

Guide to Software Development

Arthur M. Langer

Guide to Software
Development

Designing and Managing the Life Cycle

123

Dr. Arthur M. Langer
Columbia University
School of Continuing Education
Lewisohn Hall 510A
10027 New York
NY, USA
al261@columbia.edu

ISBN 978-1-4471-2299-9 e-ISBN 978-1-4471-2300-2
DOI 10.1007/978-1-4471-2300-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941862

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

How to improve the quality and process of implementing enterprise software
remains a most challenging topic at conferences on information development and
business process reengineering. Over the past few decades the question of how to
do this has only become more complex, especially with the growth of sophisticated
package software products in the market such as SAP and Oracle Financials. These
products, called enterprise resource planning (ERP), claim to provide a quicker and
more cost-effective way to fully integrate software applications in all parts of the
business. Yet, so many of them fail to be either cheaper or faster by the time they are
put into production. Furthermore, the decision to make or buy software is not simple
and in many cases organizations now need to consider some combination of both.
Therefore, the problem that this book addresses is to how best determine to make
such decisions and what effect such decisions have on the software development life
cycle (SDLC). Although there are many different SDLC methodologies, this book
offers an integrated approach that includes the management and decision practices
that are critical for success. Accordingly, the role of the analyst and the project man-
ager needs to be linked throughout the SDLC. The objective; however, continues to
be how information technology professionals can create automated solutions that
fit user and customer needs. By suggesting that professionals may find success in
mixing methodologies, this book breaks important new ground.

Many books written on this subject tend to focus too much on the mechanics
of how to do analysis or how to do project management, rather than on the art
of performing both functions successfully. As I have stated in previous books, the
most successful implementers are not necessarily the best technicians, but rather
are gifted individuals who have the ability and insight to extract information from
users and transfer their knowledge into logical solutions. But today even accurate
requirements do not ensure success without quality management. The field of infor-
mation technology is no longer new, and the time has come for education to focus
on producing quality products faster and cheaper. Thus, this book seeks to develop
the skills and insights that distinguish successful software implementations.

The book identifies many new alternatives for how to manage and model a system
using sophisticated analysis tools and advanced management practices. It empha-
sizes how and when professionals can best apply them and what benefits can be
derived from their application. The book’s approach is to recommend that analysts
and managers be agile and to not over commit to using any one methodology, rather

v

vi Preface

learn to deal within the constraints of the political and cultural realities of their orga-
nizations. It may come as a surprise to many lay readers to learn that this approach
is unique among many textbooks. Yet, the fact is that most books teach only a single
method and advocate the use of that method alone in all projects.

The Aim of This Book

The risks involved when making decisions about enterprise software solutions are
substantial: those projects that involve reengineering activities have a failure rate
of over 50%. Obviously, then, the stakes are very high, and identifying the sources
of failure can be invaluable. In general, I have found that project failures can be
attributed to two major issues: (1) those that have difficulty defining accurate busi-
ness requirements and (2) those that have problems with managing change. Both
of these major challenges can be overcome by following many of the steps I have
outlined in this book. This book is therefore meant to be a “how to” guide taking
theory and applying it to the realities of practice.

The book recognizes that there are few off-the-shelf products that can provide a
complete solution for any organization. Thus, most enterprise-level solutions will be
a combination of packaged and custom-developed software. This “hybrid” realism
has changed the way professionals undertake the SDLC, particularly, as it relates to
selection of third-party vendors and the legal ramifications of working with outside
consultants. For this reason, the book includes subjects like build vs. buy, searching
for vendor solutions, and vendor contract considerations.

My enthusiasm for writing this book was supported by many of my students at
Columbia University who found that existing books on software development to be
• Very hypothetical: Although they explain the methodologies and management

concepts, they do not provide enough concrete examples.
• Too technical: They do not deal with the political and cultural realities of how

things get done in organizations. Indeed, the objective of providing software
solutions is to service business units in organizations. The management side of
developing software solutions is as important as the technical side.

• Lacking modest but effective cases: The examples do not provide an understand-
ing of the technical and management concepts effectively or are too simplistic
for practice implementation.

The Intended Audience for This Book

This book assumes a reasonable understanding of computer and business concepts.
The material is presented to be used for an introductory project management class
or analysis and design course in a university program. In addition, it can be used
by practicing information technology professionals or executives who are manag-
ing software projects and need an in-depth understanding of the principles of the

Preface vii

analysis and design and project management processes. Furthermore, many busi-
ness managers who are also responsible for ERP-type projects may find this book a
way of developing a useful understanding of the requirements process as well as the
entire SDLC.

Acknowledgments

I want to thank all the staff at Workforce Opportunity Services for their great work
in establishing a new supply of IT workers from the inner-city and rural poor
areas around the world. Your contributions are well deserved. Of course I want
to acknowledge all of my students at Columbia University for their dedication and
inspiration and certainly for keeping me on my toes in class.

A very special thanks to Cali Grace Caprio, my first grandchild who brings me
joy every day.

New York Arthur M. Langer

ix

Contents

1 Introduction . 1
What Is, Is . 1
Just What Is a Complex Project? . 4

Development . 7
Testing . 8
Production . 9

Chapter 2: Assessing Business Requirements 12
Chapter 3: Build vs. Buy . 12
Chapter 4: Establishing Requirements Using RFP and RFI 13
Chapter 5: Searching for Solutions 13
Chapter 6: Controlling Costs and Realistic Budgeting 13
Chapter 7: Analysis Methods and Tools 14
Chapter 8: Creating Requirement Documents Using Analysis Tools . . 14
Chapter 9: The Data . 14
Chapter 10: Legacy Systems and Integration 15
Chapter 11: Business Process Reengineering 15
Chapter 12: Data Analytics and Data Warehouses 15
Chapter 13: Documentation and Acceptance Testing 15
Chapter 14: Project Management . 16
Chapter 15: ISO 9000 and the Software Development Life Cycle . . . 16
Chapter 16: Contract Considerations 16
Chapter 17: Going Live and Conclusions 17
Reference . 17

Part I Determining Needs

2 Assessing Business Requirements 21
The Tiers of Software Development 21

User Interface . 21
Tools . 22
Productivity Through Automation 22
Object Orientation . 22

Establishing User Interfaces . 24
Forming an Interview Approach . 25

xi

xii Contents

Dealing with Political Factions . 27
Categories and Levels of Users . 28
Joint Application Development (JAD) 31
Problems and Exercises . 35

3 Build vs. Buy . 37
Core vs. Context . 38
Coverage . 39
Direction . 39
Total Cost of Ownership (TCO) . 39
Scale . 40
Timing . 40
Standards . 40
Other Evaluation Criteria . 40
Drivers and Supporters . 42
The Supporter Side of Buying . 44
Open Source Paradigm . 44
Cloud Computing Options . 45
Deployment Models . 46
Summary . 47
Problems and Exercises . 47
References . 48

4 Establishing Requirements Using RFP and RFI 49
RFI . 49
RFP . 54
Requirements Document . 68
Problems and Exercises . 70

5 Searching for Solutions . 71
The Team Selection . 71
Due Diligence . 72

Reference Checks . 73
Review Financial Statements . 73
Bank References . 74
On-site Demonstrations . 74
Vendor On-site Review . 74
Training . 75
Upgrade Process . 75
General Questions to Ask . 75
Understand the Company Ownership 76

Architecture Review . 76
Finding Vendors . 77
Paying for a Plan . 78

Contents xiii

Summary . 78
Problems and Exercises . 79
Reference . 79

6 Controlling Costs and Realistic Budgeting 81
Kickoff and Selection . 81
Implementation . 82
Post-implementation . 83
Controlling Costs . 83
Hardware and Infrastructure . 83
Software . 90
Consulting Fees . 91
Customization Costs . 91
The Balanced Scorecard as a Budget Tool 92
Problems and Exercises . 97
References . 97

7 Analysis Methods and Tools . 99
The Concept of the Logical Equivalent 99
Tools of Structured Analysis . 104
Making Changes and Modifications 104

Pre-modeled . 105
Legacy Systems . 106

Specification Formats . 110
Problems and Exercises . 113

Part II Development Architecture

8 Creating Requirement Documents Using Analysis Tools 117
Purpose . 117
Advantages of the DFD . 121
Disadvantages of the DFD . 122
Process Flow Diagrams . 123
Components of a PFD . 123
DFD–PFD Compared . 124
Sequence of Implementation . 126
Data Dictionary . 127
Process Specifications . 130

Pseudocode . 131
Case . 132
Pre-Post Conditions . 133
Matrix . 135

State Transition Diagrams . 136
Entity Relational Diagrams . 140

xiv Contents

Problems and Exercises . 142
Mini-Project . 142

Assignment . 143
References . 143

9 The Data . 145
Introduction to Databases . 145
Logic Data Modeling . 145
Logic Data Modeling Procedures . 147

Key Attributes . 147
Normalization . 150
The Supertype/Subtype Model 159
Key Business Rules . 164
Combining User Views . 168
Integration with Existing Data Models 170
Determine Domains and Triggering Operations 172
De-normalization . 174

Summary . 175
Problems and Exercises . 176
Mini-Project . 176
References . 177

10 Legacy Systems and Integration . 179
Introduction . 179
Types of Legacy Systems . 180
Third-Generation Language Legacy System Integration 181

Replacing Third-Generation Legacy Systems 182
Enhancing Third-Generation Legacy Systems 184
“Leaving As Is”—Third-Generation Legacy Systems 190

Fourth-Generation Language Legacy System Integration 191
Replacing Fourth-Generation Legacy Systems 192
Enhancing Fourth-Generation Legacy Systems 194
“Leaving As Is”—Fourth-Generation Legacy Systems 195

Hybrid Methods: The Gateway Approach 195
Incremental Application Integration 196
Incremental Data Integration . 198

Converting Legacy Character-Based Screens 200
The Challenge with Encoded Legacy Screen Values 201

Legacy Migration Methodology . 203
Step 1: Analyze the Existing Legacy Systems 205
Step 2: Decompose Legacy Systems to Determine

Schedules of Migration and Linkage Strategies 205
Step 3: Design “As Is” Links . 206
Step 4: Design Legacy Enhancements 206
Step 5: Design Legacy Replacements 207

Contents xv

Step 6: Design and Integrate New Databases 207
Step 7: Determine New Infrastructure and Environment,

Including Gateways . 208
Step 8: Implement Enhancements 209
Step 9: Implement Links . 209
Step 10: Migrate Legacy Databases 210
Step 11: Migrate Replacement Legacy Applications 211
Step 12: Incrementally Cutover to New Systems 211

Problems and Exercises . 212
References . 212

11 Business Process Reengineering . 213
Analyzing Legacy Systems for Replacement 214
Data Elements . 214
Applications . 215
Combining Structured and Object Techniques 215
Dealing with End Users . 217
Information Systems Issues . 219
System Development Life Cycle (SDLC) 220
Pilot Applications . 221
Downsizing System Components . 221
Transactions vs. Data Warehousing 222
Problems and Exercises . 224

12 Data Analytics and Data Warehouses 225
Introduction . 225
Data Warehousing Concepts . 226
Performance Benefits of Data Warehouses 227
Concept of Multiple Dimensions . 229
Data Warehouse Architecture . 232

Extracting Data from the Source 232
Staging the Extracted Data . 234
Read-Only Activities . 234
Front-End Tools . 235
Types of Data Warehouse Architecture 235

The Package Software Decision Support Life Cycle 237
Phase 1: Planning . 238
Phase 2: Gathering Data Requirements and Modeling 238
Phase 3: Physical Database Design and Development 243
Phase 4: Data Mapping and Transformation 248
Phase 5: Populating the Data Warehouse 251
Phase 6: Automating the Data Management Process 252
Phase 7: Application Development and Reporting 252
Phase 8: Data Validation and Testing 256

xvi Contents

Phase 9: Training . 257
Phase 10: Rollout . 258

Understanding Metadata . 258
Problems and Exercises . 259
Reference . 259

13 Documentation and Acceptance Testing 261
Acceptance Test Plans . 262
Quality During Analysis . 262
Cannot Test 100% of Everything . 262
More Efficient Development . 263
Budget Process . 265

Establish the Task List . 265
Problems and Exercises . 267

Part III How to Implement

14 Project Management . 271
Introduction . 271
Defining the Project . 274

Identify Objectives . 274
Identify Users . 275
Determining the Scope of the Project 275

The Budget . 278
The Project Team . 280
Project Team Dynamics . 282

Set Rules and Guidelines for Communication 283
Extranet Review Sites . 283
Working with User Resources 284
Outsourcing . 285

Planning and Process Development 285
Technical Planning . 288
Defining Technical Development Requirements 289
Maintenance . 290

Project Management and Communication 290
Summary . 292
Problems and Exercises . 292
References . 293

15 ISO 9000 and the Software Development Life Cycle 295
Developing a System of Procedures 295
Why ISO 9000? . 296
How to Incorporate ISO 9000 into Existing Software Life Cycles . . . 297
Interfacing IT Personnel . 298
Committing to ISO 9000 . 302
Problems and Exercises . 303

Contents xvii

16 Contract Considerations . 305
Ownership and Rights . 306
Legal Protection and Coverage . 307
Financials . 308
Deliverables and Performance . 310
Problems and Exercises . 328

17 Going Live and Conclusions . 329
User Training . 329
The Role of IT . 330

Appendix A
Case Study: The Rainforest Book Company Problem 333

Event I . 333
Event II . 334
Event III . 334
Event IV . 335

Appendix B
Case Study: Northwest General Practitioner’s Office 337

Appendix C
Case Study: University Student Enrollment Database 339

Further Reading . 341

Glossary . 343

Index . 347

1Introduction

After decades of writing about the field of analysis and design, I write this book
to focus on the evolution of software in the world. We have seen over the past 40
years, the continual expansion of the library of software applications that are used
in common workplace as well as in the personal lives of people throughout the
world. Indeed, software applications continue to change the world and as a result
the challenge of managing the advent of huge application libraries has become of
paramount importance. In addition, the advent of social networking has also had
a salient impact on the uses and effects of applications over the Internet and the
expansion of open source has now created an environment of applications that can
be used on demand and across multiple platforms.

The purpose of this book is to provide professionals and academics with a guide
to manage the life cycle of placing software applications into production. This book
breaks new ground because of this narrow focus, which is more on implementa-
tion than on engineering per se. This book provides guidance on how to determine
whether to make or buy and allows readers to determine sections that are fitting for
their use. Technical readers, that is, those engaged in analysis and design will find
chapters that provide the approach and tools on how to create an architecture of sys-
tem needs. Business users can become more educated in the system development
life cycle for both package software and customized applications. Business and IT
people will also get a better understanding of project management methods and
contract consideration in the relationships they have with vendors and independent
consultants.

What Is, Is

Over 40 years of developing requirements for systems has taught us that the only
successful approach to developing software applications is to accept what exists
in the user’s environment, however far from ideal those conditions may be, and
work within those limitations. It may be very tempting to use analysis time to try
to refocus on how the user does business. Yet efforts to redesign or reengineer,

1A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_1, © Springer-Verlag London Limited 2012

2 1 Introduction

unless specifically requested by the user, will typically be a waste. Although your
assessment may be correct and your suggestions potentially useful, being correct is
less important in this situation than being wise and understanding the ability of your
users to successfully implement and utilize what they need. Analysts tend to ignore
this simple wisdom, much to their own distress and that of their clients.

Looking at a typical example of an analysis situation will help to illustrate this
point. Let us assume that an enterprise needs a relational database model to gather
information about a subject area of the business. There are 200 offices that will
need to connect into a nationally provided service. Users disagree on the mission of
the applications and cannot determine what reports or query information they want.
Some offices are automated, but they do not have the same software and hardware.
There is little expertise in the user community to determine the data requirements
and file layouts (identifying elements in each file). Management has requested that
the analyst establish a specification which identifies the requirements of the system
as well as the necessary hardware and software.

Faced with so unwieldy a task, many analysts will adopt the following approach
in an attempt to impose order on a disorderly situation:
1. Force users to define all requirements. Since they are unable to do so, this insis-

tence will probably result in their guessing or providing incomplete information.
2. Determine the hardware and software configuration, despite having inaccurate or

incomplete requirements.
3. Ignore the political environment.
4. Establish a project plan that everyone knows will fail, but push ahead with it

anyway.
It should be clear that this approach is the wrong one, on a number of differ-

ent counts. Yet, such an approach is all too typical for analysts confronted with a
less-than-ideal working environment. Happily, there is a better approach for all con-
cerned, one that recognizes and responds to the conditions actually present at the
user’s site. In this case it is evident that the users are not positioned to provide the
requirements for a system, largely because they do not fully understand their own
needs and because they do not agree among themselves. What the analyst needs to
understand in such a situation is that because of this lack of knowledge and orga-
nization, user needs will tend to change during the process of product analysis and
design. Such changes are to be expected; they are simply part of the life cycle for
this particular implementation. To ignore the situation and try to implement a sys-
tem is to invite failure. Put simply then, what is, is. The task of the analyst is to
work with what is, rather than trying to change it or—even worse—simply denying
it. Once you as an analyst understand that reality, you understand that your solution
must accommodate what will inevitably occur.

Here is a more sensible approach to the situation described above:
1. Focus on designing a model that can provide the users with the capability they

want. Create a project plan that assumes that the database will be incomplete
during Phase I because of the user’s inability to define the correct information.
The process will therefore be an iterative one and thus will be finalized during
the later parts of the development life cycle.

What Is, Is 3

2. Do not try to identify hardware before it is clear what the usage requirements
are, such as peak-time processing and number of users. It will be more beneficial
to establish the operating system or architectural environment that you want to
support, pending the results of the analysis.

3. Utilize a software system or tool that will allow users to generate new scenarios
such that they can see how these scenarios relate to the entire system.

4. Set up a pilot program. This will require that certain offices agree to be test sites
for the early versions of the software. The function of the pilot is to provide
feedback on the effectiveness and shortfalls of the product. It is important to
state clearly the objectives of the pilot and the format of the feedback in order to
ensure the success of the exercise.

5. Formulate a plan that depicts a schedule for getting the entire enterprise imple-
mented and live on the new system. Be sensitive to the politics of the situation,
and use a realistic approach that will not require a cultural change in order to
implement software in the existing environment.
The essence of this approach is to develop a strategy that fits the reality of the

environment, rather than force the environment to change. Throughout this book, we
will explore this simple but crucial concept. No two system development projects
are identical, and the more familiar the analyst is with the environment, the more
successful the project will be. This book will also argue against the conventional
wisdom that suggests using an approach based on only a single methodology (e.g.,
Yourdon, Martin, and Booch). The mixing of methodologies allows the analyst a
wider range of tools. Hands-on experience shows that this kind of mixing of method-
ologies can be done quite successfully and that it is appropriate in a large number of
analysis situations.

Most important to the purpose of this book is the evolution of the application
development world over the last 20 years. We have gone from solely an in-house
build it yourself focus to what is commonly known as “commercial-off-the-shelf
(COTS)” solutions. This book will integrate the classic approaches of develop-
ing applications to specifically meet user needs with the unique conditions of
going with the “best-fit” approach of COTS. But the decisions today are not at
all binary—build vs. buy, etc. With the expansion of software modules, programs
that provide specific tasks, pieces of code can be brought together to build appli-
cations, but yet are bought. Furthermore, there is the impact of open source, which
has slowly changed the way organizations pursue using reusable code that no one
owns.

Finally, and what I feel sets this book apart from others, is its commitment to an
IT and user integration. Too many books still discuss how IT can save the day or
lead the implementation. Leadership is a tricky thing, and it certainly does not sug-
gest control as a solution. IT must become better leaders by displaying the ability
to influence management and users, not to tell them what needs to be done. Thus,
this book speaks to both IT and non-IT personnel and hopefully provides a provoca-
tive approach to ensuring better success when determining why, what, and how of
providing application solutions.

4 1 Introduction

Just What Is a Complex Project?

Most analysts, project team members, and users worry about the complexity of their
projects. Their requirements seem entirely unique to them, and therefore a very
special approach seems to be required. How many times have you heard: “the tools
and approaches used elsewhere just won’t work in this environment?”

The truth, however, is very different: the only truly complex projects are those
that people make so! It is important for the analyst to recognize that the proce-
dures utilized, regardless of the size of the project, should remain fundamentally
the same. As we have discussed above, the analyst’s approach to the implementa-
tion of each project should be tailored individually; however, the procedures for this
implementation should remain constant. Very often the organization of interviews,
the utilization of techniques such as Joint Application Development, discussed later
in this chapter, or the simple addition of more analysts to the project can solve what
appear to be insurmountable problems.

In fact, most of the myriad problems that arise in product development can be
traced to two fundamental issues:
1. People are trying to solve the wrong problem, i.e., the identified problem is not

really what is wrong.
2. The solution to the real problem is often much simpler than that it first appears

to be.
Because we have failed to recognize these issues, the industry’s frustration with

developing appropriate software solutions has been chronic, and this situation has
not really improved over the last 25 years! The question is why?

To put it bluntly, analysts often fail to do their jobs properly! We tend to put
together plans and schedules that are doomed from the start to fail, an issue treated
in more detail later. The ultimate goal of the analyst must take into account the
reality of the environment in which the work is occurring. Remember, work within
the environment. Let users decide what degree of change is appropriate for their
own operation; do not take it upon yourself to demand that they change.

For example, how many times have you seen a Gantt Chart1 for a project schedule
that resembles the one in Fig. 1.1.

It looks nice, but in reality the plan it depicts could never happen. Focus in partic-
ular on the intersection of development and quality assurance (QA) activities. The
plan shows that once development is finished, the materials are forwarded to QA for
testing. The sequence assumes, however, that QA will never find an error and that,
therefore, the materials will never be returned to development! Any analyst knows
that this scenario is very unlikely to occur. Such poor planning results in deficient
allocation of resources to the project. Should the development schedule be met,
programming resources most probably will be allocated to other projects. Thus,
if QA finds errors, which they undoubtedly will, reallocating these programming

1 A Gantt Chart is a tool that depicts progress of tasks against time. It was developed by Henry L.
Gantt in 1917.

Just What Is a Complex Project? 5

Activity March April May June July August Sept Oct

Feasibility

Analysis

Design

Development

Quality Assurance

Implementation

Fig. 1.1 Sample Gantt Chart

resources becomes difficult and problematic. And remember: programmers do not
like returning to an “old” program to do maintenance or error fixing.

Figure 1.2 reflects a more realistic view of the life cycle of the project.
The difference in approach is striking. The question is, as sensible as this plan

appears to be, why don’t we always do it this way? Quite frankly, this plan does not
look as nice—as neat and tidy—as the previous plan. But of course simply denying
the pain of reality—the inevitable inconveniences and delays—does not make that
reality go away. In defense of the previous configuration, some developers might
suggest that the iterations of efforts between testing and fixing the software are
assumed to be included in the QA time. Maybe, but don’t count on it! Just look
at the second schedule and you will see how the results of this proper allocation
added to the delivery time of the project. It is clear that the original plan was simply
incorrect.

There is absolutely no reason why a schedule should not reflect the reality of
what will most probably occur. The results are clear: realistic planning provides
a more reliable schedule. Among the many benefits of such a schedule are the
confidence and respect gained by both the users and the development staff. There is
nothing like producing a schedule that reflects what everyone is confident will occur.

Activity March April May June July August Sept Oct

Feasibility

Analysis

Design

Development

Quality Assurance

Implementation

Fig. 1.2 Modified Gantt Chart reflecting realistic project activity behavior

6 1 Introduction

At this point, experienced analysts are no doubt wondering: what happens when
management dictates to us how much time we have and shows no flexibility
about running behind schedule? This problem is unfortunately not uncommon and
typically fits into one of three scenarios:
1. Management is ignorant about the analysis and construction of systems and sim-

ply has no idea how much time is required to complete the project. In this case
the analyst will need to develop a convincing presentation for management about
the details of how systems are designed and developed. The presentation should
be carefully documented to refer to the industry statistics for similar projects in
similar companies. This kind of documentation adds much credibility to the dis-
cussion. You can also consider having an independent source, such as a respected
consulting firm, to support your position.

2. Management has little confidence in development. They feel that picking a date
and sticking to it is the best method of getting the project finished. Yes, this is the
bully technique! It usually results from bad experiences, probably from looking
at those unrealistic Gantt Charts. In this situation, the analyst must take steps to
gain management’s confidence. Using the suggestions above would be a good
start. In addition, you will need to research and understand the history of what
your predecessors did to encourage this type of distrusting and dictatorial attitude
on the part of management and find a tactful way to address those issues.

3. Unfortunately, bad management does exist. If you cannot win any concessions
or understanding from management, you may have reached what is known as the
“no-win scenario.” Management is simply unwilling to allot adequate time for
the completion of the project and they are unwilling to be persuaded otherwise.
When this situation exists in the workplace, the advice is straightforward: you
can leave, or you can find some way to deal with this constraint. In either case,
be aware that under the no-win scenario there is little hope that the project will
result in the development of quality software. This perspective is not cynical,
but rather realistic: some projects are doomed to fail before they begin. What is
important is that the analyst recognize as early in the life cycle as possible that
the project cannot be successful.
Because this book represents more about selection and management of software

applications, it is necessary to modify the systems development life cycle (SDLC).
The traditional SDLC is most commonly used to design products in three major

parts:
1. Requirements analysis
2. Data modeling
3. Normalization

During the first phase, requirements analysis, the development and design team
conduct interviews in order to capture all the business needs as related to the pro-
posed system. The data modeling phase consists of the creation of the logical
data model that will later be used to define the physical data model or database
structures. After the database has been modeled and designed, the normalization
phase is implemented to help eliminate or reduce as much as possible any redun-
dant data. All of the specifics of how this is accomplished will be detailed in

Just What Is a Complex Project? 7

Chapters 7 and 8. Below is a more specific description of what activities are included
in the development, testing, and production cycles of the SDLC.

Development

The development life cycle includes four overall components. Using this perspec-
tive, “development” would consist of all the necessary steps to accomplish the
creation of the application. This includes feasibility, analysis, design, and the actual
coding. Feasibility represents the tasks necessary to determine whether the software
project makes business sense. Most organizations would integrate the process of
return-on-investment (ROI) during this step. ROI consists of the financial steps that
determine mathematically whether the project will provide the necessary monetary
returns to the business. Focusing solely on monetary returns can be a serious pitfall,
since there are many benefits that can be realized via non-monetary returns (Langer,
2011). Feasibility often contains what is known as a high-level forecast or budget.
The “high” would represent the “worst-case” scenario on cost and the “low,” the
best case or lowest cost. The hope of course is that the actual cost and timetable
would fall somewhere in between the high and the low. But feasibility goes beyond
just the budget; it also represents whether the business feels that the project is attain-
able within a specific timetable as well. So, feasibility is statement of both financial
and business objectives and an overall belief that the cost is worth the payback.

Analysis is the ultimate step of creating the detailed logical requirements or
the architecture of the applications and database. Ultimately, the analyst creates a
requirements document that outlines all of the needs for the coders to work from,
without going back to the users directly for clarification. Analysis, as an architec-
tural responsibility, is very much based on a mathematical progression of predictable
steps. These steps are quite iterative in nature, which requires practitioners to under-
stand the gradual nature of completion of this vital step in development. Another
aspect of the mathematics of analysis is decomposition. Decomposition as we will
see establishes the creation of the smaller components that make-up the whole. It is
like the bones, blood, and muscles of the human body that ultimately make-up what
we physically see in a person. Once a system is decomposed, the analyst can be
confident that the “parts” that comprise the whole are identified and can be reused
throughout the system as necessary. These decomposed parts are called “objects”
and comprise the study and application of object-oriented analysis and design. So
the basis of working with users ultimately leads to the creation of parts known as
objects that act as interchangeable components that can be used whenever needed.
One should think of objects like interchangeable parts of a car. They sometimes are
called “standard” parts that can be reused in multiple models. The benefits are obvi-
ous. Such is the same objective with software: the more reusable, the more efficient
and cost effective.

Design is far less logical than analysis but a far more creative step. Design is the
phase that requires the physical decisions about the system, from what programming
language to use, which vendor database to select (for example, Oracle, Sybase,

8 1 Introduction

DB2), to how screens and reports will be identified. The design phase can also
include decisions about hardware and network communications or the topology.
Unlike analysis, design requires less of a mathematical and engineering focus, to one
that actually serves the user view. The design process is perhaps the most iterative,
which could require multiple sessions with users using a trial and error approach
until the correct user interface and product selection has been completed. Design
often requires “experts” in database design, screen architecture experts as well as
those professionals who understand performance needs of network servers and other
hardware components required by the system.

Coding represents another architectural as well as mathematical approach.
However, I would suggest that mathematics is not the most accurate description
of a coding structure, rather it’s about understanding how logic operates. This com-
ponent of mathematics is known as “Boolean” algebra or the mathematics of logic.
Boolean algebra is the basis of how software communicates with the real machine.
Software is the physical abstraction that allows us to talk with the hardware machine.
Coding is then the best way to actually develop the structure of the program. Much
has been written about coding styles and formats. The best known is called “struc-
tured” programming. Structured programming was originally developed so that
programmers would create code that would be cohesive, that is, would be self-
reliant. Self-reliance in coding means that the program is self-contained because
all of the logic relating to its tasks is within the program. The opposite of cohesion
is coupling. Coupling is the logic of programs that are reliant on each other, meaning
that a change to one program necessitates a change in another program. Coupling
is viewed as being dangerous from a maintenance and quality perspective, simply
because changes cause problems in other reliant or “coupled” systems. The relation-
ship to coding to analysis can be critical given that the decision on what code will
comprise a module may be determined during analysis as opposed to coding.

Testing

Testing can have a number of components. The first form of testing is called pro-
gram debugging. Debugging is the process of a programmer ensuring that his/her
code in a program executes as designed. Debugging, therefore, should be carried
out by the programmer, as opposed to a separate quality assurance group. However,
it is important to recognize that debugging does not ensure that the program is per-
forming as required by end users, rather only confirms that the code executes and
does not abort during program execution. What does this mean? Simply that a pro-
grammer should never pass a program to quality assurance that does not execute,
at least showing that it does perform under all conditions. Once again, this process
does not ensure that the results produced by the program are correct or meet the
original requirements set forth by users.

Once a program has been “debugged” it should then be sent through the
quality assurance process. Today, most large organizations recognize that qual-
ity assurance needs to be performed by non-programming individuals. As a result

Just What Is a Complex Project? 9

organizations create separate quality assurance organizations that do nothing but
test the correctness and accuracy of programs. Quality assurance organizations typ-
ically accomplish this by designing what is known as acceptance test planning.
Acceptance test plans are designed from the original requirements, which allow
quality assurance personnel to develop assurance testing based on the users’ orig-
inal requirements as opposed to what might have been interpreted. For this reason
acceptance test planning is typically implemented during the analysis and design
phases of the life cycle but executed during the testing phase. Acceptance test plan-
ning also includes system-type testing activities such as stress and load checking
(ensuring that the application can handle larger demands or users) or integration
testing (whether the application communicates and operates appropriately with
other programs in the system) as well as compatibility testing, such as ensuring
that applications operate on types of browsers or computer systems. Testing, by its
very nature, is an iterative process that can often create “loops” of redesign and
programming. It is important to recognize that acceptance testing has two distinct
components: first, the design of the test plans, and second, the execution of those
acceptance plans.

Production

Production is synonymous with the “going live” phases. Ultimately, production must
ensure the successful execution of all aspects of a systems performance. During pro-
duction, there is the need to establish how problems will be serviced, what support
staff will be available, and when and how inquiries will be responded to and sched-
uled for fixing. This component of production may initiate new development and
testing cycles because of redesign needs (or misinterpreted user needs). This means
that the original requirements were not properly translated into system realities.

On the other hand, production as a life cycle includes other complex issues:
• Backup, recovery, and archival
• Change control
• Performance fine-tuning and statistics
• Audit and new requirements

Backup, Recovery, and Archiving
Operational backup should be defined during the development phases; however,
there are inevitable backup requirements that need to be modified during production.
This occurs because the time it takes to complete data backup is difficult to predict.
The speed in which data can be placed on another media is not an exact science
and is based on the complexity of how data are selected and the method of place-
ment on another location and/or media. The speed also heavily relies on factors such
as disk input/output speed, network throughput (speed of communication network),
database backup algorithms, and the actual intervals between backup cycles. Why
does this matter? It matters because backups require systems to be “off-line” until
they complete, meaning that the system is in-effect not operational. Thus, the longer

10 1 Introduction

the backup process, the longer the system is off-line. A most popular example of the
potential backup dilemma is overnight processes that must complete by the begin-
ning of the next morning. If the process of backup will take longer than the allowed
time, then analysts/designers need to determine a way that can condense the time-
line. The alternatives might typically include limiting the actual data used to backup
or multiple devices to increase throughput

Recovery, on the other hand, is more about testing the quality of the backed up
data and to determine whether the data stored can be recovered in the operational
system. So, the first aspect is to see whether the necessary data needed to bring
the system “back” can be accomplished. One hopes that recovery will never be
necessary, but the most glaring exposure on quality assurance is to not really know
whether the data we think we have can actually be restored back to operational
forms. For example, it is one thing to backup a complex database; it is another
to restore that data so that the key fields and indexes are working appropriately
after restoration. The only assurance for this is to actually perform a restore in a
simulation. Simulations take analysis and design talent and need to be conducted on
some intervals that ensure that backup data integrity is preserved.

Restoration and backup become even more comprehensive when portions are
what is called “archived.” Archived data are data that are deemed no longer neces-
sary in the “live” system, but data that may be required under some circumstances.
So, data that are determined to be ready for archival need to be backed up in such
a way that it can be restored, not to the live system, but rather a special system that
will allow for the data to be queried and accessed as if it were live. The most rele-
vant example that I can provide here is accounting data from past periods that are
no longer needed in the operations system but may need to be accessed for audit
purposes. In this example it might be necessary to restore a prior year’s accounting
data to a special system that simulates a prior year in question, but that has no effect
on the current system.

This traditional SDLC is no longer applicable to most development projects that
might start with an existing package—especially a third-party vendor-developed
product. Thus a modified SDLC is required for package software development that
comprises 12 complex steps:

1. Assessing business requirements
2. Build vs. buy issues
3. Establishing requirements (RFI, RFP)
4. Searching for solutions
5. Controlling costs and realistic budgeting
6. Creating requirement documents using analysis tools
7. The data
8. Legacy systems and data conversion
9. Business process reengineering

10. Data analytics and data warehouses
11. Documentation and acceptance testing
12. Going live and conclusions

Figure 1.3 graphically shows the flow from one stage of the SDLC to another.

Just What Is a Complex Project? 11

Chapter 1:
Overview

Chapter 2:
Assessment of

Business
Requirements

Chapter 4:
Establishing

Requirements
using RFI/RFP

Chapter 5:
Searching for

Solutions

Chapter 6:
Controlling Costs

and Budgeting

Chapter 7:
Analysis Methods

and Tools

Chapter 8:
Creating

Requirements

Chapter 3:
Build vs. Buy

Chapter 9:
The Data

Chapter 10:
Legacy Systems

and Data
Conversion

Chapter 11:
Business Process

Reengineering

Chapter 12:
Data Analytics and

Data Warehouse

Chapter 13:
Documentation
and Acceptance

Testing

Chapter 14:
Project

Management

Chapter 15:
Standards & ISO

9000

Chapter 16:
Vendor Contract
Considerations

Chapter 17:
Go Live

Feeds

Drives

Defines

Establishes

Identifies

Maps to

Connects

Reconciles with

Consolidates

Produces

Requires

Necessitates

Determines

Prepares

Projects

Fig. 1.3 Diagram of chapter flow

12 1 Introduction

It is interesting to note that the integrated SDLCs for predeveloped software
applications are actually far more complex than that of the traditional SDLCs for
undeveloped products. This can be attributed to the fact that package software
products require both development-related activities and project management—
management that covers both internal activities and vendor management. Each step
of this modified SDLC is defined below and forms the basis of the chapters to
follow—each chapter defining the details of how each step can ensure a higher
rate of success. Furthermore there are generic things that need to be done while
the SDLC is occurring, including analysis tools to be used, project management,
standards, and vendor contract considerations. These subjects are often addressed
outside the SDLC rather than being parallel concepts that can derail the success of
the project if not integrated properly. To avoid this pitfall these four components are
embedded in the forthcoming chapters. A brief description of each chapter follows.

Chapter 2: Assessing Business Requirements

The first and most critical step in providing a software solution is to understand what
users really want. The word “user” has actually been replaced over the years with the
word “business.” Indeed, the target for most application solutions needs to be geared
to solving a business issue, rather than the user’s personal needs. This point is very
relevant to the large-scale implementations of ERP (enterprise resource planning)
solutions. ERP solutions are large organizational products that essentially link all
aspects of the business to an integrated system—certainly a complex application.
Historically, almost half of ERP implementations fail as it succeed. ERP project
failures are typically associated with the inability of the user community to accept
the way the system works in comparison to their personal business preferences.
That is, the user community is not willing to change its procedures to meet the
more generic business operations that are designed into package software products.
Thus heavy modifications to the existing product inevitably cause project delays and
potential failures.

Chapter 3: Build vs. Buy

The classic question that has challenged business organizations is whether to build
applications in-house or to buy them as prepackage software. This chapter will pro-
vide guidance on the appropriate steps to determine the right choice. Obviously, the
decisions can be complex and vary depending on the application, the generic nature
of the application itself, and the time requirements to have a functional applica-
tion to meet business needs. Build decisions are further complex in that they can be
developed in-house or by an outsource provider. Buying can also come with choices
on the amount of custom modifications that are necessary—the general rule being
that over 20% modifications tend to be a bad choice for the buy equation.

Chapter 6: Controlling Costs and Realistic Budgeting 13

Chapter 4: Establishing Requirements Using RFP and RFI

Once decisions have been made for build vs. buy and appropriate specifications
have been completed, organizations need to create a document that can be exam-
ined by third-party vendors or product suppliers so that an estimate of “fit” can be
assessed—fit meaning the amount of customization required or development time
necessary. Two such documents can be used: request for information (RFI) or a
request for proposal (RFP).

This chapter seeks to define the similarities and differences between the two types
of documents and when one type might be preferred over the other. In either situa-
tion, the main focus of the documents is to provide potential vendors or developers
with enough information so that they can determine the scope of the effort and the
associated costs for providing a solution. The documents also provide the selection
group to be able to compare bids because the requirements are consistent, that is, the
document itself requires a standard format of response thus allowing each solution
to be compared, as they say—apples-to-apples.

Chapter 5: Searching for Solutions

This chapter sets forth the strategy for obtaining bids from the best sources that
match the requirements. There are challenges to determine what types of vendor
and/or consulting firms need to be selected and what preliminary steps firms should
exercise before asking for a formal bid. This chapter also addresses the types of
searches that can be done, from hiring a third-party consulting firm, an independent
contractor, to a more public forum. Levels of searches are also addressed, including
having decision points where certain vendors get eliminated and narrowed to a final
group of acceptable solutions. The chapter also covers the ways to contact potential
solution firms and the procedures for doing the necessary due diligence of not only
the product, but also the firm itself. That is, too many firms may not be as dependable
as its marketing materials suggest. Solutions also include hybrid approaches where
both third-party-developed and internally developed software can be integrated.

Chapter 6: Controlling Costs and Realistic Budgeting

Costs are always a huge factor when undertaking major application projects. We
know from experience that application projects typically are late and over budget.
The question is why? The problem often relates to underestimating the complexity
of the project and the time it takes to get organizations to properly define what they
need. And let’s not forget the role of politics, which inevitably affects the way things
get done. It is also very difficult to define what you need and to obtain consensus
across departments and organizations. Today, any software application will likely
touch multiple parts of the organization and require retrofitting of other “legacy”

14 1 Introduction

applications. This chapter will address ways in which costs can be properly fore-
casted and how to develop realistic budgets that are attainable during the life of the
project.

Chapter 7: Analysis Methods and Tools

This chapter provides an overview of the tools or core concepts that analysts use
to create specifications or the logical equivalences of what the system needs to do
to provide answers for users. The chapter defines each type of structured diagram-
ming technique and what each diagramming method provides to completing the
logical architecture of the system. Regardless of whether a package software sys-
tem is required or the system is to be developed internally, the organization must
create logical analysis before it can truly understand the needs of the business.

Chapter 8: Creating Requirement Documents Using
Analysis Tools

This chapter builds on Chapter 7 and outlines a step-by-step procedure for designing
and developing specifications that reflect the engineering requirements for building
systems. This portion of the book provides the necessary tools that analysts and
designers need to provide program developers with detailed, yet creative techni-
cal specifications toward the “processing” portion of the requirements document
including data flow diagrams, process flow diagrams, building a data dictionary,
writing algorithms, state transition diagrams, and an introduction to entity relational
diagrams. Validating that an application meets requirements is a most difficult pro-
cess. This chapter discusses alternative ways of accomplishing this task, including
creating check lists, quality assurance procedures, group review sessions, and prod-
uct simulations. The approach is to focus more on what the software does not do,
as opposed to its features and functions. The chapter also emphasizes a review of
mathematical calculations, that is, the way in which the system handles formulas
and produces results. Results also encompass analysis alternatives, types of outputs,
and open systems compatibilities.

Chapter 9: The Data

This chapter covers how the back-end database engine is designed. The process
of logic data modeling to produce a complete entity relational diagram is covered
as well as methods of transferring data to multiple data storage facilities. Creation
of data repositories is also discussed. The chapter effectively completes the data
portion of the requirements document.

Chapter 13: Documentation and Acceptance Testing 15

Chapter 10: Legacy Systems and Integration

This chapter outlines the process of interfacing the new system with preexisting
applications called legacies. Issues of product fulfillment, connectivity of legacy
databases and processes, and integration of multiple systems architecture are cov-
ered. This chapter combines many of the suggested approaches to user interface and
application specifications development that are covered in previous chapters.

Chapter 11: Business Process Reengineering

This chapter identifies a way of changing rather than interfacing with legacy systems
using a technique called business process reengineering (BPR). BPR examines the
entire ways in which data are used and processed and takes a holistic approach to
how a packaged solution can replace many of the preexisting applications. In other
words, BPR seeks to replace rather than interface which requires organizations to
rethink how this would change their processes to meet the ways a package software
would make the business more efficient.

Chapter 12: Data Analytics and Data Warehouses

In this chapter the process of engineering data query and reporting options are
discussed, especially to allow organizations to effectively report and analyze the
operation. The chapter shows alternative data storage methods to enhance report-
ing performance and covers the recording, storage, and analysis of transactions
that occur across enterprise systems. There is particular focus on decision support
systems development, end user query development, and reconciliation of reporting
through data warehousing.

Chapter 13: Documentation and Acceptance Testing

New systems must be documented and tested to ensure they comply with the
requirements document. Thus, this chapter addresses the role of documentation and
how acceptance test plans are developed and put into operation before the system
is deemed usable and ready for implementation. The approach is to focus more on
what the software does not do, as opposed to its features and functions. The chapter
also emphasizes a review of mathematical calculations, that is, the way in which the
system handles formulas and produces results. When changes are made to any appli-
cation package there are also a series of steps that must be undertaken to ensure that
the quality of the package is maintained. This process can be very convoluted, since
the customizations could affect other aspects of the original package. The approach
to solving this dilemma usually requires a close partnership among the stakeholders,

16 1 Introduction

including the software vendor, the vendor who made the modifications, and the
internal organization.

Chapter 14: Project Management

This chapter presents a definition and description of the duties and responsibilities
of the project manager. The project manager is the most important individual in
the application software process. Overall, the project manager must have both soft
skills and hard skills. Hard skills are defined as the technical skills necessary to con-
verse with development personnel and soft skills cover such management abilities
as leadership, integrity, intuition, mentoring, creativity, and compassion. The chap-
ter also provides the necessary processes, recommended procedures, and reporting
techniques that tend to support higher rates of project success. Furthermore, many
projects have suffered because the management was not able to appropriately
manage the contracted vendors. Organizations make the mistake of assuming that
outsourced development and management is a safeguard for successful project com-
pletion. Organizations must understand that third-party vendors are not a panacea
for comfort and that rigorous management processes must be in place in order to
ensure a successful project. The “squeaky wheel gets oiled” phrase is very appli-
cable when managing your vendors. This chapter offers best practices that keep
vendors on their toes!

Chapter 15: ISO 9000 and the Software Development Life Cycle

New software systems need to comply with general standards for them to be use-
ful, especially if they are integrating with legacy applications or part of a complete
redesign using BPR. ISO 9000 is an international concept of standardization of qual-
ity that should be adopted in any major software development or implementation of
a package software solution.

Chapter 16: Contract Considerations

Once vendors have been selected, organizations need to have contracts that protect
their corporate interests, while at the same time are fare to the vendors. Vendors
typically have standard contracts or skeleton agreements for organizations to work
from, but there are significant issues that must be covered such as indemnity, access
to source code, process of communication if there are problems, warrantees and
guarantees, and support.

Reference 17

Chapter 17: Going Live and Conclusions

User training usually requires a phased approach paralleling the life cycle of the
new product. Some parts of training can take place early, but a huge portion will
likely occur as the system approaches the go live phase. Training may also need to
be repetitive and completed among different management and staff users. Training
can be shared, that is, some being done by internal users, others by the third-party
vendors or by the product company. There is also the concept of “train-the-trainer,”
where third-party trainers train internal users to take on the major parts of training
among the user staffs. The chapter also covers the documentation, often considered
part of the training process. The contribution of the organization’s IT department
is always one of debate. Many organizations consider the IT department as the
“owner” of the effort and expect that IT personnel will act as the main department
handling every aspect of the implementation. Other organizations adopt a user-
controlled effort, where the IT department is essentially used to accomplish specific
tasks. The latter approach has a major advantage in that the business becomes the
owner, and effectively should be, since they are the beneficiaries of the application
software product. In yet another approach, the IT executive takes on a leadership
role, where IT is responsible from an executive level, but the business depart-
ment still owns the responsibility to get the product implemented and absorbed by
the organization. This chapter represents the pinnacle of the project completion.
Sections cover key issues to be coordinated among the stakeholders, business part-
ners, and vendors to ensure that everything is ready for production. The go live
step should also consider the handling of problems, including application bugs that
need to be fixed or worked around (finding an alternative way of doing something
in the system). The go live phase must also address final sign off with vendors and
stakeholders.

Reference

Langer, A. M. (2011). Information technology and organizational learning: Managing behavioral
change through technology and education (2nd ed.). New York: CRC Press.

Part I

Determining Needs

2Assessing Business Requirements

So how does one assess the needs of a system before seeking a solution in the
market? The most valuable step is to create a requirements document that depicts the
needs of the system you are seeking. It also provides a platform for the businesses
affected by the software solution to agree-to-agree before starting the process of
selection. The first aspect of understanding business requirements is the tiers of
software development.

The Tiers of Software Development

The life cycle of software development continues to evolve, particularly with the
advent of the object paradigm. The life cycle of development inevitably affects the
way analysis and design is accomplished. Indeed, it only seems natural that the
rapid changes in software methodologies would be accompanied by parallel devel-
opment in analysis and design. Unfortunately, such is not the case, and the advances
in software development continue to overshadow the importance of analysis and
design.

As the software industry focuses on integrated software solutions through robust
web-based package software, it becomes vitally important for the analyst to use
the appropriate sequence of tiers to arrive at requirements. Developers cannot
expect good results from taking shortcuts, tempting as it may be to do so. The
recommended sequence of tiers is outlined below.

User Interface

Regardless of the type of software applications being developed, systems cannot be
effectively designed without an appropriate user interface. The user interface tier
acts as the foundation for the project: without a solid foundation at this level, the
project is at risk of collapsing at some point during development. Despite its impor-
tance, the user interface tier is often overlooked: many software projects today move

21A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_2, © Springer-Verlag London Limited 2012

22 2 Assessing Business Requirements

too quickly into development without the effort having been spent to determine
what is really needed from the user community. Successful analysts are aware of
the critical importance of the user interface phase of any project. Chapter 1 focuses
on methods of formulating user interfaces that can significantly improve software
development.

Tools

Software systems require that analysts have the appropriate tools to do their job.
Furthermore, and an even more significant challenge, is understanding which of the
many available tools to use at any given point. Software development tools are often
designed for specialized use rather than for general application, and using the wrong
tool can potentially cause significant damage. Finally, the sequence of use for each
specialized tool is also critical to success. Indeed, the order of operation, as well
as the relationship among specialized analysis tools, must be mastered to ensure
success.

Productivity Through Automation

Having the appropriate tools and knowing how and when to use them is only part of
the formula for success. Analysts must also be productive and productivity can be
accomplished only through the use of automation. Automation is implemented using
integrated computer-aided software engineering (CASE) products. These products
provide the analyst with an automated and integrated toolbox of features that are
centralized through a core data dictionary and repository.

Object Orientation

Successful projects employ the concepts of object orientation (OO). Whether or not
software systems are OO compliant, analyzing systems using the object method
builds better systems that are more cohesive, reusable, and maintainable. More
cohesive code is “tighter” code and is more easily fixed and maintained. It is
also the foundation of the reusable components that can be incorporated into other
applications later. Without the OO construct, systems tend to have pieces that are
recoded and hard to maintain. With the advent of the enterprise solutions and
e-commerce transactions that will be vital to the survival of corporate business
strategy, building object-based systems has become more a requirement than an
option. However, as this book will show, businesses and organizations cannot just
jump into OO, but rather they must create the foundations first through the previous
tiers of development. Put another way, it is more important to understand the con-
cepts of OO during analysis and design than it is to have the OO scheme actually
programmed.

The Tiers of Software Development 23

Client/Server
Today’s software is still governed by the concept of client/server processing. While
client/server has become more widespread, it has not necessarily become better
understood. As with the OO paradigm, client/server software development is often
confused with network hardware strategy. While client/server hardware topology is
an important issue in itself, it has little to do with the process of deciding how soft-
ware modules should interact across the network and where such modules should
be placed. Such decisions will be driven by issues that arise during the process of
analysis. Client/server software processing, in its true implementation, involves the
interaction of objects and defining the way in which they will communicate with
each other. Thus, analysts must first be versed in the laws governing OO if they
are to pursue the client/server model. Incidentally, almost all web-based applica-
tions that use JAVA, Active-X, and other controls are designed essentially under the
guidelines of interaction objects in a client/server environment.

Internet/Intranet
The advent of web-based technology, sometimes known as Internet/Intranet pro-
cessing, has led the industry to the use of a new breed of software applications. This
new breed requires more robust processing and involves careful design and place-
ment of pictures that provide users with a true “cafeteria” style of operation. These
new applications bring new challenges to analysts and designers. Increasingly, it
is not programmers who are designing the interface; rather, analysts themselves are
beginning to work with commercial advertisers and marketing departments to create
a “look and feel” that will be critical to the survival of many businesses. Web-based
systems, a result of the Internet/Intranet boom, represent another level of analysis.
I believe that in the future, e-business will exert the strongest shaping influence
on the analyst’s profession—a profession destined to become tomorrow’s integra-
tors of systems development. Indeed, programming tools will continue to become
easier to develop and more abundant in precoded forms. There will, undoubtedly,
be less distribution of development teams, that is, companies will find more and
more outsourced solutions to fill their needs. Notwithstanding the “automation” of
code, the need for integrators who can communicate with executives, line manage-
ment, and operations personnel will ultimately be the most significant forces in the
development of strategic-based systems over the Internet.

Internet/Intranet processing requires that analysts have mastered the client/server
paradigm. Indeed, many professionals have dubbed Internet development as
“client/server grown-up.” While this may or may not be the best definition of
Internet/Intranet development, it is another statement that supports the tier concept,
the concept that underlies the approach of this book.

The tiers of software development are focused on presenting the steps necessary
to be successful as a professional analyst. I call each of these steps tier because of
their building block nature and their dependencies on each other. I believe, therefore,
that to learn to become an effective analyst, the specifics within each of these tiers
must be mastered and must pass critical information to the next level. Rather than

24 2 Assessing Business Requirements

Tier Analyst Application
6 Internet/Intranet – Web based transaction processing, media,

and graphics
5 Client/Server – breaking down objects to their client and

server applications
4 Object orientation – selection of objects and classes
3 CASE – automation and productivity of Tier 2
2 Structured Tools – DFD, PFD, ERD, STD, process

specification, data repository
1 User Interface – interviewing skills, JAD, RAD

Fig. 2.1 Tiers of analysis and software application development

looking at analysis sequentially, I would present the steps as levels as depicted in
Fig. 2.1.

Figure 2.1 shows how each tier must be dependent on the other. There is a pro-
found message in this diagram which suggests that no tier can be developed or exist
without the previous one. To ensure success on a project, everyone involved in the
design and development of application software must fully understand the inter-
dependent nature of these tiers. Analysts must be able to convey to their colleagues
that to go Internet/Intranet development, organizations must first have excellent user
interfaces, mastery of a structured toolset, a vehicle for automation so that the pro-
cess will be productive, an understanding of the concept of objects, and a way to
deploy these objects in a client/server environment. It all sounds so simple, and in
many ways it is. The question answered by this new edition is how?

The following sections provide a step-by-step process of gathering the data that
you need to create a requirements document.

Establishing User Interfaces

The success factors in analysis start with the established interfaces from day 1. What
does this mean? You must start the process by meeting with the right people in the
organization. In the best projects, the process is as follows:
1. Executive interface: There needs to be an executive level supporter of the project.

Without such a supporter, you risk not being able to keep the project on schedule.
Most importantly, you need a supporter for the political issues that you may need
to handle during the project (discussed in detail later). The executive supporter,
sometimes known as a sponsor should provide a preliminary schedule advising
the organization of what is expected and the objectives of the project. The exec-
utive supporter should attach a letter to the preliminary schedule and send it to
the project team members. The letter must put the importance of the project into
perspective. Therefore, it is strongly recommended that you draft this letter your-
self or at least have influence over its content, since doing so can ensure that the
message is delivered appropriately. The executive supporter should also establish
regular reviews with the analyst and the user community to ensure that objectives
are being met.

Forming an Interview Approach 25

Line
Managers

Functional
Users

Direct Franchise

VP Sales

Inventory
Control

Order
Processing

VP Operations

Accounts
Payable

Accounts
receivable

VP Finance

Executive
Supporter

Fig. 2.2 Established interface layers

2. Department head or line manager interface: If appropriate, the department head
should provide guidance about which individuals should represent the depart-
ment needs. If there are several people involved, the analyst should consider a
JAD-like approach. Depending on the size of the organization, the department
head might also establish review sessions to ensure compliance.

3. Functional user interface: Perhaps the most important people are the ones who
can provide the step-by-step needs of the system. Figure 2.2 shows a typical
organization interface structure.

Forming an Interview Approach

The primary mission of an analyst or systems designer is to extract the physical
requirements of the users and convert each to its logical equivalent. The most criti-
cal step in this mission is the actual interview, in which you must establish a rapport
with the user(s) who will facilitate your obtaining the information you need. Your
approach will dramatically change based on the level and category of the individual
being interviewed. Therefore, prior to meeting with any user, it is critical to under-
stand the culture of the company, its past experiences with automation, and most
important its organization structure.

The following five-step procedure will help guide you more smoothly through
the interview process.
Step 1: Get the organization chart: There are few things that are more useful in

understanding the chain of command and areas of responsibility. Depending on
the size of the enterprise and the scope of the project, the organization chart
should start at the executive supporter level and work down to the operational
users.

Step 2: Understand everyone’s role in the organization chart: If there are any indi-
viduals not involved in the project (who should be, given their position in the
organization), first ask why, then make a notation for yourself that they are not
to be included. Management may assume an individual or role should not be
included and may often overlook their importance. Do not be afraid to ask why
a person is not deemed necessary for the analysis of the system and determine

26 2 Assessing Business Requirements

if you are satisfied with the reasons for their exclusion. Remember, you can still
control and change the approach at this point, and management will probably
respect you for doing so.

Step 3: Assume the situation is political: Be sure you understand the personalities
that you will have to deal with. In almost any implementation, politics among
people becomes part of the process. To ignore its existence—and the constraints it
is likely to impose—is to invite failure. The question is how to obtain information
about internal politics. The best approach is to start as high up in the organization
as possible, typically at the executive supporter level. You might be surprised at
the amount of information they have. Of course, you should not ask explicitly
about the politics, but rather phrase your question as follows: “Can you give me
some perspective on potential department and personnel conflicts that may occur
during the interview cycle and that I should be aware of?” You may not always get
the answer you need, but if you keep asking the question during every interview,
you will discover a great deal about the way the organization functions. And
remember, only people make projects complex!

Step 4: Obtain information about user skill sets: To start an interview without knowl-
edge of the user’s technical skills puts the analyst at a huge disadvantage. Having
this information will allow you to formulate a plan of questions and determine the
best approach to the interview. If the user has no knowledge, the questions should
be tailored to include a minimum of technical content. The following guidelines
for preparing for interviews reflect a common sense approach, yet it is amazing
how many analysts fail even to consider such strategies!
1. Gather information before the session to allow the user—as well as yourself—

to be prepared and to give you both a much clearer understanding of what will
be covered during the interview.

2. Develop a questionnaire. Technical questions should be phrased differently
depending on the level of knowledge possessed by the user.

3. Determine whether the interview will provide enough input to obtain the nec-
essary information. This is not always the case; however, it happens more often
than you might think. Understanding user capabilities before the interview may
change not only the scope of the meeting, but may also suggest who, in addition
to the user, may need to be in attendance at the interview.

Step 5: Arrange for a pre-meeting with the user: A pre-meeting may not always be
possible, and in any case it must be a short meeting, perhaps half an hour. The
session should be designed to be high level and provide a general idea of what
will be covered during the actual interview. But more important, it will allow you
to get a snapshot of the user. You might say you are obtaining a “comfort level”
(or “discomfort level”) for that user, and such meetings can provide you with an
idea of what to expect and how to finalize your approach. What do you look for?
Here is some direction:
1. The pre-meeting should give you enough feedback to place or confirm the

user’s technical level.
2. Look at everything in the user’s office or their environment. Is it sloppy? Is it

tidy and organized? The state of the user’s environment will often be consistent

Dealing with Political Factions 27

with the way they provide information. The insight you gain from observing
the environment should give you guidance about the types of questions to ask
this individual.

3. Look for signs of attitude. The user’s level of interest should be evident. Do
they view the upcoming session as a waste of time or are they excited about the
meeting?

4. The information gleaned in the pre-meeting can provide you with helpful hints
about what to expect from the interview and from the user in general.

Dealing with Political Factions

The importance of internal politics at the user’s site should never be underestimated.
Perhaps the most common question raised by both professionals and student ana-
lysts is how to provide quality analysis when office politics get in the way. Here are
some guidelines:
1. First, assess whether you are in the no-win scenario. Many of us hate to admit that

the no-win scenario does indeed exist in many environments, but you should be
on the lookout for the signs. If your manager will not support you, if the company
is underpaying you, if the users hate you, if there are no automated tools to do
the analysis, and if upper management doesn’t care, then you are in a difficult
position. If you cannot change the situation, you must inform management that
the results of your analysis will be significantly impaired by the lack of support
and tools to complete the project properly. The techniques offered in this book
assume that all parties are interested in providing the best solution possible, not
in providing a system that is barely adequate.

2. On the other hand, do not be too quick to assume that you are in the no-win
scenario. Most politically hampered projects need some strategy to get them on
course, and most problems can be overcome if you know how to approach them.
Here is a typical example of such a problem and some ideas you can apply to
solve it:
Problem: The users who currently operate the system won’t talk to me. They are

afraid either that the new system might replace them or that their jobs will
significantly change. In short, they fear change.

Recommended solution: Most operational users are managed by a supervisor or
“In-Charge.” Sometimes even a line manager can be directly responsible for
production workers. In any event, you must determine who is responsible and
meet with that person. The purpose of the meeting is to gain their support.
This support is significant since you might find that the supervisor was once
in operations and will be able to understand the problems you may encounter.
If the meeting is successful, the supervisor may be able to offer a strategy.
This strategy can vary from a general meeting with the users, to individual
discipline, to escalation to upper management. Whatever you do, do not allow
such a situation to continue and do not accept abuse; to do so will ultimately
reflect on you and your abilities.

28 2 Assessing Business Requirements

Obviously, if the supervisor is also a problem, then you have no choice but to
go to upper management. However, this option is not a desirable one from
the analyst’s viewpoint. Upper management’s reaction may not be helpful,
and it could be damaging. For example, they might be indifferent to your
problem and instruct you to deal with it yourself or they might simply send
the supervisor a letter. In some cases you may be fortunate and the supervi-
sor’s responsibilities regarding the system will be given to another manager.
Consider, though, how unpleasant the consequences may be if you appeal
to upper management and get no support: you may be left working with an
already-unhelpful supervisor who has been made even more so by your com-
plaint. It is important to remember that once you go to upper management, the
line has been drawn. Supervisors typically are responsible for the day-to-day
operation. They usually know more about the entire operation than anyone
else, and therefore you are well advised to find a way to get them on your side.
A supportive supervisor can be invaluable in helping you overcome problems,
as long as you are not shy about suggesting ways to get the users comfortable.

Categories and Levels of Users

Establishing user interfaces represents the vehicle to formulate much of the inter-
view approach. It is necessary, however, to go further into the characteristics of
the people, particularly with respect to the category and level they have within the
organization. Figure 2.2 established the three general categories called executive,
department head or line manager, or functional. It is important to explore their char-
acteristics. In order that we better understand each category, I have always asked the
following question: what would be their interest in the success of the project, that
is, what would make them happy with the new system? Let’s apply this question for
each user category.
1. Executive users: Individuals at this layer are most interested in the concept of

return-on-investment (ROI). ROI basically focuses on whether an investment will
provide a financial return that makes the effort worthwhile to the organization.
While there are many comprehensive formulas that are often applied to the study
of ROI, our context pertains to the short-term and long-term benefits of investing
in building new software. There are generally five reasons why executives agree
to fund software development. They are listed in order of significance to the
investor.
a. Monetary return: Simply put, this means that the software will generate dol-

lar revenue. An example might be the Internet software that supports on-line
ordering systems such as Amazon has for book shipments. Their system
not only provides the functionality to handle shipments, but also provides a
web interface that can be directly associated with revenues provided by book
orders through the Internet.

b. Increased productivity: Many software systems are unable to demonstrate
direct monetary benefits; however, many of them are developed to increase

Categories and Levels of Users 29

productivity. This means that the system will allow organizations to actually
produce and deliver more. Thus, the system allows the organization to derive
higher revenues through increased productivity of its resources.

c. Reducing costs: Software projects are approved so that organizations can
reduce their existing overhead costs. This typically relates to the replacement
of manual activities with computer ones. While reducing costs appears to be
similar in nature to increasing productivity, they are often implemented for
different reasons. Increased productivity usually relates to organizations that
are growing and are looking for ways to improve output because of very high
demand. Reducing costs, on the other hand, can represent a defensive mea-
sure, where an organization is seeking to find ways to cut costs because of a
shrinking market.

d. Competition: Software systems are created because the competition has done
so. Therefore, competitive reasons for producing software are a defensive
measure against someone else who has demonstrated its value. An exam-
ple of this is in the banking sector. Citibank was one of the first banks to
introduce automated teller machines (ATMs). Other banks soon followed
because of the success that Citibank had with proliferating ATMs throughout
New York State. This does not imply, however, that competitive systems are
always defense mechanisms; indeed, many commercial web sites are being
introduced based simply on market forecasts for their potential to increase
business.

e. For the sake of technology: While not the most popular, some organizations
will invest in new systems because they think its time to do so or they are
concerned that their technology is getting old. This way of supporting new
systems development is rare, as it suggests the spending of money without a
clear understanding of its benefits.
Therefore, the executive category of users is one who is interested in the value

of the investment. These users have a global view of needs as opposed to the
details. In fact, they may know little of how things are really done. The value
of the executive interface is to provide the scope and objectives of the project
against their perceived value they intend to get from the software. Another pop-
ular phrase for this is called the domain of the system. Domain often refers to
boundaries. Ultimately, what makes them happy is a system that delivers what
was promised or the expected ROI.

2. Department head or line manager users: These users represent two main areas
of user input. First they are responsible for the day-to-day productivity of their
respective departments. Thus, they understand the importance of meeting the
objectives of the organization as set forth by the executives. Indeed, they often
report the executives. On the other hand, department heads and line managers are
responsible to their staff. They must deal with the functional users and prescribe
ways to improve both their output and their job satisfaction. These users perhaps
provide what I call the best bang for the buck, a phrase that usually means that
for the time, you get the most. One can see that the department heads and line

30 2 Assessing Business Requirements

managers are responsible for most of what happens every day in an organiza-
tion. Another phrase that can be used to describe them is your most valuable
players (MVPs). However, beware, MVPs are the hardest to find and get for the
interviews. What makes department heads and line managers happy is the most
complex. They want a system that produces the output that they are expected
to provide and they need a system that makes and keeps their staff happy and
productive.

3. Functional users: Also known as the users in the trenches, these people essen-
tially do the operational activities. While they know a lot about their processes,
they usually care little about the productivity and expected ROI. I often see
these users as people who want little pain and just want to work the hours they
need to. Thus, fancy systems are of little interest to them unless they provide no
pain—and no pain derives to a system that makes their job easier.
The next area to understand about users is their level. By level, I mean their

understanding of computers. There are three levels of users:
1. Knowledgeable: The determination of knowledge can be tricky and certainly

based on someone’s opinion. I define knowledge in reference to experience. An
experienced user can be defined as a person who “has been through it before.”
A user who has been through the development of a new system can therefore be
defined as “knowledgeable” within this context.

2. Amateur: The definition of an amateur is based not so much on experience,
but rather to the type of experience the user has. Amateurs can be thought of
as hobbyists who enjoy working with computers at home, but have no profes-
sional experience in developing software in an organization. In this perspective,
I believe the meaning of an amateur is globally defined as one who does not get
paid for the work.

3. Novice: These users have no experience with computers. While there are fewer of
such users than 10 years ago, they still exist. A better way of perceiving a novice
user is to relate to my definition of knowledgeable. In this context, a novice
user is one who has never been part of the implementation of a new system in a
professional environment.
Perhaps the most problematic of the above levels is the amateur. I have found

that users who are knowledgeable provide benefit to projects. They, in many ways,
act as a checkpoint for the analyst, in that they can ask good questions and particu-
larly remember historical problems that actually can help the development process.
Novice users add little value and also add few problems. They tend to do what you
ask of them. Amateurs, on the other hand, tend to know enough to be dangerous.
They also tend to have a profound interest in the topic that they often get-off on
tangents about the technology as opposed to concentrating on the particulars of the
project.

What is most important is the mapping of these categories and levels. An ana-
lyst might interview a knowledgeable executive or a novice functional user. Each
permutation can affect the way interviews are conducted. For example, an inter-
view with a group of amateurs would focus the analyst on ensuring that the agenda
is very specific, otherwise, discussions could easily get-off track. Therefore, the

Joint Application Development (JAD) 31

understanding about user levels and categories can only assist in the development
of effective interview approaches.

Joint Application Development (JAD)

JAD is a process that was originally developed for designing computer-based sys-
tems. JAD centers on a three-day to five-day workshop that brings together business
area people (users) and IS (information systems) professionals. Under the direc-
tion of a facilitator, these people define anything from high-level strategic plans to
detailed system specifications. The products of the workshop can include definitions
of business processes, prototypes, and data models.

Simply put, JAD is a method for holding group sessions with users, instead of
individually. You may have no choice but to use JAD when there are simply too
many users to interview. JAD is also an excellent tool for use in highly political sit-
uations where obtaining consensus among users is difficult. JAD significantly differs
from standard analysis in that it requires an up-front commitment from the user com-
munity. Specifically, the users must ultimately run the sessions themselves and make
commitments to provide the requirements of the system. Finally, if prototypes are
used, JAD is an excellent means of applying rapid application development (RAD).
Both prototyping and RAD will be discussed in greater detail later.

The most important part of implementing JAD is the management of the process
and the determination of the appropriate individuals to be involved. The standard
roles used in JAD are as follows:
• Executive sponsor: This is an individual who plays effectively the same role as

the executive supporter introduced earlier in this chapter. This person is typically
at the Vice President level and ultimately has the responsibility for the business
area. The ideal person for this role is someone to whom a user will have to
report if they plan to miss a session and who can reprimand them if they do. This
thinking may seem harsh or cynical, but the risk is high that users may find more
important things to do when the sessions begin. Such absenteeism can entirely
undermine the process, and IS should not be called upon to police users.

• Facilitator: In the best situations, the facilitator should not come from either the
user community or IS, but rather an independent area or consulting firm. This
arrangement allows the session to be independent. That is, the facilitator of the
JAD must be impartial and have overall responsibility for controlling the flow of
the sessions. In the ideal scenario, the facilitator should report to the executive
sponsor.

• Scribe: A person who is designated to record minutes and decisions and who in
many cases actually produces the models using a computer-aided software engi-
neering (CASE) tool. A good scribe has knowledge of the business area, good
analytical skills, and knowledge of CASE software. For these reasons, scribes
often come from IS.

• IS representatives: IS should not be in the meetings to provide requirements, but
should rather be available to answer questions about the existing hardware and

32 2 Assessing Business Requirements

software. This information can be critical when discussing physical constraints
of the existing systems and what data are currently available.
Below is an example of an 11-phase implementation outline for a JAD session

with approximately 60 users in 10 different business areas:

Phase I: Define JAD project goals

The purpose of these sessions will be to meet with senior management and other
key organization people in order to:
• get a clear understanding of the history of the project;
• finalize the scope and time frame requirements of the existing plan;
• understand the current organization and whether political or other constraints

exist;
• jointly determine the number and size of JAD sessions to be held;
• determine the best role of information systems in the JAD; and
• define which key users and other managers should be interviewed individually

prior to the JAD.
Produce a management guide after Phase I. Its purpose will be to define man-

agement’s purpose, scope, and objectives of the project. That is, it communicates
management’s direction and commitment. The management guide will be approved
and issued by upper management to the participating users and information system
personnel.

Phase II: Meet with key users and managers

Estimate that you may need to interview about 20 people from key organizations
prior to the JAD. These key users and managers should typically represent three
levels of the organization. The purpose of these meetings will be to
• get familiar with the existing systems;
• validate the number of sessions and specific participants needed;
• assess the technical expertise of the participating users;
• determine what specific information can be gathered by the users prior to the

JAD sessions;
• gather previous analysis and design materials and documents that may exist and

explain user requirements;
• discuss types of agendas and length of sessions; and
• focus on specific requirements of certain users.

Schedule interviews to last about 60–90 min and prepare an agenda that will put
the purpose and scope of the interview into perspective.

Phase III: Meet with information systems

Get a technical overview of the existing analysis performed and state of all working
documents. Gather information on
• project history;
• potential problems envisioned in implementing the new system;
• proposed hardware to support the new system (if relevant);
• IS representatives to participate in the JAD sessions; and
• models and information that can be used in the JAD sessions.

Joint Application Development (JAD) 33

Phase IV: Prepare JAD approach

Prepare a complete JAD program that will outline recommendations for the number
and types of sessions to be held. The JAD approach will also consider the modeling
tools to be used and the methods for getting user sign-off. You should focus on the
following specific issues:
• the number and type of preparation sessions necessary to get users familiar with

the modeling terminology;
• what business processes have already been previously modeled and can be

reviewed during the sessions. This is done to avoid discussing processes that
users feel have already been defined from previous analysis sessions;

• the number and types of sessions along with specific users in attendance at each
session;

• a work document of the proposed agendas for each type of session;
• overview of materials to be used such as overheads, flip charts, and room

requirements; and
• proposed format of the user sign-off documents.

You should meet with upper management to review the proposed approach for
implementation.

Phase V: Finalize JAD organization structure

Assign JAD facilitators to specific sessions along with information systems support
personnel (scribes, etc.). Determine the number of JAD facilitators required. You
may need one JAD project leader to take overall responsibility for the entire engage-
ment. A detailed timeline of specific deliverables and reviews should be produced
for the entire project, including reports to upper management on the JAD session
progress.

Phase VI: Hold overview training sessions

Depending on the results of Phase IV, hold any necessary sessions to get users famil-
iar with the methods that will be used during the JAD. This is typically a one-day
course on analysis and includes an overview of modeling lingo and tools such as
• Business area analysis
• Process flow diagrams (data flows)
• Entity relational diagrams and normalized data modeling
• Process specifications
• Activity matrices
• State transition diagrams
• Decomposition models
• Object-oriented techniques
• Prototyping

Phase VII: Hold JAD workshop sessions

Prior to these sessions, participants will be asked to come prepared with certain
information that they will need to assist in the process. This information may
typically include sample forms and reports that they use or need. The workshop

34 2 Assessing Business Requirements

sessions will be held with a set time frame and an agenda of items typically
including
• Assumptions: These will be reviewed with the users and opened for discussion.

An assumption will either:
• stay as it is;
• be revised; or
• become an open issue (if consensus cannot be reached).

• Design business processes: Review the collection of activities relating to the
business and the system.

• Data requirements: Data are defined to support the business process. Data
models are used, developed, and reviewed as necessary.

