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Abstract. In this paper we present two novel generic schemes for
approximation algorithms for optimization NP-hard graph problems
constrained to partial k-trees. Our first scheme yields deterministic
polynomial-time algorithms achieving typically an approximation factor
of k/log'~“n, where k = polylog(n). The second scheme yields ran-
domized polynomial-time algorithms achieving an approximation factor
of k/logn for k = 2(logn). Both our approximation methods lead to
the best known approximation guarantees for some basic optimization
problems. In particular, we obtain best known polynomial-time approx-
imation guarantees for the classical mazimum independent set problem
in partial trees.

1 Introduction

In this paper we investigate approximation algorithms for several optimization
graph problems constrained to partial k-trees. For a natural k, a partial k-tree
is a subgraph of a k-tree. A k-tree is either a k-clique, i.e., a complete graph on
k vertices, or a graph which can be obtained from another k-tree by addition of
a vertex with k edges connecting it to k pairwise adjacent vertices in the other
k-tree [4]. Each partial k-tree admits the so called tree-decomposition of width k
and wvice versa, each graph which has a tree-decomposition of width & is a partial
k-tree (see [3/4I8] and Preliminaries).

Shortly after introducing the notion of partial trees, it has been shown
that many A P-hard graph problems constrained to partial O(1)-trees admit
polynomial-time or even linear-time exact algorithmic solutions [BJ4)8] (e.g.,
these definable in extended weak monadic second-order logic [4]). For some of
these NP-hard problems (e.g., these in the so called C-ECC class or those in
the so called C-LCC class having O(1) maximum degree) analogous, polynomial-
time solutions are possible for partial O(logn)-trees [8]; a standard example here
is the maximum independent set problem [§].

In this paper, we investigate the approximability status of some of the afore-
mentioned N“P-hard problems, where our main interest is on partial k-trees with
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k = 2(logn). We focus our study on the maximum independent set and maxi-
mum clique problems and further applications of our methods are obtained by
extensions of our algorithms for maximum independent set.

The mazimum independent set problem (or equivalently, the mazimum clique
problem) is a classical N"P-hard optimization problem studied intensively for a
three decades (these problems were proven to be N'P-hard in Karp’s original pa-
per on N'P-completeness [I5]). For general graphs, the best known polynomial-
time approximation algorithm for maximum independent set (or, equivalently,
maximum clique) achieves solely n loglog?n/log®n factor [I2]. On the other

hand, it is known that unless NP C ZPTIME(2(°2 ”)O(l)), no polynomial-time
algorithm can achieve the approximation guarantee of n!=91/(g™)” for some
constant y [16] (see also [11l14] for other results in this theme). Better approx-
imation bounds are achievable for special classes of graphs. For partial trees,
one can fairly easily color any partial k-trees with k& + 1 colors (see Lemma [I]
for details) what immediately implies a polynomial-time (k + 1)-approximation
algorithm for maximum independent set. For k = O(logn), Bodlaender [8] pre-
sented a polynomial-time algorithm that returns an optimal solution. Another
known approach, developed for k-clique-free graphs in [TJT9], does not yield
any non-trivial approximation bounds when k& = 2(logn). A partial k-tree is
(k 4 2)-clique-free graph by definition. The technique by Ajtai, Komlds, and
Szemerédi [1] treated by Shearer [19] as a randomized greedy algorithm can
be made deterministic to find an independent set in k-clique-free graphs of
size 2(n*/*=1 . (logn)*k=2)/(=1)) in polynomial time. The latter bound for
k = 2(logn) yields merely O(logn) size independent set for a partial k-tree and
therefore it implies only a trivial approximation factor in this case.

1.1 New Contribution

We present two novel generic schemes for approximation algorithms for max-
imum independent set and other optimization NP-hard graph problems con-
strained to partial k-trees. Our first scheme leads to deterministic polynomial-
time algorithms that achieve typically an approximation factor guarantee of
k/log*~¢n for all k = polylog(n). The second scheme yields randomized poly-
nomial-time algorithms achieving an approximation factor of k/logn for k =
2(logn).

These two generic schemes lead to significantly improved approximation
bounds for maximum independent set. Our deterministic algorithm improves
the previous approximation guarantees for all £ = w(logn) and k < polylog(n),
and our randomized algorithm does so for all k¥ = w(logn).

