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Abstract. We show that it is possible to extend a general-purpose programming
language with a convenient high-level data-type for manipulating XML docu-
ments while permitting (1) precise static analysis for guaranteeing validity of the
constructed XML documents relative to the given DTD schemas, and (2) a run-
time system where the operations can be performed efficiently. The system, named
Xact, is based on a notion of immutable XML templates and uses XPath for de-
constructing documents. A companion paper presents the program analysis; this
paper focuses on the efficient runtime representation.

1 Introduction

There exists a variety of approaches for programming transformations of XML doc-
uments. Some work in the context of a general-purpose programming language; for
example, JDOM [17], which is a popular package for Java allowing XML documents to
be manipulated using a tree representation. A benefit of this approach is that the full ex-
pressive power of the Java language is directly available for defining the transformations.
Another approach is to use domain-specific languages, such as XSLT [7], which is based
on notions of templates and pattern matching. This approach often allows more concise
programs that are easier to write and maintain, but it is difficult to combine it with more
general computations, access to databases, communication with Web services, etc.

Our goal is to integrate XML into general-purpose programming languages to make
development of XML transformations easier and safer to construct. We propose Xact,
which integrates XML into Java through a high-level data-type representing immutable
XML fragments, a runtime system that supports a number of primitive operations on
such XML fragments, and a static analysis for detecting programming errors related to
the XML operations.

The XML fragments in Xact are immutable for two reasons: First, immutability is
always a judicious design choice (“I would use an immutable whenever I can”, James
Gosling [26]); and second, immutability is a necessity for devising precise and efficient
static analyses, in particular, of validity of dynamically constructed XML documents
relative to the DTD schemas. The Xact system consists of a simple preprocessor, a
runtime library, and a program analyzer. The main contribution of this paper is the
description of the Xact runtime system. We present a suitable runtime representation
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for XML templates that efficiently supports the operations in the Xact API. This is
nontrivial mainly because of the immutability of the data type. The companion paper
[20] contains a description of the static analysis of Xact programs.

We first, in Section 2, describe the design of the Xact language and motivate our
design choices. Section 3 then gives a brief overview of the results from [20] about
providing static guarantees for XML transformations written in Xact. Section 4 presents
our runtime system and discusses time complexity of the operations. Finally, in Section 5,
we evaluate the system by a number of experiments.

Related work. The most closely related work is that on JDOM [17], XSLT [18],
XQuery [4], XDuce [16], Xtatic [10], CDuce [2], XOBE [19], XJ [14], Xen [22], and
HaXml [27]. In comparison, the Xact language is based on a combination of the fol-
lowing ideas:

– Xact integrates XML processing into a general-purpose language, rather than being
a domain-specific language as XSLT or XQuery.

– It applies a template-based paradigm for constructing XML values (reminiscent of
that in XSLT but unlike the other systems mentioned above).

– XML values are immutable (in stark contrast to JDOM, XJ, and Xen).
– Deconstruction of XML values is based on the XPath language [8] (which is also

used for similar purposes in XSLT, XQuery, XJ, and optionally also in JDOM).
– Static guarantees are provided through data-flow analysis, thereby avoiding the

explicit type annotations that are required in approaches based on type systems. Such
explicit types can be cumbersome to write and read, and, as noted in [14], explicit
types for XML values can be too rigid since the individual steps in a sequence
of operations may temporarily invalidate the data unless permitting only bottom-
up construction. (JDOM and XSLT provide no similar static guarantees, and the
remaining alternatives mentioned above use type systems.)

We refer to the paper [20] for a comprehensive survey of the relation between the
language design of Xact and other systems. In the present paper, we focus on the
relation to the runtime model of a few representative alternatives: (1) JDOM is generally
considered an efficient but rather low-level platform for manipulating XML documents in
Java. It provides an explicit tree representation of XML documents where nodes include
parent pointers, which permits upwards traversal but prohibits sharing. (2) XSLT is a
widely used XML transformation language and many implementations exist. A central
part of XSLT is the use of XPath for selection and pattern matching, and much effort
has been put into optimizing XPath processors for use in XSLT and other systems [12].
Our implementation of Xact uses an off-the-shelf XPath processor [21] and can hence
benefit directly from such work. (3) Both Xtatic and CDuce inherit their key features—
tree processing in a declarative style with regular types and patterns—from XDuce.
Xtatic works in the context of C# whereas CDuce is a functional language. The paper [11]
describes runtime representations for Xtatic, where the main challenges are immutability
(as for Xact), efficient pattern matching (where we apply XPath instead), and DOM
interoperability (using techniques that we could also apply). Since no implementation
of Xtatic has been available to us, we choose the tuned implementation of CDuce as a
representative for these systems for quantitative comparisons.
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2 The Xact Language

