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Abstract. Glaucoma is a leading cause of blindness. While glaucoma is
a treatable and controllable disease, there is still no cure available. Early
diagnosis is important in order to prevent severe vision loss. Many cur-
rent diagnostic techniques are subjective and variable. This provides mo-
tivation for a more objective and repeatable method. Optical Coherence
Tomography (OCT) is a relatively new imaging technique that is proving
useful in diagnosing, monitoring, and studying glaucoma. OCT, like ul-
trasound, suffers from signal dependent noise which can make accurate,
automatic segmentation of images difficult. In this article we propose a
method to automatically extract the optic nerve and retinal boundaries
from axial OCT scans through the optic nerve head. We also propose a
method to automatically segment the curve to extract the nerve head
profile that is important in diagnosing and monitoring glaucoma.

1 Introduction

Optical Coherence tomography (OCT) is a relatively new imaging technique
[1]. While similar to ultrasound, OCT relies on the detection of backscattered
light and time of flight information to produce high resolution, cross-sectional
images. OCT has been particulary useful in biological imaging applications such
as dermatology, cardiology, and ophthalmology [2, 3, 4]. Specifically in the oph-
thalmological case, OCT has been used for a variety of purposes which range
from measuring corneal thickness in the anterior segment of the eye to measuring
the retinal thickness in the posterior segment of the eye [5]. Although limited
to relatively shallow imaging depths, approximately 2mm in retinal scans, OCT
benefits from being a non-invasive procedure in ophthalmological imaging with
a 5-10 micron axial resolution [6]. Thus detailed images of the retinal tissue
structure can be obtained with the potential for high tolerance measurements.

Retinal nerve fiber layer thickness is a clinically important measurement in
the diagnosis and monitoring of glaucoma [7]. Over time the retinal nerve fiber
layer thickness around the optic nerve tends to decrease as nervous tissue is de-
stroyed. It has been estimated that up to 40% of the nerve fiber can be destroyed
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before significant vision loss occurs [8]. The cup-to-disk ratio and the optic cup
shape are also important indicators of glaucoma and optic nerve health; how-
ever, cup-to-disk ratio is an ill-defined term. The most popular way to measure
the cup-to-disk ratio is through direct observation. Here the physician observes
the optic nerve through fundus imaging and estimates what he/she believes the
cup-to-disk ratio to be. This technique is subjective and variable and provides
motivation for an objective method that is more accurate and repeatable. In this
paper we propose a method to robustly extract the retinal and optic nerve head
boundaries from axial OCT scans of the optic nerve head. With the boundaries
extracted, we next propose a method for segmenting the optic cup from the
retina and disk.

The eye is divided into two chambers, the anterior chamber and the posterior
chamber. The posterior chamber is filled with a relatively homogenous, jelly like
substance called the vitreous humor [9]. The retina is the anterior most tissue
layer in the back of the posterior chamber. It is here that light rays are focused
and processed before being sent via the optic nerve to the brain. We note that
the top most layer of the retina is composed of nerve fibers. It is these nerve
fibers that are destroyed due to glaucoma. The layer of tissue below the retina
is a highly reflective layer called the choroid and is mostly composed of blood
vessels which feed the back of the eye.

Finally, the optic disk is the area of the retina where the nerve fiber layers
converge to form the optic nerve. The cup is the area of so-called empty space
in the central region of the optic disk. In normal eyes the ratio of the cup area
to the disk area (cup-to-disk ratio) is small (less than 0.6) [8]. In glaucomatous
eyes, the death of nerve fibers causes the size of the cup to increase and thus
the cup-to-disk ratio also increases. The shape of the cup can also provide an
indicator as to whether or not an individual has glaucoma.

2 Optical Coherence Tomography

Optical Coherence Tomography is similar to ultrasound. Instead of sound,light is
sent into a sample and the time of arrival and intensity of the backscattered light
is used to form an image. However, because the speed of light is over a million
times faster than the speed of sound, coherence based detection techniques are
often chosen over nonlinear gating techniques and Kerr shutters [10].

