, hyetographs are used to display rainfall intensity during a storm.
The intensity could be the amount of rain per hour, recorded every hour for a
24-hour period. Create your own data file to store the intensity in inches per hour
every hour for 24 hours. Use a bar chart to display the intensities.

2 4 6 8 10 12
30

40

50

60

70

80

Month

A
ve

 H
ig

h
T

em
ps

Location 432

2 4 6 8 10 12
30

40

50

60

70

80

Month

A
ve

 H
ig

h
T

em
ps

Location 777

30

40

50

60

70

80

A
ve

 H
ig

h
T

em
ps

2 4 6 8 10 12
Month

Location 567

Figure 10.19
Subplot to display data from file using a for loop.

ChaPter 10 MatlaB Plots316

 11. Write a script that will read x and y data points from a file, and will create an area
plot with those points. The format of every line in the file is the letter x, a space,
the x value, space, the letter y, space, and the y value. You must assume that the
data file is in exactly that format, but you may not assume that the number of lines
in the file is known. The number of points will be in the plot title. The script loops
until the end of file is reached, using fgetl to read each line as a string. For
example, IF the file contains the following

 x 0 y 1
 x 1.3 y 2.2
 x 2.2 y 6
 x 3.4 y 7.4

 when running the script, the result will be as shown in Figure 10.20.

 12. A file houseafford.dat stores on its three lines years, median incomes and median
home prices for a city. The dollar amounts are in thousands. For example, it might
look like this:

 2000 2001 2002 2003 2004 2005 2006 2007
 72 74 74 77 80 83 89 93
 250 270 300 310 350 390 410 380

 Create a file in this format, and then load the information into a matrix. Create
a horizontal stacked bar chart to display the information shown as follows, with
an appropriate title. note: Use the XData property to put the years on the axis as
shown in Figure 10.21.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8
4 data points

Figure 10.20
Area plot produced from x, y data read as strings from a file.

317Exercises

 13. A file ‘houseafford.dat’ stores on its three lines years, median incomes and median
home prices for a city. The dollar amounts are in thousands. For example, it might
look like this:

 2000 2001 2002 2003 2004 2005 2006 2007
 72 74 74 77 80 83 89 93
 250 270 300 310 350 390 410 380

 Create a file in this format, and then load the information into a matrix. The ratio
of the home price to the income is called the housing affordability index. Calculate
this for every year and plot it. The x-axis should show the years (e.g., 2000–2007).
Store the handle of the plot in a variable and use get to see the properties and set
to change at least one.

 14. Do a quick survey of your friends to find out who prefers cheese pizza, pepperoni,
or mushroom (no other possibilities; everyone must pick one of those three
choices). Draw a pie chart to show the percentage favoring each. Label the pieces
of this pizza pie chart!

 15. The number of faculty members in each department at a certain College of
Engineering is:

 ME 22
 BM 45
 CE 23

 EE 33

0 50 100 150 200 250 300 350 400 450 500

2000

2001

2002

2003

2004

2005

2006

2007

Median Income and Home Prices

Figure 10.21
Horizontal stacked bar chart of median incomes and home prices.

ChaPter 10 MatlaB Plots318

 Experiment with at least three different plot types to graphically depict this
information. Make sure that you have appropriate titles, labels, and legends on
your plots. Which type(s) work best, and why?

 16. The weights of the major components for a given aircraft are important
considerations in aircraft design. The components include at the very least the
wing, tail, fuselage, landing gear, and so on. Create a data file with values for these
weights. Load the data from your file and create a pie chart to show the
percentage weight for each component.

 17. Create an x vector, and then two different vectors (y and z) based on x. Plot them
with a legend. Use help legend to find out how to position the legend itself on
the graph, and experiment with different locations.

 18. The Wind Chill Factor (WCF) measures how cold it feels with a given air
temperature T (in degrees Fahrenheit) and wind speed (V, in miles per hour). One
formula for it is

 WCF = 35.7 + 0.6T − 35.7 (V0.16) + 0.43T (V0.16)

 Experiment with different plot types to display the WCF for varying wind speeds
and temperatures.

 19. Write a script that will plot the sin function three times in one Figure Window,
using the colors red, green, and blue.

 20. Experiment with the comet function: Try the example given when help comet is
entered and then animate your own function using comet.

 21. Experiment with the comet3 function: Try the example given when help comet3
is entered and then animate your own function using comet3.

 22. Investigate the scatter and scatter3 functions.
 23. The exponential and natural log functions are inverse functions. What does this

mean in terms of the graphs of the functions? Show both functions in one Figure
Window and distinguish between them.

 24. The electricity generated by wind turbines annually in kilowatt-hours/year is
given in a file. The amount of electricity is determined by, among other factors, the
diameter of the turbine blade (in feet) and the wind velocity in mph. The file stores
on each line the blade diameter, wind velocity, and the approximate electricity
generated for the year. For example,

5 5 406
5 10 3250
5 15 10970
5 20 26000
10 5 1625
10 10 13000

319Exercises

10 15 43875
10 20 104005
20 5 6500
20 10 52000
20 15 175500
20 20 41600

 Create this file, and determine how to graphically display this data.

This page intentionally left blank

321

Contents

© 2009, 2003,1999 Elsevier Inc.

11.1 Matrix
Definitions 322

11.2 Matrix Solutions
to Systems of
Linear Algebraic
Equations 336

11.3 Symbolic
Mathematics 348

linear algebraic

equation

symbolic mathematics

matrix equality

square matrix

main diagonal

trace

symmetric

diagonal matrix

identity matrix

banded matrix

tridiagonal matrix

lower triangular matrix

upper triangular matrix

matrix addition

matrix subtraction

scalar multiplication

matrix multiplication

inner dimension

outer dimension

array multiplication

matrix inverse

matrix augmentation

dot product

cross product

coefficient

unknown

solution set

method of substitution

determinant

Gauss elimination

Gauss-Jordan elimination

elementary row

operation

reduced row echelon

form

Key Words

Chapter 11

Solving Systems of Linear Algebraic
Equations

A linear algebraic equation is an equation of the form

a1x1 a2x2 a3x3 anxn = b

Solutions to sets of equations in this form are important in many applications.
In the MATLAB® product, to solve systems of equations, there are basically two
methods:

Chapter 11 solving systems of Linear algebraic equations322

■■ Using a matrix representation

■■ Using the solve function (which is part of Symbolic Math Toolbox™)

In this chapter, we will first investigate matrix and vector operations and then
use these to solve linear algebraic equations. Symbolic mathematics means
doing mathematics on symbols. Some of the symbolic math functions, which
are in Symbolic Math Toolbox in MATLAB, will also be introduced, including
the solve function for solving equations.

11.1 Matrix definitions
As we have already seen, a matrix can be thought of as a table of values in
which there are both rows and columns. The general form of a matrix A (which
is sometimes written as [A]) is shown here:

11 12 1

21 22 2
ij

1 2

A a i 1,... , m; j 1,... , n

n

n

m m mn

a a a

a a a

a a a

é ù
ê ú
ê ú= = = =
ê ú
ê ú
ë û

…
�

� � � �
…

This matrix has m rows and n columns, so the size is m n.

A vector is a special case of a matrix, in which one of the dimensions (either
m or n) is 1. A row vector is a 1 n matrix. A column vector is an m 1 matrix.
A scalar is a special case of a matrix in which both m and n are 1, so it is a single
value or a 1 1 matrix.

11.1.1 Matrix properties
In this section we will define some special properties of matrices.

Two matrices are said to be equal to each other only if all corresponding ele-
ments are equal to each other. In order for this to be true, their sizes must be
the same as well. The definition is [A] = [B] if aij = bij for all i, j .

the programming Concept
To test to see whether two matrices are equal to each other or not, both
matrices are passed to a function that will return 1 for logical true if they are
the same or 0 for logical false if not (or if they are not the same size). To write
our own function, a flag is first set to 1, for logical true. If the two matrices
are not the same size, the flag is set to 0 for false. Otherwise, using a nested
for loop, each element in the first matrix argument mata is compared to the

32311.1 Matrix Definitions

corresponding element in matb; if they are not the same, the flag is set to 0 for
false.

myisequal.m

function myflag = myisequal(mata,matb)

% Assume that it’s true that they are the same

% until and unless corresponding elements are

% found that are not the same

myflag = logical(1);

[r c] = size(mata);

if all(size(mata) = size(matb))

 myflag = logical(0);

else

 for i=1:r

 for j = 1:c

 if mata(i,j) = matb(i,j)

 myflag = logical(0);

 end

 end

 end

end

>> mata = [2 5 8; 1:3];
>> matb = [2:3:8; 1 2 3];
>> myisequal(mata,matb)
ans =
 1

the efficient Method
Of course, in MATLAB, the function all could be used to check to see whether
all elements are equal to each other, but in MATLAB, as we have seen, the
isequal function will also accomplish this:

>> isequal(mata,matb)
ans =
 1

The isequal function will also return 0 for false if the two functions are not the
same size.

Chapter 11 solving systems of Linear algebraic equations324

11.1.2 square Matrices
If a matrix has the same number of rows and columns, for example, if m == n,
the matrix is square. The definitions that follow in this section apply only to
square matrices.

The main diagonal of a square matrix is the set of terms aii for which the row and
column indices are the same, for example, from the upper left element to the lower
right. For example, for the following matrix it is the set of numbers 1, 6, 11, and 16.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

é ù
ê ú
ê ú
ê ú
ê ú
ë û

This is sometimes called just the diagonal. MATLAB has a function diag that
will return the diagonal of a matrix as a column vector.

>> mymat = reshape(1:16,4,4)’
mymat =

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

>> diag(mymat)’
ans =

1 6 11 16

The trace of a square matrix is the sum of all the elements on the diagonal. For
example, for the preceding matrix it is 1 6 11 16, or 34.

QuiCK Question!

How could we calculate the trace of a square matrix?

the programming Concept
In order to calculate the trace of a square matrix, only one loop is necessary since the only
elements in the matrix we’re referring to are (i, i). So, once the size has been determined, the
loop variable can iterate from 1 through the number of rows or from 1 through the number of
columns (it doesn’t matter which, since they have the same value!). The following function
calculates and returns the trace of a square matrix, or an empty vector if the matrix argument

is not square.
(Continued)

32511.1 Matrix Definitions

mytrace.m

function outsum = mytrace(mymat)

% Calculates the trace of a square matrix

% It returns an empty vector if the

% matrix is not square

[r c] = size(mymat);

if r = c

 outsum = [];

else

 outsum = 0;

 for i = 1:r

 outsum = outsum mymat(i,i);

 end

end

>> mymat = reshape(1:16,4,4)’
mymat =

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

>> mytrace(mymat)
ans =
 34

the efficient Method
In MATLAB, there is a built-in function trace to accomplish this:

>> trace(mymat)
ans =

 34

A square matrix is symmetric if aij = aji for all i, j. In other words, all the values
opposite the diagonal from each other must be equal to each other. In this
example, there are three pairs of values opposite the diagonals, all of which are
equal (the 2’s, the 9’s, and the 4’s).

Chapter 11 solving systems of Linear algebraic equations326

1 2 9

2 5 4

9 4 6

é ù
ê ú
ê ú
ê úë û

A square matrix is a diagonal matrix if all values that are not on the diagonal
are 0. The numbers on the diagonal, however, do not have to be all nonzero
although frequently they are. Mathematically, this is written as aij = 0 for i = j.
Here is an example of a diagonal matrix.

4 0 0

0 9 0

0 0 5

é ù
ê ú
ê ú
ê úë û

the efficient Method
The diag function can be used to take a vector of length n and create an n n
square diagonal matrix with the values from the vector on the diagonal:

>> v=1:4;
>> diag(v)
ans =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

A square matrix is an identity matrix, called [I], if aij = 1 for i == j and aij = 0 for
i = j. In other words, all the numbers on the diagonal are 1 and all others are
0. This is a 3 3 identity matrix:

1 0 0

0 1 0

0 0 1

é ù
ê ú
ê ú
ê úë û

Note that any identity matrix is a special case of a diag-
onal matrix.

MATLAB has a built-in function eye that will create an
n n identity matrix, given the value of n:

>> eye(5)
ans =

praCtiCe 11.1
Write a function called isdiagonal that
will return 1 for logical true if a square
matrix is a diagonal matrix, or 0 for false
if not.

32711.1 Matrix Definitions

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Note: i is built into MATLAB as the square root of –1, so another name is used for
the function that creates an identity matrix: eye, which sounds like “i” (get it?).

There are several special cases of matrices that are related to diagonal
matrices.

A banded matrix is a matrix of all 0’s, with the exception of the main diagonal
and other diagonals next to the main. For example, the following matrix has
0’s except for the band of three diagonals; this is a particular kind of banded
matrix called a tridiagonal matrix.

1 2 0 0

5 6 7 0

0 10 11 12

0 0 15 16

é ù
ê ú
ê ú
ê ú
ê ú
ë û

A lower triangular matrix has all 0’s above the main diagonal. For example,

1 0 0 0

5 6 0 0

9 10 11 0

13 14 15 16

é ù
ê ú
ê ú
ê ú
ê ú
ë û

An upper triangular matrix has all 0’s below the main diagonal. For example,

1 2 3 4

0 6 7 8

0 0 11 12

0 0 0 16

It is possible for there to be 0’s on the diagonal and in the lower part or upper
part and still be a lower or upper triangular matrix, respectively.

the efficient Method
MATLAB has functions triu and tril that will take a matrix and make it into
an upper triangular or lower triangular matrix by replacing the appropriate
elements with 0’s.

Chapter 11 solving systems of Linear algebraic equations328

>> mymat
mymat =

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

>> triu(mymat)
ans =

1 2 3 4
0 6 7 8
0 0 11 12
0 0 0 16

>> tril(mymat)
ans =

 1 0 0 0
 5 6 0 0
 9 10 11 0
13 14 15 16

11.1.3 Matrix operations
There are several common operations on matrices,
some of which we have seen already. Operators
that are applied term by term, implying that the
matrices must be the same size, sometimes are
referred to as array operations. These include addi-
tion and subtraction.

Matrix addition means adding two matrices term
by term, which means they must be of the same
size. In mathematical terms, this is written cij =
aij bij.

é ù é ù é ù
+ =ê ú ê ú ê ú

ë û ë û ë û

1 2 3 100 10 1 101 12 4

4 5 6 10 100 1 14 105 7

the programming Concept
In most languages, this would be accomplished
using a nested for loop, as follows:

praCtiCe 11.2

For the following matrices:

A B C

4 3

0 1

1 2 3

4 5 6

1 4 2

4 0 3

2 3 6

Which are equal?

Which are square?

For all square matrices,

■■ Calculate the trace.

■■ Which are symmetric?

■■ Which are diagonal?

■■ Which are lower triangular?

■■ Which are upper triangular?

32911.1 Matrix Definitions

mymatadd.m

function outmat = mymatadd(mat1,mat2)

% Returns the sum of two matrices

% or [] if they are not the same size

outmat = [];

if all(size(mat1) == size(mat2))

 outmat = zeros(size(mat1)); % preallocate

 [r c] = size(mat1);

 for i = 1:r

 for j = 1:c

 outmat(i,j) = mat1(i,j) mat2(i,j);

 end

 end

end

>> A = [1:3;4:6];
>> B = [100 10 1; 10 100 1];
>> C = mymatadd(A,B)
C =

101 12 4
 14 105 7

the efficient Method
However, in MATLAB this is accomplished with the operator.

>> C = A B
C =

101 12 4
 14 105 7

Similar to matrix addition, matrix subtraction means to subtract term by
term, so in mathematical terms cij = aij – bij. This would also be accom-
plished using a nested for loop in most languages, or by using the – opera-
tor in MATLAB.

Scalar multiplication means to multiply every element by a scalar (a
number)

1 2 3 3 6 9
3*

4 5 6 12 15 18
é ù é ù

=ê ú ê ú
ë û ë û

Chapter 11 solving systems of Linear algebraic equations330

This would also be accomplished using a nested for loop in most languages, or
by using the * operator in MATLAB.

11.1.4 Matrix Multiplication
Matrix multiplication does not mean multiplying term by term; it is not an
array operation. Matrix multiplication has a very specific meaning. First of all,
in order to multiply a matrix A by a matrix B to result in a matrix C, the num-
ber of columns of A must be the same as the number of rows of B. If the matrix
A has dimensions m n, that means that matrix B must have dimensions n
something; we’ll call it p. We say that the inner dimensions must be the same. The
resulting matrix C has the same number of rows as A and the same number of
columns as B (in other words, the outer dimensions m p). In mathematical
notation, [A]m x n [B]n x p = [C]m x p. This defines only the size of C.

The elements of the matrix C are defined as the sum of products of corre-
sponding elements in the rows of A and columns of B, or in other words

=

=åij

1

c .
n

ik kj
k

a b

In the following example, A is 2 3 and B is 3 4 so C will be 2 4. The ele-
ments in C are obtained using the summation described earlier. The first row
of C is obtained using the first row of A and in succession the columns of B.
For example, C(1,1) is 3 * 1 8 * 4 0 * 0 or 35. C(1,2) is 3 * 2 8 * 5 0 *
2 or 46.

é ù
é ù é ùê ú =ê ú ê úê úë û ë ûê úë û

1 2 3 1
3 8 0 35 46 17 19

* 4 5 1 2
1 2 5 9 22 20 5

0 2 3 0

the programming Concept
In order to multiply two matrices together, three nested for loops are required.
The two outer loops iterate through the rows and columns of C, which is
m p. For each element in C, the inner loop sums aik * bkj for values of k from 1
through n. Here is a script that will accomplish this:

mymatmult.m

% This script demonstrates matrix multiplication

A = [3 8 0; 1 2 5];

B = [1 2 3 1; 4 5 1 2; 0 2 3 0];

[m n] = size(A);

(Continued)

33111.1 Matrix Definitions

[nb p] = size(B);

if n = nb

 disp(‘Cannot perform this matrix multiplication’)

else

 % Outer 2 loops iterate through the elements in C

 % which has dimensions m by p

 % Preallocate C

 C = zeros(m,p);

 for i=1:m

 for j = 1:p

 % Inner loop performs the sum for each

 % element in C

 mysum = 0;

 for k = 1:n

 mysum = mysum A(i,k) * B(k,j);

 end

 C(i,j) = mysum;

 end

 end

 C

end

>> mymatmult
C =

35 46 17 19
 9 22 20 5

the efficient Method
In MATLAB, the * operator will perform this matrix multiplication:

>> A = [3 8 0; 1 2 5];
>> B = [1 2 3 1; 4 5 1 2; 0 2 3 0];
>> C = A*B
C =

35 46 17 19
 9 22 20 5

Chapter 11 solving systems of Linear algebraic equations332

>> A = [3 8 0; 1 2 5]
A =

3 8 0
1 2 5

>> A * eye(3)
ans =

3 8 0
1 2 5

>> B = [1 2 3 1; 4 5 1 2; 0 2 3 0]
B =

1 2 3 1
4 5 1 2
0 2 3 0

>> [r c] = size(B);
>> B * eye(c)
ans =

1 2 3 1
4 5 1 2
0 2 3 0

To multiply matrices term by term (which again is not called matrix multiplica-
tion!) in MATLAB, the .* operator is used, and the matrices must have the same

dimensions. This is called array multiplication since it
is an array operation (term by term).

>> A = [1:3;4:6];
>> B = [100 10 1; 10 100 1];
>> C = A .* B
C =

100 20 3
 40 500 6

QuiCK Question!

What happens if a matrix M is multiplied by an identity matrix
(of the appropriate size)?

answer: For the size to be appropriate, the identity matrix
would have the same dimensions as the number of columns of
M. The result of the multiplication will always be the original
matrix M (so, it is similar to multiplying a scalar by 1).

praCtiCe 11.3
Multiply these two matrices by hand and
then verify the result in MATLAB.

é ù é ù
ê ú ê ú-ë û ë û

A B

1 3 2 1

4 2 1 3

33311.1 Matrix Definitions

A matrix transpose interchanges the rows and columns of a matrix. For a matrix

A, its transpose is written AT . For example, if
é ù

é ù ê ú= =ê ú ê úë û ê úë û

T

1 4
1 2 3

A thenA 2 5
4 5 6

3 6

.

In MATLAB, as we have seen, there is a built-in transpose operator, the apostrophe.

If the result of multiplying a matrix A by a matrix B is the identity matrix, then
B is the inverse of matrix A. The inverse of a matrix A is written as A−1, so [A]
[A−1] = [I]. How to actually compute the inverse A−1 of a matrix by hand is not
so easy. MATLAB, however, has a function inv to compute a matrix inverse. For
example, here a matrix is created, its inverse is found, and then multiplied by
the original matrix to verify that the product is in fact the identity matrix:

>> a = [1 2; 2 2]
a =

1 2
2 2

>> ainv = inv(a)
ainv =

−1.0000 1.0000
 1.0000 −0.5000

>> a*ainv
ans =

1 0
0 1

Matrix augmentation means adding column(s) to the original matrix. For
example, the matrix A

1 3 7

A 2 5 4

9 8 6

é ù
ê ú= ê ú
ê úë û

might be augmented with a 3 3 identity matrix:

é ù
ê ú
ê ú
ê úë û

1 3 7 1 0 0

2 5 4 0 1 0

9 8 6 0 0 1

Sometimes in mathematics the vertical line is shown to indicate that the matrix
has been augmented. In MATLAB, matrix augmentation can be accomplished

Chapter 11 solving systems of Linear algebraic equations334

using square brackets to concatenate the two matrices. The square matrix a is
concatenated with an identity matrix that has the same size as the matrix a:

>> a = [1 3 7; 2 5 4; 9 8 6]
a =

1 3 7
2 5 4
9 8 6

>> [a eye(size(a))]
ans =

1 3 7 1 0 0
2 5 4 0 1 0
9 8 6 0 0 1

Of course, as we have seen already, it is more efficient to preallocate the matrix
to the correct dimensions to begin with. Particularly for large matrices, aug-
menting a matrix in this fashion is inefficient.

11.1.5 Vector operations
Since vectors are just special cases of matrices, the matrix operations described
earlier (addition, subtraction, scalar multiplication, multiplication, transpose)
work on vectors as well, as long as the dimensions are correct.

For vectors, we have already seen that the transpose of a row vector is a column
vector, and the transpose of a column vector is a row vector.

To multiply vectors, they must have the same number of elements, but one
must be a row vector and the other a column vector. For example, for a column
vector c and row vector r:

[]

5

3
c r 6 2 3 4

7

1

é ù
ê ú
ê ú= =
ê ú
ê ú
ë û

Note that r is a 1 4, and c is 4 1. Recall that to multiply two matrices,

[A]m n[B]n p = [C]m p

so [r]1 4 [c]4 1 = [s]1 1, or in other words a scalar:

[]

5

3
6 2 3 4 6*5 2*3 3*7 4*1 61

7

1

é ù
ê ú
ê ú = + + + =
ê ú
ê ú
ë û

33511.1 Matrix Definitions

whereas [c]4 1 [r]1 4 = [M]4 4, or in other words a 4 4 matrix:

[]

5 30 10 15 20

3 18 6 9 12
6 2 3 4

7 42 14 21 28

1 6 2 3 4

é ù é ù
ê ú ê ú
ê ú ê ú=
ê ú ê ú
ê ú ê ú
ë û ë û

In MATLAB, these operations are accomplished using the * operator, which is
the matrix multiplication operator. First, the column vector c and row vector r
are created.

>> c = [5 3 7 1]’;
>> r = [6 2 3 4];
>> r*c
ans =
 61
>> c*r
ans =

30 10 15 20
18 6 9 12
42 14 21 28
 6 2 3 4

11.1.5.1 Dot Product
The dot product or inner product of two vectors a and b is written as a • b and is

defined as
=

= å1 1 2 2 3 3 n n i i
1

as a b +a b +a b + ... +a b a b .
n

i

In other words, this is like matrix multiplication when multiplying a row vector a by
a column vector b; the result is a scalar. This can be accomplished using the * opera-
tor and transposing the second vector, or by using the dot function in MATLAB:

>> vec1 = [4 2 5 1];
>> vec2 = [3 6 1 2];
>> vec1*vec2’
ans =
 31
>> dot(vec1,vec2)
ans =
 31

11.1.5.2 Cross Product
The cross product or outer product a b of two vectors a and b is defined only
when both a and b are vectors in three-dimensional space, which means that
they both must have three elements. It can be defined as a matrix multiplication

Chapter 11 solving systems of Linear algebraic equations336

of a matrix composed from the elements from a in a particular manner shown
here and the column vector b.

- é ùé ù
ê úê ú é ù´ = - = - - -ë ûê úê ú
ê úê ú-ë û ë û

3 2 1

3 1 2 2 3 3 2 3 1 1 2 2 1

2 1 3

0

0 a b a b , a b a b a b

0

a a b

a b a a b

a a b

MATLAB has a built-in function cross to accomplish this.

>> vec1 = [4 2 5];
>> vec2 = [3 6 1];
>> cross(vec1,vec2)
ans =

−28 11 18

11.2 Matrix soLutions to systeMs of Linear
aLgebraiC eQuations
A linear algebraic equation is an equation of the form

a1x1 a2x2 a3x3 anxn = b

where the a’s are constant coefficients, the x’s are the unknowns, and b is a con-
stant. A solution is a sequence of numbers s1, s2, and s3 that satisfy the equa-
tion. For example,

4x1 5x2 − 2x3 = 16

is such an equation in which there are three unknowns: x1, x2, and x3. One solution
to this equation is x1 = 3, x2 = 4, and x3 = 8, since 4 * 3 5 * 4 – 2 * 8 is equal to 16.

A system of linear algebraic equations is a set of equations of the form:

a11x1 a12x2 a13x3 … a1nxn = b1

a21x1 a22x2 a23x3 … a2nxn = b2

a31x1 a32x2 a33x3 … a3nxn = b3

am1x1 am2x2 am3x3 … amnxn = bm

This is called an m n system of equations; there are m equations and n
unknowns.