Compared to other XML transformation languages, Xact is designed to be a small
sublanguage that can be described in just a few pages. The Xact language introduces
XML transformation facilities into the Java programming language such that XML doc-
uments, from a programmer’s perspective, are first-class values on equal terms with
basic values, such as booleans, integers, and strings. Programmers can thereby combine
the flexibility and power of a general-purpose programming language with the ability to
express XML manipulations at a high level of abstraction. This combination is conve-
nient for many typical transformation tasks. Examples are transformations that rely on
communication with databases and complex transformation tasks, which may involve
advanced control-flow depending on the document structure. In these cases, one can
apply Xact operations while utilizing Java libraries, for example, the sorting facilities,
string manipulations, and HTTP communication. We choose to build upon Java because
it is widely used and a good representative for the capabilities of modern general-purpose
programming languages. Additionally, it is often used as a foundation for Web services,
using for example Servlets or SOAP, which involve dynamic construction of XHTML
documents or manipulation of SOAP messages.

We build XML documents from templates as known from the JWIG language [6].
This approach originates from MAWL [1] and <bigwig> [5], and was later refined in
JWIG, where it has shown to be a powerful formalism for XHTML document con-
struction in Web services. Our aim has been to extend the formalism to general XML
transformations where both construction and deconstruction are supported.

A template is a well-formed XML fragment containing named gaps: template gaps
occur in place of elements, and attribute gaps occur in place of attributes. The core
notation for templates is given by xml in the following grammar:

xml := str (character data)
| <name atts>xml</name> (element)
| <[g]> (template gap)
| xml xml (template sequencing)

atts := name="value" (attribute)
| name=[g] (attribute gap)
| ε (empty sequence)
| atts atts (attribute sequencing)

Here, str denotes a string of XML character data, name denotes a qualified XML name,
g denotes a gap name, and value denotes an XML attribute value. As an example, the
following XML template, which can be useful when constructing XHTML documents,
contains two template gaps named TITLE and MAIN and one attribute gap named COL:

<html>
<head><title><[TITLE]></title></head>
<body bgcolor=[COL]><[MAIN]></body>

</html>

Construction of a larger template from a smaller one is accomplished by plugging
values into its gaps. The result is the template with all gaps of a given name replaced by
values. This mechanism is flexible because complex templates can be built and reused
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Table 1. The central methods in the XML class of Xact.

many times. Gaps can be plugged in any order; construction is not restricted to be
bottom-up, in contrast to, for example, XDuce and XOBE.

Deconstruction of XML data is also supported in Xact. An off-the-shelf language
for addressing nodes within XML trees is available, namely W3C’s XPath language [8].
XPath is widely used and has despite its simplicity shown to be versatile in existing
technologies, such as XSLT and XQuery. The Xact deconstruction mechanism is also
based on XPath. We have identified two basic deconstruction operations, which are
powerful in combination with plugging. The first is select, which returns the subtemplates
addressed by an XPath expression. The second is gapify, which replaces the subtemplates
addressed by an XPath expression with gaps. Select is convenient because it permits us
to pick subtemplates for further processing. Gapify permits us to dynamically introduce
gaps, which is important for a task such as performing minor modifications in an XML
tree. Altogether, this constitute an algebra over templates, which allows typical XML
manipulations to be expressed at a high level of abstraction.

We have chosen a value-based programming model as in pure functional languages.
In this model, XML templates are unchangeable values and operations have no side-
effects. A Java class that implements the value-based model is said to be immutable.
Such classes are favored because their instances are safe to share, value factories can
safely return the same instances multiple times, and thread-safety is guaranteed [3]. All
Java value classes, such as Integer and String, are for these reasons immutable. Our
templates inherit the properties and benefit by being easier to use and less prone to error
than mutable frameworks, such as JDOM. Furthermore, immutability is a necessity for
useful analysis, as described in Section 3.