Besides the maximum independent set problem, the first scheme can be also
adapted to the maximum induced m-colorable subgraph problem, and simplified
to include the maximum clique problem (see Section H). The second scheme can
be applied to induced subgraph with hereditary property II problems that can
be solved exactly in polynomial time on graphs with given tree-decomposition
of logarithmic width (e.g., members of the C-ECC class or the C-LCC class
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having O(1) maximum degree [§]), in particular the so called d-separable prob-
lems. All these approximation factors achievable in polynomial time are the best
known for the aforementioned problems constrained to partial k-trees where k is
polylogarithmic or superlogarithmic, respectively. In case a tree-decomposition
of width k is not given, the approximation factors achievable by our methods
increase by O(log k).

1.2 Paper Organization

In Preliminaries, we introduce the notion of tree-decomposition, treewidth, nice
tree-decomposition and present several known facts on tree-decomposition con-
struction. We describe also a simple method of approximating maximum inde-
pendent set in a partial k-tree via graph coloring. In Section Bl we present our first
deterministic method by applying it to maximum independent set. In the next
section, Section [ we adapt the method to the maximum induced m-colorable
subgraph problem and simplify it to include the maximum clique problem. In
Section Bl we exemplify our second randomized method by applying it to maxi-
mum independent set. Because of the space considerations, for the extensions of
the randomized method to include maximum induced subgraph with hereditary
property IT problems (that can be solved exactly in polynomial time on graphs
with given tree-decomposition of logarithmic width) the reader is referred to the
full version. In the final Section[d, we provide concluding remarks.

2 Preliminaries

The notion of treewidth of a graph was originally introduced by Robertson and
Seymour [18] as one of the main contributions in their seminal graph minor
project. It has turned out to be equivalent to several other interesting graph
theoretic notions, e.g., the aforementioned notion of partial k-trees (see Intro-
duction and [3l5]).

Definition 1. A tree-decomposition of a graph G = (V, E) is a pair ({X; | i €
I}, T = (1, F)), where {X; | i € I} is a collection of subsets of V, and T = (I, F)
s a tree, such that the following conditions hold:

1 Ui Xi =V,

2. for all edges (v,w) € E, there exists a node i € I, with v,w € X;, and

3. for every vertex v € V, the subgraph of T, induced by the nodes {i € I | v €
X} is connected.

The size of T' is the number of nodes in T, that is, |I|. Each set X;, i € I, is called
the bag associated with the ith node of the decomposition tree T'. The width of a
tree-decomposition ({X; | i € I}, T = (I, F)) is max;ey | X;| — 1. The treewidth
of a graph is the minimum width of its tree-decomposition taken over all possible
tree-decompositions of the graph. A graph which has a tree-decomposition of width
O(1) is called a bounded treewidth graph.
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Fact 1 [4] A graph G is a partial k-tree if and only if the treewidth of G is at
most k.

Fact 2 [6] For a partial k-tree on n vertices, a tree decomposition of width k
can be found in time O(n 20(’“3)).

Fact 3 [9] For a partial k-tree on n wvertices, a tree decomposition of width
O(klogn) and size O(n) can be found in time polynomial in n.

Fact Bl has been refined as follows.

Fact 4 [2] For a partial k-tree on n vertices, a tree decomposition of width
O(klogk) and size O(n) can be found in time polynomial in n.

For technical reasons, it will be more convenient to use a special form of
tree-decomposition termed as a nice tree-decomposition.

Definition 2. A tree-decomposition T = (I, F) of a graph G is nice if it fulfills
the following conditions:

1. T is a binary rooted tree,

2. if a node i € I has two children j1 and ja, then X; = X;, = X, (i is called
a join node),

3. if a node i € I has one child j, then either X; C X; and |X; — X;| = 1,
or X; C X; and |X; — X;| =1 (i is called an introduce or a forget node,
respectively).

Fact 5 [17] A tree-decomposition T = (I, F) of a graph G can be transformed
without increasing its width into a nice tree-decomposition in time polynomial in
|I| and the size of G. The size of the resulting nice decomposition is O(€ - |I]),
where £ is the width of the tree-decomposition.

Note that we may assume w.l.o.g that the leaf bags in the resulting nice
tree-decomposition are singletons. For technical reasons, we shall keep this as-
sumption for nice tree-decompositions throughout the paper.

2.1 Simple Algorithm for Coloring Partial Trees

The following simple lemma gives a simple polynomial-time (k + 1)-
approximation algorithm for maximum independent set in partial k-trees men-
tioned in Introduction.

