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Abstract. In this paper, we propose to investigate the notion of in-
tegrity constraints in inductive databases. We advocate that integrity
constraints can be used in this context as an abstract concept to encom-
pass common data mining tasks such as the detection of corrupted data
or of patterns that contradict the expert beliefs. To illustrate this possi-
bility we propose a form of constraints called association map constraints
to specify authorized confidence variations among the association rules.
These constraints are easy to read and thus can be used to write clear
specifications. We also present experiments showing that their satisfac-
tion can be tested in practice.

1 Introduction

Integrity constraints are a central notion in databases used primarily to ensure
data consistency. It has shown to be a fruitful and useful concept, with important
additional benefits to guide very different aspects such as design, implementation
and also query optimization (see [21T] for an overview).

Basically, integrity constraints are an abstract specification of the possible
contents of the database with respect to our current knowledge of the data do-
main. They have been deeply investigated in the context of relational databases
as well as object-oriented databases, according to various objectives (e.g., spec-
ifications, efficient checking).

Recently, the concept of inductive database (IDB) has emerged [I3/1518],
promoting the vision that a database dedicated to data mining contains not
only data (e.g., customer transactions) but also all patterns that hold in the
data (e.g., association rules [2]). Ideally, the user of an IDB can query data and
patterns within a single language and can also express operations involving both
data and patterns. The collection of patterns may be several orders of magnitude
larger than the set of data itself, and thus cannot be materialized in general in
the IDB. However from the user point of view, each pattern that holds should
be considered as available for querying.
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We advocate in this paper that integrity constraints are also a very promising
concept in IDB. Like in the classical database frameworks, they can be used for
specifying data consistency and for rejecting inconsistent updates. However, in
the context of IDB, integrity constraints raise new interesting and challenging
issues, if we consider that they can also be applied to the patterns that hold
in the data. Regarding this view, they can be used to specify what knowledge
the designer (or an expert) considers to be reasonable to find in the data. Then,
the violation of a pattern integrity constraint may be seen as an evidence of
various phenomena. For example, if we have an IDB containing alarm logs with
a daily insertion of a batch of new logs, then if after such an update one of the
pattern integrity constraints is no longer satisfied this may highlight that this
set of log records has not been properly cleaned. In this case the IDB engine can
abort and undo the insertion, and let the IDB administrator (or a user) check
these new logs. Another useful possibility is to consider that the designer/expert
specifies intensionally with pattern integrity constraints the set of patterns that
in her/his opinion could be found in the data. This provides a way to delimit
the acceptable laws that could hold with respect to the knowledge that the
designer/expert has about the domain. In this case an integrity violation can be
assimilated to the occurrence of an unexpected phenomenon and the patterns
violating that constraint can be considered as subjectively interesting piece of
information for the designer/expert. Obviously, in the context of a multi-user
IDB, such integrity constraints on patterns can be customized by each user, so
that she/he can add more specific constraints than the ones set by the designer,
to reflect her/his own belief and background knowledge.

The detection of corrupted data and the identification of new interesting
knowledge among the extracted patterns are common tasks in data mining (see
for example the classification of actions proposed by [19] when beliefs are con-
tradicted). The idea, that we want to point out in this paper, is that large parts
of these processes can be incorporated nicely in the IDB framework by means of
integrity constraint specification and checking.

Of course, most forms of integrity constraints proposed previously in the
database domain can be reused to specify the contents of an IDB in terms of
tuples or objects (e.g., functional dependency, class inclusion hierarchy). And
these constraints can be used directly to specify the data that are admissible
in an IDB but also to specify the admissible patterns themselves, when these
patterns are encoded as tuples or objects. So, at first sight, we can imagine to
choose one of the very expressive languages already proposed in the literature
(e.g., using a data manipulation language itself [21]) and use it to specify a large
class of constraints over the patterns. The drawback of this approach is that it
does not take into account the tradeoff between expressivity and computational
complexity of constraint checking in the context of IDB.

For example using a Datalog like language with a polynomial evaluation
complexity (w.r.t. the number of tuples in the database) to express constraints
may be reasonable in a relational database, but will be in general not applicable
in practice for IDB. The reason is that the number of patterns stored in an IDB
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(in a materialized way or not) is for common families of patterns inherently
exponential with respect to the pattern domain parameters. For instance, if
we consider patterns called frequent itemsets, they are defined w.r.t. a set of
binary attributes A, and a frequent itemset may be any subset of A, leading in
the worst case to a collection of 2! patterns. Even if this number can remain
reasonable in some practical cases (e.g., using a high frequency threshold on a
sparse data set), when we set more difficult conditions (e.g., a lower frequency),
all practitioners have had to deal with the problem of the exponential growth of
the number of frequent itemsets extracted. The same problem can be illustrated
on other commonly used patterns (e.g., association rules [2], frequent Datalog
patterns [II]). So, we cannot expect to be able to apply a general integrity
checking process (even one ensuring a polynomial evaluation complexity) on
this set of patterns of exponential size.

