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Abstract. We investigate randomized processes underlying load balancing based
on the multiple-choice paradigm: m balls have to be placed in n bins, and each
ball can be placed into one out of 2 randomly selected bins. The aim is to dis-
tribute the balls as evenly as possible among the bins. Previously, it was known
that a simple process that places the balls one by one in the least loaded bin
can achieve a maximum load of m/n + ©(loglog n) with high probability. Fur-
thermore, it was known that it is possible to achieve (with high probability) a
maximum load of at most [m/n] + 1 using maximum flow computations.

In this paper, we extend these results in several aspects. First of all, we show
that if m > cn logn for some sufficiently large c, then a perfect distribution of
balls among the bins can be achieved (i.e., the maximum load is [m/n]) with
high probability. The bound for m is essentially optimal, because it is known
that if m < ¢’ n logn for some sufficiently small constant ¢’, the best possible
maximum load that can be achieved is [m/n] + 1 with high probability. Next,
we analyze a simple, randomized load balancing process based on a local search
paradigm. Our first result here is that this process always converges to a best
possible load distribution. Then, we study the convergence speed of the process.
We show that if m is sufficiently large compared to n, then no matter with which
ball distribution the system starts, if the imbalance is A, then the process needs
only A- noW steps to reach a perfect distribution, with high probability. We also
prove a similar result for m = n, and show that if m = O(nlogn/loglogn),
then an optimal load distribution (which has the maximum load of [m/n] + 1)
is reached by the random process after a polynomial number of steps, with high
probability.

Keywords: load balancing, local search algorithms, stochastic processes.

1 Introduction

The study of balls-into-bins games or occupancy problems has a long history (see e.g.
[T23045I8TOITTUT2)18]]). These problems have numerous applications, e.g., in graph
theory, queueing theory, hashing, and randomized rounding. In general, the goal of a
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balls-and-bins algorithm is to assign a set of independent objects (tasks, jobs, memory
blocks) to a set of resources (servers, disks) so that the load is distributed among the
bins as evenly as possible.

In the classical single-choice game, each ball is placed into a bin chosen indepen-
dently and uniformly at random (i.u.r.). For the case of n bins and m > nlogn balls
it is well known that there exists a bin receiving m/n + ©(y/mlogn/n) balls. This
result holds not only in expectation but also with high probability. (We say that an event
A occurs with high probability (w.h.p.) if Pr[A] > 1 — n~° for an arbitrarily chosen
constant & > 1.) On the other hand, it was shown by Azar et al. [1] and Berenbrink
et al. [2] that if the balls are placed in a sequential (on-line) fashion and each ball is
assigned to the currently least loaded of the two locations (ties broken arbitrarily), then
the maximum load of any bin is m/n+©(log log n) with high probability. It can also be
proven [[12]] that any protocol that assigns the balls to the bins in an on-line fashion (that
is, the decision where the ball is placed is performed only on the base of the placement
of the previously placed balls) cannot be stochastically better than the scheme above. In
particular, this implies that in any on-line scheme, with high probability, there is a bin
with load m/n + ©(loglogn).

On the other side, some authors have been studying off-line assignments. In off-line
assignments, after first selecting the two locations for all the balls, one seeks an optimal
placement of the balls assuming each ball can choose only among its two locations
and the locations of all balls are known to the algorithm (off-line case). This problem
arises naturally in numerous applications, for example, in hashing, scheduling, load
balancing, and video on demand (see, e.g., [1I709/14/15]16]). (For example, Sanders
et al. [16] discussed in depth applications to support fast parallel access to external
memory systems with parallel disks and Karp [7] discussed applications in video on
demand; Karp called our problem k-orientability.)

Let the minmax load be the minimum, over all possible placements of the balls into
bins, of the maximum load in the system. Azar et al. [1]] showed that for n = ©(m), the
minmax load is ©(1), with high probability. Later, Frieze (personal communication in
[1]) and, independently, Czumaj and Stemann [5]], tightened this bound and, in particu-
lar, showed that for n = m, the minmax load is exactly 2, with high probability. Sanders
et al. [16] extended the result from [[1l5] to arbitrary m and proved the following result.