Because of the way that matrix multiplication works, these equations can be
represented in matrix form as Ax = b where A is a matrix of the coefficients, x
is a column vector of the unknowns, and b is a column vector of the constants
from the right-hand side of the equations:

33711.2 Matrix Solutions to Systems of Linear Algebraic Equations

11 12 13 1 1 1

12 22 23 2 2 2

31 32 33 3 3 3

1 2 3

A x b

n

n

n

m m m mn n m

a a a a x b

a a a a x b

a a a a x b

a a a a x b

=

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú =
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê úë û ë û ë û

�
�
�

� � � � � � �
�

A solution set is the set of all possible solutions to the system of equations (all
sets of values for the unknowns that solve the equations). All systems of linear
equations have either:

■■ No solutions

■■ One solution

■■ Infinitely many solutions

One of the main concepts of the subject of linear algebra is the different meth-
ods of solving (or attempting to solve!) systems of linear algebraic equations.
MATLAB has many functions that assist in this process.

Once the system of equations has been written in matrix form, what we want is to
solve the equation Ax = b for the unknown x. To do this, we need to isolate x on one
side of the equation. If we were working with scalars, we would divide both sides of
the equation by x. In fact, with MATLAB we can use the divided into operator to do
this. However, most languages cannot do this with matrices, so we instead multiply
both sides of the equation by the inverse of the coefficient matrix A:

A−1 A x = A−1 b

Then, because multiplying a matrix by its inverse results in the identity matrix I,
and because multiplying any matrix by I results in the original matrix, we have:

I x = A−1 b

or

x = A−1 b

This means that the column vector of unknown x is found as the inverse of
matrix A multiplied by the column vector b. So, if we can find the inverse of A,
we can solve for the unknown in x.

For example, consider the following three equations with three unknowns x1,
x2, and x3:

 4x1 − 2x2 1x3 = 7
 1x1 1x2 5x3 = 10
−2x1 3x2 − 1x3 = 2

Chapter 11 solving systems of Linear algebraic equations338

We write this in the form Ax = b where A is a matrix of the coefficients, x is a
column vector of the unknown xi, and b is a column vector of the values on the
right-hand side of the equations:

1

2

3

A x b

4 2 1 7

1 1 5 10

2 3 1 2

x

x

x

- é ùé ù é ù
ê úê ú ê ú=ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

The solution is then x = A−1 b. In MATLAB there are two simple ways to solve
this. The built-in function inv can be used to get the inverse of A and then mul-
tiply this by b, or we can use the divided into operator.

>> A = [4 −2 1; 1 1 5; −2 3 −1];
>> b = [7;10;2];
>> x = inv(A)*b
x =
 3.0244
 2.9512
 0.8049
>> x = A\b
x =
 3.0244
 2.9512
 0.8049

11.2.1 solving 2 2 systems of equations
Although this may seem easy in MATLAB, in general finding solutions to
 systems of equations is not. Systems that are 2 2 are, however, fairly straight-
forward, and there are several methods of solution for these systems for which
MATLAB has built-in functions.

Consider the following 2 2 system of equations:

 x1 2x2 = 2
2x1 2x2 = 6

First, to visualize the solution, it will be easier to change both equations to the
equation of a straight line by writing each in the form y = mx b (by changing
x1 to x and x2 to y):

 x 2y = 2 2y = −x 2 y = −0.5x 1
2x 2y = 6 2y = −2x 6 y = −x 3

In MATLAB we can plot these lines using a script; the results are seen in Figure 11.1.

33911.2 Matrix Solutions to Systems of Linear Algebraic Equations

plot2by2.m

% Plot a 2 by 2 system as straight lines

x = −2:5;

y1 = −0.5 * x 1;

y2 = −x 3;

plot(x,y1,x,y2)

axis([−2 5 −4 6])

The intersection of the lines is the point (4, –1). In
other words, x = 4 and y = –1. Changing back to x1
and x2, we have x1 = 4 and x2 = −1. This allows us to
visualize the solution.

This system of equations in matrix form is:

1

2

A x b

1 2 2

2 2 6

x

x
é ù é ù é ù

=ê ú ê ú ê ú
ë û ë û ë û

We have already seen that the solution is x = A−1 b,
so we can solve this if we can find the inverse of A.
One method of finding the inverse for a 2 2 matrix
involves calculating the determinant D.

é ù
´ ê ú

ë û
11 12

21 22

For a2 2matrix A = ,thedeterminantDisdefinedas:
a a

a a

11 12
11 22 12 21

21 22

D = a a a a
a a

a a
= -

It is written using vertical lines around the coefficients of the matrix, and is
defined as the product of the values on the diagonal minus the product of the
other two numbers.

For a 2 2 matrix, the matrix inverse is defined in terms of D as

22 121

21 11

1
A

a a

a aD
- -é ù
= ê ú-ë û

The inverse is therefore the result of multiplying the scalar 1/D by every element
in the preceding matrix. Notice that this is not the matrix A, but is determined
using the elements from A in the following manner: the values on the diagonal
are reversed, and the negation operator is used on the other two values.

Notice that if the determinant D is 0, it will not be possible to find the inverse
of the matrix A.

2 1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

4

5

6

Figure 11.1
Visualizing 2 2 system of
equations as straight lines.

Chapter 11 solving systems of Linear algebraic equations340

For our coefficient matrix:

1 2 1 2
A , D 1*2 2*2 or 2

2 2 2 2
é ù

= = = - -ê ú
ë û

so.

1

1
2

2 2 2 2 1 11 1
A

2 1 2 1 11*2 2*2 2
- - - -é ù é ù é ù
= = =ê ú ê ú ê ú- - -- -ë û ë û ë û

Therefore,

1

1
22

1 1 2

1 6

x

x

-é ù é ù é ù
=ê ú ê ú ê ú-ë û ë û ë û

The unknowns are found by performing this matrix multiplication, so:

x1 = −1 * 2 1 * 6 = 4
x2 = 1 * 2 (−1/2) * 6 = −1

This, of course, is the same solution as found by the intersection of the two lines.

To do this in MATLAB, first we would create the coefficient matrix variable a
and column vector b.

>> a = [1 2; 2 2];
>> b = [2;6];

the programming Method
For 2 2 matrices, the determinant and inverse are found using simple expressions.

>> deta = a(1,1)*a(2,2) - a(1,2)*a(2,1)
deta =
 −2
>> inva = (1/deta) * [a(2,2) -a(1,2); -a(2,1) a(1,1)]

inva =

−1.0000 1.0000
 1.0000 −0.5000

the efficient Method
We have already seen that MATLAB has a built-in
function, inv, to find a matrix inverse. It also has a
built-in function det to find a determinant:

>> det(a)
ans =
 −2
>> inv(a)
ans =

praCtiCe 11.4
For the following 2 2 system of
equations:

 x1 3x2 = 2
2x1 4x2 = 5

Do the following on paper:

■■ Write the equations in matrix form
Ax = b.

■■ Solve by finding the inverse A−1 and
then x = A−1 b.

Now, get into MATLAB and check
them.

34111.2 Matrix Solutions to Systems of Linear Algebraic Equations

−1.0000 1.0000
 1.0000 −0.5000

11.2.2 gauss, gauss-Jordan elimination
For 2 2 systems of equations, there are well-defined, simple solution methods.
However, for larger systems of equations, finding solutions is frequently not as
straightforward.

Two related methods of solving systems of linear equations will be described here:
Gauss elimination, and Gauss-Jordan elimination. They are both based on the obser-
vation that systems of equations are equivalent if they have the same solution set.
Also, performing simple operations on the rows of a matrix, called Elementary Row
Operations (EROs), result in equivalent systems. These fall into three categories:

1. Replacement: replace a row by adding it to (or subtracting from it) a
multiple of another row. For a given row ri, this is written as

 ri - srj ri

Note that when replacing row ri, nothing is multiplied by it. Instead, row rj is
multiplied by a scalar s (which could be a fraction) and that is added to or sub-
tracted from row ri.

2. Interchange rows: for example interchanging rows ri and rj is written as

 ri rj

3. Scaling: changes a row by multiplying it by a nonzero scalar sri ri

For example, for the matrix:

é ù
ê ú
ê ú
ê úë û

4 2 3

1 4 0

2 5 3

An example of interchanging rows would be r1 ¬®→ r3, which would yield:

1 3

4 2 3 2 5 3

1 4 0 r r 1 4 0

2 5 3 4 2 3

é ù é ù
ê ú ê ú¬®ê ú ê ú
ê ú ê úë û ë û

Now, starting with this matrix, an example of scaling would be: 2r2 r2, which
means all elements in row 2 are multiplied by 2. This yields:

é ù é ù
ê ú ê ú®ê ú ê ú
ê ú ê úë û ë û

2 2

2 5 3 2 5 3

1 4 0 2r r 2 8 0

4 2 3 4 2 3

Chapter 11 solving systems of Linear algebraic equations342

Now, starting with this matrix, an example of a replacement would be: r3 – 2r2
 r3. Element-by-element, row 3 is replaced by the element in row 3 minus 2

* the corresponding element in row 2. This yields:

3 2 3

2 5 3 2 5 3

2 8 0 r 2r r 2 8 0

4 2 3 0 14 3

é ù é ù
ê ú ê ú- ®ê ú ê ú
ê ú ê ú-ë û ë û

Both the Gauss and Gauss-Jordan methods begin with
the matrix form Ax = b of a system of equations, and
then augment the coefficient matrix A with the column
vector b.

11.2.2.1 Gauss Elimination
The Gauss elimination method consists of:

 ■■ Creating the augmented matrix [A b]

 ■■ Applying EROs to this augmented matrix to get
an upper triangular form (this is called forward
elimination)

 ■■ Back-substitution to solve

For example, for a 2 2 system, the augmented matrix
would be:

11 12 1

21 22 2

a a b

a a b
é ù
ê ú
ë û

Then, EROs are applied to get the augmented matrix into an upper triangular
form:

11 12 1

22 2
0
a a b

a b

¢ ¢ ¢

¢ ¢

é ù
ê ú
ë û

So, the goal is simply to replace a21 with 0. Here, the primes indicate that the
values (may) have been changed.

Putting this back into the equation form yields

¢¢ ¢

¢ ¢

é ùé ù é ù
= ê úê ú ê ú
ê úë ûë û ë û

1 111 12

222 2
0

x ba a

xa b

Performing this matrix multiplication for each row results in:

praCtiCe 11.5
Show the result of each of the following
EROs:

é ù
ê ú ¬®ê ú
ê úë û

1 2

4 2 3

1 4 0 r r

2 5 3

é ù
ê ú - ®ê ú
ê úë û

2 1 2

4 2 3
1

1 4 0 r r r
4

2 5 3

é ù
ê ú ®ê ú
ê úë û

1 1

4 2 3
1

1 4 0 r r
2

2 5 3

34311.2 Matrix Solutions to Systems of Linear Algebraic Equations

a¢11 x1 a¢12 x2 = b¢1
a¢22 x2 = b¢2

So, the solution is:

x2 = b¢2 / a¢22
x1 = (b¢1 a¢12 x2) / a¢11

Similarly, for a 3 3 system, the augmented matrix is reduced to upper trian-
gular form:

¢ ¢ ¢ ¢

¢ ¢ ¢

¢ ¢

é ùé ù
ê úê ú®ê úê ú
ê úê úë û ë û

11 12 13 1 11 12 13 1

21 22 23 2 22 23 2

31 32 33 3 33 3

0

0 0

a a a b a a a b
a a a b a a b
a a a b a b

(This will be done systematically by first getting a 0 in the a21 position, then a31,
and finally a32.)

Then, the solution will be:

x3 = b3¢ / a33¢
x2 = (b2¢ a23¢x3) / a22¢
x1 = (b1¢ a13¢x3 a12¢x2) / a11¢

As an example, consider the following 2 2 system of equations:

 x1 2x2 = 2
2x1 2x2 = 6

As a matrix equation Ax = b, this is:

1

2

1 2 2

2 2 6

x

x
é ù é ù é ù

=ê ú ê ú ê ú
ë û ë û ë û

The first step is to augment the coefficient matrix A with b to get an augmented
matrix [A| b]:

1 2 2

2 2 6
é ù
ê ú
ë û

For forward elimination, we want to get a 0 in the a21 position. To accomplish
this, we can modify the second line in the matrix by subtracting from it 2 * the
first row.

The way we would write this ERO is:

2 1 2

1 2 2 1 2 2
r 2r r

2 2 6 0 2 2
é ù é ù

- ®ê ú ê ú-ë û ë û

Chapter 11 solving systems of Linear algebraic equations344

Now, putting it back in matrix equation form:

1

2

1 2 2

0 2 2

x

x
é ù é ù é ù

=ê ú ê ú ê ú-ë û ë û ë û

says that the second equation is now –2x2 = 2 so x2 = –1. Plugging into the first
equation:

x1 2(−1) = 2, so x1 = 4.

This is called back-substitution.

11.2.2.2 Gauss-Jordan
The Gauss-Jordan elimination method starts the same way that the Gauss elim-
ination method does, but then instead of back-substitution, the elimination
continues. The Gauss-Jordan method consists of:

■■ Creating the augmented matrix [A b]

■■ Forward elimination by applying EROs to get an upper triangular form

■■ Back elimination to a diagonal form which yields the solution

For a 2 2 system, this would yield

11 12 1 11 1

21 22 2 22 2

0

0

a a b a b

a a b a b

¢ ¢

¢ ¢

é ùé ù
® ê úê ú

ë û ë û

and for a 3 3 system,

11 12 13 1 11 1

21 22 23 2 22 2

31 32 33 3 33 3

0 0

0 0

0 0

a a a b a b
a a a b a b
a a a b a b

¢ ¢

¢ ¢

¢ ¢

é ùé ù
ê úê ú ® ê úê ú
ê úê úë û ë û

Notice that the resulting diagonal form does not include the right-most
column.

For example, for the 2 2 system, forward elimination yielded the matrix:

1 2 2

0 2 2
é ù
ê ú-ë û

Now, to continue with back elimination, we need a 0 in the a12 position.

1 2 1

1 2 2 1 0 4
r r r

0 2 2 0 2 2
é ù é ù

+ ®ê ú ê ú- -ë û ë û

34511.2 Matrix Solutions to Systems of Linear Algebraic Equations

So, the solution is x1 = 4; –2x2 = 2 or x2 = –1.

Here is an example of a 3 3 system:

 x1 3x2 = 1
2x1 x2 3x3 = 6
4x1 2x2 3x3 = 3

In matrix form, the augmented matrix [A|b] is

1 3 0 1

2 1 3 6

4 2 3 3

é ù
ê ú
ê ú
ê úë û

Forward substitution (done systematically by first getting a 0 in the a21 posi-
tion, then a31, and finally a32):

2 1 2 3 1 3

1 3 0 1 1 3 0 1 1 3 0 1

2 1 3 6 r 2r r 0 5 3 4 r 4r r 0 5 3 4

4 2 3 3 4 2 3 3 0 10 3 1

é ù é ù é ù
ê ú ê ú ê ú- ® - - ® -ê ú ê ú ê ú
ê ú ê ú ê ú- -ë û ë û ë û

3 2 3

1 3 0 1

r 2r r 0 5 3 4

0 0 3 9

é ù
ê ú- ® -ê ú
ê ú- -ë û

For the Gauss method, this is followed by back-substitution:

−3x3 = −9
x3 = 3
−5x2 3(3) = 4
−5x2 = −5
x2 = 1
x1 3(1) = 1
x1 = −2

For the Gauss-Jordan method, this is instead followed by back elimination:

2 3 2

1 3 0 1 1 3 0 1

0 5 3 4 r r r 0 5 0 5

0 0 3 9 0 0 3 9

é ù é ù
ê ú ê ú- - ® - -ê ú ê ú
ê ú ê ú- - - -ë û ë û

3
51 2 1

1 0 0 2

r r r 0 5 0 5

0 0 3 9

-é ù
ê ú+ ® - -ê ú
ê ú- -ë û

Chapter 11 solving systems of Linear algebraic equations346

So
 x1 = −2
−5x2 = −5
 x2 = 1
−3x3 = −9
 x3 = 3

Here’s an example of performing these substitutions using MATLAB:

>> a = [1 3 0; 2 1 3; 4 2 3]
a =

1 3 0
2 1 3
4 2 3

>> b = [1 6 3]’
b =
 1
 6
 3

>> ab = [a b]
ab =

1 3 0 1
2 1 3 6
4 2 3 3

>> ab(2,:) = ab(2,:) − 2*ab(1,:)
ab =

1 3 0 1
0 −5 3 4
4 2 3 3

>> ab(3,:) = ab(3,:) − 4 * ab(1,:)
ab =

1 3 0 1
0 −5 3 4
0 −10 3 −1

>> ab(3,:) = ab(3,:) − 2 * ab(2,:)
ab =

1 3 0 1
0 −5 3 4
0 0 −3 −9

34711.2 Matrix Solutions to Systems of Linear Algebraic Equations

>> ab(2,:) = ab(2,:) + ab(3,:)
ab =

1 3 0 1
0 −5 0 −5
0 0 −3 −9

>> ab(1,:) = ab(1,:) + 3/5*ab(2,:)
ab =

1 0 0 −2
0 −5 0 −5
0 0 −3 −9

11.2.3 reduced row echelon form
The Gauss Jordan method results in a diagonal form; for example, for a 3 3
system:

11 12 13 1 11 1

21 22 23 2 22 2

31 32 33 3 33 3

0 0

0 0

0 0

a a a b a b
a a a b a b
a a a b a b

¢ ¢

¢ ¢

¢ ¢

é ùé ù
ê úê ú ® ê úê ú
ê úê úë û ë û

Reduced Row Echelon Form takes this one step further to result in all 1’s rather
than the a’, so that the column of b’s is the solution:

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 0 0

0 1 0

0 0 1

a a a b b
a a a b b
a a a b b

¢

¢

¢

é ùé ù
ê úê ú ® ê úê ú
ê úê úë û ë û

MATLAB has a built-in function to do this, called rref. For example, for the
 preceding example:

>> a = [1 3 0; 2 1 3; 4 2 3];
>> b = [1 6 3]’;
>> ab = [a b];
>> rref(ab)
ans =

1 0 0 −2
0 1 0 1
0 0 1 3

The solution is found from the last column, so x1 = –2, x2 = 1, and x3 = 3. To get
this in a column vector in MATLAB:

Chapter 11 solving systems of Linear algebraic equations348

>> x = ans(:,end)
x =
 −2
 1
 3

11.2.4 finding a Matrix inverse by reducing an
augmented Matrix
For a system of equations larger than a 2 2 system, one method of finding the
inverse of a matrix A mathematically involves augmenting the matrix with an
identity matrix of the same size, and then reducing it. The algorithm is:

■■ Augment the matrix with I: [A I]

■■ Reduce it to the form [I X]; X will be A−1

For example, in MATLAB we can start with a matrix, augment it with an identity
matrix, and then use the rref function to reduce it.

>> a = [1 3 0; 2 1 3; 4 2 3];
>> rref([a eye(size(a))])
ans =

1.0000 0 0 −0.2000 −0.6000 0.6000
0 1.0000 0 0.4000 0.2000 −0.2000
0 0 1.0000 0 0.6667 −0.3333

In MATLAB, the inv function can be used to verify the result.

>> inv(a)
ans =

−0.2000 −0.6000 0.6000
 0.4000 0.2000 −0.2000
 0 0.6667 −0.3333

11.3 syMboLiC MatheMatiCs
Symbolic mathematics means doing mathematics on symbols (not numbers!).
For example, a a is 2a. The symbolic math functions are in the Symbolic Math
Toolbox in MATLAB. Toolboxes contain related functions and are add-ons to
MATLAB. (Therefore, this may or may not be part of your own system.) The
Symbolic Math Toolbox includes an alternative method for solving equations,
and therefore is covered in this chapter.

To find out about the symbolic functions, help can be used:

help toolbox\symbolic

34911.3 Symbolic Mathematics

11.3.1 symbolic Variables and expressions
MATLAB has a type called sym for symbolic variables and expressions; these
work with strings. For example, to create a symbolic variable a and perform the
addition just described, first a symbolic variable would be created by passing
the string ‘a’ to the sym function:

>> a = sym(‘a’);
>> a+a
ans =
2*a

Symbolic variables can also store expressions. For example, the variables b and
c store symbolic expressions:

>> b = sym(‘x^2’);
>> c = sym(‘x^4’);

All basic mathematical operations can be performed on symbolic variables
and expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.).
Here are some examples:

>> c/b
ans =
x^2

>> b^3
ans =
x^6
>> c*b
ans =

x^6
>> b + sym(‘4*x^2’)
ans =
5*x^2

It can be seen from the last example that MATLAB will collect like terms in
these expressions, adding the x2 and 4x2 to result in 5x2.

The following creates a symbolic expression by passing a string, but the terms
are not automatically collected:

>> sym(‘z^3 + 2*z^3’)
ans =
z^3 2*z^3

If, on the other hand, z is a symbolic variable to begin with, quotes
are not needed around the expression, and the terms are automatically
collected:

Chapter 11 solving systems of Linear algebraic equations350

>> z = sym(‘z’);
>> sym(z^3 + 2*z^3)
ans =
3*z^3

If you want to use multiple variables as symbolic variable names, the syms
function is a shortcut instead of using sym repeatedly. For example,

>> syms x y z

does the same thing as

>> x = sym(‘x’);
>> y = sym(‘y’);
>> z = sym(‘z’);

11.3.2 simplification functions
There are several functions that work with expressions, and simplify the
terms. Not all expressions can be simplified, but the simplify function does
whatever it can to simplify expressions, including gathering like terms. For
example:

>> x = sym(‘x’);
>> myexpr = cos(x)^2 + sin(x)^2
myexpr =
cos(x)^2 sin(x)^2
>> simplify(myexpr)
ans =
1

The functions collect, expand, and factor work with polynomial expressions.
The collect function collects coefficients, for example,

>> x = sym(‘x’);
>> collect(x^2 + 4*x^3 + 3*x^2)
ans =
4*x^2 4*x^3

The expand function will multiply out terms, and factor will do the reverse:

>> expand((x+2)*(x−1))
ans =
x^2 x−2

>> factor(ans)
ans =
(x 2)*(x−1)

The subs function will substitute a value for a symbolic variable in an expres-
sion. For example,

35111.3 Symbolic Mathematics

>> myexp = x^3 + 3*x^2 - 2
myexp =
x^3 3*x^2−2
>> x = 3;
>> subs(myexp,x)
ans =
 52

With symbolic math, MATLAB works by default with rational numbers, mean-
ing that results are kept in fractional forms. For example, performing the addi-
tion 1/3 1/2 would normally result in a double value:

>> 1/3 + 1/2
ans =
 0.8333

However, by making the expression symbolic, the result is symbolic also. Any
numeric function (e.g., double) could change that:

>> sym(1/3 + 1/2)
ans =
5/6

>> double(ans)
ans =
 0.8333

The numden function will return separately the numerator and denominator
of a symbolic expression:

>> sym(1/3 + 1/2)
ans =
5/6

>> [n, d] = numden(ans)
n =
5
d =
6

>> [n, d] = numden((x^3 + x^2)/x)
n =
x^2*(x 1)
d =
x

11.3.3 displaying expressions
The pretty function will display these expressions using exponents; for
example,

Chapter 11 solving systems of Linear algebraic equations352

6 4 2 0 2 4 6
150

100

50

0

50

100

150

200

250

300

350

x

x3 + 3 x2 2 >> b = sym(‘x^2’)
b =
x^2
>> pretty(b)
 x

2

There are several plot functions in MATLAB with names
beginning with “ez” that perform the necessary conver-
sions from symbolic expressions to numbers and plot
them. For example, the function ezplot will draw a 2-D
plot in the x-range from –2p to 2p, with the expression
as the title (in pretty form). The expression

>> ezplot(‘x^3 + 3*x^2 - 2’)

produces the figure shown in Figure 11.2.

The domain for the ezplot function can also be spec-
ified; for example, to change the x-axis to be from 0

to , it is specified as a vector. The result is shown in Figure 11.3.

>> ezplot(‘cos(x)’,[0 pi])

11.3.4 solving equations
We’ve seen already several methods for solving simultaneous linear equations,
using a matrix representation. MATLAB can also solve sets of equations using
symbolic math.

The function solve solves an equation and returns the solution(s) as symbolic
expressions. The solution can be converted to numbers using any numeric

function, such as double:

>> x = sym(‘x’);
>> solve(‘2*x^2 + x = 6’)
ans =
3/2
 −2

>> double(ans)
ans =
 1.5000
 −2.0000

If an expression is passed to the solve function rather
than an equation, it will set the expression equal to
0 and solve the resulting equation. For example, this
will solve 3x2 x = 0:

Figure 11.2
Plot produced using ezplot.

0 0.5 1 1.5 2 2.5 3

1

0.5

0

0.5

1

x

cos (x)

Figure 11.3
Result from ezplot with
custom x-axis.

35311.3 Symbolic Mathematics

>> solve(‘3*x^2 + x’)
ans =
 0
 −1/3

If there is more than one variable, MATLAB chooses which to solve for. In
the following example, the equation ax2 bx = 0 is solved. There are three
variables. As can be seen from the result, which is given in terms of a and b,
the equation was solved for x. MATLAB has rules built in that specify how to
choose which variable to solve for. For example, x will always be the first choice
if it is in the equation or expression.

>> solve(‘a*x^2 b*x’)
ans =
 0
 −b/a

However, it is possible to specify which variable to solve for:

>> solve(‘a*x^2 b*x’,‘b’)
ans =
−a*x

MATLAB can also solve sets of equations. In this example, the solutions for x,
y, and z are returned as a structure consisting of fields for x, y, and z. The indi-
vidual solutions are symbolic expressions stored in fields of the structure.

>> solve(‘4*x−2*y z=7’,‘x y 5*z=10’,‘−2*x 3*y-z=2’)
ans =
 x: [1x1 sym]
 y: [1x1 sym]
 z: [1x1 sym]

To refer to the individual solutions, which are in the structure fields, the dot
operator is used.