The situation can be even worse since in most cases, in an IDB these patterns
are not fully materialized, and thus some extra (in general non-polynomial)
computation is needed to enumerate them.

In the context of IDB we propose to investigate the notion of integrity con-
straint for patterns, by taking advantage of the following observation. In IDB
each pattern is an expression of a specific pattern domain with its own semantics
and thus could come with its specific family of integrity constraints, offering an
acceptable tradeoff between expressivity and evaluation cost.

In the rest of the paper we focus on a very common pattern called associ-
ation rule [2] and we propose a dedicated form of integrity constraints called
assoctation map constraints.

Association rules were proposed to represent dependencies between the oc-
currences of items in customer transactions. Originally, the form of these rules
was A1, As, As,... = B where Ay, As, A3,... and B denote items. The left
hand side is called the antecedent, and the right hand side the consequen. A
confidence measure is defined for these rules. The value of the confidence could
be considered as the conditional probability of having the consequent in a trans-
action when we have all items of the antecedent. Another quality measure, called
relative support, is generally associated to the rules. A 10% relative support for
a rule means that 10% of the observed transactions support the rule, i.e., the
items (antecedent and consequent) could be observed together in 10% of the
transactions. It should be noticed that mining association rules is not restricted
to basket data analysis, and has been applied on many kinds of data sets after
an appropriated encoding with Boolean variables (e.g., [20]). Association rules
have received a lot of attention and several algorithms (e.g.,[I8I3I12]) have been
designed to extract them for given confidence and support thresholds.

An association map is an abstract specification of the set of association rules
that could hold in the data according to our current knowledge of the data do-

! Consequents made of several items are also considered in the literature. The notion
of association map constraint proposed in this paper can be adapted easily to this
other form.
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main. Association maps are a good candidate of dedicated forms of integrity con-
straints since they are very concise and readable in the following sense. Firstly,
a small association map is sufficient to constrain a huge collection of association
rules. Secondly, an association map has a strong hierarchical structure enabling
quick intuitive browsing while its semantics remain very simple. And finally,
another interesting property of association maps for their use as integrity con-
straints is that their satisfaction can be checked in a reasonably efficient way in
practice.

The rest of this paper is organized as follows. In Section [ we informally
present the notion of association map constraint. More formal definitions and an
algorithm to compute association maps are given in Section [3l In Section Ml we
describe experiments showing that these constraints can be checked efficiently
in practice even in difficult cases. We review related work and conclude with a
summary in Section

2 Informal Presentation

In this section we introduce in an informal way the notion of integrity constraint
based on association map for IDB.

The key idea behind association map is to represent what should be the con-
fidence variation if a particular item is added to or removed from the antecedent
of a rule. Let us take a toy example where each transaction in the data set of
the IDB describes one person involved in a car crash (her/his characteristic, the
context, the damages).

We suppose that the designer has some knowledge in the car crash domain
and wants to use it as integrity constraints over the association rules she/he
thinks that could reasonably hold in the IDB. We make the hypothesis that there
is a wide variety of such knowledge that can be expressed as the variation of rule
confidence w.r.t. the presence/absence of a particular attribute in the left-hand
side of the rule. For example, consider that for car crashes the expert thinks that
the use of an airbag reduces the probability of severe injury, except for persons
that wear glasses. This opinion can be seen as a constraint (denoted IC; below)
on the variation of the confidence of rules concluding on severe injury, w.r.t. a
variation criterion which is the presence/absence of an airbag.

Consider the following association rules that hold (among others) in the cur-
rent instance of our IDB. For each rule we indicate the corresponding confidence,
and one can easily see that this set of rules does not contradict the integrity con-
straint 1C set by the designer.