Theorem 1. [16] The minmax load is at most [m/n] + 1, with high probability. O

Notice that since the minmax load cannot be smaller than [m/n], this bound is
optimal up to an additive constant 1. Furthermore, it is easy to see that there exists a
positive constant A, such that if m < Anlnn, then the bound in Theorem [l is tighﬁ.
Our first contribution is that this bound for m is asymptotically tight in the following
sense: there is a constant ¢ such that if m > cnlnn, then a perfect balance is possible:

Theorem 2. There exists a positive constant ¢ such that for every m > cnlnn, the
minmax load is exactly [m/n], with high probability.

3 Indeed, if we choose at random two locations for each of the An In n balls, then there will be
a bin that has not been chosen by any ball. Therefore, there is a bin whose load is 0 w.h.p. and
hence it is impossible that all bins have identical load of m /n, w.h.p.



242 Artur Czumaj, Chris Riley, and Christian Scheideler

Stochastic load balancing. Next, we present a novel approach to off-line assignments
and discuss a new stochastic process (algorithm) that achieves optimal maximum load.
Sanders et al. [[L6] described a polynomial time algorithm that finds an optimal as-
signment of the balls into bins minimizing the maximum load (which in this optimal
allocation is equal to the minmax load). Their algorithm uses maximum flow computa-
tions.

A drawback of the approach by Sanders et al. is that it requires global (central-
ized) knowledge about locations of all balls, which is far too space consuming if m
is large. This makes also the algorithm difficult (if suitable at all) for implementations
in distributed or decentralized systems (like, for example, systems of parallel disks as
discussed in [9U16])). Therefore, as our second contribution, we present a simple, mem-
oryless, local search algorithm that can balance the load of the bins in the system as
much as this is possible. The idea behind our algorithm is to begin with an arbitrary
assignment of the balls to the bins, and then to use a stochastic replacement process that
gradually improves the balance of the bins’ load.

Suppose that initially all the balls have chosen their locations in {1, ..., n} and each
ball is (arbitrarily) placed in one of its two locations. The Self-Balancing Algorithm
repeats the following Self-Balancing Step:

Self-Balancing Step:

Pick independently and uniformly at random a pair of bins (b1, b2).
If there is a ball placed in b; with alternative location in bin b2, then
Pick any ball « that is placed in b; with alternative location in bin b2;
Place z into the least loaded bin (among b; and b2);
If tie, that is, bin b1 has (without x) the same load as bin bs, then
place z into a randomly chosen of the two bins.

We prove two theorems about the Self-Balancing Algorithm (throughout our anal-
ysis, unless stated otherwise, terms “with high probability” are with respect to the ran-
dom choices of the two locations of each ball, as well as the random choices of balls in
the Self-Balancing Algorithm).

The first theorem shows that the Self-Balancing Algorithm will gradually converge
to states in which the maximum load is best possible.

Theorem 3. Ifthe Self-Balancing Algorithm is run sufficiently long (i.e., the Self-Balan-
cing Step is repeated sufficiently many times), then the maximum load of any bin in the
system is equal to the minmax load with probability 1. (The probability 1 is with respect
to the random choices of balls in the Self-Balancing Algorithm only.)

In particular, if the Self-Balancing Algorithm is run sufficiently long then the max-
imum load of any bin in the system is smaller than or equal to [m/n] + 1 with high
probability. If, additionally, m > cn Inn for a sufficiently large constant c, then the
maximum load is exactly [m/n] with high probability.

The Self-Balancing Algorithm is a simple example of a local search algorithm, sim-
ilar to load balancing algorithms existing in the literature before, see, e.g., [6/13]. The-
orem 3lshows the non-trivial property that no matter with which state (i.e., assignment
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of balls to bins) the Self-Balancing Algorithm starts, it will always converge to a state
in which the maximum load is optimally small. Notice that in many local search ap-
proaches one frequently arrives at a “dead-lock” situation, in which the balancing may
be far away from optimal and no re-balancing progress is possible (that is, a locally
optimal solution is not in a global optimum). Theorem Blshows that this is not the case
for the Self-Balancing Algorithm. (Observe, however, that if we removed the random-
ized rule for tie breaking, then — as one can easily show — the algorithm would not
necessarily converge to an optimal state.)

The next theorem considers the heavily loaded case and deals with the speed of the
“convergence” of the Self-Balancing Algorithm to a state in which the maximum load
is upper bounded by [m/n]. Let the imbalance of the system be its distance from a best
possible distribution, or more precisely, Y. ; max{0,load of bin i — [m/n]}.