In coherence based detection an interferometer is used to split the energy
from a light source E(t) into a reference field Er(t) and a sample field Es(t).
The sample field travels a total distance ls and the reference field lr. The two
fields add together at the detector and the total detector photocurrent is

ID ∼ 1
4
|Er|2 +

1
4
|Es|2 +

1
2
|ErEs| cos(2

2π

λ
∆l) (1)

where λ is the wavelength of the light source and

∆l = lr − ls (2)
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Thus (1) tells us that the intensity of the photocurrent oscillates as a function of
the path length difference (2). It can be shown that when a low coherence source
is used ID becomes the cross-correlation function of the sample field with the
reference field. The fields are correlated (i.e. interfere constructively) when ∆l is
less than the coherence length lc and are uncorrelated otherwise. The coherence
length is inversely proportional to the bandwidth of the light source. Because the
sample field is relatively constant, we can control imaging depth by controlling
the length of the reference beam. Our images were obtained using the OCT
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Fig. 1. A typical OCT scan through the optic nerve with labeled structures.

3000 from Zeiss-Humphrey. The typical scan consists of 512 A-scans where each
A-scan consists of 1024 pixels. The axial resolution is < 10µm and the transverse
resolution is dependent on the scan length. Fig. 1 shows a typical scan through
the optic nerve head with various anatomical structures marked.

3 Theory

Segmentation of OCT images is a difficult task. Koozekanani et al. [11] proposed
a Markov Boundary Model to extract the retinal boundaries from circular scans
of the macula. While their method is robust on the macular region of the retina,
the model they used fails in the optic nerve head region due to the significant
anatomical differences. It is impractical to train a new Markov model because
there is considerably more variation in the optic nerve head regions between sub-
jects. We can still, though, rely on the assumption that the retinal/optic nerve
head profile is smooth and that significant undulations in the retina are usually
the result of eye movement. The optic disk surface also varies slowly, although
considerably less so than the retina. We can assume that the imaging technician
will discard the image if movement is severe enough to cause significant image
distortion or large breaks in the profile. Likewise, if shadowing significantly re-
duces the visibility of entire image regions, the technician will again discard the
images. However, less severe shadow effects, breaks, distortions, and artifacts
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Fig. 2. (A) is a noise suppressed OCT scan. The image histogram is shown in (B)
and shows the thresholds obtained using Otsu’s method and our method. (C) is
the thresholded image resulting from Otsu’s method and (D) is the thresholded
image using our method.

must be assumed likely and that the OCT technician will keep such images.
Thus our method should be robust enough to handle such effects.

The most complicated problem with OCT images is the nonlinear, signal
dependent noise that is inherent in coherence imaging techniques. This noise
is called speckle due to its appearance in the images. Ultrasound and synthetic
aperture radar imaging also suffer from this phenomenon. Speckle arises because
of multiple backscattering and forward scattering within the sample volume [12].
Organic tissue is never homogenous and thus a sample volume is highly likely
to have multiple scatterers (i.e cells, organelles, fibers, fluids ...). Speckle forms
when light from these multiple scatterers reaches the detector out of phase within
the coherence time of the source. Thus multiple backscattering causes construc-
tive and destructive interference that alters the wave shape incident the detector.
Speckle is both a signal carrier, in that it reveals information about the under-
lying microstructure, and a source of noise. While distinguishing between noise
speckle and information speckle is difficult [10] we need not be concerned. We are
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only interested in the gross anatomical structure of the retina and optic nerve
head and not in its microstructure. Thus both types of speckle can be considered
noise for our case.

While some speckle can be reduced through imaging techniques such as spa-
tial compounding and polarization diversity there still remains a significant prob-
lem. Because of its signal dependent nature, speckle noise can not readily be
decoupled from the signal. Various techniques have been proposed to alleviate
the problem with the most common being the use of median filtering [13, 14, 11]
or one of its variations. Suvichakorn and Chinrungrueng propose fitting a two-
dimensional polynomial using a least squares approach to estimate the actual
image intensities [15]. Park et al. rely on an adaptive windowing procedure with
adpative filtering based on local statistics [16] and Xiang et al. used wavelet
filters incorporating automatic noise thresholds [17].