>> x = ans.x
x =
124/41

>> y = ans.y
y =
121/41

>> z = ans.z
z =
33/41

The double function can then be used to covert the symbolic expressions to
numbers, and store the results from the three unknowns in a vector.

Chapter 11 solving systems of Linear algebraic equations354

>> dou ble([x y z])
ans =
 3.0244 2.9512 0.8049

suMMary

Common pitfalls
■■ Confusing matrix multiplication and array multiplication. Array operations,

including multiplication, division, and exponentiation, are performed term-by-term
(so the arrays must have the same size); the operators are .*, ./, .\, and .^. For matrix
multiplication to be possible, the inner dimensions must agree and the operator is *.

■■ Forgetting that to augment one matrix with another, the number of rows must be
the same in each (but not necessarily the number of columns).

programming style guidelines
■■ When working with symbolic expressions, it is generally easier to make all variables

symbolic variables to begin with.

trace
diag
eye
triu
tril
inv

dot
cross
ones
magic
det
rref

sym
syms
simplify
collect
expand
factor

subs
numden
pretty
ezplot
solve

MATLAB Functions and Commands

MATLAB Operators

* matrix multiplication
\ matrix division

exercises
1. For the following matrices A, B, and C:

A B C

1 4

3 2

2 1 3

1 5 6

3 6 0

3 2 5

4 1 2

■■ Which are symmetric?
■■ For all square matrices, give their trace.

355Exercises

■■ Give the result of 3*A.
■■ Give the result of A*C.
■■ Are there any other matrix multiplications that can be performed? If so, list

them.
 2. Given the following matrices:

A B C

3 2 1

0 5 2

1 0 3

2

1

3

1 0 0

0 1 0

0 0 1

 Perform the following MATLAB operations, if they can be done. If not, explain why.

A * B

B * A

I A

A .* I

trace(A)

 3. Write a function issquare that will receive an array argument, and will return 1 for
true if it is a square matrix, or 0 for false if it is not.

 4. Write a function mydiag that will receive an array argument, and will return a
vector consisting of the main diagonal (without using the built-in diag function).
Note: this is possible only if the argument is a square matrix, so the function
should first check this by calling the issquare function from above. If the argument
is a square matrix, the function will return the diagonal; otherwise, it will return an
empty vector.

 5. Write a function that will receive a square matrix as an input argument, and will
return a row vector containing the diagonal of the matrix. If the function is called
with a vector of two variables on the left-hand side of the assignment, the function
will also return the trace of the matrix. (Note: It will return the trace only if there
are two variables on the left-hand side of the assignment.) You may assume that
the matrix is square. The function must preallocate the diagonal vector to the
correct size.

 6. Write a function randdiag that will return an n n diagonal matrix, with random
integers each in the range from low to high on the diagonal. Three arguments are
passed to the function: the value of n, low, and high, in that order.

 7. Write a function myeye to return an n n identity matrix.
 8. Write a function myupp that will receive an integer argument n, and will return an

n n upper triangular matrix of random integers.
 9. Write a function to determine whether or not a square matrix is a diagonal matrix.

This function will return 1 for true if it is, or 0 if not.

Chapter 11 solving systems of Linear algebraic equations356

 10. Write a function mymatsub that will receive two matrix arguments and will
return the result of subtracting the elements in one matrix from another (by
looping and subtracting term by term). If it is not possible to subtract, return an
empty matrix.

 11. Write a function to receive a matrix and return its transpose (for more
programming practice, do not use the built-in operator for the transpose).

 12. We have already seen the zeros function, which returns a matrix of all 0’s.
Similarly, there is a function ones that returns a matrix of all 1’s. Note: No, there
aren’t functions called twos, threes, and such (just ones and zeros!). However,
write a fives function that will receive two arguments for the number of rows and
columns and will return a matrix with that size of all 5’s.

 13. The function magic(n) returns an n n magic matrix, which is a matrix for which
the sum of all rows, columns, and the diagonal are the same. Investigate this
built-in function.

 14. The function pascal(n) returns an n n matrix made from Pascal’s triangle.
Investigate this built-in function, and then write your own.

 15. Rewrite the following system of equations in matrix form:

4x1 − x2 3x4 = 10
−2x1 3x2 x3 −5x4 = −3
x1 x2 − x3 2x4 = 2
3x1 2x2 − 4x3 = 4

 Set it up in MATLAB and use any method to solve.
 16. For the following 2 2 system of equations:

−3x1 x2 = −4
−6x1 2x2 = 4

■■ In MATLAB, rewrite the equations as equations of straight lines and plot them
to find the intersection.

■■ Solve for one of the unknowns and then substitute into the other equation to
solve for the other unknown.

■■ Find the determinant D.
■■ How many solutions are there? One? None? Infinite?

 17. For the following 2 2 system of equations:

−3x1 x2 = 2
−6x1 2x2 = 4

■■ Rewrite the equations as equations of straight lines and plot them to find the
intersection.

■■ Solve for one of the unknowns and then substitute into the other equation to
solve for the other unknown.

■■ Find the determinant D.
■■ How many solutions are there? One? None? Infinite?

357Exercises

 18. Write a function to return the determinant of a 2 2 matrix.
 19. Write a function to return the inverse of a 2 2 matrix.
 20. Given the following 2 2 system of equations:

3x1 x2 = 2
2x1 = 4

 Use all methods presented in the text to solve it, and to visualize the solution. Do
all the math by hand, and then also use MATLAB.

 21. ERO Practice: Show the result of each of the following EROs:

é ù
ê ú ®ê ú
ê úë û

1
4

4 2 3

1 4 0 r1 r1

2 5 3

é ù
ê ú ¬®ê ú
ê úë û

4 2 3

1 4 0 r2 r3

2 5 3

é ù
ê ú - ®ê ú
ê úë û

4 2 3

1 4 0 r3 2r2 r3

2 5 3

 22. For the following 2 2 system of equations:

3x1 2x2 = 4
x1 = 2

■■ Write this in matrix form.
■■ Using the method for 2 2 systems, find the determinant D.
■■ Use D to find the inverse of A.
■■ Use the Gauss elimination method to find the solution.
■■ Use the Gauss-Jordan method to solve.
■■ Check your work in MATLAB.

 23. For the following set of equations:

2x1 2x2 x3 = 2
 x2 2x3 = 1
 x1 x2 3x3 = 3

■■ Put this in the augmented matrix [A|b].
■■ Solve using Gauss.
■■ Solve using Gauss-Jordan.
■■ In MATLAB, create the matrix A and vector b. Find the inverse and determinant

of A. Solve for x.
 24. Given the following system of equations:

Chapter 11 solving systems of Linear algebraic equations358

 x1 - 2x2 x3 = 2
2x1 - 5x2 3x3 = 6
 x1 2x2 2x3 = 4
2x1 3x3 = 6

 Write this in matrix form and use either Gauss or Gauss-Jordan to solve it. Check
your answer using MATLAB.

 25. Write a function that will augment a matrix with an identity matrix of the
appropriate dimensions, without using any built-in functions (except size). This
function will receive a matrix argument, and will return the augmented matrix.

 26. Write a function myrrefinv that will receive a square matrix A as an argument,
and will return the inverse of A. The function cannot use the built-in inv function;
instead, it must augment the matrix with I and use rref to reduce it to the form
[I A−1]. Here are examples of calling it:

>> a =[4 3 2; 1 5 3; 1 2 3]
a =

4 3 2
1 5 3
1 2 3

>> inv(a)
ans =

 0.3000 −0.1667 −0.0333
 0 0.3333 −0.3333
−0.1000 −0.1667 0.5667

>> myrrefinv(a)
ans =

 0.3000 −0.1667 −0.0333
 0 0.3333 −0.3333
−0.1000 −0.1667 0.5667

>> disp(myrrefinv(a))

 0.3000 −0.1667 −0.0333
 0 0.3333 −0.3333
−0.1000 −0.1667 0.5667

 27. Solve the simultaneous equations x – y = 2 and x2 y = 0 using solve. Plot the
corresponding functions, y = x – 2 and y = –x2, on the same graph with an x range
from –5 to 5.

 28. For the following set of equations:

2x1 2x2 x3 = 2
 x2 2x3 = 1
 x1 x2 3x3 = 3

359Exercises

In MATLAB, create the coefficient matrix A and vector b. Solve for x using the ■■

inverse, using the built-in function.
■■ Create the augmented matrix [A|b] and solve using the rref function.

 Write this in symbolic form and solve using the solve function. From the symbolic
solution, create a vector of the numerical (double) equivalents.

 29. For the following system of equations:

 4x1 − x2 3x4 = 10
−2x1 3x2 x3 − 5x4 = −3
 x1 x2 − x3 2x4 = 2
 3x1 2x2 − 4x3 = 4

 Use the solve function to solve it. Verify the answer using any other method (in
MATLAB!).

 30. Biomedical engineers are developing an insulin pump for diabetics. To do this, it
is important to understand how insulin is cleared from the body after a meal. The
concentration of insulin at any time t is described by the equation

 C = C0 e −30t/m

 where C0 is the initial concentration of insulin, t is the time in minutes, and m is
the mass of the person in kg. Use solve to determine for a person whose mass
is 65 kg how long it will take an initial concentration of 90 to reduce to 10. Use
double to get your result in minutes.

 31. To analyze electric circuits, it is often necessary to solve simultaneous equations.
To find the voltages Va, Vb, and Vc at nodes a, b, and c, the equations are:

2(Va-Vb) 5(Va-Vc) – e-t = 0
2(Vb – Va) 2Vb 3(Vb – Vc) = 0
Vc = 2 sin(t)

 Find out how to use the solve function to solve for Va, Vb, and Vc so that the
solution will be returned in terms of t.

 32. The reproduction of cells in a bacterial colony is important for many environmental
engineering applications such as wastewater treatments. The formula

 log(N) = log(N0) t/T log(2)

 can be used to simulate this, where N0 is the original population, N is the
population at time t, and T is the time it takes for the population to double. Use the
solve function to determine the following: if N0 = 102, N = 108, and t = 8 hours, what
will be the doubling time T? Use double to get your result in hours.

 33. We have seen that a square matrix is symmetric if aij = aji for all i, j. We say that a
square matrix is skew symmetric if aij = –aji for all i, j. Notice that this means that
all the values on the diagonal must be 0. Write a function that will receive a square
matrix as an input argument, and will return 1 for logical true if the matrix is skew
symmetric or 0 for false if not.

This page intentionally left blank

361

Contents

© 2009, 2003,1999 Elsevier Inc.

12.1 Statistical
Functions 362

12.2 Set
Operations 368

12.3 Sorting............. 372

12.4 Indexing 379

12.5 Searching 382

mean

sorting

index vector

searching

arithmetic mean

average

outlier

harmonic mean

geometric mean

standard deviation

variance

mode

median

set operation

selection sort

sequential search

key

binary search

Key Words

Chapter 12

Basic Statistics, Searching, and Sorting

There are a lot of statistical analyses that can be performed on data sets. In the
MATLAB® software, the statistical functions are in the data analysis help topic
called datafun.

In general, we will write a data set of n values as

x ={x1, x2, x3, x4, . . . ,xn}

In MATLAB, this will generally be represented as a row vector called x.

Statistics can be used to characterize properties of a data set. For example, con-
sider a set of exam grades {33, 75, 77, 82, 83, 85, 85, 91, 100}. What is a “nor-
mal”, or “expected”, or “average” exam grade? There are several ways that this
could be interpreted. Perhaps the most common is the mean grade, which is
found by summing the grades and dividing by the number of them (the result
of that would be 79). Another way of interpreting that would be the grade

Chapter 12 Basic statistics, searching, and sorting362

found the most often, which would be 85. Also, the value in the middle of the
list, 83, could be used. Another property that is useful to know is how spread
out the data values are within the data set.

This section will cover some simple statistics, as well as set operations that
can be performed on data sets. Some statistical functions require that the data
set be sorted, so sorting will also be covered. Using index vectors is a way of
representing the data in order, without physically sorting the data set. Finally,
searching for values within a data set or a database is useful, so some basic
searching techniques will be explained.

12.1 statistiCal FunCtions
MATLAB has built-in functions for many statistics; the simplest of which we
have already seen; for example, min and max to find the minimum or maxi-
mum value in a data set.

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> min(x)
ans =
 3
>> max(x)
ans =
 10

Both of these functions also return the index of the smallest or largest value;
if there is more than one occurrence, it returns the first. For example, in the
following data set, 10 is the largest value; it is found in three elements in
the vector but the index returned is the first element in which it is found
(which is 2):

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> [maxval, maxind] = max(x)
maxval =
 10
maxind =
 2

For matrices, the min and max functions operate columnwise by default:

>> mat = randint(2,4,[1 20])
mat =

 9 10 17 5
 19 9 11 14

>> min(mat)
ans=

36312.1 Statistical Functions

9 9 11 5

>> [minval, minind] = min(mat)
minval =

9 9 11 5

minind =

1 2 2 1

To find the minimum (or maximum) for each row, the dimension of 2 (which
is how MATLAB refers to rows) can be specified as the third argument to the
min (or max) function; the second argument must be an empty vector:

>> min(mat,[],2)
ans =
 5
 9

These functions can also compare vectors or matrices and return the minimum
(or maximum) values from corresponding elements. For example, the follow-
ing iterates through all elements in the two vectors, comparing corresponding
elements and returning the minimum for each:

>> x = [3 5 8 2 11];
>> y = [2 6 4 5 10];
>> min(x,y)
ans =

2 5 4 2 10

Some of the other functions in the datafun help topic that have been described
already include sum, prod, cumsum, cumprod, and hist. Other statistical
operations, and the functions that perform them in MATLAB, will be described
in the rest of this section.

12.1.1 Mean
The arithmetic mean of a data set is what is usually called the average of the
values; in other words, the sum of the values divided by the number of values
in the data set. Mathematically, we would write this as

1 .

n

i
i

x

n
=
å

the programming Concept
Calculating a mean, or average, normally would be interpreted as looping
through the elements of a vector, adding them together, and then dividing by
the number of elements:

Chapter 12 Basic statistics, searching, and sorting364

mymean.m

function outv = mymean(vec)

% Calculates and returns the mean of a vector

mysum = 0;

for i=1:length(vec)

 mysum = mysum + vec(i);

end

outv = mysum/length(vec);

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> mymean(x)
ans =
 8.1667

the efficient Method
There is a built-in function, mean, in MATLAB to accomplish this:

>> mean(x)
ans =
 8.1667

For a matrix, the mean function operates columnwise. To find the mean of each
row, the dimension of 2 is passed as the second argument to the function, as is
the case with the functions sum, prod, cumsum, and cumprod (the [] as a mid-
dle argument is not necessary for these functions like it is for min and max).

>> mat = randint(3,3,[1 10])
mat =

 8 9 3
10 2 3
 6 10 9

>> mean(mat)
ans =

8 7 5

>> mean(mat,2)
ans =
 6.6667
 5.0000
 8.3333

Sometimes a value that is much larger or smaller than the rest of the data (called
an outlier) can throw off the mean; for example, in the following all the numbers

36512.1 Statistical Functions

in the data set are in the range from 3 to 10, with the exception of the 100 in the
middle. Because of this outlier, the mean of the values in this vector is actually
larger than any of the other values in the vector.

>> xwithbig = [9 10 10 9 8 100 7 3 10 9 8 5 10];
>> mean(xwithbig)
ans =
 15.2308

In order to handle this, sometimes the minimum and maximum values from
a data set are discarded before the mean is computed. In this example, a logi-
cal vector indicating which elements are neither the largest nor smallest value
is used to index into the original data set, resulting in removing the minimum
and the maximum.

>> xwithbig = [9 10 10 9 8 100 7 3 10 9 8 5 10];
>> length(xwithbig)
ans =
 13
>> newx = xwithbig(xwithbig ∼= min(xwithbig) & . . .
xwithbig ∼= max(xwithbig))
newx =

9 10 10 9 8 7 10 9 8 5 10

>> length(newx)
ans =
 11

Instead of just removing the minimum and maximum values, sometimes the
largest and smallest 1% or 2% of values are removed, especially if the data set
is very large.

There are several other means that can be computed. The harmonic mean of the
n values in a vector or data set x is defined as

1 2 3

1 1 1 1

n

n

x x x x
+ + + +…

This could be implemented in an anonymous function using the built-in sum
function. For example, the following anonymous function calculates this, and
stores the handle in a variable called harmhand.

>> harmhand = @ (x) length(x) / sum (1 ./ x);
>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> harmhand(x)
ans =
 7.2310

Chapter 12 Basic statistics, searching, and sorting366

The geometric mean of the n values in a vector x is defined as the nth root of the
product of the data set values.

…1 2 3* * *n
nx x x x

The following anonymous function implements this definition, using prod:

>> geomhand = @ (x) prod(x)^(1/length(x));
>> geomhand(x)
ans =
 7.7775

Note: Statistics Toolbox™ has functions for these means, called harmmean and
geomean, as well as a function trimmean, which trims the highest and lowest
2% of data values.

12.1.2 Variance and standard deviation
The standard deviation and variance are ways of determining the spread of the
data. The variance is usually defined in terms of the arithmetic mean as:

2

1

()

var
1

n

i
i

x mean

n
=

-
=

-

å

Sometimes, however, the denominator is defined as n rather than n – 1. The
default definition used by MATLAB is given by the previous equation, so we
will use that definition here.

For example, for the vector [4, 6, 1, 5], there are n = 4 values so n – 1 is 3. Also,
the mean of this data set is 4. The variance would be

- + - + - + - + + +
= = =

2 2 2 2(4 4) (6 4) (1 4) (5 4) 0 4 9 1
var 4.67

3 3

The built-in function to calculate the variance is called var:

>> shortx = [4 6 1 5];
>> myvar = var(shortx)
myvar =
 4.6667

The standard deviation is the square root of the variance:

sd var=

The built-in function in MATLAB for the standard deviation is called std; the
standard deviation can be found either as the sqrt of the variance, or using std:

36712.1 Statistical Functions

>> shortx = [2 5 1 4];
>> myvar = var(shortx)
myvar =
 3.3333

>> sqrt(myvar)
ans =
 1.8257

>> std(shortx)
ans =
 1.8257

The less spread out the numbers are, the smaller the standard deviation will
be, since it is a way of determining the spread of the data. Likewise, the more
spread out the numbers are, the larger the standard deviation will be. For exam-
ple here are two data sets that have the same number of values and also the
same mean, but the standard deviations are quite different:

>> x1 = [9 10 9.4 9.6];
>> mean(x1)
ans =
 9.5000
>> std(x1)
ans =
 0.4163

>> x2 = [2 17 –1.5 20.5];

>> mean(x2)
ans =
 9.5000
>> std(x2)
ans =
 10.8704

12.1.3 Mode
The mode of a data set is the value that appears most frequently. The built-in
function in MATLAB for this is called mode.

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> mode(x)
ans =
 10

If there is more than one value with the same (highest) frequency, the smaller
value is the mode. In the following case, since 3 and 8 appear twice in the vec-
tor, the smaller value (3) is the mode:

Chapter 12 Basic statistics, searching, and sorting368

>> x = [3 8 5 3 4 1 8];
>> mode(x)
ans =
 3

If no value appears more frequently than any other, the smallest value in the
vector will be the mode of the vector.

>> shortx = [2 5 1 4];
>> mode(shortx)
ans =
 1

12.1.4 Median
The median is defined only for a data set that has been sorted first, meaning
that the values are in order. The median of a sorted set of n data values is
defined as the value in the middle, if n is odd, or the average of the two values
in the middle, if n is even. For example, for the vector [1 4 5 9 12], the middle
value is 5. The function in MATLAB is called median:

>> median([1 4 5 9 12])
ans =
 5

For the vector [1 4 5 9 12 33], the median is the average of the 5 and 9 in the
middle:

>> median([1 4 5 9 12 33])
ans =
 7

If the vector is not in sorted order to begin with, the
median function will still return the correct result (it
will sort the vector automatically). For example, scram-
bling the order of the values in the first example will
still result in a median value of 5.

 >> median([9 4 1 5 12])
 ans =
 5

12.2 set operations
MATLAB has several built-in functions that perform set
operations on vectors. These include union, intersect,
unique, setdiff, and setxor. All these functions can be

praCtiCe 12.1
For the vector [1 1 3 6 9], find the

■■ minimum

■■ maximum

■■ arithmetic mean

■■ geometric mean

■■ harmonic mean

■■ variance

■■ standard deviation

■■ mode

■■ median

36912.2 Set Operations

useful when working with data sets. Additionally, there are two is functions
that work on sets, ismember and issorted.

For example, given the following vectors:

>> v1 = 2:6
v1 =

2 3 4 5 6

>> v2 = 1:2:7
v2 =

1 3 5 7

The union function returns a vector that contains all the values from the two
input argument vectors, without repeating any.

>> union(v1,v2)
ans =

1 2 3 4 5 6 7

The intersect function instead returns all the values that can be found in both
of the input argument vectors.

>> intersect(v1,v2)
ans =
 3 5

The setdiff function receives two vectors as input arguments, and returns a vec-
tor consisting of all the values that are contained in the first vector argument but
not the second. Therefore, the order of the two input arguments is important.

>> setdiff(v1,v2)
ans =

2 4 6

>> setdiff(v2,v1)
ans =
 1 7

The function setxor receives two vectors as input arguments, and returns a vec-
tor consisting of all the values from the two vectors that are not in the inter-
section of these two vectors. In other words, it is the union of the two vectors
obtained using setdiff earlier!

>> setxor(v1,v2)
ans =

1 2 4 6 7

>> union(setdiff(v1,v2), setdiff(v2,v1))
ans =

1 2 4 6 7

Chapter 12 Basic statistics, searching, and sorting370

The set function unique returns all the unique values from a set argument:

>> v3 = [1:5 3:6]
v3 =

1 2 3 4 5 3 4 5 6

>> unique(v3)
ans =

1 2 3 4 5 6

Many of the set functions return vectors that can be used to index into the orig-
inal vectors as optional output arguments; for example, for the two vectors v1
and v2 defined previously as:

>> v1
v1 =

2 3 4 5 6

>> v2
v2 =

1 3 5 7

The intersect function returns, in addition to the vector containing the
values in the intersection of v1 and v2, an index vector into v1 and an
index vector into v2 such that outvec is the same as v1(index1) and also
v2(index2).

>> [outvec, index1, index2] = intersect(v1,v2)
outvec =
 3 5

index1 =
 2 4

index2 =
 2 3

Using these vectors to index into v1 and v2 will return the values from the
intersection. For example, this expression returns the second and fourth ele-
ments of v1:

>> v1(index1)
ans =
 3 5

This returns the second and third elements of v2:

>> v2(index2)
ans =
 3 5

37112.2 Set Operations

The function ismember receives two vectors as input arguments, and returns
a logical vector that is the same length as the first argument, containing 1 for
true if the element in the first vector is also in the second, or 0 for false if not.
The order of the arguments matters for this function.

>> v1
v1 =

2 3 4 5 6

>> v2
v2 =

1 3 5 7

>> ismember(v1,v2)
ans =

0 1 0 1 0

>> ismember(v2,v1)
ans =

0 1 1 0

Using the result from the ismember function as an index into the first vector
argument will return the same result as the intersect function.

>> logv = ismember(v1,v2)
logv =

0 1 0 1 0

>> v1(logv)
ans =
 3 5

>> logv = ismember(v2,v1)
logv =

0 1 1 0

>> v2(logv)
ans =
 3 5

The issorted function will return 1 for logical true if the argument is sorted in
ascending order (lowest to highest), or 0 for false if not.

>> v3 = [1:5 3:6]
v3 =

1 2 3 4 5 3 4 5 6

>> issorted(v3)
ans =
 0

Chapter 12 Basic statistics, searching, and sorting372

>> issorted(v1)
ans =
 1

>> vec = 4:-1:1
vec =

4 3 2 1

>> issorted(vec)
ans =
 0

In the next section, we will see how to sort a vector.

12.3 sorting
Sorting is the process of putting a list in order; either
descending (highest to lowest), or ascending (lowest to
highest) order. For example, here is a list of n integers,
visualized as a column vector.

1 85

2 70

3 100

4 95

5 80

6 91

We want to sort this in ascending order in place, in other words, rearranging
this vector, not creating another. One basic algorithm would be:

■■ Look through the vector to find the smallest number, and then put it in
the first element in the vector. How? By exchanging it with the number
currently in the first element.

■■ Then, scan the rest of the vector (from the second element down)
looking for the next smallest (or, the smallest in the rest of the vector).
When found, put it in the first element of the rest of the vector.

■■ Continue doing this for the rest of the vector. Once the next-to-last
number has been placed in the correct location in the vector, by default
the last number has been, also.

This table shows the progression. The left-hand column shows the original vec-
tor. The second column (from the left) shows that the smallest number, the 70,
is now in the first element in the vector. It was put there by exchanging with

praCtiCe 12.2
Create two vector variables vec1 and
vec2 that contain seven random integers,
each in the range from 1 to 20. Do each
of the following operations by hand first,
and then check in MATLAB:

■■ union

■■ intersection

■■ setdiff

■■ setxor

unique (for each)■■

37312.3 Sorting

what had been in the first element, 85. This continues element-by-element,
until the vector has been sorted.