• Design screens: The screens will typically use a series of menus or other branch-
ing techniques to define how users need to access the various functions. This is
usually accomplished by identifying main menu and submenu selections.

• Design reports: Report names are collected and completed with detailed report
descriptions. This normally includes
• Report name
• Description
• Frequency
• Number of copies
• Distribution list
• Selection criteria
• Sort criteria
• Data elements

• Open issues: These issues are added throughout the sessions. Open issues are
those that are not resolved after a period of discussion. These are kept on a
separate chart.
Throughout the above processes, the scribe will be tracking minutes of the

meeting as well as the open issues and new diagramming requirements.

Phase VIII: Resolve open issues

Prior to subsequent sessions, all open issues must be resolved, either by smaller
work groups or if necessary by upper management. In any event, it is critical that
this is managed by both the facilitator and upper management prior to moving to the
next level sessions.

Phase IX: Prepare materials for workshop review sessions

The facilitator should produce a sign-off level document for review. Process and data
models and process specifications will be reviewed and finalized. These sessions can
also include prototype screens and reports.

Phase X: Hold sign-off workshops

These workshops will be designed to review the results of the initial JAD sessions.
The process and data models will be reviewed. If prototypes are used, the sessions
will utilize screen walkthroughs as a method of gaining user acceptance. The exact

Problems and Exercises 35

number of review sessions will depend on the complexity of the system as well as
the number of screens and reports to be prototyped.

During these sessions, user acceptance test plan may also be discussed and out-
lined for eventual submission to the responsible QA organization. This will typically
involve a discussion of the minimum acceptance testing to be validated against the
product and the mechanism for testing in the field.

Phase XI: Finalize specification document

After review sessions are completed, the facilitator will prepare the final document
to be submitted for approval and eventual implementation. If prototypes are used,
the screens and reports can be moved into the software development (construction)
phase. There should also be post-JAD reviews with the development teams to clarify
information supplied in the final system specification document.

JAD is introduced and discussed in this chapter because of its generic inclusion
in the user interface phase of analysis. However, it should be noted that the above
outline can be integrated with many of the subjects contained in later chapters of this
text. The analyst may, therefore, wish to review this outline again after completing
the book in order to determine how the other concepts of analysis can be used in a
JAD session.

Problems and Exercises

1. Why is it so critical for the analyst to understand the “culture” of the
organization?

2. What is a Gantt Chart? How are Gantt Charts used and why is it important that
they be realistic estimates of how the project will occur?

3. Management support is a key component of the success of any project.
Sometimes management may unfairly dictate the terms and deadlines of
projects. Provide examples of different possible management opinions and how
analysts can prepare effective responses to them.

4. What are the benefits of obtaining an organization chart prior to conducting
interviews with users?

5. How does politics affect the role of the analyst and his/her approach to the
information-gathering function of the interviews?

6. Why does understanding user skills provides the analyst with an advantage
during interviews?

7. Explain how meeting a user in their office or place of work can assist the analyst
in developing a better approach prior to the interview.

8. What is the purpose of JAD sessions? How do they compare to individual
interviewing? Discuss the advantages and disadvantages of JAD.

9. Define each of the roles necessary for effective JAD sessions.
10. What is the purpose of a management guide?
11. Develop a proforma JAD outline for a project of 20 users in 3 business locations.

3Build vs. Buy

This chapter addresses a difficult and controversial decision that is made every time
an organization seeks a software solution to meet its needs: do we make it to our spe-
cific needs or do we buy something that is made to order but may not do everything
we want? Often the build decision is called the “make” alternative and suggests that
the product will be made in-house vs. the buy concept that can be referred to as out-
sourcing. I do not believe these simple labels are accurate or appropriate. Whether
something is build or bought has little to do with whether the process is outsourced,
so we need to be careful in the way we label these two alternatives.

Inman, Sale, Green, and Whitten (2011) suggest that build and buy decisions
need to be made at both the strategic and operational levels. Burt, Dobler, and
Starling (2003) provided some direction on the strategic reasons for buying and tied
it into a definition of outsourcing, providing three concrete categories of reasons
NOT to outsource:
1. The item is critical to the success of the overall product and is perceived so by

the company’s clientele.
2. The item requires specialized design and skills and such skills are limited in the

organization.
3. The item fits into the firm’s core competencies but needs to be developed in the

future.
Historically, most organizations selected the buy option because their assumption

was that it lowered costs. Indeed, over 70% of product ownership usually occurs
after implementation. So where is this cost? It occurs in maintenance, where in-
house teams must continually alter and develop. The off-the-shelf concept tends
to keep costs lower because in theory the sum of all the clients will create better
software for all. Others suggest that a company should always first seek a package
because of common business challenges including
• Cost
• Time to market
• Political situation in the environment
• Architectural differences
• Skill sets of existing staff

37A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_3, © Springer-Verlag London Limited 2012

38 3 Build vs. Buy

However, The Gartner Group in 2003 published a report that suggested this trend
was changing and that there were a growing number of firms that were returning to
building applications internally. Gartner cited the following reasons for the change
of heart:
• Rising competitive advantages of using emerging technologies
• Increased availability of talented software developers
• Poor reputation of prior uses of package software—that it is not agile enough

and difficult for departments to use
• Increased needs to adapt to unique and changing business needs

Ledeen’s (2011) and Moore’s (2002) analysis of how to approach make vs. buy
is quite useful. He established a step-by-step criterion to help organizations to make
the best decision. This criterion included the following:
• Core vs. context
• Coverage
• Direction
• TCO
• Scale
• Timing
• Standards

Core vs. Context

This decision point relates to the strategic importance of the application. The more
strategic the application, the more likely that the organization develop software
internally (also see Langer, 2011, below). The concept is simple: if the application
relates to basic functions in accounting, HR, or payroll, then it is not core. However,
software used by Walmart, although accounting related is used as a supply chain
management tool that drives every aspect of their competitive advantage as a com-
pany. The result of course is that Walmart developed their supply chain as a core
and unique application. Moore’s chart (Fig. 3.1) provides an interesting matrix of
how core can be determined.

Figure 3.1 reflects that mission critical application should be developed in-
house with context-oriented applications may be modified to meet package
requirements.

Mission Critical (Control) MAKE OUTSOURCE
Supporting (Entrust) PARTNER CONTRACT

Context
Disengage

Core
Engage

Fig. 3.1 Build vs. buy chart

Total Cost of Ownership (TCO) 39

Coverage

The coverage assesses the extent of the match of the packaged product with the
business requirements. The general rule is that a package should have at least 80%
of the features and functions needed by the organization. However, Ledeen states
that this could be a trap, suggesting that package’s capabilities outside of the imme-
diate needs of the business are equally as important. This is relevant, given that
business needs are continually evolving, organizations must be cognizant of having
applications that can not only handle what is, but what may be future needs of the
business. In addition, a certain feature in a packaged solution may actually offer a
better business alternative than currently used by the business—so it’s a complex
issue as they say.

Direction

The keywords relating to direction is flexibility, maintainability, and extendibility of
the software throughout its life. Ultimately, direction relates to how much control
the organization has over the product, especially those products that may need to
change, that is, the volatility of what the software does. For example, if the product
is a basic accounting system, it is likely not to change substantially over its life.
However, if it is a healthcare product that is regulated by government requirements
in a highly fragile market, then direction is a key decision factor. Much of this relates
to the design and architecture of the product itself. Can it be easily modified? What
is the extent of changes that can be controlled via user input? All of these factors
are significant to whether a package is the wise choice.

Total Cost of Ownership (TCO)

The TCO represents entire cost. Components of this cost include license fees for the
product, maintenance, product customizations, and support. The major variable in
TCO is custom modifications. Vendors will often provide an estimate but managers
need to be careful of “scope creep” where original requirements for customizations
become greatly expanded during the design phase of the project. A good approach
that can help this decision is to determine the number of features and functions in
the package that the organization does not need. A packaged solution that has many
features and functions that are not needed might suggest that the application is not
a great match and is likely designed for a different audience. It is important to note
that many application packages were developed first as a custom application for a
specific client and then tailored for others. This process was a typical evolution of
how many software packages evolved in the market. Therefore, understanding the
history of how the application package was developed might provide a hint as to the
TCO and the fit in general—the two tend to go together.

40 3 Build vs. Buy

Scale

The size of the package is a factor, especially when it has many modules. This is
very relevant in large enterprise resource planning (ERP) products where a high
degree of scaled interoperability is important. These modular products also allow
clients to purchase business components at later periods and easily retrofit them.
However, if it is not the intention of the organization to scale, then a large integrated
package may be overkill.

Timing

There are many who would believe that a packaged solution will be faster to
implement—but be careful—often this is not the case. Packaged solutions may add
steps to the SDLC and as a result could actually prolong the timing of going live
of the product. Ledeen suggests that while COTS provides greater predictability it
could be a reflection of the limits of flexibility and imposed restrictions. Either case,
I would strongly recommend that the decision whether to have a make vs. buy not
be contended solely based on speed to completion—the organization may be in for
a big surprise. The more an organization can accept the base package, the faster
the implementation will be, for sure. However, accepting the package as is does not
necessarily mean that it is the best thing for the business.

Standards

Ledeen defines standards as the consistency across systems of the way things get
done. I see this issue more in terms of consistency of architecture of the organiza-
tion. This means that the hardware platforms and software architecture (middleware,
office products, etc.) should be consistent for package software to maximize its ben-
efits. If this is not the case, that is, where you have multiple architectures across the
organization, then the value of a package becomes less evident. This is especially
true if the package requires a specific architecture for all of the systems. This is why
open systems are so attractive to organizations Unfortunately, in multinational firms
having many architectures is not unusual. Much of this may have occurred due to
corporate acquisitions of other firms—when you acquire a new business you often
acquire a new systems architecture—both hardware and software!

Other Evaluation Criteria

The above issues are important but there are other contextual things to consider
when making the decision:
• Complexity of product: The more intricate the software application, the harder

for COTS to work. Complex products also tend to shorten the life cycle and have
more evolving needs.

Other Evaluation Criteria 41

• State of the art: Users who seek packaged solutions often require the latest and
greatest up-to-date product. They may be disappointed to learn that package soft-
ware has some unique limitations in this area. First, vendors of packages have
user bases to take care of—who ultimately have older versions and hardware
that they must support. This results in difficulties with downward compatibilities
of their user base. Just look at Microsoft’s problems when they upgrade operat-
ing systems and software. IBM used to issue “no support” edicts to its customers
who failed to upgrade their products over time. The better vendors force their
users to upgrade but it is always messy.

• Maintenance: COTS often involves product upgrades and new maintenance
releases. Sometimes maintenance releases include bug fixes and workarounds
for packaged discovered problems. Maintenance can also be very tricky—how do
organizations load new versions from the vendors when there are customizations,
for example? It gets to be a challenge especially when the updates are regulatory
in nature. COTS that have customizations inevitably need to go through a retrofit,
where the customized portions have to be “re-customized” to deal with package
software upgrades. This certainly adds to the cost equation over the life of the
package.
While the above suggestions offer guides on what to think about and measure,

the process is still complex without a real scientific methodology to determine
ultimately whether to make or buy or both. However, Langer (2011) provides yet
another concept called driver/supporter theory in which “buy” decisions would only
be made for applications that were considered “supporters.” Figure 3.2 depicts a

Evaluation
Cycle

Technology
Driver

Driver
Maturation

Support Status
Economies

of Scale

Replacement or
Outsource

Mini Loop Technology
Enhancements

Group-Based
Reflective
Practice

Communities
of Practice

Knowledge
Management

Organizational
Transformation

Individual
Reflective Practice

Fig. 3.2 Langer’s driver/supporter life cycle

42 3 Build vs. Buy

supporter item as something that has reached the stage of commodity notated in the
circle labeled as “Economies of Scale.”

Figure 3.2 shows that all technology needs start out as drivers but eventually
become supporters, thus lose their uniqueness in the marketplace. It is as if you
were creating a strategic advantage by implementing a new e-mail system—this
would not really provide the organization with a competitive advantage—rather as
an enabler to compete—a very different concept. The point I am making here is that
a new e-mail system would likely be “bought” and possibly implemented using an
outsource vendor. In accordance with Burt et al. this would be a case for buying as
opposed to making.

Drivers and Supporters

I think this concept of driver/supporter is essential to understand make/buy deci-
sions. This section provides further details on this theory and practice as a vehicle
for better determination of make vs. buy.

To summarize driver/supporter, there are essentially two types of generic func-
tions performed by departments in organizations: driver functions and supporter
functions. These functions relate to the essential behavior and nature of what a
department contributes to the goals of the organization. I first encountered the con-
cept of drivers and supporters at Coopers & Lybrand, which was at that time a Big 81

accounting firm. I studied the formulation of driver vs. supporter as it related to the
role of our EDP (electronic data processing) department. The firm was attempting
to categorize the EDP department as either a driver or a supporter.

Drivers are defined as those units that engaged in front-line or direct revenue-
generating activities. Supporters are units that did not generate obvious direct
revenues but, rather, were designed to support front-line activities. For example,
operations such as internal accounting, purchasing, or office management were all
classified as supporter departments. Supporter departments, due to their very nature,
were evaluated on their effectiveness and efficiency or economies of scale. In con-
trast, driver organizations are expected to generate direct revenues and other ROI
value for the firm. What was also interesting to me at the time was that drivers were
expected to be more daring—since they must inevitably generate returns for the
business. As such, drivers engage in what Bradley and Nolan (1998) coined “sense
and respond” behaviors and activities. Let me explain.

Marketing departments often generate new business by investing or “sensing”
an opportunity, quickly—because of competitive forces in the marketplace. Thus,
they must sense an opportunity and be allowed to respond to it in timely fashion.

1 The original “Big 8” consisted of the eight large accounting and management consulting firms:
Coopers & Lybrand, Arthur Anderson, Touche Ross, Delloite. Haskins & Sells, Arthur Young,
Price Waterhouse, Pete Marwick Mitchell and Ernst and Whinney, up until the late 1980s, when
these firms began to merge. Today there are four: Price Waterhouse Coopers, Delloit & Touche,
Ernst and Young, and KPMG (Pete Marwick and others).

Drivers and Supporters 43

The process of sensing opportunity and responding with competitive products or
services is a stage in the cycle that organizations need to support. Failures in the
cycles of sense and respond are expected. Take, for example, the launching of new
fall television shows. Each of the major stations goes through a process of “sens-
ing” what shows might be interesting to the viewing audience. They “respond” after
research and review with a number of new shows. Inevitably, only a few of these
selected shows are actually successful; some fail almost immediately. While rel-
atively few shows succeed, the process is acceptable and is seen by management
as the consequence of an appropriate set of steps for competing effectively—even
though the percentage of successful new shows is very low. Therefore, it is safe to
say that driver organizations are expected to engage in high-risk-oriented operations,
of which many will fail for the sake of creating ultimately successful products or
services.

The preceding example raises two questions: (1) how does “sense and respond”
relate to the world of information technology and (2) why is it important?
Information technology is unique in that it is both a driver and a supporter. The
latter being the generally accepted norm in most firms. Indeed, most IT functions
are established to support a myriad of internal functions such as

Accounting and finance
Data-center infrastructure (e-mail, desktop, etc.)
Enterprise level application (ERP)
Customer support (CRM)
Web and e-commerce activities
As one would expect, these IT functions are viewed as overhead related, as some-

what of a commodity, and, thus, constantly managed on an economy-of-scale basis,
that is, how can we make this operation more efficient, with a particular focus on
cost containment?

So what are IT driver functions? By definition, they are those that engage in
direct revenues and identifiable return-on-investment (ROI). How do we define
such functions in IT, as most activities are sheltered under the umbrella of
marketing organization domains? (Excluding, of course, software application devel-
opment firms that engage in marketing for their actual application products.) I
define IT driver functions as those projects that, if delivered, would change the
relationship between the organization and its customers, that is, those activi-
ties that directly affect the classic definition of a market: forces of supply and
demand, which are governed by the customer (demand) and the vendor (supplier)
relationship.

The conclusion of this section, therefore, is that no driver application prod-
uct should be implemented using complete outsourcing, rather be made in-house
and owned by the firm. This does not, however, suggest that certain services and
components be subcontracted out as long as the ownership remains within the
company.

44 3 Build vs. Buy

The Supporter Side of Buying

Based on the definition of a driver, the supporter side may indeed represent the
need to buy a packaged solution. Since supporter functions are “operational” by
definition, they are considered to be a commodity and thus able to be implemented
using more standardized application software. Thus, all of the advantages of using
package software apply. In addition there should be less need for customization.
For example, think of the choice to build an e-mail system—you would only build
it in-house if you required unique capabilities that provided a competitive advan-
tage. That is, the e-mail system would be a driver application because it would
change the relationship between the buyer and the seller. This is exactly the situation
that occurred with Walmart, where what would ordinarily have been considered a
commodity accounting system became an application of great strategic advantage.
On the other hand, an e-mail system that could provide such advantage would be
unlikely for most organizations, and therefore they would seek a product that does
what most organizations need in any e-mail system—as a supporter solution.

Open Source Paradigm

Open source software can be defined as free source code developed among a com-
munity that believes strongly in a free software movement. Initial examples of
successful open source products are Linux and Netscape Communicator. The open
source movement is supported under the auspices of the open source initiative (OSI)
that was formed in 1998 to provide guidance and standards of application.

As I previously mentioned, the evolution of open source as an alternative to
developing software has grown enormously in the software industry. Open source
can also represent an option with make vs. buy. Choices of whether to make or
buy do not necessarily need to be binary, that is, one or the other, but rather could
end up as a hybrid decision. For example, an organization can develop its own
application using open source within its application development strategy or it can
license a third-party product that also contains open source. Finally, packages may
be licensed that can be bridged or integrated with various open source modules.
In any case, open source broadens the range of choices when determining the best
application solution.

Open source users must, however, agree to the following conditions of use as
well as providing conditions of use to others:
• Free distribution
• Inclusion of source code
• License must allow modifications and derived works
• Allowed redistribution of modifications under the same license of the original

software. License may require the derived work to carry a different name or
version to protect the integrity of the original author

• No discriminations against any specific groups or fields of endeavors
• License cannot be restrictive to any software and be technology platform neutral

Cloud Computing Options 45

To a certain extent open source provides organizations with the option to use
package software that is free to modify and then offer their changes back to those
that need it in the user base—so it can be a forum where organizations can share
needs. The negative aspect to sharing is if the modification contains proprietary
algorithms that represent a competitive advantage for the firm. The software must
also be hardware neutral which presents challenges for those applications that run
on proprietary systems. Still, open source applications are growing in popularity
especially as a cloud computing option.

Furthermore, open source might present some unexpected legal issues particu-
larly as it relates to ownership of the software. Suppose you use an open source
routine or module in your proprietary application and then the company is acquired
by another entity. The question then is who owns the product? Legally the portion
that is open source cannot be owned, which creates a dilemma that was likely not
foreseen by the organization’s IT management. This dilemma is particularly relevant
to vendor software products.

Cloud Computing Options

Cloud computing is the ultimate server-based paradigm. Simply put, the host (cloud)
has all of the hardware, software, services, and databases to support your business
or enterprise. The organization essentially has the terminals and printers to do the
work. Figure 3.3 depicts a cloud configuration.

Fig. 3.3 Cloud configuration

46 3 Build vs. Buy

Cloud is about reduction of cost and perhaps using products that are shared by
others. This does not mean that clouds cannot have proprietary products, rather that
they have the ability to mix and match what is available in the cloud to meet specific
needs of the organization. Because many of these applications can be shared in the
cloud, the cost of ownership is very much lowered. Perhaps the largest benefit for
using a cloud is in the savings for infrastructure and operations staff who would
otherwise need to support the operation internally.

Deployment Models

There are essentially five different deployable models for cloud computing:
1. Public/external: this is the basic model that allows users to access a network via

the Internet and typically pay on a usage or application access basis. It resembles
the 1970 concept of timesharing.

2. Private/internal: a private cloud in many ways resembles an Intranet concept
in that it is an internally developed shared service for the organization. As in an
Intranet, a private cloud requires organizations to design the network and support
it as if it were public—of course with less complexity.

3. Community: this configuration represents a group of organizations that share
resources. In effect it is a restricted public cloud—only certain organizations can
use it. Community clouds are attractive for specific industries that have similar
needs or associations.

4. Hybrid: a hybrid cloud really relates to providing specific administrative IT func-
tions like backup, performance, and security for both public and private cloud
deployments. So it is more a utility type of cloud service often provided by
internal IT services or vendors like Oracle, etc.

5. Combined: this is the application of multiple types of clouds that allow organi-
zations to enjoy the best provisions that it provides to each business.
Figure 3.4 depicts the graphical representations of these cloud-type deployments.
Obviously cloud computing has its drawbacks—it is essentially outsourcing

major parts of your operation to a third party—for which is always a risk, so these
should be measured as follows:
• Security: while all third parties promise security, history has shown that they

can be pierced from the outside. So security remains a concern for private and
important data. For example, having healthcare information and other personal
information in a cloud could be very dangerous.

• Governmental and political issues: if stored data are kept in other locations under
the auspices and control of other countries, it could be restricted, taken, or kept
from those that need it. The data could also be compromised because of differ-
ent legal systems and changes in government policies. We see such problems in
multinational firms quite often.

• Downtime: how much can any vendor guarantee ongoing service without outage
and to what extent can clouds have failover abilities and at what cost?

Problems and Exercises 47

Fig. 3.4 Cloud deployment types
Source: Wikipedia.

• Conversions: if you should need to move from one cloud provider to another,
what are the risks and problems with moving applications and what compatibility
problems will occur especially with data conversion?

Summary

This chapter examined the complexities of whether to make or buy an application
solution. Hybrid solutions, which involve both a third-party package and internally
developed applications, are very realistic alternatives. The evolution of open source
and cloud computing offer new opportunities to design and create hybrid systems
that provide broader alternatives than historically were available. Furthermore, the
concept of driver/supporter provides a more scientific way of determining whether
to make or buy software solutions.

Problems and Exercises

1. Explain what is meant by core vs. content.
2. Why is TCO so important?
3. Describe Langer’s theory of driver/supporter.
4. Define open source. How can open source change the decision process on make

vs. buy?
5. What is cloud computer? Explain the different types of clouds.

48 3 Build vs. Buy

References

Bradley, S. P., & Nolan, R. L. (1998). Sense and respond: Capturing value in the network era.
Boston: Harvard Business School Press.

Burt, D. N., Dobler, D. W., & Starling, S. L. (2003). World class supply management: The key to
supply chain management (7th ed.). Boston: McGraw-Hill/Irwin.

Inman, R. A., Sale, R. S., Green, K. W., & Whitten, D. (2011). Agile manufacturing: Relation to
JIT, operational performance and firm performance. Journal of Operations Management, 4(29),
343–355.

Langer, A. M. (2011). Information technology and organizational learning: Managing behavioral
change through technology and education (2nd ed.). New York: CRC Press.

Ledeen, K. S. (2011). Make v. buy: A decision paradigm for information technology applications.
Cambridge: Nevo Press.

Moore, G. (2002). Living on the fault line: Managing for shareholder value in any economy.
New York: HarperCollins.

4Establishing Requirements Using
RFP and RFI

Organizations may need to create formal documents that articulate the needs they
have for a software solution. These formal documents or requirements could be
either for a package solution or for customized development or both. There are of
course intricacies to creating these documents which also need to address related
needs such as project management, ownership, quality assurance, indemnifications,
and delivery schedules. There are two common methods of communicating these
formal requirements: a request for information (RFI) or a request for proposal
(RFP). An RFI is usually seen as a subset for an RFP, so an RFI might precede a
more detailed RFP. Therefore, the purpose of this chapter is to provide the details of
what should be included in each document, when one might be more advantageous
than the other, and the process for obtaining responses from vendors.

RFI

An RFI is a document that can obtain feedback from prospective vendors who can
provide a solution to the request. An RFI (as well as an RFP) should always state
the problem—which is typically the need to address a business issue that needs
an application software solution. However, the major focus of the RFI is to collect
information about potential vendors so that the organization can do comparative
analysis on what is available in the market and to some extent the costs associated
with various application solutions. Another way of looking at an RFI is a way of sur-
veying the marketplace before presenting a full-blown RFP, which typically requires
a cost proposal from a vendor. Another advantage of an RFI is that it is relatively
quick to put together. Of course this is relative to the complexity of the project. A
typical RFI consists of the following sections and content:
• Introduction
• Background of the company
• Information about the project
• Reasons for the RFI—purpose and scope
• Specific requests—what is the requestor asking vendors to provide

49A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_4, © Springer-Verlag London Limited 2012

50 4 Establishing Requirements Using RFP and RFI

• Due date for the response
• Confidentiality requirements
• Vendor qualifications
• Appendices of detailed information pertinent for the responding vendor

A sample RFI (source: sourcing4oem.com) is presented in Fig. 4.1.

Request for Information

Company name
Date:

[Sample]

Contents
Confidentiality & Non Disclosure . 51
Introduction and purpose of the RFI . 51
Scope . 51
Abbreviation and terminology . 51
RFI procedure . 51

Contacts . 51
Timeframe . 51

Background description of what is requested . 52
Of [your company] . 52
Of the context in which the product or service will be used . 52
Statement of need . 52
Requirements . 52
Qualifications . 52

Form to fill in as answer to the RFI . 53

Fig. 4.1 Sample RFI

RFI 51

Confidentiality & Non Disclosure
All information included in this RFI is confidential and only for the recipient knowl-
edge. No information included in this document or in discussions connected to it
may be disclosed to any other party.

Introduction
This RFI is a request for information regarding your company and your prod-
ucts/services. The same information will be gathered from different companies and
will be used to evaluate what vendors we will follow up the sourcing process with
a RFP.

Scope
Specific information is requested according to the form below.

Abbreviation and terminology
[Special Terms specific to the industry]

RFI Process
Please fill in all information on the attached form.

Response
Vendor responses must be forwarded hardcopy and via email [company email
account]

Contacts
For questions regarding this RFI, you are welcome to contact:
[Name of Individual Responsible]
[your title]
[Company Name]
[your phone number]
[your email address]

Timeframe
This is the timeframe for the RFI responses
9/28/2011 – The RFI is sent out
[MM]/[DD]/[YY] – Last date for questions by Vendors
[MM]/[DD]/[YY] – Last date for submission of RFI response
[MM]/[DD]/[YY] – Results from the evaluation
[MM]/[DD]/[YY] – RFP sent to select vendors who are deemed appropriate by
requestor

Fig. 4.1 (continued)

52 4 Establishing Requirements Using RFP and RFI

Background description of what is requested

Of [your company]
[Your company] was established [XXXX] is a company listed on [XX], and
produces [XX]. Our production is located at [XX] and [XX]. Our main products
are [XX]. Our annual turnover is about [XX]. Our mission is [XX].
More information can be found on [www.xxxxxx.zzz].

Context of the product or service
[Describe what kind of information is being requested regarding the vendor’s
product and/or service.]

Statement of Need
[Describe the solution being requested.]

Requirements
[Describe the requirements, such as technical needs that the product or service must
address and fulfill.]

Qualifications
[Description of what qualifies a vendor for delivering the products and/or services.]

Other Important Information
Payment term: XX days
Delivery term: EXW/FCA/etc
Delivery address(es):
Quality requirements (such as PPM):
Other requirements:

Fig. 4.1 (continued)

RFI 53

Form to fill in as answer to the RFI
Question Answer
Company name
Company address
Company web page
Main products/services
Main market/customers
Ownership structure
Structure of parent corporation, joint ventures,
subsidiaries, partnerships or other relevant
relations
Number of years in business
Company location(s)

Employees
Production

R&D
Marketing and sales
Quality department

Gross Sales
Gross margin

Profit/Loss
Stock markets where your company is listed

Telephone
Email

Products/Services listed in RFI not available

Reference customers using comparable
products or services (including contact
information)
Reference customers using your products or
services today, although they are not
comparable with what is requested in this RFI
(including contact information)

Availability of support worldwide

Most Recent Financial information (FYE
MM/YY)

Contact person responsible for answering this
RFI

Locations available for implementation, if not
worldwide.

Fig. 4.1 (continued)

Figure 4.1 reflects a relatively simple request for vendor information. The RFI
should be used to obtain information about the number of potential vendors who can
offer a solution and who are interested in bidding. Another alternative for producing
an RFI is to hire an outside consulting firm that can manage the process for the
organization. Such firms typically have a list of preferred vendors, so that the RFI
step can be eliminated and the consulting firm can just send the RFP out to their list
of potential solutions. Such consulting firms can also produce the RFP so that the
entire step is somewhat outsourced. There are obvious benefits to outsourcing this
task to a third party:

54 4 Establishing Requirements Using RFP and RFI

1. Existing IT staff does not have the expertise or time
2. An outside view can be very advantageous
3. Existing list of preferred solution providers
4. Overall savings
5. Faster solution
6. Less politics

RFP

As discussed the RFP represents the more detailed requirements document that
allows prospective bidders (vendors) to provide a cost proposal and solution for
the reported needs of the organization. RFPs must be specific to the needs of the
application to ensure that a vendor has enough information to provide an accurate
quote. Figure 4.2 provides a sample RFP for a Web solution.

PREFACE

This RFP has been prepared to meet the unique requirements of XYZ. This invest-
ment banking corporation is headquartered in New York City and provides financial
services in the US well as interfacing with its Global counterparts globally.

XYZ requires services to support a number of initiatives relating to the development
of internal and external websites:

1. Integrated Intranet to support various components of each business segment
2. Internet applications to support outside markets and recruitment
3. Integration and consistency of database applications
4. Support systems such as maintainable content-based management systems

that are developed specifically to support XYZ applications.
5. Branding and creative design

XYZ Commitment

XYZ is committed to:

• providing user requirements specifications and supporting documentation
(see Appendix I).

• purchasing necessary hardware and software for the websites.
• providing analysis of data.
• providing internal project management and interfaces with vendors.

I-COMPANY INFORMATION

XYZ is a major force in global investment banking. Its clients around the world
include major corporations and governments. As the investment banking division of
the XYZ Group it adds value by combining the global resources of one of the USs
largest banks with market-leading international expertise.

Fig. 4.2 Sample RFP

RFP 55

XYZ has over 1800 employees in North America, and will shortly merge with other
firms to form a larger and more diverse entity. The major components of its operation
today include:

1. Equity business
2. Corporate Finance
3. Global Finance/Private Equity
4. Loans and Structured Finance
5. Consulting services

While XYZ North America is a self-sustaining member of XYZ global, there are
a number of joint interfaces that require the coordination of resources particularly
with the London office. These interfaces typically relate to branding, image, logo,
and integrated global services that affect multiple entities. There are also cases
where economies of scale and common clientele dictate a level of partnering within
groups.

Each business area’s activities are more often treated and operated as separate busi-
nesses within the bank. As such, there are multiple liaisons that are necessary to
ensure that each unit specific needs are met, particularly in the information services
area. Many of the internal departments are seeking to enhance their image at XYZ,
and therefore are seeking to establish or enhance their presence by providing more
access to information through a corporate Intranet. Furthermore, there are certain
departments that need to provide external initiatives through the firm’s Internet site.
Specifically this includes college recruitment as well as constant new initiatives in
a dynamic business. While XYZ has a large IT infrastructure, there was no formal
organization to provide e-business solutions to these units. An e-consulting organi-
zation was formed to address these needs. This group, called e-Solutions reports to
the Corporate Affairs department (CA). Part of the mission of CEA is to ensure a
consistent corporate brand image, thus providing this Intranet and marketing web
services through CEA was the appropriate department to provide the service.

II-e-COMMUNICATIONS Department

The purpose of the e-Communications Lab is to establish and launch e-business
service for XYZ in North America. This service unit will implement Intranet and
Internet solutions to provide added value to various entities at XYZ. Its initial busi-
ness plan is to establish credibility within the company by providing a central service
organization that can understand the needs of business units and create quality, cost
effective, and state-of-the-art e-commerce systems. Specifically e-Communications
Lab will:

2. Develop an Internet mini-site highlighting specific products and services.
3. Develop intranet sites for business lines and service companies enabling

them to raise their profiles within the company.
4. Maintain Internet/Intranet content ensuring the company’s presence as being

on the cutting-edge of contemporary e-commerce technology.

Fig. 4.2 (continued)

56 4 Establishing Requirements Using RFP and RFI

The diagram below provides a pictorial of the e-Communications Lab business
functions and interfaces to provide these services:

Intranet/Internet Solutions
e-Business Consultants

e-Communications Lab
(e-Lab)

IT

Web Design and
Development

Ad Agency

Public Relations
Agency

Internet Consulting
Agency

e-Lab Workgroup

Advertising
Branding Advise

Requirements
Proj Mgmt

System Support

Requirements
Proj Mgmt

Content Req
Proj Mgmt

Marketing Materials

Requirements/Proj Mgmt

Products, advice,
documentation, training

Requirements
Proj Mgmt

Web Design and Dev.

Reports, updates
workgroup workshops

Ideas, advice, liaison
with other departments

III Web Design and Development Projects

The focus of these projects is to implement more centralized Intranet applications
that can provide consistency, credibility, and quality within the company, yet at
the same time provide a consistent vision of the companies resources. The Internet
projects are limited to North American products and services at this time, but cer-
tain projects may span into the global international community, as well as focus on
external Internet products and services. Most of the projects in the short term, how-
ever, will relate to the development of Intranet sites for business lines that need to
raise their profiles within the company. Projects will vary in size and cost—some
requiring the storing of data and content in databases; others simply requiring the
movement of content among well-designed and thought-out screens. XYZ seeks a
business partner that can provide the following services:

Identity and Branding: this involves helping XYZ form a vision of their business
units over the Web. XYZ seeks firms that have established a number of methods to
assist clients in re-defining themselves in the Internet network era, particularly in the
financial community. It is expected that this will involve the translation of XYZ’s
existing and forthcoming brand to the on-line world via the Web.

Fig. 4.2 (continued)

RFP 57

Creative Design: this requires vendors to provide creative and artistic web designs
that are consistent with the firm’s business themes, yet provide attractive and intu-
itively useable systems. We seek to find partners that can integrate the creative pro-
cess and at the same time provide the technical vision and implementation as well.

e-Commerce: it is our expectation, as stated above, to have one vendor provide the
entire life-cycle of web and e-commerce systems. The selected partner must provide
the internal technical development team that is necessary to integrate legacy applica-
tions, provide complete database design and support for Microsoft SQL_Server and
possibly Oracle. Furthermore, we expect our partner to have a systems-development
cycle that reflects a well thought out analysis-to-design-to development foresight,
that in effect convinces the XYZ of the vendor’s ability to bring projects to fruition.
Vendors are also expected to have development teams that can implement user
tracking, reporting, traffic analysis, and security.

System Integration: this involves the need to interface new applications with
existing XYZ systems. As such our vendor must be capable of providing systems
architecture support, conversion expertise, and security experts to help formulate
Web interfaces.

Intranet Tools Development: this area focuses on the ability of the Intranet to
improve internal communication and workflow using flexible and tailored con-
tent management and publishing tools that foster the specific needs of the XYZ
community.

Maintenance and Support: vendors need to provide maintenance and support ser-
vices to assist in the ongoing relationship with XYZ. This can involve the need to
get timely changes or enhancements made to a particular site, or providing docu-
mentation and training to a complimentary internal staff of XYZ Web developers.
Help-line support should also be provided at both peak and off-peak times.

Existing System Issues

There have been a few year-end projects that have been completed to establish
the presence of e-Lab. This consists of a new central Intranet home site, a Risk
Management Reporting site, a Loans organization site, and a Human Resources
central forms and handbook site. It is important that the image of the these sites be
consistent with the new firm.

IV SPECIFICATION REQUIREMENTS

Vendors will be provided with technical specifications that are prepared by XYZ.
Specifications will consist of an overview business specification, followed by
detailed specifications that outline each site’s functions, data needs, and report-
ing requirements. Flow diagrams showing the options of page selections are also
included. A sample specification is shown on the following pages.

Fig. 4.2 (continued)

58 4 Establishing Requirements Using RFP and RFI

(Note: Attach Sample Specification)

V SERVICE PROPOSAL REQUIREMENTS

The submitted proposals should be organized according to the basic outline set forth
below:

GENERAL COMMENTS

Provide a brief description and history of your firm and its current size. This should
be in the format of a statement of qualifications and should include a brief financial
history. If your proposal represents a joint effort between your company and another
vendor, detail the relationship between your firm and the other involved. In addition,
the specific responsibilities of each participating vendor in the joint effort should be
described.

Vendors should also include a summary of the major benefits of working with their
company.

Database And Application Software

Provide a list and explanation of the types of development environments supported.
This should include program languages, databases supported, and third-party tools
used, including content management products supported or developed.

Vendors are required to include as part of their bids costs for project management,
testing and post implementation activities. Additional requirements include:

1. Methodology of creative design to development process (Life-cycle).
2. Delivery Schedule - provide the lead-time required for each application to

be delivered and installed.
3. Software Support - indicate the manner in which database application

software support will be provided and the pricing arrangement for each
support.

4. Maintenance - describe maintenance provided, including warranty period,
the availability and location of service and expected delivery time.

5. Security - describe the types and levels of system and software security.
Specify how security is set-up and maintained and whether security can be
controlled at the screen level.

Vendor Assistance And Training

Any assistance to be provided by the vendor should be described. Vendor assistance
should be clearly defined, including whether the assistance is chargeable or supplied
at no additional charge. Areas to be addressed should include, but not limited to:

1. Training - include description, location, and frequency of available training.
2. Installation Support - describe the recommended approach for installing

your proposed system including a sample time-phased schedule of vendor
and company manpower requirements, in detail and summarized form.

Fig. 4.2 (continued)

RFP 59

3. On-Going Support - describe the support provided such as “help lines”, etc.
In addition, explain your software upgrade procedures including frequency
of new releases/upgrades.

Cost Summary

All cost considerations should be included in this section of the proposal.

1. Web Application software (including source and object code) by application:

• Hourly/daily rates
• One time charges to develop and quality assure
• Warranty and Maintenance fees
• Tiered pricing structure alternatives and fixed fee basis

2. Project Management
3. Maintenance and Support

Other Requirements

Please provide the following information:

1. List of users with installations similar to the proposed number of database
applications and scope of the CG requirements, including company name,
address, telephone number, contact person, and length of time the sys-
tem has been installed. Vendors must also complete the Client Reference
questionnaire.

2. Financial Statements Last two fiscal years.
3. Sample contract.

Examples of summary and detailed implementation

Responding To The Questionnaires

A comprehensive listing of company and web system requirements stated in the
form of questionnaires can be found in subsequent sections. Some questions require
a written response while others may be answered using codes listed below. To
the right of each desired requirement a space provided for code responses. The
following codes may be used:

Y Capability can be provided
N Capability cannot be provided
N/A Not Applicable (state reason)

Many of the questions will require an in-depth response typically needing an
attachment. In these situations, Vendors should provide the appropriate attachment
identification in the response area.

Confidentiality

This request contains information about XYZ that is confidential. We ask that you
respect this confidence and not disclose this information to any third parties. XYZ,
in turn, will treat the information you submit as confidential.

Fig. 4.2 (continued)

60 4 Establishing Requirements Using RFP and RFI

VENDOR REQUIREMENTS

01 General Information Response

 1 How many years have you been in the software business?

 2 When did your business start ?

 3 Have you developed software in a similar industry ?

 4 How long is the Warranty Period ?

 5 What are your typical terms and conditions of doing
business?

 6 Are references available ?

 7 Do you have assigned Account Representatives ?

 8 Are user sites available for visitations ?

02 Financial Evaluation Response

 1 Does the Firm have annual audited financial statements?

 2 Will prior fiscal year statements be available ?

 3 What is the Firm’s fiscal year end ?

 4 List statistics for prior fiscal year end: ?

4a Total Gross Revenues

4b Total Net Revenues

4c Total Net Income

4d Total Assets

4e Percent of Gross Sales related to Software Development

4f

4g

R&D Budget

Number of Customers

5 How many consecutive years have been profitable ?

6 Are Revenues by Product Division Available ?

03 Employee Analysis Response

 1 Number of full-time Employees

1a Sales

1b Advertising/Creative Design

1c Web Design

1d Project Management/Consulting

1e Development/Programming

1f Middleware and XML

1g Database/Backend

1h Customer Support/Training

Fig. 4.2 (continued)

RFP 61

 2 Number of full-time Employees last year

 3 Percent of turnover in last three (3) years

 6 Do you provide on-site support ?

6a Toll-Free Help-line available ?

6b 24-hour Hot-line available ?

 7 When is support available (M, T, W, Th,..F,..Sa,..Su.)

 8 Is Support available 5 pm to 8 am ?

 8a weekdays ?

Development and Flexibility Evaluation (cont’d) Response

 8b weekends

 9 Where are your software support offices ?

 9a Which location(s) will support Dresdner ?

04

04 Development and Flexibility Evaluation Response

 1 What is your internal procedure for Revision Control ?
 2 What is your procedure for informing clients of new

versions?

 3 Is Custom Programming always available ?

3a What is the hourly rate ?

 4 Do you supply your own:

4a Content Management Software ?

4b Value Added Resseller (VAR) relationships ?

 5 Does your contract assure clients the receipt of:

5a New Release information and Documentation ?

5b Source and Object code and all development routines ?

1i Maintenance

1j R&D

1k Administration

 9b How many employees will be available to support
Dresdner’s software ?

 10 Enclose a copy of policies regarding application software
support

 11 Enclose a copy of programming standards

 12 How are web enhancements distributed ?

 13 Are new manuals/documentation provided with each
version released ?

 14 Do you support old releases of any proprietary package
software ?

Fig. 4.2 (continued)

62 4 Establishing Requirements Using RFP and RFI

 15 Are you involved with any Web Industry Groups ?

How often does the Group meet (per year)

Who conducts the meetings (Users or Vendor)

Where do they meet ?

Is there a membership fee ?

Is there a Newsletter ?

15a

15b

15c

15d

15e

15f Are user recommendations implemented ?

06 Project Management/Implementation Response

 1 Do you provide project management services ?

 2 Do you assist in determining personnel resources required
on the project?

 3 Do you define the roles and responsibilities for:

3a vendor ?

3b user ?

3c IT department ?

 4 Do you conduct kick-off meeting to introduce project ?

 5 Do you prepare weekly and monthly status reports ?

 6 Do you provide requirements documentation for:

6a hardware ?

6b software ?

6c necessary network configurations ?

 7 Do you prepare a Server capacity plan ?

 8 Do you prepare a site planning document ?

 9 Do you implement a methodology for migrationg from test to production ?

 10 Do you provide user security ?

06 Branding/Design (cont’d)

 11 Do you provide branding services?

 12 Do you integrate branding and web site design to do:

12a logos ?

12b Interactive video?

12c Content design?

Response

Fig. 4.2 (continued)

RFP 63

 13 Relating to design:

13a Provide content design images ?

13b define data requirements ?

13c identify update strategies ?

13d develop the interface methodology ?

13e design all required interfaces ?

13f document interface designs ?

13g test all developed interfaces ?

13h install all interface programs ?

06 Testing and Quality Assurance Response

 14 Relating to testing, do you:

14a provide a test plan ?

14b identify additions to the production system ?

14c identify deletions to the production system ?

14d create test input data ?

14e list steps and procedures to create or extract test data ?

14f identify valid test results prior to testing ?

14g run tests with valid data ?

14h run tests with invalid data ?

14i be responsible for unit test plans ?

14j be responsible for system and volume testing ?

14k base acceptance for payment on client supplied test
results ?

 15 Relating to conversion of existing data, will you:

15a identify data to be converted ?

15b develop conversion methodology ?

15c prepare conversion specifications ?

Fig. 4.2 (continued)

64 4 Establishing Requirements Using RFP and RFI

06 Testing and Quality Assurance Response

15d design necessary file formats ?

15e test file conversion programs ?

15f install conversion programs in production ?

16 Relating to implementation, will you:

16a prepare a complete workplan to get into production ?

16b develop alternative procedures should implementation
plan fail ?

16c be responsible for problems encountered with software ?

16d be responsible for problems encountered with
hardware ?

16e provide operations procedures for application software ?

16f provide operations procedures for recommended
operating system ?

07 Documentation Response

 1 Will the system come with the following Documentation:

1a Operator Manuals ?

1b Technical Manuals ?

1c Programmer Manuals ?

1d User Manuals ?

1e System Flowcharts and/or Data Flow Diagrams ?

1f System Narratives ?

1g Table and File Layouts ?

1h Data Element Descriptions ?

1i Screen Formats ?

1j Data Validation Routines ?

1k Utility Programs ?

1l Backup and Recovery Programs ?

1m Security Routines ?

1n Logic Design (Data Flow Diagrams, Entity Relations,
etc.) ?

1o Program Flowcharts ?

16g provide operations procedures for recommended
hardware ?

17 Supply an implementation workplan with activities and
time frames.

Fig. 4.2 (continued)

RFP 65

07 Documentation (cont’d) Response

1p Program Narratives ?

1q Audit and Control descriptions ?

1r Quality Assurance Testing Scripts ?

 2 Will the system contain documentation for configuring the
software:

2a Required Library Names ?

 3 Will the system contain documentation for product
administration:

3a Database file system ?

3b End-User Security/Function Security Access ?

3c Master File Maintenance ?

3d Updating Applications Software ?

 4 Will the system contain the documentation for operations
procedures:

4a User procedures at the screen level ?

4b Daily Operations ?

4c Evening/End of day operations ?

2b Required file or database names ?

2c File allocation and initialization ?

2d File distribution and directory placement ?

07 Documentation (cont’d) Response

4d Recovery/Restart ?

4e Error handling and exceptions processing ?

4f Requesting Vendor Support ?

5 Will the system contain documentation for data input and
output control:

Input forms and how to use ?5a

5b Data Entry procedures ?

5c Balancing and reconciliation ?

5d Report verification ?

6 Will the following documentation be provided periodically:

6a Features contained in new releases ?

6b Software bug fixes and operating system patches/new
versions ?

Fig. 4.2 (continued)

66 4 Establishing Requirements Using RFP and RFI

08 Training Response

 1 Is implementation training provided ?

 2 Is User Training provided ?

09 Security Response
1 Can you provide applications that have:

1a Field level security ?

1b Program security ?

1c Screen security ?

1d Menu level security ?

1e Application level security ?

1f Logged transactions (change, delete, etc.) ?

 2 Is security defined in a:

2a Master table ?

2b Data dictionary format ?

 3 On-line security is maintained by:

3a Batch update ?

3b On-line entry-batch update ?

3c On-line real-time ?

 4 Will there be the ability to create access profiles:

4a Attach and relate user to profile real-time ?

10 Editing and Error Handling Response

 1 Will the Screen be capable of:

1a Providing on-line editing after individual fields are
entered ?

1b Providing a means of changing field edits ?

1c Displaying standard error message and codes ?

1d Providing on-line help feature ?

 2 Provide an overriding key/command to cancel a
transactions ?

 3 Database capabilities:

3a Logging of errors and dumps ?

3b To provide system failure recovery programs ?

2a On-Site training ?

2b Off-site training ?

Fig. 4.2 (continued)

RFP 67

VII CLIENT REFERENCE QUESTIONS

Complete a separate questionnaire for at least three users who can be contacted for
reference. References used should be able to demonstrate a similar implementation
requirement and in particular, any companies involved in financial operations.

1. Company Information

Company Name: ___

Street Address: __

City: ________________________________ State: ________ Zip: ____

Phone: ________________________________

Website: ___

e-mail Address: __

Contact’s Name: ___________________________ Position: _________

2. Website Design

Number of Site Pages _________________

Number of Database Interface _________________

Hits per Month _________________

Number of Users _________________

Highest number of simultaneous access _________________

3. Hardware/Software Installed

System Platform (model) __________________

__________________Browsers

Middleware __________________

Database __________________

Operating System __________________

4. Application Software Installed

Security Access __________________

Encryption/Decryption __________________

Application Development Language __________________

Screen Software __________________

Report/Writer __________________

Communications Package __________________

3GL Software Interfaces __________________

Others: List __________________

Reference

Fig. 4.2 (continued)

68 4 Establishing Requirements Using RFP and RFI

Figure 4.2 serves as a template for creating an RFP. While this template provides
information about the company and some high-level requirements, an RFP process
also requires a detailed requirements document that vendors can review in order to
determine a best price for the requested services.

Requirements Document

The requirements document is an adjunct specification often called a business
specification. The purpose of the business specification is to provide a docu-
ment that provides readers with a functional understanding of the needs of a
software application. The specification should be written in prose format so that
vendors can easily understand its meaning and intent. The business specification

Client:
XYZ Corporation

Date: 9/5/11

Application:
Operations Database

Supersedes:

Subject:
Contact Management

Author:
 A. Langer

Process:
Overview - Business Spec

Page:
1 of 2

Overview

The Contact Management Process will allow users to add, modify or delete specific contacts.
Contacts will be linked to various tables including Company. A Contact refers to a person who
is related to XYZ for business reasons. It can be a Client, a Vendor, a consultant, a person
involved in a negotiation, etc.

Contact General Information:

The Database must allow for the centralization of all the contacts handled by all the departments
in XYZ.
The database and screens will be focused on the following information component groupings:

Basic Information
This is the minimum data requirement and includes such elements as Name, Title, Organization,
Phone, Fax, Address, Country, etc.

Contact Profile Information
Further qualification and related elements. Relations include:

• department
• type of client
• nature of client (primary, technical)
• interest of prospect
• importance of client
• memberships (FTUG)
• FT employee

This is a Business Specification which
reflects the overall requirements in prose
format. Its focus is to provide the user
who is not technical with a document that
they can authorize.

Fig. 4.3 Sample business specification

Requirements Document 69

is not technically complete, rather enough that lets vendors to determine the
architectural needs and inputs and outputs required by the applications. Good busi-
ness specifications include forms that articulate the logical requirements as shown in
Figs. 4.3 and 4.4.

Chapters 7, 8, and 9 provide more details on how to create formal requirements
documents with both business and technical specifications.

Client: XYZ Company Date: 9/15/11
Application: Contact Management Supersedes: 9/5/11
Subject: Program Specification Detail Author: A. Langer
Spec-ID FTCM01 - Add/Modify Screen Processing Page: 1 of 1

Process Flow Description:
The user will input information in the top form. At a minimum, at least the Last Name or Contact ID
will be entered. The system must check a Security indicator prior to allowing a user to modify a
Contact. The Security will be by Department or Everyone. Therefore, if the Modify button is
selected and the user is restricted by a different department, Display:
 “ Access Denied, not eligible to modify, Department Restriction”

If Security authorized, the Add/Modify Button will activate the following business rules:

If Contact-ID (cntid) not blank
Find match and replace entered data into record
If no match display “Invalid Contact-ID” and refresh cursor

If Contact-ID (cntid) Blank and Last-Name (cntlname) Blank then
Display “Contact-ID or Last-Name must be entered”
Place Cursor at Contact-ID (cntid) entry.

If Contact-ID (cntid) Blank and Last-Name (cntlname) + First-Name (cntfname) is Duplicate
Display Window to show matches so that user can determine if contact already in
system
If user selects the Add Anyway button

assume new contact with same name and assign new Contact-ID (cntid)
Else

upon selection bring in existing data and close window.
Else

Create new record with all new information fields and assign Contact-ID (cntid)

If Company button activated
Prompt user for Company-ID (cmpcd) and/or Company-Name (cmpna)
If duplicate

link foreign-key pointer to matched company
Else

Add Company-Name (cntcmpna) to Contact Table only
Display “You must use Company Screen to Link, Company Master File Not
Updated”

Fig. 4.4 Business specifications

70 4 Establishing Requirements Using RFP and RFI

Problems and Exercises

1. What is an RFI?
2. What is an RFP?
3. Compare the differences between an RFI and an RFP.
4. What is the purpose of having a confidentiality and non-disclosure clause?
5. Explain why an RFP needs to be associated with a requirements document.
6. What is meant by logical requirements?

5Searching for Solutions

The purpose of this chapter is to provide guidelines on the process of finding pos-
sible solutions for application needs. Thus far the preceding chapters have provided
the structure and build vs. buy alternatives. It is now important to define the steps
necessary to find the solution and prospective partners that meet the RFP needs.

The Team Selection

Searching for the right solutions starts with forming an internal team responsi-
ble for managing the process through selection decision. The following roles and
responsibilities should be considered:
• Selection team director/lead: this individual should be at a senior level, perhaps

director or above and have responsibility over the project selection team process
and any other members who are needed. This individual could either be from
IT or from a business unit. I suggest that this individual come from the business
with assistance from IT management; in this way it allows the business to feel
that they “own” the project.

• Business/functional members: these individuals should provide representation
from all of the affected parties, including business unit personnel and adminis-
trative organizations such as accounting and human resources. These representa-
tives should be at a line manager level, that is, knowledgeable about day-to-day
needs and familiar with current systems in place.

• Experts: these are individuals who have specific knowledge in areas as opposed
to specific business lines—they usually are technical experts in their fields and
are needed at certain times during the evaluation process.

• IT manager: this individual should be a senior representative from the IT depart-
ment who essentially provides facilitation and direction from an architectural
perspective. That is, providing information about the technical capabilities of
possible solutions as well as upholding certain architectural standards necessary
to maintain capabilities among other systems.

71A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_5, © Springer-Verlag London Limited 2012

72 5 Searching for Solutions

• Outside consultants: depending on the size of the project, some firms get out-
siders involved to provide objective input that is free of the cultural and political
constraints of the company. Outsiders can be from two areas: (1) from indus-
try and are familiar with the applications or (2) have technical and project
experience.
The question is who makes these individual choices? Smart firms select an exec-

utive to make some of these decisions. Often this will likely be the chief information
officer (CIO) along with an operations executive. Sometimes it falls under the
auspices of the chief financial officer (CFO) or chief operating officer (COO).

In terms of the actual participant choices, Tayntor (2006) suggests focusing on
diversity of composition. She breaks composition into two major components:
1. Functionality: these individuals are focused on the operational aspects of the

solution—that is—does it get the functions done so that the day-to-day business
can run. To this extent, Tayntor recommends that there be multiple levels of oper-
ational personnel involved, so that varying perspectives on needs of the business
are considered. Remember, levels of user views, as previously discussed, vary by
responsibility because it affects what is valued.

2. Technical: the necessary expertise that can determine the automation considera-
tions of any possible solution. Again, this includes architecture and product soft-
ware issues. Product software issues can include system software, applications
software, and productivity software (databases, spreadsheets, etc.).
There are, of course, generic factors that should be considered when forming the

evaluation team. This includes selecting people who are group thinkers, can coop-
erate with others, are respected by employees, and are politically astute. Further,
the evaluation team could become too large, resulting in a team that is difficult to
manage and may not be able to reach consensus.

Due Diligence

Whether or not an RFP is used or not or whether an organization uses a consulting
firm to assist them, it is important that the company engage in due diligence prac-
tices before selecting any vendor—for package development of specific application
development. Due diligence is defined as a process of investigation before making a
contractual decision. Effectively, it ensures that you know as much as possible about
the vendor you are selecting. There are a number of components to the due diligence
process:
• Reference checks
• Review vendor financial statements
• Bank references
• On-site and client site reviews
• Training
• Upgrade process
• General questions to ask
• Understand the company ownership

Due Diligence 73

Reference Checks

Vendors need to provide a list of clients that can be used as a positive reference.
Most vendors will provide the names and contact information of their selection.
Obviously, these clients represent a positive experience. Organizations are better off
asking vendors for a list of all their clients and then select from that list. This process
will provide a more accurate depiction of satisfaction. Furthermore, I would suggest
knowing about how a vendor deals with crisis—you want to know more about how
a vendor will support you during problems than when things are going smoothly.
Almost all vendors have problem accounts.

Review Financial Statements

This is a very important process. I suggest that the vendor provides 3 years of his-
torical financial statements. Public companies must have a certified audit, but if the
vendors are privately held, they are not required to do so, which means that the
statements may be prepared by someone internally—so they may not be accurate.
In any case they must be able to provide them. The next question is what to look
for? I would get your CFO or controller involved with the review because financial
statements can be very tricky to read. However, here are some critical things to look
for in the vendor’s financial statements:
• Cash on hand: this simply tells you how much actual cash the company has.
• Accounts receivable: how much is outstanding from their clients and to be

collected.
• Accounts payable: this represents the size of the company’s debt—that is money

they owe.
• Accrued expenses: this usually represents the amount of accrued payroll due to

the vendor’s employees—it is another form of cash debt.
• Retained earnings: provides a perspective of previous earnings from profits. This

should be matched against the company’s profit/loss statements.
So what do you look for in the above data, Here are some “red flags!”:

1. If the cash on hand is less than accounts payable it may mean that the company
has exposure if they do not collect their accounts receivable. I would also require
an aged accounts receivable so that your organization can determine how much
of the accounts receivable are within 30 or 60 days—meaning that it will likely
be collected. If the accounts receivable shows a lot of cash due over 60 days it
might mean that the vendor is having problems collecting, or cannot finish the
work to get paid, or they have unhappy clients who do not want to pay them!

2. Ask for an aged accounts payable schedule as this will show how soon the debt
is to be paid. If most of the debt is due within 60 days it further allows you to
determine the solvency of the vendor.

3. Ask for a detailed schedule of the accrued expenses as this will let you know how
much is due for payroll and payroll taxes. Payroll must be paid timely.

74 5 Searching for Solutions

4. If the accounts payable and accrued expenses are larger than the combined cash
on hand and the accounts receivable, then the vendor may not be very solvent.

5. If retained earning is negative it means that the vendor has not yet reached a profit
stage in the company, that is, the vendor has not yet reached a profit cumulatively
since its inception.
The financial statements do not always paint the complete picture financially. The

organization or its attorney should do a search to ensure that there are no outstanding
law suits against the vendor, or past ones, as well as liens from third parties. Further,
a Dun & Bradstreet (D&B) search should be done which will provide a rating on
payment ability of the vendor—specifically if they pay their bills late.

Bank References

The organization should obtain authorization to contact the vendor’s banks to verify
cash on hand and to verify that the vendor has a good standing with the bank. This
is a simple process and one that every vendor will likely agree to do. Unfortunately,
it is often overlooked or considered unnecessary. The organization should request
a complete list of financial institutions and types of accounts maintained by the
vendor.

On-site Demonstrations

Organizations should arrange for prospective vendor solutions to come on-site and
demonstrate the capabilities of their product. This demonstration should be accom-
plished by first having meetings with the vendor and providing them with test data.
In this way the demonstrations actually show company information and how it can
be accessed by the users of the product. This can be very effective, especially for
the general business user who may be challenged to imagine how the software will
actually operate on the data of his/her business unit. Having on-site demonstrations
also allows the vendor to get a better grasp of the politics of the company and how
they can compliment the operating team.

Vendor On-site Review

Organizations should visit the vendor’s corporate or local office. You want to see the
organization at work and meet the administrative people who you might be dealing
with in the future. Doing a vendor site visit is extremely important for non-public
companies and for very small vendors. Today, websites make companies that are
very small look very big, although size is not always an indicator of corporate sol-
vency. Doing actual client site reviews is also very constructive. While calling a
vendor client is productive, actually seeing the implementation and meeting more
than one person can tell a lot about how the vendor operates.

Due Diligence 75

Training

A number of packaged products require significant training of staff to be success-
ful. The vendor may have an excellent product but lousy support and training.
Organizations should review the training philosophy of the vendor, review the mate-
rials, and cover how their clients rate training. Initial training, however, is only one
aspect of training. As organization lose and add employees there may be needs
for continual support or sporadic training based on new versions of the product.
Interviewing some of the vendor trainers is another effective way of determining the
strength of their staff. Some large vendors can also make training available through
third-party firms that specialize in supporting them. This may or may not be an
effective solution. Problems occur when a training company is out of sink with the
software company especially when there are product bugs for which the training
company cannot fix or offer a temporary “work around.”

Upgrade Process

Software enhancements are realities. It is important to understand the vendor’s
approach to handling this process. Due diligence should cover the number of
upgrades historically provided to clients, how the process works, and how upgrades
are retrofitted to software that has been customized (this process addresses the
problem of software enhancements that overlay customized code from an earlier
version). Organizations should also understand the costs associated with receiving
upgrades. This often is included as part of the annual maintenance fee but some-
times such costs are not included and must be paid each time there are maintenance
releases. If customizations are involved, organizations should understand the costs
for retrofitting upgrades with the customized changes. Maintenance fees usually
are 15% of the then-going software license fees. Maintenance and upgrade costs
become more complex when the applications are developed specifically for the
client. In these cases the method of upgrade and associated costs must be carefully
reviewed during due diligence.

General Questions to Ask

Perhaps the most important part of the due diligence process is knowing what ques-
tions to ask and how to ask them. For example, when checking client satisfaction,
do not ask the vendor’s client if they are happy. Ask them how the vendor supported
them when they had difficulties. This type of phrasing gets the right answers—you
want to know how the vendor will treat you when you disagree, not when you agree.
This is also true when asking about implementation schedules—do not ask how they
keep on schedule, ask them what they do when they are behind!

76 5 Searching for Solutions

Understand the Company Ownership

One can never be sure what represents a comfort zone when dealing with a vendor’s
ownership. If it is a private firm, ask whether a venture firm owns the controlling
shares. Venture and private equity firms invest in companies for one reason—to flip
them and make money. This means they will either sell the company at some point or
help the entity to go public. The latter is a good thing in most cases, but the former—
selling the company—could mean lots of changes, both in the firm’s philosophy and
in its personnel. So the only answer, to a large degree, is to understand the vendor’s
timetable—are they in a growth period when the investors might want to get out.
Also, who are the original founders? Do they want to sell or expand the company?
You might not get an honest answer, but why not ask!!

Architecture Review

The type of software and systems required by the vendor and the overall architec-
ture of the solution are extremely important issues not to be overlooked. Therefore,
organizations should do a complete “platform” review to ensure that the product
will operate properly across all of their systems. Organizations should be par-
ticularly sensitive when considering software that has not demonstrated that it
can successfully execute on a new or different architecture. Although we believe
that we live in a world of open systems, there are still products that are very
dependent on specific versions of operating systems and specific systems environ-
ments. An example of this problem can be related to the Cone Mills case against
System Software Associates (SSA)–Enterprise Resource Planning (ERP) product
called BPCS (Business Processing and Control System). The product was originally
designed to operate under the IBM mid-range product lines (Systems 36, 38, and
AS400), which are very proprietary platforms. When the software industry began
to transition to open systems particularly Windows and UNIX, SSA attempted to
convert its product and advertise that its product could run under the HP-UX archi-
tecture. Cone Mills selected the HP-UX environment and although SSA stated that
it would operate, there were problems. Apparently, BPCS could only operate on
HP-UX if the entire system was installed. Unfortunately, Cone Mills only selected
certain modules. The product was significantly delayed by over a year. Eventually,
SSA declared bankruptcy in 2002. These types of results do not favor anyone—all
sides tend to lose. So the message is that organization should be very wary of being
the first to implement any package on a platform that the vendor cannot physically
show success.

Another complication discussed earlier in this book is the use of open source.
While this might be very attractive, organizations need to be sure that the open
source containing any vendor license does not restrict or prohibit certain uses, and if
there are any proprietary modifications made to a portion of the package using open
source, what are the restrictions in use that affect the organization. Certainly, open

Finding Vendors 77

source in this situation might preclude the organization from selecting the vendor’s
product.

Another factor in selection is product scalability. Should the organization grow
and need to expand its use of the package or customized solution, will the software
be able to run across multiple platforms or on a larger system? This again becomes a
question of architecture, so at some point the IT organization must review this infor-
mation with the vendor carefully. It might also be a good idea to consider engaging
a third-party reviewer, similar to an independent engineer’s report before one buys
a house.

Finding Vendors

This section provides input on alternatives for finding available vendors that meet
the needs of the RFP. We have already discussed the use of an outside consulting
firm. There are significant advantages to bringing in a large firm to help:
1. Already have a list of acceptable vendors
2. Prior relationships with many of the vendors
3. Leverage with vendors because they represent future opportunities if the vendor

does a good job
4. Leverage against the large consulting firm. A third-party consulting firm that has

liability insurance that can support any type of malpractice activities. Simply put,
because of their size, they can be sued

5. Experience of the consulting firm with RFPs and selections of vendors
If the organization elects to not use an outside consultant then the following are

alternative methods to find prospective vendors to bid:
• Use the Internet: searching for vendors can be very effective using the modern

search engines available to the general user. Furthermore, the Internet allows
the organization to easily find out information about the company, its clients,
and in some cases its financial performance (if they are a public company they
have their financials posted on the Internet). In addition, the Internet allows the
organization to uncover any issues with the vendor’s clients, e.g., articles written
about problems or legal suites that are posted.

• Facebook and chat rooms: using today’s social medias, most vendors have active
“facebooks” and chat rooms. Many also have user groups that can be contacted to
receive information about the satisfaction with the vendor’s clients and products
overall.

• Industry groups: there are a number of groups that provide information about
suggested solutions across different product lines. Subscribing or becoming a
member of such groups can be very beneficial. Industry contacts can also be
used as networks, and such networks can provide informal information that can
be very valuable.

• Conferences: many professional IT organizations exist as well as industry groups
that hold regular conferences. This is another network that can provide important
information from those organizations that have implemented similar solutions.

78 5 Searching for Solutions

• Research organizations: companies, like Gartner Group, provide certain research
services for a fee. A number of such firms also allow subscriptions to their
databases that have information about solutions, vendors, and current clients.
Another research partner can be universities, which typically have faculty who
will provide research services for lower costs and for the general education of
their students. Using research universities is one of the most underutilized assets
available to organizations.

Paying for a Plan

Another clever approach to finding the right vendor is to ask prospective vendors
to provide a project management plan showing how they would actually implement
their solution for your company. This may seem like a typical project plan, but these
efforts should be set up as a prelude to evaluating the effectiveness of the vendor
and their ability to deliver requested tasks. The downside of this approach is that it
will likely cost the organization money: you may need to pay the vendor to do this
extra work. However, it may be well worth the expense to become familiar with how
the vendor supports you. In many cases you can negotiate an option with the vendor
which credits the payment should they win the bid, that is, the steps being taken
would need to be done by the selected vendor anyway. Another downside could be
that the cost and effort does not necessarily allow the organization to determine the
quality of the software and the ultimate value of the solution, but it is yet another
option to consider.

Summary

It is important to note that the search for a vendor is a complex step that depends
heavily on whether you wish to make or buy the solution or as previously discussed
both. We should not see the vendor selection as a binary one, that is, there may
be a need for more than one vendor, who may represent one phase or area of the
solution. While this may sound like an obvious alternative, it is not without danger.
Anytime you have more than one vendor partnering to deliver one solution, you run
the risk of one blaming the other and no one really responsible for the entire contract.
Even getting a consulting firm to manage the effort does not ensure that they can
really ensure that there will not be problems. That is why many organizations like
to have a one-stop solution where the vendor is responsible for every aspect of the
implementation. The benefits are obvious should the vendor actually be capable of
doing all of the needed activities from programming to product delivery to training
and implementation.

Another alternative is to have a firm that monitors the vendor’s activities but is not
really responsible for any deliveries. Once again the large consulting firms provide
this project management service. Although this seems worth the investment, you are
also taking on yet another vendor to manage. Perhaps, the best solution is to have an

Reference 79

effective management team that helps ensure that the project remains on time and
on budget, assuming of course that the right vendor has been selected.

Problems and Exercises

1. Explain the purpose of due diligence. Discuss three components that affect the
due diligence process.

2. What is the importance of the architecture review? Who in the organization
should be responsible for this task?

3. What are the alternative ways to find qualified vendors? Which of them do you
prefer? Support your opinion.

4. What is the role and responsibility of an outside consultant?
5. Provide three positive aspects of retaining an outside consultant and three

negatives.
6. What are the advantages and disadvantages of having someone outside the

organization develop and perhaps manage the plan?

Reference

Tayntor, C. B. (2006). Successful packaged software implementation. New York: Auerbach.

6Controlling Costs and Realistic Budgeting

A critical step is setting budget before starting the process. Once the budget is set
then overriding estimates is difficult and tends to feed the stereotype view of IT
projects as being expensive and full of project overruns. The purpose of this chapter
is to provide some guidelines on how to determine a viable budget and focus on
controlling runaway costs because of inappropriate management as well as project
scope creep.

The most important aspect of cost analysis is to prepare a budget. The first part
of creating any budget is to determine the categories of cost. Costs usually belong to
categories that relate to project activities. It is suggested then that you start the bud-
get by sequentially thinking about the steps necessary to complete the project, from
the selection process through implementation and go live (post-implementation):
• Kickoff and selection
• Implementation
• Post-implementation

Within each of these processes are categories of costs as follows.

Kickoff and Selection

• Internal staff costs: this includes all of the internal staff resource needs through-
out the project, including the selection team. The cost for these resources is
usually determined based on an internal rate, that is, the company determines the
internal charge for use of its staff on special projects. Essentially, internal staff
costs are a form of “funny money” or an allocation, but they usually are a correct
way of measuring staff costs of the project. The individuals engaged in this allo-
cation should consist of IT personnel, user department staff, and administrative
people.

• Travel and expenses: this includes out-of-pocket expenses incurred during the
search and decisions for selecting vendors.

• Software costs: this relates to any special software tools that are needed for the
evaluation such as a package to assist with the assessment.

81A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_6, © Springer-Verlag London Limited 2012

82 6 Controlling Costs and Realistic Budgeting

• Consultant and legal: these are associated professional costs for special assis-
tance during the selection period, especially outside help with the selection
process and any legal costs associated with license agreements, customized
development, and project management arrangements.

Implementation

• Software costs: these costs include software license fees, custom modifications,
utility products (e.g., EDI), databases, operating systems, and security.

• Hardware costs: these costs consist of servers, PCs, memory, cloud computing,
printers, scanners, backup devices, and disk space.

• Network costs: these include infrastructure costs for cabling, racks, routers,
switches, modems, leased or dedicated lines, communications software, and
Internet charges.

• Project team costs: these are labor costs for the project manager/team lead,
systems analyst, programmers, testers, and outside consultants.

• User team costs: these include the team leads, user managers, and support
personnel.

• Support team costs: this includes general IT utility expenses for IS support,
database analysts, and networking staff.

• Miscellaneous project team costs: these include costs for furniture, telephone,
project management software tools, administrative support, communications,
video conferencing charges, user manuals, and special education.

• Training costs: these costs cover user training of the various user teams, the mate-
rials associated with the training, and should also cover any travel to and from
training locations.

• Data costs: this relates to costs associated with cleaning up legacy data
before conversion as well as archiving costs to protect the data from previous
systems.

• Miscellaneous or other costs: these costs include quality assurance, internal
audit, steering groups, conferences, and general networking of personnel during
the implementation.

• Allocation overhead costs: these costs are allocations usually for using organi-
zational resources from central services like office space and utility expenses.
Since there is no direct way of calculating these expenses they are typically
done through an accounting charge method. Not all organizations use this, but
many have this as part of the budget process. The CFO can usually provide this
information.

• Contingency: this represents an old method of having a cost allocated to unfore-
seen expenses. Some organizations allow it, others do not. Again, the CFO
usually dictates the company policy.

Hardware and Infrastructure 83

Post-implementation

• Maintenance costs: these are usually annual costs for license fees and support for
guaranteed upgrades, hardware coverage, and database support. These expenses
can also include data disaster and recovery costs.
A sample budget format is shown in Fig. 6.1.

Controlling Costs

While Fig. 6.1 reflects the items to be included in a budget forecast, it does not
address what might be deemed appropriate spending within these categories of
expenses. As such, this section aims to provide some guidelines as to what might
be considered realistic amounts and pitfalls to be wary about as the project moves
from selection to implementation to post-implementation. Unfortunately, IT organi-
zations lack financial efficiencies and may not alone be able to formulate the total
costs effectively (Ryan & Raducha-Grace, 2010). Thus, it is important to get all of
the business management and accounting involved to ensure that the right budget
amount is carefully formulated.

Hardware and Infrastructure

The most immediate issues for these expenses relate to company direction, first for
infrastructure. I have already discussed the implications of whether or not to use a
cloud solution. Obviously going to a cloud architecture is much cheaper and avoids
the whole issue of designing, creating, and maintaining a data center. So I would rec-
ommend comparing the actual costs of owning a data center vs. an outsourced cloud.
It is also important to recognize the difference in accounting, not withstanding actual
cash outlay. To be specific, most data center costs, including hardware, networking,
and installation, fall under the accounting of capital expenditures. Capital expen-
ditures are recognized in accounting standards as long-term assets, for which the
actual expense is depreciated over a number of years, depending on the type of
asset. The number of years that can be depreciated on the books of the company
is published in various standards organizations like FASB (Financial Accounting
Standards Board) and are part of what is known as GAAP (Generally Accepted
Accounting Principles) and GAAS (Generally Accepted Accounting Standards). To
go further into accounting concepts would be beyond the scope of this book, but
essentially, if you have hardware costs totaling $150,000, the company would likely
depreciate that expense over 3 years, recording in the first year only $50,000 of the
total expense. That is, each year for 3 years, the organization would only record
$50,000 per year. The concept behind this allocation of cost is that the organization
is actually prepaying for the value of the hardware, so it takes only a portion of the
useful life each year, in this case 3 years. So the question becomes, what do you
put in the first year budget? Likely only $50,000; however, the project cost is still

84 6 Controlling Costs and Realistic Budgeting

Y
ea

r:
0

0
1

1
2

2
3

3
R

at
e

$
pe

r
Q

ua
nt

ity
Q

ua
nt

ity
Q

ua
nt

ity
Q

ua
nt

ity

U
ni

t/D
ay

U
ni

ts
/D

ay
s

U
ni

ts
/D

ay
s

U
ni

ts
/D

ay
s

U
ni

ts
/D

ay
s

T
o

ta
l

R
ef

P
ro

je
ct

 E
xp

en
d

it
u

re
s

$
$

$
$

$
1

S
el

ec
ti

o
n

 p
ro

ce
ss

1.
1

In
te

rn
al

 r
es

ou
rc

es
 /

st
af

f c
os

ts
:

1.
1.

