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Abstract. We propose a novel kidney segmentation approach based on
the graph cuts technique. The proposed approach depends on both im-
age appearance and shape information. Shape information is gathered
from a set of training shapes. Then we estimate the shape variations us-
ing a new distance probabilistic model which approximates the marginal
densities of the kidney and its background in the variability region using
a Poisson distribution refined by positive and negative Gaussian com-
ponents. To segment a kidney slice, we align it with the training slices
so we can use the distance probabilistic model. Then its gray level is
approximated with a LCG with sign-alternate components. The spatial
interaction between the neighboring pixels is identified using a new ana-
lytical approach. Finally, we formulate a new energy function using both
image appearance models and shape constraints. This function is glob-
ally minimized using s/t graph cuts to get the optimal segmentation.
Experimental results show that the proposed technique gives promising
results compared to others without shape constraints.

1 Introduction

Isolating the kidney from its surrounding anatomical structures is a crucial step
in many unsupervised frameworks that assess the renal functions, such as frame-
works that are proposed for automatic classification of normal kidneys and acute
rejection transplants from Dynamic Contrast Enhanced Magnetic Resonance
Imaging (DCE-MRI). Many techniques were developed for kidney segmenta-
tion, Priester et al. [1] subtracted the average of precontrast images from the
average of early-enhancement images, and black-and-white kidney mask is gen-
erated by a threshold. This mask image is eroded and the kidney contour is
obtained with help of manual interactions. Giele et al. [2] improved the pre-
vious technique by applying an erosion filter to the mask image to obtain a
contour via a second subtraction stage. A hull function is used to close possible
gaps in this contour, then via repeated erosions applied to this contour, several
rings were obtained, which formed the basics of the segmentation of the cortex
from the medulla structures. Boykov et al. [3] used graph cuts to get a globally
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optimal object extraction method for dynamic N-data sets. They minimized cost
function, which combined region and boundary properties of segments as well
as topological constraints. Although the results looked promising, manual in-
teraction was still required. Sun et al. introduced many computerized schemes
for kidney segmentation and registration. In [4], after roughly alinement, they
subtracted a high-contrast image from a pre-contrast image to obtain a kidney
contour, which was propagated over the other frames searching for the rigid
registration parameters. They used the level sets to segment the cortex and
medulla. Most of these previous works, analyzed healthy transplants images.
However, poor kidney function decreases the uptake of contrast agent, resulting
in disjoined bright regions, so edge detection algorithms generally failed in giving
connected contours.

The literature is rich with another segmentation approaches: simple tech-
niques (e.g. region growing or thresholding), parametric deformable models and
geometrical deformable models. However, all these methods tend to fail in the
case of noise, gray level inhomogeneities, and diffused boundaries. In the area of
medical imaging, organs have well-constrained forms within a family of shapes
[5]. Therefore segmentation algorithms have to exploit the prior knowledge of
shapes and other properties of the structures to be segmented. Leventon et al.[6]
combine the shape and deformable model by attracting the level set function
to the likely shapes from a training set specified by principal component analy-
sis (PCA). To make the shape guides the segmentation process, Chen et al. [7]
defined an energy functional which basically minimizes an Euclidean distance
between a given point and its shape prior. Huang et. al. [8], combine registration
with segmentation in an energy minimization problem. The evolving curve is reg-
istered iteratively with a shape model using the level sets. They minimized a cer-
tain function to estimate the transformation parameters. In Paragios’s work[9],
a shape prior and its variance obtained from training data are used to define a
Gaussian distribution, which is then used in the external energy component of
a level sets framework.