The immutable Java class XML, which represents templates, has the methods shown
in Table 1. All parameters of type Gap, XPath, and DTD are assumed to be constants and
may be written as strings. The DTD parameters are URIs of DTDs.

Xact distinguishes between two different sources of XML data: constant templates
and input data. Constant templates are part of the transformation program and are con-
structed using the constant method. The syntax for these templates is the one given by
the grammar above. Input to the program is read using the getmethod, which constructs
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a gap-free template from a non-constant string and checks the result for validity with
respect to the given DTD schema. Output from the transformation is achieved through
the toString method, which returns the string representation of the XML template.

Templates can be combined by the plug method, which is overloaded to accept a
template, a string, or arrays of these as second parameter. Invoking the non-array variants
will plug the given string or template into all occurrences of the given gap name. The
array variants will, in document order, plug all occurrences of the given gap name with
entries from the given array. If the array has superfluous entries these will be ignored,
and conversely, the empty string will be plugged into superfluous gaps. An exception is
thrown if one attempts to plug a template into an attribute gap.

Template deconstruction is provided by the select and gapify methods. Both
methods take an XPath expression as parameter, which on evaluation returns a set of
nodes within the given template1. Invoking the selectmethod gives an array containing
all the subtemplates rooted at nodes in the XPath evaluation result. The gapify method
returns a template where all subtemplates rooted at nodes in the XPath evaluation result
have been replaced by gaps of the given name.

The close method eliminates all gaps in a template and is commonly used in com-
bination with toString. The result will by construction represent a well-formed XML
document. Invoking the static smash method concatenates the entries of the given tem-
plate array into a single template2. The equals method determines equality of XML
instances, and the hashCode method returns a consistent hash code for an XML instance.
The ability to compare entire XML templates for equality permits templates to be stored
in containers as values rather than as objects and can also be useful in the decision logic
of transformations. In comparison, other systems either do not have an equality primitive
or compare by reference instead of by value.

By placing special analyze methods in the code, the compile-time analyzer can be
instructed to check for validity relative to the given DTDs. This is usually used in con-
nection with the toString method to analyze validity of the output data. Additionally,
runtime validation of a template according to a given DTD schema is provided by the
cast method, which serves a similar purpose for the Xact analysis as the usual cast
operation does for the type system of Java.

In order to integrate Xact tightly with the Java language, we provide special syntax
for template constants. This relieves programmers from tedious and error-prone charac-
ter escaping. A template xml may be written [[xml]], which after character escaping is
equivalent to XML.constant("xml"). Transformations that use this syntax are desug-
ared by a simple preprocessor. Also, a number of useful macros, presented in [20], for
commonly occurring tasks are provided. For example, the delete macro effectively
deletes the subtrees addressed by an XPath expression by performing a gapify opera-
tion with a fresh gap name. Our implementation also contains a mechanism for declaring
XML namespaces for constant templates and XPath expressions.

1 All XPath axes are supported by Xact. Although the paper [20] focuses on the downwards
axes, the program analyzer is capable of handling all axes.

2 The paper [20] describes a more powerful operation group and defines smash as syntactic
sugar. We now treat smash as the primitive and express group in terms of smash, select, and
equals instead.
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Example. We now consider a simple example, originating from [15], where an address
book is filtered in order to produce a phone list. An address book here consists of an
addrbook root element that contains a sequence of person elements, each having
a name, an addr, and an optional tel element as children. The filtration outputs a
phonelist root element that contains a sequence of person elements, where only
those having a tel child remains, and with all addr elements eliminated. The following
method shows how this can be implemented with Xact:

XML phonelist(XML book) {
XML[] persons = book.select("/addrbook/person[tel]");
XML list = XML.smash(persons).delete("//addr");
return [[<phonelist><[LIST]></phonelist>]].plug("LIST",list);

}

We use the select operation to build an array of all person elements that have a tel
child. Then, the array entries are combined into a single template, all addr elements are
deleted, and the result is wrapped into a phonelist element3.