1
-

In
fo

rm
at

io
n

S
ys

te
m

s
(I

S
)

de
pa

rt
m

en
t

32
5

10
32

50
32

50

1.
1.

2
-

us
er

 d
ep

ar
tm

en
ts

25
0

20
50

00
50

00

1.
1.

3
-

pr
oc

ur
em

en
t d

ep
ar

tm
en

t
32

5
2

65
0

65
0

1.
2

T
ra

ve
l a

nd
 e

xp
en

se
s

22
5

12
27

00
27

00

1.
3

S
pe

ci
fic

at
io

n
/ R

F
P

 to
ol

s
an

d
pr

og
ra

m
s

55
0

2
11

00
11

00

1.
4

C
on

su
lta

nc
y

as
si

st
an

ce
0

0
0

0

1.
5

Le
ga

l a
ss

is
ta

nc
e

0
0

0
0

T
ot

al
 s

el
ec

tio
n

co
st

s
12

70
0

0
0

0
12

70
0

Im
p

le
m

en
ta

ti
o

n
 p

ro
ce

ss

2
S

o
ft

w
ar

e
co

st
s

2.
1

A
pp

lic
at

io
n

so
ftw

ar
e

us
er

lic

en
se

s
10

25
0

0
55

56
37

5
35

35
87

5
0

0
92

25
0

2.
2

S
of

tw
ar

e
m

od
ifi

ca
tio

ns
0

0
0

0
0

0
0

0
0

0

2.
3

A
dd

iti
on

al
 li

ce
ns

es
 e

.g
. C

itr
ix

, E
D

I
so

ftw
ar

e
10

25
0

0
5

51
25

0
0

0
0

51
25

2.
4

D
at

ab
as

e
us

er
 li

ce
ns

es
52

00
0

0
1

52
00

0
0

0
0

52
00

2.
5

O
pe

ra
tin

g
sy

st
em

0
0

0
0

0
0

0
0

0
0

2.
6

A
dd

iti
on

al
 s

ec
ur

ity
 a

pp
lic

at
io

ns
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
66

70
0

35
87

5
0

10
25

75

Sa
m

pl
e

B
ud

ge
t

Fi
g

.6
.1

Sa
m

pl
e

bu
dg

et

Hardware and Infrastructure 85

3
H

ar
d

w
ar

e
co

st
s

3.
1

S
er

ve
rs

 (
ne

w
 o

r
up

gr
ad

ed
,

de
di

ca
te

d
or

 s
ha

re
d)

22
00

0
0

0
2

44
00

0
0

0
0

0
44

00
0

3.
2

P
C

's
 (

ne
w

 o
r

up
gr

ad
es

)
12

00
0

0
25

30
00

0
0

0
0

0
30

00
0

3.
3

A
dd

iti
on

al
 m

em
or

y
0

0
0

0
0

0
0

0
0

0
3.

4
A

dd
iti

on
al

 C
P

U
0

0
0

0
0

0
0

0
0

0

3.
5

A
dd

iti
on

al
 p

ro
ce

ss
in

g
se

rv
ic

es

(t
em

po
ra

ry
 o

r
pe

rm
an

en
t)

 e
.g

. v
ia

cl

ou
d

se
rv

ic
es

 o
r

ot
he

r
in

te
rn

al

re
so

ur
ce

0
0

0
0

0
0

0
0

0
0

3.
6

P
rin

te
rs

11
00

0
0

5
55

00
0

0
0

0
55

00

3.
7

S
ca

nn
er

s
0

0
0

0
0

0
0

0
0

0

3.
8

U
P

S
0

0
0

0
0

0
0

0
0

0

3.
9

B
ac

k
up

 d
ev

ic
es

0
0

0
0

0
0

0
0

0
0

3.
10

D
is

k
st

or
ag

e
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
79

50
0

0
0

79
50

0

4
N

et
w

o
rk

 c
o

st
s

4.
1

C
ab

lin
g

or
 w

ire
le

ss
 L

A
N

, W
A

N
 o

r
ot

he
r

ne
tw

or
k

55
00

0
0

1
55

00
0

0
0

0
55

00

4.
2

R
ac

ks
0

0
0

0
0

0
0

0
0

0

4.
3

R
ou

te
rs

0
0

0
0

0
0

0
0

0
0

4.
4

S
w

itc
hi

ng
 d

ev
ic

es
0

0
0

0
0

0
0

0
0

0

4.
5

M
od

em
s

0
0

0
0

0
0

0
0

0
0

4.
6

Le
as

ed
 o

r
de

di
ca

te
d

lin
es

51
50

0
0

1
51

50
0

0
0

0
51

50

4.
7

C
om

m
un

ic
at

io
ns

 s
of

tw
ar

e
0

0
0

0
0

0
0

0
0

0

4.
8

In
te

rn
et

 a
cc

es
s

br
oa

db
an

d,

sa
te

lli
te

0
0

0
0

0
0

0
0

0
0

S
ub

 to
ta

l
0

10
65

0
0

0
10

65
0

Fi
g

.6
.1

(c
on

tin
ue

d)

86 6 Controlling Costs and Realistic Budgeting

F
or

 im
pl

em
en

ta
tio

n
ta

sk
s

e.
g.

:
sy

st
em

 in
st

al
la

tio
n,

 in
te

gr
at

io
n,

ta

ilo
rin

g,
 in

te
rf

ac
e

de
ve

lo
pm

en
t,

pr
oc

es
s

re
-e

ng
in

ee
rin

g,
 r

ep
or

t
w

rit
in

g,
 fu

nc
tio

na
l a

nd
 u

se
r

te
st

in
g,

 d
at

a
co

nv
er

si
on

 a
nd

do

cu
m

en
ta

tio
n

5.
1

P
ro

je
ct

 t
ea

m

5.
1.

1
P

ro
je

ct
 m

an
ag

er
60

0
0

0
10

60
00

10
60

00
0

0
12

00
0

5.
1.

2
P

ro
je

ct
 le

ad
er

45
0

0
0

20
90

00
20

90
00

0
0

18
00

0
5.

1.
3

S
ys

te
m

s
an

al
ys

ts
35

0
0

0
10

35
00

0
0

0
0

35
00

5.
1.

4
P

ro
gr

am
m

er
s

27
5

0
0

20
55

00
20

55
00

0
0

11
00

0
5.

1.
5

S
ys

te
m

s
te

st
er

s
25

0
0

0
20

50
00

30
75

00
0

0
12

50
0

5.
1.

6
V

en
do

r
co

ns
ul

ta
nt

s
80

0
0

0
3

24
00

3
24

00
0

0
48

00
5.

1.
7

A
dd

iti
on

al
 te

am
 r

es
ou

rc
es

 e
.g

.
co

nt
ra

ct
or

s,
 te

m
po

ra
ry

 s
ta

ff,
 o

th
er

co

ns
ul

ta
nt

s
0

0
0

0
0

0
0

0
0

0

5.
1.

8
T

ra
ve

l a
nd

 e
xp

en
se

s
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
31

40
0

30
40

0
0

61
80

0

5.
2

U
se

r
te

am

5.
2.

1
U

se
r

te
am

 le
ad

er
0

0
0

0
0

0
0

0
0

0
5.

2.
2

U
se

r
te

am
 m

em
be

rs
0

0
0

0
0

0
0

0
0

0
5.

2.
3

U
se

r
te

am
 m

an
ag

er
s

0
0

0
0

0
0

0
0

0
0

S
ub

 to
ta

l
0

0
0

0
0

5.
3

S
u

p
p

o
rt

 c
o

st
s

5.
3.

1
C

lie
nt

 m
an

ag
er

45
0

0
0

4
18

00
4

18
00

0
0

36
00

5.
3.

2
IS

 s
up

po
rt

32
5

0
0

6
19

50
6

19
50

0
0

39
00

5
L

ab
o

r
co

st
s

Fi
g

.6
.1

(c
on

tin
ue

d)

Hardware and Infrastructure 87
5.

3.
3

D
B

 a
na

ly
st

25
0

0
0

2
50

0
2

50
0

0
0

10
00

5.
3.

4
N

et
w

or
ki

ng
 s

up
po

rt
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
42

50
42

50
0

85
00

5.
4

P
ro

je
ct

 t
ea

m
 a

n
d

 o
ff

ic
e

co
st

s

5.
4.

1
T

em
po

ra
ry

 o
ffi

ce
 a

cc
om

m
od

at
io

n
0

0
0

0
0

0
0

0
0

0

5.
4.

2
F

ur
ni

tu
re

, s
ta

tio
ne

ry
 a

nd
 s

up
pl

ie
s

0
0

0
0

0
0

0
0

0
0

5.
4.

3
A

dd
iti

on
al

 te
le

ph
on

es
 a

nd
 li

ne
s

0
0

0
0

0
0

0
0

0
0

5.
4.

4
P

ro
je

ct
 to

ol
s

e.
g.

 p
ro

je
ct

m

an
ag

em
en

t s
of

tw
ar

e,
 te

st
in

g
pr

og
ra

m
s

0
0

0
0

0
0

0
0

0
0

5.
4.

5
P

ro
je

ct
 w

eb
si

te
 s

et
 u

p
an

d
m

ai
nt

en
an

ce
0

0
0

0
0

0
0

0
0

0

5.
4.

6
A

dm
in

is
tr

at
iv

e
su

pp
or

t
0

0
0

0
0

0
0

0
0

0

5.
4.

7
C

om
m

un
ic

at
io

ns
 c

os
ts

0
0

0
0

0
0

0
0

0
0

5.
4.

8
V

id
eo

 te
le

co
nf

er
en

ci
ng

0
0

0
0

0
0

0
0

0
0

5.
4.

9
P

rin
tin

g
e.

g.
 u

se
r

m
an

ua
ls

0
0

0
0

0
0

0
0

0
0

5.
4.

10
P

ro
je

ct
 in

fo
rm

at
io

n
/ e

du
ca

tio
n

/
m

ar
ke

tin
g

m
at

er
ia

ls
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
0

0
0

0

6
T

ra
in

in
g

6.
1

T
ec

hn
ic

al
 tr

ai
ni

ng
 fo

r
im

pl
em

en
ta

tio
n

te
am

 (
by

 v
en

do
r)

90
0

0
0

10
90

00
0

0
0

0
90

00

6.
2

T
ra

in
in

g
ke

y
us

er
s

(b
y

ve
nd

or
)

90
0

0
0

4
36

00
10

90
00

0
0

12
60

0

6.
3

T
em

po
ra

ry
 in

te
rn

al
 tr

ai
ni

ng

fa
ci

lit
ie

s
0

0
0

0
0

0
0

0
0

0

6.
4

T
ra

in
in

g
re

m
ai

nd
er

 o
f u

se
rs

(in

te
rn

al
ly

 o
r

by
 v

en
do

r)
0

0
0

0
0

0
0

0
0

0

6.
5

T
ra

in
in

g
m

at
er

ia
ls

12
5

0
0

10
12

50
50

62
50

0
0

75
00

6.
6

T
ra

ve
l a

nd
 e

xp
en

se
s

to
 a

tte
nd

tr

ai
ni

ng
0

0
0

0
0

0
0

0
0

0

S
ub

 to
ta

l
0

13
85

0
15

25
0

0
29

10
0

Fi
g

.6
.1

(c
on

tin
ue

d)

88 6 Controlling Costs and Realistic Budgeting

7
D

at
a

co
st

s

7.
1

D
at

a
cl

ea
n-

up
 /

de
-d

up
lic

at
io

n
0

0
0

0
0

0
0

0
0

0
7.

2
D

at
a

ar
ch

iv
in

g
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
0

0
0

0

8
O

th
er

 c
o

st
s

8.
1

Q
ua

lit
y

A
ss

ur
an

ce
0

0
0

0
0

0
0

0
0

0

8.
2

In
te

rn
al

 a
ud

it
re

vi
ew

(s
)

of
 n

ew

sy
st

em
(s

)
0

0
0

0
0

0
0

0
0

0

8.
3

P
ro

je
ct

 s
te

er
in

g
gr

ou
p

0
0

0
0

0
0

0
0

0
0

8.
4

D
ec

om
m

is
si

on
in

g
of

 le
ga

cy

sy
st

em
s

0
0

0
0

0
0

0
0

0
0

8.
5

N
et

w
or

ki
ng

 w
ith

 o
th

er

or
ga

ni
za

tio
ns

, w
ho

 a
re

 u
si

ng
 /

im
pl

em
en

tin
g

th
e

sa
m

e
sy

st
em

(s
)

-
tr

av
el

 a
nd

 e
xp

en
se

s
co

st
s

0
0

0
0

0
0

0
0

0
0

8.
6

A
tte

nd
in

g
co

nf
er

en
ce

s,
 s

of
tw

ar
e

ve
nd

or
 u

se
r

gr
ou

ps
, n

et
w

or
ki

ng
,

m
ee

tin
gs

 -
 fe

es
, t

ra
ve

l a
nd

ex

pe
ns

es
 c

os
ts

0
0

0
0

0
0

0
0

0
0

S
ub

 to
ta

l
0

0
0

0
0

9
A

llo
ca

te
d

 C
o

st
s

9.
1

A
dd

iti
on

al
 h

ea
t,

ai
r

co
nd

iti
on

in
g,

lig

ht
, p

ow
er

 fo
r

pr
oj

ec
t

im
pl

em
en

ta
tio

n
an

d
on

go
in

g
liv

e
ru

nn
in

g
0

0
0

0
0

0
0

0
0

0

9.
2

O
th

er
 a

llo
ca

te
d

bu
si

ne
ss

 c
os

ts
0

0
0

0
0

0
0

0
0

0
S

ub
 to

ta
l

0
0

0
0

0

Fi
g

.6
.1

(c
on

tin
ue

d)

Hardware and Infrastructure 89

10
C

o
n

ti
n

g
en

cy

10
.1

E
st

im
at

ed
 1

0%
 o

f t
ot

al

im
pl

em
en

ta
tio

n
co

st
s

0
20

00
0

10
00

0
0

30
00

0

T
ot

al
 im

pl
em

en
ta

tio
n

co
st

s
0

22
63

50
95

77
5

0
32

21
25

P
o

st
 Im

p
le

m
en

ta
ti

o
n

 P
ro

ce
ss

11
M

ai
n

te
n

an
ce

 c
o

st
s

11
.1

A
nn

ua
l v

en
do

r
m

ai
nt

en
an

ce
 /

se
rv

ic
e

ch
ar

ge
s

fo
r:

11
.1

.1
-

so
ftw

ar
e

12
50

0
0

0
0

0
1

12
50

0
1

12
50

0
25

00
0

11
.1

.2
-

ha
rd

w
ar

e
14

60
0

0
0

0
0

0
0

0
0

0

11
.1

.3
-

da
ta

ba
se

12
00

0
0

0
0

1
12

00
1

12
00

24
00

11
.2

In
te

rn
al

 IS
 s

up
po

rt
0

0
0

0
0

0
0

0
0

0

11
.3

D
is

as
te

r
re

co
ve

ry
 fo

r
sy

st
em

s
an

d
da

ta
 (

in
te

rn
al

ly
 o

r
ou

ts
ou

rc
e

to
 r

em
ot

e
lo

ca
tio

n)
11

00
0

0
5

55
00

2
22

00
2

22
00

99
00

T
ot

al
 o

ng
oi

ng
 c

os
ts

0
55

00
15

90
0

15
90

0
37

30
0

P
ro

je
ct

 c
o

st
 c

al
cu

la
ti

o
n

s

T
ot

al
 p

ro
je

ct
 c

os
t

37
21

25
N

um
be

r
of

 u
se

rs
 (

so
ftw

ar
e

lic
en

se
s)

90
T

ot
al

 p
ro

je
ct

 c
os

t p
er

 u
se

r
41

35

Fi
g

.6
.1

(c
on

tin
ue

d)

90 6 Controlling Costs and Realistic Budgeting

$150,000. However, allocating a cost across 3 years may have more value to the
business than let’s say a hardware alternative that would be $125,000 expensed in
the first year for a cloud!! To say the least, this can be tricky!

Going with a cloud, on the other hand, would mean a rental expense for the use
of the equipment and services, so the total cost per month is the total cost—there is
no depreciation because there is no ownership of the asset. Whether the hardware
cost can be allocated to other benefits is also questionable, but in reality it could be
very important. So let’s say the data center can be shared or leveraged for another
system. It appears that the trend suggests that companies should avoid owning and
operating their own data centers, so the cloud could be the answer.

Software

Software falls into two categories: package and developed. For the purposes of this
section I focus on the package software price or license fee. Software is licensed
because vendors typically do not sell the rights to the code, but rather the “right
to use the package” under the rights and limitations granted by the license agree-
ment. So you basically rent the right to use the software package so long as the
organization abides by the terms and conditions of the license agreement.

More important is understanding the cost of the license. The license fee can be
complex. Certainly, there will be an initial license fee to use the product—the price
of the initial purchase. Then there are certain license costs that may relate to third-
party utilities that the software package requires—like a database product (Oracle,
for instance) that may have separate license requirements or what is known as “run-
time” software, which can be programs owned by others or needed in a specific
operating system for the product to run. Often such products also carry a “per user”
cost, so the more concurrent users on the system, the higher the cost. The last com-
ponent of cost is the software maintenance fee. While this is usually presented by
the vendor as optional, it may very well not be—in the sense that if your organi-
zation does not have the maintenance you will not receive automatic upgrades, bug
fixes, and general vendor support.

In terms of pricing, software packages like any product in the market are priced
on two factors: (1) what the market will bear and (2) the competitive landscape.
The market price is very vague at times, but is usually set by the “best of breed”
in the industry. This tends to work in the same way that top luxury cars set the
price. Certainly, what organizations are willing to pay is a factor, but the leader in
a category of software typically leads the acceptable price. So the recommendation
when budgeting the cost for the package is to survey the market and review the
feature/functions of the software in the marketplace and what tends to be the price.

The competitive landscape also relates to the market but yet it is different. The
competition can upset the leaders pricing, in the same way that a new car undersells
what was perceived as the standard price within a class of car. We even see this
at the top class, where Lexus and Acura invaded the luxury class car price which
was previously dominated by the German manufacturers. The prices were lower

Customization Costs 91

and yet the quality was high. Such is sometimes true in the software industry as
well. New technologies or open source can provide pressure on the industry leaders
to lower prices—hardware does the same as we saw when the PCs began to take
market share away from the mid-range computer industry. The technology industry
has also been regulated by Moore’s law, which predicts a doubling of processing
capabilities—which again drives prices down as we saw in the PC chip market.

Other prices, like per user fees and maintenance, are more predictable. For exam-
ple, the market price for maintenance is usually 15% of the “then going” license
fees—meaning that your maintenance can increase over the years! Per user fees
often hover in the $50–100 range per user. There are also more cost options here.
For example, many software vendors offer multiple year maintenance plans. This
means if you prepay 3 years of maintenance at the time of purchase organizations
typically receive a huge discount. You can also reduce per unit costs by buying more
users than you might need at the time of purchase.

So the general recommendations are to not only budget consistent with the
leading market vendor’s license prices, but also look for newcomers if there is a
willingness in the organization to take more risk. The other components of pack-
age costs are more predictable, but decisions on multiyear maintenance or packaged
deals should be discussed during budget time with the selection committee.

Consulting Fees

Consulting fees are usually very predictable and very much regulated by the mar-
ketplace. They are driven by the laws of supply and demand and also by the type
of consultation needed. For example, when SAP implementations were very much
in demand and talent availability was low, hourly rates for SAP consultants were
high—almost $2,000 per day at the height of demand. Today they are much lower,
say $800 per day or even lower. Consulting rates for training are also lower, per-
haps $300 per day, depending on the type of training needed. However, consulting
rates can be purchased in blocks, by committing to a number of days up front orga-
nizations can expect reasonable discounts from vendors. So the suggestion here is
to check the market prices for comparison. This can be accomplished by calling
vendors, searching the Internet, or simply working with Gartner or other research
firms.

Customization Costs

There are two types of budgeting here. Vendors like to get an hourly or daily rate
for their development staff. Prices vary by level with a senior programmer going
for $125–150 per hour and QA people perhaps at $75–100 per hour. Budgeting
for customizations on an hourly basis is bad business and can become an expo-
sure to exceeding your budget. Organizations should negotiate fixed prices or “not
to exceed” costs for custom modifications. Unfortunately, organizations may not

92 6 Controlling Costs and Realistic Budgeting

know the extent of the custom modifications required until the analysis and design
is completed. There are two choices then: (1) create a budget to do the analysis
and design before determining the budget for package customizations or (2) budget
based on a limit—perhaps an upper limit amount that the organization is willing to
spend. This may not be a bad option as it sets expectations for the selection team
and user community. It might also suggest that if the package exceeds this budget
amount then perhaps it is not the right fit.

The Balanced Scorecard as a Budget Tool

Another method that can be used to validate budget vs. user needs is a manage-
ment tool called the balanced scorecard. The balanced scorecard was introduced
by Robert Kaplan and David Norton in the early 1990s as a tool to solve measure-
ment problems. An organization’s ability to develop and operationalize its intangible
assets has become more and more a critical component for success. The balanced
scorecard can also be used as a solution for measuring IT outcomes that do not
always have obvious financial costs associated with them. Furthermore, the bal-
anced scorecard is a “living” document that can be modified, as certain objectives or
measurements require change. This is a critical advantage because as I have demon-
strated, technology projects often change in scope and in objectives as a result of
internal and external factions.

The ultimate value then of the balanced scorecard in this context is to provide
a means for evaluating cost vs. need, not only for measuring completion against
set targets, but also for defining how expected transformations map onto the strate-
gic objectives of the organization. In effect it is the ability of the organization to
execute its strategy toward implementing an application software solution. Before
explaining the details of how a balanced scorecard can be applied, I offer Fig. 6.2
that shows exactly where the scorecard fits into the overall picture of implementing
package software solutions into concrete costs vs. benefits.

The generic objectives of a balanced scorecard are designed to create a strategy-
focused organization. Thus, all of the objectives and measurements should be
derived from the organization’s vision and strategy (Kaplan & Norton, 2001).
These measurements are based on the fundamental principles of any strategically
focused organization and on alignment and focus. Kaplan and Norton defined these
principles as the core of the balanced scorecard:
1. Translate the strategy to operational terms: this principle includes two major

components that allow an organization to define its strategy from a cause-and-
effect perspective using a strategy map and scorecard. Thus the strategy map and
its corresponding balanced scorecard provide the basic measurement system.

2. Align the organization to the strategy: Kaplan and Norton defined this principle
as favoring synergies among organizational departments that allow communities
of practice to have a shared view and common understanding of their roles.

3. Make strategy everyone’s everyday job: this principle supports the notion of a
learning organization that requires everyone’s participation, from the CEO to

The Balanced Scorecard as a Budget Tool 93

Strategy

Balanced

Scorecard

Mobilize Change
through Executive
Leadership

Make Strategy a
Continual Process

Make Startegy
Everyone's Job

Align
Organizational
to the Strategy

Translate the
Strategy to
Operational Terms

Fig. 6.2 Balanced scorecard
Source: Kaplan and Norton
(2001).

clerical levels. To accomplish this mission the members of the organization must
be aware of business strategy, individuals may need “personal” scorecards and a
matching reward system for accomplishing the strategy.

4. Make strategy a continual process: this process requires the linking of impor-
tant yet fundamental components including organizational learning, budgeting,
management reviews, and a process of adaptation. Much of this principle falls
into the areas of learning organization theories that link learning and strategy in
ongoing perpetual cycles.

5. Mobilize change through executive leadership: this principle stresses the need
for a strategy-focused organization that incorporates the involvement of senior
management and can mobilize the organization and provide sponsorship to the
overall process.
Using the core balanced scorecard schematic, I have modified it to operate with

package software implementations as shown in Fig. 6.3.
1. Evaluation of technology: the first step is to have an infrastructure that can

determine how technology fits into a specific strategy. Once this is targeted, the
evaluation team needs to define it in operational terms.

2. Align technology with business strategy: once technology is evaluated, it must
be integrated into the business strategy. This involves ascertaining whether the
addition of technology will change the current business strategy.

3. Make technology projects part of communities of practice: affected communi-
ties need to be strategically aware of the project. Organizational structures must
determine how they distribute rewards and objectives across departments.

4. Phased-in technology implementation: short-term and long-term project objec-
tives are based on driver and supporter life cycles. This will allow organizational
transformation phases to be linked to implementation milestones.

94 6 Controlling Costs and Realistic Budgeting

Package
Software

Balanced

Scorecard

Executive Interfaces

Phase Technology
Implementation

Make Technology
Project Part of
Communities of
Practice

Align Technology
with Business
Strategy

Evaluation of
Technology

Fig. 6.3 Modified scorecard
for the SDLC

5. Executive interface: CEO and senior managers act as executive sponsors and
as project champions. This can also be related to the team leaders across the
business lines.
The balanced scorecard ultimately provides a framework to view strategy from

four different measures:
1. Financial: ROI and risk continue to be important components of strategic

evaluation.
2. Customer: this involves the strategic part of how to create value for the

organization’s customers.
3. Internal business processes: this relates to the business processes that provide

both customer satisfaction and operational efficiency.
4. Learning and growth: this encompasses the priorities and infrastructure to sup-

port organizational transformation through the implementation of the application
software package.
The above generic balanced scorecard framework needs to be extended to address

the needs of software implementations. I propose the following adjustments:
1. Financial: requires the inclusion of indirect benefits from technology, particu-

larly as Lucas (1999) specified, in non-monetary methods of evaluating ROI.
Risk must also be factored in based on specific issues for each technology project.

2. Customer: technology-based products are integrated with customer needs and
provide direct customer package interfaces. Further, Web systems that use the
Internet are very dependent on consumer use. As such, technology can modify
organizational strategy because of its direct effect on the customer interface.

3. Internal business processes: technology requires business process reengineering
(BPR), which is the process of reevaluating existing internal norms and behaviors

The Balanced Scorecard as a Budget Tool 95

before designing a new system. This new evaluation process will addresses
customers, operational efficiencies, and cost.

4. Learning and growth: organizational learning techniques, under the umbrella of
ROD, need to be applied on an ongoing and evolutionary basis.
The major portion of the balanced scorecard strategy is in its initial design, that

is, in translating the strategy or, as in the package software scorecard, the eval-
uation of technology. During this phase a strategy map and an actual balanced
scorecards are created. This process should begin by designing a balanced score-
card that articulates the business strategy. Remember that every organization needs
to build a strategy that is unique and based on its evaluation of the external and
internal situations (Olve, Petri, Roy, and Roy, 2003). To clarify the definition of
this strategy it is easier to consider drawing the scorecard initially in the form of
a strategy map. A generic strategy map essentially defines the components of each
perspective, showing specific strategies within each one, as shown in Fig. 6.4.

Balanced scorecard, particularly using a strategy map, allows practitioners to
reconcile how changes will affect the entire plan.

Another important component of the balanced scorecard, and the reason why
I choose to use it as the measurement model for budgeting, is its applicability
to the SDLC. In particular, the learning and growth perspective shows how the
balanced scorecard ensures that learning and strategy are linked in organizational
development efforts and ultimately link back to costs vs. benefits.

Implementing balanced scorecards can be a critical part of the project, specifi-
cally in who does the work, what the roles are, and who has the responsibility for

Stronger
Finances Improve

Profitability

Perspective:

Financial

Increase
Customer

Base
More

Satisfied
Customers

Customer

Increase
Customer
Service

Increase
Efficiency

Process

Establish New
Markets

Improve Staff
Skills

Improve
Technology

Learning &
Growth

Fig. 6.4 Strategy map
Source: Olve et al. (2003).

96 6 Controlling Costs and Realistic Budgeting

operating the scorecards. While many companies use consultants to guide them, it
is important to recognize that balanced scorecards reflect the unique features and
functions of the company. As such, the rank and file need to be involved with the
design and support of balanced scorecards.

Every business unit that has a scorecard needs to have someone assigned to it,
someone accountable for it. A special taskforce may often be required to launch
the training for staff and to agree on how the scorecard should be designed and
supported. It is advisable that the scorecard be implemented using some application
software and made available on an Internet network. This provides a number of
benefits, namely:
• Reduces paper and/or local files that might get lost or not be secured
• Allows for easy “role-up” of multiple scorecards to a summary level
• Access via the Internet (using an external secured hookup); allows the scorecard

to be maintained from multiple locations. This is particularly attractive for staff
members and management who travel
According to Olve et al. (2003), there are five primary responsibilities that can

support balanced scorecards:
1. Business stakeholders: this is typically a senior manager who is responsible for

the group that is using the scorecard. This individual is an advocate of using
scorecards and requires compliance where deemed necessary. Stakeholders use
scorecards to help them manage the life cycle of a technology implementation.

2. Scorecard designers: these individuals are responsible for the look and feel of
the scorecard as well as its content. To some extent the designers set standards
for “look and feel,” text, and terminology. In certain situations the scorecard
designers have dual roles as project managers. Their use of scorecards helps
them understand how the technology will operate.

3. Information providers: these people collect, measure, and report on the data in
the balanced scorecard. This function can be implemented with personnel on the
business unit level or from a central services department. Reporting information
often requires support from IT staff, so it makes sense to have someone from IT
handle this responsibility. Information providers use the scorecard to perform the
measurement of project performance and the handling of data.

4. Learning pilots: these individuals link the scorecard to organizational learning.
This is particularly important when measuring organizational transformation and
individual development.
The size and complexity of an organization will ultimately determine the exact

configuration of roles and responsibilities that are needed to implement balance
scorecards. Perhaps, the most applicable variables are as follows:
• Competence: having individuals who are knowledgeable about the business and

its processes as well as knowledgeable about IT.
• Availability: individuals must be made available and appropriately accommo-

dated in the budget. Balanced scorecards that do not have sufficient staffing will
fail.

• Executive management support: as with most technology projects, there needs
to be a project advocate at the executive level.

References 97

• Enthusiasm: implementing balance scorecards requires a certain energy and
excitement level from the staff and their management. This is one of those
intangible, yet invaluable variables.
The balanced scorecard can ultimately become the tools that allow the manage-

ment team to (1) better determine how much the budget will be and associate that
with expected business benefits and (2) a method to measure progress and fight off
scope creep.

Problems and Exercises

1. What is the purpose of a budget? Be specific.
2. What is post-implementation?
3. Explain the difference between a regular expense and a capital expense.
4. What is the balanced scorecard? How can it assist in developing a budget?
5. How does a strategy map contribute to the understanding of everyone’s role in a

proposed new system?
6. What is scope creep? How does the balanced scorecard address the problem?
7. What is ROI? How does it relate to a controlled budget?

References

Kaplan, R. S., & Norton, D. P. (2001). The strategy-focused organization. Cambridge, MA:
Harvard University Press.

Lucas, H. C. (1999). Information technology and the productivity paradox. New York: Oxford
University Press.

Olve, N., Petri, C., Roy, J., & Roy, S. (2003). Making scorecards actionable: Balancing strategy
and control. New York: Wiley.

Ryan, R., & Raducha-Grace, T. (2010). The business of IT: How to improve service and lower cost.
Boston: IBM Press.

7Analysis Methods and Tools

The Concept of the Logical Equivalent

The primary mission of an analyst or systems designer is to extract the physical
requirements of the users and convert them to software. All software can trace its
roots to a physical act or a physical requirement. A physical act can be defined as
something that occurs in the interaction of people, that is, people create the root
requirements of most systems, especially those in business. For example, when
Mary tells us that she receives invoices from vendors and pays them 30 days later,
she is explaining her physical activities during the process of receiving and pay-
ing invoices. When the analyst creates a technical specification, which represents
Mary’s physical requirements, the specification is designed to allow for the transla-
tion of her physical needs into an automated environment. We know that software
must operate within the confines of a computer, and such systems must function
on the basis of logic. The logical solution does not always treat the process using
the same procedures employed in the physical world. In other words, the software
system implemented to provide the functions, which Mary does physically, will
probably work differently and more efficiently than Mary herself. Software, there-
fore, can be thought of as a logical equivalent of the physical world. This abstraction,
which I call the concept of the logical equivalent (LE), is a process that analysts must
use to create effective requirements of the needs of a system. The LE can be com-
pared to a schematic of a plan or a diagram of how a technical device works. At the
heart of any SDLC success is the ability to understand the user’s needs.

The success ratio for creating a concise and accurate schematic of the system,
whether for package software or developed in-house, will be directly proportional
to how well you master the concept of the logical equivalent. Very often require-
ments are developed by analysts using various methods that do not always contain a
basis for consistency, reconciliation, and maintenance. There is usually far too much
prose used as opposed to specific diagramming standards that are employed by engi-
neers. After all, we are engineering a system through the development of software

99A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_7, © Springer-Verlag London Limited 2012

100 7 Analysis Methods and Tools

applications. The most critical step in obtaining the LE is the understanding of the
process of functional decomposition. Functional decomposition is the process of
finding the most basic parts of a system, like defining all the parts of a car so that it
can be built. It would be possible not from looking at a picture of the car, but rather
at a schematic of all the functionally decomposed parts. Developing and engineering
software are no different.

Below is an example of an analogous process using functional decomposition
with its application to the LE:

In obtaining the physical information from the user, there are a number of mod-
eling tools that can be used. Each tool provides a specific function to derive the
LE. The word “derive” has special meaning here. It relates to the process of long
division or the process or formula we apply when dividing one number by another.
Consider the following example:

256 remainder 4 } Result or Answer
5 1284 } Problem to Solve

10
284
25 } Formula applied to produce result or answer
34
30

4

The above example shows the formula that is applied to a division problem. We
call this formula long division. It provides the answer, and if we change any portion
of the problem, we simply reapply the formula and generate a new result. Most
importantly, once we have obtained the answer, the value of the formula steps is
only one of documentation. That is, if someone questioned the validity of the result,
we could show them the formula to prove that the answer was correct (based on the
input).

Now let us apply long division to obtain the LE via functional decomposition.
The following is a result of an interview with Joe, a bookkeeper, about his physical
procedure for handling bounced checks.

Joe the bookkeeper receives bounced checks from the bank. He fills out a
Balance Correction Form and forwards it to the Correction Department so that
the outstanding balance can be corrected. Joe sends a bounced check letter to
the customer requesting a replacement check plus a $15.00 penalty (this is
now included as part of the outstanding balance). Bounced checks are never
redeposited.

The appropriate modeling tool to use in this situation is a data flow diagram
(DFD). A DFD is a tool that shows how data enter and leave a particular process.

The Concept of the Logical Equivalent 101

The process we are looking at with Joe is the handling of the bounced check. A
DFD has four possible components:

Process: This denotes the name of the actual
function being performed. A valid
processis one in which data is
transformed from one form to another.

Data Flow: This represents data entering or leaving a
process, external or data store. The
arrow denotes direction of the flow. A
data flow is sometimes called “data-in-
motion.”

Data Store: Stored data usually kept in a file. It
represents data that can be accessed from
a specific area. A data store is sometimes
called “data-at-rest.”

External: A provider or user of the data that is not
part of the system. It therefore
represents a boundary.

The LE of Joe’s procedure using DFD tools is shown in Fig. 7.1.
Figure 7.1 shows that bounced checks arrive from the Bank, the Account Master

file is updated, the Correction Department is informed, and Customers receive a
letter. The Bank, Correction Department, and Customers are considered “outside”

Customer

Correction
Department

D Account File

Bank

P1
Handle

Bounced
Checks Letter

Correction Form

Bounced Check

Fig. 7.1 Data flow diagram for handling bounced checks

102 7 Analysis Methods and Tools

the system and are therefore represented logically as Externals. This diagram is
considered to be at the first level or “Level 1” of functional decomposition. You will
find that all modeling tools employ a method to functionally decompose. DFDs use
a method called “Leveling.”

The question is whether we have reached the most basic parts of this process or
should we level further. Many analysts suggest that a fully decomposed DFD should
have only one data flow input and one data flow output. Our diagram currently
has many inputs and outputs and therefore it can be leveled further. The result of
functionally decomposing to the second level (Level 2) is shown in Fig. 7.2.

Notice that the functional decomposition shows us that Process 1: Handling
Bounced Checks is really made up of two subprocesses called 1.1, Update Balance
and 1.2, Send Letter. The box surrounding the two processes within the Externals
reflects them as components of the previous or parent level. The double-sided arrow
in Level 1 is now broken down to two separate arrows going in different direc-
tions because it is used to connect Processes 1.1 and 1.2. The new level is more
functionally decomposed and a better representation of the LE.

Once again we must ask ourselves whether Level 2 can be further decomposed.
The answer is yes. Process 1.1 has two outputs to one input. On the other hand,
Process 1.2 has one input and one output and is therefore complete. Process 1.2 is
said to be at the Functional Primitive, a DFD that cannot be decomposed further.
Therefore, only Process 1.1 will be decomposed.

Let us decompose Process 1.1 as shown in Fig. 7.3.
Process 1.1 is now broken down into two subprocesses: 1.1.1, Update Account

Master and 1.1.2, Inform Correction Department. Process 1.1.2 is a Functional
Primitive since it has one input and one output. Process 1.1.1 is also considered
a Functional Primitive because the “Bounced Check Packet” flow is between the
two processes and is used to show connectivity only. Functional decomposition is at
Level 3 and is now complete.

P1.2
Send
Letter

P1.1
Update
Balance

1. Handle Bounced Checks

Bank

D Account File

Correction
Department

Customer

Bounced Check
Correction Form

Letter

Fig. 7.2 Level 2 data flow diagram for handling bounced checks

The Concept of the Logical Equivalent 103

P1.1.2
Inform

Correction
Department

1.1. Update Balance

Bank

D Account File

Correction
Department

Bounced Check Packet

Bounced Check

Correction Form

P1.1.1
Update
Account
Master

Fig. 7.3 Level 3 data flow diagram for handling bounced checks

The result of functional decomposition is shown in Fig. 7.4.
As in long division, only the complete result, represented in Fig. 7.4, is used

as the answer. The preceding steps are formulas that we use to get to the low-
est, simplest representation of the logical equivalent. Levels 1–3 are used only for
documentation of how the final DFD was determined.

The logical equivalent is an excellent method that allows analysts and systems
designers to organize information obtained from users and to systematically derive
the most fundamental representation of their process. It also alleviates unnecessary
pressure to immediately understand the detailed flows and provides documentation
of how the final schematic was developed.

Customer

P
1.2 Send

Letter

P1.1.2
Inform

Correction
Department

P1.1.1
Update
Account
Master

Bank

D Account File

Correction
Department

Letter
Bounced Check Packet

Bounced Check

Correction Form

Fig. 7.4 Functionally decomposed Level 3 data flow diagram for handling bounced checks

104 7 Analysis Methods and Tools

Tools of Structured Analysis

Now that we have established the importance and goals of the logical equivalent,
we can turn to a discussion of the methods available to assist the analyst. These
methods serve as the tools to create the best models in any given situation and thus
the most exact logical equivalent. The tools of the analyst are something like those
of a surgeon, who uses only the most appropriate instruments during an operation.
It is important to understand that the surgeon is sometimes faced with choices about
which surgical instruments to use; particularly with new procedures, there is some-
times disagreement among surgeons about which instruments are the most effective.
The choice of tools for analysis and data processing is no different; indeed, it can
vary more and be more confusing. The medical profession, like many others, is
governed by its own ruling bodies. The American Medical Association and the
American College of Physicians and Surgeons, as well as state and federal regu-
lators, represent a source of standards for surgeons. Such a controlling body does
not exist in the data processing industry, nor does it appear likely that one will arise
in the near future. Thus, the industry has tried to standardize among its own lead-
ers. The result of such efforts has usually been that the most dominant companies
and organizations create standards to which others are forced to comply. For exam-
ple, Microsoft has established itself as an industry leader by virtue of its software
domination. Here, Might is Right!

Since there are no real formal standards in the industry, the analysis tools dis-
cussed here will be presented on the basis of both their advantages and their
shortcomings. It is important then to recognize that neither analysis tool (or method-
ology for that matter) can do the entire job, nor is any perfect at what it does. To
determine the appropriate tool, analysts must fully understand the environment,
the technical expertise of users, and the time constraints imposed on the project.
By “environment” we mean the existing system and technology, computer opera-
tions, and the logistics—both technically and geographically—of the new system.
The treatment of the user interface should remain consistent with the guidelines
discussed in Chapter 2.

The problem of time constraints is perhaps the most critical of all. The tools you
would ideally like to apply to a project may not fit the time frame allotted. What
happens, then, if there is not enough time? The analyst is now faced with selecting
a second choice tool that undoubtedly will not be as effective as the first one would
have been. There is also the question of how tools are implemented, that is, can a
hybrid of a tool be used when time constraints prevent full implementation of the
desired tool.

Making Changes and Modifications

Within the subject of analysis tools is the component of maintenance modeling or
how to apply modeling tools when making changes or enhancements to an existing
product. Maintenance modeling falls into two categories:

Making Changes and Modifications 105

1. Pre-modeled: where the existing system already has models that can be used to
effect the new changes to the software.

2. Legacy system: where the existing system has never been modeled; any new
modeling will therefore be incorporating analysis tools for the first time.

Pre-modeled

Simply put, a pre-modeled product is already in a structured format. A structured
format is one that employs a specific format and methodology such as the data flow
diagram.

The most challenging aspects of changing pre-modeled tools are
1. keeping them consistent with their prior versions and
2. implementing a version control system that provides an audit trail of the analy-

sis changes and how they differ from the previous versions. Many professionals
in the industry call this version control; however, care should be taken in speci-
fying whether the version control is used for the maintenance of analysis tools.
Unfortunately, version control can be used in other contexts, most notably in
the tracking of program versions and software documentation. For these cases,
special products exist in the market which provide special automated “version
control” features. We are not concerned here with these products but rather with
the procedures and processes that allow us to incorporate changes without losing
the prior analysis documentation. This kind of procedure can be considered con-
sistent with the long division example in which each time the values change,
we simply reapply the formula (methodology) to calculate the new answer.
Analysis version control must therefore have the ability to take the modifica-
tions made to the software and integrate them with all the existing models as
necessary.

Being Consistent
It is difficult to change modeling methods and/or CASE tools in the middle of the
life cycle of a software product. One of our main objectives then is to try avoiding
doing so. How? Of course, the simple answer is to select the right tools and CASE
software the first time. However, we all make mistakes, and more importantly, there
are new developments in systems architecture that may make a new CASE product
attractive. You would be wise to foresee this possibility and prepare for inconsistent
tools implementation. The best offense here is to:
• ensure that your CASE product has the ability to transport models through an

ASCII file or cut/paste method. Many have interfaces via an “export” function.
Here, at least, the analyst can possibly convert the diagrams and data elements to
another product.

• keep a set of diagrams and elements that can be used to establish a link going for-
ward, that is, a set of manual information that can be re-input to another tool. This
may be accomplished by simply having printed documentation of the diagrams;
however, experience has shown that it is difficult to keep such information up to

106 7 Analysis Methods and Tools

date. Therefore, the analyst should ensure that there is a procedure for printing
the most current diagrams and data elements.
Should the organization decide to use different tools, e.g., process dependency

diagrams instead of data flow diagrams, or a different methodology such as crow’s
foot method in entity relational diagramming, then the analyst must implement a
certain amount of reengineering. This means mapping the new modeling tools to
the existing ones to ensure consistency and accuracy. This is no easy task, and
it is strongly suggested that you document the diagrams so you can reconcile
them.

Version Control
This book is not intended to focus on the generic aspects of version control; how-
ever, structured methods must have audit trail. When a new process is changed, a
directory should be created for the previous version. The directory name typically
consists of the version and date such as xyz1.21295, where xyz is the name of the
product or program, 1.2 the version, and 1295 the version date. In this way previous
versions can be easily recreated or viewed. Of course, saving a complete set of each
version may not be feasible or may be too expensive (in terms of disk space, etc.).
In these situations, it is advisable to backup the previous version in such a manner
as to allow for easy restoration. In any case, a process must exist, and it is crucial
that there be a procedure to do backups periodically.

Legacy Systems

Legacy systems usually reside on mainframe computers and were developed
using 3GL1 software applications, the most typical being COBOL. Unfortunately,
few of these systems were developed using structured tools. Without question,
these are the most common systems undergoing change today in many orga-
nizations. All software is composed of two fundamental components: processes
and data. Processes are the actual logic and algorithms required by the sys-
tem. Data, on the other hand, represent the information that is stored and used
by the processes. The question for the analyst is, how to obtain the equivalent
processes and data from the legacy system? Short of considering a complete
rewrite, there are two basic approaches, namely, the data approach and the process
approach.

The Data Approach
Conversion of legacy systems for purposes of structured changes requires the mod-
eling of the existing programs to allow for the use of analysis tools. The first

1 3GL refers to Third Generation Language. These programming languages belong to a family of
design that typically uses compilers to transform a higher-level language into assembly code for
the target computer.

Making Changes and Modifications 107

step in this endeavor is the modeling of the existing files and their related data
structures. Many 3GL applications may not exist in a relational or other database
format. In either case, it is necessary to collect all of the data elements that exist
in the system. To accomplish this, the analyst will typically need a conversion
program that will collect the elements and import them into a CASE tool. If the
data are stored in a relational or database system, this can be handled through
many CASE products via a process known as reverse engineering. Here, the CASE
product will allow the analyst to select the incoming database, and the product
will then automatically import the data elements. It is important to note that these
reverse engineering features require that the incoming database is SQL (structured
query language) compatible. Should the incoming data file be of a non-database
format, i.e., a flat file,2 then a conversion program will need to be used. Once
again, most CASE tools will have features that will list the required input data
format.

Figure 7.5 is a sample of the reengineering capabilities of a CASE tool.

Fig. 7.5 Reverse engineering using a CASE product

2 A file consisting of records of a single record type, in which there is no embedded structure infor-
mation governing relationships between records. Microsoft Press, Computer Dictionary, Second
Edition, p. 169.

108 7 Analysis Methods and Tools

Once the data have been loaded into the CASE product, the various data models
can be constructed. This process will be discussed further in Chapter 8.

Although we have shown above a tool for loading the data, the question still
remains, How do we find all the data elements? Using COBOL as an example, one
could take the following steps:
1. Identify all of the file description (FD) tables in the COBOL application pro-

grams. Should they exist in an external software product like Librarian, the
analyst can import the tables from that source. Otherwise the actual file tables
will need to be extracted and converted from the COBOL application program
source. This procedure is not difficult; it is simply another step that typically
requires conversion utilities.

2. Scan all working storage sections (see Fig. 7.6) for data elements that are not
defined in the file description section. This occurs very often when COBOL
programmers do not define the actual elements until they are read into a work-
ing storage section of the program. This situation, of course, requires further
research, but it can be detected by scanning the code.

3. Look for other data elements that have been defined in working storage that
should be stored as permanent data. Although this can be a difficult task, the
worst case scenario would involve the storing of redundant data.

4. Once the candidate elements have been discovered, ensure that appropriate
descriptions are added. This process allows the analyst to actually start defining
elements so that decisions can be made during logical data modeling.

The Process Approach
The most effective way to model existing programs is the most direct way, that
is, the old-fashioned way: start reading and analyzing the code. Although this
approach may seem very crude, it is actually tremendously effective and produc-
tive. Almost all programming languages contain enough structure to allow for
identification of input and output of files and reports. By identifying the data
and reports, the analyst can establish a good data flow diagram as shown in
Fig. 7.7.

WORKING-STORAGE SECTION.
01 PAYROLL-RECORD.

05 NAME.
10 INITIAL-1 PIC X.
10 LAST-NAME PIC X(20).

05 DATE-OF-HIRE.
10 MONTH-OF-HIRE PIC 99.
10 DAY-OF-HIRE PIC 99.
10 YEAR-OF-HIRE PIC 99.

05 PAY-NUMBER PIC 9(6).

Fig. 7.6 Working storage section of a COBOL program

Making Changes and Modifications 109

DATA DIVISION.
FILE SECTION.
FD PAYROLL-FILE

LABEL RECORDS ARE OMITTED.
01 PAYROLL-RECORD.

05 I-PAYROLL-NUMBER PIC X(5).
05 I-NAME PIC X(20).
05 I-HOURS-WORKED PIC 99V9.
05 FILLER PIC XXX.
05 I-PAYRATE PIC 99V999.
05 I-DEPENDENTS PIC 99.
05 FILLER PIC X(20).

FD REPORT-FILE
LABEL RECORDS ARE OMITTED.

01 REPORT-RECORD.
05 O-PAYROLL-NUMBER PIC X(5).
05 FILLER PIC XX.
05 O-NAME PIC X(20).
05 FILLER PIC XX.
05 O-HOURS-WORKED PIC 99.9.
05 FILLER PIC XX.
05 O-PAYRATE PIC 99.999.
05 FILLER PIC XX.
05 O-DEPENDENTS PIC 99.
05 FILLER PIC XX.
05 O-GROSS-PAY PIC 999.99.
05 FILLER PIC XX.
05 O-TAX PIC 999.99.
05 FILLER PIC XX.
05 O-NET-PAY PIC 999.99.

Fig. 7.7 Input data and report layouts of a COBOL program

Figure 7.7 shows two file description (FD) tables that are defined in a COBOL
program. The first table defines the input file layout of a payroll record and the
second is the layout of the output payroll report. This is translated into a DFD as
shown in Fig. 7.8.

P1
Produce
Payroll
Report

D Payroll

D Payroll Report

Fig. 7.8 Translated COBOL
file descriptions into a data
flow diagram

110 7 Analysis Methods and Tools

In addition, depending on the program language, many input and output data and
reports must be defined in the application code in specific sections of the program.
Such is true in COBOL and many other 3GL products. Furthermore, many 4GL
products force input and output verbs to be used when manipulating databases. This
is very relevant to any products that use embedded SQL to do input/output. The
main point here is that you can produce various utility programs (“quick and dirty,”
as they call them) to enhance the accuracy and speed of identifying an existing
program’s input and output processing.

Once the flows in the data flow diagram are complete, the next step is to define the
actual program logic or what is typically called the process specifications (discussed
later in this chapter). Once again there is no shortcut to save you going through the
code program by program. There are some third-party software tools on the market
that can provide assistance, but these tend to be very programming language spe-
cific. Although the manual method may seem overwhelming, it can be accomplished
successfully and will often provide great long-term benefits. Many companies will
bring in part-time college interns and other clerical assistance to get this done. It
should be noted that a CASE tool is almost always required to provide a place to
document logic. This is especially important if the CASE tool will be used to gen-
erate actual program code. Further specifics regarding analyzing legacy systems are
discussed in Chapter 9.

Specification Formats

An ongoing challenge for many IS and software firms is the question: What is a
good specification? Many books written about analysis tools tend to avoid answer-
ing this question directly. When addressing the quality of a process specification, we
must ultimately accept the inevitable prognosis that we can no longer be exclusively
graphical. Although Yourdon and DeMarco3 argued that structured tools needed
to be graphical, the essence of a specification is in its ability to define the algo-
rithms of the application program itself. It is therefore impossible to avoid writing
a form of pseudocode. Pseudocode is essentially a generic representation of how
the real code must execute. Ultimately, the analyst must be capable of developing
clear and technically correct algorithms. The methods and styles of process speci-
fications are outlined in the following pages. The level of technical complexity of
these specifications varies based on a number of issues:
1. The technical competence of the analyst. Ultimately, the analyst must have the

ability to write algorithms to be most effective.
2. The complexity of the specification itself. The size and scope of specifications

will vary and as a result so will the organization of the requirements.

3 Yourdon, Ed, Modern Structured Analysis and DeMarco, Tom, Structured Analysis and System
Specification focused on the importance of using graphic diagrams wherever possible.

Specification Formats 111

3. The type of the specifications required. There are really two levels of spec-
ifications: business and programming. The business specification is very
prose-oriented and is targeted for review by a non-technical user. Its main pur-
pose is to gain confirmation from the user community prior to investing in the
more specific and technical programming specification. The programming spec-
ification, on the other hand, needs to contain the technical definition of the
algorithms and is targeted for technical designers and programmers.

4. The competence of the programming staff as well as the confidence that the
analyst has in that staff. The size and capabilities of the programming resources
will usually be directly proportional to the emphasis that the analyst will need to
place on the specifics and quality needed for a process specification.
Although the alternative techniques for developing a process specification are

further discussed in Chapter 3, Fig. 7.9 should put into perspective the approach to
decide the best format and style of communication. It is important to understand
that overlooking the process specification and its significance to the success of the
project can have catastrophic effects on the entire development effort. Figure 7.9
reflects the type of specification suggested based on the technical skills of the
users.

Figures 7.10 and 7.11 are sample business and programming specifications,
respectively, that depict the flow from a user specification to the detailed program
logic.

High-Level Non-Technical
Users

Technically Literate
Users

Business Specification in
Prose

Business Specification in
Prose

No need for separate Business
Specification

Do not show Programming
Specification

Show and review
Programming Specification

Incorporate Business Spec with
Programming Specification

Very Technical Users or MIS
Personnel

Fig. 7.9 Types of process specifications based on user computer literacy

112 7 Analysis Methods and Tools

Client:
XYZ Corporation

Date: 9/5/11

Application:
Operations Database

Supersedes:

Subject:
Contact Management

Author:
 A. Langer

Process:
Overview - Business Spec

Page:
1 of 2

Overview

Contact General Information:

The Database must allow for the centralization of all the contacts handled by all the departments
in XYZ.
The database and screens will be focused on the following information component groupings:

Basic Information
This is the minimum data requirement and includes such elements as Name, Title, Organization,
Phone, Fax, Address, Country, etc.

Contact Profile Information
Further qualification and related elements. Relations include:

•
•
•
•
•
•
•

department
type of client
nature of client (primary, technical)
interest of prospect
importance of client
memberships (FTUG)
FT employee

This is a Business Specification which
reflects the overall requirements in prose
format. Its focus is to provide the user who
is not technical with a document that they
can authorize. This Business Specification
should then point to the detailed
programming logic that is shown below.

The Contact Management Process will allow users to add, modify or delete specific contacts.
Contacts will be linked to various tables including Company. A Contact refers to a person who is
related to XYZ for business reasons. It can be a Client, a Vendor, a consultant, a person involved
in a negotiation, etc.

Fig. 7.10 Sample business specification

Problems and Exercises 113

Client: XYZ Company Date: 9/15/11
Application: Contact Management Supersedes: 9/5/11
Subject: Program Specification Detail Author: A. Langer
Spec-ID FTCM01 - Add/Modify Screen Processing Page: 1 of 1

Process Flow Description:

 “ Access Denied, not eligible to modify, Department Restriction”

If Security authorized, the Add/Modify Button will activate the following business rules:

If Contact-ID (cntid) not blank
Find match and replace entered data into record
If no match display “Invalid Contact-ID” and refresh cursor

If Contact-ID (cntid) Blank and Last-Name (cntlname) Blank then
Display “ Contact-ID or Last-Name must be entered”
Place Cursor at Contact-ID (cntid) entry.

If Contact-ID (cntid) Blank and Last-Name (cntlname) + First-Name (cntfname) is Duplicate
Display Window to show matches so that user can determine if contact already in
system
If user selects the Add Anyway button

assume new contact with same name and assign new Contact-ID (cntid)
else

upon selection bring in existing data and close window.
Else

Create new record with all new information fields and assign Contact-ID (cntid)

If Company button activated
Prompt user for Company-ID (cmpcd) and/or Company-Name (cmpna)
If duplicate

link foreign-key pointer to matched company
else

add Company-Name (cntcmpna) to Contact Table only
Display “You must use Company Screen to Link, Company Master File Not
Updated”

This area actually states
the algorithm required by
the program. It is in a
format called Pseudocode”
meaning “false code.”
This type of logic resembles
Cobol format.

The user will input information in the top form. At a minimum, at least the Last Name or Contact ID will
be entered. The system must check a Security indicator prior to allowing a user to modify a Contact. The
Security will be by Department or Everyone. Therefore, if the Modify button is selected and the user is
restricted by a different department, Display:

Fig. 7.11 Sample programming specification

Problems and Exercises

1. Describe the concept of the logical equivalent as it relates to defining the
requirements of a system.

2. What is the purpose of functional decomposition? How is the leveling of a DFD
consistent with this concept?

3. How does long division depict the procedures of decomposition? Explain.
4. What is a legacy system?

114 7 Analysis Methods and Tools

5. Processes and data represent the two components of any software application.
Explain the alternative approaches to obtain process and data information from
a legacy system.

6. What is reverse engineering? How can it be used to build a new system?
7. Why is analysis version control important?
8. Explain the procedures for developing a DFD from an existing program.
9. What is the purpose of a process specification? Explain.

10. Outline the differences between a business specification and a programming
specification. What is their relationship, if any?

Part II

Development Architecture

8Creating Requirement Documents Using
Analysis Tools

Chapter 7 discussed the concept of the logical equivalent, justifying and defining it
by showing a functional decomposition example using data flow diagrams. In this
section, we will expand upon the capabilities of the DFD by explaining its purpose,
advantages, and disadvantages (described later as the good, the bad, and the ugly)
and most important: how to draw and use it.

Purpose

Yourdon’s original concept of the DFD was that it was a way to represent a pro-
cess graphically. A process can be defined as a vehicle that changes or transforms
data. The DFD therefore becomes a method of showing users strictly from a logi-
cal perspective of how data travel through their function and are transformed. The
DFD should be used in lieu of a descriptive prose representation of a user’s pro-
cess. Indeed, many analysts are familiar with the frustrations of the meeting where
users attend to provide feedback on a specification prepared in prose. These speci-
fications are often long descriptions of the processes. We ask users to review it, but
most will not have had the chance to do so before the meeting, and those who have,
may not recollect all the issues. The result? Users and analysts are not in a position
to properly address the needs of the system, and the meeting is less productive than
planned. This typically leads to more meetings and delays. More importantly, the
analyst has never provided an environment in which the user can be walked through
the processes. Conventional wisdom says that people remember 100% of what they
see, but only 50% of what they read. The graphical representation of the DFD can
provide users with an easily understood view of the system.1

The DFD also establishes the boundary of a process. This is accomplished with
two symbols: the terminator (external) and the data store. As we will see, both
represent data that originate or end at a particular point.

1 Yourdon (1989, pp. 134–135).

117A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_8, © Springer-Verlag London Limited 2012

118 8 Creating Requirement Documents Using Analysis Tools

The DFD also serves as the first step toward the design of the system blueprint.
What do we mean by a blueprint? Let us consider the steps taken to build a house.
When we want to build a house, the first step is to contact a professional who knows
how to do design. We call this individual an architect. The architect is responsi-
ble for listening to the homebuilder and drawing a conceptual view of the house
that the homebuilder wants. The result is typically two drawings. The first is a
prototype drawing of the house, representing how the house will appear to the home-
builder. The second is the blueprint which represents the engineering requirements.
Although the homebuilder may look at the blueprint, it is meant primarily for the
builder or contractor who will actually construct the house. What has the architect
accomplished? The homebuyer has a view of the house to verify the design, and the
builder has the specifications for construction.

Let us now translate this process to that of designing software. In this scenario,
the analyst is the architect and the user is the homebuyer. The meeting between the
architect and the homebuyer translates into the requirements session which will ren-
der two types of output: a business requirements outline and prototype of the way the
system will function and a schematic represented by modeling tools for program-
mers. The former represents the picture of the house and the latter the blueprint for
the builder. Designing and building systems, then, is no different conceptually from
building a house. The DFD is one of the first—if not the first—tools that the ana-
lyst will use for drawing graphical representations of the user’s requirements. It is
typically used very early in the design process when the user requirements are not
clearly and logically defined.

Figures 8.1 and 8.2 show the similarities between the functions of an architect
and those of an analyst.

How do we begin to construct the DFD for a given process? The following five
steps serve as a guideline:
1. Draw a bubble to represent the process you are about to define.
2. Ask yourself what thing(s) initiate the process: what is coming in? You will find

it advantageous to be consistent in where you show process inputs. Try to model
them to the left of the process. You will later be able to immediately define your

Designing the House

Drawing Architect Blueprint

Fig. 8.1 The interfaces required to design and build a house

Purpose 119

Designing the System

Customer

Correction
Department

D Account
File

Bank

P1
Handle

Bounced
Checks Letter

Correction Form

Bounced Check

Prototype Analyst DFD

Fig. 8.2 The interfaces required to design and build a system

process inputs when looking back at your DFD, especially when using them for
system enhancements.

3. Determine the process outputs, or what things are coming out, and model them
to the right of the process as best you can.

4. Establish all files, forms, or other components that the process needs to com-
plete its transformation. These are usually data stores that are utilized during
processing. Model these items above or below the process.

5. Name and number the process by its result. For example, if a process produces
invoices, label it “Create Invoices.” If the process accomplishes more than one
event, label it by using the “and” conjunction. This method will allow you to
determine whether the process is a functional primitive. Ultimately, the name of
the process should be one that most closely associates the DFD with what the
user does. Therefore, name it what the user calls it! The number of the process
simply allows the analyst to identify it to the system and most importantly to
establish the link to its children levels during functional decomposition.
Let us now apply this procedure to the example below:

Vendors send Mary invoices for payment. Mary stamps on the invoice the date
received and matches the invoice with the original purchase order request.
Invoices are placed in the accounts payable folder. Invoices that exceed thirty
days are paid by check in two-week intervals.

Step 1: Draw the bubble (Fig. 8.3).
Step 2: Determine the inputs. In this example we are receiving an invoice from a

vendor. The vendor is considered a terminator, since it is a boundary of the input
and the user cannot control when and how the invoice will arrive. The invoice
itself is represented as a data flow coming from the vendor terminator into the
process (Fig. 8.4).

Step 3: Determine the outputs of the process. In this case the result of the process is
that the vendor receives a check for payment (Fig. 8.5).

Step 4: Determine the “processing” items required to complete the process. In this
example, the user needs to:

120 8 Creating Requirement Documents Using Analysis Tools

Fig. 8.3 A process bubble

Vendor

Vendor_Invoice

Fig. 8.4 Terminator sending
invoice to the process

Vendor

Vendor

Vendor_Check
Vendor_Invoice

Fig. 8.5 DFD with output of
check sent to vendor

• match the invoice to the original purchase order;
• create a new account payable for the invoice in a file; and
• eventually retrieve the invoice from the account payable file for payment.

Note that the purchase order file is accessed for input (or retrieval) and there-
fore is modeled with the arrow coming into the process. The accounts payable file,
on the other hand, shows a two-sided arrow because entries are created (inserted)
and retrieved (read) (Fig. 8.6). In addition, arrows to and from data stores may or
may not contain data flow names. For reasons that will be explained later in the
chapter, the inclusion of such names is not recommended.

Step 5: Name and number the process based on its output or its user definition
(Fig. 8.7).

Figure 8.7 is now a complete DFD that describes the event of the user. You
may notice that the procedures for stamping the invoice with the receipt date
and the specifics of retrieving purchase orders and accounts payable information
are not explained. These other components will be defined using other modeling
tools. Once again, the DFD reflects only data flow and boundary information of a
process.

Advantages of the DFD 121

Vendor

Vendor

D Accounts Payable
File

D Purchase Order
File

Vendor_Check

Vendor_Invoice

Fig. 8.6 DFD with interfacing data stores

P1
Record and Pay
Vendor Invoices

Vendor

Vendor

D Accounts Payable
File

D Purchase Order
File

Vendor_Check

Vendor_Invoice

Fig. 8.7 Final named DFD

The DFD above can be leveled further to its functional primitive. The conjunc-
tion in the name of the process can sometimes help analysts to discover that there
is actually more than one process within the event they are modeling. Based on the
procedure outlined in Chapter 7, the event really consists of two processes: record-
ing vendor invoices and paying vendor invoices. Therefore, P1 can be leveled as in
Fig. 8.8.

Advantages of the DFD

Many opponents of the DFD argue that this procedure takes too long. You must ask
yourself: What’s the alternative? The DFD offers the analyst several distinct advan-
tages. Most fundamentally, it depicts flow and boundary. The essence of knowing
boundary is to first understand the extent of the process prior to beginning to define

122 8 Creating Requirement Documents Using Analysis Tools

1. Record and Pay Vendor Invoices

P1.2
Pay

Invoices

P1.1
Record
Vendor
Invoices

Vendor

Vendor

D Purchase Order
File

D Accounts Payable
File

Vendor_Invoice

Vendor_Check

Fig. 8.8 Leveled DFD for record and pay invoices process

something that may not be complete or accurate. The concept is typically known as
top-down, but the effort can also be conceived as step-by-step. The analyst must first
understand the boundary and flows prior to doing anything else. The steps follow-
ing this will procedurally gather more detailed information until the specification is
complete.

Another important aspect of the DFD is that it represents a graphical display
of the process and is therefore a usable document that can be shown to both users
and programmers, serving the former as a process verification and the latter as the
schematic (blueprint) of the system from a technical perspective. It can be used
in JAD sessions and as part of the business specification documentation. Most
importantly, it can be used for maintaining and enhancing a process.

Disadvantages of the DFD

The biggest drawback of the DFD is that it simply takes a long time to create: so
long that the analyst may not receive support from management to complete it. This
can be especially true when there is a lot of leveling to be performed. Therefore,
many firms shy away from the DFD on the basis that it is not practical. The other
disadvantage of the DFD is that it does not model time-dependent behavior well,
that is, the DFD is based on very finite processes that typically have a very definable
start and finish. This, of course, is not true of all processes, especially those that
are event-driven. Event-driven systems will be treated more thoroughly when we
discuss state transition diagrams later in this chapter.

The best solution to the time-consuming leveling dilemma is to avoid it as much
as possible. That is, you should avoid starting at too high a summary level and
try to get to the functional primitive as soon as you can. If in our example, for

Components of a PFD 123

instance, the analyst had initially seen that the DFD had two processes instead of
one, then the parent process could have been eliminated altogether. This would have
resulted in an initial functional primitive DFD at Level 1. The only way to achieve
this efficiency on a consistent basis is through practice. Practice will eventually
result in the development of your own analysis style or approach. The one-in, one-
out principle of the logical equivalent is an excellent way of setting up each process.
Using this method, every event description that satisfies one-in, one-out will become
a separate functional primitive process. Using this procedure virtually eliminates
leveling. Sometimes users will request to see a summary-level DFD. In these cases
the functional primitives can be easily combined or “leveled-up.”

Process Flow Diagrams

While the data flow diagram provides the analyst with the LE of a process, it does
not provide for the sequentiality of the processes themselves. The sequential steps
of a process and the dependencies can provide an important facility to analyze the
completeness of a system. This can be particularly relevant when the information
gathered from users is suspect or may be inaccurate. A process flow diagram (PFD)
can illuminate new processes and steps that could have been missed because it
requires users to go through each phase of their system as it occurs or in an actual
sequence. Having users go through their process as it actually occurs can allow
them to remember things that they might otherwise miss or forget. Therefore, using
process flows provides another tool that can test the completeness of the interview
and LE.

Many methodologies, such as the James Martin technique, suggest that analysts
should use PFDs instead of DFDs; however, it is my opinion that both models can
coexist and actually compliment each other. This section will focus on how a process
model is implemented and balanced against a DFD.

Components of a PFD

Historically, PFDs were called flowcharts. Flowcharts, while still valuable for cer-
tain diagramming tasks, are too clumsy and detailed to be an effective and structured
modeling tool. The PFD suggested here is similar to a DFD, in that it contains pro-
cesses, externals, and data flows. However, PFDs focus more on how externals,
flows, and processes occur in relation to sequence and time. DFDs, on the other
hand, are only focused on the net inputs and outputs of flows and the disposition of
data at rest. Figure 8.9 is an example of a process flow.

Figure 8.9 shows how a PFD flows from one task to another. As with a DFD,
externals are depicted by a rectangle. Flows are labeled and represent information
in transition. Unlike DFDs, process flows do not necessarily require labeling of the
flow arrows, and the processes themselves reflect descriptively what the step in the
system is attempting to accomplish, as opposed to necessarily defining an algorithm.

124 8 Creating Requirement Documents Using Analysis Tools

Management

Marketing
Department

P3

Design
Layout

P2

Determine
Directory
Content

P1

Receive
Editorial
Services

Editorial Directory Design Process Flow

Send for Approval

Send to Design Dept

Schedule Review

Form MK2101

Fig. 8.9 Sample process flow
diagram

DFD–PFD Compared

Perhaps the most significant difference between a DFD and a process flow is in its
integration as a structured tool within the data repository. For example, a labeled
data flow from a DFD must create an entry into the data dictionary or repository.
Flow arrows from process flows do not. Furthermore, a functional primitive data
flow points to a process specification; no such requirement exists in a process flow.
Figure 8.10 represents a comparison of the editorial design process flow in DFD
format.

The DFD similarity relates to the same boundaries of externals (i.e., market-
ing and management). The DFD flows, while similar, must be defined in the
data dictionary or repository and therefore contain integrated formulas. The other
notable difference is the interface of the data store “Design Information” which
will eventually be defined as an entity and decomposed using logic data modeling
techniques.

DFD–PFD Compared 125

P1
Editorial
Directory
Design

Management

Marketing

D Design Information

Approval-Form

Form_MK2101

Fig. 8.10 PFD in DFD format

The question must be asked: what are the benefits of using a PFD and DFD? The
answer lies in the correspondence between a process rectangle and a DFD process
bubble. Process rectangles actually represent sequential steps within the DFD. It
could be related to an IF statement in pseudocode or just a statement to produce a
report or write information to a file. The PFD, in a sense, can provide a visual depic-
tion of how the process specification needs to be detailed. One functional primitive
DFD can thus be related to many process rectangles.

Based on the above analysis, therefore, a PFD can be justified as a tool in support
of validating process specifications from within a DFD. In addition, the PFD might
discover a missing link in logic that could result in the creation of a new DFD. Based
on this argument, the process flow can be balanced against a DFD and its functional
primitives. Finally, it represents the potential for providing a graphic display of cer-
tain levels of logic code. The balancing of the PFD to the DFD shown in Fig. 8.8 is
shown in Fig. 8.11.

This example provides a view of how a DFD may contain multiple process flows.
However, DFD 1.2 has a one-to-one relationship with P4 of the PFD. While P4
might be considered the same as DFD 1.2, its purpose is to describe, at a basic level,
the specific order of events that take place within the event itself. There can be an
argument made that every PFD component should represent a functional primitive
DFD. This simply is not the case and the analyst must remember that the PFD often
reflects just a graphic view of the steps (or specification) within a DFD functional
primitive. In this way the PFD serves to validate the completeness of the DFD.
Analysts should also relate each process in the PFD to a specific portion of logic in
the process specification component of the structured specification.

126 8 Creating Requirement Documents Using Analysis Tools

Vendor

Vendor

P4

Create Vendor
Check

P3

Record in
Accounts

Payable File

P2

Match
Record

P1

Record
Invoice

DFD 1.2

DFD P1.1

Check

Invoice

Fig. 8.11 PFD and DFD cross-referenced

Sequence of Implementation

The question of whether the DFD should be created before or after a PFD must be
discussed. In many ways, it can be left to the preference of the analyst. However,
it is my preference to do the DFD first. My reason for following this sequence lies
in the efficiency of creating the DFD as well as the ability to compare the DFD
children against the sequential flow of the PFD. Creating the DFD first also supports
the concept of decomposition, since the PFD will inevitably relate to the process
specification of a functional primitive DFD. While this approach seems to be easier,

Data Dictionary 127

there is certainly justification to do the PFD first, especially if an overview flow
diagram provides a means of scoping the boundaries of an engineering process.

Data Dictionary

The data dictionary (DD) is quite simply a dictionary that defines data. We have seen
that the data flow diagram represents a picture of how information flows to and from
a process. As we pick up data elements during the modeling design, we effectively
“throw” them into the data dictionary. Remember, all systems are composed of two
components: data and processes. The DD represents the data portion.

There is a generic format followed by analysts, called DD notation. The
conventional notations are listed below:

= Equivalence
+ Concatenation
[] Either/Or Boundary
/ Either/Or separator
() Optional
{ } Iterations of
∗∗ Comment

Equivalence (=):
The notion of equivalence does not express mathematical equality but rather indi-
cates that the values on the right side of the equal sign represent all the possible
components of the element on the left.

Concatenation (+):
This should not be confused with or compared to “plus”; it is rather the joining
of two or more components. For example, Last_Name + First_Name means that
these two data elements are being pieced together sequentially.