Lemma 1. Any partial k-tree can be colored with k + 1 colors in polynomial
time. Consequently, in any partial k-tree, an independent set of size at least 3
can be found in polynomial time too.

Proof. Tt is well known that any partial k-tree and any its subgraph (as a partial
l-tree with ¢ < k) has a vertex of degree at most k. Therefore, it is sufficient
to pick such a vertex v, remove it from the graph, color the resulting subgraph
inductively with k& + 1 colors, and then color v with one of the k& + 1 colors
different from those of its neighbors. O
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3 Deterministic Approximation of Maximum
Independent Set

In this section we present a deterministic approximation algorithm for finding
maximum independent set in k-partial trees with given nice decomposition-tree
of width ¢. The algorithm traverses the nice decomposition-tree of the input
graph bottom-up to collect information about independent sets in the subtrees
of the tree. For each node v in the tree with the bag X,, we would like to collect
information about all independent sets induced by the vertices of the input graph
that are in the subtree of the decomposition tree rooted at v. Unfortunately, in
general, the number of these sets might be too large. Therefore, we consider only
the sets having at most M (n) nodes in each bag, where M = O(logn/loglogn).
For this, with each node v we associate a set S, containing pairs (b, ) such that
b C X, and there is an independent set I on the vertices of the subtree rooted
at v of size r with I N X, = b.

/ Algorithm 1: \

Input: A nice tree-decomposition 7' of a partial tree G and a parameter M.

Output: An independent set in G.

for each node v of T' do
if v is a leaf then S, = {(b, 1), (@, 0)} where b is the singleton bag of v (X, = {b})
else S, = {(0,0)}

{Invariant: (b,r) € S, means that there is an independent set I of size r with X, N1 =b

that contains only the vertices from the bags in the subtree rooted at v}
Traverse the tree T' bottom-up

for a join node v of T' with children v and w do
for each (bu,nu) € Su and (by,nw) € Sw, where b, = by do
Sy = Sy U {(bu, e + 1y — |bu|) }
for an introduce node v of T' with one child « do
begin
q < the vertex in X, \ X,
for each (by,n) € Sy do
Sy = Sy U {(bu,nu)}
if b, U {q} is independent and |b,| +1 < M then
Sy = Sy U{(b, U{g},ne +1)}
end

for a forget node v of T' with one child « do
begin
q < the vertex in X, \ X,
for each (by,n.) € Su do
So = 8, U{(bu \ {g}, m)}
end
Let r be the root of T'.
Find a pair (b, m) in S, that maximizes m.
Qy backtracking, produce an independent set in G on m vertices that includes b/
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Theorem 1. If T has width poly-logarithmic in n and size polynomial in n, and
M = O(logn/loglogn) then Algorithm 1 runs in polynomial time.

Proof. Let £ be the width of T. The running time of the algorithm is equal to
the running time required to traverse the entire nice tree-decomposition 7', and
thus, it is the sum of the running times the algorithm spends in each node of
T. Since the number of nodes in the nice tree-decomposition in 7" is polynomial,
it is enough to show that the time spent in each node is polynomial too. The
time spent on a node v with two children u and w is O(]|Sy] - |Sw|), and the
time spent on a node v with one child w is O(]Sy]). Therefore, to complete the
proof, we must show that the size of each S, is polynomial. This follows from
the fact that each element in S, is of the form (b,r), with 0 < r < n, b C X,
with |b] < M = O(logn/loglogn). Therefore, since |X,| < £ < log®Y n, we
have at most (n + 1) - (J@) < (n+ 1M < nOW sets b associated with S, and
hence the size of each S, is polynomial in n. a

Theorem 2. Suppose that the nice tree-decomposition T' of a partial k-tree has
width £ and the size polynomial in n. Let € be any positive constant satisfying

¢ > log' ~“n. There is a constant ¢ such that if M > EIZLTO% then Algorithm

1 returns an independent that is an (£/log'™n)-approzimation of mazimum
independent set of G.
Proof. We set the constant ¢ such that T has size upper bounded by n°~!.

Let I be a maximum independent set in G. Let s = log' “n and r =
4/ log'™n. It is easy to verify that the invariant in Algorithm 1 is satisfied
throughout the entire algorithm and therefore the output is a correct indepen-
dent set. Furthermore, we observe that Algorithm 1 returns an independent set
of G whose size is not less than that of any independent set in G whose intersec-
tion with any bag of T is of cardinality not exceeding M. Therefore, to conclude
the proof we only must show the existence of an independent set whose size is
at least |I|/r and whose intersection with any bag of T" has at most M vertices.