0= severeinjury 20%
airbag = severe injury 10%
driver = severe injury 18%
driver, airbag = severe injury 10%
wear glasses = severeinjury 15%
wear glasses, airbag = severeinjury 20%
wear glasses, driver = severeinjury 20%

wear glasses, driver, airbag = severeinjury 25%
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An association map is simply an explicit synthetic representation of these
confidence variations in terms of effects of the presence/absence of the variation
criterion in rule antecedents. A map is defined for a given consequent (e.g., severe
injury), for a particular item used as variation criterion (e.g., airbag) and for a
given support threshold, but without any confidence threshold. It contains a set
of regions, where each region is characterized by an homogeneous effect on rule
confidence when we add the variation criterion to the rule antecedent. The effect
is called positive (resp. negative) if the addition of the variation criterion results
in an increase (resp. a decrease) of the rule confidence. A region is delimited by
a lower bound (w.r.t. set inclusion) which is a rule antecedent (a set of items)
called base. Upward, a region is delimited by a border composed of the rule
antecedents that are the minimal supersets of the base where the effect changes,
from positive to negative or from negative to positive (neutral effects are not
considered as real changes). And finally, all elements in a border of a region can
be themselves the bases of new regions. Additionally, it should be noticed that
rules having a support lower than the given threshold are not represented by the
map.

The constraint IC; can be expressed as the association map depicted on
Figure [[I If we consider all possible rule antecedents (excluding items severe
injury and airbag that represent the rule consequent and the variation crite-
rion), these antecedents can be organized in a lattice (w.r.t. set inclusion). This
lattice is depicted using dashed lines on Figure [l The bases and the border
elements are simply particular elements of this lattice that delimitate the re-
gions of homogeneous effects. For constraint IC; we have two such regions. The
first having for base the empty set and as border {wear_glasses}, and in which
the effect is negative. And the second, with base {wear_glasses} and border
{wear_glasses, driver} where the effect is positive. On the graphical representa-
tion, the space of all supersets of a base is sketched by a conic shape. The map
presented on Figure[Ilcan be read as follows: If we add airbag to the antecedent
of ) = severe injury then the confidence decreases, and this holds for all rules
excepted if the antecedent contains wear_glasses in which case the confidence
increases.

Suppose that a new set of transactions representing data related to pregnant
women is inserted in the IDB, and that now we have the additional rules@g:

pregnant = severeinjury 30%
pregnant, airbag = severe injury 25%
driver, pregnant = severeinjury 30%
driver, pregnant, airbag = severe injury 40%
driver, pregnant, less_than_3-month_pregnancy = severe injury 19%
driver, pregnant, less_than_3_month_pregnancy, airbag = severeinjury 12%
wear glasses, pregnant = severeinjury 35%

2 To simplify the example we suppose that the previous rules still hold with the same
confidence.
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wear_glasses,driver \

wear_glasses

Fig. 1. Association map ICy

wear glasses, pregnant, airbag = severeinjury 40%
wear glasses, driver, pregnant = severeinjury 35%
wear glasses, driver, pregnant, airbag = severe injury 42%

wear glasses, driver, pregnant, less_than_3_month_pregnancy =
severe injury 23%
wear glasses, driver, pregnant, airbag, less_than_3_-month_pregnancy =
severeinjury 28%

We recall that in the context of an IDB these rules are not necessarily ex-
tracted and materialized after the insertion of the new data, but from the user
point of view they can be used/retrieved at any time.

If we have a close look at these rules, we notice that some of these patterns
no longer satisfy IC7. This can be seen more clearly by drawing the association
map corresponding to the whole new set of association rules (for the consequent
severe injury, the variation criterion airbag, and the same support threshold).
This map is depicted on Figure 2l where, for readability reasons, the underlying
lattice has not been represented. Testing if IC is satisfied or not can then be
performed by comparing this map to the map corresponding to IC. This is done
on Figure 2] where the area of patterns that violate IC; is highlighted in grey.

In practice, the use of association maps as integrity constraints in an inductive
database can be made as follows. First, the user or the database designer gives a
collection of association maps to specify the authorized confidence variations in
terms of known effects for specific variation criteria and rule consequents. After
an update (or sequence of updates) of the data, the maps describing these effects
are computed (from the data) by the inductive database system. Then, they are
compared automatically to the ones that have been specified. If a difference
is found, the system rejects the update(s) and presents this difference to the
user (using eventually a graphical representation with highlighted areas as the
one of Figure [2)). The user can then assess whether the difference comes from a
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driver.pregnant

wear_glasses
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&

Fig. 2. Patterns that do not satisfy 1C}

corruption of the data or is due to effects that are not correctly specified by the
integrity constraints. In the later case, this can leads to the modification of the
integrity constraints and be a clue to find an unknown phenomenon.

2.1 Refinement of Maps

The notion of association map presented informally can lead on real data sets
to many regions that are not appropriated. We introduce in this section two
thresholds used to avoid such situations.