Theorem 4. If m >> n, then after a polynomial number (with respect to n only) of
Self-Balancing Steps the maximum load in the system is equal to [m/n], with high
probability. Furthermore, if the system imbalance is A, then the number of steps is
A -nPW with high probability.

Notice that if the balls are allocated to the bins in the on-line fashion using the least
loaded bin approach, as in [12]], the system imbalance is A = O(nloglogn), with
high probability [2]. Therefore, Theorem[4]implies the following corollary.

Corollary 1. Ifm > n, then in time O(m) + n®"Y) one can find a perfect load distri-
bution with the maximum load of the system equal to [m/n], with high probability. O

As we argued before, one cannot extend the result from Theorem M| to the case
m = n, because then the minmax load is expected to be equal to [m/n] + 1 (instead
of [m/n]). Our next theorem shows however that if m is close to n, then the Self-
Balancing Algorithm still rapidly converges to the optimal distribution.

Theorem 5. If m = O(n logn/loglogn), then after a polynomial number (with re-
spect to n) of Self-Balancing Steps the maximum load in the system is smaller than or
equal to [m/n] + 1, with high probability.

Notational conventions. To simplify the presentation of the paper, we will use a short-
hand p to denote m/n and i to denote [m/n] = [n|. We shall identify the balls with
the integers in {1,...,m} = [m] and the bins with the integers in {1,...,n} = [n].
Let the load of a bin b € [n] be equal to the number of balls placed in b. Notice that the
average load among all the bins is .

2 Perfect Balancing for £2(n logn) Balls

In this section we prove Theorem 2| that is, we show that if m > cn logn for certain
suitable constant ¢, then the minmax load is [m/n]| = [, with high probability. It is
easy to see that it is sufficient to prove this bound in the case p = fi, and therefore from
now on we assume that p is an integer.
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Let B denote the set of n bins in the system. Let us fix an allocation of m balls to
n bins in B such that each ball has two locations in B (we allow a ball to have both
locations in the same bin). For any U C 9B, let ¥[U] denote the number of balls having
all locations in the bins in U. Then, one can show the following result (see [16/17]]).

Lemma 1. [I7 Theorem 1] The minmax load is equal to maxycs, y+p PI[TU\]-I . O

Consider the stochastic process of assigning two locations of the m balls to the n
bins in B i.u.r. For any set U C ‘B, let C; be the random variable denoting the value of
Y [U]. Furthermore, let £ be the random indicator of the event that Cy > p - |U| and
let & = Vycm, pzo Eu- Our goal is to show that

Pri&] < n77 . (1)

for a constant v depending on c.
Let B, = {U C B : |U| = k}. Then, by the union bound, to prove () it is enough
to prove the following bound for everyE] k,1 <k <n—1,andforevery set U € By:

1
Pr&y] < W . (2
From now on, we concentrate on proving inequality (). Let us observe that for any
set U € By, the value of C'y is a binomial random variable with the parameters m and
(k/n)?, which we denote by B(m, (k/n)?). Therefore, Pr[Ey] = Pr[B(m, (k/n)?) >
m-k/n] < Pr[B(m, (k/n)?) > m-k/n] and our goal now is to investigate bounds for
Pr[B(m, (k/n)?) > m - k/n].
We begin with three simple results about concentration of binomial random variables.

Lemma 2.

1. Foranyt>6mgq? Pr[B(m,q*) >t] < 27
2. Forany0 < q <1, Pr[B(m,q*) > q-m] < exp(—2¢°(1—q)?m).
3. Forany0 < q < 1, if 25 < q for certain u > 1, then Pr[B(m,q*) > ¢-m] <

(u/e)™ (1=a), a

Let m > cnlnn for a large constant c. Let U € 9By, and ¢ = k/n. Let us first
consider the case k/n = ¢ < 0.1. Then, if we set ¢ = mk/n, then we have t >
6 - E[B(m, ¢*)], and hence by Lemma 2] (I) and by the inequality () < n*, we get
(provided c is a large enough constant):

1 1
Pri&y] <27t =2 mk/m < o~ Inn=kinn _ 3)

Wk St (7)

Next, we consider 0.1n < k < 2/3 n. Then, by LemmaP](2) and by observing that
(Z) < 2™, we have (again, if we set m = cn Inn for a large enough constant c)