Either/Or with option separator ([/]):
Means “one of the following” and therefore represents a finite list of possible val-
ues. An example would include the definition of Country = [USA/Canada/United
Kingdom/etc.].

Optional ():
The value is not required in the definition. A very common example is middle
initial: Name = Last_Name + First_Name + (Middle_Init).

Iterations of { }:
The value between the separators occurs a specific or infinite number of times.
Examples include
1{X}5 The element “X” occurs from one to five times
1{X} The element “X” occurs from one to infinity
3{X}3 The element “X” must occur three times.

Comments (∗∗):
Are used to describe the element or point the definition to the appropriate process
specification should the data element not be definable in the DD. We will explain
this case later in this section.

128 8 Creating Requirement Documents Using Analysis Tools

Now that we have defined the components of the DD, it is important to expand
on its interface with other modeling tools, especially the DFD. If we recall the
example used earlier to describe drawing a DFD, the input data flow was labeled
“Vendor_Invoice” (see Fig. 8.4). The first DD rule to establish is that all labeled
data flow names must be defined in the DD. Therefore, the DFD interfaces with
the DD by establishing data element definitions from its labeled flows. To define
Vendor_Invoice, we look at the physical invoices and ascertain from the user the
required information needed by the system. It might typically be defined as follows:

Vendor_Invoice = Invoice_Number + Vendor_Invoice_Date +
Vendor_Invoice_Name + Vendor_Invoice_Address_Line_1 +
Vendor_Invoice_Address_Line_2 +
Vendor_Invoice_Address_Line_3 + Vendor_State + Vendor_City
+ Vendor_ Zip_Code + Vendor_Salesperson + PO_Number +
Vendor_Date_Shipped + Vendor_Shipped_Via +
Vendor_Required_Date + Vendor_Terms + 1{Item-Quantity +
Item_Description + Item_Unit_Price + Item_Amount} + Subtotal
Sales_Tax + Shipping/Handling + Invoice_Total_Due

The above example illustrates what a vendor invoice would usually contain and
what is needed to be captured by the system. Note that Vendor_Invoice is made up
of component data elements which in turn need to be defined in the DD. In addi-
tion, there is a repeating group of elements {Item-Quantity + Item_Description +
Item_Unit_Price + Item_Amount} which represents each line item that is a compo-
nent of the total invoice. Since there is no limit to the number of items that could
make-up one invoice, the upper limit of the iterations clause is left blank and there-
fore represents infinity. Figure 8.12 is a sample of how the physical invoice would
appear.

It should be noted that many of the DD names have a qualifier of “Vendor” before
the field name. This is done to ensure uniqueness in the DD as well as to document
where the data element emanated from the DFD. To ensure that all data elements
have been captured into the DD, we again apply functional decomposition, only this
time we are searching for the functional primitive of the DD entry. We will call this
functionally decomposed data element an elementary data element. An elementary
data element is therefore an element that cannot be broken down any further. Let us
functionally decompose Vendor_Invoice by looking to the right of the definition and
picking up the data elements that have not already been defined in the DD. These
elements are

Vendor_Invoice_Number = 1 { Numeric} 5
Vendor_Invoice_Date = 8 { Numeric }8
Vendor_Invoice_Name = 1 { Alphanumeric } 35
Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25
Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25
Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25

Data Dictionary 129

Precision Products
1456 Emerson St
Parsippany, NJ 07055-1254

INVOICE NO:
DATE: August 15, 2011

SALESPERSON P.O. NUMBER DATE SHIPPED SHIPPED VIA REQUIRED
DATE

TERMS

10/5/95

QUANTITY DESCRIPTION UNIT PRICE AMOUNT

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

SUBTOTAL $0.00

SALES TAX

SHIPPING & HANDLING

TOTAL DUE $0.00

To: :

Fig. 8.12 Sample invoice form

Vendor_State = **All States in USA, Self Defining
Vendor_City = 1 { Alphanumeric } 30
Vendor_Zip = 5 { Numeric } 5 + (4 {Numeric} 4)
Vendor_Salesperson = 1 { Alphanumeric } 20
PO_Number = 4 { Alphanumeric } 4
Vendor_Date_Shipped = 8 { Numeric } 8
Vendor_Shipped_Via = 1 { Alphanumeric } 10
Vendor_Required_Date = 8 { Numeric } 8
Vendor_Terms = 1 { Numeric } 3
Item_Quantity = 1 { Numeric } 5
Item_Description = 1 { Alphanumeric } 30
Item_Unit_Price = ** Dollars Self-Defining

130 8 Creating Requirement Documents Using Analysis Tools

Item_Amount = ** See Process Spec xxx
Subtotal = ** See Process Spec yyy
Sales_Tax = 1 {Numeric }3 ** Assumed Percentage
Shipping/Handling = ** Dollars Self-Defining
Invoice_Total_Due = ** See Process Spec zzz

The following rules and notations apply:
1. A self-defining definition is allowed if the data definition is obvious to the firm

or if it is defined in some general documentation (e.g., Standards and Reference
Manual). In the case of Vendor_State an alternative would be

Vendor_State = [AL/NY/NJ/CA....... etc.] for each state value.

2. Data elements that are derived as a result of a calculation cannot be defined
in the DD, but rather point to a process specification where it can be properly
identified. This also provides consistency in that all calculations and algorithms
can be found in the process specification section.

3. Typically values such as numeric, alphanumeric, and alphabetic do not require
further breakdown unless the firm allows for special characters. In that case,
having the exact values defined is appropriate.

4. An iteration definition, where the minimum and maximum limits are the same
(e.g., 8 {Numeric} 8), means that the data element is fixed (that is, must be 8 in
length).
The significance of this example is that the DD itself, through a form of func-

tional decomposition, creates new entries into the DD while finding the elementary
data element. A good rule to follow is that any data element used in defining another
data element must also be defined in the DD. The DD serves as the center for stor-
ing these entries and will eventually provide the data necessary to produce the stored
data model.

Process Specifications

Many analysts define a process specification as everything else about the process not
already included in the other modeling tools. Indeed, it must contain the remaining
information that normally consists of business rules and application logic. DeMarco
(1979) suggested that every functional primitive DFD point to a “Minispec” which
would contain that process’s application logic.2 We will follow this rule and expand
on the importance of writing good application logic. There are, of course, different
styles, and few textbooks that explain the importance to the analyst of understanding
how these need to be developed and presented. Like other modeling tools, each
process specification style has its good, bad, and ugly.

2 DeMarco, Tom, Structured analysis and system specification, pp. 85–86.

Process Specifications 131

Pseudocode

The most detailed and regimented process specification is pseudocode or
“Structured English.” Its format is designed to require the analysts to have a
solid understanding of how to write algorithms. The format is very “COBOL-like”
and was initially designed as a way of writing functional COBOL programming
specifications. The rules governing pseudocode are as follows:
• Use the Do While with an Enddo to show iteration
• Use If-Then-Else to show conditions and ensure each If has an End-If
• Be specific about initializing variables and other detail processing requirements

Pseudocode is designed to give the analyst tremendous control over the design
of the code. Take the following example:

There is a requirement to calculate a 5% bonus for employees who work on
the 1st shift and a 10% bonus for workers on the 2nd or 3rd shift. Management
is interested in a report listing the number of employees who receive a 10%
bonus. The process also produces the bonus checks.

The pseudocode would be

Initialize 10% counter = 0
Open Employee Master File
DoWhile more records

If Shift = “1” then
Bonus = Gross_Pay * .05

Else
If Shift = “2” or “3” then

Bonus = Gross_Pay * .10
Add 1 to Counter

Else
Error Condition

Endif
Endif

Enddo
Print Report of 10% Bonus Employees
Print Bonus Checks
End

The above algorithm gives the analyst great control over how the program should
be designed. For example, note that the pseudocode requires that the programmer
has an error condition should a situation occur where a record does not contain a
1st, 2nd, or 3rd shift employee. This might occur should there be a new shift that
was not communicated to the information systems department. Many programmers
might have omitted the last “If” check as follows:

132 8 Creating Requirement Documents Using Analysis Tools

Initialize 10% counter = 0
Open Employee Master File
DoWhile more records

If Shift = “1” then
Bonus = Gross_Pay * .05

Else
Bonus = Gross_Pay * .10
Add 1 to Counter

Endif
Enddo
Print Report of 10% Bonus Employees
Print Bonus Checks
End

The above algorithm simply assumes that if the employee is not on the 1st shift
then they must be either a 2nd or 3rd shift employee. Without this being specified by
the analyst, the programmer may have omitted this critical logic which could have
resulted in a 4th shift worker receiving a 10% bonus! As mentioned earlier, each
style of process specification has its advantages and disadvantages, in other words,
the good, the bad, and the ugly.

The Good:

The analyst who uses this approach has practically written the program, and thus the
programmer will have very little to do with regards to figuring out the logic design.

The Bad:

The algorithm is very detailed and could take a long time for the analyst to develop.
Many professionals raise an interesting point: Do we need analysts to be writing
process specifications to this level of detail? In addition, many programmers may be
insulted and feel that an analyst does not possess the skillset to design such logic.

The Ugly:

The analyst spends the time, the programmers are not supportive and the logic is
incorrect. The result here will be the “I told you so” remarks from programmers,
and hostilities may grow over time.

Case

“Case”3 is another method of communicating application logic. Although the tech-
nique does not require as much technical format as pseudocode, it still requires the

3 The case method should not be confused with CASE (Computer Aided Software Engineering)
products, which is software used to automate and implement modeling tools and data repositories.

Process Specifications 133

analyst to provide a detailed structure to the algorithm. Using the same example as
in the pseudocode discussion, we can see the differences in format:

Case 1st Shift
Bonus = Gross_Pay * .05

Case 2nd or 3rd Shift
Bonus = Gross_Pay * .10
Add 1 to 10% Bonus Employees

Case Neither 1st, 2nd or 3rd Shift
Error Routine

EndCase
Print Report of 10% Bonus Employees
Print Bonus Checks
End

The above format provides control as it still allows the analyst to specify the need
for error checking; however, the exact format and order of the logic are more in the
hands of the programmer. Let’s now see the good, bad, and ugly of this approach:

The Good:

The analyst has provided a detailed description of the algorithm without having to
know the format of logic in programming. Because of this advantage, CASE takes
less time than pseudocode.

The Bad:

Although this may be difficult to imagine, the analyst may miss some of the pos-
sible conditions in the algorithm, such as forgetting a shift! This happens because
the analyst is just listing conditions as opposed to writing a specification. Without
formulating the logic as we did in pseudocode, the likelihood of forgetting or
overlooking a condition check is increased.

The Ugly:

Case logic can be designed without concern for the sequence of the logic, that is,
the actual progression of the logic as opposed to just the possibilities. Thus the logic
can become more confusing because it lacks actual progressive structure. As stated
previously, the possibility of missing a condition is greater because the analyst is
not actually following the progression of the testing of each condition. There is thus
a higher risk of the specification being incomplete.

Pre-Post Conditions

Pre-Post is based on the belief that analysts should not be responsible for the details
of the logic, but rather for the overall highlights of what is needed. Therefore, the
pre-post method lacks detail and expects that the programmers will provide the

134 8 Creating Requirement Documents Using Analysis Tools

necessary details when developing the application software. The method has two
components: pre-conditions and post-conditions. Pre-conditions represent things
that are assumed true or that must exist for the algorithm to work. For example,
a pre-condition might specify that the user must input the value of the variable X.
On the other hand, the post-condition must define the required outputs as well as the
relationships between calculated output values and their mathematical components.
Suppose the algorithm calculated an output value called Total_Amount. The post-
condition would state that Total_Amount is produced by multiplying quantity and
price. Below is the pre-post equivalent of the bonus algorithm:

Pre-Condition 1:
Access Employee Master file and where 1st shift = “1”

Post-Condition 1:
Bonus is set to Gross_Pay * .05.
Produce Bonus check.

Pre-Condition 2:
Access Employee Master file and where 2nd shift = “2” or 3rd shift =“3”

Post-Condition 2:
Bonus is set to Gross_Pay * .10
Add 1 to 10% Bonus count.
Produce Bonus check and Report of all employees who receive 10%
bonuses.

Pre-Condition 3:
Employee records does not contain a shift code equal to “1”, “2”, or “3”

Post-Condition 3:
Error Message for employees without shifts = “1”, “2”, or “3”

As we can see, the above specification does not show how the actual algorithm
should be designed or written. It requires the programmer or development team to
find these details and implement the appropriate logic to handle it. Therefore, the
analyst has no real input into the way the application will be designed or the way it
functions.

The Good:

The analyst need not have technical knowledge to write an algorithm and does not
need to spend an inordinate amount of time to develop what is deemed a program-
ming responsibility. Therefore, less technically oriented analysts can be involved in
specification development.

The Bad:

There is no control over the design of the logic, and thus the opportunity for misun-
derstandings and errors is much greater. The analyst and the project are much more
dependent on the talent of the development staff.

Process Specifications 135

The Ugly:

Perhaps, we misunderstand the specification. Since the format of pre-post conditions
is less specific, there is more room for ambiguity.

Matrix

A matrix or table approach is one that shows the application logic in tabular form.
Each row reflects a result of a condition, with each column representing the compo-
nents of the condition to be tested. The best way to explain a matrix specification is
to show an example (Fig. 8.13).

Although this is a simple example that uses the same algorithm as the other
specification styles, it does show how a matrix can describe the requirements of
an application without the use of sentences and pseudocode.

The Good:

The analyst can use a matrix to show complex conditions in a tabular format. The
tabular format is preferred by many programmers because it is easy to read, orga-
nized, and often easy to maintain. Very often the matrix resembles the array and
table formats used by many programming languages.

The Bad:

It is difficult, if not impossible, to show a complete specification in matrices. The
above example supports this, in that the remaining logic of the bonus application is
not shown. Therefore, the analyst must integrate one of the other specification styles
to complete the specification.

The Ugly:

Matrices ae used to describe complex condition levels, where there are many “If”
conditions to be tested. These complex conditions often require much more detailed
analysis than shown in a matrix. The problem occurs when the analyst, feeling the
matrix may suffice, does not provide enough detail. The result: conditions may be
misunderstood by the programmer during development.

Bonus Percent Shift to be tested

5% Bonus 1st Shift

10% Bonus 2nd Shift

10% Bonus 3rd Shift

Fig. 8.13 Sample matrix specification

136 8 Creating Requirement Documents Using Analysis Tools

Pseudocode Case Pre-Post Matrix
Complex and
detailed
algorithms that
need significant
clarification.

The analyst is also
having difficulty
with defining the
logic.

Should be used
when the analyst
is very concerned
about the aptitude
of the programming
staff.

The analyst is
very sensitive to
error handling.

The application logic
is detailed but it is not
necessary to develop
the complete flow of
the process.

There is more
confidence in the
programming staff.

The analyst wants to
define all error
handling conditions,
but not to design
them.

There are a
reasonable number of
“If ” statements.

Tremendous level of
confidence in
development staff to get
the necessary
application logic detail.

The application logic is
very simple and does
not need further
clarification.

Few conditions (“If ”
statements)

No need or limited error
handling requirements.

Large number of
conditions (If
statements) with an
emphasis on lots of
conditions before the
answer is reached (i.e.,
complex If statements.

No need for error
condition checking.

Little application logic
that needs to be
further explained.

Fig. 8.14 Process specification comparisons

Conclusion:

The question must be asked again: What is a good specification? We will continue
to explore this question. In this chapter we have examined the logic alternatives.
Which logic method is best? It depends! We have seen from the examples that each
method has its advantages and shortcomings. The best approach is to be able to
use them all and to select the most appropriate one for the task at hand. To do
this effectively means clearly recognizing where each style provides a benefit for
the part of the system you are working with and who will be doing the devel-
opment work. Figure 8.14 attempts to put the advantages and shortcomings into
perspective.

State Transition Diagrams

State transition diagram (STD) was designed to model events that are time-
dependent in behavior. Another definition of the STD is that it models the
application alternatives for event-driven activities. An event-driven activity can be
defined as any activity that depends directly on the behavior of a pre-condition
which makes that event either possible or attractive. Before going any further, let’s
use an example to explain this definition further:

Mary leaves her office to go home for the day. Mary lives 20 minutes walking
distance from the office. When departing from the office building, she realizes
that it is raining very hard. Typically, Mary would walk home; however, due

State Transition Diagrams 137

1. Walk Home None Mary gets home and
does not spend money

Mary gets very wet

2. Take Subway train Must have $1.50 for Subway Mary gets home
without getting too
wet.

Mary spends money
and must be careful
for her safety when
going into the
Subway

3. Take a Taxi Must have $15.00 for the
Taxi ride

Mary gets home faster
and without getting
wet.

It’s expensive and it
may be difficult to
find a Taxi. There
could also be a lot of
traffic, resulting in
delays.

Pre-ConditionAlternative Positive Result Negative Result

Fig. 8.15 Mary’s event alternatives

to the rain, she needs to make a decision at that moment about how she will
go home. Therefore, an event has occurred during the application of Mary
walking home which may change her decision and thus change the execution
of this application.

As shown above, we have defined an event that, depending on the conditions
during its execution, may have different results. To complete the example, we must
examine or define what Mary’s alternatives are for getting home (Fig. 8.15).

The above matrix shows us the alternative activities that Mary can choose. Two
of them require a certain amount of money. All of the alternatives have positive and
negative potentials that cannot be determined until executed; therefore, the decision
to go with an alternative may depend on a calculation of probability. We sometimes
call this a calculated risk or our “gut” feeling. Is it not true that Mary will not know
whether she will be able to find a taxi until she tries? However, if Mary sees a lot of
traffic in the street and not many taxis, she may determine that it is not such a good
idea to take a taxi.

Much of the duplication of the scenario above falls into the study of artificial
intelligence (AI) software. Therefore, AI modeling may require the use of STDs.
The word “state” in STD means that an event must be in a given pre-condition
before we can consider moving to another condition. In our example, Mary is in a
state called “Going Home From the Office.” Walking, taking a train, or taking a taxi
is alternative way of getting home. Once Mary is home she has entered into a new
state called “Home.” We can now derive that walking, taking a train, or taking a taxi
are conditions that can effect a change in state, in this example leaving the office
and getting home. Figure 8.16 shows the STD for “going home.”

This STD simply reflects that two states exist and that there is a condition that
causes the application to move to the “Home” state. When using STDs, the analyst
should

Going Home From
The Office

Walk, Train or Taxi
Home

Fig. 8.16 State transition diagram for going home

138 8 Creating Requirement Documents Using Analysis Tools

1. Identify all states that exist in the system. In other words, all possible permuta-
tions of events must be defined.

2. Ensure that there is at least one condition to enter every state.
3. Ensure that there is at least one condition to leave every state.

The reasons for and approach to an STD differ greatly from those of a DFD.
A DFD should be used when modeling finite, sequential processes that have a
definitive beginning and end. We saw this situation in the previous examples in this
chapter. The STD, on the other hand, is needed when the system effectively never
ends, that is, when it simply moves from one state to another. Therefore, the ques-
tion is never whether we are at the beginning or end of the process, but rather the
current state of the system. Another example, one similar to that used by Yourdon
in “Modern Structured Analysis,” is the bank teller state diagram (Fig. 8.17).

Although you may assume that “Enter Valid Card” is the start state, an experi-
enced analyst would know better. At any time, the automated teller is in a particular
state of operation (unless it has abnormally terminated). The “Enter Valid Card”
state is in the “sleep” state. It will remain in this mode until someone creates the
condition to cause a change, which is actually to input a valid card. Notice that
every state can be reached and every state can be left. This rule establishes perhaps
the most significant difference between the DFD and STD. Therefore, a DFD should
be used for finite processes and an STD where there is ongoing processing, moving
from one status to another.

Let us now show a more complex example which emphasizes how the STD
can uncover conditions that are not obvious or were never experienced by the user.
Figure 8.18 shows matrix of states for a thermostat.

Main Menu

Insert Password

Enter Valid Card

Deposit Funds Transfer Funds InquiryWithdraw Funds

Invalid Password or "Time Out"

Invalid Card or "Time Out"Enter Valid Bank Card

Select "Withdraw"

Complete Activity

Select "Transfer"

Select "Deposit"

Valid Password

Select "Inquiry"

Fig. 8.17 Bank teller state transition diagram

State Transition Diagrams 139

Furnace Off Temperature drops below 60
degrees

Furnace On

Furnace On Temperature exceeds 70 degrees Furnace Off

Air On Temperature drops below 65
degrees

Air Off

Air Off Temperature exceeds 75 degrees Air On

Current State New StateCondition to cause a change in
State

Fig. 8.18 Thermostat states

Figure 8.19 is the STD for the states and conditions shown in Fig. 8.18.
Upon review, we notice that there are really two systems and that they do not

interface with each other. Why? Suppose, for example, that the temperature went
above 70 and that the system therefore went into the Furnace Off state, but that
the temperature nevertheless continued to increase unexpectedly. Users expect that
whenever the Furnace Off state is reached, it must be winter. In the event of a winter
heat wave, everyone would get very hot. We have therefore discovered that we must
have a condition to put the air on even if a heat wave had never occurred before in
winter. The same situation exists for the Air Off where we expect the temperature to
rise instead of falling. We will thus add two new conditions as shown in Fig. 8.20.

The STD is then modified to show how the Furnace and Air subsystems interface
(Fig. 8.21).

Air On

Air Off

Furnace On

Furnace Off

Temp < 60 Temp > 70 Temp > 75 Temp < 65

Fig. 8.19 State transition diagram based on the user-defined states

Current State New State

Furnace Off Temperature exceeds 75 degrees Air On

Air Off Temperature drops below 65

degrees

Furnace On

Condition to cause a change in
State

Fig. 8.20 Additional possible states of the thermostat

140 8 Creating Requirement Documents Using Analysis Tools

Air On

Air Off

Furnace On

Furnace Off

Temp < 60 Temp > 70 Temp > 75 Temp < 65

Temp > 75

Temp < 65

Fig. 8.21 Modified state transition diagram based on modified events

Using STDs to discover missing processes (that would otherwise be omitted or
added later) is very important. This advantage is why STDs are considered very
effective in artificial intelligence and object-oriented analysis, where the analyst is
constantly modeling event-driven, never-ending processes.

Entity Relational Diagrams

The model that depicts the relationships among the stored data is known as an entity
relational diagram (ERD). The ERD is the most widely used of all modeling tools
and is really the only method to reflect the system’s stored data.

An entity in database design is an object of interest about which data can be
collected. In a retail database application, customers, products, and suppliers might
be entities. An entity can subsume a number of attributes: product attributes might
be color, size, and price; customer attributes might include name, address, and credit
rating.4

The first step in understanding an entity is to establish its roots. Since DFDs have
been used to model the processes, their data stores (which may represent data files)
will act as the initial entities prior to implementing logical data modeling.

It is believed, for purposes of data modeling, that an entity can be simply defined
as a logical file which will reflect the data elements or fields that are components
of each occurrence or record in the entity. The ERD, therefore, shows how multi-
ple entities will interact with each other. We call this interaction the “relationship.”
In most instances, a relationship between two or more entities can exist only if
they have at least one common data element among them. Sometimes we must
force a relationship by placing a common data element between entities, just so

4 Microsoft Press, Computer Dictionary, Second Edition, pg. 149.

Entity Relational Diagrams 141

Customers
Key Data

Customer# [PK1]
Non-Key Data

Customer_Name
Customer_Address_Line1
Customer_Address_Line2
State
City
Zip

Orders
Key Data

Customer# [PK1]
Order# [PK2]
Non-Key Data

Order_Date
Description
Price
Date_Expected

Fig. 8.22 Entity relational diagram showing the relationship between the orders and customers
entities

they can communicate with each other. An ERD typically shows each entity and its
connections as shown in Fig. 8.22.

Figure 8.22 shows two entities: Orders and Customers. They have a relationship
because both entities contain a common data element called Customer#. Customer#
is depicted as “Key Data” in the Customers entity because it must be unique for
every occurrence of a customer record. It is notated as “PK1” because it is defined
as a Primary Key, meaning that Customer# uniquely identifies a particular cus-
tomer. In Orders, we see that Customer# is a Primary Key but it is concatenated
with Order#. By “concatenation,” we mean that the two elements are combined to
form a primary key. Nevertheless, Customer# still has its separate identity. The line
that joins the entities is known as the relationship identifier. It is modeled using
the “crow’s foot” method, meaning that the many relationship is shown as a crow’s
foot, shown in Fig. 8.22, going to the Order entity. The double vertical lines near
the Customer entity signify “One and only One.” What does this really mean? The
proper relationship is stated:

One and only One Customer can have One to Many Orders

In English it means that Customers must have not only placed at least one order,
but can also have placed more than one. “One and only One” really indicates that
when a Customer is found in the Order entity, the Customer must also exist in the
Customer entity. In addition, although a Customer may exist multiple times in the
Order entity, it can exist in the Customer master entity only once. This relationship is
also know as the association between entities and effectively identifies the common
data elements and the constraints associated with their relationship. This kind of

142 8 Creating Requirement Documents Using Analysis Tools

relationship between entities can be difficult to grasp, especially without benefit of
a practical application.

Problems and Exercises

1. What is a functional primitive?
2. What are the advantages and disadvantages of a data flow diagram?
3. What is meant by “leveling-up?”
4. What is the purpose of the data dictionary?
5. Define each of the following data dictionary notation symbols: =, +, [], /, (),

{ }, ∗∗.
6. What is an elementary data element? How does it compare with a functional

primitive?
7. Define the functions of a process specification. How does the process specifica-

tion interface with the DFD and the DD?
8. Compare the advantages and disadvantages of each of the following process

specification formats:
• Pseudocode
• Case
• Pre-post condition
• Matrix

9. What is an event-driven system? How does the program manager in Windows
applications represent the behavior of an event-driven system?

10. When using an STD, what three basic things must be defined?
11. What is an entity? How does it relate to a data store of a DFD ?
12. Explain the concept of an entity relational diagram.
13. What establishes a relationship between two entities?
14. Define the term “association.”

Mini-Project

You have been asked to automate the accounts payable process. During your
interviews with users you identify four major events as follows:

I. Purchase Order Flow
1. The Marketing Department sends a Purchase Order (P.O.) form for books to

the accounts payable system (APS).
2. APS assigns a P.O. # and sends the P.O.-White copy to the Vendor and files

the P.O.- Pink copy in a file cabinet in P.O.#. sequence.
II. Invoice Receipt

1. A vendor sends an invoice for payment for books purchased by APS.
2. APS sends invoice to Marketing Department for authorization.
3. Marketing either returns invoice to APS approved or back to the vendor if

not authorized.

References 143

4. If the invoice is returned to APS it is matched up against the original P.O.-
Pink. The P.O. and vendor invoice are then combined into a packet and
prepared for the voucher process.

III. Voucher Initiation
1. APS receives the packet for vouchering. It begins this process by assigning

a voucher number.
2. The Chief Accountant must approve vouchers > $5,000.
3. APS prepares another packet from the approved vouchers. This packet

includes the P.O.-Pink, authorized invoice and approved voucher.
IV. Check Preparation

1. Typist receives the approved voucher packet and retrieves a numbered blank
check to pay the vendor.

2. Typist types a two-part check (blue, green) using data from the approved
voucher and enters invoice number on the check stub.

3. APS files the approved packet with the check-green in the permanent paid
file.

4. The check is either picked up or mailed directly to the vendor.

Assignment

1. Provide the DFDs for the four events. Each event should be shown as a single
DFD on a separate piece of paper.

2. Level each event to its functional primitives.
3. Develop the process specifications for each functional primitive DFD.

References

DeMarco, T. (1979). Structured analysis and system specification. Englewood Cliffs, NJ: Prentice
Hall.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ: Prentice Hall.

9The Data

Introduction to Databases

Chapter 8 focused on application specifications as they relate to process. Using
DFDs, PFDs, state diagrams, etc., I showed how data elements are defined in the
DD. However, the process of completing the DD and building complex relational
databases has further steps. This chapter focuses on how to design databases for
use with e-commerce Web applications. The completion of the DD and the creation
of the database schematic, called the entity relational diagram, provide developers
with the data architecture component of the system. We call the process of creating
this architecture logic data modeling. The process of logic data modeling not only
defines the architecture, but it also provides the construct for the actual database,
often called the physical database. The physical database differs from its logical
counterpart in that it is subject to the rules and formats of the database product
that will be used to implement the system. This means that if Oracle is used to
implement the logical schema, the database must conform to the specific propri-
etary formats that Oracle requires. Thus, the logical model provides the first step
in planning for the physical implementation. First, we will examine the process of
building the appropriate schematic. Even if a package software product is selected,
the chances are that it will need to use a database product like Oracle. Thus, many of
the analysis and design below will be extremely important in determining the best
fit for a package.

Logic Data Modeling

Logic data modeling (LDM) is a method that examines a particular data entity and
determines what data elements need to be associated with it. There are a number
of procedures, some mathematically based, to determine how and what the ana-
lyst needs to do. Therefore, LDM only focuses on the stored data with the intent

145A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_9, © Springer-Verlag London Limited 2012

146 9 The Data

to design what can be defined as the “engine” of the system. Often this “engine”
is called the “back-end.” The design of the engine must be independent from the
process and must be based on the rules of data definition theory. Listed below are
the eight suggested steps to build the database blueprint. This blueprint is typically
called the schema, which is defined as a logical view of the database.
1. Identify data entities
2. Select primary and alternate keys
3. Determine key business rules
4. Apply normalization to 3rd Normal Form
5. Combine user views
6. Integrate with existing data models (e.g., legacy interfaces)
7. Determine domains and triggering operations
8. De-normalize as appropriate

Prior to providing concrete examples, it is necessary to define the database terms
used in this chapter. Below are the key concepts and definitions:
• Entity: an object of interest about which data can be collected. Larson and Larson

(2000) define an entity as “a representation of a real-world person, event, or
concept.” For example, in an e-commerce application, customers, products, and
suppliers might be entities. The chapter will provide a method of determining
entities from the DFD. An entity can have many data elements associated with
it, called attributes.

• Attribute: data elements are typically called attributes when they are associated
with an entity. These attributes, or cells of an entity, belong to or “depend on”
the entity.

• Key: a key is an attribute of an entity that uniquely identifies a row. A row is
defined as a specific record in the database. Therefore, a key is an attribute that
has a unique value that no other row or record can have. Typical key attributes
are “Social-Security-Number,” “Order-Number,” etc.

• Business rule: this is a rule that is assumed to be true as defined by the busi-
ness. Business rules govern the way keys and other processes behave within the
database.

• Normalization: a process that eliminates data redundancy and ensures data
integrity in a database.

• User view: the definition of the data from the perspective of the user. This means
that how a data element is used, what is its business rules, and whether it is a
key or not, depends largely on the user’s definition. It is important that analysts
understand that data definitions are not universal.

• Domains: this relates to a set of values or limits of occurrences within a data
element or attribute of an entity. An example of a domain would be STATE,
where there is a domain of 50 acceptable values (i.e., NY, NJ, and CA).

• Triggers: these are stored procedures or programs that are activated or triggered
as a result of an event at the database level. In other words, an event (insert,
delete, update) may require that other elements or records be changed. This
change would occur by having a program stored by the database product (such
as Oracle) automatically execute and update the data.

Logic Data Modeling Procedures 147

• Cardinality: this concept defines the relationship between two entities. This
relationship is constructed based on the number of occurrences or associations
that one entity has with another. For example, one customer record could have
many order records. In this example, both customer and orders are separate
entities.

• Legacy systems: these are existing applications that are in operation. Legacy
applications sometimes refer to older and less sophisticated applications
that need to be interfaced with newer systems or replaced completely (see
Chapter 10).

• Entity relational diagram: a schematic of all the entities and their relationships
using cardinal format. An entity relational diagram provides the blueprint of the
data or the diagram of the data engine.

Logic Data Modeling Procedures

The first step in LDM is to select the entities that will be used to start the normal-
ization process. If DFDs have been completed in accordance with the procedures
outlined in Chapter 3, then all data stores that represent data files become trans-
formed into data entities. This approach offers the major advantage of modeling
process before data. If DFDs or some comparable process tool is not used, then ana-
lysts must rely on the information they can obtain from the legacy systems, such as
existing data files, screens, and reports. The following example depicts how a data
store from a DFD becomes an entity. The data contained in the data store called
“Orders” are represented as an actual form containing many data elements. Thus,
this example represents a physical form translated into an LE called a data store,
which then is transformed again into an entity (Figs. 9.1 and 9.2).

Key Attributes

The next step in LDM is to select the primary and alternate keys. A primary key
is defined as an attribute that will be used to identify a record or occurrence in an
entity. The primary key, like any key attribute, contains a unique value. Often there is
more than one attribute in an entity that contains unique values. We call an attribute
that can be a primary key a candidate key attribute. This simply means that this
attribute can serve in the role of the primary key. If there is only one candidate, then
there is no issue: that candidate becomes the primary key. In the event that there
is more than one candidate attribute, then one must be selected as the primary key,
and the others will be called alternate or secondary key attributes. These alternate
key attributes provide benefit in the physical database only. This means that they
can be used to identify records in the database as an alternative should the primary
key not be known. Take the following example. Suppose that an employee entity
has two candidate keys: Social-Security-Number and Employee-ID. Employee-ID
is selected as the primary key, so Social-Security-Number becomes an alternate key.

148 9 The Data

John’s Parts, Inc

1818 West Way

New York, NY 10027

ORDER

ORDER NO: 12345

DATE: August 15, 2011

To: :
A. Langer & Assoc., Inc.
John St
Third Floor
White Plains, NY, 10963

P.O. NUMBER DATE SHIPPED SHIPPED VIA REQUIRED DATE TERMS

4R32 3/28/2001 UPS 4/1/2001 30 days

QUANTITY ITEM
ID

ITEM NAME UNIT PRICE AMOUNT

6 31 Wires 6.50 39.00

2 27 Wheel Covers 25.00 50 .00

$ 0.00

$ 0.00

$ 0.00

$ 0.00

$ 0.00

SUBTOTAL $ 89.00

SALES TAX

SHIPPING & HANDLING $ 5.50

TOTAL DUE $ 9 9.50

Fig. 9.1 Sample customer order form

In the logical entity, Social-Security-Number is treated as any other non-key
attribute; however, in the physical database, it can be used (or indexed) to find
a record. This could occur when an employee calls to ask someone in Human
Resources about accrued vacation time. The Human Resource staff would ask the
employee for their Employee-ID. If the employee did not know his/her Employee-
ID, the Human Resource staff could ask them for their Social-Security-Number

Logic Data Modeling Procedures 149

OrdersD Orders
becomes

Fig. 9.2 Transition of the
order data store into an entity

and use that information as an alternative way to locate that individual’s informa-
tion. It is important to note that the search on the primary key will be substantially
faster, because primary key searches use a method called direct access, as opposed
to index methods, which are significantly slower. This raises the question: When
there are multiple candidate-key attributes, which key attribute should be selected
as the primary key? The answer is the attribute that will be used most often to
find the record. This means that Employee-ID was selected as the primary key
attribute because the users determined that it was the field most often used to locate
employee information. Therefore, e-commerce analysts must ensure that they ask
users this question during the interview process. Figure 9.3 provides a graphic depic-
tion of the employee entity showing Employee-ID as the primary key attribute and
Social-Security-Number as a non-key attribute.

There is another type of key attribute called Foreign keys. Foreign keys provide
a way to link tables and create relationships between them. Since foreign keys are
created during the process of normalization, I will defer discussion about them to
the section on Normalization in this chapter.

Employee Master
Primary Key

Employee-ID [PK1]
Non-Key Attributes

Social-Security-Number
Empl-Name
Empl-Addr-Line1
Empl-Addr-Line2
Empl-Addr-Line3
Empl-City
Empl-State
Empl-Zip
Date-Started
Skill-Set-Code

Fig. 9.3 Primary key and alternate key attributes

150 9 The Data

Normalization

While the next step in LDM is to determine key business rules, it is easier to
explain the process of normalization first. That is, normalization occurs after defin-
ing key business rules in practice, but not when introducing the topic for educational
purposes. Therefore, key business rules will be discussed after normalization.

Normalization, without question, is the most important aspect of LDM. As
mentioned above, normalization is defined as the elimination of redundancies
in an entity and ensures data integrity. It is the latter point that is critical in
understanding the value of normalization in the design of e-commerce database
systems. Understanding the LDM process depends largely on understanding how
to implement the normalization process.

Normalization is constructed in a number of “Normal Forms.” While there are
five published Normal Forms, Normal Forms 4 and 5 are difficult to implement and
most professionals avoid them. Therefore, this book omits Normal Forms 4 and 5.
The three Normal Forms of normalization are listed below. Note that a Normal Form
is notated as “NF.”

1st NF: No repeating non-key attributes or group of non-key attributes.
2nd NF: No partial dependencies on a part of a concatenated key attribute.
3rd NF: No dependencies of a non-key attribute on another non-key attribute.

Each Normal Form is dependent on the one before it, that is, the process of
completing normalization is predicated on the sequential satisfaction of the Normal
Form preceding it. Normalization can be best explained by providing a detailed
example. Using the order form provided in Fig. 9.1, we can start the process of
normalization. Figure 9.4 shows the logical equivalent of the order form in entity
format. In this example, the primary key is Order-Number (signified by the “PK”
notation), which requires that every order have a unique Order-Number associated
with it. It should also be noted that a repeating group made up of five attributes is
shown in a separate box. This repeating group of attributes correlate to an area on
the order form, which often is referred to as an order line item. This means that each
item associated with the order appears in its own group, namely, the item identifi-
cation, its name, unit price, quantity, and amount. The customer order in Fig. 9.1
shows two items associated with the Order-Number 12345.

The process of determining compliance with normalization is to evaluate whether
each Normal Form or NF has been satisfied. This can be accomplished by testing
each NF in turn. Thus, the first question to ask is, are we in 1st NF? The answer is no
because of the existence of the repeating attributes: Item-ID, Item-Name, Quantity,
Unit-Price, and Amount or as specified above an “order line item.” In showing this
box, the example exposes the repeating group of items that can be associated with
a customer order. Another way of looking at this phenomenon is to see that within
the order, there really is another entity, which has its own key identification. Since
there is a repeating group of attributes, there is a 1st NF failure. Anytime an NF
fails or is violated, it results in the creation of another entity. Whenever there is a
1st NF failure, the new entity will always have as its primary key a concatenated

Logic Data Modeling Procedures 151

Entity Orders

Order# (PK)

Customer
Address

Customer
Name

Customer ID

Total Due

Shipping &
Handling

Sales Tax

Subtotal

Amount

Unit Price

Quantity

Item Name

Item ID

Terms

Required Date

Shipped VIA

Date Shipped

PO NumberOrder Date

REPEATING ELEMENT GROUP

Fig. 9.4 Orders entity and its associated attributes

“group” of attributes. This concatenation, or joining of multiple attributes to form
a specific value, is composed of the primary key from the original entity (Orders)
attached with a new key attribute from the repeating group of elements. The new
key must be an attribute that controls the other group of attributes. In this example,
the controlling attribute is Item-ID. After the new “key attribute” is determined, it
is concatenated with the original key attribute from the Orders entity. The remain-
ing non-key attributes will be removed from the original entity to become non-key
attributes of the new entity. This new entity is shown in Fig. 9.5.

The new entity, called Order Items, has a primary key that reflects the concate-
nation of the original key Order-Number from the entity Orders, combined with
Item-ID, which represents the controlling attribute for the repeating group. All of
the other repeating attributes have now been transferred to the new entity. The new
entity Order Items allows the system to store multiple order line items as required.
The original entity left without this modification would have limited the number of
occurrences of items artificially. For example, if the analyst/designer had defaulted
to five groups of order line items, the database would always have five occurrences
of the five attributes. If most orders, in reality, had fewer than five items, then

152 9 The Data

Order Items

Order # Item ID
(PK)

Entity Orders

Order# (PK)

PO Number

Date Shipped

Shipped VIA

Required Date

Terms

Item Name

Quantity

Unit Price

Amount

Subtotal

Sales Tax

Shipping &
Handling

Total Due

Customer ID

Customer
Name

Customer
Address

Order Date

Fig. 9.5 Orders in 1st NF

significant space would be wasted. More significant is the case where the order has
more than five items. In this case, a user would need to split the order into two phys-
ical orders so that the extra items could be captured. These two issues are the salient
benefits of attaining entities in their 1st NF. Therefore, leaving the entity Order as is
would in effect create an integrity problem.

Once the changes to the entity Orders have been completed, and the new entity
Order Item has been completed, the system is said to be a database in 1st NF. It is
important to note that the new primary key of the entity Order Items is the com-
bination of two attributes. While the two attributes maintain their independence
as separate fields of data, they are utilized as one combined value for purposes of
their role as a key attribute. For example, based on the data in the order form from
Fig. 9.1, the entity Order Items would have two records. The first record would
have the primary key of 1234531, which would be the concatenation of Order-
Number (12345) with Item-ID (31). The second record would be 1234527, which is
the same Order-Number, but concatenated with the second Item-ID (27). From an
SQL feature perspective, while the key attribute concatenates each attribute into one
address, it can be searched as separate fields. So a user could search for all the items

Logic Data Modeling Procedures 153

associated with Order 12345, by simply searching on Order Items that contain an
Order-Number = “12345.” This exemplifies the power of versatility in the relational
model. Once 1st NF has been reached, the next test must ensue, that is, testing for
compliance with 2nd NF.

Second NF testing applies only to entities that have concatenated keys. Therefore,
any entity that is in 1st NF and does not have a concatenated primary key must
already be in 2nd NF. In our example, then, the entity “Orders” is already in 2nd
NF because it is in 1st NF and does not have a concatenated primary key. The entity
Order Items, however, is in a different category. Order Items has a concatenated
primary key attribute and must be tested for compliance with 2nd NF. Second NF
requires the analyst to ensure that every non-key attribute in the entity is totally
dependent on all components of the primary key or all of its concatenated attributes.
When we apply the test, we find that the attribute “Item-Name” is dependent only
on the key attribute “Item-ID.” That is, the Order-Number has no effect or control
over the name of the item. This condition is considered a 2nd NF failure. Once
again, a new entity must be created. The primary key of the new entity is the por-
tion of the concatenated key that controlled the attribute that caused the failure. In
other words, Item-ID is the primary key of the new entity, because “Item-Name”
was wholly dependent on the attribute “Item-ID.” It is worthwhile at this time to
explain further the concept of attribute dependency. For one attribute to be depen-
dent on another infers that the controlling attribute’s value can change the value of
the dependent attribute. Another way of explaining this is to say that the controlling
attribute, which must be a key, controls the record. That is, if the Item-ID changes,
then we are looking at a different Item-Name, because we are looking at a different
Item record.

To complete the creation of the new entity, Items, each non-key attribute in the
original entity Order Items must be tested for 2nd NF violation. Note that as a result
of this testing, “Quantity” and “Amount” stay in the Order Items entity because they
are dependent on both Order-Number and Item-ID. That is, the quantity associated
with any given Order Items occurrence is dependent not only on the Item itself, but
also on the particular order it is associated with. We call this being wholly dependent
on the concatenated primary key attribute. Thus, the movement of non-key attributes
is predicated on the testing of each non-key attribute against the concatenated
primary key. The result of this test establishes the three entities shown in Fig. 9.6.

The results of implementing 2nd NF reflect that without it, a new Item (or Item-
ID) could not have been added to the database without an order. This obviously
would have caused major problems. Indeed, the addition of a new Item would have
to precede the creation of that Item with a new Order. Therefore, the new entity
represents the creation of a separate Item Master file.

Figure 9.6 represents Orders in 2nd NF. Once again, we must apply the next
test—3rd NF to complete normalization. Third NF tests the relationship between
two non-key attributes to ensure that there are no dependencies between them.
Indeed, if this dependency were to exist, it would mean that one of the non-key
attributes would, in effect, be a key attribute. Should this occur, the controlling non-
key attribute would become the primary key of the new entity. Testing this against

154 9 The Data

Items Entity

Item ID (PK)

Entity Orders

Order# (PK)

Order Items

Order # Item ID
(PK)

Customer
Address

Customer Name

Customer ID

Total Due

Shipping &
Handling

Sales Tax

Subtotal

Amount

Unit Price

Quantity

Item Name

Terms

Required Date

Shipped VIA

Date Shipped

PO NumberOrder Date

Fig. 9.6 Orders in 2nd NF

the sample entity reflects that Customer-Name and Customer-Address1 are depen-
dent on Customer-ID. Therefore, the entity Orders fails 3rd NF and a new entity
must be created. The primary key of the new entity is the non-key attribute that
controlled the other non-key attributes; in this case Customer-ID. The new entity is
called Customers, and all of the non-key attributes that depend on Customer-ID are
moved to that entity as shown in Fig. 9.7.

What is unique about 3rd NF failures is that the new key attribute remains as a
non-key attribute in the original entity (in this case: Orders). The copy of the non-
key attribute Customer-ID is called a foreign key and is created to allow the Order
entity and the new Customer entity to have a relationship. A relationship between
two entities can exist only if there is at least one common keyed attribute between

1 Customer-Address would normally be composed of three address lines and the existence of State,
City, and Zip-code. It has been omitted from this example for simplicity.

Logic Data Modeling Procedures 155

Customers Entity

Customer ID
(PK)

Order Items

Order # Item ID
(PK)

Entity Orders

Order# (PK)

Items Entity

Item ID (PK)

PO Number

Date Shipped

Shipped VIA

Required Date

Terms

Item Name

Quantity

Unit Price

Amount

Subtotal

Sales Tax

Shipping &
Handling

Total Due

Customer ID
(FK)

Customer
Name

Customer
Address

Order Date

Fig. 9.7 Orders in preliminary 3rd NF

them. Understanding this concept is crucial to what normalization is intended to
accomplish. Looking at Fig. 9.7, one can see that the entities Order and Order Items
have a relationship because both entities have a common keyed attribute: Order-
ID. The same is true in the creation of the Item entity, which resulted from a 2nd
NF failure. The relationship here is between the Order Item entity and the Item
entity, where both entities contain the common key attribute Item-ID. Both of these
relationships resulted from the propagation of a key attribute from the original
entity to the newly formed entity during the normalization process. By propaga-
tion, we mean that a pointer or copy of the key attribute is placed in the new entity.
Propagation is implemented using foreign keys and is a natural result of the pro-
cess. Note that the “PK” is followed by an “FK” signifying that the keyed attribute
is the result of a propagation of the original key attribute. Such is not the case in
3rd NF. If Customer-ID were to be removed from the Orders entity, then the rela-
tionship between Orders and Customers would not exist because there would be
no common keyed attribute between the two entities. Therefore, in 3rd NF, it is

156 9 The Data

necessary to force the relationship because a natural propagation has not occurred.
This is accomplished by creating a pointer from a non-keyed attribute to the pri-
mary keyed copy, in this case Customer-ID. The concept of a pointer is important.
Foreign key structures are typically implemented internally in physical databases
using indexes. Indexes, or indirect addresses, are a way of maintaining database
integrity by ensuring that only one copy of an attribute value is stored. If two copies
of Customer-ID were stored, changing one of them could create an integrity prob-
lem between Orders and Customers. The solution is to have the Customer-ID in
Orders “point” indirectly to the Customer-ID key attribute in the Customer entity.
This ensures that a Customer-ID cannot be added to the Orders entity that does not
exist in the Customer master entity.

The question now is whether the entities are in 3rd NF. Upon further review, we
see the answer is no! Although it is not intuitively obvious, there are three non-
key attributes that are dependent on other non-key attributes. This occurs first in
the Order Items entity. The non-key attribute “Amount” is dependent on the non-
key attribute “Quantity.” Amount represents the total calculated for each item in the
order. It is not only dependent on “Quantity,” but also dependent on “Unit-Price.”
This occurs frequently in attributes that are calculations. Such attributes are called
derived elements and are eliminated from the database. Indeed, if we store Quantity
and Unit-Price, “Amount” can be calculated separately as opposed to being stored
as a separate attribute. Storing the calculation would also cause integrity problems.
For example, what would happen if the quantity or unit price would change? The
database would have to recalculate the change and update the Amount attribute.
While this can be accomplished, and will be discussed later in this chapter, it can be
problematic to maintain in the database and cause performance problems in produc-
tion e-commerce systems. The Orders entity also contains two derived attributes:
Subtotal and Total-Due. Again, both of these attributes are removed. The issue is
whether the removal of derived attributes should be seen as a 3rd NF failure. C. J.
Date (2000) views these failures as outside of 3rd NF, but in my view they represent
indirect dependencies on other non-key attributes and should be included as part of
the 3rd NF test. In any case, we all agree that derived elements should be removed
in the process of LDM. The 3rd NF LDM is modified to reflect the removal of these
three attributes as shown in Fig. 9.8.

Once 3rd NF is reached the analyst should create the entity relational dia-
gram (ERD), which will show the relationships or connections among the entities.
The relationship between entities is established through associations. Associations
define the cardinality of the relationship using what is known as the crow’s foot
method as shown in Fig. 9.9.

The crow’s foot method is only one of many formats. The method contains three
key symbols:

denotes the cardinality of many occurrences
O denotes zero occurrences
| denotes one occurrence

Items Entity

Item ID (PK)

Entity Orders

Order# (PK)

Order Items

Order # Item ID
(PK)

Customers Entity

Customer ID
(PK)

Customer
Address

Customer
Name

Customer ID
(FK)

Shipping &
Handling

Sales Tax

Subtotal

Unit Price

Quantity

Item Name

Terms

Required Date

Shipped VIA

Order Date PO Number

Date Shipped

Fig. 9.8 Orders in second phase of 3rd NF

Order
Key Data

order# [PK1]
Non-Key Data

po_number
date_shipped
shipped_via
required_date
terms
sales_tax
shipping_handling
customer_id [FK] order items

Key Data
order# [PK1] [FK]
item_id [PK2] [FK]
Non-Key Data

quantity

items
Key Data
item_id [PK1]
Non-Key Data
item_name
unit_price

customers
Key Data

customer_id [PK1]
Non-Key Data

customer_name
customer_address

Fig. 9.9 The entities in ERD format using crow’s feet

158 9 The Data

Therefore, the ERD in Fig. 9.9 depicts the relationships of all the entities as
follows:
1. One and only one (signified by the double lines) Order record can have one to

many Order Item records. It also shows that any Order in the Order Items entity
must exist in the Order entity.

2. One and only one Item record can have zero to many Order Item records. The
difference in this relationship and the one established between Orders and Order
Items is that Items may not have a relationship with Order items, signified by the
zero in the crow’s foot. This would often occur when there is a new item that has
not yet received any orders.

3. The Order Items entity has a primary key, which is a concatenation of two other
primary keys: Order-ID from the Orders entity and Item-ID from the Items entity.
This type of relationship is said to be an “associative” relationship because the
entity has been created as a result of a relational problem. This relational problem
exists because the Order entity has a “many-to-many” relationship with the Items
entity. Thus the 1st NF failure, which created the associative entity Order Items,
is really the result of a “many-to-many” situation. A many-to-many relationship
violates normalization because it causes significant problems with SQL coding.
Therefore, whenever a many-to-many relationship occurs between two entities,
an associative entity is created which will have as its primary key the concate-
nation of the two primary keys from each entity. Thus, associative entities make
many-to-many relationships into two one-to-many relationships so that SQL can
work properly during search routines. Associative entities are usually represented
with a diamond box.

4. One and only one Customer can have zero-to-many Orders, also showing that a
Customer may exist who has never placed an order. As an example, this would
be critical if the business were credit cards, where consumers can obtain a credit
card even though they have not made a purchase. Note that the Customer-ID is
linked with Orders through the use of a non-key foreign key attribute.

Limitations of Normalization
Although 3rd NF has been attained, there is a major problem with the model. The
problem relates to the attribute Unit-Price in the Items entity. Should the Unit-Price
of any Item change, then the calculation of historical Order Item purchases would
be incorrect. Remember that the attribute “Amount” was eliminated because it was
a derived element. This might suggest that normalization does not work properly!
Such is not the case. First we need to evaluate whether putting “Amount” back in
the ERD would solve the problem. If the Unit-Price were to change, then Amount
would need to be recalculated before it was done. While this might seem reasonable,
it really does not offer a solution to the problem, just a way around it. The actual
problem has little to do with the attribute “Amount,” but more to do with a missing
attribute. The missing attribute is Order-Item-Unit-Price, which would represent the
price at the time of the order. Order-Item-Unit-Price is dependent on both the Order

Logic Data Modeling Procedures 159

and the Item and therefore would become a non-key attribute in the Order Items
entity (i.e., it is wholly dependent on the entire concatenated primary key). The
only relationship between Unit-Price and Order-Item-Unit-Price is at the time the
order is entered into the system. In this situation, an application program would
move the value or amount of the Unit-Price attribute into the Order-Item-Unit-Price
attribute. Thereafter, there is no relationship between the two attributes. Because
this is a new data element that has been discovered during normalization, it must
be entered into the data dictionary. Thus, a limitation of normalization is that it
cannot normalize what it does not have; it can normalize only the attributes that
are presented to the formula. However, the limitation of normalization is also an
advantage: the process can help the analyst recognize that a data element is missing.
Therefore, normalization is a “data-based” tool that the analyst can use to reach the
logical equivalent. Figure 9.10 shows the final ERD with the addition of Order-Item-
Unit-Price.

The Supertype/Subtype Model

A troublesome database issue occurs in the LDM when there are records within an
entity that can take on different characteristics or have many “types” of attributes.
“Type” means that a portion of the attributes in a specific record can vary depending
on the characteristic or identification of the row within that entity. Another way of
defining type is to describe it as a group of attributes within a given record that are

Order
Key Data

order# [PK1]
Non-Key Data

po_number
date_shipped
shipped_via
required_date
terms
sales_tax
shipping_handling
customer_id [FK] order items

Key Data
order# [PK1] [FK]
item_id [PK2] [FK]
Non-Key Data

quantity
order_item_unit_price

customers
Key Data

customer_id [PK1]
Non-Key Data

customer_name
customer_address

items
Key Data

item_id [PK1]
Non-Key Data

item_name
unit_price

Fig. 9.10 Final ERD with Order-Item-Unit-Price

160 9 The Data

different from other records of the same entity depending on the type of record it
represents. This type is referred to as a “subtype” of the record. A subtype, therefore,
is the portion of the record that deviates from the standard or “supertype” part of the
record. The “supertype” portion is always the same among all the records in the
entity. In other words, the “supertype” represents the global part of the attributes in
an entity. Fig. 9.11 depicts the supertype/subtype relationship.

The difference between a subtype and an ordinary-type identifier (using a foreign
key) is the occurrence of at least one non-key attribute that exists only in that subtype
record. The major reason to create a supertype/subtype relationship is the occurrence
of multiple permutations of these unique attributes that exist in just certain subtype
records. Limiting these permutations of attributes within one record format can be
problematic. First, it can waste storage, especially if each subtype has significant
numbers of unique attributes. Second, it can create significant performance prob-
lems particularly with the querying of data. Using Fig. 9.11, we can see two ways
to store these data. The first (Fig. 9.12) is a basic representation where all the per-
mutations exist in one entity called “Educators.” The “type” of row is identified by
using a foreign key pointer to a validation entity called “Educator Type.”

Although this representation of the data uses only one entity, it wastes storage
space because all of the attributes of the entity are never needed by any one “type”
of record. Furthermore, a user must know which attributes need to be entered for a
particular type of record. This method of logic data modeling violates the concepts
of normalization and entrusts the integrity of values of elements in an entity to either
an application program’s control (stored procedure) or to the memory of the user.
Neither of these choices is particularly dependable or has proven to be a reliable
method of data integrity.

On the other hand, Fig. 9.13 provides a different solution using the super-
type/subtype model.

Rec# SS# Last_Name First_Name Middle_Init
Type of
Educator

1 045-34-2345 Morrison Ralph P High School
2 986-23-7765 Johnson Janet L Professor
3 213-45-3621 Herman Dan R Dean

Rec# Grade Level Master’s Degree Date Subject
1 10 5/19/89 History

Rec# Department School PhD Subject
2 Science Engineering Chemical

Transformation

Rec# Schools Total Students
3 4 5,762

Fig. 9.11 Supertype/subtype relationship

Logic Data Modeling Procedures 161

Educators
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init
Grade_Level
Masters_Degree_Date
Subject
Department
School
PhD_Subject
Total_Students
Type_Name [FK]

Educator Type
Key Data

Type_Name [PK1]

Fig. 9.12 Educator ERD using foreign key identifier

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

High School Teacher
Key Data

SS# [PK1]
Non-Key Data

Grade_Level
Masters_Degree_Date
Subject

College Professor
Key Data

SS# [PK1]
Non-Key Data

Department
School
PhD_Subject

Dean
Key Data

SS# [PK1]
Non-Key Data

School
Total_Students

Fig. 9.13 Educator entity supertype/subtype model

This model constructs a separate entity for each type of educator, linked via a spe-
cial notation in the relational model, known as the supertype/subtype relation. The
relationship is mutually exclusive, meaning that the supertype entity Educator can
have only one of the three subtypes for any given supertype occurrence. Therefore,
the relationship of one record in a supertype must be one-to-one with only one sub-
type. The supertype/subtype model creates a separate subtype entity to carry only
the specific attributes unique to its subtype.

There are two major benefits to this entity structure. First, the construct saves
storage because it stores only the attributes it needs in each entity. Second, the
subtype information can be directly addressed without accessing its related super-
type. This is possible because each subtype entity contains the same primary key

162 9 The Data

as its parent. This capability is significant because a user can automatically obtain
the unique information from any subtype without having to search first through
the supertype entity. This is particularly beneficial when the number of records in
each subtype varies significantly. Suppose, for example, there are 6 million edu-
cators in the database. The Educator database would therefore contain 6 million
rows. Let’s say that 5 million of the educators are high school teachers, and as
such, the High School subtype entity has 5 million records. Eight hundred thousand
educators are professors and the remaining 200,000 educators are deans; there-
fore, the Professor database and Dean database have 800,000 and 200,000 records,
respectively. Using the supertype/subtype model applications could access each sub-
type without searching through every record in the database. Furthermore, because
access to one subtype does not affect the other, performance is greatly improved.

It is important to note that the supertype/subtype model is not limited to mutual
exclusivity, that is, it can support multiple subtype permutations. For example, sup-
pose an educator could be a high school teacher, college professor, and a dean at
the same time or any permutation of the three types. The sample model would
then be modified to show separate one-to-one relationships as opposed to the “T”
relationship shown in Fig. 9.13. The alternative model is represented in Fig. 9.14.

Supertype/subtypes can cascade, that is, they can continue to iterate or decom-
pose within each subtype. This is represented in Fig. 9.15.

Notice that in the above example the same primary key continues to link the “one-
to-one” relationships between the entities. In addition, Fig. 9.15 also shows another
possibility in the supertype/subtype model. This possibility reflects that a subtype
can exist without containing any non-key attributes. This occurs in the example in
the subtype entity Adjunct Prof. The “empty” entity serves only to identify the exis-
tence of the subtype, without having a dedicated non-key attribute associated with
it. The Adjunct Prof entity, therefore, is created only to allow the other two sub-
types (Tenured Prof and Contract Prof) to store their unique attributes. This example

College Professor
Key Data

SS# [PK1]
Non-Key Data

Department
School
PhD_Subject

High School Teacher
Key Data

SS# [PK1]
Non-Key Data

Grade_Level
Masters_Degree_Date
Subject

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

Dean
Key Data

SS# [PK1]
Non-Key Data

School
Total_Students

Fig. 9.14 Supertype/subtype model without mutual exclusivity

Logic Data Modeling Procedures 163

College Professor
Key Data

SS# [PK1]
Non-Key Data

Department
School
PhD_Subject

High School Teacher
Key Data

SS# [PK1]
Non-Key Data

Grade_Level
Masters_Degree_Date
Subject

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

Contract Prof
Key Data

SS# [PK1]
Non-Key Data

contract_term
Classes

Tenured Prof
Key Data

SS# [PK1]
Non-Key Data

Rank
Res_Public

Dean
Key Data

SS# [PK1]
Non-Key Data

School
Total_Students

Adjunct Prof
Key Data

SS# [PK1]

Fig. 9.15 Cascading subtypes

shows how supertype/subtype models can be constructed, and how they often have
subtypes that are created for the sole purpose of identification.

Cascading subtypes can mix methods, that is, some levels may not be mutu-
ally exclusive, while other cascade levels can be mutually exclusive as shown in
Fig. 9.16.

There is a controversial issue among database developers. The controversy
relates to whether it is necessary to create a special attribute that identifies which
entity contains the subtype entry for any given supertype. In other words, how does
the database know which subtype has the continuation information? This dilemma
is especially relevant when mutually exclusive relationships exist in the super-
type/subtype. The question is ultimately whether the supertype/subtype model needs
to contain an identifier attribute that knows which subtype holds the continuation
record or is the issue resolved by the physical database product? Fleming and von
Halle (1989) addressed this issue in the Handbook of Database Design, where they
suggest that the “attribute is at least partially redundant because its meaning already
is conveyed by the existence of category or subtype relationships” (p. 162). Still,
the issue of redundancy may vary among physical database products. Therefore, I
suggest that the logical model contains a subtype identifier for mutually exclusive
supertype/subtype relationships as shown in Fig. 9.17.

164 9 The Data

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

High School Teacher
Key Data

SS# [PK1]
Non-Key Data

Grade_Level
Masters_Degree_Date
Subject

College Professor
Key Data

SS# [PK1]
Non-Key Data

Department
School
PhD_Subject

Dean
Key Data

SS# [PK1]
Non-Key Data

School
Total_Students

Tenured Prof
Key Data

SS# [PK1]
Non-Key Data

Rank
Res_Public

Contract Prof
Key Data

SS# [PK1]
Non-Key Data

contract_term
Classes

Adjunct Prof
Key Data

SS# [PK1]

Fig. 9.16 Cascading subtypes with alternating exclusivities

Note that the above example has the subtype identifier, Professor Types as a
validation entity in 3rd Normal Form.

Supertype/subtypes must also be normalized following the rules of normaliza-
tion. For example, the subtype Educator Types contains elements that are not in 3rd
NF. Attributes Grade_Level and Subject in the subtype entity High School Teacher
can be validated using a look-up table. Department, School, and PhD_Subject can
also be validated. The resulting 3rd NF ERD is shown in Fig. 9.18.

Key Business Rules

Key business rules are the rules that govern the behavior between entities when a
row is inserted or deleted. These business rules are programmed at the database level
using stored procedures and triggers (see Step 7: determine domains and trigger-
ing operations). These procedures are typically notated as constraints. Constraints
enforce the key business rules that will be defined by the analysts and are the basis
of what is meant by referential integrity, that is, the integrity based on the relations

Logic Data Modeling Procedures 165

College Professor
Key Data

SS# [PK1] [FK]
Non-Key Data

Department
School
PhD_Subject
Prof_Type_Id [FK]

High School Teacher
Key Data

SS# [PK1]
Non-Key Data

Grade_Level
Masters_Degree_Date
Subject

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

Contract Prof
Key Data

SS# [PK1] [FK]
Non-Key Data

contract_term
Classes

Tenured Prof
Key Data

SS# [PK1] [FK]
Non-Key Data

Rank
Res_Public

Dean
Key Data

SS# [PK1]
Non-Key Data

School
Total_Students

Adjunct Prof
Key Data

SS# [PK1] [FK]

Professor Types
Key Data

Prof_Type_Id [PK1]

Fig. 9.17 Supertype/subtype with subtype identifier element

between tables. The process of insertion and deletion focuses on the relationship
between the parent entity and the child entity. A child entity is always the entity that
has the crow’s foot pointing to it. Based on the ERD in Fig. 9.10 the parent–child
entity relationships are as follows:
• Orders entity is the parent of Order Items entity (child).
• Customer entity is the parent of Orders entity (child).
• Items entity is the parent of Order Items entity (child).

When discussing insertion of a row, it is always from the perspective of the child
entity. That is, key business rules governing the insertion of a child record concern
what should be done when attempting to insert a child record that does not have a
corresponding parent record. There are six alternatives:
1. Not Allowed: this means that the constraint is to disallow the transaction. For

example, in Fig. 9.10, a user could not insert an Order Item (child) for an Order-
Number that did not exist in the Orders entity (parent). Essentially, the integrity
of the reference would be upheld, until the Order-Number in the Orders entity
was inserted first.

2. Add Parent: this means that if the parent key does not exist, it will be added at the
same time. Using Fig. 9.10, this would mean that the user would be prompted

166 9 The Data

College Professor
Key Data

SS# [PK1] [FK]
Non-Key Data

Prof_Type_Id [FK]
School_Name [FK]
PhD_Subj_Name [FK]
Dept_Name [FK]

Educator
Key Data

SS# [PK1]
Non-Key Data

Last_Name
First_Name
Middle_Init

High School Teacher
Key Data

SS# [PK1] [FK]
Non-Key Data

Masters_Degree_Date
Subject_Name [FK]
Grade_Level_Name [FK]

Dean
Key Data

SS# [PK1] [FK]
Non-Key Data

Total_Students
School_Name [FK]

Tenured Prof
Key Data

SS# [PK1] [FK]
Non-Key Data

Rank
Res_Public

Contract Prof
Key Data

SS# [PK1] [FK]
Non-Key Data

contract_term
Classes

PhD_Subjects
Key Data

PhD_Subj_Name
[PK1]

Adjunct Prof
Key Data

SS# [PK1] [FK]

Grade_Levels
Key Data

Grade_Level_
Name [PK1]

Subjects
Key Data

Subject_Name
[PK1]

Professor Types
Key Data

Prof_Type_Id [PK1]

Schools
Key Data

School_Name [PK1]

Departments
Key Data

Dept_Name
[PK1]

Fig. 9.18 Supertype/subtype in 3rd NF

to add the Order-Number to the Orders entity before the child Item would be
inserted. The difference between Not Allowed and Add Parent is that the user
can enter the parent information during the insertion of the child transaction.
Using this rule still enforces referential integrity.

3. Default Value: the use of a default value allows a “dummy” row to be inserted
into the parent. An example of the use of a default occurs when collection agen-
cies receive payments from an unknown person. The parent entity is “Account”
and the child entity is “Payments.” The Account entity would have a key value
called “Unapplied” which would be used whenever an unidentified payment was
collected. In this scenario, it is appropriate to have the dummy record because the

Logic Data Modeling Procedures 167

child transaction is really unknown, but at the same time needs to be recorded
in the database. It is also useful because the user can quickly get a list of
“unapplied” payments and it upholds referential integrity.

4. Algorithm: an algorithm is an “intelligent” default value. Using the same exam-
ple as (3), suppose the user wanted to track unapplied payments by State.
For example, if an unapplied payment were received in New York, the parent
(Account entity) would have a record inserted with a value “Unapplied-New
York.” Therefore, each State would have its own default. There are also default
keys that are based on sophisticated algorithms to ensure that there is an under-
standing to the selection of the parent’s key attribute value. Again, this selection
ensures referential integrity because a record is inserted at both the parent and
child entities.

5. Null: assigning a null means that the parent does not exist. Most database prod-
ucts such as Oracle allow such selection, and while it is maintained within the
product, it violates referential integrity because the parent is unknown.

6. Don’t Care: this essentially says that the user is willing to accept that referential
integrity does not exist in the database. The user will tell you that they never wish
to balance the records in the child with those in the parent. While this happens,
it should be avoided, because it creates a system without integrity.
When discussing deletion of a row, it is always from the perspective of the par-

ent entity. That is, key business rules governing the deletion of a parent record
concern what should be done when attempting to delete a parent record that has
corresponding child records. There are similarly six alternatives:
1. Not Allowed: this means that the constraint is to disallow the deletion of the

parent record. In other words if there are children records, the user cannot delete
the parent. For example, if in Fig. 9.10, a user could not delete an Order (parent)
if there were corresponding records in the Order Items entity (child). This action
would require the user first to delete all of the Order Items or children records
before allowing the parent Order to be deleted.

2. Delete All: this is also known as cascading, because the system would automati-
cally delete all child associations with the parent entity. Using the same example
as (1), the children records in Order Items would automatically be deleted. While
this option ensures referential integrity, it can be dangerous because it might
delete records that are otherwise important to keep.

3. Default Value: the use of a default value is the same as in insertion, that is, it
allows a “dummy” row to be inserted into the parent. This means that the original
parent is deleted, and the child records are redirected to some default value row
in the parent entity. This is sometimes useful when there are many old parent
records, such as old part-numbers, that are cluttering up the parent database. If
keeping the child records is still important, they can be redirected to a default
parent row, such as “Old Part-Number.”

4. Algorithm: the use of the algorithm is the same as with an insertion. As in the
case of (3) above, the default value might be based on the type of product or year
it became obsolete.

168 9 The Data

5. Null: as in the case of insertion, the assigning of a null means that the parent does
not exist. This creates a situation where the child records become “orphans.”
Referential integrity is lost.

6. Don’t Care: same as in insertion. The database allows parent records to be
deleted without checking to see if there are corresponding child records in
another entity. This also results in losing referential integrity and creates
“orphans.”
In summary, key business rules are concerned with the behavior of primary keys

during insert and delete operations. There are six alternative options within each
operation (insert and delete). Four of the options uphold referential integrity, which
is defined as the dependability of the relationships between items of data. Data
integrity is an issue any time there is change to data, which in e-commerce systems
will be frequent. Thus, the e-commerce analyst must ensure that once primary keys
have been determined, it is of vital importance that users are interviewed regard-
ing their referential integrity needs. Analysts should not make these decisions in a
vacuum and need to present the advantages of referential integrity appropriately to
users so that they can make intelligent and well-informed decisions.

This discussion of key business rules was predicated using examples derived
from the discussion on normalization. As discussed earlier in this section, the
application of normalization occurs after the determination of key business rules,
especially since it may indeed affect the design of the ERD, and in the program-
ming of stored procedures. This will be discussed further in Determine Domains
and Triggering Operations.

Combining User Views

The application of normalization focused on breaking up or decomposing entities
to include the correct placement of data. Each NF failure resulted in creating a new
entity; however, there are situations where certain entities may need to be combined.
This section is labeled “Combining User Views” because the meaning of data is
strongly dependent on how the user defines a data element. Unfortunately, there
are circumstances where data elements are called different things and defined dif-
ferently by different users in different departments. The word “different” is critical
to the example. In cases where we think we have two entities, we may, in fact have
only one. Therefore, the process of combining user views typically results in joining
two or more entities as opposed to decomposing them as done with normalization.
The best way to understand this concept is to recall the earlier discussion on logi-
cal equivalents. This interpretation of the logical equivalent will focus on the data
rather than the process. Suppose there are two entities created from two different
departments. The first department defines the elements for an entity called “Clients”
as shown in Fig. 9.19.

The second department defines an entity called “Customers” as shown in
Fig. 9.20.

Logic Data Modeling Procedures 169

Clients
Key Data

Client_Id [PK1]
Non-Key Data

Client_Name
Client_Address
Client_Age
Client_Quality_Indicator

Fig. 9.19 The client entity

Customers
Key Data

Customer_Id [PK1]
Non-Key Data

Customer_Name
Customer_Address
Customer_Buyer_Indicator
Customer_Credit_Rating

Fig. 9.20 The customer entity

Upon a closer analysis and review of the data element definitions, it becomes
apparent that the two departments are looking at the same object. Notwithstanding
whether the entity is named Client or Customer, these entities must be combined.
The process of combining two or more entities is not as simple as it might sound.
In the two examples, there are data elements that are the same with different names,
and there are unique data elements in each entity. Each department is unaware of the
other’s view of the same data and by applying logical equivalencies the following
single entity results as shown in Fig. 9.21.

The above example uses names that made it easier for an analyst to know they
were the same data elements. In reality, such may not be the case, especially when
working with legacy systems. In legacy systems, names and definitions of elements
can vary significantly among departments and applications. Furthermore, the data
definitions can vary significantly. Suppose Client is defined as VARCHAR2(35)
and Customer as VARCHAR2(20). The solution is to take the larger definition. In

Customers

Key Data

Customer_Id [PK1]

Non-Key Data

Customer_Name
Customer_Address
Customer_Buyer_Indicator
Customer_Credit_Rating
Customer_Age
Customer_Quality_Indicator

Fig. 9.21 Combined client
and customer entity

170 9 The Data

still other scenarios, one element could be defined as alphanumeric and the other
numeric. In these circumstances the decisions become more involved with user con-
versations. In either situation, it is important that the data elements do get combined
and that users agree-to-agree. In cases where user agreement is difficult, then ana-
lysts can take advantage of a data dictionary feature called Alias. An Alias is defined
as an alternate name for a data element. Multiple Aliases can point to the same data
dictionary entry. Therefore, screens can display names that are Aliases for another
element. This alternative can solve many problems when using different names is
necessary.

Another important issue in combining user views is performance. While analysts
should not be overly concerned about performance issues during LDM, it should
not be ignored either. Simply put, the fewer entities, the faster the performance;
therefore, the least number of entities that can be designed in the ERD the better.