Discarding Extra Regions Using Strong Dependencies. Many exact or
nearly exact association rules hold in real data sets and this phenomenon has
been used recently to condense huge collections of itemsets [I617].

Let us consider that we generate a map for consequent C' and variation cri-
terion H, and that we have between items A and B the association A = B
with a confidence of 100 % (such a rule can be due, for example, to a functional
dependency holding in the data). Then A = C and A, B = C have the same
confidence, and this is also true for rules A, H = C and A, B, H = C. Thus,
the effect of H on confidence is the same for antecedents {A} and {4, B}. More-
over, the same holds for any pair of antecedents X and X U {B}, where X is a
superset of {A}. This means that the portion of map generated for supersets of
X is redundant with the part constructed for supersets of X U {B}.
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Now, suppose that {B} is the base of a region, and that the effect of H for
{A, B} is different than the effect of H on {B}. In this case, {4, B} turns out
to be in the border of the region based on {B} and results in the generation
of an extra region based on {A, B}. Since we know that the part of the map
corresponding to supersets of { A, B}, is redundant with the one for supersets of
{A} we can avoid the construction of the extra region based on {A, B}. For any
region based on a Y superset of {B} we can make the same simplification when
the region based on Y U {A} has a different effect.

So, we can discard any base X if there exists Y C X and A € X \ Y such
that Y = {A} with a 100% confidence (i.e., if there is an exact rule between
items in X).

It should be noticed that exact rules are not likely to be found in noisy
data sets or in presence of missing values. In these cases, they appear under the
form of rules having a few number of exceptions. So, in the definitions given in
Section 3. J]we discard a base X if there is a nearly exact rule between items in X.
These nearly exact rules called é-strong rules (rules with at-most § exceptions)
have been used previously in a different context [7] to condense collections of
itemsets and mine frequent patterns more efficiently.

For association map extraction, § will be a threshold called freeness.

Avoiding Regions Created as Artefacts
A confidence is the ratio s1/ss of two integer support values. So, it cannot change
in a continuous way, but only by discrete steps.

Let o be the absolute support threshold used to generate the rules. The great-
est discrete step variation due to a single row is encountered when confidence
jumps from (041)/(0c+1) to 0/(c+1). Thus, a confidence variation lesser than
1—o0/(0 + 1) cannot be considered as really significative.

So, we use another threshold 7 called tolerance to indicate what we consider as
a clear confidence variation. When we add the item used as variation criterion to
the antecedent of a rule, the variation of confidence must be strictly greater than
7 (resp. strictly lower than —7) to be interpreted as a positive (resp. negative)
effect. Otherwise the effect is said to be neutral.

The bases of regions are restricted to be such that their effects must be either
positive or negative, except for the first base (the empty set) where the effect is
also allowed to be neutral. Thus, in a region, when we encounter a neutral effect
we consider that we are still in the same region, and it is only when we find a
different and significative positive or negative effect that we generate a border
element.

3 Computing Association Maps

In this section, we give more formal definitions and present a way to compute
association maps.
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3.1 Definitions

Preliminary

Definition 1 (Binary Database). Let R be a set of symbols called items. An
itemset is a subset of R. A binary database r over R is a multiset of rows, where
a row is an itemset. We use the notation ¢ € r to denote that a particular row ¢
belongs to r.

In this section, we assume that the data set is a binary database r over a set
of items R.

Definition 2 (Itemset Support). We denote M(r, X) = {t € r|X C ¢} the
multiset of rows in r matched by the itemset X and Sup(r, X) = |[M(r, X)| the
support of X in r, i.e., the number of rows matched by X.

Definition 3 (Association Rule [2]). Let Y C R be an itemset. An asso-
ciation rule over Y is an expression of the form X = C, where C' € Y and
X C Y\ {C}. The support of a rule in r is denoted Sup(r,X = C) and is
defined by Sup(r, X = C) = Sup(r, X U {C}). Its confidence is Conf(r,X =
C) = Sup(r, X U{C})/Sup(r, X).

We consider ¢ € (0,|r|] a support threshold. It should be noticed that it
corresponds to an absolute number of rows. However to facilitate the reading of
some examples we also use a relative support threshold, that simply corresponds
to a/|r|.

Definition 4 (Frequent Association Rules). A frequent association rule
over R w.r.t. o and r is an association rule X = C' over R, such that Sup(r, X =
C) > 0. We denote FreqRules(r, o) the set of all frequent rules over R w.r.t. o
and r.

We also recall the definitions of d-strong rules and 6 — free sets, needed to
define association maps. These two notions have been introduced in a different
contextd in [716].