85 70 70 70 70 70

70 85 80 80 80 80

100 100 100 85 85 85

95 95 95 95 91 91

80 80 85 100 100 95

91 91 91 91 95 100

This is called the selection sort; it is just one of many different sorting algorithms.

the programming Concept
The following function implements the selection sort to sort a vector:

mysort.m

function outv = mysort(vec)

% This function sorts a vector using the selection sort

% Loop through the elements in the vector to end-1

for i = 1:length(vec)-1

 low = i;

 %Select the lowest number in the rest of the vector

 for j=i+1:length(vec)

 if vec(j) < vec(low)

 low = j;

 end

 end

 % Exchange elements

 temp = vec(i);

 vec(i) = vec(low);

 vec(low) = temp;

end

outv = vec;

>> vec = [85 70 100 95 80 91];
>> vec = mysort(vec)
vec =

70 80 85 91 95 100

Chapter 12 Basic statistics, searching, and sorting374

the efficient Method
MATLAB has a built-in function, sort, that will sort a vector in ascending
order:

>> vec = [85 70 100 95 80 91];
>> vec = sort(vec)
vec =

70 80 85 91 95 100

Descending order can also be specified; for example:

>> sort(vec,‘descend’)
ans =

100 95 91 85 80 70

For matrices, the sort function will by default sort each column. To sort by
rows, the dimension 2 is specified. For example,

>> mat
mat =

4 6 2
8 3 7
9 7 1

>> sort(mat) % sorts by column
ans =

4 3 1
8 6 2
9 7 7

>> sort(mat,2) % sorts by row
ans =

2 4 6
3 7 8
1 7 9

12.3.1 sorting Vectors of structures
When working with a vector of structures, it is common to sort based on a partic-
ular field within the structures. For example, recall the vector of structures used to
store information on different software packages that was created in Chapter 7.

packages
 item_no cost price code

1 123 19.99 39.95 ‘g’

2 456 5.99 49.99 ‘l’

3 587 11.11 33.33 ‘w’

37512.3 Sorting

Here is a function that sorts this vector of structures in ascending order based
on the price field.

mystructsort.m

function outv = mystructsort(structarr)

%This function sorts the packages struct

% based on the price field

for i = 1:length(structarr)-1

 low = i;

 for j=i+1:length(structarr)

 if structarr(j).price < structarr(low).price

 low = j;

 end

 end

 % Exchange elements

 temp = structarr(i);

 structarr(i) = structarr(low);

 structarr(low) = temp;

end

outv = structarr;

Notice that only the price field is compared in the sort algorithm, but the entire
structure is exchanged. That is so that each element in the vector, which is a
structure of information about a particular software package, remains intact.

Recall that we created a function printpackages also in Chapter 7, which prints
the information in a nice table format. Calling the mystructsort function and
also the function to print will demonstrate this:

>> printpackages(packages)
Item Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 l
587 11.11 33.33 w

>> pack_by_price = mystructsort(packages);
>> printpackages(pack_by_price)
Item Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

Chapter 12 Basic statistics, searching, and sorting376

This function sorts the structures based only on the price field. A more general func-
tion is shown next, which receives a string that is the name of the field. The
function checks first to make sure that the string that is passed is a valid field
name for the structure. If it is, it sorts based on that field, and if not it prints an
error message and returns an empty vector. Strings are created consisting of the
name of the vector variable, followed by parentheses containing the element
number, the period, and finally the name of the field. The strings are created
using square brackets to concatenate the pieces of the string, and the int2str
function is used to convert the element number to a string. Then, using the
eval function, the vector elements are compared to determine the lowest.

general_pack_sort.m

function outv = general_pack_sort(inputarg, fname)

%This function sorts a vector of package structs

% based on the field name passed as an input argument

if isfield(inputarg,fname)

 for i = 1:length(inputarg)-1

 low = i;

 for j=i+1:length(inputarg)

 if eval([‘inputarg(’ int2str(j) ‘).’ fname]) < …

 eval([‘inputarg(’ int2str(low) ‘).’ fname])

 low = j;

 end

 end

 % Exchange elements

 temp = inputarg(i);

 inputarg(i) = inputarg(low);

 inputarg(low) = temp;

 end

 outv = inputarg;

else

 disp(‘Sorry, not a correct field name’)

 outv = [];

end

Here are examples of calling the function:

>> pack_by_price = general_pack_sort(packages,‘price’);
>> printpackages(pack_by_price)

37712.3 Sorting

Item Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

>> pack_by_cost = general_pack_sort(packages,‘cost’);
>> printpackages(pack_by_cost)
Item Cost Price Code

456 5.99 49.99 l
587 11.11 33.33 w
123 19.99 39.95 g

>> pack_by_profit = general_pack_sort(packages,‘profit’)
Sorry, not a correct field name
pack_by_profit =
[]

12.3.2 sorting strings
For a matrix of strings, the sort function works exactly as shown previously for
numbers. For example,

>> words = char(‘Hello’, ‘Howdy’, ‘Hi’, ‘Goodbye’, ‘Ciao’)
words =
Hello
Howdy
Hi
Goodbye
Ciao

The following sorts column-by-column using the ASCII equivalents of the
characters. It can be seen from the results that the space character comes before
the letters of the alphabet in the character encoding:

>> sort(words)
ans =
Ce
Giad
Hildb

QuiCK Question!

Is this sort function general? Would it work for any vector of
structures, not just one configured like packages?
answer: It is fairly general. It will work for any vector of struc-
tures. However, the comparison will work for only numerical

or character fields. So, as long as the field is a number or char-
acter, this function will work for any vector of structures. If the
field is a vector itself (including a string), it will not work.

Chapter 12 Basic statistics, searching, and sorting378

Hoolo
Howoyye

To sort on the rows instead the second dimension must be specified.

>> sort(words,2)
ans =

Hello
Hdowy

Hi
Gbdeooy

Caio

It can be seen by this that the blank space comes before the letters of the alpha-
bet in the character encoding, and also that the uppercase letters come before
the lowercase letters.

How could the strings be sorted alphabetically? MATLAB has a function
sortrows that will do this. The way it works is that it examines the strings
column-by-column starting from the left. If it can determine which letter
comes first, it picks up the entire string and puts it in the first row. In this
example, the first two strings are placed based on the first character, C and
G. For the other three strings, they all begin with H so the next column is
examined. In this case the strings are placed based on the second character,
e, i, o.

>> sortrows(words)
ans =
Ciao
Goodbye
Hello
Hi
Howdy

The sortrows function sorts each row as a block, or group, and it will also work
on numbers. In this example the rows beginning with 3 and 4 are placed first.
Then, for the rows beginning with 5, the values in the second column (6 and
7) determine the order.

>> mat = [5 7 2; 4 6 7; 3 4 1; 5 6 2]
mat =

5 7 2
4 6 7
3 4 1
5 6 2

>> sortrows(mat)
ans =

37912.4 Indexing

3 4 1
4 6 7
5 6 2
5 7 2

To sort a cell array of strings, the sort function can be used. For example,

>> engcellnames = {‘Chemical’,‘Mechanical’,. . .
 ‘Biomedical’,‘Electrical’, ‘Industrial’};
>> sort(engcellnames‘)
ans =

 ‘Biomedical’
 ‘Chemical’
 ‘Electrical’
 ‘Industrial’
 ‘Mechanical’

12.4 indexing
Indexing is an alternative to sorting a vector. With indexing, the vector is left in
its original order. An index vector is used to point to the values in the original
vector in the desired order.

For example, for a vector of exam grades:

grades

1 2 3 4 5 6

85 70 100 95 80 91

In ascending order, the lowest grade is in element 2, the next lowest is in ele-
ment 5, and so on. The index vector grade_index gives this order:

grade_index

1 2 3 4 5 6

2 5 1 6 4 3

The index vector is then used as the indices for the original vector. To get the grades
vector in ascending order, the indices used would be grades(2), grades(5),
and so on. Using the index vector to accomplish this, grades(grade_index(1))
would be the lowest grade, 70, and grades (grade_index(2)) would be the
second lowest grade. In general, grades(grade_index(i)) would be the ith
lowest grade.

To create these in MATLAB:

>> grades = [85 70 100 95 80 91];
>> grade_index = [2 5 1 6 4 3];
>> grades(grade_index)
ans =

70 80 85 91 95 100

Chapter 12 Basic statistics, searching, and sorting380

However, instead of creating the index vector manually as shown here, the pro-
cedure to initialize the index vector is to use a sort function. The algorithm is:

■■ Initialize the values in the index vector to be the indices 1,2, 3,

■■ Use any sort algorithm, but compare the elements in the original vector
using the index vector to index into it (e.g., using grades(grade_
index(i)) as shown earlier).

■■ When the sort algorithm calls for exchanging values, exchange the
elements in the index vector, not in the original vector.

Here is a function that implements this algorithm:

createind.m

function indvec = createind(vec)

%This function creates index vector in ascending order

% Initialize the index vector

len = length(vec);

indvec = 1:len;

for i = 1:len-1

 low = i;

 for j=i+1:len

 % Compare values in the original vector

 if vec(indvec(j)) < vec(indvec(low))

 low = j;

 end

 end

 % Exchange elements in the index vector

 temp = indvec(i);

 indvec(i) = indvec(low);

 indvec(low) = temp;

 end

For example, for the grades vector just given:

>> clear grade_index
>> grade_index = createind(grades)
grade_index =

2 5 1 6 4 3

38112.4 Indexing

>> grades(grade_index)
ans =

70 80 85 91 95 100

12.4.1 indexing into Vectors of structures
Often, when the data structure is a vector of structures, it is necessary to iterate
through the vector in order by different fields. For example, for the packages vec-
tor defined previously, it may be necessary to iterate in order by the cost, or by
the price fields. Rather than sorting the entire vector of structures based on these
fields, it may be more efficient to index into the vector based on these fields, for
example, to have an index vector based on cost and another based on price.

 packages

 item_no cost price code cost_ind price_ind

1 123 19.99 39.95 ‘g’ 1 2 1 3

2 456 5.99 49.99 ‘l’ 2 3 2 1

3 587 11.11 33.33 ‘w’ 3 1 3 2

These index vectors would be created as before, comparing the fields but
exchanging the values in the index vectors. Once the index vectors have been
created, they can be used to iterate through the packages vector in the desired
order. For example, the function to print the information from packages has
been modified so that in addition to the vector of structures, the index vector is
also passed, and the function iterates using that index vector.

printpackind.m

function printpackind(packstruct, indvec)

% This function prints a table showing all

% values from a vector of packages structures

fprintf(‘Item # Cost Price Code \n’)

no_packs = length(packstruct);

for i = 1:no_packs

fprintf(‘%6d %6.2f %6.2f %3c\n’, ...

packstruct(indvec(i)).item_no, ...

packstruct(indvec(i)).cost, ...

packstruct(indvec(i)).price, ...

packstruct(indvec(i)).code)

end

Chapter 12 Basic statistics, searching, and sorting382

>> printpackind(packages,cost_ind)
Item Cost Price Code

456 5.99 49.99 l
587 11.11 33.33 w
123 19.99 39.95 g

>> printpackind(packages,price_ind)
Item Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

12.5 searChing
Searching means looking for a value (a key) in a list or
in a vector. We already have seen that MATLAB has a
function, find, that will return the indices in an array

that meet a criterion. To examine the programming methodologies, we will in
this section examine two search algorithms:

■■ sequential search

■■ binary search

12.5.1 sequential search
A sequential search is accomplished by looping through the vector element-by-
element starting from the beginning, looking for the key. Normally the index
of the element in which the key is found is what is returned. For example, here
is a function that will search a vector for a key and return the index or the value
0 if the key is not found:

seqsearch.m

function index = seqsearch(vec, key)

% Implements a sequential search through a

% vector looking for a key; returns the index

len = length(vec);

index = 0;

for i = 1:len

if vec(i) == key

index = i;

end

end

praCtiCe 12.3
Modify the function createind to create
the cost_ind index vector.

38312.5 Searching

Here are two examples of calling this function:

>> values = [85 70 100 95 80 91];
>> key = 95;
>> seqsearch(values, key)
ans =
 4
>> seqsearch(values, 77)
ans =
 0

This example assumes that the key is found only in one element in the vector.
Also, although it works, it is not a very efficient algorithm. If the vector is large,
and the key is found in the beginning, this still loops through the rest of the
vector. An improved version would loop until the key is found or the entire
vector has been searched. In other words, a while loop is used rather than a for
loop; there are two parts to the condition.

smartseqsearch.m

function index = smartseqsearch(vec, key)

% Smart sequential search; searches a vector

% for a key but ends when it is found

% Returns the index or 0 if not found

len = length(vec);

index = 0;

i = 1;

while i < len && vec(i) = key

 i = i + 1;

end

if vec(i) == key

 index = i;

end

12.5.2 Binary search
The binary search assumes that the vector has been sorted first. The algorithm is
similar to the way it works when looking for a name in a phone directory (which is
sorted alphabetically). To find the value of a key, look at the element in the middle.

■■ If that is the key, the index has been found.

■■ If it is not the key, decide whether to search the elements before or after
this location and adjust the range of values in which the search is taking
place and start this process again.

Chapter 12 Basic statistics, searching, and sorting384

To implement this, we will use variables low and high to specify the range of
values in which to search. To begin, the value of low will be 1, and the value of
high will be the length of the vector. The variable mid will be the index of the
element in the middle of the range from low to high. If the key is not found at
mid, there are two possible ways to adjust the range. If the key is less than the
value at mid, we change high to mid – 1. If the key is greater than the value at
mid, we change low to mid 1.

An example is to search for the key of 91 in the vector

1 2 3 4 5 6
70 80 85 91 95 100

The following table shows what will happen in each iteration of this search
algorithm.

Iteration Low High Mid Found? Action

1 1 6 3 No Move low to mid + 1

2 4 6 5 No Move high to mid – 1

3 4 4 4 Yes Done! Index is mid

The key was found in the fourth element of the vector.

Another example: search for the key of 82:

Iteration Low High Mid Found? Action

1 1 6 3 No Move high to mid –1

2 1 2 1 No Move low to mid + 1

3 2 2 2 No Move low to mid + 1

4 3 2 this ends it!

The value of low can’t be greater than high; this means that the key is not in the
vector. So, the algorithm repeats until either the key is found or until low > high,
which means the key is not there.

The following function implements this binary search algorithm. The func-
tion receives two arguments: the sorted vector, and a key (alternatively, the
function could sort the vector). The values of low and high are initialized to
the first and last indices in the vector. The output argument outind is initial-
ized to –1, which is the value that the function will return if the key is not
found. The function loops until either low is greater than high, or until the
key is found.

38512.5 Searching

binsearch.m

function outind = binsearch(vec, key)

% This function implements a binary search

low = 1;

high = length(vec);

outind = −1;

while low <= high && outind == -1

 mid = floor((low + high)/2);

 if vec(mid) == key

 outind = mid;

 elseif key < vec(mid)

 high = mid - 1;

 else

 low = mid + 1;

 end

end

Here are examples of calling this function:

>> vec = randint(1,7, [1 30])
vec =

2 11 25 1 5 7 6

>> svec = sort(vec)
svec =

1 2 5 6 7 11 25

>> binsearch(svec, 4)
ans =
 −1

>> binsearch(svec, 25)
ans =
 7

>> binsearch(svec, 5)
ans =
 3

The binary search can also be implemented as a recursive function. The follow-
ing recursive function also implements this binary search algorithm. The func-
tion receives four arguments: a sorted vector, a key to search for, and the values

Chapter 12 Basic statistics, searching, and sorting386

of low and high (which, to begin, will be 1 and the length of the vector). It will
return –1 if the key is not in the vector, or the index of the element in which
it is found. The base cases in the algorithm are when low > high, which means
the key is not in the vector, or when it is found. Otherwise, the general case is
to adjust the range and call the binary search function again.

recbinsearch.m

function outind = recbinsearch(vec, key, low, high)

% Recursive binary search function

mid = floor((low + high)/2);

if low > high

 outind = -1;

elseif vec(mid) == key

 outind = mid;

elseif key < vec(mid)

 outind = recbinsearch(vec,key,low,mid−1);

else

 outind = recbinsearch(vec,key,mid+1,high);

end

Here are examples of calling this function:

>> recbinsearch(svec, 5,1,length(svec))
ans =
 3
>> recbinsearch(svec, 25,1,length(svec))
ans =
 7

>> recbinsearch(svec, 4,1,length(svec))
ans =
 −1

suMMary
Common pitfalls

■■ Forgetting that max and min return the index of only the first occurrence of the
maximum or minimum value

■■ Not realizing that a data set has outliers that can drastically alter the results
obtained from the statistical functions

387Exercises

■■ When sorting a vector of structures on a field, forgetting that although only the
field in question is compared in the sort algorithm, the entire structures must be
interchanged

■■ Forgetting that a data set must be sorted before using a binary search

programming style guidelines
■■ Remove the largest and smallest numbers from a large data set before performing

statistical analyses, in order to handle the problem of outliers.
■■ Use sortrows to sort strings stored in a matrix alphabetically; for cell arrays, sort

can be used.
■■ When it is necessary to iterate through a vector of structures in order based on

several different fields, it may be more efficient to create index vectors based on
these fields rather than sorting the vector of structures multiple times.

exercises
 1. Experimental data values are stored in a file. Create a file in a matrix form

with random values for testing. Write a script that will load the data, and then
determine the difference between the largest and smallest numbers in the file.

 2. The range of a data set is the difference between the largest value and the
smallest. A data file ‘tensile.dat’ stores the tensile strength of some aluminum
samples. Create a test data file; read in the tensile strengths and print the range.

 3. Write a function mymin that will receive any number of arguments, and will return
the minimum. For example,

>> mymin(3, 6, 77, 2, 99)
ans =
2

 note: The function is not receiving a vector; rather, all the values are separate
arguments.

 4. The chemical balance of a swimming pool is important for the safety of the
swimmers. The pH level of a pool has been measured every day and the results
are stored in a file. Create a data file to simulate these measurements; the values
should be random numbers in the range from 7 to 8. Read the pH values from the
file and calculate the mean and standard deviation of the pH values.

 5. A batch of 500-ohm resistors is being tested by a quality engineer. A file called
‘testresist.dat’ stores the resistance of some resistors that have been measured.

MATLAB Functions and Commands

mean
var
std
mode

median
union
intersect
unique

setdiff
setxor
ismember
issorted

sort
sortrows

Chapter 12 Basic statistics, searching, and sorting388

The resistances have been stored one per line in the file. Create a data file in this
format. Then, load the information and calculate and print the mean, median,
mode, and standard deviation of the resistances. Also, calculate how many of the
resistors are within 1% of 500 ohms.

 6. Write a function calcvals that will calculate the maximum, minimum, and mean
value of a vector based on how many output arguments are used to call the
function. Examples of function calls are as follows:

>> vec = [4 9 5 6 2 7 16 0];
>> [mmax, mmin, mmean] = calcvals(vec)
mmax =
 16
mmin =
 0
mmean =
 6
>> [mmax, mmin] = calcvals(vec)
mmax =
 16
mmin =
 0
>> mma x = calcvals(vec)
mmax =
 16

 7. Write a script that will do the following. Create two vectors with 20 random
integers in each; in one the integers should range from 1 to 5, and in the other
from 1 to 500. For each vector, would you expect the mean and median to be
approximately the same? Would you expect the standard deviation of the two
vectors to be approximately the same? Answer these questions, and then use
the built-in functions to find the minimum, maximum, mean, median, standard
deviation, and mode of each. Do a histogram for each in a subplot. Run the script a
few times to see the variations.

 8. Write a function that will return the mean of the values in a vector, not including the
minimum and maximum values. Assume that the values in the vector are unique.
It is OK to use the built-in mean function. To test this, create a vector of 10 random
integers, each in the range from 0 to 50, and pass this vector to the function.

 9. Write a function mymedian that will receive a vector as an input argument, and
will sort the vector and return the median. Any built-in functions may be used,
except the median function. Loops may not be used. Here are some examples of
function calls:

>> mymedian(1:5)
ans =
 3

389Exercises

>> mymedian(1:6)
ans =
 3.5000
>> mymedian([5 9 2])
ans =
 5
>> m = mymedian([5 9 2 4])
m =
 4.5000

 10. What is the difference between the mean and the median of a data set if there are
only two values in it?

 11. A student missed one of four exams in a course, and the professor decided to use
the average of the other three grades for the missed exam grade. Which would be
better for the student: the mean or the median if the three recorded grades were
99, 88, and 95? What if the grades were 99, 70, and 77?

 12. A weighted mean is used when there are varying weights for the data values. For
a data set given by x = {x1, x2, x3, x4, . . . , xn} and corresponding weights for each
xi, w = {w1, w2, w3, w4, . . . , wn}, the weighted mean is

 =

=

å

å
1

1

.

n

i i
i
n

i
i

x w

w

 For example, assume that in an economics course there are three quizzes and
two exams, and the exams are weighted twice as much as the quizzes. If the quiz
scores are 95, 70, and 80 and the exam scores are 85 and 90, the weighted mean
would be:

+ + + +

= =
+ + + +

95*1 70*1 80*1 85*2 90*2 595
85

1 1 1 2 2 7

 Write a function that will receive two vectors as input arguments: one for the data
values and one for the weights, and will return the weighted mean.

 13. A production facility is producing some nails that are supposed to have a
diameter of 0.15 inch. At five different times, 10 sample nails were measured; their
diameters were stored in a file that has five lines and 10 diameters on each. First,
create a data file to simulate this data. Then, write a script to print the mean and
standard deviation for each of the five sets of sample nails.

 14. The coefficient of variation is useful when comparing data sets that have
quite different means. The formula is CV = (standard deviation/mean) * 100%.
A history course has two different sections; their final exam scores are stored in
two separate rows in a file. For example,

99 100 95 92 98 89 72 95 100 100
83 85 77 62 68 84 91 59 60

Chapter 12 Basic statistics, searching, and sorting390

 Create this data file, read the data into vectors, and then use the CV to compare
the two sections of this course.

 15. Write a function allparts that will read in lists of part numbers for parts produced
by two factories. These are contained in data files called ‘xyparts.dat’ and
‘qzparts.dat’. The function will return a vector of all parts produced, in sorted order
(with no repeats). For example, if the file ‘xyparts.dat’ contains

123 145 111 333 456 102

 and the file ‘qzparts.dat’ contains

876 333 102 456 903 111

 calling the function would return the following:

>> partslist = allparts
partslist =

102 111 123 145 333 456 876 903

 16. The set functions can be used with cell arrays of strings. Create two cell arrays to
store (as strings) course numbers taken by two students. For example,

s1 = {‘EC 101’, ‘CH 100’, ‘MA 115’};
s2 = {‘CH 100’, ‘MA 112’, ‘BI 101’};

 Use a set function to determine which courses the students have in common.
 17. A vector v is supposed to store unique random numbers. Use set functions to

determine whether or not this is true.
 18. Write a function mydsort that sorts a vector in descending order (using a loop, not

the built-in sort function).
 19. In product design, it is useful to gauge how important different features of the

product would be to potential customers. One method of determining which
features are most important is a survey in which people are asked for different
features: “Is this feature important to you?” The number of potential customers who
responded Yes is then tallied. For example, a company conducted such a survey
for 10 different features; 200 people took part in the survey. The data was collected
into a file that might look like this:

1 2 3 4 5 6 7 8 9 10
30 83 167 21 45 56 55 129 69 55

 A Pareto chart is a bar chart in which the bars are arranged in decreasing values.
The bars on the left in a Pareto chart indicate which are the most important
features. Create a data file, and then a subplot to display the data with a bar chart
organized by question on the left and a Pareto chart on the right.

 20. DNA is a double-stranded helical polymer that contains basic genetic information
in the form of patterns of nucleotide bases. The patterns of the base molecules A, T,

391Exercises

C, and G encode the genetic information. Construct a cell array to store some DNA
sequences as strings, such as

TACGGCAT
ACCGTAC

 and then sort these alphabetically. Next, construct a matrix to store some DNA
sequences of the same length and then sort them alphabetically.

 21. Write a function matsort to sort all the values in a matrix (decide whether the
sorted values are stored by row or by column). It will receive one matrix argument
and return a sorted matrix. Do this without loops, using the built-in functions sort
and reshape. For example:

>> mat
mat =

4 5 2
1 3 6
7 8 4
9 1 5

>> matsort(mat)
ans =

1 4 6
1 4 7
2 5 8
3 5 9

 22. Write a function that will receive two arguments: a vector and a character (either ‘a’
or ‘d’) and will sort the vector in the order specified by the character (ascending or
descending).

 23. Write a function that will receive a vector and will return two index vectors: one
for ascending order, and one for descending order. Check the function by writing a
script that will call the function and then use the index vectors to print the original
vector in ascending and descending order.

 24. Write a function myfind that will search for a key in a vector and return the indices
of all occurrences of the key, like the built-in find function. It will receive two
arguments: the vector and the key, and will return a vector of indices (or the empty
vector [] if the key is not found).

This page intentionally left blank

393

Contents

© 2009, 2003,1999 Elsevier Inc.

13.1 Sound Files 393

13.2 Introduction to
Handle Graphics 395

13.3 Image
Processing 400

13.4 Introduction
to Graphical User
Interfaces 405

sound signal

sampling frequency

audio file format

graphics primitive

object-oriented

programming

parent/child

core object

text box

pixel

true color

RGB

colormap

Graphical User

Interface

event

callback function

Key Words

Chapter 13

Sights and Sounds

The MATLAB® product has functions that manipulate audio or sound files and
also images. This chapter will start with a brief introduction to some of the
sound processing functions. We have seen that MATLAB uses Handle Graphics®
in its figures. Some of the core graphics objects used to create figures will be
explored. Image processing functions will be introduced, and the two basic
methods for representing color in images will be explained. Finally, this chap-
ter will introduce the topic of Graphical User Interfaces from a programming
standpoint.

13.1 sound Files
A sound signal is an example of a continuous signal that is sampled to result
in a discrete signal. In this case, sound waves traveling through the air are
recorded as a set of measurements that can then be used to reconstruct the

Chapter 13 sights and sounds394

0 2000 4000 6000 8000 10000 12000 14000
1

0.5

 0

0.5

 1
Chirp

0 2000 4000 6000 8000 10000 12000 14000
1

0.5

 0

0.5

 1
Train

original sound signal as closely as possible. The sampling rate or sampling fre-
quency is the number of samples taken per time unit, for example per second.
Sound signals are usually measured in Hertz (Hz).