Integration with Existing Data Models

The purpose of this section is to discuss specific analysis and design issues relat-
ing to how to integrate with existing database applications. The connectivity with
other database systems is difficult. Indeed, many firms approach the situation by
phasing each business area over time into a new redeveloped operation. In these
circumstances, each phased area needs a “Legacy Link” which allows the “old”
applications to work with the new phased-in software. Chapter 10 will focus on the
procedures for integration of both the data and application components of package
software systems. This section is limited to only those issues that affect the design
of entities during LDM.

Linking entities with existing databases may force e-commerce analysts to
rethink how to preserve integrity while still maintaining the physical link to other
corporate data. This occurrence is a certainty with e-commerce systems given that
certain portions of the data are used inside and outside the business. The following
example shows how this problem occurs

The analyst is designing a website that utilizes the company’s Orders Master
database. The website needs this information to allow customers to see informa-
tion about their past orders for items so they can match it to a product database
supplied by the e-commerce system. This feature is provided to customers to
allow them to understand how items have been utilized to make their products.
Unfortunately, the master Order Items database holds only orders for the past
year and then stores them off-line. There is no desire by the Order department to
create a historical tracking system. The ERD in Fig. 9.22 shows the relationships
with the corporate Order Items database file.

Note that the Order Item Products entity has a one or zero relationship with the
Order Item Master entity. This means that there can be an Order Item in the Order
Item Product entity that does not exist in the Order Item entity. Not only does this
violate normalization, but it also presents a serious integrity problem. For example,

Logic Data Modeling Procedures 171

Order
Key Data items

Key Dataorder# [PK1]
Non-Key Data item_id [PK1]

Non-Key Datapo_number
date_shipped
shipped_via
required_date
terms
sales_tax
shipping_handling

item_name
unit_price

order items
Key Data

order# [PK1] [FK]
item_id [PK2] [FK]
Non-Key Data

quantity
order_item_unit_price

Order Item Product
Key Data

order# [PK1] [FK]
item_id [PK2] [FK]
Product-ID [PK3] [FK]

Customer Product
Key Data

Product-ID [PK1]
Non-Key Data

Product_Name

Fig. 9.22 ERD showing association between web databases and legacy employee master

if the customer wanted to display information about their products and each com-
ponent Item, all Items that do not exist in the Order Item entity will display blanks,
since there is no corresponding name information in the Order Item file. Obviously,
this is a flaw in the database design that needs to be corrected. The remedy is to
build a subsystem database that will capture all of the Order Items without purging
them. This would entail a system that accesses the Order Item database and merges
it with the Web version of the file. The merge conversion would compare the two
files and update or add new Order Items without deleting the old ones. That is, the
master Order Items would be searched daily to pick up new Order Items to add to
the Web version. Although this is an extra step, it maintains integrity, normaliza-
tion, and most importantly, the requirement not to modify the original Order Item
database. The drawback to this solution is that the Web version may not have up-to-
date Order Items information. This will depend on how often records are moved to
the Web database. This can be remedied by having a replication feature, where the
Web Order Item would be created at the same time as the master version. The ERD
would be reconstructed as shown in Fig. 9.23.

172 9 The Data

order items
Key Data

order# [PK1] [FK]
item_id [PK2] [FK]
Non-Key Data

quantity
order_item_unit_price

Customer Product
Key Data

Product-ID [PK1]
Non-Key Data

Product_Name

Order Item Product
Key Data

order# [PK1] [FK]
item_id [PK2] [FK]
Product-ID [PK3] [FK]

Corporate order items
Key Data

order# [PK1] [FK]
item_id [PK2] [FK]

Fig. 9.23 ERD reflecting legacy link to the Order Item entity

In Fig. 9.23 the Order Item Master and its relation to the Web Order Item entity
are shown for informational purposes only. The master Order Item becomes more
of an application requirement rather than a permanent part of the ERD. In order to
“operationalize” this system, the analyst must first have to reconstruct the history
data from the purged files or simply offer the historical data as of a certain date.

Determine Domains and Triggering Operations

The growth of the relational database model has established processes for storing
certain application logic at the database level. We have already defined key busi-
ness rules as the vehicle to create constraints at the key attribute level. However,

Logic Data Modeling Procedures 173

there are other constraints and procedures that can occur depending on the behav-
ior of non-key attributes. Ultimately, business rules are application logic that is
coded in the database language, for example, PL_SQL for Oracle. These non-key
attribute rules could enforce such actions as, If CITY is entered, the STATE must
also be entered. This type of logic rule used to be enforced at the application level.
Unfortunately, using application logic to enforce business rules is inefficient because
it requires the code to be replicated in each application program. This process also
limits control, in that the relational model allows users to “query” the database
directly. Thus, business rules at the database level need to be written only once,
and they govern all type of applications, including programs and queries.

As stated earlier, business rules are implemented at the database level via stored
procedures. Stored procedures are offered by most database manufacturers, and
although they are similar, they are not implemented using the same coding schemes.
Therefore, moving stored procedures from one database to another is not triv-
ial. In Chapter 8, the importance of having portable stored procedures and their
relationship to partitioning databases across the Internet, Intranets, and wide area
networks (WANs) will be discussed further. It is important to note that distributed
network systems are being built under the auspices of client/server computing and
may require communication among many different database vendor systems. If
business rules are to be implemented at the database level, the compatibility and
transportability of such code become a challenge.

Business rule implementations fall into three categories: keys, domains, and
triggers. Key business rules have already been discussed as part of the normalization
process. Domains represent the constraints related to an attribute’s range of values. If
an attribute (key or non-key) can have a range of values from one to nine, we say that
range is the domain value of the attribute. This is very important information to be
included and enforced at the database level through a stored procedure for the same
reasons as discussed above. The third and most powerful business rule is triggers.

Triggers are defined as stored procedures that when activated “trigger” one or a
set of other stored procedures to be executed. Triggers act on other entities, although
in many database products, triggers are becoming powerful programming tools to
provide significant capabilities at the database level rather than at the application
level. Triggers resemble batch-type files which when invoked execute a “script” or
set of logical statements as shown below:

/* Within D. B.. only authorized users can mark */
/* ecommerce corporation as confidential */
if user not in (′L′,′M′) then
:new.corpConfidential := ′N′;
end if;

end if;
/* Ensure user has right to make a specific users private */
if exec= ′N′ then

:new.corpexec:= ′N′;
end if;

174 9 The Data

This trigger was implemented in a contact management e-commerce system. The
trigger is designed to allow corporate information to be marked as confidential only
by specific executives. This means that an appointed executive of the corporation
can enter information that is private. The second component of the trigger is pro-
grammed to automatically ensure that the executive’s contacts are stored as private
or confidential. These two stored procedures show how application logic executes
via Oracle triggers. It is important to remember that these business rules are enforced
by the database regardless of how the information is accessed.

Triggers, however, can cause problems. Because triggers can initiate activity
among database files, designers must be careful that they do not impair performance.
For example, suppose a trigger is written that affects 15 different database files.
Should the trigger be initiated during the processing of other critical applications, it
could cause significant degradation in processing and thus affect critical production
systems.

The subject of business rules is very broad yet must be specific to the actual
database product to be used. Since analysts may not know which database will
ultimately be used, specifications for stored procedures should be developed using
the specification formats presented in Chapter 3. This is even more salient in e-
commerce systems given the possibility that different databases can be used across
the entire system. This dilemma will be discussed in Chapter 8 as part of the
integration issues facing e-commerce analysts and designers.

De-normalization

Third NF databases can often have difficulty with performance. Specifically, sig-
nificant numbers of look-up tables, which are actual 3rd NF failures, create too
many index links. As a result, while we have reached the integrity needed, per-
formance becomes an unavoidable dilemma. In fact, the more integrity, the less
performance. There are a number of ways to deal with the downsides of normal-
ized databases. One is to develop data warehouses and other off-line copies of the
database. Data warehousing will be discussed in Chapter 12: Data Analytics and
Data Warehouses. Another alternative is to de-normalize. There are many bad ways
to de-normalize. Indeed, any de-normalization hurts integrity. But there are two
types of de-normalization that can be implemented without significantly hurting the
integrity of the data.

The first type of de-normalization is to revisit 3rd NF failures to see if all of
the validations are necessary. Third NF failures usually create tables that ensure
that entered values are validated against a master list. For example, in Fig. 9.10,
the Customers entity created as a result of a 3rd NF failure provides a validation
to all customers associated with an Order. This means that the user cannot assign
any customer, but rather only those residents in the Customer entity. The screen to
select a Customer would most likely use a “drop-down” menu, which would show
all of the valid Customers for selection to the Order. However, there may be look-up
tables that are not as critical. For example, zipcodes may or may not be validated.

Summary 175

Whether zipcodes need to be validated depends on the use of zipcodes by the users.
If they are just used to record a Customer’s address, then it may not be necessary
or worthwhile to have the zipcode validated. If, on the other hand, they are used for
certain types of geographic analysis or mailing, then indeed, validation is necessary.
This process—the process of reviewing the use and need for a validation table—
should occur during the interview process. If this step is left out, then there is a high
probability that too many non-key attributes will contain validation look-up entities
that are unnecessary and hurt performance.

The second type of de-normalization is to add back “derived” attributes. While
this is not the preferred method, it can be implemented without sacrificing integrity.
This can be accomplished by creating triggers that automatically launch a stored
procedure to recalculate a derived value when a dependent attribute has been altered.
For example, if Amount is calculated based on Quantity ∗ Unit-Price, then two trig-
gers must be developed (one for Quantity and one for Unit-Price) which would
recalculate Amount if either Quantity or Unit-Price were changed. While this solves
the integrity issue, analysts must be cognizant over the performance conflict should
the trigger be initiated during peak processing times. Therefore, there must be a
balance between the trigger and when it is allowed to occur.

Summary

This chapter has provided the logical equivalent to the data component of the e-
commerce system. The process of decomposing data is accomplished using LDM,
which has eight major steps that need to be applied in order to functionally decom-
pose the data. Data flow diagrams (DFDs) are a powerful tool to use during process
analysis because they provide direct input into the LDM method. Specifically, data
flows provide data definitions into the data dictionary, which is necessary to com-
plete LDM. Furthermore, data stores in the DFD represent the major entities, which
is the first step in LDM. The output of LDM is an ERD, which represents the
schematic or blueprint of the database. The ERD shows the relationships among
entities and the cardinality of those relationships.

The LDM also makes provisions to develop stored procedures, which are
programs developed at the database level. These procedures allow “referential
integrity” to be enforced without developing application programs that operate out-
side the data. Stored procedures can be used to enforce key business rules, domain
rules, and triggers. Triggers are batch-oriented programs that automatically execute
when a particular condition has occurred at the database level, typically, when an
attribute has been altered in some way.

The process of LDM also allows for the de-normalization at the logical design
level. This is allowed so that analysts can avoid significant known performance prob-
lems before the physical database is completed. De-normalization should occur at
the user interface time, as many of the issues will depend on the user’s needs.

176 9 The Data

Problems and Exercises

1. What is logical data modeling trying to accomplish?
2. Define normalization. What are the three Normal Forms?
3. What does normalization not do?
4. What is meant by the term “derived” data element?
5. Describe the concept of combining user views. What are the political ramifica-

tions of doing this in many organizations?
6. What are legacy links? Describe how they can be used to enforce data integrity.
7. Name and define the three types of business rules.
8. Why are stored procedures in some ways a contradiction to the rule that data

and processes need to be separated?
9. What are the disadvantages of database triggers?

10. What is meant by de-normalization? Is this a responsibility of the analyst?

Mini-Project

The Physician Master File from a DFD contains the following data elements:

Data Element Description

Social Security # Primary Key
Physician ID Alternate Key
Last_Name Last Name
First_Name First Name
Mid_Init Middle Initial
Hospital_Resident_ID Hospital Identification
Hospital_Resident_Name Name of Hospital
Hospital_Addr_Line1 Hospital Address
Hospital_Addr_Line2 Hospital Address
Hospital_Addr_Line3 Hospital Address
Hospital_State Hospital’s State
Hospital_City Hospital’s City
Hospital_Zip Hospital’s Zip Code
Specialty_Type The Physician’s specialty
Specialty_Name Description of specialty
Specialty_College College where received degree
Specialty_Degree Degree Name
Date_Graduated Graduation Date for specialty
DOB Physician’s Date of Birth
Year_First_Practiced First year in practice
Year’s_Pract_Exp Practice Experience Years
Annual_Earnings Annual Income

References 177

Assumptions:
a. A Physician can be associated with many hospitals, but must be associated with

at least one.
b. A Physician can have many specialties or have no specialty.

Assignment: Normalize to 3rd Normal Form

References

Date, C. J. (2000). An introduction to database systems (7th ed.). New York: Addison-Wesley.
Fleming, C., & von Halle, B. (1989). Handbook of relational database design. Menlo Park, CA:

Addison-Wesley.
Larson, J. A., & Larson, C. L. (2000). Data models and modelling techniques. In S. Purba (Ed.),

Data management handbook (3rd ed.). Boca Raton, FL: CRC Press.

10Legacy Systems and Integration

Introduction

A legacy system is an existing application system in operation. While this is an
accurate definition, there is a perception that legacy systems are old and antiquated
applications operating on mainframe computers. Indeed, Brodie and Stonebraker
(1995) state that, “a legacy information system is any information system that sig-
nificantly resists modification and evolution” (p. 3). They define typical legacy
systems as
• Large application with millions of lines of code
• Usually more than 10 years old
• Written in legacy languages like COBOL
• They are built around a legacy database service (such as IBM’s IMS) and some

do not use a database management system. Instead they use older flat file systems
such as ISAM and VSAM

• The applications are very autonomous. Legacy applications tend to operate
independently from other applications, which means that there is very limited
interface among application programs. When interfaces among applications are
available they are usually based on export and import models of data and these
interfaces lack data consistency
While many legacy systems do fit these scenarios, many do not. Those that

do not can, however, be considered legacies under my original definition, that is,
any application in operation. What this simply means is that there are what I call
“generations” of legacy systems that can exist in any organization. Thus, the defi-
nitions of what constitutes a legacy system are much broader than Brodie and
Stonebraker’s descriptions. The more important issue to address is the relationship
of legacy systems with package software systems. In Chapter 1, I defined package
software systems as one that encompassed both internal and external applications.
Thus, existing internal production systems, including third-party outsourced prod-
ucts, must be part of any application strategy. Furthermore, there are many legacy
systems that perform external functions as well, albeit not in an Internet interface.

179A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_10, © Springer-Verlag London Limited 2012

180 10 Legacy Systems and Integration

This chapter defines the types of legacy systems that exist and provides guide-
lines on how to approach their integration with package software applications. The
project manager or analyst must determine whether a legacy system should be
replaced, enhanced, or remain as is. This chapter also provides the procedures for
dealing with each of these three choices and its effect on the overall architecture of
the decision whether to make or buy a system.

Types of Legacy Systems

The types of legacy systems tend to mirror the life cycle of software development.
Software development is usually defined within a framework called “generations.”
Most professionals agree that there are five generations of programming languages:
1. First generation: the first generation was known as machine language. Machine

language is considered a low-level language because there it uses binary
symbols to communicate instructions to the hardware. These binary symbols
form a one-to-one relationship between a machine language command and a
machine activity, that is, one machine language command performs one machine
instruction. It is rare that any legacy systems have first-generation software.

2. Second generation: this generation comprises assembler programming lan-
guages. Assembler languages are proprietary software that translates a higher-
level coding scheme into more than one machine language instruction. Therefore,
it was necessary to design an assembler, which would translate the symbolic
codes into machine instructions. Mainframe shops may still have a considerable
amount of assembly code that exists, particularly with applications that perform
intricate algorithms and calculations.

3. Third generation: this language continued the growth of high-level symbolic lan-
guages that had translators into machine code. Examples of third-generation
languages are COBOL, FORTRAN, BASIC, RPG, and C. These languages
use more English-like commands and have a higher ratio of machine language
produced from one instruction. Third-generation languages tend to be more spe-
cialized. For example, FORTRAN is better suited for mathematical and scientific
calculations. Therefore, many insurance companies have FORTRAN because of
the high concentration on actuarial mathematic calculations. COBOL, on the
other hand, was designed as the business language and has special features to
allow it to manipulate file and database information. There are more COBOL
applications that exist than any other programming languages. Most mainframe
legacy systems still have COBOL applications. RPG is yet another special-
ized language that was designed for use on IBM’s mid-range machines. These
machines include the System 36, System 38, and AS/400 computers.

4. Fourth generation: these programming languages are less procedural than third-
generation languages. In addition, the symbols are more English-like and empha-
size more about desired output results than how the programming statements
need to be written. As a result of this feature, many less technical programmers
have learned how to program using fourth-generation languages (4GLs). The

Third-Generation Language Legacy System Integration 181

most powerful features of 4GLs include query of databases, code generation, and
graphic screen generation abilities. Such languages include Visual Basic, C++,
Powerbuilder, Delphi, and many others. Furthermore, 4GLs also include what is
known as query languages because they contain English-like questions that are
used to directly produce results by directly accessing relational databases. The
most popular 4GL query language is Structured Query Language (SQL).

5. Fifth generation: these programming languages combine what is known as
rule-based code generation, component management, and visual programming
techniques. The rule-based code generation became popular in the late 1980s
with the creation of artificial intelligence software. This software uses an
approach called knowledge-based programming, which means that the developer
does not tell the computer how to solve problems, but rather the problem (Stair &
Reynolds, 1999). The program figures out how to solve the problem. While
knowledge-based programming has become popular in specialized applications,
such as in the medical industry, it has not been as popular in business.
Most legacy applications will either be third-generation or fourth-generation

language systems, therefore, analysts need to have a process and methodology to
determine how to integrate package software technology with these applications.

Third-Generation Language Legacy System Integration

As previously discussed, most third-generation language legacy systems were devel-
oped using COBOL. COBOL was developed to provide a method of forcing
programmers to self-document their code so that other programmers could main-
tain it. Unfortunately, COBOL requires what is known as a file description (FD)
table. The FD defines the record layout for every file used by the COBOL program.
In other words, every file is described within the program and must match the for-
mat of the actual physical data file. This means that any change to a file structure
must be synchronized with every COBOL program that uses that data file. Thus,
COBOL is somewhat eclectic: there is no real separation of the data description and
the program logic. In COBOL programs, a change in data format could necessitate
a change in the program code. That is why COBOL programs suffer from large
degrees of coupling of code. Coupling is defined as the reliance of one piece of the
code on another.

COBOL programs may or may not use a relational database as its source of
data. I earlier defined two other common formats called ISAM and VSAM, which
are flat file formats, meaning that all data elements are contained in one record as
opposed to multiple files as is the case in the relational database model. However,
many COBOL legacy systems have been converted to work with relational databases
such as IBM’s DB2. In this situation the FD tables interface with the database’s
file manager so that the two entities can communicate with each other. Figure 10.1
depicts the interface between program and database.

182 10 Legacy Systems and Integration

DATA DIVISION.
FILE SECTION.
FD PAYROLL-FILE

LABEL RECORDS ARE OMITTED.
01 PAYROLL-RECORD.

05 I-PAYROLL-NUMBER PIC X(5).
05 I-NAME PIC X(20).
05 I-HOURS-WORKED PIC 99V9.
05 FILLER PIC XXX.
05 I-PAYRATE PIC 99V999.
05 I-DEPENDENTS PIC 99.
05 FILLER PIC X(20).

Payroll-Number (PK)

L-Name
F-Name
Hours-Worked
PayRate
Dependents

Employee Payroll Entity

Employee Payroll File Description Table in COBOL Program

Fig. 10.1 COBOL file description interface with database manager

Notwithstanding whether the COBOL legacy is using a database interface or flat
files the analyst needs to determine whether to replace the application, enhance it,
or leave it as is.

Replacing Third-Generation Legacy Systems

When replacing third-generation legacies, analysts must focus on both the data and
processes. Because of the age of these systems, it is likely that there will be little
documentation available, and the amount available will most likely be outdated.
Indeed, the lack of proper documentation is the major reason why legacy systems are
slow to be replaced: rewriting code without documentation can be an overwhelming
and time-consuming task. Unfortunately, all things must eventually be replaced.
Delaying replacement leads to legacy systems that keep businesses from remaining
competitive. The following sections provide a step-by-step approach to COBOL-
based legacies.

Third-Generation Language Legacy System Integration 183

Approaches to Logic Reconstruction
The best way to reconstruct the logic in COBOL applications is to separate the
data from the processes. This can be accomplished by creating data flow diagrams
(DFDs) for each program. Having a DFD will result in defining all of the inputs and
outputs of the application. This is accomplished by following the tasks below:
1. Print the source code (actual COBOL written code) from each application. Each

application will contain an “FD” section that defines all of the inputs and outputs
of the program. These will represent the data stores of the data flow diagrams
(Fig. 10.2).

2. DFDs should be decomposed so that they are at the functional primitive level
(one-in and one-out, preferred). This provides functional decomposition for the
old application and sets the framing for how it will be decomposed into an object-
oriented (OO) solution.

3. By reviewing the code, write the process specifications for each functional
primitive.

4. Follow the steps as outlined in Chapter 8 to determine which functional primitive
DFDs become methods of a particular class.

5. Capture all of the data elements or attributes required by each functional
primitive DFD. These attributes are added to the data dictionary (DD).

6. Take each major data store and create an entity. Do normalization and logic
data modeling in accordance with the procedures in Chapter 4, combining these
elements with the package software system as appropriate.

7. Data stores that represent reports should be compared against sample outputs.
These reports will need to be redeveloped using a report writer such as Crystal’s
report writer or a data warehouse product.

8. Examine all existing data files and/or databases in the legacy system. Compare
these elements against those discovered during the logic reconstruction. In

FD REPORT-FILE
LABEL RECORDS ARE OMITTED.

01 REPORT-RECORD.
05 O-PAYROLL-NUMBER PIC X(5).
05 FILLER PIC XX.
05 O-NAME PIC X(20).
05 FILLER PIC XX.
05 O-HOURS-WORKED PIC 99.9.
05 FILLER PIC XX.
05 O-PAYRATE PIC 99.999.
05 FILLER PIC XX.
05 O-DEPENDENTS PIC 99.
05 FILLER PIC XX.
05 O-GROSS-PAY PIC 999.99.
05 FILLER PIC XX.
05 O-TAX PIC 999.99.
05 FILLER PIC XX.
05 O-NET-PAY PIC 999.99.

Fig. 10.2 COBOL file description tables

184 10 Legacy Systems and Integration

third-generation products there will be many data elements or fields that are
redundant or used as logic “flags.” Logic flags consists of fields used to store
a value that depicts a certain state of the data. For example, suppose a record has
been updated by a particular program. One method of knowing that this occurred
is to have the application program set a certain field with a code that identifies that
it has been updated. This method would not be necessary in a relational database
product because file managers automatically keep logs on the last time a record
has been updated. This example illustrates how different third-generation legacy
technology differs from more contemporary technologies.
There is no question that replacing third-generation legacies is time-consuming.

However, the procedures outlined above will prove to be accurate and effective.
In many situations, users will decide that it makes sense to reexamine their legacy
processes, especially when the decision has been made to rewrite the program and
integrate it with package software system. We call this business process reenginee-
ring. Business process reengineering is therefore synonymous with enhancing the
legacy system (see Chapter 11).

Enhancing Third-Generation Legacy Systems

Business process reengineering (BPR) is one of the more popular methodologies
used to enhance third-generation applications. A more formal definition of BPR is “a
requirement to study fundamental business processes, independent of organization
units and information systems support, to determine if the underlying business pro-
cesses can be significantly streamlined and improved.”1 BPR is not just rebuilding
the existing applications for the sake of applying new technology to older systems,
but also an event that allows for the application of new procedures designed around
the object-oriented systems paradigm. In this scenario, however, BPR is used to
enhance existing applications without rewriting them in another generation lan-
guage. Instead, the analyst needs to make changes to the system that will make
it function more like an object component, even though it is written in a third-
generation language. In order to accomplish this task, it is necessary for the analyst
to create the essential components of the legacy operation. Essential components
represent the core business requirements of a unit. Another way of defining core
business requirements is to view essential components as the reasons why the unit
exists, what does it do, and for what reasons. For example, Fig. 10.3 depicts the
essential components of a bank.

Once the essential components have been created then the legacy applications
need to be placed in the appropriate component so that it can be linked with its
related package software applications.

The first step in applying successful BPR to legacy applications is to develop
an approach to define the existing system and extracting its data elements and

1 Whitten, Jeffrey, Bentley, Lonnie, Barlow, Victor. Systems Analysis and Design Methods, Third
Edition, pg. 238.

Third-Generation Language Legacy System Integration 185

 on

ESSENTIAL
COMPONENTS of a BANKUsers

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Users provide
requirements for
the ecommerce
system based on
interaction with
analyst. This is
accomplished via
interviews and
JAD sessions

Analyst performs
interviews and
matches user
events to specific
essential
components.

Essential components represent the
fundamental functions performed
by the business as defined by
executive management. Essentials
are the “reasons” for the business.

Fig. 10.3 Essential components of a bank

applications. Once again, this is similar to the process described above when replac-
ing third-generation legacy applications in that the data need to be captured into
the data repository and the applications need to be defined and compared to a new
model based on essential components.

Data Element Enhancements
The analyst will need to design conversion programs that will access the data files
that are not in relational database format and place them in a data repository. The
ultimate focus is to replace all of the existing data files in the legacy with relational
databases that can be linked with package software databases. This methodology
differs from replacing legacies. In replacement engineering, data files are inte-
grated directly into a package software system. This means that the legacy data will
often be used to enhance the package software databases. However, the process of
enhancing legacy systems means that the legacy data will remain separate but con-
verted into the relational model. For legacies that already have relational databases,

186 10 Legacy Systems and Integration

Legacy Flat
Files

Legacy
Applications

Ecommerce
Relational
Databases

Ecommerce
Applications

New Link

Replacement Legacy Link

Legacy Flat
Files

Legacy
Applications

Ecommerce
Relational
Databases

Ecommerce
Applications

Enhancement Legacy Link

Legacy
Databases

Flat File Conversion

Fig. 10.4 Replacing vs. enhancing legacy data

there is no restructuring required beyond setting up links with the package soft-
ware database. Figure 10.4 reflects the difference between replacing legacy data and
enhancing it.

Another interesting difference between the two approaches is that enhanced lega-
cies will likely have intentional data redundancy. This means that the same element
may indeed exist in multiple databases; a violation of 3rd Normal Form. However,
the redundancy must exist for the sake of maintaining separate identities of the sys-
tems. Duplicate elements may take on different formats. The most obvious is where
a data element has alias, meaning that an element has many different names, but the
same attributes. Another type is the same element name, but with different attributes.
The third type, and the most challenging, is the duplicate elements that have dif-
ferent names and different attributes. While duplicate data elements may exist in
enhanced legacy applications that are integrated with the package software product,
it is still important to identify duplicate data relationships. This can be accomplished

Third-Generation Language Legacy System Integration 187

by documenting data relationships in a CASE tool and in the database’s physical
data dictionary where aliases can exist.

Application Enhancements
BPR typically involves a methodology called business area analysis (BAA). The
purpose of BAA is to
• establish the various legacy business areas that will be linked with the package

software system
• reengineer the new and old requirements of each business area
• develop requirements that provide an OO perspective of each legacy business

area, meaning that there is no need to map its requirements to the existing
physical organization structure

• define the links that create relationships among all the legacy business areas and
the package software business areas
This is accomplished by mapping business areas to specific essential component.

Applications designed for the package software system must also be mapped to an
essential component. Once this has occurred, the legacy applications and package
software applications must be designed to share common processes and databases
as shown in Fig. 10.5. BPR is discussed further in Chapter 11.

Once the legacy and package software applications have been placed in their
appropriate essential component they will need to be linked, that is, communicate
with each other to complete the integration of the internal and external systems.
Linking occurs in two ways: parameter messaging and database. Parameter mes-
saging requires that the legacy programs be modified to receive data in the form
of parameters. This allows the application system to deliver information directly
to the legacy program. Conversely, the legacy program may need to return infor-
mation back to the package software system. Therefore, legacy applications need
to be enhanced so they can actually format and send a data message to the pack-
age software system. A database interface is essentially the same concept except
that it occurs differently. Instead of the application sending the data directly to
another program, it forwards it as a record in a database file. The legacy pro-
gram that returns the data also needs to be modified to forward messages to a
database.

There are advantages and disadvantages of using either methods. First, para-
meters use little overhead and are easy to program. They do not provide reusable
data, that is, once a message has been received it is no longer available to another
program. Parameters are also limited in size. Databases, on the other hand, allow
programs to send the information to multiple destinations because it can be read
many times. Unfortunately, it is difficult to control what applications or queries
can access the data, which does raise questions about how secure the data are.
Furthermore, applications must remember to delete a record in the database if it is no
longer required. Figure 10.6 reflects the two methods of transferring data between
legacy systems and package software applications.

Once the legacy and the new package software applications have all been mapped
to the essential components, analysts can use a CRUD diagram to assist them in

188 10 Legacy Systems and Integration

ESSENTIAL
COMPONENTS of a BANKNew User Requirements

Provide Security Pay Interest

Pay Bills
Convenience

Investment

Bank Essential
Business Areas

Users provide
requirements for
the ecommerce
system based on
interaction with
analyst. This is
accomplished via
interviews and
JAD sessions

Analyst performs
interviews and
matches user
events to specific
essential
components.

Essential components
represent the fundamental
functions performed by the
business as defined by
executive management.
Essentials are the “reasons”
for the business.

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Fig. 10.5 BPR legacy modeling using essential components

reconciling whether all of the data and processes have been found. The importance
of the CRUD diagram is that it ensures
• that an essential component has complete control over its data,
• that all of the entities are accessible by at least one process, and
• that processes are accessing data (Fig. 10.7).

While CRUD is not 100% accurate, it certainly uncovers potential problems as
shown above. Even if BPR is not used, the CRUD diagram is an excellent tool to use

Third-Generation Language Legacy System Integration 189

Legacy
Applications

New
Applications

Legacy Link Using a Parameter

Legacy
Applications

New
Applications

Legacy Link using a Database

Legacy
Link

Databases

Data as a
Parameter

Fig. 10.6 Linking data
between legacy and package
software systems

Processes or

Business

Function

Data Subject

or Entity

Process
Orders

Validate
Products

Shipping Commission

Customers R R,U

Orders C, U U R

Items R C,U,D R R

Inventory R,U C,U U

Expense Section

Market Person R U

Fig. 10.7 Sample CRUD diagram

190 10 Legacy Systems and Integration

Provide Security Pay Interest

Pay Bills
Convenience

Investment

Bank Essential Business Areas

Component Objects

Purchase
Investment

Data

Methods

Sell Investment

Data

Methods

Investment
Interest

Data

Methods

Fig. 10.8 Essential component object diagrams

to determine the processes and data needed for an essential component or an object.
Once the CRUD diagram is finalized, the objects and classes would then be created
as shown in Fig. 10.8; some of these objects are still in the form of a third-generation
COBOL program while others might be in a JAVA-based package software format.
CRUD is discussed in more detail in Chapter 11.

“Leaving As Is”—Third-Generation Legacy Systems

Moving to an object-oriented and client/server paradigm from a third-generation
product like COBOL may not be feasible. The language design of third-generation
procedural programs may result in conceptual gaps between procedural and object-
oriented philosophies. For example, distributed object-oriented programs require
more detailed technical infrastructure knowledge and graphics manipulation than
was required in older legacy systems. Native object-oriented features such as inher-
itance, polymorphism, and encapsulation do not apply in traditional third-generation
procedural design. It is difficult, if not impossible to introduce new object con-
cepts and philosophies during a direct COBOL to JAVA migration. If the translation
is attempted without significant restructuring (as discussed earlier in this chapter)
then the resulting product will likely contain slower code that is more difficult to
maintain.

Fourth-Generation Language Legacy System Integration 191

Legacy System New Packaged
System

Link

Link

Fig. 10.9 “As is” legacy
links

There can also be a cultural divide that occurs. Veteran COBOL programmers
and newer JAVA developers do not understand each other’s technologies. This sce-
nario will often create bias during any conversion effort. Furthermore, COBOL
programmers learning new technology can present them with self-specified threats
to their cultural status. Furthermore, COBOL and RPG applications have bene-
fited from the more lengthy testing, debugging, and overall refinement than newer
programming generations. While JAVA is more dynamic, it is less stable, and the
procedure of debugging and fixing problems are very different than for COBOL or
RPG. Therefore, the analyst will leave the legacy “as is” and create only package
software links for passing information that is required between the two systems.
While this is similar to the “linking” proposed for enhancing legacy systems, it is
different because legacy programs are not enhanced, except for the external links
needed to pass information. This is graphically shown in Fig. 10.9.

Using parameters or databases to link connecting information is still relevant, but
analysts must be cognizant that legacy data formats will not be changed. This means
that the legacy applications will continue to use their original file formats. Another
concept used to describe “links” is called “bridges.” The word suggests that the
link serves to connect a gap between the package software system and the legacy
applications. Bridging can also imply temporary link. Very often “as is” can be seen
as a temporary condition because legacy conversions cannot occur all at once, so it is
typically planned in phases. However, while parts of the system are being converted,
some portions may need temporary bridges until it is time to actually enhance them.
One can visualize this as a temporary “road block” or detour that occurs when there
is construction on a highway.

Fourth-Generation Language Legacy System Integration

Integrating fourth-generation legacy systems with package software technology
is much easier than third-generation languages. The reasons are twofold. First,
most fourth-generation implementations are already using a relational database, so
conversion of data to the package software system is less complex. Second, fourth-
generation language applications typically use SQL-based code, so conversion to an
object-oriented system is also less involved.

192 10 Legacy Systems and Integration

Replacing Fourth-Generation Legacy Systems

As stated above, replacement of fourth-generation language systems is less complex
than third-generation languages with respect to the package software conversion.
As with any system replacement, separating data and process is the suggested
approach. Fortunately, in fourth-generation language systems, process and data are
likely to already be separate, because of the nature of its architecture. Specifically,
fourth-generation languages typically use relational databases, which architecturally
separate data and process. Therefore, replacing the legacy is more about exam-
ining the existing processes and determining where the applications need to be
reengineered.

Approaches to Logic Reconstruction
The best approach to logic analysis is to print out the source code of the programs.
If the source is written in SQL, then the analyst should search for all SELECT
statements. SQL SELECT FROM statements define the databases that the program
is using as shown in Fig. 10.10.

As in third-generation languages’ logic reconstruction, the analyst should pro-
duce a DFD for every program as follows:

1. SELECT statements define all inputs and outputs that a program uses. Each
SELECT statement file will be represented by a DFD data store. Reviewing the
logic of the application program will reveal whether the data are being created,
read, updated, or deleted (CRUD).

2. DFDs should be decomposed to the functional primitive level so that the
framework to an object-oriented system is established.

3. For each DFD copy the relevant SQL code, making modifications where neces-
sary to provide more object-oriented functionality to the program. This means
that the decomposition of the code will likely require that some new logic be
added to transform it to a method. This is shown in Fig. 10.11.

4. Examine existing system objects and determine if functional primitive DFDs
belong to an existing class as a new method or whether it truly represents a new
object in the package software system.

5. Capture all of the data elements required by the new methods and add them
to their respective object. Ensure that the package software DD is updated
appropriately.

6. Determine whether any new objects need to become a reusable component in
the third-party (TP) monitor (middleware), a reusable component in the client
application, or as a stored procedure at the database level.

Select IdNo, Last-Name, First-Name
from employee
where IDNo = “054475643”

Fig. 10.10 SELECT statements in a fourth-generation language application

Fourth-Generation Language Legacy System Integration 193

SQL Code

SQL Code

Method1
Method2

Object
Functional Primitive DFD

Functional Primitive DFD

Fig. 10.11 SQL code transition to object method

7. Examine the legacy databases and do logic data modeling to place the entities
in 3rd Normal Form (3NF).

8. Combine and integrate data elements with package software databases, ensuring
that each data field from the legacy system is properly matched with package
software data elements. New elements must be added to the appropriate entity
or require that new entities be created for them.

9. Link new entities with existing models using 3rd Normal Form referential
integrity rules.

10. Determine which data elements are redundant, such as calculations. These data
elements will be removed; however, logic to their calculations may need to be
added as a method as shown in Fig. 10.12.

Total-Amount
Calculate

Total-Amount = Quantity * Price

Process SpecificationLegacy Data

Fig. 10.12 Transition of redundant data elements to process specifications

194 10 Legacy Systems and Integration

Enhancing Fourth-Generation Legacy Systems

Enhancing fourth-generation language legacy systems is really the process of
converting it to an object-oriented client/server system. BPR (business process
reengineering) is also used on fourth-generation language legacy systems to accom-
plish this transition. The process, as one might expect, is much easier than for
third-generation languages; however, the process of determining essential com-
ponents is the same in both types of systems. Once essential components are
established, the existing applications need to be decomposed and realigned as appro-
priate. This is accomplished by using BAA, as it was used for third-generation
legacy applications. The fact that fourth-generation languages are less procedu-
ral than third-generation languages greatly assists this transition. Fourth-generation
language systems, by simply looking at the SQL SELECT statements, can identify
which data files are used by the application. Using logic modularity rules, an analyst
can establish cohesive classes based on applications that use the same data. This can
be accomplished without using DFDs, although reengineering using DFDs is always
a more thorough method for analysts to follow.

Linkage of fourth-generation language legacy and package software applica-
tions needs to be accomplished after application reengineering is completed. As
with third-generation language systems, this can be accomplished either using a
data parameter or by creating a special database. However, with fourth-generation
languages it is likely that application integration will occur using databases, since
both systems use them in their native architectures. An analyst will most likely find
that application communication with fourth-generation languages will not always
require separate databases to be designed solely for the purpose of system linkage.
The more attractive solution to integration is to identify the data elements that are
common between the two systems so it can be shared in a central database available
to all applications as shown in Fig. 10.13.

The use of CRUD in fourth-generation languages is used less, but is certainly
applicable and should be implemented by the analyst if he/she feels that the code is
too procedural. In other words, the code architecture resembles third generation as
opposed to fourth generation.

Relational
Database

Customer-No

Legacy
4GL New System

Fig. 10.13
Fourth-generation language
legacy shared database
architecture

Hybrid Methods: The Gateway Approach 195

“Leaving As Is”—Fourth-Generation Legacy Systems

The process of limiting integration to just the sharing of data is similar to the
design architecture that I used for third-generation language systems. Indeed, the
architecture of linking separate and distinct software systems can only be accom-
plished by sharing common data. Once again these data can be shared either using
a data parameter or using a data file.

Because many fourth-generation language systems utilize the same architecture
as a package software system (three-tier client/server using Windows NT/2000 or
UNIX/LINUX), it is sometimes advantageous to make use of certain operating
system-level communication facilities. For example, UNIX allows applications to
pass data using an operating system facility called a “pipe.” A pipe resembles a
parameter, in that it allows an application to pass a message or data to another appli-
cation without creating an actual new data structure, like a database. Furthermore,
a pipe uses an access method called “FIFO” (first-in, first-out), which is the same
access criteria used by parameters. FIFO also requires that once the data are read,
it cannot be read again. The major advantage of using a pipe is that the mes-
sage/data can be stored long after the application that created the message has
terminated in memory. Thus linkage of information among package software and
fourth-generation language applications can be accomplished in RAM at execution
time, which is called “intra-application communication.” This capability reduces
overhead as well as the need for separate modules to be designed that would just
handle data communication as shown in Fig. 10.14.

Hybrid Methods: The Gateway Approach

Thus far in this chapter, I have focused on the interface between a specific type
of legacy and a package software system. Each type was defined with respect to
its “generation” type. In reality, however, legacy systems are not that self-defined.
Many large organizations have “legacy layers,” meaning that multiple generations
exist throughout the enterprise. In this case, attempting to integrate each generation
with a central package software system is difficult and time-consuming. Indeed,
migrating and integrating legacy systems are difficult enough. In these complex
models, another method used for migration of legacy applications is a “hybrid”

UNIX Pipe

Application
A Application

B

Fig. 10.14 Intra-application communication using a UNIX pipe

196 10 Legacy Systems and Integration

Packaged System
GUI

Legacy
User

Screens

Gateway

Legacy System New System

Fig. 10.15 Gateway architecture for legacy integration

approach called “Gateway.” The gateway approach means that there will be a soft-
ware module that mediates requests between the package software system and the
legacy applications. In many ways, a gateway performs similar tasks as a TP system.
Thus, the gateway acts as a broker between applications. Specifically gateways:
• Separate yet integrate components from different generation languages. It allows

for the linkages among multiple generation language systems
• Translates requests and data between multiple components
• Coordinates between multiple components to ensure update consistency.

This means that the gateway will ensure that redundant data elements are
synchronized
Typical gateway architectures would be designed as shown in Fig. 10.15.
The most beneficial role of the gateway is that it allows for the phasing of legacy

components. The infrastructure provides for an incremental approach to conversion
by establishing a consistent update process for both data and applications.

Incremental Application Integration

A gateway establishes a transparency for graphical user interfaces (GUIs), character-
based interfaces, and automated interfaces (batch updates) to appear the same as the

Hybrid Methods: The Gateway Approach 197

Gateway

Global Packaged System Interface
for

Viewing Order Status

System 1
Character-Based Legacy

Sysytem
for

Viewing Order Status

System 2
GUI Legacy
Sysytem for

Viewing Order
Status

Fig. 10.16 Application functions of legacy gateways

package software system. Hence, the gateway insulates the legacy system so that its
interface with the package software systems seems seamless. This is accomplished
through an interface that translates requests for process functions and routes them
to their appropriate application, regardless of the generation of the software and its
particular phase in the package software migration. Figure 10.16 depicts the process
functions of the gateway system.

The most salient benefit of the gateway approach is its consistency with the
object-oriented paradigm and the concept of application reusability. Specifically,
it allows any module to behave “like” a reusable component notwithstanding its
technical design. Under this architectural philosophy, a particular program, let’s say
a third-generation language system, may eventually be replaced and placed into the
gateway, with temporary bridges built until the overall migration is completed. This
procedure also supports a more “global” view of the enterprise as opposed to just
focusing on a particular subsystem. Figure 10.17 depicts the concept of process
integration using the gateway architecture.

198 10 Legacy Systems and Integration

Global Object Component
for

Creating, Reading, Updating, and Deleting Orders (CRUD)

Order
Object

Methods
Create Order
Display Order
Update Order
Delete Order

Gateway

Legacy
Application

Enter New Orders

Legacy
Application

Display Orders

Legacy
Application

Update Orders

Legacy
Application

Delete Orders

Fig. 10.17 Process integration and migration using gateway architecture

Incremental Data Integration

Incremental data integration focuses on the challenge of keeping multiple sets of
data coordinated throughout a package software system.

The two primary issues relating to data integration focus on queries and updates.
Queries involve the access of complete information about a data set (collection of
related data elements) across multiple systems. Much of the query challenges can
be addressed by using a data warehouse or data mining architecture. This will be
discussed in detail in Chapter 12. The gateway would serve as the infrastructure that
would determine how many copies of the data exist and its location.

The more difficult and more important concept of data integration is the ability
of the gateway to coordinate multiple updates across databases and flat file systems.
This means that the changing of a data element in one component would “trigger”
an automatic update to the other components. There are four scenarios that could
exist regarding the different definitions of data elements:

Hybrid Methods: The Gateway Approach 199

1. The data elements in each system have the same name. This at least allows
analysts to identify how many copies of the element exist in the system.

2. The data elements do not match up by name. This requires that the analyst design
a “mapping” algorithm that tracks the corresponding name of each alias.

3. Data elements match by name but not by attribute. In this case the analyst must
propagate updates to the data element by tracking the different attribute defini-
tions it has across systems. These differences can vary dramatically. The most
obvious is element length. If the length of the data element is shorter than the
one that has been updated then there is the problem of field truncation. This
means that either the beginning value or the ending value of the string will be
lost when the value is propagated to the system with the shorter length defini-
tion. On the other hand, if the target is longer, then the process must populate
either the beginning or end of the string so that the element has a complete value.
This is graphically depicted in Fig. 10.18.

Furthermore, the same data element might have different data types, meaning
that one is alphanumeric and the other numeric. In this case, analysts need to
know that certain values (e.g., a leading zero) will not be stored in the same way
depending on its data type classification.

4. There is not a one-to-one relationship among data elements. This suggests that a
data element in one system may be based on the results of a calculation (a derived
data element). This would require a more in-depth analysis and mapping often
solved by creating a stored procedure that replicates the business rule to calculate
the data element’s value. So in this case there might be simple copies of the
element moved from one system to another as well as one data element value
that needs to first be calculated and then be propagated across multiple systems.

Johnsonhousesmith

Legacy Data Element: Last Name
Field Length: 17 characters

hnsonhousesmith

Data Element: Last Name
Field Length: 15 characters
Truncation occurs from Left Significant Characters

johnsonhousesmi

Data Element: Last Name
Field Length: 15 characters
Truncation occurs from Right Significant Characters

Fig. 10.18 Propagating data elements with different field lengths

200 10 Legacy Systems and Integration

Quantity

System Calculates Total Amount as
Quantity * Price and does not Store Total
Amount as an Element

Program "Triggers" stored
procedure to update Derived
Data Element stored in
Legacy System

Total-Amount

Price

Legacy Data Element Total-Amount

Fig. 10.19 Propagation of
calculated data elements

For example, if the data element “Total-Amount” is entered in one system but
calculated as Quantity ∗ Price in another, the propagation of the values is very
complex. First, the analyst must know whether the calculated value is performed
first before the resultant value, in this case, Total-Amount is reentered in another
system. If this is true, then the propagation is much easier; once the calculation
is made then the result is copied to the “entered” element. The converse is much
more complex. If the Total-Amount was entered, but the values of Quantity and
Price were not, then it would be very difficult to propagate until both Quantity
and Price were entered. The example is further complicated if adjustments are
made to the Quantity, Price, or Total-Amount. For any change, the systems would
need to automatically be “triggered” to recalculate the values to ensure they are
in synchronization. Figure 10.19 graphically shows this process.

Converting Legacy Character-Based Screens

It would be naïve to assume that most legacy systems do not have character-based
screens. Character-based screens are those that do not make use of the GUI. While
most character-based screens in existence emanate from third-generation language
mainframe implementations there are also many early fourth-generation language
systems that preceded the GUI paradigm. Unfortunately, character-based screens
often do not map easily to its GUI counterparts. The analyst must be especially care-
ful not to attempt to simply duplicate the screens in the legacy software. Figure 10.20
shows a typical character-based legacy screen. Note that there can be up to four
Contract/PO’s as shown in the upper right-hand corner. The user is required to enter
each Contract/PO on a separate screen.

Converting Legacy Character-Based Screens 201

Bill of Lading Container Screen 1 of 4

B/L:____ SCAC: _____ VESSEL: ________ Total: _____
 VOYAGE: _________ CTN: _____

PO Information

Contract/PO: _________ Tot Unit: _________
 Item: _________ GWT: _________
Style: _________ CBM: _________
 Stat: _________ O/F Chrg: _________

Orig Country: _________ Con Rate: _________

Activities

 Activity Descr Date Location

Fig. 10.20 Character-based user screen

On the other hand, the replacement GUI screen in Fig. 10.21 takes advantage
of the view bar that allows for scrolling in a window. Therefore, the GUI version
requires only one physical screen, as opposed to four.

The Challenge with Encoded Legacy Screen Values

In most legacy character-based screens, a common practice was used to create codes
that represented another, more meaningful data value. For example, numeric codes
(1, 2, 3, 4, etc.) might be used to represent product colors such as blue, green,
and dark red. Legacy applications used codes because they reduced the number
of characters needed to type in the value on a screen. The technology to implement
common GUI features such as drop-down menus and pop-up windows was not avail-
able. Indeed, many people used codes just from habit or had to use them in order
to implement computer systems. When transitioning to a GUI system, especially on
the Web, it is wise to phase-out any data elements that are in an encoded form unless
the codes are user-defined and are meaningful within the industry or business area.
This essentially means that certain codes, like State (NY, CT, CA, etc.), are industry
standards that are required by the business, as opposed to those created to aid in
the implementation of software—like color codes. In the latter case, the color name
itself is unique and would be stored in an entity with just its descriptive name, as

202 10 Legacy Systems and Integration

Fig. 10.21 Transformed character-based screen to GUI screen

Color-Name

GUI Screen Equivalent

Color-Code Display Color-Name

Character-Based Entry of Color
with Encoded-Value Color Code

Fig. 10.22 Encoded value GUI screen transition

opposed to a code, which then identifies the actual description. Figure 10.22 shows
the character-based and GUI screen transition.

Changing character-based screens that contain encoded values has a trickle-down
effect on the data dictionary and then on logic data modeling. First, the elimina-
tion of a coded value inevitably deletes a data element from the data dictionary.
Second, codes are often key attributes, which become primary keys of entities. The

Legacy Migration Methodology 203

Color Name

Color-Code

Color-Name

Legacy Representation of Color Entity with
Encoded Value

Legacy Representation of Color Entity
without Encoded Value

01 Red
02 Blue
03 Lavender

Color Code Name

Sample Value Listing

Red
Blue
Lavender

Color Name

Sample Value Listing

Fig. 10.23 Transition to encoded databases

elimination of the code, therefore, will eliminate the primary key of the entity. The
new primary key will likely be the element name. These changes must then be made
to the entity relational diagram (ERD) and placed in production (see Fig. 10.23).

Third, the elimination of codes affects previous stored procedures that use queries
against the coded vales. Therefore, analysts must be sure to reengineer all queries
that use the codes. This transition will add tremendous value since encoded ele-
ments typically add unnecessary overhead and time delays to queries. Finally, the
elimination of encoded values will free up considerable space and index overhead.
This will result in an increase in performance of the legacy system.

Legacy Migration Methodology

As stated earlier, all legacy systems inevitably must reach the end of their origi-
nal life cycle. Therefore, notwithstanding whether certain components will remain
“as is” or enhanced, eventually IT management must plan for migration to another
system. The issue that this section addresses is how to establish a migration life
cycle that takes into consideration an incremental approach to replacement of vari-
ous legacy components within an enterprise computer system. The previous sections
provided a framework of what can be done with legacy systems and their integra-
tion with other systems. This section provides a step-by-step template of procedures
to follow that can assist the analysts on the schedule of legacy migration includ-
ing temporary and permanent integration. This approach is an incremental one, so
analysts can use it as a checklist of the progression they have made in the legacy
migration life cycle. In all there are 12 steps as follows:

204 10 Legacy Systems and Integration

1. Analyze the existing legacy systems
2. Decompose legacy systems to determine schedules of migration and linkage

strategies
3. Design “as is” links
4. Design legacy enhancements
5. Design legacy replacements
6. Design and integrate new databases
7. Determine new infrastructure and environment, including gateways
8. Implement enhancements
9. Implement links

10. Migrate legacy databases
11. Migrate replacement legacy applications
12. Incrementally cutover to new systems

The above steps are graphically depicted in Fig. 10.24.
Note that there are two streams of steps, that is, steps 3–5 and 8–10 that can occur

in parallel. These steps encompass the three types of legacy migration choices that
can be made: replacement, enhancement, and “as is.” While this life cycle seems
simple, in reality it is a significant challenge for most migrations to plan, manage,
and modify these steps and their interactions. Indeed, creating a migration plan and

1

2

4

6

7

9

11

12

3 5

8 10

Fig. 10.24 Legacy migration
life cycle

Legacy Migration Methodology 205

adequately coordinating the incremental and parallel steps is a difficult project. The
subsequent sections will provide more details for each of these 12 steps.

Step 1: Analyze the Existing Legacy Systems

It is obviously important that analysts fully understand all of the existing legacy
components that exist in the system. The objective is to provide the requirements of
each system and how it relates to the system. Analysts must remember that little to
no documentation will be available to fully represent the architecture of the legacy
system. However, analysts should compile as much information that is available
including but not limited to:
• user and programming documentation
• existing users, software developers, and managers
• required inputs and outputs and known services of the legacy system
• any historical perspective on the history of the system itself

Regardless of what existing information and documentation is available, certain
aspects of reverse engineering must be used. Various CASE (computer-aided soft-
ware engineering) tools should be used that allows analysts to create a repository of
data and certain levels of code analysis, particularly for third-generation language
migrations. The analyst should create DFDs and PFDs for process analysis and logic
data modeling (LDM) and entity relational diagramming (ERD) for representation
of the data. The analyst should also determine which legacy components are decom-
posable and non-decomposable. Inevitably, regardless of whether the decision is to
replace immediately, enhance, or leave “as is,” ultimately little of the existing code
will survive the ultimate migration of a legacy system (Brodie & Stonebraker, 1995).

Step 2: Decompose Legacy Systems to Determine Schedules
of Migration and Linkage Strategies

The gradual migration of legacy systems is easily accomplished when analysts
utilize decomposition engineering. Previous chapters have outlined the process of
functional decomposition, which is based on the breaking down of a system into its
functional components. Decomposition, which results in components, also allows
for reusability of code. Since the fundamental premises of a package system are
reusability, the process of decomposition is a mandatory part of the life cycle of
any legacy migration. Thus, analysts should decompose all DFDs to functional
primitives. Process analysis continues with the writing of process specifications for
each functional primitive. These functional primitives will either be rewritten from
the existing code or documentation or recreated from analyzing the functionality
of the program. Analysts need to remove all dependency logic that links modules
from the legacy code because it represents coupling among the programs. Module
dependencies can typically be identified by finding procedure calls from within the
legacy code. Ultimately, each of these process specifications will become methods.

206 10 Legacy Systems and Integration

Eventually all methods will be mapped to classes and identify the attributes that
each class needs. While this sounds simple, there will be a number of processes for
which decomposition will be problematic. This will typically occur for legacy code
that is too eclectic and needs to simply be reengineered. In these cases, analysts may
want to interview users to understand the functionality that is required, as opposed
to relying solely on the written legacy code.

From a data perspective, entity relational diagrams (ERDs) need to undergo nor-
malization. Remember that the DD and ERD produced in Step 1 is a mirror of
the existing system, which most likely will not be in 3rd Normal Form. Thus this
step will result in the propagation of new entities and even new data elements.
Furthermore, data redundancies will be discovered as well as derived elements that
should be removed from the logic model. However, while these steps are taking
place, analysts need to be cognizant that the process of normalization represents the
total new blueprint of how the data should have been originally engineered. The
actual removal of elements or reconstruction of the physical database needs to be
a phased plan in accordance with the overall legacy migration effort. Thus Step 2
provides the decomposed framework, but not the schedule of implementation.

Finally, analysts must always be aware of the challenges of decomposition, par-
ticularly overdecomposition, meaning that too many classes have been formed that
will ultimately hurt system performance. There needs to be a mix of decomposed
levels, which will serve as the basis of the new migration architecture.

Step 3: Design “As Is” Links

This step involves determining and designing what components will remain
untouched except for linkages that are necessary with other package software com-
ponents. These modules are determined not to be part of the initial migration plans,
however, they need to function within the package software system infrastructure
and are therefore part of its architecture. Part of the decision needs to include how
data will be migrated into the package software framework. In most cases, “as is”
components continue to use their legacy data sources. Consideration must be given
to how legacy data will be communicated to other components in the package soft-
ware system. Analysts need to consider either a parameter-based communication
systems, or a centrally shared database repository as outlined earlier.

Step 4: Design Legacy Enhancements

This step determines which modules will be enhanced. BPR (business process
reengineering) will be used to design new features and functions in each business
area. Analysts should identify essential components and determine what changes
need to be employed to make the existing system behave more like an object-
oriented system. Common processes and databases also need to be mapped so that
shared resources can be designed between legacy and package software systems.

Legacy Migration Methodology 207

New linkages will also be needed and the analyst must determine whether to use
parameters or databases or both to implement the communication among application
systems.

User screens may also need to be updated as necessary, especially to remove
encoded values or moving certain character-based screens to GUI. Many of the
enhancements to a legacy application are implemented based on the analysis per-
formed in Step 1. Any modifications will need to eventually operate on newer
platforms once the total migration of legacy systems is completed. Analysts need
to be cognizant that additional requirements mean increasing risk, which should
be avoided when possible. However, during enhancement consideration it is almost
impossible to ignore new requirements. Therefore, analysts need to focus on risk
assessment as part of the life cycle of legacy migration.

Step 5: Design Legacy Replacements

Analysts must focus on how to reconstruct logic in a later generation of software
architecture. Therefore, it is important to understand the differences in genera-
tion language design. This chapter provided two types of legacy software systems:
third-generation and fourth-generation languages. Third-generation languages were
depicted as being more procedural and more difficult to convert.

Analysts must design the target applications so they will operate in accordance
with the business rules and processes that will be supported in the new systems envi-
ronment. Because of this integration, most replacement legacy migrations require
significant reengineering activities. These activities necessitate the inclusion of new
business rules that may have evolved since the legacy system was placed in produc-
tion. Furthermore, new business rules can be created simply by the requirement of
being a package software system.

Another important component of legacy migration is screen design. When replac-
ing legacy systems, analysts must view the migration as assimilation, that is, the old
system is becoming part of the new one. As a result, all existing package software
screens need to be reviewed so that designers can determine whether they need to be
modified to adopt some of the legacy functionality. This is not to suggest that all of
the legacy system screens will be absorbed into the existing package software sys-
tem. Rather, there will be a combination of new and absorbed functionalities added
to the target environment.

Step 6: Design and Integrate New Databases

From an enterprise perspective, analysts must gather all of the permutations of
legacy systems that exist and seek to provide a plan on how to integrate the data
into one source. For “as is” solutions, legacy data files will most likely remain
separate from the package software system until the complete legacy is migrated.
However, the process of enhancing and replacing legacy data should have the

208 10 Legacy Systems and Integration

objective of creating one central database source that will serve the entire package
software enterprise system. Indeed, a central data source reduces data redundancy
and significantly increases data integrity.

The process of data integration can only be accomplished by “combining user
views,” which is the process of matching up the multiple data element definitions
that overlap and identifying data redundancies and alternative definitions. This can
only be completed by creating a repository of data elements and by representing the
data graphically using an ERD. Once each system is represented in this fashion then
the analyst must perform logic data modeling as prescribed in Chapter 9. The result
will be the creation of one central database system cluster that can provide the type
of integration necessary for successfully package software implementations.

While this is the goal for all analysts, the road to successful implementation is
challenging. First, the process of normalization will require that some data elements
be deleted (e.g., encoded values) while others will need to be added. Second, full
data integration cannot be attained until all replacement screens are complete. Third,
applications must be redesigned so that the centrality of the data source is assumed
to exist. Since this process may be very time-consuming, it may not be feasible to
attempt a full database migration at one time. Therefore, the legacy data may need to
be logically partitioned to facilitate incremental database migration. Thus, there will
be legacy data subsets that are created to remain independent of the central database
until some later migration phase is deemed feasible. Of course this strategy requires
the design of temporary “bridges” that allows the entire package software system to
appear cohesive to users.

Another important factor in planning data migration is to determine how much is
really known about the legacy data itself. The less knowledge available, the longer
the period where legacy data and package software data need to run separately and
in parallel.

Step 7: Determine New Infrastructure and Environment, Including
Gateways

Prior to the migration of any system, the necessary hardware and software infras-
tructure must be planned and installed. A common error in legacy migration is not
factoring the time and effort to provide this infrastructure. Furthermore this process,
which may create a new network environment, needs to determine the placement of
software in a three-tier client/server platform. This means that further decomposi-
tion may be required of all processes, especially object classes. You may recall in
Chapter 8 that classes may undergo further decomposition depending on the need to
distribute application across the network.

Another important factor is performance. In many instances it is difficult for net-
work engineers to predict performance in large application system environments. It
may be necessary to plan for several benchmarks in performance early in the design
phase. Benchmarking is the process of setting up an environment that replicates a

Legacy Migration Methodology 209

production network so that modifications can be made, if necessary, to the design of
the system to increase performance.

Another decision that must be made at this juncture is whether a gateway infras-
tructure will be created to mediate legacy layers. This decision, of course, is highly
dependent on the migration life cycle; the more legacy layers that will be phased
in over time, the higher the chances that a gateway processor for data and appli-
cations will be necessary. The decision to go with a gateway is significant, not
only from the perspective of software design, but from network infrastructure as
well. Constructing a gateway can be very costly. It involves writing the system from
scratch or tailoring a commercial product to meet the migration requirements. It is
also costly because of the amount of additional hardware necessary to optimize the
performance of the gateway servers. However, the benefits of a gateway are real, as
it could provide a dependable structure to slowly migrate all components in the new
systems environment.

Step 8: Implement Enhancements

This step requires a schedule of when legacy enhancements will be implemented
and become part of the production system. Many analysts suggest that the sim-
plest modules go into production first so that any unexpected problems can be dealt
with quickly and efficiently. Furthermore, simple modules tend to have small con-
sequences should there be a problem in processing or performance. There are some
other aspects of coordination, however. For example, enhancements that feed off
the same data or use the same subsystems should obviously be implemented at one
time.

Another factor in the decision of which enhanced components go first relates to
the effects it has on other subsystems. This means that the priority may indeed be
influenced by what other systems need or are dependent upon from other systems.
Another issue could be the nature of the legacy links. Should a link be very com-
plex or dependent on other subsystem enhancements, its schedule could be affected.
Finally, the nature of the enhancements has much to do with the decision as opposed
to just the application’s complexity. There may be simple enhancements that are
crucial for the package software system and vice versa.

Step 9: Implement Links

As I alluded to in Step 8, the determination of legacy links greatly affects the
scheduling of the migration cycle. Once the determination is made in Step 8, the
related legacy links must be put in place. This could also mean that the gateway, if
designed, must also be in operation since many links might be filtered through the
gateway infrastructure. So, the implementation of legacy links relates to both hard-
ware and software. Notwithstanding whether a gateway is in place, database links

210 10 Legacy Systems and Integration

often require separate servers. In many cases because these servers interface with
the Internet, there is a need to install firewalls to ensure security protection.

From a software perspective, legacy links can almost be treated like conver-
sion programs. There needs to be substantial testing done to ensure that they work
properly. Once legacy links are in production, like data conversions, they tend to
keep working. It is also important to ensure that legacy links are documented.
Indeed, any link will eventually be changed based on the incremental migration
schedule. Remember that most legacy links are accomplished by building tempo-
rary “bridges.” The concept of temporary can be dangerous, in that many of these
links, over time, tend to be more permanent. That is, their temporary life can some-
times extend beyond the predicted life of a permanent component. The message
here should be that legacy links, while they are a temporary solution, should be
designed under the same intensity and adherence to quality as any other software
development component.

Step 10: Migrate Legacy Databases

The migration of data is so complex that it should be handled as a separate and
distinct step in the migration life cycle. Data affect everything in the system and
often if it is not migrated properly it can cause immense problems. First, the analyst
must decide on the phasing of data based on the schedule of application migration.
Hopefully, the process of data migration should be done in parallel to Steps 8 and 9.

The most challenging aspect of data migration is the physical steps in the process.
Migrating new entities and schema changes are complex. For example, changes to
databases require that the tables be “dropped,” meaning that they are taken off-
line. Data dictionaries need to be updated and changes to stored procedures and
triggers are extremely time-consuming. Most problematic is the process of quality
assurance. While some testing can be done in a controlled environment, most of
the final testing must be done once the system is actually in production. Therefore,
the coordination with users to test the system early is critical. Furthermore, there
must be backup procedures in case the database migration does not work properly.
This means that there is an alternate fail-safe plan to reinstall the old system should
major problems arise. Finally, a programming team should be ready to deal with
any problems that arise that do not warrant reinstalling the old version. This might
include the discovery of application “bugs” that can be fixed within a reasonable
period and are not deemed critical to operations (which means there is usually a
“workaround” for the problem). Analysts must understand that this process must be
followed each time a new database migration takes place!

Database migration is even more complex when there is a gateway. The reason is
that the gateway, from an incremental perspective, contains more and more database
responsibilities each time there is a migration. Therefore, for every migration, the
amount of data that can be potentially affected grows larger. In addition, the number
of data that becomes integrated usually grows exponentially, so the planning and
conversion process becomes a critical path to successful migration life cycles. Since

Legacy Migration Methodology 211

the migration of legacy databases becomes so much more difficult as the project
progresses, the end of the life cycle becomes even more challenging to reach. That
is why many migrations have never been completed!

Step 11: Migrate Replacement Legacy Applications

Once the database migration is completed, then the remainder of the legacy appli-
cations can be migrated to the new system. These applications are usually the
replacement components, which have been reengineered in the object-oriented
paradigm. These programs, then, have been designed to operate against the tar-
get databases with the new functionality required for the package software system.
Since replacement applications usually do not create links, there is typically lit-
tle effect on gateway operations. What is more challenging is the quality assurance
process. Users need to be aware that the code is relatively new and will contain prob-
lems regardless of the amount of pre-production testing that has been performed. In
any event, programmers, database administrators, and quality assurance personnel
should be on call for weeks after system cutover.

Step 12: Incrementally Cutover to New Systems

As discussed above, testing and application turnover are two areas that frequently
are overlooked. Because projects typically run over budget and schedule, the final
procedures like testing and verification are usually shortened. The results of this
decision can be devastating to successful legacy migrations. Because of the size
and complexity of many package software systems, to go “cold turkey” is unrealis-
tic and irresponsible. Therefore, an analyst should consider providing test scenarios
that provide more confidence that the system is ready to be cutover. This approach is
called “acceptance testing” and requires that users be involved in the determination
of what tests must be performed before the system is ready to go live. Thus, accep-
tance test plans can be defined as the set of tests that if passed will establish that the
software can be used in production. Acceptance tests need to be established early in
the product life cycle and should begin during the analysis phase. It is only logical
then that the development of acceptance test plans should involve analysts. As with
requirements development, the analyst must participate with the user community.
Only users can make the final decision about the content and scope of the test plans.
The design and development of acceptance test plans should not be confused with
the testing phase of the software development life cycle.

Another perspective on acceptance testing is that it becomes a formal check-
list that defines the minimal criteria for incrementally migrating systems. However,
one must work with the understanding that no new product will ever be fault-free.
The permutations of testing everything would make the timetable for completion
unacceptable and cost prohibitive. Therefore, the acceptance test plan is a strategy
to get the most important components tested completely enough for production.
Figure 10.25 represents a sample acceptance test plan.

212 10 Legacy Systems and Integration

Test
No.

Condition Being Tested Expected Results Actual Results Comments

1 Enter LAST NAME for a new
contact, press enter key. Repeat and
enter FIRST NAME, press enter key

Should accept and
prompt for COMPANY
SITE

2 Select COMPANY Site from picklist Should accept and
prompt for next field

3 Enter LAST NAME and FIRST
NAME for a CONTACT that is
already in the System.

Should accept and
prompt for COMPANY
SITE

Quality Assurance

Acceptance Test Plan

Product: Contact - Using Enter Key

Number:

Vendor:

QA Technician:
Date:

Test Plan #: 1G

Comply
Y/N

Fig. 10.25 Acceptance test plan

Problems and Exercises

1. What is a legacy? Explain.
2. Describe the five generation languages. What increases with each generation?
3. What are essential components?
4. What does the object-oriented paradigm mean?
5. How does object orientation relate to business area analysis?
6. What is a legacy link?
7. Explain the notion of logic reconstruction.
8. What is a UNIX pipe?
9. Explain how legacy integration operates through gateway architecture.

10. What is propagation?
11. What is the essential difference between character-based screens and GUI?
12. What is an encoded value?

References

Brodie, M. L., & Stonebraker, M. (1995). Migrating legacy systems: Gateways, interfaces and the
incremental approach. San Francesco, CA: Morgan Kaufmann Publishers, Inc.

Stair, R. M., & Reynolds, C. W. (1999). Principles of information systems (4th ed.). Cambridge,
MA: Course Technology.

11Business Process Reengineering

Business process reengineering (BPR) in Chapter 10 was specifically discussed in
relation to legacy applications. This chapter provides further methods on actually
replacing legacy systems as part of the redesign for a new system. That is, rather
than create legacy links, replace the old application with the new system altogether.
This approach can often be an attractive alternative because a packaged solution
might indeed contain many of the features and functions of the legacy. The object-
oriented (OO) paradigm is again the way to accomplish this analysis, particularly
using the essential components that were outlined in Chapter 10. The essential
components first require the establishment of the core business requirements and
then the mapping of the functionality of the organization or business unit to these
components.

Many chief information officers (CIOs) today are confronted with a corporate
mission to reengineer their existing applications and apply a more sophisticated
and structured approach to develop what is known as the “enterprise” system. The
enterprise system is composed of one common data repository for all of the orga-
nization’s data. The typical enterprise configuration includes the OO paradigm and
the client/server model as shown in Fig. 11.1.

The mission of BPR is to take an existing system, which is typically based on
older technology and developed on the basis discussed in Chapter 9 (where the
analyst is on the outside looking in), and reengineer it into one integrated system.
Much has been written about the approaches or methodologies to use when apply-
ing BPR, especially by Jacobson. The focus of this book is to provide direction
from a practitioner’s perspective, that is, something that can realistically be applied
within the typical resources and constraints that exist in most information system
(IS) organizations of today.

213A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_11, © Springer-Verlag London Limited 2012

214 11 Business Process Reengineering

Open Systems Operating Systems
UNIX, Windows & Windows NT, OS/2, DOS, Netware

Middleware
API, Gateways, Metadata, Protocols

Microfocus CobolC++

Oracle Tools

Delphi

SQL_Windows

Visual Basic

PowerBuilder

IBM DB2Informix

Microsoft SQL_
Server

SybaseOracle

Smalltalk

SQL

Front End GUI Application Products

Backend Databases

Fig. 11.1 Client/server three-tier architecture

Analyzing Legacy Systems for Replacement

The first step in applying successful BPR is to develop an approach to define the
existing system and extracting its existing data elements and applications. The data
need to be captured into the data repository and the applications need to be defined
and compared to a new model based on essential components. Our assumption in
this section is that the legacy system resides on an IBM mainframe computer. The
data are stored in a VSAM format (non-database files) and the applications have
been developed in COBOL. There are no central libraries or repositories of data or
programs.

Data Elements

The analyst team will need to design conversion programs that will access the data
files and place them in a data repository. Once all the data elements are loaded,
the more rigorous process of identifying duplicate elements becomes the major
effort. Duplicate elements may take on different forms. The most obvious is the

Combining Structured and Object Techniques 215

same element with the same name and attributes. Another type is the same element
name, but with different attributes. The third type, and the most challenging, is the
duplicate elements that have different names and different attributes. This third type
can be related to our discussion about combining user views. In any event, users
and analysts will need to begin the laborious process of taking each element and
building a data repository.

Applications

Application documentation is more problematic but again resembles the procedures
followed using flow diagrams. This means that each existing application must be
flowed and included as part of a new reengineered process. Although this procedure
may sound straightforward, it is not. BPR typically involves a methodology called
business area analysis (BAA). The purpose of BAA is to
• establish various business areas that make-up the enterprise;
• breakdown the business areas to their required data and process portions;
• reengineer the new and old requirements of each business area;
• develop requirements that provide an OO perspective of each business area,

meaning that there is no need to map its needs to the existing physical
organization structure; and

• define the links that create relationships among all of the business areas.
A business area should be developed in the same manner as depicted in

Chapter 10, where we established the essential components of a bank. Each com-
ponent is a business area that needs to be reengineered into its equivalent OO
and client/server enterprise system. Therefore, each essential component must be
functionally decomposed to its reusable parts.

Combining Structured and Object Techniques

Once the essential components or business areas have been completed and agreed
to by the user community, it is time to develop the actual architecture of the new
reengineered system. What modeling tools should we use? The answer is that we
should be ready to use all of them when required. Figure 11.2 is a schematic of the
reengineering process within a business area.

Like OO paradigm, BPR also uses the object concept to develop cohesive and
reusable processes. We use the example from Chapter 10 to demonstrate how this
maps to business areas. Once the business areas are defined, the structured tools
should be used to define all data and processes. BPR supports the concept that the
data for a business area should be determined before the processes. You may recall
that the same data represented an excellent method for creating cohesive modules.
By using the same data, functional primitive DFDs and STDs can be mapped to
their appropriate business area.

216 11 Business Process Reengineering

ESSENTIAL
COMPONENTS of a BANK

New User
Requirements

Bank Essential Business Areas

Provide Security Pay Interest

Pay Bills

Convenience

Investment

Provide Security

Pay Interest
Pay Bills
Convenience
Investment

Fig. 11.2 BPR modeling using the essential components of a bank

Logical data modeling and the ERD will need to be completed prior to creating
the permanent objects and classes that belong to each business area. Normalization
must be applied to the required entities, which will not only have the legacy data
elements, but also those added as part of the reengineering analysis process.

Prior to mapping the processes and data to their logical objects, the analyst can
use another tool to assist in the reconciliation that all data and processes have been
found. The tool is called an Association Matrix or a CRUD diagram. CRUD stands
for the four functions that can be performed on any entity: Create, Read, Update, or
Delete (archive). The importance of the CRUD diagram is that it ensures (Fig. 11.3):
• that an object has complete control over its data,
• that a data file is accessed by at least one process, and
• that processes are accessing data.