Observations of retina and optic nerve images reveal that there is a significant
contrast difference at the vitreal-retinal boundary. When speckle is suppressed
through filtering, the retina becomes a relatively homogenous region and the
contrast between the vitreous humor and retina is significantly increased. Define
Region 1 to be the vitreous humor and the dark area in the lower portion of the
image corresponding to signal loss. Next, define Region 2 as the retina, optic disk,
and choroid. Now we assume that there exists a threshold t such that Region
1 is completely separated from Region 2. If such a t exists then the top profile
of the retina and optic nerve is just the boundary between the upper portion of
Region 1 and Region 2.

Thresholding is a simplistic yet powerful image segmentation tool. The prob-
lem with thresholding lies in the selection of the threshold. Assuming that the
pixel distributions of the regions are normal, one might consider using Otsu’s
thresholding algorithm [18] which seeks to minimize the within class variance of
the two distributions in a bimodal histogram. This can provide sub-optimal re-
sults if there is considerable overlap between the distributions or if the histogram
is not bimodal. Rather than rely on the histogram to select the threshold we pro-
pose a new method based on edge maximization and smoothness constraints to
choose an optimal threshold.

Let E(r, c) be an edge image produced by column-wise, one-dimensional edge
detection, r(t, c) be the boundary of interest as a function of the threshold t and
image columns, and r

′
(t, c) be the first derivative with respect to c. Note here

that E(r, c) may be a modification of the actual edge image, for instance we could
threshold the weaker edges or use only edges of a certain polarity. Furthermore,
define p(t, c) to be a function that corresponds to whether an edge exists (we
could also use edge strength) for a given r(t, c), that is

p(t, c) = E(r(t, c), c) (3)

Now we can define a cost function

J(t) =
∑

c

p(t, c) − α
1

Nc

∑

c

|r′
(t, c)| (4)
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where α is a constant of proportionality. The optimal threshold given the criteria
we have defined can then be found by setting

∂J

∂t
= 0 (5)

and solving for t.
The first term of (4) corresponds to the number of edge locations that in-

tersects r(t, c). The second term adds a smoothness constraint based on the
anatomical properties of the vitreal-retinal boundary. We expect that the aver-
age rate of change of the correct boundary is small (even in the region of the
optic cup). Breaks in the boundary due to subject movement or portions of
the optic cup may correspond to a high rate of change. However, this will be
relative constant over a range of thresholds and should not affect the correct
choice of t. This terms adds a degree of robustness to J(t) particularly in the
case of shadowing. In A-scans where there is partial occlusion the contrast tends
to be lower than the non-occluded A-scans and the second term tends to pull
the threshold lower to account for the occlusion. The constant α controls the
amount of correction that can occur. Setting α too low results in little or no
correction while setting α too high can cause incorrect segmentation. Thus the
optimal t maximizes the number of edge locations in E(r, c) located along r(t, c)
and minimizes the average rate of change of r(t, c).

Fig. 2A shows an OCT image where the noise has been suppressed by median
filtering. Fig. 2B shows the histogram of the image along with Otsu’s threshold
and the threshold chosen by our algorithm. In this case the distributions do not
clearly exhibit a bimodal nature. Fig. 2C shows the result of thresholding based
on Otsu’s method. Fig. 2D shows the result of minimizing J(t) to obtain the
correct threshold.

At first glance (4) resembles the active contour model first proposed by Kass
et al. [19] and seen extensively throughout the literature [20, 21, 22, 23]. Indeed,
there are some similarities since we are seeking a threshold dependent upon image
forces and contour smoothness. The key difference lies in that we have defined
a function J(t) in terms of a scalar threshold t. Active contour models seek an
entire contour the minimizes a certain functional. In our case, the contour results
from finding the threshold that minimizes J(t). Indeed, (4) is less sophisticated
and simpler than the active contour model but it suffers less from some of the
problems associated with active contour models such as contour initialization
and attraction to incorrect minima.