In MATLAB, the discrete sound signal is represented by a vector, and the fre-
quency is measured in Hertz. MATLAB has several MAT-files that store, for vari-
ous sounds, the signal vector in a variable y and the frequency in a variable Fs.
These MAT-files include chirp, gong, laughter, splat, train, and handel. There
is a built-in function, sound, that will send a sound signal to an output device
such as speakers. The function call

>> sound(y,Fs)

will play the sound represented by the
vector y at the frequency Fs. For exam-
ple, to hear a gong, load the variables
from the MAT-file and then play the
sound using the sound function:

>> load gong
>> sound(y,Fs)

Sound is actually a wave; the amplitudes
are what are stored in the sound signal
variable y. These are supposed to be in the
range from –1 to 1. The plot function can
be used to display the data. For example,
the following script creates a subplot that
displays the signals from chirp and from
train, as seen in Figure 13.1.

chirptrain.m

% Display the sound signals from chirp and train

load chirp

subplot(2,1,1)

plot(y)

title(‘Chirp’)

load train

subplot(2,1,2)

plot(y)

title(‘Train’)

Figure 13.1
Amplitudes from chirp and
train.

39513.2 Introduction to Handle Graphics

The first argument to the sound function can be an n 2 matrix for stereo
sound. Also, the second argument can be omitted when calling the sound
function, in which case the default sample frequency of 8192 Hz is used. This
is the frequency stored in the built-in sound MAT-files.

>> load train
Fs
Fs =
 8192

MATLAB has several other functions that let you read
and play sound or audio files. In audio files, sampled
data for each audio channel is stored. There are sev-
eral audio file formats that are used in industry, on
different computer platforms. Audio files with the
extension .au were developed by Sun Microsystems,
and typically are used with Java and UNIX, whereas
Windows PCs typically use .wav files that were devel-
oped by Microsoft.

MATLAB has functions wavread that will read a .wav file, wavrecord that will
record, wavwrite that will write a sound file, and wavplay that will play one.
The default frequency for these functions is 11025 Hz.

For .au files, there are functions auread to read and auwrite to write in this
format.

13.2 introduCtion to handle GraphiCs
With Handle Graphics, all figures consist of different objects, each of which is
assigned a handle. The object handle is a unique real number that is used to
refer to the object.

13.2.1 Graphics objects and their properties
Objects include graphics primitives such as lines and text, as well as the
axes used to orient the objects. The objects are organized hierarchically,
and there are properties associated with each object. This is the basis of
object-oriented programming: objects are organized hierarchically (e.g., a
parent comes before its children in the hierarchy) and this hierarchy has
ramifications in terms of the properties; generally children inherit proper-
ties from the parents. The hierarchy in MATLAB can be seen in the Help,
“Organization of Graphics Objects.” In this, it can be seen that the organi-
zation includes

praCtiCe 13.1
If you have speakers, try loading one of
the sound MAT-files, and use the sound
function to play the sound. Then, change
the frequency; for example, multiply
the variable Fs by 2 and by 0.5 and play
these sounds again.

>> load train
>> sound(y, Fs)
>> sound(y, Fs*2)
>> sound(y, Fs*.5)

Chapter 13 sights and sounds396

Figure Parent
 |

Axes |
 ↓

Core Objects Plot Objects Children

In other words, the Figure Window includes Axes, which are used to orient
Core objects (primitives such as line, rectangle, text) and Plot objects (which
are used to produce bar charts, area plots, etc.).

We have seen already that once an object handle has been stored in a variable, the
function get can be used to find its properties, and set can be used to change them.

13.2.1.1 Core Objects
The Core Objects in MATLAB are the very basic graphics primitives. A description
can be found under the MATLAB Help: Under the Contents tab, click Handle
Graphics Objects, and then Core Graphics Objects. The core objects include:

■■ line

■■ text

■■ rectangle

■■ patch

■■ image

These are all built-in functions; help can be used to find out how each func-
tion is used.

One core graphics object is a line, which is also what the plot function pro-
duces. Here is an example of creating a line object, modifying some properties,
and saving the handle in a variable hl:

>> x = -2*pi: 1/5 : 2*pi;
>> y = sin(x);
>> hl = line(x,y,‘LineWidth’, 3, ‘Color’, [0.5 0.5 0.5])
hl =
 159.0405

As seen in Figure 13.2, this draws a reasonably thick grey line for the sin func-
tion. As before, the handle will be valid as long as the Figure Window is not
closed. Some of the properties of this object are:

>> get(hl)
Color = [0.5 0.5 0.5]
EraseMode = normal
LineStyle = –

39713.2 Introduction to Handle Graphics

LineWidth = [3]
Marker = none
MarkerSize = [6]
t = auto
MarkerFaceColor = none
XData = [(1 by 63) double array]
YData = [(1 by 63) double array]
ZData = []

etc.

The text graphics function allows text to be printed in
a Figure Window, including special characters that are
printed using \specchar, where specchar is the actual
name of the special character. The format of a call to
the text function is

text(x,y,‘text string’)

where x and y are the coordinates on the graph of the beginning of the text box
in which the text string appears.

To see the options for the special characters, under the Contents tab in Help,
click Handle Graphics Property Browser, then click Core Objects, and then
choose Text. The special characters are shown in a table under the String prop-
erty. The special characters include letters of the Greek alphabet, arrows, and
characters frequently used in equations. For example, Figure 13.3 displays the
Greek symbol for pi and a right arrow within the text box.

>> x = –4:0.2:4;
>> y = sin(x);
>> hp = line(x,y,‘LineWidth’,3);
>> thand = text(2,0,‘Sin(\pi)\rightarrow’)

Using get will display properties of the text box,
for example:

>> get(thand)
 BackgroundColor = none
 Color = [0 0 0]
 EdgeColor = none
 EraseMode = normal
 Editing = off
 Extent = [1.95862 -0.0670554 0.901149
 0.110787]
 FontAngle = normal
 FontName = Helvetica
 FontSize = [10]

�8 �6 �4 �2 0 2 4 6 8
 �1

�0.8

�0.6

�0.4

�0.2

 0

0.2

0.4

0.6

0.8

 1

Figure 13.2
A line object with modified
line width and color.

4 3 2 1 0 1 2 3 4
1

0.8

0.6

0.4

0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Sin()

Figure 13.3
A line object with a text box.

Chapter 13 sights and sounds398

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

4 3 2 1 0 1 2 3 4
1

0.8

0.6

0.4

0.2

 0

0.2

0.4

0.6

0.8

 1

Sin()

Figure 13.4
Text box with a modified
edge color and background
color.

 FontUnits = points
 FontWeight = normal
 HorizontalAlignment = left
 LineStyle = -
 LineWidth = [0.5]
 Margin = [2]
 Position = [2 0 0]
 Rotation = [0]
 String = Sin(\pi)\rightarrow
 Units = data
 Interpreter = tex
 VerticalAlignment = middle
 etc.

Although the Position specified was (2,0), the Extent
is the actual extent of the text box, which cannot be
seen since the BackgroundColor and EdgeColor are
not specified. These can be changed using set. For
example, the following produces the result seen in
Figure 13.4:

>> set(thand,‘BackgroundColor’,[0.8 0.8 0.8],. . .
 ‘EdgeColor’,[1 0 0])

When the Units property has the value of data, which
is the default as shown, the Extent of the text box is
given by a vector [x y width height] where x and
y are the coordinates of the bottom left-hand corner of
the text box.

Another core graphics object is the rectangle, which
can have curvature added to it (!!). Just calling the
function rectangle without any arguments brings up
a Figure Window (seen in Figure 13.5) which at first
glance doesn’t seem to have anything in it:

>> recthand = rectangle;

Using the get function will display the properties,
some of which are excerpted here:

>> get(recthand)
 Curvature = [0 0]
 FaceColor = none
 EdgeColor = [0 0 0]
 LineStyle = -
 LineWidth = [0.5]

Figure 13.5
A rectangle object.

39913.2 Introduction to Handle Graphics

 Position = [0 0 1 1]
 Type = rectangle

The Position of a rectangle is [x y w h], where x and y are the
coordinates of the lower left point, w is the width, and h is
the height. The default rectangle has a Position of [0 0 1 1].
The default Curvature is [0 0], which means no curvature.
The values range from [0 0] (no curvature) to [1 1] (ellipse).
A more interesting rectangle object is seen in Figure 13.6.
Notice that properties can be set when calling the rectangle
function, and also subsequently using the set function.

>> rh = rectangle(‘Position’, [0.2, 0.2, 0.5, 0.8],. . .
 ‘Curvature’,[0.5, 0.5]);
>> axis([0 1.2 0 1.2])
>> set(rh,‘Linewidth’,3,‘LineStyle’,‘:’)

The patch function is used to create a patch graph-
ics object, which is made from two-dimensional
polygons. The patch is defined by its vertices and
faces. For example, consider a patch that has four
vertices in three-dimensional space, given by the
coordinates:

(0, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0.5, 0.5, 1)

Just to visualize these points first, the plot3 function
can be used, as seen in Figure 13.7.

>> x = [0 1 0 0.5];
>> y = [0 0 1 0.5];
>> z = [0 0 0 1];
>> plot3(x,y,z,‘ko’)

Rotating the figure displays all four points, as seen in
Figure 13.8.

Creating and displaying these points is not necessary
to create a patch object; this was just done to visual-
ize the vertices first. A patch object is defined by both
the vertices and the faces of the polygon that con-
nect these vertices. One way of calling this function
is patch(fv), where fv is a structure variable with
fields called vertices and faces.

0 0.2 0.4 0.6 0.8 1 1.2
 0

0.2

0.4

0.6

0.8

 1

1.2

Figure 13.6
Rectangle object with
curvature.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
 0

0.2

0.4

0.6

0.8

 1

Figure 13.7
Visualization of three-dimensional points using plot3.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Figure 13.8
Three-dimensional points rotated.

Chapter 13 sights and sounds400

Figure 13.9
Patch object.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Figure 13.10
Rotated patch object.

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

 0

0.5

 1

polyhedron.vertices = [. . .
0 0 0
1 0 0
0 1 0
0.5 0.5 1];
polyhedron.faces = [. . .
1 2 3
1 2 4
1 3 4
2 3 4];
pobj = patch(polyhedron, . . .
‘FaceColor’,[0.8, 0.8, 0.8],. . .
‘EdgeColor’,‘black’);

The polyhedron.vertices field is a matrix in which each
row represents (x,y,z) points. The field polyhedron.
faces defines the faces: for example the first row in
the matrix specifies to draw a line from vertex 1 to
vertex 2 to vertex 3 to form the first face. The face
color is set to grey and the edge color to black. The
figure, as seen in Figure 13.9, shows only two faces.
Using the rotate icon on the Figure Window, the fig-
ure can be rotated to see the other edges as seen in
Figure 13.10.

13.3 imaGe proCessinG
Images are represented as grids, or matrices, of pic-
ture elements (called pixels). In MATLAB an image
typically is represented as a matrix in which each ele-

ment corresponds to a pixel in the image. Each element that represents a par-
ticular pixel stores the color for that pixel. There are two basic ways that the
color can be represented:

■■ True color, or RGB, in which the three color components are stored (red,
green, and blue, in that order).

■■ Index into a colormap: the value stored is an integer that refers to a row
in a matrix called a colormap. The colormap stores the red, green, and
blue components in three separate columns.

For an image that has m n pixels, the true color matrix would be a three-
dimensional matrix with the size m n 3. The first two dimensions represent
the coordinates of the pixel. The third index is the color component; (:,:,1) is
the red, (:,:,2) is the green, and (:,:,3) is the blue component.

40113.3 Image Processing

The indexed representation instead would be an m n matrix of integers,
each of which is an index into a colormap matrix that is the size p 3
(where p is the number of colors available in that particular colormap).
Each row in the colormap has three numbers representing one color: first
the red, then green, then blue components, as we have seen before. For
example,

[1 0 0] is red
[0 1 0] is green
[0 0 1] is blue
 etc.

MATLAB has several built-in colormaps that are named; the reference page
on colormap displays them. Calling the function colormap without pass-
ing any arguments will return the current colormap, which by default is one
called jet.

The following stores the current colormap in a variable map, gets the size
of the matrix (which will be the number of rows in this matrix, or in other
words the number of colors, by 3 columns), and displays the first five rows
in this colormap. If the current colormap is the default jet, this will be the
result:

>> map = colormap;
>> [r c] = size(map)
r =
 64
c =
 3
>> map(1:5,:)
ans =

0 0 0.5625
0 0 0.6250
0 0 0.6875
0 0 0.7500
0 0 0.8125

This shows that there are 64 rows, or in other words, 64 colors, in this particu-
lar colormap. It also shows that the first five colors are shades of blue.

The format of calling the image function is:

image(mat)

where the matrix mat is a matrix that represents the colors in an m n image
(m n pixels in the image). If the matrix has the size m n, then each element
is an index into the current colormap.

Chapter 13 sights and sounds402

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

 1

1.5

 2

2.5

 3

3.5

 4

4.5

 5

5.5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

One way to display the colors in the jet colormap
(which has 64 colors) is to create a matrix that
stores the values 1 through 64, and pass that to
the image function, as seen in Figure 13.11. When
the matrix is passed to the image function, the
value in each element in the matrix is used as an
index into the colormap. For example, the value in
cmap(1,2) is 9, so the color displayed in location
(1,2) in the image will be the color represented by
the ninth row in the colormap. By using the num-
bers 1 through 64, we can see all the colors in this
colormap.

>> cmap = reshape(1:64, 8,8)
cmap =

1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63
8 16 24 32 40 48 56 64

>> image(cmap)

This shows that the first colors are shades of blue, the last colors are shades of
red, and in between there are shades of aqua, green, yellow, and orange.

Another example creates a 5 5 matrix of random integers in the range from 1
to the number of colors; the resulting image is seen in Figure 13.12.

>> mat = randint(5,5,[1, r])
mat =

54 33 13 45 32
 2 46 44 25 58
44 28 20 56 53
25 20 35 55 42
54 13 10 38 53

>> image(mat)

Of course, these images are rather crude; the ele-
ments representing the pixel colors are quite large
blocks. A larger matrix would result in something
more closely resembling an image, as displayed in
Figure 13.13.

Figure 13.11
Columnwise display of
the 64 colors in the jet
colormap.

Figure 13.12
A 5 5 display of random
colors from the jet
colormap.

40313.3 Image Processing

>> mat = randint(500,500,[1, r]);
>> image(mat)

Although MATLAB has built-in colormaps, it is
also possible to create others using combinations
of any colors. For example, the following creates
a customized colormap with just three colors:
black, white, and red. This is then set to be the cur-
rent colormap by passing the color map matrix to
the colormap function. Then, a 40 40 matrix of
random integers in the range from 1 to 3 (since
there are just three colors) is created, and that is
passed to the image function; the results are seen
in Figure 13.14.

>> mycolormap = [0 0 0; 1 1 1; 1 0 0]
mycolormap =

0 0 0
1 1 1
1 0 0

>> colormap(mycolormap)
>> mat = randint(40,40,[1 3]);
>> image(mat)

True color matrices are another way to represent
images. True color matrices are three-dimensional
matrices. The first two coordinates are the coordi-
nates of the pixel. The third index is the color com-
ponent; (:,:,1) is the red, (:,:,2) is the green, and
(:,:,3) is the blue component. Each element in the
matrix is of the type uint8, which is an unsigned
integer type using 8 bits (unsigned means that the

 or – sign is not stored). With 8 bits, 28 (or 256)
values can be stored and so the range of values is 0
to 255. The minimum value, 0, represents the darkest hue available so all 0’s
results in a black pixel. The maximum value, 255, represents the brightest hue.
For example, if the values for a given pixel coordinates px and py (px,py,1) is
255, (px,py,2) is 0 and (px,py,3) is 0 then that pixel will be bright red. All 255’s
results in a white pixel.

The image function displays the information in the three-dimensional matrix
as an image.

For example, this creates a 2 2 image as seen in Figure 13.15. The matrix is 2
2 3, where the third dimension is the color. The pixel in location (1,1) is red,

50 100 150 200 250 300 350 400 450 500

 50

100

150

200

250

300

350

400

450

500

Figure 13.13
A 500 × 500 display of random colors.

5 10 15 20 25 30 35 40

 5

10

15

20

25

30

35

40

Figure 13.14
Random colors from a custom colormap.

Chapter 13 sights and sounds404

Figure 13.16
Image from a JPEG file displayed using image.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

Figure 13.15
Image from a true color matrix.

0.5 1 1.5 2 2.5

0.5

 1

1.5

 2

2.5

the pixel in location (1,2) is blue, the pixel in location (2,1) is
green, and the pixel in location (2,2) is black.

>> mat(1,1,1) = 255;
>> mat(1,1,2) = 0;
>> mat(1,1,3) = 0;
>> mat(1,2,1) = 0;
>> mat(1,2,2) = 0;
>> mat(1,2,3) = 255;
>> mat(2,1,1) = 0;
>> mat(2,1,2) = 255;
>> mat(2,1,3) = 0;
>> mat(2,2,1) = 0;
>> mat(2,2,2) = 0;
>> mat(2,2,3) = 0;
>> mat = uint8(mat);
>> image(mat)

The function imread can read in an image file, for example a JPEG (.jpg) file.
The function reads color images into a three-dimensional matrix.

>> myimage1 = imread(‘Fishing_1.JPG’);
>> size(myimage1)
ans =

1536 2048 3

In this case, the image is represented
as true color matrix. This indicates that
the image has 1536 2048 pixels. The
image function displays the informa-
tion in this three-dimensional matrix as
an image, as seen in Figure 13.16.

>> image(myimage1)

The image can be changed by manipu-
lating the numbers in the matrix. For
example, multiplying every number
by 0.75 will result in a range of values
from 0 to 191 instead of from 0 to 255.
Since the larger numbers are brighter,
this has the effect of dimming the hues
in the pixels, as seen in Figure 13.17.

>> dimmer = 0.75*myimage1;
>> image(dimmer)

40513.4 Introduction to Graphical User Interfaces

13.4 introduCtion
to GraphiCal user
interFaCes
Graphical user interfaces, or GUIs, are
essentially objects that allow users to
have input using graphical interfaces
such as push buttons, sliders, radio but-
tons, toggle buttons, pop-up menus, and
so forth. GUIs are an example of object-
oriented programming in which there is a
hierarchy. For example, the parent may be
a Figure Window and its children would
be graphics objects such as push buttons
and text boxes.

The parent user interface object can be a
figure, uipanel, or uibuttongroup. A figure is a Figure Window created by
the figure function. A uipanel is a means of grouping together user interface
objects (the ui stands for user interface). A uibuttongroup is a means of group-
ing together buttons (both radio buttons and toggle buttons).

In MATLAB there are two basic methods for creating GUIs: writing the GUI pro-
gram from scratch, or using the built-in Graphical User Interface Development
Environment (GUIDE). GUIDE allows the user to graphically lay out the GUI,
and then MATLAB generates the code for it automatically. However, in order to
be able to understand and modify this code, it is important to understand the
underlying programming concepts. Therefore, this section will concentrate on
the programming methodology.

A Figure Window is the parent of any GUI.
Just calling the figure function will bring up
a blank Figure Window. Assigning the han-
dle of this Figure Window to a variable and
then using the get function will show the
default properties. These properties, such as
the color of the window, its position on the
screen, and so forth can be changed using
the set function or when calling the figure
function to begin with. For example,

>> f = figure;

brings up a grey figure box near the top
of the screen as seen in Figure 13.18.

Some of its properties are excerpted here:

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

Figure 13.17
Image dimmed by
manipulating the matrix.

Figure 13.18
Placement of figure within
the screen.

Chapter 13 sights and sounds406

>> get(f)
 Color = [0.8 0.8 0.8]
 Colormap = [(64 by 3) double array]
 Position = [360 502 560 420]
 Units = pixels
 Children = []
 Visible = on

The position vector specifies [left bottom width height]. The first two numbers,
the left and bottom, are the distance that the lower left-hand corner of the fig-
ure box is from the lower left of the monitor screen (first from the left and then
from the bottom). The last two are the width and height of the figure box itself.
All these are in the default units of pixels.

The Visible property on means that the Figure Window can be seen. When creat-
ing a GUI, however, the normal procedure is to create the parent Figure Window
but make it invisible. Then, all user interface objects are added to it, and proper-
ties are set. When everything has been completed, the GUI is made visible.

Most user interface objects are created using the uicontrol function. The Style
property defines the type of object, as a string. For example, ‘text’ is the Style of
a static text box, which normally is used as a label for other objects in the GUI,
or for instructions.

The following example creates a GUI that just consists of a static text box in
a Figure Window. The figure is first created but made invisible. The color is
white, and it is given a position. Storing the handle of this figure in a variable
allows the script to refer to it later on, to set properties, for example. The uicon-
trol function is used to create a text box, position it (the vector specifies the
[left bottom width height] within the Figure Window itself), and put a string in
it. Note that the position is within the Figure Window, not within the screen.
A name is put on the top of the figure. The movegui function moves the GUI
(the figure) to the center of the screen. Finally, when everything has been com-
pleted, the GUI is made visible. The end is at the end of the function because in
the next examples, we will have nested functions that require end statements.

simple_gui.m

function simple_gui

% This is a simple GUI that just has a static text box

% Create the GUI but make it invisible for now while

% it is being initialized

f = figure(‘Visible’, ‘off’,‘color’,‘white’,‘Position’,. . .

 [300, 400, 450,250]);

(Continued)

40713.4 Introduction to Graphical User Interfaces

htext = uicontrol(‘Style’,‘text’,‘Position’, . . .

 [200,50, 100, 25], ‘String’,‘My First GUI string’);

% Put a name on it and move to the center of the screen

set(f,‘Name’,‘Simple GUI’)

movegui(f,‘center’)

% Now the GUI is made visible

set(f,‘Visible’,‘on’);

end

The Figure Window shown in Figure 13.19 will appear in the middle of the
screen.

The static text box requires no interaction with the user.

In the next example, we will allow the user to enter a string in an editable text
box, and then the GUI will print the user’s string in red. In this example, there
will be user interaction. First the user must type a string, and once this happens
the user’s entry in the editable text box will no longer be shown but instead
the string that the user typed will be displayed in a larger red font, in a static
text box. When the user’s action (which is called an event) causes a response, a
call back function is invoked. This is a nested function within the GUI function.
Recall that when a function contains another function, they both must have an
end statement. The algorithm for this example is:

■■ Create the Figure Window, but make it invisible.

■■ Make the color of the figure white, put a title on it, and move it to the center.

■■ Create a static text box with an instruction to enter a string.

■■ Create an editable text box:

– the Style of this is ‘edit’.

– the call back function must be specified
since the user’s entry of a string necessitates
a response (the function handle of the
nested function is used).

■■ Make the GUI visible so the user can see the
instruction and type a string.

■■ When the string is entered, the call back
function callbackfn is called. Note that in
the function header, there are two input
arguments, source and eventdata. The input

Figure 13.19
Simple GUI with a static
text box.

Chapter 13 sights and sounds408

argument source refers to the uicontrol object that called it; eventdata is
empty now (it may be used in MATLAB in a future version).

■■ The algorithm for the nested function callbackfn is:

– make the previous GUI objects invisible.

– get the string that the user typed (Note: either source or the function
handle name huitext can be used to refer to the object in which the
string was entered).

– create a static text box to print the string in red with a larger font.

– make this new object visible.

gui_with_editbox.m

function gui_with_editbox

% This is a GUI that has an editable text box

% and a callback function that prints the user’s

% string in red

% Create the GUI but make it invisible for now

f = figure(‘Visible’, ‘off’,‘color’,‘white’,‘Position’, . . .

 [360, 500, 800,600]);

% Put a name on it and move it to the center of the screen

set(f,‘Name’,‘GUI with editable text’)

movegui(f,‘center’)

% Create two objects: a box where the user can type and

% edit a string and also a text title for the edit box

hsttext = uicontrol(‘Style’,‘text’, . . .

 ‘BackgroundColor’,‘white’, . . .

 ‘Position’,[100,425,400, 55], . . .

 ‘String’,‘Enter your string here’);

huitext = uicontrol(‘Style’,‘edit’,. . .

 ‘Position’,[100,400,400,40], . . .

 ‘Callback’,@callbackfn);

% Now the GUI is made visible

set(f,‘Visible’,‘on’);

 % Call back function

(Continued)

40913.4 Introduction to Graphical User Interfaces

 function callbackfn(source,eventdata)

 set([hsttext huitext],‘Visible’,‘off’);

 % Get the string that the user entered and print

 % it in big red letters

 printstr = get(huitext,‘String’);

 hstr = uicontrol(‘Style’,‘text’, . . .

 ‘BackgroundColor’,‘white’, . . .

 ‘Position’,[100,400,400,55], . . .

 ‘String’,printstr, . . .

 ‘ForegroundColor’,‘Red’,‘FontSize’,30);

 set(hstr,‘Visible’,‘on’)

 end

end

When the Figure Window first is made
visible, the static text and the editable
text box are shown. In this case, the user
entered “hi and how are you?”

Note: In order to enter the string, the user
must first click the mouse in the editable
text box. The string that was entered by
the user is seen in Figure 13.20.

Once the Enter key was pressed, the call
back function was executed; the results
are seen in Figure 13.21.

Now, we’ll add a push button to the GUI.
This time, the user will enter a string but
the call back will be invoked when the
push button is pushed.

gui_with_pushbutton.m

function gui_with_pushbutton

% This is a GUI with an editable text box and a pushbutton

% Create the GUI but make it invisible for now while

(Continued)

Figure 13.20
String entered by user in
editable text box.

Chapter 13 sights and sounds410

% it is being initialized

f = figure(‘Visible’,
‘off’,‘color’,‘white’,‘Position’,. . .

 [360, 500, 800,600]);

hsttext = uicontrol(‘Style’,‘text’,‘BackgroundColor’,‘white’,. . .

 ‘Position’,[100,425,400, 55],. . .