Definition 5 (6-Strong Rule). A §-strong ruld] in a binary database r is an
association rule X = C over R such that Sup(r, X) — Sup(r, X U{C}) <, i.e.,
the rule is violated in no more than ¢ rows.

In this definition, ¢ is supposed to have a small value, so a §-strong rule is
intended to be a rule with very few exceptions.

Definition 6 (6-Free Set). X C R is a §-free set w.r.t. r if and only if there is
no é-strong rule over X in r. The set of all §-free sets w.r.t. r is noted Free(r, 6).

3 Originally § — free have been proposed as a condensed representation that can be
extracted very efficiently and that can be used to closely approximate the support
of all itemsets that are frequent w.r.t. a given support threshold.

* Stemming from the notion of strong rule of [I7].
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Since 6 is supposed to be rather small, informally, a d-free set is a set of
items such that these items are not related by any very strong positive depen-
dency.

Effect Regions and Association Maps. As presented in Section[2] an associ-
ation map is defined w.r.t. two items (the consequent and the variation criterion)
and three thresholds (support, tolerance and freeness). In this section, we denote
respectively C' € R the consequent and H € R the variation criterion, and we
use o € (0,|r|], 7 € [0,1] and an integer § to represent respectively the support,
the tolerance and the freeness threshold.

Definition 7 (Local Effect). Let X C R\ {C, H} be an itemset. The local
effect of H on rule X = C, denoted LocEf fect(r,7,X,C, H) is defined as:

1 if Conf(r,XU{H}=0C) —

Conf(r,X=0C)>r
LocEf fect(r,7,X,C,H) =< —1if Conf(r,XU{H}=C) —
Conf(r,X=0)< -7

0 otherwise

According to its value, the effect is respectively called positive, negative or
neutral.

We now define the antecedents that are significative to generate the maps.

Definition 8 (Significant Antecedent). SigAnte(r,o,7,6,C, H) is the col-
lection of significant antecedents and is defined by SigAnte(r,o,7,6,C, H) =
{X CR|(XU{H} = C) € FreqRules(r,0) X € Free(r,6)\LocE f fect(r, 1, X,
C,H) e {-1,1}}.

These antecedents are itemsets that form with H the antecedent of a frequent
rule. Moreover, they must be made of items that are not strongly dependent
(i.e, they are é-free) and where the local effect is clearly positive or negative
(not neutral). Then, for an itemset X we define the border effect, which is
the collection of the minimal supersets of X that are significant antecedents
and where the local effect changes strongly (from positive to negative or from
negative to positive).

Definition 9 (Effect Border). Let X be an itemset such that X C R\{C, H}.
The effect border for X is Border(r,o,7,6, X,C;H) ={Y € RIX CY AY €
SigAnte(r,o,7,6,C, H) A LocE f fect(r,7,X,C,H) # LocEf fect(r,7,Y,C, H) A
(VZ, X CZCY = LocEf fect(r,7,Z,C,H) € {0, LocEf fect(r,7,X,C,H)})}.

Now we consider regions of homogeneous effect, i.e., a set of rule antecedents
having a common subset and a common local effect. We first define their lower
bounds (w.r.t. set inclusion), called effect bases as follows. The empty set is an
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effect base. A significant antecedent which is in the effect border of an effect base
of smaller size is also an effect base. This notion is expressed more formally by
the next definition.

Definition 10 (Effect Base). The collection of effect bases is defined induc-
tively as follows.

Basey = {0}

Base; = {X C R| |X| =1i¢AX € SigAnte(r,o,7,6,C,H) A (Y €
X € Border(r,o,7,6,Y,C, H))}

j<iBasej,

Base(r,o,1,6,C,H) = J; Base;.

Then an association map is simply the collection of all effect bases together
with their borders.

Definition 11 (Association Map). An association map for a binary database
r w.r.t. items C, H and thresholds o, 7,6 is defined by AMap(r,o,7,6,C, H) =
{{X,B)|X € Base(r,o,T,6,C,H) N B= Border(r,o,7,6,X,C,H)}.

Each tuple in an association map corresponds to the lower and upper bounds
(w.r.t. set inclusion) of a region where the local effect does not significatively
change.

Note that two different effect regions may overlap. This overlapping may
occur even when their respective effect bases have opposite local effects, in this
case the itemsets that belong to both regions have a neutral local effect.

3.2 Algorithm

We present a generic algorithm called GenMap to produce the map for a con-
sequent C, a variation criterion H, and thresholds 6,0 and 7 corresponding
respectively to freeness, support and tolerance thresholds.