The vitreal-retinal boundary Y (x) can be modeled as a piecewise smooth
function consisting of a straight line segment, followed by a parabolic segment,
and ending with another straight line segment as follows:

P (x) =






a1x + b1 if c1 ≤ x ≤ c2

a2x
2 + b2x + c if c2 ≤ x ≤ c3

a3x + b3 if c3 ≤ x ≤ c4

(6)

while c1 and c4 are known since they represent the first and last columns in the
image, c2 and c3 are unknowns which we will call breakpoints. The parameters
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for each curve segment are also unknown, but if we are given c2 and c3, the
parameters for each curve segment can be found using a least squares fit. For
instance, in the case of the parabolic segment one needs to solve the matrix
equation 



x2
1 x1 1

x2
2 x2 1
...

...
...

x2
N xN 1








a2

b2

c



 =




P1

...
PN



 (7)

where xi and Pi are defined in (6). The solution to (7) is



a2

b2

c



 = (XT X)−1XP (8)

where we have used the Moore-Penrose inverse. The parameters for each segment
can thus be found provided that c2 and c3 are known but the problem is that c2

and c3 are not known. In order to find the breakpoints we will need to define a
criterion that will provide insight to how well P (x) for a given c2 and c3 models
the boundary profile Y (x). First let

c̄ =
[
c2

c3

]
(9)

Next, consider
Pi(x) = P (x) ci ≤ x ≤ ci+1 (10)

to represent the modeled boundary using the parameters from (6) where i rep-
resents the curve segment number. Also define

Yi(x) = Y (x) ci ≤ x ≤ ci+1 (11)

Then we can write the squared error for each curve segment as

ei(c̄) =
∑n=ci+1

n=ci
(Yi(n) − Pi(n))2 i = 1 . . . 3 (12)

Now we can write the total squared error, TE, as a function of c̄

TE(c̄) =
3∑

i=1

ei(c̄) (13)

TE(c̄) gives us an indication of how well our model fits the actual upper retina-
optic nerve head profile for a given set of breakpoints. Now we assume that TE(c̄)
has a global minimum that corresponds to the ideal location of the breakpoints.
That is, when TE(c̄) is minimized, the model we have proposed has found the
edges of the optic cup. Here we will make one further assumption about TE(c̄),
that is the error function is quadratic and only has one minimum. This is of
course a weak assumption. In actuality there are saddle points and local minima
on the error surface; however, these local minimum and saddle points are usually
much weaker then the global minimum and thus the assumption that TE(c̄) is
a quadratic error surface is justified. Since we assume that TE(c̄) is quadratic
we can then use a gradient descent algorithm to locate the correct breakpoints.
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4 The Algorithm

4.1 Median Filtering (Step 1)

The first step in our approach is noise suppression. We chose to use a median filter
due to its simplicity and its property of preserving the important macrostruc-
ture of the image. We applied a 4 x 4 median filter to each image twice. This
suppresses most of the speckle and homogenizes the retina and choroid by de-
stroying the underlying microstructure. Because the columns of an image are
acquired independently, two-dimensional median filtering tends to introduce ar-
tifacts. However, since we are only relying on the edges to choose a threshold, the
artifacts are of little consequence. The result of filtering can be seen in Fig. 2A.

4.2 Columnwise Edge Detection (Step 2)

Edge detection was performed on the each A-scan of the filtered image. The lack
of registration, the speckle character of the noise, and the dislocations between
adjacent columns tend to cause problems in the case of 2-D kernels. Indeed, the
transverse and axial resolutions are not identical whereas most 2D kernels are
isptropic and rely on the assumption that the transverse and axial resolutions
are identical. Columnwise edge detection is similar to the methods of Thune et
al.[24] and Koozekanani et al. [11].

We chose to use the Marr-Hildreth operator (LoG) which is given below [25].
There is no special reason for this choice as any other 1D kernel, such as the
optimal zero-crossing operator proposed by Sarkar and Boyer [26], would have
worked as well.

E(r) = g
′′
(r) ∗ A (14)

where

g(r) = exp(
−r2

2σ2
) (15)

The edge locations szc(r), are the zeros crossings of (14). We chose to use a
σ = 5. This provided a compromise between edge position preservation and
additional filtering of noisy edges. Edge preservation is particularly important
as threshold choice relies on the assumption that a large number of edges lie on
the vitreal-retinal border. We can reduce the number of edges in the image by
considering only those edges of negative polarity. This is justified because the
vitreal-retinal border is a transition from a darker region to a lighter region.