 ‘String’,‘Enter your string here’);

huitext = uicontrol(‘Style’,‘edit’,‘Position’, [100,400,400,40]);

set(f,‘Name’,‘GUI with pushbutton’)

movegui(f,‘center’)

% Create a pushbutton that says Push me!!

hbutton = uicontrol(‘Style’,‘pushbutton’,‘String’,...

 ‘Push me!!’, ‘Position’,[600,50,150,50], ...

 ‘Callback’,@callbackfn);

% Now the GUI is made visible

set(f,‘Visible’,‘on’);

 % Call back function

 function callbackfn(source,eventdata)

 set([hsttext huitext hbutton],‘Visible’,‘off’);

 printstr = get(huitext,‘String’);

 hstr = uicontrol(‘Style’,‘text’,‘BackgroundColor’,...

 ‘white’, ‘Position’,[100,400,400,55],...

 ‘String’,printstr, ...

 ‘ForegroundColor’,‘Red’,‘FontSize’,30);

 set(hstr,‘Visible’,‘on’)

 end

end

In this case the user types the string into the edit box. Pressing Enter, however,
does not cause the call back function to be called; instead, the user must press
the button with the mouse. The call back function is associated with the push
button object. So, pushing the button will bring up the string in a larger red
font. The push button is seen in Figure 13.22.

41113.4 Introduction to Graphical User Interfaces

Figure 13.21
The result from the call back function.

Figure 13.22
GUI with a push button.

praCtiCe 13.2
Create a GUI that will convert a length from
inches to centimeters. The GUI should have
an editable text box in which the user enters a
length in inches, and a push button that says
“Convert me!”. Pushing the button causes
the GUI to calculate the length in centimeters
and display that. The call back function that
accomplishes this should leave all objects
visible. That means that the user can continue

converting lengths until the Figure Window is
closed. The GUI should display a default length
to begin with (e.g., 1 inch). For example, calling
the function might bring up the Figure Window
shown in Figure 13.23.

Then, when the user enters a length (e.g., 5.2)
and pushes the button, the Figure Window will
show the new calculated length in centimeters
(as seen in Figure 13.24).

Figure 13.23
Length conversion GUI with push button.

Figure 13.24
Result from conversion GUI.

Chapter 13 sights and sounds412

Another GUI object that can be created is a slider. The slider object has a
numerical value, and can be controlled by either clicking the arrows to move
the value up or down, or by sliding the bar with the mouse. By default the
numerical value ranges from 0 to 1, but these values can be modified using the
Min and Max properties.

The function gui_slider creates in a Figure Window a slider that has a mini-
mum value of 0 and a maximum value of 5. It uses text boxes to show the
minimum and maximum values, and also the current value of the slider.

gui_slider.m

function gui_slider

% This is a GUI with a slider

f = figure(‘Visible’, ...
‘off’,‘color’,‘white’,‘Position’,. . .

[360, 500, 300,300]);

% Minimum and maximum values for slider

minval = 0;

maxval = 5;

% Create the slider object

slhan = uicontrol(‘Style’,‘slider’,‘Position’,...
 [80,170,100, 50], . . .

 ‘Min’, minval, ‘Max’, maxval,‘Callback’, @callbackfn);

% Text boxes to show the minimum and maximum values

hmintext = uicontrol(‘Style’,‘text’,‘BackgroundColor’,‘white’, . . .

 ‘Position’, [40, 175, 30,30], ‘String’, num2str(minval));

hmaxtext = uicontrol(‘Style’, ...

 ‘text’,‘BackgroundColor’,‘white’,. . .

 ‘Position’, [190, 175, 30,30], ‘String’, num2str(maxval));

% Text box to show the current value (off for now)

hsttext = uicontrol(‘Style’,‘text’,‘BackgroundColor’,‘white’,. . .

 ‘Position’,[120,100,40,40],‘Visible’, ‘off’);

set(f,‘Name’,‘Slider Example’)

movegui(f,‘center’)

set(f,‘Visible’,‘on’);

 % Call back function displays the current slider value

(Continued)

41313.4 Introduction to Graphical User Interfaces

 function callbackfn(source,eventdata)

 num = get(slhan, ‘Value’);

 set(hsttext,‘Visible’,‘on’,‘String’,num2str(num))

 end

end

Calling the function brings up the initial configuration
seen in Figure 13.25.

Then, when the user interacts by sliding the bar or click-
ing an arrow, the current value of the slider is shown
under it, as seen in Figure 13.26.

Figure 13.25
GUI with slider.

Figure 13.26
GUI with slider result shown.

praCtiCe 13.3
Use the Help browser to find the property
that controls the increment value on the
slider, and modify the gui_slider function
to move in increments of 0.5 regardless of
whether the arrows or slider is used.

Chapter 13 sights and sounds414

summary

Common pitfalls
■■ Confusing true color and colormap images
■■ Forgetting that uicontrol object positions are within the Figure Window, not within

the screen

programming style Guidelines
■■ Make a GUI invisible while it is being created, so that everything becomes visible at

once.

exercises
 1. Load two of the built-in MAT-file sound files (e.g., gong and chirp). Store the

sound vectors in two separate variables. Determine how to concatenate these
so that the sound function will play one immediately followed by the other; for
example, fill in the blank here:

sound(, 8192)

 2. The function playsound (shown here) plays one of the built-in sounds. The
function has a cell array that stores the names. When the function is called, an
integer is passed that is an index into this cell array indicating which sound is to
be played. The default is train, so if the user passes an invalid index that is used,
the appropriate MAT-file is loaded. If the user passes a second argument, it is the
frequency at which the sound should be played (otherwise, the default frequency is
used). The function prints what sound is about to be played and at which frequency,
and then actually plays this sound. You are to fill in the rest of the function. Here are
examples of calling it (you can’t hear it here, but the sound will be played!).

>> playsound(–4)
You are about to hear train at frequency 8192.0
>> playsound(2)
You are about to hear gong at frequency 8192.0
>> playsound(3,8000)
You are about to hear laughter at frequency 8000.0

MATLAB Functions and Commands

chirp
gong
laughter
splat
train
handel

sound
wavread
wavrecord
wavwrite
wavplay
line

text
rectangle
patch
colormap
image
imread

uipanel
uibuttongroup
uicontrol
movegui

415

playsound.m

function playsound(caind3, varargin)

%This function plays a sound

soundarray = {‘chirp’,‘gong’,‘laughter’,‘splat’,‘train’};

if caind < 1 || caind > length(soundarray)

 caind = length(soundarray);

end

mysound = soundarray{caind};

eval([‘load’ mysound])

% Fill in the rest

 3. In the MATLAB Help, under the Contents tab, click Functions by Category, then
Graphics, then Handle Graphics, then text to get the MATLAB Function Reference
on the function text (this is a lot more useful than just typing help text!). Read
through this, and then on the very bottom click Text Properties for property
descriptions. Create a graph, and then use the text function to put some text on it,
including some \specchar commands to increase the font size and to print some
Greek letters and symbols.

 4. The cost of producing widgets includes an initial set-up cost plus an additional
cost for each widget, so the total production cost per widget decreases as the
number of widgets produced increases. The total revenue is a given dollar
amount for each widget sold, so the revenue increases as the number sold
increases. The break-even point is the number of widgets produced and sold for
which the total production cost is equal to the total revenue. The production cost
might be $5000 plus $3.55 per widget, and the widgets might sell for $10 each.
Write a script that will find the break-even point using solve, and then plot the
production cost and revenue functions on one graph for 1 to 1000 widgets. Print
the break-even point on the graph using text.

 5. Create a rectangle object, and use the axis function to change
the axes so that you can see the rectangle easily. Change
the Position, Curvature, EdgeColor, LineStyle, and LineWidth.
Experiment with different values for the Curvature.

 6. Write a script that will create the rectangle (shown in Figure
13.27) with a curved rectangle inside it and text inside that. The
axes and dimensions of the Figure Window should be as shown
here (you should approximate locations based on the axes shown
in this figure). The font size for the string is 20. The curvature of
the inner rectangle is [0.5, 0.5].

Exercises

0 0.5 1 1.5 2 2.5 3
 0

0.5

 1

1.5

 2

2.5

 3

Stormy

Figure 13.27
Nested rectangles with text
box.

Chapter 13 sights and sounds416

0 0.5 1 1.5 2 2.5 3
 0

0.5

 1

1.5

 2

2.5

 3

Figure 13.28
Curved rectangles produced
in a loop.

 7. Write a script that will start with a rounded rectangle. Change
both the x and y axes from the default to go from 0 to 3. In a for
loop, change the position vector by adding 0.1 to all elements
10 times (this will change the location and size of the rectangle
each time). Create a movie consisting of the resulting rectangles.
The final result should look like the plot shown in Figure 13.28.

 8. Write a script that will create a two-dimensional patch object
with just three vertices and one face connecting them. The
x- and y-coordinates of the three vertices will be random real
numbers in the range from 0 to 1. The lines used for the edges
should be black with a width of 3, and the face should be grey.
The axes (both x and y) should go from 0 to 1. For example,
depending on what the random numbers are, the Figure Window
might look like Figure 13.29.

 9. Using the patch function, create a black box with unit dimensions (so there will
be 8 vertices and 6 faces). Set the edge color to white so that when you rotate the
figure, you can see the edges.

 10. Write a script that will create the image seen in Figure 13.30 using a colormap.
 11. Write a script that will create the same image, using a three-dimensional true color

matrix.
 12. Write a script that will generate a 50 by 50 image of pixels. The lower triangular

part (including the diagonal) will be all white. The upper triangular part will
randomly be either red or green for each element, as shown in Figure 13.31.

 13. It is sometimes difficult for the human eye to perceive the brightness of an object
correctly. For example, in Figure 13.32, the middle of both images is the same

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Figure 13.29
Patch object with black edge.

5 10 15 20 25 30 35 40 45 50

 5

10

15

20

25

30

35

40

45

50

Figure 13.30
Image displaying four colors using a custom colormap.

417Exercises

color—and yet, because of the surrounding colors, the one on the left looks lighter
than the one on the right.

 Write a script to generate a Figure Window similar to this one. Two 3 × 3 matrices
were created. Using the default color map, the middle elements in both were
given a value of 12. For the image on the left, all other elements were given a value
of 1, and for the image on the right, all other elements were given the value 32.
Use subplot to display both images side by side (the axes shown here are the
defaults).

 14. Put a JPEG file in your Current Directory and use imread to load it into a matrix.
Calculate and print the mean separately of the red, green, and blue components in
the matrix and also the standard deviation for each.

 15. Some image acquisition systems are not very accurate, and the result is noisy
images. To see this effect, put a JPEG file in your Current Directory and use
imread to load it. Then, create a new image matrix by randomly adding or
subtracting a value n to every element in this matrix. Experiment with different
values of n. Create a script that will use subplot to display both images side by
side, using imshow instead of image.

 16. The dynamic range of an image is the range of colors in the image (the
minimum value to the maximum value). Put a JPEG file into your current
directory. Read the image into a matrix. Use the built-in functions min and
max to determine the dynamic range, and print the range. Note that if the
image is a true color image, the matrix will be three-dimensional, so it will be
necessary to nest the functions three times to get the overall minimum and
maximum values.

 17. A part of an image is represented by an n × n matrix. After performing data
compression and then data reconstruction techniques, the resulting matrix has values

1 2 3

0.5

 1

1.5

 2

2.5

 3

3.5

0.5

 1

1.5

 2

2.5

 3

3.5
1 2 3

Figure 13.32
Depiction of brightness perception.

5 10 15 20 25 30 35 40 45 50

 5

10

15

20

25

30

35

40

45

50

Figure 13.31
Triangular image of random red and green.

Chapter 13 sights and sounds418

that are close to but not exactly equal to the original matrix. For example, the following
4 × 4 matrix variable orig_im represents a small part of a true color image, and fin_im
represents the matrix after it has undergone data compression and then reconstruction.

orig_im =

156 44 129 87
 18 158 118 102
 80 62 138 78
155 150 241 105

fin_im =

153 43 130 92
 16 152 118 102
 73 66 143 75
152 155 247 114

Write a script that will simulate this by creating a square matrix of random
integers, each in the range from 0 to 255. It will then modify this to create the new
matrix by randomly adding or subtracting a random number (in a relatively small
range, say 0 to 10) from every element in the original matrix. Then, calculate the
average difference between the two matrices.

 18. Put a JPEG file into your Current Directory. Type in the following script, using your
own JPEG filename.

I1 =imread(‘xxx.jpg’);
[rc h] =size(I1);
Inew(:,:,:) =I1(:,c:-1:1,:);
figure(1)
subplot(2,1,1)
image(I1);
subplot(2,1,2)
image(Inew);

 Determine what the script does. Put comments into the script to explain it step-
by-step. Also, try it using imshow instead of image.

 19. Put two different JPEG files into your current directory. Read both into matrix
variables. To superimpose the images, if the matrices are the same size, the
elements can simply be added element-by-element. However, if they are not the
same size, one method of handling this is to crop the larger matrix to be the same
size as the smaller, and then add them. Write a script to do this.

 20. Write a function that will create a simple GUI with one static text box near
the middle of the Figure Window. Put your name in the string, and make the
background color of the text box white.

 21. Write a function that will create a GUI with one editable text box near the middle
of the Figure Window. Put your name in the string. The GUI should have a call back
function that prints the user’s string twice, one under the other.

419Exercises

 22. Write a function that creates a GUI to calculate the area of a rectangle. It should
have edit text boxes for the length and width, and a push button that causes the
area to be calculated and printed in a static text box.

 23. The Wind Chill Factor (WCF) measures how cold it feels with a given air
temperature T (in degrees Fahrenheit) and wind speed (V, in miles per hour). The
formula is approximately

WCF = 35.7 + 0.6T − 35.7(V0.16) + 0.43T(V0.16)

 Write a GUI function that will display sliders for the temperature and wind speed.
The GUI will calculate the WCF for the given values, and display the result in a
text box. Choose appropriate minimum and maximum values for the two sliders.

This page intentionally left blank

421

Contents

© 2009, 2003,1999 Elsevier Inc.

14.1 Fitting Curves
to Data 421

14.2 Complex
Numbers 429

14.3 Calculus:
Integration and
Differentiation 435

curve fitting

best fit

polynomial

degree

order

data sampling

interpolation

extrapolation

least squares

regression

complex number

real part

imaginary part

purely imaginary

complex conjugate

magnitude

complex plane

Key Words

Chapter 14

Advanced Mathematics

In this chapter, some more advanced mathematics and the related built-in
functions in the MATLAB® software will be introduced. In many applications
data is sampled, which results in discrete data points. But we often want to
fit a curve to the data. Curve fitting is finding the curve that best fits the data.
This chapter will first explore fitting curves, which are simple polynomials, to
data. Other topics include complex numbers and a brief introduction to dif-
ferentiation and integration in calculus.

14.1 Fitting Curves to data
MATLAB has several curve-fitting functions, and additionally Curve Fitting
Toolbox™ has many more of these functions. Some of the simplest curves
are polynomials of different degrees, which is what will be described in this
section.

Chapter 14 advanced Mathematics422

14.1.1 polynomials
Simple curves are polynomials of different degrees, or orders. The degree is the
integer of the highest exponent in the expression. For example,

■■ A straight line is a first order (or degree 1) polynomial of the form
ax + b, or more explicitly ax1 + b.

■■ A quadratic is a second order (or degree 2) polynomial of the form
ax2 + bx + c.

■■ A cubic (degree 3) is of the form ax3 + bx2 + cx + d.

MATLAB represents a polynomial as a row vector of coefficients. For exam-
ple, the polynomial x3 + 2x2 - 4x + 3 would be represented by the vector
[1 2 -4 3].

The polynomial 2x4 - x2 + 5 would be represented by [2 0 -1 0 5]; notice
the zero terms for x3 and x1.

There are built-in functions sym2poly and poly2sym that convert from
 symbolic expressions to polynomial vectors and vice versa, for example:

>> myp = [1,2,-4,3];
>> poly2sym(myp)
ans =
x^3+2*x^2-4*x+3
>> mypoly = [2 0 -1 0 5];

>> poly2sym(mypoly)
ans =
2*x^4-x^2+5

>> sym2poly(ans)
ans =

2 0 -1 0 5

The roots function in MATLAB can be used to find the roots of an equation rep-
resented by a polynomial. For example, for the mathematical function (Note:
this is a mathematical expression, not MATLAB!),

f(x) = 4x3 - 2x2 – 8x + 3

to solve the equation f(x) = 0:

>> roots([4 -2 -8 3])
ans =
 -1.3660
 1.5000
 0.3660

42314.1 Fitting Curves to Data

The function polyval will evaluate a polynomial p at x; the form is polyval(p,x).
For example, the polynomial -2x2 + x + 4 is evaluated at x = 3, which yields
–2 * 9 + 3 + 4, or –11:

>> p = [-2 1 4];
>> polyval(p,3)
ans =
 -11

The argument x can be a vector, for example:

>> polyval(p,1:3)
ans =

3 -2 -11

>> polyval(p, [5 7])
ans =
 -41 -87

14.1.2 Curve Fitting
Data is basically either discrete or continuous. In many applications, data is
sampled, for example,

■■ The temperature recorded every hour

■■ The speed of a car recorded every one-tenth of a mile

■■ The mass of a radioactive material recorded every second as it
decays

■■ Audio from a sound wave as it is converted to a
digital audio file

This gives data of the form of (x,y) points, which then
could be plotted. For example, let’s say the tempera-
ture was recorded every hour one afternoon from 2
to 6 p.m.; the vectors might be:

>> x = 2:6;
>> y = [65 67 72 71 63];

and then the plot might look like Figure 14.1.

14.1.3 interpolation and extrapolation
In many cases, it is desired to estimate values other
than at the sampled data points. For example, we
might want to estimate what the temperature was at

Figure 14.1
Plot of temperatures
sampled every hour.

1 2 3 4 5 6 7
60

65

70

75
Temperatures one afternoon

Time

T
em

pe
ra

tu
re

s

Chapter 14 advanced Mathematics424

1 2 3 4 5 6 7
60

65

70

75
Temperatures one afternoon

Time

T
em

pe
ra

tu
re

s

2:30 p.m., or at 1 p.m. Interpolation is estimating the values in between recorded
data points. Extrapolation is estimating outside the bounds of the recorded
data. One way to do this is to fit a curve to the data, and use this for the estima-
tions. Curve fitting is finding the curve that “best fits” the data.

Simple curves are polynomials of different degrees as described before. So, curve
fitting involves finding the best polynomials to fit the data—for example, for a
quadratic polynomial in the form ax2 + bx + c, it means finding the values of
a, b, and c that yield the best fit. Finding the best straight line that goes through
data would mean finding the values of a and b in the equation ax + b.

MATLAB has a function to do this, called polyfit. The function polyfit finds
the coefficients of the polynomial of the specified degree that best fits the data
using a least squares algorithm. There are three arguments passed to the func-
tion: the vectors that represent the data, and the degree of the desired polyno-
mial. For example, to fit a straight line (degree 1) through the previous data
points, the call to the polyfit function would be

>> polyfit(x,y,1)
ans =
 0.0000 67.6000

which says that the best straight line is of the form 0x + 67.6.

However, from the plot (seen in Figure 14.2), it looks like a quadratic would be
a much better fit. The following would create the vec-
tors and then fit a polynomial of degree 2 through the
data points, storing the values in a vector called coefs.

>> x = 2:6;
>> y = [65 67 72 71 63];
>> coefs = polyfit(x,y,2)
coefs =

 -1.8571 14.8571 41.6000

This says that MATLAB has determined that
the best quadratic that fits these data points is
-1.8571x2 + 14.8571x + 41.6. So, the vari-
able coefs now stores a vector that represents this
polynomial.

The function polyval can then be used to evaluate
the polynomial at specified values. For example, we could evaluate at every
value in the x vector:

>> curve = polyval(coefs,x)
curve =

63.8857 69.4571 71.3143 69.4571 63.8857

Figure 14.2
Sampled temperatures with
straight line fit.

42514.1 Fitting Curves to Data

This results in y values for each point in the x vector, and stores them in a vector
called curve. Putting all this together, the following script called polytemp creates
the x and y vectors, fits a second order polynomial through these points, and
plots both the points and the curve on the same figure.

polytemp.m

%Demonstrates curve fitting

x= 2:6;

y=[65 67 72 71 63];

coefs = polyfit(x,y,2);

curve = polyval(coefs,x);

plot(x,y,‘ro’,x,curve)

xlabel(‘Time’)

ylabel(‘Temperatures’)

title(‘Temperatures one afternoon’)

axis([1 7 60 75])

Calling this results in the plot seen in Figure 14.3.
The curve doesn’t look very smooth on this plot,
but that is because there are only five points in the
x vector.

To estimate the temperature at different times, poly-
val can be used for discrete x points; it does not have
to be used with the entire x vector. For example, to
interpolate between the given data points and esti-
mate what the temperature was at 2:30 p.m., 2.5
would be used.

>> polyval(coefs,2.5)
ans =
 67.1357

Also, polyval can be used to extrapolate beyond the
given data points, for example, to estimate the tem-
perature at 1 p.m.:

>> polyval(coefs,1)
ans =
 54.6000

The better the curve fit, the more exact these interpo-
lated and extrapolated values will be.

1 2 3 4 5 6 7
60

65

70

75

Time

T
em

pe
ra

tu
re

s

Temperatures one afternoon

Figure 14.3
Sampled temperatures with
quadratic curve.

praCtiCe 14.1
To make the curve smoother, modify the
script polytemp to create a new x vector
with more points for plotting the curve.
Note that the original x vector for the
data points must remain as is.

Chapter 14 advanced Mathematics426

2 4 6
60

65

70

75

Time

T
em

pe
ra

tu
re

s

Degree 1

2 4 6
Time

60

65

70

75

T
em

pe
ra

tu
re

s

Degree 2

60

65

70

75

T
em

pe
ra

tu
re

s

2 4 6
Time

Degree 3

Using the subplot function, we can loop to show the difference between fitting
curves of degrees 1, 2, and 3 to some data. For example the following script will
accomplish this for the temperature data:

polytempsubplot.m

% Displays curves of degrees 1-3

x = 2:6;

y = [65 67 72 71 63];

morex = linspace(min(x),max(x));

for pd = 1:3

coefs = polyfit(x,y,pd);

curve = polyval(coefs,morex);

subplot(1,3,pd)

plot(x,y,‘ro’,morex,curve)

xlabel(‘Time’)

ylabel(‘Temperatures’)

title(sprintf(‘Degree %d’,pd))

axis([1 7 60 75])

end

 >> polytempsubplot

creates the Figure Window seen in Figure 14.4.

14.1.4 Least squares
The polyfit function uses the least
squares regression method. To find the
equation of the straight line y = mx + b
that best fits using a least squares
regression, the equations for m and b
are:

-
=

-
å å å
å å2 2()

i i i i

i i

n x y x y
m

n x x

b y mx= -

where n is the number of points in x and
y, all summations are from i = 1 to n,
and y- and x- represent the means of the
vectors y and x. These equations will not

Figure 14.4
Subplot to show
temperatures with curves of
degrees 1, 2, and 3.

42714.1 Fitting Curves to Data

be derived here; the derivations can be found in the MATLAB help browser by
doing a search for “least squares”.

This is implemented as follows in a function mylinfit that receives two vec-
tors x and y, and returns the values of m and b. This is the same algorithm
used by the polyfit function for a degree 1 polynomial, so it returns the same
values.

mylinfit.m

function [m,b] = mylinfit(x,y)

% least squares regression for a straight line

n = length(x); % Assume y has same length

numerator = n * sum(x .* y) - sum(x)*sum(y);

denom = n * sum(x .^ 2) - (sum(x))^2;

m = numerator/denom;

b = mean(y) - m*mean(x);

>> x = [-1 1 2];
>> y = [-1 0 3];
>> [m b] = mylinfit(x,y)
m =
 1.2143
b =
 0.1429
>> polyfit(x,y,1)
ans =
 1.2143 -0.1429

The least squares fit minimizes the sum of the squares
of the differences between the actual data and the data
predicted by the line. The “best” straight line in this
case has been determined to be y = 1.2143x – 0.1429.

If we did not know that was the best straight line,
we might instead guess that the line that best fits
the data is the line y = x. The plot is seen in Figure
14.5.

This straight line goes through one of the points, but
splits the other two points, in that one is one unit
below the line and the other is one above the line.
So, it seems as though it fits the data well. However,
we will compare this to the line found by polyfit and
the function mylinfit. 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3

2

1

 0

 1

 2

 3

 4

Figure 14.5
The line y = x and three
data points.

Chapter 14 advanced Mathematics428

Table 14.1 shows the x-coordinates, y-coordinates of the original points,
y-coordinates predicted by the line y = x, and the differences (data –
predicted).

The sum of the differences squared is 0 + 1 + 1, or 2.

According to the least squares algorithm, however, the values using the line
y = 1.2143x - 0.1429 are shown in Table 14.2.

The sum of the squares of these differences is 1.7857, which is better
than (a smaller number than) the sum of the squares of the differences
obtained for the earlier straight line. In fact, polyfit minimizes the sum of
the squares.

MATLAB has another related function, interp1, that does a table look-up to
interpolate or extrapolate. There are several ways to call this function (using
help describes them). The default method that is used is ‘linear’, which gives
a linear interpolation. For example, for the previous time and temperature
vectors:

>> x=2:6;
>> y=[65 67 72 71 63];

The interp1 function could be used to interpolate between the points, for
example:

>> interp1(x,y,3.5)
ans =
 69.5000

>> interp1(x,y,2.5)
ans =
 66

table 14.1 y-Coordinates Predicted by Line y = x

x Data y Predicted y Difference

–1 –1 –1 0

 1 0 1 –1

 2 3 2 1

table 14.2 y-Coordinates Predicted by Least Squares Regression

x Data y Predicted y Difference

–1 –1 –1.3571 0.3571

 1 0 1.0714 –1.0714

 2 3 2.2857 0.7143

42914.2 Complex Numbers

To extrapolate using the linear interpolation method which is the default, the
strings ‘linear’ and ‘extrap’ must also be passed.