1
Pr[&y] < exp(*Q(k(Zz M )2m) < e 0:001m < g=(rt)Inn=kInn o PR R
k

“)

* We do not have to consider the case U = 9B, because in that case £ trivially never holds.
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The remaining case is when k/n = ¢ > 2/3. Then, we can apply Lemmal](3) with
u = 2.5 to obtain

1
Pr[SU] < Pr[B(m,qQ) > qm] < (2.5/6)771/3 < e—(’y+1)1nn—k1nn < —
n"/+1 . (k)
)
Therefore, from inequalities (3]-[3), we have that for every integer k, 1 < k < n—1,
and for every U € By, we have Pr[&y] < ﬁ() This implies that Pr[€] < n™7,
n “\k

which in turn yields Theorem [l O

3 Convergence to Optimal Assignment

In this section we sketch the proof of Theorem[3l We begin with basic definitions and
notation. A placement of the balls after performing ¢ repetitions of the Self-Balancing
Step, t > 0, is called the tth assignment, and is denoted by A;. To each assign-
ment A; we assign a load vector, which is vector Ly = (IL4(1),...,1L(n)) such that
L:(j) denotes the load of the jth fullest bin in .A;. For any two load vectors L =
(L(1),...,L(n)) and L* = (L*(1),...,L*(n)), we say L majorizes L*, denoted by
L = L*, if forevery j, 1 < j < n,wehave > 7_ L(r) > >/ _, L*(r). Furthermore,
we write L > L* if L = L* and there is at least one j with > 7_, L(r) > >7_ L*(r).

Our first lemma describes the way the load vector can change in the course of the
algorithm. Informally, it says that after any repetition of Self-Balancing Step the load
vector will never worsen.

Lemma 3. Foranyt > 0, independently of the random choices performed by the Self-
Balancing Algorithm, we always have Ly = L4 1. O

Let us observe two important consequences of Lemma[3 Firstly, this lemma implies
that the maximum load never increases. Secondly, Lemmal[3] yields the following claim:

Lemma 4. The number of changes in the load vector is upper bounded by m - n. O

Now, since we know the algorithm gradually converges to a more balanced distri-
bution of the bins’ loads, we formally describe the states to which it converges. We say,
a system is stable in step T, if independently of the random choices performed in the
iterations T > 7 of the Self-Balancing Algorithm we will have L., = Ly for every
T > 7. In order to characterize stable states formally, we define a directed multigraph
representing the state of the system (see also, e.g., [[5/16]], for similar representations).

Definition 1. A directed multigraph G = (V, E) representing the system is a directed
multigraph with the vertex set V.= {1,...,n} corresponding to the bins in the system
and the edge multiset E (loops are allowed) corresponding to the assignment of the
balls in the system. Each edge is associated with a ball, has as the endpoints the two
locations of the associated ball, and it is directed from (outwards) the bin containing
the associated ball.
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We denote by G; = (V, E) the directed multigraph representing .A;. For any vertex
v of G we denote by out-deg(v) the our-degree of v in G} if G is not clear from the con-
text, then we also use the notation out-deg, (v). The in-degree is defined analogously.
Notice that since the choices of the locations of each bin are performed at random,
the undirected version of any G is a random multigraph with n vertices and m edges
(where each endpoint of each edge is selected independently and uniformly at random).
The following lemma follows directly from Definition[I]

Lemma 5. If G; = (V, E;) is a directed multigraph representing A;, then for any j,
1 < j < n, the out-degree of vertex j is equal to the load of bin j in Ay. a

Let G, = (V,E;) be the directed multigraph representing A,. A directed path
(v1,v2,...,v¢) in G is called a slope if out-deg(v1) > out-deg(v,)+2 and out-deg(v; )
> out-deg(v;41) forevery i, 1 <i < £.If (v1,vq, ..., v¢) is a slope in G, then we can
straighten (v1,va,...,ve) by modifying the directions of the edges in G (following
the rules in the Self-Balancing Algorithm) so that the load vector will change (see also
a scheme presented in Figure [T)). Indeed, let us consider the case that £ > 3 (the case
¢ = 2 can be handled similarly), and assume (actually, without loss of generality) that
out-deg(v1) = out-deg(v2) + 1, out-deg(v;) = out-deg(v;y1) for 2 < j < £ —1,
and that out-deg(v,—1) = out-deg(v;) + 1. Then, we reverse directions of the edges
(vj,vjq1) forall 1 < j < £ — 1 (this can be easily done according to the rules in the
Self-Balancing Algorithm). After applying these changes, the bin corresponding to the
vertex v; decreased its load by 1, the bin corresponding to the vertex v, increased its
load by 1, and the load of all other bins remains the same. This implies that the load
vectors IL of A, and I/ of the new system state fulfill L >~ L.