In this paper, we propose a new kidney segmentation approach that uses graph
cuts to combine region and boundary properties of segments as well as shape
constraints. We generate from a set of kidney aligned images an image consisting
of three segments: common kidney, common background, and shape variability
region. We model the shape variations using a new distance probabilistic model.
This distance model approximates the distance marginal densities of the kidney
and its background inside the variability region using a Poisson distribution
refined by positive and negative Gaussian components. For each given kidney
slice, to use the distance probabilistic model, we align the given image with the
training images. Then its gray level is approximated with a linear combination of
Gaussian distributions (LCG) with positive and negative components. Finally,
we globally minimized a new energy function using s/t graph cuts to get the
optimal segmentation. This function is formulated such that it combines region
and boundary properties, and the shape information.
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2 Proposed Segmentation Framework

Recently, graph cuts appeared as a powerful optimization technique to get the
optimal segmentation because it optimizes energy functions that can integrate
regions and boundary properties of segments. The weighted undirected graph is a
set of vertices, and a set of edges connecting these vertices. Each edge is assigned
a nonnegative weight. The set of vertices corresponds to the set of image pixels
P , and two specially terminal vertices s (source), and t (sink). An example for
the graph that we used in kidney segmentation is shown in Fig. 4. Consider a
neighborhood system in P , which is represented by a set N of all unordered pairs
{p, q} of neighboring pixels in P . Let L the set of labels {“0”, “1”}, correspond
to kidney and background, respectively. Labelling is a mapping from P to L,
and we denote the set of labelling by f = {fp : p ∈ P , fp ∈ L}. Now our goal is
to find the optimal segmentation, best labelling f , by minimizing a new energy
function which combines region and boundary properties of segments as well as
shape constraints. This function is defined as follows:

E(f) =
∑

p∈P
S(fp) +

∑

p∈P
D(fp) +

∑

{p,q}∈N
V (fp, fq), (1)

where S(fp) measures how much assigning a label fp to pixel p disagrees with the
shape information, this will be explained in Sec. 2.1. D(fp) measures how much
assigning a label fp to pixel p disagrees with the pixel intensity Ip. V (fp, fq)
represents the penalty of the discontinuity between pixels p and q. The last two
terms will be explained in Sec. 2.2.

2.1 Shape Model Construction

Kidney shape model is created from a training set of kidney DCE-MRI slices.
Fig.1 illustrates the steps used to create the shape model. Fig.1(a) shows a
sample of the DCE-MRI kidney slices. First, we manually segment the kidneys
(by a radiologist), as shown in Fig.1(b). Then the segmented kidneys are aligned
using 2D rigid registration [10], see Fig.1(c). The aligned images are converted
to binary images, as shown in Fig.1(d). Finally, we generate a “shape image”
Ps = K

⋃
B

⋃
V as shown in Fig2(a). The white color represents K (kidney),

black represents B (background), and gray is the variability region V . To model
the shape variations, variability region V , we use a distance probabilistic model.
The distance probabilistic model describes the object (and background) in the
variability region as a function of the normal distance dp = min

c∈CKV
‖p − c‖ from

a pixel p ∈ V to the kidney/variability contour CKV . Each set of pixels located
at equal distance dp from CKV constitutes an iso-contour Cdp for CKV as shown
in Fig2(b) (To clarify the iso-contours, we enlarge the variability region without
scale). To estimate the marginal density of the kidney, we assume that each iso-
contour Cdp is a normally propagated wave from CKV . The probability of an
iso-contour to be object decays exponentially as the discrete index dp increases.
So we model the distance histogram by a Poisson distribution. We estimate the
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(a)

(b)

(c)

(d)

Fig. 1. Samples of kidney training data images:
(a)Original , (b)Segmented , (c)Aligned (d)Binary

(a)

(b)

Fig. 2. (a) The labelled image,
(b) The iso-contours
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Fig. 3. [a,b]Empirical densities and the estimated Poisson distributions, [c,d] Compo-
nents of distance probabilistic models, [e,f] Final estimated densities

kidney distance histogram as follows. The histogram entity at distance dp is
defined as

hdp =
M∑

i=1

∑

p∈Cdp

δ(p ∈ Ki), (2)

where the indicator function δ(A) equals 1 when the condition A is true, and zero
otherwise, M is the number of training images, and Ki is the kidney region in the
training image i. We change the distance dp until we cover the whole distance
domain available in the variability region. Then we multiply the histogram with
kidney prior value which is defined as follows:

πK =
1

M | V |

M∑

i=1

∑

p∈V
δ(p ∈ Ki), (3)

We repeat the same scenario to get the marginal density of the background. The
kidney and background distance empirical densities and the estimated Poisson
distributions are shown in Fig.3 (a) and (b), respectively.