>> interp1(x,y,1,‘linear’,‘extrap’)
ans =
 63

>> interp1(x,y,7,‘linear’,‘extrap’)
ans =
 55

14.2 CoMpLex nuMbers
A complex number is generally written in the form

z = a + bi

where a is called the real part of the number z, b is the imaginary part of z,
and i is 1- . This is the way mathematicians usually write a complex num-
ber; in engineering it is often written as a + bj, where j is 1- . A complex
number is purely imaginary if it is of the form z = bi (in other words, if a
is 0).

We have seen that in MATLAB both i and j are built-in functions that return
1- (so, they can be thought of as built-in constants). Complex numbers can

be created using i or j, for example, 5 + 2i or 3 – 4j. The multiplication opera-
tor is not required between the value of the imaginary part and the constant
i or j.

MATLAB also has a function complex that will return a complex number. It
receives two numbers, the real and imaginary parts in that order, or just one
number, which would be the real part (so the imaginary part would be 0). Here
are some examples of creating complex numbers in MATLAB:

QuiCK Question!

Is the value of the expression 3i the same as 3 * i?
answer: It depends on whether i has been used as a vari-
able name or not. If i has been used as a variable (for exam-
ple, an iterator variable in a for loop), then the expression
3 * i will use the defined value for the variable, and the result
will not be a complex number. Therefore, it is a good idea
when working with complex numbers to use 1i or 1j rather
than just i or j. The expressions 1i and 1j always result in a
complex number, regardless of whether i or j have been used

as a variable.

>> i = 5;
>> i
i=
 5
>> 1i
ans =

 0 + 1.0000i

Chapter 14 advanced Mathematics430

>> z1 = 4 + 2i
z1 =
 4.0000 + 2.0000i

>> z2 = sqrt(-5)
z2 =
 0 + 2.2361i

>> z3 = complex(3,-3)
z3 =
 3.0000 - 3.0000i

>> z4 = 2 + 3j
z4 =
 2.0000 + 3.0000i

>> z5 = (-4) ^ (1/2)
ans =
 0.0000 + 2.0000i

>> myz = input(‘Enter a complex number: ’)
Enter a complex number: 3 + 4i
myz =
 3.0000 + 4.0000i

Notice that even when j is used in an expression, i is used in the result. MATLAB
shows the type of the variables created here in the Workspace Window (or
using whos) as double (complex). MATLAB has functions real and imag that
return the real and imaginary parts of complex numbers.

>> real(z1)
ans =
 4

>> imag(z3)
ans =
 -3

To print an imaginary number, the disp function will display both parts
automatically:

>> disp(z1)
 4.0000 + 2.0000i

The fprintf function will print only the real part unless both parts are printed
separately:

>> fprintf(‘%f\n’, z1)
 4.000000

43114.2 Complex Numbers

>> fprintf(‘%f %f\n’, real(z1), imag(z1))
4.000000 2.000000

>> fprintf(‘%f + %fi\n’, real(z1), imag(z1))
4.000000 + 2.000000i

The function isreal returns 1 for logical true if there is no imaginary part of the
argument, or 0 for false if the argument does have an imaginary part (even if
it is 0). For example,

>> isreal(z1)
ans =
 0

>> z5 = complex(3)
z5 =
 3

>> isreal(z5)
ans =
 0

>> isreal(3.3)
ans =
 1

For the variable z5, even though it shows the answer as 3, it is really stored as
3 + 0i, and that is how it is displayed in the Workspace Window. Therefore,
isreal returns logical false since it is stored as a complex number.

14.2.1 equality for Complex numbers
Two complex numbers are equal to each other if both their real parts and imag-
inary parts are equal. In MATLAB, the equality operator can be used.

>> z1 == z2
ans =
 0

>> complex(0,4) == sqrt(-16)
ans =
 1

14.2.2 adding and subtracting Complex numbers
For two complex numbers z1 = a + bi and z2 = c + di,

z1 + z2 = (a + c) + (b + d)i

z1 – z2 = (a – c) + (b – d)i

Chapter 14 advanced Mathematics432

As an example, we will write a function in MATLAB to add two complex num-
bers together and return the resulting complex number.

the programming Concept
In most cases, to add two complex numbers together you would have to
separate the real and imaginary parts, and add them to return your result.

addcomp.m

function outc = addcomp(z1, z2)

% Adds two complex numbers and returns the result

% Adds the real and imaginary parts separately

realpart = real(z1) + real(z2);

imagpart = imag(z1) + imag(z2);

outc = realpart + imagpart * i;

>> addcomp(3+4i, 2-3j)
ans =
 5.0000 + 1.0000i

the efficient Method
MATLAB will automatically do this in order to add two complex numbers
together (or subtract).

addcomp2.m

function outc = addcomp2(z1,z2)

% Adds two complex numbers and returns the result

outc = z1 + z2;

>> addcomp2(3+4i, 2-3j)
ans =
 5.0000 + 1.0000i

14.2.3 Multiplying Complex numbers
For two complex numbers z1 = a + bi and z2 = c + di,

z1 * z2 = (a + bi) * (c + di)

= a*c + a*di + c*bi + bi*di

= a*c + a*di + c*bi – b*d

= (a*c – b*d) + (a*d + c*b)i

43314.2 Complex Numbers

For example, for

z1 = 3 + 4i
z2 = 1 - 2i

z1 * z2 = (3*1 - -8) + (3*-2 + 4*1)i = 11 -2i

This is, of course, automatic in MATLAB:

>> z1*z2
ans =
 11.0000 - 2.0000i

14.2.4 Complex Conjugate and absolute value
The complex conjugate of a complex number = + = - .isz a bi z a bi The magni-
tude, or absolute value of a complex number z is 2 2z a b= + . In MATLAB, there
is a built-in function conj for the complex conjugate, and the abs function
returns the absolute value.

>> z1 = 3 + 4i
z1 =
 3.0000 + 4.0000i

>> conj(z1)
ans =
 3.0000 - 4.0000i

>> abs(z1)
ans =
 5

14.2.5 Complex equations represented as polynomials
We have seen that MATLAB represents polynomials as a row vector of coef-
ficients; this can be used when the expressions or equations involve complex
numbers, also. For example, the polynomial z2 + z – 3 + 2i would be repre-
sented by the vector [1 1 –3 + 2i]. The roots function in MATLAB can be used
to find the roots of an equation represented by a polynomial. For example, to
solve the equation z2 + z – 3 + 2i = 0:

>> roots([1 1 -3+2i])
ans =

 -2.3796 + 0.5320i
 1.3796 - 0.5320i

The polyval function can also be used with this polynomial; for example,

>> cp = [1 1 -3+2i]
cp =

Chapter 14 advanced Mathematics434

1.0000 1.0000 -3.0000 + 2.0000i

>> polyval(cp,3)
ans =
 9.0000 + 2.0000i

14.2.6 polar Form
Any complex number z = a + bi can be thought of as a point (a,b) or vector
in a complex plane in which the horizontal axis is the real part of z, and the
vertical axis is the imaginary part of z. So, a and b are the Cartesian or rectan-
gular coordinates. Since a vector can be represented by either its rectangular
or polar coordinates, a complex number can also be given by its polar coor-
dinates r and , where r is the magnitude of the vector and is an angle.

To convert from the polar coordinates to the rectangular coordinates:

a = r cos
b = r sin

To convert from the rectangular to polar coordinates:
2 2r z a b= = +

arctan
b

a
æ öq = ç ÷
è ø

So, a complex number z = a + bi can be written as r cos + (r sin)i, or

z = r (cos + i sin)

Since ei = cos + i sin , a complex number can also be written as z = rei . In
MATLAB, r can be found using the abs function, and there is a special built-in
function to find , called angle.

>> z1 = 3 + 4i;
r = abs(z1)
r =
 5

>> theta = angle(z1)
theta =
 0.9273

>> r*exp(i*theta)
ans =
 3.0000 + 4.0000i

14.2.7 plotting
There are several methods that commonly are used for plotting complex
data:

43514.3 Calculus: Integration and Differentiation

■■ Plot the real parts versus the imaginary parts
using plot.

■■ Plot only the real parts using plot.

■■ Plot the real and the imaginary parts in one
figure with a legend, using plot.

■■ Plot the magnitude and angle using polar.

Using the plot function with a single complex number
or a vector of complex numbers will result in plotting
the real parts versus the imaginary parts; for exam-
ple, plot(z) is the same as plot(real(z), imag(z)). For
example, for the complex number z1 = 3 + 4i, this will
plot the point (3,4) (using a large asterisk so we can
see it!) as seen in Figure 14.6.

>> z1 = 3 + 4i;
>> plot(z1,‘*’, ‘MarkerSize’, 12)
>> xlabel(‘Real part’)
>> ylabel(‘Imaginary part’)
>> title(‘Complex number’)

14.3 CaLCuLus: integration
and diFFerentiation
The integral of a function f(x) between the limits
given by x = a and x = b is written as

()b
a f x dxò

and is defined as the area under the curve f(x) from
a to b, as long as the function is above the x-axis.
Numerical integration techniques involve approxi-
mating this.

14.3.1 trapezoidal rule
One simple method of approximating the area under
a curve is to draw a straight line from f(a) to f(b) and
calculate the area of the resulting trapezoid as

() ()
(b a)

2

f a f b+
-

In MATLAB, this could be implemented as a
function.

praCtiCe 14.2
Create the following complex variables:

c1 = complex(0,2);
c2 = 3 + 2i;
c3 = sqrt(-4);

Then, do the following:

■■ Get the real and imaginary parts of
c2.

■■ Print the value of c1 using disp.

■■ Print the value of c2 in the form a
+ bi.

■■ Determine whether any of the
variables are equal to each other.

■■ Subtract c2 from c1.

■■ Multiply c2 times c3.

■■ Get the complex conjugate and
magnitude of c2.

■■ Put c1 in polar form.

Plot the real part versus the ■■

imaginary part for c2.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
 3

3.2

3.4

3.6

3.8

 4

4.2

4.4

4.6

4.8

 5

Real part

Im
ag

in
ar

y
pa

rt

Complex number

Figure 14.6
Plot of complex number.

Chapter 14 advanced Mathematics436

the programming Concept
Here is a function to which the function handle and limits a and b are passed:

trapint.m

function int = trapint(fnh, a, b)

% approximates area under a curve using a

% trapezoid

int = (b-a) * (fnh(a) + fnh(b))/2;

To call it, for example, for the function f(x) = 3x2 – 1, an anonymous function
is defined and its handle is passed to the trapint function.

>> f = @ (x) 3 .* x .^ 2 - 1;
approxint = trapint(f, 2, 4)
approxint =
 58

the efficient Method
MATLAB has a built-in function trapz that will implement the trapezoidal rule.
Vectors with the values of x and y = f(x) are passed to it. For example, using
the anonymous function just defined:

>> x = [2 4];
>> y = f(x);
>> trapz(x,y)
ans =
 58

An improvement on this is to divide the range from a to b into n intervals,
apply the trapezoidal rule to each interval, and sum them. For example, for the
preceding, if there are two intervals, you would draw a straight line from f(a)
to f((a + b)/2), and then from f((a + b)/2) to f(b).

the programming Concept
Here is a modification of the previous function to which the function handle,
limits, and the number of intervals are passed:

trapintn.m

function intsum = trapintn(fnh, lowrange,highrange, n)

% implements trapezoidal rule using n intervals

intsum = 0;

increm = (highrange - lowrange)/n;

(Continued)

43714.3 Calculus: Integration and Differentiation

for a = lowrange: increm : highrange - increm

 b = a + increm;

 intsum = intsum + (b-a) * (fnh(a) + fnh(b))/2;

end

For example, this approximates the integral of the function f given earlier with
two intervals:

>> trapintn(f,2,4,2)
ans =
 55

the efficient Method
To use the built-in function trapz to accomplish the same thing, the x vector is
created with the values 2, 3, and 4:

>> x = 2:4;
>> y = f(x)
>> trapz(x,y)
ans =
 55

In these examples, straight lines that are first-order polynomials were used.
Other methods involve higher-order polynomials. The built-in function quad
uses Simpson’s method of accomplishing this. Three arguments normally are
passed to it: the handle of the function, and the limits a and b. For example,
for the previous function:

>> quad(f,2,4)
ans =
 54

14.3.2 differentiation
The derivative of a function y = f(x) is written as ()

dy
f x

dx or f ’(x) and is defined
as the rate of change of the dependent variable y with respect to x. The deriva-
tive is the slope of the line tangent to the function at a given point.

MATLAB has a function polyder, which will find the derivative of a polyno-
mial. For example, for the polynomial x3 + 2x2 – 4x + 3, which would be repre-
sented by the vector [1 2 - 4 3], the derivative is found by:

>> origp = [1 2 -4 3];
>> diffp = polyder(origp)
diffp =

3 4 -4

Chapter 14 advanced Mathematics438

which shows that the derivative is the polynomial 3x2 + 4x – 4. The func-
tion polyval can then be used to find the derivative for certain values of x; for
 example for x = 1, 2, and 3:

>> polyval(diffp, 1:3)
ans =

3 16 35

The derivative can be written as the limit

0

() ()
f (x) lim

h

f x h f x

h®

+ -
¢ =

and can be approximated by a difference equation.

MATLAB has a built-in function, diff, which returns the differences between
consecutive elements in a vector. For example,

>> diff([4 7 15 32])
ans =

3 8 17

For a function y = f(x) where x is a vector, the values of f ’(x) can be approxi-
mated as diff(y) divided by diff(x). For example, the previous equation can be
written as an anonymous function.

>> f = @ (x) x .^ 3 + 2 .* x .^ 2 - 4 .* x + 3;
>> x = 1:3;
>> y = f(x)
y =

2 11 36

>> diff(y)
ans =
 9 25

>> diff(x)
ans =
 1 1

>> diff(y) ./ diff(x)
ans =

9 25

14.3.3 Calculus in symbolic Math toolbox
There are several functions in Symbolic Math Toolbox™ to perform calculus
operations symbolically; for example, diff to differentiate and int to inte-
grate. To find out about the int function, for example, from the Command
Window:

439Summary

>> help sym/int

For example, to find the indefinite integral of the function f(x) = 3x2 – 1:

>> syms x
>> int(3*x^2 - 1)
ans =
x^3-x

Instead, to find the definite integral of this function from x = 2 to x = 4:

>> int(3*x^2 - 1, 2, 4)
ans =
54

Limits can be found using the limit function; for example, for the difference
equation described previously:

>> syms x h
>> f
f =
 @ (x) x .^3 + 2 .*x.^2 - 4 .* x + 3

>> limit((f(x+h)-f(x))/h,h,0)
ans =
3*x^2-4+4*x

To differentiate, instead of the anonymous function
we write it symbolically:

>> syms x f
>> f = x^3 + 2*x^2 - 4*x + 3
f =
x^3+2*x^2-4*x+3

>> diff(f)
ans =
3*x^2-4+4*x

suMMary
Common pitfalls

■■ Forgetting that the fprintf function by default prints only the real part of a complex
number

■■ Extrapolating too far away from the data set

programming style guidelines
■■ The better the curve fit, the more exact interpolated and extrapolated values

will be.

praCtiCe 14.3
For the function 2x2 – 5x + 3:

■■ Find the indefinite integral of the
function.

■■ Find the definite integral of the
function from x = 2 to x = 5.

■■ Approximate the area under the
curve from x = 2 to x = 5.

■■ Find its derivative.

■■ Approximate the derivative.

Chapter 14 advanced Mathematics440

exercises
 1. Express the following polynomials as row vectors of coefficients:

2x3 - 3x2 + x + 5
3x4 + x2 + 2x - 4

 2. Find the roots of the equation f(x) = 0 for the following function. Also, create x and
y vectors and plot this function in the range from –3 to 3 in order to visualize the
solution.

f(x) = 3x2 - 2x − 5

 3. Evaluate the polynomial expression 3x3 + 4x2 + 2x − 2 at x = 4, x = 6, and x = 8.
 4. Sometimes the roots of polynomial equations are complex numbers. For example,

create the polynomial row vector variable pol:

 >> pol = [3 6 5];

 Use the roots function to find the roots. Also, use ezplot(poly2sym(pol)) to see
a plot. Then, change the last number in pol from 5 to –7 and again find the roots
and view the plot.

 5. Create a vector x that contains the integers 1 through 20. Create a vector y that
stores 20 random integers, each in the range from –2 to +2. Fit a straight line
through these points. Plot the data points and the straight line on the same
graph.

 6. The compliance or elasticity of the lung is defined as:

 Volume

Pressure
Compliance

D
=
D

 In a biomedical engineering physiology lab, a spirometer was used to measure
the volume of the lungs at a given pressure, which was measured by a pressure
transducer. The following data was collected:

Pressure Volume
 0 cmH2O 1.750 L
 5 cmH2O 2.500 L
10 cmH2O 3.750 L
15 cmH2O 4.000 L
20 cmH2O 4.750 L

MATLAB Functions and Commands

sym2poly
poly2sym
roots
polyval
polyfit

interp1
complex
real
imag
isreal

conj
polar
trapz
quad
polyder

diff
int

limit

441Exercises

 Write a script that creates vectors to represent this data. Next, the script will find
the straight line that best fits this data, and plots the data as ‘o’s and also the
straight line on the same graph. The slope of this line is the actual compliance of
the lung and chest wall. Label your axes and put a title on it.

 7. The voltage in a circuit is determined at various times, as follows:

time: 1 2 3 4 5 6 7
voltage: 1.1 1.9 3.3 3.4 3.1 3.3 7.1

 Fit a straight line through the data points, and then plot this line along with the
sample voltages. According to your straight line, determine at what time the
voltage would be 5.

 8. Write a script that will generate a vector of 10 random integers, each in the range
from 0 to 100. If the integers are evenly distributed in this range, then when
arranged in order from lowest to highest, they should fall on a straight line. To test
this, fit a straight line through the points and plot both the points and the line with
a legend. For example, when tested, the random integers might be

95 23 61 49 89 76 46 2 82 44

 and the plot might look like the one in Figure 14.7.
 9. Write a function that will receive data points in the form of x and y vectors. If the

lengths of the vectors are not the same, then they can’t represent data points so
an error message should be printed. Otherwise, the function will fit a polynomial
of a random degree through the points, and will plot the points and the resulting
curve with a title specifying the degree of the polynomial. The degree of the
polynomial must be less than the number of data points, n, so the function must
generate a random integer in the range from 1 to n–1 for the polynomial degree.

 10. Temperature readings were done every hour (starting at 1 p.m., but the end time
could vary) and stored in a vector called readings. Write a function called halffit
that receives this vector as an argument and uses a quadratic interpolation (second
order) to determine what the temperature was every
half hour between the actual recorded temperatures.
The function then plots, on one graph, the original
temperature readings (using a ‘o’ for the points), the
interpolated temperatures at the half hours (using a
‘+’ for these points), and the quadratic curve that was
used for the interpolation. Put a legend on the graph
to distinguish them. The number of hours that was
used for the original vector may not be assumed. For
example, the function might be called as follows:

>> readings = [33, 40, 42, 41, 39, 32];
 >> halffit(readings)

 The Figure Window would look like Figure 14.8. 1 2 3 4 5 6 7 8 9 10
 0

20

40

60

80

100

120
random points
straight line

Figure 14.7
Straight line curve fit to
random integers.

Chapter 14 advanced Mathematics442

 11. Vectors x and y have been created to represent x and y points. The vectors have
the same length (let’s call this n). Write a function called fitsubs that receives these
vectors and graphically displays the difference between fitting polynomials of
degree 1, 2, 3, . . . n–1 to the data. For example, if the data is as shown here, the
Figure Window would look like Figure 14.9.

>> x = 1:4;
>> y = [23 35 46 39];
>> fitsubs(x,y)

 12. Create vectors for four points. Fit a straight line through the points, and also a
quadratic. Plot both of these, and the points, on one figure with legends.

 13. The temperature (in degrees Fahrenheit) was recorded every three hours for a day
at a particular location. Using a 24-hour clock where midnight is 0, for example,
the data might be:

Time: 0 3 6 9 12 15 18 21
Temp: 55.5 52.4 52.6 55.7 75.6 77.7 70.3 66.6

■■ Create vectors for the data.
■■ Plot the data.
■■ Find a curve that fits the data.
■■ At what time(s) was it 60 degrees? 65 degrees?

 14. The distance (in miles) and speed of a car (in miles per hour) are measured at
several points along a highway and are to be stored in a file and then read into a
variable called tripdata. For example, tripdata might contain:

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
32

34

36

38

40

42

44

readings
half hour interp
curve

Figure 14.8
Temperatures interpolated every half hour.

0 2 4
20

25

30

35

40

45

50
Degree 1

20

25

30

35

40

45

50

0 2 4

Degree 2

20

25

30

35

40

45

50

0 2 4

Degree 3

Figure 14.9
Subplot to demonstrate curves of increasing degrees.

443Exercises

 1 44
 10 45
 50 65
100 60
150 55

 It may be assumed that there are two columns; the first is the distance, and the
second is the speed. It may not be assumed that the number of rows is known.
The algorithm is:

■■ Create the data file and load it into a matrix variable, then separate the data
into two vectors.

■■ Fit a straight line to the data.

 Plot the data points and the line on the same graph, with appropriate labels on the
axes (not just x and y!).

 15. Write a function that will receive x and y vectors representing data points. The
function will create, in one Figure Window, a plot showing these data points as
circles and also in the top part a second-order polynomial that best fits these
points and on the bottom a third-order polynomial. The top plot will have a line
width of 3 and will be a gray color. The bottom plot will be blue, and have a line
width of 2. For example, the Figure Window might look like Figure 14.10. The axes
are the defaults. Note that changing the line width also changes the size of the
circles for the data points. You do not need to use a loop.

0 2 4 6 8 10 12
 0

 5

10

15

20
Second order

0 2 4 6 8 10 12
 0

 5

10

15

20
Third order

Figure 14.10
Subplot of second- and third-order polynomials with different line properties.

Chapter 14 advanced Mathematics444

 16. The depth of snow in inches has been measured in a very cold location every
week since the snow began accumulating. At this point, the season has changed
and it is getting warmer so the pile of snow is beginning to recede but it hasn’t all
gone away yet. The depths that have been recorded every week are stored in a file
called ‘snowd.dat’. For example, it might contain the following:

8 20 31 42 55 65 77 88 95 97 89 72 68 53 44

 Write a script that will predict in which week the snow will be totally gone by
fitting a quadratic curve through the data points. This will be called the “snow
gone week number” and will be rounded up. For example, if the data is as shown,
the snow would be gone by week number 18. The script will produce a plot in the
format shown in Figure 14.11, showing the original data points from the file and
also the curve (from week 1 through the snow gone week). The snow gone week
number will also be printed in the title. The x-axis should range from 0 to the snow
gone week number, and the y-axis from 0 to the maximum snow accumulation.

 17. A data file called ‘acme.dat’ stores for the Acme Products Corporation their costs
and sales for each of the four quarters last year. There are four lines in the file, each
consisting of the costs for the quarter and then the sales. For example, the file
might contain the following:

 2.2 4.4
 4 3.8
 6.5 6.5
11.1 10.5

 Write a script that will load this into a matrix and then separate the costs and sales
into vectors. Create a Figure Window that shows bar charts for the costs, sales,

0 2 4 6 8 10 12 14 16 18
 0

10

20

30

40

50

60

70

80

90

Snow gone week 18

Weeks

D
ep

th
 in

 in
ch

es

Figure 14.11
Prediction of snow melt.

445Exercises

and profits for the four quarters. Next, extrapolate to determine what the costs are
likely to be in the next quarter (assuming a linear progression).

 18. Store the following complex numbers in variables, and print them in the form

 a + bi.
 3 2i
 3-

 19. Create the following complex variables:

c1 = 2 -4i;
c2 = 5+3i;

 Perform the following operations on them:

■■ Add them.
■■ Multiply them.
■■ Get the complex conjugate and magnitude of each.
■■ Put them in polar form.

 20. Represent the expression z3 -2z2 + 3 – 5i as a row vector of coefficients, and store
this in a variable compoly. Use the roots function to solve z3 – 2z2 + 3 – 5i = 0.
Also, find the value of compoly when z = 2 using polyval.

 21. Determine how to use the polar function to plot the magnitude and angle of a
complex number in polar form.

 22. The real parts and imaginary parts of complex numbers are stored in separate
variables, for example:

>> rp = [1.1 3 6];
>> ip = [2 0.3 4.9];

 Determine how to use the complex function to combine these separate parts into
complex numbers; for example,

1.1000 + 2.0000i 3.0000 + 0.3000i 6.0000 + 4.9000i

 23. Using the symbolic function int, find the indefinite integral of the function 4x2 + 3,
and the definite integral of this function from x = –1 to x = 3. Also, approximate this
using the trapz function.

 24. Use the quad function to approximate the area under the curve 4x2 + 3 from –1 to 3.
First, create an anonymous function and pass its handle to the quad function.