CRUD matrix in Fig. 11.3 tells us a lot about the status and activities of our
business area data and processes:

Dealing with End Users 217

Processes or
Business

Function
Data Subject
or Entity

New
Orders

New
Products

Shipping Sales
Commission

Customers R R, U
Orders C, U U R
Items R C, U, D R R
Inventory R,U C, U U
Expense Category
Salesperson R U

Fig. 11.3 Sample CRUD diagram

• Only the Items entity has enough component processes to control its objects data,
that is, by spelling CRUD its processes have the minimum capabilities to control
the cycle of any data element. Although this does not ensure that processes are
not missing, it is a good indicator that the analysis has covered the life cycle of
an entity.

• The Expense Category is not accessed by any process. This means that we have
a file that the system is not using. This is an excellent indicator that processes are
missing.

• The Customer, Expense Category, and Salesperson data are created and deleted
by some other processes or business area. This could be a situation where the
physical location of a business function is not where it logically should be
processing. The analyst should look for the missing processes to complete the
spelling of CRUD before finalizing both the processes and data of any business
area.
Even if BPR is not used, the CRUD diagram is an excellent tool used to determine

the processes and data needed for an object. Once the CRUD diagram is finalized,
the objects and classes can be created as in Fig. 11.4.

It is important to recognize that many of the objects that are developed during
BPR may become reusable components of other business area classes. If there are
additions to an object as a result of reviewing a new business area, then the object’s
data and methods may need to be updated. The best approach to track these objects is
through an integrated CASE tool, although any level of automation can be feasible.

Dealing with End Users

When applying BPR, analysts need to formulate a plan for how users and user
groups will be interviewed. Most importantly, since reengineering implies change,
change means discussions that must lead to decisions. Coordination of these deci-
sions is critical, and it can get out of hand quickly. For this reason, the analyst
should attempt to organize BPR using multiple JAD sessions. The sessions should be
focused first on each individual business area. Prior to actually holding the session,

218 11 Business Process Reengineering

Provide Security Pay Interest

Pay Bills
Convenience

Investment

Bank Essential Business Areas

Component Objects

Structured
Modeling

Purchase
Investment

Data

Methods

Sell Investment

Data

Methods

Investment
Interest

Data

Methods

DFDsERDs

Fig. 11.4 Business area component objects and diagrams

analysts and facilitators should educate users on the techniques and reasons for BPR.
Analysts should not be afraid to show users the business area schematic and explain
the concepts of essential components and how they eventually can become reusable
objects. This means that there may be a need to hold a one-day training session for
the users who will be involved in the JADs. This suggestion is consistent with the
concept of having users prepared before they attend a meeting.

JAD sessions should be organized to have session leaders who can provide
walkthroughs of the existing functions. While these walkthroughs take place, the
adjustments and missing functionalities can be added to the business area. The issues
concerning the selection of key personnel are extremely important, especially when
selecting decision makers. Because of the volume of information being discussed, it
is advisable to have more than one scribe available. This minimizes the risk of not
capturing important business rules.

After each business area is completed, the links to the other business components
must be handled. These should also take place via JADs and typically use the session
leaders as attendees. Session leaders tend to have enough information at this point
from the JAD sessions to determine the necessary links for each business area.

Information Systems Issues 219

The use of prototypes for each JAD is highly recommended because it will pro-
vide the best vehicle to get agreement on the new system. This suggests that an
integrated CASE product is almost a necessity for creating a successful BPR project.

Information Systems Issues

BPR is implemented on existing systems. Existing systems have IS staffs and con-
straints that must be addressed as part of the process. Since the current view of
BPR is to create an open systems client/server enterprise system, the physical
requirements of the network are critical during analysis. Remember, RAD means
the combining of analysis, design, and development into multiple iterative steps. In
order to take the objects and classes developed from the JAD sessions, the analyst
must start breaking up the data and methods of the classes into its related client and
server functions. You may recall that if the client and server processing portions of
an object must reside on separate hardware components then the object/class must
be separated or further decomposed into separate physical modules (Fig. 11.5).

We have emphasized the importance of analysts being involved with the network
design for client/server systems. BPR thus requires that the network design be com-
pleted as soon as possible and ideally before analysis starts. This will be difficult
since many of the network decisions may be altered depending on how the objects
become distributed across the network. In addition, the back-end database stored
procedures (business rules, triggers, etc.) and middleware software components
must be defined while the analysis specification is being finalized.

IT personnel must also be heavily involved in the JAD sessions to clarify ques-
tions about the existing system processes. This will involve discussions about the
amount of data processed as well as the difficulty or ease of getting additional
information from the suggestions brought up during the JADs. IT can also disclose
the details of the equipment choices and how these may affect the requirements
being discussed. Such input may enable quicker decisions based on predetermined
IS constraints.

Client/Server Hybrid Object

Attributes

Services

Decomposition

Server Attributes Client Attributes

Server Services Client Services

Fig. 11.5 Client/server hybrid model

220 11 Business Process Reengineering

Finally, IT will be required to establish the information about the existing data
and processes. They will most likely be responsible for the conversion of the data
as well as for clarifying the meaning of many of the data elements in question. You
may assume that many of the legacy data element definitions will be unknown and
as a result analysts and programmers will be spending time together figuring out
what such elements do in the system. Existing process review means looking at
the current application programs and how they function in the system. Most of this
work will be required from IT programmers and legacy designers (if they are still
around!). Since our assumption was that the existing system was developed under
COBOL, there will be a more difficult mapping of how a 3GL (third-generation
language1) is designed as opposed to today’s 4GL (fourth-generation language2)
products.

System Development Life Cycle (SDLC)

BPR changes the steps in the typical IS SDLC. The traditional SDLC is based on
the waterfall approach as was shown in Chapter 1 (Fig. 11.6).

The problem with the waterfall approach is that it is unrealistic (as discussed in
Chapter 1) and that it does not conform to the requirements of the OO life cycle.
Therefore, IS must modify its SDLC to conform to the OO and client/server needs
of BPR. The OO client/server life cycle resembles a spiral as shown in Fig. 11.7.

The spiral life cycle reflects a much larger allocation of time spent on design than
in the traditional life cycle, because much of the development time is spent designing
the objects for product reuse. Although this may appear unduly time-consuming,

Activity March April May June July August Sept Oct

Feasibility

Analysis

Design

Development

Quality Assurance

Implementation

Fig. 11.6 The classic waterfall SDLC showing each phase dependent on the completion of the
previous one

1 A generation language refers to the level of the programming language. Third-generation
languages were considered high-level development systems that included C, Pascal, and COBOL.
2 Fourth-generation languages typically include programming languages that work directly with
database systems and contain simpler program instructions than its predecessor languages.

Downsizing System Components 221

Testing Requirements
Specification

(Business Specs)

Implementation
Analysis/Design

Fig. 11.7 Object-oriented
software life cycle

there is a heavy payback in BPR if it is done correctly. Remember that the spiral life
cycle is applied to the development of each object since it is a cohesive component
within itself. The more reusable the object, the more spiral the effort becomes with
a particular emphasis on the analysis/design phase.

Pilot Applications

Many analysts opt to have a pilot application as part of the BPR effort. The purpose
of the pilot is to get users excited about the benefits of creating the new system.
Because an actual application is developed, IS must be involved to ensure that the
pilot is successful. How can success be evaluated? The first real decision in a pilot
is to select an existing application that is not working favorably and one that can
demonstrate enough advantages of the OO GUI and client/server environment to
pique the interest of users. Below is a suggested strategy:
• Focus on an application that can demonstrate the flexibility of the GUI front-end.
• Select an application that accesses existing corporate data to show the users

how easily the data can be reached. Analysts should avoid an application that
gets involved with massive updates or large data queries, as this is inviting an
unexpected delay in processing. Such exercises tend to involve much study and
experience with the corporate network of information, and this expertise may not
be available.

• Select an application that has a relatively short development time when using a
GUI product. Do not try an application that might be more involved when using
a client/server model.
The pilot application not only has the potential to generate more interest, but it

also allows users to be more creative and understanding of the requirements of BPR.

Downsizing System Components

After the business areas and interfaces among them have been completed, the ana-
lyst and development must decide on a strategy for implementation. To attempt
to convert an entire enterprise-level system in one project is very dangerous and

222 11 Business Process Reengineering

Investment

Convenience
Pay Bills

Pay InterestProvide Security

Temporary Legacy
Links

Open System Client/Server Business Area

Bank Legacy System

Fig. 11.8 Legacy links of a business area

very unlikely to succeed. The user community also needs to be involved with this
decision since many business units can convert only at certain times of the year
due to various seasonal business requirements. Therefore, the analyst must plan to
migrate applications in pieces. It is only logical to do this migration by business
area and to develop temporary legacy links back to the main system. Most organiza-
tions are doing just this by purchasing open systems hardware and moving complete
self-contained business areas independently onto the new platforms (Fig. 11.8).

As each business area is converted to the open systems architecture, the
temporary legacy links will be deleted and incorporated into the new system.

Transactions vs. Data Warehousing

Our sample system is categorized as a transaction-based operation, that is, the
system was designed to maximize its performance based on the processing of
transactions. This type of systems must perform under the stress of many users

Transactions vs. Data Warehousing 223

who are using the system for production purposes. The limit of these systems is
that they do not provide the end user with on-line data comparisons and what-if
analysis in a productive and robust environment. Such systems were designed in the
early 1980s and were called decision support systems (DSSs). Today’s robust soft-
ware goes even further than the awkward DSSs, and users want the same level of
flexibility with their enterprise solutions. The problem is simple: You cannot maxi-
mize your transactions performance while maximizing your DSS functionality. The
result is many client/server systems have had trouble performing at the same level
as the legacy systems. SQL-based queries that are issued during peak-time enter-
prise processing can cause significant slowdown in processing. In most cases such
delays are simply unacceptable. In fact, GUI applications will never outperform
VSAM transaction-based mainframe systems. This sounds like a disappointing state
of affairs for users. The remedy is to separate the transaction processing from the
DSS functionality and improve transaction processing to an acceptable user level.
This is accomplished by creating a data warehouse environment. A data warehouse
is an archive of the database off-loaded usually to a separate machine to provide
DSS capabilities to those that need to query information.

The problem with data warehousing is the currency of the data, since off-loaded
information is typically not performed real time. Therefore, users must agree to use
“old” data. Many organizations have provided data warehousing capabilities within
hours of the input or update of information. Nevertheless, data warehousing can
work only if the user community can settle on aged data that they cannot change.
There are products such as SAS that provide specific tools to create data warehouse
databases. Often the data are not fully normalized because the user cannot change

BPR

Open Systems
GUI

Transaction
Based System

Mainframe Legacy
Transaction Based
System Processing

Open Systems
GUI Data

Warehousing
DSSFig. 11.9 Transaction/data

warehouse BPR solution

224 11 Business Process Reengineering

the information. This results in a more efficient and accessible database because the
information is stored in a flatter format (fewer database files). Almost every database
manufacturer will be providing data warehouse capabilities in their next release.
The analyst must be involved in determining which applications (usually reporting
and inquiry operations) are candidates for the warehouse function. Analysts and IS
personnel must take care in explaining the role of the data warehouse to the users so
that they can use it effectively. Data warehouses are discussed further in Chapter 12
(Fig. 11.9).

Problems and Exercises

1. Explain the objectives of BPR.
2. How is BPR consistent with the object and client/server models?
3. What is a business area?
4. Explain the relationship between BPR and structured tools.
5. What is a CRUD diagram?
6. How should BPR be introduced to users and IS personnel?
7. What is SDLC? Why is it called a waterfall approach?
8. Compare SDLC with OOLC.
9. What is the significance of the spiral approach and how does it support the

development of reusable objects?
10. Describe the procedures to implement a pilot application. Why is this so

important in BPR?
11. Describe the philosophy of reengineering an enterprise system.
12. What is the difference between a transaction database and a data warehouse?

12Data Analytics and Data Warehouses

Introduction

This chapter focuses on how to extract information from package software systems.
This information will be used for decision support system (DSS) purposes and typi-
cally be presented to the user in an on-line display format or as a report. The concept
behind DSS is that it deals with data “after the fact,” meaning that the data are no
longer in a production mode, but rather in a storage mode where it can be used for
different forms of analytical processing. The major benefit of operating on processed
data is that it cannot be changed and therefore can be accessed without concern for
data integrity. Another salient issue is that because the data are not subject to change
it can be copied multiple times, allowing for some interesting performance improve-
ments and “flattening” of the data stored in the relational database. The referential
integrity that was attained in a production database does not maximize performance
for the query of data for reporting purposes. Almost all systems today need to deter-
mine how best to extract information for what is now being called “data analytics,”
that is, the ability to understand and analyze the information contained in applica-
tion software systems. Increasingly, CIOs are being held responsible for providing
this information.

In order to maximize the efficiency of accessing and analyzing data it is necessary
to separate it from the production system. This is accomplished by creating copies
of the data solely for decision support analysis. There are a number of different ways
to do this separation. One way is data warehousing, where data are reformatted from
one or more data sources and placed in a special repository for analytical process-
ing. Another approach is to create data marts. While similar to a data warehouse,
data marts are defined as more strategic in nature and more specifically organized
to support the gathering of departmental data. Data warehouses can be composed
of many data marts. Still another method is called data mining, in which multiple
definitions of data from different systems are collected and analyzed for similarities.
Data mining provides more artificial intelligence features and can perform advanced
analysis against multiple data warehouses and data marts, especially when the data

225A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_12, © Springer-Verlag London Limited 2012

226 12 Data Analytics and Data Warehouses

come from multiple computer systems. All of these alternatives will be examined
in this chapter and its relationship to the analysis and design of package software
systems. In order to provide effective data warehouses, data marts, and data mining,
it is necessary to understand how to obtain the data that are needed to populate these
data structures.

A major component of creating effective repositories of data for DSS or data
analytics is how to extract the information through database query. In order to
accomplish this effectively, it is important to understand the transaction process-
ing system, since some transactions might need to be captured when they occur
as opposed to after they have updated database files. Furthermore, the process
of creating reports and screen displays needs to be included as part of the ana-
lyst’s specification. Some reports are precoded, while others are generated through
user-initiated query applications.

Data Warehousing Concepts

Operational databases are those that are designed to track business events in real
time. In operational databases, processing data usually correlates to cost while the
completion of the data’s process relates to revenue. I have shown in Chapter 11 that
the data in operational databases are accessed at the detailed level, where individual
records are created, read, updated, or deleted (CRUD). Entities in the relational
model are constantly updated to ensure that the integrity of the data is preserved and
that no historical information on the entity’s previous status is stored.

Data warehouses, on the other hand, can capture both completed events and their
original transactions. This allows data warehouse implementations with the ability
to characterize more about how the data were produced at a much more detailed
and granular level than usually available in operational databases. However, it is
also important to remember that data warehouses are static snapshots on historical
events. As a result, they are often not in sink with an operational database, which
always reflects the current aggregate picture of the data. This has both advantages
and disadvantages. From an advantage point of view, a data warehouse can con-
tain multiple copies of the same data. Each set could represent the same data at a
different moment in time, or could represent different views of the same data, or
any combination of all of these. Figure 12.1 depicts the relationship between a data
warehouse and the operational databases in a package software system.

The issue of data synchronization between the operational databases and the data
warehouses is significant. The ultimate consideration when designing a data ware-
house system relates to the age of the data in the warehouse and how often these
data need to be refreshed. For example, if an accounting department needs to pro-
duce a report by the 15th of every month on the previous month’s activity, then the
data refresh would need to occur sometime after the end of the previous month and
before the 15th of the new month. On the other hand, if a daily report were needed
on the previous day’s activities, then an evening refresh would be required. Data
refreshment requires that the data from the operational database be copied to the

Performance Benefits of Data Warehouses 227

Operational View Data Warehouse View

Product

Type of
Product

Discounts

Price

Instructions

Order

Items

Shipments

Retail

Returns

Credit
Returns

Payment

Wholesale

Credit Back

Exemption
Status

Multi-Dimensional
Views and Changes

Completed Sales
Transactions

Multi-Dimensional
Views and Changes

View by Product
Grouping

Product

Type of
Product

Sales by
Order

Sales
by Item

Customer
Groups

Customer

Fig. 12.1 Operational and data warehouse databases

warehouse. Unfortunately, this may not be the end of the data refresh procedure,
since the format of the data in the warehouse may be very different from that of the
operational system. Thus, there is typically a need for the data to be reformatted so
that it can be fed into the warehouse structure directly. Because a data warehouse
might be an aggregation of the operational data, it can be necessary to perform
mathematical computations on the ported data to produce derived data information.
You might recall that derived data are a violation of normalization and not allowed in
the operational database. Therefore, data warehouses are de-normalized models of
the operational systems and will typically contain data elements that were removed
through 3rd Normal Form implementation.

Performance Benefits of Data Warehouses

The advantages of developing a warehouse are many. First, it allows users to analyze
data without interfering with the operational systems. This is a significant benefit
because of the inherent problems associated with SQL. When queries are produced
against an operational database to produce reports they often require what is known

228 12 Data Analytics and Data Warehouses

as database joins. These joins create intermediate databases until the final report
is produced. Furthermore, the final database of these joins is in the format of the
report being requested. This means that a report from an SQL query is really a
subschema picture of the original database. Issuing complex queries that require
multiple joins can easily tie up an operational database, thus creating serious con-
frontations between production personnel and support organizations. Therefore, the
process of performing DSS requires SQL, which in turn hinders the performance of
the production system. Figure 12.2 shows an example of the quantity of dynamic
tables that can be produced as a result of a simple SQL join statement.

Figure 12.2 shows how an SQL PROJECT statement creates a subset schema
of columns of the parent entity. Thus, the subschema contains the same number
of records, but fewer columns or attributes. The SELECT statement also creates
another entity, which reduces the number of rows, but contains the same number of
attributes as the parent database. Finally, the join combines the results of the two
subschemas to produce a third entity, which is in the format of the report requested
by the query. This sample shows how much overhead is involved with the produc-
tion of a simple report. When voluminous data are involved the time to complete

Items
Purchase

Orders

SQL Query to generate
report by Item and

Purchase Order Date

Report Table
after

Database
Select and

Join

Output Report

SQL Query, Select and Join

Fig. 12.2 Dynamic SQL table joins

Concept of Multiple Dimensions 229

the query is even more significant. Indeed, some queries have been known to run
over 24 h! Therefore, data warehouse solutions should be the preferred method
for analyzing data rather than using standard SQL directly against production
databases.

Concept of Multiple Dimensions

Data warehousing has often been referred to as a three-dimensional way of repre-
senting data. The three dimensions are seen as a cube of data. Each cell is viewed as
a box within an array. This cube represents one data warehouse aggregation (com-
bination) and provides a number of ways to view the data. Figure 12.3 shows a data
warehouse aggregation of three viewable dimensions of information. The relational
table is two-dimensional; it contains rows and columns, which are synonymous with
records and attributes. The corresponding multidimensional cube reflects a three-
attribute dimensional view of the data. The two-dimensional part is Orders and
Items, with the third dimension being Markets. Figure 12.4 reflects another third
dimension, the addition of the price attribute to the array. From a reporting perspec-
tive, a user could query for Orders and Items, which would only use two of the three

Books

Books

Books

Books

DVDs

DVDs

Books

Item

New York

St. Louis

St. Louis

Los Angeles

Los Angeles

Austin

New York

Market

Q4

Q2

Q3

Q2

Q1

Q4

Q1

Period

300

568

985

3500

5440

1500

1200

Quatity

Fig. 12.3 Relational table and multidimensional cubes with three aggregations

230 12 Data Analytics and Data Warehouses

1200 568 985 300

New York

St. Louis

Los Angeles

Q1 Q2 Q3 Q4

Time

M
ar

ke
ts

P
ro

d
u

ct
s

Fig. 12.4 Relational table and multidimensional cubes with four aggregations

dimensions, or ask for Orders by Item within Market. To use all the dimensions
available, the user could search on Orders, by Item within Market by Price.

These examples picture the data warehouse from a logical perspective, that is, the
cube does not exist physically, just conceptually. From a physical perspective, data
warehouses use a standard data structure called the star schema. The star schema
contains the main table in the center of the star, and each node represents another
dimension of the data as shown in Fig. 12.5.

The star schema in Fig. 12.5 allows for queries to be performed based on an
Order. In many ways it resembles an ERD in an operational database. However,
most star schemas start with a multidimensioned center (concatenated primary key),
so that query time is enormously reduced because there are less joins. Figures 12.6,
12.7, and 12.8 show how the number of tables is dramatically reduced as the num-
ber of primary key concatenations in the center table increases. It is important to
recognize that more key concatenations in the center table greatly reduces the types
of searchers that can be performed on the data, that is, the flatter the schema the
less dimensions available to view the data. For example, in Fig. 12.8, there are no
nodes in the star schema because there are no dimensions. Therefore, a user can
only query the data warehouse to view Items within Orders, by Market and Price.
It is also important to recognize that Fig. 12.8 contains no validation or look-up
tables, which are normally used to validate the data of certain data elements. Data
validation is not required in a warehouse architecture because the data are read-
only, that is, records cannot be inserted, updated, or deleted. This is significant
because this structure greatly improves data access performance. The removal of
validation tables eliminates index pointers and the need for multiple joins of tables,

Concept of Multiple Dimensions 231

Dimension

Identify
Customer

Identify
Dept

Identify
Products

Identify
When

Identify
Where

Transactions

Fig. 12.5 Star schema

which simply reduces overhead and increases the performance of report queries.
Figures 12.6–12.8 also depict the number of dynamic searches that are needed to
produce one report. It is also feasible to design package software data warehouses
that contain all four types of star schemas. This could occur if there were four
departments who had three different fixed views of how they wanted the data to
be represented to them.

Because there can be multiple copies of data in a data warehouse environment,
there is an advantage to create more schemas that represent the data as it is needed
for a specific report or analysis, as opposed to designing an elaborate star schema
that allows for multiple views of the data. The reason for this position is simple:
why design a data warehouse that resembles an operation database? Another way of
looking at this model is to conceptualize that every data warehouse is nothing more
than a view of data for a specific user view. The more alternative searches you offer
the user, the less attractive the model is from a performance perspective. However,
multiple warehouses require multiple conversions from the operational systems. So,
the analyst must balance the design taking into consideration both performance and
overhead issues.

232 12 Data Analytics and Data Warehouses

Prices MarketOrder
Items

Fig. 12.6 Prices, order items and market as separate warehouses

Prices
Order
Items

Market

Fig. 12.7 Order items and market warehouses combined

Order
Items

Market
Price

Fig. 12.8 Prices, order items and market as one warehouse

Data Warehouse Architecture

The first step in creating a package software decision support system is designing
the data warehouse structure. This structure, or architecture, provides a framework
for identifying how data will be utilized within the package software system. A basic
data warehouse architecture is shown in Fig. 12.9.

The fundamental characteristics of the basic data warehouse architecture are as
follows:
• Data are extracted from operational databases, flat files, and other data sources.
• The data from all of the source systems are first integrated and transformed into

another format before being loaded into the actual data warehouse.
• The data warehouse can only be used for read-only activities for DSS.
• Users obtain access to the data warehouse through a front-end application tool,

usually supplied by the warehouse vendor.

Extracting Data from the Source

The data warehouse process starts with identifying the source of the data needed for
the DSS. These will typically come from two places: (1) the operational databases
that exist in the new package software system and (2) the data files that exist in
legacy systems. The most difficult part of the process is to identify the meaning

Data Warehouse Architecture 233

Source

Source

Source

Data
Warehouse

Transformation
of Data

User

User

User

User

User

Fig. 12.9 Basic data warehouse architecture

of the data elements in each system so they can be transformed properly into the
data warehouse. This can only be accomplished by first creating a central reposi-
tory of the data—typically by using a CASE (computer-aided software engineering)
tool. Porting data into a central repository is easier when working with relational
databases because they are better documented and can be reverse engineered into
a CASE tool. However, legacy data are more challenging because of their lack of
documentation and less conventional data formats. Notwithstanding the format of
the source data, the process to define the operational data is time-consuming but
extremely valuable for the project to be successful. Many data warehouse products,
like Sagent, provide their own metadata dictionaries that can be used instead of a
CASE tool. These metadata libraries store the relationships that exist among the dif-
ferent yet related databases in the production systems. Analysts also need to extract
data from third-party products that are part of the operational system. For exam-
ple, a weekly stock price file that is integrated in to the production system. In any
event, most data warehouse systems can extract data from multiple databases from
multiple systems.

Many operational systems can be categorized as “transaction processing” based.
This means that they are heavily geared toward capturing transactions that occur
throughout the day. Typically, transaction processing systems are those that take
orders, ship them, and then record financial information. Transaction processing
systems have the following characteristics:
• High transaction rate
• Constantly changing

234 12 Data Analytics and Data Warehouses

• Data redundancy is avoided in order to ensure integrity
• Optimized indexes to ensure SQL query efficiency
• Two-phase commit architecture to ensure recoverability.

DSSs using data warehouses provide tremendous advantages for transaction pro-
cessing systems because they can reformat data into dimensions so that users can
better understand the meaning and results of the transactions.

Staging the Extracted Data

As previously stated, a significant component of the data warehouse product is a
load server that compiles the data and establishes the links among duplicate data
elements. Furthermore, the load server allows for the definition of elements, espe-
cially for those attributes that have complex meanings. These attributes are called
intelligent keys where portions of the attribute have special meanings. This is shown
in Fig. 12.10 for a Part Number data element.

The load server has the ability to store information about the Part Number so
the warehouse can easily identify the data element’s components during a query.
Overall, the load server prepares the raw data and creates a new repository of
information in the format required by the data warehouse schema.

Read-Only Activities

As previously stated, the data warehouse is a read-only copy of operational data.
The philosophy is that operational data and DSS data are inherently different.
Specifically, DSS provides easy to understand formats of data so that analytical
information can be created to support better tactical and strategic business decisions
within the company. These analytical processes require that historical data be kept in

140879402

Stored Part Number Value

140

Distribution Center

8

Warehouse

79

Year Created 402

Part Type

Fig. 12.10 Encoded data
elements

Data Warehouse Architecture 235

different views, unlike the single normalized view required in operational databases.
Indeed, one database format alone cannot efficiently provide for both types of func-
tional need. Thus, at the core of all warehouse products is a read-only database that
represents the primary component of information analysis.

Front-End Tools

In most data warehouse systems, the data access infrastructure makes up the next
most important component of the DSS architecture. This data access is composed
of front-end query tools and application programs that provide useful and accessi-
ble decision support information from the data warehouse. Thus, analysts need to
design the warehouse schemas, query logic, and applications to create a useful data
warehouse environment that operates under the auspices of the production systems.
The important component of application and query support are the third-party appli-
cations that are provided with the purchase of the data warehouse. Most warehouse
products, like SAS, Sagent, and Oracle, all come with sophisticated developer tool
kits that allow for the generation of advanced query and application development.
These add-on application products do not, however, provide the proper analysis and
design process to determine what they need to do.

Types of Data Warehouse Architecture

Thus far we have only looked as what can be called a “generic” data warehouse
architecture. However, there are more sophisticated design considerations when for-
mulating a package software enterprise warehouse system. Figure 12.11 depicts a
slightly more complex data warehouse that loads data into what is known as busi-
ness area. A business area represents a defined segment of the organization and
is based on perceived business similarities. These similarities could be based on
where income is derived, type of clients, etc. Therefore, each business has its own
view and use for a warehouse. All of these multiple warehouses are derived from
one enterprise warehouse that has been ported from the integration of multiple data
sources.

In Fig. 12.11, data are extracted from various source systems and integrated
and transformed before being loaded into an enterprise data warehouse. These
data are then restructured, redesigned, and moved into separate business area ware-
houses, which are then used for DSS. The major benefits of using a business area
architecture is to:
• ensure that all business areas are deriving data from a central warehouse system;
• create subwarehouses that can better facilitate the needs of smaller departments;
• provide access to different user communities. Internal, consumers, and customers

all have different business area needs and access authorization criteria; and
• ensure that the timing of the data is consistent across all warehouses. In this way

comparisons of data across the enterprise are consistent.

236 12 Data Analytics and Data Warehouses

Source

Source

Source

Data
Warehouse
Load Server

Transformation
of Data

User User User User User

Business
Area

Warehouse

Business
Area

Warehouse

Fig. 12.11 Business area data warehouses

Source

Source

Source

Transformation
of Data

User User User User User

Business
Area

Warehouse

Business
Area

Warehouse

Fig. 12.12 Direct business area data warehouse

Another hybrid version of the business area model is to create separate area ware-
houses directly from the load server as shown in Fig. 12.12. While this architecture
does not contain a central enterprise data warehouse, it has all of the constructs that
represent a true data warehouse. Obviously, the advantage is the time and space

The Package Software Decision Support Life Cycle 237

Source

Source

Source

Transformation
of

Data

User User User User User

Integrated
Relational
Database

Data
Warehouse

Fig. 12.13 Integrated relational data warehouse

saving of creating an intermediate enterprise data warehouse. This model is advan-
tageous when there is little need for a centralized warehouse and when there are
multiple updates of the warehouse from multiple source files.

Still another intricate architecture is shown in Fig. 12.13. This model creates
an integrated relational database in 3rd Normal Form. The data that come from
source operational systems remain read-only; however, new data can be added to the
integrated database directly from users. The purpose of these updates is to provide
additional data that facilitate expanded decision support activities. Sometimes this
process also helps to “clean-up” bad data. Once the new data have been entered, the
data are transformed into a data warehouse.

The Package Software Decision Support Life Cycle

The system development life cycle (SDLC) for package software DSS focuses on
data, as opposed to processing and functionality. As a result of the elimination of
many process-oriented steps, the DSS life cycle is much faster and less complex
than its traditional counterpart. The main activity for the analysts is to take data
from various sources and platforms and provide multiple strategic views of the data
in another infrastructure.

The phases of the package software DSS are as follows:
1. Planning
2. Gathering data requirements and modeling
3. Physical database design and development
4. Data mapping and transformation

238 12 Data Analytics and Data Warehouses

5. Data extraction and load
6. Automating the data management process
7. Application development and reporting
8. Data validation and testing
9. Training

10. Rollout

Phase 1: Planning

The planning phase in package software DSS is very similar to the project life cycle
and entails the creation of a project plan and realistic time estimates. Planning,
like that for any project, includes defining the project scope, plan, resources, tasks,
timeliness, and deliverables. Figure 12.14 depicts the project planning components.

Furthermore, the DSS will require changes to the network infrastructure.
Therefore, there will be technical infrastructure design that needs to be implemented
while formulating the proper DSS environment. The technical components include
capacity planning, archival strategies, data refresh/update strategies, and operations
and job scheduling.

Phase 2: Gathering Data Requirements and Modeling

During this phase the analyst must understand the business needs and data require-
ments of the users of the system. Because package software systems are composed
of internal users, customers, and consumers, the data modeling requirements for
data warehouses will vary depending on the different user views. Essentially, data
requirements will involve the process of identifying what elements are needed for
DSS by each group of users. The assumption should be that normalized databases
exist, legacy links have been made, and intermediate transaction processing systems
are in place. If a central repository of all data elements is in a CASE product, then
identifying the components of the warehouse will be much easier and productive.
Unlike regular data gathering, analysts should be looking at what users need to see
in the form of screen displays and printed reports. Thus, it is the output that iden-
tifies what is needed for the data warehouse. Therefore, the analyst does not need
to use process models like DFDs to model the data warehouse, rather the specifica-
tion will consist of query screens for data access, sample reports, and screen display
views. The reports and screen displays need to be in prototype form so that users
can validate that the information and format are correct. Another interesting aspect
of data warehouse design is to determine what users might want to see in addition to
what they have already identified. Basically, most users will want to see the reports
and screen displays that they are used to having from their existing system. However,
data warehousing allows so much more that the analysts need to consider what users
might want to see given the robust power of the data warehouse query software.
While this activity might seem counter to my previous position that analysts should

The Package Software Decision Support Life Cycle 239

Defining Project
Scope

Create Project
Plan

Resources

Defining Tasks
and Subtasks

Defining
Milestones and

Deliverables

Fig. 12.14 DSS project planning components

never create requirements, I do believe that the analyst must at least inform, usually
through demonstrations, the power of the data warehouse to each user constituency.
Obviously, this process may not be practical for consumers, except where the mar-
keting department is involved with focus groups. Analysts must remember to inform
users that data warehouses do not contain current data. While designing real-time
data warehouses is possible, it is unlikely and difficult to implement.

What is most important, however, is not the reports and displays, but the strat-
egy of designing the data warehouse (or data mart) architecture. Reports can usually
be modified without great pain, but schema design is more complicated. This pro-
cess requires that the analyst determine which type of warehouse designs to use.
Remember that there can be multiple data warehouses produced from multiple
sources, so the options for design are many-to-many as shown in Fig. 12.15.

240 12 Data Analytics and Data Warehouses

Source

Source

Source

Data
Warehouse

Data
Warehouse

Data
Warehouse

Data Transformation

Data
Warehouse

Fig. 12.15 Data source and data warehouse relationships

Notwithstanding the relationships between data sources and data warehouses, it
is important to focus on the schema design, that is, what is the design of the star
schema. There are essentially three approaches. The first approach suggests that the
data warehouse contains a star schema that resembles the report or screen display.
This design was discussed earlier in this chapter. The advantage of this approach
is that data are already placed in the format required so there is little need for data
manipulation. As a result, the production of the reports and displays is very efficient.
Furthermore, there is little that the user needs to do other than just selecting the
option to produce the report. The bad news is that the warehouse is very limited
because all it can do is produce the report. The economies of scale for creating
the report in a data warehouse form may seem like overkill, unless the process of
obtaining the data in one central repository has significant time saving for the user.
Figure 12.16 shows a data warehouse report schema.

The second approach is to create sophisticated star schemas that support a group-
ing of needs. Each schema would contain a central table that provides a data
repository required by a group of users. Each node would provide the supplemental
data that might be needed depending on the user group and the report subject. The
benefit of this model is somewhat obvious in that it allows warehouses to serve mul-
tiple needs and provides for more DSS analysis of the data. The downsides are also
obvious; users need more knowledge on how to query the data and therefore need

The Package Software Decision Support Life Cycle 241

Order
Items

Market Price
Salesperson

Ship Date

Order Analysis Report

Order # Item ID Market

14387 A5567 West

Price

120.00

Salesperson

Joe Smith

Date Shipped

3/15/2001

Fig. 12.16 Data warehouse report schema

training and an understanding of what data are available for analysis. In addition, the
performance of the reports and displays will vary depending on the level of sophis-
tication of the queries that are afforded to the end users. Figure 12.17 depicts a star
schema for group user query.

The third approach comes back to the earlier example of the enterprise-level data
warehouse. Rather than having multiple warehouses serving many users, one central
complex star schema can be designed to afford the needs of an entire organization,
group, or department. These types of data warehouses will contain the most nodes
on the schema and look very much like a 3rd Normal Form database. The advantage

Orders
Quantity

Items Markets

Prices Salesperson

Fig. 12.17 User group star schema

242 12 Data Analytics and Data Warehouses

is that data are copied once per cycle to one data warehouse thus ensuring that all the
data represent the same time period. The downside is that the warehouse becomes
voluminous and requires significant data query manipulation in order to extract the
needed information.

Another challenge in the movement of data from operations sources to data ware-
houses is derived elements. I previously discussed the handling of derived data
as being a violation of 3rd Normal Form and a database redundancy. As a result,
all derived data elements were removed from the production database. However,
because data warehouses are read-only, there is no need to eliminate derived data.
In fact, warehouses that contain derivations will be much more efficient for query
and report production. The question to answer is how to populate derived data back
into the database. If a CASE tool was used to produce the normalized operational
database, then there is a good chance that derived elements might exist in the data
dictionary. You might recall in my earlier chapter that many derived elements are
first placed in the data dictionary and defined in a process specification. Thus, the
identity of these derived data elements and their calculations can be extracted from
the data dictionary. Unfortunately, such is not the case when dealing with legacy
databases and flat file systems. In these situations, the analyst must reconcile each
report and screen display against the existing data dictionary to determine where
derived elements exist. Furthermore, just identifying them is not enough—analysts
must work with users to understand how they are derived. Once all derived elements
have been discovered and defined they need to be added to the metadata dictionary
usually provided with a data warehouse product. The use of metadata (data that
define data) will be discussed later in this chapter; however, its use is important
when integrating derived data elements in the data warehouse. The metadata reposi-
tory will allow analysts to store the calculation formula. When the data warehouse is
produced (or refreshed), a triggering operation will examine the data and calculate
the derived values as set forth in the metadata repository. The process of calculating
derived data elements is shown in Fig. 12.18.

There may also be derived data elements that cannot be directly calculated from
the supplied data sources. This means that the derived elements must be calcu-
lated outside the data warehouse domain and then imported directly into the data
warehouse. This is shown in Fig. 12.19.

In summary, the data gathering and modeling phase must address the following
key questions:
• What will be the number and design of the data warehouses?
• How will data be reflected in the data warehouse model, particularly the derived

data, which do not exist in the production database?
• Is there a CASE tool that will allow for the transformation of derived data

elements from a data dictionary to the data warehouse?
• How often does data need to be refreshed?

Figure 12.20 reflects the major steps that analysts must complete in this
phase.

The Package Software Decision Support Life Cycle 243

Orders
Quantity

Item Amount

Items Markets

Prices Salesperson

Derived
Element:

Calculated by
multiplying

Quantity X Price

Fig. 12.18 Adding derived data elements to the data warehouse

Orders
Quantity

Items
Markets

Intern Sales

Prices
Salesperson

Derived
Calculation

Sales for Items
internationally:

Data collected
and stored from
other systems.

Fig. 12.19 Porting derived data elements directly into a data warehouse

Phase 3: Physical Database Design and Development

The physical database design entails a number of steps that enable the database to
operate efficiently. There are three main components involved in the physical design
process: fact tables, dimension tables, and look-up tables.

244 12 Data Analytics and Data Warehouses

User Interviews

Document
Results with
Logic Models

Define Logical
Data Model

Review Logical
Designs with

Users

Create
Dimension

Logical Data
Warehouse

Model

Fig. 12.20 DSS gathering data requirements and data modeling components

Fact tables, which are sometimes known as major tables, contain the quantita-
tive or factual data about a business. It is, in effect, the information for which users
are doing the query (Poe, 1996). Fact table information is often numerical measure-
ments of data that contain many attributes and sometimes millions of occurrences.
For example, a marketing database can contain data on various sales for the com-
pany. Dimension tables or minor tables, on the other hand, are smaller than fact
tables and hold descriptive data that reflect various dimensions of the facts—like
month, year, and region. In the previous example, dimensions of sales could be prod-
uct, markets, etc. Figure 12.21 reflects the marketing data warehouse with dimension
tables.

Thus, the combination of fact tables and dimension tables provides for the basis
of the initial star schema. This star schema can then allow users to scan the data

The Package Software Decision Support Life Cycle 245

Order-Date
Shipdate
Region
Total Amount

Orders

Fact Table

Salesperson Name
Address
Sate
City
Zip

Sales Reps

Region Name

Region

Dimension TablesFig. 12.21 Fact and
dimensional data warehouse
tables

and with the appropriate database constraints provide interesting analysis of the
information. Look-up tables are another type of dimension table. They provide fill-
in information used to describe possible values that certain fact data need. They
represent entities that are similar to 3rd Normal Form validation tables. An example
of a look-up table is the available colors of a particular model car. Figure 12.22

Item ID (FK)
Shipdate
Region (FK)
Sales Reps (FK)

Orders

Fact Table

Salesperson Name
Address
Sate
City
Zip

Sales Reps

Region Name

Region

Dimension Tables

Region

Item Name
Color (FK)

Items

Color Name

Color

Look-Up Table

Fig. 12.22 Fact, dimensions, and look-up date warehouse tables

246 12 Data Analytics and Data Warehouses

shows a combined star schema physical database that combines facts, dimensions,
and look-up tables.

In many ways, much of the physical database design concepts discussed in this
section could be considered part of the logic data modeling phase (Phase 2). While
much of this design could be done during Phase 2, there are some related deci-
sions that require more knowledge about the physical environment, that is, the actual
data warehouse environment. Furthermore, the process of de-normalization is often
accomplished during physical as opposed to logical database design. Beyond just
database design, the analyst also needs to
1. Identify the actual primary and secondary key structures: sometimes this could

involve de-normalized data elements.
2. Develop aggregation strategies: aggregation is the process of accumulating fact

data from other transactions. This means that a derived data element transaction
could be generated that depicts the results of many detailed transactions.

3. Creating indexing strategies: indexes are separate tables that are internally cre-
ated to improve look-up performance. An index is an indirect address that points
to where specific information exists in the database, without having to search
every record. Figure 12.23 depicts an index look-up table. Any field can be
indexed so that query speed to access that information can be dramatically
increased.

4. Develop partition tables: partitioning is the process of breaking up physical
databases into many different storage areas. Logically, these multiple partitions
are treated as one database, but physically are distributed on many different
areas of a disk or across multiple physical hard disks. The benefit of partitioning
is purely performance. Partitioning of data maximizes performance of the data
warehouse when particular parts of the data are needed by specific users. So, in

Item ID (FK)
Shipdate
Region (FK)
Sales Reps (FK)

Orders

Fact Table

Salesperson Name
Address
Sate
City
Zip

Sales Reps

Region Name

Region

Dimension Tables

Region

Item Name
Color (FK)

Items

Color Name

Color

Look-Up Table

City Name

Index Tables

Fig. 12.23 Index tables

The Package Software Decision Support Life Cycle 247

theory, two users can be using the same logical data warehouse, yet be accessing
two separate physical partitions of the same database.

5. Performing capacity planning: analysts must determine the amount of storage
space and processor speed that they will need in order to provide an efficient
data warehouse environment. Analysts should not do this configuration alone;
network architects must be involved to assist in the determination as to what
processor types might best handle the load and perceived growth of the data
warehouse. The key input needed from the analyst is the number of records that
will be estimated in each data warehouse. There are two components that are
needed to determine space requirements. The first, which was covered in an ear-
lier chapter, calculates the size of each data warehouse record by multiplying the
total number of maximum characters in each attribute within a record. By maxi-
mum I mean the largest size for all VARCHAR2 (variable length) data elements.
The result of this calculation will establish each record size. The analysts need
to then calculate the database size by multiplying this total record size by the
estimated number of records in the data warehouse (see Fig. 12.24).
This last step might not be that easy, but sometimes estimating maximum data

warehouse sizes (i.e., the largest it could be) is the safest calculation. Furthermore,
analysts must take into consideration the needs for temporary storage that are
required during SQL JOINS, PROJECTS, and SELECTS of data from tables.
Remember that SQL-based queries generate dynamic database tables for reporting.
Thus, analysts need to consider doubling or even tripling the storage requirements
of the host data warehouse. This is why partitioning can be so effective; it allows
network architects to scale storage by attaching more physical hard disks. The issue
of how many processors to have, the memory size, and disk access speeds needs to

Social
Security
Number
Char (9)

Last-Name
Vchar2 (45)

First-Name
Vchar2 (35)

Age
Vchar2 (3)

Employee Record

Maximum Record
Size = 92

=

Estimated Records in Data
Warehouse = 100,000

X

Estimated Data Warehouse
Size = 9,200,000

=

Fig. 12.24 Sample data warehouse size calculation

248 12 Data Analytics and Data Warehouses

be determined by the proper network professionals, but heavily based on the input
supplied by the analyst.

Phase 4: Data Mapping and Transformation

The data mapping and transformation phase is one where the analyst must locate the
source of the data in the operational systems, do analysis to understand the types of
data migrations and transformations that need to occur, and map the source data to
target data warehouses. This phase ultimately determines what the source data will
be, how it will be converted, and where the data will be ported. The specific steps
within this phase are as follows:
1. Defining the data sources: much of this activity can be accelerated if the analyst

has loaded the data elements of each system into a central CASE tool repository.
Other factor is the extent of legacy data that exist in the system and the nature of
how the data are stored. Furthermore, the amount of data redundancy and derived
data elements all play a factor in the time requirements to ascertain where the
data are and how they are defined.

2. Determining file layouts: once data sources have been defined, the analyst must
clearly understand the file layouts of these systems and how the files interrelate
with each other within a particular source repository. For example, a file that
contains fact data may be linked to another table in the same system that provides
validation information. Thus, the analyst needs to understand the schema of each
source system. If the source is a relational database, then the best approach is
to generate (if not available) an entity relational diagram (ERD). The ERD will
expose the referential integrity that exists at the database level and expose those
relationships that have been implemented at the application level. It might also
expose data redundancies. If the system is a flat file legacy application, then
the analyst should print out the file description tables (particularly if the system
is written in COBOL). The file description tables will identify all of the data
elements in each file. By creating a simple template or utility program, analysts
can determine where duplicate elements exist among these flat files. This will
allow the analyst to understand how the files link to one another, where there are
redundancies, and how to schematically look at the system from a dimensional
and relational perspective.

3. Mapping source data to target data: once the source systems and schematic
have been identified, the analyst needs to map or identify the source data
to the data warehouse star schemas. This can be accomplished by creating a
matrix that shows source elements and their attributes as well as their corre-
sponding data warehouse data elements. Figure 12.25 shows a sample matching
source-to-target matrix developed using a spreadsheet program.

4. Develop transformation specifications: the matrix shown in Fig. 12.25 is only
one component of what is called the transformation specification. Another name
for a transformation specification is conversion document. A conversion docu-
ment provides the requirements for a programmer to develop a utility program

The Package Software Decision Support Life Cycle 249

Attribute Attribute
Target
Table

Company Char(3) Items Company-Name Vchar2(15) Company

Designator Char(15) Items Vendor-Style Char(18) PO-Item

Group-ID Char(10) Items Dept-No Char(2) Purchase-
OrderFrt-Term Char(3) PO

Freight-Terms Char(1) PO-
Header

Final-Dest Vchar2(30) PO

Import-Whse-No Char(4) PO-
Header

Purchase-
Term

Char(4) Contract

FOB-Terms Char(1) PO-Detail

Discharge-
Point

Char(30) Contract

Arrive-By-
Date

Date Contract
Cancel-Date Date PO-Detail

Sup-
Approval

Char(30) Import Whse-Message Char(60) Header-
Mess

Coord-Item Vchar(80) Merchandise Item-Message Char(80) PO-Detail

Source
Table

Data Warehouse
Data Element

Source Data
Element

Fig. 12.25 Source-to-target data element mapping matrix

that prepares, moves, and transforms source data to a data staging file. The data
staging file is an intermediate data store that is created for actual transport to the
data warehouse.

5. Reviewing the update cycle: this process establishes the refresh cycle required
for each data warehouse. Refresh cycles define when a cycle begins, when it
ends, and how long it runs. It is also important for the analyst to have some
idea about how long a refresh cycle might take. This can be determined best by
running tests on sample source files and then forecasting the total update time
based on the results of the test. The determination of conversion time could be
critical since the update cycle needs to complete prior to the user wanting to see
the data results. Therefore, if an update cycle runs every 24 h, then the update
cycle needs to complete by the beginning of the next morning. While this might
sound like plenty of time, many large-scale update cycles can take substantial
time to complete. The time to complete also heavily depends on the amount
of data manipulation that occurs during the conversion of data from source to
target.

6. Developing strategies for archival: this step entails the decision of what por-
tions of warehouse data can be archived or deleted from the DSS. Typically, this
becomes more of an issue when looking at transaction-based information. The
decision is to determine when dated transactions, which are used to formulate
results of the data, are no longer providing enough value to keep them actively
stored in the live data warehouse. The reason for purging certain transaction is
because of the performance degradation that is caused during warehouse queries.
Sooner or later, historical transaction data need to be removed from the active
warehouse. Analysts have two options. Option one is to generate a summary
transaction record that might represent a group of detailed transactions. This

250 12 Data Analytics and Data Warehouses

means that the summary transaction would provide a view of the meanings of the
detailed transactions. Figure 12.26 provides an example of representing detailed
transactions in a summary record. If this option is selected then the detailed trans-
actions can be deleted or archived. The creation of summary records may also
require that specific program changes be made to query applications so that a
summary record can be appropriately identified from a detailed transaction. The
second option is to just create a separate file of purged transactions that can be
accessed using a different set of query applications. This purged file would typi-
cally be resident on a separate processor so that it would not conflict with normal
data warehouse activities. Regardless of which option is used, the analyst needs
to create specifications that identify the conditions for purging data and where
the data are to be stored. Both options also require the development of specific
query applications that can access purged data when needed.

7. Review security requirements: once the data warehouse is in place, the analyst
must integrate security requirements into the specification. Unlike many security
issues, because data warehouses are read-only, there are no concerns about the
creation of illegal or dangerous records. However, data warehouse information is

Source

Source

Source
Conversion A

 Results

Conversion
Program A

QA
Technician

QA Process

Conversion
Program B

Source

Conversion B
 Results

QA
Technician

QA Process

Data
Warehouse
Load Server

Fig. 12.26 Source conversion to data warehouse load server

The Package Software Decision Support Life Cycle 251

still proprietary and could provide valuable information for those with malicious
or illegal intensions. Thus, securing data warehouses from unauthorized use is a
key component of data warehouse design. This is especially important because
most accesses to data warehouses in package software systems will occur via
the Web, either from an Intranet or from an Internet. So who has access to what
features in a Web-based data warehouse query becomes very important in the
design of the warehouse system. Much of the design issues covered in Chapter 11
are relevant in data warehouse development as well. Therefore, analysts should
review the security requirements of the data warehouse using the same approach
as in any other system.

8. Capacity plan review: once the data mapping and conversion methodologies have
been completed, the analyst will have a much better perspective on the specific
capacity requirements. This step simply suggests that the capacity planning and
space determination is an iterative process in which the analyst and network
architects will fine-tune the capacity needs as each phase in the life cycle is
completed.

Phase 5: Populating the Data Warehouse

This phase involves the actual extract, conversion, and population of the target data
warehouses. This is typically accomplished with a combination of conversion and
update software supplied with the data warehouse vendor’s product and with the
development of specific conversion programs designed by the analyst. The steps
involved with completing the population of data warehouse data are as follows:
1. Loading and staging the data: this step may involve an intermediate program

that begins the process of building a repository of data where the data warehouse
software will extract the information from. While many data warehouse products
will allow for the loading of data directly from an operational database or file
system, this is often not recommended. Accessing operational data are usually
not a best practice for data architects.

2. Converting and integrating data: this step entails the execution of the actual
conversion programs and the integration of multiple data sources. The process
involves the confirmation that multiple data source migrations have been com-
pleted and the execution of one or more conversion programs (that migrate the
data as per the specification) has occurred. This step should result in the forma-
tion of a warehouse load server that is ready for testing before being moved to
the live data warehouse. Figure 12.26 shows the process.

3. Testing and load: the test and load phase is the final step to creating the data ware-
house. The test part of this step is to provide various reconciliation results that
provide assurance that data have been converted to specification. For the most
part, the testing should be consistent with audit-trail philosophies including the
verification that the number of records read, written, and transferred is correct. If
records are rejected for whatever reason, these should also be reported. The load
portion of this step involves the actual porting of the data into the warehouse for

252 12 Data Analytics and Data Warehouses

use by users. There should also be an audit-trail report specifying that the process
of final load has been successful.

4. Capacity review: once again, the analyst should review the capacity needs of the
system after the final data warehouses have been created, since the storage at the
time of completion will represent the actual storage prior to query operations on
the data.

Phase 6: Automating the Data Management Process

While much of the work has been performed to generate the data warehouse, there is
a need to create automated processes that refresh the information on a periodic basis.
The periods may vary depending on the type and number of data warehouses that
have been designed. Thus, once the first data extraction is completed and data ware-
houses are created, the analyst needs to design automated utilities that migrate new
data to a preexisting data warehouse. These utilities must be automatically activated
based on time and/or conditions. They must also activate the application operations
that are part of the life cycle of refreshing data, namely, data mapping, conversion,
extraction, and load. When subsequent or ongoing refresh is in place, data will be
replaced in the load server and ultimately in the data warehouse. The procedures for
verifying that this process has occurred properly also involve the creation of util-
ity applications that report on the outcomes of each automated step, each time the
refresh occurs.

There also needs for an automatic backup and restore process should data
become corrupt or damaged because of a hardware failure. There is typically a
backup/restore feature available in data warehouse products as well as from third-
party vendors. Restoration procedures must be designed and tested in order to ensure
that data warehouse information can be restored correctly and within the time con-
straints set forth by the user communities. Of course, all automated processes need
to be tested, therefore, the analyst needs to design test case scenarios that will assist
in the verification that data can be backed-up and restored correctly.

Phase 7: Application Development and Reporting

This phase focuses on the delivery of output from the data warehouse. DSS appli-
cation development is usually accomplished by using special data access tools
to design and prebuild reports. Indeed, the tools selected to generate reports are
critical to the success of any data warehouse. Analysts need to determine the envi-
ronment to support data access and information analysis rather than just selecting
a front-end software package. There are several steps that are required to under-
stand the complexities of providing a reporting environment for users in a package
software environment. The first issue to address is the ways in which users can
receive information from the data warehouse. There are four types of reporting as
follows:

The Package Software Decision Support Life Cycle 253

1. Parameter-based ad hoc: this allows users to enter particular information that
will act as a parameter into the report application. Parameters often consist of
date information or domain constraints like department or group. Users, while
changing parameters, are not creating new reports, but rather modifying existing
reports within a predefined range of choices.

2. Display access: this involves the display of reports on the Web or some other cen-
tral place on the system. The important concept here is that reports are generated
as needed but assumed to be effective in a view-only mode.

3. Complete ad hoc: the user interacts directly with the data warehouse using the
query tools that support the warehouse product. Thus, users will need to be
trained on how to issue queries and how to manipulate the data in the ware-
house. While this option provides the most versatility, it is also the most difficult
report to use successfully. The problem is whether users can really master the
query tool, be knowledgeable on how the data are stored, and can appropriately
test their results. Indeed, the largest risk for users is generating reports that are
not accurate.

4. Hard copy: these are predefined and developed by the analyst. They typically
have a fixed format and are printed and forwarded to the appropriate requester.
There are also a number of ways that users need to navigate through a package

software DSS. This is based on user needs, similar to my earlier definition of user
categories. The three primary methods are as follows:
1. Executive: allows executives to get predefined reports quickly and on a regular

basis.
2. Structured decision support: contains predefined and ad hoc reports and outputs.

Thus, structured decision support provides another level of analysis offered to the
user community. This hybrid approach is usually required by middle-tier users
like line managers and supervisors, where there is a clear need to generate what-if
analysis in a dynamic day-to-day environment.

3. Unstructured decision support: these users have access to all types of reports, but
prefer to design ad hoc reports from scratch and use them when they are needed
for a particular analysis. These users are more activity-based on the information
they need.
The level and categories of users vary in how they use reports. What reports

are needed by users also depend heavily on whether they are internal, customers, or
consumers. Typically, internal users are those who can be trained to use unstructured
techniques to access data warehouse information. Figure 12.27 represents another
view of how certain types of users utilize report options.

Report Access and Analysis
A data warehouse is not an automated method of getting the information you want
without working to find it. Users should not be disillusioned about what a data ware-
house product will afford them to do. Misunderstanding the commitment that data
warehouses require, both from designers and users, is a critical factor for success
(Poe, 1996). Figure 12.28 depicts the sequential steps that users should follow when
using DSS and when analyzing their data.

254 12 Data Analytics and Data Warehouses

Type of User

Executive

Casual

Ecommerce Analyst

Power User

Application Developer

Structured Unstructured

Fig. 12.27 Types of users and their report access preferences

Report Access and Analysis Sequence

1. Understand and Visualize the Data Warehouse

2. Understand how to formulate a request

3. Understand how the request is processed

4. Learn how to present results

5. Understand how to perform advanced analysis

6. Formulate how to communicate results and findings

Fig. 12.28 Report access and analysis sequence

The Package Software Decision Support Life Cycle 255

The viewing of the reports is another important component of analysis of DSS.
Users may want to specify what format they want to view the data. Thus, analysts
need to provide options for users where they can select from a fixed menu of display
options. While tabular and cross-tabular reports are most common, graphical output
is also a common way of analyzing what reports are telling users about their data.
Figure 12.29 shows various types of data warehouse report presentations.

Listed below is the most common report functions that DSS should provide to
users:
• Changing the axis: this allows users to swap rows and columns
• Changing sort order
• Adding and deleting subtotals and other information breaks
• Creating color reports highlighting certain variables
• Format options for fonts, styles, sizes, and colors
• Graphical display of information should support line graphs, dimensional and

stacked bars, pie, scatter, bubble, tape and area
• Ability to change graph axis labels, colors, and titles

Types of Query Tools
There are a number of types of queries that allow for the production and viewing of
the information that has been defined herein. There are four types of query tools:

Standard Rows and ColumnsMap Reports

100 90 80 70 60 50 40 30 40 50

Graphs

PHAS
E 5

DEPT 6

DEPT 5

DEPT 4

DEPT 3

DEPT 2

DEPT 1

PHAS
E 4

PHAS
E 3

PHAS
E 2

PHAS
E 1

DEPLOYMENT CHART

Charts

Fig. 12.29 Data warehouse report presentations

256 12 Data Analytics and Data Warehouses

Production
Data

Data
Warehouse

Query
Packages

Pre-Written
Queries

End User

Fig. 12.30 Report writer DSS

1. Report writers: these are third-party products that access the data warehouse
directly and produce reports based on SQL-type queries. Examples of third-party
report writers are Crystal Reports and Cognos (see Fig. 12.30).

2. Multidimensional database management systems (MDBMS): these tools create a
subset database that can be populated by both operational systems and data ware-
houses. These databases are usually multidimensional and are often defined as
on-line analytical processing (OLAP) systems. They allow for specialized report-
ing of data in an aggregate form that can support advanced data mining activities
(see Fig. 12.31).

3. Advanced DSS tools: advanced tools are very similar to report writers except that
they support more advanced query capabilities and dimensional analysis. They
specifically support access to multiple data warehouses from one query.

4. Executive information systems (EISs): EIS represents a higher level of DSS.
These systems contain advanced metadata facilities that can create sophisticated
and predefined analysis of data. EIS also supports artificial intelligence activi-
ties, which are fundamental infrastructures to the support of trend analysis and
decision-making alternatives (see Fig. 12.32).

Phase 8: Data Validation and Testing

While I have mentioned that testing must occur throughout the data warehouse
implementation, there is a need to have a central test plan strategy. Although each

Production
Data

Data
Warehouse

MDBMS
Tools

Pre-Written
Analysis

End User

MDBMS

Fig. 12.31 MDBMS DSS architecture

The Package Software Decision Support Life Cycle 257

Production
Data

Metadata

Analysis
Tools

Pre-Written
Analysis

End User

Data
Warehouse

Fig. 12.32 EIS DSS architecture

phase has a quality assurance process, the entire data warehouse life cycle requires
integrated test scripts. These scripts establish what the expected results should be
from each previous life cycle step. Sometimes this is best accomplished by hav-
ing reports that provide reconciliation of what the warehouse contains. However,
analysts should also suggest that users review the output reports. Users should be
encouraged to hand check certain reports until they are satisfied that the system is
calculating and collecting information based on their requirements. All too often we
see users who just accept what the output of a report tells them!

Furthermore, analysts should plan for change—for change is inevitable with DSS
(package software systems). Change is not only modifications to the reporting, it’s
the addition or changing of what data need to be supplied to the data warehouse
and in what form. In addition, new systems are added and need to be integrated
into the overall data warehouse schema. With this in mind, analysts need to design
and maintain sophisticated testing systems that can be reused each time a change is
made to the warehouse infrastructure or transformation process.

Phase 9: Training

While this might not be the actual responsibility of the analyst, it is important to plan
for the training of users with the objective of teaching them how to work with the
data warehouse. Notwithstanding that predesigned reports do not require much data
warehouse knowledge from the users, most systems will always have “super users”
who want to do advanced analysis on the DSS. The training phase of the DSS life
cycle includes the following considerations:
• Understanding the scope of information in the data warehouse
• Training on the front-end tools and how to write queries
• Understanding of how to use existing reports and how to modify them
• Train the trainer concepts so users can eventually own the responsibility of

training new employees or other users

258 12 Data Analytics and Data Warehouses

Phase 10: Rollout

This phase essentially involves the process of going live. It requires the actual
deployment of the data warehouse into the production network environment, cre-
ating user support infrastructures including adding new users, creating the physical
procedures for users to request new reports and options, providing the procedures
for backup and restore, and creating a team to troubleshoot problems that inevitably
occur early in the DSS rollout.

Understanding Metadata

Metadata is data about data. Metadata is the fundamental component that allows data
warehouse systems to provide the complex information that users require. There are
two primary forms of metadata: operational and DSS. Operational metadata con-
tains the information about where the data are in the production systems and/or in
the staged database system prior to conversion. The DSS metadata establishes a cat-
alog of the data in the data warehouse and maps these data to the query applications.
Figure 12.33 depicts the metadata architecture.

Therefore, the metadata infrastructure provides the front-end users with the abil-
ity to manipulate the data without working directly with the data. That is, the user
works directly with the metadata, which in turn operates on the data warehouse
attributes. Thus, the metadata provides a higher level of abstraction about the data.
This abstraction allows for the ease of use of operating with the database.

Source

Source

Source

Transfor-
mation of

Data
User

Data
Warehouse

DSS
Metadata

Production
Metadata

DSS Tools &
Programs

Fig. 12.33 Metadata architecture

Reference 259

Problems and Exercises

1. What is a data warehouse?
2. What are the advantages and disadvantages of using data warehouses?
3. Describe the concept of data aggregation.
4. What is a star schema?
5. Explain the different types of data warehouses and how they should be used.
6. Describe the relationship between the concept of decision support systems and

data warehouses.
7. How does data mapping relate to data warehousing?
8. What are fact tables and dimension tables?
9. What is a source-to-target element mapping matrix?

10. Describe the process of populating a data warehouse.
11. What are the different types of reporting and analytics available via ware-

houses?
12. What is metadata?

Reference

Poe, V. (1996). Building a data warehouse for decision support. Upper Saddle River, NJ:
Prentice-Hall.

13Documentation and Acceptance Testing

Many IT organizations are faced with the ongoing issue of good product docu-
mentation. Documentation has been classically defined as having two components:
user documentation and technical documentation. User documentation consists of
the necessary instructions required for users to operate and maintain the system.
Technical documentation, on the other hand, contains detailed information about the
inner components of the product itself. Technical documentation should be designed
to provide developers with the ability to support and maintain the system from a
programming and engineering perspective.

Once analysis and design is completed, user documentation can be developed as a
parallel function with the rest of the product life cycle components. This means that
the screens and reports can be used from the design phase to build the documentation
on the inputs, queries, and output reports of the system. If the software is a GUI
product, then the user documentation must also adhere to the standard Help facility,
which is included in these types of products. Although analysts may be involved
with providing information to the documentation team, it is not their responsibility
to produce user documentation.

A major part of the technical documentation should be the product of the ana-
lyst’s work. All of the tools used by the analyst to formulate the logical equivalent
must remain as the schematic or blueprint of the product. It is not advisable to
try to provide other documentation. First, there rarely is enough time, and sec-
ond, it should not be necessary. Remember, the concept of using modeling tools
was compared to the creation and maintenance of an architect’s blueprint in which
the schematic had to be self-documenting. There are, however, other components
of technical documentation. This technical documentation relates to the physical
software development itself. Programming source code, product libraries, and ver-
sion control are examples of technical product documentation that should be the
responsibility of the programming team.

261A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_13, © Springer-Verlag London Limited 2012

262 13 Documentation and Acceptance Testing

Acceptance Test Plans

Acceptance test plans can be defined as the set of tests that if passed will establish
that the software can be used in production. Acceptance tests need to be established
early in the product life cycle and should begin during the analysis phase. It is only
then logical that the development of acceptance test plans should involve analysts.
As with requirements development, the analyst must participate with the user com-
munity. Only users can make the final decision about the content and scope of the
test plans. The design and development of acceptance test plans should not be con-
fused with the testing phase of the software development life cycle. Testing should
be defined as the carrying out or execution of the acceptance test plans themselves.

The analysis and design of acceptance test plans is often overlooked in many IT
organizations. This is because it is viewed inappropriately as a testing method rather
than as a way of developing better systems. The question then is, why and how do
acceptance test plans improve software quality?

Quality During Analysis

If acceptance test planning is conducted as a step in analysis, then the issue of how
to best test the requirements becomes part of making decisions about overall system
requirements. Specifically, if a user wants something that can be difficult to test and
maintain, it may force them to rethink the requirement and alter its focus. What bet-
ter time to do this than when the requirement itself is being discussed? Remember,
a strong part of quality software is how easy that software is to maintain.

Cannot Test 100% of Everything

One must work with the understanding that no new product will ever be fault free.
The permutations of testing everything would make the timetable for completion
unacceptable and the costs prohibitive. The acceptance test plan is a strategy to get
the most important components tested completely enough for production. The test-
ing of software can be compared to the auditing of a company. Accounting firms
that conduct an audit for a public company must sign a statement that the books and
records of their client are materially correct, meaning that there are no significant
discrepancies in the stated numbers. Accounting firms know that they cannot test
everything in their client’s books and records to be 100% confident that the num-
bers are correct. Therefore, auditors apply strategic methods like statistical sampling
in order to be “comfortable” that the risk of a significant difference is improbable.
Software verification is no different. Analysts and users must together decide on
the minimum tests necessary to provide comfort to going live with the system. It
is unfair to leave this responsibility solely with the user. Having the analyst or pro-
grammer do this alone is equally unfair. The wise strategy is to have acceptance test

More Efficient Development 263

plans developed by the analyst along with input from the user and verification by
programming as follows:
1. As each part of a system is functionally decomposed using the various model-

ing tools, the analyst should develop generic test plans that are based on typical
standard logic tests (e.g., Account_Number must be numeric). The analyst and
users should then meet to refine the test plans by focusing on how many per-
mutations are required for each logical test. Users should also be encouraged to
establish new tests that are missing from the plan. It is highly recommended that
the analyst not wait for the entire analysis to be completed before working with
acceptance test plan generation Tailoring an acceptance test plan specifically to
the needs of a group of users is a good technique. This means that as the analyst
completes the interviews with each user or user group, the acceptance test plans
should be completed for the specifications developed for them. This philosophy
is also good because it avoids the process of meeting again and rehashing old
information.

2. The analyst develops inter part tests necessary to ensure that each component
properly links with the other.

3. Once the acceptance test plans are approved by users, development must design
tests that focus on product-specific validation. These include operating system
and program tests to ensure that the operating environment is working correctly.
Users and analysts need not be involved with this step as it represents the testing
from an engineering perspective. Quality assurance personnel who are part of the
development team should be involved in these test designs as these professionals
are specifically trained to provide intricate testing that involves the mathematical
aspects of finding errors. Once again, quality assurance and testers should not be
confused or combined with the role the analyst and users play in the design of
acceptance test plans.

More Efficient Development

Providing development personnel with the acceptance test plans is a somewhat con-
troversial idea. Many IS professionals would object to doing so, arguing that the
testing of software quality should not be carried out by programmers. However,
programmers who are given the test plans are not being asked to do the testing
but rather to understand what the user perceives as the most important operational
qualities of the system. If the programmer is aware of the specific focus of the tests,
then he/she should direct the development to ensure that such errors do not occur.
In essence, we are trying to focus the programmer on the most important aspects of
the system. To ask programmers to treat each component of a program in an equal
manner is unfair, especially since they have no perspective on how to make the
decision. If the programmer is especially focused on the tests, there should be fewer
errors detected during the test review, thus supporting a more efficient development
effort. Focusing on the tests does not suggest, however, that the programmer is free
to ignore the other quality areas of the program.

264 13 Documentation and Acceptance Testing

Now that we have established the reasons and processes of developing accep-
tance test plans, the analyst must provide a format for its use. The format must be
user friendly so that users can participate. The format must include a record of each
iteration of the test, allowing for better documentation and audit trail. The test plans
should be in a machine-readable format so that changes can be made. Figure 13.1 is
a sample acceptance test plan.

This particular test plan assumes that no data are on the screen and that the oper-
ator will only use the enter key (as opposed to a mouse). Each condition to be tested
and its expected result must be listed. The tester will then execute each test number
and fill in the results along with any comments. The test plan is then reviewed for
completeness. If the test plan fails, the test will be performed again after the soft-
ware is fixed. Each test iteration is part of the documentation of the testing process.
Users and analysts should periodically review the test plans when the system goes
live. This procedure will allow the test plans to be “fine-tuned” should any critical
errors occur when the system goes into production.

Designing acceptance test plans is not a trivial task, for either the user or the ana-
lyst; however, good test plans can make the difference in the ultimate quality of the
software. When GUI products are tested, the number of test iterations increases sub-
stantially. For example, the test plan above is focused only on data entry (as opposed
to changing existing data) and when the operator uses the enter key. Because this
is GUI, operators can enter data by using the enter key, a mouse, or the tab key.
Therefore, the analyst will need to repeat the same test plan two more times, one
when the operator uses a mouse and the other when a tab key is used.

Purpose: To ensure that Contact screens
operate properly when supplying new
good data. This plan entry mode with
nothing on the screen.

Page: 1 of 4

Quality Assurance

Acceptance Test Plan

Condition Being Tested Expected Results Actual Results Comply
Y/N

Comments

1 Enter LAST NAME for a new
contact, press enter key. Repeat
and enter FIRST NAME, press
enter key

Should accept and
prompt for
COMPANY SITE

Product: Contact-Using Enter Key

Vendor:

QA Technician:

Number:

Date: Test Plan #: 1G

2 Select COMPANY Site from
picklist

Should accept and
prompt for next field

3 Enter LAST NAME and FIRST
NAME for a CONTACT that is
already in the System.

Should accept and
prompt for
COMPANY SITE

Test
No.

Fig. 13.1 Sample acceptance test plan

Budget Process 265

Budget Process

We have continued to expand the role of the analyst in the life cycle of systems
development. Analysts must develop the ability to view an upcoming project and
submit an accurate budget for their time and effort. The best approach here is to list
the generic tasks that are typically performed by an analyst and then attempt to pro-
vide an estimate of the requirements, not only for each task, but also for each system
component within the task. Below is a step-by-step process that can be followed.

Establish the Task List

The analyst should begin the budget by listing the three standard tasks:
• Interviewing
• Modeling
• Acceptance test planning
Each of these tasks will then need to be expanded depending on the scope of the
project.

Interviewing
The analyst will need to assess the number of users on the project and whether
there will be a need for JAD sessions. Once this schedule is put together, the analyst
should arrange for pre-meetings to assess the user skill sets, as this will affect the
strategy and time frame of the user interface process. Analysts should employ a
weighted criterion when budgeting time. Although there is no exact science to doing
this, Fig. 13.2 is a suggested template to follow.

Figure 13.2 does not include the specific budget for each session, as this would
require the analyst to have pre-meetings to assess the number of functions in each
component and then budget the time necessary. The user interviewing tasks should
take into consideration an estimate for the number of iterations. More detailed ses-
sions can require three to four iterations before final approval is accomplished. The
number of hours (or whatever time period is chosen) should be based on a novice
user. Note that if the user(s) is knowledgeable, then there may actually be a reduction

Task: User Interviewing

Sub-Task User Skill Set Weight
.75 − Knowledgeable
1.75 − Amateur
1.00 − Novice

Weighted Hours

Selection of Users
Determine JAD
Sessions
Pre-Meetings
Individual Meetings
JAD Sessions

Expected
Hours

Fig. 13.2 User interview budget worksheet

266 13 Documentation and Acceptance Testing

in the budgeted time whereas amateurs (those that know a little) may substantially
increase the time frame. The latter situation is due to the likelihood that amateur
users will tend to get off track and in general have more questions. The ultimate
budget for JAD sessions must be based on a composite of the levels of involved
users for each JAD session.

Modeling
Once the interviewing budget has been determined and there is an established
understanding of the scope, objectives, constraints, and assumptions of the project,
the analyst can begin to determine the time period for modeling the system
requirements. Figure 13.3 shows guidelines.

Analysts will need to get a sense during the pre-interviews of the likely number of
processes (or data elements with respect to the repository) and how many diagrams
might be included. Once this is established, then the budget can be developed. Note
that the weight factors are based on the level of integrated automation. Integrated
automation refers to the extent of computerization (e.g., a CASE tool) that will
be used to develop the models. Non-integrated, which is the non-weighted factor,
represents computerized diagramming without intelligent interfaces (which would
exist with a CASE product).

Acceptance Test Planning
Acceptance test plan budgeting must take into consideration two key factors: the
user interviews and the type of product. The user interview portion should be based
on the original budget for user interviews applying a factor based on the modeling
budget (Fig. 13.4).