The following key lemma provides a necessary and sufficient condition for a system
to be stable at step t. (Notice that the only if part follows from our arguments above.)

Lemma 6. A system is stable at step T if and only if the directed multigraph G, =
(V, E;) representing A, has no slope. a

The next lemma describes a relationship between stable states and the maximum
load in the system.

Lemma 7. Consider a system of m balls and n bins with the minmax load . Then, if
the system is stable in step T then the maximum load of A is K.

Proof. The proof is by contradiction. Let us consider a system of m balls and n bins
with the minmax load k. Let us suppose the system is in a stable state A, represented
by the directed multigraph G, = (V, E;), and, for the purposes of contradiction, let us
assume that the maximum out-degree in G, is greater than .

Since A is a stable state, we know by Lemmal@ that G- has no slope. Let us pick
any vertex v € V' with out-deg, (v) > k. Let U be the set of all vertices in G (not
including v) that are reachable from v by a directed path in G-. Since G- has no slope,
all vertices in U must have the out-degree at least out-deg, (v) — 1 > k. Therefore,
if we define U* = U U {v}, then there are at least |U| - k + (x + 1) balls having both
locations in the bins corresponding to the vertices in U*. This, however, by Lemma[Tl
means that minmax load is atleast 77 (|U| -+ (k+1)) > %, which is a contradiction
to our initial assumption that the minmax load of the system is k. O
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T+3
- - - " GTM

Fig. 1. Illustration describing the straightening procedure that changes the out-degrees
of the vertices v1,vs,...,vs (with s = 5) on the slope performed in the proof of
Lemmal6] In this case, initially we have out-deg(vy) = r, out-deg(ve) = out-deg(vs) =
out-deg(vsg) = r — 1, and out-deg(vs) = r — 2.

Now we are ready to complete the proof of Theorem[l By Lemmal[7, the system is
not stable if and only if the directed multigraph G, = (V, E) representing A has a
slope (v1, . . ., vg) for certain positive £. Thus, if the system is not stable, then let us con-
sider any shortest slope. Then, with a positive probability, in the next £ — 1 iterations
in the Self-Balancing Algorithm we will perform slope straightening of (v, ..., ve),
which will decrease the load of v; by 1, increase the load of v, by 1, and leave the
remaining loads the same. Hence, if .4, is not stable, then after sufficiently many itera-
tions of Self-Balancing Step, with probability 1 the load vector will be modified. Since
the load vector may change at most n m times, if we combine the arguments above with
Lemmal[7] after sufficiently many iterations in Self-Balancing Step, with probability 1
the system will be in a stable state in which the maximum load equals the minmax load.

O

4 Convergence to Optimal Assignment for m > n

In this section we briefly sketch the proof of Theorem[4] which estimates the conver-
gence speed of the Self-Balancing Algorithm for m >> n. First of all, let us recall that
by Lemma H] the load vector may change at most n m times. Therefore, we only have
to show that if the system is not stable, then after a polynomial number of steps of the
Self-Balancing Algorithm the system will change its load vector with high probability.
The following is the key theorem of our analysis (the proof is deferred to the full version
of the paper).

Theorem 6. Let n°logm = o(p). Let £ be an arbitrary constant. Let b be a bin with
any load greater than or equal to (1 + £. Then, with probability at least 1 — m =9,