4.3 Optimal Threshold Selection (Step 3)

Using the cost function that we defined in (7) we wish to learn which threshold
value t extremizes this function. In this case a gradient descent algorithm can
be computationally expensive and slow to converge and is thus undesirable.
Instead we sample J(t) for a set of t values which are evenly spaced over a range
that typically bounds t. Our observations, over many trials, indicate that J(t)
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is generally a well behaved parabolic function for the bounded set of threshold
values. We then fit a parabola to the sampled J(t) and the extremum for

y(t) = at2 + bt + c (16)

occurs at
t = − b

2a
(17)

This is the optimal threshold according to our definition of J(t).

4.4 Boundary Extraction (Step 4)

Using t as found in Step 3 to threshold the image, the matter of boundary
extraction is trivial. Noise in the vitreous humor can cause small artifacts to
occur in this region of the thresholded image. These are easily removed and the
boundary is just the first non-zero pixel in each image column.

4.5 Curve Segmentation (Step 5)

Given the retina-optic disk boundary from Step 4, the final step of our algorithm
is to find the edges corresponding to the optic cup in the boundary. Using the
model we stated earlier (6) and the cost function (13) we can use a gradient
descent algorithm to find the columns that best correspond to the edges of the
optic cup. The method of gradient descent updates the current estimate of TE(c̄)
for each iteration k by

c̄(k + 1) = c̄(k) − η∇TE(c̄, k) (18)

where η is called the learning rate. The gradient descent algorithm moves along
the negative direction of the gradient until the algorithm converges to the optimal
value of TE(c̄). The parameter η controls the speed of convergence; however, if
η is set too high divergence may occur. Although methods exist to calculate the
best η and to update it iteratively, we found that c̄ typically converged quickly
even for small values of η and by making η smaller we can avoid divergence
problems. Limitations of this method occur if patient movement is significant
enough to severely alter the retina profile. In this case the model that we chose
no longer fits the actual profile.

5 Results

The algorithm generally identified the correct vitreal-retinal boundary in the
images. The rare exceptions occur when the OCT signal has been severely at-
tenuated due to shadowing. If the shadowing is severe enough in a portion of
an image, then the threshold selected will set all of the A-scans affected by the
shadowing to zero. In this case, no boundary will be found; however, it is easily
identified and measures can be attempted to find the correct boundary.



404 A. Herzog, K.L. Boyer, and C. Roberts

A 

Fig. 3. (A) shows an example of a correctly identified boundary while (B) shows
the resulting curve segmentation. (C) and (D) show another pair with correct
boundary identification and segmentation. (E) and (F) show the results for a sub-
ject suffering from papilla edema. Again we have identified the correct boundary
and have achieved correct segmentation.

Our curve segmentation algorithm also produced good results. Exceptions
occurred when movement introduced a significant distortion in the boundary
profile. Fig. 3 shows some examples of results obtained using our algorithm.
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Fig. 4. An example where the boundary curve is not segmented properly due to
distortion from subject movement.

Fig. 4 shows an example of curve segmentation when the boundary profile has
been affected due to movement.

6 Conclusion

We have presented two significant contributions in this paper. First, we have
developed a method to adaptively threshold OCT images of the optic disk in or-
der to extract the vitreous-retinal boundary from the images. Our method relies
on maximizing the number of edges that lie on the boundary while minimizing
the boundary’s average rate of change. Our method proves to be robust even
in the presence of noise artifacts and significant shadowing that would normally
cause problems in identifying the correct boundary. The second contribution is
an accurate segmentation of the boundary profile obtained via our thresholding
technique. This curve parsing procedure relies on a piecewise continuous model
of the retinal-boundary where the retina/optic disk portions of the boundary are
represented as straight lines and the cup portion is represented by a parabola. By
minimizing the sum of squared errors for each segment we can find the optimal
edge points of the optic cup. Reliable boundary extraction and segmentation of
the axial optic nerve head scans are particularly useful in the clinical setting
where current diagnostic procedures lend themselves to the subjectivity of the
technician. Further work includes finding the boundary regions corresponding
specifically to the optic disk so that a cup-to-disk ratio can be calculated and
used in a clinical setting.
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