Essentially, Fig. 13.4 reflects that budget hours for acceptance test plans are
approximately 10% of the original interview budget hours factored by the estimate
of the number of diagrams and the level of automation. The 10% represents the
portion of the interview time that is perceived to be spent discussing testing issues

Modeling Type Estimated
Hours based
on Number
of Diagrams
or Data
Elements

Automation Factor
.75 – Integrated
CASE
1.00 – Non-
Integrated
3.00 – Manual

Factored Hours

Data Flow
Diagram
State Transition
Data Repository
Entity Relational
Diagrams
Process
Specifications
Object Orientation

Task: Modeling

Fig. 13.3 Modeling budget worksheet

Problems and Exercises 267

Task: Acceptance Test Plan

Sub-Task 10% of
User
Interview
Weighted
Budget
Hours

Estimated
Hours based on
Number of
Diagrams or
Data Elements
(from Modeling
budget)

Type of User
Interface
Factor
2.00 – GUI
1.00 –
Character

Estimated
Acceptance
Test
Plan
Hours

Individual
Meetings
JAD Sessions

Fig. 13.4 Acceptance test plan budget worksheet

with the user. The final factor is the GUI. Because of the event-driven nature of GUI
screens, the number of tests to be performed is dramatically increased. Many IS
professionals would feel that a 2.00 factor is too low, since many favor 3.00.

Problems and Exercises

1. What is the purpose of business specifications?
2. How do functional overview sections relate to the entire business specification?
3. What is the use of a functional flow diagram? Which modeling tool is used?
4. What are the five most common components of the business specification?
5. How does the business specification relate to the programming specification?
6. How does the programming specification interface with DFDs and STDs?
7. How does modeling provide the input for much of the system’s documentation?
8. What is an acceptance test plan?
9. Comment on the statement: “Cannot test 100% of everything.”

10. How do acceptance test plans facilitate the productivity and quality of program-
ming?

11. Why is it important for the analyst to provide a budget for his/her tasks?

Part III

How to Implement

14Project Management

Introduction

This chapter provides guidance on system development life cycle methodologies
and on best practices for project management of packaged and in-house developed
systems. Project organization, including roles and responsibilities, is covered. There
are many aspects of package software management that are generic; however, there
are certainly unique aspects when managing package software systems. Thus, this
chapter provides an understanding of where these unique challenges occur in the life
cycle of package software projects. It also focuses on the ongoing support issues that
must be addressed to attain best practices.

A project manager who comes from a traditional software development back-
ground and understands the phases of software development will perhaps do fine
in overseeing the progress of package software projects. Indeed, traditional project
managers will focus on budget, the schedule, the resources, and the project plan.
Unfortunately, package software systems, because of their widespread involvement
with many parts of the business, need to go beyond just watching and managing
the software development process. That is, the project management of packaged
systems requires much more integration with the internal and external user commu-
nities. It must combine traditional development with business creation, and because
of the preexisting nature of the package, it also delves into the internal organiza-
tion structure and requires their participation in every phase of the development and
implementation cycle. Listed below are some of the unique components of packaged
development projects.

1. Project managers as complex managers: package software projects require
multiple interfaces that are outside the traditional user community. They can
include interfacing with writers, editors, marketing personnel, customers, and
consumers, all who might be stakeholders in the success of the system.

2. Shorter and dynamic development schedules: due to the dynamic nature
of packaged systems, the development is less linear. Because there is less

271A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_14, © Springer-Verlag London Limited 2012

272 14 Project Management

experience and more stakeholders, there is a tendency to underestimate the time
and cost to complete.

3. New untested technologies: there is so much new technology offered partic-
ularly for Web developers that there is a practice of using new versions of
development software that has not matured. The method of obtaining new
software is easily distributed over the Web, so it is relatively easy to try new
versions as soon as they become available.

4. Degree of scope changes: packaged systems because of their involvement with
many aspects of the business tend to be much more prone to scope creep. Project
managers need to work closely with internal users, customers, and consumers
to advise them of the impact of changes on the schedule and the cost of the
project. Unfortunately, scope changes that are influenced by changes in market
trends may not be avoidable. Thus, part of a good strategy is to manage scope
changes rather than attempt to stop them—which might not be realistic.

5. Costing packaged systems are difficult: the software industry has always had
difficulties in knowing how to cost a project as discussed in Chapter 6. Packaged
systems are even more difficult because of the number of variables, unknowns,
and use of new technologies and procedures.

6. Lack of standards: the software industry continues to be a profession that does
not have a governing body. Thus it is impossible to have real enforced standards
as other professions enjoy. While there are suggestions and best practices, many
of them are unproven and not kept current with new developments. Because of
the lack of successful package software projects, there are few success stories
to create new and better best practices.

7. Less specialized roles and responsibilities: the software development team
tends to have staff members who have varying responsibilities. Unlike tradi-
tional software projects, separation of roles and responsibilities is more difficult
when operating in a Web environment. For example, defining the exact role of
an analyst can be very tricky; for example, are analysts programmers, database
developers, or content designers? The reality is that all of these roles can be part
of a developer’s responsibility.

8. Who bears the cost? There is general uncertainty as to who should bear the cost
of the packaged system. This refers to the internal organization of stakeholders
who need to agree on the funding. This becomes even more complex when
there are delays and cost overruns, because the constituents cannot easily agree
on who is at fault and therefore who should bear the burden of the additional
costs.

9. Project management responsibilities are very broad: packaged project man-
agement responsibilities need to go beyond those of the traditional IT project
manager. Packaged project managers are required to provide management ser-
vices outside the traditional software staff. They need to interact more with
internal and external users as well as with non-traditional members of the
development team such as content managers. Therefore, there are many more
obstacles that can cause project managers to fail at their jobs.

Introduction 273

Package Software Projects Traditional Projects

Project managers are not always
trained client managers

Different

Development project schedules
tend to be short

Similar

New and untested third-party
software are often implemented

Usually never

Changes in scope occur during
implementation

Similar

Pricing model does not really exist Different
Standards for package production
do not exist

Similar

Team roles are less specialized Different
Users have difficulty bearing the
costs of development, especially
during planning

Different

Project manager responsibilities
are broad

Different

Fig. 14.1 Package software and traditional projects compared

10. The package never ends: the nature of how packaged systems are built and
deployed suggests that they are living systems. This means that they have a
long life cycle made up of ongoing maintenance and enhancements. So the
traditional begin and end project does not apply to a package software project
that inherently must be implemented in ongoing phases.

Figure 14.1 summarizes these differences between traditional and package software
projects.

The questions that need to be answered are not only limited to what the process
and responsibilities should be, but also who should do them? It is my position that
a business analyst takes the responsibility of managing the process from inception
to completion. The duties and responsibilities of a business analyst are excellent
prerequisites for understanding the intricacies of project management. Their roles
as analysts require them to have relationships with the organization and an under-
standing of the politics and culture that drives the business. I am not suggesting that
every analyst should become a project manager, but rather that one of the analysts
should also be the project manager. In order to determine the right fit, it is important
to define the skill sets that are required for successful project management. These
are summarized below:
• Software experience
• Understanding of budgeting, scheduling, and resource allocation
• Excellent written and verbal communication skills
• Ability to hold and lead meeting discussions
• Detailed oriented yet globally motivated (can see the difference between the

forest and the trees)
• Pragmatic

274 14 Project Management

• A sense of humor that comes across as a natural personal trait as opposed to an
acted one

• Ability to be calm and levelheaded during crisis
• Experience with Web technologies, multimedia, and software engineering
Unfortunately, it is difficult to find the project manager who has all of these traits. In
many cases it is wise to promote from within and develop the expertise internally.
This is especially effective because an internal individual is a known quantity, and
most likely already fits into the culture of the organization. Most important is that
the individual is accepted in the culture. On the downside, it takes time to develop
internal talent, and sometimes this trained talent leaves the company once they have
received their training. There is benefit to bringing in someone from the outside
because they can have a fresh view of the project and offer more objective input on
what needs to be done to get the project finished on time.

Defining the Project

The first step for the project manager is to develop a mission statement for the
project. A mission statement helps managers and users to focus on three core tasks:
1. Identify the project’s objectives
2. Identify the users
3. Determine the scope of the project

Identify Objectives

Project objectives are defined as the results that must be attained during the project.
According to Lewis (1995), project objectives must be specific, measurable, attain-
able, realistic, and time-limited. The most difficult of these objectives tends to be
“measurable” and “attainable.” Ultimately, objectives state the desired outcomes
and focus on how the organization will know when it is reached? Objectives are
typically devised by the project’s stakeholders. These individuals are usually exec-
utives and managers who have the most to gain from the successful implementation
of the package software system. Unfortunately, while this sounds good, it is difficult
to implement. In reality, it is difficult for executives to articulate on what they are
looking for. Indeed, the package software paradigm has simply forced many exec-
utives to create products because they think it is a competitive advantage for their
companies to have one. This, in essence, means that executives might be driven by
the fear that they must do something or something is better than nothing.

Package software objectives evolve and cause many iterative events to occur,
especially in the early phases of the project. Good and effective objectives tend
to be short sentences that are written down. Using this format, objectives can be
used by project managers to effectively avoid scope creep. The objectives should
be distributed to all stakeholders and project members so that everyone understands
them.

Defining the Project 275

Identify Users

Chapter 2 covered the significance of users and their importance to the success of
any project. In that chapter, I defined three types of users: internal, customers, and
consumers. It is important for project managers to understand the value of the input
from each of these users. Indeed, the content of the website will ultimately be deter-
mined by the users who access the site. However, managers and developers often
disagree on how much input is needed from users. This is further complicated when
managing package software projects because of the diversity of the users and the
complexity of decisions that must be made. Furthermore, there is always limited
time, so package software project managers need to be as productive as possible
with how user input is obtained, the types of interviewing that is done, and the
method of measuring the value of the user’s input.

Since the only way to measure a site’s success is to determine whether the objec-
tives have been met, the philosophy of who gets interviewed and how much value
their input has should be mapped to the original objectives set forth by management.
Thus, besides the internal users, the real obstacle for project managers is to identify
which users know best what they want from the package software system. Besides
one-on-one interviews and JADs, the project manager can also obtain information
from two other sources: market research and focus groups.

There are many firms that provide market research services. Such firms have
databases of researched information relating to user preferences and behaviors. They
also collect information about packaged solutions and what users expect from them.
Every package software system should have a budget using a market research firm
so that they can obtain an objective and independent opinion about user preferences,
particularly within a certain market segment. Conducting a focus group is a cheaper
yet effective way to get objective input from users. It is particularly useful when
attempting to assess consumer preferences. Focus groups involve the selection of
sample consumers that the project manager feels represents the typical user. The
sessions are filmed behind a mirror, and users respond to questions about their pref-
erences when using a package software system. The focus group typically needs
a moderator who controls the meeting agenda and ensures that all of the research
questions are answered by the participants. During all sessions it is important that
the project manager ensures that the objectives of the package software system be
clearly defined to the audience. The objectives should be in writing and reviewed
before the start and end of each session. In addition, the objectives should be writ-
ten on a whiteboard or flip chart so participants can be reminded of the scope of the
project should certain users start discussions on tangent subjects.

Determining the Scope of the Project

The scope of the project relates to the time and budget of when it needs to be
completed. Because there is always a limited amount of time and money to cre-
ate product, the scope of the project must be negotiated against what can be done

276 14 Project Management

with what users want to be done. Thus, scope is the domain of functions and features
that will be included in the package software system based on a specific time com-
mitment and cost outlay. The best approach to formulating a scope statement is to
first create a work breakdown structure that contains the mission statement, lists the
objectives, and formulates the tasks and subtasks to complete each objective. Thus,
a work breakdown structure is really a form of functional decomposition of the tasks
necessary to meet the objectives. Once stakeholders and the project manager agree
on the objectives and what tasks will be done to attain them, then the scope of the
project is complete. Figure 14.2 depicts a sample work breakdown structure.

Once tasks and subtasks have been determined, the package software project
manager needs to determine the time and cost of completing each component. Thus,
the work breakdown structure will eventually contain the costs for each task within
each objective for the entire project as proposed. Management and the project man-
ager can then begin the process of negotiating what can be completed on time and
on budget by removing subtasks or tasks as appropriate.

Another valuable approach to building package software projects is phasing
deliverables. Because package software projects tend never to be finished, it might
be advisable to deliver some portion of the system first and then add-on functionality
in subsequent releases of the system. Obviously, this might not always be feasible;

Mission

Objective A Objective B Objective C Objective D

Task Task Task Task TaskTaskTask

SubTask SubTask

SubTask SubTask

SubTask

SubTask SubTask

SubTask

SubTask

SubTask

SubTask

SubTask SubTask

SubTaskSubTask

Fig. 14.2 Sample work breakdown structure

Defining the Project 277

ID Task Name Duration Start Finish Predecessors

1 Package Software Project 50 days Fri 8/5/11 Thu 10/13/11
2 General Activities 50 days Fri 8/5/11 Thu 10/13/11
3 Planning 12 days Fri 8/5/11 Mon 8/22/11
4 1 day Fri 8/5/11 Fri 8/5/11
5 3.5 days Fri 8/5/11 Wed 8/10/11

6 2 days Thu 8/11/11 Fri 8/12/11

7 3 days Mon 8/15/11 Wed 8/17/11 6
8 1 day Thu 8/18/11 Thu 8/18/11 7

9 2 days Fri 8/19/11 Mon 8/22/11 8
10 Department 1 25 days Wed 8/24/11 Tue 9/27/11

11 Planning Meeting 1 day Wed 8/24/11 Wed 8/24/11

12 Interviews with Users 5 days Mon 8/29/11 Fri 9/2/11

13 Business Specifications 10 days Mon 9/5/11 Fri 9/16/11 12
14 Meetings with Users 2 days Mon 9/19/11 Tue 9/20/11 13

15 Finalize Specifications 3 days Fri 9/23/11 Tue 9/27/11
16 Department 2 24 days Wed 8/24/11 Mon 9/26/11

17 Planning Meeting 5 days Wed 8/24/11 Tue 8/30/11

18 Interviews with Users 11 days Mon 8/29/11 Mon 9/12/11
19 Business Specifications 3 days Mon 9/5/11 Wed 9/7/11
20 Meetings with Users 1 day Mon 9/19/11 Mon 9/19/11

21 Finalize Specifications 2 days Fri 9/23/11 Mon 9/26/11

22 Send out Requirements Document 44 days Mon 8/15/11 Thu 10/13/11
23 Prepare Specs 3 days Wed 9/28/11 Fri 9/30/11

24 Review with User Dept 1 4 days Mon 10/3/11 Thu 10/6/11 23
25 Review with User Dept 2 4 days Mon 10/10/11 Thu 10/13/11
26 Finalize Document 5 days Mon 8/15/11 Fri 8/19/11

S M T W T F S S M T W T F S S M T W T F S S
Jul 31, '11 Aug 7, '11 Aug 14, '11 Aug

Initial Meeting Formulate Scope
Vendor Selection

Planning

Planning Packaged Vendor
Minutes of Vendor meeting

Vendor Meeting

Fig. 14.3 Package software project plan

there are package software systems that cannot be phased, that is, they are all or
nothing at all. However, I believe that all projects can have some level of phased
development and that such development in the long run benefits the entire scope of
the project. Indeed, first releases of a packaged solution typically need revision any-
way and the second phase or version might be a better time to add certain features
and functions.

I stated that the final work breakdown schedule represents the scope of the
project. Typically, the package software project manager will finalize the scope
statement by preparing a document that includes the work breakdown structure and
articulates how this structure will be formulated into deliverables for the project.
In many ways the scope document acts as a management report and reiterates the
mission and objectives of the project along with the project plan. Figure 14.3 shows
a typical project plan developed in Microsoft Project.

Managing Scope
A project plan can sometimes be referred to as a work breakdown schedule or WBS.
As shown in Fig. 14.3, it depicts every step in the project and can enforce dependen-
cies within tasks and subtasks. This is important, because changes to the plan may
affect other tasks. A WBS product like Microsoft’s Project provides an automated
way of tracking changes and determining its effect on the entire project. A popular
method of tracking changes is called “critical path analysis.” Critical path analysis
involves the monitoring of tasks that can have an effect on the entire scope of the
project, meaning it can change the time frame and cost of delivery. A critical path is
defined as a task that if delayed will cause a delay in the entire project. A task that
can delay the project is then called a critical task. The importance of managing criti-
cal tasks is crucial for successful management of package software projects. Project

278 14 Project Management

Fig. 14.4 Critical and non-critical tasks using Microsoft Project

managers are often faced with the reality that some task has slipped behind schedule.
When faced with this dilemma, the project manager needs to decide whether dedi-
cating more resources to the task might get it back on schedule. However, the first
thing that the project manager needs to assess is whether the task can affect the crit-
ical path. If the answer is yes, then the project manager must attempt to use other
resources to avoid a scope delay. If the task is not critical, then the delay may be
acceptable without needing to change the project plan. Figure 14.4 shows a critical
task and a non-critical task.

The Budget

Budgeting is one of the most important responsibilities of a project manager. The
budget effectively prices the tasks that must be delivered and rolls them up to
the project cost level. It is important to recognize that all budgets are estimates.
Therefore, they are never 100% accurate—if they were they would not be budgets.
The concept behind budgeting is that some tasks will be overbudget and others will
be underbudget resulting in an offset that essentially balances out to the assump-
tions outlined in the original plan. Budgets are typically built on expense categories.
Figure 14.5 shows the common budget categories that projects should be tracking.

The Budget 279

Project Budget
Sample 12/12/2010

Description Low High Comments

Hardware
Servers $ 150,000 200,000
Workstations 400,000 600,000
Modems 25,000 30,000
Scanners 5,000 20,000

Total Hardware 580,000 850,000

Software

Base Product 250,000 350,000 Cost of vendor base product
software

Database 100,000 250,000 Database vendor software license
Office Automation 40,000 100,000 Forms elimination and e-mail intranet

CAD/CAM-Scanning 40,000 100,000 Scanning software
Media Production 90,000 150,000
Software Modifications 75,000 125,000 Modification costs to vendors product

meet needs

Total Software 595,000 1,075,000

Services

Network and
Software Design

5,000 8,500 Analysis & design of system

Consultants 240,000 285,000 Specialists that may be needed

Scanning Documents 125,000 135,000 Service to put all plans in system

Conversion of Data 120,000 130,000
Installation 45,000 87,000 low: 300 × 150 high 300 × 250 plus

servers
Training 25,000 85,000 Train the trainer all train everyone

Total Services 560,000 730,500

Total $ 1,735,000 2,655,500

Fig. 14.5 Sample e-business project budget expense categories

As stated above, a project budget is a set of assumptions. Typical budget
assumptions are as follows:
• All content will be provided in machine-readable form
• The content manager will approve content design within 24h
• The Web design team will present two alternate design schemas
• Graphics for the website are finalized and ready for integration

It is not a bad idea for the project manager to create a budget document that
includes a list of the assumptions, because it allows the manager to track whether
incorrect assumptions caused delays in the scope of the project. Unfortunately, there

280 14 Project Management

are also hidden costs that tend not to be included in project budgets. The following
is a list of common hidden costs that are missed by the project manager:
• Meetings
• Phone calls
• Research
• Development of documents and status reports
• Project administration
• Review sessions
• Presentations to management

As previously discussed, some project managers add a 10–15% cushion to their
budgets to absorb common hidden costs. While I do not support cushions, it is
acceptable if actually listed as a budget item, as opposed to a cushion on each budget
line item.

The Project Team

The project team is unique from other traditional project organizations. Most of
the significant differences are attributable to the addition of the package software
responsibilities. Today, the roles and responsibilities for developing and support-
ing package software team are far more complex and specialized. The project team
has evolved because business managers understand the importance of technology in
transforming the way business is done. On the other hand, there are certainly tradi-
tional roles and responsibilities that have not changed and are generalizable across
any software development project.

While the structure of project teams can vary depending on the type of project,
the size of the system, and the time to complete, typical organizations contain the
following roles and responsibilities:
• Project manager: the project manager is responsible for the scope of work, devel-

oping the project plan, scheduling, allocating resources, budgeting, managing
the team, interfacing with users, and reporting to management on progress. The
project manager also deals with politics and other business issues, which include
but are not limited to contract negotiations, licensing of third-party products, and
staff hiring. In some instances the project manager is responsible for handling
customer and consumer needs as it relates to the design and development of
the package software system. Perhaps, the most important responsibility of the
package software project manager is to know at all times what has been done and
what needs to be done.

• Account manager: the account manager is usually a senior manager who is
responsible for a number of projects. Account managers also serve clients in
a number of ways, from selling new products to providing client support. In
many ways, the account manager is the representative of the client’s needs to
the internal development team. Account managers can be called upon to obtain
information from customers about their needs and their feedback on how the
system supports their needs.

The Project Team 281

• Technical manager: this individual is the senior technologist of the project.
He/she is usually from the development team and is the most experienced devel-
oper. The technical manger is responsible for ensuring that the correct technology
is being used and deployed properly. This individual manages the programmers,
database developers, and other system integrators. The technical manger pro-
vides feedback on the development status of each task and reports to the project
manager.

• Programmer: a programmer may be needed to do certain custom modifica-
tions if not outsourced. He/she is responsible for coding applications for the
project. These applications are coded to spec and can include a myriad of
technologies including but not limited to server scripts, database applications,
applets, and ActiveX controls. Development languages used on package soft-
ware projects vary, but the Web uses such languages as Java, JavaScript, Visual
Basic, VBScript, SQL, and C/C++. The technical manager usually manages this
individual; however, large projects may employ multiple levels of programmers.
In certain situations, junior programmers report to senior developers who act as
mentors to them.

• Business analyst: this individual is responsible for gathering all of the user
requirements and designing the logic models and architecture of the system,
which include process models, data models, transaction system design, and
process specifications. Ultimately, the business analyst is responsible for site
architecture, navigation, search and data retrieval, and interaction design. This
role is sometimes called an information architect.

• Designer: designers create the look and feel of the screens. They use various
tools to design template content and overall screen structure. Screen designers
report to the project manager who sets the overall project philosophy.

• Database administrator (DBA): the DBA is responsible for all physical database
design and development. This individual must also fine-tune the database to
ensure efficient operation. Other responsibilities include data partitioning, data
warehouse setup, data replication, and report generation.

• Network engineers: these individuals are responsible for designing network con-
figurations that support the package software system. Sometimes a network
engineer is also a security specialist who is responsible for registering domain
names, setting up e-mail servers, and setting up chat rooms.

• Security expert: while this might be the network specialist, larger package soft-
ware projects employ a dedicated security expert who works with encryption
formulas, integrates with content systems, and focuses on securing on-line trans-
actions. This individual can also advise the project manager on strategies to
implement certain component applications.

• Quality assurance specialist: this individual is responsible for creating test
scripts to ensure that the package software system operates within spec. The
purpose of the test plans, sometimes called acceptance test plans, is to provide
the minimal set of tests that must be passed for the site to go into production. The
reporting structure for quality assurance personnel varies. Some believe that it is

282 14 Project Management

Type of Project Activity Staff Organization

Marketing and Media Account executive, project
manager, creative manager,
designer, copywriter, production
artist, quality assurance specialist

Project transactions Project manager, technical
manager, analyst, creative
manager, database administrator,
tester

Input/Output data Project manager, technical
manager, creative manager,
database administrator, analyst,
Web production specialist, quality
assurance specialist

Intranet Project manager, technical
manager, creative manager,
network engineer, Web production
specialist, quality assurance
specialist

Fig. 14.6 Project team roles and responsibilities matrix

part of the development team and therefore should report to the technical man-
ager while others believe that it needs to report directly to the project manager.
There are still others who believe that the quality assurance staff should report to
the chief information officer (CIO). The reporting structure is dependent on how
highly the department values the independence of the testing function.

• Tester: a tester is simply a person who carries out the test plans developed by the
quality assurance staff. These people typically report to quality assurance staff,
however, sometimes testers are users who are working with the account manager
to assist in the testing of the product. These testers are in a sense a beta test user
(beta test means that the software is tested in a live environment).

While this is an exhaustive list of potential positions to have on a project, it is
unlikely that every one of these positions will exist in any given package software
project. In reality, it is more important that the functionality of each of these posi-
tions is carried out, regardless of who takes on the responsibility. In order to provide
better insight into the roles and responsibilities of each position, Fig. 14.6 reflects a
comparison matrix that compares roles with responsibilities.

Figure 14.7 identifies the necessary skills of each of the critical members of the
project team.

Project Team Dynamics

It is not unusual for package software development projects to operate from mul-
tiple sites with multiple interfaces. This may require much more organization and
communication among the members of the team.

Project Team Dynamics 283

Skill Set Description

Project Management Ability to communicate with staff,
executives, and users. Keep project
on schedule.

Architecture Ability to design the user interface
and interact with technical
development personnel

Graphic Design Ability to transform requirements
into visual solutions

Graphic Production Ability to develop efficient graphics
for Web browser use

Content Development Ability to design and develop text
and interactive content

Programming Ability to use HTML, Javascript, etc.

Fig. 14.7 Necessary project skill sets

Set Rules and Guidelines for Communication

When project members are separated by locations or even by work schedules it is
very important that everyone knows what their roles are and what everybody else’s
responsibilities are to each other. Project managers should establish guidelines on
communication and require each member to provide short statuses on where they
are in the project. While this might seem like a bother to team members, I have
found that it provides immense value to the project manager because it forces each
person to discipline themselves and report on where they are in their respective
worlds. Furthermore, it forces project staff to articulate in writing what they have
accomplished, what is outstanding, and what they plan to get done. Figure 14.8
shows a sample status report that tracks previous objectives with current objectives.
It should not take more than 15 minutes to complete.

Extranet Review Sites

Project managers should create extranets that allow project staff to view the work
of the project team. This also allows work to be approved virtually over the Web.
Furthermore, status reports and general announcements can be viewed by authorized
members of the project team as well as by stakeholders and users. Often extranet
documents can be coupled with regular conference call sessions where project mem-
bers can openly discuss reports, website samples, and determine new milestones as
appropriate. Unfortunately, managing an extranet review site requires overhead and
someone who can do the work. This simply means that someone on the project’s
staff or some assigned administrative person needs to take on the responsibility.
There is also the challenge of dealing with staff who do not comply with procedures
or need to be reminded about delivering their status reports on a regular basis. While
this is unfortunate, it is a reality. However, it also tells the project manager as to who
needs to be watched closer than other team members.

284 14 Project Management

Project Status Report

Consultant:
Art Langer

Vendor: XSPDate 1/31/11

New Project Objectives:

Objective Target Date

Get specification on hardware certification machines from XSP 2/5/11
Get room to do JAD interviews and reviews 2/10/11
Ensure that accounting features are integrated in specs 2/10/11
Art to interview Joe 2/3/11
Check ability of MAS to create output files for display on Web 2/6/11
Identify and meet with brokers as part of interviews 2/3/11
Get prices for Scanning of floor plans for Web browsing 2/10/11

Previous Objectives: Previous
Objective Target Date Status

Send out Software Proposals 1/23/11 Done
Send out Hardware Bids and check labor rates 1/25/11 2/6/11
Get XSP to modify detail design contract to include specifics
on deliverables. 1/23/11 Done, waiting approval
Speak with product consultant and contract with him
for data and layouts 1/25/11 2/3/11
Finalize Network Design Requirements Document 1/23/11 2/3/11

Attendees A. Langer & Assoc. Art Langer XSP

XYZ CORP
Project Plan

\gprojst Copyright © 1995–2011
A. Langer & Assoc., Inc

Fig. 14.8 Sample project status report

Working with User Resources

Users are an interesting yet challenging resource. While they are clearly needed to
perform reviews and quality assurance, they are not officially assigned to the project
and are therefore not under the control of the project manager. Unfortunately, this
can cause problems if a user is not responsive to the needs of the project team.
This can be very damaging because the staff will be dependent on receiving timely
feedback from these resources. Lack of responsiveness from a user can also alienate
them from the project team. Indeed, there is nothing more damaging than a user
who shows disinterest in the project that is being designed to serve them. Therefore,
the package software project manager needs to be careful on what commitments

Planning and Process Development 285

are made when a user resource is made available to them. Obviously, the project
manager would want the individual to report directly to him/her and be a full-time
resource. This could also be wishful thinking. It certainly can be dangerous to turn
down the help. While this may appear to be a catch-22, it can be managed. First,
the package software project manager should establish the need for user assistance
early in the project and include it in the requirements documentation (it should be
part of the assumptions section). Second, the project manager may need to limit the
amount of work assigned to the user if they indeed are just part-time resources.

Outsourcing

As discussed in earlier chapters, not all packaged projects can be completed using
internal staff. In fact, most are not. Using outsourced resources makes sense for
many projects, especially those that might need very unique and qualified personnel
who is not on staff or not deemed worthy of full-time employment. There may also
be a lack of talent, which is the usual reason why consultants are hired in the first
place. Sometimes, outsourced relationships are managed as strategic partnerships,
which means that an outside business provides specific services for the firm on a
regular basis. Project strategic partnerships can be made in many different areas
or phases of the project. Outsource firms can provide video or audio engineers as
needed or network support personnel to assist in installing the packaged solution.
On the other hand, the entire project should not be outsourced because there may be
a false sense of comfort that the firm’s personnel need not be involved in the respon-
sibility. I believe that in the long run this is a mistake. Remember that outsourced
firms have their own destiny and growth to manage.

Planning and Process Development

In order to operationalize the project plan and to meet the budget, it is necessary
to develop a phased implementation guide that helps members of the team under-
stand where they are in the process. Unfortunately, the project task plan is much too
detailed to use, so it is a good idea for the project manager to develop a higher-level
document that can be used during the development of project. Such a plan typi-
cally contains four phases: (1) strategy, (2) design, (3) development, and (4) testing.
Figure 14.9 reflects the major software phases and includes the activities and output
of each phase.
1. Strategy: this phase requires that the stakeholders, account executive, users, and

the project manager all meet to agree on the objectives, requirements, key mile-
stones, and needs of the target audience. The activities in this phase comprise
the goals and objectives, feedback from users, research from outside sources,
and the project proposal document. The culmination of these steps should be
summarized in a document to be used by the project team. This document is
sometimes referred to as a creative brief. The creative brief is really a summary

286 14 Project Management

Strategy Analysis and Design Development Testing

Process DevelopmentPlanning

- Goals & Objectives
- JAD & Focus Groups
- Research
- Project Proposal

- Concept Development
- Design
- Content Planning
- Technical Design
- Testing & Prototype

- Creative Document - Functional Specs
- Project Plan
- Prototype

- Acceptance Test Plan - User Documentation
- Training

Fig. 14.9 Package software development phases

of the original proposal in template form and created so that project team mem-
bers can quickly refer to it and obtain the information they need. Figure 14.10
depicts a creative brief template.

Creative briefs allow the project manager to conduct effective brainstorming ses-
sions with staff. The document acts as an agenda and also as a checkpoint to ensure
that discussions are not going beyond the objectives of the project and that the
products are designed in accordance with the target audience’s needs.
2. Design: design represents the second major phase. It is composed of all the tasks

that participate in the design of the user interface, the analysis and design of tech-
nical specifications, and the overall architecture of the package software system.
The results of the design phase are the functional specifications, detailed project
plan timeline and budget, and website and report prototypes. The design phase
typically requires stakeholders and other users to review and sign-off on the
specification document before the project can proceed. Of course, the approval
process of the design document can be done in phases, that is, portions of the
document can be approved so that the implementation can go forward on some
limited basis. During the process of designing the packaged system, it is impor-
tant that the project team has access to the content of all screens and programs.
This is especially important for large projects where there can be more than one
design group creating content. As stated in the previous chapter, content devel-
opment is an iterative process; therefore, the team members need to constantly
have access to the current site architecture and schematic designs. That is why it
is so important to have the technical specifications in a CASE tool and content
system so that all members can have instant access to the current state of the
project.

3. Development: this phase includes all of the activities that are involved with actu-
ally building the site. The challenge for project managers is to control changes

Planning and Process Development 287

Creative Brief Template

XYZ, INC

Project Scope

User:Dept:

Objectives:

Dates:

Target Audiences:

Image: (Explain the image that the system must convey to users)

Current Brand: (Explain the current brand and image of the business to its users)

User Experience: (Explain the most important thing that users should experience from
using the system)

\gminutes Copyright © 1995−2011
A. Langer & Assoc., Inc

Fig. 14.10 Sample creative brief

made to the original specifications. This typically occurs after the first proto-
type reviews where users begin to change or enhance their original requirements.
While it is not impossible to change specifications, it is certainly dangerous and
can be a major cause of scope creep.

4. Testing: during this phase developers and users are testing the site and reporting
errors. Errors are tricky issues; they must be classified in particular areas and
levels of severity. For example, some errors cause an application to abort, which
would be considered a critical error. Others might be aesthetic in nature and can

288 14 Project Management

Condition Being Tested Expected Results Actual Results Comments

1 Enter LAST NAME for a new
contact, press enter key. Repeat
and enter FIRST NAME, press
enter key

Should accept and
prompt for
COMPANY SITE

2 Select COMPANY Site from
picklist

Should accept and
prompt for next field

3 Enter LAST NAME and FIRST
NAME for a CONTACT that is
already in the System.

Should accept and
prompt for
COMPANY SITE

Product: Contact - Using Enter Key Page: 1 of 4

Number:

Date:

Purpose: To ensure that Contact screens
operate properly when supplying new good
data. This plan entry mode with nothing
on the screen.

Quality Assurance

Acceptance Test Plan

Test Plan #: 1G

Vendor:

QA Technician:

Test
No.

Comply
Y/N

Fig. 14.11 QA test plan

be scheduled for fixing, but are not severe enough to holdup going live. Still
other errors are not really errors, but rather deficiencies in design. This means
that the program is performing to the specification but not in the way the user
really expects. All of these issues need to be part of an overall test plan, which
identifies what types of errors are critical and how they affect the development
process. Figure 14.11 shows a typical test plan.

Technical Planning

Technical planning is the process where the project team develops a working strat-
egy for how they will use the features of the packaged system. These features
include all of the components of development including database, programming,
transaction systems, multimedia, and scripting. Technical planning is simple in con-
cept; how do all of the technology pieces come together, how do they interface,
and what is the schedule of implementation? Because of the object-oriented meth-
ods that are employed by package software systems, it is easy to have components
developed in separate teams of programmers. However, there comes a time when
all components must come together and interface with each other. When the com-
ponents interface correctly the system works. Project managers never quite know
if interfaces will work until they are actually tested. The concept of “working”
means many things in software development. The obvious definition is that the
program performs its tasks correctly and to specification. There is another part
of what “working” means. This relates to performance of the application. While
an application might calculate the correct output, it may not do so efficiently.

Planning and Process Development 289

Application performance problems tend to first show up during component interface
testing. Fortunately, this is at a time where applications can be fine-tuned before they
go into production. Unfortunately, many interface-oriented performance problems
first appear in the production system because the testing environment was not a true
representation of the live system. Therefore, it is important for project managers to
ensure that the test system correctly matches the live environment. Indeed, many
performance problems occur because of the unexpected stress load on the system.
Notwithstanding when an application performance problem is discovered, the main
challenge is to fix the problem. Sometimes performance interface problems can be
a serious problem especially if the solution requires a redesign of the application
architecture or substantial changes to the network infrastructure. Any serious prob-
lems of this caliber could cause serious setbacks to the project schedule and its cost.
In many ways the planning and decision making regarding how applications are
designed, which program languages should be used, and what network platforms
to choose are crucial steps for the project team to make. The project manager must
attempt to surround him/herself with the best knowledge available. This knowledge
base of people might not exist in the organization. Therefore, the project manager
might need to seek guidance from third-party consultants who can act as specialists
during these critical decision times.

Defining Technical Development Requirements

A large part of whether systems are implemented properly has to do with how well
the detailed technical requirements are prepared. The technical project team needs to
define the technical requirements to implement the logical specifications. Remember
that logical specifications do not necessarily specify what hardware or software to
use. Thus, the technical team must evaluate the logical specification and make rec-
ommendations on how the actual technical specifications are to be built. The project
manager can be more effective if they ask some key questions:
• Are we thinking of using technologies that we have not used before? Using

unknown technologies can be very dangerous. An unknown technology is not
only a new product; it is a product that the development team has never used.
Because of the extent of new developments in technology, dealing with unknown
hardware and software needs to be addressed and risks assessed by the project
manager.

• What benefits will be derived from new technologies? Implementing new tech-
nologies for the sake of new technologies is not a good reason to implement
unknowns. This concept gets back to the old cliché: “if it’s not broken don’t fix
it!”

• What type of coding is being done? This relates to whether program code is being
developed from scratch or via modified software packages. Each has its advan-
tages and disadvantages. Writing code from scratch takes longer, but provides
the architecture that best fits the design. Package software is faster to develop,
but may not fit well with the overall needs of the company. The rule of thumb

290 14 Project Management

is never to modify packages by more than 20% of their total code. When this
percent is exceeded the benefit realized from the package is so minimum that
developers might as well start from scratch.

• Will there be access to production-like testing environments? This was cov-
ered earlier. Project managers must ensure that the proper testing facilities are
available to mirror the production environment.

Maintenance

Package software projects should never be implemented without considering how
to preserve maintainability. Maintainability is a universal concept that relates to
what defines a quality product. Products that work is one thing, those that work and
are maintainable is another. In package software systems, product that cannot be
maintained easily is problematic. I have previously discussed the power of content
management systems and CASE software as vehicles to support maintenance of
package software systems. There are other best practices that need to be performed
during the planning stage. First, the manner in which code will be developed and the
standards to be upheld need to be agreed upon and put in writing. Technical man-
agers should also define how they intend to enforce these standards. Documentation
of code should also be addressed in the documents. Furthermore, there needs to be
agreement on the database design as well. This involves getting the database admin-
istrators to agree on limits to de-normalization, naming standards, and the methods
of coding stored procedures and database triggers.

Another important component of maintenance quality is planning for growth.
The issue of growth relates more to network infrastructure than to software devel-
opment. First, the project manager needs to address issues of hardware scalability.
This relates to the capacity of the network before the hardware architecture needs
to be changed to accommodate new applications. Second, database servers must be
configured with real-time backup architecture (no single point of failure concepts)
and data warehouses need to be designed to perform at peak times.

Project Management and Communication

Successful project managers communicate well, not only with their staffs, but with
vendors, management, and users. Indeed, sometimes communication skills are more
important than technical ones. Obviously, a complete project manager has both.
However, the advent of package software systems has placed even more empha-
sis on the importance of communication within the project team. There are many
reasons why poor communications occur during project life cycles. According to
Burdman (1999), there are 11 leading causes for communication problems in a
project team.

Project Management and Communication 291

1. People come from different disciplines: communication is difficult enough
among those who work together every day. The influx of many different disci-
plines on a package software project creates more challenges because staffs are
not as familiar with each other. Remember that relationships are very important
for team interaction. Many teams need to spend time just getting acclimated to
each other’s business styles.

2. Lack of mutual understanding of the technology: project members do not have
consistent understandings of the technology. For example, some staff might use
the word “table” to define a logical database entity, while others call it a file.
The best solution to this problem is to distribute a list of common technology
definitions to all project participants.

3. Personalities: this occurs in all projects. Some people have conflicting person-
alities and do not naturally get along.

4. Hidden agenda: there are often political agendas that team members have. They
are sometimes difficult to assess, but they definitely cause problems with com-
munication among project staff. These individuals are set in their ways and have
questionable dedication to the success of the project, that is, they have a more
important political agenda.

5. Ineffective meetings: meetings for the sake of meetings is no reason to meet.
Sometimes too many meetings can be counterproductive to getting things done.
It can sometimes be a false solution to other problems that exist in the project
team. Some meetings are necessary but run too long and participants begin to
lose focus on the agenda. Project managers need to be cognizant of the time
allotments they make to meetings and to respect those time frames.

6. Proximity: the demographics of where project team members reside is obvi-
ously a factor in hindering communications among the team members. While
this is a disadvantage, teleconferencing and video conferencing are all possible
anecdotes for managing communication projects at a distance. Communication
can be further hindered because of long distances between staff especially
when there are time zone changes. In these situations, even conferencing is
not feasible. Usually, the best way of communicating is through e-mail and
extranets.

7. Assumptions: team members can often make assumptions about things that
can cause communication breakdowns. Usually, assumptions create problems
because things that are believed to be true are not written down.

8. Poor infrastructure and support: the severity of this problem is often over-
looked. It includes the frustrations of having computer troubles, e-mail incom-
patibilities, and other hardware failures that contribute to communication
problems. The best approach to avoid these frustrations is for the project
manager to be very aggressive on having them fixed timely and properly.

9. Being an expert: every project has one or two “know-it-allers” who attempt to
dominate meetings and want to orchestrate their point of view on the rest of the
staff. These individuals spend so much time telling others what to do that they
forget what they have to do to make the project successful. Project managers
should be very aggressive with these type of participants by making it clear
what everyone’s role is, including the project manager’s responsibilities!

292 14 Project Management

10. Fear: fear is a very large barrier with certain staff. These staff members become
overwhelmed with the size, complexity, and length of package software project
and it can cause them to lose their perspective and creativity. Project managers
need to interject and provide assistance to those members who struggle with a
package software system.

11. Lack of good communication structure: good communication systems fit-in
with the culture of the organization and are realistic in what they might accom-
plish. Many communication problems exist simply because the infrastructure
does not relate to the needs of the staff.

Summary

This chapter attempted to provide a project manager with a perspective on the salient
issues that can help them be successful. This chapter was not intended to provide
a complete step-by-step approach to managing complex projects. I included this
chapter because I believe that many analysts can also serve as excellent project
managers. Indeed, much of the important issues discussed in this chapter relate to
many of the skills that analysts must have to perform in their responsibilities as
software engineers. These include
• Communication skills: analysts have significant experience in working with users

to obtain input so they can develop system requirements properly.
• Meeting management: JAD sessions are more complex meetings than typical

project meetings. Analysts who have also been JAD facilitators are very well
trained on how to control meetings.

• Politically astute: analysts are experienced in working with people who have
hidden agendas and are driven by politics.

• Technically proficient: analysts are educated in logic modeling and are familiar
with much of the technical issues that come up during the project life cycle.

• Project planning: analysts are used to developing project plans and managing
deliverables; each analysis and design task can be seen as a mini-project.

• Documentation: analysts are supporters of good documentation and understand
the value of having maintainable processes.

• Executive presence: analysts work with executive users and understand how to
interact with them.

• Quality assurance: analysts are familiar with quality assurance test plans and
testing methodologies. They are often involved with test plan development.

Problems and Exercises

1. Describe five unique aspects of package software projects.
2. Compare packaged products with traditional ones.
3. What is a mission statement of a project mean? How should a project manager

define the project mission?

References 293

4. Explain how the scope of a project is determined and how it is controlled.
5. What are the key categories of a project budget?
6. What are the roles and responsibilities of the project team? Who determines the

members?
7. Explain the components of a project status report? How often should the report

be issued and to whom?
8. What is a creative brief? What are the key components?
9. What are the important aspects of project management communication?

References

Burdman, J. (1999). Collaborative web development. New York: Addison-Wesley.
Lewis, V. (1995). Fundamentals of project management: A worksmart guide. New York: American

Management Association.

15ISO 9000 and the Software Development
Life Cycle

Developing a System of Procedures

Perhaps, one of the most significant challenges in analysis today is its role in the
software life cycle. There has been much criticism of the lack of discipline applied
to software development projects and personnel in general, and we continue to be
an industry that has a poor reputation for delivering quality products on schedule.
Although many organizations have procedures, few really follow them and fewer
still have any means of measuring the quality and productivity of software devel-
opment. A system of procedures should first be developed prior to implementing
a life cycle that can ensure its adherence to the procedure. These procedures also
need to be measured on an ongoing basis. This book restricts its focus to the set of
procedures that should be employed in the analysis and design functions.

The process of developing measurable procedures in an organization must start
with the people who will be part of its implementation. Standard procedures should
not be created by upper management, as the steps will be viewed as a control mecha-
nism as opposed to a quality implementation. How then do we get the implementers
to create the standards? When examining this question, one must look at other
professions and see how they implement their standards. The first main difference
between computer professionals and members of many other professions is that they
lack a governing standards board like the American Medical Association (AMA) or
the American Institute of Certified Public Accountants (AICPA). Unfortunately, as
mentioned in previous chapters, it seems unlikely that any such governing board
will exist in the near future. Looking more closely at this issue, however, we need
to examine the ultimate value of a governing board. What standards boards really
accomplish is to build the moral and professional responsibilities of their trade.
Accountants, attorneys, and doctors look upon themselves as professionals who
have such responsibilities. This is not to imply that governing boards can resolve
every problem, but at least they can help. With or without the existence of a stan-
dards board, analysts within an organization must develop the belief that they belong

295A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_15, © Springer-Verlag London Limited 2012

296 15 ISO 9000 and the Software Development Life Cycle

to a profession. Once this identification occurs, analysts can create the procedures
necessary to ensure the quality of their own profession. There simply are not many
analysts who view themselves as part of a profession.

If analysts can create this level of self-actualization, then the group can begin
the process of developing quality procedures that can be measured for future
improvement. The standard procedures should be governed by the group itself and
the processes integrated into the software life cycle of the organization. In fact,
analysts should encourage other departments to follow the same procedures for
implementing their respective quality procedures.

Although not typically required, many firms have elected to employ ISO 9000 as
a more formal vehicle to implement the development of measurable procedures. ISO
9000 stands for the International Organization for Standardization, an organization
formed in 1947 and based in Geneva, which currently has 91 member countries
associated with it. ISO 9000 was founded to establish international quality assurance
standards focused on processes rather than on products.

Why ISO 9000?

ISO 9000 offers a method of establishing agreed-upon quality levels through
standard procedures in the production of goods and services. Many international
companies require that their vendors be ISO 9000 compliant through the certifica-
tion process. Certification requires an audit by an independent firm that specializes
in ISO 9000 compliance. The certification is good for 3 years. Apart from the issue
of certification, the benefits of ISO 9000 are in its basis for building a quality pro-
gram through employee empowerment. It also achieves and sustains specific quality
levels and provides consistency in its application. ISO 9000 has a number of sub-
components. ISO 9001, 9002, and 9003 codify the software development process.
In particular, 9001 affects the role of the analyst by requiring standards for design
specifications and defines 20 different categories of systems. Essentially, ISO 9000
requires three basic things:
1. Say What You Do
2. Do What You Say
3. Prove it
This means that the analyst will need to completely document what should occur
during the requirements process to ensure quality. After these procedures are doc-
umented, the analyst needs to start implementing based on the standards developed
and agreed upon by the organization. The process must be self-documenting, that
is, it must contain various control points that can prove at any time that a quality
step in the process was not only completed but also done within the quality standard
established by the organization. It is important to recognize that ISO 9000 does not
establish what the standard should be, but rather simply that the organization can
comply with whatever standards it chooses to employ. This freedom is what makes
ISO 9000 so attractive. Even if the organization does not opt to go through with the
audit, it can still establish an honorable quality infrastructure that:

How to Incorporate ISO 9000 into Existing Software Life Cycles 297

• creates an environment of professional involvement, commitment, and account-
ability;

• allows for professional freedom to document the realities of the process itself
within reasonable quality measurements;

• pushes down the responsibilities of quality to the implementer as opposed to the
executive;

• identifies where the analyst fits in the scope of the software life cycle;
• locates existing procedural flaws;
• eliminates duplication of efforts;
• closes the gap between required procedures and actual practices;
• complements the other quality programs that might exist; and
• requires that the individuals participating in the process be qualified within their

defined job descriptions.

How to Incorporate ISO 9000 into Existing Software Life Cycles

The question now is how to incorporate an ISO 9000-type process for the analyst
function and incorporate it into the existing software life cycle. Listed below are the
nine essential steps to follow:
1. Create and document all the quality procedures for the analyst;
2. Follow these processes throughout the organization and see how they enter and

leave the analyst function;
3. Maintain records that support the procedures;
4. Ensure that all professionals understand and endorse the quality policy;
5. Verify that there are no missing processes;
6. Changes or modifications to the procedures must be systematically reviewed and

controlled;
7. Have control over all documentation within the process;
8. Ensure that analysts are trained and that records are kept about their training; and
9. Ensure that constant review is carried out by the organization or through third-

party audits.
In order for ISO 9000 guidelines to be implemented, it is recommended that the
analyst initially provide a work flow diagram of the quality process (Fig. 15.1).

Figure 15.1 reflects some of the steps in a quality process for an analyst. Note
that certain steps reflect that there is an actual form that needs to be completed in
order to confirm the step’s completion (Figs. 15.2, 15.3, and 15.4).

Figures 15.2, 15.3, and 15.4 represent the confirmation of the activities in the
quality work flow process outlined by the analyst. At any time during the life cycle,
an event can be confirmed by looking at the completed form.

In order to comply with the documentation standards, each form should contain
an instruction sheet (Fig. 15.5). This sheet will ensure that users have the appropri-
ate instructions. Confirmation documents can be implemented in different ways.
Obviously, if forms are processed manually, the documentation will contain the
actual storage of working papers by project. Such working papers are typically

298 15 ISO 9000 and the Software Development Life Cycle

Acceptance Test
Plan (AN0160)

Discuss Specs

User Approval
Develop Business

Spec (AN0050)

Assign Analyst
(MG0010)

Approve

Fig. 15.1 A sample work flow diagram

filed in a documentation storage room similar to a library where the original con-
tents are secure and controlled. Access to the documentation is allowed, but must be
authorized and recorded. Sometimes forms are put together using a word-processing
package such as Microsoft Word. The blank forms are stored on a central library so
that master documents can be accessed by the analyst via a network. Once the forms
are completed, they can be stored in a project directory. The most sophisticated
method of implementing ISO 9000 is to use a Lotus Notes electronic filing system.
Here, forms are filled out and passed to the appropriate individuals automatically.
The confirmation documents then become an inherent part of the original work flow.
In any event, these types of forms implementation affect only automation, not the
concept of ISO 9000 as a whole.

Interfacing IT Personnel

We mentioned earlier that ISO 9000 requires qualified personnel. This means that
the organization must provide detailed information about the skill set requirements
for each job function. Most organizations typically have job descriptions that are

Interfacing IT Personnel 299

Date: Project:

Date Delivered To Users:

Analyst:

Previous Objectives: Previous Act
Completion

Objective Target Date Date or Status

New Project Objectives:

 Objective Target Date

Start

Financial Performance: Budget Actual % Remaining

\an0010 Rev. 3/21/11

Project Status Report

Period Ending: / / :

Complete

Fig. 15.2 ISO 9000 project status report

not very detailed and tend to be vague with respect to the specific requirements of
the job. In addition, job descriptions rarely provide information that can be used
to measure true performance. Questions such as “How many lines of code should
a programmer generate per day?” cannot be measured effectively. There is also a
question about whether lines of code should be the basis of measurement at all. A
solution to this dilemma is to create a job description matrix which provides the
specific details of each job responsibility along with the necessary measurement
criteria for performance (Fig. 15.6).

Figure 15.6 is a matrix of responsibilities for an analyst. Note that the analyst has
a number of efficiency requirements within the managing engagements (projects)

300 15 ISO 9000 and the Software Development Life Cycle

User: __

Confirmation Type
Y/N

Cost Deliverable/Comments

Requirements Definition
Conceptual Detail Design:
Development:
System Tested Enhancements
User Accepted Enhancements

Analysis Acknowledgment

Analyst: Date of RequestDate: Project #

\an0050 Rev. 3/21/11

Expected
Days

Expected
Delivery

Fig. 15.3 ISO 9000 analysis acknowledgment

Test
No.

Condition Being Tested Expected Results Actual Results Comments

1

2

3

Quality Assurance

Acceptance Test Plan

Test Plan #: Product: Number:

Vendor:

QA Technician:

Date:

Page: 1 of

Purpose:

Comply
Y/N

Fig. 15.4 Quality assurance test plan

responsibility. Efficiency here means that the analyst must perform the task at a cer-
tain indicated level to be considered productive at that task. To a degree, efficiency
typically establishes the time constraints to deliver the task. Measurement defines
the method used to determine whether the efficiency was met. Reports are simply
the vehicle in which the analyst proves that the task was completed and on what
basis.

The job description matrix represents a subset of the entire job description
that strictly focuses on the procedural and process aspects of the individual’s
position. It not only satisfies ISO 9000, but also represents a healthier way of

Interfacing IT Personnel 301

Name:
Confirmation/Service

 Acknowledgment

Date Issued: 3/8/11

Form Instructions
Supersedes:

Revision: 1.00

The purpose of this form is to track the status of various services
such as Requirements Definition, Conceptual Detail Design,
Development, System Tested Enhancements and User Accepted
Enhancements.

The appropriate project # must be attached. The type form must be
checked for each type of Confirmation.

\an0050i Rev. 3/8/11

Fig. 15.5 An ISO 9000 form instruction page

Responsibility PH Efficiency Measurement Reports
MANAGING ENGAGEMENTS PD Technical Project Plans are completed and

finalized within 2 weeks of Kick-Off Meeting--
80% compliance

Project plans will be reviewed by
Director prior to submission to Client

Technical Project Plan (MG0140)

PD Client signs off on Tech Proj Plan within
3 weeks

Director receives copy within 2 days of
signing

Project Status Report (MG0010)

IP When tech mods are identified up-front attend
kick-off meeting with Acc Exec within 2 weeks
of sale

Resulting letter to client committing to
Project Plan

Kick-Off Meeting (MG0030)

RQ Requirements Definition Document on or
before due date

Document is delivered within timeframe
and signed

Confirmation Letter / Serv Acknow (MG0050)
Project Status Report (MG0010)

CD Conceptual Detail Design Document on or
before due date

Document is delivered within timeframe
and signed

Confirmation Letter / Serv Acknow (MG0050)
Project Status Report (MG0010)

D Development System on or before due date Document is delivered within timeframe
and signed

Confirmation Letter / Serv Acknow (MG0050)
Project Status Report (MG0010)

QA System Testing Enhancements on or before
due date

Document is delivered within timeframe
and signed

Confirmation Letter / Serv Acknow (MG0050)
Project Status Report (MG0010)

Fig. 15.6 Job description matrix

302 15 ISO 9000 and the Software Development Life Cycle

measuring individual performance in an IS environment. Most individuals should
know exactly their performance at any time during the review period. Furthermore,
the matrix is an easy tool to use for updating new or changed performance
tasks.

Committing to ISO 9000

We have outlined the sequential steps to implement an ISO 9000 organization.
Unfortunately, the outline does not ensure success and often just following the sug-
gested steps leads to another software life cycle that nobody really adheres to. In
order to be successful, a more strategic commitment must be made. Let’s outline
these guidelines for the analyst functions:
• A team of analysts should meet to form the governing body that will establish

the procedures to follow to reach an ISO 9000 level (this does not necessarily
require that certification be accomplished).

• The ISO 9000 team should develop a budget of the milestones to be reached
and the time commitments that are required. It is advisable that the budget be
forecasted like a project, probably using a Gantt Chart to develop the milestones
and time frames.

• The ISO 9000 team should then communicate their objectives to the remaining
analysts in the organization and coordinate a review session so that the entire
organization can understand the benefits, constraints, and scope of the activity.
It is also an opportunity to allow everyone to voice their opinions about how to
complete the project. Therefore, the meeting should result in the final schedule
for completing the ISO 9000 objective.

• The ISO 9000 team should inform the other IS groups of its objectives, although
analysts should be careful not to provoke a political confrontation with other
parts of the IS staff. The communication should be limited to helping other
departments understand how these analyst quality standards will interface with
the entire software life cycle.

• The work flows for the analyst tasks must be completed in accordance with the
schedule such that everyone can agree to the confirmation steps necessary to vali-
date each task. It is important that the ISO 9000 processes allow for a percentage
of success. This means that not every process must be successful 100% of the
time, but rather can be acceptable within some fault tolerance level. For exam-
ple, suppose that the analyst must have a follow-up meeting with the users within
48 h after a previous step has been completed. It may not be realistic to meet this
goal every time such a meeting is necessary. After all, the analyst cannot always
force users to attend meetings in a timely way. Therefore, the ISO 9000 step may
view this task as successful if it occurs within the 48 h 80% of the time, that is,
within a 20% fault tolerance.

• All task steps must have verification. This will require that standard forms be
developed to confirm completion. While we have shown samples of these forms
earlier, the ISO 9000 team should be aware of producing an unwieldy process

Problems and Exercises 303

involving too many forms. Many software life cycles have suffered the con-
sequences of establishing too many check points. Remember, ISO 9000 is a
professional’s standard and should cater to the needs of well-trained profession-
als. Therefore, the ISO 9000 team should review the initial confirmation forms
and begin the process of combining them into a smaller subset. That is, the final
forms should be designed to be as generic as possible by confirming multiple
tasks. For example, form AN0010 (Fig. 15.2) represents a generic project sta-
tus report that was used to confirm various types of information attributable to
different tasks.

• There should be meetings held with the analysis group that focus on the alterna-
tives for automating the confirmation forms as outlined earlier in this chapter. It
is advisable that this topic be confirmed by the group since their full cooperation
is needed for the success of the program.

• Allow time for changing the procedures and the forms. Your first effort will not
be the final one; therefore, the ISO 9000 team must plan to meet and review the
changes necessary to make it work. Analysts should be aware that the opportu-
nity for change always exists as long as it conforms to the essential objectives of
ISO 9000.

• The ISO 9000 project should be at least a 1-year plan, from inception of
the schedule to actual fulfillment of the processes. In fact, an organization
must demonstrate ISO 9000 for at least 18 months prior to being eligible for
certification.

• The ISO 9000 group needs to be prepared and authorized to make changes to the
job description of the analyst. This may require the submission of requests and
authorizations to the executive management team or the human resources depart-
ment. It is important not to overlook this step, since an inability to change the
organization structure could hinder the success of the ISO 9000 implementation.

As we can see from the above steps, establishing an ISO 9000 group is a significant
commitment. However, its benefits can include a professional organization that con-
trols its own quality standards. These standards can be changed on an ongoing basis
to ensure compliance with the business objectives and requirements of the enter-
prise. Certification, while not the focus of our discussion, is clearly another level
to achieve. Most companies that pursue certification do so for marketing advantage
or are required to obtain it by their customers. Implementing ISO 9000 should not
require that the entire company conform at once; in fact it is almost an advantage to
implement it in a phased approach, department by department. The potential bene-
fits of ISO 9000 concepts may fill the void in many of the IS organizations which
lack clearly defined quality standards.

Problems and Exercises

1. Explain why ISO 9000 represents a system of procedures.
2. What are the three fundamental things that ISO 9000 tries to establish?
3. What are the overall benefits of ISO 9000?

304 15 ISO 9000 and the Software Development Life Cycle

4. How is ISO 9000 incorporated into the life cycle?
5. Why are work flows the most critical aspect of developing the ISO 9000 model?
6. Why are forms used in ISO 9000?
7. How are personnel affected by ISO 9000?
8. What is a job description matrix?
9. What steps are necessary for an organization to adopt ISO 9000?

10. Does ISO 9000 need to be implemented in all areas of the business? Explain.

16Contract Considerations

It becomes increasingly important that contract considerations be included as part of
the final selection process of any vendor solution (packaged or customized develop-
ment). Organizations tend to make the mistake of leaving the contract negotiations
toward the end of the selection process as opposed to making it inherently part of
the process throughout each phase. That is, the contract is more a “living” docu-
ment that may change as the needs of the product become more obvious to the
stakeholders. In other words, the process feeds the contract needs. Thus, the pur-
pose of this chapter is to provide guidance on the relevant stages, considerations,
and content of the contract agreement. It is important to note that the informa-
tion contained in this chapter is prescriptive in nature and not intended to suggest
that technology or business personnel can determine whether a contract should be
signed without the assistance of legal counsel, but it does provide a checklist of
things to ensure that lawyers are aware about and ensures that the organization is
protected.

What everyone wants out of a contract is to be protected, both from the orga-
nization (buyer) and from the vendor (seller). The question really becomes how to
provide an agreement where both sides feel that it is fair. The core factors typically
include
• Ownership and rights: this part contains the legal aspects of who owns the

product and what rights does each party have in the use of the software.
• Legal protection and coverage: this contains various protections such as insur-

ance requirements, indemnifications, and liabilities of each party.
• Financials: simply the cost for license of software, cost for development and

programming, support and maintenance, and payment schedules.
• Deliverables and performance: specific things that the vendor agrees to deliver

to the organization.
Each of these components will be defined and analyzed as follows.

305A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_16, © Springer-Verlag London Limited 2012

306 16 Contract Considerations

Ownership and Rights

The most salient issue of ownership is whether the software is a package owned
by another company—in which case it is likely that the product is being licensed
for what is known as a “limited” use, that is, the organization is paying a license
fee for the right to use the product under the conditions set forth in the agreement.
Licensing does not mean ownership even if the source code of the system is deli-
vered for use. Thus it is important to carefully understand the conditions of use,
particularly reviewing any limits on use at locations, transferability (if the com-
pany is sold, for example), conditions for forfeit of license (usually non-payment),
requirements for maintenance, and limits on disclosure of information about the
product’s source code, etc. Software license agreements are usually standard
formats.

The licensed software agreement also includes provisions for the following
information:
• Operating environment: the software may be restricted to operate within a certain

hardware and software environment or platform. Package software license agree-
ments normally require the vendor (or licensor) to be responsible for determining
the terms of compatibility.

• Warrantees: this relates to safeguards that guarantee certain performance, appli-
cation runtimes, and specific response times of the product. All warrantees are
subject to restrictions on performance based on certain peak periods.

• License fees: these can be complex, especially when there are discounts available
for volume use or use over a number of physical sites or versions (e.g., Windows,
UNIX, and mainframe). Organizations should concentrate on whether there are
clauses for increased fees over time, especially relating to maintenance fees for
updates and support from the vendor.

• Refreshment: this covers bug fixes and patches to software that cannot wait for
regularly scheduled maintenance updates. This is a critical clause in that the
organization wants to know that serious bugs or needed patches can be fixed
timely.

• Documentation: almost all licenses come with some form of operating documen-
tation. Today many products have documentation as part of the Help portion of
the product itself, but in either case documentation must be available.

• Source code: a popular part of third-party licensing is access to source code
if not included as part of the license. Organizations have been using attorneys
who hold the source code in escrow and will deliver the code to the organi-
zation should the vendor default. Default should include failure to perform or
that the vendor goes out of business. In this way, an independent agent can judge
whether a default has occurred and whether the organization can protect its inter-
ests by obtaining the current code. What is also important are the procedures for
ensuring that the attorney receives timely updates to the source code. This is
most critical if there are customizations being applied to the source during the
project.

Legal Protection and Coverage 307

Legal Protection and Coverage

Agreements for software also contain a myriad of legal items that protect both
organizations. These items and clauses are not necessarily unique to software agree-
ments but important to include in any contract. Some key elements are described
below:
• Intellectual property and other indemnification (IPOI): IPOI clauses are very

common in software license agreements. Essentially, IPOI protects the organi-
zation against any third-party lawsuits that have a claim against the vendor’s
violation of intellectual property rights of another. Thus, the buyer is protected
against any suit against a claim that the software being used by the organization
violates the rights of another party. The only complication of IPOI is that the
laws are different internationally. The laws in many countries may not uphold the
same definition of what constitutes violation of intellectual property. It is there-
fore important in any international indemnity to clearly state that the contract
will be upheld based on the Laws of the USA or the UK. In this way, the orga-
nization agrees to use that Law to resolve matters even if they occur in another
country.

• Limitation of liability: basically, this clause sets boundaries on an agreed-upon
economic exposure to the organization. Specifically, the limitation of liability
restricts the amount of damages that can be recovered from the vendor due
to contractual breaches and/or negligence. Obviously, the organization should
attempt to have a provision of “unlimited” liability that covers all costs, includ-
ing legal and out-of-pocket expenses should the vendor be found guilty. Such
clauses, if enacted could easily bankrupt the vendor. Thus, vendors try to limit
their exposure and risk by restricting contractually what can be recovered. Most
vendors will suggest that the limit be set to the amount of the vendor’s insurance
coverage, which means that the amount must be known and possibly increased
to an amount that the organization is comfortable with should something occur.
Setting a limit on the liability then becomes an organizational risk necessitating
analysis from the management team and legal counsel.

• Waivers: a waiver clause allows the vendor to be excluded from a responsibi-
lity in the contract. It is suggested that no waivers be granted unless they are
expressly agreed upon in writing by the organization and that waiver only be
given for that specific instance. Effectively, a waiver is an override to a condition
in the agreement, like making a payment or delivering product by a certain time.

• Assignment: this clause would allow the vendor or the organization to transfer
responsibilities to another party. License agreements should not allow the vendor
to assign responsibility without expressing written consent of the organization.
Assignment gets a bit tricky when a vendor is acquired by another entity. The
buyer would likely allow the new firm to assume responsibility.

• Severability: this clause is needed in the situation where a particular component
of the contract is held illegal. The question becomes, how is the remainder of
the contract to be handled? Agreements normally state that the remainder of the

308 16 Contract Considerations

contract will continue to be in force. The purpose then of severability is to avoid
a complete contract becoming void should one item be found problematic.

• Notice: this statement provides information for both the vendor and the orga-
nization. It instructs both parties on how notifications are to be communicated
between the parties and typically provides a physical address and department
where the parties need to be notified. This ensures that both parties are aware
should there be a contractual problem.

• Force Majeure: stands for “superior force” in French and is used to excuse both
parties from contractual obligation when there is an unusual event or as they
say, “act of god,” like an earthquake and hurricane. The clause does not excuse
neglect of duties, however.

• Confidentiality/privacy: this clause protects the proprietary information of the
entities. It typically states that any information discovered or used during the
engagement remains the property of the associated entity (vendor or organi-
zation) and that it cannot be shared with any other parties without the written
approval of the other party.

• Proprietary rights/work for hire: this clause protects the ownership rights of
each party. The proprietary rights protect the vendor and the organization. That
is, the vendor maintains ownership of the packaged product, but the organiza-
tion may have ownership of the custom modifications made to the product. This
can be a very sticky part of the contract. Certain package software vendors will
attempt to absorb any custom modifications into their core product and market
it to other organizations. In some cases, this has advantages for both parties in
that the customized portion, if part of the base product, must be maintained by
the vendor. On the other hand, if the customizations are proprietary to the orga-
nizations or are deemed to be competitive advantages, then it is important that
such customizations remain under the ownership of the organization. In these
cases, the organization should specify these customizations as a “work for hire”
which stipulates that the vendor is being paid to develop an application solely for
the use by the organization and becomes the exclusive ownership of the paying
organization.

Financials

Financials is usually found in a section of the contract called “Fees and Payments.”
This section provides information about license fees, maintenance fees, program-
ming fees, and any other fees associated with delivery. This section also contains
information about payroll tax liabilities, sales tax responsibilities, and invoicing
procedures. Details of each of these issues are discussed below:
• License fees and rates: this information is usually contained in an exhibit or

addendum of the contract. Thus, the body of the agreement “points” to the exhibit
which contains specific information regarding license fees, maintenance rates,
per diem programming costs, and any other agreed-upon costs such as a fixed
price for custom modifications. The reason for having these costs identified in an

Financials 309

exhibit is to allow for easier modifications should they arise. These modifications
could be the result of an expansion of the original contract which would normally
require the re-execution of the agreement. Exhibits, therefore, usually have a
separate signature page so that if a change is required, only the Exhibit page
needs to be re-signed. This is shown in the sample contract in Fig. 16.1.

• Sales taxes: this is an important section to ensure that the organization is NOT
responsible for paying the sales tax should the vendor either not collect it or
not pay the tax to the appropriate state. Sales taxes can be complicated, since it
is collected separately for each state and may depend on where the software is
licensed, where the vendor resides, and ultimately where the software is actually
used. All of these issues and corresponding liabilities need to be the responsibi-
lity of the vendor. Furthermore, the fact that it is part of the agreement discloses
the responsibilities of each party.

• Payroll taxes: this is another important clause for protecting the organization.
Should the vendor use contract labor on the engagement, they may be considered
an employee of the vendor by the IRS. IRS rulings in this area can be vague
in terms of what constitutes an employee. In either case, you want to protect
the organization against any liabilities should the IRS determine that a vendor’s
consultant must be treated as an employee of that vendor. This section should
also address the vendor’s employees, that is, that the vendor agrees that they must
pay federal, state, and local withholding taxes. While this might seem obvious,
government agencies might seek those funds from the organization should the
vendor be late or in default of paying.

• Invoicing: this section addresses two important issues: (1) where invoices should
be sent and (2) net terms of payment. The latter states the number of days before
invoices will be paid to the vendor. Some organizations and/or vendors will offer
a discount on the amount due if payment is made sooner. Depending on the situa-
tion with cash flow and the general philosophy of the organization, discounts can
be advantageous for both the vendor and the organization. Some organizations,
particularly those that are cash rich, may not want to participate in a discount
plan. This should all be addressed in the invoice section.

• Insurance: this section requires the vendor to have certain insurance provisions
above and beyond just indemnifications. This usually includes comprehensive
general liability and property coverage, which protect the organization against
any damages that a vendor’s employee or consultant does purposefully or inad-
vertently (e.g., damaging a PC) while on premise. The organization might also
require Errors and Omissions (E&O) coverage. E&O protects the organization
from any professional errors made by the vendor that can cause problems—such
as converting data incorrectly and creating a false representation of information.
Other insurance requirements include auto-insurance and inappropriate adverti-
sing liability. The organization should require the vendor to provide a “Certificate
of Insurance” that evidences the coverage and names the organization as
insured.

310 16 Contract Considerations

Deliverables and Performance

This section of the agreement should contain specific information about what the
vendor has agreed to deliver to the organization. This should include the product
itself, custom modifications, and in general particular features and functions that
are deemed critical for the application to be useful to the organization. Another way
of stating this is that this section should include critical things about the application
that if not delivered would be detrimental to the success of the project. Some key
subsections are described below:
• Warranty: this clause states that the vendor warrants all of its software and ser-

vices to the specifications provided to the organization. The specifications should
be included in the agreement and/or point to a particular set of documents that
provide more detail about what the product/services provide. Typically, such a
document could include the vendor’s user manual, advertisement materials, and
requirements documents prepared by the organization or the vendor’s consul-
tants. Often the list of warranty information is contained in an addendum or
exhibit of the contract. This type of warranty differs from the warranty of runtime
performance but can be included in the same section of the contract.

• Disputes and remedies: this subsection addresses the procedures for dealing with
problems that arise during the completion of the contract. It could include things
that are not specifically addressed in the contract or new things that may be
deemed as “implied” in the contract. It could also relate to when something is
considered complete and therefore relate when a specific payment is due in the
contract.

• Security: this section requires the vendor to abide by the organization’s internal
security requirements. This typically includes access to system policies, on-sight
behavior and accommodations, and in general protection of the data that a vendor
will have access to during the implementation.

Figure 16.1 provides a sample of how the above provisions are formatted in a
contract for software and services.

This SOFTWARE and CONSULTING SERVICES AGREEMENT (“Agreement”) is
made this ____ day of XXXXXXX, 2011 (“Effective Date”) by and between Sample
Applications Contract (“SAC”), with a place of business at Xyz Blvd, New York, NY
10026, and the consultant identified below (“Vendor”).

Vendor Name: A. Langer & Assoc.

Address: 510A James Hall

City: New York State: NY Zip: 10027

Telephone: 914 261-6142 Fax: 212 865-1324

Fig. 16.1 Software and consulting services agreement

Deliverables and Performance 311

VENDOR HAS READ AND AGREES TO THE TERMS AND CONDITIONS ANNEXED
HERETO.

A. Langer & Assoc., Inc Sample Application Contract

By: __

_ Print Name: __Arthur M. Langer_________ Print Name: ________________________________

Title: _President

By: ___

__________________________ Title: _______________________________________

_____________________________ Date: __________Date: ___________________________________

Fig. 16.1 (continued)

TERMS AND CONDITIONS

Subject to the terms and conditions set forth in Exhibit I executed by SAC and
Vendor, Vendor agrees to perform the consulting services described below.

1. SOFTWARE and SERVICES.

1.1 Vendor shall, in a professional manner, provide to SAC the software and
services described in Exhibit I for the fees or compensation set forth
therein.

1.2 All rights and benefits granted hereunder to SAC and the terms of this
Agreement extend to and may be used and/or exercised by SAC, their affil-
iates, subsidiaries and business divisions (the “SAC Organization”). The
term “SAC” as used throughout this Agreement includes each entity in
the SAC Organization. Notwithstanding the foregoing, any modification
of this Agreement executed by the signatories is binding upon any SAC
Organization, and any action or consent taken by SAC on its own behalf is
binding upon any SAC Organization for the purposes of this Agreement.
This Agreement is not intended to, nor may it be deemed to, create any
enforceable rights, remedies or performance obligations upon any SAC
Organization except with respect to Exhibit 1 and Exhibit 2.