The algorithm calls three functions: CandAnte, Signif and Ef fect.

The algorithm is presented using in its input a set S = FreqRules(r,o) of
all frequent association rules along with their supports.

Algorithm 1 (GenMap)

Input: C, H items, n the size of the largest candidate antecedent, set S,
thresholds 6,0 and T.

Used subprograms: CandAnte(S,i,C, H) establishes the set of itemsets of
size ©, not containing C or H, that are candidates for being significant an-
tecedents. Signif(S,X,C, H,T,6,0), which finds out whether X is a significant
antecedent or not. And the function Ef fect(S, X,C, H) is used to compute the
local effect of H for X.

Output: a set of tuples containing all effect bases, and their corresponding
effects and borders.



Integrity Constraints over Association Rules 317

. let Ey := Effect(S,0,C, H), Map := {(D, Ey,0)};
. for allie {1,...,n} do
for all X € CandAnte(S,i,C, H) do
if Signif(S,X,C,H,T,6,0) then
let Ex := Effect(S,X,C,H);
6. let MaxzSubBasesx := {{Y, Ey,By) € Map|
Y CXAEy #Ex A\NW € By, W ¢ X};

SR Lo o =

7. if MaxSubBasesx # () then

8. let Map := MapU {(X, Ex,0)};

9. for all (Z,Ez, Bz) € MaxSubBasesx do

10. let Map := (Map\ {{Z,Ez,Bz)})U
{<Z7EZvBZU{X}>};

11. od

12. fi

18. fi

14. od

15. od

16. output Map

In line 1, GenM ap considers the empty itemset, which is always an effect base
according to Definition [I0} In line 2, the algorithm enters a loop corresponding
to increasing sizes of candidate antecedents.

For each candidate antecedent X the algorithm checks if it is significant
(line 4), and if so, GenMap computes in line 6 the set MaxSubBasesx of all
bases of regions that contain X in their border.

If at least one of such region exists (line 7), then X is also an effect base, and
the corresponding tuple is created in line 8. X is then stored in the borders of
all regions having their bases in MaxSubBasesx (lines 9-11).

Theorem 1 (Correctness of GenMap). The algorithm GenMap outputs the
effect bases (along with the corresponding border elements and effects) of the as-
sociation map defined for a consequent C, a variation criterion H, and thresholds
6,0 and T.

Proof. The proof is made by induction on the size of the bases. Note that the
effect base () is included in Map by the first line of the algorithm.

Hypothesis. Suppose that for every effect base X of size less or equal to i
the algorithm GenMap correctly reported X as a base and as border element in
Map.

Consider an effect base X # () of size 1 + 1. We are going to show that X is
correctly reported as a base and as border element in Map.

X is an effect base implies that X is returned by CandAnte(S,i,C, H) (line 3)
and not filtered out by Signif(S,X,C, H,7,6,0) (line 4). Therefore, it will be
considered in lines 5-12. By Definition[Il, there is at least one effect base Y C X
such that X is in the border of the region of base Y. Assuming that the induction
hypothesis holds, we find all such bases in line 6. Then, X is added as a base to
Map in line 8, and correctly reported as border element in lines 9-11.
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So, the algorithm correctly reported all effect bases and border elements in
Map. The soundness of every update of Map is immediate. o

3.3 Computing Association Maps from Association Rules

GenM ap can compute the association maps using as input S, the collection of all

frequent rule, and running the functions CandAnte(S,i,C, H), Signif(S, X, C,
H,7,6,0) and Ef fect(S,X,C, H) defined in the following manner.

CandAnte(S,i,C, H) selects from S the rules having an antecedent of size 4
and consequent C, but skips the rules containing H in their antecedents. Then,
it returns the collection of all antecedents of these rules.

Signif(S,X,C, H,7,6,0) checks if X U{H} = C is in S (i.e., if the rule is
frequent), and if it is the case it tests the local effect of H. To do so, it finds in S
the rule X = C, and compares the confidences of the two rules. If the absolute
value of their difference is less or equal to 7, the function exits returning false
(the local effect is neutral). Otherwise the é-freeness of X is tested by simply
checking that for every A € X the difference between the support of X \ {4} and
X is strictly greater than 8. It should be noticed that the supports of X \ {4}
and X can be obtained using S as follows. Let us consider that we need the
support of a frequent itemset Z. Let B be any item such that B € Z, then the
rule Z \ {B} = B is frequent and is in S. By definition [ the support of Z is
equal to the support of this rule.

If X is é-free, Signif(S,X,C, H,T,6,0) returns true, and false otherwise.