Let A = ¢/e. Consider a randomized construction of a smaller independent
set I’ C I that is obtained by taking each element from I to I’ independently
at random with probability % We show first that with high probability the
intersection of I’ with any bag in the nice tree-decomposition T does not exceed
M.

For any node v in the tree-decomposition T, let ), be the random variable
that denotes the size of the intersection of I’ with the bag X, of v. Let ¢, =
|I N X,]|. Clearly, the random variable %), has the binomial distribution with
parameters ¢, and % Therefore, E[9),] = 4. Since ¢, < |X,| < £ =175,
we have E[9),] < s. Furthermore, by the Chernoff bound (see, e.g., [10]), for
every t > E[2),] we have Pr[Q), > t] < (e-E[D,]/t)" < (es/t). If we set
t = M = Xlogn/loglogn, then we obtain
es > Alogn/loglogn

e = M) < o) = (ot
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Alogn/loglogn Alogn/loglogn
< (i) - (1)
logn

—C

_ (2—§~10glogn>)‘10g"/ loglogn
In the bound above we use the fact that s = log' ~“n = 10g1_§ n.

Since the number of nodes in T is at most n°~!, the union bound yields

Pr(dv |9, >M] <> Pr[9,>M] <n"'n ¢ <t
v

Hence, the intersection of the independent set I’ in G with every bag of T is of
cardinality not exceeding M with high probability. Furthermore, with a constant
probability |I’| > |I|/r. This implies that in our probabilistic experiment, with
probability at least 0.1, the set I’ is an independent set of size at least |I|/r
that intersects every bag of T in at most M elements. Since this probabilistic
experiment makes the random choices at random independently of G and T', the
claim above implies that there exists an independent set in G of size at least
|I|/r that intersects every bag of T in at most M elements. This yields an -
approximation of a maximum independent set of G. O

Note that Algorithm 1 yields log' = n times better approximation than that
implied by Lemma [T

Theorem 3. Let { = O(logo(l) n) and let € be any positive constant. For a par-
tial k-tree given with its nice tree-decomposition of width £ having a polynomial
size, there exists an M = O(logn/eloglogn) such that Algorithm 1 yields an
(¢/ log' =€ n)-approzimation of mazimum independent set in polynomial time.

4 Extensions to Other Problems

The deterministic approximation method for independent set presented in the
previous section can be adapted to several other N'P-hard optimization graph
problems constrained to partial polylog-trees.

The following fact yields a straightforward simplification of the method for
a maximum clique in partial polylog-trees.

Fact 6 Let ({X;li € I}, T = (I,F)) be a tree-decomposition of G = (V, E).
Suppose that W C V' forms a clique in G. There is i € I such that W C X;. 0O

Theorem 4. Let { = O(logo(l) n). For a partial k-tree given with its
tree-decomposition of width £ and of polynomial size, an (£loglogn/logn)-
approzimation of maximum clique can be found in polynomial time.

Proof. By Fact[@, a maximum clique is contained in one of the bags of the given
decomposition tree. Therefore, by checking each subset of size O(logn/loglogn)
of each bag for whether or not it induces a clique, we can obtain the desired
approximation. By straightforward calculations, the number of subsets to check
is polynomial. a
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The problem of mazimum induced m-colorable subgraph for a graph G =
(V, E) is to find a maximum cardinality subset of V' that induces an m-colorable
subgraph of G. The problem is known to be AN'P-hard already for m = 2 (see
[13]).

Theorem 5. Letl = O(logo(l) n), m > 2 and let € be an arbitrary small positive
constant where £ > log' ™ n. For a partial k-tree given with its tree-decomposition
of width ¢ and of polynomial size, the problem of maximum induced m-colorable
subgraph admits an (¢/ log!~¢ n)-approzimation in polynomial-time.

Proof. We use a method analogous to Algorithm 1. For the sake of explanation
let us assume m = 2 first. The main difference now is that the classes S, contain
triplets (V/, V", n') where:

— V', V" are disjoint subsets of O(logn/loglogn) vertices in the bag corre-
sponding to v, and

— n’ is the maximum cardinality of the union Vi U V5 where Vi and V; are
disjoint subsets of vertices in the subgraph of the input graph induced by
the bag corresponding to v and the the bags lying under it in the given tree-
decomposition, V' C Vi and V" C V3, and the subgraph of the input graph
induced by V3 UV, can be colored with two colors by coloring vertices in Vj
with the first color and vertices in V5 with the second color.