One may additionally wish to sort the phone list alphabetically by name. Java
has built-in sorting facilities for arrays, so this is accomplished by implementing a
Comparator class, called PersonComparator, with the following compare method:

int compare(Object o1, Object o2) {
XML x1 = (XML)o1, x2 = (XML)o2;
String s1 = XML.smash(x1.select("/person/name/text()")).toString();
String s2 = XML.smash(x2.select("/person/name/text()")).toString();
return s1.compareTo(s2);

}

The Xact operations here simply extract the character data to be used in the comparison.
The phone list can then be sorted by inserting the following line into the phonelist
method (after the select operation):

Arrays.sort(persons, new PersonComparator());

The example shows how Xact integrates XML processing into Java and how a nontrivial
transformation task can be intuitive to express using Xact. More example programs can
be found at http://www.brics.dk/Xact/.

3 Static Guarantees

Transforming data from one XML language to another can be a quite intricate task,
even if a high-level programming language is being used. In particular, it can be dif-
ficult to ensure at compile-time that the output is always valid with respect to a given
DTD schema. A special property of the design of Xact is that it enables precise static
analysis for guaranteeing absence of certain programming errors related to XML docu-
ment manipulation. In the companion paper [20], we present a data-flow analysis that,
at compile-time, checks the following correctness properties of an Xact program:

3 With the notion of code gaps, which is included in the syntactic sugar mentioned in [20], the
last operation can be written more concisely:
return [[<phonelist><{list}></phonelist>]];



A Runtime System for XML Transformations in Java 149

output validity — that each analyze operation is valid in the sense that the XML
template at this point is guaranteed to be valid relative to the DTD schema; and

plug consistency — that each plug operation is guaranteed to succeed, that is, tem-
plates are never plugged into attribute gaps.

Additionally, the analysis can detect and warn the programmer if the specified gap for
a plug operation is never present and if an XPath expression in a select or gapify
operation will never address any nodes.

Notice that Xact, in contrast to other XML transformation systems that permit static
guarantees, does not require every XML variable to be explicitly typed with schema
information.

The crucial property of Xact that makes the analysis feasible is that the XML
templates are immutable. Analyzing programs that manipulate mutable data structures
is known to be difficult [24,23], and the absence of side-effects means that we do not
have to model the complex aliasing relations that otherwise may arise.

The analysis is conservative in the sense that it never misses an error, but it might
report false errors. Our experiments in [20] indicate that the analysis is both precise and
efficient enough to be practically useful, and that it produces helpful error messages if
potential errors are detected.

4 Runtime System

We have now presented a high-level language for expressing XML transformations
and briefly explained that the design permits precise static analysis. However, such a
framework would be of little practical value if the operations could not be performed
efficiently at runtime. In this section, we present a data structure in the form of a Java
library addressing this issue.

To qualify as a suitable representation for XML templates in the Xact framework,
our data structure must support the following operations:

– Creation: Given the textual representation of an XML template, we must build the
structure representing the template.

– Combination: The plug, close, and smash operations operate directly on XML
templates and must be supported directly by the data structure.

– Navigation: The tasks of converting a template to its textual representation, checking
the template for validity according to a given schema, and evaluating an XPath
expression on a template all require means for traversing the XML data in various
ways. In general, we need a mechanism for pointing at a specific node in the XML
tree. We call such an XML pointer a navigator. It must support operations for moving
this pointer around the tree. To support all XPath axis evaluations, we must be able
to move to the first child and first attribute of an element node, the parent and
next/previous sibling of any tree node, and the next/previous attribute of an attribute
node. We assume that this is sufficient for the XPath engine being used (for example,
Jaxen [21] satisfies this).

– Extraction: The result of evaluating an XPath expression on the structure, using its
navigation mechanism, is a set of navigators. From this set of navigators, we must
be able to obtain the result of the select and gapify operations.
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Fig. 1. The effect of performing the non-array plug operation, c = a.plug(g, b). Part (i) shows
the two templates, a and b, where a contains two g gaps. Part (ii) shows the naive approach
for representing c, where everything has been copied. Part (iii) shows the basic approach from
Section 4.1 where only the paths in a that lead to g gaps are copied and new edges are added
pointing to the root of b. Part (iv) shows the lazy approach from Section 4.2 where a plug node is
generated for recording the fact that b has been plugged into the g gaps of a. When the structure
in (iv) is later normalized, the one in (iii) is obtained.