Distance Probabilistic Model: We define the shape penalty term S(fp) in
Eq.1 as S(fp) = −ln P (dp | fp) where the distance marginal density of each
class P (dp | fp) is estimated as follow. Since each class fp does not follow perfect
Poisson distribution, there will be a deviation between the estimated and the
empirical densities. We model this deviation by a linear combination of discrete
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Gaussians with positive and negative components. So the distance marginal den-
sity of each class consists of a Poisson distribution and K+

fp
positive and K−

fp

negative discrete Gaussians components as follows:

P (dp|fp) = ϑ(dp|λfp) +

K+
fp∑

r=1

w+
fp,rϕ(dp|θ+

fp,r) −
K−

fp∑

l=1

w−
fp,lϕ(dp|θ−fp,l), (4)

where ϑ(dp|λfp) is a Poisson density with rate λ, ϕ(.|θ) is a Gaussian density
with parameter θ ≡ (μ, σ2) with mean μ and variance σ2. w+

fp,r means the rth

positive weight in class fp and w−
fp,l means the lth negative weight in class fp.

This weights have a restriction
∑K+

fp

r=1 w+
fp,r −

∑K−
fp

l=1 w−
fp,l = 1. We estimate the

Poisson distribution parameter using the maximum likelihood estimator (MLE).
To estimate the parameters of Gaussians components, we used the modified EM
algorithm [11] to deal with the positive and negative components. Fig.3: (c) and
(d) illustrate the probabilistic models components for kidney and background,
respectively. The empirical and the final estimated densities are shown in Fig.3
(e) for the kidney and (f) for the background.

2.2 Image Appearance Models

Image appearance models are the gray level probabilistic model and the spatial
interaction model.

A- Gray Level Probabilistic Model: To compute the data penalty term
D(fp), we use the modified EM to approximate the gray level marginal density
of each class fp using a LCG with C+

fp
positive and C−

fp
negative components.

Similar to distance probabilistic model the gray level probabilistic model is de-
fined as follows:

P (Ip|fp) =

C+
fp∑

r=1

w+
fp,rϕ(Ip|θ+

fp,r) −
C−

fp∑

l=1

w−
fp,lϕ(Ip|θ−fp,l). (5)

B- Spatial Interaction Model:The pairwise interaction model which repre-
sents the penalty for the discontinuity between pixels p and q is defined as follows:

V (fp, fq) = γδ(fp �= fq). (6)

In this work we use a new analytical approach [11] to estimate the spatial
interaction parameter γ. The simplest model of spatial interaction is the Markov
Gibbs random field (MGRF) with the nearest 4-neighborhood. In the proposed
approach, Gibbs potential is obtained analytically using MLE for a MGRF. The
potential interaction is given by the following equation:

γ =
K2

K − 1

(
fneq(f) − 1

K

)
, (7)

where K = 2 is the number of classes in the image and fneq(f) denotes the
relative frequency of the not equal labels in the pixel pairs.
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2.3 Graph Cuts Optimal Segmentation

To segment a kidney, we construct a graph (e.g. Fig4) and define the weight of
each edge as shown in table 1. Then we get the optimal segmentation boundary
between the kidney and its background by finding the minimum cost cut on
this graph. The minimum cost cut is computed exactly in polynomial time for
two terminal graph cuts with positive edges weights via s/t Min-Cut/Max-Flow
algorithm [12].