Effect(S,X,C, H) finds the confidences of the rules X = C and XU{H} =
C' in S, and then returns the local effect of H according to the difference between
the confidences of the two rules.

One can generate association maps using the generic algorithm and the col-
lection of all frequent association rules. Unfortunately, this input collection may
be very large. Moreover, for some data sets (e.g. highly correlated census-like
data sets), it is an intractable process to mine all frequent association rules at
interesting support thresholds.

In the next section, we show that one can avoid extracting all frequent rules,
by using more elaborated input collections.

3.4 Computing Association Maps Directly

Let us now consider that S consists of all tuples (Z\{H,C}, Z\{H}, Z\{C}, Z)

such that Z is a frequent itemset (w.r.t. threshold o) containing both C and H,
and such that Z \ {H,C} is 6-free. We also consider that we have at hand the
supports of the itemsets in the tuples in S.

The main practical advantage of this new input S is that it remains in general
many much more smaller than the set of all frequent association rules.

S can be used to generate the association map for consequent C, varia-
tion criterion H, thresholds ¢, o, 7, using algorithm GenMap when the functions
CandAnte, Signif and Ef fect are defined as follows.

CandAnte(S,i,C, H) selects from all tuples in S the ones having a first el-
ement of size ¢ and outputs these first elements. By grouping the tuples in .S;
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according to the size of the first element at the time we construct S, we can
compute the result of CandAnte(S,i,C, H) in a very efficient manner.

Signif(S,X,C,H,7,6,0) looks forin S (X, X U{C}, X U{H}, X U{H,C}).
If such a tuple exists in S then, by construction of S, X is é-free and X U{H, C'}
is frequent. Then, to verify that the local effect is not neutral for X, it compares
the absolute value of the difference between Sup(X U{C})/Sup(X) and Sup(X U
{H,C})/Sup(X U{H}) to the tolerance threshold 7.

Effect(S,X,C,H) used S to compute the local effect for X in the same
way as function Signif. In fact, in an implementation of algorithm GenMap
the value of Ef fect(S,X,C, H) is simply obtained during the computation of
Signif(S,X,C, H,T1,6,0).

The generation of S itself can be made using the algorithms presented in [76]
to mine é-free sets. In our prototype we choose to generate S using the tech-
nique proposed in [9II0] to mine frequent patterns efficiently even in presence
of difficult dense data sets. The prototype extracted first a representation called
disjunction-bordered condensation using the algorithm VLINEX proposed in [9/10]
and then generates S from this representation. Finally, it produces the map itself
using GenMap.

4 Experiments

To check the satisfaction of association map constraints we propose to first ex-
tract the corresponding association maps from the data of the IDB, and then to
compare these maps with the association map constraints given by the designer
of the IDB. We consider that the association map constraints are rather small,
thus we neglect the computing cost of the second step and take only the first one
into account. In this section, we report experiments showing that the first step
(computation of association maps over the IDB) can be done efficiently even in
difficult cases.

Conditions of Experiments. We choose Pumsb, a very challenging census
data set, containing 7117 items, 49046 rows, each with 74 items set to true.
The particularity of the selected data set is that it is very dense and the com-
binatorial explosion of the number of frequent itemsets makes the mining of all
association rules intractable for low support thresholds [5]. This data set has
been preprocessed by researchers from IBM Almaden Research Centen.

We run experiments on a 1 GHz PC with 512 Mb of RAM and Linux oper-
ating system.

To produce difficult conditions for the association map extraction, we choose
a value of § equal to 0 (avoiding only regions due to exact dependencies), and
7 = 107" (a tolerance close to the minimal tolerance threshold defined in Sec-
tion 271)). We also used a heuristic to select ten hard pairs consequent/variation
criterion, i.e., pairs such that regions in maps tend to be large or numerous.

® http://www.almaden.ibm.com/cs/quest/data/ long_patterns.bin.tar
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We present this heuristic and the results of the experiments in the following
sections.

Selecting Consequents and Variation Criteria. We define a function to
associate a score to each pair of consequent C' and variation criterion H.

This score is computed from a collection of itemsets denoted &, s and contain-
ing all 6-free itemsets having a support exceeding o. Let F¢ g be the collection of
itemsets in &, 5 containing items C and H. Let nbye, (resp. nbyos) be the number
of elements in &, s having a negative (resp. positive) local effect for C, H with
tolerance 7 = 0. Let M,y (resp. Myos) be the mean value of the confidence
variation for all negative (resp. positive) local effects for C,H and 7 = 0.

We defined score(C, H) = Tou * Nom * Pom * abs(Myeg) * Mpos.