A naive data structure that trivially supports all of these operations is an explicit XML
tree with next sibling, previous sibling, first child and parent pointers in all nodes
(where we encode attributes in the contents sequences). If such a data structure is used,
we are forced to copy all parts of the operand structures that constitute parts of the result
in order to adhere to the immutability constraint. The doubly-linked nature of the struc-
ture prohibits any sharing between individual XML values. The running times for the
Xact operations on such a structure would thus be at least linear in the size of the result
for each operation. As we show in the following, we can do better using a specialized
data structure.

4.1 The Basic Approach

The main problem with the doubly-linked tree structure is that it prevents sharing between
templates. To enable sharing, we use a singly-linked binary tree, that is, a tree with only
first child and next sibling pointers but without the parent and previous sibling pointers.
This structure permits sharing as follows: whenever a subtree of an operand occurs as a
subtree of the result, the corresponding pointer in the result simply points to the original
operand subtree and thus avoids copying that subtree.

Recall that, unlike complete XML documents, an XML template does not necessarily
have a single root element; rather, it can have an arbitrary sequence of elements, character
data and template gaps, which we will refer to as the top-level nodes.

To perform a non-array plug operation, a.plug(g, b), we copy just the portion of
a that is not part of a subtree that will occur unmodified in the result. More precisely,
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this is the tree consisting of the paths from the root of a to all g gaps in a. Any pointer
that branches out of these paths in the result points back to the corresponding subtree
of a. If the gap has a next sibling, we will also need to copy the top-level nodes of b,
since the list of successors for these nodes changes. This representation is depicted in
Part (iii) of Figure 1. Note that, in general, this operation will create a DAG rather than a
tree, since multiple occurrences of g in a will result in multiple pointers from the result
to the root of b. The array plug operation is performed similarly, except that the path
end pointers point to distinct templates. The close operation duplicates the paths to all
gaps and removes the gaps from the duplicate.

To be able to find the paths to the g gaps efficiently, we must have additional in-
formation in the graph. In each node, we keep a record of which gap names occur in
the subtree represented by that node. Since typical templates contain only few distinct
gap names, this gap presence information can often be shared between many nodes
and will not constitute a large overhead. Combining this information when constructing
new templates is also straightforward. Now, when a plug operation into g traverses the
graph looking for g gaps, it simply skips any branch where the gap presence information
indicates that no g gaps exist. This narrows the search down to the paths from the root to
the g gaps. Thus, the execution time for a plug operation is proportional to the number
of nodes that are ancestors of g gaps in a (including preceding siblings because of our
use of first child and next sibling pointers), plus the number of top-level nodes in b times
the number of g gaps in a. For the array plug operation, the last term simply becomes
the total number of top-level nodes in the plugged templates.

Constructing the representation of a tree from its textual representation using the
constant operation takes time proportional to the size of the tree plus, for each node,
the number of different gap names that appear in its subtree. The time for converting a
template to text using toString is proportional to the template size.

Navigation in this structure is not as straightforward as in the doubly-linked case,
since navigating backwards with parent or previous sibling requires information that
is not available in the tree. We can support these directions by letting the navigators
remember the entire path back to the root, and then backtrack along this path whenever a
backward step is requested. In other words, we let the navigators contain all the backward
pointers that the XML structure itself omits. Since navigators are always specific to one
XML value, we do not restrict sharing by keeping these pointers while the navigator is
used. Taking any navigator step still takes constant time.