Fig. 4. Example of graph that
used in image segmentation

Table 1. Graph Edges Weights

Edge Weight for
{p, q} V (fp, fq) {p, q} ∈ N

{s, p}
−ln[P (Ip | 1)P (dp | 1)] p ∈ V

∞ p ∈ K
0 p ∈ B

{p, t}
−ln[P (Ip | 0)P (dp | 0)] p ∈ V

0 p ∈ K
∞ p ∈ B

3 Experiments

Our proposed kidney segmentation framework is tested on a data set of DCE-
MRI of human kidney. To segment a kidney slice, we will follow the following
scenario. The given image is aligned with the aligned training images. The gray
level marginal densities of the kidney and its background are approximated using
the proposed LCG model with positive and negative components. Fig.5(a) shows
the original image, (b) shows the aligned image, (c) illustrates the empirical
densities as well as the initial estimated density using dominant modes in the
LCG model, (d) illustrates the LCG components, (e) shows the closeness of
the final gray level estimated density and the empirical one. Finally, (f) shows
the marginal gray level densities of the object and back ground with the best
threshold. To illustrate the closeness of the gray level between the kidney and
its background, (g) shows the segmentation using gray level threshold=72. To
emphasize the accuracy of the proposed approach, (h) shows the segmentation
using the graph cuts technique without using the shape constraints (all the t-
links weights will be −ln P (Ip | fp)), and (i) shows the results of the proposed
approach.

Samples of the segmentation results for different subjects are shown in Fig.7, (a)
illustrates the input images, (b) shows the results of graph cuts technique without
shape constraints, and the results of the proposed approach are shown in (c).

Evaluation: to evaluate the results we calculate the percentage segmentation
error from the ground truth (manual segmentation produced by an expert) as
follows:
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Fig. 5. Gray level probabilistic model for the given im-
age (a) Original image (b) aligned image (c) Initial
density estimation (d) LCG components (e) Final den-
sity estimation (f) Marginal densities. Segmented Kid-
ney (g)Results of gray level threshold 102.6%(h) Results
of Graph cuts without shape constraints 41.9% (i) Pro-
posed approach results 2.5%

(a)

(b)

(c)

Fig. 6. Phantom Re-
sults (a) The phantom
(b) Results of graph
cuts without shape
constraints 19.54% (c)
Proposed approach
results 0.76%.

error% =
100 ∗ Number of misclassified pixels

Number of Kidney pixels
(8)

For each given image, the binary segmentation is shown as well as the percentage
segmentation error. The misclassified pixels are shown in red color. The statis-
tical analysis of 33 slices, which are different than the training data set and for
which we have their ground truths, is shown in table 2. The unpaired t -test
is used to show that the differences in the mean errors between the proposed
segmentation, and graph cut without shape prior and the best threshold segmen-
tation are statistically significant (the two-tailed value P is less than 0.0001).

4 Validation

Due to the hand shaking errors, it is difficult to get accurate ground truth from
manual segmentation. Thus to evaluate our algorithm performance, we have
created a phantom shown in Fig.6(a) with topology similar to the human kid-
ney. Furthermore, the phantom mimics pyramids that exist in any kidney. The
kidney, the pyramids and the background signals for the phantom are gener-
ated according to the distributions shown in Fig.5(f) using the inverse mapping
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(a)

(b)
74% 52% 77.4% 26.4%

(c)
5.1% 4.6% 6.7% 5.5%

Fig. 7. More segmentation results (a)Original im-
ages (b) Results of Graph cuts without shape con-
straints (c) Proposed approach results.

Table 2. Accuracy of our seg-
mentation on 33 slices in com-
parison to Graph Cut without
shape and THreshold technique

Algorithm
Error% Our GC TH
Min. 4.0 20.9 38.4
Max. 7.4 108.5 231.2
Mean 5.7 49.8 128.1
Std. 0.9 24.3 55.3
Significance, P < 0.0001 < 0.0001

methods. Fig.6(b,c) show our approach is almost 26 times more accurate than
the graph cuts technique without shape constraints.

5 Conclusions

This paper proposed a new kidney segmentation approach that used graph cuts to
combine region and boundary properties of segments as well as shape constraints.
Shape variations were estimated using a new distance probabilistic model. The
given image appearance models: image signal was approximated with a LCG with
positive and negative components and the spatial interaction model was estimated
using a new analytical approach. To get the optimal segmentation, we formulated
a new energy function using the image appearance models and shape constraints
and globally minimized this function using s/t graph cuts. Experimental results
showed that the shape constraints overcame the gray level inhomogeneities prob-
lem and precisely guided the graph cuts to accurate segmentations (with mean
error 5.7% and standard deviation 0.9%) compared to graph cuts without shape
constraints (mean error 49.8% and standard deviation 24.3%).
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