2. PROPRIETARY RIGHTS.

2.1 Vendor acknowledges and agrees that the Services performed hereunder,
and all materials, products, reports, audio and/or visual works, com-
puter programs (source and object code), documentation, deliverables and
inventions conceived, developed or prepared for SAC by Vendor in per-
formance of the Services and all elements thereof (the “Work Product”) are
Confidential Information (as defined in Section 3.1 below) and the property

312 16 Contract Considerations

of SAC. All right, title and interest in and to the Work Product vests in SAC
and shall be deemed to be a work made for hire, made under the copyright
laws of the United States in the course of performing the Services. To the
extent that title to any such Work Product does not vest in SAC by operation
of law, or such Work Product is not considered a work made for hire under
such copyright laws, all right, title and interest therein are hereby irrevoca-
bly assigned to SAC. All Work Product belongs exclusively to SAC, with
SAC having the right to obtain and to hold in its own name copyright reg-
istrations, patents and such other intellectual property protection as may be
appropriate to the subject matter, and any extensions and renewals thereof.
Vendor agrees to give SAC, and any person designated by SAC, reasonable
assistance, at SAC’s expense, required to perfect the rights defined in this
Section, including, but not limited to, executing and delivering all assign-
ment of copyright and ancillary and confirmatory documents requested by
SAC in connection therewith. Alternatively, Vendor irrevocably appoints
SAC as Vendor’s attorney-in-fact with full powers of substitution and del-
egation to sign all documents that may be necessary to evidence SAC’s
ownership rights in the Work Product or any copyright. Vendor waives any
moral rights that it may have in the Work Product and represents that it
will obtain a waiver of the moral rights of all authors of the Work Product.
Vendor may use the Work Product only to perform its obligations under any
Engagement Schedule. Unless otherwise directed by SAC, upon the com-
pletion of the Services or upon the earlier termination of the engagement,
Vendor shall immediately turn over to SAC all Work Product as well as all
materials and deliverables developed by Vendor, including, but not limited
to, working papers, descriptions, reports, notes and data. All Work Product
shall bear SAC’s copyright and trade secret notices, as specified by SAC.
No rights to the Work Product remain with Vendor.

2.2 Notwithstanding the foregoing, unless otherwise provided for in this agree-
ment, Vendor reserves all rights in and to the tools, utilities and standards
developed by Vendor prior to or independent of the Services hereunder and
utilized to provide the Services (“Vendor Tools”). Work Product does not
include any Vendor owned software or software licensed from any third
party, including without limitation, open source software, unless such soft-
ware is specifically identified in an Engagement Schedule issued hereunder.
In the event and to the extent that the Work Product contains any software
or other items or elements which may be proprietary to Vendor or a third
party, Vendor hereby grants SAC, its agents, consultants and other third par-
ties, an irrevocable, worldwide, royalty free, nonexclusive license to use,
execute, reproduce, modify, display, perform, and distribute copies of and
prepare derivative works based on the Vendor Tools and/or any Vendor or
third party software, items or elements which may be contained in the Work
Product, and to authorize others to do any of the foregoing.

Deliverables and Performance 313

3. CONFIDENTIALITY/PRIVACY.

3.1 Vendor acknowledges that in the course of its engagement by SAC, Vendor
may receive or have access to confidential and proprietary information
about, and Vendor’s engagement by SAC may bring it into close contact
with confidential and proprietary information of SAC or third parties with
whom SAC conducts business. Such information is defined below and col-
lectively referred to as “Confidential Information.” In recognition of the
foregoing, Vendor covenants and agrees that:

3.1.1 it will keep and maintain all Confidential Information in strict
confidence, using such degree of care as is appropriate to avoid
unauthorized use or disclosure;

3.1.2 it will use and disclose Confidential Information solely for the pur-
poses for which such information, or access to it, was provided
pursuant to the terms of this Agreement, and will not use or dis-
close Confidential Information for Vendor’s own purposes or for the
benefit of anyone other than SAC;

3.1.3 it will not, directly or indirectly, disclose Confidential Information
to anyone outside SAC, except with SAC’s prior written consent as
permitted under the terms of this Agreement; and

3.1.4 it shall, upon the earlier of (i) completion of an engagement or ter-
mination of this Agreement or the applicable Engagement Schedule;
(ii) determination that it has no need for Confidential Information; or
(iii) at any time SAC requests, dispose of all records, electronic or
otherwise (including all backup records and/or other copies thereof)
regarding or including any Confidential Information that Vendor may
then possess or control. Disposal may be achieved, at SAC’s option,
through prompt delivery of the records to SAC or destruction pur-
suant to Vendor’s written policy governing such destruction and in
a manner that renders the records unreadable and undecipherable by
any means. Upon any occurrence of (i), (ii), or (iii) above, Vendor
shall promptly certify in writing to SAC, in a form acceptable to
SAC and executed by an authorized officer of Vendor, that all such
Confidential Information has been destroyed or returned.

Vendor shall be permitted to disclose Confidential Information only to
its employees and permitted subcontractors (individually an “Employee”
and collectively, “Employees”) having a need to know such information in
connection with the performance of the Services, provided that any sub-
contracting and disclosure of Confidential Information to a subcontractor

314 16 Contract Considerations

shall be subject to SAC’s prior written consent pursuant to Section 8.1
hereof. Vendor shall instruct all Employees as to their obligations under
this Agreement, and shall obtain from each Employee his or her written
acknowledgment and agreement to be bound by the terms and condi-
tions of this Agreement prior to such Employee being given access to the
Confidential Information. SAC may provide Vendor with a confidentiality
agreement to be executed by each Employee providing Services hereunder
or Vendor shall otherwise obtain SAC’s written consent to Vendor’s form.
Vendor shall be responsible for all Employees’ compliance with the terms
of this Agreement. If Vendor is required by law to disclose Confidential
Information, Vendor shall promptly notify SAC in writing in advance of
such disclosure, and provide SAC with copies of any related informa-
tion so that SAC may take appropriate action to protect the Confidential
Information.

3.2 Confidential Information includes all business and other proprietary infor-
mation of SAC, written or oral, including without limitation the following:

3.2.1 information relating to planned or existing businesses or business ini-
tiatives; organizational restructuring plans; and actual and projected
sales, profits and other financial information;

3.2.2 information relating to technology, such as computer systems and
systems architecture, including, but not limited to, computer hard-
ware, computer software, source code, object code, documentation,
methods of processing and operational methods;

3.2.3 information that describes insurance, annuities and financial services
products and strategies, including, but not limited to, actuarial cal-
culations, product designs, product administration and management;
tax interpretations, tax positions and treatment of any item for tax
purposes;

3.2.4 confidential information, software and material of third parties with
whom SAC conducts business;

3.2.5 information about SAC employees and personnel;

3.2.6 “Personal Information,” which means information provided by or at
the direction of SAC, or to which access was provided in the course
of Vendor’s performance of this Agreement that (i) identifies an
individual (by name, signature, address, telephone number or other
unique identifier), or (ii) that can be used to authenticate that indi-
vidual (including, without limitation, passwords or PINs, biometric
data, unique identification numbers, answers to security questions,

Deliverables and Performance 315

or other personal identifiers). An individual’s social security num-
ber, even in isolation, is Personal Information. SAC business contact
information is not by itself Personal Information.

Notwithstanding the foregoing, Confidential Information does not include
information that (i) is lawfully made available to the general public from
federal, state, or local government records, (ii) is or becomes generally
known to the public not as a result of a disclosure by Vendor, (iii) is right-
fully in the possession of Vendor prior to disclosure by SAC, or (iv) is
received by Vendor in good faith and without restriction from a third party
not under a confidentiality obligation to SAC and having the right to make
such disclosure. The foregoing exceptions do not apply to the disclosure
of Personal Information, which shall not be disclosed without SAC’s prior
written consent unless required by law.

3.3 Vendor agrees to comply with any and all privacy and/or security policies,
rules and practices, as SAC may issue, amend, or otherwise make available
from time to time pursuant to Section 11.18 of this Agreement.

3.4 Vendor shall notify SAC, promptly and without unreasonable delay, but
in no event more than forty-eight (48) hours of learning that unautho-
rized access to, disclosure of, or breach in the security of Confidential
Information may have occurred or been attempted (a “Security Incident”).
Thereafter, Vendor shall, at its own cost and expense:

3.4.1 promptly furnish to SAC full details of the Security Incident;

3.4.2 assist and cooperate fully with SAC in SAC’s investigation of
Vendor, Employees or third parties related to the Security Incident,
including but not limited to providing SAC with physical access
to the facilities and operations affected, facilitating interviews with
Employees and others involved in the matter, and making available
all relevant records, logs, files, and data;

3.4.3 cooperate with SAC in any litigation or other formal action against
third parties deemed necessary by SAC to protect its rights; and

3.4.4 promptly use its best efforts to prevent a recurrence of any such
Security Incident.

In addition to the foregoing, Vendor agrees that in the event of a Security
Incident, SAC shall have the sole right to determine (i) whether notice is
to be provided to any individuals, regulators, law enforcement agencies,
consumer reporting agencies, or others as required by law or regulation,
or in SAC’s discretion; and (ii) the contents of such notice, whether any

316 16 Contract Considerations

type of remediation may be offered to affected persons, and the nature and
extent of any such remediation. Any such notice or remediation shall be at
Vendor’s sole cost and expense.

3.6 Vendor certifies that its treatment of Personal Information is in compli-
ance with applicable laws and/or regulations with respect to privacy and
data security and that it has implemented and currently maintains an effec-
tive information security program that includes administrative, technical,
and physical safeguards to (a) ensure the security and confidentiality of
Personal Information; (b) protect against any anticipated threats or hazards
to the security or integrity of such Personal Information; and (c) protect
against unauthorized access to, destruction, modification, disclosure or use
of Personal Information which could result in substantial harm or inconve-
nience to SAC, or to any person who may be identified by such Personal
Information. Vendor shall immediately notify SAC if Vendor is in mate-
rial breach of this Section. At SAC’s request, Vendor agrees to certify in
writing to SAC, its compliance with the terms of this Section.

3.7 Notwithstanding any remedy of a material breach of this Section 3, SAC
reserves the right to terminate this Agreement within 90 days upon written
notice to Vendor should such material breach occur, and SAC may pursue
all such remedies as may be available to it at law or in equity.

4. FEES AND PAYMENT.

4.1 Fees and Expenses.

4.1.1 Fees for the Services and payment schedule is specified in Exhibit 2.
The fees for Services are fixed for the term of the Agreement or any
addendums.

4.1.2 SAC agrees that additional needs above those identified in Exhibit 1
could require more or different Vendor consultants. Such increases
or changes in scope shall be negotiated and additional Exhibits or
Engagement Schedules will be added to this Agreement as required.

4.1.3 Except as set forth otherwise in Exhibit 1, Vendor is entitled to reim-
bursement from SAC only for documented “out-of-pocket” expenses
that are reasonably incurred and necessary for Vendor’s performance
of the Services. SAC must pre-approve in writing all expenses for
reimbursement. In the event that any travel is required, Vendor shall
comply with SAC’s travel policies. Under no circumstances will SAC
reimburse Vendor for first class or business class travel.

Deliverables and Performance 317

4.2 Invoices.

4.2.1 Vendor shall invoice SAC monthly for all fees due hereunder by
submitting each invoice to the address indicated in this Agreement.

4.3 Taxes. In addition to the fees payable hereunder:

4.3.1 Vendor shall specifically state and bill all applicable taxes related
to SAC’s acquisition of Services in its invoices. Vendor shall indi-
cate on each invoice the jurisdiction, or jurisdictions as the case may
be, for which any such tax is being collected. Vendor shall remit
all such taxes collected from SAC to the appropriate taxing author-
ity. Vendor shall be responsible for interest and penalties associated
with a failure by Vendor to appropriately collect, remit or timely
file appropriate tax returns for any such tax to the appropriate tax
authority.

4.3.2 In the event that SAC supplies Vendor with appropriate exemption
certificates, the parties agree that the determination of the amount
of sales tax, if any, and any other determinations of a substantive or
procedural nature relating to such tax, will be the responsibility and
prerogative of SAC, in its sole discretion.

4.3.3 In those states in which Vendor has no obligation to collect sales tax
and only in those states in which SAC has an obligation to report
and remit sales, use or similar tax, SAC shall be responsible for pay-
ment directly to such taxing authority of any sales, use or similar tax
imposed in connection with the Services.

4.3.4 Vendor further agrees that in the event that Vendor has no obligation
to collect and remit sales tax, Vendor shall not include any such tax
on any invoices or payment requests. Further, if Vendor does erro-
neously include such tax that SAC is not required to remit, and SAC
does remit such tax to Vendor, Vendor shall promptly reimburse SAC
for such erroneously charged tax.

4.3.5 If Vendor is notified by any jurisdiction that it had an obligation to
collect sales, use or similar tax from SAC, and Vendor has failed
or neglected to include such tax in its invoice to SAC, Vendor shall
so advise SAC in a timely manner and Vendor shall allow SAC the
right to actively participate in the contest or settlement of such tax. If
the resolution of this issue is held to be taxable, SAC shall promptly
remit such tax to Vendor or demonstrate that the tax has already been

318 16 Contract Considerations

paid by SAC to the taxing authority. Vendor is responsible for interest
and penalties where it had an obligation to collect sales, use or simi-
lar tax from SAC, and Vendor failed or neglected to include such tax
in its invoice to SAC.

4.3.6 Vendor shall be solely responsible for the payment of all withholding
taxes for its Employees, including, but not limited to, federal and
state income taxes, social security taxes, unemployment insurance
taxes and any other applicable taxes.

5. WARRANTIES

5.1 Warranty. Vendor warrants that:

5.1.1 it has the expertise to perform the Services in a professional and
workmanlike manner and it will perform the Services in accordance
with the specifications and description of such Services as set forth
in Exhibit I or the applicable Engagement Schedule;

5.1.2 all Work Product conforms to the specifications or descriptions
thereof in Exhibit I or the Engagement Schedule;

5.1.3 it will not introduce into any Work Product and the Work Product
does not contain any virus or any other contaminant, or disabling
devices including, but not limited to, codes, commands or instruc-
tions that may have the effect or be used to access, alter, delete,
damage or disable the Work Product, other software, SAC informa-
tion or other SAC property, in a manner other than in accordance
with specifications;

5.1.4 all Work Product and Vendor Tools (i) is original to Vendor (or
its subcontractors, as the case may be); (ii) is in all respects copy-
rightable; (iii) does not violate any patent, copyright, trade secret or
other property right of any other party; (iv) has been written and
developed by Vendor or its subcontractors without referring to or
copying lines of code, or the structure, sequence or organization of
any software owned by another person or entity or in which another
person or entity has a valid and existing copyright;

5.1.5 it has all consents, permissions and/or licenses necessary to perform
the Services and Vendor shall comply with all applicable federal,
state and local laws, rules and regulations, and shall obtain all
applicable permits and licenses required to perform the Services;

Deliverables and Performance 319

5.1.6 Vendor shall not (i) include in any Work Product prepared or pro-
vided to SAC, or (ii) use in conjunction with the performance of
Services for SAC on SAC’s premises, any existing software or
materials licensed from any third party, including without limita-
tion open source software, without the prior written consent of
SAC. Vendor shall specifically identify any such third-party soft-
ware or materials for which it seeks SAC’s consent in the applicable
Engagement Schedule. With respect to any such third party software
and materials to be included in Work Product, Vendor warrants and
represents that it has all rights necessary to provide such software and
materials to, and/or use such software and materials for the benefit
of, SAC;

6. INDEMNITIES; LIMITATION ON LIABILITY

6.1 Vendor Indemnity. Vendor agrees to indemnify, defend and hold harm-
less SAC, its assignees, directors, officers, employees and agents, from and
against any action brought against same with respect to any claim, loss,
demand, cause of action, debt, liability, penalty or fines, including legal fees
and expenses, to the limit of WOS’ insurance coverage and based upon:

6.1.1 a claim that any Work Product, Services, Vendor Tools or any other
software or other material provided, used or delivered by Vendor
hereunder infringes or violates any patents, copyrights, trade secrets,
licenses, or other property rights of any third party;

6.1.2 personal injury or property damage caused by the fault or negligence
of Vendor;

6.1.3 any breach of the terms and warranties provisions contained herein
or willful, intentional or negligent actions or failures by Vendor or its
agents hereunder;

6.1.4 a claim that any Employee or any person provided to SAC by Vendor
to perform services under this Agreement is a SAC employee and not
Vendor’s employee or an independent contractor, including, but not
limited to: (1) any taxes SAC is required to pay on behalf of any
Employee; (2) the cost of any employee benefits SAC is required
to provide to or pay for on behalf of any Employee; (3) any claim,
lawsuit, or proceeding brought by Vendor’s Employees against SAC
based upon the employer-employee relationship; and (4) breach by
any Employee of any of the provisions of this Agreement, including,
but not limited to, the provisions regarding subcontractors looking
only to Vendor for payment for services which may be rendered.

320 16 Contract Considerations

6.2 LIMITATIONS ON LIABILITY.

6.2.1 NEITHER PARTY SHALL BE LIABLE FOR ANY LOST
PROFITS, LOST SAVINGS, OR OTHER CONSEQUENTIAL
DAMAGES, EVEN IF SUCH PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF OR COULD HAVE FORESEEN
SUCH DAMAGES. THE AGGREGATE LIABILITY OF
EACH PARTY UNDER THIS AGREEMENT SHALL NOT
EXCEED THE TOTAL FEES PAID BY SAC TO VENDOR
HEREUNDER.

6.2.2 THE LIMITATIONS ON LIABILITY AND REMEDIES
CONTAINED IN SECTION 6.2 ABOVE SHALL NOT APPLY
TO:

(a) LIABILITY ARISING UNDER SECTION 6.1 OF THIS
AGREEMENT; AND/OR

(b) DAMAGES INCURRED DUE TO INTENTIONAL
OR GROSSLY NEGLIGENT ACTS OR NON-
PERFORMANCE BY VENDOR; AND/OR

(c) DAMAGES INCURRED DUE TO ABANDONMENT OR
DELIBERATE BREACH OF VENDOR’S OBLIGATIONS
HEREUNDER; AND/OR

(d) DAMAGES INCURRED DUE TO A BREACH OF
VENDOR’S CONFIDENTIALITY OR SYSTEM
SECURITY OBLIGATIONS.

7. OTHER RIGHTS AND OBLIGATIONS.

7.1 Independent Contractor. Vendor is acting in performance of this
Agreement as an independent contractor. Vendor’s employees are not
employees or agents of SAC, and are not entitled to any of SAC’s employee
benefits. SAC is not responsible for payment of workers’ compensation,
disability benefits or unemployment insurance, nor is SAC responsible for
withholding or paying employment related taxes for Vendor or its employ-
ees. Vendor shall not subcontract the Services, or any part thereof, without
the prior written consent of SAC. With respect to any Services which are
subcontracted or provided by any third party: (i) Vendor hereby assumes all
liability and responsibility for such subcontractors’ and third parties’ com-
pliance with and breach of the terms of this Agreement and Engagement
Schedules, and for all acts and omissions of such subcontractors and third

Deliverables and Performance 321

parties; and (ii) Vendor shall include a provision in all of its agreements
with subcontractors stating that such subcontractors shall look to Vendor
for payment and shall under no circumstances look to any other party,
including SAC, for payment.

7.2 Vendor Resources. In the event that any Employee assigned to perform
Services is found to be unacceptable to SAC, SAC shall notify Vendor
of such fact and Vendor shall immediately remove such individual from
the engagement, and, if requested by SAC, use diligent efforts to provide
replacements acceptable to SAC within three (3) days of said notice, or
such other period as may be agreed to by the parties.

7.3 Security. Vendor shall comply with SAC’s system security policies, pro-
cedures and requirements (“Security Regulations”) for computer systems
and software used to access Confidential Information (“Systems”). Vendor
and its Employees will not tamper with, compromise or circumvent any
Security Regulations. Vendor shall ensure that only those users who are
specifically authorized to gain access to SAC’s Systems gain such access.
Vendor shall prevent unauthorized destruction, alteration or loss of infor-
mation contained in SAC’s Systems. If at any time SAC or Vendor
determines that any Employee has sought to circumvent or has circum-
vented SAC’s Security Regulations or that an unauthorized person has
accessed or may access SAC’s Systems or a person has engaged in activities
that may lead to the unauthorized access, destruction or alteration or
loss of data, information or software, Vendor shall immediately terminate
any such person’s access and immediately notify SAC. If SAC reason-
ably determines that an Employee has attempted to or has circumvented
SAC’s Security Regulations, SAC may immediately terminate such per-
son’s access to the Systems and shall immediately advise Vendor. SAC may
audit Vendor’s use of the Systems. Vendor agrees that SAC may review
any information, electronic mail communications, or other data stored on
or contained in any computer hard drive, disk, or any other storage medium
located on SAC’s premises to determine whether there has been any breach
of security or violation of this Agreement, regardless of whether such
computer hard drives, disks, storage media or electronic mail communi-
cations are on equipment owned or leased by SAC or are brought or sent
onto SAC’s premises by Vendor or its Employees. In the event that SAC
concludes that there has been any breach of security or violation of this
Agreement by Vendor or its Employees, SAC reserves the right to disclose
any computer files or electronic mail message to third parties, including
(but not limited to) law enforcement officials, as SAC deems appropriate
without any prior notice to any individuals who may have written, sent or
received such files or message.

322 16 Contract Considerations

7.4 Consultant Screening. Prior to placing any Manager or Supervisor level
Employee with SAC, Vendor is required to:

7.4.1 allow identified SAC personnel to interview and approve any such
placement;

7.4.2 agree that it will not place on assignment at SAC any Employee who
has not consented to, and/or satisfied the conditions contained in this
Agreement, subject to applicable federal, state or local laws.

7.5 SAC Policies. Vendor agrees to comply with SAC’s information systems
related policies and standards (which include technology, product, and
process standards) when delivering Services and Work Products to SAC.

8. TERMINATION.

8.1 This Agreement is effective as of the Effective Date and continues until
terminated in accordance with the terms of this Agreement or any applica-
ble Engagement Schedule. SAC, however, may terminate the Services to
be provided pursuant to any Engagement Schedule for the reasons set forth
in this Section without terminating this Agreement.

8.2 SAC may terminate this Agreement or the Services to be provided under
any Engagement Schedule, as follows:

8.2.1 Termination for Cause. SAC may terminate this Agreement or any
Engagement Schedule in the event that Vendor or any of its agents
breaches any of the terms of this Agreement and said breach is not
cured within ten (10) days after written notice thereof to Vendor.

8.2.2 Termination without Cause. SAC may terminate this Agreement or
any Engagement Schedule at any time and for any reason upon 90
days’ written notice to Vendor.

8.3 If SAC terminates this Agreement without cause, then SAC’s sole obli-
gation is to reimburse Vendor for Services satisfactorily performed by
Vendor up to the effective date of such termination. If SAC terminates this
Agreement or any Engagement Schedule for cause, then SAC has no obli-
gation to make any further payment to Vendor or any third party for any
outstanding charges or invoices for Services performed.

9. INSURANCE.

Vendor shall obtain from a company or companies acceptable to SAC, having
a current A.M. Best Rating of A- VIII or better, and maintain in force during
the term of this Agreement and for not less than two (2) years thereafter, the
following insurance coverage in the minimum amounts indicated:

Deliverables and Performance 323

TYPE OF COVERAGE REQUIRED AMOUNT

Comprehensive General Liability
Insurance including Broad Form
Contractual, Broad Form
Property damage Personal
Injury and Advertising Liability,
Completed Operation and
Products coverage

$1,000,000 combined single
limit/general aggregate
$2,000,000

Where applicable, the above policies shall name SAC and/or the applicable
SAC Organization as additional insureds. Vendor shall, upon request, pro-
vide SAC with a Certificate or Certificates of Insurance evidencing that the
above insurance requirements have been satisfied and specifying that SAC shall
receive a minimum 30-day written advance notice of any cancellation of or
reduction in coverage.

10. GENERAL.

10.1 No Publicity. Vendor shall not use the name, trademark, service mark,
trade name, logo or other commercial or product designations of SAC in
any way, in print or electronic format or on a web or internet site, without
the prior written consent of SAC in each instance.

10.2 No Waiver; Remedies. A party may not waive a right or remedy except
pursuant to a writing executed by such party. No failure or delay in exer-
cising any right or remedy or requiring the satisfaction of any condition
under this Agreement, and no course of dealing between the parties, oper-
ates as a waiver or estoppel of any right, remedy or condition. A waiver
made in writing on one occasion is effective only in that instance and only
for the purpose that it is given and is not to be construed as a waiver on
any future occasion. No single or partial exercise of any right or remedy
under this Agreement precludes the simultaneous or subsequent exercise
of any other right or remedy. The rights and remedies of the parties set
forth in this Agreement are not exclusive of, but are cumulative to, any
rights or remedies now or subsequently existing at law, in equity or by
statute.

10.3 Severability. If a court of competent jurisdiction determines that any pro-
vision of this Agreement is invalid, illegal or unenforceable under any
applicable statute or rule of law, such provision is to that extent deemed
omitted, and the balance of the Agreement remains in full force if the
essential terms and conditions of this Agreement for each party remain
valid, binding and enforceable.

324 16 Contract Considerations

10.4 Assignment. This Agreement is binding upon the parties’ respective suc-
cessors and permitted assigns. Vendor shall not assign any of its rights or
delegate any performance under this Agreement, voluntarily or involun-
tarily, whether by merger, consolidation, dissolution, change of control,
operation of law or any other manner, except with the prior written con-
sent of SAC. Any purported assignment by Vendor of rights or delegation
of performance without SAC’s prior written consent is void, and SAC is
entitled to terminate this Agreement effective as of the date SAC obtains
knowledge of the purported assignment or delegation without prejudice to
SAC’s claims for damages. SAC may assign this Agreement in whole or in
part and/or any of its rights, licenses, duties and/or obligations hereunder,
upon written notice to Vendor and without Vendor’s consent, to any SAC
Organization, or in connection with a reorganization, demutualization or
change of control of SAC, a business unit, division or line of business.

10.5 Governing Law. The laws of the State of New York, without giving effect
to its choice of law principles, govern all matters arising under or relating
to this Agreement and all of the transactions it contemplates, including,
without limitation, its validity, interpretation, construction, performance
and enforcement. The parties further agree that the Uniform Computer
Information Transactions Act (UCITA) does not apply to this Agreement.

10.6 Forum. Any party bringing a legal action or proceeding against any other
party arising out of or relating to this Agreement shall bring the legal
action or proceeding in the United States District Court for the District of
New York City. Each party waives, to the fullest extent permitted by law,
(a) any objection which it may now or later have to the laying of venue
of any action or proceeding arising out of or relating to this Agreement
brought in the United States District Court for the District of New York,
or any court of the State of New York sitting in New York City; and (b)
any claim that any action or proceeding brought in any such court has been
brought in an inconvenient forum.

10.7 Waiver of Trial by Jury. EACH PARTY, TO THE EXTENT
PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND
INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN
ANY ACTION OR LEGAL PROCEEDING ARISING OUT OF OR
RELATING TO THIS AGREEMENT AND THE TRANSACTIONS IT
CONTEMPLATES. EACH PARTY ACKNOWLEDGES THAT IT HAS
RECEIVED THE ADVICE OF COMPETENT COUNSEL.

10.8 Notices. Each party shall deliver any notices required or desired pursuant
to this Agreement in writing. Notices are deemed given (i) if by hand
delivery, upon receipt thereof; (ii) if mailed, five (5) days after deposit in
the U.S. mails, postage prepaid, certified mail, return receipt requested,

Deliverables and Performance 325

or (iii) if sent via overnight courier upon receipt. SAC shall address all
notices to the Vendor at the address indicated on the first page of this
Agreement. Vendor shall address all notices to SAC pursuant to the notice
provision contained in the applicable Engagement Schedule.

10.9 Survival. All provisions hereof relating to proprietary rights, confidential-
ity and non-disclosure, indemnification and limitation of liability survive
the completion of the Services or any earlier termination, expiration or
rescission of this Agreement.

10.10 EEO Requirements. To the extent applicable, the equal employment
opportunity and affirmative action requirements set forth in 41 C.F.R. Part
60-1.4(a) (women and minorities), 41 C.F.R. Part 60-250.5(a) (covered
veterans) and 41 C.F.R. Part 60-741.5(a) (individuals with disabilities) are
hereby incorporated by reference into this Agreement.

10.11 Right to Hire. SAC shall have the right to hire any Vendor Employee for
no additional fee. SAC agrees to provide Vendor with 90 days notice to
allow Vendor to replace hired Employee.

10.12 Further Assurances. After the Effective Date at SAC’s request, Vendor
shall execute and deliver to SAC any such additional instruments, doc-
uments, conveyances or assurances and take such other actions as are
necessary or appropriate to confirm and assure the rights and obligations
provided for in this Agreement and consummate the transactions contem-
plated hereby, or otherwise to effectuate the intent and purposes of this
Agreement.

10.13 Headings. The section headings are used in this Agreement for reference
and convenience only and do not affect this Agreement’s construction or
interpretation.

10.14 Subsequent Modifications. No amendment, alteration or modification of
this Agreement is effective or binding unless it is set forth in a writing
signed by duly authorized representatives of both parties.

10.15 Counterparts. The parties may execute this Agreement in any number of
duplicate originals and in multiple counterparts, each of which constitutes
an original, and all of which, collectively, constitute only one agreement.
The signatures of all of the parties need not appear on the same counter-
part, and delivery of an executed counterpart signature page by facsimile is
as effective as executing and delivering this Agreement in the presence of
the other party to this Agreement. This Agreement is effective upon deliv-
ery of one executed counterpart from each party to the other party. Any
party delivering an executed counterpart of this Agreement by facsimile

326 16 Contract Considerations

shall also deliver a manually executed counterpart of this Agreement as
soon as reasonably practicable following transmittal by facsimile, but the
failure to do so does not affect the validity, enforceability or binding effect
of this Agreement.

10.16 Entire Agreement. This Agreement, together with the exhibits and
Engagement Schedules, constitutes the entire agreement between the
parties in connection with the subject matter hereof and supersedes
all prior and contemporaneous agreements, understandings, negotiations
and discussions, whether oral or written, of the parties, and there are
no warranties, representations and/or agreements between the parties in
connection with the subject matter hereof except as set forth in this
Agreement. The parties also understand, acknowledge and agree that,
unless otherwise specified in a written instrument signed by an officer
of each party, no additional terms or changes to these terms are valid or
binding on the parties, even if such additional terms or changes contain
provisions to the contrary.

Deliverables and Performance 327

EXHIBIT 1

ENGAGEMENT SCHEDULE Schedule No. _1_

Project Scope

1. License base XYZ enterprise software for 250 users
2. Customized programming per requirements document
3. User training
4. Annual maintenance including 8 hour help desk support

IN WITNESS WHEREOF, the parties have executed this Engagement Schedule
by their duly authorized representatives.

A. Langer & Assoc., Inc Sample Application Contract

Print Name: Arthur M. Langer

Title: President

Date:

By: By:

Print Name:

Title:

Date:

328 16 Contract Considerations

EXHIBIT 2

FEES

XYZ License Software for 250 users $250,000

Custom Programming for modifications per requirements document

Additional Per Diem programming rate $600 per day

Per diem user training rate $250 per day

Annual Maintenance on base product 15% of current advertised license fee

$ 95,000

Problems and Exercises

1. What are the four factors in a software and services contract?
2. What is a proprietary right?
3. What is error and omissions insurance? Who does it favor, the vendor or the

organization?
4. What is indemnification? Under what conditions does indemnification apply?
5. What are the key aspects of non-disclosure?
6. How should management handle multinational agreements? What is the best way

to protect the organization when dealing in multiple countries?

17Going Live and Conclusions

This chapter deals with the final part of software implementation: going live or mov-
ing the system into production. It is also fitting that this chapter contains conclusions
about the methods and approaches discussed in this book. There are three major
steps that are necessary to move the application into a production environment: user
training, IT’s role, and the preparation steps for going live.

User Training

This step can often be underestimated, especially with the standardization of help
text in products and the perception that software applications are robust. Robust is
defined as applications that are “intuitively obvious” to use, so that formal training
is not required. Such is likely not the reality with most integrated enterprise-level
package software products. Furthermore, user training becomes more complicated
when there are custom modifications to the application. Finally, if the product is
developed in-house, then training may be a very comprehensive part of rolling out
the application into production.

There are a number of steps to develop the right training materials:
1. Focus on the business aspects of the material, that is, what do your users need

to know in terms of operating the system.
2. How many users need to be trained?
3. Utilize prototypes during the early stages of training before the product is actu-

ally ready. Prototypes are screen pictures that can be populated with data and
provide users with an understanding of how data travel through the system.
Some of the prototypes need to be done in demo form.

4. Provide exercises for the user groupings. Thus, it is important to develop a
strategy on who should be trained and when, and what are the groupings of the
users.

5. Training needs to be iterative, do not expect that training will be effective the
first time.

329A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2_17, © Springer-Verlag London Limited 2012

330 17 Going Live and Conclusions

Training Step SDLC Stage
Determine the number of users to be
trained, locations, etc. Feasibility/Analysis and Design
Determine topics Analysis
Design materials Design
Determine who will train Make/Buy
Update and Feedback QA
Actual training Prior to Go Live
Training iterations, including
feedback

During various phases of production

Fig. 17.1 Training steps in the SDLC

6. Ensure that training includes product setup requirements. New products tend to
need tables that are initialized, e.g., user access rights and security.

7. Determine how the training will be delivered, that is, in a traditional class-
room, on-line (Internet) and on demand using CBT (computer-based training),
packaged delivery, or all of these!

8. Determine who will train. Is the training done by the vendor, or does the vendor
train trainers in the organization, or some combination?

9. Where should the training take place? Are there multiple locations? Are there
components of the products that are only used in specific businesses within the
company?

10. Prepare for feedback from users and common problems that might be discov-
ered during the training.

11. Determine whether certain training sessions should be taped and made available
via video.

Clearly many of the above points need to be developed and planned during the
SDLC, but most of the actual training must be done as close as possible to going live.
If the training takes place too early, users will forget much of the details. Figure 17.1
provides additional guidance on the steps to take and decisions to be made during
the SDLC.

The Role of IT

Where and when the IT organization participates in the go live process is another
important question. There are some obvious areas where IT personnel are required:
• Placing the application on the servers and general network availability
• Assisting with the review of technical aspects of the license agreement, e.g.,

runtime licenses
• Ensuring that appropriate security is in place to protect applications and data
• Performance testing both before and during go live
• Appropriate backup and restore procedures are in place
• Help desk personnel are available to handle peak calls during go live
Another important issue is whether IT should be responsible for project manage-
ment. My experience suggests that most often IT is in charge of the project. This

The Role of IT 331

can be both good and bad. The good part is what most would expect—that IT is
the experienced organization to perform the project management. The bad part is
that IT is not integrated enough in the business units and cannot really manage the
project without help from key stakeholders. I have found that the best approach is
to form a joint management team, where someone from IT is the project manager,
but an associate from the business side provides the business side interface. There
might also be a project manager from the vendor. It is this team that ultimately can
get the project completed assuming that executive support is available from each of
these units. This means that there must be an executive from each business unit that
will use the system (or someone who has management over all of them, which is
rare), the CIO from the IT side, and a senior executive from the vendor(s).

The IT project manager (IT PM) should provide most of the SDLC supervision;
the business project manager (Bus PM) should organize training, plan for “go live,”
coordinate key events, and most importantly confirm that the requirements are accu-
rate and complete. The Bus PM must also deal with disagreements and escalate as
necessary to his/her senior management. Both the IT PM and the Bus PM should
jointly manage the vendor project manager. The IT PM should handle the technical
and system issues and the Bus PM should ensure that the features and functions of
the product are correct.

Perhaps, the most salient role for IT is coordinating the go live administration.
This includes ensuring that the systems are ready, parallel systems are in place,
help desk people are ready in case of problems, and that the vendor is available to
deal with problems that occur during the launch. Additionally, IT should plan to
do system fine-tuning in the advent that there are performance problems with the
application.

Conclusions
This book has been organized to define the necessary steps in today’s SDLC.
The premise of the book is that managers need to spend more time ensuring
that the requirements are accurate. This may seem like an old story—get the
requirements correct before implementing. However, there is little evidence to
show that the success rate has changed over the past two decades. Furthermore,
the days of developing software from scratch may have come to an end. The
library of software routines, packages, and legacy codes are vast, and the key
to success is more about selecting the right software partners and managing the
process. Indeed, there should be less focus on the actual development and more
on the architecture and management. IT and business managers need to finalize
the specifications and select the right vendors.

The realities of developing applications today, then, are to create what I
call the package software SDLC. This modified SDLC is designed as a unified
solution to what otherwise has been considered separate SDLCs, depending on
whether the software was developed in-house or by a third-party package. It was
my intent to dispel any credibility to this notion. The SDLC is now too complex
and need to unify all the SDLCs into one cycle. The SDLC is no longer limited

332 17 Going Live and Conclusions

to IT, rather it must incorporate a much larger user interface. Business users need
to be much more active in the determination of application needs. That is why
assessment of needs is more important than feasibility. I also incorporated the
build vs. buy and RFI/RFP steps as inherently part of that decision. I included
the vendor search and selection as part of the SDLC, as opposed to a precursor or
an after thought of analysis and design. Simply put, they are part of the process.
Organizations can no longer just do requirements and look for the solution—the
solution itself affects the completion of requirements. In addition, I included the
budget and ROI as part of the SDLC and at a much later stage than otherwise con-
sidered on traditional projects. Specifically, the traditional SDLC had feasibility
as the first step. I understand why this was the case, but technology solutions
today must be far more agile on spending commitments; it just changes too often
during the life cycle. Once the business units know what technology and appli-
cations they need, it should not be about whether it is feasible, rather more about
how much to spend vs. the cost for not implementing. Budgets today need to be
more about control, explanation, and negotiation than about “go” or “no go.”

I also explained my driver and supporter theory, which continues to be an
effective way of explaining why projects are needed, why they might change, and
how to determine costs. All new projects must show why they are a driver, and
this alone can help executive managers to better comprehend why the application
can change the market, the risks inherently involved in the undertaking, and the
importance of providing agile funding when market conditions are dynamic. I
emphasize the supporter side as well, since most current applications by defini-
tion are legacies that should have been replaced decades ago, but because IT was
not positioned to articulate why they needed to be redone, they have now become
major impediments to creating new enterprise systems.

This book also integrated project management and quality assurance. These
two areas increase the success that projects will be more accountable and deliv-
ered on time. Too often project management and quality assurance are treated
as separate subjects. Included in the chapter on project management was an
emphasis on the importance of vendor contracts and adherence to standards like
ISO 9000. I also transformed the balance scorecard into a workable version for
package software implementations. The balanced scorecard can be an effective
reconciliation tool to understand how the application contributes to the organi-
zation. In addition, the strategy map provides the schematic of how learning,
support, and users ultimately contribute to the financial performance of the firm.

However, the essence of this book still focuses on the importance of under-
standing the technical components of analysis and design. Regardless of who
reads this book, whether a business user or a systems analyst, a director, or a
CIO, the message is that one must know how to do architecture to have success.
So everyone involved needs to understand flow diagrams, functional decompo-
sition, pseudocode, logic data modeling, and the object paradigm. They also
need to know about test planning and quality assurance as part of how the sys-
tem is designed, developed, and implemented. Without adherence to the tools of
analysis and design, the core of systems development cannot achieve consistent
success.

Appendix A
Case Study: The Rainforest Book Company
Problem

The following four events are services provided by the Rainforest Book Company:

Event I

A customer wishes to setup an account to purchase books. The Sales Department at
the Rainforest Book Company receives the request and sends out a blank Account
Request form. The form has space for the following information:

Customer Name
Customer Address
Customer Phone Number
Customer Fax Number
Credit Card Information (if applicable)
Credit Card Number
Type of Credit Card
Expiration Date
Cardholder’s Name
Zip or postal code of the billing address for this card

The customer sends back a completed Account Request form. The “for office use
only” section is filled out by the Sales Group. This information includes the proces-
sor’s identification, the date the account is opened, and a customer account number
which is assigned. The customer account file is updated and the Account Request
form is filed. The Account Processing Department receives notification of the new
account and sends the customer a confirmation letter. This letter notifies the cus-
tomer of their customer account number. This number can be used to expedite the
ordering process.

333A.M. Langer, Guide to Software Development,
DOI 10.1007/978-1-4471-2300-2, © Springer-Verlag London Limited 2012

334 Appendix A Case Study: The Rainforest Book Company Problem

Event II

A customer makes a book inquiry. The customer can request a book by giving any
of the following information: book title and book author or ISBN number. The Sales
Department first verifies that the customer has a valid account. If the book is found
based upon the information that was given, the customer receives the following
information about the book:

Title of the book
Author of the book
Paperback/Hardcover
Price
Date Published
Availability
Reviews

If the book is not available in stock, all of the above information is returned and an
out-of-stock notice is sent specifying the approximate date the book will be in stock.
If the book is no longer in print and has been discontinued, an out-of-print notice is
sent to the customer. This out-of-print notice includes a list of Used-Book Stores in
the customer’s county.

Event III

A customer decides to purchase books, places the order for the books, and requests a
book order form from the Sales Department. A blank book order form is forwarded
to the customer. The customer account number and the date the order is being placed
are entered. The following information is included in the book order:

Customer Account Number
Date Order is placed
Title of the Book
Author
Paperback or Hardcopy
ISBN, if available

In addition, the customer indicates the shipping option by entering the following
information:

Standard Shipping or
Second Day Air or
Next Day Air

Appendix A Case Study: The Rainforest Book Company Problem 335

Placed orders are sent to the warehouse and the customer account file is updated. The
warehouse issues an order confirmation when the books are shipped. The invoice
is generated and then sent to the customer. The customer then sends the invoice
slip and a payment or authorizes the use of a credit card on file to the Accounting
Department. The Accounting Department processes the payment and updates the
customer account.

Event IV

The Sales Department generates a monthly sales report and forwards it to
Management.

Assignment

1. Create DFDs for the four events.
2. Decompose the four top-level DFDs into their respective functional primitives.
3. Create the data dictionary entries for all the named data flows found in the child

diagrams from Step (2). The entries in the resulting data dictionary should be
reported in alphabetical order.

4. Write process specifications for all of the functional primitives from Step (2).

Case Study created by Cynthia Hernandez.

Appendix B
Case Study: Northwest General
Practitioner’s Office

The following represents information obtained during an interview with the
Northwest General Practitioner’s office:

Potential patients contact the Northwest General Practitioner’s office to make
appointments to see a General Practitioner. All patient information is stored in a
patient medical history folder.

The patient must provide the following information:

Name
Social Security Number
Address
Home Telephone Number
Work or Mobile Telephone Number

Insurance Provider Name
Insurance Provider ID
Name of Primary Insurance Holder

Reason for Visit
Medical History
Family Medical History
List of Allergies

The office examines the patient medical history file and tries to make an appoint-
ment for the patient to see the General Practitioner the patient has specified as
his/her “preferred” doctor. If the patient’s preference is not available at the time
the patient requests for the appointment, then the office provides the patient with a
list of practitioners who ∗are∗ available at that time.

337

338 Appendix B Case Study: Northwest General Practitioner’s Office

Additionally, practitioners join the Northwest General Practitioner’s office every
day. Their information is stored in a practitioner’s information folder.

A new practitioner must provide the following information:

Name
Social Security Number
Address
Home Telephone Number
Work or Mobile Telephone Number

Specialty (or list of specialties), if applicable

Hospital Affiliations, if applicable

Seven days before patients are due to come in for their appointments, the office
begins to send reminder notices to them. There are three reminder notices sent. The
first is sent 7 days beforehand, the second is sent 3 days beforehand, and the third
reminder takes place 1 day beforehand, via an automated phone call.

For those patients who are billed for services, a notice is mailed to them 30 days
before payment is due.

Assignment

1. Draw one data flow diagram depicting the logical equivalent for the above
business process description.

2. Level the diagram to its functional primitives.
3. To the best of your ability, provide the data elements you will need for your

data entities. NOTE: Pay particular attention to the patient medical history file,
the physician information file, any file that keeps track of appointments, and, for
extra credit, the invoice file.

4. Create an entity relational diagram depicting the relationship between your
tables. NOTE: You should end up with at least eight entities, if not more.

Case Study created by Melanie Caffrey.

Appendix C
Case Study: University Student Enrollment
Database

The following enrollment form has been obtained from Southeast University’s
Computer Science Program:

Student Enrollment Form

Last Name: ______________________________
First Name: ______________________________

______________________________Social Security Number:
Address Line 1: ______________________________
Address Line 2: ______________________________
City: ______________________________
State: ______________________________
Zipcode ______________________________

Course # Section # Course Cost
__________ ___________ ___________
__________ ___________ ___________
__________ ___________ ___________
__________ ___________ ___________

_____________________ ___________

Total Amount Due: ___________

339

340 Appendix C Case Study: University Student Enrollment Database

The students are choosing their courses from the following Course List:

Course # Course Name Section # Section Time Course Cost

QC2500 Intro to Programming 1 9:00 AM 800.00
2 10:30 AM 800.00
3 3:15 PM 800.00
4 6:00 PM 800.00

QC2625 Intro to Analysis 1 11:00 PM 910.00
2 4:00 PM 910.00
3 5:30 PM 910.00

QC2790 Intro to Web Design 1 12:45 PM 725.00
2 2:30 PM 725.00
3 6:00 PM 725.00

Assignment

Using the above form, create a normalized ERD. Make sure you are in 3rd Normal Form.

HINT : You should end up with at least four entities, possibly five.

Case Study created by Melanie Caffrey

Further Reading

Allen, T. J., & Morton, M. S. (1994). Information technology and the corporation. New York:
Oxford University Press.

Applegate, L. M., McFarlan, F. W., & McKenney, J. L. (1999). Corporate information systems
management: The challenges of managing in an information age. New York: McGraw-Hill.

Berman, K., & Knight, J. (2008). Finance intelligence for IT professionals. Boston: Harvard
Business Press.

Blackstaff, M. (1999). Finance for technology decision makers: A practical handbook for buyers,
sellers and managers. New York: Springer.

Bolman, L., & Deal, T. (2003). Reframing organizations: Artistry, choice, and leadership (3rd ed.).
San Francisco: Jossey-Bass.

Bysinger, B., & Knight, K. (1997). Investing in information technology: A decision-making guide
for business and technical managers. New York: Wiley.

Carr, N. G. (2005). Does it matter? Information technology and the corrosion of competitive
advantage. Cambridge: Harvard Business School.

Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from
technology. Cambridge: Harvard Business School

Chesbrough, H. (2006). Open business models: How to thrive in the new innovation landscape.
Cambridge: Harvard Business School.

Cortada, J. W. (1997). Best practices in information technology: How corporations get the most
value from exploiting their digital investments. Paramus, NJ: Prentice Hall.

Edwards, C., Ward, J., & Bytheway, A. (1996). The essence of information systems (2nd ed.).
Upper Saddle River, NJ: Prentice Hall.

Gardner, C. (2000). The valuation of information technology. New York: Wiley.
Goonatilake, S., & Teleaven, P. (1995). Intelligent systems for finance and business. New York:

Wiley.
Hogbin, G., & Thomas, D. (1994). Investing in information technology: Managing the decision-

making process. New York: McGraw-Hill.
Langer, A. M. (1997). The art of analysis. New York: Springer.
Langer, A. M. (2002). Applied ecommerce: Analysis and engineering of ecommerce systems. New

York: Wiley.
Langer, A. M. (2004). IT and organizational learning: Managing change through technology and

education. New York: Routledge.
Laudon, K. C., & Laudon, J. P. (1998). Management information systems: New approaches to

organization and technology. Upper Saddle River, NJ: Prentice Hall.
Liebowitz, J., & Khosrowpour, M. (1997). Cases on information technology management in

modern organizations. New York: Idea Group Publishing.

341

342 Further Reading

Lientz, B. P., & Larssen, L. (2004). Manage IT as a business: How to achieve alignment and add
value to the company. Burlington, MA: Elsevier Butterworth-Heinemann.

Lucas, H. C. (2005). Information technology: Strategic decision making for managers. New York:
Wiley.

Marchand, D. A. (2000). Competing with information: A manager’s guide to creating business
value with information content. New York: Wiley.

McCarthy, E. (1997). The financial advisor’s analytical toolbox. New York: McGraw-Hill.
McDowell, R., & Simon, W. L. (2004). In search of business value: Ensuring a return of your

technology investment. New York: SelectBooks, Inc.
Murphy, T. (2002). Achieving business value from technology: A practical guide for today’s

executive. Hoboken, NJ: Wiley.
Rapp, W. V. (2002). Information technology strategies: How leading firms use IT to gain an

advantage. New York: Oxford University Press.
Remenyi, D., Sherwood-Smith, L., & White, T. (1997). Achieving maximum value from informa-

tion systems: A process approach. New York: Wiley.
Speser, P. L. (2006). The art and science of technology transfer. Hoboken, NJ: Wiley.
Stenzel, J. (2007). CIO best practices: Enabling strategic value with information technology.

Hoboken, NJ: Wiley.
Tushman, M., & Anderson, P. (1997). Managing strategic innovation and change. New York:

Oxford University Press.
Von Stamm, B. (2003). Managing innovation, design & creativity. New York: Wiley.
Weill, P., & Ross, J. W. (2004). IT governance. Cambridge: Harvard Business School.
Willcocks, L. P., & Lacity, M. C. (1998). Strategic sourcing of information systems: Perspectives

and practices. New York: Wiley.

Glossary

Acceptance Test Plans Set of tests that if passed will establish that the software
can be used in production.

Alternate Key An attribute that uniquely identifies a row or occurrence in an entity.
An alternate key cannot be the primary key.

Attribute A component of an entity or object. An attribute may or may not be an
elementary data element.

Business Process Reengineering (BPR) A method to redesign existing applica-
tions.

Business Specification A document which reflects the overall requirements of a
process or system written in a prose format. The focus of the business specifi-
cation is to provide the user with enough information so they can authorize the
development of the technical requirements.

CASE (Computer-Aided Software Engineering) Products which are used to
automate and implement modeling tools and data repositories.

Case A format for developing application logic in a process specification.
Client An application that request services from applications.
Crow’s Foot A method of showing the relationship or association between two

entities.
CRUD Diagram An association matrix that matches the types of data access

between entities and processes. CRUD represents Create, Read, Update, and
Delete.

Data Dictionary (DD) A dictionary that defines data. A component of the data
repository.

Data Flow Component of a data flow diagram that represents data entering or
leaving a process, external, or data store.

Data Flow Diagram (DFD) A tool that shows how data enter and leave a process.
A data flow diagram has four possible components: data flow, data store, external,
and process.

Data Repository A robust data dictionary that contains information relating to data
element behavior.

343

344 Glossary

Data Store Component of a data flow diagram that represents data that can be
accessed from a particular area or file. A data store is sometimes called “data-at-
rest.”

Data Warehousing A de-normalized database created to focus on decision support
activities. Data warehouse holds historical information and cannot be used to
update data.

Elementary Data Element A functionally decomposed data element.
Entity An object of interest about which data can be collected. Entities can

consume a number of attributes.
Entity Relational Diagram (ERD) A diagram that depicts the relationships

among the stored data.
Executive Sponsor An individual at an executive level who has responsibility for

a business area. The executive sponsor is a defined role in JAD sessions.
External Component of a data flow diagram which represents a provider or user

of data who is not part of the system. Externals are therefore boundaries of the
system.

Facilitator An impartial individual responsible for controlling the flow of JAD
sessions.

Functional Decomposition The process for finding the most basic parts of a
system.

Functional Overview A subset view of a specification. The subset usually covers
a particular function of the system.

Functional Primitive A functionally decomposed data flow diagram.
Gantt Chart A tool that depicts progress of tasks against time. The Chart was

developed by Henry L. Gantt in 1917.
ISO 9000 International Organization for Standardization, quality standard 9000.
Job Description Matrix The portion of an individual’s job description that strictly

focuses on the procedural and process aspects of the individual’s position.
Joint Application Development (JAD) A method of developing the requirements

for a system by focusing on group sessions. The sessions are typically under the
direction of a facilitator.

Key An attribute of an entity or database that uniquely identifies a row, occurrence,
or record.

Key Business Rules Business rules of key attributes that are enforced at the
database level (as opposed to the application level).

Legacy System An existing automated system.
Leveling Functional decomposition of a data flow diagram. Each decomposition is

called a “level.”
Logical Data Modeling (LDM) A set of procedures that examines an entity to

ensure that its component attributes should reside in that entity, rather than being
stored in another or new entity.

Logical Equivalent An abstraction of the translation from physical requirements
to software.

Long Division An abstraction of the relationship of arithmetic formulas to func-
tional decomposition.

Glossary 345

Metadata Data about the data being sent or received in a client/server network.
Normalization The elimination of redundancies from an entity.
Open Systems Standards in applications software that allow such software to run

across multiple operating system environments.
Pre-Post Conditions A format for developing application logic in a process

specification.
Primary Key A key attribute that will be used to identify connections to a par-

ticular entity. Normalization requires that every entity contains a primary key.
Primary keys can be formed by the concatenation of many attributes.

Process A function in a data flow diagram in which data are transformed from one
form to another.

Process Specification A document that contains all of the algorithms and infor-
mation necessary to develop the logic of a process. Process specifications can
be composed of the business and programming requirement documents. Process
specifications are sometimes called “minispecs.”

Program or Technical Specification A technical algorithm of the requirements of
a process or system.

Prototype A sample of a system that does not actually fully operate. Most software
prototypes are visual depictions of screens and reports. Prototypes can vary in
capability, with some prototypes having limited functional interfaces.

Pseudocode A generic or structured English representation of how real program-
ming code must execute. Pseudocode is a method used in the development of
process specifications.

Rapid Application Development (RAD) A method of application development
that combines the analysis and design steps through the use of prototypes and
CASE tools.

Reverse Engineering The process of analyzing existing applications and database
code to create higher-level representations of the code.

Robust Software that operates intuitively and can handle unexpected events.
Scribe A person who is designated in a JAD session to record minutes and deci-

sions made by the group. In certain situations, scribes can also be responsible for
data modeling.

Server An application that provides information to a requesting application.
Spiral Life Cycle Life cycle that focuses on the development of cohesive objects

and classes. The spiral life cycle reflects a much larger allocation of time spent
on design than the waterfall approach.

State Transition Diagram (STD) A modeling tool that depicts time-dependent
and event-driven behavior.

Waterfall System Development Life Cycle A life cycle that is based on phased
dependent steps to complete the implementation of a system. Each step is
dependent on the completion of the previous step.

Index

A
Acceptance test plans, 9, 15, 35, 211–212,

262–267, 281, 286, 288, 298, 300
Alternative keys, 147
Architecture, 1, 7–8, 14–15, 39–40, 57, 72,

76–77, 79, 83, 105, 145, 180, 192,
194–198, 205–207, 212, 214–215, 222,
230, 232–237, 239, 256–258, 281, 283,
286, 289–290, 314, 331–332

Attributes, 140, 146–147, 149–154, 156,
159–162, 164, 173, 175, 183, 186, 202,
206, 215, 219, 228–229, 234, 244, 248,
258

B
Balanced scorecard, 92–97, 332
Batch, 66, 173, 175, 196
Budget, 7, 13, 60, 79, 81–84, 91–93, 95–97,

211, 265–267, 271, 275–276, 278–280,
285–286, 293, 299, 302, 332

Build vs. buy, 3, 10–13, 37–47, 71, 332
Business Area Analysis (BAA), 33, 187, 194,

206, 212, 215
Business processing re-engineering (BPR),

10–11, 15–16, 94, 184, 187–188, 194,
206, 213–224

Business requirements, 10–12, 21–22, 24, 26,
28, 30, 32, 34, 39, 118, 184, 213, 222

Business specification, 57, 68–70, 111–112,
122, 277

C
CASE, 22, 24, 31, 105, 107–108, 110,

132–133, 187, 205, 217, 219, 233, 242,
248, 266, 286, 290

Chief Information Officer (CIO), 72, 213, 282

Client/server, 23, 173, 190, 194–195, 208,
213–215, 219–223

Cloud, 45–47, 82–83, 85, 90
COBOL, 106, 108–110, 113, 131, 179–183,

190–191, 214, 220, 248
Combine user views, 145
Commercially-off-the-Shelf (COTS), 3, 37,

40–41
Concatenation, 127, 141, 151–152, 158, 230
Concept of the logical equivalent, 99, 113, 117
Confidentiality, 50–51, 59, 70
Consulting costs, 55, 91
Critical tasks, 277–278
Crow’s foot, 106, 141, 156–158, 165, 306
CRUD, 187–190, 192, 194, 198, 216–217,

224, 226
Custom modifications, 12, 39, 82, 91–92, 281,

308, 310, 329

D
Data dictionary (DD), 14, 22, 66, 124, 127,

129, 142, 159, 170, 175, 183, 187, 202,
210, 233, 242

Data elements, 34, 105–108, 127–128, 130,
140–141, 145–147, 168–170, 176, 181,
183–184, 186, 192–194, 196, 198–201,
206, 208, 214, 216, 220, 227, 230,
233–234, 238, 242–243, 246–248, 266

Data flow, 14, 33, 64, 100–103, 105, 108–110,
117, 119–120, 123–124, 127–128, 175,
183, 266

Data flow diagram (DFD), 14, 64, 100–103,
105–106, 108–110, 117, 123, 127–128,
142, 175, 183, 266

Data repository, 24, 124, 185, 213–215, 240,
242, 266

347

348 Index

Data store, 10, 101, 117, 119–121, 124, 140,
142, 147, 149, 175, 183, 192, 225, 249,
321

Data warehouse, 11, 183, 198, 223–258
Decision support system (DSS), 15, 223,

225–226, 228, 232, 234–235, 237–240,
244, 249, 252–253, 255–259

De-normalize, 146, 174, 227, 246
Documentation, 6, 10–11, 15, 17, 54, 56–57,

61–62, 64–65, 86, 100, 103, 105, 122,
130, 182, 205, 215, 233, 261–267,
285–286, 290, 292, 297–298, 306, 311,
314

Driver, 41–43, 47, 93, 332
Driver/supporter, 41–42, 47

E
Elementary data element, 128, 130, 142
Encoded value, 202–203, 207–208
Enterprise, 2–3, 15, 22, 24, 40, 43, 45, 76, 195,

197, 203, 207–208, 213, 215, 219, 221,
223, 235–237, 241, 303, 327, 329, 332

Enterprise resource planning (ERP), 12, 40,
43, 76

Entity, 14, 33, 53, 55–56, 64, 76, 106,
140–143, 145–146, 150–162, 165–172,
182–183, 189, 201, 203, 205–206,
215–217, 228

Entity relational diagram (ERD), 14, 33, 106,
140–142, 145, 147, 156, 203, 205–206,
248, 266

Essential component, 187–188, 190, 215
Executive sponsor, 31
External, 46, 54–56, 92, 95–96, 101, 108, 117,

179, 187, 191, 271–272

F
Facilitator, 31, 33–35, 218, 292
Force majeure, 308
Foreign key, 69, 113, 149, 154–156, 158,

160–161
Fourth generation language (4GL), 110,

180–181, 191–195, 200, 207, 220
Functional decomposition, 100–103, 113,

117–119, 128, 130, 183, 205, 276, 332
Functional primitive, 102, 119, 121–126, 128,

130, 183, 192–193, 205, 215

G
Gantt chart, 4–6, 35, 302
Gateway architecture, 196–198
Go live, 17, 81, 211, 330–331

I
Implementation, 1–5, 15–17, 23, 26, 30,

32–33, 35, 37, 40, 53, 57–59, 62, 64,
66–67, 74–75, 78, 81–84, 86–89,
93–94, 96–97, 104–105, 126, 145, 201,
206, 208–209, 220–221, 227, 256, 271,
273–274, 285–286, 288, 295, 298, 303,
310, 329

Indemnification, 49, 305, 307, 309, 325
Information technology, 43
Intellectual property, 307, 312
Interview, 4, 6, 24–28, 30–32, 35, 75, 100,

123, 142, 149, 168, 175, 185, 188, 206,
217, 244, 263, 265–267, 275, 277, 284,
315, 322

ISO 9000, 11, 16–17, 295–304, 332

J
Joint application development (JAD), 24–25,

31–35, 122, 185, 188, 217–219,
265–267, 275, 284, 286, 292

K
Key business rules, 146, 150, 164–165,

167–168, 172–173, 175

L
Legacy systems, 10–11, 15, 88, 105–106, 110,

147, 169, 179–214, 222–223, 232
Leveling, 102, 113, 122–123
Levels of users, 28–30, 72
Limitation of liability, 307, 325
Logical equivalent (LE), 25, 99–104, 113, 117,

123, 150, 159, 168, 175, 261
Logic data modeling (LDM), 14, 124,

145–159, 183, 193, 202, 205, 208, 246,
332

Long Division (decomposition concept), 100,
103, 105

M
Maintenance, 5, 8, 37, 39, 41, 57–59, 61, 65,

75, 83, 87, 89–91, 99, 104–105, 261,
273, 290, 305–306, 308, 327–328

Management guide, 32, 35
Metadata, 214, 233, 242, 256–259
Middleware, 40, 60, 67, 192, 214, 219
Minispec, 130

N
1st NF (1nd Normal Form), 150, 152–153, 158
2nd NF (2nd Normal Form), 150, 153–155

Index 349

3rd NF (3rd Normal Form), 146, 150, 153–158,
164, 166, 174, 176–177, 186, 193, 206,
227, 237, 241–242, 245, 340

Non-key attribute, 148–151, 153–154, 156,
159–160, 162, 173, 175

Normalization, 6, 146–147, 149–160, 164,
168, 170–171, 173–176, 183, 206, 216,
227, 246, 290

No-Win Scenario, 6, 27

O
Object, 7, 21–22, 24, 33, 59, 61, 140, 146, 169,

184, 190–194, 197–198, 208, 211–212,
215–217, 219, 221, 224, 263, 266, 288,
311, 314, 332

Object orientation, 22, 24, 212, 266
Object oriented analysis, 7, 140
Open source, 1, 3, 44–45, 47, 76, 91,

312, 319
Open systems, 14, 40, 76, 214, 219,

222–223
Operational users, 25, 27
Organization chart, 25, 35
Outsourcing, 37, 43, 46, 53, 285
Ownership and rights, 305–306

P
Package software, 1, 10, 12, 15–16, 21, 40–41,

44, 61, 79, 92–95, 99, 145, 170,
179–181, 183–198, 206–211, 225–226,
231–232, 235, 237–253, 271–277,
280–282, 284, 286, 288–292

Pilot, 3, 96, 221
Politics, 3, 13, 26–27, 35, 54, 74, 273,

280, 292
Post implementation, 58, 81, 83, 89, 97
Pre-post, 133–136, 142
Primary key, 141, 147, 149–154, 156,

158–159, 161–162, 168, 176, 202–203,
230

Process
flow diagram, 14, 33, 123–124
specifications, 33–34, 110–111, 125,

130–134, 183, 193, 205, 266, 281
Programming specification, 111, 113–114,

131, 267
Project management, 1, 11–12, 49, 54, 58–60,

62, 78, 82, 87, 271–274, 276, 278, 280,
282–284, 286, 330–332

Project plan, 2, 78, 238–239, 271, 277, 280,
284–286, 292

Project team, 4, 24, 82, 86–87, 280–286,
288–291

Prototypes, 31, 34–35, 219, 286, 329
Pseudocode, 110, 113, 125, 131–133,

135–136, 142, 332

Q
QA Test Plan, 288
Quality assurance (QA), 4–5, 8–10, 14, 49,

63–65, 82, 88, 210–212, 220, 257,
263–264, 281–282, 284, 288, 292, 296,
300, 332

R
Rapid application development (RAD), 24, 31,

219
Referential integrity, 164, 166–168, 175, 193,

225, 248
Request for information (RFI), 10, 11, 13,

49–69, 332
Request for proposal (RFP), 10, 11, 13, 49–69,

72, 77, 84, 332
Return on investment (ROI), 7, 28, 43
Robust, 21, 23, 223, 238, 329

S
Scribe, 31, 34, 218
Severability, 307–308, 323
Spiral life cycle, 220–221
Strategy map, 92, 95, 97, 332
Structured query language (SQL), 57, 107,

110, 152, 158, 173, 180–181, 191–194,
214, 223, 227–229, 234, 247, 256, 281

Supertype/subtype, 159–166
Supporter, 24–26, 31, 41–44, 47, 93,

292, 332
System development life cycle (SDLC), 1,

6–7, 10, 12, 40, 94–95, 99, 220–221,
237, 271, 330–332

T
Third-party, 10, 13, 16–17, 44, 47, 58, 75, 77,

90, 110, 179, 192, 233, 235, 256, 273,
280, 289, 306–307, 319, 331

Tiers of software development, 21, 23
Total cost of ownership (TCO), 38–39, 47
Training, 17, 33, 57–59, 75, 78, 82, 91, 96,

218, 238, 241, 257, 274, 297, 329–331

U
UNIX, 76, 195, 306
User interface, 8, 21–22, 24–25, 28, 35, 104,

175, 196, 265, 286, 332
User training, 17, 82, 329–330

350 Index

V
Vendor, 7, 10–13, 16, 45–46, 51, 57–58, 60,

62, 65, 68, 72–79, 86–90, 119–122,
126, 128–130, 142–143, 173, 212, 232,
249, 264, 277, 279, 284, 288, 300,
305–325, 332

Version control, 105–106, 261
VSAM, 179, 181, 214, 223

W
Waivers, 307
Warranty, 58–59, 310, 318
Windows, 76, 201, 306
Windows NT, 195
Work breakdown structure, 276–277
Work for hire, 308

	Cover
	Guide to Software
Development
	ISBN 9781447122999
	Preface
	The Aim of This Book
	The Intended Audience for This Book

	Acknowledgments
	Contents
	1 Introduction
	What Is, Is
	Just What Is a Complex Project
	Development
	Testing
	Production
	Backup, Recovery, and Archiving

	Chapter 2: Assessing Business Requirements
	Chapter 3: Build vs. Buy
	Chapter 4: Establishing Requirements Using RFP and RFI
	Chapter 5: Searching for Solutions
	Chapter 6: Controlling Costs and Realistic Budgeting
	Chapter 7: Analysis Methods and Tools
	Chapter 8: Creating Requirement Documents Using Analysis Tools
	Chapter 9: The Data
	Chapter 10: Legacy Systems and Integration
	Chapter 11: Business Process Reengineering
	Chapter 12: Data Analytics and Data Warehouses
	Chapter 13: Documentation and Acceptance Testing
	Chapter 14: Project Management
	Chapter 15: ISO 9000 and the Software Development Life Cycle
	Chapter 16: Contract Considerations
	Chapter 17: Going Live and Conclusions
	Reference

	Part I: Determining Needs
	2 Assessing Business Requirements
	The Tiers of Software Development
	User Interface
	Tools
	Productivity Through Automation
	Object Orientation
	Client/Server
	Internet/Intranet

	Establishing User Interfaces
	Forming an Interview Approach
	Dealing with Political Factions
	Categories and Levels of Users
	Joint Application Development (JAD)
	Problems and Exercises

	3 Build vs. Buy
	Core vs. Context
	Coverage
	Direction
	Total Cost of Ownership (TCO)
	Scale
	Timing
	Standards
	Other Evaluation Criteria
	Drivers and Supporters
	The Supporter Side of Buying
	Open Source Paradigm
	Cloud Computing Options
	Deployment Models
	Summary
	Problems and Exercises
	References

	4 Establishing Requirements Using RFP and RFI
	RFI
	RFP
	Requirements Document
	Problems and Exercises

	5 Searching for Solutions
	The Team Selection
	Due Diligence
	Reference Checks
	Review Financial Statements
	Bank References
	On-site Demonstrations
	Vendor On-site Review
	Training
	Upgrade Process
	General Questions to Ask
	Understand the Company Ownership

	Architecture Review
	Finding Vendors
	Paying for a Plan
	Summary
	Problems and Exercises
	Reference

	6 Controlling Costs and Realistic Budgeting
	Kickoff and Selection
	Implementation
	Post-implementation
	Controlling Costs
	Hardware and Infrastructure
	Software
	Consulting Fees
	Customization Costs
	The Balanced Scorecard as a Budget Tool
	Problems and Exercises
	References

	7 Analysis Methods and Tools
	The Concept of the Logical Equivalent
	Tools of Structured Analysis
	Making Changes and Modifications
	Pre-modeled
	Being Consistent
	Version Control

	Legacy Systems
	The Data Approach
	The Process Approach

	Specification Formats
	Problems and Exercises

	Part II: Development Architecture
	8 Creating Requirement Documents Using Analysis Tools
	Purpose
	Advantages of the DFD
	Disadvantages of the DFD
	Process Flow Diagrams
	Components of a PFD
	DFD--PFD Compared
	Sequence of Implementation
	Data Dictionary
	Process Specifications
	Pseudocode
	Case
	Pre-Post Conditions
	Matrix

	State Transition Diagrams
	Entity Relational Diagrams
	Problems and Exercises
	Mini-Project
	Assignment

	References

	9 The Data
	Introduction to Databases
	Logic Data Modeling
	Logic Data Modeling Procedures
	Key Attributes
	Normalization
	Limitations of Normalization

	The Supertype/Subtype Model
	Key Business Rules
	Combining User Views
	Integration with Existing Data Models
	Determine Domains and Triggering Operations
	De-normalization

	Summary
	Problems and Exercises
	Mini-Project
	References

	10 Legacy Systems and Integration
	Introduction
	Types of Legacy Systems
	Third-Generation Language Legacy System Integration
	Replacing Third-Generation Legacy Systems
	Approaches to Logic Reconstruction

	Enhancing Third-Generation Legacy Systems
	Data Element Enhancements
	Application Enhancements

	"Leaving As Is"---Third-Generation Legacy Systems

	Fourth-Generation Language Legacy System Integration
	Replacing Fourth-Generation Legacy Systems
	Approaches to Logic Reconstruction

	Enhancing Fourth-Generation Legacy Systems
	"Leaving As Is"---Fourth-Generation Legacy Systems

	Hybrid Methods: The Gateway Approach
	Incremental Application Integration
	Incremental Data Integration

	Converting Legacy Character-Based Screens
	The Challenge with Encoded Legacy Screen Values

	Legacy Migration Methodology
	Step 1: Analyze the Existing Legacy Systems
	Step 2: Decompose Legacy Systems to Determine Schedules of Migration and Linkage Strategies
	Step 3: Design ''As Is'' Links
	Step 4: Design Legacy Enhancements
	Step 5: Design Legacy Replacements
	Step 6: Design and Integrate New Databases
	Step 7: Determine New Infrastructure and Environment, Including Gateways
	Step 8: Implement Enhancements
	Step 9: Implement Links
	Step 10: Migrate Legacy Databases
	Step 11: Migrate Replacement Legacy Applications
	Step 12: Incrementally Cutover to New Systems

	Problems and Exercises
	References

	11 Business Process Reengineering
	Analyzing Legacy Systems for Replacement
	Data Elements
	Applications
	Combining Structured and Object Techniques
	Dealing with End Users
	Information Systems Issues
	System Development Life Cycle (SDLC)
	Pilot Applications
	Downsizing System Components
	Transactions vs. Data Warehousing
	Problems and Exercises

	12 Data Analytics and Data Warehouses
	Introduction
	Data Warehousing Concepts
	Performance Benefits of Data Warehouses
	Concept of Multiple Dimensions
	Data Warehouse Architecture
	Extracting Data from the Source
	Staging the Extracted Data
	Read-Only Activities
	Front-End Tools
	Types of Data Warehouse Architecture

	The Package Software Decision Support Life Cycle
	Phase 1: Planning
	Phase 2: Gathering Data Requirements and Modeling
	Phase 3: Physical Database Design and Development
	Phase 4: Data Mapping and Transformation
	Phase 5: Populating the Data Warehouse
	Phase 6: Automating the Data Management Process
	Phase 7: Application Development and Reporting
	Report Access and Analysis
	Types of Query Tools

	Phase 8: Data Validation and Testing
	Phase 9: Training
	Phase 10: Rollout

	Understanding Metadata
	Problems and Exercises
	Reference

	13 Documentation and Acceptance Testing
	Acceptance Test Plans
	Quality During Analysis
	Cannot Test 100% of Everything
	More Efficient Development
	Budget Process
	Establish the Task List
	Interviewing
	Modeling
	Acceptance Test Planning

	Problems and Exercises

	Part III: How to Implement
	14 Project Management
	Introduction
	Defining the Project
	Identify Objectives
	Identify Users
	Determining the Scope of the Project
	Managing Scope

	The Budget
	The Project Team
	Project Team Dynamics
	Set Rules and Guidelines for Communication
	Extranet Review Sites
	Working with User Resources
	Outsourcing

	Planning and Process Development
	Technical Planning
	Defining Technical Development Requirements
	Maintenance

	Project Management and Communication
	Summary
	Problems and Exercises
	References

	15 ISO 9000 and the Software Development Life Cycle
	Developing a System of Procedures
	Why ISO 9000?
	How to Incorporate ISO 9000 into Existing Software Life Cycles
	Interfacing IT Personnel
	Committing to ISO 9000
	Problems and Exercises

	16 Contract Considerations
	Ownership and Rights
	Legal Protection and Coverage
	Financials
	Deliverables and Performance
	Problems and Exercises

	17 Going Live and Conclusions
	User Training
	The Role of IT
	Conclusions

	Appendix A Case Study: The Rainforest Book Company Problem
	Event I
	Event II
	Event III
	Event IV

	Appendix B Case Study: Northwest General Practitioner's Office
	Appendix C Case Study: University Student Enrollment Database
	Further Reading
	Glossary
	Index