The select operation simply returns a set of pointers to the nodes pointed to by the
navigators that result from the XPath evaluation. Only the nodes pointed to are copied
to make sure that their next sibling pointers are empty. The total time for performing the
select operation is proportional to the XPath evaluation time. The gapify operation
first evaluates the XPath expression, resulting in a set of navigators that represent the
addressed nodes. The tree from the root to these nodes is then copied, as for the plug
operation. After that, the gap information in the nodes of the new tree is updated in a
bottom-up traversal to include the new gaps. The total time for performing the gapify
operation is proportional to the XPath evaluation time, which dominates the time for the
other steps. Finally, the smash operation can be simulated by making a sequence of gap
nodes with a fresh gap name and performing an array plug operation into these. This
takes time proportional to the total number of top-level nodes in the smashed templates.
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These figures may seem satisfactory; however, it turns out that this approach has
some drawbacks as the following observations reveal.

– In a sequence of plug operations, each individual plug may create many nodes that
will be replaced in a subsequent plug operation. If the intermediate results are not
needed except as arguments for the subsequent plug operations (which is usually
the case), constructing these nodes is unnecessary and wasteful. For example, a
common idiom is to use a template <li><[item]></li><[more]> to build a list
of li elements by repeatedly plugging the template itself into the more gap. Such
a construction would take quadratic time in the length of the constructed list, since
all preceding siblings need to be copied each time.

– Traversing the structure recursively when looking for gaps can lead to unwieldy
stack sizes, since the ancestor nodes of the gaps include all preceding siblings.
This problem clearly shows up in practice—the algorithm is unable to handle XML
documents with more than a few thousand mutual siblings.

These observations lead us to a further refinement, as explained in the following section.

4.2 A Lazy Data Structure

We now present a modification of the basic structure that allows the operations to be
performed lazily without any reconstruction taking place until explicit traversal of the
tree is required. This effectively groups plug operations together in a way that permits
list structures to be built in linear time.

To accomplish this, we introduce special operation nodes in the graph, each rep-
resenting a plug or close operation (with smash being simulated by array plug as
before). We call all other nodes concrete nodes. An operation node has one designated
child node, which represents the this operand. There are three variants of operation
nodes, corresponding to the two variants of the plug operation and the close oper-
ation, respectively: the non-array plug node is labeled with a gap name and has one
extra edge corresponding to the value being plugged in; similarly, the array plug node
is labeled with a gap name and an array of extra edges; and the close node has no extra
information. Intuitively, an operation node merely records the fact that a plug or close
operation has occurred without actually performing it. Part (iv) of Figure 1 illustrates
this lazy variant of the plug operation.

As long as only plug, close and smash operations are performed, the resulting
template will be represented by a DAG of operation nodes and concrete nodes, where
all ancestors of operation nodes are themselves operation nodes. When the actual tree
is needed, we need to unfold this structure into a DAG of only concrete nodes, so that
the previously described navigation mechanism can be used. We refer to this process of
eliminating operation nodes as normalization.

To perform normalization, we traverse the DAG depth-first while keeping track of
the current plug context. A plug context is a map from gap names to nodes, defined by a
list of operation nodes. The current plug context is always defined by the list of ancestor
operation nodes of the current node. A non-array plug node maps its corresponding
gap name to the root of the plugged template; an array plug node initially maps its gap
name to the root of the first plugged template; and a close node maps all gap names to a
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special value remove. When more than one operation node mapping from the same gap
name exist among the ancestors, the one furthest down in the DAG has precedence as it
corresponds to an earlier plug operation.

Whenever we encounter a gap node with a name for which there is a mapping in the
current plug context, we recursively traverse the template rooted at the node targeted
by the mapping—or remove the gap node in case of the value remove. If the operation
node is an array plug node, its mapping is changed to the next node on its list, or to the
empty template if the list is exhausted. Note that the plug context in this traversal of the
plugged template is defined by the operation node ancestors in the complete DAG, which
includes the ones in the plugged template plus the ones created after it was plugged.

Just as for the plug operation in the basic approach, we only traverse the part of
the DAG which actually needs to be duplicated. That is, we skip any branch where the
gap presence information indicates that no gap exist for which there is a mapping in
the current plug context. The only exception to this is the top-level nodes of plugged
templates, which in general need to be duplicated, as before.

Following this strategy, we essentially perform a single traversal of the part of the final
result which could not be shared with any of the constituent templates. Thus, assuming
that the context lookup operations can be performed in amortized constant time (which
can be accomplished by caching lookups), and assuming a constant number of distinct
gap names, the running time for the entire normalization process is proportional to the
number of newly created nodes. Since this is bounded by the size of the result and the
result is typically traversed completely anyway, this is a satisfactory result.