— either every bin has load greater than or equal to p + &,

— or the directed multigraph representing the current state of the system has a di-
rected path of length at most 2 from the vertex corresponding to b to some other
vertex u whose out-degree is strictly smaller than i + &.
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In view of this theorem, with high probability, as long as the maximum load in the
system is strictly larger than 1, the directed multigraph representing the state of the
system has always a slope (vo, . .., v, ) with 7 < 2, no matter how the directions of the
edges are set. (Indeed, in that case there is a bin b with the load larger than i, and if
we set & = 0, then it is impossible that every bin in the system has load greater than or
equal to . Therefore, by Theorem[6] there must exist a directed path of length at most
2 from the vertex corresponding to b to some other vertex u, such that the out-degree of
u is strictly smaller than . Therefore, either this path or its sub-path must be a slope.)
Therefore, with probability at least O(1/n*), the Self-Balancing Algorithm will, in at
most two steps, perform slope straightening of (v, ..., v, ) such that the out-degree of
vg decreases from some ¢ to /—1 and no other vertex on the path increases its out-degree
to more than ¢ — 1. Therefore, the system will change its load vector with probability at
least O(1/n%). Hence, with high probability the system will change its load after O(n?)
Self-Balancing Steps, and thus, after O(mn?) steps the Self-Balancing Algorithm will
reach a state in which the maximum load equals to the minmax load.

Actually, it is easy to see that our arguments above can be used to show that if the
imbalance of the system is A (where A = >""" | max{L(i) — /1, 0}), then the process
needs only A - n©() steps to reach a perfect distribution, with high probability. This
yields the proof in the heavily loaded case. ad

5 Convergence to Optimal Assignment for m = O(n)

In this section we deal with the proof of Theorem[5]and consider the convergence speed
of the Self-Balancing Algorithm in the lightly loaded case. We focus only on the case
m = O(n); we believe that this is the most challenging case and therefore we will
elaborate on its proof. The analysis of the case m = O(n logn/loglogn), m = w(n),
is deferred to the full version of the paper.

The main idea behind the proof is to use similar arguments as in the previous sec-
tion, but this time we cannot assume that we have a slope of a constant length. The
analysis requires the following three key properties. The first property, proven in [[16],
is that if the pairs of locations for all the balls are chosen i.u.r., then (with high probabil-
ity, depending only on the random choices of the locations) in any state of the system,
if there is a bin with load greater than z + 1 then there is a slope of length O(logn).
The second property is that the sum of the degrees (in- and out-degrees) of all vertices
on this slope path is at most O(log n). The third property is that the probability that a
given slope path will be straightened is inversely proportional to the sum of the degrees
of the vertices on this path. With these properties, we can show that the probability that
in the next O(mn log n) Self-Balancing Steps a slope of length O(log n) is chosen and
then straightened by the algorithm (without interfering with the other bins (vertices))
is at least O(1/n°(")). This implies that (with high probability) in the next O(n®™M))
steps the Self-Balancing Algorithm will change the load vector. Therefore, (with high
probability) after n©(1) steps the Self-Balancing Algorithm will reach a state, in which,
by Theorem[I] the maximum load is at most /i + 1, with high probability.

We describe now our analysis in more detail. We first develop some properties of the
directed multigraphs discussed in Section Bl We begin with a lemma proven implicitly
in [16, Lemma 14].
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Lemma 8. [16] Letr G; = (V, E;) be a directed multigraph representing certain A;.
Let m = O(n). Then, with high probability (depending only on the random locations of
the balls), either A; has the maximum load of at most i + 1 or Gy has a slope of length
O(logn). O

Our approach is to explore Lemma [§] First of all, from now on, we shall condition
on the fact that there is an assignment of the balls among the bins with maximum load
i + 1. (By Theorem [I], this fact holds with high probability.) Then, by Lemmalg, we
know that the system is either in the state when the maximum load is i + 1, in which
case we do not have to prove anything, or there is slope in G; of length O(logn). We
consider only the latter case.

We work in rounds, each round corresponding to O(n? log® n) repetitions of Self-
Balancing Step. All rounds are independent. At the beginning of each round we take any
slope 7 in G of length O(logn) that is promised by Lemmal[8| (if no such a path exists,
then we know that we are already in a state with maximum load smaller than or equal to
71 + 1). We prove in Lemmal[IQ that with probability greater than or equal to m we
will successfully straighten the slope in this round. From this and Theorem[3 it follows
easily that after a polynomial number of rounds of the Self-Balancing Algorithm we
reach a stable state having the maximum load at most iz + 1, with high probability.

Now, our ultimate goal is to analyze the probability that a slope of length O(log n)
will be straightened in O(n? log? n) iterations of the Self-Balancing Algorithm. We
begin with an auxiliary lemma about random (undirected) multigraphs (the proof is
deferred to the full version of the paper).