Note that the number of such pairs V’, V" is polynomial since the bag is
of size O(log®M n). A straightforward modification of Algorithm 1 yields the
thesis. We replace b, with pairs b/,, b" and the test of b, U{q} for independence
with the test of whether or not the subgraph induced by b, U {¢} U b!, can be
colored with two colors such that vertices in b, U {q} are colored with the first
color and vertices in b are colored with the second color, or vertices in b, are
colored with first color and vertices b/ U {q} are colored with the second color,
respectively. To prove the approximation factor of our method we proceed along
the lines of the proof of Theorem[2l We leave the straightforward details and the
straightforward generalization to an arbitrary m = O(1) to the reader.

5 Randomized Approximation of Maximum Independent
Set

One drawback of Theorem [3 is that it requires that the width ¢ is polyloga-
rithmic. In this section we overcome this obstacle and describe a randomized
algorithm that works for arbitrary ¢ = 2(logn) and achieves a better approxi-
mation than in Theorem [3.

Theorem 6. Let ¢ be any positive constant. For a partial k-tree G on n ver-
tices given with its tree-decomposition of width ¢ > logn/c and of polynomial
size, the problem of mazimum independent set admits a randomized (c{/logn)-
approzimation algorithm running in polynomial time, with high probability.
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Proof. We assume, without loss of generality and for simplicity of presentation
only, that ¢f/logn and nlogn/(cf) are integers.

Let I be an arbitrary maximum independent set in G. Partition the vertices
of G into cf/logn sets V1, ..., Veg 108 n independently and uniformly at random.
(That is, for each vertex y of G and for each i, Pr[y € V;] =logn/(cf).) For any
i, 1 <i<cl/logn, let G; be the subgraph of G induced by the vertex set V;.

Let T be a tree-decomposition of G of width ¢ and let the size of T be
O(nb) for a positive constant b. Let T; be the tree-decomposition 7' constrained
to the vertices in V;. We show that for each ¢, the tree-decomposition T; has
width O(logn) with probability 1 — o(1). Indeed, let us first consider any node
v in T and let us estimate the probability that the bag of v, X, intersects
with more than O(logn) vertices in V;. Since for any 4, for any vertex y € X,,
Prly € Vi] =logn/(cf), and since |X,| < ¢, the size of X, NV} is (stochastically)
upper bounded by a random variable with the binomial distribution with the
parameters k and logn/(cf), which we denote by B(¢,logn/(cf)). That is, for
any N, Pr[|X, NV;| > N|] < Pr[B(¢,logn/(cf)) > NJ]. On the other hand, by
the Chernoff bound we have for A = 2e 4 ¢(b+ 1),

o ’I’L/C Alogn/c
> Alogn < elog — Alogn/c
Pr([B(¢,logn/(cl)) > 2282] < ()\logn/c (e/A)

< (1/2)c(b+1)log n/c _ n—(b+1) )

Since T has O(n®) nodes and since there are c// log n sets V;, this implies that
for each V;, the tree T; has width O(log n) with probability at least 1—O(nb)-%~
n~(+D = 1 — o(1). Therefore, conditioned on that, for each i, 1 < i < ¢//logn,
we can find a maximum independent set in G; by using the standard dynamic
programming method on 7; [§]. By the pigeon hole principle, at least one of these
maximum independent sets is of size not less than |I|-logn/(cf), which yields the
theorem. The failure probability of the randomized algorithm is O( locgen) = o(1).
One can easily modify our algorithms and the arguments to amplify the failure
probability to less than n~° for any given constant ¢ > 0. O

6 Final Remarks

The N'P-hard problem of finding a tree decomposition of a graph having mini-
mum treewidth is known to admit logarithmic-factor approximation polynomial-
time algorithms (see Fact Bl and H). Merely, for graphs of constant treewidth,
polynomial-time algorithms for tree decomposition of minimum width are known
(see Fact ). On the other, a tree decomposition of a graph can be transformed
into its nice tree decomposition without increasing the width (see Fact Bl). There-
fore, for a partial k-tree on n vertices, in case a tree decomposition of width k
is not given, all our upper bounds on approximation factors achievable in poly-
nomial time established in the previous sections have to be increased by a log-
arithmic factor. Due to the improvement of Fact [ to Fact [4, the logarithmic
factor is of the form O(log k). Thus, in particular, if k is polylogarithmic in n,
the increase is merely by an O(loglogn) factor.
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