To alleviate the stack requirement of the traversal, we use pointer reversal [25], which
in essence uses the newly generated nodes as an explicit recursion stack. The recursion
involved in the recursive unfolding of plugged templates mentioned above is done using
a separate, explicit stack. Thus, with this strategy, the call stack usage is bounded by a
constant, and the overall memory requirements are significantly reduced, compared to
the purely recursive approach.

4.3 Java Issues

One of the prominent features of immutable data manipulation is that it works fluently
in a multi-threaded environment. For this to work properly in the Java implementation,
care must be taken when the internal state of a representation changes. This happens
when the result of a normalization replaces the operation nodes—and this is of course
properly synchronized in the implementation so that no thread will see the data struc-
ture in an inconsistent state, and no two threads will perform the same normalization
simultaneously. Note also that the pointer reversal only changes newly created nodes, so
another thread can traverse (and even normalize) a template sharing parts with the one
being normalized without causing any problems.

A ubiquitous Java feature is the ability to compare objects using the equalsmethod.
This is easily (albeit not very efficiently) done for XML templates by a simple, parallel,
recursive traversal. To conform to the Java guidelines, any implementation of equals
must be consistent with the corresponding implementation of the hashCode method.
To provide this consistency, each node includes a hash code representing the XML tree
rooted at the node (including following siblings). The hash code for the entire template
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is then the hash code of the leftmost top-level node. This also enables a more efficient
implementation of equals: whenever two compared subtemplates have different hash
codes, their equality can be rejected right away. Furthermore, whenever two subtemplates
originate from the same original subtemplate unmodified, their object identity verifies
their equality.

5 Evaluation

This section describes experiments with our prototype implementation of the Xact
runtime system. The main goal is to gather runtime performance measurements for a
range of typical XML transformations in order to compare the performance of Xact
with that of related systems. Due to the limited space, we can only provide a brief report
on our evaluation results.

We have collected a suite of benchmark programs, most of which are inspired by
XML transformations developed in other languages. A few programs have been devel-
oped to specifically test the worst-case behavior of our implementation. Altogether the
suite covers a broad spectrum of typical XML transformation tasks.

Most of the related technologies mentioned in Section 1 are currently being devel-
oped by other research teams. Unfortunately, only a few have wished to provide an
implementation, making it impossible to do a complete performance comparison of all
the systems. Instead we have picked JDOM, XSLT and CDuce—for which optimized
runtime systems are available—as good representatives for the different approaches.
The JDOM and CDuce measurements are obtained using the latest releases (JDOM
Beta 10, and CDuce 0.1.1.) The XSLT measurements are obtained using Apache Xalan
2.6, which supports the complete XSLT 1.0 language and is among the fastest Java-
based implementations. For Xact, we use the lazy approach described in Section 4.2.
All experiments have been executed on an 3.0 GHz Intel Pentium 4 machine with 1 GB
RAM running Red Hat Linux 9.0 with Sun’s Java 2 SE 1.4.2 and O’Caml 3.0.7. Since
the focus of this paper is runtime performance we do not measure compilation and type
checking. Furthermore, the price of parsing input XML documents says little about the
relative strengths of the implementations, so this cost is excluded from measurements
in order to give a fair comparison.

We start by comparing Xact with XSLT using four typical XML transforma-
tion tasks. Two transformations originate from the XSLTMark benchmark suite [9]:
Backwards mirrors its input document by reversing the order of all node sequences;
DBOnerow queries a person database for a single entry and transforms it into XHTML.
Performance on mixed content documents is compared by Uppercase, which transforms
all names in an address book into uppercase characters. Phonelist is the example from
Section 2 transforming an address book into a sorted phone list. The transformations are
executed on input XML documents of size 100 KB, 1 MB, and 10 MB.