 25. Use the polyder function to find the derivative of 2x3 – x2 + 4x – 5.

This page intentionally left blank

447

Index

A
abs, 33
Absolute value, complex number, 433
Algorithm, 82
all, 136, 137, 139, 323
and, 81
angle, 434
Animation, plots, 302–303
Anonymous function

function handle, 274
saving, 275

ans, 7, 8
any, 136, 137
Appending, 60, 61, 264, 267
area, 299, 299f, 305
Arguments to functions, 64–65,

67–68, 162, 168–170
Array operations, 133, 328
Arrays, 20, 224
ASCll, 19
Assignment operator, 6
Assignment statement, 6
Associativity, 12
Audio files, see Sound files
Augmented matrix, reduction, 348
Average see mean
Axis, 55, 58, 303

B
Back substitution, Gauss elimination,

342–347
Banded matrix, 327
bar, 57, 297–298, 299, 299f, 311–312
bar3, 303, 304
barh, 299, 299f
Base workspace, 182
Bin, 301
Binary operator, 11
Binary search, 383–386

blanks, 202
Boolean expression, 80–82
Branching statements, 79
Breakpoints, 189
Bug, 185–186
built-in functions, 12

C
Calculus

differentiation, 437–438
symbolic math, 438–439
trapezoidal rule, 435–436,

436–437, 437–439
Call back function, 407, 409,

410–412, 411f
Call-by-value method, 168–169
Call, function, 13
Cascaded if-else, 90
ceil, 13
cell, 225
Cell array

creation, 224–229
overview, 223, 224
referring and displaying elements

and attributes, 225–227
string storing, 227–229

celldisp, 226
cellplot, 226
cellstr, 228
char, 15, 19, 202, 218, 228
Character, 18, 198
Character encoding, 18
Character set, 18
Class, 14
clear, 9
clf, 57, 297–298
clock, 17
Close file, 254
collect, 350
Colon operator, 21

colormap, 401, 403
Column vector, 20–22, 24, 322
comet, 302–303
Command History Window, 6
Command Window, 4, 5f, 83
Comment, scripts, 45–46
Compiler, 43
complex, 429
Complex numbers

absolute value, 433
addition and subtraction,

431–432
complex conjugate, 433
equality, 431
multiplication, 432–433
overview, 429
plotting, 434–435
polar form, 434
polynomial representation,

433–434
Computer program, 41–42, 43
Concatenation, strings, 200–202
Concatenation, vectors, 22
Condition, 80, 83
Conditional loop, 109–110
conj, 433
Constants, 14
Control characters, 198
Conversion character, 48–49
cos, 58, 59f
Counted loop, 109–110
Counting, 148–149
cross, 336
Cross product, vectors, 335–336
cumprod, 118, 363, 364
cumsum, 129, 363, 364
Current Directory, 5–6
Curve fitting

least squares regression, 426–429
polyfit, 424

Index448 Index

Curve fitting (Continued)
polynomials, 422–423
sample data, 423

D
Database, 223–224
Data structure, 223
date, 213
dbcont, 189
dbquit, 189
dbstop, 189
deblank, 206, 207
Debugging

Editor/Debugger, 189–190
error types, 186–188
function stubs, 190–191
tracing, 188–189

Decrementing, variables, 8
Default input device, 42
Default output device, 43
Delimiter, 211, 212
demo, 4
det, 340
Determinant, matrix, 339
diag, 324, 326
Diagonal matrix, 326
diff, 438
Differentiation, calculus, 437–438
Dimensions of matrices, 28–33
disp, 48, 49, 85–86, 231, 253, 430
Division, 11t
Documentation, 45
dot, 335
Dot operator, 230
Dot product, vectors, 335
double, 14–15, 16, 19, 232, 240,

255, 351, 352, 353–354

E
Echo printing, 120
echo, 188
Editor/Debugger, 189–190
Elementwise, operators for

matrices, 139
Ellipsis, 11
elseif, 90
Empty string, 46, 199
Empty vector, 33–35
end, 30, 83, 110, 143, 284
End of file, 256
Equal matrices, 322
Equality, 82t
Error, types, 186–188

Error-checking
integers, 151
while loop, 149

Error message, 48
eval, 213, 214f, 217, 233, 300
Excel, spreadsheet file reading and

writing, 264–266
Executable file, 43
Execute, 43
exp, 14
expand, 350
Exponential notation, 50
Exponentiation, 11t
exp(x), 176, 177
Extrapolation, 423–424, 429
eye, 326
ezplot, 352, 352f

F
factor, 350
factorial, 113
Factorial, 113
fclose, 255–256, 260, 263
feval, 278
feof, 256
fgetl, 255–256, 258, 263
fgets, 255
Field, 223, 229
fieldnames, 233
Field width, 50
figure, 57, 297–298, 405, 405f
File

appending data, 61
closing, 255
data writing, 60–61
input and output, 59, 253
opening, 254–255
reading, 61–64
reading, 255–258
spreadsheet file reading and writing,

264–266
writing, 262–264

File identifier, 254
find, 138
findstr, 209, 218
fix, 13
fliplr, 30, 31
flipud, 30, 31, 63
Floating point representation, 14–15
floor, 13
fopen, 254, 255, 260, 263
for loop

combining with if statements,

118, 130–131
input, 120–121
nested loops, 122–124
not using iterator variable in

action, 119–120
overview, 110–111
preallocating vectors, 117–118
sums and products, 111–112,

119–120, 120–121
vector sums and products, 113–114

format compact, 10–11
format long, 10
format loose, 10–11
format short, 10
Format string, 48–51
Formatting, 48
fplot, 278
fprintf, 48, 49, 50, 51–53, 124, 203,

205, 218, 231, 236, 253, 262,
264, 430, 439

fscanf, 255–256, 258–259, 260, 268
func2str, 277
Function

anonymous, 273–275
calling, 66–67
definitions, 65–66, 162–163,

166–167
local variables, 68–69
nested, 284–287
passing no arguments, 168–169
passing multiple arguments,

67–68
recursive, 287–291, 385–386
user-defined functions, 64–68,

162–170
function, 65, 162
Function functions, 276–277
Function handle

function functions, 276–277
overview, 274

Function stubs, 190–191

G
Gauss elimination, 341–342, 342–347
Gauss-Jordan elimination, 341–342,

344–347
gca, 309
Geometric mean, 366
get, 306
getframe, 303
Global variable, 183–184
Graphical user interface (GUI),

405–412

449Index

Graphics
core objects, 396–400
properties, 306–308
primitives, 395–396

Greater than, 82t
GUI, see Graphical user interface
grid, 57, 297–298, 303

H
H1 line, 45
Handle graphics, 306–308, 395–400
Harmonic mean, 365
help, 4, 12–13
help debug, 189
helpbrowser, 4–5
hist, 301, 363
Histogram, 301
hold, 57, 297–298

I
i, 14t
Identifier names, 8–9
Identity matrix, 326
if, 82–86
if-else

nested if-else statements,
88–90

overview, 87, 91
imag, 430
image, 401, 402, 403
Image processing, 400–405
Imaginary part, 429
imread, 404
Incrementing, variables, 8
Indexing

overview, 379–382
vectors of structures,

381–382
Index vector, 23, 379–382
Inequality, 82t
inf, 14t, 258–259
Infinite loop, 143
Infinite recursion, 288
info, 4
Initializing, variables, 8
Inner function, 284
Inner loop, 123
Inner parentheses, 12
Inner product, vectors, 335
input, 46, 47, 48, 49, 50
Input argument, 65
Input/output statements, 46–53
int, 438–439

int2str, 215
int8, int16, int32, int64, 15
Integer, types, 15
interp1, 428
Interpolation, 423–424, 428
Interpreter, 43–44
intersect, 369, 370, 371
intmax, 15
intmin, 15
inv, 333
is, 98
iscellstr, 228
ischar, 214–215
isempty, 99
isequal, 139
isfield, 233
iskeyword, 99
isletter, 214
ismember, 368–369, 371
isreal, 431
issorted, 368–369, 371
isspace, 214
isstruct, 232–233
Iterator variable, 110

J
j, 14t

L
Leading blanks, 198
Least squares regression,

426–429
legend, 57, 59, 297–298
length, 28, 64
Less than, 82t
limit, 439
Linear algebraic equation

definition, 321
matrix solutions to systems of

linear equations
augmented matrix reduction, 348
Gauss elimination, 341–342,

342–347
Gauss-Jordan elimination,

341–342, 344–347
overview, 336–340
Reduced Row Echelon Form,

347–348
2 by 2 systems of equations,

338–340
symbolic mathematics and

solving simultaneous linear
equations, 352

Linear indexing, 27
line, 396
Line object, 396, 397f
Line types, 56
linspace, 22
load, 63, 253–254, 264, 268
Local variable, 182
logical, 15, 133–140
Logical error, 186
Logical expression, 80–82
Logical false, 80
Logical operator, 80
Logical true, 80
Logical vectors, 133–140
lookfor, 5
Loops

for loops
combining with if statements,

118, 130–131
input, 120–121
nested loops, 122–124
not using iterator variable in

action, 119–120
overview, 110–111
preallocating vectors, 117–118
sums and products, 111–112,

119–120, 120–121
vector sums and products, 113–114

nested loops and matrices, 126
overview, 109, 110
vectorizing, see Vectorizing
while loops

counting, 148–149
error-checking user input,

149–152
file reading, 145–147
input, 147–148
multiple conditions, 145
overview, 143–146

Lower-level file I/O functions, 254
Lower triangular matrix, 327
lower, 207

M
Machine language, 43
magic, 356
Main diagonal, square matrix, 324
Main program, 170
Markers, plot, 56
MAT-file

reading, 267–268
sound files, 394
variables

Index450 Index

MAT-file (Continued)
appending to file, 267
writing to file, 266–267

MATLAB program organization
modular programs, 170–172
subfunctions, 172–174

Matrix
augmentation, 333
configuration, 30–32
definitions, 322
dimensions, 28–29, 30–32
element modification, 26–28
functions, 33
multiplication, 330
nested loops and matrices, 126
operations, 328
printing, 51–53
properties, 322
solutions to systems of linear

equations, 341–348
square matrix, 324
variable creation, 24–28

max, 119, 303, 362, 386
Mean

definition, 363
geometric mean, 366
harmonic mean, 365

mean, 364
median, 368
menu, 96–97, 176
Menu-driven program, 174–182
M-file,, 43, 65, 171
min, 119, 303, 362, 386
Mnemonic name, 9
mode, data set, 367–368
Mode, file, 60
Modular program, 170
movegui, 406
movie, 303
Multiplication, 11t

N
namelengthmax, 9
NaN, 14t
nargin, 278–279
nargout, 278–279, 283–284
Nested functions, 284–287
Nested if-else, 88–93
Nested loops

combining with if statements,
130–131

for loop, 122–124
matrices, 126

Nested parentheses, 12
Nested structures, 241–243
not, 81
num2str, 215
numden, 351
numel, 29

O
Object code, 43
Object handle, 306
Object-oriented children, 396
ones, 356
Open file, 254
Operand, 11
Operators

precedence rules, 11–12, 82t,
140t

types, 11
or, 81
otherwise, 94
Outer function, 284
Outer loop, 123
Outer product, vectors, 335–336
Outlier, 364–365
Output argument, 65

P
pascal, 356
patch, 399, 400f
Persistent variables, 184–185
pi, 14t
pie, 301–302, 305–306
pie3, 303, 304
Pixel, 400
Placeholder, 48–49
Plot

animation, 302–303
applications

file data plotting, 309–312
plotting from function, 308–309

colors, 56t
complex numbers, 434–435
customization, 304–305
line types, 56
matrix of plots, 298–299
properties, 306–308
script customization, 54–55,

56–57, 57–58
simple functions, 57–58
symbols, 56t
three-dimensional plots, 303–304
types, 299–300

plot, 213, 297–298, 396, 435

plot3, 303, 399, 399f
polar, 435
Polar coordinates, complex number,

434
polyder, 437
polyfit, 424
Polynomials

complex equation representation,
433–434

overview, 422–423
poly2sym, 422
polyval, 424, 425, 438
Preallocate, vector, 117–118
pretty, 351–352
Primary function, 172
prod, 363, 364
Program organization, 170–174
Prompt, 4, 42, 46
Pseudo-random numbers, 16–17

Q
quad, 437
quit, 5

R
rand, 17, 25
randint, 18, 25
Random numbers, 16–18
Real part, complex number, 429
real, 430
rectangle, 398
Rectangle object, 398, 398f, 399f
Recursive function, 287–291
Reduced Row Echelon Form,

347–348
Relational expression, 80–82
Relational operator, 80
rem, 13
repmat, 32
Reserved words, 9
reshape, 30–31
Return value, 13
RGB color, 400
rmfield, 231
roots, 422
rot90, 30, 31, 32
round, 13
Row vector, 20–22, 322
rref, 347
Run, 43
Running product, 112–113
Running sum, 112
Run-time error, 186

451Index

S
Sampling, 423
save, 60–61, 63, 253–254, 268
Scalar, 20–22, 322
Script

documentation, 45–46
file creation, 43–44
input and output, 53–54
plot customization, 54–55,

56–57, 57–58
Script file, 4, 43–44, 170
Searching

binary search, 383–386
sequential search, 382–383

Selection sort, 373
Selection statements

if-else statement, 87
if statement, 82–86
nested if-else statements, 88–90
overview, 79
relational expressions, 80–82
switch statement, 93–96

Sequential search, 382–383
set, 308
Set operations, vectors, 368–372
setdiff, 369
setxor, 369
sign, 13, 14
simplify, 350
sin, 58, 59f, 216, 276f, 278f, 306f,

308f
sind, 216
single, 14
size, 28, 91
Slider, 412
solve, 352–354
sort, 374, 377
Sorting

indexing
overview, 379–382
vectors of structures, 381–382

overview, 372–373
strings, 377–379
vectors of structures, 374–377

sortrows, 378
sound, 394, 395
Sound files

audio file formats, 395
sound signal, 393–394

Source code, 43
Spreadsheet files, 264–266
sprintf, 202–203, 204–205, 204f,

218, 242, 297–298

sqrt, 366
Square matrix, 324
Standard deviation, 366–367
std, 366
stem, 299, 299f
stem3, 303
Step value, 21
strcat, 200–201, 203
strcmp, 207–209
strcmpi, 208
strfind, 209, 218
strncmp, 208
str2func, 277, 308
str2num, 216, 217, 258
String

is functions, 214–215
number conversions, 215
operations

concatenation, 200–202
customization, 202–205
whitespace character removal,

206–207
changing case, 207
comparing strings, 207–209
finding, replacing, and separat-

ing strings, 209–210
evaluating strings, 213–214

overview, 20, 197–198
sorting, 377–379
storing in cell array, 227–229
variable creation, 198–200

strncmpi, 209
strrep, 211, 213
strtok, 211, 212, 213
strtrim, 207
struct, 229, 244
Structure

indexing into vectors of structures,
381–382

nested structures, 241–243
overview, 229–231
passing to functions, 231–234
related function, 232–234
sorting vectors of structures,

374–377
variable creation and modification,

229–231
vectors of structures

nested structures, 236
overview, 234–236,

 236–239
strvcat, 201, 202, 218, 228
Subfunction, 172–174

subplot, 298, 299, 300, 302, 304,
311–312, 426, 426f

subs, 350–351
Substring, 198
Subtraction, 11t
sum, 363, 364
switch, 93–96
sym, 349
sym2poly, 422
Symbolic mathematics

calculus, 438–439
dispalying expressions, 351–352
overview, 348–354
simplification functions, 350–351
solving simultaneous linear

equations, 352
symbolic variables and expressions,

349–350
Symmetric matrix, 325
syms, 350
Syntax error, 186

T
Temporary variable, 85
text, 397
textscan, 255, 259, 262, 268, 311–312
Three-dimensional plots, 303–304
title, 54, 297–298
Token, 211, 212
Top-down design, 42
trace, 325
Trace, square matrix, 324
Tracing, 188–189
Trailing blanks, 198
Transposition, vectors, 24
Trapezoidal rule, 435–436, 436–437,

437–439
trapint, 436
trapz, 436, 437
Tridiagonal matrix, 327
tril, 327–328
triu, 327–328
True color, 400
True color matrices, 403, 404f
Truth table, logical operators, 82t
Two-dimensional plots, 54–59,

297–302, 304–312
type, 14, 44, 60

U
uibuttongroup, 405
uicontrol, 406
uipanel, 405

Index452

Unary operator, 11
union, 369
unique, 370
upper, 207
Upper triangular matrix, 327
User, 6, 42
User-defined functions

overview, 64, 162–164
passing arguments to functions,

168–170
returning more than one value,

162–164
returning one value, 64–69
returning values versus printing,

167–170
task accomplishment without

returning values, 166–167

V
var, 366–367
varargin, 279, 280
varargout, 278–279, 284
Variable

creation, 6
decrementing, 8
incrementing, 8
initializing, 8
local, 182
MAT-file

appending to file, 267
writing to file, 266–267

names, 8–10
persistent, 184–185
scope

overview, 182–185
persistent variables, 184–185

structure creation and
modification, 229–231

Variable number of arguments
input arguments, 279–280
output arguments, 280–284
overview, 278–280

Variance, 366–367
Vector

column vector creation, 24
element modification, 22–24
empty vector, 33–35
for loops

preallocating vectors, 117–118
sums and products, 113–114

functions, 33
indexing into vectors of structures,

381–382
operations, 334–336
printing, 51–53
row vector creation, 20–22
set operations, 368–372
sorting vectors of structures,

374–377
strings as, 198–200
structures

nested structures, 236

overview, 234–236, 236–239
types, 20–22, 322

Vectorizing
logical vectors, 133–134,

136–138
overview, 131–132, 133
input, 147–148
multiple conditions, 145
overview, 143–146

W
Whitespace characters, 198, 206–207
while loops

counting, 148–149
error-checking user input,

149–152
file reading, 145–146

who, 9, 266–267
whos, 9, 16, 430

X
xlabel, 54, 297–298
xlsread, 264–266
xlswrite, 264–266
xor, 81

Y
ylabel, 54, 297–298

Z
zeros, 25

	Matlab: A Practical Introduction to Programming and Problem Solving
	Copyright Page
	Dedication Page
	Contents
	Preface
	Motivation
	Key Features
	Side-by-Side Programming Concepts and Built-In Functions
	Systematic Approach
	File Input/Output
	User-Defined Functions
	Advanced Programming Concepts
	Problem-Solving Tools
	Plots, Imaging, and GUIs

	Layout of Text
	Pedagogical features
	Additional book resources
	Acknowledgments

	Part 1: Programming and Problem Solving Using MATLAB
	Chapter 1: Introduction to MATLAB
	1.1 Getting into MATLAB
	1.2 Variables and Assignment Statements
	1.2.1 Initializing, Incrementing, and Decrementing
	1.2.2 Variable Names

	1.3 Expressions
	1.3.1 The Format Function and Ellipsis
	1.3.2 Operators
	1.3.3 Built-In Functions and Help
	1.3.4 Constants
	1.3.5 Types
	1.3.6 Random Numbers

	1.4 Characters and Encoding
	1.5 Vectors and Matrices
	1.5.1 Creating Row Vectors
	1.5.2 Creating Column Vectors
	1.5.3 Creating Matrix Variables
	1.5.4 Dimensions
	1.5.5 Using Functions with Vectors and Matrices
	1.5.6 Empty Vectors

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 2: Introduction to MATLAB Programming
	2.1 Algorithms
	2.2 MATLAB Scripts
	2.2.1 Documentation

	2.3 Input and Output
	2.3.1 Input Function
	2.3.2 Output Statements: disp and fprintf

	2.4 Scripts with Input and Output
	2.5 Scripts to Produce and Customize Simple Plots
	2.5.1 The Plot Function
	2.5.2 Simple Related Plot Functions

	2.6 Introduction to File Input/Output (Load and Save)
	2.6.1 Writing Data to a File
	2.6.2 Appending Data to a Data File
	2.6.3 Reading from a File

	2.7 User-Defined Functions that Return a Single Value
	2.7.1 Function Definitions
	2.7.2 Calling a Function
	2.7.3 Calling a User-Defined Function from a Script
	2.7.4 Passing Multiple Arguments
	2.7.5 Functions with Local Variables

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 3: Selection Statements
	3.1 Relational Expressions
	3.2 The If Statement
	3.2.1 Representing Logical True and False

	3.3 The If-Else statement
	3.4 Nested If-Else Statements
	3.5 The Switch Statement
	3.6 The Menu Function
	3.7 The is Functions in MATLAB
	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 4: Looping
	4.1 The for Loop
	4.1.1 Finding Sums and Products
	4.1.2 For Loops that Do Not Use the Iterator Variable in the Action
	4.1.3 Input in a for Loop
	4.1.4 Input in a for Loop

	4.2 Nested for Loops
	4.2.1 Nested Loops and Matrices
	4.2.2 Combining Nested for Loops and if Statements

	4.3 Vectorizing
	4.3.1 Logical Vectors
	4.3.2 Vectors and Matrices as Function Arguments

	4.4 While Loops
	4.4.1 Multiple Conditions in a While Loop
	4.4.2 Reading from a File in a While Loop
	4.4.3 Input in a While Loop
	4.4.4 Counting in a While Loop
	4.4.5 Error-Checking User Input in a While Loop

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 5: MATLAB Programs
	5.1 More Types of User-Defined Functions
	5.1.1 Functions that Return More than One Value
	5.1.2 Functions that Accomplish a Task Without Returning Values
	5.1.3 Functions that Return Values Versus Printing
	5.1.4 Passing Arguments to Functions

	5.2 MATLAB Program Organization
	5.2.1 Modular Programs
	5.2.2 Subfunctions

	5.3 Application: Menu-Driven Modular Program
	5.4 Variable Scope
	5.4.1 Persistent Variables

	5.5 Debugging Techniques
	5.5.1 Types of Errors
	5.5.2 Tracing
	5.5.3 Editor/Debugger
	5.5.4 Function Stubs

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 6: String Manipulation
	6.1 Creating String Variables
	6.1.1 Strings as Vectors

	6.2 Operations on Strings
	6.2.1 Concatenation
	6.2.2 Creating Customized Strings
	6.2.3 Removing Whitespace Characters
	6.2.4 Changing Case
	6.2.5 Comparing Strings
	6.2.6 Finding, Replacing, and Separating Strings
	6.2.7 Evaluating a String

	6.3 The is functions for strings
	6.4 Converting between string and number types
	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 7: Data Structures: Cell Arrays and Structures
	7.1 Cell Arrays
	7.1.1 Creating Cell Arrays

	7.2 Structures
	7.2.1 Creating and Modifying Structure Variables
	7.2.2 Passing Structures to Functions
	7.2.3 Related Structure Functions
	7.2.4 Vectors of Structures
	7.2.5 Nested Structures
	7.2.6. Nested Structures

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 8: Advanced File Input and Output
	8.1 Lower Level File I/O Functions
	8.1.1 Opening and Closing a File
	8.1.2 Reading from Files
	8.1.3 Writing to Files
	8.1.4 Appending to Files

	8.2 Writing and Reading Spreadsheet Files
	8.3 Using MAT-Files for Variables
	8.3.1 Writing Variables to a File
	8.3.2 Appending Variables to a MAT-File
	8.3.3 Reading from a MAT-File

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 9: Advanced Functions
	9.1 Anonymous Functions
	9.2 Uses of Function Handles
	9.2.1 Function Functions

	9.3 Variable Numbers
of Arguments
	9.3.1 Variable Number of Input Arguments
	9.3.2 Variable Number of Output Arguments

	9.4 Nested Functions
	9.5 Recursive Functions
	Summary
	Common Pitfalls
	Programming Style Guidelines

	Part 2: Applications
	Chapter 10: MATLAB Plots
	10.1 Plot Functions
	10.1.1 Matrix of Plots
	10.1.2 Plot Types

	10.2 Animation
	10.3 Three-Dimensional Plots
	10.4 Customizing Plots
	10.5 Graphics Properties
	10.6 Plot Applications
	10.6.1 Plotting from a Function
	10.6.2 Plotting File Data

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 11: Solving Systems of Linear Algebraic Equations
	11.1 Matrix Definitions
	11.1.1 Matrix Properties

	The Programming Concept
	The Efficient Method
	11.1.2 Square Matrices

	The Programming Concept
	The Efficient Method
	The Efficient Method
	The Efficient Method
	11.1.3 Matrix Operations

	The Programming Concept
	The Efficient Method
	11.1.4 Matrix Multiplication

	The Programming Concept
	The Efficient Method
	11.1.5 Vector Operations

	11.2
Matrix Solutions to Systems of Linear Algebraic Equations
	11.2.1 Solving 2 × 2 Systems of Equations

	The Programming Method
	The Efficient Method
	11.2.2 Gauss, Gauss-Jordan Elimination
	11.2.3 Reduced Row Echelon Form
	11.2.4 Finding a Matrix Inverse by Reducing an Augmented Matrix

	11.3 Symbolic Mathematics
	11.3.1 Symbolic Variables and Expressions
	11.3.2 Simplification Functions
	11.3.3 Displaying Expressions
	11.3.4 Solving Equations

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 12: Basic Statistics, Searching, and Sorting
	12.1 Statistical Functions
	12.1.1 Mean

	The Programming Concept
	The Efficient Method
	12.1.2 Variance and Standard Deviation
	12.1.3 Mode
	12.1.4 Median

	12.2 Set Operations
	12.3 Sorting
	The Programming Concept
	The Efficient Method
	12.3.1 Sorting Vectors of Structures
	12.3.2 Sorting Strings

	12.4 Indexing
	12.4.1 Indexing into Vectors of Structures

	12.5 Searching
	12.5.1 Sequential Search
	12.5.2 Binary Search

	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 13: Sights and Sounds
	13.1 Sound Files
	13.2 Introduction to Handle Graphics
	13.2.1 Graphics Objects and Their Properties

	13.3 Image Processing
	13.4 Introduction to Graphical User Interfaces
	Summary
	Common Pitfalls
	Programming Style Guidelines

	Chapter 14: Advanced Mathematics
	14.1 Fitting Curves to Data
	14.1.1 Polynomials
	14.1.2 Curve Fitting
	14.1.3 Interpolation and Extrapolation
	14.1.4 Least Squares

	14.2 Complex Numbers
	14.2.1 Equality for Complex Numbers
	14.2.2 Adding and Subtracting Complex Numbers

	The Programming Concept
	The Efficient Method
	14.2.3 Multiplying Complex Numbers
	14.2.4 Complex Conjugate and Absolute Value
	14.2.5 Complex Equations Represented as Polynomials
	14.2.6 Polar Form
	14.2.7 Plotting

	14.3 Calculus: Integration and Differentiation
	14.3.1 Trapezoidal Rule

	The Programming Concept
	The Efficient Method
	The Programming Concept
	The Efficient Method
	14.3.2 Differentiation
	14.3.3 Calculus in Symbolic Math Toolbox

	Summary
	Common Pitfalls

	Programming Style Guidelines

	Index