Lemma 9. Let b and c be arbitrary positive constants. If G is a random undirected
multigraph with n vertices and m < bn edges, then, with high probability G does not
have any simple path of length less than or equal to c logn for which the sum of the
degrees of the vertices on the path is greater than d - logn, where d is a constant. 0O

Our next and key result shows that the probability that the Self-Balancing Algorithm
will straighten a given slope path is inversely proportional to the sum of the degrees of
the vertices on this path.

Lemma 10. Let b and c be arbitrary positive constants. Let G be an arbitrary directed
multigraph with n vertices and m < bn edges. Suppose there is a slope path m =
(v1,...,v¢) in G. Then, with probability greater than

¢
1 1 1
1 — ). —. | | :
nl0 J n? 1+ out-deg(v1) + in-deg(v;)

=2

the load vector will change after less than or equal to 2 { m logn iterations.

Proof. We only sketch the proof and defer more details to the full version of the paper.

Consider any slope m = (v1,va, . .., vg) of shortest length in the system. Recall that
out-deg(vy) —1 = out-deg(vy) = out-deg(vz) = - - - = out-deg(vy—1) = out-deg(ve)+
1. If ¢ = 2, then the probability that the load vector will change in the next step is at
least as large as the probability that we will choose the edge (v1, v2), which is equal to
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Fig. 2. A slope m = (v1, v, ..., ve) with incident edges. We only include those edges
(y, z) with out-deg(y) = out-deg(z) + 1

1/ n2. Hence, in this case the lemma easily follows. Therefore, from now on we shall
assume that £ > 3, i.e. there are no edges (y, z) in G with out-deg(y) > out-deg(z) + 1.

We use the terminology from Figure[2l Initially, we have a slope 7 = (v1, ..., v¢)
of length £ — 1. In each iteration of the Self-Balancing Algorithm we will hit a certain
edge chosen at random and in this way we may modify the graph and the load vector.
We observe that if we hit an edge that does not belong to 7 nor is incident to 7, then any
eventual modification of that edge will not influence path 7. Therefore, we only have
to consider the following eight cases, when an edge of the following form is chosen:
(i) (v1,v2), (i) (ve—1,v¢), (i) (z1,v1), Gv) (v1,22), (V) (23,v3), (Vi) (v3,24), (Vii)
(x5, v¢), and (viii) (v, xg). We say a very good edge is hit if we hit an edge from cases
(iv) or (ix); a good edge is hit if we hit an edge from cases (i), (iii), (vi), or (vii); a bad
edge is hit if we hit an edge from cases (v), or (viii). Very good edges create an edge
(y, z) with out-deg(y) > out-deg(z) + 1, good edges make the slope shorter, and bad
edges make it longer.

Now, we consider a round lasting 2 £ n? log n iterations and observe only very good
edge hits, good edge hits, and bad edge hits. A round is called successful if no bad edge
is hit until we either have a very good edge hit and then straighten the obtained path or
we modify the slope path (we straighten it) by only good edges. One can show that with
probability greater than or equal to 1 — 1/n1° a round is either successful or we made a
bad edge hit. Notice that there are at most out-deg(v; ) +in-deg(wv,) bad edges at the be-
ginning, and there is at least one good edge at any time. Certainly, under the assumption
that either a bad edge or (vs—1,v,) is picked, the probability that (ve_1,vs) is picked
is at least 1/(1 4 out-deg(v; ) + in-deg(v¢)). Once (ve—1, v¢) is picked, we concentrate
on the edge (v¢—2,v,—1), and so on. Using this approach, we get that the probability

that a round is successful is lower bounded by % - (Hf:2 o deg(yll) =TT ) . This
completes the proof. ad
We can reduce our analysis to the case when for the slope 7 = (vy,...,vs) we

have out-deg(vy) = i + 2 and £ = O(logn). Therefore, by Lemma [0 we know that
Zle in-deg(v;) = O(logn), with high probability. Hence, by Lemmal[IQ}, the proba-
bility that in a round lasting 2nm logn iterations we change the load vector is greater
than or equal to m. Hence, after poly(n) rounds (iterations) of the Self-Balancing
Algorithm we shall modify the load vector with high probability. Now, since the load
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vector can be modified at most m - n times before we reach the stable state, the theorem
follows. 0
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