100 KB 1 MB 10 MB
XSLT Xact XSLT Xact XSLT Xact

Backwards 551 ms 421 ms 1,615 ms 1,513 ms 15,373 ms 11,599 ms
DBOnerow 279 ms 160 ms 754 ms 274 ms 4,048 ms 994 ms
Uppercase 431 ms 246 ms 1,234 ms 634 ms 8,810 ms 5,365 ms
Phonelist 494 ms 423 ms 1,351 ms 1,799 ms 8,029 ms 21,834 ms
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These figures indicate that the performances of the two are roughly similar. The main
benefits of Xact compared to XSLT are the static guarantees and the possibility of apply-
ing the full Java language. For example, the Uppercase benchmark is only expressible
in XSLT because this language contains a built-in function (translate) for mapping
individual characters to other characters; more advanced character data transformations
are not possible in XSLT without implementation dependent extension functions.

Next, we compare Xact with JDOM using the Linkset transformation (Example
15.8 in [13]), which extracts a set of links from an RDF feed, and the Phonelist
transformation, which is described above.

100 KB 1 MB 10 MB
JDOM Xact JDOM Xact JDOM Xact

Linkset 23 ms 146 ms 128 ms 316 ms 304 ms 1,837 ms
Phonelist 80 ms 422 ms 408 ms 1,799 ms 3,212 ms 21,834 ms

These experiments indicate that the JDOM approach with mutable tree updates and
purely navigational access, as one would expect, performs better than the immutable
Xact approach based on XPath. However, this should be contrasted by the fact that the
the Xact transformations are both shorter and more readable than the JDOM transfor-
mations. Furthermore, the Xact transformations are statically type safe in contrast to
those written with JDOM.

For the comparison of Xact and CDuce we use our Phonelist transformation and
the Split transformation, which is a benchmark program developed by the CDuce team
and used in their performance comparisons.

100 KB 1 MB 10 MB
CDuce Xact CDuce Xact CDuce Xact

Phonelist 156 ms 422 ms 1,747 ms 1,799 ms 21,579 ms 21,834 ms
Split 94 ms 496 ms 496 ms 1,729 ms error 12,897 ms

Since Xact uses Java and CDuce uses O’Caml, the performance is difficult to compare4,
but on these few benchmarks there seems to be no significant time difference for larger
data sets. When running the CDuce Split transformation on the 10MB document, it
runs out of memory, indicating that that the internal XML representation in Xact is
more compact than the one in CDuce.

To demonstrate that the lazy approach is preferable to the basic one, we compare
the two using a benchmark Logging, which extracts statistical information from a web
server log file and exhibits the quadratic blowup for the basic approach:

Xact (basic) Xact (lazy)
Logging (100 KB) 709 ms 639 ms
Logging (1 MB) 3,189 ms 1,926 ms
Logging (3 MB) 11,227 ms 3,836 ms
Logging (10 MB) stack overflow 9,011 ms

These figures show that the lazy approach can lead to significant saving in practice and
how it scales smoothly to large documents.

4 To exclude parsing time for CDuce, we measured the full time including parsing and then
subtracted the time for performing the identity transformation.
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In general, we conclude that the runtime system is sufficiently efficient. Our goal
has not been to outperform the alternative XML transformation systems, but rather to be
comparable in runtime performance and scalability, which complements the convenient
language design and static analysis that Xact also provides.

Obviously, there are ways to improve performance further. We plan to experiment
with caching of XPath parse trees, handling simple XPath expressions without involving
the general XPath engine, and compiling XPath expression to basic navigation steps (as
also done in the XJ project). Also, we believe that it is possible to exploit the knowledge
gained from the static analysis for optimizing the evaluation of XPath expressions.

6 Conclusion

We have presented an overview of the Xact language, focusing on the runtime system.
The design of Xact provides high-level primitives for programming XML transforma-
tions in the context of a general-purpose language, and, as shown in [20], it permits a
precise static analysis. A special feature of the design is that the data-type is immutable,
which at the same time is convenient to the programmer and a necessity for precise anal-
ysis. However, it also makes it nontrivial to construct a runtime system that efficiently
supports all the Xact operations, which is the main problem being addressed in this
paper. Our experiments indicate that the runtime system being proposed is sufficiently
efficient to be practically useful.

Our prototype implementation, which consists of the runtime system, the desugarer,
and the static analyzer supporting the full Java language, is available on the Xact home
page: http://www.brics.dk/Xact/.
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