The factor Toy is |Fo u|/|€s.5], and represents the ratio of itemsets in &, s
that are candidates to be a base of a region.

The factor Nog is nbpeg/|Fe, | and corresponds to the ratio of negative local
effects among all possible local effects. Poy is nbpos/|Fc,m| and corresponds to
the same ratio for positive effects. Nog * Poy is maximal when Nogyg = Pog =
1/2, i.e., when the amount of significant antecedents with negative and positive
local effects for a given C' and H are the same and there is no neutral-effect
antecedents. High values of Ny % Pop indicate that the map is likely to contain
many changes of effects and thus many regions.

Finally, the factor abs(Mcq) * Mpos takes into account the amplitude of the
changes of the confidence. A higher value implies potential effect bases with clear
positive or negative effects, and thus an important number of bases even at high
values of the tolerance threshold.

A pair C, H having a high score(C, H) offers a good potentiality of generating
maps containing large and numerous regions.

Results. Figure [l summarizes the results. For various support thresholds, we
report the highest (MAX), the lowest (MIN) and the mean (MEAN) extrac-
tion time over the ten pairs consequent/variation criterion having the highest
score(C, H) values.

The experiments show that on this difficult data set, for support thresholds
of 80% to 100%, the extraction of the maps from the data and thus the test
of satisfaction of the association map constraints can be done in practice on-
line (i.e., during interactive data manipulation sessions). For lower thresholds,
the integrity check can be performed reasonably off-line even at a 50% support
threshold, which represents very hard conditions on this dense data setfd.

In practice, a large amount of the map extraction time is spent to compute
the association rules (or in our prototype, to generate the intermediate represen-
tation as presented in Section [3.4]). It should be noticed that the computation

5 Such conditions can be considered as much more difficult than lower support thresh-
olds (e.g., 1% or even less) on many sparse data sets (e.g., basket data, logs of
alarms).
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Fig. 3. Extraction times of association maps

of the association rules (or of the intermediate representation) is common to all
maps for a given support threshold in a given data set. So, in most cases, when a
map has been extracted for a pair consequent/variation, the maps for the other
pairs involved in association map constraints can be obtained at a marginal extra
cost.

5 Conclusion and Related Work

To our knowledge the notion of integrity constraint in IDB has not been pre-
viously explicitly investigated. In this paper we advocated that common data
mining tasks such as the detection of corrupted data or of patterns that contra-
dict the expert beliefs [I9] can be integrated in a clean way under the concept
of integrity constraints for IDB.

We illustrated this possibility by proposing a form of integrity constraints
called association map constraints. Such a constraint is a specification of the
sign of the variation of association rule confidences when a given attribute is
added in the antecedent of the rule. These maps have a simple intuitive meaning
and can concisely constrain all association rules. Thus, they allow to express
clear and understandable specifications. Moreover, we have shown by means of
experiments that the satisfaction of association map constraints can be checked
in practice in a reasonably efficient way.

The use of confidence variation has been investigated previously in [4T4]
to prune and summarize collection of association rules. As for association map
these variations are considered w.r.t. a fixed rule consequent. [4] proposed to
select rules @ = C' showing an increase (or eventually a limited decrease) of
confidence with respect to all rules 8 = C where § C « (i.e., more general
rules). If we adapt this idea in the context of integrity constraints for IDB, it
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leads to specify that some particular rules must have a confidence higher than
any of their more general rules, and then to use the algorithm described in [4]
to check if this specification is satisfied in the database. In [14] the authors
proposed to select rules that are statistically more significant w.r.t. the more
general rules and then to summarize this collection of selected rules. Similarly
to [] this approach can be adapted as integrity constraints for IDB.

Compared to these works, association maps are complementary. On one hand,
they are more specific in the sense that an association map focuses on the effect
of the absence/presence of a particular attribute H (the variation criterion) in
the antecedent of the rules. However, it is possible to specify several association
maps, each for a different attribute H. On the other hand, an association map
is a cartography of all association rules (areas of decrease/increase of confidence
w.r.t. the presence of H in the antecedent) and thus give a more general view
than the approaches of [4] and [14] that concentrate on rules better (in some
sense) than the more general ones.

With respect to the association map constraints proposed in this paper, an
interesting issue to investigate, is to determine how and in which cases the check
of the constraints can be performed incrementally with respect to the updates
of the databases.

A more general direction of future work is to investigate how the concepts
and techniques proposed previously in the data mining literature, can be adapted
and used to specify and check the data and pattern consistency in the context
of IDB.
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